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. This is typically the number of vertices of T visited more than n b times (with b ∈ (0, 1)) by the walk X up to the time n with potential forced to stay in a given set. Under a few hypothesis, some are natural, others more technical, we give the asymptotic behavior of this generalized range and by studying it, we do wish to highlight interactions between the random walk X and its random branching potential V . We also present some examples of such ranges we do believe to be relevant. An important example is to enforce the vertices visited by the random walk X to have a potential typically larger than (log n) α with α ∈ [1, 2). These vertices are numerous at time n (when n goes to infinity), of order n 1-b e -c(log n) α-1 with c > 0. In a second part, we focus on the volume of some subsets of

. The diameter L n -1 (for the usual topology on T ×k ) of such subset is assumed to be deterministic and we show, under an hereditary assumption, that the volume of the latter is proportional to (n 1/2 L n ) k when n goes to infinity. We also study this «proportionality constant», which is actually a non-deterministic random variable, allowing to highlight the links between the vertices visited by the random walk X. Finally, we apply these results to the following well known genealogy problem : pick k ≥ 2 vertices uniformly and without replacement in a subset of R n . What does their genealogical tree look like ? Under some hypothesis on this subset, we do answer this question quite precisely.

Dans cette section, nous présentons en premier lieu la notion d'arbre planaire enraciné et marqué selon J. Neveu [Nev86] puis nous donnons une construction possible d'un arbre de Bienaymé-Galton-Watson marqué.

Définitions et notations

Commençons par quelques définitions. Considérons l'ensemble des mots U = ℓ∈N (N * ) ℓ , c'està-dire l'ensemble des suites de longueur finie d'entiers strictement positifs et on note |u| la longueur d'un mot u ∈ U . On désigne par e l'unique mot de longueur 0, appelé racine. Si u = (i 1 , . . . , i ℓ ) ∈ U est un mot de longueur ℓ alors l'ensemble {e} {(i 1 , . . . , i m ); 1 ≤ m ≤ ℓ} des mots de longueur inférieure à celle de u et ayant le même suffixe que ce dernier constitue la collection des ancêtres de u. Le mot (i 1 , . . . , i ℓ-1 ) est appelé parent de u et on le note u * . La notion d'ancêtre induit une relation d'ordre partielle ≤ sur U : pour tout mot u et v, u ≤ v si et seulement si u est un ancêtre de v. Dans ce cas, on dira également que v est un descendant de u. Pour tout j ∈ N * , le descendant (i 1 , . . . , i ℓ , j) du mot u = (i 1 , . . . , i ℓ ) est le j-ème enfant de u, noté u j . On notera

mais qu'en général, le réciproque est fausse.

Définissons maintenant la notion d'arbre planaire selon J. Neveu. Un arbre T est sousensemble de U vérifiant les propriétés suivantes : i) e ∈ T ; ii) si (i 1 , . . . , i ℓ ) ∈ T alors (i 1 , . . . , i m ) ∈ T pour tout m ∈ {1, . . . , ℓ} ; iii) si u = (i 1 , . . . , i ℓ ) ∈ T alors il existe N u ∈ N tel que (i 1 , . . . , i ℓ , j) ∈ T si et seulement si j ∈ {1, . . . , N u }. Un mot u appartenant à l'arbre T est appelé sommet. i) nous dit que la racine e est un sommet de T et par convention, c'est un ancêtre de tout sommet de l'arbre T. ii) affirme que tout ancêtre d'un sommet u ∈ T est nécessairement un sommet de T. iii) nous dit que qu'un certain nombre N u ∈ N des enfants de u ∈ T sont des sommets de T et lorsque N u ∈ N * , le mot u j est un sommet de T pour tout j ∈ {1, . . . , N u }. L'ensemble {u ∈ T; |u| = ℓ} constitue la génération ℓ de l'arbre T et pour tout sommet u ∈ T tel que |u| = ℓ, u i désigne l'unique ancêtre de u dans la génération i ∈ {1, . . . , ℓ}. L'ensemble e, u := {v ∈ T; v ≤ u} = {e, u 1 , . . . , u ℓ } est alors appelé ligne généalogique du sommet u. Pour tout sommet u et v dans l'arbre T, l'ancêtre commun le plus récent de u et v, noté u ∧ v, est l'unique sommet z ∈ e, u ∩ e, v tel que max w∈ e,u ∩ e,v |w| = |z|. Nous pouvons attribuer une marque à chaque sommet d'un arbre. Soit T un arbre et (a u ; u ∈ T) une collection d'éléments, qu'on appelle des marques, d'un espace mesurable M. Pour tout sommet u ∈ T, l'élément a u est une marque attribuée au sommet u et le couple (T, (a u ; u ∈ T)) définit ainsi un arbre marqué. 1. ARBRES MARQU ÉS 2. MARCHES AL ÉATOIRES EN MILIEUX AL ÉATOIRES 11 Revenons au cas des marques aléatoires non déterministes, posons V (e) = 0 et pour tout x ∈ T \ {e}, V (x) := e<z≤x A z .

Sous P, (T, (V (x); x ∈ T)) est une marche aléatoire branchante, V (x) est appelé potentiel du sommet x et correspond à la position de ce dernier par rapport à la racine e. Définissons la log-transformée de Laplace ψ associée à ce potentiel aléatoire

en supposant que ψ est bien définie dans un voisinage de [0, 1] et que ψ ′ (1) existe.

Voici un critère de transience/récurrence pour la marche aléatoire X en fonction des fluctuations de ψ dû à G. faraud [Far11] (lui même précédé par R. Lyons et R. Pemantle [LP92]) : si inf t∈[0,1] ψ(t) > 0, alors P * -presque sûrement, X est transiente, sinon, elle est récurrente. E. Aïdékon [Aïd08] a porté une attention particulière au cas transient, montrant en particulier que sous certaines hypothèses, la marche X a une vitesse de fuite strictement positive. Dans le cas récurrent, le critère de G. faraud peut-être détaillé. Supposons que inf t∈[0,1] ψ(t) ≤ 0.

• Si inf t∈[0,1] ψ(t) < 0 ou inf t∈[0,1] ψ(t) = 0 et ψ ′ (1) > 0 alors P * -presque sûrement, X est récurrente positive ;

• si inf t∈[0,1] ψ(t) = 0 et ψ ′ (1) ≤ 0 alors P * -presque sûrement, X est récurrente nulle.

Dans la suite de cette thèse, nous nous consacrerons entièrement au cas récurrent nulle (deuxième point ci-dessus). Ce cas est particulièrement riche, la marche aléatoire X pouvant exhiber deux comportements radicalement différents.

La marche lente

Commençons par présenter le régime lent pour la marche aléatoire X. Plaçons nous dans le cas appelé traditionnellement frontière pour (V (x)) x∈T :

inf

Sous (BC), X est appelée marche lente sur E . L'appellation « marche lente » apparaît pour la première fois dans l'article de Y. Hu et Z. Shi [HS07a] pour décrire une marche qui peine à atteindre les hautes générations de l'arbre T. Plus tard, G. faraud, Y. Hu et Z. Shi ([FHS11], Théorème 1.1) montrèrent que sous (BC), P * -presque sûrement

cπ -1 (log n) 2 n le cardinal de l'ensemble de

Chapitre I

Generalized range for slow random walks on trees

Abstract : We are interested in the set of visited vertices of a tree T by a randomly biased random walk X := (X n , n ∈ N). The aim is to study a generalized range, that is to say the volume of the trace of X with both constraints on the trajectories of X and on the trajectories of the underlying branching random potential V := (V (x), x ∈ T). Focusing on slow regime's random walks (see [HS16b], [AC18]), we prove a general result and detail examples. These examples exhibit many different behaviors for a wide variety of ranges, showing the interactions between the trajectories of X and the ones of V.

Résumé

Cette thèse est consacrée à l'étude d'une marche aléatoire au plus proche voisin X récurrente nulle sur une marche aléatoire branchante (T, (V (x); x ∈ T)) où T est un arbre de Bienaymé-Galton-Watson sur-critique. Une attention particulière est accordée à sa trace, le sous-arbre R n = {X 0 , . . . , X n } de T des sommets visités par X jusqu'à l'instant n.

Dans une première partie, nous nous intéressons au volume de certaines traces contraintes à la fois le long des trajectoires de X et le long de celles du potentiel branchant V dans le régime lent [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF]. Il s'agit typiquement du nombre de sommets visités au moins n b (avec b ∈ [0, 1)) fois par la marche X jusqu'à l'instant n et dont le potentiel V est contraint d'évoluer dans un ensemble donné. Sous quelques hypothèses, certaines naturelles, d'autres plus techniques, nous donnons le comportement quand n tend vers l'infini du volume de ces traces générales, mettant en lumière les interactions entre la marche aléatoire X et son potentiel branchant V . Nous exhibons également quelques exemples de traces contraintes nous paraissant pertinents. Un exemple important est celui des potentiels hauts : il s'agit de forcer la marche X à visiter des sommets de potentiel typiquement supérieur à (log n) α avec α ∈ [1, 2). Ces sommets sont nombreux à l'instant n (lorsque n tend vers l'infini), de l'ordre de n 1-b e -c(log n) α-1 avec c > 0. Dans une deuxième partie, nous nous focalisons sur le volume de certains sous-ensembles de

R ×k n = R n × • • • × R n , k ≥ 2,
dans le cas de la marche diffusive [START_REF] Hu | A subdiffusive behavior of recurrent random walk in random environment on a regular tree[END_REF]. Nous supposons que le diamètre L n -1 (pour la topologie naturelle sur T ×k ) d'un tel sous-ensemble est déterministe et nous montrons que sous une hypothèse d'hérédité, le volume de ce dernier est proportionnel à (n 1/2 L n ) k lorsque n tend vers l'infini. Nous étudions également cette «constante» de proportionnalité, qui est une variable aléatoire non-déterministe, mettant ainsi en lumière les liens entre les différents sommets de R n . Enfin, nous appliquons ces résultats au fameux problème de généalogie suivant : tirons k ≥ 2 sommets uniformément et sans remise dans un sous-ensemble de l'arbre R n . A quoi ressemble leur arbre généalogique ? Sous certaines hypothèses portant sur ce sous-ensemble, nous répondons à cette question assez précisément. Nous présentons maintenant une classe d'arbres aléatoires très connue, la classe des arbres de Bienaymé-Galton-Watson marqués. Soit (N, M ) une variable aléatoire à valeurs dans N × M, sous une probabilité P. On construit l'arbre aléatoire marqué (T, (a u ; u ∈ T)), génération par génération, de la façon suivante :

• la génération 0 est constituée d'un unique sommet, la racine e et on pose a e := 0 ;

• Soit n ∈ N * et supposons que la génération n -1 est construite. Si cette dernière est vide alors la génération n l'est aussi. Sinon, chaque sommet u dans la génération n -1 donne naissance, indépendamment des autres sommets de sa génération, à N u enfants marqués (u 1 , a u 1 ), . . . (u Nu , a u Nu ), suivant la loi de (N, M ) formant ainsi la génération n.

