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ABSTRACT 

Monitoring plants growth including the measurement of physical properties, 

counting plants leaves, detection of plants and their separation from weeds brings 

much benefits to the producers. Preferrable techniques for this task are those that are 

non-destructive because plant is a very sensitive creature and any manipulation of 

which can affect its growth or lead to losing leaves or branches. Imaging techniques 

are of the best solutions for plant growth monitoring and geometric measurements. 

This project involves the use of stereo imaging and multispectral data analysis for 

examining, separation, and classification of crop plant/weeds. Active and passive 

stereo imaging were employed for the estimation of physical properties and counting 

leaves and multispectral data was utilized for the separation of crop and weed. Bell 

pepper plant was used for imaging measurements during a 30-day period and for 

crop/weed separation, the spectral responses of bell pepper and five weeds were 

measured. Nine physical properties of pepper leaves (i.e., main leaf diameters, leaf 

area, leaf perimeter etc.) were measured using a scanner and used as a database. These 

were also used for comparing the estimated values with the actual values. The stereo 

system consisted of two webcams and a video projector. First the stereo system was 

calibrated using sample images of a standard checkerboard in different positions and 

angles. The system was controlled using the computer for switching a light line on, 

recording videos of both cameras while light is being swept on the plant, and switching 

the light off. The processing algorithm filtered the images for removing noise and then 

thresholded the unwanted pixels of the background environment. Next, using the 

Center of Mass peak detection method the central part of the light line was extracted. 

The images were then rectified and the correspondent pixels were detected and used 

for the 3D model development. The obtained point cloud was transformed to a meshed 

surface and used for measurement of physical properties. Passive stereo imaging was 

utilized for leaf detection and counting. Six different matching algorithms and three 

cost functions were used for passive stereo matching. In order to obtain spectral 

responses of plants, they were moved to the laboratory, leaves were detached from the 
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plants and placed on a blur dark background. Spectral measurements were carried out 

in the 400 – 1000 nm range using a spectroradiometer. To reduce the dimensionality 

of the data, PCA and wavelet transform were used. Results of this study showed that 

stereo imaging can be used as an inexpensive and non-destructive tool for agriculture, 

specifically, for plant detection and classification. Use of Active Stereo Imaging (ASI) 

during the primary stage of growth provides acceptable results, however, it is unable 

to detect and reconstruct all leaves and plant parts during the later stages. It was 

observed that red color was the best choice for the light stripe color. The results showed 

that as a trade-off between field of view and angle view of the cameras, 90 degrees 

angle was the best. Using ASI, yielded R2 values of 0.978 and 0.967 for estimation leaf 

area and perimeter, respectively. The result of segmentation of the point clouds could 

count the leaves with the success rate of 96.053 %. However, the overall success rate 

of the passive stereo algorithm for leaf counting was 84.32 %. It was observed that 

generally BP algorithm provides better results for disparity map development. For cost 

functions, SAD provided better results compared to MSE and NCC. The results of 

separation of crop and weeds using spectral data were very promising and the 

classifier—which was based on deep learning—was capable of completely separating 

pepper plants from  five weeds. 
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1  

INTRODUCTION 

 

 

1.1 Context and problem 

Increase in agricultural production and its optimization is necessary to supply the 

ever-increasing population of the world and to transcend phenomena such as famine, 

disease and environmental pollutions. Thus, due to lack of natural resources and 

limitations of energy supply, it is necessary to lower costs and produce food and 

agricultural products in shorter time periods. Comprehensive changes in the current 

agricultural infrastructure, wide cooperation of entities, proper management and 

exploitation of resources and utilities, wise scheduled organization, and scientific 

management of growth and harvest are strategies to handle the above-mentioned 

problems. Therefore, without using the up-to-date technologies, it is not possible to 

improve agricultural productions and use resources efficiently. 

On the other side, plant growth and its fruit production is the outcome of a 

complicated interaction between genotypic properties and growing conditions. It is 

possible to evaluate plant growth destructively by routinely harvesting plants parts and 

nondestructively by taking numerous measurements while leaves still are connected to 

the plant. Both approaches have benefits and drawbacks: The growth of a single plant 

can be tracked over time by nondestructive instruments, and variations in growth 

between plants can be researched. On the other side, touching the plant repeatedly 

while measuring them could potentially impede their development. The optimum 

equation representing the growth of the plant is normally chosen once the 

measurements, either destructively or nondestructively, have been taken. These 
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equations are used for predictions of growth but not for real-time monitoring of the 

growth. Therefore, systems or models are needed that can predict the behavior of 

plants as a function of growing conditions so that the growth conditions can be adjusted 

based on that. These planting conditions include different production aspects such as 

light, temperature, moisture, CO2, and nutrition necessary for plants. Thus, production 

enhancement requires quantitative knowledge of plant structure, its behavior and 

growth conditions.  

There are many non-destructive methods (i.e. thermal imaging, fluorescent 

imaging, visible camera systems, 3D imaging, synthetic aperture radar etc.) for the 

instant measurement of growth but the complicated appearance of plants and frequent 

changes of their structures during growth have limited the usage of such methods 

(Kacira and Ling, 2001; Chaerle et al., 2009; Bagavathiappan et al., 2013; Zhang et al. 

2019). Mathematical plant growth models are of the tools for describing and 

understanding growth trends of plants which can be used for developing a production 

plan. These models are utilized for decision-making systems, greenhouse controlling 

systems and production prediction. However, these models are not able to detect the 

growth irregularities and unexpected production incidents. Hence, always there has 

been a need to novel and accurate systems.  

Image processing has always been into attention of scientists as it is one of the 

fastest and most accurate non-destructive monitoring techniques. Indeed, image 

processing is used in the applications that like human vision, the physical properties 

and appearance of the problem are considered for the detection and prediction. Image 

processing can replace common models and detect growth trend and unexpected 

growth changes in a higher accuracy. This technology can adjust plant needs in each 

moment of its growth based on the conditions and in addition to preventing the waste 

of water and nutritions, provide the optimized and proper condition of growth. This 

leads to fully-automized production of agricultural plants. As the goal is to provide a 

non-contact and non-invasive monitoring system, a system is proposed that is based 

on imaging and image processing techniques. 
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One of image processing techniques that is used for the estimation of 3D properties 

based on 2D images is Stereo Image processing. Stereo Imaging provides the ability 

to determine depth, volume, surface properties and build 3D models. Therefore, by 

using stereo imaging a more realistic idea of the problem can be achieved which this 

helps to detect barriers and overlapped objects. Stereo imaging can be passive or 

active. Passive stereo imaging includes only two cameras. In this imaging method, the 

depth estimation is not performed well for the objects with no texture or environmental 

difference. However, active stereo imaging has the advantage of detecting the depth 

and 3D angles in high accuracy. Also, it is advantageous for the imaging at night that 

this is important as during the day light intensity changes and affects the image 

processing results. Another advantage is that the active stereo set-up can be proposed 

at a lower price as this factor is of high importance for agricultural producers. Active 

stereo is useful in regions where there is a lack of light and/or texture (Szeliski, 2010). 

The infrared projector or another light source will illuminate the scene with a light 

texture. But along with its positiveness, there are some disadvantages such as active 

stereo will lose its effectiveness in direct sunlight and in regions with a high 

interference of the same external light source technology used. 

  

Figure 1.1. Examples of images with different levels of texture features; 

left) low level of texture and right) high level of texture 

Then the following are some of the benefits of using an active stereo vision system: 

▪ It works with scenes that lack adequate features, such as edges or corners, 

that are connected with intensity discontinuities;  

▪ the correspondence problem is completely missing in the stereo matching 

process. The plane equation of the light stripe would have been computed 
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from the projector calibration procedure for each pixel in the image that is 

illuminated by a particular light stripe from the projector or laser unit, and 

simple triangulation is all that is required to compute the 3D coordinates of 

the pixel. 

▪ It produces a highly detailed depth (or range) map. 

▪ It may be used in a wide range of shape measurement and flaw detection 

tasks. 

After the development of such a system, bell-pepper plant has been considered for 

its evaluation. Bell-pepper is Herbaceous plant and has straight and strong stems. The 

length of stems reaches 0.5-1.5 m and 3 to 4 fruits are produced at the end of each stem  

(Marcelis et al. 2006). The amount of bell-pepper production of the world in the year 

2019 was 57 034 382 ton of which China ranked first having the production of 

37 985 275  ton (FAO 2019). Bell pepper is a nutritious vegetable and effective for 

different diseases. Capsaicin, as the most active ingredient in pepper, lowers blood 

cholesterol and reduces the intensity of pain messages in the body. It also has 

antioxidant properties that protect the body's cells from damage by free radical 

molecules and also has antibacterial properties (Barzegar 2013). 

Accordingly, a system is needed that non-destructively and with high accuracy can 

monitor the plant growth and determine the needs of plant including light, temperature 

and moisture based on the current situation of the plant. So, the goal of the system is 

to acquire plant images, detect and determine the number and size of leaves, estimate 

the growth stage, and monitor growth behavior. 

1.2 Objectives 

Growth conditions of plants are different in various stages of growth and need to 

be adjusted frequently. These conditions include amount of irrigation, soil moisture, 

relative humidity, light, and nutrition. By adjusting the growth conditions and revising 

them when needed, higher production in a shorter period can be achieved which means 

optimal use of resources for maximum production. As adjusting growing conditions 

depends on the determination of plant lifetime and growth stage, development of non-
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destructive accurate systems for the estimation of plant lifetime is necessary. The 

existing methods such as growth models, not only should be recalibrated in each area, 

but also cannot detect unexpected variations in growth rates. In addition, most other 

techniques and systems for monitoring plants are very expensive for agricultural 

producers. Production optimization, control of growth conditions, prevention of 

diseases, production increase, product quality improvement, mechanized production, 

lower production costs, and handling irregularities of growth are among the benefits 

of adjustment and management of growth conditions. 

Hence, objectives of the current study are: 

• Development of a stereo imaging system for the estimation of growth stages; 

This involves construction of a low-cost system,  use of video projector instead 

of laser light, comparison of different light colors and a geometrical 

rectification. 

• Determination of number, area, and physical properties of leaves based on 

image processing; This goal involves the use of image processing techniques 

for the extraction of the desired properties from the point cloud and 3D models. 

• 3D modelling of aerial parts of bell-pepper plant and determination of growth 

stages; Which includes the development of 3D models of plants based on the 

obtained point clouds and construction of growth curves. 

• Application of Multispectral imaging for the detection and separation of pepper 

plants from weeds; This is to study the separation of bell pepper plant from 

weeds based on spectral data as a preprocess for localizing each plant and 

monitoring its growth. 

1.3 Contributions and structure of the thesis 

This thesis attempts to define the problem of growth monitoring of plants, describe 

fundamentals and theoretical basics of stereo image processing, consider the 

background of this research, and explain the methodology. In the first section, the 

problem and objectives are considered as well as the theoretical background of the 

research. The second section presents the tools, instrumentation and the developed 
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system as well as the processing methods used to achieve the objectives. In the third 

section, the results obtained from the experiments, data analysis, the application of 

artificial intelligence and comparison of results with other reported research is 

presented. Furthermore, conclusions and perspectives of this research are provided. 
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2  

STATE OF THE ART 

 

 

Monitoring the growth of plants at different stages of growth has always been the 

focus of researchers and for decades they have been looking for practical and effective 

solutions. Therefore, several mathematical models for different stages of growth and 

for different plants have been developed and different tools were researched and 

studied. One of the most important tools has been machine vision, which provides the 

closest tool to human understanding of plant growth and development. Various 

imaging methods and different processing techniques were examined. But one of the 

novel and accurate methods is stereo image processing, which is based on two images 

from different viewing angles. In addition to the previous methods and tools, this 

method can provide useful information about the three-dimensional condition of the 

plant. 

2.1 Monitoring techniques 

There have been used different techniques for monitoring purposes in agriculture 

(Loch et al., 2005; Hashemi et al., 2010; Jin and Tang, 2009). These techniques are 

generally divided into destructive or non-destructive techniques. Imaging plants is not 

a simple work and is considered as a complicated imaging task. The complicated and 

special shape of leaves and how they cover each other pose difficulties on the imaging, 

monitoring and phenotyping of plants. Based on the application, different imaging 

techniques have been employed and studied. Imaging techniques include visible light 

imaging, thermal imaging, near infrared imaging, hyperspectral imaging, 3D imaging, 

laser imaging, MRI and CT. Where possible, theses techniques have been used for 

agricultural applications as well. Visible imaging has normally been used for the 

measurement of leaf area, color, growth dynamics, perimeter, seed morphology, and 
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plant disease (L. Li et al. 2014; Chéné et al., 2012). For color imaging, no special 

camera is needed and almost all types of RGB cameras have been utilized in different 

projects (Khojastehnazhand et al. 2019). Near-Infrared (NI) imaging has been used 

along with visible imaging for monitoring and quality determination. Applications of 

NI in agriculture have been reported for forages, grains and grain products, oilseeds, 

coffee, tea, spices, fruits, vegetables, sugarcane, drinks, fats and oils, dairy products, 

eggs, meat, and other agricultural products (Xu et al. 2007; Wu et al. 2012; Huang et 

al. 2020).  

Also, these techniques alone or in conjunction with other sensory technologies 

have been employed for 3D reconstruction of objects. The techniques for 3D 

reconstruction vary and highly depend on the application in use. Figure 2.1 presents a 

classification of 3D reconstruction techniques, however this is not a inclusive diagram 

and other techniques may be added to it (Billiot, 2013). 

 The goal of three-dimensional (3D) imaging is to capture the three-dimensional 

structure of sceneries and objects in our surroundings  (Rusinkiewicz et al., 2002) 

(Figure 2.2). Color-texture information in the form of a registered 2D image, normally 

derived from ordinary digital image capture, is frequently included with the computed 

set of data points in 3D space. A 3D model, a 3D scan, or a 3D image are all terms 

used to describe 3D data that includes or excludes color/texture (Pears et al. 2012). 
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Figure 2.1. A classification of 3D reconstruction techniques. 

 

  

Figure 2.2. Example of 3D imaging in agriculture (Rusinkiewicz et al., 2002). 

A 3D imaging process' output can be analyzed and processed to extract data for a 

variety of applications, including object recognition, web shape search, face 

recognition for security and surveillance, robot navigation, mapping of the Earth's 

surface, forests, or urban areas, and clinical procedures in medicine. 

Laser scanning (also known as LiDAR) is a type of 3D object scanning that 

combines controlled laser beam steering with a laser rangefinder. The scanner quickly 

captures the surface contour of objects, buildings, and landscapes by obtaining 

distance measurements in all directions. Combining various surface models derived 
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from different viewing angles, or admixing other known limitations, is required to 

create a comprehensive 3D model. In a technology similar to photogrammetry, small 

objects can be placed on a rotating pedestal. 

2.2 Stereo 3D reconstruction 

Stereo matching or stereo 3D reconstruction is the technique for producing the 3D 

model of a scene or an object by using 2D images (Dipanda et al., 2003; Jang et al., 

2013). Stereo matching may use two or more images for 3D reconstruction (Besse et 

al., 2014; Schuldt et al., 2016). The concept of stereo matching emanated from human 

eyes and how human perceives depths. Hence, in stereo matching the differences of 

location of objects in two images of right and left cameras lead to achieving the depths 

information (Poggi et al., 2019). Figure 2.3 presents the left and right images and it 

can be seen that objects shift to left or right in comparison to another image. Appendix 

D presents several datasets for 3D models of different objects prepared in different 

research works. 

  

Figure 2.3. Left and right images of a stereo camera. 

As it will be discussed in the following sections, for simple configuration of 

cameras, the horizontal distance of objects in left and right images is inversely 

proportional to the distance of objects from the cameras (Heise et al., 2015). Based on 

this principle, the depth and then the 3D coordinations of each point in space will be 

calculated. While it looks simple, still the matching process of correspondent points of 

two images is a challenge which is called correspondence problem. 

The application and use of stereo imaging techniques is growing fast. The interest 

in stereo imaging grown as it is a quick and accurate technique. Also, stereo imaging 
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is a promising technique for the applications that require a non-contact method do to 

their sensitivity and manipulation considerations. 

The use of this concept was started by photogrammetry for automatically 

constructing topographic maps using overlapping aerial images. However, this was 

progressed to build automatically images based on accurate matching of left and right 

images. For years, Stereo Imaging (SI) has been an active area of research for different 

fields of science and still it is of high importance for many applications. SI has been 

vastly used in different fields for the extraction of 3D information. In agricultural 

applications, SI has been employed for phenotyping, 3D reconstruction, and leaf 

counting (Guo and Xu 2017; Nguyen et al. 2016; T. T. Santos and De Oliveira 2012; 

T. SANTOS and Ueda 2013). However, in most cases, the expensive market scanners 

have been used. In this study, a cheap system based on webcams and normal video 

projector is presented. 

2.2.1 Passive stereo imaging 

Passive visual sensing is a type of visual sensing that doesn't require any other 

devices than cameras (Urquhart, 1997). In most cases, these algorithms were created 

during the early stages of computer vision research. The photos are the only input data, 

and no energy is emitted for sensing purposes. The sensing techniques were frequently 

intended to mimic the way human eyes work. When opposed to active procedures, 

which require additional devices, passive approaches have a competitive edge in terms 

of equipment cost.  

 

Figure 2.4. Schematic of a passive stereo imaging system. 
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Stereo vision, trinocular vision, and a variety of monocular shape-from-X 

approaches, such as 3D shape from texture, motion parallax, focus, defocus, shadows, 

shading, specularities, occluding contours, and other surface discontinuities, are 

examples of passive techniques (Hartley and Zisserman, 2003). The issue is that 

retrieving three-dimensional information from a single two-dimensional image is an 

ill-posed problem. Stereo vision remains the only passive cue that provides sufficient 

precision. 

A significant disadvantage of the passive approach is that it necessitates the use of 

two cameras and that it is incompatible with untextured surfaces, which are typical in 

industrially created goods. In passive visual sensing, the demand for ambient light 

conditions is equally crucial. Stereo vision has the advantage of being fairly easy to 

implement and especially ideal for natural surroundings. 

2.2.2 Active stereo imaging 

Active stereo imaging, as contrast to passive visual sensing, is a type of visual 

sensing approach. Only visible features with discernible texture gradients, such as 

intensity edges, are measured in the aforementioned situations of passive approaches 

(that employ ambient light) (Geng 2011). There is a related issue with the stereo 

configuration, for example, if the difference in location and orientation of the stereo 

images is minor, matching corresponding spots is simple; if the difference is 

considerable, it is challenging. When the difference in location and orientation of the 

stereo views is modest, however, the accuracy of the 3D reconstruction suffers (Pears 

et al. 2012). 

Active sensing techniques have been developed in recent years to address the 

inadequacies of passive sensing (Latimer, 2005; Wang et al., 2012; Dong et al., 2018). 

These active systems are typically free of the correspondence issue and can measure 

with extreme precision (Dipanda and Woo, 2005). An external projecting device (such 

as a laser or LCD/DLP projector) is used in active sensing to actively emit light 

patterns that are reflected by the scene and detected by a camera (Cajal et al., 2015; Tu 

et al., 2019) (Figure 2.5). Lam (2006) used a patterned laser light as the light source 



 

14 

 

for the usage of active stereo imaging for medical diagnosis. That is to say, rather of 

relying on natural lighting, they probe the scene in some way. Active stereo techniques 

are generally more precise and reliable than passive imaging methods. 

 

Figure 2.5. Schematic of an active stereo imaging system (Bianco et al. 2013). 

Most ambiguities are resolved by active 3D vision sensors, which offer the 

geometry of an object or surroundings directly. To create the 3D coordinates, they only 

need a little help from the operator. Laser-based techniques, on the other hand, make 

the 3D information highly immune to background illumination and surface texture. As 

a result, active visual sensing is ideal for scenes with insufficient details. It is mainly 

ideal for interior locations because it requires lighting management, and both the 

camera and the projector must be pre-calibrated. The structured light system with 

coded patterns is based on active triangulation, which is one of several 3D range data 

collecting approaches in computer vision. Scanning a scene with a laser plane and 

detecting the location of the reflected stripe is a fairly basic way for obtaining depth 

information with structured light. The distortion along the detected profile can be used 

to compute depth information. Structured light systems and laser range finders map 

obtained data directly into a 3D volumetric representation, avoiding the 

correspondence problem that plagues passive sensing techniques. Scenes with no 

textural features, for example, can be readily modeled. 

2.2.3 Comparison of active and passive systems 

What are the advantages and disadvantages of active and passive stereo imaging 

systems? In conclusion, because the computational overhead of passive 
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correspondences is reduced, active systems that can generate dense range images at 

high frame rates are often easier to develop (e.g. 30 fps for the Kinect) (Dias et al., 

2006). Passive stereo might result in low density 3D reconstructions due to a lack of 

surface features or large-scale texture on the scene object, at least in the local regions 

where the surface texture or features (e.g. corners) are lacking (Sun et al., 2002).  

For starters, it makes it impossible to establish the size and shape of the 

photographed object in its entirety. Second, when the imaged item is presented from 

many various views, it is challenging to produce accurate form visualizations. Active 

stereo systems, on the other hand, offer thorough form measurements and acceptable 

renderings for multi-viewpoint visualizations as long as the surface is not too dark (low 

reflectivity) or specular, and there aren't too many deep concavities ('missing 

portions'). When the density of features is low or the image sensing resolution is poor 

in comparison to the scale of the imaged texture, an active stereo system is the best 

option (Pears et al. 2012). 

2.2.4 Pinhole Camera model 

The primary step in the development of an imaging system is to determine the 

camera model. In this study the pinhole camera model was utilized. The pinhole camera 

is a simplified camera model. Most previous research on active stereo imaging have 

been based on pinhole model (Lam, 2006; Coste, 2013; Kihlström, 2019; Weisenfeld, 

2002). The light travels in a straight line. The light reflected by the object passes 

through the pinhole to form an inverted image on the imaging surface. The distance 

between the pinhole and the imaging surface is called the focal length. Generally 

speaking, the smaller the pinhole, the clearer the image, but too small a pinhole will 

cause diffraction, which will make the image blurry. 

 
Figure 2.6. Multiple view geometry in computer vision (Werner and Zisserman 2002) 
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The light emitted from a point X in the external world passes through the small hole 

and is projected at the point x on the image plane. The quantitative relationship between 

a point X in 3D space and the corresponding point x coordinates on the imaging plane 

is:  

(X, Y, Z)  (x,y)   (fX/Z, fY/Z) 

We can write the transformation between 3D and 2D in the following form. 

(

𝑋
𝑌
𝑍
1

) (
𝑓𝑋
𝑓𝑌
𝑍

) =  [
𝑓  0  0  0
0  𝑓  0  0
0  0  1  0

](

𝑋
𝑌
𝑍
1

) 

x = PX 

When actually calculating, we first convert the 3D point into a 4-dimensional 

vector, and then multiply the transformation matrix to the left. The transformation 

matrix P known as the Camera Projection Matrix is completely determined by the 

camera parameters. 

The above formula assumes that the principal point p is at the origin of the 

coordinate. The actual situation may not be the case, so the mapping becomes: 

[

𝑋
𝑌
𝑍
1

]   [
𝑓𝑋 + 𝑍𝑝𝑥
𝑓𝑌 + 𝑍𝑝𝑦

𝑍

] =  [
𝑓  0  𝑝𝑥  0
0  𝑓  𝑝𝑦  0

0  0  1  0

] [

𝑋
𝑌
𝑍
1

] , 𝑥 = 𝐾[𝐼|0]𝑋 

This matrix K is known as the Camera Calibration Matrix. In addition, it is also 

possible that our pixels are not square, so when we measure image coordinates in pixels, 

we need to introduce a non-equivalent scale factor mx, my in each direction. 

Specifically, the number of pixels per unit distance of the image coordinate in the x and 

y directions are mx, my, then our calibration matrix. 

K = [
𝑓𝑚𝑥   0  𝑚𝑥𝑝𝑥  0
0  𝑓𝑚𝑦  𝑚𝑦𝑝𝑦  0

0      0       1      0

] 
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Finally, in order to increase generality, we also need to consider distortion 

parameters, although our current standard camera usually s=0, 

K = [
𝑓𝑚𝑥  𝑠  𝑚𝑥𝑝𝑥  0
0  𝑓𝑚𝑦   𝑚𝑦𝑝𝑦  0

0      0       1      0

] 

We can draw a mapping between the point in world coordinate system X and the 

point x in the image plane, represented by: 

x = KR [𝐼| − 𝐶]𝑋 

P = KR [𝐼| − 𝐶] 
Parameters in K are called the camera intrinsics and the remaining parameters R 

and C are called the camera extrinsics. 

2.2.5 Triangulation and epipolar geometry  

Given a pixel in one image, the correspondent pixel in the second image needs to 

be found and identified. This technique is called triangulation (Lam, 2006). A point is 

imaged and is seen in two different images. Then using calibration information, the 

3D information of the point is obtained (Teutsch et al., 2005; Veitch-Michaelis, 2017). 

A variety of search techniques can be used to match pixels based on their local 

appearance as well as the motions of neighboring pixels. In stereo imaging, there are 

additional information available which are the positions and calibration data for the 

cameras. These information can be utilized to reduce the number of potential 

correspondences as well as reduce the computation cost. 

Figure 2.7 shows how a point in the scene is projected on the images and the way 

these projected pixels are related. In this figure, the centers of the two cameras are C0 

and C1, and p is a three-dimensional space point, and its projection points on the 

imaging planes of the two cameras are x0 and x1, respectively. Baseline is the 

connection between the optical centers of the two cameras C0C1. Epipolar plane is a 

plane containing the baseline. There is a set of epipolar planes (rotating with the 
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baseline as the axis). An example in this figure is C0pC1. And epipolar line is the line 

of intersection between the epipolar plane and the image plane. The example in the 

picture above is x0e0 versus x1e1. These epipolar lines are the geometrical place of the 

point p on the images meaning that for finding the corresponding pixel of p on the 

second image, we need to just search on this epipolar line. This solution has been pretty 

common in previous research (Tošić and Frossard, 2010; Bianco et al. 2013; Lelas and 

Pribanić et al. 2016). Coste (2013) built disparity maps from rectification of images 

based on epipolar geometry. 

 

Figure 2.7. Epipolar geometry; a) epipolar line segment corresponding to one ray, b) corresponding set of 

epipolar lines and their epipolar plane (Szeliski, 2010). 

2.2.6 Rectification 

The epipolar geometry for a pair of cameras can be computed from the relative 

pose and calibration of the cameras. This can be done using seven or more point 

matches using the fundamental matrix. Once this geometry has been computed, it can 

be employed for the epipolar line corresponding to a pixel in one image to constrain 

the search for corresponding pixels in the other image. One of the techniques to do this 

is to use a general correspondence algorithm, such as optical flow. In this case, the 

pixels only on the epipolar line will be considered in the search for correspondence. A 

more efficient algorithm can be obtained by first rectifying (i.e, warping) the input 

images so that corresponding horizontal scanlines are epipolar lines. Then, it will be 

easier to consider horizontal lines for correspondence. Furthermore, there have been 

reported studied to ease and simplify correspondence problem. Chan (2002) used an 

active method for stereo matching which was the projection of specific patterns on the 
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object through structured lights. This technique could simplify matching problem and 

reduce computation cost. 

 

Figure 2.8. The rectification algorithm presented by Loop and Zhang (1999); a) original image pair, b) 

images transformed so that epipolar lines are parallel, c) rectified images and d) final rectification by minimizing 

horizontal distortions. 

