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Synopsis grand public

Etude expérimentale des hétérodéformations dans les moirés des
bicouches de graphène

Le graphène est le premier cristal purement bidimentionnel a avoir
été exfolié à partir du graphite, un matériau très courant qui peut
être retrouvé jusque dans les mines des crayons à papier. C’est aussi
un matériau très solide et résistant avec des propriétés conductrices
exceptionnelles. On a même découvert récemment que des phases
exotiques de la matière se forment en superposant deux couches de
graphène tournées d’un angle particulier surnommé l’angle magique.

Dans cette thèse on utilise la microscopie à effet tunnel pour étudier
ce système de deux couches de graphène. Cette technique permet en
effet de déterminer l’empilement relatif des couches ainsi que de
mesurer les propriétés électroniques de l’ensemble.

On étudie en particulier l’effet des hétérodéformations, c’est à dire
les déformations relatives des couches, sur les propriétés électron-
iques des bicouches de graphène tournées. On s’intéresse aussi à un
nouveau type de réorganisation microscopique des atomes induite
par les hétérodéformations biaxiales, la relaxation en tourbillon. On
présente aussi le développement expérimental d’un microscope à ef-
fet tunnel permettant l’application de déformations à l’échantillon
pendant la mesure afin de contrôler les heterodéformations.

Experimental study of heterostrain in moiré superlattices of
graphene bilayers

Graphene is the first purely two dimentional crystal that has been
exfoliated from a very common material, graphite, that can be found
in pencil leads for example. It is also a very strong and stiff material
with exceptional conducting properties. Exotic phases of matter were
recently discovered by stacking two layers of graphene with a specific
angle between them, the so called magic angle.

In this thesis, we use Scanning Tunneling Microscopy measure-
ments to study this bilayer graphene system. This technique is in-
deed a great tool to determine the exact stacking arrangement of
two layers of graphene while probing the electronic properties of the
system.

We focus in particular on the effects of heterostrain, in other words
the relative strain between the layers, on the electronic properties of
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twisted bilayers of graphene. We also focus on a new type of slight
atomic rearrangements induced by a biaxial heterostrain, the swirl re-
laxation. We also present the experimental developement of a strain-
ing Scanning Tunneling Microscope in order to control heterostrain
during measurements.



Résumé

Superposer deux couches de graphène l’une sur l’autre avec une ro-
tation donne lieu à la formation d’un moiré. Ce moiré conserve la
dispersion linéaire des porteurs de charge mais leur vitesse de Fermi
est renormalisée. Celle-ci s’annule même pour un angle dit magique,
donnant lieu à un nouveau type de localisation des électrons, induite
par le moiré. Cette dernière donne lieu à la formation de phases
fortement corrélées telles que la phase supraconductrice découverte
récemment et qui a soulevé un grand intérêt dans la communauté de
la matière condensée.

Dans cette thèse, on s’intéresse à l’effet de l’empilement relatif
entre les couches sur les propriétés électroniques du système. En
utilisant des données de microscopie et spectroscopie à effet tunnel,
on montre que les déformations relatives entre les couches, nommées
hétérodéformations, contrôlent la physique des bicouches de graphène
tournées d’un angle proche de l’angle magique. L’arrangement exact
entre les couches, comprenant les hétérodéformations, est suffisant
pour expliquer la variabilité des proprétés électroniques observées
expérimentalement d’un échantillon à l’autre.

A plus petit angles encore, il est nécessaire de prendre en compte
les déformations locales liées à la relaxation du système à l’échelle
atomique. On s’intéresse à un nouveau type moiré dans les bi-
couches de graphène relaxées, induit par les hétérodéformations bi-
axiales et dans lequel se développe un mode de relaxation particulier
que l’on nomme tourbillon.

Enfin, dans le but d’utiliser les déformations comme une sonde,
on présente la fabrication et les tests d’une cellule de déformation
compatible avec un STM qui opère à température ambiante ou cryo-
génique. Un tel appareil peut être utilisé sur toute une variété de
matériaux, dont les bicouches de graphène tournées.





Abstract

Stacking two layers of graphene on top of each other with a twist
gives rise to a moiré pattern. This moiré does not affect the linear
dispersion of the charge carrier, but renormalises their Fermi veloc-
ity. The latter even cancels for an so called magic angle, triggering
a new type of electron localisation which is induced by the moiré.
This localisation gives rise to strongly correlated phases, such as the
recently discovered superconducting phase that created intense in-
terest in the condensed matter community.

In this thesis, we investigate the effect of the relative stacking be-
tween the layers on the electronic properties of the system.

By using Scanning Tunneling Microscopy and Spectroscopy data
from the literature we show that the relative strain between the lay-
ers, so called heterostrain, controls the physics of twisted bilayers of
graphene near the superconducting twist angle regime. The exact
stacking arrangement including heterostrain is enough to explain the
sample to sample variability that has been observed in recent exper-
iments.

At lower angles, in addition to the exact stacking arrangement, lo-
cal deformations related to relaxation processes of the system on the
atomic scale must be taken into account as well. We investigate a
new type of moiré induced by biaxial heterodeformations, in which
occurs a peculiar relaxation mode that we call a swirl relaxation pat-
tern.

Last, aiming at using strain as a tool, we show the building and
testing of a strain cell compatible with an Scanning Tunnaling Mi-
croscope that operates at room and cryogenic temperatures. Such a
device can be used on a variety of materials in addition to twisted
graphene layers.
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Introduction

Atoms forming crystals are organized following a long range order
in all three directions of space. They have fascinated mankind for
centuries, and more recently condensed matter physicists as they
progressed in the understanding of their cristallography down to
the smallest scale, as well as the understanding of their electronic
properties. The surface of crystals are another constant source of
interest, as they have characteristics than can be quite different from
the bulk of the crystal. The study of surfaces deepened and extended
with the invention of Scanning Tunneling Microscopy, because it en-
ables to probe the structural arrangement of a surface while giving
information on its electronic properties.

The reduced dimentionality of a surface can be pushed to its limit
when considering an atomically thick material. This challenge was
first answered with the first isolation of graphene in 2004 [1], a purely
2-D material that can be exfoliated from graphite. It was followed by
the exfoliation of many layered crystals such as NbSe2, MoSe2 along
with many others, among the hundreds of other stable single-layer
materials that are predicted. These 2-D materials can be isolated by
the exfoliation of bulk layered materials or by bottom-up synthesis
with methods similar to Chemical Vapor Deposition. In the case of
graphene, both methods are demonstrated to work efficiently.

These materials are surprisingly stable as they do not break upon
mechanical or thermal fluctuations, although some of them need to
be encapsulated. Instead, graphene for example is extremely strong
and stiff, with a Young modulus above 1TPa [2], which permits mea-
suring it even when it is completely suspended.

As the thickness of a crystal gets lower than the electron wave-
length, the degree of freedom of electrons is reduced and their quan-
tum character can be expressed in different ways. Single-layer mate-
rials can thus host electronic properties that originate from bulk crys-
tals (conducting, isolating, semiconducting, superconducting, ...), but
exotic electronic effects originating from their 2D character can also
emerge. A striking example is the demonstration of quantum hall
effect at room temperature in graphene only three years after its first
isolation [3]. Another example is the indirect to direct bandgap tran-
sition in MoS2 upon reduction of the number of layers [4], which is
also observed in other Transition Metal Dichalchogenides (TMDs).

In addition, 2-D materials offer the possibility to form new crys-
tals by stacking them on top of each other, both layers being held
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by weak van der Waals forces. This stacking can be done in various
ways and can involve any 2-D material, offering a new way to design
a whole variety of thin materials, new crystals with unique electronic
properties. By twisting two layers of graphene on top of each other
for example, STM measurements reveal that the moiré that forms be-
tween the two periodicities can confine electrons in specific regions
of the sample [5]. Furthermore, superconductivity can emerge in the
system and can be tuned by changing the twist angle or the strength
of the interlayer interaction [6, 7]. The relative strain, or heterostrain
between the layers has also been found to affect the electronic prop-
erties of the system [8]. All in all, not only the type of material that
are stacked together but also the precise stacking arrangement of the
layers matter in determining the electronic properties of a 2-D van
der Waals material, which makes this family of materials very versa-
tile.

The topic at stake in this thesis is to investigate experimentally in
detail the effects of relative stacking between two layers of graphene.
This investigation is done at the local scale, mainly by using STM
measurements. We start by introducing notions on twisted bilayers
of graphene in Chapter 1. Then we turn to the expected effect of
strain on the electronic properties of the system in Chapter 2. We
take advantage of STM measurements to understand these effects
at the local scale, in Chapter 3. Next, we turn to studying a pecu-
liar relaxation mode in Chapter 4, which we call the swirl relaxation
pattern. It arises in TBLGs when the moiré pattern is induced by
biaxial heterostrain. Last, we present the experimental development
of a straining STM aiming at using strain as a tool to investigate in
situ the modifications of the electronic properties of a system under
strain.



1
Introductive notions on twisted bi-
layers of graphene

Contents
1.1. Graphene . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Bilayers of graphene . . . . . . . . . . . . . . . . . 5

1.3. Twisted bilayers of graphene (TBLG) . . . . . . . 7

1.3.1 Exact calculations : An iterative method . . 8

1.3.2 Low energy description : Continuum model . 9

1.4. Low twist angle regime . . . . . . . . . . . . . . . 11

1.4.1 Ordered states in the low twist angle regime 11

1.4.2 Broken symmetries in the low twist angle regime 12

1.4.3 Inhomogeneities in the low twist angle regime 13

1.5. Minimal twist angle regime . . . . . . . . . . . . 14

1.5.1 Relaxation into Domain Walls . . . . . . . . 14

1.5.2 Localized states at the Domain Walls . . . . 16

1.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . 19

Graphene and its derivates have always triggered intense interest.
In this introductive chapter, we do not try to be exhaustive, par-
ticularly in such a rapidly evolving field, but rather to give a brief
overview of the understanding of graphene and its bilayers in the
low energy limit. Then we focus on the twisted bilayers of graphene
(TBLG) and in particular the low and very low twist angle regimes.

1.1 Graphene

Graphene has a particular honeycomb symmetry that comes from
the hybridization of the 2s, 2px and 2py orbitals of carbon into so
called sp2 orbitals that posses C3 symmetry. Each carbon atom is
thus connected to three neighbors with in-plane covalent σ bonds
each of them at a distance δ1,2,3 = a0 = 0.142nm.

ab2

ab1

δ2
δ1

δ3

A
B

Figure 1.1: Definitions of the triangular
graphene lattice. The unit cell contains
two unequivalent carbon atoms, with
ab1 = a · (1, 0) and ab2 = a · (−1/2,

√
3/2)

and the crystal parameter a = a0
√

3.

The remaining 2pz orbital are not modified. Their overlap is small,
and thus they create a so called π state delocalized over the lattice.
The electronic properties of graphene emerge from these 2pz orbitals
that each provide one electron to the graphene Fermi sea. To re-
trieve a good dercription of graphene, it is thus enough to take only
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these electrons into account : this is the tight-binding approach. This
justifies the second quantization Hamiltonian of graphene :

H = t ∑
<i,j>

c+
α,icβ,j + h.c. (1.1)

Each particle on site i and sublattice β has a probability t to jump
on its nearest neighbor j with opposite sublattice α, and vice versa.

All the electronic properties of the system are described by this
Hamiltonian. In the following, we give a brief derivation of its low
energy limit description that is sufficient to grasp important prop-
erties of graphene. This derivation is done first by going to Fourier
space. For this, one develops the creation (annihilation) c+ (c) opera-
tors in k space :

(1.2)

H = t ∑
<i,j>

∑
k,k′

c+(k)α,i eikRi c(k′)β,j e−ik′Rj + h.c.

= t ∑
δab

∑
k,k′

c+(k)α,i eikRi c(k′)β,j e−ik′(Ri+δab) + h.c.

where δab = δ1,2,3 (see figure 1). This reduces into :

kb2

kb1
K+ K-

Figure 1.2: Schematic dispersion of
monolayer graphene around K+ and K−
dirac points. It shows the massless
property of graphene electrons, as well
as its semimetal property.

H = t ∑
δab

c+(k)α,i c(k)β,j e−ikδab + h.c. (1.3)

In matrix form in the sublattice space, H writes :

H =

 0 t ∑
δab

e−ikδab

t ∑
δab

eikδab 0

 =

(
0 f (k)

f ∗(k) 0

)
(1.4)

It is useful to derive the low energy limit around Dirac cone ξ =
±1, valid for all wavevectors q around Kξ with q << Kξ [9] :

(1.5)

f (k) = f (Kξ + q)

= t ∑
δab

e−iKξ δab e−iqδab

' t ∑
δab

e−iKξ δab (1− iqδab)

= −iqt ∑
δab

δab e−iKξ δab

= −iqt ∑
δab

δab cos(Kξ δab)− qt ∑
δab

δab sin(Kξ δab)

Small refinements to this low energy
limit model can be done to improve our
understanding of the system. In partic-
uler, adding the second nearest neigh-
bors hopping to the Hamiltonian re-
sults in the electron-hole assymetry of
the dispersion [9] ; and the low energy
derivation to higher orders in q reveals
the threefold direction dependent dis-
persion, so called warping.

We follow G. Montambaux [10] in defining ux and uy so that f
writes :

f ξ(Kξ + q) = −it
a
√

3
2

quy + t
a
√

3
2

ξqux (1.6)

So that the Hamiltonian can eventually be written in the form of a
2*2 matrix :

Hξ = t
a
√

3
2

(
0 ξqx − iqy

ξqx + iqy 0

)
= h̄vFq · σ (1.7)
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With the Fermi velocity (first calculated by P. R. Wallace [11]) is given,
for t = 3.7eV, by :

vF =
a
√

3t
2h̄

= 1.1 · 106m/s (1.8)

Figure 1.3: Pseudospin texture in the
Brillouin Zone of monolayer graphene
from [12].

Equation 1.7 is reminiscent of a massless Dirac-like Hamiltonian
(Weyl-Hamiltonian). Close to Kξ , the wavefunction obeys Dirac equa-
tion [9]
−ih̄vFσ · ∇Ψ(r) = EΨ(r)
Solving this equation yields the famous Dirac cone dispersion

E± = ±h̄vF|q|. The corresponding eigenstates are :

Ψξ
±(k) =

1√
2

(e−ξiθk/2,±e+ξiθk/2) (1.9)

Equation 1.9 enables us to define pseudospin in graphene as the an-
gle that weights the density on the two sublattices : θq = arctan(qx/qy).
This new degree of freedom for graphene electrons is at the root
of many interesting properties of graphene, such as Chiral tunneling
[13].

One can plot the k-space dependent pseudospin texture in the
Brillouin zone (BZ) as shown on Fig. 1.3. In agreement with equa-
tion 1.9, the pseudospin turns around the K+, K− points in opposite
directions depending on the chirality ξ. C = 0 

= + 1 - 1

Figure 1.4: Sketch of the Berry phase
acquired by evolving the wavefunction
around closed paths in the BZ.

With that, we can introduce the topological winding number W

of graphene : the number of times the pseudospin rotates by 2π

when we rotate the wavefunction around a Dirac singularity. It is
a topological number because it only depends on the Hilbert space
defined by the wavefunctions. In other words, it only depends on
geometrical considerations : In our case, the geometrical equivalent
of the BZ of graphene is a torus.

More generally, a topological quantity related to the curvature of
a surface, the so called Chern number, can always be defined. In
our specific case of condensed matter physics, the Chern number
can be understood in terms of the Berry phase acquired by the Bloch
wavefunctions when evolving in momentum space, as showed by M.
L. Berry [14].

A sketch of this Berry phase over several contours in the BZ given
on fig. 1.4, showing that the total Chern number of graphene is
0, as it is the sum of the winding number of the wavefunctions of
sublattice A or B.

1.2 Bilayers of graphene

The most straightforward way to stack two aligned layers of graphene
is to put atoms resting on each other : this is the so called AA stack-
ing. In that case, the interlayer coupling shifts appart the Dirac cones
in energy. In terms of magnitude, this shift corresponds to the tun-
neling probability t0 between atoms that are stacked on top of each
other [15]. By diagonalization of the 4*4 Hamiltonian of the sys-
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tem, one finds that the Fourier bands of the system disperse like
E± = ±h̄vF|q|+t0, E± = ±h̄vF|q|−t0.

Figure 1.5: Definitions of the AA (left)
and Bernal (right) stackings. The unit
cell contains Fourier atoms, Ai and Bi
from layer i = 1, 2.

AA AB BA

However, this stacking is energetically costly and has few experi-
mental realizations [16, 17].

Bernal stackings, namely AB or equivalently BA stackings, are en-
ergetically favored by 20meV per atom with respect to the AA stack-
ing [18]. They correspond to the natural arrangement of graphite
crystals discovered by J.D. Bernal in 1924 [19] (see Fig. 1.5). The

low energy description yields E± = ± h̄2v2
F |q2|
t0

for electron states on
inequivalent sublattices of each single layer A1/B1 or A2/B2. Higher

energy bands E± = ± h̄2v2
F |q2|
t0
± t0 are also present, corresponding to

electron states on the dimers from A1/B2 or A2/B1 orbitals.

Figure 1.6: Pseudospin texture of AB
stacked bilayer of graphene in its Bril-
louin Zone. From [20].

Close to the Kξ point, the parabolic dispersion of AB stacked bilay-
ers of graphene results from the supperposition of two Dirac cones,
so that their winding number can be thought of as the addition of
the winding numbers of two individual monolayers which yields
W = ±2 [20] as shown on the pseudospin texture in Fig. 1.6.

Many high quality samples of such stacking have been studied.
This has led to experimental estimations of graphene hopping pa-
rameters using techniques such as infrared spectroscopy and Raman
scattering [21, 22, 23]. These estimate the nearest neighbor hopping
to be t ' 2.9− 3.7eV. The strongest interlayer coupling is estimated
to be t0 ' 0.45 eV, much lower than t because the orbitals overlap
much less significantly due to interlayer separation which is about
0.335nm.

Δ E

Figure 1.7: Schematic dispersion of bi-
layer graphene, with (right) and with-
out (left) electric field.

The electronic properties of the system can be tuned by the ap-
plication of an external field that breaks the symmetry of the layers.
It enters in the Hamiltonian in the form of a potential V so that the
conduction and valence bands are written in a low energy limit

E± = ±

√√√√(eV/2)2 +

(
h̄2v2

F|q2|
t0

)2

(1.10)

Thus, the potential results in a gap oppening ∆ as shown by E. Mc-
Cann et al. [24]. This gap is due to Coulomb interactions and thus
is dependent on the relative doping of the individual layers, which
can also be taken into account [25]. In most experiments the external
field originates from an external gate, and thus such relative doping
of the layers is likely to happen from screening and charge reorgani-
zation of the layers. In addition, the low energy limit of equation 1.10

is sufficient to describe the gapped dispersion from the experiments
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as V << t0. All in all, this approach well describes experimental re-
sults such as the ARPES (angle-resolved photoemission spectrocopy)
measurement of a doped bilayer on SiC [26].

1.3 Twisted bilayers of graphene (TBLG)

Two layers of graphene can also be stacked with an interlayer twist
θint. In that case, the periodicity of the system can be quite enhanced
as the short range translational symmetry is broken. The appearance
of a new superlattice in graphitic systems triggered intense attention
since its first observation in the 80’s and was soon referred to as moiré
period in reference to the optical phenomenon of the interference be-
tween two non equivalent periodicities [5].

Figure 1.8: Real space (left) sketch of
a twisted bilayer of graphene (TBLG).
With the inset showing both graphene
periodicities. The moiré periodicity am1
and am2 connecting two nearest neigh-
bors AA zones is shown in dark orange.
In reciprocal space (right) this periodic-
ity is referred as g1 and g2, that are the
generators of the moiré Brillouin zone
(mBZ) shown in dark orange.

This moiré pattern is not only a peculiar optical phenomenon, but
has in fact tremendous impact on the physics of the system. We will
see in the following that this moiré can confine electrons, forcing
them to interact, favouring the emergence of correlated phenomena
such as superconducting and correlated insulating phases [6, 27],
magnetic phases [28], and strange metal behaviour [29, 30].

A sketch of a twisted bilayer system is given on Fig. 1.8. In real
space, the larger periodicity is visible in the moiré period connect-
ing two AA stacking regions that are surrounded by AB and BA
stackings. The effect of the twist between the lattices is also visible in
Fourier space : the BZ of both lattices are twisted with respect to each

Figure 1.9: Anticrossing of the Dirac
cones from first and second layers K1
and K2. Van Hoove singularities are vis-
ible in the density of states at the saddle
point energies.
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other, so that the Dirac cones of the first and second layer are sepa-
rated by ∆K thereby defining the moiré Brillouin zone (mBZ). This
quantity is proportional to the moiré periodicity and can be directly
linked to the rotation angle by :

∆K = 2|kD|sin(θint/2) (1.11)

with kD the position of the monolayer Dirac cone.
The low energy physics of each graphene layer is greatly modi-

fied by the hybridization of the Dirac cones from each layer. Par-
ticularly, the anticrossing of the Dirac cones leads to a saddle point
in the dispersion : It features a maximum in the direction of ∆K
and a minimum in the perpendicular direction. Leon van Hove [31]
showed that such feature in the dispersion of a 2D system leads
to a logarithmic divergence of its local density of states : LDOS ∝
log(1− E

Esaddle
) −−−−−→

E=Esaddle
∞. The energy separation of these so called

van Hove singularities (vHs) depends on the distance ∆K between
Dirac points in k-space in the following way :

∆EvHs = h̄vF∆K− 2tθ (1.12)

with tθ = 0.108eV.

Figure 1.10: Energy separation of
the vHs. The tight-binding calcula-
tions (black triangles) and equation 1.12

(green solid line) fit well the STM exper-
imental data (orange dots). From [32].

The vHs can be measured in the local density of states (LDOS)
by STM and were first reported by Li et al. [33] with this technique.
More details are given in section 3.1. The linear dependency of ∆EvHs

as a function of sin(θint/2) has been demontrated experimentally by
I. Brihuega et al. [32] using a STM technique, as shown on Fig. 1.10.

1.3.1 Exact calculations : An iterative method

The unit cell of our TBLG system is now that of the moiré and can
contain more than several thousands of atoms for low angles. Thus,
the diagonalization of the tight-binding Hamiltonian can no longer
be done analytically. Numerical methods can be used, such as the
Lanczos algorithm that calculates iteratively the wavefunctions of the
system for a given Hamiltonian, until convergence is achieved. This
calculation is accurate but can be time consuming. It has been used
in several works to investigate the electronic properties of TBLG. In
the following, we focus on this model as developed in the work of G.
T. de Laissardière et al. [34].

Figure 1.11: Colormap in the mBZ
of the first conduction band for a
1.2◦TBLG. The K and K′ points at the
corners of the mBZ show local min-
ima that correspond to the Dirac-like
features originating from the folding of
Dirac cone Kξ,1 and Dirac cone Kξ,2, ξ =
±1. Saddle points are indicated at the
vHs energy at the S points. Adapted
from [8].

Previoulsly, we have defined hopping parameters independently,
because each combination of orbitals overlapp in different ways. In
this model, we consider a more general description in which the
hoppings depend on the distance and the angle between the orbitals.

tij = n2Vppσ(rij) + (1− n2)Vppπ(rij) (1.13)

The angle between the orbitals is taken into account in tij through the
term n = cos(< Oz, (rj − ri) >) that is equal to 0 (resp. 1) when the
vector between atoms i and j is perpendicular (resp. parallel) to the
out-of-plane direction Oz and tij is thus a purely Vppπ (resp. Vppσ)
tunneling process.
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The distance between the orbitals is taken into account by the
Slater-Koster parameters Vppπ and Vppσ :

Vppπ = −γ0eqπ(1−
rij
a0

), Vppσ = γ1eqσ(1−
rij
a1

) (1.14)

where their exponential decay are arbitrarily set to be the same :
qσ
a1

= qπ
a0

= 2.218Å −1, with a0 = 1.418Å the interatomic distance and
a1 = 3.349Å the interlayer distance.

In this model, the important parameter to be tuned is the hop-
ping t. Previously, it was either derived from ab initio calculations or
estimated from experimental techniques as described in section 1.2.
In the work of I. Brihuega et al. [32], efforts were made to fit these
calculations to experimental datas. It was done by taking advantage
of the previously mentioned linear dependency of the vHs spacing
∆EvHs over sin(θint/2), with a slope that is proportional to t accord-
ing to equations 1.11 and 1.12. The calculations that fits best the
data are obtained with a monolayer Fermi velocity of 1.09 · 106m/s
(shown on Fig. 1.10 in black triangles), in agreement with the value
previously mentioned. This Fermi velocity corresponds to taking a
hopping parameter of t = 3.7eV, which is higher than expected from
ab initio calculations. Using the same values we also obtain a good
estimation of the strongest interlayer hopping parameter t0 = 0.48eV.

With these calculations, the dispersion of TBLG can be retrieved,
as shown on Fig. 1.11 for the first conduction band.

Figure 1.12: Fermi velocity in twisted
graphene bilayer. Calculated ratio of
the Fermi velocity of a bilayer system
vBi to that of the monolayer (vmono =
1.1.106m/s). The inset shows a close up
near 0.9◦.

Such calculations also give access to the Fermi velocity, as defined
in a low energy limit, near the Dirac cones. In agreement with the
initial continuum calculations by J. M. B. Lopez dos Santos et al.[35],
one can retrieve with that description that the Fermi velocity is renor-
malized for small twist angles. The Fermi velocity is reduced with
interlayer twist and even cancels for small twist angles near 0.9◦as
shown on Fig. 1.12. This can be intuitively expected from Fig. 1.9
because the anticrossing of the Dirac cones happen closer to charge
neutrality with decreasing θint.

In addition, this model also predicts that the velocity renormaliza-
tion comes along a confinement of the 2D electron gaz : wavefunc-
tions tend to localize in AA regions [34].