Cette procédure s'arrête uniquement en cas d'extinction, c'est-à-dire lorsqu'une génération est vide. Autrement, elle continue indéfiniment. La loi de N est appelée loi de reproduction de l'arbre aléatoire T et est naturellement liée à probabilité d'extinction de ce dernier. On suppose que P(N = 1) < 1. Soit Z n := x∈T;|x|=n 1 le nombre de sommets dans la génération n avec la convention x∈∅ = 0. On définit la probabilité d'extinction p ext de l'arbre T par p ext = P(∃n ∈ N : Z n = 0). p ext est en réalité le plus petit point fixe de l'application s ∈ [0, 1] → E[s N ] et p ext = 1 si et seulement si E[N ] ≤ 1. L'arbre T est dit sous-critique si E[N ] < 1, critique si E[N ] = 1 et sur-critique si E[N ] > 1. A partir de maintenant, (T, (A x ; x ∈ T)) désigne un arbre de Bienaymé-Galton-Watson marqué sur-critique tel que A x ∈ R (c'est-à-dire en prenant M = R dans la construction précédente) et on note P * (•) := P(•|non-extinction de T). Revenons quelques instants à la suite (Z n ). Sous P, la suite (Z n /E[N ] n ) est une martingale positive, elle converge donc P-presque sûrement vers une variable aléatoire M ∞ ∈ [0, ∞). D'après le théorème de Kesten-Stigum [START_REF] Kesten | A limit theorem for multidimensional Galton-Watson processes[END_REF],

P(M ∞ = 0) = p ext ⇐⇒ E[M ∞ ] = 1 ⇐⇒ E[N log + N ] < ∞ où log + est
la partie positive de log. Si l'une des conditions précédentes est vérifiée alors P * (M ∞ > 0) = 1 et donc P * -presque sûrement, (Z n ) a une croissance exponentielle. Lorsque ce n'est pas le cas, E. Seneta [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] et C. C. Heyde [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF] ont prouvé qu'il existe toujours une suite (c n ) de réels strictement positifs et une variables aléatoire M ′ ∞ telles que c n+1 /c n → E[N ] et la suite (Z n /c n ) converge P-presque sûrement vers M ′ ∞ . De plus, P(M ′ ∞ = 0) = p ext .

L'arbre marqué aléatoire sur-critique avec marques réelles E = (T, (A x ; x ∈ T)) défini cidessus est appelé environnement aléatoire et c'est sur une réalisation de T que nous définissons une marche aléatoire au plus proche voisin dont les probabilités de transition dépendent des marques de ce dernier.

INTRODUCTION 2 Marches aléatoires en milieux aléatoires

Dans cette section, nous définissons une marche aléatoire biaisée X sur une réalisation de l'environnement E puis nous présentons quelques résultats importants pour cette marche, notamment un critère de récurrence/transience ainsi que des propriétés de localisation.

Pour des raisons pratiques, nous ajoutons un sommet e * à T. Il s'agit du parent de la racine e. Nous considérons ainsi, sous la famille de probabilités {P E

x ; x ∈ T ∪ {e * }}, la marche aléatoire au plus proche voisin X := (X j ) j∈N , à valeurs dans T ∪ {e * } et réfléchie en e * , dont les probabilités de transition sont, pour tout x ∈ T \ {e * } p E (x, x * ) = 1

1 + Nx i=1 e -A x i et pour tout 1 ≤ i ≤ N x , p E (x, x i ) = e -A x i 1 + Nx i=1 e -A x i .
Autrement, p E (x, u) = 0 et par définition, p E (e * , e) = 1. Pour tout x ∈ T ∪ {e * }, la mesure de probabilité P E x est appelée probabilité quenched issu de x, c'est-à-dire P E x (X 0 = x) = 1 et P E := P E e désigne la probabilité quenched issue de la racine e. Enfin, nous définissons les probabilités annealed P et P * par

P(•) := E[P E (•)] et P * (•) := E * [P E (•)].
La marche aléatoire X est appelée marche aléatoirement biaisée sur l'arbre de Bienaymé-Galton-Watson marqué sur-critique E . La famille de marques aléatoires {A x ; x ∈ T} représente le biais aléatoire vers la racine e (ou son parent e * ) et comme nous le verrons par la suite, ce biais joue un rôle central dans l'étude de la transience et de la récurrence de la marche aléatoire X. Les premières références à ces marches remontent à R. Lyons et R. Pemantle [START_REF] Lyons | Random walk in a random environment and first-passage percolation on trees[END_REF] et M.V. Menshikov et D. Petritis [START_REF] Menshikov | On random walks in random environment on trees and their relationship with multiplicative chaos[END_REF]. Un cas particulier important de cette marche aléatoire, introduit pour la première fois par R. Lyons (voir [Lyo90] et [START_REF] Lyons | Random walks, capacity and percolation on trees[END_REF]) est celui de la marche λ-biaisée sur T : il s'agit du cas où les marques A z sont déterministes et constantes égales à log λ avec λ > 0. Les probabilités de transition deviennent alors : p E (x, x * ) = λ/(λ + N x ) et p E (x, x i ) = 1/(λ + N x ) pour tout 1 ≤ i ≤ N x . Cette marche est transiente sauf quand le biais vers la racine est assez fort : si λ ≥ E[N ] alors P * -presque sûrement, la marche λ-biaisée est récurrente (récurrente positive si λ > E[N ]). Quand λ = E[N ], Y. Peres et O. Zeitouni [START_REF] Peres | A central limit theorem for biased random walks on Galton-Watson trees[END_REF] puis E. Aïdékon et L. de Raphélis [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] ont montré le théorème central limite suivant : P *presque sûrement, le processus (|X ⌊nt⌋ |/ √ σ 2 n) t≥0 converge en loi vers le mouvement brownien réfléchi standard, avec σ 2 = λ(λ -1)/E[N (N -1)] ∈ (0, ∞). Le cas transient a notamment été étudié par R. Lyons, R. Pemantle et Y. Peres (voir [LPP96b] et [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF]) puis par E. Aïdékon [START_REF] Aïdékon | Speed of the biased random walk on a galton-watson tree[END_REF]. En particulier, il est montré dans [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF] que la vitesse de fuite de la marche existe et est déterministe : P * -presque sûrement, lim n→∞ |X n |/n := v λ ≥ 0. De plus, la vitesse v λ est strictement positive si et seulement si λ ∈ (λ c , E[N ]), avec λ c > 0. E. Aïdékon [START_REF] Aïdékon | Speed of the biased random walk on a galton-watson tree[END_REF] donna plus tard une expression explicite de cette vitesse v λ . INTRODUCTION où σ 2 := E[ |x|=1 V (x) 2 e -V (x) ] ∈ (0, ∞). La plus grande génération atteinte par (X j ) j≤n est donc de l'ordre de (log n) 3 . Il est par ailleurs montré par Y. Hu et Z. Shi ([HS16b], Corollaire 2.3) que max 1≤j≤n |X j | est log n fois plus grand |X n | : sous P * , (|X n |/(log n) 2 ) n≥2 converge en loi vers une variable aléatoire strictement positive (la loi est explicite). Sous (BC), la marche est en fait très fortement biaisée vers la racine et ce biais est connu : notons L n x = n j=1 1 {X j =x} le temps local du sommet x ∈ T à l'instant n. Y. Hu et Z. Shi ont montré [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF], Proposition 2.4) que le nombre de fois que la marche X visite la racine e avant l'instant n est de l'ordre de n/ log n : en P * -probabilité

n log n L n e -→ n→∞ σ 2 4 1 + W 1 D ∞ , (3) 
où W 1 := |x|=1 e -V (x) et D ∞ := lim n→∞ D n avec D n := |x|=n V (x)e -V (x) . Accordons un instant à la suite (D n ). Il est aisé de voir que sous (BC), (D n ) est une (F n )martingale où F n := σ((T, V (x); x ∈ T, |x| ≤ n)). (D n ) est appelée martingale dérivée. Cette dernière converge P * -presque sûrement vers une variable aléatoire D ∞ ∈ (0, ∞) (J.D. Biggins et A.E. Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] montrent que D ∞ ≥ 0, X. Chen [START_REF] Chen | A necessary and sufficient condition for the non-a necessary and sufficient condition for the non-trivial limit of the derivative martingale in a branching random walk[END_REF] prouve que D ∞ > 0 sous certaines hypothèses). D ∞ peut également être obtenue via la martingale additive W n := |x|=n e -V (x) : E. Aïdékon et Z. Shi [START_REF] Aïdékon | The seneta-heyde scaling for the branching random walk[END_REF] ont montré qu'en P * -probabilité, (πσ 2 n/2) 1/2 W n → D ∞ quand n → ∞. Une preuve alternative récente de ce résultat est proposée par P. Boutaud et P. Maillard [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF]. En particulier, W n est de l'ordre de 1/n et R. Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF] montrait déjà quelques années auparavant que P * -presque sûrement, lim n→0 W n = 0. Revenons à la marche lente sur E et pour terminer, voici un résultat intéressant dû à P. Andreoletti et P. Debs [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] : toutes les générations inférieures à γ-1 log n où γ := sup{a ∈ R; inf t≥0 (ψ(-t) -at) > 0} sont entièrement visitées par la marche (X j ) j≤n : avec grande probabilité, pour tout G ∈ (0, γ-1 ), {x ∈ T; |x| ≤ G log n} = {x ∈ R n ; |x| ≤ G log n}. De plus, la valeur γ-1 est optimale : si on note G n := sup{k ≥ 0; ∀|x| = k, L n

x ≥ 1} la plus grande génération de l'arbre T entièrement visitée par X jusqu'à l'instant n alors ([AD14a], Théorème 1.1), P * -presque sûrement

G n log n -→ n→∞ 1 γ . (4) 
Notons que sous (BC), G n est seulement log n fois plus petite que les générations typiques de la marche X à l'instant n et (log n) 2 fois plus petite que les plus grandes générations atteintes avant l'instant n.