A simple way for the rectification of the two images is to first rotate both cameras 

so that they are looking perpendicular to the line joining the camera centers c0 and c1. 

Because of a degree of freedom in the tilt, it is better to use the smallest rotations 

achieving this angle. Afterwards, for determining the desired twist around the optical 

axes, make the up vector (the camera y axis) perpendicular to the camera center line. 

This helps to be sure that the corresponding epipolar lines would be horizontal and that 

the disparity for points at infinity will be zero. Finally, re-scaling of the images is done, 

if necessary, to account for different focal lengths, and to magnify the smaller image 

to the size of the bigger one for preventing aliasing. It should be noted that normally it 

is not possible to rectify an arbitrary collection of images simultaneously unless the 

optical centers of these images are collinear. However, the rotation of the cameras so 

that they all point in the same direction reduces the inter-camera pixel movements to 

scalings and translations. This rectified geometry is being used in a lot of stereo 

imaging set-ups and systems. This makes a straightforward way to build an inverse 

relationship between 3D depths Z and disparities d, 

d = f 
𝐵

𝑍
 

where f is the focal length (measured in pixels), B is the baseline, and 
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𝑥′ = 𝑥 + 𝑑(𝑥, 𝑦),    𝑦′ = 𝑦 

describes the relationship between corresponding pixel coordinates in the left and 

right images. The task of extracting depth from a set of images then becomes the 

estimation of the disparity map d(x, y). After rectification, we can easily compare the 

similarity of pixels at corresponding locations (x, y) and (x0 , y0) = (x + d, y) and store 

them in a disparity space image (DSI) C(x, y, d) for further processing (Figure 2.9).  

   

(a) (b) (c) 

Figure 2.9. Estimation of disparity map; a) left image, b) right 

image, and c) disparity map (Liu et al. 2020). 

2.2.7 Delaunay Triangulation 

Having the rectified left and right images, it is time to calculate the 3D position of 

each point of the object. The known parameters are the 2D coordination of each point 

in the images (i.e. pixel address of the point in the image) and the information 

regarding the position of the cameras in space. Then, there is need to a technique to 

reach 3D coordiantes from 2D coordinates. Triangulation is the process of calculating 

the 3D position of points in images (Dorsch et al., 1994). In previous works, mostly 

researchers have used Delaunay Triangulation (Trujillo Romero, 2008). In 

mathematics and computational geometry, Delaunay's triangulation for a set of points 

called P on a plane is a triangulation called DT(P) so that none of the points P are in 

any of the perimeter circles of the triangle (DT). Minimization of triangles maximizes 

the angles of triangles to prevent narrow triangles. This triangulation was invented by 

Boris Delaunay in 1934. For four or more points on the same circle (e.g. vertices of a 

rectangle) the Delaunay Triangle is not unique: both possible triangles that divide a 

quadrilateral into two triangles satisfy the Delaunay condition, for example, assuming 

that if all the circumferential circles of the triangles are empty. Considering enclosed 

spheres, the Delaunay trinity idea will be extended to three or more dimensions. 
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Generalization the metric system is preferred to the Euclidean system, but in these 

(Euclidean) cases the Delaunay trinity does not necessarily exist or is not unique. 

Delaunay's trinity in the discrete space of the set p in the general position is taken 

from the double graphs of the Voronoi diagram of the set p. Special cases that include 

three points on a line and four points on a circle. 

  

Figure 2.10. An example of Delaunay triangulation. 

2.2.7.1. D-dimensional Delaunay 

The dimensional d is the sum of the points p in Euclidean space. p is a group of 

points in the general position that results in no subsequent k subspace containing k + 

2 points or the next k sphere containing k + 3 points for k ≤ d - 11 (for example for a 

set of points in ℝ3 no three dots are on a line, no four dots on a plane, no four dots on 

a circle, and no five dots on a sphere. Convex for a set of points in the d + 1 space by 

giving extra coordinates 2|p|, to each point p and taking the bottom corner of the 

convex cover and retransforming it to the next d space by removing the recent 

coordinates. It is the same assuming that all the sides of the cap are convex, the non-

simple sides occur only when d + 2 is one of the principal points on a next d-sphere as 

examples of points are not in the general position. 

2.3 Light stripe peak detection 

The peak point of a light stripe picture is located via light peak detection. The light 

projection angle, camera calibration parameters, and peak location in the images are 

used to retrieve the object's surface 3D information. As a result, the light stripe peak 

is one of the most crucial elements in the scanning process. Schnee and Futterlieb 

(2011) used dynamic models for robust and fast segmentation of a laser line. They 
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believed that dynamic models can better segment laser lines deformed because of 

shapes of objects. Zhang et al. (2013) presented a peak detection method based on 

continuous wavelet transform. It was observed that their proposed method led to good 

results comparable to the common techniques.  

A typical profile of light stripe intensities is shown in Fig. 2.11. Despite the fact 

that the maximum pixel value is around 135, its precise location is unknown and must 

be calculated. As a result, we need to know which light peak detection approach in our 

3D laser scanning system is the most accurate and exact. 

 

Figure 2.11. Light stripe peak. 

2.3.1 Thresholding detection 

A common way of detecting the light peak is thresholding. This technique removes 

the pixels smaller than a value that has been tested and validated for the detection of 

the brightest pixels. In this technique, it is needed to perform several tests to find the 

optimum amount of the threshold. Then, by thresholding the images, the pixels over 

the threshold are kept and used for 3D reconstruction. 

2.3.2 Gaussian detector 

The three highest, contiguous intensity values surrounding the recorded peak of the 

stripe are used in this technique, which assumes the observed peak shape meets a 

Gaussian profile. The laser light impinge on the scene is known to have a roughly 

Gaussian distribution. The peak's sub-pixel offset is determined by (Isa and Lazoglu, 

2017): 
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𝛼 =  
ln(𝑓(𝑥 − 1)) − ln (𝑓(𝑥 + 1))

2(ln(𝑓(𝑥 − 1)) − 2 ln(𝑓(𝑥)) + ln(𝑓(𝑥 + 1)))
 

2.3.3 Linear Interpolation 

This method implies that the distribution of intensity values before and after the 

peak is defined by a simple, linear relationship. As a result, assuming the three highest 

intensities are determined as before: 

if f(x+1) > f(x-1) 

𝛼 =  
𝑓(𝑥 + 1) − 𝑓(𝑥 − 1)

2 ∗ (𝑓(𝑥) − 𝑓(𝑥 − 1))
 

else 

𝛼 =  
𝑓(𝑥 + 1) − 𝑓(𝑥 − 1)

2 ∗ (𝑓(𝑥) − 𝑓(𝑥 + 1))
 

2.3.4 Center-of-mass 

The center-of-mass (CM) algorithm also assumes a Gaussian distribution for the 

spread of intensity values over the stripe. As a result, a simple weighted-average 

method can be used to determine the peak's location. The peak's sub-pixel position is 

indicated by: 

𝛼 =  
𝑓(𝑥 + 1) − 𝑓(𝑥 − 1)

𝑓(𝑥 − 1) + 𝑓(𝑥) + 𝑓(𝑥 + 1)
 

2.3.5 Parabolic Estimator 

The Taylor series expansion of the signal near the peak can be used to create a 

continuous version of the peak finder. 𝛼 is estimated if the peak is at f(x + 𝛿) while 𝛿 

is introduced and the received signal is f(x): 

𝛼 =  
𝑓(𝑥 − 1) − 𝑓(𝑥 + 1)

2(𝑓(𝑥 + 1) − 2𝑓(𝑥) + 𝑓(𝑥 − 1)
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2.4 Noise detection 

The presence of noise in stereo images is very possible. This happens as a result of 

having bright light in the darkness of the environment. Reflections and refractions of 

the light on objects cause some level noise in the images. In case of using low-

sensitivity cameras, this noise can appear more. Amir and Thörnberg (2017) for noise 

removal and spurious reflections in laser imaging used several methods including 

Spatial Compound Imaging, High Dynamic Range Extension, Gray Level 

Transformation, Center of Gravity and Most Similar Nearest Neighbor. The best 

precision achieved was ±4.2 𝜇m. In a recent work, Chiang and Lin (2022) took benefit 

of multi-decoding pattern and epipolar line denoising methods. They studied a two-

step denoising process for improved spatial resolution. 

2.5 Camera calibration 

The process of determining the internal camera geometric and optical 

characteristics (intrinsic parameters) and/or the 3D position and orientation of the 

camera frame relative to a certain world coordinate system (extrinsic parameters) in 

the context of three-dimensional data capture is known as camera calibration. The 

primary goal of calibration is to determine the projection model parameters that relate 

known 3D points to their projections, and then rebuild/identify the object using these 

values. The camera imaging geometry determines the relationship between the points' 

positions in object space and the corresponding points in the picture. The 

intrinsic/extrinsic settings of the camera define this geometry. Camera calibration is 

the process of determining these characteristics, as well as the camera's position and 

orientation in the world coordinate system. 

2.5.1 Calibration methods 

Calibrating stereo cameras is normally accomplished by calibrating each camera 

separately and then using geometric transformations to the external parameters to 

determine the stereo setup geometry. There are three types of camera calibration 

procedures currently available (Li and Chen, 2003): 
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▪ Closed form solution. 

▪ Full nonlinear optimization. 

▪ Two steps methods. 

Lens distortion is not taken into account by the first-class methods, and 

comprehensive nonlinear optimization is difficult because there are at least 11 

parameters to calibrate. Methods with two phases are more efficient and precise. 

Even though it is possible to divide the parameters into two groups and perform 

nonlinear optimization only on a subset of the parameters, every calibration technique 

for radial distortion that is based on knowledge of the position of points in the world 

must search for the entire set of parameters at the same time. 

The calibration procedure requires the user to: 

▪ use a calibration grid. 

▪ individuate the projections of calibration points in the image. 

Another type of calibrating approach is one that does not require any prior 

knowledge of where points in the world are located. In this scenario, internal 

calibration may be distinguished from external calibration, and the optimization step 

can be carried out, for example, over the four internal parameters k1, Ox, Oy, and ax. 

2.5.2 Internal parameters 

The internal parameters of a camera (in the pinhole camera concept) are f, Px, Py, 

k1, Ox, Oy, ax. If we know the values of f, Px, and Py from the camera's technical specs, 

the calibration parameters are k1, Ox, Oy, and ax. 

We define the relationship between the coordinates of the distorted and undistorted 

images in order to calibrate the internal parameters of each camera. It is feasible to 

undistort the image so that it can be treated as originating from a pinhole camera by 

knowing k1, Ox, Oy, ax, (Px and Py). 

The distorted and undistorted images of the left and right cameras are exhibited in 

the following photographs. 
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Figure 2.12. Example of distorted and corrected grids. 

2.5.3 External parameters 

Both the correspondence problem (identifying the epipolar lines for determining 

point correspondences) and triangulation require external parameters (for 

reconstruction). 

In the following, we assume that we are dealing with a stereo camera in its typical 

configuration (i.e. parallel optical axes and coplanar picture planes), and that small 

angle approximation is valid (angles determining R are small). 

The left camera is chosen as the global reference system, and the parameters to be 

discovered are the right camera's translation vector T and rotation matrix R in relation 

to the left camera. 

It is necessary to locate the translation vector T. Tx is usually determined by 

measuring the distance between the centers of the cameras (that equals the baseline b). 

We regard Ty and Tz to be 0 as well. 

The three rotation angles around the right camera axis determine the rotation matrix 

R (phi, theta, and psi). Rotation around the X axis (phi) and around the Y axis (theta) 

can be approximated as displacements across Ty (Yoff) and Tx (Xoff) using small angle 

approximation. 

2.5.4 Stereo camera calibrators 



 

27 

 

There are many applications for stereo camera calibration. Mostly these 

applications have been proposed based Matlab, OpenCV or Python languages (Esteban 

et al., 2010). There exists stand-alone applications for calibration as well. 

The stereo calibrator of Matlab is called by the function stereoCameraCalibrator 

and provides a graphical interface for the user to perform the calibration. This 

calibrator is quite easy to use and functions pretty fast. The app requires the address of 

the folders of left and right calibration samples as well as the size of each square. The 

app provides the calibration error to redo the calibration or use it for further processing.  

The results of calibration—including the internal and external parameters—can be 

exported as a calibration file and be loaded anytime during the processing steps. 

There are other toolboxes for Matlab that perform the calibration based on different 

criteria and techniques that can be found on the web. Uematsu et al. (2007) presented 

an application called ‘D-Calib’ for calibration multicamera systems. Their calibration 

approach included two steps: initializing camera parameters with a planar marker 

pattern and optimizing initial parameters by tracking two markers linked to a wand. 

Also, it was reported that the calibrator functions pretty fast and works well for large 

baseline systems. 

Self-calibration calibration also has been studied for online stereo imaging. 

Szczepanski 2019 proposed a self-calibration method that relies solely on data from 

the seen scene and excludes the usage of controlled models. First and foremost, they 

regard calibration to be a background system activity that must operate continuously 

in real time. Internal calibration was not the system's primary responsibility, but it was 

a procedure that high-level applications rely on. As a result, system constraints 

severely limited the algorithm's complexity, memory, and execution time. Because the 

suggested calibration approach used typical data from computer vision applications 

and required low resources, it could be buried within the application pipeline. 

Lam (2006) used Ksai’s algorithm for the calibration of the system. They used a 

light projection pattern and a single camera for active stereo imaging. Ksai’s method 

is one of the simplest and most common methods for stereo calibaration. The use of 
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machine learning for stereo calibration or improvement of calibration has been studied 

in much research (Do 1999; Nichols 2001; Memon et Khan, 2001; Xing et al., 2007; 

Donné et al., 2016). Won et al. (2019) proposed an end-to-end deep neural network 

model for omnidirectional depth estimate using a multi-view stereo configuration with 

a large baseline.  

2.6 Point cloud segmentation 

The aim was to segment point clouds for counting leaves. In this regard, the use of 

clustering techniques for segmentation of the point clouds was necessary. Clustering 

methods allow data to be partitioned into subgroups, or clusters in an unsupervised 

manner. These segments, on the surface, appear to combine comparable observations 

together. As a result, clustering algorithms are very dependent on how this notion of 

similarity is defined, which is often field-specific. For exploratory data analysis, 

clustering techniques are frequently utilized. They also make up the majority of the 

procedures used in AI classification pipelines to produce well-labeled datasets in an 

unsupervised/self-learning manner. 

Clustering techniques are particularly beneficial in situations where labeling data 

is costly. Take the task of annotating a big point cloud as an example. It can be a long 

and tiresome operation annotating each point with what it represents, to the point that 

persons performing it accidentally introduce inaccuracies due to inattention or 

exhaustion. Allowing a clustering algorithm to group comparable points together and 

then only involving a human operator when providing a label to the cluster is less 

expensive and possibly more efficient. 

 

Figure 2.13. An example of a segmented point cloud of a road surrounding (Xiang et al., 2018). 

https://scholar.google.com/citations?user=c1LmfR0AAAAJ&hl=en&oi=sra
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Unsupervised algorithms have a more difficult time defining their purpose than 

supervised algorithms, which have a clear mission to complete (e.g. classification or 

regression). As a result, the model's success is more subjective. The fact that the goal 

is more difficult to define does not preclude a variety of performance indicators, which 

will be discussed below. 

Clustering is the process of putting together the points that are the most similar or 

close together. Clustering is strongly reliant on the principles of distance and 

similarity. 

These ideas will be quite helpful to formalize: 

(1) the distance between two observations;  

(2) the distance between an observation and a cluster;  

(3) the distance between two clusters. 

2.6.1 Distance clustering 

The Euclidean and Manhattan distances are two of the most often used examples 

of distances. The "ordinary" straight-line distance between two places in Euclidean 

space is known as the Euclidean distance. The Manhattan distance is named after the 

two-dimensional distance traveled by a taxi on Manhattan's streets, which are all either 

parallel or perpendicular to one another. 

As a result, a distance can be used to determine similarity: the greater the distance 

between two places, the less similar they are, and vice versa. We can convert a distance 

d between x and y into a similarity measure with just a smidgeon of arithmetic. Another 

frequent method for determining similarity is to utilize the Pearson correlation, which 

considers the form of the distribution rather than its amplitude, as the Euclidean 

distance does. It's crucial to pick the right distance measurement. 
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Figure 2.14. A simple example of Euclidean distance clustering. 

2.6.2 Shape clustering 

A cluster's form is a crucial feature that we first define as: 

(1) tightened inwards: two close points must be part of the same cluster. 

(2) separated by a large distance: two points separated by a large distance must 

belong to different clusters. 

We frequently look for clusters that are tightening on themselves. Let's use the 

Euclidean distance as an example to translate these qualities. To begin, we may quickly 

compute the centroid of a cluster. The average of the distances between each of the 

locations in the cluster and the centroid can then be used to determine the cluster's 

homogeneity. A tightened cluster will have less heterogeneity than a cluster of 

distributed points in this way. The average of the homogeneity of each cluster may 

then be calculated to characterize not just one cluster, but all clusters in our dataset. 

Second, the clusters should be separated from one another. The distance between 

the centroids of two clusters is commonly used to quantify this separation. We may 

calculate the average of these quantities on all of the obtained pairs of clusters once 

more. 

Homogeneity and separation are the two criteria we must now optimize. We may 

simplify things by combining them into a single criterion, the Davies-Bouldin index. 

This measure compares intra-cluster distances (homogeneity) — which should be low 

— to inter-cluster distances (separation), which should be high. This index is all the 

weaker for a given cluster because all of the clusters are homogeneous and well 

separated. 
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2.6.3 Edge based segmentation 

Edges describe the characteristics of an object's shape. To obtain segmented 

regions, edge-based methods detect the boundaries of several regions in point clouds. 

These approaches work on the premise of locating spots with a quick shift in intensity. 

Fig. 2.15 shows an example of edge-based segmentation of a point cloud. 

 

Figure 2.15. Example of edge-based segmentation (Che et al., 2019). 

Although edge-based methods allow for quick segmentation, they have accuracy 

issues because they are all very susceptible to noise and unequal point cloud density, 

which are frequent in point cloud data. 

2.6.4 Region based segmentation 

Region-based approaches combine close points with similar qualities to create 

isolated areas and, as a result, find dissimilarity between the distinct regions using 

neighborhood knowledge. Methods that are based on regions are more accurate in 

terms of noise than methods that are based on edges. However, they have issues with 

excess or under segmentation, as well as accurately determining area borders. 
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2.6.5 Attributes based segmentation 

Attributes-based methods are robust methodologies based on point cloud data 

clustering attributes. There are two steps to these approaches. The first stage is to 

compute the attributes, and the second step is to cluster the point clouds based on the 

derived attributes. Clustering approaches allow for the incorporation of different cues 

into the segmentation process by accommodating spatial relationships and features. 

These methods have the drawback of being very reliant on the quality of derived 

qualities. To get the optimum separation between distinct classes, the properties of 

point cloud data should be computed properly. 

The most reliable strategy for grouping points into homogeneous zones is to use 

attributes-based algorithms. Their outcomes are adaptable and precise. These methods, 

on the other hand, rely on the definition of a point's neighborhood and the point density 

of point cloud data. Another drawback of these methods is that they take a long time 

to process when dealing with multidimensional attributes for a large number of input 

points. 

2.6.6 Model based segmentation 

Geometric primitive shapes (e.g., sphere, cone, plane, and cylinder) are used to 

group points in model-based techniques. Points with the same mathematical 

representation are placed together to form a segment. RANSAC (RANdom SAmple 

Consensus) is a well-known algorithm that is frequently utilized. RANSAC is a robust 

model for detecting mathematical properties such as straight lines, circles, and so on. 

For model fitting, this method is considered the gold standard. Many following works 

in 3D point cloud segmentation have adopted this first technique. Gélard et al., 2017 

used model-based approach for phenotyping of sunflower plants. Structure from 

Motion was used to create a 3D point clouds from RGB photos collected all around a 

plant. After that, the proposed method was used to segment and label plant leaves (Fig. 

2.16). 
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Figure 2.16. Segmented plant leaves using model-based clustering (Gélard et al., 2017). 

Model-based approaches are based on pure mathematics. With outliers, they are 

quick and resilient. These approaches' fundamental flaw is their inaccuracy while 

dealing with various point cloud sources. 

2.6.7 Graph based segmentation 

The point clouds are viewed as a graph in graph-based approaches. Each vertex 

represents to a point in the data, and the edges connect to specified pairings of 

surrounding points in a simple model. Because of their efficiency, graph-based 

approaches are becoming increasingly attractive for robotic applications. The FH 

algorithm is a well-known example of this strategy. This algorithm is simple and 

efficient, and it works similarly to Kruskal's technique for finding the shortest path in 

a graph. 

In comparison to other methods, graph-based algorithms can separate complicated 

sceneries in point cloud data with superior results, especially when there is noise or 

uneven density. These methods, on the other hand, are rarely able to run in real time. 

Some of them may require further offline training or a co-registered sensor and camera 

setup. 

2.7 Spectral data for agriculture 

Another contribution of this work was to study the ability of spectral data analysis 

for discrimination of bell pepper from weeds as the primary step for monitoring bell 
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pepper growth measurements. When optical radiation hits the surface of one of the 

many components of the environment, it can be reflected, transmitted, or absorbed, 

depending on the energy conservation principles (Fig. 2.17). The material and quality 

of the surface on which the radiation impinges determine the nature and intensity of 

this activity. The proportions, quantity, size, and form of the elements that make up 

the material will influence the parameters of the interaction, determining which 

features of the incident radiation will be affected and to what extent (Sandoval et al., 

2010). 

 

Figure 2.17. Behavior of surface against passage of electromagnetic waves. 

The energy of an electromagnetic wave is proportional to its wavelength; the 

shorter the wavelength, the more energy is contained in the wave. As previously stated, 

when this energy comes to the surface of a body, it is either reflected from, collected 

by, or transferred by it. The wavelength, as well as the physical and chemical features 

of the body, influence the level and intensity of each process. Plants' spectrum 

reflectance is determined by the structure of their surface and the cells in their leaves, 

in addition to the absorption of their elements. The optical qualities of leaves are 

determined by their composition and structure, as well as their water content and 

biochemical concentration. 

Spectral reflectance in the visible (VIS) and near-infrared (NIR) ranges, according 

to several research papers and scientists, is a potent and effective instrument for 

evaluating plant and agricultural features and conditions (Wang, 2018). As a result, 



 

35 

 

most agricultural research rely on measurements in the visible (400–700 nm) and near-

infrared (700–2500 nm) wavelength ranges. Optical properties in these regions have 

been shown in numerous studies over the last few decades to be capable of detecting 

physiological and biological functions of plants and crops, potentially providing 

information for agricultural uses. Some researchers offered a set of wavelengths for 

which reflectance values can provide a wealth of information about the plant's state 

and performance. They specifically mentioned 550 nm (green reflectance peak), 650 

nm (chlorophyll absorption band), 850 nm (infrared reflectance plateau), 1450 nm 

(water absorption band), 1650 nm (reflectance peak following 1450 nm), 1950 nm 

(water absorption band), and 2200 nm (water absorption band) (reflectance peak 

following water absorption band at 1950 nm) (Luisa España‐Boquera et al., 2006; 

Carter and Knapp; de Jong et al., 2012; Xiaoping et al., 2017; Zhao et al., 2019; Lan 

et al., 2013; Alchanatis et al., 2005; Lin et al., 2017; Zude-Sasse et al., 2002; Feng et 

al., 2019; Babellahi et al., 2020). All of these studies suggest that if the organism in 

question is a plant, and the characteristics of one or more of these processes can be 

monitored, we can deduce important information about the plant's health and 

functionality from the data. 

Among the methods most frequently employed for analyzing spectral data and 

classifications are K-nearest Neighborhood Classifier, Linear Discriminant Analysis 

(LDA), Principal Component Analysis (PCA), Normalized Difference Vegetation 

Indices, Fourier Transformation, Jeffries–Matusita Distance Measure, Support Vector 

Machines and Artificial Neural Networks. In previous works, these techniques have 

been utilized for the extraction of information from spectral data (Zhang et al. 2002; 

Bell et al. 2004; Noble et al. 2009; Longchamps et al. 2010; Durgante et al. 2013; 

Strothmann et al. 2017; Zarco-Tejada et al. 2018; Louargant et al. 2018). Symonds et 

al. (2015) created a system for identifying plants in real time using discrete reflectance 

spectroscopy. In this study, three different laser diodes (i.e. 635 nm, 685 nm and 785 

nm) were used. They reported that the system could make a practical discrimination 

for a vehicle speed of 3 km/h. In another work, Nidamanuri (2020) utilized machine 

learning to distinguish between kinds of tea plants. Canopy level hyperspectral 
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reflectance measurements were acquired for tea and natural plant species in the range 

of 350 nm to 2 500 nm. They could discriminate six out of nine tea plant varieties with 

accuracies between 75 % and 80 %. Laba et al. (2005), using derivative spectral 

analysis, examined how to distinguish between invasive wetland plant species. First, 

second and higher-order derivatives of the reflectance spectra of nine field plots were 

obtained. The results showed that dates in August were optimal from the point of view 

of species differentiability and could be selected for image acquisitions. 

Convolutional Neural Networks (CNN) have recently been implemented and 

improved for classification purposes. The benefit of CNNs is that they develop their 

own feature sets through network training, which enables them to discriminate 

between samples that haven't been seen with a high performance rate (Garibaldi-

Márquez et al. 2022). Andrea et al. (2017) discriminated maize and weed using CNNs. 

They verified LeNET, AlexNet, cNET and sent architectures and the cNET resulted to 

the best performance in terms of accuracy (95.05 %) and processing time (2.34 ms). 

Xi et al. (2020) proposed a network called MmNet consisting of the Local Response 

Normalization of AlexNet, GoogLeNet and VGG inception models. The proposed 

MmNet led to an accuracy of 94.50% and a time cost of 10.369 s. Garibaldi-Márquez 

et al. (2022) studied the use of shallow and deep learning techniques for the 

discrimination of plant and weed. VGG16, VGG19, and Xception models were trained 

and tested leading to the accuracies of 97.93 %, 97.44 % and 97.24 %, respectively. 

2.8 Dimensionality reduction techniques 

When dealing with a high number of variables, the challenge of feature selection 

in classification typically emerges. In recent years, the requirement has grown as a 

result of the management of increasingly big databases, particularly in fields like 

genetics and image processing. As a result, the number of variables (features) used to 

classify an image or an object must be reduced (Hamdi et al., 2014). 

As a result, the dimension reduction algorithms employed for this purpose strive to 

locate a projection of the data in a reduced-dimensional space while retaining the 

information contained within. It's possible that this projection will be linear or 
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nonlinear. Herein a short description of dimensionality reduction techniques is 

presented. 

2.8.1 Partial least square regression 

Partial least squares (PLS) regression is a technique that reduces the predictors to 

a smaller set of uncorrelated components and performs least squares regression on 

these components, instead of on the original data. When your predictors are strongly 

correlated or when you have numerous predictors than observations and conventional 

least-squares regression either fails completely or yields coefficients with large 

standard errors, PLS regression is very helpful. 

2.8.2 High Correlation Filter 

Data with comparable trends are more likely to contain similar data. Only one of 

these will be enough to input the machine learning model in this scenario. The 

Pearson's Product Moment Coefficient and the Pearson's chi square value are used to 

calculate the correlation coefficient between numerical and nominal data. The number 

of columns in a pair that have a correlation coefficient greater than a threshold is 

reduced to just one. A word of caution: correlation is scale sensitive, therefore for a 

meaningful correlation comparison, column normalization is essential. 