1.3.2 Low energy description : Continuum model

Despite their accuracy, the calculations described in the previous sec-
tion can be quite time expensive. Indeed, they rely on the iterative ex-
act diagonalization of the Hamiltonian, whose size directly depends
on the number of atoms. In particular, convergence time increases
for decreasing angles because the number of atoms increases in the
moiré unit cell.

A good description of TBLG systems can be achieved with lower
computational cost, if one relies on a low energy limit approxima-
tion. This kind of approach, so called continuum model, was intro-
duced in Refs. [35, 36, 37].

In this description, the moiré acts as an additional potential on
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the system and varies slowly over the graphene period. The Hamil-
tonian of the system can thus be viewed as a combination of the two
individual layers Hamiltonians H1 and H2 and an interlayer potential
Hamiltonian H⊥.

H =

(
H1 H⊥
H†
⊥ H2

)
(1.15)

Each intralayer Hamiltonians Hl , l = 1, 2 can be written in the
low energy limit because intervalley wavevectors are neglected for
sufficiently low twist angles (tipically below 10◦). Additionally, the
twist is taken into account as a layer dependent shift of the Dirac cone
position. The Hamiltonians Hl are thus similar to the one derived in
equation 1.7, with a layer dependent shift q→ q + (−1)l∆K/2.

The Hamiltonian H⊥ that couples the layers depends on the in-
terlayer hopping t⊥. The latter is seen as continuous over the moiré
cell. One can thus integrate these hoppings over the moiré cell.

Figure 1.13: Sketch of the geometry of
the moiré Brillouin zone.

In Fourier space, the contributions to t⊥(K + q) are found to de-
cay exponentially in q. This is why the Hamiltonian can be drasti-
cally truncated to keep only the smallest harmonics in the moiré cell.
Around the K point, these are 0, g1 and g2 with gi the moiré period
in Fourier space connecting two equivalent Dirac cones as sketched
on Fig. 1.13. The same can be done around the moiré K’ point.

H⊥ = ∑
k=0,g1 ,g2

eik·r
(

u1 u2

u2 u1

)
(1.16)

where the parametrization of the continuum model is commonly
given by u1 = u2 = 0.11eV [36, 38]. The ui parameters can also
be set to different values, accounting for corrugation effects [39].
The representations of the Hamiltonian are not the same at each
equivalent K point and are related by H(k + g1) = MH(k)M−1 and

H(k + g2) = M−1H(k)M with M =

(
ei2π/3 0

0 e−i2π/3

)
[12]. In the

details of the calculation, a phase has thus to be added in the off-
diagonal term of the matrix for two terms of the sum.

All in all, the Hamiltonian is then reduced to a 12*12 matrix, much
easier to diagonalize.

v B
/v
m
on
o

θ

Figure 1.14: Fermi velocity in twisted
graphene bilayer. Calculated ratio of
the Fermi velocity of a bilayer system
vB to that of the monolayer (vmono =
1.1.106m/s). Adapted from [36].

Many physical quantities can be derived from these calculations.
R. Bistritzer et al. [36] were the first to show that the Fermi velocity
vanishes when twist angle is reduced to 1.1◦: the so called magic
angle. They were also able to go to even lower angle and predicted a
sequence of magic angles below the first one, as shown on Fig. 1.14.
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1.4 Low twist angle regime

Figure 1.15: Principle sketch of the
flat bands of TBLG with typical energy
scales [40, 41].

In the following, we non exhaustively overview experimental evi-
dences of the correlated physics at play in low twist angle TBLG.

1.4.1 Ordered states in the low twist angle regime

A decrease of the Fermi velocity comes along with a flattening of
the lower energy bands, as vF ∝ 1

∂E/∂k . This was first probed by
Scanning Tunneling Microcopy and Spectroscopy (STM/STS) [32, 33,
42]. This effect is particularly remarkable when the crossing energy
between the Dirac cones is comparable to the anticrossing energy.
This happens when the Fermi velocity cancels near ∼ 1◦: the bands
can become extremely flat.

In this regime one expects that the electron-electron interactions
play a huge role, because in these flat bands the charge carriers do
not possess enough kinetic energy to escape Coulomb interactions
with each other. Ordered states in such a system were thus soon pre-
dicted [36]. However, these were not detected in the first STM/STS
experiments, because correlated physics are only expected when the
chemical potential of the system lies in the flat bands. These low en-
ergy valence and conduction bands each have 4 flavours, 2 for valley
and 2 for spin degeneracies : this represents 8 charge carriers per
moiré cell, the latter containing tens of thousands of atoms.
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Figure 1.16: First evidence in transport
experiments of superconducting domes
at low temperature close to the corre-
lated insulating state which occurs at
half filling of the flat valence band.
Adapted from [6].

Experimental evidence of such correlated states were first mea-
sured in transport experiments, where the TBLG system was encap-
sulated in hBN layers. Y. Cao et al. [6, 27] measured superconducting
and correlated insulating phases near half filling of the first valence
band (ν = −2). They were able to achieve this by tuning the filling of
the flat bands with a back gate. This result was reproduced several
times : we know that the typical temperature for the correlated in-
sulating state is ∼ 4K and the superconducting state can arise below
temperatures as high as ∼ 3K. Yet another ordered phase was mea-
sured by A. Sharpe et al. [28] showing evidence of ferromagnetism
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near filling ν = 3
The importance of interactions in the emergeance of these physics

can be also be evidenced by tuning interlayer distance, thereby in-
fluencing superconductivity as predicted by S. Carr et al. [43]. M.
Yankowitz et al. [44] experimentally detected pressure induced su-
perconductivity for a TBLG whose angle was above the magic angle.
In their experiment, they changed the interlayer distance using hy-
drostatic pressure.

Superconducting state has been also measured in twisted trilayers
of graphene [45, 46, 47], where the experiments support a scenario
where the system is a strongly coupled superconductor and hosts
unconventional superconductivity. In this system, the magic twist
angle is increased with respect to a TBLG system by a factor

√
2.

This trilayer behaviour was predicted by E. Khalaf et al. [48] who
also predicted other magic angle physics up to 6 graphene layers,
stacked in peculiar fashions. Up to now, following this theoretical
prediction, experimental evidence of superconducting states relying
on electronic correlations were observed in devices up to 5 layers by
Y. Zhang et al. [49].

Another observation in TBLG which is reminiscent of unconven-
tional superconductors is the strange metal behaviour [29, 30, 50],
namely the linear temperature dependency of the longitudinal resis-
tivity of the system that cannot be explained by a Boltzmann descrip-
tion.

Despite numerous experimental and theoretical works that point
towards unconventional superconductivity, the origin of these or-
dered phases is still under investigation.

1.4.2 Broken symmetries in the low twist angle regime

Since interesting ordered phases rise in TBLG when the chemical
potential lies in the flat bands of the system, a further look at this
range of fillings can teach us on how to understand the physics in
TBLG.

Figure 1.17: Left Inverse electronic
compressibility ∂µ/∂n of a 1.13◦device
measured with a scanning nanotube
based single electron transistor (SET).
An abrupt decrease in the compressibil-
ity is measured each time the system
polarizes in one spin/valley flavour.
Adapted from [51]. Right Colormap
LDOS of a 1.06◦device measured by
STS. A shift in position of the flat bands
upon doping can be followed with the
central peaks that correspond to the van
Hove singularities (vHs). The higher
energy bands detected at higher voltage
bias also shift their positions upon po-
larisation of the system. From [52].

The system experiences spin/valley symmetry breakings in this
range of doping energy. The 4-fold degeneracy is lifted at each
integer filling of the system, as it polarizes into spin and/or val-
ley flavours. This polarization can be detected in the LDOS by STS
[52, 53, 54, 55] where the position of the bands in voltage bias is reset
to the charge neutrality point (CNP) at integers fillings ν = 1, 2, 3
(see Fig. 1.17, right). It is also visible in transport experiments
[45, 51, 56, 57], up to temperatures as high as a 100K. In these exper-
iments, electronic compressibility shows a Dirac-like character near
the CNP where all 4 flavours are filled altogether upon increasing
gate voltage. At each integer fillings, the system experiences a transi-
tion, so called Dirac-revival, where the electrons fill only one flavour
and the system resets to its Dirac-like character which is visible in
Fig. 1.17 (left).

These polarized states could be at the roots of certain ordered
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phases detected in the system [58]. In particular, they support the
emergence of magnetization [28, 51]. Also, the measured quantized
anomalous Hall effect [59] is believed to arise directly from such spin
and valley polarization of electrons.

1.4.3 Inhomogeneities in the low twist angle regime

Experimental data present discrepancies in their features. In trans-
port experiments, it is particularly striking, as the physics that are
probed can be completely different from one sample to the other.
Fig. 1.18 gives a review of several similar samples, some of them
featuring insulating states at half filling, while others with similar
twist angle do not. The work of R. Polski et al. [58] also puts into
perspective the "magic angle" requirement, since superconductivity,
cascade transitions and strange metal behaviours were detected over
a large twist angle range (0.8◦< θint < 1.23◦) in very homogeneous
samples.
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Figure 1.18: Phase diagram sketchs of
several TBLG samples characterized by
their angle of rotation. The colored
dome corresponds to the superconduct-
ing phase. The left (resp. right) plot
gathers the sample that present (resp.
do not present) a correlated insulating
state at half filling of each band. From
[60].

The sample to sample variability from transport experiments can
in part be explained by the different fabrication process and designs,
and in particular the detailed electrostatic environment of TBLG that
can play a role in the screening of electronic interactions [60].

Another non negligible aspect is the sample inhomogeneities that
have been found to be ubiquitous in stacked samples [61]. These
inhomegeneities can be unveiled for example by SQUID on tip mea-
surements, [51, 62]. For example, blister-type defects (wrinkles, bub-
bles) often arise during the commonly used tear and stack processes
and their number can be reduced by "squeezing" the device [63].
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Figure 1.19: Angle mapping using a
scanning SQUID. Image from [64].

This inhomogeneity can be quantified in several ways. The most
common one is to quantify this in terms of twist angle inhomogenen-
ity, as the electronic properties are often calibrated in terms of twist
angle. For example, a mapping over the sample of the local twist an-
gle θint(r) can be done by relating it to the local charge density ns(r),
as when the bands are filled, a moiré cell of surface area A contains

4 electrons [62] : ns(r) = 4
A = 8θ2

int√
3a2 . The local charge is extracted from

the Landau Level structure.
One illustration of such mapping is given in Fig. 1.19. One can

easily imagine that such a rigid evolution of twist angle has to be
refined as two regions that have a given twist angle are either sepa-
rated by a boundary, which are often found to induce strain [65], or
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evolve continuously from one to the other, which means one has to
include continuous strain from one region to the other.

Moreover, this so called twist angle disorder has an important ef-
fect on the local density of states of the system. As argued in Ref.
[66], this disorder is always accompanied with strain because of the
breaking of C3 symmetry, and results in a smoothing of LDOS fea-
tures such as a broadening and weakening of the vHs and a filling
of states in the gaps above the flat bands. In the low energy limit
however, the Dirac cone velocity is conserved upon this symmetry
breaking.

Inhomogeneities may be one of the origins of the sample to sample
variability in transport experiments. In particular, superconductivity
could be destroyed more easily in the most inhomogeneous samples,
which would explain the variability of temperature and filling ranges
in which the system enters a superconducting regime.

1.5 Minimal twist angle regime

We now turn to even lower twist angles in TGLB, that are also inter-
esting from the structural and electronic points of view. These sys-
tems referred to as minimally or marginally twisted bilayers, have
angles typically below 1◦.

1.5.1 Relaxation into Domain Walls

We have seen that AB stacking is energetically favored with respect
to AA stacking. The whole energetic stacking pattern of TBLG was
calculated quite soon by A. M. Popov et al. [18] as shown in Fig. 1.20.
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Figure 1.20: Calculations of the bond-
ing energy of rigidly twisted bilayers of
graphene. AA regions are about 20meV
more costly than AB/BA stackings. In-
termediate regions form a saddle point
in energy and are thus referred to as SP.
From [18].

To favor the minimization of this stacking energy, also called bind-
ing energy UB, the atoms can move from their original position in the
single layer to maximize AB/BA stacking regions. Locally, it cre-
ates slight changes in atomic length and an increase in the elastic
energy UE of the system, which also tends to be minimized. This
whole relaxation process forms a lattice of domain walls (DW), also
called reconstructed structure, that conserves the initial moiré period-
icity while minimizing the total energy U = UB + UE of the system.
The energy that is payed at the domain walls where the relaxation
creates a concentration of local strain is compensated by the energy
gain in increased AB/BA regions.

Figure 1.21: Dark Field TEM image
of TBLG on copper showing an array
of relaxed structures forming AB/BA
stacked triangular regions. Defects
and boundaries create spatial inhomo-
geneities in the local twist and recon-
struction that can even form arrays of
linear domains. Adapted from [67].

This relaxation happens at all angles, and is in fact responsible
for the decoupling of the lower energy bands of magic angle TBLG
from the higher energy bands [40, 68] favoring the strongly corre-
lated states in magic angle TBLG. Nevertheless, relaxation is most
critical and visible at minimal twist angle regimes below 1◦. The
work of Alden et al. [67] shown on Fig. 1.21 gives a large scale
experimental evidence that minimally twisted TBLG relaxes into an
array of Domain Walls that separate maximally extended AB and
BA stacked regions, and meet into shrinked AA stacked regions.
Such patterns were noticed on graphite for the first time in 1960 by
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Near SP-point
Figure 1.22: Self consistent relaxation
calculations from minimisation of U =
UB + UE. On the left is given the po-
sition dependent relative atomic dis-
placement u−(r) of layer 1 u1(r) with re-
spect to layer 2 u2(r). Initially, the lay-
ers are rigidly twisted by θint = 1.05◦.
The three panels on the right show
that during such relaxation, AA regions
tend to shrink while AB regions to ex-
pand. The SP (saddle point in terms
of stacking energy pattern) regions tend
to anisotropcally expand and form do-
main walls connecting neighboring AA
zones. From [40].

TEM [69], and shortly after at a more local scale by STM experiments
[70, 71] in which triangular patterns were noticed.

Despite these structures can be quite impressive because they in-
volve the collective movement of numerous atoms, the actual dis-
placement of individual atoms remains small. M. M. van Wijk et al.
[72] demontrated that such displacement can be theoretically esti-
mated by calculating the minimal stacking configuration of realistic
structures using molecular dynamics. The general idea of such cal-
culations relies on the minimization of the total energy of the sys-
tem, starting from rigid atomic positions with given binding energy
parameters, and allowing in-plane and out-of-plane movements of
the individual atoms during minimization. Such relaxation calcula-
tion is presented on Fig. 1.22 for a low angle TBLG, where a sig-
nificant reduction of AA stacking region size is induced by small
rotation of individual atoms around it. In order to investigate theo-
retically the relaxation of free standing graphene layers, several dif-
ferent atomistic potential models exist. Although calculations agree
qualitatively, the results can vary slighty depending on the choice of
the model and the parameters used. Some theoretical works calcu-
lated that the maximal displacement of individual atoms does not go
above a0/10 in-plane and ag/5 out-of-plane for θ → 0◦[73]. Accord-
ing to Ref. [74], in the case of a twist angle of 0.76◦, atoms can move
up to 0.25Å ∼ ag/10 in-plane. In the work of Ref. [40], the maxi-
mal relative in-plane displacement is calculated to be about ag/4 for
θint = 0.55◦.

The choice of the potential defining the exact binding energies of
the atoms in the system is thus critical to perform accurate calcu-
lations. F. Guinea and N. Wallet [75] show a careful comparison of
such atomical potentials and show that LCBPO-II (long-range carbon
bond-order potential-II) [76] and AIREBO (Adaptive Intermolecular
Reactive Empirical Bond Order potential) [77] in combination with
the Kolmogoreov-Crespi (KC) potentials as used in [78] describe
most accurately the results from Alden et al. [67]. The former, such
as the AREBO potentials, give a description of C-C bonds, in terms
of energies and length in particular, giving a good a description of
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a whole array of hydrocarbon molecules. The KC potentials, on the
other hand, provide a treatment of interlayer interactions, which are
critical in the case of bilayer graphene. All in all, such calculations
should always be compared to experimental results.

A significant amount of experimental techniques are able to in-
vestigate the large scale structure of such DW lattices. Most, like
the previously mentioned STM technique, are suitable to investigate
TBLG directly on the surface but other can investigate TBLG encap-
sulated in hBN.

Optical techniques such as Low Energy Electron microscopy tech-
niques [79, 80] or 4D Scanning Transmission Electron Microcopy us-
ing bragg interferometry [81] can be particularly efficient because
they can give information on the exact local stacking over large scales.
Dark Field Transmission Electron Microscopy can also be used [82],
even when the encapsulation consists in one hBN layer if it is mis-
aligned with the graphene [83].

Piezoresponse Force Microscopy can also be used, as it relies on
the electro-mechanical response of the sample to out-of-plane elec-
tric field, which is different close to the DWs because of the strain
gradients that are localized there [84]. One of the perspectives of
such a technique is to characterize and investigate the homogeneity
of transport TBLG samples, by taking advantage of the relaxation
that is present even in the case of twists close to the magic angle.

Other techniques that rely on optical methods are capable of in-
vestigating encapsulated devices : nano Raman scanning can probe
the DW by measuring the lattice dynamics (e.g. phonons) [85], nano
scanning near field optical microscopy (s-SNOM) combined with an
infrared light excitation reveal the different absorption coefficient
from different regions [86], [87].

Such measurements show that although the local displacements
of individual atoms are small, the consequences on the electronic
properties can be significant.

Figure 1.23: a STM imaging (Vb =
−0.11V, It = 200pA) from Ref. [88] of
helical edge states in a 0.245◦marginally
twisted bilayer graphene (scale bar is
50nm). b Similar helical edge states
for a 0.12◦system (Vb = −40meV, It =
150pA) from Ref. [89].

1.5.2 Localized states at the Domain Walls

The domain walls (DW) between AB and BA stacking regions are
not only a structural curiosity, where strain is concentrated. In fact,
they can also host edge states that were evidenced by STM measure-
ments [88, 89, 90] (see Fig. 1.23) and in transport experiments by a
measure of the conductance of a single DW [91] or by measuring a
conductance interference pattern that originates from topologically
protected modes [92].

These physics are reminiscent of the edge states in the Landau
Level Quantum Hall Effect [93] that arise notably in topological insu-
lators as reviewed in Ref. [94]. In this type of materials, the physics is
influenced by geometrical considerations : their Chern invariant re-
lated to the curvature of their Hilbert space is non trivial (i.e. C 6= 0).

Figure 1.24: From [94].

In the case of an interface between two regions of different Chern
number, the resolution of the Haldane model imposes that a state
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Figure 1.25: Dispersion bands esti-
mated from continuum numerical cal-
culations (solid line) and with an an-
alytical approximation (dashed line)
around Dirac point Kξ . The DW be-
tween regions of different topological
number is chosen along y. There are
two localized bands near a particular
Dirac point, propagating in the same di-
rection. At the other Dirac cone, two
other modes propagate in the opposite
direction. Figure from [95]. These re-
sults are in agreement with more ac-
curate calculations from a tight-binding
model [96].

has to cross the Fermi level at that interface as shown on Fig. 1.24.
Indeed, upon crossing of the interface, the Chern number has to go
for example from +1 in one region to −1 in the other, thereby forcing
a gap "sign change" at the interface that corresponds to this Fermi
energy crossing state.

The possibility of topologically protected edge states in AB/BA
bilayer graphene was investigated early because of the well known
gap oppening that arises upon the application of an electric field
E as reminded in section 1.2. Edge states were predicted if a sign
change of the electric field was engineered between adjacent regions
of a bilayer [95, 96]. This can be understood as changing E into −E
creates a sign change of the gap around K and K′ points. At these
points, the curvature is peaked around each unequivalent Dirac cone,
and a valley Chern number that corresponds to the winding number
introduced in section 1.1 can be defined [97]. Thus, upon the crossing
of the DW, the winding number changes sign in a given valley from
+W± in one region to −W± and forces the appearance of low energy
topological edge modes.

Calculations shown on Fig. 1.25 find that at the interface of AB/BA
bilayer DW, two edge modes originating from valley K+ propagate
in one direction, and two others from valley K− propagate in the
opposite direction. They are called helical edge states in reference to
their valley and spin polarization. This is in agreement with topolog-
ical requirements that the total Chern number cannot change, being
determined by the topological structure of the bulk states as :

C = Nle f t − Nright = 0
Where Nle f t = Nright = 2 are the numbers of right and left moving

edge modes. The equation that is valid around a given valley is
written [97] : W± = Nle f t± − Nright± = ±2 which agrees with the
band calculations.

The topological character of these helical edge states around each
valley makes them robust against valley-preserving disorder [95]. In
particular, a low energy channel going in one direction determined
by the velocity of the band can only be backscattered at the expense
of changing its valley index. Such graphene systems are thus de-
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Figure 1.26: STM evidence of localized
states at the domain walls outside of
the gap. The gap is highlighted with
grey region in the STS spectra (left)
and a spatially resolved image (right)
is taken at the energy of the peak high-
lighted with the green line. a Data from
[88] showing peaks at ±250meV around
charge neutrality point. b Data from
[89] showing a peak at +130meV.

sirable in the context of device fabrication, for example valley filters
or valley valves using biased AB/BA domain walls can be imagined
[95, 96].

Wright et. al [98] also noticed that edge states should appear in
the case of a uniform E where the change in winding number comes
from the mirror symmetry between AB and BA regions. The situ-
ation is thus equivalent to an edge state induced by gate polarity.
Such a domain wall can be achieved by applying a differential strain
to the layers, in the form of shear or uniaxial strain [99, 100], the
former being similar to the DW arising during the relaxation of a
minimally twisted system. In the work of P. San-Jose et al. [101],
the authors argue that the formation of such AB/BA solitons in real
devices may be at the origin of insulating / metallic switching of the
global transport properties.

In the case of marginally twisted bilayers, helical edge states can
organize into domain wall networks that can also be interesting for
device fabrication [102]. Their early investigation revealed in-gap
states with complex behavior [100], but in that case relaxation was
not taken into account. A recent paper [103] including controlled re-
laxation shows that its effect significantly changes the spectrum close
to charge neutrality in the marginal twist cases (typically θint < 0.5◦).
In that case, upon the application of voltage, a significant amount of
bands are gaped around charge neutrality, leaving a set of linearly
dispersing channels in the gap localized into quasi-1D states along
the DW, that are expected to experience little scattering. These calcu-
lation permit to approach an understanding of STM measurements.
In addition, they also predict a whole family of dispersing channels
that could arise in the system, which were not experimentally de-
tected.

In STM experiments, localized states near the Domain Walls have
also been detected at energies outside of the gap, as shown in Fig.
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1.26.
Such features have been understood for the measurements of S.

Huang et al. [88] in a continuum model picture [104], where the
electronic properties are described locally, without the twist angle
parameter. Because the stacking is modified at the DW, the local
bands are modified with respect to the AB/BA stacking and feature
two saddle points around charge neutrality, that are translated into
vHs in the LDOS. This results points towards the importance of the
local stacking on the electronic properties.

In the experiment by Q. Zheng et al. [89], there is only one peak in
the DOS out of the gap, at positive energies. The authors interpret it
in terms of pseudo-Landau levels (PLL), as predicted by A. Ramirez
and J. Lado [105] for the unrelaxed marginally twisted bilayer in the
presence of an electrical field, and as measured in marginally twisted
bilayers near AA regions [106]. The absence of negative energy and
second positive PLL is attributed to the local strain concentrated at
the DW as induced by relaxation. Indeed, previous works predict
strong electron hole assymmetry that can significantly reduce the
PLLs [107, 108].

In both scenarios, the localized states in marginally twisted bilay-
ers of graphene are sensitive to the precise relaxation.

1.6 Conclusion

A prolific amount of interesting physics arise in graphene bilayers,
spanning from ordered states in TBLG to topological modes near do-
main walls of graphene bilayers. In TBLG, these physics are triggered
by the high tunability of the system with the twist angle. But we have
seen that this tunability also means that the system is highly sensi-
tive to inhomogeneities. This sensitivity is evidenced by the sample
to sample variability in transport experiments.

In the following chapter, we will thus focus on heterostrain, the
relative strain between the layers, as a source of inhomogeneity in
graphene bilayers. We will comment further on sample to sample
variability even in STM/STS experiments and see that it can be ex-
plained by heterostrain in Chapter 3.

In the case of long wavelength moirés in graphene bilayers, we
will see in Chapter 4 that biaxial heterostrain can also be a source of
stacking reorganisations in the system.

With that in mind, but beyond the scope of this thesis, it would
be useful to correlate inhomogeneities and electronic properties ex-
tracted from transport experiments, by combining them with imag-
ing techniques such as STM/STS, pseudo force microscopy or SQUID
on tip experiments. Another perpective is the experimental in situ
tuning of strain in such systems, that will be the focus of Chapter 5.
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Graphene being a perfectly 2D material, it is tempting to study
how it reacts to stress and to mechanical deformations. There is thus
a large amount of studies on this matter, as well as some reviews
[109].

Some early studies focused on studying its mechanical proper-
ties in particular through the suspended monolayer graphene [2, 110,
111]. The high stiffness and strength of graphene enables it to with-
stand strains up to 25% [2] which explains that it can bend, create
ripples, or adapt to external factors without breaking such as sur-
face inhomogeneities, AFM and STM scanning tip, external pressure,
among others. This has interest to us, as strain affects the electronic
properties of graphene. In this chapter, we will see that strain not
only affects monolayer graphene, but also twisted bilayers graphene
(TBLG) in a complex way.
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2.1 Monolayer of graphene

2.1.1 Homogeneous in-plane strain Hamiltonian

Straining graphene implies changing the Carbon-Carbon lengths δi

of its bravais lattice, as shown on Fig. 2.1. The induced change in the
overlap of the orbitals modifies the nearest neighbor (NN) hopping
parameters.

ab2

ab1

δt2
δt1 δt3

+δtijtij

Figure 2.1: Sketch of a deformed bra-
vais lattice.