Le régime lent n'est pas le seul régime pour la marche aléatoire récurrente nulle X sur l'arbre T, cette dernière pouvant être (sous-)diffusive.
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La marche (sous-)diffusive

Plaçons nous à présent dans le cas inf t∈[0,1] ψ(t) = ψ(1) = 0 et ψ ′ (1) < 0, (D) et posons

κ := inf{t > 1; ψ(t) = 0}, (5) 
en supposant que κ ∈ (1, ∞). D'après Y.Hu et Z. Shi ([HS07b], Théorème 1.2), P * -presque sûrement

log max 1≤j≤n |X j | log n -→ n→∞ 1 - 1 κ ∧ 2 , (6) 
avec κ∧2 = min(κ, 2). Autrement dit, sous (D), la plus grande génération visitée par la marche X jusqu'à l'instant n est de l'ordre de n 1-1 κ∧2 . En particulier, la marche aléatoire X est d'autant plus rapide que κ est grand. Il est également montré par E. Aïdékon et L. de Raphélis [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] (pour κ > 2) et L. de Raphélis [dR22] (pour κ ∈ (1, 2]) que |X n | et max 1≤j≤n |X j | sont du même ordre : les suites (|X n |/n 1-1 κ∧2 ) n∈N * (si κ ̸ = 2) et ((log n) 1/2 |X n |/n 1/2 ) n∈N * (si κ = 2) converge en loi vers une variable aléatoire strictement positive et explicite. Ainsi, sous (D), la marche aléatoire X est sous-diffusive si κ ∈ (1, 2] et diffusive si κ > 2. Naturellement, cette dernière est bien moins biaisée vers la racine que la marche lente : d'après P. Andreoletti et P. Debs [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] et Y. Hu [START_REF] Hu | Local times of subdiffusive biased walks on trees[END_REF] plus récemment, L n e est de l'ordre de n 1 κ∧2 . La racine e est bien entendu un des sommets les plus visités par la marche X, peut-on caractériser précisément les sommets les plus visités ? Cette question nous mène naturellement au problème des sites favoris, problème introduit par P. Erdös et P. Révész [START_REF] Erdös | On the favourite points of a random walk[END_REF] pour la marche simple sur Z. Pour tout n ∈ N, notons F(n) := {x ∈ T; L n x = max y∈T L n y } l'ensemble des sites favoris de la marche X avant l'instant n, c'est-à-dire l'ensemble des sommets de T les plus visités par (X j ) j≤n . Soit T 1 = inf{i ≥ 1; X i = e * } le premier instant de passage en e * et M := {x ∈ T; E E [L T 1

x ] = max y∈T E E [L T 1 y ]} une version moyennée (sur une excursion et sous la probabilité quenched) de l'ensemble des sites favoris. Un résultat montré par D. Chen, L. de Raphélis et Y. Hu [START_REF] Chen | Favorite sites of randomly biased walks on a supercritical galton -watson tree[END_REF] dans le cas de la marche diffusive (κ > 2) lie l'ensemble M à F(n) : P * -presque sûrement, pour n assez grand, F(n) ⊂ M . Ils prouvèrent également que P * -presque sûrement, |F(n)| = min(3, |M |) n-infiniment souvent où |D| désigne le cardinal de l'ensemble D. Nous reviendrons brièvement sur l'ensemble M dans la suite. Mentionnons qu'il existe des approximations de la queue de distribution de max x∈T N σ 1 x où N T

x := T j=1 1 {X j =x * ,X j =x} est le nombre de passage sur l'arête orientée (x * , x) avant l'instant T et σ 1 := inf{j ≥ 1; X j = e * , X j = e} le premier instant de passage sur l'arête (e * , e). X. Chen et L. de Raphélis [START_REF] Chen | Maximal local time of randomly biased random walks on a Galton-Watson tree[END_REF] ont montré que pour tout κ > 1, il existe une constante c κ > 0 telle que t (κ∨2)/2 P(max x∈T N σ 1

x ≥ t) → c κ si κ ̸ = 2, t(log t) 1/2 P(max x∈T N σ 1 x ≥ t) → c κ si κ = 2 avec INTRODUCTION κ ∨ 2 = max(κ, 2). De même que dans le cas frontière, P. Debs et P. Andreoletti ont montré que toutes les générations inférieures à (γ(κ ∧ 2)) -1 log n sont entièrement visitées par la marche (X j ) j≤n : avec grande probabilité, pour tout G ∈ (0, (γ(κ ∧ 2)) -1 ), {x ∈ T; |x| ≤ G log n} = {x ∈ R n ; |x| ≤ G log n}.

De plus, la valeur (γ(κ ∧ 2)) -1 est optimale : si on note G n := sup{k ≥ 0; ∀|x| = k, L n x ≥ 1} la plus grande génération de l'arbre T entièrement visitée par X jusqu'à l'instant n alors ([AD14a], Théorème 1.1), P * -presque sûrement

G n log n -→ n→∞ 1 γ(κ ∧ 2) . (7) 
Notons que contrairement au cas frontière, G n est ici beaucoup plus petite que les générations typiques de la marche aléatoire X à l'instant n.

Nous venons de voir que le potentiel aléatoire V joue un rôle central dans le comportement de la marche aléatoire X, notamment via les fluctuations de ψ (voir (1)). La prochaine sous-section est ainsi dédiée aux interactions entre la marche aléatoire X et son potentiel V .

La marche aléatoire et son potentiel branchant

Dans cette sous-section, nous faisons état des liens entre la marche X et son potentiel V . Une attention particulière est accordée aux interactions entre les processus (X j ) j≤n et (V (x)) x∈T .

Le temps local

Le potentiel V apparaît naturellement lorsqu'on regarde le temps local L T 1

x d'un sommet x ∈ T avant le premier passage en e * : E E [L T 1

x ] = e -U (x) où U (x) := V (x)+log p E (x, x * ) est le potentiel décalé. L'ensemble M = {x ∈ T; E E [L T 1

x ] = max y∈T E E [L T 1 y ]} introduit précédemment dans le cadre du problème des sites favoris de la marche diffusive n'est en réalité rien d'autre que l'ensemble {x ∈ T; U (x) = min y∈T U (y)} des minimiseurs du potentiel décalé U . La position minimale de U a été abondamment étudiée. J.M. Hammersley [START_REF] Hammersley | Postulates for Subadditive Processes[END_REF], J.F.C. Kingman [START_REF] Kingman | The First Birth Problem for an Age-dependent Branching Process[END_REF] ou encore J.D. Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching branching process[END_REF] ont montré que P * -presque sûrement, min |x|=n U (x)/n → c quand n → ∞ où c = 0 lorsque ψ ′ (1) = 0 et c > 0 quand ψ ′ (1) < 0. De plus, Y.Hu et Z.Shi [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] donnent un développement à l'ordre deux de min |x|=n U (x) : en P * -probabilité, (min |x|=n U (x) -cn)/ log n → 3/2 quand n → ∞. Notons que E. Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] a prouvé que (min |x|=n U (x) -cn -(3/2) log n) n≥2 converge en loi vers une variable aléatoire explicite dépendant de D ∞ .

Les descentes de potentiel

Le comportement de la marche aléatoire X est directement lié aux fluctuations du potentiel V . Il est facile de se convaincre que pour tout x ∈ T, moins l'application V x : i ∈ {0, . . . , |x|} → V (x i ) est régulière plus le temps local de la marche X le long de ligne généalogique de x est élevé, ralentissant la marche. Pour tout sommet x ∈ T, posons H x := e<z≤x e V (z)-V (x) . H x est un indicateur important de la régularité de V x . En effet, e V (x)-V (x) ≤ H x ≤ |x|e V (x)-V (x) avec V (x) := max e<z≤x V (z) donc plus H x est petit, plus V x est régulière et réciproquement. Dans le cas frontière (BC), les descentes (exponentielles) de potentiel H sont typiquement assez grandes : nous savons que H x ≥ e V (x 1 )-V (x) donc pour tout δ > 0 et tout entier n ≥ 2, E[ |x|=n e -V (x) (H x ) δ ] ≥ E[ |z|=1 e -V (z) |x|=n; x>z e (1+δ)(V (z)-V (x)) ] = e (n-1)ψ(1+δ) et par définition, ψ(1 + δ) ∈ (0, ∞] donc sup n∈N * E[ |x|=n e -V (x) (H x ) δ ] = ∞. Dans le cas (D), les descentes (exponentielles) de potentiel H sont beaucoup plus petites, elles sont d'autant plus petites que κ est grand : d'après P. Andreoletti et R. Diel ([AD20], Lemme 2.2), pour tout ε > 0, sup n∈N * E[ |x|=n e -V (x) (H x ) κ-1-ε ] < ∞. Faisons un lien entre les temps locaux de la marche X et les descentes (exponentielles) de potentiel H. On rappelle que N T 1 x = T 1 j=1 1 {X j =x,X j =x * } est le nombre de fois que la marche aléatoire X passe par l'arête orientée (x * , x) avant le premier passage en e * . On note R T

1 := x∈T 1 {N T 1 x ≥1}
le nombre de sommets de T visités par la marche X avant le premier passage en e * . Dans l'étude de la trace de X, on cherche à contrôler le ratio E[(R T 1 ) 2 ]/E[R T 1 ] 2 . (R T 1 ) 2 n'est rien d'autre que le nombre de couples (x, y) de sommets de T visités pendant la première excursion au dessus de e * . Visiter les sommets x et y dans la même excursion demande inévitablement à la marche de se rendre au sommet x ∧ y (l'ancêtre commun le plus récent de x et y, voir 1.1) plusieurs fois et le temps local de ce dernier est nécessairement grand. Notons que

E E [(R T 1 ) 2 ] = x̸ =y P E (N T 1 x ∧ N T 1 y ≥ 1) + E E [R T 1 ] et d'

après la propriété de Markov forte

H x∧y e V (x∧y) ≤ P E (N T 1 x ∧ N T 1 y ≥ 1) P E (N T 1

x ≥ 1)P E (N T 1 y ≥ 1) x∧y) , ce grand temps local se manifestant par l'apparition du facteur H x∧y . On doit donc contrôler le temps local le long de la ligne généalogique de chaque sommet visité via les descentes de potentiel : z) H z ] + 1. Dans le cas frontière (BC), Y. Hu et Z.