2.8.3 Random Forests / Ensemble Trees 

In addition to being effective classifiers, Decision Tree Ensembles, often known as 

random forests, are beneficial for feature selection. One method for reducing 

dimensionality is to create a large, carefully designed set of trees against a target 

property, then utilize the usage statistics for each variable to discover the most 

informative subset of features. We can create a big number of extremely shallow trees 

(e.g. 2 levels) with each tree trained on a small percentage of the entire number of 

characteristics, resulting in a large number of trees. If an attribute is frequently chosen 

as the best split, it is most likely a useful trait to keep. The most predictive attributes 

are determined using a score based on attribute usage statistics in the random forest. 

2.8.4 Principal Component Analysis (PCA) 
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The statistical process Principle Component Analysis (PCA) orthogonally 

transforms the original m coordinates of a data set into a new set of n coordinates called 

principal components. The first principal component has the highest possible variance 

as a result of the transformation; each subsequent component has the maximum 

possible variance under the constraint of being orthogonal to the preceding 

components. By maintaining only the first n components, the data dimensionality is 

reduced while the majority of the data information, i.e. the variance in the data, is 

retained. It's worth noting that the PCA transformation is sensitive to the original 

variables' relative scale. Before using PCA, the data column ranges must be 

standardized. It's also worth noting that the new coordinates (PCs) are no longer true 

system-generated variables. When you use PCA to analyze your data, it loses its 

interpretability. PCA is not the transformation for your project if interpretability of the 

data is vital for your analysis. 

2.8.5 Backward Feature Elimination 

The specified classification algorithm is trained on n input features in this 

technique at each iteration. Then, one by one, we eliminate input features and train the 

same model on n-1 input features n times. We delete the input feature that caused the 

smallest increase in the error rate, leaving us with n-1 input features. Following that, 

the classification is repeated using n-2 features, and so on. Each iteration k yields a 

model with n-k features and an error rate of e. We specify the fewest number of features 

required to achieve that classification performance with the chosen machine learning 

method by selecting the maximum allowable error rate. 

2.8.6 Forward Feature Construction 

Backward Feature Elimination is the inverse of this method. We begin with just 

one feature, gradually adding one feature at a time, i.e. the one that results in the 

greatest boost in performance. Backward Feature Elimination and Forward Feature 

Construction are both time-consuming and computationally intensive methods. 

They're practically only useful for data sets with a small number of input columns. 

2.8.7 Wavelet Transforms 
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A discrete wavelet transform (DWT) decomposes an input signal into a number of 

sets, each set consisting of a time series of coefficients that describes the signal's 

evolution in the corresponding frequency band. Wavelet transforms can be used to 

multidimensional data, including a data cube. This is done by first applying the 

transform to the first dimension, then to the second, and so on. Wavelet transforms 

have many real-world applications, including the compression of fingerprint images, 

computer vision, analysis of time-series data, and data cleaning. 
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3  

ACTIVE STEREO IMAGING 
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To obtain the 3D model of the plants based on stereo images, a stereo system was 

developed. The stereo imaging system takes the image of the plant from two different 

positions and after processing, extracts the 3D point cloud which needs to be meshed 

for building the 3D model. In this chapter first the development of the imaging system 

is provided and then the calibration and processing. 

3.1 Plants 

Bell-pepper seeds of the variety Cavendish F1 were procured and cultivated in a 

glass greenhouse that provides good exposure to the sun. The soil composition was 

1:1:1 fertilized soil, coco peat and perlite. The plants were irrigated daily (i.e. around 

a centimeter) and temperature and moisture of the greenhouse were fully controlled. 

Stereo images were obtained every other day at early stages of growth. This included 

plants in 5th to 35th day of growth period. Figure 3.1 shows the RGB images of some 

of the samples from a top view.  

The experiments of this research were performed in a greenhouse located in the 

Faculty of Agriculture of Tarbiat Modares University. One of the greenhouse rooms, 

which was equipped with a cooling system, was used for the experiments. Plastic pots 

were used for planting and growing bell peppers.  
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Figure 3.1. Top-view RGB images of different bell-pepper samples used for stereo segmentation. 

3.2 Leaf scanner 

To build a database of actual physical properties of plants’ leaves as well as 

measure these dimensions during growth period, a handheld scanner was prepared. 

The minimum and maximum dimensions of bell pepper plant leaves were extracted 

from the previous works (i.e. 6.5*12.5 cm). Therefore, a scanning surface of 9*14 cm 

was considered. To provide a light scanner, transparent plexiglass was used for the 

scanner. A webcam (A4Tech, China) with the resolution of 14 MP was used directly 

on the top of the scanner. This camera directly is connected to the laptop by USB cable. 

  

Figure 3.2. Hand-held leaf scanner and a sample image of a leaf. 
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3.3 Database of leaf features 

During growth, images of leaves were taken every two days and the physical 

properties of the leaves were extracted from these images. As growing plants is a slow 

process and to decrease the huge amount of image processing computations, two-day 

interval was chosen. Nine physical properties were utilized as indices representing leaf 

shape (Wu et al. 2007). The list of these properties and their definitions have been 

provided in Table 3-1. These properties were required to make a database of leaf 

properties and to train the neural networks based on actual leaf properties. As a whole, 

the physical properties of 311 leaves were obtained.  

Table 3-1. Leaf physical properties used for morphological estimation of leaf shape. 

Property Description 

Physiological length The distance between the two terminals is defined as the physiological length. It is 

denoted as Lp 

Physiological width Drawing a line passing through the two terminals of the main vein, one can plot 

infinite lines orthogonal to that line. The number of intersection pairs between those 

lines and the leaf margin is also infinite. The longest distance between points of those 

intersection pairs is defined as the physiological width. It is denoted as Wp 

Leaf area The value of leaf area is easy to evaluate, just counting the number of pixels of binary 

value 1 on smoothed leaf image. It is denoted as A 

Leaf perimeter Denoted as P, leaf perimeter is calculated by counting the number of pixels consisting 

leaf margin 

Aspect Ratio The aspect ratio is defined as the ratio of physiological length Lp to physiological 

width Wp, thus Lp/Wp 

Form Factor This feature is used to describe the difference between a leaf and a circle. It is defined 

as 4πA/P2, where A is the leaf area and P is the perimeter of the leaf margin 

Rectangularity Rectangularity describes the similarity between a leaf and a rectangle. It is defined as 

LpWp/A, where Lp is the physiological length, Wp is the physiological width and A is 

the leaf area 

Perimeter ratio of 

diameter 

Ratio of perimeter to diameter, representing the ratio of leaf perimeter P and leaf 

diameter D, is calculated by P/D 

Perimeter ratio of 

Lengths 

This feature is defined as the ratio of leaf perimeter P and the sum of physiological 

length Lp and physiological width Wp, thus P/(Lp + Wp). 

 

The written algorithm cropped the image to the region of interest which is the leaf 

zone, extracted the green layer of the image. This helps in segmentation of the images 
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to foreground and background. Then a threshold was applied and produced a binary 

image containing the leaf shape. A filling function was used to fill the holes in the leaf 

image. These holes were appeared in some images because of dust, insects, or scanner 

uncleanness. Finally, a dilating filter was used to make the edge smoother as often by 

thresholding an uneven edge is produced which causes error in the measurements. The 

filter kernel used is as follows which is a small disk with the radius of one pixel: 

𝑘 = [
0 1 0
1 1 1
0 1 0

] 

 
 

a b 
Figure 3.3. Measurement of geometrical properties of leaves; a) the scanned leaf, b) the processed image. 

3.4 Active stereo system 

3.4.1 Temperature and humidity sensor 

DHT22 sensor (Aosong Electronics Co., China) was used to measure temperature 

and humidity (Figure 3.4). DHT22 humidity sensor is a good quality sensor for 

measuring temperature and humidity. This sensor consists of two sensors, a capacitive 

humidity sensor and a heat resistor. There is also a very simple chip inside that converts 

analog to digital and produces digital output. The sensor specifications are presented 

in Table 3-2. 
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Figure 3.4. The temperature and moisture sensor. 

 

Table 3-2. Technical specifications of DHT22 temperature and humidity sensor. 

Required power 3.3-6 V, DC 

Output signal Digital signal with single port 

Sensing element Polymer capacitor  

Operating range humidity 0 – 100% RH, temperature -40 – 80 °C 

Accuracy Humidity ±2% RH, temperature ±0.5 °C 

Resolution Humidity ±0.1% RH, temperature ±0.1 °C 

Sensing period The average is 2 seconds 

Dimensions 14 × 18 × 5.5 mm 

 

3.4.2 Light sensor 

The GY302 sensor (ROHM, China) was used to measure the intensity of light 

received daily during the growth stages. The sensor was placed inside a protective box 

to protect it from impact and dust (Figure 3.5). The GY-302 BH1750 luxmeter module 

is based on the BH1750 chip, which supports the I2C communication protocol, 

eliminating the need for an external converter such as an analog-to-digital converter. 

This sensor module can measure a wide range of light. Other technical specifications 

of the sensor are presented in Table 3-3. 
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Figure 3.5. The light sensor. 

 

Table 3-3. Technical Specifications of GY302 Light Intensity Sensor. 

Input voltage 3 – 5 V 

Operating temperature range -40 – 85 °C 

Weight 2 g 

Dimensions 2.3 × 14.4 × 19.5 mm 

Working current 120 μA 

communication protocol I2C  

Lighting range 0 – 65535 Lux 

 

3.4.3 Light Projector 

For light stripe, a video projector was used (NEC NP215 Projector, Sharp NEC 

Display Solutions, Ltd. Tokyo, Japan). The detailed information of the projector have 

been presented in Table 3-4. The use of laser causes problems that by video projector 

can be altered. The laser calibration is quite difficult and the laser line reflection on the 

plant leaves and environment also makes unwanted light points in the images. Morris 

(2006) used a laser for development of an active stereo 3D Scene reconstruction 

system. For reducing the laser intensity and power, they developed filters to be put in 

front of the laser projector. All modifications of light stripe are possible by video 

projectors including the quality of light, the speed of line travelling and thickness of 

the light stripe. The light stripe was projected on the field and travels until the end of 

the field. Then for the next measurement, the video again was played. Weisenfeld 

(2002) used laser for the projection of light stripe for active stereo measurement which 
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was equipped with a motor for motion control. Teutsch et al. (2005) proposed laser for 

the active vision for its intensity and reliability. 

 

Figure 3.6. Light projector used for active stereo imaging. 

Table 3-4. Technical specifications of the projector. 

Brightness 2500 ANSI Lumens 

Resolution 1024 × 768 

Aspect Ratio 4:3 (XGA) 

Contrast 2000:1 

Display Type 1 × 1 cm DLP  

Color Processing 8-bit 

Video Modes 720p, 1080i, 576i, 576p, 480p, 480i 

Lamp Type 180W UHP bulb 

Lamp Life 3500 hours – 5000 hours 

Lamp Model 60002853 / NP18LP 

Included Lens 1.1x manual zoom , manual focus 

Image Size 76 cm – 762 cm 

Projector Size 9 cm × 31 cm × 25 cm 

Weight 2.5 kg 

Power 242 Watts, 100V – 240 V 

 

3.4.4 Micro-servomotor  

In this work, the use of a light stripe for light projection on the plants was examined. 

For moving and swiping light on the plants with a good accuracy, a light micro-

servomotor (MG90S, TIANKONGRC, China) was used. This micro-servomotor is a 

small servomotor with tiny gears having the torque of 2.2 K and input voltage of 4.8 

V. The controlling signal is PWM. Also, it has the ability of circulating for 180°. 
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Figure 3.7. Micro-servomotor used for displacement of the laser. 

3.4.5 Camera 

Two webcams (LogiTech C525) made by LogiTech, China (Figure 3.8) were used. 

Cameras had a resolution of 8 megapixels. These cameras have a USB port and can be 

easily connected to a computer. The image size of this camera is 1280 × 720 pixels. 

The technical specifications of the cameras are presented in Table 3-5. In previous 

research usually high sensitivity monochrome cameras have been used for active 

stereo imaging. Weisenfeld (2002) utilized two monochrome charge coupled devices 

for the development of an active stereo system for surface measurement. 

 

Figure 3.8. The LogiTech webcam. 

Table 3-5. Technical specifications of the cameras. 

Camera model HD Webcam C525  

Manufacturer LogiTech, China 

Connection type USB  

USB Type  USB 2.0 

Lens type plastic sensor 

Resolution 2 MP, real; 8 MP, software 

Viewing angle 69° 

Imaging (SD 4: 3) 240 × 320, 480 × 640, 2 MP, 8 MP 
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Imaging (W 16: 9) 360p, 480p, 720p 

Video recording (SD 4: 3) 240 × 320, 480 × 640, MP 2 

Video recording (W 16: 9) 360p, 480p, 720p 

fps rate 30 Fps  

Camera width 40.4 mm 

Length 68.5 mm 

Height 31.75 mm 

Weight 88 g 

 

3.4.6 Electronic unit 

An electronic circuit was built to control the movement of the servo motor and the 

laser projection on the plant. The circuit takes command from a computer, turns on the 

laser, and shines it on the plant. After irradiation, the laser turns off and returns to its 

original state. The circuit also sends temperature, humidity and light intensity 

information to the computer for daily recording. This unit has parts such as ATMega8 

microcontroller, ttl to USB cable, servo motor, temperature sensor (DHT22, China), 

humidity sensor (DHT22, China) and light intensity sensor (GY-302, China). 

 

Figure 3.9. The controlling circuit of sensors. 

3.4.7 Graphic interface 

A graphical interface was created in MATLAB software to record videos and light 

projection on the plant. This interface helps the user to easily view and record 

information. Therefore, for each experiment, temperature, humidity and light intensity 

sensor information was recorded at the same time as the video. By pressing the Run 

key, the engine is started and the laser is projected on the plant. At the same time, the 

cameras start filming and at the end, the videos are saved. 
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Figure 3.10. Graphical interface developed for measurements. 

3.4.8 System 

A chassis was built for putting the system on it and move all the system for different 

measurements. Figure 3.11 shows this chassis with the dimensions determined for 

imaging of pepper plants in early ages. 

 

Figure 3.11. Chassis developed for holding the imaging system. 

Next, a holder was designed and developed for holding the cameras and the 

projector. This holder needed to provide the ability to hold the cameras in different 

angles. In this case a small track was cut from the body of it that could provide the 

possibility to change the angle and baseline of left and right cameras. 
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Figure 3.12. Developed holder for the cameras and the projector. 

To place the cameras on the system and easily adjust their positions, two telescopic 

hands were used. These arms could get longer three times more than the primary 

condition. There are fixtures on the arms that helps to maintain the size for further 

measurements. Also, the top part of the hand is equipped with a camera holder that 

maintain the camera during the measurements. 

 

Figure 3.13. Telescopic hand for holding the cameras. 

The stereo imaging system consists of a projector and two cameras (Figure 3.14). 

The video projector was placed vertically on top of the plant. The videos including a 

light stripe were prepared and played during the measurements. Cameras and 

electronic units are connected to the computer via USB. The camera holder was made 

so that the angle of the cameras relative to each other and the distance of the cameras 

to the plant can be adjusted. The camera and video projector were placed on a rail to 

move at fixed and adjusted angles to produce images of other plants. 
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Figure 3.14. The imaging and measurement set-up. 

Figure 3.15 provides the big picture of the system with different units and 

processing stages. The stereo system that takes two images at a time, needs to be 

calibrated and process the images by matching them and extraction of features. In the 

following sections, the processing stages are presented. 

 

Figure 3.15. Block diagram of the stereo imaging system. 

3.4.9 Positioning of the cameras 
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The cameras were symmetrically positioned on handles that provided the ability to 

adjust the angle between them. Figure below schematically illustrates how the cameras 

see a common area for taking images of the objects. The area that each camera sees is 

called “field of view.” Placement of the cameras on the holder should be in the way 

that they cover the region of interest for imaging including the object or plant. 

 

Figure 3.16. Field of view and common area of cameras. 

As the FoV (Field of View) of the utilized cameras is 68 degrees, and an area of 

interest was about 60 × 60 cm², based on the geometrical relation represented in figure 

below, a distance of about 44.477 cm was achieved. Considering the dimension of 60 

cm, B is achieved as 30 cm. A is obtained from tangent of the angle θ which equals to 

56°. And C is calculated based on Pythagorean theorem which is equal to 53.65. Hence 

this amount was considered as vertical distance of the cameras with the plant. 

tan (θ) = 
𝐴

𝐵
  

A = B * tan (56) = 44.477 cm 

C = √302 + 44.4772 = 53.65  cm 
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Figure 3.17. Calculation of camera distance from the plant. 

It is also possible to take several images of the sample objects from different angles 

and points of view. This technique can help for the good positioning of the cameras. 

The cameras will be fixed and the object is put on a platform for being taken photos in 

different positions and distances (Trujillo Romero, 2008). 

3.4.10 Calibration 

For calibration of the stereo camera and extraction of internal and external 

parameters, the stereo calibrator toolbox of MATLAB (Mathworks Inc., the US, 

2019b) was used. Calibration process of the stereo camera is done as follows: 

▪ Preparation of images, cameras, and checkerboard pattern 

▪ Uploading the images into the calibrator 

▪ Calibration 

▪ Measurement of accuracy of calibration 

▪ Adjusting parameters for improvement of accuracy 

▪ Exporting internal and external parameters to the code 

3.4.11 Preparation of checkerboard pattern 

The standard checkerboard pattern provided by MATLAB was used in this study. 

The pattern must have black and white squares but the whole pattern must be 

rectangular. One side of the pattern must have an odd number of squares and another 

side an even number of those. This pattern was printed and glued on a cartoon plate 

(Fig. 3.18). No other signs and lines must be on the pattern. 
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Figure 3.18. The standard checkerboard used for calibration. 

The squares on the printed pattern were measured that amounted to 16.5 mm. This 

size was used for the calibration in the calibrator application. By positioning the pattern 

in different locations, more than 50 pairs of images were obtained (Fig. 3.19). The 

images were taken in a way that the whole pattern was visible in the image. No 

processing was done on the images before presenting them to the calibrator. 

    

Left_01 Left_02 Left_03 Left_04 

    

Left_05 Left_06 Left_07 Left_08 

    

Left_09 Left_10 Left_11 Left_12 

    
Left_13 Left_14 Left_15 Left_16 

Figure 3.19. Sample images used for calibration taken with the left camera. 

3.4.12 Evaluation of calibration accuracy 
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First the calibrator application presents the reprojection errors. The reprojection 

errors are represented in distances (i.e. in pixels) between the detected points and the 

reprojected points. The calibrator application of MATLAB calculates the reprojection 

errors by projecting the checkerboard points from world coordinates, defined by the 

checkerboard, into image coordinates. This app compares the reprojected points with 

the corresponding points detected in the calibration images. Figure 3.20 shows how 

the reprojection error is presented.  

 

Figure 3.20. The error measurement of reprojection in calibration of stereo cameras. 

Next, the mean reprojection error per image is provided in a bar graph, along with 

the overall mean error. This graph shows the proper pairs or the pairs that can be 

removed also. 

 

Figure 3.21. Bar chart of accuracy measurement of calibrated stereo cameras. 

The calibrator app also provides a camera-centric view of the patterns and a 

pattern-centric view of the camera. These are presented as the 3-D extrinsic parameters 

of calibration. This graph is helpful to check the relative positions of cameras and 

patterns used for calibration. For example, a pattern that appears behind the camera 

indicates a calibration error. 
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Figure 3.22. Spatial position of stereo cameras based on calibration and position of checkerboard. 

3.4.13 Taking active stereo images 

The light stripe was projected to the environment and simultaneously the right and 

left videos of light travelling were recorded and saved. All frames of the videos were 

extracted and used for processing. In this regards, first left frame corresponds to the 

first right frame meaning that they need to  be treated at the same time. Figure 3.23 

illustrates two sample pairs of left and right images for a test sample and a plant. 

  

  

Left camera Right camera 

Figure 3.23. Sample images of the left and right cameras; Top) a test object and bottom) a plant. 

3.4.14 Light strip color 



 

59 

 

In previous research, red light strip has been used (Beraldin et al., 2003; Morris, 

2006; Tu et al., 2019). Weisenfeld (2002) used a red laser for intraoperative surface 

measurements using active stereo imaging. Of course, the main reason was the 

accessibility of red lasers. In the present study, due to the use of a video projector for 

light radiation, the ability to test other colors was also examined. For this purpose three 

colors literally red, green, and blue were evaluated. The light strips were made as video 

files to be executed by the computer and the desired light was projected on the 

environment by the projector. 

   

Figure 3.24. Different colors of light stripe (From left: red, green, blue). 

3.4.15 Noise removal 

Noise is a routine guest of digital images. Noise may occur because of different 

reasons including image sensor, light conditions or environmental causes. In active 

stereo imaging, normally a grain noise happens in the images as a result of scattering 

the light on the environment (Fig. 3.25). The presence of grainy noise specially in 

uniform parts of the image is more probable. This brings small white or light grey 

pixels in the image that may cause error in correspondence problem. This noise was 

removed by applying an averaging filter as the averaging filter weakens these pixels 

to lower values close to black ones. Also, a good way to minimize noise is to use 

Gaussian blur/smooth. However, it may cause the light stripe intensity to drop or the 

peak location to move (Isa and Lazoglu, 2017). Another way to reduce the amount of 

this noise is to adjust the intensity of light in the light stripe. In case of using lasers, it 

is needed to adjust the power supply and in case of using projectors, it is possible to 

adjust the light intensity in the videos or projector settings. 
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Figure 3.25. Noise in the form of light grains on the images because of scattering of light on the 

surrounding. 

3.4.16 Light stripe peak 

It is noted that the light stripe on the leaves is not also a pure line. Fig. 3.26 shows 

the region of the leaf that light strip has passed on it and its histogram representing the 

pixels with different levels of intensity. This light scattering on the leaves is inevitable. 

In this regard, by thresholding the images, the bright part of the line is selected and 

used for further processing. Other pixels were turned to black. The application of four 

light peak detection techniques literally Gaussian, Center of Mass, Parabolic and 

Linear Interpolation was evaluated. These techniques help to remove the reflections of 

the light line and keep the major part of the light and lead to a narrow light line. 

 
 

Figure 3.26. Histogram of the region including the light stripe on plant leaf. 

3.4.17 Peak detection and extraction 

Several techniques were tested for light peak detection (i.e. Gaussian, Center of 

Mass, Linear Interpolation and Parabolic techniques). Each technique boosts the peak 

pixels values and degrades the others. However, the behavior of them brings different 

results on the images. 

3.4.18 Camera angle 
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The best angle between the right and left cameras is reported to be in right angle. 

This is due to the greater ease of calibration as well as providing a better field of view 

of the environment. However, to measure and test this, three angles of 75, 90 and 105 

degrees were evaluated (Figure 3.27). The angle is considered as the angle between 

cameras toward the center of the object. The cameras were positioned and imaging 

was done for a simple plate with the predefined dimensions (i.e. 3 cm × 3 cm) (Figure 

3.28). This plate was imaged in three different angles of 30, 60 and 90 degrees.  

 
Figure 3.27. Positioning of the cameras in relation to each other. 

 

Figure 3.28. The usage of a simple plane for evaluation of camera angle. 

3.4.19 Processing 

Processing could be divided into five main steps. The first task was to remove the 

light stripes and spots everywhere except on the plant. To do so, the program was 

written to read the images from the first pixel and detect the non-zero pixels. For the 

left image, always the light stripe on the ground will be before the plant (Fig. 3.29). 

This idea was used to detect these lines and the plant and then keep the spots that are 

on the plants. Fig. 3.29 represents the area including the light stripe that is going to be 

removed. For the right image, the process is the same except that the light stripe on the 
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ground will be on the right side. Accordingly the image is read from the right side and 

detects the light stripe and removes it. Then the spots of light on the image will be the 

light spots on the plant leaves. 

It is noted that these parts of the images should not be cut and the pixels should be 

replaced with black pixels. This is due to the calibration information that is connected 

to the size of images and changing the images’ sizes will lead to mistakes in 

calculations and 3D developments. 

 

Figure 3.29. Removing the light stripe on the ground from the left image. 

3.4.20 Stereo Image Rectification 

For rectification, the traditional methods were tested. In all cases, the rectification 

was done very slowly and with huge computational costs including several hours of 

calculations. In some cases, the rectification could not be done as the matrices grow 

so big and out of memory of the PCs. In this regard, the rectification method presented 

by Su and He (2011) based on a geometric technique was employed.  

Camera model 

This method also uses the pinhole camera model describing the image position of 

a 3D point in the world by a pinhole view of the camera (Fig. 30). Let the world point 

be Pw(x, y, z) and image point be pp(u, v), the image point pp in the image coordinate 
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system pI(xI, yI) and in the camera coordinate system pc(xc, yc, zc) is obtained 

according to geometry. 

 

Figure 3.30. Stereo camera pinhole model. 

{

𝑥1 =
𝑢 − 𝑢0
𝑘𝑢

𝑦1 =
𝑣 − 𝑣0
𝑘𝑣

 (1) 

{
 
 

 
 𝑥𝑐 = 𝑓.  

𝑢 − 𝑢0
𝑓𝑢

𝑦𝑐 = 𝑓.  
𝑣 − 𝑣0
𝑓𝑣

𝑧𝑐 = 𝑓

 (2) 

where f is physical focal length of camera, ku and kv are the scale factors of the u 

and v axes, fu and fv are the product values of f and ku, kv, (u0, v0) is the coordinates of 

the principal point. 

Next, the cameras have been calibrated, then the intrinsic parameters and poses of 

the cameras are known. The pose of the right camera in relation to the left one and the 

intrinsic parameters are used as follows (Su and He 2011): 

L𝐹𝐿=[ L𝐹𝑅    L𝐹𝑅] (3) 

𝐾𝐿 = [
𝑓𝑢𝑙 0 𝑢0𝑙
0 𝑓𝑣𝑙 𝑣0𝑙
0 0 1

] (4) 
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𝐾𝑅 = [
𝑓𝑢𝑟 0 𝑢0𝑟
0 𝑓𝑣𝑟 𝑣0𝑟
0 0 1

] (5) 

The stereo system 

As the figure below illustrates, the configuration of the two cameras can be divided 

into three categories literally parallel-type, convergent-type and general-type. In the 

parallel type the intrinsic parameters are the same and the cameras are on a line. 

However, there is the difficulty to make the system accurately. Convergent-type 

requires that the optical axes of two cameras should intersect in finite distance. The 

general type of configuration is totally unconstrained and in practice this is the 

common form. 

   

a) Parallel-type b) Convergent-type c) General-type 

Figure 3.31. The structure of the stereo vision system. 

In Fig. 3.32, the optical centers of two cameras (OL, OR) and the world point P 

constitute the epipolar plane. The intersection of the epipolar plane and the camera’s 

image plane is called epipolar line. Baseline is the line OLOR between the cameras’ 

optical centers, and its intersection with the image plane is defined as epipole. When 

the projective point in one image plane of a world point is given, its corresponding 

point on the other image plane is found along the corresponding epipolar line, which 

called epipolar geometry constraint. Since the epipolar lines are not collinear in the 

general-type and convergent-type of stereo vision system (Fig. 3.31b and Fig. 3.31c), 

it needs substantial computation while using epipolar lines to search corresponding 

points. 
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To ensure the matching efficiency in convergent-type and general-type consistent 

with the parallel-type, we need to transform these two types into virtual parallel-type 

(Fig. 3.32), which is called stereo rectification. 

 

Figure 3.32. The virtual parallel system. 