On first order the correction of the hopping parameter can be writ-
ten : t = t0 + t0

∂t0
∂a . In Fourier space, it translates into the distorsion of

the graphene Brillouin zone. This change in C-C length can be posi-
tion depend, in the case of inhomogeneous strain or when one takes
relaxation into account for example. In the following we consider
homogeneous static strain.

To describe this effect, we follow Ref. [9, 112, 113] in writing it as
a correction on the Hamiltonian from equation 1.1. This correction
includes the neighbor dependent change in the hopping parameters
from atom i of sublattice a to atom j of sublattice b : δtab

ij .Adding the correction on the next-
nearest neighbor hoppings (NNN) by
going to higher orders in δt does not
have dramatic impact on the physics
(see [114]).

(2.1)H = t ∑
<i,j>

c+
a,icb,j + h.c. + ∑

<i,j>
δtab

ij c+
a,icb,j + h.c.

We know from section 1.1 that the first term yields in the low
energy Dirac fermion dispersion h̄vFσ · q. Developing in the same
way the second term around the Dirac cone Kξ gives the following
matrix element with δt

ij = δt
i , i = 1, 2, 3 the deformed NN vector.

(2.2)
δ f (Kξ + q) = − ∑

i=1,2,3
δtie−iKξ ·δt

i e−iqδt
i

' − ∑
i=1,2,3

δtie−iKξ δt
i

which can be written in the same way as for equation 1.6 :

(2.3)δ f (Kξ + q) = −∑
i

δticos(Kξ δt
i )︸ ︷︷ ︸

eh̄vF Ax

+i ∑
i

δtisin(Kξ δt
i )︸ ︷︷ ︸

ξeh̄vF Ay

In matrix form, the correction to the 2*2 Hamiltonian is written:

δHξ = −ξeh̄vF

(
0 ξAx − iAy

ξ Ax + iAy 0

)
= −ξeh̄vF A · σ (2.4)

Figure 2.2: Sketch of a deformed mono-
layer graphene BZ. The blue and green
arrows show the effect of the strain in-
duced gauge field on the Dirac cones.
They are shifted in opposite directions
depending on their chirality. The strain
induced distortion of the BZ is negligi-
ble with respect to the gauge field am-
plitude.

So that in the low energy limit around Dirac cone Kξ :

Hξ = h̄vF(q− ξ A) · σ (2.5)

This equation shows that strain not only distorts the graphene
lattice but also introduces - as showed in Refs. [112, 113] - a Gauge
Field to the Dirac-like Hamiltonian. This additional effect can be
visualized in Fourier space as a chirality dependent shift of the Dirac
cone as shown on Fig. 2.2. This field is written:

(2.6)
A(r) =

1
eh̄vF

∑
i

δti(r)e−iδt
i Kξ

= Ax − iξAy
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(2.7)A = (Ax , Ay)

The pseudovector A can be associated to the strain induced pseudo-
magnetic field (PMF) as it mimics the effet of a magnetic field in shift-
ing the wavevector in the Hamiltonian. For example, the Hamilto-
nian of a particle of charge e in a magnetic field of vector potential
A writes (q− eA)2, by substituting q → q − eA. The same kind of
substitution is also valid in the case of tightly bound electrons in a
magnetic field, and is referred to as the Peierls substitution.

The low energy developement can be done around the Dirac cones
of the distorted BZ Kξ or of the undistorted BZ K′ξ . This choice has

The direction of the pseudovector in-
duced shift depends on the chirality
ξ of the Dirac cone. This is clear in
the derivation of equation 2.5 but can
also be viewed in terms of conserva-
tion of time reversal symmetry [9] : the
unequivalent Dirac cones of graphene
are linked through time reversal sym-
metry, which in practice means that
an electron in a cone can go to the
other one by keeping the same posi-
tion while taking the opposite direc-
tion for its wavevector such that r → r,
q → −q. Applying this transformation
to the strained graphene Hamiltonian
yields (−q − eA)2. This does not pre-
serve the Hamiltonian unless the pseu-
dovector potential A also changes sign
when changing valley, giving another
argument for the chiral dependency.

no impact on the pseudovector potential. However, the derived low
energy Dirac equation is going to be affected by this choice and with
it the calculations of physical quantities such as the Fermi velocity
[115, 116].

A complete description of such effect of strain on monolayer graphene
is given in Ref. [117].

2.1.2 Strain effect in monolayer graphene

Early experiments have been able to detect significant effects of strain
on the phonons of monolayer graphene [118, 119], encouraging both
experimental and theoretical works to study whether the bands of
graphene could be engineered by strain.

In particular, in the presence of uniaxial strain the hopping anisotropy
creating pseudomagnetic field can in principle engineer the merging
of two unequivalent Dirac cones. This produces a topological transi-
tion in which the topological winding number introduced in section
1.1 goes from ±1 to 0 [120]. This topological transition has profound
effects on the electronic properties as the system goes from semi-
metallic to band insulating state [10, 121]. However, such a situation
can only be reached with strains above 20% [121, 122] which makes
it extremely challenging experimentally. According to Pereira et al.
[121], it is the sign that the Dirac spectrum is indeed robust in the
presence of small perturbations and thus confirms its "topologically
protected" nature.

Experiment

2nm

a

b

c

Figure 2.3: a STM image of a graphene
nanobubble b STS spectra showing the
LDOS featuring Landau levels whose
positions in energy follow a typical

√
n

trend (c) with n the number of a given
Landau level. Figure from [123].

In [124], the authors show that a more realistic strain of about
10% can create a uniform 10T pseudomagnetic field if it is applied
along graphene’s cristallographic directions. This gave motivation
to investigate pseudo-Landau level (pLL) quantization in the experi-
ments. Levy et al. [123] showed for the first time that such pLL could
be detected in STM experiments, by measuring the spatially varying
LDOS on a graphene nanobubble (see Fig. 2.3). Zhu et al. [125] evi-
denced that an STM tip on suspended graphene can engineer strain
that creates such pLL. STM measurements from Meng et al. [126],
Bai et al. [107], Banerjee et al. [127], and S-Y. Li et al. [108] show they
can also appear on a monolayer of graphene strained in the presence
of ripples, and Jiang et al. [128] in the presence of engineered pillars.

Other physical properties can be engineered through strain, such
as a local modifications of its Fermi velocity [129, 130] or at a device
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scale its mobility and residual doping [131, 132, 133].
The experimental engineering of graphene electronic properties

remains difficult despite years of experimental efforts because of the
high strains it requires. We will see this strain engineering can be
easier in the case of TBLG.

2.2 Twisted Bilayers of graphene

When considering the twisted bilayers of graphene, the parameter
of the twist θ between the layers is quite important. In addition
to twist, strain can also be taken into account, by regarding it as a
relative deformation of one layer with respect to the other referred
to as heterostrain, or considering simultaneous strain on both layers
which is referred to as homostrain as introduced by Huder et al. [8].

In the following, we first consider heterostrain. Its effect can be
complex and to understand it we focus on a low energy limit de-
scription. We will also use results from exact diagonalisation calcu-
lations of the Lanczos algorithm in which the effects of strain are
intrinsically taken into account (see section 1.3.1).

These descriptions give insight on how heterostrain can engineer
the flat bands of TBLG, which could have an impact on the strongly
correlated electron physics.

2.2.1 Geometrical effect of Heterostrain

Figure 2.4: Real space (left) sketch of
a twisted and heterostrained bilayer of
graphene (TBLG), the inset showing
both graphene periodicities. In recip-
rocal space (right) the moiré periodicity
is referred to as g1 and g2, the genera-
tors of the moiré Brillouin zone (mBZ)
whose side lengths ∆Ki i = 1, 2, 3 are
different due to strain application.

In Fig. 2.4 a principle sketch of a TBLG containing heterostrain
is shown, where the bottom (brown) layer is left unstrained, and the
top (orange) layer is slightly deformed in addition to its rotation. It
is clear that the top layer BZ is going to be deformed. This can be
written as a modification of its BZ corners position Kd

i = Ki + δKi

for i = 1, ..., 6. The mBZ (dark orange) corresponding to the real
periodicity of the 2 rotated layers system and defined from lengths
Kd

i − Kr
i = ∆Ki, is thus distorted.

In this geometrical approach, one can predict the shape of the de-
formed moiré Brillouin Zone (mBZ). The size of the mBZ sides δKi
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Figure 2.5: Geometric description of the
mBZ periodicity length ∆Ki changes as
a function of the direction of applica-
tion θ1 of a 0.16% uniaxial strain. As ex-
pected, we retrieve 60◦ periodicity. For
illustrative purposes, on the sketch on
the right was constructed by multiply-
ing both interlayer angle and uniaxial
heterostrain by a factor 10.

change as a function of the angle of application of uniaxial strain.
This is shown on Fig. 2.5 for a heterostrain configuration correspond-
ing to a 0.16% uniaxially strained layer, rotated by 1.01◦.

If these geometrical considerations are important because they al-
low to define the Brillouin zone in the presence of heterostrain, it
does not describe the distance between the two unequivalent Dirac
points and thus fails to describe the vHs splitting [134, 135] that is
given by the Dirac cone crossing energies as derived in Chapter 1 in
the case of the unstrained system.

Figure 2.6: Calculation of the conduc-
tion flat band, for the heterostrain con-
figuration : θ = 1.01◦, εuni = +0.16%,
εbi = 0.0%, θ1 = −θs = 26◦. This config-
uration was chosen because it matches
the experimental situation of Ref. [136].
The calculation is obtained by Lanczos
algorithm. The minima in the band
correspond to the Dirac nodes of the
system that originate from each layers
Dirac cones and are pushed away from
the mBZ corners (visualized by K, K′

marks) by heterostrain.

To illustrate that, Fig. 2.6 shows a calculation of the first conduc-
tion flat band of a θ = 1.1◦ twisted system for a heterostrain of 0.16%
along the direction θs = −26◦. Following the geometrical effect, the
mBZ length from Fig. 2.6 lengths match those calculated on 2.5 at
θ1 = 26◦: ∆Ki ∼ {0.30, 0.31, 0.29} nm−1. However, the two low en-
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ergy regions inside the geometrically deformed BZ corresponding to
the Dirac nodes are clearly not at the corners of the mBZ. They are
shifted away in opposite directions depending on their chirality, ef-
fect that is reminiscent of a PMF effect as derived in section 2.1.1 for
the monolayer, and this similarly finds its origin in the atomic length
changes of the deformed layer.

Moreover, the Dirac nodes on Fig. 2.6 do not feature circular isoen-
ergetic curves. This is explained by the Fermi velocity anisotropy
[115, 116, 137] that arises when two directions are unequivalently
stretched. A higher Fermi velocity is to be found in the direction of
the stretch and thus the isoenergetic curves will result in an ellipse
directed in the direction perpendicular to it [115].

2.2.2 Heterostrain induced Pseudo Magnetic Field

Due to the existence of the moiré periodicity, the PMF effect is, for a
given strain, stronger for TBLG than for monolayer graphene. One
can understand this in Fourier space : the pseudo-vector A does not
depend on the system periodicity, which implies it is bigger in pro-
portion to the periodicity of the system in TBLG than in the mono-
layer graphene . This is visualized on Fig. 2.7, where the ratio be-
tween pseudo-vector length and periodicity is clearly bigger than in
the monolayer case in Fig. 2.2. One can also understand it in terms of
flux of the pseudo magnetic field, as a given amount of strain creates
a given "pseudo flux" in each graphene unit cell. For the TBLG case,
the total flux in the moiré unit cell can be rather big because of the
high number of graphene unit cells in the moiré period.

Figure 2.7: Sketch of the deformed
(brown) and twisted undeformed (or-
ange) graphene BZ, as well as the defi-
nition of the TBLG mBZ. Small arrows
represent the pseudo-vector A of the
deformed layer. The blue and the green
mBZ are folded into the orange mBZ in
the center. They are all the same up to
a shift in k-space, showing that apply-
ing strain in one layer is the same than
applying a balanced strain in the two
graphene layers, in opposite directions.

This PMF effect makes the prediction of the vHs energy unintu-
itive, because it means that the saddle points are shifted in energy
and away from M points.

In the following we derive the stacking dependent shift of the
Dirac node and show it cannot actually describe the shift predicted
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in the calculations.
Such derivation is interesting because the Dirac cones merging

that is experimentally challenging in the case of monolayer graphene
could in principle be achieved more easily in the case of TBLG. How-
ever, there is here a major difference. As argued in [138], the two
Dirac points are coming from graphene Dirac points of the same
valley, and thus K and K′ have the same chirality and cannot pair-
annihilate. From these topological considerations we can predict
interesting effects on the bands when the Dirac cones are brought
closer together. In [117], the quantity ∂tab

∂a can be ob-
tained by a Raman spectroscopy esti-
mation [118] of the Grüneisen parame-

ter β = − ∂ln(tab)
∂ln(a) = ∂tab

∂a ·
a

tab ' 2. In some
continuum models, a higher value is
however more commonly used by esti-
mating β ∼ a0/r0 ∼ 3.14 [40] with r0
the decay length of the hopping inte-
gral.

With the tight binding model param-
eters defined in section 1.3.1, we find
that

(2.8)
∂t
∂r
|a0 = γ0qπeqπ (1−

rij
a0

)
/a0|a0

With γ0 = 3.7eV and qπ = a0 · 2.218Å,
it leads to β = 3.15 which corresponds
to the value used in the literature for
continuum models.

From equation 2.6 we know the pseudo-vector depends on nearest
neighbor (NN) hoppings ti, i = 1, 2, 3. To express it, we write the
change in NN carbon bond length δui, so that the NN hopping term
writes :

(2.9)
tab
i = t0 + δtab

i

= t0 +
∂tab

∂a
δui

This change in length can be written in terms of local effective lattice
displacement u(r) = (ux , uy) as done in Refs. [9, 139] :

(2.10)
δui =

δab

a
(δab · ∇)u(r)

=
δab

a
(δab − δt

i )

With δt
i the three unequivalent strained NN vectors. One can thus

find that the gauge field Aj,ξ (j = 1, 2, 3) in the low energy limit
around Kj,ξ is :

Aj,ξ =
2π

h̄vF

∂tab

∂a ∑
i=1,2,3

δab

a
(δab − δt

i )e−iδt
i Kj,ξ = Ax + iξ Ay (2.11)

Using equation 2.11 and the model parameters vF = t(ab)
0 a03/2h̄ =

1.1 · 106 m.s−1, the Aj,ξ vectors can be calculated and the Dirac node
separation in k space DK can be determined for any heterostrain con-
figuration. Such a heterostrain configuration can be defined by four
parameters as developped in section 2.3.1 : the interlayer angle θ, the
uniaxial strain εuni and biaxial strain εbi and the angle of application
of uniaxial strain θs.

Fig. 2.8 shows the evolution DK as a function of uniaxial strain
amplitude and direction of application, with fixed twist angle θ =
1.1◦ and biaxial strain εbi = 0%. The shift of the Dirac cone due to
A is comparable to that of the shift due to the geometrical effect for
uniaxial strains above 2%. This confirms that in the TBLG system,
a Dirac Cone merging could be much easier to achieve than in the
monolayer graphene (above ∼ 20% !). However, a closer look at Fig.
2.8 shows that the condition DK → 0 is never reached. The lowest
DK in the deformed mBZ is shown on the lower right sketch of Fig.
2.8.
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Figure 2.8: Top : Colormap of the
distance between the Dirac nodes as
a function of uniaxial strain amplitude
(y-axis) and direction of application (x-
axis). Interlayer angle and biaxial strain
are fixed : θ = 1.1◦, εbi = 0.0%. Bottom :
k-space representation of the deformed
mBZ with arrows representing the chi-
ral gauge field Aξ , for two different het-
erostrain configurations : The left one
corresponds to the configuration of Fig.
2.6, and the right has the lowest Dirac
node separation DK in this parameters
range.

Comparing our prediction of the Dirac node position given on the
lower left sketch of Fig. 2.8 with the Lanczos algorithm calculation
shown on Fig. 2.6, a clear discrepancy is found. For the same het-
erostrain configuration, with εuni = 0.16%, the pseudo-vector shift is
10 times smaller than the geometrical effect shift, and the predicted
Dirac node separation is different in amplitude and direction.

This discrepancy does not mean that we cannot rely on low en-
ergy limit approximation. In fact, it rather comes from us neglecting
the effect of the interplay between strain and the moiré modulation,
which we discuss now.

2.2.3 Heterostrain PMF combined with the moiré

Continuum calculations including heterostrain [38, 140] rely on the
low energy limit and are in agreement with Lanczos algorithm cal-
culations as will be shown in Chapter 3. This agreement comes from
the fact that an additional effect of strain is taken into account in
the off-diagonal term of the Hamiltionian 1.15 as H⊥ depends on the
distorted moiré vectors gi = MT

strain · gundistorted
i .The dependance of H⊥ on gi was de-

scribed in equation 1.16:

H⊥ = ∑
k=0,g1 ,g2

eik·r
(

u1 u2
u2 u1

)
(2.12)

In particular, Fig. 2.9 shows a very rapid shift of Dirac nodes
away from K points when a very small amount of strain is applied,
and then a slow shift when strain is varied to higher values.

This reminds of the effect of a brutal transition that could be at-
tributed to a symmetry breaking as investigated in Ref. [141], in the
present case the C3 symmetry. Such sensitivity in Dirac node posi-
tion is also observed for TBLG where C3 symmetry is broken by an
in-plane magnetic field [142].

This shift can be estimated analytically by writting the Hamilto-
nian in the lowest band by including both the interlayer modulation
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Figure 2.9: Continuum calculations of
the valence (a) and conduction (b) flat
bands of a relaxed TBL graphene sys-
tem with θ = 1.05◦, εuni = 0.6%, θ1 =
30◦. Stars show the position of the
Dirac nodes. Their positions are also
plotted as a function of strain magni-
tude (c) and direction of application
(d). The distorted mBZs have been de-
formed to match an hexagon and ease
comparison. Figure from [140].

and the intralayer Dirac Hamiltonian. Using calculations similar to Such derivation including all the
physics are done in Refs. [143, 144, 145,
146]

the model of Ref. [36], Ohad Antebi et al. [147] showed that, in the
low energy and low strain limit, the Dirac node displacement can be
written :

δKi =
3w2

1− 3w2 (1 +
u2

w2
|Ki|a0

β
)Ai (2.13)

Where the dimentionless tunneling parameters are w = u1
h̄vF |Ki |θint

and u = u2
h̄vF |Ki |θint

, which are equal in the abscence of corrugation
because u1 = u2. In this equation, the term in the parenthesis is
close to 1 for low angles. However, the prefactor in front of the
parenthesis can be quite big, in particular close to the magic angle.
As an example, for typical parameters (w = 0.11eV

h̄vF0.3nm−10.9◦ = 0.32) we
find a prefactor higher than 20. This supports the high sensitivity of
the position of the Dirac nodes even with small amounts of strain.

Figure 2.10: Calculations from Ref.
[144] showing a colormap in real space
of ∆E the spacing energy between the
peaks in the DOS (left) and of h̄vF |A|
the amplitude of the pseudo gauge
field (middle). The right panel shows
that these two values averaged over the
moiré unit cell are correlated, heteros-
train controlling almost exclusively the
spacing energy.
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The strong sensitivity of the position of the Dirac cones on strain
means that the electronic properties will also strongly depend on the
strain, as we will find in Chapter 3. The work of N. Nakatsuji [144]
shows that the distance between the high DOS peaks is proportional
to the pseudo-vector A, in agreement with the low energy analytical
equation 2.13. These calculations also support a local description of
the flat bands of TBLGs.

2.2.4 Homostrain

In contrast to heterostrain, homostrain consists in applying the same
strain to both layers. In [8], it was found that its effect is much less
critical than for heterostrain.

This is due to a cancellation of the relative pseudomagnetic field
from both layers. The dramatic shift in the Dirac nodes is propor-
tional to the difference between the pseudo-vectors [147] :

δKi ∝ Ai = Al=2
i − Al=1

i

Figure 2.11: Sketch of the effect of ho-
mostrain in the mBZ. The strain in one
layer shifts the Dirac nodes in one di-
rection (green vectors), and the strain in
the other layers shifts the Dirac nodes of
opposite chirality in the same direction.
The blue and the green mBZ are folded
into the orange mBZ in the center. They
are all the same up to a shift in k-space,
showing that in terms of PMF, applying
a similar strain to both layer is the same
as applying no strain.

This can also be sketched in the mBZ as shown on Fig. 2.11 : the
deformation of the first layer shifts a Dirac node in one direction,
while the other layer deformation shifts the other Dirac nodes in that
same direction. As a result, the positions of the Dirac nodes in the
mBZ is equivalent to their positions in an unstrained mBZ.

As a consequence, only the geometrical deformation of the mBZ
in the case of homostrain has an effect on the electronic properties
of TBLG and it requires higher amounts of strain to affect the bands
significantly.

2.3 Heterostrain effect in low angle TBLG

Analytical and low energy approximations give us a lot of informa-
tion on the effect of strain, in particular we know that we should
focus on heterostrain and that small strains are already interesting to
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study.
To go beyond the low energy limit, we collaborate with the theory

group of G. Trambly de Laissardière, in order to investigate how the
flat bands of TBLG are affected by heterostrain. We use calculations
relying on an exact diagonalization method as introduced in section
1.3.1 and performed by A. Missaoui and G. Trambly de Laissardière.

In order to perform such calculations, we provide them with moiré
unit cells containing all atomic positions. The challenge is thus to
produce cells that are periodic while containing a controlled heteros-
train. This is done with the method we describe now.

2.3.1 Commensurate periodic cells with arbitrary heterostrain for
tight-binding calculations

Definition of commensurability

In the simpler case of unstrained TBLG moiré pattern, the periodiza-
tion of the moiré unit cell can be obtained in the commensurate case.
It happens if the rotation can be characterized by two integers (m, n),
that define the moire periodicity ami with respect to the graphene
peridicity : ami = mab1 + nab2 [34, 148]. This condition is realized
at a few intergers (m, n) only, if one considers the simple solution in
which the unit cell contains only one AA region (or beating).

This condition is also called first order commensurability as it implies
that m − n = 1 and can be realeased if one considers that two (or
more) neighboring beatings can be unequivalent. This yields a whole
family of unit cells containing various numbers of beatings as shown
in the work of Artaud et al. [149] (see on the sketch in the margin).

Figure 2.12: Number of atoms in a com-
mensurate moiré unit cell with respect
to the twist between the layers. There
is a discrete number of first order cells,
which are shown in bold dots. From
[148].

This means that one can model almost any angle for a couple
(m, n). The price to pay, as shown on Fig. 2.12, is the increased
number of atoms in the given unit cell for angles where no low order
cell (N small) can be found. As the calculations can be costly in time,
it is interesting to notice that the physics lie mainly in the N = 1
cell. In other words, a given angle can be satifyingly decribed by the
closest first order approximant. In Ref. [8], the commensurate cell
was thus reduced from order N = 3 to its first order approximant
without significant impact on the electronic properties. An intuition
of this can be found in Fig. 2.12 where an increasing density of
first order cells per twist angle unit is found below 10◦, the range
of angles where the electronic properties are mosly affected by the
twist.

Even if the stacking does not consist in a pure rotation, one can
always find a commensurate approximant close enough to any given
stacking. In the following we describe a method that can be used to
find such commensurate approximant in the most general case of the
stacking of two layers that include relative strain and twist.
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General description for strain

A given stacking arrangement including heterostrain and interlayer
twist can be written as a link between an unstrained bottom layer - of
unitary vectors in the orthonormal basis (ab1

, ab2
) - and a twisted-

strained top layer - of unitary vectors (at1 , at2 ) :

(2.14)

(
at1
at2

)
= R(θ2)M(pan)R(θ1)M(piso)

(
ab1
ab2

)

With R(θ) =

(
cosθ sinθ

−sinθ cosθ

)
a rotation, M(pan) =

(
pan 0
0 1

)
a uni-

axial deformation and M(piso) =

(
piso 0
0 piso

)
a biaxial deformation.

These parameters are related to uniaxial εuni and biaxial εuni heteros-
train levels that can be extracted experimentally. In that framework,
the direction of application of strain is θs = −θ1.

Figure 2.13: Definition of the angle of
application of uniaxial strain θs with re-
spect to the graphene axis.

This description can be simplified by performing a simple matrix
multiplication that yields the Park Madden matrix as introduced by
A. Artaud et al. [149].

(
at1
at2

)
=

(
a b
c d

)(
ab1
ab2

)
(2.15)

Construction of the park madden matrix

In practice, the Park Madden matrix is determined starting from the
first layer graphene vectors written in the orthonormal basis : ab1 =
(1, 0) and ab2 = (−1/2,

√
3/2).

The second layer is then constructed with chosen heterostrain pa-
rameters.(

ati ,x

ati ,y

)
=(

cosθ2 sinθ2

−sinθ2 cosθ2

)(
pan 0
0 1

)(
cosθ1 sinθ1

−sinθ1 cosθ1

)(
piso 0
0 piso

)(
abi ,x

abi ,y

)
(2.16)

Equation 2.16 is equivalent to equation
2.14 which is written in matrix form. The Park Madden matrix parameters (a, b, c, d) are determined

from the input (piso , pan, θ1, θ2) parameters identifying Eq. 2.14 and
Eq. 2.15 .

In practice, it is easier to work in the hexagonal basis where ab1 ,hex =
(1, 0) and ab2 ,hex = (0, 1), and to replace abi ,⊥ by abi ,hex in equation
2.16 : (

at1 ,1

at1 ,2

)
hex

= P−1

(
at1 ,x

at1 ,y

)
=

(
a
b

)
(2.17)(

at2 ,1

at2 ,2

)
hex

= P−1

(
at2 ,x

at2 ,y

)
=

(
c
d

)
(2.18)

with P the matrix that links hexagonal and orthonormal basis :

P =

(
1 − 1

2

0
√

3
2

)
(2.19)
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Finding the commensurate approximant

Commensurability requires that we find integers relating the graphene
(top and bottom) periodicity and the moiré periodicity.