≤ 2H x∧y e V (
E[(R T 1 ) 2 ]/E[R T 1 ] 2 ≤ E[ z∈T e -V (
Shi [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF], Théorème 2.8) ont montré qu'une barrière pour les descentes (exponentielles) de potentiel ne peut-être franchie par la marche aléatoire X : pour tout δ ∈ (0, 1)

P * (∀j ≤ n, X j ∈ O n/(log n) 1+δ ) -→ n→∞ 1 (8)
où nous rappelons que pour tout λ > 0, O λ = {x ∈ T; ∀e < z ≤ x, H z ≤ λ}. Dans le cas (D), pour obtenir une estimation logarithmique de la trace lourde (cette trace est définie dans la sous-section 3.3), P. Andreoletti et R. Diel [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF] remarquent qu'il est possible de se restreindre à l'ensemble {z ∈ T; e<u≤z H u ≤ n 1-δ } avec δ ∈ (0, 1).

Terminons cette sous-section par quelques résultats sur le processus (V (X j )) j∈N .

Le processus (V (X j )) j∈N

Ce processus suscite naturellement beaucoup d'intérêt, principalement dans le régime lent. Ce dernier est moins intéressant dans le cas de la marche (sous-)diffusive, les potentiels très grands INTRODUCTION étant facilement atteints par la marche. En effet, pour tout κ > 1 il existe 0 < c 1 < c 2 tel que pour tout ε > 0

P * (c 1 n 1-1 κ∧2 -ε ≤ V (X n ) ≤ c 2 n 1-1 κ∧2 +ε ) -→ n→∞ 1, (9) 
P * c 1 n 1-1 κ∧2 -ε ≤ max 1≤j≤n V (X j ) ≤ c 2 n 1-1 κ∧2 +ε -→ n→∞ 1.
Autrement dit, V (X n ) se comporte comme max 1≤j≤n V (X j ) et est également du même ordre que |X n |. Une preuve de (9) se trouve dans l'annexe 5.

Le processus (V (X j )) j∈N est nettement plus riche dans le cas de la marche lente. Dans le cas frontière Y.Hu et Z.Shi conjecturaient ([HS16a], Conjecture 1.2) une convergence en loi de (V (X n )/ log n) n≥2 . Effectivement, cette suite converge en loi, sous P * , vers une variable aléatoire dont la loi µ V de support (0, ∞) est donnée par : pour tout borélien D ⊂ (0, ∞)

µ V (D) = ∞ 0 du (2πu) 1/2 P s < u -1/2 , u 1/2 m 1 ∈ D , (10) 
où (m t ) t∈[0,1] est un méandre brownien et s := sup t∈[0,1] (sup s∈[0,t] m s -m t ). Notons qu'un résultat de Y. Hu, Z. Shi et M. Yor [START_REF] Hu | The maximal drawdown of the Brownian meander[END_REF], Théorème 1.1) nous assure que µ V est bien une mesure de probabilité. Une preuve de (10) se trouve dans l'annexe 5. Sous (BC) en revanche, max 1≤j≤n V (X j ) est log n fois plus grand que V (X n ) : P * -presque sûrement ([HS16a], Théorème 1.1)

1 (log n) 2 max 1≤j≤n V (X j ) -→ n→∞ 1 2 . ( 11 
)
Remarquons que max 1≤j≤n V (X j ) est du même ordre que |X n |, comme dans le cas de marche (sous-)diffusive.

Toujours dans le cas frontière pour le potentiel V , un autre aspect intéressant est le nombre de fois que le processus (V (X j )) j≤n dépasse une valeur donnée. Pour tout α ∈ (1, 2), en P *probabilité

n j=0 1 {V (X j )≥(log n) α } = ne -(1+o(1))(log n) α-1 . ( 12 
)
Cette somme n'est en réalité rien d'autre que le nombre total de fois que la marche aléatoire X visite les sommets dont le potentiel est supérieur à (log n) α avant l'instant n. Le chapitre I est entre autres dédié à ce type de traces.

Nous consacrons la prochaine section à la trace d'une marche aléatoire et plus particulièrement au comportement asymptotique de son volume.

Trace de marches aléatoires en milieux aléatoires

Nous commençons par définir la notion de trace d'une marche aléatoire et donnons quelques résultats qui nous semblent intéressants pour des marches à valeurs dans Z d et dans des arbres réguliers. Les trois dernières sous-sections 3.2, 3.3 et 3.4 sont entièrement dédiées à la marche aléatoire en milieux aléatoires récurrentes nulle X. La sous-section 3.2 aborde la trace usuelle, la trace lourde est traitée dans la sous-section 3.3 et enfin une trace généralisée est présentée dans la sous-section 3.4.

Définitions et exemples

Soit D une ensemble dénombrable et X := (X j ) j∈N une marche aléatoire à valeurs dans D. On appelle trace (usuelle) de X jusqu'à l'instant n l'ensemble des points distincts visités par la marche aléatoire X jusqu'à l'instant n et on note R n son cardinal (que nous appellerons trace également). Les deux premiers exemples concernent des marches aléatoires sur Z d , le dernier se concentre sur une marche à valeurs dans un arbre régulier.

La marche simple sur Z d

Nous commençons avec la marche simple sur Z d avec d ∈ N * , c'est-à-dire D = Z d et X est la marche aléatoire au plus proche voisin sur D sautant uniformément sur l'un des ses 2d voisins. Le cas d = 1 est très simple puisque R n = 1 + max 1≤j≤n X j -min 1≤j≤n X j et d'après le principe d'invariance de Donsker, en loi, R n /n 1/2 → G 1 + G 2 où pour tout i ∈ {1, 2}, G i suit la loi de la valeur absolue d'une variable gaussienne standard. Passons directement au cas d ≥ 3. Dans ce cas, la marche aléatoire X est transiente, le temps local de chaque sommet du réseau Z d est donc fini presque sûrement et ainsi R n = i∈Z d 1 {∃ j≤n: X j =i} est de l'ordre de n : A. Dvoretzky et P. Erdös [START_REF] Erdös | Some Problems on Random Walk in Space[END_REF] ont en effet montré qu'il existe une constante γ d > 0 telle que R n /n → γ d presque sûrement. Terminons par le cas critique d = 2. Dans ce cas, toujours d'après A. Dvoretzky et P. Erdös, R n est de l'ordre de n/ log n : presque sûrement, R n /(n/ log n) → π quand n → ∞. Pourquoi la trace R n se comporte-t-elle différemment quand d = 2 ? et pourquoi πn/ log n ? D'abord, contrairement à la marche simple sur Z d avec d ≥ 3, X est récurrente (nulle) et donc le temps local de chaque sommet du réseau Z d est infini presque sûrement. On peut ainsi s'attendre à ce que la marche aléatoire X visite moins de sommets qu'en dimension supérieure. Par ailleurs, P. Erdös et S. Taylor [START_REF] Erdös | Some problems concerning the structure of random walk paths[END_REF] ont montré que (πL n (0,0) / log n) n≥2 converge en loi vers une variable exponentielle de paramètre 1 où L n i est le temps local de i ∈ Z 2 à l'instant n. De plus, il est prouvé par P. Auer [START_REF] Auer | The circle homogeneously covered by random walk on Z 2[END_REF] que pour tout i ∈ Z 2 , L n i /L n (0,0) → 1 presque sûrement. Autrement dit, la marche aléatoire X passe un temps de l'ordre de π -1 log n sur chaque point du réseau Z 2 visité avant l'instant n, ce qui explique le comportement en πn/ log n de R n . Mentionnons que parmi ces points visités par la marche X avant l'instant n, nombreux sont ceux visités plus de cπ -1 (log n) 2 fois avec c ∈ (0, 1). En effet, si on note R INTRODUCTION ces derniers, alors R cπ -1 (log n) 2 n est de l'ordre de n 1-c . En effet, d'après [START_REF] Rosen | A random walk proof of the Erdős-Taylor conjecture[END_REF], Théorème 1.2), presque sûrement, log R

cπ -1 (log n) 2 n / log n → 1 -c quand n → ∞.
Une marche aléatoire branchante sur Z d On s'intéresse maintenant à une marche aléatoire étudiée par J.-F. Le Gall et S. Lin ([GL13], [START_REF] Gall | The range of tree-indexed random walk in low dimensions[END_REF]). Il s'agit d'une marche aléatoire sur Z d indexée par un arbre de Galton-Watson critique conditionné par sa taille. Soit (T, (a u ; u ∈ T)) un arbre de Gaton-Watson marqué défini dans la section 1.2 avec M = Z d , a u est donc une variable aléatoire à valeurs dans le réseau Z d . On note V(u) = e<z≤u a z le potentiel branchant du sommet u ∈ T \ {e}, V(e) = 0. On suppose que la loi de reproduction N est géométrique (sur N) de paramètre 1/2 (on a donc E[N ] = 1 et T est critique). On note T(n) l'arbre aléatoire T conditionné à avoir n sommets, T(n) est donc uniformément distribué sur l'ensemble des arbres planaires à n sommets. Enfin, pour tout 0 ≤ j ≤ n -1, u n (j) désigne le j-ème sommet de l'arbre T(n) pour l'ordre lexicographique, avec la convention u n (0) = e (voir la sous-section 1.1). Pour tout n ∈ N * , on considère la marche aléatoire X n = (X n j ) 0≤j≤n-1 sur D = Z d définie par X n j := V(u n (j)). Autrement dit, X n j correspond à la position sur le réseau Z d du sommet u n (j) ∈ T(n) par rapport à la racine e. La trace s'écrit donc ici R n = i∈Z d 1 {∃0≤j≤n-1: X n j =i} . Sous quelques hypothèses de régularité sur la variable aléatoire (N, M ), J.-F. Le Gall et S. Lin [START_REF] Gall | The range of tree-indexed random walk in low dimensions[END_REF] prouvent que pour tout d ≤ 3, (R n /n d/4 ) converge en loi. Remarquons que lorsque d = 2, on retrouve la même normalisation que pour la marche simple sur Z. Dans l'article [START_REF] Gall | The range of tree-indexed random walk[END_REF], ces derniers montrent qu'il existe une constante r > 0 telle que pour tout d ≥ 5, R n /n → r en probabilité. De plus, dans la dimension critique d = 4, (R n /(n/ log n)) converge dans L 2 et on retrouve la même normalisation que pour la marche simple sur Z 2 . La trace R n est donc plus petite que celle de la marche simple sur Z d , la marche indexée par un arbre de Galton-Watson interagit vraisemblablement plus souvent avec elle-même.