Rectification of stereo image pair 

First, the original image points are converted to the coordinate system of the virtual 

parallel-type and then the image points which have been transformed to new 

coordinate system are mapped to the image plane of the virtual parallel-type by re-

projecting. As we know the x axes of the two cameras coordinate systems coincide 

with baseline and toward to the same direction in parallel-type (Fig. 3.31a), therefore 

the first step of stereo rectification is to compute the transformation matrix which 

transforms the two cameras coordinate systems to parallel-type.  

Assume left camera coordinate system is L (OL-xLyLzL), the baseline is OLOR. And 

the objective is to obtain the transformation matrix of transforming the coordinate 

system L(OL-xLyLzL) to the new coordinate system L′(OL-x′Ly′Lz′L) whose x axis 

coincides with the baseline OLOR. First let the world coordinate system coincide with 

the coordinate system L and the coordinate of point OR in the world coordinate system 

is OR(t1, t2, t3) which have been gained from LTR. And then according to geometry, the 

conversion from the left camera coordinate system L to new coordinate system L′ is 

realized through rotating α around y axis of the world coordinate system and then 

rotating β around z axis of the world coordinate system (Fig. 3.33). 
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Figure 3.33. Transformation of coordinate system. 

Then according to Niku (2001), the transformation matrix of the coordinate system 

L′ relative to the coordinate system L is obtained: 

L𝐹𝐿′=R(z,β).R(y,α)         (6) 

where 

𝑅(𝑦, 𝛼) = [
𝑐𝑜𝑠𝛼 0 𝑠𝑖𝑛𝛼
0 1 0

−𝑠𝑖𝑛𝛼 0 𝑐𝑜𝑠𝛼
]       (7) 

𝑅(𝑧, 𝛽) = [
𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛽 0
𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 0
0 0 1

]       (8) 

α and β is estimated by the coordinate of point OR: 

sin𝛼 = 
𝑡3

√𝑡1
2+𝑡2

2+𝑡3
2
         (9) 

sin𝛽 = 
𝑡2

√𝑡1
2+𝑡2

2
                   (10) 

In practice, the destination is to get the coordinate of a point after being transformed 

from the coordinate system L to the coordinate system L′ (Fig. 3.33), so the required 

transformation matrix is about the coordinate system L relative to the coordinate 

system L′. According to (6), the transformation matrix is obtained: 
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L’𝐹𝐿=L𝐹𝐿
−1=𝑅−1(𝑦, 𝛼), 𝑅−1(𝑧, 𝛽)=[

𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 −𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 0
𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛼

] (11) 

Since cameras have been calibrated, the rotation transformation of right camera 

relative to left camera L𝑅𝑅is already known. Then the transformation matrix of right 

camera coordinate system is calculated with (11). 

R’𝐹𝑅= L’𝐹𝐿 L𝑅𝑅 (12) 

   

 

Figure 3.34. Schematic of the coordinate systems transformation. 

Then the reprojection of points are done. To do so, first the coordinates of those 

points in each old camera coordinate system are estimated. Assume there is a left 

image point Ppl(ul, vl), and then the coordinate of it in old left camera coordinate system 

PcL(xcl, ycl, zcl) is obtained with (2). 

{

𝑥𝑐𝑙 = 𝑓𝑙(𝑢𝑙 − 𝑢0𝑙)/𝑓𝑢𝑙
𝑦𝑐𝑙 = 𝑓𝑙(𝑣𝑙 − 𝑣0𝑙)/𝑓𝑣𝑙

𝑧𝑐𝑙 = 𝑓𝑙

                (13) 

Now the coordinate of the image point in new left camera coordinate system 

P′cL(x′cl, y′cl, z′cl) is obtained through the transformation matrix which has been 

obtained. 

𝑃′𝑐𝑙 =
 L’𝐹𝐿 Pcl                (14) 
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As the same, a right image point in old right camera coordinate system is PcR(xcr, 

ycr, zcr), and its coordinate in new right camera coordinate system P′cR(x′cR, y′cR, z′cR) is 

obtained. 

{

𝑥𝑐𝑟 = 𝑓𝑟(𝑢𝑟 − 𝑢0𝑟)/𝑓𝑢𝑟
𝑦𝑐𝑟 = 𝑓𝑟(𝑣𝑟 − 𝑣0𝑟)/𝑓𝑣𝑟

𝑧𝑐𝑟 = 𝑓𝑟

              (15) 

𝑃′𝑐𝑟 =
 R’𝐹𝑅 PcR               (16) 

After getting the coordinates of the image points in new coordinate system, we 

need to re-project them to the image plane of virtual camera to complete the 

rectification. As it shows in Fig. 3.35, Ppl(ul, vl) is an image point of the original left 

camera, and the coordinate of it in the new left camera coordinate system P′cL(x′cl, y′cl, 

z′cl) is obtained after the above-mentioned method. Let the focal length of cameras be 

fn and the principal point be (u′0, v′0) in parallel-type system, then the projection point 

of Ppl in the image plane of left virtual camera P′pl is the intersection of line OLP′cL and 

plane z=fn. According to mathematics, the equation of the line OLP′cL is as follow. 

𝑥

𝑥′𝑐𝑙
=

𝑦

𝑦′𝑐𝑙
=

𝑧

𝑧′𝑐𝑙
                (17) 

And the intersection point P′nL(x′nl, y′nl, z′nl) is 

{

𝑥′𝑛𝑙 = 𝑓𝑛 .  𝑥′𝑐𝑙/𝑧′𝑐𝑙
𝑦′𝑛𝑙 = 𝑓𝑛 .  𝑦′𝑐𝑙/𝑧′𝑐𝑙

𝑧𝑛𝑟 = 𝑓𝑛

                 (18) 

Projecting the point P′nL(x′nl, y′nl, z′nl) to the image plane of left virtual camera is 

executed with (1), and the coordinate of it in pixel coordinate system P′pl(u′l, v′l) is as 

follow. 

{
𝑢′𝑙 = 𝑘𝑛𝑢 .  𝑥′𝑛𝑙 + 𝑢′0𝑙 = 𝑓𝑛𝑢 .

𝑥′𝑐𝑙

𝑧′𝑐𝑙
+ 𝑢′0

𝑣′𝑙 = 𝑘𝑛𝑣  .  𝑦′𝑛𝑙 + 𝑣′0𝑙 = 𝑓𝑛𝑣 .
𝑦′𝑐𝑙
𝑧′𝑐𝑙

+ 𝑣′0

             (19) 

In right original image, the corresponding image point of Ppl(ul, vl) is Ppr(ur, vr), 

and its coordinate in right camera coordinate system is P′cR(x′cr, y′cr, z′cr) which have 
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been obtained in (16). The same with left re-projection, the projection point of Ppr in 

the image plane of right virtual camera P′pr is the intersection of line ORP′cR and plane 

z=fn. the equation of the line ORP′cR is as follow. 

𝑥

𝑥′𝑐𝑟
=

𝑦

𝑦′𝑐𝑟
=

𝑧

𝑧′𝑐𝑟
                  (20) 

And the intersection point P′nR(x′nr, y′nr, z′nr) is 

{

𝑥′𝑛𝑟 = 𝑓𝑛 .  𝑥′𝑐𝑟/𝑧′𝑐𝑟
𝑦′𝑛𝑟 = 𝑓𝑛 .  𝑦′𝑐𝑟/𝑧′𝑐𝑟

𝑧𝑛𝑟 = 𝑓𝑛

                 (21) 

Then the coordinate of Ppr(ur, vr) is obtained from (1), the result is as follows: 

{
𝑢′𝑟 = 𝑓𝑛𝑢 .

𝑥′𝑐𝑟

𝑧′𝑐𝑟
+ 𝑢′0

𝑣′𝑙 = 𝑓𝑛𝑣 .
𝑦′𝑐𝑟
𝑧′𝑐𝑟

+ 𝑣′0

                (22) 

 

Figure 3.35. Schematic of the left camera's reprojection. 

After re-projection, the original image information is transferred to the virtual 

parallel-type cameras’ image plane, and then stereo matching is implemented rapidly 

as the rectification is finished. 

3.4.21 Triangulation 
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The images are read line by line and the correspondent pixels are extracted. These 

pixels are saved in variables for finding the 3D coordinates. The triangulation 

technique and calibration information were used for 3D coordinate calculation. The 

3D coordinates are then converted to a point cloud format (i.e. *.ply format). This point 

cloud is the scattered points in the space. A list of datasets of 3D point clouds has been 

provided in Appendix D. 

There are several methods for point cloud segmentation including edge-based 

methods, region-based methods, attribute-based methods, model-based methods, and 

graph-based methods. However, the choice of method depends on the application and 

complexity of shapes in the point cloud. In this work, the segmentation of the point 

cloud was done using the clustering of close points based on the Euclidean distance 

between them.  

In the context of point clouds, Euclidean clustering processes points by searching 

for the closest points to a candidate point based on a distance threshold, then clustering 

points together as long as they fall within the threshold's range. The distance threshold 

is just the Euclidean distance d = √𝑥2 + 𝑦2 + 𝑧2 between neighboring points, as the 

name implies. Constructing a kD-tree is a frequent approach to find a point's neighbors. 

A kD-tree is a data structure that divides the dimension space into k sub-dimensions 

and aids in the organization and localization of the closest points to a given position 

(Fig. 3.36). A minimum distance is determined and the points closer to each other less 

than this distance are considered as the same object (i.e. a leaf in this project).  
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Figure 3.36. An example of k-d tree. 

The next step is to generate the mesh from the point cloud. Meshing the point cloud 

allows the production of surface and, consequently, the production of a three-

dimensional model. The segmented point cloud was converted to a 3D surface using 

Delaunay's triangulation technique. This surface that consists of several objects is used 

for counting the leaves meaning that every object is considered as a leaf. The 

performance of the algorithm is presented below. Sun et al. (2002) used the 

combination of the space carving with Hilton’s implicit surface-based method for 3D 

reconstruction. 

The required specifications will then be extracted from the 3D model. To do this, 

first an α-object (α-shape) is generated that includes all points and then it is done using 

the triangulation method (i.e. Delaunay's triangulation technique). Suppose an S set of 

points is provided in 2D or 3D and the goal is to obtain something similar to the "shape 

produced by these points". This is a rather vague concept, and so there are many 

interpretations, one of which is the α-object, a dense and unorganized dataset can be 

used to reconstruct the shape. In fact, α-shape is defined by a boundary, which is a 

linear approximation of the original shape. Therefore, to produce the α-object, circles 

are used so that the circumference of the circle coincides with the points and no points 

are inside the circles. Here α is the radius of the circles.  
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1: Read the calibration images 

2: Do calibration and extract calibration information 

for i = 1 : number of images 

3: Read the first pair of images 

4: Apply smoothing filter and remove the holes 

5: Extract red layer of images 

6: Apply thresholding 

7: Keep light stripe peaks 

8: Remove the light stripes on the ground 

9: Rectify the images 

for j = 1 : number of non-zero pixels 

10: Perform point matching 

11: Calculate the 3D coordinates 

end 

12: Save the coordinates in a variable 

end 

13: Build the point cloud 

14: Segment the point cloud into separated regions 

15: Mesh the point cloud using triangulation 

16: Develop the 3D model 

17: Count plant leaves 
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4  

PASSIVE STEREO IMAGING 

 

 

 

4.1.1 Acquisition system 

A parallel stereo imaging system was developed to provide images right on the top 

of plants canopy. An 18 MP Canon cameras (EOS Kiss X5, Taiwan) was used for 

image acquisition. The camera for the second picture was moved to the right side of 

its rail. The sensor type of this camera is CMOS and the maximum resolution is 

5184×3456. However, for this study the resolution of 3456×2304 was set. The central 

distance between the lenses was 8.7 cm in the right and left images. The camera was 

placed on a holder which was connected to a case. The case was mounted on a rail 

whereby the whole system could be moved for acquisition of other plants images. The 

distance between the lens face and the ground was 80 cm. All the image acquisition 

was taken in the afternoon and under daylight. This was due to two reasons; 1) to build 

a robust algorithm for real greenhouse situations and 2) this study did not aim at any 

color comparisons. 

 

Figure 4.1. Schematic diagram of the stereo imaging system. 

4.1.2 Stereo images 
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First the left image was taken and then the camera was moved to the right and the 

right image was taken. Figure 4.2 represents examples of left and right images. As it 

is seen, on the right and left borders of the images, the differences are clear that the 

cameras have seen the area with a small difference in point of view. 

  

  

Figure 4.2. Original images used in stereo imaging for the depth detection. 

4.1.3 Calibration 

The calibration was done based on the regulations described in the section 3.4.10 

for active stereo calibration. 20 pairs of images were obtained from different points of 

view and positions in the fields of view of the cameras. The stereo calibration toolbox 

of MATLAB was used for the calibration. Figure 4.3 shows some of the calibration 

images used for passive stereo calibration. 
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Left04 Left05 Left06 

   
Left07 Left08 Left09 

   
Left10 Left11 Left12 

Figure 4.3. The sample images used for calibration. 

4.1.4 Processing algorithm 

The developed algorithm included four stages: 1) calibration, 2) preprocessing, 3) 

segmentation and leaf detection, 4) calculations of physical properties, and 5) applying 

the distance scale. The functions performed by the algorithm are as follows: 
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After cropping the region containing the plant, the image was converted to HSV color 

space. This conversion was very helpful for the thresholding of leaves and removal of 

the background and stems. Using trial and error, the values between 0.22 and 0.29 

were chosen for thresholding. To prevent any small holes in binary images, a filling 

operation was performed (Fig. 4.4). These small holes that sometimes may not be clear 

in the image, can cause errors in the estimations. As thresholding may make edges 

uneven, using the opening function of MATLAB, edges were made smoother.  

1. Read a pair of images 

2. Crop the images to the region of interest 

3. Convert to HSV space 

4. Extract the plant by hue thresholding 

5. Filling the holes 

6. Smoothing the broken edges 

7. Apply entropy filter 

8. Obtain gradient image 

9. Calculate the watershed image 

10. Obtain the boxes including each leaf or connected leaves 

11. Apply the gradient information 

if there is one leaf 

12. measure the properties of the leaf 

elseif there are more than one leaf 

13. select the leaves based on watershed information 

14. measure the properties for each leaf 

15. Calculate other physical properties related to the obtained 

information 

16. Build the disparity map 

17. Find the distances on the disparity map 

18. Apply the scaling and estimate the real sizes 
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Figure 4.4. The thresholded image and its result after filling the holes. 

In the next stage, entropy filter was applied and then the gradient magnitude was 

computed. The gradient is high at the borders and low inside the object. Next, the 

watershed image was obtained from the gradient image (Amandep 2014). This image 

was used for the detection of leaves and computing the properties (Figure 4.5).  

The next step was to estimate the physical properties of the leaves. These are the 

properties mentioned in section 2.1. This estimation was done by extracting the shape 

of each leaf and using pixel-wise calculations. Afterwards, using the obtained disparity 

map, the distance of the leaves from the camera were estimated and used for the 

conversion of pixel values to centimeters. 

 

Figure 4.5. Watershed image. 

4.1.5 Depth estimation and scaling 

The images were rectified based on the calibration data. This provided the 

undistorted and rectified left and right images. Fig. 4.6 illustrates the overlapped left 

and right images after rectification. Next, the disparity map was obtained by semi-

global matching method with the block size of 7 pixels—the block size significantly 
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affects the results and it needs to be determined by trial and error. The algorithm 

calculated a measure of contrast using the Sobel filter and then computed the disparity 

for each pixel in the left image as the base. This was used for detecting the distance of 

the leaves and the estimation of the real size. The amount of disparity determines the 

amount of distance from the camera (Fig. 4.7). The larger the disparity, the closer the 

point to the camera. As Fig. 4.7 shows, the farthest points from the camera are in dark 

blue having distances of about 60 cm. Finally, the image of leaves was extracted based 

on the distance. Fig. 4.8 indicates the result of thresholding of the 3D image based on 

distance which was extracted from Fig. 4.8. 

 

Figure 4.6. The overlapped right and left images after rectification. 

 

Figure 4.7. Disparity map obtained for the distance of leaves from the camera. 
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Figure 4.8. The real picture of leaves after thresholding of 3D points image. 

4.2 Stereo matching and cost functions 

The use of matching techniques and cost functions is crucial in the development of 

the disparity map.   Cost functions which also are called similarity measures define the 

“core” of many stereo matching algorithms. The similarity of image locations is 

measured in all stereo correspondence techniques. For all disparities under 

consideration, a matching cost is typically estimated at each pixel. Simple matching 

costs assume constant intensities at matching image sites, whereas more robust costs 

model certain radiometric shifts and/or noise (explicitly or implicitly). On gray and 

color images, common pixel-based matching costs include absolute differences, 

squared differences, sampling-insensitive absolute differences, or reduced versions. 

The sum of absolute or squared differences (SAD / SSD), normalized cross-correlation 

(NCC), and rank and census transforms are all common window-based matching costs 

(Hirschmuller and Scharstein, 2007). 

In previous research, many different techniques and algorithms have been 

proposed for correspondence problem and stereo matching (Heise et al. 2015). In this 

work, we compared six different algorithms including Block Matching (BM), Block 

Matching with Dynamic Programming (BMDP), Belief Propagation (BP), Gradient 

Feature Matching (GF), Histogram of Oriented Gradient (HOG), and the proposed 

method. Also four cost functions namely Mean Squared Error (MSE), Sum of Absolute 

Differences (SAD), variant Sum of Differences (SD), Normalized Cross-Correlation 

(NCC) were used and compared. In addition to these methods, the use of deep learning 

was considered for stereo matching applications. 
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4.2.1 Dataset 

Two stereo datasets were used to test our method (i.e. KITTI 2015 and 

middlebury). These datasets were used as they provide a large number of stereo pairs 

along with ground-truth images (Fig. 4.9). Table 4-1 represents the details of these 

datasets. These datasets were used in this study as they provide a variety of stereo pairs 

along with ground truth image which is necessary for training the network. Figure 4.10 

represents the left images of all image pairs considered for the development of 

disparity map. 

   

Figure 4.9. Sample left and right images with the disparity map. 

 

Table 4-1. The databases of stereo and ground truth images used in this study. 

No. Source Link to the database  
Number of 

image pairs 
Reference 

1 Middlebury 

KITTI 

https://vision.middlebury.edu/stereo/data/scenes2014/ 33 Scharstein et al. 2014 

2 https://www.cvlibs.net/datasets/kitti/eval_stereo.php 24 Menze and Geiger 2015 

 

Figure 4.10. Total of left images used in this study provided by The Middlebury Stereo Dataset. 

4.2.1.1. Block Matching Algorithm 

BM consists of sliding a window along the epipolar line and compares contents of 

that window with the reference window in the left image (Chen et al., 2001). Then a 

cost function will compute the difference between those two blocks, and finally the 
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block with most similarities with the reference block will be matched. Following this 

idea, the most crucial point in this algorithm is the choice of the block size, regardless 

to the cost function. In fact, if a small window size is chosen, there will be more details 

but also more of noise. On the other hand, a larger window size implies a smoother 

disparity map with less details and fails near boundaries (Gyaourova et al., 2003). 

4.2.1.2. Block Matching with Dynamic Programming  

This algorithm is used in order to avoid situations where BM fails to give a good 

result, especially when image pairs are textureless regions, repeated patterns and 

specularities (Nguyen et al., 2013; Aboali et al., 2017). The dynamic programming 

method was chosen as the global optimization technique for the disparity optimization 

phase since this algorithm optimizes the energy function to be NP-hard (non-

deterministic polynomial-time hardness) for the purpose of smoothness and 

enhancement. 

4.2.1.3.  Belief Propagation 

Belief propagation is a general method for solving optimization problems (Yedidia 

et al., 2003). This algorithm is normally specified in terms of probability distributions, 

but it can also be computed with negative log probabilities (Yedidia et al., 2000). The 

choice of this formulation is due to the low numerical errors and it directly employs 

the energy function concept. BP uses iterative message passing to get the overall best 

answer. Due to the simultaneous processing of these messages for all pixels in a single 

iteration step, a significant amount of computation and memory is needed. However, 

there are a number of fast stereo BP implementations available. 

 

4.2.1.4. Histogram of Oriented Gradient 

The idea behind HOG descriptor is that edge direction and intensity gradients can 

be used to characterize an object's form and appearance in an image (Dalal and Triggs, 

2005). However, before we can calculate the histogram, we must first partition the 

image into smaller connected sections of a defined size. Only then a histogram of 

gradient orientations can be computed, but not for the full image, rather for each 
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individual cell, resulting in several histograms equal to the number of accessible cells, 

which add up to the required descriptor. It's also worth noting that orientation can be 

represented as angles between [0, 180] unsigned and [0, 360], with the choice of (un-

)signed depending on the project and the required degree of gradient accuracy. 

Normalizing-by-contrast is a common optimization for intensity-based descriptors 

in which we compute the intensity over a bigger region termed block and then utilize 

this newly-found intensity information to normalize all the cells within the block 

(Anton, 2014). 

4.2.2 Matching Cost 

Our initial cost function is the widely used Sum of Absolute Differences (SAD), 

which assumes brightness consistency for corresponding pixels and acts as our 

evaluation's baseline performance metric. Local stereo methods behave over a 

window, whereas global stereo methods use pixel-by-pixel differences (Equation 23) 

(Hamzah et al., 2010).  

𝑆𝐴𝐷 =  ∑ |𝐼1(𝑖, 𝑗) − 𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗)|

(𝑖,𝑗)∈𝑊

 (23) 

where 𝐼1 refers to the reference image, while 𝐼2 indicates the target image, and W 

indicates the square window for aggregation. 

Another cost function that was used is the Mean Squared Error (MSE) (Equation 

24). For images, the ‘error’ in MSE is a synonym of ‘difference’. Then a difference 

between two image pairs is required to be obtained, but also the ‘mean’ is a synonym 

of ‘average’. The sum of differences is needed to be divided by the number of the 

pixel. So, it can be called Average Squared Difference (Di Stefano et al., 2004). 

𝑀𝑆𝐸 =  
1

𝑀𝑁
∑ ∑ [𝑔̂(𝑛,𝑚) − 𝑔(𝑛,𝑚)]2

𝑁

𝑚=1

𝑀

𝑛=1
 

(24) 

Where g refers to the reference image, while 𝑔 ̂  indicates the target image. 

Next, Normalized Cross-Correlation (NCC) (Equation 25) was the other cost 

function used for error measurement. NCC is a method for matching two windows 

around a pixel of interest that is widely used. The window's normalization accounts 

for variances in gain and bias (Heo et al., 2010). The statistically best method for 
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correcting Gaussian noise is NCC. However, because outliers create substantial errors 

in the NCC computation, NCC tends to obscure depth discontinuities more than many 

other matching costs (Zhang et al., 2009). Where 𝐼1 refers to the reference image, while 

𝐼2 indicates to the target image, W indicates the square window for aggregation.  

𝑁𝐶𝐶 = 
𝛴(𝑖,𝑗)𝐼1(𝑖, 𝑗) ⋅ 𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗)

√𝛴(𝑖,𝑗)𝐼1
2(𝑖, 𝑗) ⋅ 𝛴(𝑖,𝑗)𝐼2

2(𝑥 + 𝑖, 𝑦 + 𝑗)
2

 
(25) 

The flow chart below shows how the complete algorithm works. The left and right 

images and the ground truth are read and sent to preprocessing. During this step, the 

RGB images were transformed into gray images and then resized. The resizing was 

done to reduce the processing time. The format of the images from integer-eight was 

changed to double. Next, the images were presented to the matching algorithm. 

 

Figure 4.11. Diagram showing the course of the whole algorithm  
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5  

SPECTRAL ANALYSIS 

 

 

 

 

5.1 Application of multispectral data 

First step to use multispectral images for monitoring of plant growth and tracking 

is the possibility of the detection of plants from weeds. In this regard, the ability of 

multispectral data in separation of pepper and weeds was evaluated. This includes the 

study of possibility of separation and the selection of bands proper for separation and 

imaging applications. 

5.1.1 Plants 

Bell pepper plants (variety of Cavendish F1) and five weeds (i.e. Bindweed, 

Nutsedge, Plantago lanceolata, Potentilla, and Sorrel) were used for this study. The 

samples were taken from young plants, of different leaf sizes and parts of the plants. 

Samples of bell pepper plant were taken from plants in vegetative and flowering stages 

of growth. Average height of plants was about 45 cm. For each plant about 40–50 

samples were taken making up a total of 291 samples. These samples include leaves 

of various plants and of different sizes. 

5.1.2 Spectral Data 

For illumination, one lamp of type A and one Halogen lamp were used. These lights 

were chosen as they provide enough energy in visible and NIR ranges. The spectral 

distribution of light intensity of A and Halogen sources have been shown in Fig. 5.1. 

Radiance of the A and Halogen were 1.373 and 4.326 W/(sr ×m2), respectively. These 
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light sources were measured by the spectroradiometer Specbos 1211 (JETI Technische 

Instrumente GmbH, Jena, Germany) (Table 5-1). 

  

Figure 5.1. Spectral distribution of light sources. 

The spectral responses were obtained in the range 400-1000nm using the 

spectroradiometer Specbos 1211 described before. This was done by dividing the 

spectral radiances on the source spectral distribution. The spectroradiometer was set 

at an angle of 90° in relation to the leaves and the standard observer of 2° was used for 

the measurements.  

Table 5-1. Technical specifications of the spectroradiometer. 

Spectral range 350 - 1000 nm 

Optical bandwidth 4.5 nm 

Measuring range Luminance 0.2 - 100 000 cd/m² 

Illuminance 1 - 1 500 000 lx 

Digital electronic resolution 15 bit ADC 

Viewing angle 1.8° (Luminance mode) 

Luminance uncertainty ± 4.4 % (Illuminant A @ 100 cd/m2, k=2) 

Luminance repeatability ± 1 % 

Chromaticity uncertainty ± 0.002 x, y (Illuminant A, k=2) 

Color repeatability ± 0.0005 x, y (Illuminant A) 

Max. wavelength error ± 0.5 nm (HgAr line source) 

Measuring quantities Illuminance, Irradiance 

xy and u' v' coordinates 

Dominant wavelength, Color purity 

Correlated Color Temperature (CCT) 

CRI, CQS, TM-30, TLCI, RGB 

Circadian metrics, PAR 

5.1.3 Measurements 
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Lights were placed with 45 degrees related to the samples and the 

spectroradiometer was placed vertically toward the samples (i.e. zero degree for 

measurement) (Fig. 5.2). The plants were displaced with soil and roots from the farm 

and quickly transferred to the laboratory. Leaves were placed on a vague black 

background to reduce the light reflection. All the measurements were done under the 

same measuring conditions. Figure 5.3 represents the spectral radiances of samples for 

different plants. 

 

Figure 5.2. The measurement system and illumination. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 5.3. The spectral response of a) Pepper, b) Bindweed, c) Nutsedge, d) Plantago lanceolata, e) 

Potentilla, and f) Sorrel. 

5.1.4 Continuous Wavelet Transform 

Continuous Wavelet Transform (CWT) is used for the decomposition of a signal 

into wavelets. CWT is a perfect tool for mapping the changing properties of non-

stationary signals. The basic functions of CWT are the scaled and shifted versions of 

the mother wavelet. The formula used for this transformation is as follows: 

𝐶(𝑎, 𝜏) =  ∫
1

𝑎
𝜓 (

𝑡 − 𝜏

𝑎
) 𝑥(𝑡)𝑑𝑡 (23) 

Based on the formulae 23, the wavelet 𝜓(t) is shifted by 𝜏 and scaled by factor a. 