On first order, the moiré unit vectors can be written kmi = kti −
kbi

which can be devellopped using 2.15:

(2.20)

(
km1
km2

)
=

(
kt1
kt2

)
−
(

kb1
kb2

)

=

((
1 0
0 1

)
−
(

a c
b d

))(
kt1
kt2

)

=

(
1− a −c
−b 1− d

)(
kt1
kt2

)
Which yields in real space :(

at1
at2

)
=

(
1− a −b
−c 1− d

)(
am1
am2

)
(2.21)

And thus :

(2.22)

(
am1
am2

)
=

1
(1− a)(1− d)− bc

(
1− d b

c 1− a

)(
at1
at2

)
The commensurability is forced by rounding the coefficients of the

matrix to the nearest integer i, j, k, l, that is:

i = round
(

1− d
(1− a)(1− d)− bc

)
(2.23)

j = round
(

b
(1− a)(1− d)− bc

)
(2.24)

k = round
(

c
(1− a)(1− d)− bc

)
(2.25)

l = round
(

1− a
(1− a)(1− d)− bc

)
(2.26)

Enabling us to relate top graphene and moiré periodicities with
integers. (

am1
am2

)
=

(
i j
k l

)(
at1
at2

)
(2.27)

We also express the relation between the moiré and the bottom
layer as(

am1
am2

)
=

(
i j
k l

)(
at1
at2

)
=

(
ia + jc ib + jd
ka + lc bk + ld

)(
ab1
ab2

)
(2.28)

from which we force commensurability by rounding the coefficients
of the matrix to the nearest integers m, n, q, r as:

m = round (ia + jc) (2.29)

n = round (ib + jd) (2.30)

q = round (ka + lc) (2.31)

r = round (bk + ld) (2.32)
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Relating the bottom graphene and moiré periodicities :(
am1
am2

)
=

(
m n
q r

)(
ab1
ab2

)
(2.33)

The multiplet (i, j, k, l, m, n, q, r) defines a commensurate unit cell
with a relative arrangement between the layers close to the one de-
fined by the inputs.

Order of commensurability
When doing Nkm = kt1 − kb1, we

make the assumption that the moiré pe-
riodicity is aligned with the moiré beat-
ing. However, as noted by A. Artaud et
al. [149], this is not always the case. It
means that we will sometimes overes-
timate the minimum cell size required
to describe adequately a given stacking
configuration.

One has to check if the heterostrain parameters of the newly cre-
ated commensurate cell (refered to as produced parameters) match
the ones from the input (referred to as init parameters). The deter-
mination of the heterostrain parameters (εuni = pan − 1, εbi = piso − 1,
θ1 = −θs, θ = θint = θ1 − θ2) is done as described in [149] by identi-
fication of the matrixes from equation 2.14 and equation 2.15. If the
approximation is found to be too crude, a refined description of the
system can be calculated by considering the Nth order cell.

(2.34)Nkmi = kti − kbi

We achieve the desired level of approximation when N is such
that the values of heterostrain matches the one imposed in the initial
Park Madden matrix within a given precision.

Fig 2.14 illustrates the process for the determination of the unit
cell. It displays the values of the produced cell parameters as a func-
tion of the initial angle of application of uniaxial strain, all other
parameters being fixed.

The figure shows that some configurations require a unit cell of
order 10 to match the correct precision while for others the N = 1 ap-
proximation is already good. Because they are commensurate, these
unit cells are fit to perform calculations in which periodic boundary
conditions are necessary.

Figure 2.14: Commensurate approxi-
mation of moiré unit cells used for the
calculation with their final correspond-
ing heterostrain parameters (εuni , εbi ,
θ

produced
1 , θ) ; for a given target stack-

ing arrangement with various angle of
application θs = −θinit

1 of uniaxial het-
erostrain. The target uniaxial heteros-
train is εuni = 0.2% and biaxial heteros-
train εbi = 0.0%. The interlayer rotation
is θint = 1.1◦. The dashed green line
shows the order of the unit cell needed
to produce each configuration within a
given precision.

init

pr
od
uc
ed

produced
Nε (%)εuni εbi

Fig 2.14 was produced with a precision on the strain |εinit
uni− ε

produced
uni |

< 2.10−4, |εinit
bi − ε

produced
bi | < 3, 5.10−4. Of course, the better the pre-

cision the larger the produced commensurate cell which imposes a
trade off between the precision and calculation time.



experimental study of heterostrain in moiré superlattices of graphene bilayers 35

With the moiré unit cells produced as decribed above, the compu-
tation of the LDOS can be done relying on the tight binding model
and Lanczos algorithm as devellopped by Guy Trambly de Lais-
sardière et al. [34] and described in section 1.3.1.

In the paragraphs below is presented our investigation of the effect
of the different parameters of heterostrain on the electronic proper-
ties of TBLG near the magic angle, starting with the effect of the
angle of application of strain.

2.3.2 Effect of the angle of application of strain on the flat bands of
TBLGs

Fig. 2.15 shows a colormap of the LDOS for various stacking config-
urations. For each angle of application θs of a 0.4% uniaxial strain
on a 1.1◦twisted TBLG, a commensurate unit cell was produced and
the LDOS calculated.

As expected from the C3 symmetry of unstrained graphene layers,
the LDOS is 60◦ periodic in θs. Moreover, the spacing of the van
Hove singularities (vHs) as measured from the separation between
the outermost peaks, does not vary with θs, a finding also supported
by Fig. 2.17 for different strain magnitudes.

θs

Figure 2.15: a Calculated local density
of states in AA regions for a 0.4 % uni-
axial heterostrain applied along vary-
ing direction θs. The white dotted lines
indicate three typical behaviours of the
LDOS.

Instead, the angle of application controls continuously the split-
ting of the peaks, featuring three main behaviours. Near 10◦, the
LDOS features a zero energy peak that was first observed by L.
Huder et al. [8] and was later observed in other works [106, 150].
Near 30◦, the LDOS is the simplest : it features the regular two peaks
correponding to the vHs that have been observed very often since
their first detection [33]. Near 50◦, the LDOS features a splitting of
both peaks that, to our knowledge, hasn’t been reported experimen-
tally yet.

These behaviours are stable when varying the amplitude of strain,
as shown in Fig. 2.16.
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2.3.3 Effect of the amplitude of strain on the flat bands of TBLGs

Upon an increase of the uniaxial heterostrain amplitude, the van
Hove singularities separate linearly for all angle θs of application
of heterostrain (Fig. 2.16), in agreement with calculations of the con-
tinuum model [38, 140, 144]. For strains below 0.1%, the system
remains in a state close to the purely twisted system, with only two
vHs close to one another. It continuously evolves towards the three
different behaviours decribed above, which are completely formed
around 0.4% of strain and makes them easier to spot.

c
8.5°

29.1°

51.1°

Figure 2.16: Tight-binding prediction
for the local density of states in AA
regions as function of energy and for
increasing uniaxial heterostrain. The
variations are plotted for three differ-
ent angles θs of application of het-
erostrain that define the principal ba-
haviours of the LDOS. These typical an-
gles are highlighted with white dotted
lines on Fig. 2.15 .

For higher strains, starting between 0.6% and 0.7%, the descrip-
tion in terms of vHs peaks starts to collapse. Indeed, the bandwidth
increases with strain and starts to destroy the saddle points. This
effects comes along with a smoothing of the energy localization, but
not of the spatial localisation of the DOS in AA zones, even at strains
as high as 1%. This is confirmed by the work of H. Shi et al. [106], in
which a TBLG with 0.78% of strain was measured in STM/S, show-
ing a lowering in energy localization, but a remaining spatial locali-
sation in AA regions

Figure 2.17: Calculated effect of het-
erostrain on the LDOS in AA region of
twisted graphene bilayers. Color maps
of the LDOS of TBLG as a function of
the angle of application of uniaxial het-
erostrain, for zero biaxial heterostrain
and for a twist angle of 1.1◦. For each
figure, the uniaxial strain εuni is fixed at
0.2% in a, 0.6% in b, 0.8% in c, 1% in d.

a b

c d

2.4 Conclusion

Strain affects the electronic properties of monolayer graphene. It can
induce pseudo-Landau levels, changes in Fermi velocity, modifica-
tions of mobility and doping. Although interesting physics can be
probed, this remains an experimental challenge due to the relatively
high strains that have to be applied to reach significant effect (typi-
cally ∼ 20%).

In that aspect, TBLG can be very interesting because strains as
small as 0.1% can affect the electronic properties. This is due to the
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combined effect of strain induced geometrical changes in the BZ,
pseudo magnetic field, and moiré periodicity. The breaking of C3
symmetry is at the root of such a deep effect, similarly to the case
of in-plane magnetic fields. Heterostrain, the relative strain between
the layers, is the relevant parameter to consider as opposed to ho-
mostrain where an equal strain is applied to both layers.

Heterostrain tunes the flat bands of TBLG by increasing linearly
their bandwidth. This finding will be confirmed by analysis of STM
measurements in Chapter 3. The direction of application of strain
with respect to the cristallographic directions of TBLG is also an im-
portant parameter to explain some features in the LDOS.

Such low values of strain that are relevant in the case of TBLG in-
duce very small changes in the position of atoms. One could wonder
about the difficulty of experimentally detecting such small atomic
displacements. Fortunately, we will see in Chapter 3 that the moiré
acts as a magnifying glass for heterostrain, which enables to acu-
rately deduce strain values in the system measured by STM. Ad-
ditionally, such strain values are easily reached in typical straining
setups, as will be further shown in Chapter 5, opening perspectives
to probe these physics in situ.
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In this Chapter, we investigate experimentally the strain depen-
dent electronic properties of twisted bilayers of graphene. We use a
Scanning Tunneling Microscope (STM) which allows to access both
structural and electronic properties. We will first explain its working
principle. Then, how it can be used to quantify local relative strain
between TBLG. Finally, we will take advantage of STM versatility
by combining this strain study with an analysis of its impact on the
electronic properties of the system.
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3.1 Scanning Tunneling Microscopy technique at 4K

Scanning Tunneling Microscopy is a technique that was developed in
the early 1980s by G. Binning and H. Röhrer [151] for which they re-
ceived the Nobel prize in 1986. Their instrumental development was
made in the context of the search towards vacuum tunneling, that
was meant to be used for local spectroscopy measurement. But what
made a difference was they realizing that this technique would also
enable to perform scanning with atomic resolution [152]. This makes
the strength and interest of this technique that is now commonly
used to combine topographic (Scanning Tunneling Microcopy) and
spectroscopic (Scanning Tunneling Spectroscopy) information of sur-
faces.

3.1.1 Tunneling through vacuum

STM technique relies on the quantum tunneling of charge carriers
between a conducting tip and a conducting surface that creates a
tunneling current when these are separated in energy by the bias Vb.
The tunneling through vacuum between these conductors happens
if the wavefunctions of their electrons are overlapping, which occurs
for distances of few angstroms. The probability of quantum tunnel-
ing and thus the current decays exponentially with the tip height z :
It(z) ∝ e−kz = T(Vb, z). Where k is the decay of the wave function of

the electron k =
√

2mΦ
h̄2 and depends on the materials through their

effective work function (or mean barrier height) Φ = Φs−Φt+eVb
2 .A variation of height of 1Åresults in

a one order of magnitude transmis-
sion probability (for a barrier height of
4eV), which explains how precise sub-
nanometer determination of tip height
can be achieved with STM technique.

The tunneling current not only varies with height but also with
the local density of states (LDOS) of the tip ρt and the sample ρs.
At finite temperature, the distribution of electrons at a given energy
f (E) is also to be taken into account. The tunneling current can be
written as :

It(Vb) ∝ |M|2
∫ +∞

−∞
ρs(E + Vb)ρt(E)( f (E + Vb)− f (E))dE (3.1)

Where It is also proportional to all tunneling events that occur with
probability M, the tunneling matrix element that can be calculated
using Fermi golden rule and yields the previously mentioned e−kz

dependency. Assuming that kbT << eV so that the Fermi dirac dis-
tribution becomes a step function ; and that the density of states of
the tip is constant (ρt(E) = ρt), a simplified expression of the tunnel-
ing current is :

It(Vb) ∝ T(Vb, z)
∫ EF+Vb

EF

ρs(E + Vb)dE (3.2)

3.1.2 Tunneling Spectroscopy

To perform a spectrocopic measurement of the LDOS we have to get
rid of the integral over the energy of the LDOS in the tunneling cur-
rent. This can be done by derivating tunneling current with respect
to applied bias tension :
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(3.3)
dIt(Vb)

dVb
∝ T(Vb, z)ρs(EF + Vb) +

dT(Vb, z)
dVb

∫ EF+Vb

EF

ρs(E + Vb)dE

= T(Vb, z)ρs(E + Vb) + BI

Tip Sample

ρt(E)

Φt

ρs(E)

E Φs

eVb
e-

T(E)
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Figure 3.1: Energy diagram showing
the tunneling of electrons between the
tip and sample for positive (left) and
negative (right) bias of the sample.

The LDOS of the sample is thus proportional to the derivated cur-
rent as long as the background integral term BI can be neglected.
In [153], G. Hörmandinger shows this is the case for Vb < 0.2eV or
for higher energies when the contributing states to the tunneling are
sufficiently smooth over Vb.

Experimentally, this Scanning Tunneling Spectroscopy (STS) is achieved
by adding an AC modulation to the sample bias, and measuring the
resulting modulation of the tunneling current with a lock-in ampli-
fier. By ramping Vb, we measure the LDOS of the sample as a func-
tion of the energy.

Because of its exponential dependence on distance, the tunneling
occurs in a very local region below the tip. This also makes the
strength of STM technique because it means one can perform spa-
tially resolved spectroscopies, even down to the atomic scale.

3.1.3 Scanning Tunneling Microscopy

Scanning the surface enables to retrieve spatially resolved features
of the surface electronic states. These correspond to a convolution
between topographic and electronic effects.

Figure 3.2: Schematic principle for two
different scanning modes. In Z mode
(left) tip extension is recorded, and in
I mode (right) tunneling current varia-
tions are recorded.

There are two ways to record surface states, presented in Fig. 3.2.
The first scanning mode consists in recording the tip extension -ie
the distance between tip and sample- as the tip is scanned over the
surface while maintaining the tunneling current constant with a feed-
back loop. Another possibility is to keep a constant tip height while
scanning and recording the changes in tunneling current. In real life,
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scanning is never a hundred percent "Z" nor "I" mode : one has to
adapt feedback loop and scan speed values so that the tip does not
crash on the sample, achieves atomic resolution, while performing
scans in a realistic amount of time.

3.1.4 STM of twisted bilayers of graphene

Figure 3.3: a Experimental LDOS for
several twist angles. van Hoove singu-
larities (vHs) are emphasized with ar-
rows. b vHs spacing as a function of
twist angle and moiré periodicity. c
STM image of a 6.4◦moiré, with visible
atomic resolution. Adapted from [32].

Moiré and graphene periodicities can be imaged by scanning the
surface of TBLG as shown on Fig. 3.3c for a twist angle of 6.4◦. The
visible corrugation between AA regions and AB regions results from
a combination of (i) topography, as the interlayer distance is higher
in AA regions than in AB regions [68, 154], and (ii) density of states,
as the electrons are localized in AA regions [34].

Spectroscopy of the system gives information on the energy of the
saddle points. These are detected in the LDOS by the vHs, whose
separation decreases with the twist angle (Fig. 3.3b). The localization
of electrons in AA regions was noted in the early experiments by Z.
Y. Rong and P. Kuiper [155]. This observation is supported by LDOS
measurements as the vHs amplitude is bigger (resp. smaller) in AA
(AB) regions as shown in light pink (resp. dark pink) on Fig. 3.3a.

Last, STM measurements teach us about spatial variations of the
moiré periodicity. These are particularly pronounced near defects
and grain boundaries as shown on Fig. 3.4. They are due to rela-
tive deformations of the layers, which we call heterostrain following
Ref. [8]. This heterostrain significantly modifies the moiré, the latter
acting as a strain magnifier. [156, 157, 158, 159]

Figure 3.4: STM topography (Vb =
−500mV, It = 1nA) of a 1.2◦moiré pat-
tern (as measured from the homoge-
neous region in the blue square). The
boundaries around the grain that are
common in such graphene on the C-
face of SiC sample create native strain
in the TBLG, detected by the inhomoge-
neous moiré periodicity as emphasized
by the yellow circles. Adapted from [8].

3.2 Quantifying native heterostrain

The physics of TBLG rely on the precise arrangement between the
layers. In particular, heterostrain is ubiquitous in TBLG samples and
has to be taken into account. Though the local arrangement varies
through space due to inhomogeneities and relaxation processes it is
often possible to find homogeneous regions in heterostrain and twist
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angle. Moreover, the properties of TBLG are determined by the local
arrangement as shown in the work of N. Nakatsuji and M. Koshino
[144]. It means we can rely on the local analysis of homogeneous
regions of TBLG in order to describe the physical system.

To quantify local native heterostrain and twist angle, STM is a
good method because one can image simultaneously both atomic
and moiré periodicities.

It is even more interesting because with STM we can make a direct
link between local stacking and local electronic properties.

We will now describe how the relative arrangement can be deter-
mined from STM topographic images of Moiré.

3.2.1 Determination of heterostrain using commensurability study

Relative arrangement and Heterostrain

Quantifying local in-plane homogeneous heterostrain means we have
to quantify the relative arrangement between the layers.

Figure 3.5: Definitions of bottom
layer periodicity (untwisted, brown
hexagons) and top layer periodic-
ity (twisted and deformed, orange
hexagons).

This link between the bottom layer (ab1
, ab2

) and top layer (at1 , at2 )
periodicities, following the work of A. Artaud et al. [149], can be
written in the form of a so called Park Madden matrix, so that:(

at1
at2

)
=

(
a b
c d

)(
ab1
ab2

)
(3.4)

This matrix includes, in the most general stacking arrangement, a
pure rotation between the layers and an additional heterostrain.

(3.5)

(
at1
at2

)
= R(θ2)M(pan)R(θ1)M(piso)

(
ab1
ab2

)

With R(θ) =

(
cosθ sinθ

−sinθ cosθ

)
a rotation matrix, M(pan) =

(
pan 0
0 1

)

the matrix for uniaxial deformation and M(piso) =

(
piso 0
0 piso

)
the

matrix for biaxial deformation.
The four stacking parameters (pan, piso , θ1, θ2) are obtained by iden-

tification of Equation 3.4 and Equation 3.5 following Ref. [149], as
described in section 2.3.1.

These parameters are related to more physical quantities by defin-
ing uniaxial heterostrain εuni = pan − 1 and biaxial heterostrain εbi =
piso − 1.

Figure 3.6: The use of the grid is op-
tional : it is enough to write kti and
kbi in the same basis. By using the
grid, we have the benefit of retriev-
ing a commensurate system that is fit
for tight binding Lanczos algorithm cal-
culations as presented in section 2.3.2.
This sketch shows two possible basis in
which both graphene periodicities can
be expressed, (ux , uy) and (km1, km2).

Experimental determination of Park Madden Matrix

Finding the link between the two graphene layer periodicities over
the imaged regions is done in Fourier space, where the top (resp.
bottom) layer periodicity is referred as kti (resp. kbi

), i = 1, 2. A
fast Fourier Transform (FFT) of the experimental data gives us an
average of the periodic arrangements. By fitting a grid on the moiré
periodicity in the FFT, as done on Fig. 3.7 one finds the integers that
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a b

c

d

Figure 3.7: a Fast Fourier Transform of
a low angle TBLG imaged in STM and
published in ref [160]. The reciprocal
points of the top graphene layer are em-
phasized by the black hexagon and the
moiré periodicity is emphasized with
the black grid. b-d Zooms of the FFT
with the reciprocal moiré vectors shown
in red, the top layer graphene peri-
odicity in green and the bottom layer
graphene perodicity in purple.

link both graphene periodicities to the moiré periodicity. In the case
of Fig. 3.7, we have(

kt1

kt2

)
=

(
i k
j l

)(
km1

km2

)
=

(
29 34
−23 66

)(
km1

km2

)
(3.6)

(
kb1

kb2

)
=

(
m q
n r

)(
km1

km2

)
=

(
28 35
−24 66

)(
km1

km2

)
(3.7)

Which enables us to calculate the Park Madden Matrix.(
kb1

kb2

)
=

(
a c
b d

)(
kt1

kt2

)
(3.8)

Along with the heterostrain parameters : (εuni , εbi , θint, θs) = (-0.55%,
0.13%, 1.1◦, 34◦).

This analysis has the advantage of describing the relative arrange-
ment of the layers, and thus getting rid of experimental artifacts,
that could emerge from a miscalibration of the piezoelectric scan-
ning tube or the thermal drift for example. In that sense, the method
is very robust.

3.2.2 Analysis at the moiré scale

When imaging low angle TBLG, the moiré can easily reach peri-
ods above 10nm. It means that imaging several moiré periods while
achieving atomic resolution is time consuming. That is why several
groups image low angle TBLG at the moiré scale.

At that scale, we only have access to the next nearest neighbor AA
sites distances as shown on Fig. 3.8. We can still retrieve information
on the heterostrain, as these distances are significantly modified for
small atomic displacements, the moiré acting as a strain magnifier.

A. Kerelski et al. [160] showed that heterostrain can be extracted
using graphene’s Poisson ratio estimate δ = 0.16. In that description,
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Figure 3.8: a Topography of a low an-
gle TBLG without atomic resolution.
The grid emphasizes the slight defor-
mation of the moiré periodicity with
L1 6= L2 6= L3 resulting from heteros-
train. Adapted from [161]. b Sketch in
Fourier space of heterostrain described
in the form of Poisson behaviour.

one layer is stretched (squeezed) in one direction by an amount ε and
squeezed (stretched) in the opposite direction by an amount −δε.
This situation is sketched in Fig. 3.8b. In matrix form, this writes :

(3.9)

(
kt1
kt2

)

=

(
cosθs −sinθs

sinθs cosθs

)(
1

1+ε 0
0 1

1−δε

)(
cosθs sinθs

−sinθs cosθs

)(
cosθ sinθ

−sinθ cosθ

)(
kb1
kb2

)

In other words, the reduced number of degrees of freedom (L1, L2, L3)
forces us to neglect the separation of heterostrain into pure biaxial
strain εbi and pure uniaxial strain εuni, as well as forcing θs = −θ1 =
θ2.

The distances between next nearest neighbor AA sites (L1, L2, L3)
are extracted experimentally. The experimental stacking configura-
tion is then found by minimizing the function that relates the het-
erostrain configuration to the experimental values of (L1, L2, L3).

In practice, one starts from an arbitrary heterostrain configura-
tion (ε, θs, θ). The corresponding distances (L1calc, L2calc, L3calc) are
calculated from the simple relation Kmi = kti − kbi. A numerical
minimisation process then gives the experimental stacking configu-
ration.

3.2.3 Comparison between moiré scale and commensurability meth-
ods :

Although the framework describing heterostrain at the moiré scale
is less general as it does not take into account effects that are not
described by Poisson behaviour, we will see in the following that we
find good agreement when describing one sample with both models.

Figure 3.9: Moiré scale approach is
used to calculate parameters ε and θint
from (L1, L2, L3) lengths. The latter are
calculated first using commensurabil-
ity method with parameters δ = 0.16,
Eb = 0, θint = 1.01◦, and varying εuni .
Good agreement is found.

In order to give some intuition for this, we write a general strain
matrix that includes Poisson strain behaviour with its parameters (ε,
δ) and pure biaxial strain Eb.

StrainMatrix =

(
(1 + ε)(1 + Eb) 0

0 (1− δε)(1 + Eb)

)
(3.10)
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The lengths (L1, L2, L3) are first calculated using the commensu-
rability method, considering any general stacking. Moiré scale ap-
proach is then applied on the obtained lengths (L1, L2, L3) to retrieve
the best fitting configuration.

Figure 3.10: Same as Fig. 3.9 with pa-
rameters δ = 0.16, εuni = 0.3%, θint =
1.01◦, and varying Eb. With pure biax-
ial heterostrain, the moiré scale descrip-
tion quickly overestimates the twist an-
gle. Below 0.2%, this approach is still
satisfying.

Fig. 3.9 shows that for any uniaxial strain amplitude, when biaxial
strain is zero, the moiré scale approach retrieves the good stacking
parameters. When biaxial strain is increased at constant uniaxial
strain (Fig. 3.10), the moiré scale approach cannot describe the sys-
tem fully and the twist angle is artificially increased in order to fit
best (L1, L2, L3) parameters. Such a behaviour could be corrected by
determining the direction of graphene period with respect to that of
the moiré period.

These methods can be quantitatively compared satisfyingly when
pure biaxial strain is smaller than 0.2%.

3.3 Effect of heterostrain on the flat bands of TBLG

An STM systematic experimental study of heterostrain in TBLG can
be quite challenging, because samples where the twist angle is con-
trolled are difficult to achieve, in particular if we want accessible and
clean surfaces suited for STM measurements.

In order to overcome this difficulty, we survey already published
STM measurements from different groups. This kind of meta-analysis
means that we do not control all parameters as the samples are mea-
sured in different experimental conditions and setups. We must thus
carefully consider all these parameters in our analysis. However, if
a general trend is found, it gives the study more weight as it means
the identified trend is reproducible through all different samples and
experimental setups.

In the following, we will discuss such an analysis of several sam-
ples of TBLG near the magic angle, from different already published
data.Depending on the response of the au-

thors to our data request we could
use their raw data for our survey or
not. We could use the raw data of
Refs. [8, 136, 162]. For Refs. [52]a,
[53, 54, 160, 161] we used topographic
STM images digitized from the corre-
sponding manuscripts. For Refs [163],
[52]b, [52]c, we did not have the data
to do our own strain analysis and used
the values of heterostrain provided by
the authors.