Une marche aléatoire branchante sur l'arbre b-ary Soit b ≥ 2 un entier. On note W b l'arbre b-ary infini enraciné en e, c'est-à-dire l'arbre infini dont chaque sommet a b enfants. On présente ici une marche aléatoire étudiée par T. Duquesne, R. Khanfir, S. Lin et N. Torri [START_REF] Duquesne | Scaling limits of tree-valued branching random walks[END_REF]. Il s'agit d'une marche aléatoire sur l'arbre W b et indexée par un arbre de Galton-Watson critique conditionné par sa taille. Soit T un arbre de Galton-Watson défini dans la section 1.2 avec E[N ] = 1. Comme vu précédemment, T est critique et s'éteint P-presque sûrement. On note T(n) l'arbre aléatoire T conditionné à avoir n sommets et pour tout 0 ≤ j ≤ n -1, u n (j) est le j-ème sommet de T(n) pour l'ordre lexicographique. Pour tout n ∈ N * , on considère la marche aléatoire X n = (X n un(j) ) 0≤j≤n-1 sur D = W b dont les sauts sont ceux d'une marche aléatoire récurrente nulle sur W b partant de la racine e : X n un(0) = X n e = e. Si X n un(j) * = e alors X n un(j) = e i avec probabilité 1/b pour tout 1 ≤ i ≤ b, si X n un(j) * = z ̸ = e alors X n un(j) = z * avec probabilité 1/2 et X n un(j) = z i avec probabilité 1/(2b) pour tout 1 ≤ i ≤ b (on rappelle que pour tout z ∈ W b , z * désigne le parent de z et z i le i-ème enfant de z, voir la sous-section 1.1). La trace s'écrit ici R n = z∈W b 1 {∃0≤j≤n-1: X n un(j) =z} . Il est alors prouvé dans [START_REF] Duquesne | Scaling limits of tree-valued branching random walks[END_REF], sous certaines hypothèses sur la loi de reproduction, qu'il existe une constante r b > 0 telle qu'en probabilité, R n /n → r b .

Revenons au cas de la marche aléatoire récurrente nulle X sur (T, (V (x); x ∈ T)) (voir la soussection 1.2 pour la définition de la marche aléatoire branchante et la section 2 pour la marche aléatoire X). Dans les trois prochaines sous-sections, nous présentons des résultats asymptotiques pour différentes traces de la marche aléatoire X jusqu'à l'instant n.

La trace usuelle

Rappelons que pour tout sommet x ∈ T, L n x = n j=1 1 {X j =x} désigne le temps local de x à l'instant n. On note R n := x∈T 1 {L n x ≥1} la trace usuelle de la marche aléatoire X à l'instant n, c'est-à-dire le nombre de sommets distincts visités par X jusqu'à l'instant n. Nous commençons par la marche (sous-)diffusive et nous remarquons que R n est de l'ordre de n, comme la marche aléatoire simple (et transiente) sur Z d avec d ≥ 3.

La marche (sous-)diffusive

On rappelle que sous (D), la marche aléatoire X est sous-diffusive si κ ∈ (1, 2] et diffusive si κ > 2 (la définition de κ se trouve dans l'équation (5)). D'après l'article de E. Aïdékon et L. de Raphélis [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] dans un premier temps puis celui de L. de Raphélis [dR22], pour tout κ ∈ (1, ∞), en P * -probabilité

R n n -→ n→∞ E 1 2 + 2 j≥1 e -S j , (13) 
où (S j -S j-1 ) j≥1 est la suite de variables aléatoires réelles et i.i.d sous P vérifiant, pour toute fonction h : R → R mesurable bornée, x ; x ∈ R T N \ {e * }) est, sous la probabilité annealed P, un arbre de Galton-Watson multitypes de type initial N où T 0 = 0 et pour tout j ∈ N * , T j = inf{i > T j-1 ; X j = e * }.

E[h(S 1 )] = E[ |x|=1 e -V (x) h(V ( 

INTRODUCTION

Présentons brièvement les idées permettant d'aboutir à (13). Commençons par noter que sous P * , avec grande probabilité, R n ⊂ R T jn où (j n ) est une suite d'entiers positifs bien choisie et R T jn est, comme nous venons de le mentionner, un arbre de Galton-Watson multitypes de type initial j n . Leur idée, centrée autour des sommets u de type β(u) = 1, est d'associer à R n deux forêts de Galton-Watson 2-types F 1 n et F 2 n (c'est-à-dire deux familles d'arbres de Galton-Watson 2-types définies dans [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] et [dR17]) construites à partir de copies indépendantes de l'arbre (T MT , (β(u); x ∈ T MT ), 1). Dans ces deux forêts, un sommet x tel que β(x) = 1 est de type 1, autrement, il est de type 0 (et est nécessairement une feuille, c'est-à-dire qu'il n'a pas d'enfant). Si R 1 n désigne le nombre de sommets x ∈ T de type β(x) = 1 visités par la marche aléatoire X avant l'instant n et τ 1 Rn (j) est le j-ème instant de visite d'un tel sommet alors

R 1 n = sup {j ≥ 1; τ 1 Rn (j) ≤ n}. Cette relation reste vraie pour la forêt F 1 n : si τ 1 F i n (j) désigne l'indice du j-ème sommet de type 1 dans F i n pour l'ordre lexicographique (voir (1.1)) alors R 1 n = sup {j ≥ 1; τ 1 F 1 n (j) ≤ n}. Quant à la forêt F 2
n , elle est construite de façon à ce que son j-ème sommet pour l'ordre lexicographique est le j-ème sommet distinct de T visité par la marche

X jusqu'à l'instant n. En particulier, R 1 n = sup{j ≥ 1; τ 1 F 2 n (j) ≤ R n }. On en déduit que τ 1 F 2 n (R 1 n )/τ 1 F 1 n (R 1 n + 1) ≤ R n /n ≤ τ 1 F 2 n (R 1 n + 1)/τ 1 F 1 n (R 1 n ) et (13) découle du Lemme 2.1 de [AdR17].
Nous passons maintenant au régime lent (BC). La trace est plus petite que sous (D), R n étant de l'ordre de n/ log n, donc du même ordre que la marche aléatoire simple sur Z 2 . Dans la sous-partie 3.1, nous expliquions le changement de normalisation pour la marche simple sur Z 2 entre autres par le fait que pour tout d ≥ 2, cette dernière est la seule à être récurrente (nulle). Cette explication n'est plus valable ici, les marches lente et (sous-)diffusive étant toutes les deux récurrentes nulles. Pour éviter toute ambiguïté, nous définissons ici deux notations utilisées dans les prochaines sous-sections : on écrira a n ∼ b n si et seulement si (a n /b n ) converge vers un réel non nul. La deuxième notation n'a pas de sens mathématique précis et relève de l'heuristique : on écrira « ≈ » pour signifier « de l'ordre de ».

La marche lente

Le résultat suivant est dû à P. Andreoletti et X. Chen ([AC18], Théorème 1.5) : dans le cas frontière pour le potentiel branchant (BC), en P * -probabilité x) ] et Λ est une constante explicite faisant intervenir deux méandres browniens indépendants.

log n n R n -→ n→∞ σ 2 4 Λ, ( 14 
) où nous rappelons que σ 2 = E[ |x|=1 V (x) 2 e -V (
Le contexte de la marche aléatoire en milieux aléatoires est très différent de celui de la marche simple sur Z d mais la marche lente sur T et la marche simple sur Z 2 ont la même normalisation. Pourquoi n/ log n ? Dans le cas de la marche sur Z 2 (sous partie 3.1) nous tentions de justifier cette normalisation en disant que le temps local jusqu'à l'instant n de chaque point du réseau Z 2 est de l'ordre de log n. Dans le cas de la marche lente, c'est le biais vers la racine e (voir (3)) qui nous fournit cette normalisation. Nous donnons ici une brève description des sommets typiques de l'environnement permettant d'obtenir le comportement de R n . Soit (ℓ n ) une suite d'entiers positifs. Nous nous intéressons d'abord à la trace R T n (ℓ n ) := |x|=ℓn 1 {L T n

x ≥1} où nous rappelons que T 0 = 0 et pour tout n ∈ N * , T n := inf{j > T n-1 ; X j = e * } le n-ième instant de passage en e * . R T n (ℓ n ) n'est rien d'autre que le nombre de sommets dans la générations ℓ n de l'arbre T et visités par la marche X pendant les n premières excursions au dessus de e * . Dans un premier temps, il faut remarquer que seules les générations ℓ n ∼ (log n) 2 contribuent significativement à la trace ([AD14b], Théorème 1.1). On choisit ensuite soigneusement les sommets pertinents : les sommets x ∈ T dont les descentes (exponentielles) de potentiel le long de la ligne généalogique ne sont pas trop grandes en demandant typiquement H z = e<w≤z e V (w)-V (z) ≤ n/(log n) δ pour tout e < z ≤ x, avec δ > 1 (ce qui est raisonnable au regard du résultat (8)) ainsi que ceux dont le potentiel V (x) est plus grand que log n + log log n. Notons A 1 l'ensemble de ces sommets pertinents et R A 1