In this study, Morse wavelet having the following formula was used: 

𝜓(𝜔) =   𝑈(𝜔)𝑎𝑝,𝛾𝜔
𝑝2

𝛾 𝑒−𝜔
𝛾
 (24) 

where 𝑈(𝜔) represents the unit step and a is a normalizing constant. 𝛾 that controls 

the symmetry of the wavelet was set to 3 and p is the square root of the time-bandwidth 

product being in proportion to the wavelet duration was selected as √60. Hence, CWT 

was applied on all spectral responses and a database of scalograms was constructed. 

The scalogram is the absolute value of the continuous wavelet transform (CWT) of a 

signal or spectrum which is plotted as a function of time and frequency. These 

scalograms of the form 2D images were used for training the network and 

classification (Fig. 5.4).  
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Figure 5.4. The scalogram of CWT colored as an RGB image. 

5.1.5 Convolutional Neural Network 

The pretrained neural network namely GoogLeNet was utilized in this study. This 

network was used for several reasons; first this is a quite strong network trained with 

a large database consisting of 1000 different categories; second, this saves time of trial 

and error for building new networks. In addition, a pretrained network can be easily 

used by other researchers working in the same field. The layer graph (which includes 

144 layers) of the GoogleNet has been shown in Fig. 5.5 and the architecture of it 

illustrated in Fig. 5.6.  

 
Figure 5.5. Layer graph of the trained network.  
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Figure 5.6. The architecture of the GoogleNet. 

Initial learning rate of 1×10-4, gradient threshold method of l2norm, and maximum 

epochs of 20 were used for building the network. The data were randomly divided into 

three groups of training, validation, and test. So, 70% was used for training, 15% was 

for validation and 15% was put aside for testing the network. To test the network, the 

spectral responses were given to the network to predict the type of plant. Then the 

accuracy of estimation was calculated as follows: 

Accuracy = Sum of true estimations / Total number of estimations 

 To avoid overfitting, a dropout layer was employed that randomly sets input 

elements to zero at a level of probability. The flow chart of the proposed method is as 

shown in figure 5.7. 

 

Figure 5.7. Block diagram of the proposed algorithm. 

5.1.6 k-means clustering 

The k-means algorithm is an iterative technique that attempts to split a dataset into 

k separate non-overlapping subgroups (clusters), each of which contains only one data 
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point. It attempts to make intra-cluster data points as comparable as possible while 

maintaining clusters as distinct as possible. It distributes data points to clusters in such 

a way that the sum of the squared distances between them and the cluster's centroid 

(arithmetic mean of all the data points in that cluster) is as small as possible. Within 

clusters, the less variance there is, the more homogenous (similar) the data points are. 

The following is how the k-means algorithm works: 

• k is the number of clusters to specify. 

• Initialize the centroids by shuffling the dataset and then picking K data 

points at random for the centroids without replacing them. 

• Continue iterating until the centroids do not change. i.e. the clustering of 

data points does not change. 

• Calculate the total of all data points' squared distances from all centroids. 

• Assign each data point to the cluster that is closest to it (centroid). 

• Calculate the cluster centroids by averaging all of the data points that 

correspond to each cluster. 

To apply k-means clustering MATLAB software was used. K-means of MATLAB 

uses the squared Euclidean distance metric and the k-means++ algorithm for cluster 

center initialization. The k-means++ algorithm uses a heuristic to find centroid seeds 

for k-means clustering.  

A sample code of k-means clustering for Silhouette technique has been presented 

in Appendix B. Four evaluation criteria, Calinski-Harabansz, Davies-Bouldin, 

Silhouette, and Gap methods were utilized. The experiments were done for k = 1:6 

groups. For more than two groups, the number of optimal clusters were tested. To 

represent the results of clustering, Principal Component Analysis (PCA) was applied 

and used. For the calculation of distances of points, the Euclidean distance was applied. 

The spectral data of plants were imported to MATLAB and were used for k-means 

clustering. The spectral data were tested from 400 – 1000 nm with steps of one 

nanometer. Also, the data with steps of 5 and 10 nm were tested for clustering task. 
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6  

RESULTS AND DISCUSSION 

 

 

 

6.1 Physical Properties Database 

The physical characteristics of the plants were measured and recorded using 

imaging and dimension extraction from leaf images during the growth stage. Nine 

physical properties were measured to monitor and estimate plant growth. This database 

was used to compare the estimated data with the real values and validation of growth 

estimates as well as artificial neural network training. In total, the physical properties 

of 311 leaves in different dimensions and ages were recorded. Table 6-1 shows the 

mean, minimum, and maximum values for these properties. 

Table 6-1. Actual physical properties of leaves. 
Property Average ± 

SD 

Min Max 

Physiological length (cm) 3.619 ± 1.757 0.862 10.393 

Physiological width (cm) 1.987 ± 1.217 0.423 6.578 

Leaf area (cm2) 6.719 ± 7.417 0.313 48.893 

Leaf perimeter (cm) 9.528 ± 4.910 2.258 28.105 

Aspect Ratio (Ø) 2.049 ± 0.534 1.178 3.383 

Form Factor (Ø) 0.729 ± 0.082 0.433 0.912 

Rectangularity (Ø) 1.303 ± 0.109 1.004 1.526 

Perimeter ratio of diameter (Ø) 2.602 ± 0.192 2.209 3.542 

Perimeter ratio of Lengths (Ø) 2.047 ± 1.046 1.556 6.913 

6.1.1 Leaf perimeter 

The following diagram shows the trend of changes in the leaf perimeter of the three 

plants during the growing season. The values displayed for the perimeter per day are 
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the sum of the perimeter of all the plant leaves on that day. Actual leaf perimeter was 

obtained based on the images taken from the leaves.  

 

Figure 6.1. Leaf perimeter during growth period. 

6.1.2 Leaf area 

Diagram 6.2 shows the development and increase of leaf area for three plants 

during the growing season. Leaf area was measured every other day. The displayed 

areas are the sum of the plant leaf areas per day. Areas were obtained based on the 

images taken from the sheets on a daily basis. 

 

Figure 6.2. Leaf area during growth period. 

6.1.3 Compare leaf area with theoretical models 

Models which are based on the physical properties of the leaves, were plotted with 

the actual values of the leaf surface in Figure 6.3. The adjustment parameters of the 
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models were determined using MATLAB software. Model number 1 is the following 

linear model: 

LA = K.LL.M 

By fitting on the actual data, K was obtained equal to 0.25. Model number 2 is the 

following relation: 

LA = 𝛼(𝐿𝐿)𝛽 

α was equal to 0.45 and β was equal to 1.2. Model number 3 is the exponential 

model as follows: 

𝐿𝐴 =  𝛼𝑒𝑥𝑝(𝑠𝑞𝑟𝑡(𝐿𝐿)) 

where 𝛼 was obtained as 0.2. 

 

Figure 6.3. The estimated leaf area based on three theoretical model. 

The accuracy of the models in estimating the leaf area was determined based on 

the main dimensions of the leaves using the RMSE value. Therefore, the RMSE value 

was 3.026 for the first model, 2.68 for the second model and 5.935 for the third model. 

Therefore, Model 2 most accurately estimated the leaf area using the original leaf 

length. Demirel et al. (2012) estimated growth curve parameters of pepper during first 

twelve weeks of growth. They measured plant height, plant x-x and y-y diameter and 

chlorophyll readings for grwth estimation. It was observed that Linear, Gompertz and 

Logistic models performed best for pepper growth tracking. Sarıbaş et al. (2018) 

studied the growth of pepper mathematically to propose a model. Inputs included in 
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transplant height, stem diameter, leaf area, total dry weight, leaf stomatal conductivity 

and leaf chlorophyll contents.  

6.2 Active stereo imaging 

6.2.1 Comparison of laser and projector 

The use of laser for the projection of light was studied. Calibration of laser poses 

much difficulty on stereo imaging. One of the problems is to control the laser power. 

If the power is not enough, the laser is not detected in the images and if the power is 

strong the scattering of the laser on the environment and the leaves causes problems in 

image processing. Fig. 6.4 represents the light which is around the laser light in 

comparison to that of the projector. Kashani et al. (2015) divided the effective factors 

of light scattering in LiDAR and laser scanning into four categories; (1) target surface 

characteristics; (2) data acquisition geometry; (3) instrumental effects; and (4) 

environmental effects. Bolkas (2019) has reported that target surface characteristics 

including roughness and reflectance have large impacts on the intensity values of the 

reflected laser line on the surfaces. It has also been advised to reduce the laser intensity 

for shorter distances to reduce the amount of light scattering (Kaasalainen et al. 2018). 

  

Figure 6.4. Light reflection around the light stripes taken by: Left) projector and Right) 

laser projection (the contrast has been ameliorated). 

In this regard, to verify the problem of light scattering, the gloss (sheen) of some 

leaves were measured using a glossmeter (BYK, USA). Table 6-2 represents the 

average amount of gloss for 20 samples (front and back measurement). As it is seen 

the leaves are quite mate and referring to 85° that is the best measurement angle for 

super mate surfaces, the leaves are so mate and scatter almost all the received light. 
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Also, the effect of sub-surface scattering should be considered for leaves as live organs 

(Gigilashvili et al. 2021a; Gigilashvili et al. 2021b). 

Table 6-2. Measurement of glossiness of bell pepper leaves. 

 Leaf front Leaf back 

Measurement 

degree 
20° 60° 85° 20° 60° 85° 

Gloss (sheen) 0.205±0.02 1.505±0.29 0.9±0.61 0.319±0.04 2.0±0.19 0.695±0.59 

 

6.2.1.1. Selection of the light stripe color 

Red light stripe has always been used in past research. One of the problems has 

been the scattering of laser on the objects as the light of lasers are quite strong and 

mostly it is hard to reduce the intensity (Morris, 2006). In the present study, due to the 

use of video projector and the possibility of using other colors, three different lights 

were evaluated. The use of projector provides ability to adjust the light much easier in 

the sense of light stripe width or light intensity. The width of the red light stripe was 

better and it had less light scattering. Examining the pixels of the stripes (average of 

ten images), it was observed that the width of the red stripe was 4.17 pixels, green was 

5.06 and blue was 6.39 pixels. Weisenfeld (2002) used a red laser for the development 

of an active stereo system intraoperative surface measurements. 

 

Red Stripe   Green Stripe   Blue Stripe 

Figure 6.5. Light stripe width. 

The scattering of the stripes, which affects how the optical stripe is extracted in 

subsequent processing, was also investigated. The light scatter at the edge of the blue 

stripe was higher than green and the green stripe was higher than red (Fig. 6.6). Figures 

6.7-9 show the pixels adjacent to the light stripe and the brightness values. It can be 

seen that for the red stripe, the values decrease rapidly and at a distance of two pixels 

from the stripe, the brightness has reached less than 40, but for the green and blue 
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stripes, the changes in light intensity are milder and up to several pixels, still the values 

are large. 

 

Figure 6.6. Light stripes and their scattering in the edges. 

 

Figure 6.7. Adjacent pixels to the red light stripe. 

 

Figure 6.8. Adjacent pixels to the green light stripe. 
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Figure 6.9. Adjacent pixels to the blue light stripe. 

6.2.2 Processing the images 

First the images were read and a smoothing filter was used for making the light 

stripe smoother and help the thresholding of easier and cleaner. An averaging filter of 

size 3 x 3 was utilized. Figure 6.10 represents the effect of this filter on the images. As 

the figure shows the pixels around the light stripe are softer and the change of color is 

gradual. After filtering both images, the red layer of them was extracted. Then the 

resulting gray images were thresholded.  

  

Figure 6.10. Effect of smoothing filter on the light stripe; Left) original image and Right) after filtering. 

 

6.2.3 Light peak detection 

Four different peak detection techniques including Gaussian, Center of Mass (CM), 

Parabolic and Linear Interpolation were tested. All techniques provide interesting 
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results for light peak detection. However, the best result was observed to be achieved 

by the CM for this project (Fig. 6.11). The Gaussian method narrowed the light line 

more than needed and in some parts resulted in disconnected lines. The Parabolic 

method was acceptable however, the resulting line became so thin and partly 

disjointed. The Linear Interpolation did not provide proper result and the resulting line 

got thicker and uneven in some parts. 

  

(a) (b) 

  

(c) (d) 

Figure 6.11. Light peak detection; a) Gaussian, b) Center of 

mass, Parabolic and Linear Interpolation. 

6.2.4 Light stripe 

In each image—right or left—there is a spot or a line that is the projected light 

stripe on the plant. These spots or lines need to be extracted in each pair of images. Fig 

6.12 represents the combined light stripes for all left and right frames. These images 

show that the image processing has been done very well and unwanted spots, dots and 

lines have been removed and only the light passed on the plants have been remained. 

This process is very critical as any unwanted spot in the environment causes 

mismatches in the correspondence process leading to inaccurate or wrong 3D shapes. 
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Left camera Right camera 

Fig. 6.12. The combined light stripes projected on the plant. 

6.2.1 Camera calibration accuracy 

Calibration accuracy has a direct effect on stereo image processing. The calibration 

accuracy of stereo cameras was evaluated for three angles of 75, 90 and 105 degrees. 

Figure 6.13 shows how to identify the checkerboard, determine its position and how 

the predicted centers match the real centers. Figure 6.14 shows the calibration error for 

the angle of 75 degrees. It is observed that the calibration error is less than 1 pixel, 

which is an excellent value for the resolution of the cameras used. Compared to 

previous research works, this represents satisfactory precision for the proposed low-

cost system which is one of the objectives of this study (Jang et al., 2013). Bi et al. 

(2021) developed an optical tracking system based on stereo vision. In this study also 

the calibration accuracy of pixel level was achieved. Wang and Shih (2021) proposed 

a novel method for measuring depth resolution based on active stereo imaging. In this 

study the calibration accuracy that was done using MATLAB calibrator was achieved 

equal to 0.1 pixels. Peiravi and Taabbodi (2010) proposed a photogrammetry-based 

calibration technique to find calibration parameters in an easier way. Figure 6.15 

shows the location of the cameras in the calculated global coordinates. 
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Figure 6.13. Detection of checkerboard and correspondence of the predicted and actual centers in a pair of 

images (75ᵒ). 

 

Figure 6.14. Average calibration error for all pairs of calibration images in 75ᵒ. 

 

Figure 6.15. Position of cameras and checkerboards in the global coordination system (75ᵒ). 

The correspondent points have been detected correctly and matched (Fig. 6.16). 

Calibration error was 1.14 pixel for the angle of 90 degrees between the cameras (Fig. 

6.17). Fig. 6.18 represents the position of cameras in 3D space and the checkerboard 

images proportional to the cameras. 
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Figure 6.16. Detection of checkerboard and correspondence of the predicted and actual centers in a pair of 

images (90ᵒ). 

 

Figure 6.17. Average calibration error for all pairs of calibration images in 90ᵒ. 

 

Figure 6.18. Position of cameras and checkerboards in the global coordination system (90ᵒ). 

The overall calibration error in the angle of 105 degree amounted to 1.09 pixel 

(6.20). It is observed that the calibration error is almost equal in all degrees and the 

little difference is due to the number of images provided and a few improper pairs.  
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Figure 6.19. Detection of checkerboard and correspondence of the predicted and actual centers in a pair of 

images (105ᵒ). 

 

Figure 6.20. Average calibration error for all pairs of calibration images in 105ᵒ. 

 

Figure 6.21. Position of cameras and checkerboards in the global coordination system (105ᵒ). 

By the calibration, the intrinsic and extrinsic parameters were obtained. These 

parameters were saved in .mat file and used for further processing. Herein there is an 
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example of intrinsic matrix and rotation and translation matrices that build up the 

extrinsic matrix. 

𝑀𝑖𝑛𝑡 = [
6588.904939 0 0

0 6534.691113 0
3823.349831 −978.496054 1

] 

𝑀𝑅𝑜𝑡 = [
0.4323 0.2872 0.8547
0.0266 0.9434 −0.3304
−0.9013 0.1656 0.40031

] 

𝑀𝑇𝑟𝑎𝑛 = [−782.634656 343.181473 1707.997652] 

6.2.2 Cameras angle analysis 

The angle between the left and right cameras needs to be determined based on the 

applications. Three different angles were chosen and tested. As explained in chapter 

3, a simple plate with predefined dimensions was used for this experiment. The plate 

was 3 cm × 3 cm. The developed 3D model of this plate was compared to the actual 

dimensions. Hence, width, length, and area were calculated for the measurement of the 

accuracy of modelling. Table 6-3 represents the percent error for different camera and 

plate angles. As the table presents, the best accuracy achieved when the angle between 

the cameras was 90°. Also, it is seen that the accuracy of measurements gets less for 

the smaller angles of plate.  

Figure 6.22 shows the result of reconstruction of the plate for each camera angle. 

Table 6-4 represents the quality of 3D reconstruction for different stereo camera 

angles. It was observed that in 90° the field of view is pretty good. In 105° the field of 

view of the cameras is quite big but it also covers unnecessary areas. For angle view 

Table 6-3. Measurement error of plate properties for different camera and plate angles. 

Property 
Plate angle 

Camera angle (Percent error) 

75° 90° 105° 

Length (cm) 

30° 12,333 10,000 14,333 

60° 9,333 4,333 10,667 

90° 2,333 1,333 2,333 

Width (cm) 

30° 29,333 6,667 8,333 

60° 10,667 6,333 8,667 

90° 3,667 1,667 2,000 

Area (cm2) 

30° 13,382 4,000 5,806 

60° 19,004 1,726 2,924 

90° 5,914 0,356 4,287 
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of the plate, the best view was 75° as both cameras can see the plate in most angles. 

But with smaller angles of the plate, it cannot be captured in one of the cameras and 

literally one of the cameras goes blind. 

   
a b c 

Figure 6.22. 3D development of simple plane in different camera angles; a) 105°, b) 90° and c) 75°. 

 

Table 6-4. Reconstruction in different camera angles. 

Property 

Camera angle (Percent error) 

75° 90° 105° 

Field of view Good Best Good 

Calibration accuracy Best Good Good 

Angle view Best Good Poor 

3D reconstruction ability Good Good Poor 

 

6.2.3 Leaf counting 

The obtained 3D coordinates were converted to point clouds. Figure 6.23 illustrates 

an example of the point cloud extraction and surface reconstruction of a cylinder top 

part. 
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Figure 6.23. Result of 3D reconstruction of top of a cylinder; Left) point cloud and 

Right) mesh. 

Figure 6.24 shows the point cloud of a single leaf extracted from the whole point 

cloud of a plant. 

 

Figure 6.24. 3D point cloud of a single leaf. 

Point clouds were segmented and used for leaf counting. The points close to each 

other were segmented as the same leaf. Gupta and Ibaraki (2014) compared four 

different active stereo technologies for plant 3D modelling and leaf segmentation. Fig. 

6.25 represents their comparison and the point clouds that mostly are similar. Jang et 

al. (2013) took benefit of a two-step technique for the improvement of the accuracy. 

They built reliable correspondences based on a decoding technique of the projected 

pattern and then applied stereo matching technique. Eigen et al. (2014) proposed the 

extraction of the depth map based on a single image using Multi-Scale Deep Network. 

This solution is good in case of recovery of the occlusions and overlaid leaves. 

    

Plant01 Plant02 Plant03 Plant04 
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Plant05 Plant06 Plant07 Plant08 

Figure 6.25. Segmented point cloud and discrimination of leaves. 

 

Figure 6.26. Comparison four different active stereo imaging systems done by Gupta  and Ibaraki (2014); 

Left) point cloud, middle) depth map, and right) segmented model.  

Point clouds were meshed into surfaces to measure physical properties of leaves. 

The surfaces are continuous models that provide the possibility of measuring the area 

and perimeter or other features (Serati et al. 2022; Massimiliano et al. 2022; Hossain 

and Lin, 2022). In the developed 3D models, all objects were counted, therefore any 

object was considered as a leaf. In point clouds or 3D models there is the possibility 

to remove a cluster of point clouds or a surface that cannot be a leaf. This is also a 

simple but important ability in 3D image processing. This can be used to remove the 

points or small objects that cannot be seen on the images but put error in counting 

objects. Rusinkiewicz et al. (2002) built the 3D model of objects by taking images of 

the objects in different angles and then combined the data together to develop a high 

quality 3D model of the objects. Figure 6.27 represents the result of meshing for a 
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sample leaf and shows the performance of triangulation in building the 3D shapes of 

leaves. 

 

Figure 6.27. An example of a meshed point cloud of a leaf into a 3D surface and the magnified triangulation 

connections. 

Fig. 6.28 represents the results of meshing for the samples shown in Fig. 6.25. The 

figure shows that Delaunay's triangulation has performed very well in the development 

of 3D surfaces. The results showed that the proposed method could count the leaves 

with the success rate of 96.053 %. Dias (2006) applied Delaunay triangulation for 

meshing point clouds. They reported redundant information of this technique specially 

if all data points were used. 

    

Plant01 Plant02 Plant03 Plant04 

    

Plant05 Plant06 Plant07 Plant08 

Figure 6.28. The 3D model developed based on the segmented point cloud. 



 

110 

 

Figure 6.29 shows the average predicted number of leaves in comparison to the 

actual number. It is seen that the average of predicted leaves is lower than the actual 

number. This is due to the fact that in some cases the algorithm could not segment all 

leaves and some leaves were detected as one because they have been highly overlaid. 

One of the good ways to reduce the amount of occlusion is simulation. Cajal et al. 

(2015) simulated laser triangulation sensors scanning systems for design and 

development purposes. Peiravi and Taabbodi (2010) used two laser lights with two 

different colors along with a CCD camera for the minimization of occlusion. 

 

Figure 6.29. The predicted number of leaves compared to the actual number. 

6.2.4 Leaf geometrical properties 

For perimeter, the 3D leaves were projected to the XY plane and the perimeter of 

the 2D shapes were measured. Then the perimeter was scaled based on the angle of 

the leaf in proportion to the XY plane. 
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Figure 6.30. Leaf perimeter using Alphashape. 

Leaf volume was measured using the convex hull volume. The convex hull volume 

is the volume that covers all the points. Fig. 6.31 represents the convex hull obtained 

for a sample leaf from two different points of view. 

  

Figure 6.31. An example of the convex hull of a leaf from two different points of 

view. 

Table 6-5 represents the average values of the estimated parameters based on the 

3D models. The values provided in this table are the averages of all the leaves and the 

maximum and minimum values. 

Table 6-5. Estimated physical properties of leaves. 
Property Average ± SD Min Max 

Physiological length (cm) 2.588 ± 0.629 1.006 4.176 

Physiological width (cm) 1.431 ± 0.541 0.446 2.815 

Leaf area (cm2) 2.724 ± 1.545 0.356 7.676 

Leaf perimeter (cm) 6.475 ± 1.732 2.407 11.267 

Aspect Ratio (Ø) 1.957 ± 0.575 1.224 3.739 

Form Factor (Ø) 0.755 ± 0.128 0.26 1.441 

Rectangularity (Ø) 1.498 ± 0.523 0.652 3.912 

Perimeter ratio of diameter (Ø) 2.505 ± 0.294 1.087 3.52 

Perimeter ratio of Lengths (Ø) 1.618 ± 0.162 0.807 2.178 

 

Figure 6.32 shows the regression of the actual and estimated values for leaf length 

and width. As the figure shows, the R2 values of 0.962 and 0.961 were achieved for 

the actual and estimated values of leaves’ lengths and width, respectively.  

The regression of the actual and estimated values for leaf area and perimeter are 

shown in Fig. 6.33. An R2 value of 0.978 was obtained for the regression of actual and 
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estimated values for leaf area that was much better than the R2 value obtained for that 

of perimeter (i.e. 0.967). Paturkar et al. (2020) used a 3D technique for the 

measurement of physical features of plants. They observed that the correlation between 

the measured values and ground truth values of leaf width had a correlation coefficient 

of 0.96 with RMSE of 0.11 cm. 

 
 

Figure 6.32. Regression of the estimated and actual values for leaf length and width. 

  

Figure 6.33. Regression of the estimated and actual values for leaf area and perimeter. 

Fig. 6.34 represents the regression plots of the estimated and actual values of 

five other properties. It is observed that the highest R2 value obtained for Aspect 

Ratio amounting to 0.927 and the smallest R2 was obtained for Form Factor equal to 

0.532. It is seen that as these properties are functions of other parameters, the error 

of the coefficient of determination is larger. 
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Figure 6.34. Regression of the estimated and actual values. 

6.3 Passive stereo image processing 

6.3.1 Segmentation 

Figure 6.35 shows the results of pre-processing and segmentation steps for one 

plant from day 5 to day 27. The leaves have been properly extracted and the stems 

have been removed. Shrestha et al. (2004) used Otsu thresholding method for maize 

plant detection and reported positive results. X. Li et al. (2016), for monitoring lettuce 
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growth converted the images to HIS color space and applied thresholding. After filling 

the holes and denoising, k-means clustering algorithm was used. As it can be seen in 

Fig. 6.35, the detection and separation of leaves during the first days of growth is much 

easier and for the older plants with overlaid leaves this segmentation becomes much 

harder as the overlaying leaves make different and unpredictable shapes. 

Using the obtained watershed image based on gradient magnitude, the leaves were 

colored. The result of pseudo-coloring of watershed images is given in Fig. 6.36 for 

the plants in the previous figure. In the watershed image, all the pixels for each leaf 

have the same index which can be used for other processing. In most cases the leaves 

have been identified and colored correctly. The algorithm proposed by De Vylder et 

al. (2011) also had proper results for the segmentation of leaves. Lee (2008) reported 

that the segmentation method worked properly for the images taken under sunlight 

conditions. Hence, a fresh weight model was developed and measurement error of the 

prediction equation was 2.49 g (Lee 2008). Billiot et al. (2013a) proposed shape from 

focus for the 3D reconstruction of plants. They used a single camera and developed 

the disparity map using shape from focus technique (Billiot et al. 2013b). Denker 

(2014) used multi-view stereo imaging based on four different camera views. They 

employed a GPU based stereo matching method resulted in a high quality 

reconstruction. Chéné et al. (2012) segmented plants for phenotyping applications by 

using Microsoft Kinect which consists of two CMOS sensors and an infrared camera. 

The detection was acceptable and bunches and leaves were segmented. 

One of the solutions for overcoming the problem of overlaying leaves and true 

estimation of growth rate is to consider the whole plant for image processing. Patil et 

al. (2013), used a bunch of leaves of different plants. The proposed system included 

four steps of preprocessing, segmentation, feature extraction and classification which 

was performed using SVM. The classification accuracy of 94.73% was achieved in 

that study.  
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Day 21 Day 23 Day 25 Day 27 

Figure 6.35. Image of the extracted leaves after removing the background and filling holes. 

    
Day 5 Day 7 Day 9 Day 11 

    
Day 13 Day 15 Day 17 Day 19 

    
Day 21 Day 23 Day 25 Day 27 

Figure 6.36. Pseudo-coloring of leaves after detection. 

6.3.2 Number of leaves 
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One of the purposes of the algorithm was to count the leaves as every few days 

new leaves appear while others are lost. Thus, after the detection of leaves and before 

the calculation of leaf properties, the number of leaves is recorded. The overall success 

rate of the algorithm for leaf count was 84.32%. The undetected leaves were those that 

were fully covered or partially covered in such a way that could not be distinguished 

from the leaf directly above it. 

6.3.3 Physical properties 

Leaf physical properties were measured from the segmented images. Each detected 

leaf was associated with a label. Using the label the leaf could be extracted or 

processed. Figure 6.37 shows the regression between the estimated and actual leaf area 

values. The R2 of 0.944 was obtained for leaf area estimation. As Fig. 6.38 represents 

the R2 value of 0.931 was obtained for the regression between the estimated and actual 

leaf perimeters.  