When the published images had atomic resolution, we extracted
local heterostrain from the commensurability method described in
subsection 3.2.1. For Refs. [161, 162] [52]a, [53, 54], the stacking con-
figuration was retrieved using the moiré scale method as in subsec-
tion 3.2.2. We checked both methods provided very similar estimates
of uniaxial heterostrain for the data of Refs. [8, 136, 160]. Indeed, bi-
axial heterostrain is usually much lower that uniaxial heterostrain,
which satifies the empirical criteria for the validity of the moiré scale
approach presented in paragraph 3.2.3.

In the following, for easier representation, we will use the corre-
spondence :

1 : L. Huder et al. [8]
2 : A. Kerelski et al. [160]
3 : Y. Choi et al. [136]
4 : Y. Jiang et al. [162]
5 : M. Xie et al. [161]
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6 : Z. Zhang et al. [163]
7 : D. Wong et al. [52]
8 : Y. Choi et al. [53]
9 : K. Nuckolls et al. [54]

We will show that in those samples which are all near the magic
twist angle, the relative deformations between the layers are predom-
inant over twist angle in determining the flat bands of the system.

3.3.1 Characterisation of the flat bands in the non correlated regime

θint = 1.10°

εbi = 0.13%

εuni = -0.55%

θs = 34°

a

θint = 1.25°

εbi = -0.06%

εuni = 0.35%

θs = 10.6°

b
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Figure 3.11: Panels a, b and c present
STM images of twisted graphene lay-
ers near the magic angle adapted from
Refs. [160], [8] and [136] respectively.
The scale bar is 10 nm in each im-
age. Topographies were taken at (0.5V,
30pA), (0.4V, 50pA), and (0.5V, 50pA)
respectively. Insets present the het-
erostrain parameters extracted with the
method of subsection 3.2.1, in good
agreement with estimates of the origi-
nal studies. d Local density of states
measured in the AA regions for the
samples of panels a, b and c. e Cor-
responding tight-binding calculation of
the LDOS including heterostrain.

Figure 3.11 presents typical STM images collected from Refs. [8,
136, 160]. These STM images can seem very similar, which is not
surprising as they have a twist angle very close to one another. How-
ever, this similarity is only apparent as evidenced by the variety of
the local density of states measured from the STS measurements on
Fig. 3.11d. We expect that the flat-bands should merge at the magic
angle, as discussed in Chapter 1. But the spectra of Ref. [160] and
[136] show two van Hove singularities that are spaced by an amount
∆Eexp that proves that the flat bands are still separated and are not
flat. In addition, despite the samples have a twist angle differing by
only 0.15

◦, their vHs spacing differ by a factor 2-3.
The variety of spectroscopic features of Fig. 3.11d can be ex-

plained by intrinsic heterostrain. Its values are extracted from a
commensurability method, and shown in the inset of each panel.
It reveals that biaxial heterostrain is always smaller than uniaxial
heterostrain, the latter varying by a factor over 3. By generating
commensurate cells that include strain and performing tight binding
calculations simiarly to the method presented in paragraphs 2.3.1
and 2.3.2, we show on Fig. 3.11e that including strain in the system
is enough to explain the main LDOS features, the number of peaks
and their spacing.

We find that the phenomenology described in section 2.3.2 is re-
trieved experimentally. Namely, for increased uniaxial strain ampli- Sample to sample variation is obvious

from other published STM data [52, 53,
54, 161, 162, 163] but also significant in
transport experiments [60].

tudes, the flat bands separation is increased. Also, the importance
of the angle of application of strain is revealed by the LDOS on Fig.
3.11b featuring a third peak at zero energy that was also emphasized
in section 2.3.2.
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3.3.2 Effect of electron-electron interactions

In addition to the effect of heterostrain, the vHs spacing ∆Eexp is
doping dependent which has been attributed to electron-electron in-
teractions [52, 136, 160, 161, 162, 163].

Interactions are tuned by changing the doping of the sample -
or filling factor of the bands -, and varied experimentally using the
backgate of samples when the heterostructure is deposited on Si/SiO2
wafers using tear and stack methods as done in Refs. [52, 53, 54, 136,
160, 161, 162, 163].

Figure 3.12: a Experimental van Hoove
singularity spacing as measured from
the outermost pics in the STS local
density of states, as a function of fill-
ing. The horizontal dotted lines cor-
respond to the vHs spacing calculated
using commensurate cells that include
heterostrain. Error bars correspond to
the uncertainty related to width of the
van Hove singularity peaks as mea-
sured from the digitized data. b Col-
ormap of a STS measurement adapted
from [136]. vHs peaks are visible in
red and white colors and their spacing
varies with the backgate (y axis), show-
ing a maximum spacing near charge
neutrality point also referred to as zero
electron filling.

When the charge carriers fill the flat bands, their Fermi velocity
goes to zero, thereby boosting the Coulomb to kinetic energy ratio
which is a measure of interactions. The flat bands spacing and width
is thus increased which translates into an increased vHs spacing in
the STS spectra that is maximum at charge neutrality point (CNP)
(i.e. zero filling), where electronic interactions express most.

This behaviour is examplified on Fig. 3.12b for one specific exper-
iment. A quantitative comparison of several samples on Fig. 3.12a
shows that ∆Eexp can be increased significantly at zero filling. At
full filling of the flat bands, it converges to the non-interacting situa-
tion modeled by tight binding calculations ∆ETB emphasized by the
doted line.

3.3.3 Combined effect of heterostrain and interactions within the
continuum model

Calculations including interactions in the recursive tight binding ap-
proach are very time consuming for such system sizes : a 1◦ moiré
cell contains more than 10 thousand atoms. A single point DOS cal-
culation, when including interactions, sometimes takes several weeks
to achieve good convergeance. Indeed we have seen the tight bind-
ing approach calculates wavefunctions at the atomic scale, meaning
it deals with big Hamiltonians.

We thus turn to a continuum model which has lower computa-
tional cost as seen in section 1.3.2 this model to describe TBLG sys-
tems including both heterostrain and interactions. These calculations
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are performed by our theoretician colleagues Francisco Guinea and
Tommaso Cea.

The effects of uniaxial heterostrain that were absent in the initial
continuum model from L. Dos Santos et al. [35] can be introduced in
the Hamiltonian relying on the low energy limit approximation, as
shown by Z. Bi et al. [38].

In Chapter 2, we have seen heterostrain enters as a shift in Dirac
cone positions. This shift depends on the strain induced pseudo
gauge field that was introduced in subsection 2.1.1.

Here previous works can be followed [40, 121, 124, 139] to define
the effective gauge field, as :

Al =
(−)l−1ε

√
3β(1 + δ)

4a
(cos 2θs, sin 2θs) (3.11)

where β ' 3.14 [40] is the Grüneisen parameter and ε is the heteros-
train magnitude in a Poisson behaviour approximation.

We have seen heterostrain also affects the interlayer Hamiltonian
H⊥, because it enters as a geometrical factor on the reciprocal lattice
of the TBLG :

Gi = ET gi.
Where E is a heterostrain matrix applied symmetrically on both

layers. In our case, the calculations consider a matrix that uses the
moiré description for heterostrain decribed in subsection 3.2.2. For
small twist angles, it is thus written :

E = ε

(
− cos2 θs + δ sin2 θs (1 + δ) cos θs sin θs

(1 + δ) cos θs sin θs − sin2 θs + δ cos2 θs

)
+ θint

(
0 −1
1 0

)
(3.12)
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Figure 3.13: a Band structure along
the high symmetry path of the BZ ob-
tained with continuum calculations at
charge neutrality. The unstrained stuc-
ture without electronic interactions is
given as a reference with the black dot-
ted curve. The calculation for a heteros-
train configuration of ε = 0.6%, θs = 29◦

and θint = 1.10◦ is given in solid line.
The yellow (resp. red) curve shows the
situation with (resp. without) interac-
tions. The dielectric constant is set to
ε = 5ε0 for the interacting situation.
b Corresponding DOS. The Fermi en-
ergy shown as the dashed grey line is
at charge neutrality.

Coulomb interactions are included in the model using a Hartree-
Fock approach, as detailed in [164].

Within this framework, the interacting Hamiltonian includes in a
mean field approximation the Hartree term HH that accounts for the
onsite potential (including spin and valley degeneracy) U quantify-
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ing the overlapping energy of two wave functions on the same site
i.

The Hamiltonian also includes the Fock term HF that accounts for
the exchange potential Vk between two wavefunctions on neighbor-
ing sites i and j.

All in all the Hamiltonian can be written :

HHF
TBLG = HTBLG + HH + HF , (3.13a)

HH = ∑
kGG′

∑
i
|k + G, i〉U

(
G−G′

)
〈k + G′, i| , (3.13b)

HF = ∑
kGG′

∑
ij
|k + G, i〉Vk

(
G, G′; i, j

)
〈k + G′, j| , (3.13c)

Because the system always has a substrate, the electronic interac-
tions can be screened by a dielectric substrate. The Hartree and Fock
terms thus depend on a coulomb potential that is assumed to behave
like a double metalic gate : vc(q) = 2πe2

ε|q| tanh (|q|d), where e is the
electron charge, the distance of the sample from the gate is set to
d = 40nm and the dielectric constant of the environment in the most
common case of a hBN substrate is typically ε

ε0
∼ 4− 7, ε0 being the

dielectric constant of the vacuum.
Figure 3.13 shows the continuum calculations in this framework,

confirming that heterostrain increases the bandwidth and the flat
bands spacing. In addition, they show that the electronic interactions
further renormalize the flat bands.

3.3.4 Effect of strain on the flat bands of TBLG : low interactions
regime

Figure 3.14: van Hoove singularity
spacing as a function of uniaxial strain
from STM measurements at large dop-
ing (∆E0

exp) and zero doping (∆E∗exp),
from theoretical tight-binding (∆ETB),
and from the Hartree-Fock approach in
the continuum model in the regime of
low (∆Eε=∞

HF ) and large (∆Eε=5
HF ) interac-

tions. The measurements where a cas-
cade of electronic transitions was mea-
sured are indicated by a double border.
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A quantitative comparison of vHs spacing ∆E for several exper-
imental results, including corresponding tight binding and contin-
uum calculations is given on Figure 3.14.

The linear dependency of experimental ∆E as a function of εuni

both at high filling (diamonds) and near CNP (squares) establishes
that heterostrain controls the flat bands of twisted graphene layers
near the magic angle. The agreement of tight binding calculations
∆ETB with experiments at high doping ∆E0

exp is very good, as ex-
pected for calculations based on the precise stacking arrangement
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extracted as in section 3.2.1. They also explain the small deviations
of the data from a purely linear strain dependence, as the twist angle
and biaxial strain amplitude can slightly vary from one sample to
the other.

Figure 3.15: Plot of the Experimental
spacing of the van Hoove singularities
as a function of interlayer twist angle.
Each point represents a different sam-
ple. The correspondance of the num-
bers to references in the literature is
given at the beginning of this section.

Quantitative agreement is also retrieved for continuum calcula-
tions at negligible interactions ∆Eε=∞

HF (i.e. where the dielectric con-
stant is set to high values) with increasing heterostrain ε. These cal-
culations are performed for a twist angle of 1.1◦ and the direction
of application of uniaxial strain is set to θs = 30◦. Despite this angle
does not always match the experimental situation, we have seen in
Fig. 2.15 the weak dependence of ∆E (spacing between the outermost
singularities) on θs.

int

Figure 3.16: The spacing of van Hove
singularities extracted from the DOS
calculated using commensurate struc-
tures that include strain is plotted as
a function of twist angle. Each color
represents a different value of uniax-
ial strain, written on the left. In these
calculations relying on the model pre-
sented in section 1.3.1, the magic angle
is lower than 1.1◦.

The relevance of this linear behaviour can be emphasized by plot-
ting the data from Fig. 3.14 as function of the interlayer twist angle
as shown on Fig. 3.15. Previous studies show that the twist angle
is critical in determining the electronic properties [32, 165] in the
0→ 60◦ range. Here, we can refine this statement. Indeed, the weak
correlation of the data with twist angle shows that in a 0.2◦range
around magic angle, θint is a second order parameter in determining
the flat bands of the system. We plot in Fig. 3.16 the vHs spacing
as a function of interlayer angle for various stacking configurations
in commensurate structures produced similarly to those from sec-
tion 2.3.1. In agreement with the low energy model [38] and the
experimental data from Fig. 3.15, these calculations show that the
system is mostly insensitive to θint in the range from 0.7◦ to 0.9◦ up
to εuni = 0.3%. This trend continues for higher strains but within a
narrower range of twist angles, ∆EvHs eventually becoming linearly
dependent on the twist angle at large heterostrain, as the description
of the system in terms of vHs starts to collapse above 0.6% (see also
Fig. 2.17).

3.3.5 Further comments for the effect of strain in the highly inter-
acting regime
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Figure 3.17: left Band structure along
the high symmetry path of the BZ ob-
tained with continuum calculations at
charge neutrality, with strong interac-
tions : the dielectric constant is set to
ε = 4ε0. The calculation are done for a
heterostrain of ε = 0.6% (resp. ε = 1.0%)
as shown by a red solid line (resp. a
yellow sold line). right Corresponding
DOS with vHs that are not well defined
anymore.

In the regime of low doping, when the interactions are strong, Fig.
3.14 shows that the bandwidth is significantly increased by uniaxial
heterostrain for all samples. The Hartree-Fock calculations including
strain and interactions reproduce well that trend, but underestimate
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the peak spacing ∆E∗exp. The realistic dielectric constant chosen here
ε = 5ε0 could be decreased in order to fit better the experimental
data and describe even higher interactions. However this does not
yield a better agreement because the vHs are no longer well defined,
especially at large strains, when the low energy bands start to merge
into the continuum of higher energy bands as shown on Fig. 3.17.So called cascade of electronic tran-

sitions refers to the spontaneous po-
larization of the system into of valley
and/or spin states. They are directly
linked to the strong interactions and
arise at intermediate fillings. These
polarized states are detected in STM
[52, 53, 54, 55] and in transport exper-
iments [45, 51, 56, 57].

Another limit to our description at high interactions is the large
data scatter of experimental ∆E∗exp. Several external sources for that
scatter can be considered : twist angle, heterostrain value or angle of
application, bandwidth of the bands measured from the FWHM of
van Hove singularities, tunneling resistance, temperature, and detec-
tion of a cascade of electronic transitions in the sample.

In particular, we can focus on the effect of tunneling resistance,
that can modify the local stacking [44] and induce strain in the layer
[166]. Previous measurements for the sample from Ref. [8] show that
when the tip is closer to the sample, mechanical interactions with the
tip can be induced and affect the measured LDOS, as discussed also
in the work of L. Huder [134]. Specifically, we find that the vHs spac-
ing deviates significantly from the tight binding calculations for low
tunneling resistance, when the tip is closer to the sample (Fig. 3.18a).
Tip trend is visualized for sample from Ref.1 on Fig. 3.18b show-
ing a decrease in vHs spacing with decreasing tunneling resistance.
For Ref.3 on Fig 3.18c-d, a decrease in vHs spacing is observed for
increasing tunneling resistance. This strong sample dependence on
the response can be attributed to the experimental setup (Cryogenic
vacuum for sample of Ref.1 versus ultra high vacuum for sample of
Ref. 3) as well as to the microscopic structure of the tip that can in-
duce heterostrain as well as homostrain, vertical displacement, local
rotation, in various fashions.

Figure 3.18: a Relative deviation of
∆E0

exp to ∆ETB as a function of the tun-
neling resistance Rt = Vb/It. b DOS
for various tunneling resistance corre-
sponding to sample from Ref.1 ([8]). c
Gate dependent DOS colormap for a
Rt = 2GΩ, corresponding to sample
from Ref.3 ([136]). d Same as c for
Rt = 0.2GΩ.
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3.3.6 Perspectives

We have showed that TBLG near magic angle are most sensitive to
heterostrain by relying on the systematic study of TBLG with vari-
ous strain amplitudes. For this, we take advantage of the ubiquitous
native strain that exists in each sample, that provided us with a rele-
vant set of data. Another path would be to tune strain in situ, which
requires the development of a new experimental platform. We will
explain the design and fabrication of such a setup in Chapter 5.

This work also reveals that electronic correlations are very sensi-
tive to some additional experimental parameters beyond those inves-
tigated here, or a complex combination of these. As an example, one
could consider further the effect of the substrate or more generally
the detailed electrostatic environment as is suggested in the review
by A. Balents et al. [60], or investigate the effect of atomic lattice
relaxation [83].

In addition, the strong impact of heterostrain on the flat bands
of magic angle twisted bilayers of graphene is also pointed in theo-
retical works [38, 144]. Altogether, it motivates a future systematic
investigation of its influence on the strongly interacting phases of
twisted graphene layers, and on other moiré materials.
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We have seen in previous chapters that the physics of TBLG de-
pend on the precise relative arrangement of the layers. A slight ho-
mogeneous strain can have significant importance on the physics of
the system. In this Chapter, we turn to another type of changes in the
relative arrangement of the layers, namely atomic relaxation. These
in-plane or out-of-plane local deformation of the atomic lattice are
common in marginally twisted TBLGs.

In this Chapter we discuss a new type of relaxation in bilayers of
graphene and discuss its possible origin. We then focus on under-
standing its low energy electronic properties. Before that, we will
present the samples used in this study.

4.1 Graphene on SiC samples

4.1.1 Growth of Graphene on SiC

In the following, we study a sample of graphene grown on the Si face
of Silicon Carbide (SiC). The synthesis of epitaxial graphene on SiC
was first achieved by C. Berger et al. in 2004 [167], although graphiti-
zation of annealed SiC substrate was detected as soon as 1975 [168].
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Figure 4.1: A sketch of the atomic
structure of SiC is given on the left.
Upon heating, the SiC substrates under-
goes thermal decomposition and Car-
bon atoms that remain on the sur-
face organize into few (resp. multi)
graphene layers on the Si terminated
(resp. C terminated) face. The AFM
images on the right show typical to-
pographies of both faces : the Si ter-
minated face features regular steps and
the C terminated face is flatter and fea-
tures many domains separated by grain
boundaries.

The growth of graphene on that material relies on the thermal de-
composition of SiC that happens upon annealing. Graphene typi-
cally starts to grow at temperatures above 1000◦C, as the Si atoms
that have a lower vapour pressure than Carbon sublimate, and the
Carbon atoms reorganize on the surface. The material is usually
available in the industry with two unequivalent faces. These are de-
scribed on Fig. 4.1 along with their respective topographies after
graphene growth.

Graphene grown in such annealing process fully covers the sub-
strate and is very clean, which is favorable for STM measurements.
In typical annealing recipes, the surface characteristics on both faces
can be controlled by varying temperature rates and pressure during
the growth. In particular, the surface features inhomogeneities and
domains that appear during the growth, and thus one can investigate
with STM various regions hosting different structural and electronic
properties on the same sample [169, 170].

The sample we study here is grown in CRHEA (Centre de Recherche
sur l’Hétéro-Epitaxie et ses Applications), in a CVD reactor using two
different gases at high temperatures [171, 172, 173, 174].

Figure 4.2: Side view sketch of epitaxial
(top) and hydrogen intercalated (bot-
tom) monolayer (left) and bilayer (right)
graphene. When there is no interca-
lation, bonds between the first layer
graphene layer and the Si atoms of the
substrate are formed following the so
called (6

√
3× 6

√
3)R30◦ reconstruction

of SiC(0001) (As observed in STM in
Ref. [175]). The figure is from [176].

The first gas consists in a mixture of Hydrogen and Argon. In
most annealing processes, Hydrogen is used to improve the surface
quality of graphene by etching [177], before any graphene grows on
the surface. In CVD growth, it can also be used to decouple the
graphene layers from the substrate during the growth of graphene,
as the Hydrogen atoms bond with Silicon atoms of the substrate
and can be used to form quasi-free-standing graphene layers [176]
as shown in Fig. 4.2 (bottom).

Upon reaching temperatures over 1500◦C, a flow of propane is
added in the growth chamber, that acts as an additional source of
Carbon and allows to use lower growth temperatures. All in all, this
method is closer to annealing processes than to regular CVD, but the
propane flow provides an additional parameter to control the aspect
of the surface. Such growth process usually makes the sample more
homogeneous, in particular in terms of number of layers.

4.1.2 Graphene on the Si terminated face of SiC

The Si face of SiC has been extensively studied by STM since its syn-
thesis [169, 170, 175, 178, 179, 180]. It typically features a low num-
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Figure 4.3: STM images of a Monolayer
graphene on buffer (Vb = −600mV, It =
80pA), b Monolayer / Bilayer graphene
interface (Vb = +700mV, It = 250pA),
c Bilayer graphene on buffer (Vb =
−600mV, It = 80pA). Insets correspond
to the FFT of monolayer on buffer (left)
and bilayer graphene (right). Dark ar-
rows correspond to the graphene pe-
riodicity. Orange hexagons mark the
6× 6 superlattice modulation from the
SiC reconstruction, and the losanges
surround the 2× 2− G match between
graphene and the reconstructed lattice.

ber of graphene layers (one or two) on top of a so-called buffer layer
decoupling the topmost graphene layers from the SiC surface. The
buffer layer corresponds to a graphene layer with sp2 sigma bonds,
but no π delocalized states. Indeed, one third of the carbon atoms
form bonds with the Si atoms from the reconstructed SiC interface as
sketched in Fig. 4.2. Due to these bonds, the Si terminated face of SiC
strongly modifies the morphology of the buffer layer that acquires a
6
√

3× 6
√

3R30 periodicity from the substrate reconstruction.
This reconstruction is visible in STM images even when imaging

monolayer or bilayer graphene as shown on the STM images from
Fig. 4.3. The reconstruction is characterized by the 6 × 6 super-
lattice modulation that can be seen in both real space STM images
and their FFT (orange hexagons). It comes along with a periodic-
ity corresponding to the match between the graphene lattice and the
reconstructed SiC interface lattice, that is visible in the FFT midway
from the graphene spots (black losanges) and referred to as 2× 2−G
(see [175]). The top layer is smooth over the surface, which can be
seen for example in Fig. 4.3b in the case of a bilayer/monolayer on
buffer interface.

Figure 4.4: Sketch of monolayer on
buffer graphene including doping and
typical interlayer distances.

Because of the low number of layers of graphene on the Si face
of SiC, the top layer graphene is quite close to the substrate and
a charge transfer from the n-doped substrate is expected to dope
the sample. The corresponding doping induced potential changes
measured by STM (or ARPES) in graphene can reach −100meV to
−500meV. In addition, the top layer and (intercalated) buffer are ex-
pected to have a slight differential doping due to charge screening
and charge reorganization in the layers. This doping difference cre-
ates an electric field E in the system. The overall situation is sketched
in Fig. 4.4. In addition, the mobility of graphene is affected by the
buffer layer which could act as a source of scattering. Mobilities up
to 2 · 103cm2V−1s−1 were measured [181] in graphene on SiC sam-
ples, two orders of magnitude lower than the mobility measured in
suspended graphene layers reaching 2 · 105cm2V−1s−1 [182]. Indeed,
the buffer layer morphology is very dependent on the SiC interface
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300 nm

intercalated bilayer

monolayer on buffer

Figure 4.5: STM imaging (Vb , It) =
(−230mV, 350pA) of a mostly inter-
calated SiC terrasse. The three insets
are zooms of the image that highlight
the presence of domain walls (right)
and swirl relaxation features that rotate
clockwise (left) or anticlockwise (mid-
dle).

and its distance from the substrate is typically 0.25nm, lower than the
0.33nm distance between two graphene layers. Although graphene
on SiC is very clean, it is not referred to as high quality graphene
because of its inherent doping and lower mobility.

4.1.3 Intercalation of graphene

To produce high quality quasi-freestanding graphene, a possible path
is to intercalate graphene grown on SiC. Over the years, such inter-
calation was demonstrated with several techniques, including Hy-
drogen [176, 183, 184, 185], Fluorine [186], gold [187], or Nitrogen
[188, 189].

The most studied case is that of Hydrogen, as it is easily achieved
from Hydrogen exposure of the sample in a furnace. This intercala-
tion occurs at temperatures above 700◦C, as the atoms need sufficient
thermal activation to pass the potential barrier required to interca-
late below the graphene layers and form bonds with the Si atoms of
the reconstructed SiC interface. The buffer layer is thus decoupled,
forming a quasi-freestanding graphene layer (see bottom of Fig. 4.2).
Most of the time, this intercalation is not homogeneous over the sur-
face and starts near defects or step edges.

The intercalation of our sample was done using a gas mixture of
H2/NH3 as a source of Hydrogen. The sample was exposed dur-
ing 30mn at 150mbar and 1100◦C. The resulting surface is shown on
Fig. 4.5. The imaged terrasse is mostly intercalated, with several re-
gions where a monolayer on buffer structure remains. The distance
between the Hydrogen passivated SiC interface and the liberated
bottom-most graphene layer is increased to 0.44nm as determined
from Scanning Transmission Electron Microscopy (see annex A for
more details), which is typical for hydrogen intercalated graphene
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5 nm
AB BADW

Figure 4.6: STM imaging (Vb , It) =
(−500mV, 200pA) perpendicular to a
line of Fig. 4.5 featuring triangular con-
trasts : one third of carbon atoms are
visible which is typical in STM for AB
stacking ; and honeycomb contrast in
the center : the atomic lattice resembles
more to a circle, as all atoms are visible
which in STM is typical of a decoupled
graphene layer.

[185].
The surface also features several "lines" emphasized in the insets

of Fig. 4.5, that at some places meet into clockwise or anticlockwise
rotating "flowers", which we call swirl in the following. A close ex-
amination of these lines is shown in the atomically resolved STM
image in Fig. 4.6 showing that the stacking types alternate between
AB and honeycomb. These lines can thus be attributed to domain
walls (DW) between AB and BA stackings, as introduced in section
1.5 and similarly to previous STM measurements that reported such
stacking dependent contrast [90, 190].