T n (ℓ n ) la trace associée. Intéressons nous maintenant à la moyenne quenched

E E [R A 1 T n (ℓ n )] = |x|=ℓn (1 - (1 -a x ) n )1 {x∈A 1 } où a x = e -V (x) /H x . La condition V (x) ≥ log n + log log n créer de la quasi- indépendance le long des trajectoires de la marche X, nous permettant d'obtenir E E [R A 1 T n (ℓ n )] ≈ n |x|=ℓn a x 1 {x∈A 1 } et faisant ainsi apparaître un facteur n. Nous savons que |x|=ℓn e -V (x) ≈ 1/ℓ 1/2 n (il s'agit du résultat de E. Aïdékon et Z. Shi [AS14b] énoncé précédemment) et les sommets de A 1 sont pertinents justement car |x|=ℓn e -V (x) 1 {x∈A 1 } ≈ 1/ℓ 1/2
n . Il nous faut donc déterminer le coût de la division par H x . Notons que e V (x)-V (x) ≤ H x ≤ ℓ n e V (x)-V (x) pour tout |x| = ℓ n , où V (x) = max e<z≤x V (x). Cherchant à minimiser H x , nous conservons seulement les sommets x satisfaisant V (x) ≈ V (x) et le coût de ce choix est 1/ℓ

1/2 n . Autrement dit, |x|=ℓn a x 1 {x∈A 1 } ≈ |x|=ℓn a x 1 {x∈A 1 ,V (x)≈V (x)} ≈ (1/ℓ 1/2 n ) 2 ∼ 1/(log n) 2 d'où E E [R A 1 T n (ℓ n )] ≈ n/(log n) 2 . L'étape suivante est de montrer que R T n (ℓ n ) ≈ E E [R A 1 T n (ℓ n )] en contrôlant la variance de R T n (ℓ n ). Contrôler la variance, c'est contrôler le rapport E[R T 1 (ℓ n ) 2 ]/E[R T 1 (ℓ n )] 2 c
'est-à-dire minimiser le temps local le long de la ligne généalogique de chaque sommet x visités par X, ce qui, comme nous l'avons vu dans la sous-section 2.3, est rendu possible par la condition max e<z≤x H z ≤ n/(log n) δ (l'avantage par rapport à la barrière (8) est qu'ici, nous prenons δ aussi grand que souhaité, le choix de sa valeur ayant une importance mineure, voir le lemme 2.2 de [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF]) nous permettant ainsi d'obtenir

R T n (ℓ n ) ≈ n/(log n) 2 . Seules les générations de l'ordre de (log n) 2 contribuant significativement à la trace usuelle, R T n ≈ ℓn∼(log n) 2 R T n (ℓ n ) ≈ (log n) 2 × (n/(log n) 2 ) = n.
La dernière étape utilise le biais aléatoire vers la racine : en P * probabilité, T n/ log n ∼ n (voir (3)) faisant de n/ log n la bonne normalisation pour la trace R n .

Passons maintenant à la trace lourde. Il s'agit de l'ensemble des sommets visités très souvent par la marche aléatoire X. T n a été étudiée à la fois dans le cas de la marche (sous-)diffusive et dans le cas de la marche lente par P. Andreoletti et R. Diel [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF] puis un résultat plus précis a été démontré par X. Chen [START_REF] Chen | Heavy range of the randomly biased walk on galton-watson trees in the slow movement regime[END_REF] dans le cas de la marche lente. Quelque soit le régime de la marche X, le comportement de R T n ] en contrôlant sa variance comme précédemment. A nouveau, le choix des sommets pertinents est crucial : d'après (6) et [START_REF] Hu | Local times of subdiffusive biased walks on trees[END_REF], on peut se restreindre aux générations plus petites que n κ-1+ε pour tout ε > 0. Par ailleurs, on ne garde que les sommets x ∈ T dont les descentes (exponentielles) de potentiel sont raisonnables : z≤x H z ≤ n 1-δ avec δ > 0, et dont le potentiel V (x) est supérieur à 4 log n.

INTRODUCTION

La trace lourde

T n = 0) → 1 quand n → ∞ pour tout b > 1. Le résultat suivant est dû à P. Andreoletti et R. Diel ([AD20], Théorème 1.1) : pour tout b ∈ [0, 1], en P * -probabilité log + R (b) T n log n -→ n→∞ ξ b (15) où ξ b = 1 -b sous (BC), ξ b = κ(1 -b) sous (D) et κ ∈ (1, 2], ξ = max(2 -κb, 1 -b) sous (D) et κ > 2. log + (x) = log(max(x, 1 
Notons A 2 cette ensemble. Nous avons alors E[R (b) T n ] ≈ nE[ |x|≤n κ-1 e -V (x) h n (H x )1 {x∈A 2 } ]
, le facteur n provenant de la condition V (x) ≥ 4 log n qui a permis d'obtenir de l'indépendance le long des trajectoires de X et h n (t) = (1 -1/t) n b -1 /t. On cherche ici un équilibre subtil : nous devons minimiser le temps local le long de la ligne généalogique de chaque sommet x visité par X via la condition z≤x H z ≤ n 1-δ (pour contrôler la variance de la trace) mais également maximiser celui du sommet x. Maximiser le temps local de x, c'est maximiser la fonction h n , son maximum étant atteint pour t = n b . Donc seuls les sommets x ∈ A 2 tels que Chen [Che22] a affiné le résultat (15) dans le cas de la marche lente : Soit N T

H x ≈ n b comptent pour la trace lourde, ce qui donne E[R (b) T n ] ≈ n 1-b k≤n κ-1+ε E[ |x|=k e -V (x) 1 {x∈A 2 ,Hx≈n b } ]. La condition H x ≈ n b a déjà coûté un facteur n b mais coûte également un facteur n b(κ-1) via l'espérance précédente : E[ |x|=k e -V (x) 1 {x∈A 2 ,Hx≈n b } ] ≈ 1/n b(κ-1) . On obtient finalement E[R (b) T n ] ≈ n 1-b × n κ-1=ε × n -b(κ-1) = n κ(1-b)+ε . X.
x le edge-temps local du sommet

x à l'instant T , c'est-à-dire N T x = T j=1 1 {X j-1 =x * ,X j =x} , σ 0 = 0 et pour tout n ∈ N * , σ n := inf{i > σ n-1 ; X i-1 = e * , X i = e}. On note R (b) σn le nombre de sommets x ∈ T tels que N σn x ≥ n b avec b ∈ (0, 1). Pour tout b ∈ (0, 1) il existe une constante Λ(b) > 0 explicite telle qu'en P * -probabilité R (b) σn n 1-b -→ n→∞ Λ(b)D ∞ .
Finalement, dans un article en préparation, X. Chen et L. de Raphélis prouvent, sous (D), la convergence en loi de (R (b) σn /n ξ b ) n∈N * à la fois sous la probabilité annealed et sous la probabilité quenched.

Clôturons cette section en présentant des résultats asymptotiques pour une trace généralisée dans le régime lent.

Traces sur potentiels hauts et généralisations

Les résultats présentés dans cette sous-section sont détaillés dans le chapitre I et sont tirés de l'article [START_REF] Andreoletti | Generalized range of slow random walks on trees[END_REF] écrit avec Pierre Andreoletti et dans lequel nous nous focalisons sur une trace généralisée pour la marche aléatoire X dans le régime lent (BC). Il s'agit d'une trace contrainte à la fois le long des trajectoires de la marche aléatoire X et le long de celles du potentiel branchant V . Une de nos principales motivations est de mieux comprendre les interactions entre X et son potentiel V . Nous commençons cette sous-section par un exemple important de contrainte sur V , celle des potentiels hauts puis nous détaillons une trace contrainte générale.

Nous avons vu précédemment (voir la sous-section (3.2)) que les sommets x contribuant significativement à la trace usuelle sont ceux dont le potentiel V (x) est plus grand que log n+log log n. Nous pouvons montrer de la même façon qu'ajouter la contrainte V (x) ≥ A log n avec A > 0 n'a pas d'impact majeur sur le comportement de la trace : si R n,K := x∈T 1 {Tx≤n} 1 {V (x)≥K} (avec K > 0) désigne le nombre de sommets visités par la marche X jusqu'à l'instant n et dont le potentiel est supérieur à K alors pour tout A > 0, il existe une constante C(A) > 0 telle qu'en

P * -probabilité log n n R n,A log n -→ n→∞ C(A). (16) 
La preuve de la convergence (16) est identique à celle de X. 

+ R n,(log n) α -log n (log n) α-1 -→ n→∞ -1. (17) Autrement dit, R n,(log n) α = ne -(1+o(1))(log n) α-1
, ce qui est naturellement plus petit que le n/ log n de la trace usuelle tout en prouvant que les sommets visités par la marche X dont le potentiel est capable d'atteindre de telles valeurs sont nombreux : en P * probabilité, log R n,(log n) α ∼ log R n . Cette différence dans la normalisation peut s'expliquer par le fait que (X j ) j≤n passe la majorité de son temps sur des sommets de génération de l'ordre de (log n) 2 . Or, les sommets dont le potentiel est supérieur à (log n) α avec α ∈ (1, 2) y sont très peu présents. Ces derniers sont nombreux dans les générations de l'ordre de (log n) α+1 , générations peu visitées par la marche (X j ) j≤n et d'autant plus difficiles à visiter que α est grand. Dans le même esprit, nous pouvons compter le nombre R ν n,K de sommets x ∈ T visités par la marche avant l'instant n satisfaisant V (x ν(|x|) ) ≥ K pour une certaine fonction ν : N → N croissante vérifiant ν(i) ≤ i. On rappelle que |x| correspond à la génération de x et que pour tout ℓ ≤ |x|, x ℓ désigne l'unique ancêtre de x à la génération ℓ. Prenons