 

Figure 6.37. Estimated leaf area versus the actual area. 
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Figure 6.38. Estimated leaf perimeter versus the actual perimeter. 

6.4 Stereo matching algorithm 

Disparity maps were built for different matching algorithms and cost functions. 

Then the obtained results are compared with the ground truth. The mean error 

percentage was calculated as the average error for all the pixels of the image. 

6.4.1 SAD 

The results of matching techniques with the SAD cost function were pretty 

different. As Figure 6.39 shows, the BP provides the best result for the matching. 

However, it is observed that still the result depends on the image and the details inside. 

For example in the image of the motorcycle (Fig. 6.40), the DWAC had the best 

matching. Also, it is seen that the HOG technique is so sensitive to the details and in 

Fig. 6.40 the details have been detected much more neatly. 

Besse et al. (2013) proposed Patch-Match BP to increase the precision of stereo 

matching and is an improvement of BP in sub-pixel level accuracy. Dipanda et al. 

(2003) used a GA-based algorithm for active stereo matching and reported high-

accuracy matchings even for complicated objects and situations. Kihlström (2019) 

used deep learning for active stereo matching which received the left and right active 

stereo images and gave the disparity map as the result. They reported proper results of 

the proposed network compared to the previous techniques. 
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Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.39. Left and right images and the disparity maps achieved for different matching algorithms based 

on SAD cost function. 

  

  
Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.40. Left and right images and the disparity maps achieved for different matching algorithms based 

on SAD cost function. 

Figure 6.41 presents the results for another example that has been a more difficult 

work to do as it is a less detailed image. It is seen that for this type of images, BM 

provides the least proper results while BP and HOG lead in better results. Pinggera et 

al. (2012) compared several matching techniques. They reported that HOG showed 

favorable results and better compared to Mutual Information or Local Self-Similarity 

descriptors. 
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Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.41. Left and right images and the disparity maps achieved for different matching algorithms based 

on SAD cost function. 

6.4.2 MSE 

Figure 6.42 provides the disparity maps that constructed using MSE cost function 

for different matching algorithms. The results are quite similar to the SAD algorithm. 

However, the disparity maps with MSE also are proper for BP, GF and HOG and for 

the rest the results are not very acceptable. Figure 6.43 provides an example of a 

difficult task of matching as the images contain less details and textures. Aboali et al. 

(2018) studied a stereo matching algorithm called Multistage Hybrid Median Filter. 

They used three cost functions including MSE, PSNR, and SSIM. In all cases of cost 

functions, the matching algorithm of Multistage Hybrid Median Filter had the best 

performance. 

  

  
Left RGB Right RGB BM BMDP 
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BP GF HOG DWAC 

Figure 6.42. Left and right images and the disparity maps achieved for different matching algorithms based 

on MSE cost function. 

 

  

  
Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.43. Left and right images and the disparity maps achieved for different matching algorithms based 

on MSE cost function. 

  

  
Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.44. Left and right images and the disparity maps achieved for different matching algorithms based 

on MSE cost function. 
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6.4.3 NCC 

Hereafter, the results obtained by NCC are presented. As figures 6.45 – 47 show, 

the performance of NCC was not as good as MSE and SAD for different matching 

algorithms. Here also the performance of HOG has been more precise and clear. 

Hirschmuller and Scharstein (2007) reported the same results. They found NCC the 

least interesting results while other techniques were much better.  

  

  
Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.45. Left and right images and the disparity maps achieved for different matching algorithms based 

on NCC cost function. 

  

  
Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.46. Left and right images and the disparity maps achieved for different matching algorithms based 

on NCC cost function. 
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Left RGB Right RGB BM BMDP 

    
BP GF HOG DWAC 

Figure 6.47. Left and right images and the disparity maps achieved for different matching algorithms based 

on NCC cost function. 

Table 6-6 summarizes the minimum and maximum of average errors for all images 

used for disparity map development using different matching and cost algorithms. As 

the table indicates, the error strongly depends on the type of application, details, and 

textures inside the image. The best result was obtained by the use of BP and SAD. 

Table 6-6. Minimum and maximum of average error for different algorithms. 

Method 
BM BMDP BP GF HOG DWAC 

Min Max Min Max Min Max Min Max Min Max Min Max 

MSE 0.113 0.853 0.106 0.903 0.272 0.933 0.099 0.854 0.128 0.905 0.043 0.841 

NCC 0.236 0.881 0.156 0.925 0.315 0.941 0.153 0.904 0.246 0.91 0.121 0.892 

SAD 0.291 0.919 0.253 0.94 0.347 0.964 0.21 0.919 0.295 0.94 0.102 0.904 

Figure 6.48 shows the stereo matching accuracy for all image pairs used in this 

study. It is observed that BP had mostly the best accuracies, however for all algorithms 

the accuracy of matching has not been fixed and has experienced fluctuations for 

different types of images. 
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Figure 6.48. The whole comparison of all algorithms for all the images. 

6.5 Spectral data for separation of plants 

6.5.1 Separation using deep learning 

For the separation of pepper from weeds, deep learning was utilized. Four networks 

were trained for considering the performance of the classification. Table 6-7 presents 

the plants and the number of samples used for building each  network.  

Table 6-7. Number of samples used for training the network. 

Net Plants No of samples 

1 Pepper, Bindweed, Nutsedge, Plantago 192 

2 Pepper, Bindweed, Nutsedge, Plantago, Potentilla 241 

3 Pepper, Bindweed, Nutsedge, Plantago, Potentilla, Sorrel 291 

 

The deep network was a classifier based on RGB images. The spectral responses 

were transformed to scalograms. These scalograms of the form 2D images were used 

for training the network and classification. Examples of these scalograms have been 

given in Figure 6.49.  
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a b 

Figure 6.49. The scalogram of CWT colored as an RGB image; a) pepper and 

b) Bindweed. 

Tables 6-8 to 6-10 provide the details of training of the networks. As the tables 

indicates, in all cases, the accuracy of networks reached 100%. Moshou et al. (2001) 

reported a neural network-based classifier for plants and weeds. Several networks were 

used and acceptable accuracies achieved. Wang et al. (2008) studied the spectral 

prediction of Phytophthora infestans infection on tomatoes using artificial neural 

networks. Benefitting from back-propagation neural networks, the correlation 

coefficients of 0.99 and 0.82 for field data and remote sensing image data were 

obtained. Li and He (2008) used back propagation networks for discrimination of 

varieties of tea plant based on spectral data where accuracy of 77.3 % was obtained. 

Nidamanuri  (2020) also used artificial neural networks for the discrimination of tea 

plant varieties. It was reported that six out of nine varieties could be discriminated with 

accuracies ranging between 75 % and 80%. 

Figure 6.50 illustrates the training process of the network for the last network (i.e. 

pepper and five weeds). It is observed that the training has been performed very well. 

In this figure, the most important element is the validation curve which has been 

improving and following the training data. It can be seen that in iteration 130, the 

network could completely discriminate the plants and weeds (i.e. 100% accuracy). 

Figure 6.51 presents the amount of loss function for each iteration. Minimizing loss 

function is based on the gradient descent algorithm. In every iteration, the gradient of 

the loss function is obtained and evaluated and then the weights for the descent 

algorithm are updated. In the figure, it can be seen that the training has been going 
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very well and the loss value for validation data has been gradually decreasing while 

following the training data. 

Table 6-8. The training information of the network for pepper and three weeds. 

Epoch Iteration Mini-batch 

Accuracy (%)    

Validation 

Accuracy (%)     

Mini-

batch Loss   

Validation 

Loss    

1 1 20.00 46.87 2.0109 0.7489 

3 10 80.00 75.00 0.4208 0.6102 

5 40 73.33 75.00 52.76 0.4839 

8 60 100.00 81.25 0.4354 0.4007 

10 80 93.33 87.50 0.3902 0.2983 

13 100 93.33 84.38 0.2370 0.2090 

15 120 100.00 96.88 0.0596 0.1397 

18 140 100.00 100.00 0.0308 0.1002 

20 160 100.00 93.75 0.0240 0.1013 

23 180 100.00 100.00 0.0410 0.0661 

25 200 100.00 100.00 0.0243 0.0822 

 

Table 6-9. The training information of the network for pepper and four weeds. 

Epoch Iteration Mini-batch 

Accuracy (%)    

Validation 

Accuracy (%)     

Mini-

batch Loss   

Validation 

Loss    

1 1 20.00 36.59 3.2537 0.8513 

2 20 80.00 87.80 0.6030 0.4785 

4 40 86.67 92.68 0.4330 0.2485 

6 60 93.33 95.12 0.2118 0.1289 

8 80 93.33 100.00 0.1713 0.0644 

10 100 100.00 100.00 0.0755 0.0363 

12 120 93.33 100.00 0.0750 0.0284 

14 140 93.33 100.00 0.1924 0.0138 

16 160 100.00 100.00 0.0521 0.0170 

18 180 100.00 100.00 0.0197 0.0128 

20 200 100.00 100.00 0.0070 0.0067 

 

Table 6-10. The training information of the network for pepper and five weeds. 

Epoch Iteration Mini-batch 

Accuracy (%)    

Validation 

Accuracy (%)     

Mini-

batch Loss   

Validation 

Loss    

1 1 46.67 26.53 1.9153 1.0377 

2 20 60.00 83.67 0.7427 0.5601 

4 40 80.00 83.67 0.2899 0.2647 

5 60 93.33 85.71 0.1805 0.1954 

7 80 93.33 97.96 0.1487 0.0728 
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8 100 100.00 100.00 0.0674 0.0345 

10 120 100.00 100.00 0.0217 0.0229 

11 140 100.00 100.00 0.0056 0.0183 

13 160 100.00 100.00 0.0058 0.0206 

14 180 100.00 100.00 0.0159 0.0062 

16 200 100.00 100.00 0.0109 0.0045 

 

Figure 6.50. Diagram showing the network training process and accuracy per iteration. 

 

Figure 6.51. Diagram of loss function values per iteration during the network training process. 

In CNNs the primary layers provide the most important information for image 

processing applications. These layers hold the information about edges, shapes and 

curves. Figure 6.52 represents the weights for the first convolutional layer. Each layer 

of the network consists of many channels. Figure 6.53 illustrates an original scalogram 

as the input of the network, and the strongest convolutional channel corresponding to 

it. 
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a b 

Figure 6.52. First convolutional layer weights; a) pepper and b) 

Bindweed. 

 

  

a b 

Figure 6.53. First convolutional layer weights; a) pepper and b) Bindweed. 

Figure 6.54 represents the confusion matrices for describing the networks 

performance. In these matrices, output class is the predicted classification and the 

target class refers to the actual classes. It is seen that for example for the first network, 

the algorithm has randomly chosen 8 plant samples and 16 weed samples that have 

been classified completely and correctly and no plant or weed has been classified in 

the other group. In a recent work, Shirzadifar et al. (2018) used soft independent 

modelling of the class analogy method for discrimination of three weeds based on 

spectral data. They reported NIR area as the best area for the discrimination. The 

proposed method could discriminate three weed species with 100% accuracy for 63 

samples. de Souza et al. (2020) studied the differentiation of sugarcane from weeds 

based on spectral data and using soft independent modelling by class analogy, obtained 

an accuracy of 97.4. 

   

a b c 

Figure 6.54. Confusion matrix of the network for validation samples; a) pepper and two weeds, b) pepper and three 

weeds, c) pepper and four weeds, and d) pepper and five weeds. 
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For the unseen data, still the performance of the network was significant. In case 

of training the network with four plants (i.e. bell pepper and three weeds), the accuracy 

was 0.8631. It seems that this has been because of the low number of samples. In case 

of training the network with five plants, the total of 241 samples, the accuracy of 1.00 

was achieved. And in the last case, the network based on six different plants achieved 

an accuracy of equal to 0.9655 that still is a remarkable performance. 

6.5.2 Separation using k-means clustering 

k-means clustering was used for the classification of spectral data into different 

groups. Figure 6.55 represents the clustering results for pepper and different weeds 

(i.e. the weeds mentioned before). It is observed that the separation of pepper from one 

weed is perfectly done but for more weeds it was a bit hard to separate as still it was 

possible. 

Figure 6.56 illustrates the result of k-means clustering of spectral data for pepper 

and five different weeds. The figure shows that the separation is pretty difficult based 

on this PCA result. 

  

(a) (b) 
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(c) (d) 

Figure 6.55. Scatter plots (PCA) of clustered spectral data: a) pepper and one weed, b) pepper and 

two weeds, c) pepper and three weeds, d) pepper and four weeds. 

 
Figure 6.56. Scatter plot (PCA) of the clustered spectral data for pepper and five weeds. 

Optimal number of clusters was searched using different methods (Fig. 6.57). It is 

seen that the data are best classifiable into two groups or into six groups. Therefore, 

based on Calinski-Harabasz method, the data can be classified into 6 groups. However, 

to improve the classification, the spectral data can be optimized as well. In this case, 

the clustering was done for the NIR part (i.e. 700 – 1000 nm) and the VIS part of data 

was removed. The result is remarkable and all plants are separated (Fig. 6.58). 
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(a) (b) 

  

(c) (d) 

Figure 6.57. Optimal number of clusters; a) Calinski-Harabasz, b) Davies-Bouldin, c) Silhouette, 

and d) Gap 

 
Figure 6.58. Scatter plot (PCA) of clustered data for 700-1000 nm. 
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7  

CONCLUSIONS 

 

 

In this work, the use of stereo and multispectral imaging for growth monitoring 

and geometrical measurements of bell pepper plant was studied. Active and passive 

stereo imaging were employed for imaging bell pepper plant during a period of 35 

days.  

It was observed that the best color for the projected light in active stereo imaging 

will be the red color. The scattering of red light was less and the extraction of the light 

stripe was easier. For the prepared videos of light stripes with the same light thickness, 

the green and blue lights had bigger lines on the environment and were scattered more. 

However, the choice of color depends also on the camera that is used for imaging and 

the camera’s characteristics should be considered in other works. 

It was observed that the more the calibration images the better the calibration 

accuracy. As a rule of thumb 20 pairs is enough but it is suggested to provide more 

than 40 pairs of images to achieve a good calibration accuracy. As long as the 

calibration image pairs are enough and proper, the calibration is done with good 

precision for different stereo camera angles. The calibration accuracy was about one 

pixel for 75°, 90° and 105° angles between the cameras that was acceptable for all 

cases. However, as a trade-off between field of view and angle view of the cameras, 

90 degrees angle was the best. During calibration, it is important that the software 

identifies the correspondent images correctly. 

For the angle of cameras, 90 degrees was a proper angle for calibration. However, 

the wide angles were better as the using of small angles brings a small field of view 
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and therefore, the leaves are not detected very well. The wider angles (larger than 90 

degrees) provide better field of view and the plant can be seen clearly by the cameras. 

However, using only two images of left and right does not sufficiently cover all parts 

and branches of the plant. 

The result of segmentation of the point clouds could count the leaves with the 

success rate of 96.053 %. The technique makes the segmentation much easier as the 

leaves that are overlaid in 2D images are in different height levels in 3D images. 

However, the segmentation of leaves that are overlaid and touched each other is still a 

difficult work. Also, the small leaves that fall in blind zone of stereo cameras have the 

possibility not to be detected and segmented. 

The accuracy of estimation of leaf area and perimeter by active stereo imaging was 

acceptable. The accuracy for the estimation of other physical properties such as 

rectangularity, form factor etc. are less and for some properties less than 0.8. This 

comes from the reason that these factors are extracted from other leaf properties like 

leaf area or diagonals and the error of estimation gets multiplied several times and the 

result is not precise enough. In this case, scaling factors or using other techniques for 

finding the true estimation is required. 

It was observed that active stereo imaging works properly until the number of 

leaves is small and the complexity of the canopy is not much. For plants with complex 

canopies and lots of leaves, the correspondence will be difficult or even impossible to 

do. Also, some of the leaves will be in the blind spot of cameras leading to the wrong 

number of leaves to count and detect. 

Passive stereo imaging was also used for the estimation of physical properties of 

plants. The disparity map was obtained based on the calibration information. The 

overall success rate of the passive stereo algorithm for leaf counting was 84.32 %.  

For the objects with textures that enough correspondent points can be found, and 

the use of a uniform light is possible, the use of passive stereo imaging will be easier 

and more promising. Another advantage can be the amount of processing time which 

is much less than active stereo imaging. 
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Different matching algorithms and cost functions were tested and compared. It was 

observed that generally BP algorithm provides better results for disparity map 

development. For cost functions, SAD provided better results compared to MSE and 

NCC. It was observed that the choice of maching algorithm and cost function highly 

depends on the type of application. This comes from the details and patterns present 

on the images. For example for the images with less details and uniform regions, BM 

provides the least proper results while BP and HOG lead in better results. 

The use of spectral imaging for the detection and monitoring of plants was studied. 

To see if the spectral imaging can make the difference of plants, the spectral responses 

of pepper and five different weeds were obtained. The discrimination of plants based 

on the spectral data was almost impossible as the data were so large. Wavelet transform 

was used for dimension reduction. A classifier based on CNN was developed to 

discriminate pepper from weeds. For the CNN the pre-trained network called 

GoogLeNet was used. This network has been trained for over 1000 classification 

groups. The classifier could completely discriminate pepper and weeds. It was also 

seen that in case of difficulties in preparation of large datasets with samples over a 

thousand that is very important for deep learning techniques, the use of pretrained 

networks including GoogleNet, AlexNet, VGG16 etc. can be a promising choice for 

image processing and classification applications. 

Spectral data also were classified using k-means clustering technique. This 

technique works perfectly for the separation of pepper and one weed, however, the 

separation of all plants were difficult. k-means clustering could separate all plants by 

using the data in the range of 700 – 1000 nm. 
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8  

SUGGESTIONS 

 

The study showed that the use of stereo imaging can provide an inexpensive 

technique for the geometrical measurements of plants in early growth stages. For the 

applications where only 3D information is needed, active stereo imaging is 

recommended as no illumination is required. However, the more complicated the 

structure of the plant, the more the error of measurement. In case of larger plants, the 

use of more cameras from different angles of view will be necessary.  

Based on the conclusions mentioned in the previous chapter, for the measurements 

of plant features during the entire growth period, the following is recommended.  

• Utilize multiview imaging by using a movable system to take images in different 

angles or use several cameras and take images at several different angles. This 

involves more processing costs for matching images, but it will provide higher 

accuracy in developing the 3D models. In addition, this will improve the ability 

of the system in constructing the hidden or overlaid leaves. 

• Fusion of stereo imaging with another depth measuring technique such as laser 

or ultrasound can also be promising. This technique, which is more popular 

because of Kinect cameras, has been used in other research work, however, for 

plant monitoring, higher accuracies are required. For example, Kinect cameras 

normally work well in low resolutions with imaging applications  such as rooms 

or large objects. 

• Image rectification requires hard work with cameras positioned far from each 

other. When the cameras are far apart, the matrices in the virtual work 

coordination system become massively large which can cause problems in 

MATLAB. In this regard, if the application allows, smaller baselines can be 

chosen for the stereo imaging system. 
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• Calibration of the system is quite critical and if something is not defined well, it 

will result in system inaccuracy.  One of the important points is to make sure that 

the calibrator application selects the correspondent images correctly. This occurs 

with some calibrators and the correspondent images should be checked by the 

operator. 

• The use of deep learning for separation of crop and weeds based on spectral data 

is promising. It is proposed to make a larger database of spectral responses for 

more crops and weeds and perform the classification to construct a robust 

classifier of crops and weeds. 

• The separation of crops and weeds based on spectral data can be more necessary 

under farm conditions. In this regard, the development of a database of spectral 

responses in sunlight is required. This can bring difficulties as the sun light varies 

during the daytime and from one day to another. 

• The use of tracking algorithms for monitoring and tracking of each leaf is 

interesting and conducive to extracting more information on the growth of leaves 

and plants. This will also help to produce growth models or to utilize growth 

models for the prediction purposes. 

• As stereo matching is a challenging task and depends on the image and 

application, it is probable that new stereo matching techniques including deep 

learning for stereo matching can be promising and improve the stereo matching 

accuracy. 

• The use of spectral data was properly well for discriminating plants and weeds. 

This can help to easily detect the plants, segment them and monitor their growth. 

In this study wavelet transform was used for the classification of spectral data. 

However, the use of other dimension-reduction algorithms such as Missing 

Values Ratio, Low Variance Filter, Random Forests and PCA can be interesting 

or even more promising for other applications. 

• Based on the spectral responses and the previous research, it is recommended to 

use multispectral imaging in the red area of visible light and NIR as these areas 

provide more information about plants. 
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• When using k-means clustering method for the classification of crops and weeds, 

the spectral range of data is important. The best region for the classification is 

NIR which gives more information about various plants. However, fusion of 

visible and NIR data can also be more effective in some applications. The 

selection of spectral data for clustering is of high importance as well. In this 

study, spectral data with steps of one nanometer were used and reported. 

However, the usage of data with steps of 5 nm or 10 nm also can help to cluster 

data into groups easier. 

  



 

137 

 

 

REFERENCES 

 

Aboali, M., Abd Manap, N. and Yusof, Z.M., 2017. Performance analysis between basic 

block matching and dynamic programming of stereo matching algorithm. Journal of 

Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-13), pp.7-16. 

Aboali, M., Abd Manap, N. and Yusof, Z.M., 2018. A Multistage Hybrid Median Filter 

Design of Stereo Matching Algorithms on Image Processing. Journal of 

Telecommunication, Electronic and Computer Engineering (JTEC), 10(4), pp.133-141. 

Aksoy, Eren Erdal, et al. (2015), 'Modeling leaf growth of rosette plants using infrared stereo 

image sequences', Computers and electronics in agriculture, 110, 78-90. 

Alchanatis, V., Ridel, L., Hetzroni, A. and Yaroslavsky, L., 2005. Weed detection in multi-

spectral images of cotton fields. Computers and Electronics in Agriculture, 47(3), pp.243-

260. 

Alenya, Guillem, Dellen, Babette, and Torras, Carme (2011), '3D modelling of leaves from 

color and ToF data for robotized plant measuring', 2011 IEEE International Conference 

on Robotics and Automation (IEEE), 3408-14. 

Amandep, K (2014), 'Image Segmentation Using Watershed Transform', International 

Journal of Soft Computing and Engineering (IJSCE). University Putiala, India, 4 (1). 

Amean, Zainab Mohammed, Low, Tobias, and Hancock, Nigel (2021), 'Automatic leaf 

segmentation and overlapping leaf separation using stereo vision', Array, 100099. 

Amir, Y.M. and Thörnberg, B., 2017. High precision laser scanning of metallic 

surfaces. International Journal of Optics, 2017. 

Anton, B., 2014, October. Real time gestures recognition based on Hidden Markov Models. 

In 2014 International Conference on Mechanical Engineering, Automation and Control 

Systems (MEACS) (pp. 1-3). IEEE. 

Babellahi, F., Amodio, M.L., Marini, F., Chaudhry, M.M., de Chiara, M.L., Mastrandrea, L. 

and Colelli, G., 2020. Using chemometrics to characterise and unravel the near infra-red 

spectral changes induced in aubergine fruit by chilling injury as influenced by storage 

time and temperature. Biosystems Engineering, 198, pp.137-146. 



 

138 

 

Bagavathiappan, S., Lahiri, B.B., Saravanan, T., Philip, J. and Jayakumar, T., 2013. Infrared 

thermography for condition monitoring–A review. Infrared Physics & Technology, 60, 

pp.35-55. 

Bahrami, Ch. (2015), 'Dynamical simulation of spring canola growth under water limit 

conditions using Aqua Crop model', (Eurmieh University). 

Barzegar, Z. (2013), 'The effect of different growth media on growth of bell pepper plant', 

(Industrial University of Isfahan). 

Bell IE, Baranoski GV. Reducing the dimensionality of plant spectral databases. IEEE 

Transactions on Geoscience and Remote Sensing, 2004, 42(3): 570−576. 

Beraldin, J.A., Blais, F., Cournoyer, L., Godin, G., Rioux, M. and Taylor, J., 2003. Active 

3D sensing. National Research Council of Canada. 

Besse, F., Rother, C., Fitzgibbon, A. and Kautz, J., 2014. Pmbp: Patchmatch belief 

propagation for correspondence field estimation. International Journal of Computer 

Vision, 110(1), pp.2-13. 

Bi, S., Gu, Y., Zou, J., Wang, L., Zhai, C. and Gong, M., 2021. High precision optical 

tracking system based on near infrared trinocular stereo vision. Sensors, 21(7), p.2528. 

Bianco, G., Gallo, A., Bruno, F. and Muzzupappa, M., 2013. A comparative analysis between 

active and passive techniques for underwater 3D reconstruction of close-range 

objects. Sensors, 13(8), pp.11007-11031. 

Bianco, Gianfranco, et al. (2013), 'A comparative analysis between active and passive 

techniques for underwater 3D reconstruction of close-range objects', Sensors, 13 (8), 

11007-31. 

Billiot, B., 2013. Conception d'un dispositif d'acquisition d'images agronomiques 3D en 

extérieur et développement des traitements associés pour la détection et la reconnaissance 

de plantes et de maladies (Doctoral dissertation, Dijon).  

Billiot, B., Cointault, F. and Gouton, P., 2013b, September. Mesure de netteté basée sur les 

descripteurs généralisés de Fourier appliquée à la reconstruction 3D par Shape from 

Focus. In 24ème colloque GRETSI (pp. 4-pages). 

Billiot, B., Cointault, F., Journaux, L., Simon, J.C. and Gouton, P., 2013a. 3D image 

acquisition system based on shape from focus technique. Sensors, 13(4), pp.5040-5053. 

Bolkas, D., 2019. Terrestrial laser scanner intensity correction for the incidence angle effect 

on surfaces with different colours and sheens. International Journal of Remote 

Sensing, 40(18), pp.7169-7189. 



 

139 

 

Bozokalfa, M Kadri and Kilic, Murat (2010), 'Mathematical modeling in the estimation of 

pepper (Capsicum annuum L.) fruit volume', Chilean journal of agricultural research, 70 

(4), 626-32. 

Cajal, C., Santolaria, J., Samper, D. and Garrido, A., 2015. Simulation of laser triangulation 

sensors scanning for design and evaluation purposes. International Journal of Simulation 

Modelling, 14(2), pp.250-264. 

Carter, G.A. and Knapp, A.K., 2001. Leaf optical properties in higher plants: linking spectral 

characteristics to stress and chlorophyll concentration. American journal of botany, 88(4), 

pp.677-684. 

Chaerle, L., Lenk, S., Leinonen, I., Jones, H.G., Van Der Straeten, D. and Buschmann, C., 

2009. Multi‐sensor plant imaging: Towards the development of a stress‐

catalogue. Biotechnology Journal: Healthcare Nutrition Technology, 4(8), pp.1152-

1167. 

Chakravorty, Geetanjali, et al. (2015), 'An experimental method to estimate the growth-rate 

of a leaf using image processing and solving an inversegrowth-problem', 2nd 

International and 17th National Conference on Machines and Mechanisms, INaCoMM. 

Chan, B.M.H., 2002. A miniaturized 3-D endoscopic system using active stereo-

vision (Doctoral dissertation). 

Chang, J.R. and Chen, Y.S., 2018. Pyramid stereo matching network. In Proceedings of the 

IEEE conference on computer vision and pattern recognition (pp. 5410-5418). 

Che, E. and Olsen, M.J., 2019. An efficient framework for mobile lidar trajectory 

reconstruction and Mo-norvana segmentation. Remote Sensing, 11(7), p.836. 