In the following, we first turn to understanding the origin of the
apparition of these DW features and of their swirl on the surface.
Then, we focus on their electronic properties.

4.2 Swirl pattern in relaxed bilayer graphene

4.2.1 Experimental evidence of swirl patterns

Figure 4.7: STM imaging (Vb , It) =
(−300mV, 250pA) of a small lattice
of domain walls featuring clockwise
(cyan) and anticlockwise (magenta) ro-
tating swirl relaxation patterns on inter-
calated bilayer graphene on SiC.

An examination of Fig. 4.7 reveals that the DW can organize in
an array that resembles the relaxed marginally twisted bilayers in-
troduced in section 1.5 that have already been extensively studied
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[81, 82, 83, 84, 87, 191, 192]. In that case, because of the small rota-
tion, relaxation occurs in the system to maximize the size of AB/BA
regions and concentrates heterostrain locally at the DWs that appear
as lines connecting two closest AA stacked regions. These AA re-
gions form at the vertices between six DWs and tend to localize the
electrons, which explains why they appear as a bright spot in STM
experiments. In our case, the moiré size is ∼ 200nm, which would
correspond to a 0.07◦ twist angle, one of the smallest angle ever ob-
served in TBLG.

However, differences with previous experiments can be noted. In
particular, the domain walls stabilize around the AA region into a so-
called swirl that rotates anticlockwise (magenta) or clockwise (cyan)
as shown on Fig. 4.7. It is this pattern that we will discuss now. We
understand it as a result of the atomic relaxation of a new type of
moiré : not that of a twist but rather that of a biaxial heterostrain.

Figure 4.8: STM image (0.1nA, −1V) of
the swirl lattice originated from the re-
constructed lattice of Au(111) with Gd
adsorbates. From [193].

Such a swirl feature was already observed in other 2D materials
such as graphene trilayers [194], TaS2 bilayers [195], or WS2 bilayers
[196]. But also in polyatomic metallic surfaces, such as Au(111) in-
cluding Na adsorbates [197], epitaxial Cu on Ru(0001) [198], Ru(0001)
etched by graphene [199], or Au(111) including Gd adsorbates [193].
Although the origin of this swirl is not always commented in the case
of the previously mentioned 2D materials, in the metallic surface
case the swirl is understood as originating from a lattice mismatch
between the top layer periodicity and the bulk periodicity. This lat-
tice mismatch can be described as a biaxial heterostrain as done in
the calculations of Ref. [200]. In the case of Cu epitaxial layers, this
mismatch is intrinsic as crystals of Ru and Cu do not have the same
lattice constant. This swirl feature thus disappears when a higher
number of layers are deposited, and the strain is released. In the
case of Ru(0001) etched by graphene, additional Ru atoms are dis-
placed by the graphene growth from a step edge to the first layer
of Ru(0001), inducing a slight excess of Ru atoms in that layer and
a lattice mismatch between the first and second Ru(0001) layers. In
the case of Au with adatoms, the top gold layer undergoes a lat-
tice reconstruction induced by the potential of the adatoms, thereby
changing the top layer lattice constant and inducing these features.

In the case of graphene bilayers, this feature is unobserved in
graphene on h− BN although reconstructed lattices of minimal angle
TBLG have been extensively measured [81, 82, 83, 84, 87, 192]. How-
ever, both simple domain walls and swirl features similar to what we
observe were recently measured in low-energy electron microscopy
(LEEM) experiments on graphene grown on Si face SiC [80, 201] as
shown on Fig. 4.9.

Figure 4.9: Bright Field LEEM image
of intercalated bilayer graphene grown
on the Si face of SiC, featuring a large
area swirl relaxation lattice. The direc-
tion of rotation of several swirls are em-
phasized with magenta (anticlockwise)
and cyan (clockwise) colors. From Ref.
[201].

The structural characteristics of the structure in Fig. 4.7 can be
compared to other bilayer graphene relaxation lattices [67, 81, 88].
The domain walls width is 30± 7nm, bigger than previous experi-
ments. The size of the AA stacked region has a diameter of 9± 2nm,
strikingly smaller than the DW width. This behaviour is differ-
ent from previously measured twisted graphene relaxation lattices



experimental study of heterostrain in moiré superlattices of graphene bilayers 61

where the AA region has a similar size to the DW size, in a 3− 10nm
range, indicating that the ∼ 90 ± 10nm wide swirl of the domain
walls observed in this case allows a more efficient reduction of stak-
ing energy than the straight domain wall case.

4.2.2 Relaxation morphology of the swirl pattern

These experimental observations point towards strong effect of the
SiC substrate on the emergence of the swirl relaxation.

Biaxial heterostrain can be considered as a likely explanation for
such relaxation pattern, as investigated in theoretical works for dif-
ferent materials [200, 202, 203]. In such a scenario, biaxial strain
would arise during the growth process. Indeed, the covalent bonds
that form between the buffer layer and the SiC lattice reconstruction
force the graphene layer to adapt its lattice parameter to the SiC lat-
tice, thus applying biaxial strain to the graphene lattice. In other
words, because of the SiC reconstruction the buffer layer acquires
an increased lattice constant, and thus contains a lower number of
atoms than pristine graphene on a given surface. This phenomenon
is probably highly dependent on temperature, as discussed in Ref.
[171].

Figure 4.10: Possible relaxation modes
with (top) and without (bottom) layer
mirror symmetry. From Ref. [204]. The
left pictures show the buckling shape
of both layers and the right picture
shows the atomic stacking after relax-
ation, with the inset showing the typi-
cal movement of the atoms near the AA
region.

Figure 4.11: Real space stacking in a
moiré arising from pure twist (top) or
pure biaxial strain (bottom). Arrows
sketch the lowest energy movement of
atoms around AB/BA regions that is
expected when closely looking at the
image. The dark hexagon represents
the Wigner Seitz moiré cell.

Upon intercalation, the graphene layer remains biaxially strained
because the number of carbon atom it contains does not change. In
addition, as noticed in Fig. 4.5, the layer is still attached to the SiC in
the several non-intercalated regions so that it cannot relax in-plane
to relieve this biaxial strain. In the intercalated regions, the graphene
bilayer is thus biaxially heterostrained. On the other hand, as h −
BN and graphene interact through van der Waals forces, the lattice
mismatch between both is not enough to induce relative biaxial strain
between the graphene layers which would explain why the swirl
reconstruction mode has never been observed in TBLG/h− BN.

Another possible scenario for this swirl pattern is a broken layer-
mirror symmetry in the out-of-plane relaxation of the layers, as cal-
culated in the case of TBLG by S. Dai et al. [204]. Although most
calculations consider layer-mirror symmetric buckling near AA re-
gions and expect it to be no bigger than 0.3Å [205], a much higher
out-of-plane relaxation -typically multiplied by a factor 10- is found
by allowing layer-mirror symmetry breaking. This scenario was also
studied in Ref. [206] where the authors show that this type ot out-of-
plane relaxation induces corrugations of the order of the angström,
significantly affecting the bandwidth of the flat bands in low angle
TBLG and inducing partial filling of the bands on a ∼ 0.1◦ range
of twist angles. Such buckling is visualized on Fig. 4.10, which
also demonstrates that such a high buckling is accompanied with a
small biaxial strain near AA stacked regions. The work of Ref. [206]
also quantifies the interatomic bond length changes induced by such
buckling at AA regions which yields a ∼ 0.1% biaxial strain.

Both scenarios are most likely intricate, and point towards the
importance of biaxial heterostrain in the layers. In order to under-
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Figure 4.12: Qualitative sketch of ex-
pected atomic displacement directions
upon relaxation in the large moiré
regime, where the stacking fraction of
AB regions is much bigger than the
AA region. a Relaxation in the case of
marginally twisted layers. b Relaxation
in the case of slighly biaxially heteros-
trained layers. The DWs connecting AA
regions are represented by black lines.
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stand it, one can look more closely at the movement of individual
atoms upon relaxation. The relaxation process starts from a given
stacking and tends to concentrate strain at the domain walls of the
relaxed pattern, by extending AB stacked regions and shrinking AA
stacked regions. Marginal twist and slight biaxial strain both create
a six-fold symmetric moiré that may seem similar at the large scale,
but whose precise local stackings are different as evidenced on Fig.
4.11. Starting from a marginally twisted moiré or a slighly biaxially
heterostrained moiré, the movement of the atoms upon relaxation is
thus expected to be different.

The expected atomic movements upon relaxation in both cases are
sketched on Fig. 4.12 for two different stacking configurations, in the
regime where the area fraction of AB stacking is much bigger than
the fraction of AA stacking.

In the case of relaxation starting from a marginally twisted moiré,
local heterostrain is accumulated in the domain walls in the form
of shear strain in the armchair direction as shown by the purple
arrows on Fig. 4.12a. This shear is created with the rotation of atoms
around AB regions in order to maximize their area. This rotation and
shear is also visible in the calculations from Ref. [40, 72] presented
in paragraph 1.5, although it corresponds to a relatively high twist
angle (close to 1◦), thus in the regime where the area fraction of AA
and AB regions are comparable.

Figure 4.13: Sketch of the two possible
AB / BA domain walls, delimited by
the dashed lines. The gray layer is ei-
ther strained or sheared by the amount
given by the Burger vector (in red). The
pure shear has a Burger vector parallel
to the graphene armchair direction and
parallel to the DW direction. The pure
strain has a Burger vector perpendicu-
lar to the DW direction. The crystallo-
graphic directions are shown in black
arrows.

In the case of relaxation starting from a slightly biaxially heteros-
trained moiré, we expect the atoms around AB/BA regions to shrink
towards their center. The DW in the regions where AB and BA stack-
ings are closest is thus purely uniaxially strained in the direction per-
pendicular to the DW. This uniaxial strain is decreased to the profit
of a uniaxial strain parallel to the DW, as the atoms get closer to AA
stacked regions.

The latter relaxation mode results in importantly strained graphene
lattice near the AA region center, which is energetically costly and
thus unstable. Instead, shear would be more favorable, as it is less
energetically costly [200]. Indeed, it resembles most to a twist which
is the lowest possible energy configuration [18]. Given this observa-
tion, the apparition of the swirl can now be understood by closely
studying on Fig. 4.13 the differences between a purely strained DW
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 θ = 0.1°  εbi = 0.1%

100 nm 100 nm

 b a

 d c

Figure 4.14: Stacking parameter of re-
laxed structures starting from a twist
angle of 0.1◦ (a), and a biaxial strain
of 0.1% (a). Calculations are performed
by Niels Walet as described in Ref [75].
The yellow and red arrows correspond
to the calculated flow of atomical mo-
tions between unrelaxed and relaxed
positions, for the top layer. In the bot-
tom layer, the atoms move in the oppo-
site directions. c and d show the same
streamlines, with local Burger vectors
in blue along the domain walls.

and a purely sheared DW that separates the AB and BA regions. For
that, it is useful to consider the Burger vector, that quantifies the shift
of the lattice across a dislocation : the DW can be seen as such a
dislocation [82, 207]. We find that the direction of a purely uniaxi-
ally strained DW is oriented perpendicular to the Burger vector and
the zigzag graphene cristallographic direction. On the other hand, a
purely sheared DW is necessarily parallel to the Burger vector and
the armchair graphene direction.

In biaxially heterostrained bilayers the swirl induces a gradual
rotation of the Burger vector from the center of the domain wall to-
wards AA region. This allows to relax elastic energy more efficiently
as it induces a transition from the energetically costly uniaxial DW
to the more favorable sheared DW. This has the advantage of further
reducing the size of AA region to gain more elastic energy.

The apparition of the swirl can be investigated theoretically. For
this we turn to the relaxation models as presented in section 1.5 and
performed by Niels Wallet following previous works [75, 103]. In The function wAA quantifies the in-

plane (δ normalized) distance between
the interlayer nearest neighbors of an
atom i at its position ri and at positions
r + δAB, with δAB = (δ1 , δ2 , δ3). The func-
tion wAB does a similar thing but cal-
culates two interlayer nearest neighbor
distances and takes the minimal one : -
the distances at position ri and ri − δAB
; - the distances at positions ri + δAB
and ri − δAB. The calculations yield
for AA and AB/BA stackings the ex-
tremal values : w(AA) = 0 − 3 = −3
and w(AB) = 3 − min{0, 3} = 3 and
w(BA) = 3−min{3, 0} = 3.

this case, the potential model is a modified version of the AIREBO
potentials as proposed in Ref. [208] (modeling the intralayer bind-
ing energies), in combination with the Kolmogorov Crespi potential
[78] (modeling the interlayer interactions). In addition, a flat layers
approximation is considered.

The results are presented on Fig. 4.14, where the colormap cor-
responds to the quality of the stacking w = wAA − wAB : green
color corresponds to AA stacked regions and dark purple to AB/BA
stacked regions. The stacking alignment functions are explained in
Ref. [75].

We first turn to the relaxation pattern of a purely marginally twisted
system with large wavelength, namely θ = 0.1◦ on Fig. 4.14 a. We
find the system does not relax into a swirl, therefore twist alone can-



64

not explain our observations. The local displacements of the atoms
upon relaxation create a shear strain at the domain walls following
the predictions of the qualitative sketch of Fig. 4.12, which can be
understood by plotting the local Burger vectors in blue arrows on
Fig. 4.14 c.

Then, we turn to a moiré system with large moiré wavelength
containing small biaxial heterostrain of εbi = 0.1%. We find on Fig.
4.14 b that relative pure biaxial strain is sufficient to induce the ap-
parition of swirl relaxation pattern. The local displacements of the
atoms upon relaxation clearly create an uniaxial strain domain wall
in between AA regions. This can be described by a Burger vector per-
pendicular to the DW direction as shown in Fig. 4.14 d. This Burger
vector gradualy rotates when the DW gets closer to the AA region,
as the DW slowly shifts into a shear type DW where the Burger vec-
tor is parallel to DW direction. We find that the swirl pattern fits
well the experiment with its diameter close to 90nm. This was not
the case in the calculations of S. Dai [204] where the swirl is found
to be smaller than 15nm independently of the moiré length.

We verify on Fig. 4.15 that no swirl is observed for a pure biaxial
strain of 0.8%. This suggests that there exists a critical moiré length
at which the swirl can develop, and below which the DWs remain
straight. This moiré wavelength should be over 100nm, which corre-
sponds to a pure biaxial strain of εbi = 0.245%.

Figure 4.15: Stacking parameter of a re-
laxed structure starting a biaxial strain
of 0.8%.

In order to verify that there exists a critical moiré length for swirl
relaxation, and verify if the size of the swirl can vary with the value
of biaxial strain, other cells with biaxial strains between 0.1% and
0.8% should be calculated.

In addition, the effect of uniaxial strain on the swirl pattern should
be investigated, as it is most likely present in our experimental stack-
ing as well, given the strong anisotropy of the triangles visible on Fig.
4.7.

4.2.3 Experimental minimal twist and heterostrain

Figure 4.16: Sketch of the possible
stackings of the bottom graphene pe-
riodicity (yellow, blue and red) for
a given top graphene periodicity kti
(brown) and moiré periodicity (orange)
kmi , i = (1, 2, 3). The inset shows the
swirl relaxation pattern with its top
layer graphene cristallographic direc-
tions in brown and the rigid triangular
lattice in orange. The central triangle
Tcenter is chosen as the most representa-
tive and we focus on it the following.

It is thus of interest to determine what is the original stacking type of
our relaxed pattern. In other words, we want to know what is the un-
relaxed experimental stacking, either twist-like, biaxial strain-like, or
a more general stacking where both minimal twist and heterostrain
is present in the moiré. This can be done by measuring the moiré
period, which does not change upon atomic relaxation. However, in
our experiment the moiré period is clearly position dependent as ev-
idenced by the position dependent length of the DWs. To overcome
that difficulty, we estimate the local unrelaxed experimental stacking
at the scale of a triangular region defined by the domain walls. The
determination of relative stacking in each triangular pattern is done
with a method close to the commensurabitlity method presented in
section 3.2.1 that we describe now.

In Fig. 4.16 we define the triangular network from which the local
moiré vectors ami, i = (1, 2, 3) are defined. The graphene periodic-
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Figure 4.17: Local commensurability
analysis performed as explained in the
text. For each triangle, the relative
stacking parameters (θint, εbi , εuni , θs)
are determined in the case where twist
angle is the lowest. Background is
taken from Fig. 4.7.

ity of the top layer measured from STM images is also shown. Its
orientation is provided from atomically resolved STM images in the
AB region. This orientation actually does not vary at the scale of the
image, even close to the domain walls where the directions don’t tilt
by more that 0.5◦, although it is there that strain is accumulated.

The periodicities can be conveniently represented in Fourier space
as done on Fig. 4.16. The moiré periodicity shown in orange can be
replicated at the top layer and define the bottom layer kbi, i = (1, 2, 3).
In the most general case kbi can be defined in three diferent ways
given here in yellow, cyan and magenta colored arrows, that we can-
not discriminate a priori in such a relaxed system. The relative stack-
ing corresponding to these three solutions can correspond to mostly
twisted layers including some biaxial heterostrain, mostly biaxially
heterostrained layers with some twist, or a balanced combination of
both. In addition, uniaxial strain can always be present on top of that
biaxial strain and twist.

The commensurate indexes and physical heterostrain parameters
including twist angle, biaxial strain, uniaxial strain, and its angle of
application (θint, εbi, εuni, θs) are determined as decribed in section
2.3.1. In practice, we first need to retrieve the Park Madden matrix,
which is done by using its definition (see section 2.3.1) with the pre-
viously determined top graphene layer and bottom graphene layer
periodicities :

(
a c
b d

)
=

(
kt1
kt2

)(
kb1
kb2

)−1

(4.1)

The three possible relative stacking arrangements are shown on
Figs. 4.17 and 4.18. There is a configuration in which the twist angle
is very small with a significant biaxial heterostrain (Fig 4.17). In the
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Figure 4.18: Local commensurability
analysis performed as explained in the
text. For each triangle, the relative
stacking parameters (θint, εbi , εuni , θs)
are determined in the case where twist
angle value is the biggest. a and b pan-
els correspond to increasing interlayer
twist angle. Background is taken from
Fig. 4.7.

a

b

two other possible configurations the twist angle is bigger and biax-
ial heterostrain is smaller than in the first configuration (Fig. 4.18).
Some uniaxial heterostrain is always present, and can be quite high
(up to 0.7%) in the triangles most right, which is expected from their
longitudinal shape. We therefore focus on the triangles of the clock-
wise rotating swirl relaxation pattern, in particular we define in Fig.
4.16 the most representative triangle in the center of the swirl pattern
which we call Tcenter in the following.

In the case of the lowest angle configuration, the twist angle is typ-
ically 0.01◦, with some small uniaxial heterostrain (typically 0.06%),
but also biaxial heterostrain about 0.08%.

In the case of Fig. 4.18 a and b, the twist angle reaches 0.08◦ and
0.09◦ respectively, which comes along a decrease of biaxial heteros-
train which this time is about 0.05% and 0.03%.
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 θint = 0.01°,  εbi =  -0.08%, εuni = -0.06%  θi Figure 4.19: left Stacking parameter of
the relaxed Tcenter structure from Fig.
4.17 with a twist angle of 0.01◦, a bi-
axial heterostrain of −0.08%, and a uni-
axial heterostrain of −0.06%. The scale
bar is 100nm. right Calculated flow of
the atomic motions between the relaxed
and unrelaxed positions, for one layer.
The blue arrows are the local Burger
vectors for the domain walls.

The uniaxial heterostrain is the same in all three configurations,
as it is a measure of the anisotropy of the triangle. Instead, the twist
angle and biaxial strain are scaling factors of the size of the triangle,
which explains why one increases when the other decreases for a
given triangle.

In the clockwise swirl, the average biaxial strain from Fig. 4.17 is
0.08%, which is surprisingly close to the expected Gr/SiC lattice mis-
match εGr/SiC = 0.075%. The latter corresponds to the ratio between
the SiC superperiod and the (integer) number of Graphene atoms
(13) that can be fitted in that superperiod : εGr/SiC = 1 − 13aGr

6
√

(3)aSiC
[201], with aGr = 0.2456nm and aSiC = 0.307nm. It thus gives an-
other argument for biaxial heterostrain arising during the growth,
from the covalent bonds between the buffer layer and the SiC recon-
struction lattice that induces a lattice constant change as discussed
in paragraph 4.2.2.

We use the rigid triangle Tcenter with heterostrain configuration
from Fig. 4.17 (θint = 0.01◦, εbi = −0.08%, εuni = −0.057%, θs =
24◦) to calculate the corresponding relaxed structure as done in the
previous section. The minimization process yields a swirl pattern
shown on Fig. 4.19 with swirl diameter of almost 100nm, an AA
stacked region diameter of 3 ± 1nm and DW width of 20 ± 10nm.
These values agree with the experimental findings, except for the AA
region that is underestimated by a factor ∼ 3. A possible reason for
this discrepancy is that corrugation is neglected in these calculations,
and we expect out-of-plane atomic movements to be biggest in these
AA stacked regions.

The relaxation pattern of the two other heterostrain configurations
of Tcenter, given on Fig. 4.18, are also calculated and shown on Fig.
4.20. These calculations show that the (anti)clockwise direction of the
swirl can be controlled by the sign of the biaxial heterostrain. More
strikingly, they show that a lower biaxial heterostrain to the profit
of an increased twist angle decreases the bending behaviour of the
DW, because the uniaxial heterostrain character of the DW decreases
with increasing twist angle and decreasing biaxial heterostrain. This



68

Figure 4.20: Stacking parameter of the
relaxed Tcenter structure from Fig. 4.18

with (left) a twist angle of 0.05◦, a bi-
axial heterostrain of 0.04%, and a uni-
axial heterostrain of 0.06% ; and with
(right) a twist angle of 0.06◦, a biaxial
heterostrain of −0.01%, and a uniaxial
heterostrain of−0.06%. The orange and
red (resp. the yellow and green) arrows
show the calculated flow of the atomic
motions between the relaxed and unre-
laxed positions, for the top (resp. bot-
tom) layer. The scale bar are 100nm.

θint = 0.05°,  εbi =  0.04%, εuni = 0.06%  θint = 0.06°,  εbi =  -0.01%, εuni = -0.06%

is further illustrated by the flow of atomic motions that resemble
more and more to the twist relaxation flow presented on Fig. 4.14

a and c. The typical length scales of the DWs, swirl diameter and
AA region diameter are, within errorbars, the same independently
of twist angle and biaxial heterostrain values.

To sum up, we can understand the structure of our swirl relaxation
pattern by taking into account biaxial heterostrain in the system, that
originates most likely from the growth process during which the
buffer layer bonds to the SiC reconstruction and adapts its lattice
parameter accordingly. This relative strain produces a domain wall
morphology which is quite different from the pure twist angle case,
and which is energetically less favorable, thereby inducing the swirl
phenomenon. The relaxation calculations are able to reproduce the
experiments, except for the estimated size of the AA stacked region
which is underestimated. As we expect AA regions to experience
the highest corrugation, it is most likely the cause of this discrep-
ancy and in future calculations out-of-plane relaxation of the layers
should be included. A systematic investigation of how the size and
the direction of rotation of the swirl depends on out-of-plane relax-
ation, biaxial heterostrain intensity, and uniaxial heterostrain would
also be useful. Finally, an investigation of the electronic properties
could give us an additional experimental argument to understand
the precise local stacking of the structure.

4.3 Electronic properties of the system

Thanks to STM, we not only investigate the structural properties of
the surface but we also get information on the electronic properties,
by measuring the local density of states.

4.3.1 Electronic properties from spatially resolved LDOS

By combining scanning and DOS measurements, we can obtain dif-
ferential conductance maps that give spatially resolved information of
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100 nm

Figure 4.21: Conductance maps of
the swirl pattern measured at (Vb =
−190meV, It = 250pA) (left), (Vb =
−150meV, It = 250pA) (middle) and
(Vb = −91meV, It = 250pA) (right).
The Lock-in modulation is set to 4meV
at frequency 379Hz. The Lock-in
timescale is set to 30ms, which makes
each image over 2hours long.

the DOS at a given energy. Such a measurement is performed by
measuring the differential conductance dI/dV with a Lock-in. Its
time constants are set to fit scanning speed and resolution parame-
ters, so that differential conductance is measured at each pixel along
the scanning, at the energy of the scan Vb. Such differential conduc-
tance maps can be very useful as they enable to get highly resolved
information on the conductance, at a single energy.

This is illustrated on Fig. 4.21 where three conductance maps
are taken at the swirl pattern location. At −190meV, states at the
edges of the domain walls are clearly visible. At lower bias (90meV),
these states are no longer visible, but an irregular pattern which we
associate to confined modes - or scattering interferences - inside the
irregular triangle. At an intermediate filling (−150meV), AA stacked
regions show a very high density of states. At this energy, both
disordered scattering and states at the edges of the DW are visible.
The low energy properties of the system is thus quite rich and needs
to be studied carefully. In order to investigate these features in detail,
we first need more information on their energy dependence.

We turn to another measurement technique that combines the
spatial resolution of STM with spectroscopic measurements (STS,
see section 3.1.2). This is done using a common procedure called
Current-Imaging Tunneling Spectroscopy (CITS). In a CITS, imaging
is done at a given setpoint (Vb, It). The imaging stops regularly in
the image and records STS spectra at the scanning setpoint. This
technique thus provides spatially resolved DOS with high energy
resolution, at the expense of spatial resolution if one wants to mea-
sure during a reasonnable timescale, since each spectrum requires a
finite time to record. One of the main advantages of this method is
that the tip height is kept constant during the bias sweep, which en-
ables to get information on the low energy states while minimizing
the tip interaction. The latter can be noticed in particular at low bias
in the center of the DWs where strain is concentrated, for example
on Fig. 4.21 (right). In the following, we thus choose this technique
to investigate the swirl relaxation pattern.