ν(i) = ν β (i) = ⌊i/β⌋ avec β ≥ 1. Nous montrons ([AK21], Théorème 1.2), en P * -probabilité log + R ν β n,(log n) α -log n (log n) α-1 -→ n→∞ -1 -ρ (β -1) π 2 4 . (18) 
où ρ : t ∈ [0, ∞) → √ t -ρ(t) > 0 est croissante et ρ est une fonction continue telle que ρ(0) = 0 (voir (I.6) pour une expression de ρ(t) pour tout t > 0). Notons que R ν 1 n,K = R n,K et puisque ρ(0) = 0, (18) est bien vraie pour β = 1. Ce résultat implique donc que pour tout β ≥ 1, R

ν β n,(log n) α ≈ R n,(log n) α × e -ρ(π 2 (β-1)/4)(log n) α-1 .
Cette contrainte sur les trajectoires du potentiel V fait apparaître le terme du second ordre ρ(π 2 (β -1)/4) dans (18), terme qui était donc absent dans (17). Ce terme du second ordre est assez grand : lim t→0 ρ(t)/t = 3/4. Autrement dit, une faible translation le long de la ligne généalogique dans la condition de potentiel haut a un impact majeur sur la trace. D'une façon globale, nous nous intéressons aussi à des contraintes générales sur les trajectoires de V , considérons par exemple

R(n, A n ) := x∈T 1 {Tx≤n} 1 {(V (x 1 ),...,V (x))∈A |x| n } , (19) 
où

A n := {A k n ⊂ R k ; k ∈ N * } est une collection donnée d'ensembles.
Pour tout λ > 0 et t ∈ R, on définit la transformée de Laplace tronquée ψ λ (t, A n ) associée à la collection A n par :

ψ λ (t, A n ) := E x∈T e -(V (x)+t) 1 {x∈O λ , (V (x 1 )+t,...,V (x)+t)∈A |x| n } , (20) 
où nous rappelons que O λ = {x ∈ T; max e<z≤x H z ≤ λ}. Sous certaines hypothèses, nous sommes capables de donner le comportement asymptotique de R(n, A n ) : si h n := | log ψ n (0, A n )| est assez grand (au sens de (I.13)) alors ([AK21], Théorème 1.5) en P * -probabilité

log + R(n, A n ) -log n h n -→ n→∞ -1. (21) 
Autrement dit, R(n, A n ) ≈ ne -hn et le coût de la contrainte imposée aux trajectoires du potentiel V se retrouve dans le paramètre exponentiel e -hn . Notons enfin que la normalisation h n de la trace dépend très simplement de la contrainte A n .

Revenons brièvement sur les hypothèses permettant d'obtenir (21). Pour simplifier, on se place dans le cas où A k n s'écrit comme un produit :

A k n = A n,1 × • • • × A n,k où pour tout j ∈ {1, . . . , k}, A n,j ⊂ R et on suppose que A n,k ⊂ [3 log n, ∞) (il s'agit d'une hypothèse raisonnable d'après (16)).
Pour prouver (21), nous faisons quatre hypothèses. Les deux dernières, (A3) et (A4), sont très techniques et nous n'en parlerons pas ici. La première hypothèse, (A1), est une borne inférieure sur ψ n (0, A n ) : pour tout ε > 0 et n assez grand

ψ n (0, A n ) ≥ 1 n ε .
L'idée derrière (A1) est la suivante : nous nous appuyons sur le fait que E[R n (A n )] ≈ nψ n (0, A n ) pour demander que la condition sur les trajectoires de V ne soit pas trop difficile à satisfaire pour la marche X, dans le sens suivant :

lim inf n→∞ log E[R n (A n )/n]/ log n > 0.
Passons maintenant à l'hypothèse (A2). Définissons

A ℓ+• n := {A ℓ+k n ⊂ R ℓ+k ; k ∈ N * } la collection A n décalée d'un entier ℓ ≤ (log n) 3 (
on rappelle que les plus grandes générations atteintes par (X j ) j≤n sont de l'ordre de (log n) 3 , voir (2)), soit z ∈ T dans la génération ℓ et enfin posons λ n := ne -5hn (on rappelle que

h n = | log ψ n (0, A n )|). L'hypothèse (A2) est une borne supérieure pour ψ λn (V (z), A ℓ+• n ) : pour tout ε ∈ (0, 1), δ, B > 0, pour n ∈ N * assez grand, tout ℓ ≤ (log n) 3 , et tout sommet |z| = ℓ tel V (z) ≥ -B, H z ≤ n et pour tout j ∈ {1, . . . , ℓ}, V (z j ) ∈ A n,j ψ λn (V (z), A ℓ+• n ) ≤ e -δV (z) ψ n (0, A n ) 1-ε .
Autrement dit, la contrainte A n doit être suffisamment souple pour accepter à la fois une translation du potentiel mais également une translation de génération. En effet, par définition, la contrainte A n,i agit sur le potentiel V (x i ) de l'ancêtre x i de x dans la génération i ∈ {1, . . . , |x|}.

On veut donc qu'un décalage de génération ℓ ≤ (log n) 3 ait un impact raisonnable sur la trace.

Pour prouver (21), nous montrons que R(n, A n ) se concentre autour de sa moyenne annealed 

E[R(n, A n )]. C'
∈ N * , A n,k ⊂ [3 log n, ∞). Autrement dit, R(T n , A n , λ n ) compte des sommets x ∈ T vérifiant V (x) ≥ 3 log n.
[R(T 1 , A n , λ n )].
Ce sacrifice s'avère avoir un coût raisonnable, c'est-àdire le facteur e -εhn pour ε ∈ (0, 1). Notons que grâce à la condition V (x) = V (x) nous avons

H x = e<z≤x e V (z)-V (x) ≤ |x| d'où E[R T 1 (A n , O λn )] ≥ E[ x∈T e -V (x) /|x|1 {(V (x 1 ),...,V (x))∈A |x| n ,V (x)=V (x),x∈O λn } ],
et l'hypothèse (A3) (dont nous n'avons pas parlé) permet d'obtenir que l'espérance ci-dessus est de l'ordre de ψ n (0, A n ). Finalement, le passage à R(n, A n ) est rendu possible grâce au biais vers e * (voir (3)).

Bien entendu, les quatre hypothèses (A1), (A2), (A3) et (A4) sont satisfaites par nos deux exemples précédents (et par d'autres exemples détaillés dans [START_REF] Andreoletti | Generalized range of slow random walks on trees[END_REF]). Le résultat principal (Théorème 1.5), plus général que (19), concerne des traces mélangeant contraintes sur les trajectoires de la marche X et contraintes sur celles du potentiel branchant V , c'est-à-dire de la forme

R n (g n , f n ) = x∈T g n (L n x )f n,|x| (V (x 1 ), . . . , V (x)). (22) 
L'étude de ces traces généralisées nous permet entre autres de mieux comprendre les interactions entre la marche aléatoire X son potentiel branchant V dans le régime lent, interactions que nous avons évoquées dans la sous-section 2.3.

Il est légitime de se demander s'il est possible d'obtenir une convergence presque sûre plutôt qu'en probabilité pour la trace généralisée définie dans (22) voir même gagner en précision en s'affranchissant du logarithme (voir (21) et le Théorème 1.5). Ces questions pourront faire partie d'un futur projet de recherche.

Nous consacrons la dernière section de cette introduction à l'étude de la généalogie de sommets tirés uniformément dans l'arbre R n = {X 0 , . . . , X n } lorsque la marche aléatoire X est diffusive (voir (2.2)).

Généalogie de la marche aléatoire diffusive

Les résultats présentés dans cette partie sont détaillés dans le chapitre II et sont tirés de l'article [START_REF] Kagan | Coalescence in small generations for the diffusive randomly biased walk on Galton-Watson tree[END_REF].

Soit T un arbre aléatoire, T un nombre entier strictement positif et notons Z T le nombre de sommets dans la générations ℓ n de l'arbre T. Soit k ≥ 2 un entier. Sachant l'événement {Z T ≥ k}, tirons k sommets distincts X

(1) T , . . . , X (k) T uniformément et sans remise dans la générations T . A quoi ressemble l'arbre généalogique de ces k sommets ? Cette question, posée pour la première fois par W. Bühler [START_REF] Bühler | Generations and degree of relationship in supercritical markov branching processes[END_REF] a reçu beaucoup d'attention et continue d'en recevoir aujourd'hui. Dans cette section, nous y répondons dans un premier temps lorsque que T est un arbre de Galton-Watson en nous appuyant sur une littérature riche. Nous focalisons ensuite notre attention sur le cas T = {X 0 , . . . , X n } lorsque la marche aléatoire X est diffusive.

Généalogie des arbres de Galton-Watson

Soit T un arbre de Galton-Watson (voir la sous-section (1.2) pour une définition). Le cas k = 2 est très bien documenté. Lorsque que T est sur-critique (la moyenne de la loi de reproduction est strictement plus grande que 1), il est montré par K.B. Athreya [START_REF] Athreya | Coalescence in the recent past in rapidly growing populations[END_REF] que les sommets X

(1) T et X

(2) T tirés dans la générations T partagent un ancêtre commun pour la dernière fois dans l'une des premières générations de l'arbre : si

M T := |X (1) T ∧ X (2)
T | désigne la génération du plus récent ancêtre commun de X

(1) T et X

(2) T alors (M T ) converge en loi vers une variable aléatoire réelle positive et explicite. Lorsque que T est critique (la moyenne de la loi de reproduction est égale à 1), la littérature est plus riche. Il est montré respectivement par A. M. Zubkov [START_REF] Zubkov | Limiting distributions of the distance to the closest common ancestor[END_REF], R. Durrett [START_REF] Durrett | The genealogy of critical branching processes[END_REF] 

et K.B. Athreya [Ath12a] que X (1) T et X (2) T
partagent un ancêtre commun pour la dernière fois dans une générations proche de T : (M T /T ) converge en loi vers une variable aléatoire explicite à valeurs dans [0, 1]. Mentionnons enfin le cas sous-critique (la moyenne de la loi de reproduction est strictement inférieure à 1), ce dernier étant assez proche du cas critique. En effet, d'après K.B. Athreya [START_REF] Athreya | Coalescence in critical and subcritical Galton-Watson branching processes[END_REF], (T -M T ) converge en loi vers une variable aléatoire réelle positive et explicite. Lorsque k ≥ 2, S. Harris, S. Johnston et M. Roberts [START_REF] Harris | The coalescent structure of continuous-time Galton-Watson trees[END_REF] puis S. Johnston [START_REF] Johnston | The genealogy of Galton-Watson trees[END_REF] ont décrit de façon exhaustive la généalogie des sommets X

(1) T , . . . , X (k) T quand T est un arbre de Galton-Watson en temps continu, à T fixé et quand T tend vers l'infini dans les régimes sur-critique, critique et sous-critique.