Chen, Y.S., Hung, Y.P. and Fuh, C.S., 2001. Fast block matching algorithm based on the 

winner-update strategy. IEEE Transactions on Image Processing, 10(8), pp.1212-1222. 

Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, É. and 

Chapeau-Blondeau, F., 2012. On the use of depth camera for 3D phenotyping of entire 

plants. Computers and Electronics in Agriculture, 82, pp.122-127. 

Chiang, P.J. and Lin, C.H., 2022. Active Stereo Vision System with Rotated Structured Light 

Patterns and Two-Step Denoising Process for Improved Spatial Resolution. Optics and 

Lasers in Engineering, 152, p.106958. 

Costa, Ana Patrícia, Pôças, Isabel, and Cunha, Mário (2016), 'Estimating the leaf area of cut 

roses in different growth stages using image processing and allometrics', Horticulturae, 2 

(3), 6. 



 

140 

 

Coste, A., 2013. Multiple Baseline Stereo. Computer Vision and Image Processing Course 

work. University Hospital of Saint-Etienne. 

Dalal, N. and Triggs, B., 2005, June. Histograms of oriented gradients for human detection. 

In 2005 IEEE computer society conference on computer vision and pattern recognition 

(CVPR'05) (Vol. 1, pp. 886-893). Ieee. 

de Jong, S.M., Addink, E.A., Hoogenboom, P. and Nijland, W., 2012. The spectral response 

of Buxus sempervirens to different types of environmental stress–A laboratory 

experiment. ISPRS Journal of Photogrammetry and Remote Sensing, 74, pp.56-65. 

de Souza, Micael Felipe, et al. (2020), 'Spectral differentiation of sugarcane from weeds', 

biosystems engineering, 190, 41-46. 

De Vylder, Jonas, et al. (2011), 'Leaf segmentation and tracking using probabilistic 

parametric active contours', International Conference on Computer Vision/Computer 

Graphics Collaboration Techniques and Applications (Springer), 75-85. 

DEMİREL, K., Levent, G.E.N.Ç., MENDEŞ, M., SAÇAN, M. and KIZIL, Ü., 2012. 

Estimation of growth curve parameters for pepper (Capsicum annuum cv. Kapija) under 

deficit irrigation conditions. Ege Üniversitesi Ziraat Fakültesi Dergisi, 49(1), pp.37-43.  

DEMİREL, Kürşad, et al. (2012), 'Estimation of Growth Curve Parameters for Pepper 

(Capsicum annuum cv. Kapija) Under Deficit Irrigation Conditions', Ege Üniversitesi 

Ziraat Fakültesi Dergisi, 49 (1), 37-43. 

Denker, K., 2014. Acquisition and On-line Reconstruction of 3D Point Data from Hand-held 

Laser Scanners and Multi-camera Stereo-matching (Doctoral dissertation, Technische 

Universität Kaiserslautern). 

Di Stefano, L., Marchionni, M. and Mattoccia, S., 2004. A fast area-based stereo matching 

algorithm. Image and vision computing, 22(12), pp.983-1005. 

Dias, P., Matos, M. and Santos, V., 2006. 3D reconstruction of real world scenes using a 

low‐cost 3D range scanner. Computer‐Aided Civil and Infrastructure Engineering, 21(7), 

pp.486-497. 

Dipanda, A. and Woo, S., 2005. Efficient correspondence problem-solving in 3-D shape 

reconstruction using a structured light system. Optical Engineering, 44(9), p.093602. 

Dipanda, A., Woo, S., Marzani, F. and Bilbault, J.M., 2003. 3-D shape reconstruction in an 

active stereo vision system using genetic algorithms. Pattern recognition, 36(9), pp.2143-

2159. 



 

141 

 

Do, Y., 1999, July. Application of neural networks for stereo-camera calibration. 

In IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 

99CH36339) (Vol. 4, pp. 2719-2722). IEEE. 

Dong, Z., Sun, X., Liu, W. and Yang, H., 2018. Measurement of free-form curved surfaces 

using laser triangulation. Sensors, 18(10), p.3527. 

Donné, S., De Vylder, J., Goossens, B. and Philips, W., 2016. MATE: Machine learning for 

adaptive calibration template detection. Sensors, 16(11), p.1858. 

Dorsch, R.G., Häusler, G. and Herrmann, J.M., 1994. Laser triangulation: fundamental 

uncertainty in distance measurement. Applied optics, 33(7), pp.1306-1314. 

Durgante FM, Higuchi N, Almeida A, Vicentini A. Species spectral signature: discriminating 

closely related plant species in the Amazon with near-infrared leaf-spectroscopy. Forest 

Ecology and Management, 2013, 291: 240−248. 

Eigen, D., Puhrsch, C. and Fergus, R., 2014. Depth map prediction from a single image using 

a multi-scale deep network. Advances in neural information processing systems, 27. 

Esteban, I., Dijk, J. and Groen, F., 2010, October. Fit3d toolbox: multiple view geometry 

and 3d reconstruction for matlab. In Electro-Optical Remote Sensing, Photonic 

Technologies, and Applications IV (Vol. 7835, pp. 206-214). SPIE. 

Fan, Xing-Rong, et al. (2015), 'A knowledge-and-data-driven modeling approach for 

simulating plant growth: A case study on tomato growth', Ecological Modelling, 312, 

363-73. 

FAO 'FAO stats', <http://www.fao.org/faostat/en/#>, accessed. 

Farjon, Guy, et al. (2021), 'Leaf Counting: Fusing Network Components for Improved 

Accuracy', Frontiers in Plant Science, 12, 1063. 

Feng, J., Zeng, L. and He, L., 2019. Apple fruit recognition algorithm based on multi-spectral 

dynamic image analysis. Sensors, 19(4), p.949. 

Garibaldi-Márquez, F., Flores, G., Mercado-Ravell, D.A., Ramírez-Pedraza, A. and 

Valentín-Coronado, L.M., 2022. Weed Classification from Natural Corn Field-Multi-

Plant Images Based on Shallow and Deep Learning. Sensors, 22(8), p.3021. 

Gélard, W., Devy, M., Herbulot, A. and Burger, P., 2017, February. Model-based 

segmentation of 3D point clouds for phenotyping sunflower plants. In 12. International 

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and 

Applications. 



 

142 

 

Geng, J., 2011. Structured-light 3D surface imaging: a tutorial. Advances in Optics and 

Photonics, 3(2), pp.128-160. 

Gigilashvili, D., Shi, W., Wang, Z., Pedersen, M., Hardeberg, J.Y. and Rushmeier, H., 2021a. 

The role of subsurface scattering in glossiness perception. ACM Transactions on Applied 

Perception (TAP), 18(3), pp.1-26. 

Gigilashvili, D., Thomas, J.B., Hardeberg, J.Y. and Pedersen, M., 2021b. Translucency 

perception: A review. Journal of Vision, 21(8), pp.4-4.  

Giménez, C, et al. (2013), 'VegSyst, a simulation model of daily crop growth, nitrogen uptake 

and evapotranspiration for pepper crops for use in an on-farm decision support system', 

Irrigation Science, 31 (3), 465-77. 

Goudriaan, Jan and Van Laar, HH (2012), Modelling potential crop growth processes: 

textbook with exercises (2: Springer Science & Business Media). 

Guo, Jingwei and Xu, Lihong (2017), 'Automatic segmentation for plant leaves via 

multiview stereo reconstruction', Mathematical Problems in Engineering, 2017. 

Gupta, S.D. and Ibaraki, Y. eds., 2014. Plant image analysis: fundamentals and applications. 

CRC Press, Chapter 9: 179-206. 

Gyaourova, A., Kamath, C. and Cheung, S.C., 2003. Block matching for object tracking (No. 

UCRL-TR-200271). Lawrence Livermore National Lab.(LLNL), Livermore, CA (United 

States). 

Hamdi, N., Auhmani, K. and Hassani, M.M., 2014. A comparative study of dimension 

reduction methods combined with wavelet transform applied to the classification of 

mammographic images. International Journal of Computer Science & Information 

Technology, 6(6), p.139. 

Hamzah, R.A., Abd Rahim, R. and Noh, Z.M., 2010, July. Sum of absolute differences 

algorithm in stereo correspondence problem for stereo matching in computer vision 

application. In 2010 3rd International Conference on Computer Science and Information 

Technology (Vol. 1, pp. 652-657). IEEE. 

Hartley, R. and Zisserman, A., 2003. Multiple view geometry in computer vision. Cambridge 

university press. 

Hashemi, S., Kiani, S., Noroozi, N. and Moghaddam, M.E., 2010. An image contrast 

enhancement method based on genetic algorithm. Pattern Recognition Letters, 31(13), 

pp.1816-1824. 



 

143 

 

Havens, Kirk J and Sharp, Edward (2015), Thermal imaging techniques to survey and 

monitor animals in the wild: a methodology (Academic Press). 

Heise, P., Jensen, B., Klose, S. and Knoll, A., 2015, May. Fast dense stereo correspondences 

by binary locality sensitive hashing. In 2015 IEEE International Conference on Robotics 

and Automation (ICRA) (pp. 105-110). IEEE. 

Heo, Y.S., Lee, K.M. and Lee, S.U., 2010. Robust stereo matching using adaptive normalized 

cross-correlation. IEEE Transactions on pattern analysis and machine intelligence, 33(4), 

pp.807-822. 

Hirschmuller, H. and Scharstein, D., 2007, June. Evaluation of cost functions for stereo 

matching. In 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 

1-8). IEEE. 

Hossain, S. and Lin, X., 2022. Efficient Stereo Depth Estimation for Pseudo LiDAR: A Self-

Supervised Approach Based on Multi-Input ResNet Encoder. arXiv preprint 

arXiv:2205.08089. 

Huang, Y., Dong, W., Sanaeifar, A., Wang, X., Luo, W., Zhan, B., Liu, X., Li, R., Zhang, H. 

and Li, X., 2020. Development of simple identification models for four main catechins 

and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy. 

Computers and electronics in agriculture, 173, p.105388. 

Isa, M.A. and Lazoglu, I., 2017. Design and analysis of a 3D laser 

scanner. Measurement, 111, pp.122-133. 

Jang, W., Je, C., Seo, Y. and Lee, S.W., 2013. Structured-light stereo: Comparative analysis 

and integration of structured-light and active stereo for measuring dynamic shape. Optics 

and Lasers in Engineering, 51(11), pp.1255-1264. 

Jang, W., Je, C., Seo, Y. and Lee, S.W., 2013. Structured-light stereo: Comparative analysis 

and integration of structured-light and active stereo for measuring dynamic shape. Optics 

and Lasers in Engineering, 51(11), pp.1255-1264. 

Jang, W., Je, C., Seo, Y. and Lee, S.W., 2013. Structured-light stereo: Comparative analysis 

and integration of structured-light and active stereo for measuring dynamic shape. Optics 

and Lasers in Engineering, 51(11), pp.1255-1264. 

Jin, J. and Tang, L., 2009. Corn plant sensing using real‐time stereo vision. Journal of Field 

Robotics, 26(6‐7), pp.591-608. 



 

144 

 

Kaasalainen, S., Åkerblom, M., Nevalainen, O., Hakala, T. and Kaasalainen, M., 2018. 

Uncertainty in multispectral lidar signals caused by incidence angle effects. Interface 

Focus, 8(2), p.20170033. 

Kacira, M. and Ling, P.P., 2001. Design and development of an automated and Non–contact 

sensing system for continuous monitoring of plant health and growth. Transactions of the 

ASAE, 44(4), p.989. 

Kandiannan, K, et al. (2002), 'Allometric model for leaf area estimation in black pepper 

(Piper nigrum L.)', Journal of Agronomy and Crop Science, 188 (2), 138-40. 

Kashani, A.G., Olsen, M.J., Parrish, C.E. and Wilson, N., 2015. A review of LiDAR 

radiometric processing: From ad hoc intensity correction to rigorous radiometric 

calibration. Sensors, 15(11), pp.28099-28128. 

Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A. and Bry, 

A., 2017. End-to-end learning of geometry and context for deep stereo regression. In 

Proceedings of the IEEE international conference on computer vision (pp. 66-75). 

Khojastehnazhand, Mostafa, Mohammadi, Vahid, and Minaei, Saeid (2019), 'Maturity 

detection and volume estimation of apricot using image processing technique', Scientia 

Horticulturae, 251, 247-51. 

Kihlström, H., 2019. Active Stereo Reconstruction using Deep Learning. Master thesis. 

Linköping University. Sweden. 

Laba M, Tsai F, Ogurcak D, Smith S, Richmond ME. Field determination of optimal dates 

for the discrimination of invasive wetland plant species using derivative spectral 

analysis. Photogrammetric Engineering and Remote Sensing, 2005, 71(5): 603−611. 

Latimer, W., 2015. Understanding laser-based 3D triangulation methods. Vision Systems 

Design, 20(6). 

Lee, Jong Whan (2008), 'Machine vision monitoring system of lettuce growth in a state-of-

the-art greenhouse', Modern Physics Letters B, 22 (11), 953-58. 

Lelas, M. and Pribanić, T., 2016. Accurate stereo matching using pixel normalized cross 

correlation in time domain. Automatika: časopis za automatiku, mjerenje, elektroniku, 

računarstvo i komunikacije, 57(1), pp.46-57. 

Li X, He Y. Discriminating varieties of tea plant based on Vis/NIR spectral characteristics 

and using artificial neural networks. Biosystems Engineering, 2008, 99(3): 313−321. 

Li, D., Xu, L., Tang, X.S., Sun, S., Cai, X. and Zhang, P., 2017. 3D imaging of greenhouse 

plants with an inexpensive binocular stereo vision system. Remote Sensing, 9(5), p.508. 



 

145 

 

Li, Dawei, et al. (2020), 'A leaf segmentation and phenotypic feature extraction framework 

for multiview stereo plant point clouds', IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 13, 2321-36. 

Li, Lei, Zhang, Qin, and Huang, Danfeng (2014), 'A review of imaging techniques for plant 

phenotyping', Sensors, 14 (11), 20078-111. 

Li, Xiaobin, Wang, Yushun, and Fu, Lihong (2016), 'Monitoring lettuce growth using K-

means color image segmentation and principal component analysis method', Transactions 

of the Chinese Society of Agricultural Engineering, 32 (12), 179-86. 

Li, Y.F. and Chen, S.Y., 2003. Automatic recalibration of an active structured light vision 

system. IEEE Transactions on Robotics and Automation, 19(2), pp.259-268. 

Lin, F., Zhang, D., Huang, Y., Wang, X. and Chen, X., 2017. Detection of corn and weed 

species by the combination of spectral, shape and textural features. Sustainability, 9(8), 

p.1335. 

Liu, H., Wang, R., Xia, Y. and Zhang, X., 2020. Improved cost computation and adaptive 

shape guided filter for local stereo matching of low texture stereo images. Applied 

Sciences, 10(5), p.1869. 

Loch, B.I., Belward, J.A. and Hanan, J.S., 2005. Application of surface fitting techniques for 

the representation of leaf surfaces. In Proceedings of the International Congress on 

Modelling and Simulation (MODSIM05) (pp. 1272-1278). Modelling and Simulation 

Society of Australia and New Zealand Inc.. 

Longchamps L, Panneton B, Samson G, Leroux GD, Thériault R. Discrimination of corn, 

grasses and dicot weeds by their UV-induced fluorescence spectral signature. Precision 

Agriculture, 2010, 11(2): 181−197. 

Louargant M, Jones G, Faroux R, Paoli JN, Maillot T, Gée C, Villette S. Unsupervised 

classification algorithm for early weed detection in row-crops by combining spatial and 

spectral information. Remote Sensing, 2018, 10(5): 761−779. 

Luisa España‐Boquera, M., Cárdenas‐Navarro, R., López‐Pérez, L., Castellanos‐Morales, V. 

and Lobit, P., 2006. Estimating the nitrogen concentration of strawberry plants from its 

spectral response. Communications in soil science and plant analysis, 37(15-20), 

pp.2447-2459. 

Marcelis, LFM, et al. (2006), 'Modelling dry matter production and partitioning in sweet 

pepper', III International Symposium on Models for Plant Growth, Environmental 

Control and Farm Management in Protected Cultivation 718, 121-28. 



 

146 

 

Massimiliano, P.E.P.E., Alfio, V.S., Costantino, D. and Scaringi, D., 2022. Data for 3D 

reconstruction and Point Cloud classification using Machine Learning in Cultural 

Heritage environment. Data in Brief, p.108250. 

Memon, Q. and Khan, S., 2001. Camera calibration and three-dimensional world 

reconstruction of stereo-vision using neural networks. International Journal of Systems 

Science, 32(9), pp.1155-1159. 

Moeslund, Thomas B, Aagaard, Michael, and Lerche, Dennis (2005), '3d pose estimation of 

cactus leaves using an active shape model', 2005 Seventh IEEE Workshops on 

Applications of Computer Vision (WACV/MOTION'05)-Volume 1 (1: IEEE), 468-73. 

Morris, J.A., 2006. Design of an Active Stereo Vision 3D Scene Reconstruction System 

Based on the Linear Position Sensor Module. 

Moshou D, Vrindts E, De Ketelaere B, De Baerdemaeker J, Ramon H. A neural network 

based plant classifier. Computers and Electronics in Agriculture, 2001, 31(1): 5−16. 

Nguyen, M., Chan, Y.H., Delmas, P. and Gimel'farb, G., 2013, November. Symmetric 

dynamic programming stereo using block matching guidance. In 2013 28th International 

Conference on Image and Vision Computing New Zealand (IVCNZ 2013) (pp. 88-93). 

IEEE. 

Nguyen, Thuy Tuong, et al. (2016), 'Comparison of structure-from-motion and stereo vision 

techniques for full in-field 3d reconstruction and phenotyping of plants: An investigation 

in sunflower', 2016 ASABE Annual International Meeting (American Society of 

Agricultural and Biological Engineers), 1. 

Nichols, S.A., 2001. Improvement of the Camera Calibration Through the Use of Machine 

Learning Techniques (Doctoral dissertation, Division of Colleges & Universities, Florida 

Board of Education). 

Nidamanuri RR. Hyperspectral discrimination of tea plant varieties using machine learning, 

and spectral matching methods. Remote Sensing Applications: Society and 

Environment, 2020, 19: 100350. 

Nidamanuri RR. Hyperspectral discrimination of tea plant varieties using machine learning, 

and spectral matching methods. Remote Sensing Applications: Society and 

Environment, 2020, 19: 100350. 

Niku, S.B., 2001. Introduction to robotics: analysis, systems, applications (Vol. 7). New 

Jersey: Prentice hall. 



 

147 

 

Noble SD, Brown RB. August. Plant species discrimination using spectral/spatial descriptive 

statistics. In Proceedings of the 1st International Workshop on Computer Image Analysis 

in Agriculture held in Potsdam Germany, 2009, 27−28. 

Patil, Smita, Soma, Shridevi, and Nandyal, Suvarna (2013), 'Identification of growth rate of 

plant based on leaf features using digital image processing techniques', Int J Emerg 

Technol Adv Eng, 3. 

Paturkar, A., Sen Gupta, G. and Bailey, D., 2022. Plant trait measurement in 3D for growth 

monitoring. Plant Methods, 18(1), pp.1-15. 

Pears, Nick, Liu, Yonghuai, and Bunting, Peter (2012), 3D imaging, analysis and 

applications (3: Springer). 

Peiravi, A. and Taabbodi, B., 2010. A reliable 3D laser triangulation-based scanner with a 

new simple but accurate procedure for finding scanner parameters. Journal of American 

Science, 6(5), pp.80-85. 

Peiravi, A. and Taabbodi, B., 2010. A reliable 3D laser triangulation-based scanner with a 

new simple but accurate procedure for finding scanner parameters. Journal of American 

Science, 6(5), pp.80-85. 

Pinggera, P., Breckon, T. and Bischof, H., 2012. On cross-spectral stereo matching using 

dense gradient features. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE 

Conference on (Vol. 2, p. 3). 

Poggi, M., Pallotti, D., Tosi, F. and Mattoccia, S., 2019. Guided stereo matching. In 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(pp. 979-988). 

Polder, G, et al. (2007), 'Correcting and matching time sequence images of plant leaves using 

penalized likelihood warping and robust point matching', Computers and Electronics in 

Agriculture, 55 (1), 1-15. 

Rusinkiewicz, S., Hall-Holt, O. and Levoy, M., 2002. Real-time 3D model acquisition. ACM 

Transactions on Graphics (TOG), 21(3), pp.438-446. 

Rusinkiewicz, S., Hall-Holt, O. and Levoy, M., 2002. Real-time 3D model acquisition. ACM 

Transactions on Graphics (TOG), 21(3), pp.438-446.  

Sánchez-Molina, JA, et al. (2015), 'Support system for decision making in the management 

of the greenhouse environmental based on growth model for sweet pepper', Agricultural 

Systems, 139, 144-52. 



 

148 

 

Sandoval, J., Gor, S., Ramallo, J., Sfer, A., Colombo, E., Vilaseca Ricart, M. and Pujol 

Ramo, J., 2010. Spectral signatures: A way to identify species and conditions of 

vegetables. 

Santos, Thiago T and De Oliveira, Alberto A (2012), 'Image-based 3D digitizing for plant 

architecture analysis and phenotyping', Embrapa Informática Agropecuária-Artigo em 

anais de congresso (ALICE) (In: CONFERENCE ON GRAPHICS, PATTERNS AND 

IMAGES, 25., 2012, Ouro Preto …). 

SANTOS, TT and Ueda, Julio (2013), 'Automatic 3D plant reconstruction from 

photographies, segmentation and classification of leaves and internodes using clustering', 

Embrapa Informática Agropecuária-Resumo em anais de congresso (ALICE) (In: 

INTERNATIONAL CONFERENCE ON FUNCTIONAL-STRUCTURAL PLANT 

MODELS, 7., 2013 …). 

Sarıbaş, Hatice Şeyma, Saka, Andac Kutay, and Özer, Harun (2018), 'Mathematical growth 

model for organically grown pepper transplants', Biological Agriculture & Horticulture, 

34 (1), 10-17. 

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X. and 

Westling, P., 2014, September. High-resolution stereo datasets with subpixel-accurate 

ground truth. In German conference on pattern recognition (pp. 31-42). Springer, Cham. 

Schnee, J. and Futterlieb, J., 2011, August. Laser line segmentation with dynamic line 

models. In International Conference on Computer Analysis of Images and Patterns (pp. 

126-134). Springer, Berlin, Heidelberg. 

Schuldt, D., Thiem, J. and Mustedanagic, S., 2016, July. Stereo Vision on an ARM/DSP 

Multicore Platform based on Code Generation using the MATLAB Embedded Coder. In 

ICINCO (2) (pp. 558-562). 

Serati, G., Sedaghat, A., Mohammadi, N. and Li, J., 2022. Digital Surface Model Generation 

from High-Resolution Satellite Stereo Imagery Based on Structural Similarity. Geocarto 

International, (just-accepted), pp.1-22. 

Shirzadifar, Alimohammad, et al. (2018), 'Weed species discrimination based on SIMCA 

analysis of plant canopy spectral data', Biosystems Engineering, 171, 143-54. 

Shrestha, DS, Steward, Brian L, and Birrell, Stuart J (2004), 'Video processing for early stage 

maize plant detection', Biosystems engineering, 89 (2), 119-29. 



 

149 

 

Silva, LOLA, et al. (2013), 'Comparative assessment of feature selection and classification 

techniques for visual inspection of pot plant seedlings', Computers and electronics in 

agriculture, 97, 47-55. 

Song, Yu, et al. (2007), 'Surface modelling of plants from stereo images', Sixth International 

Conference on 3-D Digital Imaging and Modeling (3DIM 2007) (IEEE), 312-19. 

Stöckle, Claudio O, Donatelli, Marcello, and Nelson, Roger (2003), 'CropSyst, a cropping 

systems simulation model', European journal of agronomy, 18 (3-4), 289-307. 

Strothmann W, Ruckelshausen A, Hertzberg J, Scholz C, Langsenkamp F. Plant 

classification with in-field-labeling for crop/weed discrimination using spectral features 

and 3d surface features from a multi-wavelength laser line profile system. Computers and 

Electronics in Agriculture, 2017, 134: 79−93. 

Su, Huihuang and He, Bingwei (2011), 'Stereo rectification of calibrated image pairs based 

on geometric transformation', International Journal of Modern Education and Computer 

Science, 3 (4), 17. 

Sun, Y., Paik, J.K., Koschan, A. and Abidi, M.A., 2002, August. 3D reconstruction of indoor 

and outdoor scenes using a mobile range scanner. In Object recognition supported by user 

interaction for service robots (Vol. 3, pp. 653-656). IEEE. 

Symonds P, Paap A, Alameh K, Rowe J, Miller C. A real-time plant discrimination system 

utilising discrete reflectance spectroscopy. Computers and Electronics in 

Agriculture, 2015, 117: 57−69. 

Szczepanski, M., 2019. Online stereo camera calibration on embedded systems (Doctoral 

dissertation, Université Clermont Auvergne(2017-2020)). 

Szeliski, R., 2010. Computer vision: algorithms and applications. Springer Science & 

Business Media. 

Teng, Chin-Hung, Kuo, Yi-Ting, and Chen, Yung-Sheng (2011), 'Leaf segmentation, 

classification, and three-dimensional recovery from a few images with close viewpoints', 

Optical Engineering, 50 (3), 037003. 

Teutsch, C., Isenberg, T., Trostmann, E., Weber, M., Berndt, D. and Strothotte, T., 2005, 

January. Evaluation and correction of laser-scanned point clouds. In Videometrics 

VIII (Vol. 5665, pp. 172-183). SPIE. 

Tošić, I. and Frossard, P., 2010. Dictionary learning for stereo image representation. IEEE 

Transactions on Image Processing, 20(4), pp.921-934. 



 

150 

 

Trujillo-Romero, F.J, 2008. Modélisation et reconnaissance active d'objets 3D de forme libre 

par vision en robotique (Doctoral dissertation, Institut National Polytechnique de 

Toulouse-INPT). 

Tu, D., Jin, P. and Zhang, X., 2019. Geometrical model of laser triangulation system based 

on synchronized scanners. Mathematical Problems in Engineering, 2019. 

Türker-Kaya, Sevgi and Huck, Christian W (2017), 'A review of mid-infrared and near-

infrared imaging: principles, concepts and applications in plant tissue analysis', 

Molecules, 22 (1), 168. 

Uematsu, Y., Teshima, T., Saito, H. and Honghua, C., 2007, September. D-calib: Calibration 

software for multiple cameras system. In 14th International Conference on Image 

Analysis and Processing (ICIAP 2007) (pp. 285-290). IEEE. 

Urquhart, C.W., 1997. The active stereo probe: the design and implementation of an active 

videometrics system. University of Glasgow (United Kingdom). 

Veitch-Michaelis, J.L., 2017. Fusion of LIDAR with stereo camera data: an assessment 

(Doctoral dissertation, University College London). 

Wang X, Zhang M, Zhu J, Geng S. Spectral prediction of Phytophthora infestans infection 

on tomatoes using artificial neural network (ANN). International Journal of Remote 

Sensing, 2008, 29(6): 1693−1706.  

Wang, J., 2018. High resolution 2D imaging and 3D scanning with line sensors (Doctoral 

dissertation, Carnegie Mellon University). 

Wang, Jianlun, et al. (2013), 'An adaptive thresholding algorithm of field leaf image', 

Computers and electronics in agriculture, 96, 23-39. 

Wang, T.M. and Shih, Z.C., 2021. Measurement and analysis of depth resolution using active 

stereo cameras. IEEE Sensors Journal, 21(7), pp.9218-9230. 