We average LDOS spectra in specific regions from the CITS mea-
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Figure 4.22: CITS of the swirl relaxation
pattern. The setpoint is (Vb = +300meV,
It = 250pA). Blue, Green, and Red
spectra are normalized STS spectra av-
eraged around regions respectively in
AA stacking, close to a domain wall,
and in AB stacking. Spectra are shifted
vertically fore clarity. The red arrow il-
lustrates the doping of graphene from
zero bias (gray line). The green arrow
highlights the energy of the states local-
ized at the DW. Blue arrows highlight a
gap opening in AB region near charge
neutrality ; and a step like feature in the
spectrum near +300meV. The CITS map
on the right showing the spatial resolu-
tion is plotted at −200meV (black line).
For the sake of comparison, this CITS is
about 2.5 days long.
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surement as shown on Fig. 4.22. The STS spectra point towards a
−125meV doping of the bilayer graphene, that originates from the
SiC substrate as explained above.

The LDOS at the AA stacked region (Fig. 4.22, red) features a high
density of state peak that is similar to the localisation of electrons
expected in relaxed minimally twisted samples.

In AB stacked regions, two main features that are typical of a
gapped graphene bilayer can be noted (see Fig. 4.22, blue and fig.
4.23). Two peaks close to charge neutrality correspond to a gap in-
duced by the electric field that arises upon differential doping of the
bilayer. Here the gap is ∆ = 26meV, which corresponds to a differ-
ence of potential of the layers such that eV ∼ ∆ in the limit (valid
here) where t0 >> ∆ [209]. For an interlayer separation of 0.33nm,
the corresponding electric field is E ∼ 78mV/nm.In the following we also call the charge

neutrality Dirac energy, ED , in refer-
ence to the monolayer graphene case
where charge neutrality lies exactly at
the Dirac energy, where the dirac cone
closes.

As the gap should depend on the doping, we estimate a value
of the doping of the bilayer, by numerically integrating the DOS
between the Fermi energy Vb = 0meV and the Dirac energy Vb ∼
−110± 10meV : n =

∫ EF
ED

∂n
∂E dE. The DOS is approach by the parabolic-

like expression from section 1.2. In that case, the doping per unitThe 2D DOS including spin using
equation 1.10 is written ∂n

∂E = ∂n
∂k

∂k
∂E =

2 k
2π

∂k
∂E = t0

2π(h̄vF )2
E√

E2−( eV
2 )2
∼ t0

2π(h̄vF )2

area determined from the integral is n = 1.3 · 1012cm−2. In a model
taking into account the screening of the electric field as done in Ref.
[210], this doping corresponds to a gap of ∆ ∼ 20meV. This value is
also consistent with the spectroscopic measurements from Ref. [211].

Figure 4.23: Sketch of the gapped bi-
layer bands along the corresponding
STS spectrum with characteristic fea-
tures (gap, higher energy band step)
emphasized with dashed lines.

In addition, a step feature in the spectrum can be noticed∼ 450meV
above charge neutrality, which is consistent with the filling of a
higher energy band in AB bilayer, comparable with other experi-
ments [88, 170, 179, 180], and confirming the theoretical prediction
of t0 = 450meV.

Last, two interesting features can be noticed in the spectrum. States
localized at the edge of the domain walls that are visible in the dif-
ferential conductance map in Fig. 4.21 are attributed to the broad
peak near −200meV in the green STS spectrum of Fig. 4.22. We em-
phasize that this peak is outside of the gap and thus has a different
origin than helical edge states discussed in section 1.5.2. We will
discuss these localized states in section 4.3.3. The second interest-
ing feature is a set of peaks between charge neutrality and zero bias,
which are visible both in the spectrum close to the DW (green spec-
trum) and in AB stacked region (blue spectrum). These correspond
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to the scattering waves noticed in Fig. 4.21. We now discuss these
confined states in more details.

4.3.2 Confined states in AB/BA regions

Real space differential conductance images show that standing waves
of energy dependent wavelength can be observed in AB/BA stacked
regions, above the gap and up to slightly above the Fermi energy.
These standing waves result from the confinement of states induced
by back-scattering at the DW. Fig. 4.24 shows such standing waves at
energy ∼ 120meV above charge neutrality, in the triangle at the top
of the swirl.

Figure 4.24: CITS map taken at Vb =
−7.3meV centered on the topmost tri-
angle of the flower. The setpoint is
(Vb = +150meV, It = 250pA). The
dashed lines correspond to the spatial
cuts shown on Fig. 4.25. The scale bar
is 20nm.

The energy dependence of these standing waves is shown on Fig.
4.25(2), where a cut across the triangle is performed and the LDOS is
plotted for each bias voltage. The confined states can be visualized
by the size of the oscillations between the DWs edges. These states
have a decreasing wavelength for increasing energies. Although the
signal is reduced near zero bias, which is typical for phonon-induced
tunneling suppression at these energies [212], these oscillations are
visible up to 50meV.

Similar quasiparticle interferences have been extensively used to
image the Fermi surface of electrons and reconstruct the dispersion
of surface bands in many materials [213]. We proceed in the same
way to retrieve the conduction band of this AB bilayer graphene.
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Figure 4.25: (left) Fourier transform
of the LDOS spatial line cut 1 from
Fig. 4.24. The dashed line corresponds
to equation 1.10 with V = −110meV.
(right) Line cut 2 from Fig. 4.24. ED
is close to −110± 10meV.

The Fourier transform of a cut across the triangle is plotted on
Fig. 4.25(1) and gives a direct visualization on the parabolic-like
conduction band above charge neutrality. The dotted line is plotted
from equation 1.10 in this range of energies. The single adjustable
parameter is the vertical position of the band resulting from doping
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Figure 4.26: LDOS spatial line cut
across the top central triangle as shown
on inset. The setpoint is (Vb = +200meV,
It = 250pA). The cut features confined
states in AB regions above the electric
field induced gap at ED . This gap is
tracked by the two peaks around ∼
−110meV. A high density of state peak
is visible in the AA region. As shown
by the vertical dashed lines guiding the
eyes, the cut also crosses part of the
domain walls (DWs) surrounding one
AA stacked region, and one DW be-
tween AB and BA region. Black ar-
rows highlight the localized states out-
side the gap.

which is consistent with the value of the gap as explained above. The
low energy limit model thus describes satisfyingly the data.

A 2D Fourier transform over the whole confined area could also
be performed, in order to visualize the Fermi surface in k-space and
retrieve the band dispersion with a better signal to noise ratio than
in the 1D cut of Fig. 4.25. However, due to the spatial irregularity
of these standing waves, the periodicity is lost on average in such
a 2D Fourier transform. This disorder is mainly due to the irreg-
ularity of the triangular pattern. Slight charge reorganizations that
occur on the surface also play a role in that disorder, by creating both
doping variations and gap changes. Indeed, such disorder potential
variations have been previously measured in graphene on SiO2/Si
substrates [190, 214], revealing that it can lead to important spatial
fluctuations of the electronic properties, such as the formation of in-
teracting quantum dots. In our sample, such a spatial modulation
of charge neutrality is reasonable and has already been measured in
non-intercalated similar samples [180].

4.3.3 States at the domain walls

Conductance maps on Fig. 4.21 have revealed the presence of local-
ized states near the DW. We now turn to describing these states as
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Figure 4.27: Differential conductance
images for various energies. The set-
point is (Vb = +200meV, It = 250pA).
They feature an energy peak at charge
neutrality in the middle of the DW
highlighted by a yellow arrow in the
Vb = −122meV differential conductance
map. They also shows that a second
edge state can be detected at some do-
main walls, as highlighted by orange
arrows on the Vb = −226meV map.

well as giving a preliminary understanding, although they are yet to
be understood in the light of a more complete model.

Localized states outside of the gap

We have argued that the most visible localized states have energies
outside the gap. Thus, they have a different origin than helical edge
states discussed in section 1.5.2, whose energy lies in the gap.

Such localized states near the DW at energies outside of the gap
have already been reported in marginally twisted bilayers (see sec-
tion 1.5.2). These have been understood either in a local stacking
picture, where the local bandstructure features saddle points that
give rise to two LDOS peaks energetically symmetric around charge
neutrality [88], or by considering the apparition of strain induced
pseudo-Landau levels [89, 106].

An energy resolved plot of these states is given on Fig. 4.26, across
the top right triangle of the clockwise swirl. This plot shows once
again the irregular confined states all over the triangle above charge
neutrality ED ∼ −110± 10meV. The spatially localized edge states
noticed in Fig. 4.21 are also visible at energies below ED, both near
the AB/BA DW on the right and near the DW that meet close to the
AA region.

These states have increasing energy when getting spatially closer
to the DW center, as highlighted with the black arrows on Fig. 4.26.

In order to understand these edge states better, we plot the differ-
ential conductance as a function of the voltage bias in Fig. 4.27. These
maps confirm that the localized states appear closer to the domain
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Figure 4.28: a STS spectra taken at the
edge of the domain wall. The blue to
purple spectra are taken regularly from
the inner part of the DW edge to the
outer part of the DW edge. The gray
arrows highlight the energetically vary-
ing localized peaks and the gray dashed
line the chage neutrality peak not vary-
ing in energy. The inset is a zoom from
the black square of Fig. 4.27 show-
ing the positions around which the STS
spectra are averaged. b LDOS spatial
cut performed along the black dashed
line of the conductance map from Fig.
4.27. It features a peak at charge neu-
trality in the DW highlighted by the yel-
low arrow. It also features the two lo-
calized peaks indicated with orange ar-
rows. wall center as the bias is sweeped away from charge neutrality. In

addition, further from the DW center, a dip in conductance followed
by a second localized peak at energies close to −200meV appear in
the conductance maps. Both localized states are highlighted by the
orange arrows in Fig. 4.27. The STS spectra of Fig. 4.28 taken reg-
ularly from the inner part of the DW edge to the outer part of the
DW edge show that the energy of the localized states change with
position. When getting closer to the DW center, this energy slowly
shifts away from charge neutrality and the corresponding peak gets
broader. A second peak on the outer part of the DW is also visible
for certain energies, in agreement with the spatial observation in Fig.
4.27.

These observations reveal that the local electronic properties are
closely linked to the local morphology of the domain wall.

We expect that the domain walls features concentrated and position-
dependent heterostrain. Thus, a possible assumption is that these
edge states come from strain induced pseudo Landau-levels.

In that description, the peak at the energy of the gray dashed line
in Fig. 4.28 a is the zeroth pseudo Landau-level (0-pLL) localized
at charge neutrality, and the localized peaks, whose energy shifts is
highlighted by the gray arrows, corresponds to the first and second
pseudo Landau-levels (1-pLL, and 2-pLL). The LDOS spatial cut on
Fig. 4.28 b supports this observation. The yellow arrow highlights
the 0-pLL and the orange arrows highlight the 1-pLL, and 2-pLL,
showing that the distance between the peaks increases with the dis-
tance to the DW center.

Such a variation of the edge state peaks, getting away from ED

when approaching the DW, is consistent with the expected local
strain distribution. Indeed, the latter should be bigger at the in-
ner part of the DW edge, and decrease from there down to zero
strain in AB/BA stacked regions, because of the relaxation process.
As the strain decreases the strain induced pseudo magnetic field
B decreases and the energy spacing of the 0-pLL (E0) and the 1-
pLL (E1) should depend on B following a square root dependency
(E1 − E0)2 ∝ B.

In this scenario, the absence of negative pLL can be attributed to
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the strong electron hole asymmetry of strain induced pLL that was
detected in previous experiments [107, 108].

Finally, the specific relaxation morphology of the uniaxial heteros-
train DWs must not be neglected, and might give an alternative ex-
planation to these out of the gap states. In particular they do not
have the same direction with respect to the crystallographic direc-
tions than their shear-like counterparts, as discussed in section 4.2.2.
Calculations of the local band structure and electronic properties of
the different types of domain walls will thus be very informative for
the understanding of this system.

In-gap helical edge states

In this system, one also has to consider the presence of helical edge
states in the bilayer gap, that are expected in marginally twisted bi-
layers, as discussed in section 1.5.2. They should appear on each
side of the domain walls and we expect two of them on each side,
polarized in spin and valley. In the presence of an electric field, a

sign change of the gap near a given val-
ley Kξ occurs when crossing between
AB and BA regions. This forces the
apparition of two in-gap helical edge
states (four edge states in total) [95,
100].

These states are hardly noticed in the spatially resolved differen-
tial conductance map of Fig. 4.27 a (see map at Vb = −122meV).
Still, one can notice faint localized states in the gap at the DW posi-
tion, in the energetically resolved cuts from Fig. 4.26 and Fig. 4.28

b. Whether these states correspond or not to helical edge states is
still to be determined. However, in such a scenario, their lack of spa-
tial localization could be explained by a small disorder potential that
could induce valley scattering events between the helical edge states
and bulk states and destroy the spatial localization of these states.
Indeed, such scattering is not prevented by topology as discussed in
other contexts by Refs. [215, 216] and [191].

In addition, the behavior of helical edge states in the case of a
swirl DW should be studied theoretically to check whether they are
affected by the DW specific structure.

4.4 Conclusion

In this Chapter, we have focused on a peculiar relaxation pattern that
occurs in bilayer graphene on SiC substrate.

The morphology of this so called swirl relaxation pattern can be
understood from biaxial heterostrain between the layers, a likely sce-
nario in graphene grown on SiC because of the growth process in
which covalent bonds form between graphene and the substrate.
Further investigations of the morphology of the swirl pattern should
focus on the effect of out-of-plane relaxation and uniaxial heteros-
train.

The measurements of the electronic properties of the swirl relax-
ation pattern reveal a rich phenomenology having some similarities
and differences with what has been observed in marginally twisted
graphene layers. In particular we are at the moment not able to deter-
mine de precise nature of the one dimensional states localized near
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the domain walls. Since these domain walls have a new structure
showing a gradual change from a uniaxial to a sheared boundary
between AB and BA regions, this calls for a detailed theoretical in-
vestigation of the electronic properties of such domain walls.

The experimental observation of the swirl pattern can be useful to
theoreticians as it helps finding the relevant parameters in relaxation
models along their typical scales. In addition, the precise under-
standing of atomic movements could gives additional information
on how van der Waals forces and local strain interact. It also informs
us on the growth process of graphene on SiC, by providing quanti-
tative information on a scenario in which the buffer layer is biaxially
stretched with respect to pristine graphene.
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In condensed matter, strain can be used as a tool to probe the
physical properties of a wide range of materials. During this thesis, a
strain cell was designed and fabricated. The novelty of our design is
to combine strain application based on longitudinal piezostacks with
4K STM measurements. In this Chapter, we present our setup and
its characteristics at room temperature and cryogenic temperatures.

5.1 State of the art strain apparatus

Strain apparatus are extensively used to probe the structural and
electronic properties of many materials. In condensed matter physics,
to understand the effect of strain on the electronic and optical prop-
erties, we are interested in studying in situ strain at the local range.

In the early work (1988) by F. K. Men et al., the authors designed
a cantilever bar that could apply strain to Si(100) samples through
bending while measuring LEED (Low Energy Electon Diffraction)
patterns at high temperatures [217]. In that particular design, the
strain variation was spatially resolved, as the cantilever applies a
strain gradient to the sample.

This approach of straining by bending a sample is often used.
In particular, a common design is the three point bending method
shown on Fig. 5.1 that enables to tune the engineered strain by
changing the distance between a pushing wedge and the counter
supports. The wedge is usually a screw, but can also be a spring or
a longitudinal piezostack.

Figure 5.1: principle sketch of a 3 point
bending setup.

Thanks to this design, several groups have studied slips, cracks
and other dislocations in different materials using local probes. For
example, strain in NaCl, LiF, or NiAl were studied using Atomic
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Force Microscopy (AFM) [218, 219]. Detailed analysis of the sur-
face can also be achieved in STM. Surface strain and dislocations on
Ag(111) on mica were for example studied in Ref. [220] in an ultra-
high vaccuum STM with a 3-point bending system that could apply
strains up to 0.5%. In a similar system, strain up to 0.16% in Si wafers
was also studied in Ref. [221].

A very different setup for in-plane in situ strain in a UHV STM
was built by Y. Nahas et al. [222]. In that setup high strains can be
applied by external motors that can be declutched from the STM, in
temperatures in the range 90− 600K. With that setup, plastic defor-
mation ranges can be reached in a more controlled manner than in
three point bending methods.

Another common method to tune strain in situ in STM is to glue
a thin sample on a piezo material. This method takes advantage
of differential thermal contraction between piezo and sample, that
can even apply uniaxial strain by using materials with anisotropic
thermal contractions. In addition, a voltage can be applied to the
piezoelectric material to increase and tune the strain.

In this kind of setup, the experiments rely on the very small thick-
ness of the glued sample, so that strain can be transmitted to the
surface that is measured in STM. The maximal strain achieved in
such experiments is about 0.3% [223], and the additional strain ap-
plied with voltages on the piezoelectrics is typically 0.05% maximum
for 100µm thick samples [224].

With such small strains, the plastic deformation range is not reached
and the atomic displacements are almost imperceptible, even with
STM. This approach is thus suitable to studying symmetry breaking
phases, in particular strain induced electronic reorganisation of elec-
tons for which STM is perfectly suited. Strain induced changes in
Charge Density Waves were observed in NbSe2 [225]. Other sym-
metry breaking phases were observed, such as a smectic electronic
order in LiFeAs [223] and a strain stabilized charge ordered state in
Fe1+xTe [226].

Of course, such small strains can also be detected by STM in moiré
materials as slight changes in atomic distances can induce significant
moiré modifications. The control of heterostrain is particularly desir-
able in the context of such materials as it widens the parameter space
that can tune the moiré, whose changes in turn tune the electronic
properties of moiré materials.

Figure 5.2: Encapsulated graphene on a
bendable substrate. Good adherence of
the flakes to the substrate is ensured by
gold paddings. From [227].

We have seen that non tunable strain can be induced in such ma-
terials with complex substrate engineering, such as the use of engi-
neered pillars [128], ripples [108, 126, 127], or microscale holes filled
with a gas [228]. External strain tuning can also be achieved with
external tip interactions in particular in suspended graphene [125].
But these tip induced strains can be hard to interprete because tip
interaction can have multiple effects [44, 166].

Most recent efforts also focus on designing setups that can in-situ
tune strain in exfoliated crystals, offering the perspective of apply-
ing tunable strain to moiré materials. L. Wang et al. [229] used the
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common three point bending system to apply a 0.38% average strain
in monolayer graphene encapsulated in hBN. To ensure strain is ac-
tually applied to the layers, gold paddings are added to ensure good
clamping of the exfoliated layers on the bending substrate. Also,
variable distance to the gate due to bending must be corrected in
such transport experiments. V. Pasquier et al. [230] demonstrated
strain application on a MoSe2 flake, up to 1.6%. In that case, the
strain is engineered by a slightly modified bending method in which
a NiTi alloy plate is attached to four clamps so that biaxial strain
can also be applied. The challenge of clamping the flake is met by
encapsulating the flake in PMMA deposited on a lift-off resist, or
alternatively by 30nm thick Au/Ti strips if metal is needed.

Last, the specificity of 2D materials allows for original strain tun-
ing methods investigated very recently. As an illustration, M. Kapfer
et al. [231] use in situ bending of a graphene ribbon to spatially tailor
the moiré supperlattice. Such bending is achieved by taking advan-
tage of interlayer friction to clamp monolayer graphene between a
still region and a movable graphite manipulator that can be moved
by an AFM tip. Another method that also relies on the interlayer
mechanical coupling has been demonstrated on MoSe2 and twisted
bilayers of graphene by T. Peña et al. [232, 233]. Strain is induced
through interfacial friction by depositing stressed thin films on top
of the material of interest.

In the following, we focus on the design of a cell that would en-
able to strain moiré materials, namely graphene on SiC, in a 1% strain
range. The experimental challenge lies in the straining of a very hard
material : the Young modulus of SiC is ESiC = 450GPa. However, it
offers large scale surfaces of clean graphene easily obtained from
commercially available wafers, that feature moiré patterns at its sur-
face. The experimental bet is that the specific structure of graphene
on SiC [234] offers large domains interrupted by defects, step edges
or big ripples that are believed to be directly connected to the sub-
strate, and should thus transmit strain to the surface domains.

5.2 Strain cell compatible with an STM

Designing idea

Our strain cell is based on the design by A. Mackensie et al. [235].
The uniaxial strain application is based on longitudinal piezostacks.
It demonstrated strains above 1% for samples with Young modulus
similar to that of SiC. Most recently, a design similarly based on a
sample bridged between piezostacks was demonstrated to be able to
apply a 3% strain on a mechanically exfoliated MoSe2 crystal [236]
which is less stiff.

fixed
sample plate

extension
piezoelectric 
stacks

compression 
stack

sample

movable
sample plate

bridge

Figure 5.3: Design of a uniaxial strain
cell based of longitudinal piezostacks,
from the work of A. Mackensie et al.
[235]. The uniaxial strain extention
of the sample sketched in red arrows
can be achived by applying a positive
(resp. negative) voltage on the exten-
tion (compression) stacks, as sketched
in pink arrows.

Our main interest in that design is its symmetry, that enables to
go to low temperature while avoiding the application of uncontrolled
strain from differential thermal contractions. Both extremities of the
sample are clamped to titanium moving plates. Strain is achieved by
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changing the length of the piezostacks that puts the titanium plates
into motion in opposite directions. As the piezostacks of opposite ti-
tanium plates have the same length, their thermal contractions upon
cooling are completely compensated.

This type of strain cell has been extensively used as a source of
symmetry breaking to investigate unconventional superconductivity
in materials such as (cuprates or pnictides) YBCO6.67 [237], Sr2RuO4

[238], Ba(Fe1−xCox)2 As2 [239], or Fe1+xTe [226].

Our Strain cell Design

Our version of the strain cell is shown on Fig. 5.4. Its design is such
that that STM operation can be conducted while applying strain to
the sample. The sample is placed at the center of a ∅ = 46mm
Titanium body, so that the tip of our STM falls on the sample when
the strain cell and the STM head are assembled. Such assembling is
shown on Fig. 5.5.

Figure 5.4: Experimental setup of our
uniaxial strain cell. The left picture
shows the cell with a sample in place
and unclamped. Right sketch details
the stretching operation of a clamped
sample by applying a positive voltage
on both outer piezostacks and a nega-
tive voltage on the inner piezostack.

piezostacks 

Titanium
 cell body

Titanium
bridge

sample

connections

The tip is placed within a 1mm range of the sample using optical
visualization with a ×(20− 200) magnification in combination with a
sub-millimeter screw device that enables to place the tip apex within
a 50µm precision in the z direction.

Figure 5.5: Experimental setup of
our Scanning Tunneling Microscope
equipped with a strain cell. Left pic-
ture shows the disassembled two com-
ponents, and right sketch shows the
system ready for operation, with the
STM tip facing the sample.

Strain cell

STM
Body

STM Tip

Coarse Z
 motor

connections

Z coarse motor

In addition, the tip is approached within tunneling distance with a Z
coarse motor relying on piezostacks located in the STM head. In our
case the design for the coarse motor is compact, as sketched on Fig.
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Figure 5.6: (a) Sketch of shear
piezostacks as a function of voltage.
(b) Sketch of the coarse motor in in-
ertial mode. Z approach is achieved
by applying an alternance of quick (2)
and a slow (3) voltage ramps on the
piezostacks.

5.6. The STM tube is glued on a maccor base, together with a Al2O3

prism. They are set into motion by six commercial shear piezostack
"legs" (Fig. 5.6a) that are controlled by voltage ramps in a so called
inertial mode in which during a fast ramp of voltage the stacks are
bent and slide on the prism ; and during a slow ramp of voltage the
stacks return to their initial position, dragging the prism and STM
tube by friction (Fig. 5.6b). Between each step, the scanning tube
in expanded to check whether the tip has reached a distance where
tunneling is possible.

Scanning tube

The tube expansion and scanning are controlled by 5 electrodes (X+,
X−, Y+, Y−, Z) that cover a piezoelectric material, namely PbTi1−xZrxO3

(with x close to 0.5), in the shape of a tube as sketched on Fig. 5.6c.
Tube expansion or contraction is achieved by applying a differen-
tial voltage between the inner electrode Z and all outer electrodes.
∆z = 1.8Vzd31L

e where L and e are tube characteristics defined in Fig.
5.6 and d31 is the piezoelectric coefficient of the material.

Tube scanning is achieved by applying a differential voltage V be-
tween two facing electrodes that bends the tube so that the end of
the tube shifts over the distance ∆(x,y). In a low angle approximation,

it is written ∆x,y = 1.8Vx,yd31L2

Φe where Φ, L and e are tube characteris-
tics defined in Fig. 5.6 and d31 is the piezoelectric coefficient of the
material.

The scanning calibrations are done by changing, in the control
electronics, the ratios ∆(x,y)/Vx,y and ∆z/Vz, which are extracted from
imaging data on well known samples such as pristine graphene.

The maximum voltage that can be applied on the electrodes de-
termines the scanning window of our experiment. In our case, with
a tube length L ∼ 30mm and tip length typically lP ∼ 2mm, the scan-
ning window width reaches over 5µm at 4K. This is quite large for
low temperature STM measurements, which is an advantage when
looking for evidence of strain on the surface.
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5.3 Operating our strain cell

Stress from piezoactuators

V ≠ 0
V=0V=0

d

V = 0
V≠0V≠0

Figure 5.7: Relative displacement δd
of (100 ± 2)µm spaced metalic plates
upon voltage application on the inner
(top figure) or outer (bottom figure)
piezostacks. Voltages are ramped from
0V to 120V (red) then to −30V (blue)
and ramped back to 0V (red) and show
typical hysteresis. The plates consist
in gold sputtered SiO2 wafers of area
A = 3cm2, each of them attached to the
strain cell moving titanium plates. The
error on δd (∼ 1µm) is mainly due to
the error on the determination of the
initial distance between the plates d.