Wang, Y., Liu, K., Hao, Q., Wang, X., Lau, D.L. and Hassebrook, L.G., 2012. Robust active 

stereo vision using Kullback-Leibler divergence. IEEE transactions on pattern analysis 

and machine intelligence, 34(3), pp.548-563. 

Weisenfeld, N.I., 2002. A non-contact, active stereo imaging system for intraoperative 

surface measurements (Doctoral dissertation, Massachusetts Institute of Technology). 

Werner, Tomas and Zisserman, Andrew (2002), 'New techniques for automated architectural 

reconstruction from photographs', European conference on computer vision (Springer), 

541-55. 



 

151 

 

Won, C., Ryu, J. and Lim, J., 2019. Omnimvs: End-to-end learning for omnidirectional 

stereo matching. In Proceedings of the IEEE/CVF International Conference on Computer 

Vision (pp. 8987-8996). 

Wu, D., Chen, J., Lu, B., Xiong, L., He, Y. and Zhang, Y., 2012. Application of near infrared 

spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract. 

Food chemistry, 135(4), pp.2147-2156. 

Wu, Stephen Gang, et al. (2007), 'A leaf recognition algorithm for plant classification using 

probabilistic neural network', 2007 IEEE international symposium on signal processing 

and information technology (IEEE), 11-16. 

Xiang, B., Yao, J., Lu, X., Li, L., Xie, R. and Li, J., 2018. Segmentation-based classification 

for 3D point clouds in the road environment. International Journal of Remote 

Sensing, 39(19), pp.6182-6212. 

Xiaoping, W., Fei, Z., Hsiang-te, K. and Haiyang, Y., 2017. Spectral response characteristics 

and identification of typical plant species in Ebinur lake wetland national nature reserve 

(ELWNNR) under a water and salinity gradient. Ecological Indicators, 81, pp.222-234. 

Xing, Y.J., Xing, J., Sun, J. and Hu, L., 2007. An improved neural networks for stereo-

camera calibration. Journal of Achievements in Materials and Manufacturing 

Engineering, 20(1-2), pp.315-318. 

Xu, H.R., Ying, Y.B., Fu, X.P. and Zhu, S.P., 2007. Near-infrared spectroscopy in detecting 

leaf miner damage on tomato leaf. Biosystems Engineering, 96(4), pp.447-454. 

Yedidia, J.S., Freeman, W. and Weiss, Y., 2000. Generalized belief propagation. Advances 

in neural information processing systems, 13. 

Yedidia, J.S., Freeman, W.T. and Weiss, Y., 2003. Understanding belief propagation and its 

generalizations. Exploring artificial intelligence in the new millennium, 8(236-239), 

pp.0018-9448. 

Zarco-Tejada PJ, Camino C, Beck PSA, Calderon R, Hornero A, Hernández-Clemente R, 

Kattenborn T, Montes-Borrego M, Susca L, Morelli M, Gonzalez-Dugo V. Previsual 

symptoms of Xylella fastidiosa infection revealed in spectral plant-trait 

alterations. Nature Plants, 2018, 4(7): 432−439. 

Zbontar, J. and LeCun, Y., 2016. Stereo matching by training a convolutional neural network 

to compare image patches. J. Mach. Learn. Res., 17(1), pp.2287-2318. 



 

152 

 

Zhang M, Liu X, O'neill M. Spectral discrimination of Phytophthora infestans infection on 

tomatoes based on principal component and cluster analyses. International Journal of 

Remote Sensing, 2002, 23(6): 1095−1107. 

Zhang, B., Yu, H. and Sun, L., 2013, April. Peak Detection Algorithm for Laser Induced 

Breakdown Spectroscopy. In 2nd International Symposium on Computer, 

Communication, Control and Automation (pp. 453-455). Atlantis Press. 

Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K. and Huang, W., 2019. 

Monitoring plant diseases and pests through remote sensing technology: A 

review. Computers and Electronics in Agriculture, 165, p.104943. 

Zhang, K., Lu, J., Lafruit, G., Lauwereins, R. and Van Gool, L., 2009, November. Robust 

stereo matching with fast normalized cross-correlation over shape-adaptive regions. 

In 2009 16th IEEE International Conference on Image Processing (ICIP) (pp. 2357-

2360). IEEE. 

Zhao, Y., Lei, S., Yang, X., Gong, C., Wang, C., Cheng, W., Li, H. and She, C., 2020. Study 

on Spectral Response and Estimation of Grassland Plants Dust Retention Based on 

Hyperspectral Data. Remote Sensing, 12(12), p.2019. 

Zude-Sasse, M., Truppel, I. and Herold, B., 2002. An approach to non-destructive apple fruit 

chlorophyll determination. Postharvest Biology and Technology, 25(2), pp.123-133. 

 

 

 

  



 

153 

 

 

 

IV 

APPENDICES 

  



 

154 

 

 A 

SCHEMATIC OF THE CIRCUIT 

 

  



 

155 

 

 B 

PASSIVE STEREO IMAGE PROCESSING PROGRAM 

%% Copyright 
%{ 
%     Leaf Properties Detection using Passive Stereo Imaging 
 
%     Copyright (C) 2022  Vahid Mohammadi 
%  
%     This program has been developed for a PhD dissertation 
%     No distribution is allowed unless by the permission 
%     from the author or the supervisor of the dissertation 
%} 
 
 
clc 
clear 
close all 
 
%% Preprocessing of the image     ==================================== 
 
tic(); % This is for having the duration of processing 
% Load the stereo images. 
leftO = imread('D:\Academic Works\PhD Files\Dissertation\Results\Data-

2019\Day 29 - Shahrivar 26\Depth\P3-L.jpg'); 
left = imresize(leftO, 0.2); 
rightO = imread('D:\Academic Works\PhD Files\Dissertation\Results\Data-

2019\Day 29 - Shahrivar 26\Depth\P3-R.jpg'); 
right = imresize(rightO, 0.2); 
 
% Crop the image to the region of interest 
I = imcrop(leftO, [1250 600 1600 1100]); 
 
% Setting a threshold 
 
threshold = 0.5; 
 
% Let's convert the image from uint8 to double (this may make the 

following 
% processes easier to handle 
 
h = rgb2hsv(I); 
h1 = h(:,:,1); 
h2 = 0.21<h1 & h1<0.29; 
 
SE = strel('disk',4,4); 
img4 = imopen(h2,SE); 
 
figure(1), imshow(img4) 
% Averaging Filter (To reduce noise and smoothen the image) 
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H = fspecial ('average',15); 
img5 = imfilter(img4,H,'conv','symmetric','same'); 
     
img6 = imfill(img5,'holes'); 
figure, imshow(img6) 
 
%% Tophat & leaf detection     ===================================== 
 
 
Red = I(:,:,1); R = immultiply(Red,img6); 
Green = I(:,:,2); G = immultiply(Green,img6); 
Blue = I(:,:,3); B = immultiply(Blue,img6); 
Out = cat(3,R, G, B); 
figure, imshow(Out) 
I = rgb2gray(Out); 
 
imshow(I) 
 
se = strel('disk',30);  
top = imtophat(I,se); 
figure, imshow(top) 
 
thr = top > 80; 
hats = bwareaopen(thr, 130); 
figure, imshow(hats) 
 
BB = bwconncomp(hats);  
Cntrd = regionprops(BB,'centroid'); 
Size = size(Cntrd,1); 
   figure, imshow(hats) 
   axis on 
   hold on 
for i=1:Size 
   Ce = Cntrd(i).Centroid; Ce = round(Ce); 
 
    plot(Ce(1),Ce(2),'Color','r','Marker','+'); 
 
end 
fprintf('Number of leaves = %d \n',Size) 
 
%% --- Obtain watershed image ---------------------------------------- 
 
I = imadjust(I,[0.3;0.7],[]); 
 
%  Use the Gradient Magnitude as the Segmentation Function 
% Compute the gradient magnitude. The gradient is high at the borders 

of the 
% objects and low (mostly) inside the objects. 
 
E = entropyfilt(I); 
EE = round(stdfilt(I)); 
t = mat2gray (EE); 
ER = imadjust(t,[0.1 0.3],[]); 
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gmag = imgradient(I,'roberts'); 
L = watershed(gmag); 
Lrgb = label2rgb(L); 
 
% A variety of procedures could be applied here to find the foreground 

markers, 
% which must be connected blobs of pixels inside each of the foreground 

objects. 
% In this example you'll use morphological techniques called "opening-

by-reconstruction" 
% and "closing-by-reconstruction" to "clean" up the image. These 

operations will 
% create flat maxima inside each object that can be located using 

imregionalmax. 
%  
% Opening is an erosion followed by a dilation, while opening-by-

reconstruction 
% is an erosion followed by a morphological reconstruction. Let's 

compare the two. 
% First, compute the opening using imopen. 
 
se = strel('disk',20); 
Io = imopen(I,se); 
 
% Next compute the opening-by-reconstruction using imerode and 

imreconstruct. 
 
Ie = imerode(I,se); 
Iobr = imreconstruct(Ie,I); 
 
% Following the opening with a closing can remove the dark spots and 

marks. Compare a regular morphological closing with a closing-by-
reconstruction. First try imclose: 

 
Ioc = imclose(Io,se); 
 
% Now use imdilate followed by imreconstruct. Notice you must 

complement the image inputs and output of imreconstruct. 
 
Iobrd = imdilate(Iobr,se); 
Iobrcbr = imreconstruct(imcomplement(Iobrd),imcomplement(Iobr)); 
Iobrcbr = imcomplement(Iobrcbr); 
fgm = imregionalmax(Iobrcbr); 
 
% Notice that some of the mostly-occluded and shadowed objects are not 

marked, which means that these objects will not be segmented properly in 
the end result.  

 
se2 = strel(ones(5,5)); 
fgm2 = imclose(fgm,se2); 
fgm3 = imerode(fgm2,se2); 
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% This procedure tends to leave some stray isolated pixels that must be 
removed. You can do this using bwareaopen, which removes all blobs that 
have fewer than a certain number of pixels. 

 
fgm4 = bwareaopen(fgm3,20); 
 
bw = imbinarize(Iobrcbr); 

 
D = bwdist(bw); 
DL = watershed(D); 
bgm = DL == 0; 
 
% Compute the Watershed Transform of the Segmentation Function. 
% The function imimposemin can be used to modify an image so that it 

has regional minima only in certain desired locations. Here you can use 
imimposemin to modify the gradient magnitude image so that its only 
regional minima occur at foreground and background marker pixels. 

 
gmag2 = imimposemin(gmag, bgm | fgm4); 
% Finally we are ready to compute the watershed-based segmentation. 
 
L = watershed(gmag2); 
figure 
imshow(I) 
hold on 
himage = imshow(Lrgb); 
himage.AlphaData = 0.3; 
title('Colored Labels Superimposed Transparently on Original Image') 
 
%% ---------- Calculate Geometrical Features ----------- %% 
 
. 
. 
. 
 
%% Calculate the disparity map   ====================================== 
 
% Load calibration information 
load('SParams1.mat'); 
 
% Rectify images 
[J1, J2] = rectifyStereoImages(left, right, stereoParams); 
 
% Display the images after rectification. 
 
figure(2); imshow(cat(3, J1(:,:,1), J2(:,:,2:3)), 

'InitialMagnification', 50); 
 
% For building the disparity map, 'SemiGlobal' matching method is used 
% which is more accurate than 'BlockMatching'. The default is 
% 'SemiGlobal'. 
% The default BloxkSize is 15. 
% The default range of 'DisparityRange' is [0 64] 
% The default value of 'ContrastThreshold' is 0.5 
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% The default value of 'UniquenessThreshold' is 15 
% The default value of 'DistanceThreshold' is [] 
disparityMap = disparity(rgb2gray(J1), 

rgb2gray(J2),'Method','SemiGlobal',... 
    'BlockSize',7,'DisparityRange',[0 128],'ContrastThreshold',0.6,... 
    'UniquenessThreshold',4,'DistanceThreshold',100); 
figure(3); imshow(disparityMap, [0, 67], 'InitialMagnification', 50); 
 
axis image; 
 
% Use the 'jet' color map. 
% You might also consider removing this line to view the disparity map 

in 
% grayscale. 
colormap('jet'); 
 
% Display the color map legend. 
colorbar; 
 
%%  3D reconstruction    ============================================ 
 
 
points3D = reconstructScene(disparityMap, stereoParams); 
 
% Convert to meters and create a pointCloud object 
points3D = points3D ./ 1000; 
ptCloud = pointCloud(points3D, 'Color', J1); 
 
% Create a streaming point cloud viewer 
player3D = pcplayer([-3, 3], [-3, 3], [0, 8], 'VerticalAxis', 'y', ... 
    'VerticalAxisDir', 'down'); 
 
% Visualize the point cloud 
figure(4),view(player3D, ptCloud); 
 
 
Z = points3D(:, :, 3); 
mask = repmat(Z > 1.9 & Z < 2.2, [1, 1, 3]); 
J1(~mask) = 0; 
figure(5),imshow(J1, 'InitialMagnification', 50); 
 
%%   Basic Block Matching    ========================================== 
 
 
% Calculate the disparity using basic block matching with sub-pixel 
% estimation. 
% The original Mathworks example code utilized the TemplateMatcher from 

their 
% vision toolbox; I've modified the code to work without this 

dependency. 
. 
. 
. 
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%% |||||- Calculate the features and the distance of each leaf -||||| 

%% 
 
%{ 
 For each leaf, calculate the selected features. Then for the pixel x  
 find the distance of the leaf from the camera and then 
 calculate the real size of the leaf 
 The pixel number for the scale is 34 for the distance 80 cm. 
%} 
. 
. 
. 
 

 

 

 

 

 



 

161 

 

C 

K-MEANS CLUSTERING USING SILHOUETTE 

METHOD 

% Select optimal number of clusters (K value) using the 

specified range 

fh = @(X,K)(kmeans(X,K)); 

eva = evalclusters(i,fh,"silhouette","KList",2:6); 

clear fh 

K = eva.OptimalK; 

clusterIndices = eva.OptimalY; 

 

% Display cluster evaluation criterion values 

figure 

bar(eva.InspectedK,eva.CriterionValues); 

xticks(eva.InspectedK); 

xlabel("Number of clusters"); 

ylabel("Criterion values - Silhouette"); 

legend("Optimal number of clusters is " + num2str(K)) 

title("Evaluation of Optimal Number of Clusters") 

disp("Optimal number of clusters is " + num2str(K)); 

clear K eva 

 

% Calculate centroids 

centroids = grpstats(i,clusterIndices,"mean"); % grpstats 
returns a table or dataset array with the means for the 

data groups 

 

% Display results 

 

% Display 2D scatter plot (PCA) 

figure 

[~,score] = pca(i); 

clusterMeans = grpstats(score,clusterIndices,"mean"); 

h2 = 

gscatter(score(:,1),score(:,2),clusterIndices,colormap("

lines")); 

for i2 = 1:numel(h2) 

    h2(i2).DisplayName = 

strcat("Cluster",h2(i2).DisplayName); 

end 

clear h2 i2 score 

hold on 
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h2 = 

scatter(clusterMeans(:,1),clusterMeans(:,2),50,"kx","Lin

eWidth",2); 

hold off 

h2.DisplayName = "ClusterMeans"; 

clear h2 clusterMeans 

legend; 

title("First 2 PCA Components of Clustered Data"); 

xlabel("First principal component"); 

ylabel("Second principal component"); 
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D 

LIST OF DATASETS OF 3D POINT CLOUDS 

No Name Details Address 

1 ShapeNet • 3D CAD models 

• over 300M models 

https://shapenet.org/ 

2 ModelNet • synthetic object point clouds 

• 12,311 CAD-generated 

meshes in 40 categories 

https://modelnet.cs.princeton.edu/ 

 

3 nuScenes • a large-scale autonomous 

driving dataset 

• 3D bounding boxes for 1000 

scenes 

https://www.nuscenes.org/ 

 

4 SUN RGB-D • 10335 real RGB-D images 

of room scenes 

• 700 object categories 

https://rgbd.cs.princeton.edu/ 

 

5 S3DIS • Stanford 3D Indoor 

Scene Dataset 

• 6 large-scale indoor 

areas with 271 rooms 

http://buildingparser.stanford.edu/

dataset.html 

 

6 SemanticKITTI • a large-scale outdoor-

scene dataset 

• dataset provides 23201 

point clouds 

http://www.semantic-kitti.org/ 

 

7 Argoverse • dataset with 3D tracking 

annotations for 113 scenes 

https://www.argoverse.org/data.ht

ml 

8 SUN3D • a large-scale RGB-D 

video database 

• 415 sequences captured 

in 254 different spaces 

http://sun3d.cs.princeton.edu/ 

 

9 ScanObjectNN • 2902 3D objects in 15 

categories 

https://hkust-

vgd.github.io/scanobjectnn/ 

10 Semantic3D • scanned outdoor scenes 

with over 3 billion points 

• 15 training and 15 test 

scenes 

http://www.semantic3d.net/ 

 

11 Completion3D • dataset for evaluating 3D 

Object Point Cloud Completion 

methods 

https://completion3d.stanford.edu/ 

 

12 Dex-Net 2.0 • dataset of 1,500 3D 

object models 

http://berkeleyautomation.github.i

o/dex-net/ 

13 SensatUrban • urban-scale 

photogrammetric point cloud 

dataset 

https://github.com/QingyongHu/S

ensatUrban 

 

14 SemanticPOSS • dataset for 3D semantic 

segmentation contains 2988 

various and complicated 

LiDAR scans 

http://www.poss.pku.edu.cn/seman

ticposs.html 

 

https://shapenet.org/
https://modelnet.cs.princeton.edu/
https://www.nuscenes.org/
https://rgbd.cs.princeton.edu/
http://buildingparser.stanford.edu/dataset.html
http://buildingparser.stanford.edu/dataset.html
http://www.semantic-kitti.org/
https://www.argoverse.org/data.html
https://www.argoverse.org/data.html
http://sun3d.cs.princeton.edu/
https://hkust-vgd.github.io/scanobjectnn/
https://hkust-vgd.github.io/scanobjectnn/
http://www.semantic3d.net/
https://completion3d.stanford.edu/
http://berkeleyautomation.github.io/dex-net/
http://berkeleyautomation.github.io/dex-net/
https://github.com/QingyongHu/SensatUrban
https://github.com/QingyongHu/SensatUrban
http://www.poss.pku.edu.cn/semanticposs.html
http://www.poss.pku.edu.cn/semanticposs.html
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15 SHREC'19 • Human body models http://profs.scienze.univr.it/~marin

/shrec19/ 

16 ModelNet40-C • dataset to benchmark the 

corruption robustness of 3D 

point cloud recognition 

• contains 185,000 distinct 

point clouds  

https://sites.google.com/umich.edu

/modelnet40c 

 

17 KITTI-Depth • depth maps from 

projected LiDAR point clouds 

• dataset has 86k training 

images, 7k validation images 

http://www.cvlibs.net/datasets/kitti

/eval_depth.php?benchmark=dept

h_prediction 

 

18 MVP • multi-view partial point 

cloud dataset 

• containing over 100,000 

high-quality scans 

https://paul007pl.github.io/projects

/VRCNet 

 

19 Toronto-3D • a large-scale urban 

outdoor point cloud dataset 

• dataset covers 

approximately 1 km of road and 

consists of about 78.3 million 

points 

https://github.com/WeikaiTan/Tor

onto-3D 

 

20 VOID • contains 56 sequences in 

total, both indoor and outdoor 

https://github.com/alexklwong/voi

d-dataset 

 

21 3DCSR • indoor working 

environment, which contains 

the popular objects in the 

working space 

http://multimediauts.org/3D_data_

for_registration/ 

 

22 BLVD • a large scale 5D 

semantics dataset 

• 249,129 3D annotations 

https://github.com/VCCIV/BLVD/ 

 

23 RadarScenes • real-world radar point 

cloud dataset for automotive 

applications 

https://radar-scenes.com/ 

 

24 Sydney Urban 

Objects 
• contains a variety of 

common urban road objects 

• 631 individual scans of 

objects 

http://www.acfr.usyd.edu.au/paper

s/SydneyUrbanObjectsDataset.sht

ml 

 

25 ChangeSim • photo-realistic 

simulation environments with 

the presence of environmental 

non-targeted variations, such as 

air turbidity and light condition 

changes 

https://github.com/SAMMiCA/Ch

angeSim 

 

26 Freiburg Spatial 

Relations 
• 546 scenes each 

containing two out of 25 

household objects 

http://spatialrelations.cs.uni-

freiburg.de/ 

 

27 WADS • LiDAR scans collected 

in severe winter weather 

• Over 26 TB of multi 

modal data 

https://bitbucket.org/autonomymtu

/wads/src 

 

http://profs.scienze.univr.it/~marin/shrec19/
http://profs.scienze.univr.it/~marin/shrec19/
https://sites.google.com/umich.edu/modelnet40c
https://sites.google.com/umich.edu/modelnet40c
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction
https://paul007pl.github.io/projects/VRCNet
https://paul007pl.github.io/projects/VRCNet
https://github.com/WeikaiTan/Toronto-3D
https://github.com/WeikaiTan/Toronto-3D
https://github.com/alexklwong/void-dataset
https://github.com/alexklwong/void-dataset
http://multimediauts.org/3D_data_for_registration/
http://multimediauts.org/3D_data_for_registration/
https://github.com/VCCIV/BLVD/
https://radar-scenes.com/
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
https://github.com/SAMMiCA/ChangeSim
https://github.com/SAMMiCA/ChangeSim
http://spatialrelations.cs.uni-freiburg.de/
http://spatialrelations.cs.uni-freiburg.de/
https://bitbucket.org/autonomymtu/wads/src
https://bitbucket.org/autonomymtu/wads/src
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28 3D-BSLS-6D • real captures from 

Photoneo PhoXi structured light 

scanner 

• 6D pose estimation 

 

https://www.skeletex.xyz/portfolio

/datasets 

 

29 CODD  • Cooperative Driving 

Dataset 

• contains lidar data from 

multiple vehicles navigating 

simultaneously 

https://github.com/eduardohenriqu

earnold/CODD 

 

30 DurLAR  • a high-fidelity 128-

channel 3D LiDAR dataset 

• full 360 degree depth, 

range accuracy to ±2 cm at 20-

50m 

https://github.com/l1997i/DurLAR 

 

31 Ford Campus 

Vision and Lidar 

Data Set 

• collected by an 

autonomous ground vehicle 

testbed 

• consists of the time-

registered data 

http://robots.engin.umich.edu/Soft

wareData/Ford 

 

32 MVHand • multi-view hand posture 

dataset  

• 3D point clouds of the 

hand  

https://github.com/ShichengChen/

multiviewDataset 

 

33 TERRA-REF • datasets for the study of 

plant sensing, genomics, and 

phenomics 

https://datadryad.org/stash/dataset/

doi:10.5061/dryad.4b8gtht99 

https://www.skeletex.xyz/portfolio/datasets
https://www.skeletex.xyz/portfolio/datasets
https://github.com/eduardohenriquearnold/CODD
https://github.com/eduardohenriquearnold/CODD
https://github.com/l1997i/DurLAR
http://robots.engin.umich.edu/SoftwareData/Ford
http://robots.engin.umich.edu/SoftwareData/Ford
https://github.com/ShichengChen/multiviewDataset
https://github.com/ShichengChen/multiviewDataset
https://datadryad.org/stash/dataset/doi:10.5061/dryad.4b8gtht99
https://datadryad.org/stash/dataset/doi:10.5061/dryad.4b8gtht99
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E 

SAMPLE IMAGES OF WEEDS 

Weed Weed photo Leaf photo 

Bindweed 

  

Nutsedge 

  

Plantago 

lanceolata 

  

Potentilla 

 
 

Sorrel 
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Titre: Conception, développement et évaluation d'un système de détection de parties aériennes et de mesure d'indices de 

croissance de poivrons basés sur l'imagerie stéréo et l'analyse spectrale 

Mots-clés: Traitement d'image stéréo ; reconstruction 3D ; Nuage de points; reconstruction de surface ; Étalonnage de la 

caméra stéréo ; Données multispectrales ; Séparation cultures/mauvaises herbes. 

Résumé: Le suivi de la croissance des plantes, y compris la mesure des propriétés physiques, le comptage des feuilles des 

plantes, la détection des plantes et leur séparation des mauvaises herbes apporte de nombreux avantages aux producteurs. 

Les techniques préférables pour cette tâche sont celles qui sont non destructives car la plante est une créature très sensible 

et dont toute manipulation peut affecter sa croissance ou entraîner la perte de feuilles ou de branches. Les techniques 

d'imagerie sont des meilleures solutions pour le suivi de la croissance des plantes et les mesures géométriques. Ce projet 

implique l'utilisation de l'imagerie stéréo et de l'analyse de données multispectrales pour l'examen, la séparation et la 

classification des plantes cultivées/mauvaises herbes. L'imagerie stéréo active et passive a été utilisée pour l'estimation 

des propriétés physiques et le comptage des feuilles et des données multispectrales ont été utilisées pour la séparation des 

cultures et des mauvaises herbes. L'utilisation de l'imagerie stéréo active (ISA) au cours de la phase primaire de croissance 

fournit des résultats acceptables, cependant, elle est incapable de détecter et de reconstruire toutes les feuilles et parties de 

la plante au cours des étapes ultérieures. L'utilisation de l'ISA a donné des valeurs R2 de 0,978 et 0,967 pour l'estimation 

de la surface foliaire et du périmètre, respectivement. Le résultat de la segmentation des nuages de points a pu compter les 

feuilles avec un taux de réussite de 96,053 %. Cependant, le taux de réussite global de l'algorithme stéréo passif pour le 

comptage des feuilles était de 84,32 %. Les résultats de la séparation des cultures et des mauvaises herbes à l'aide de 

données spectrales étaient très prometteurs et le classificateur, qui était basé sur l'apprentissage en profondeur, était capable 

de séparer complètement les plants de poivron de cinq mauvaises herbes. 

 

Title: Design, Development and Evaluation of a System for the Detection of Aerial Parts and Measurement of Growth 

Indices of Bell Pepper Plant Based on Stereo and Multispectral Imaging 

Keywords: Stereo Image processing; 3D Reconstruction; Point Cloud; Surface reconstruction; Stereo camera calibration; 

Multispectral data; Crop/weed separation.   

Abstract: Monitoring plants growth including the measurement of physical properties, counting plants leaves, detection 

of plants and their separation from weeds brings much benefits to the producers. Preferrable techniques for this task are 

those that are non-destructive because plant is a very sensitive creature and any manipulation of which can affect its 

growth or lead to losing leaves or branches. Imaging techniques are of the best solutions for plant growth monitoring and 

geometric measurements. This project involves the use of stereo imaging and multispectral data analysis for examining, 

separation, and classification of crop plant/weeds. Active and passive stereo imaging were employed for the estimation of 

physical properties and counting leaves and multispectral data was utilized for the separation of crop and weed. Use of 

Active Stereo Imaging (ASI) during the primary stage of growth provides acceptable results, however, it is unable to 

detect and reconstruct all leaves and plant parts during the later stages. Using ASI, yielded R2 values of 0.978 and 0.967 

for estimation leaf area and perimeter, respectively. The result of segmentation of the point clouds could count the leaves 

with the success rate of 96.053 %. However, the overall success rate of the passive stereo algorithm for leaf counting was 

84.32 %. The results of separation of crop and weeds using spectral data were very promising and the classifier—which 

was based on deep learning—was capable of completely separating pepper plants from  five weeds. 