Strain application relies on longitudinal piezostacks that determine
how much stress is applied between both titanium moving parts.
A trade-of between the piezostacks dimensions for design require-
ments and strain application capabilities has to be made. The piezostacks
chosen, namely P887.31/P888.31, are 13.5mm long stacks with block-
ing force above 1700N and typical displacement range 11µm. Addi-
tional characteristics are given in [240].

The blocking force of the stacks in sufficient even for hard SiC
samples with Young modulus ESiC = 450GPa. Indeed, the force re-
quired to apply ε = 1% of strain in 1mm long samples with typical
geometries of (1 · 0.35)mm2 is F = σ · S = ε · ESic · S = 1575N.

In addition, the stacks displacement in their −30V → +120V oper-
ating range at room temperature is estimated from capacitance mea-
surements as shown on Fig. 5.7. They can achieve higher displace-
ments than given in the specifications, with a total range around
15µm so that strains above 1.5% could be achieved for 1mm long sam-
ples. These measurements also show hysteresis, originating from the
field dependent reorientation of the polarized crystallites.

Strained sample

Strains over 1% can only be achieved if all the stress σ is transmitted
to the sample into strain ε. To maximize the transmission, the sample
clamping is of paramount importance. We glue our samples with
STYCAST 2850FT, a two component epoxy that is known for its
strength, and good behavior at cryogenic temperatures. To ensure
good adhesion of the stycast on the sample surface that has very low
roughness, we scratch both sides of the surface with a diamond tip.

Although the Young modulus of the Stycast is high, it does not
transmit all the stress of the piezostacks into strain in the sample. We
follow Ref. [235] in assuming that some finite length of the Stycast is
strained and that the length of the sample that is strained is longer
than the unglued part of the sample of length L by a load transfer of
length 2λ. A simplified version of this situation is shown on Fig. 5.8b
where only the top and bottom Stycast layers are assumed to play a
role in the bonding between sample and clamp. Strain is assumed to
be completely uniaxial ε(y).

Figure 5.8: Sketch of sample clamping
with two differents views as shown on
the left. a Thanks to the clamp design,
the Stycast organizes homogeneously
on all sides of the sample. b Sketch
of the side view of the sample clamp-
ing showing loss of applied stress into
strain in the Stycast, along the length λ.
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In that case, the strain in the sample varies along y starting at
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y = 0. The force within the sample at position y is :

F(y) = Esamplewtε = Esamplewt
dD(y)

dy
(5.1)

where D(y) is the local displacement with respect to the unstrained
situation. The Stycast close to the sample follows the same local
displacement D(y) at z = e where e is the thickness of the Stycast
between the sample and the clamp or the moving part of the cell,
and no displacement at z = 0 upon straining over the width w. An
infinitesimal variation of the strain over the (y, z) range can be ap-
proximated to be linear ∼ D(y)

e , on both sides (hence the factor 2 in
equation 5.2). One can thus write

dF(y)
dy

∼ 2wCS
D(y)

e
(5.2)

where CS ∼ 6GPa [235] is the shear elastic constant of the Stycast.
Putting together equation 5.1 and 5.2 yields to the differential equa-
tion

Esamplet
d2D(y)

dx2 = 2CS
D(y)

e
(5.3)

which solution shows that D(y) follows an exponential law that de-
cays in y over the length

λ =

√
Esample · t · e

2CS
(5.4)

In the case of our typical SiC samples, a thickness of Stycast around
0.1mm yields λ ∼ 1.1mm. That means that for an expected strain of
1%, the effective strain applied for a 1mm long sample is in fact 0.31%
(εe f f = εexpected

Lech
Le f f

)). As reducing too much e can result in the failure
of the stycast for high strains, this loss of efficiency can be mainly
avoided by reducing the thickness t of the sample to minimize the
load λ.

The stress strain curve of Stycast is much more favorable at cryo-
genic temperatures as was shown by T. Hashimoto et al. [241] and
reported on Fig. 5.9. As the Young modulus is expected to be mul-
tiplied by a factor over four, λ is expected to be lower than half its
length at 300K. Following with our 1mm long sample example, the
effective strain would be 0.47% instead of 0.31%.
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Figure 5.9: Stress-Strain curves of
STYCAST 1266 for several tempera-
tures. The Young modulus is increased
by a factor over 4. The same behavior
is expected for STYCAST 2850 because
it is the same type of Stycast but with
additional carbonic component that in-
creases its strength.

To increase the applied strain, the most efficient way is to reduce
t the thickness of our samples which is about 350µm for typical SiC
wafers. One must however remain in the limit where the aspect ratio
is such that the sample does not buckle : L

t < π√
3ε

. For an aimed 1%
strain in our 1mm long sample, one has to remain above t = 56µm,
giving us a lot of room for improvement. For t = 100µm, the strain
would reach 0.9% in the same conditions.

Quantifying effective strain

At room temperatures, it is possible to estimate the strain effectively
applied to the sample by performing digital image correlations be-
tween the unstrained and the strained situations. This is done using
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Figure 5.10: Left Optical image zoom
on the clamped sample, covered with
silver epoxy in order to help follow the
pixels, and rasterized by in DICE [242]
(yellow spots). Right Relative displace-
ments along the strain axis between the
unstrained image and the compressed
(extended) sample as visualized by the
green (red) arrows.
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the software DICE [242] that performs the calculation in combina-
tion with Paraview [243] a data visualization tool. A correspondence
between strain and applied voltage can thus be made.

5.4 Strain effect in transistors

Figure 5.11: Left : TEM cut of a typi-
cal NMOS (n-doped MOSFET). Right :
Sketch of a typical NMOS. The NMOS
we measured had a channel length L =
0.1µm and width W = 0.06µm.

Our straincell can be useful to investigate strain effect in MOS-
FETs (Metal Oxide Semiconductor Field Effect Transistor). Such de-
vices are designed to tune a current between two charge reservoirs,
namely the source and the drain, through a channel of length L and
width W as shown on Fig. 5.11. The current flow is controlled by
a metallic gate below which charge carriers are accumulated upon
application of a voltage. These are important components in elec-
tronics as they are the building blocks to operate the amplification
of a signal by modulating the voltage of the gate, but also to oper-
ate calculations based on Boole calculations by defining two states
0 (current not flowing) and 1 (current flowing). The desirable tech-
nological reduction of the dimensions of transistors have reached its
limits, as the gate length of transistor is now approaching 10nm. To
pursue the improvement of performances on advanced technological
devices, strain can be used as a tool to optimize the current flowing
through the transistors channels. Strain has thus been introduced
since 2003 by Intel, aiming at increasing the on-current of transistors.
The understanding of the effect of strain is thus still important for
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Figure 5.12: a Logarithm of the current
flowing through the transistor channel,
for several applied stresses. Stress is re-
trieved using DICE, and with the Young
modulus of Silicon ESi = 180GPa. The
curves are shifted in order to align
their threshold voltage Vt. The mea-
sured transistor is a NMOS of chan-
nel length L = 0.1µm and width
W = 0.06µm. b Relative current dI

I =
I(Vg=0,σ=0)−I(Vg=0,σ)

I(Vg=0,σ=0) ∝ dµ
µ changes as a

function of stress in the system show-
ing linear dependency.

further technological developments.
Strain can be introduced directly in the channel material during

growth by several methods relying on the inclusion of Germanium
atoms in the system, thereby changing the crystal parameter. This
strain can be visualized by TEM methods [244]. Typical strains in-
duced during fabrication reach 0.8% and induce mobility changes by
changing the effective mass of the carriers [245].

Even lower amounts of strain can induce such mobility changes
[246, 247]. At low strains, the relative mobility change ∆µ

µ ∝ ∆I
I lin-

earily depends on the applied strain as shown by J. Pelloux Prayer et
al. [247, 248] on SOI (silicon on insulator) nanowire transistors.

We reproduced their data by using our straincell. For each ap-
plied voltage on the piezostacks, we ramped the gate of the channel
between the transistor’s Source and Drain. At the threshold voltage
Vt, the transistor opens and current starts to flow through the chan-
nel. Such a measurement for several applied strains is shown in Fig.
5.12a. By plotting the relative current as shown on Fig. 5.12b, we
retrieve the linear dependence from Ref. [247]. Non-linearities in the
data can also be noticed, and can be attributed to the piezostacks
hysteresis and more marginally to artifacts on Vt.

Figure 5.13: Threshold voltage Vt at
which the transistor opens and lets cur-
rent flow. It is strongly dependent
on the voltage applied on the inner
piezoactuator Vpiezo , consistently with
its linear dependency on the voltage ap-
plied to the BOx of the transistor.

The threshold voltage Vt slightly varies with strain, and the curves
from Fig. 5.14a are offset accordingly. In our measurements however,
this shift reaches over 100 mV as shown on Fig. 5.13, which cannot be
attributed to strain effects only. Instead, Vt linearly decreases with
increasing tension on the piezostacks. This variation is consistent
with a variation of Vt upon a change of tension on the back of the
sample, below the buried oxide (or BOx), that dopes the channel in-
dependently of VG. What we observe is in fact a combined effect of
strain and of voltage application on the BOx due to a leak of the volt-
age applied on the piezo to the back of the sample. This additional
effect of doping below the BOx shifts Vt linearly [249], and thus it is
mostly compensated by the shift we perform on each curve. In the
future, the voltage on the BOx should be fixed with a voltage source
to avoid artifacts.

Figure 5.14: Surface strain as a function
of the voltage applied on the piezoactu-
ators. The strain is extracted from opti-
cal images analysed with digital image
correlations. The average slope gives an
efficiency of 0.002%/V. A slight nonlin-
earity can be noticed which comes from
the piezoactuators hysteresis.

The correspondence between applied voltage and applied strain
can be done by digital correlation imaging as described in previous
section and enables us to trace the mobility changes as a function
of stress as shown on Fig. 5.12. For these first tests, we used only
one voltage source applying opposite voltages on the outer and in-
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ner piezostacks which means we were limited by their depolarization
voltage and we did not apply voltages above ±50V. With this lim-
itation, as shown on Fig. 5.14, we find that we can apply a ∼ 0.2%
range of strains on the sample. For this range of applied tension,
we expect a 5µm displacement and thus from equation 5.4 a ±0.14%
effective strain on the sample. Higher strain could be achieved by
applying higher voltages on the stacks, using two voltage sources.
In addition, the sample we used were quite thick t = 500µm which
could be significantly reduced to apply more strain.

These measurements open new perspectives. Indeed, with our
strain cell, we have a higher resolution in strain than for the three
point bending setup from Ref. [247], because we rely on longitudinal
piezostacks where any voltage can be applied. Small non linearities
in ∆I

I (ε) could thus be detected. In particular, tensile strains could
be investigated much more easily, as they can be hard to achieve by
bending method if one wants to measure MOSFETs at the same time
due to the presence of bonding pads at the surface.

In addition, the low strains (−0.1%< ε < 0.1%) and high strains
(0.7%< ε < 0.9%) regimes on MOSFETs have been investigated, but
not intermediate strains which could be accessed here. Such strain
measurements could also be performed with an additional variation
of the BOx voltage.

Last, with our setup such measurements could be performed at
cryogenic temperatures. In particular, measuring at low tempera-
tures would permit to disentangle the effect of the phonons and the
purely electronic effect in the mobility variations due to strain.

5.5 Operating strain cell in cryogenic temperatures

Figure 5.15: STM tracked displacement
of the piezostacks depending on volt-
age at cryogenic temperatures. Each
image is taken at different applied volt-
ages on the inner piezostack. For each
voltage, several images are taken to
make sure drift originating from the
piezostacks is negligible.

0 V 10 V 20 V

30 nm

At cryogenic temperatures, we verify that STM measurements can
be performed in our setup. All STM measurements from Chapter
4 were performed using our STM, with the sample clamped to our
straincell setup.
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In addition, we can quantify how much strain can in principle
be applied to our samples at cryogenic temperatures by tracking
the piezoactuators induced displacement using STM imaging. In
Fig.5.15, we find that for a sample attached on both piezostacks, the
displacement is around 5nm/V, correponding to a total displace-
ment range of about 0.8µm for a tension between −30 and 120V. The
piezoactuators specifications rather predict a 10 to 20% reduction in
piezostack efficiency at cryogenic temperatures, which corresponds
in our case to a 1.5µm to 3µm displacement range.

This reduced efficiency could be real or could be attributed to a
loss of strain in the stycast, even at low temperatures. Strain relief
processes occurring in the bulk, as noted by [220] could also be a
source of discrepancy in the observed displacements. We verified
that such strain relief process occurred in bulk NbSe2 samples. In-
deed, by performing transport measurements under strain we did
not detect changes in the superconducting critical temperature as
was reported in Ref. [250]. Instead, NbSe2 flakes would wrinkle or
be subject to various strain relief processes.

5.6 Conclusion and perpectives

In this Chapter, we have presented the design and testing of a strain
cell compatible with a low temperature STM. This device enables
one to use strain as a tool to tune the electronic properties of small
samples. Strain effect on transistors has been demonstrated at room
temperature with our strain cell. It offers promising perspectives to
understand strain effect in such devices both at room temperature
and cryogenic temperatures. At cryogenic temperatures, evidence
of tunable strain is desirable, particularly given the strong effect of
strain on twisted bilayers of graphene that was investigated in previ-
ous chapters, though experimental efforts still remain in that aspect.
Other materials such as MoSe2, NbSe2 or Fe1+xTe could be investi-
gated by STM under strain application.





Conclusion

Originally, twisted bilayers of graphene (TBLG) were measured at
the surface of graphite, and then on graphene grown on SiC. The
moiré in these systems remained a puzzling curiosity as the system
behaved just like a graphene monolayer - it turned out this was due
to the decoupling of the layers at high angles (∼ 30◦). With the the-
oretical prediction of interesting behaviors in low angle TBLG, peo-
ple turned to studying this lower angle regime. This led to prolific
important experimental results, some of them being reviewed over
Chapter 1, including the discovery of the superconducting state in
magic angle TBLG.

At the same time, people started to realize that the twist angle
between the layers was not the only tuning parameter of the sys-
tem. In particular, L. Huder et al. gave the first demonstration that
heterostrain, the relative strain between the layers, has significant im-
portance. Using similar Scanning Tunnelling Microscopy and Spec-
troscopy (STM/STS) datas from the literature, and taking advantage
of the ubiquitous native strain in TBLG samples, in Chapter 3 we
systematically perform a careful analysis of the precise stacking be-
tween the layers and its link with the local electronic properties. This
study is supported by systematic calculations of the electronic prop-
erties of TBLG commensurate cells that include varying heterostrain
presented in Chapter 2. The method we use to produce these com-
mensurate cells including heterostrain is very general and could be
extended to other 2D materials. All in all, these results show that
the flat bands of the system are sensitive to heterostrains as small as
0.1%, and establish the idea that close to the magic angle, uniaxial
heterostrain is of paramount importance.

Uniaxial heterostrain is not the only type of strain that can have
an influence on the moiré : biaxial heterostrain is also present in
most samples although they are often smaller. Biaxial heterostrain
could even produce a new type of moiré in graphene bilayers, that
hasn’t been studied so far. I show in Chapter 4 a first study on
that matter, showing that biaxial strain can produce a new type of
atomic relaxation, that we refer to as the swirl relaxation pattern. We
also study the low energy properties of this swirl relaxation pattern
and show that it features localized states at the center of the moiré
but also near the domain walls of the relaxation. This measurement
shows that not only the global electronic properties of the system
are affected by stacking changes, but a local understanding of the
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electronic properties can also be relevant as local stacking variations
seem to affect them.

Finally, it is clear at the end of this manuscript that all the factors
affecting the relative arrangement between the layers should be stud-
ied if we want to develop a detailed understanding of multilayered
van der Waals materials. This is a far more complex task than consid-
ering a single parameter, but it is also an extraordinary opportunity
to extend the tunability of these systems. The scientific community
is thus starting to work on improving our control, not only on the
twist, but also on the heterostrain parameter. We also have started
to work on that path with the building of a new STM compatible
with a strain cell, which we present in Chapter 5. We verify that
this strain cell can be operated at room temperature, by measuring
strain induced mobility changes in transistors, which opens perspec-
tives in terms of such device engineering. We also verify that our
setup can operate at cryogenic temperatures, which is very promis-
ing to performing STM measurements on extrinsically heterostrained
graphene and other materials, 2D or not.



Conclusion en français

Les bicouches de graphène tournées (TBLG) ont à l’origine été mesurées
à la surface du graphite, puis sur du graphène crû sur SiC. Le moiré
dans ces systèmes est d’abord resté une curiosité étonnante car le sys-
tème se comportait exactement comme une monocouche de graphène
- il s’est avéré que cela était dû au découplage des couches à des an-
gles élevés (∼ 30◦). Puis on s’est intéressé aux systèmes tournés à
de faibles angles suite aux prédictions théoriques de comportements
intéressants dans ce régime. Cela a conduit à de très nombreux im-
portants résultats expérimentaux, dont certains sont passés en revue
dans le chapitre 1, y compris la découverte de l’état supraconducteur
dans les TBLG à l’angle magique.

Dans le même temps, la communauté scientifique a commencé à
réaliser que l’angle entre les couches n’était pas le seul paramètre in-
duisant une variation du système. En particulier, L. Huder et al. ont
démontré pour la première fois que les hétérodéformations, c’est-à-
dire les déformations relatives entre les couches, avaient une impor-
tance significative. En utilisant des données de microscopie et de
spectroscopie à effet tunnel (STM/STS) similaires dans la littérature,
et en tirant profit de la déformation intrinsèque qui est omniprésente
dans les échantillons de TBLG, on réalise de façon systématique
dans le chapitre 3 une analyse minutieuse de l’empilement précis
entre les couches et de son lien avec les propriétés électroniques
locales. Cette étude est appuyée par les calculs, présentés dans le
chapitre 2, des propriétés électroniques de cellules commensurables
de TBLG qui incluent une hétéroformation variable. La méthode
que nous utilisons pour produire ces cellules commensurables inclu-
ant les hétérodéformations est très générale et pourrait être étendue
à d’autres matériaux 2D. Dans l’ensemble, ces résultats montrent que
les bandes plates du système sont sensibles aux hétérodéformations,
même jusqu’à 0.1%, et établissent l’idée qu’à proximité de l’angle
magique, les hétérodéformations uniaxiales sont d’une importance
primordiale.

Les hétérodéformations uniaxiales ne sont pas le seul type de
déformations qui peuvent avoir une influence sur le moiré : des
hétérodéformations biaxiales peuvent également être présentes dans
la plupart des échantillons, même si elles sont souvent plus faibles.
Les hétérodéformations biaxiales peuvent même produire un nou-
veau type de moiré dans les bicouches de graphène, qui n’a pas
été étudié jusqu’à présent. On présente au chapitre 4 une première
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étude à ce sujet, montrant que la déformation biaxiale peut produire
un nouveau type de relaxation atomique, que nous appelons relax-
ation en tourbillon. Nous étudions également les propriétés électron-
iques de basse énergie de ce mode de relaxation en tourbillon et
montrons qu’il présente des états localisés au centre du moiré mais
aussi près des parois du domaine de relaxation. Cette mesure montre
que non seulement les propriétés électroniques globales du système
sont affectées par des changements d’empilement, mais qu’une com-
préhension locale des propriétés électroniques peut également être
pertinente car les variations locales d’empilement semblent les con-
troller.

Finalement, il est clair à la fin de ce manuscrit que tous les facteurs
affectant l’arrangement relatif entre les couches doivent être étudiés
si nous voulons développer une compréhension précise des matéri-
aux van der Waals multicouches. Il s’agit d’une tâche bien plus com-
plexe que la prise en compte d’un seul paramètre, mais c’est aussi
une opportunité extraordinaire d’étendre la versatilité de ces sys-
tèmes. La communauté scientifique commence donc à travailler non
seulement sur l’amélioration du contrôle de l’angle entre les couches,
mais aussi sur le contrôle des hétérodéformations dans le système.
Nous avons également avancé sur cette voie avec la construction d’un
nouveau microscope STM compatible avec une cellule de contrainte,
que l’on présente dans le chapitre 5. On vérifie que cette cellule
de contrainte peut fonctionner à température ambiante, en mesurant
les changements de mobilité induits par la contrainte dans les tran-
sistors, ce qui ouvre des perspectives en termes d’ingénierie de ces
dispositifs. On vérifie également que notre installation peut fonc-
tionner à des températures cryogéniques, ce qui est très prometteur
pour réaliser des mesures STM sur du graphène extrinsèquement
hétérodéformé et sur d’autres matériaux, 2D ou non.



A
Scanning Transmission Electron Mi-
croscopy (STEM) of intercalated Gr/SiC

Figure A.1: Scanning Electron Micro-
scope images of lamella preparation: a
after deposition of an amorphous Car-
bon and Platinium protecting layers ; b
lamella lift-out with Omniprobe micro-
manipulator ; c lamella transfer on the
rotating needle.

In order to understand better the sample studied in Chapter 4,
we collaborated with the group of Hanako Okuno from the LEMMA
(Laboratory of Electron Microscopy and Material Advances) to per-
form Scanning Transmission Electron Microscopy (S-TEM). These
measurements were performed by Djordje Došenović.

Such measurements rely on the fabrication of a very thin slide (or
lamella) of the sample, normal to the surface, which is done using
a Focused Ion Beam (FIB). The step by step fabrication of the TEM
slide is shown on Figs. A.1 and A.2.

Using the FIB, the surface is first protected from the beam by de-
positing a layer of Platinium, in addition to amorphous carbon if
necessary. This is done by directing the FIB in the region of interest
while introducing a Platinium rich gaz in the chamber, therefore de-
positing Platinium layers on that precisely defined region of interest.
The process also necessitates several steps of attachment and detach-
ment to various supports in order to transfer the lamella to the final
TEM grid. Such attachment processes of the lamella is done similarly
by depositing Platinium where the sample is to be attached.

Then, the surface is etched into a thin slide by using the FIB in
vacuum (Fig. A.1a). Before etching the last side of the slide, it is
attached to a micromanipulator from the chamber, so that it can be
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Figure A.2: MEB images of a transfer
of the TEM slide on the TEM grid and
b FIB back face thinning of the sample
for TEM measurements.

detached from the surface without loosing it (Fig. A.1b). Next, (Fig.
A.1c) it is attached to a rotating needle. Using this needle, the slide
can be flipped upside-down for a backside thinning, which allows
precise control of the final thickness of surface of interest, while leav-
ing it mostly unaltered by the process.

It is then transferred to a TEM grid (Fig. A.2 a), where the final
thinning down of the slide can take place (Fig. A.2 b). This step is
critical for the TEM measurements.

Typical FIB slide thicknesses is 50− 100nm. The thinnest regions
can be recognized as white regions in SEM images as shown on Fig.
A.2 b, as they are transparent for accelerated electrons, and feature a
low intensity signal coming from the secondary electrons only.

Figure A.3: Typical Transmission Elec-
tron Microscopy images showing High
Angle Annular Dark Field (a) and
Bright Field (b) contrasts.
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The slide is then ready for TEM measurements : an electron beam
is directed towards the region of interest and the transmitted elec-
trons are collected on a screen that can be transformed into an im-
age. The transmitted electrons having interacted with the atoms of
the slide, the image gives a spatially resolved information on the
structure at the atomic scale. Typical TEM images of our sample are
shown on Fig. A.3. They enable to extract typical distances between
the graphene layers (0.35nm) along with the relatively big distance
between the SiC and the first graphene layer (0.44nm), thereby con-
firming the intercalated nature of our sample.



B
Annihilation of the swirl relaxation
pattern

The swirl relaxation pattern studied in Chapter 4 annihilated itself
after measuring it in STM for about one month and a half. Its anni-
hilation means that its formation is metastable, and was perturbed
by the many small perturbations that we regularly applied during
the measurement campaign. In particular, tip interaction or slight
thermal variations that can occur during the Helium transfers most
likely caused its annihilation.

Figure B.1: STM images showing the
fully annihilated structure. (Vb =
300mV, It = 200pA). These images
are taken with a "dirty" tip that is af-
fected by the measurement campaign
(as can be seen from the double-tip fea-
tures around the non intercalated re-
gions). Zoom-ins are thus superim-
posed to improve the visualization of
the DWs. Black lines on the left are
guides to the eyes following the DWs
that cross AB/BA regions between two
non intercalated regions.

Measuring the destruction of the structure can still be of interest
to us. Indeed, it gives us yet another experimental evidence that
the system features no pinning of the layers to the substrate, for
example in AA regions, and that the system does really originate
from a relaxation effect.

The annihilation process occurred in two different steps :
-First, the clockwise rotating flower was pushed towards the non

intercalated region on the right, pushing its right domain wall to-
wards the nearest non intercalated region on the right.

-In a second step, the remaining swirl was pushed left, towards the
closest non intercalated region on the left. This second annihilation
occurred on a much shorter timescale than the first one (a few days
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only), which means that the system was by then even less stable.

-30meV -50meV -70meV -90meV

-136meV -215meV-180meV-153meV -250meV

Figure B.2: STM images showing the
annihilated structure. Setpoint is (Vb =
−300mV, It = 250pA).

At the end of the annihilation, only straight DW remain on the
surface, as shown on Fig. B.1.

We were able to take a CITS measurement in between the two
annihilation steps. The system in that configuration features only
one anticlockwise rotating swirl, as shown on Fig. B.2 and that we
discuss in more details in the following.

The CITS shown on Fig. B.2 shows that even in the single swirl
configuration, the swirl relaxation pattern remains, and has similar
features as the two-swirl system presented in Fig. 4.27.

The localization of the LDOS in AA region is shown by the purple
curve. In AB regions, the blue curve averaged around the blue dot
shows two peaks that correspond to the electric field induced gap
opening. Between the maps Vb = −136meV and Vb = −250meV,
the edge states clearly get closer and closer to the DW center, as
was previously observed. Last, localized states are still visible above
charge neutrality, with disordered scattering features with lowering
wavelength as the bias is sweeped away from charge neutrality.
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