INTRODUCTION

Intéressons nous maintenant au cas de la marche aléatoire en milieu aléatoire diffusive X, c'est-à-dire au cas T = R n , où nous rappelons que R T = {x ∈ T; L T

x ≥ 1} désigne le sous-arbre de T des sommets visités par la marche aléatoire X jusqu'à l'instant T . Soit k ∈ N * . Pour tout ensemble non vide D, on note

D ×k le k-produit cartésien D × • • • × D.
Pour tout k ≥ 2, ∆ k := {x = (x (1) , . . . , x (k) ) ∈ T ×k ; ∀i ̸ = j, x (i) ̸ = x (j) } est l'ensemble des k-uplets de sommets distincts de T. Soit D un sous-ensemble de T de cardinal |D| supérieur ou égal à k. Posons ∆ k (D) := ∆ k ∩ D ×k l'ensemble, supposé non vide, des k-uplets de sommets distincts de

D. Lorsque |D| < ∞, le cardinal |∆ k (D)| de l'ensemble ∆ k (D) est égale à |D|(|D| - 1) × • • • × (|D| -k + 1).
Soit D n un sous-ensemble de R n de cardinal D n supérieur ou égale à k. On se donne une variable aléatoire X (n) = (X (1,n) , . . . , X (k,n) ) à valeurs dans l'ensemble ∆ k dont la loi est donnée par : pour tout x = (x (1) , . . . , x (k) ) ∈ ∆ k , si P * (D n ≥ k) > 0 alors 

P * X (n) = x = 1 P * (D n ≥ k) E * 1 {x∈∆ k (Dn)} |∆ k (D n )| 1 {Dn≥k} . (23) Sinon, P * (X (n) = x) = 0. Autrement dit, les sommets X (1,n) , . . . , X (k,n) de l'arbre

Généalogie de la marche diffusive : les petites générations

Commençons par le cas L n = o(n 1/2 ), c'est-à-dire le cas des petites générations. Ce dernier se sépare en deux sous-cas : celui des toutes petites générations, c'est-à-dire telles que L n ≤ (2γ) -1 log n (on rappelle que γ dépend de la log-transformée de Laplace (1) et est défini dans la section 2) et celui des petites générations modérées, c'est-à-dire telles que L n > (2γ) -1 log n.

Les toutes petites générations

Nous évoquions dans la section consacrée à la marche (sous-)diffusive 2.2 le résultat de P. Andreoletti et P. Debs [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] affirmant qu'avec grande probabilité, pour tout G ∈ (0, (2γ) -1 ), {x ∈ T; |x| ≤ G log n} = {x ∈ R n ; |x| ≤ G log n}. De plus, la valeur (2γ) -1 est optimale. On en déduit que pour tout G ∈ (0, (2γ 

) -1 ) et ℓ ≤ G log n, R n (ℓ) = |x|=ℓ 1 {L n x ≥1} = |x|=ℓ 1.
→ ∞ et l n ≤ G log n, en P * -probabilité R n (l n ) e lnψ(0) -→ n→∞ M ∞ ,
où M ∞ ∈ (0, ∞) P * -presque sûrement dès que E[M ∞ ] = 1 comme évoqué dans la section 1.2.

Lorsque k = 2, comme l'avons vu dans la sous-section 4.1, K.B. Athreya ([Ath12b], Théorème 2) montre que les sommets X (1,n) et X (2,n) partagent un ancêtre commun pour la dernière fois dans l'une des premières générations de l'arbre T. Plus généralement, il est possible, en adaptant la démarche de S. Johnston ([Joh19], Théorème 3.5) au cas discret, de décrire la généalogie des sommets X (1,n) , . . . , X (k,n) pour k ≥ 2.

Plaçons nous maintenant dans le cas des petites générations modérées. Il existe un nombre réel 0 < δ 0 < 2γ (δ 0 est défini explicitement dans le Chapitre II et dépend uniquement de la log-transformée de Laplace ψ définie en (1)) tel que pour tout G ∈ ((2γ) -1 , δ -1 0 ), si l n = G log n, alors il nous est impossible de donner avec précision le comportement asymptotique de R n (l n ) notamment à cause de la forte dépendance le long des trajectoires de la marche aléatoires X dans ce type de petites générations. L'étude de la trace dans ces générations pourra faire partie d'un futur projet de recherche.

Les petites générations modérées

Supposons à présent que L n ≥ δ -1 0 log n et L n = o(n 1/2 ). En réalité, nous supposons que la suite (n -1/2 Λ(L n )) n∈N * tend vers 0 quand n tend vers l'infini où pour tout t > 0, Λ(t) = tΛ l 0 (t) et Λ l 0 est une fonction qui croît très lentement (voir l'hypothèse de petites générations 2). Soit k ≥ 2 un entier. Pour tout k-uplet x = (x (1) , . . . , x (k) ) ∈ ∆ k , nous définissons la plus petite génération S k (x) dans laquelle aucun sommet de x ne partage d'ancêtre commun :

S k (x) := min {m ∈ N * ; ∀i ̸ = j : |x (i) ∧ x (j) | < m},
où on rappelle que x ∧ y est le plus récent ancêtre commun de x et y.

Posons C k m := {x ∈ ∆ k ; S (x) ≤ m} avec m ∈ N * . Considérons la trace tronquée suivante : si D n ≥ k A k (D n , 1 C k m ) := x∈∆ k (Dn) 1 C k m (x), sinon A k (D n , 1 C k m ) = 0.
Cette trace n'est rien d'autre que le nombre de k-uplets de sommets de l'ensemble D n ne partageant aucun ancêtre commun à la génération m. Nous montrons dans un premier temps que ces sommets sont très nombreux : pour tout entier k ≥ 2, si κ > 4k et sous quelques hypothèses d'intégrabilité que nous n'évoquerons pas ici, en P * -probabilité

A k (D n , 1 C k m ) |∆ k (D n )| 1 {Dn≥k} -→ n→∞ A k ∞ (1 C k m ) (W ∞ ) k , ( 24 
) INTRODUCTION où A k ∞ (1 C k m ) := lim l→∞ x∈∆ k l 1 {S k (x)≤m} k i=1 e -V (x (i)
) et W ∞ est la limite de la martingale additive W l = |x|=l e -V (x) . Contrairement au cas frontière (BC), P * (W ∞ > 0) = 1 ici. Il est de plus montré par Q. Liu [START_REF] Liu | On generalized multiplicative cascades[END_REF] que lim t→∞ t

κ P(W ∞ > t) existe. Notons que lim m→∞ A k ∞ (1 C k m ) = (W ∞ ) k et ainsi, la suite (S k (X (n)
)) converge en loi sous P * :

P * (S k (X (n) ) ≤ m) = E * A k (D n , 1 C k m ) |∆ k (D n )| 1 {Dn≥k} -→ n→∞ E * A k ∞ (1 C k m ) (W ∞ ) k . ( 25 
)
On déduit de ce résultat que deux sommets ou plus parmi X (1,n) , . . . , X (k,n) ne peuvent partager un ancêtre commun que dans l'une des premières générations de l'arbre et on obtient ainsi un résultat analogue à celui évoqué dans la sous-section 4.1 lorsque T est un arbre de Galton-Watson sur-critique.

Nous étendons ensuite le résultat (24) à d'autres fonctions en considérant la trace généralisée suivante : 

pour tout n ∈ N * A k (D n , f ) := x∈∆ k (Dn) f (x), (26) 
où f : x ∈ ∆ k -→ R + est
A k (D n , f ) (n 1/2 L n ) k -→ n→∞ A k ∞ (f ) c ∞ c 1/2 0 p E (e, e * )W ∞ k |N | k , ( 28 
) où c ∞ := lim l→∞ E[( l i=1 e -S j ) -1 ], c 0 := E[ x̸ =y;|x|=|y|=1 e -V (x)-V (y) ]/(1 -e ψ(2)
), et N suit, sous P E , une loi normale centrée réduite. De plus,

A k ∞ (f ) := lim l→∞ x∈∆ k l f (x) k i=1 e -V (x (i) ) . ( 29 
)
La convergence dans (29) a lieu P * -presque sûrement et dans L 2 (P * ). Nous nous apercevons également que la contrainte n'a pas d'influence sur la normalisation de la trace : si g ̸ ≡ 0 et satisfait (27) alors en P * -probabilité

A k (D n , f ) A k (D n , g) 1 {Dn≥k} -→ n→∞ A k ∞ (f ) A k ∞ (g)
.

Autrement dit, quelque soit la contrainte f imposée au sommet de D n , la trace A k (D n , f ) se comporte comme (L n max x∈Rn |x|) k et c'est la valeur limite A k ∞ (f ) qui contient toute l'information sur les interactions entre les sommets de l'arbre. L'hypothèse d'hérédité (27) sur la fonction f est en réalité assez souple et permet d'étudier le comportement asymptotique d'un vaste nombre de traces différentes. On caractérise l'arbre généalogique des X (1,n) , . . . , X (k,n) de la façon suivante : pour tout m ≤ L n et tout i 1 , i 2 ∈ {1, . . . , k}, i 1 ∼ m i 2 si et seulement si X (i 1 ,n) et X (i 2 ,n) partagent un ancêtre commun dans la génération m. ∼ m est une relation d'équivalence sur {1, . . . , k} et on définit ainsi le processus π k,n = (π k,n m ) m≤Ln à valeurs dans l'ensemble des partitions de {1, . . . , k} tel que les blocs de π k,n m sont les classes d'équivalence de ∼ m . π k,n est appelé arbre généalogique de

X (1,n) , . . . , X (k,n) . Soit G (i,n) = |X (i,n) | la génération du sommet X (i,n) . Par définition, π k,n 0 = {{1, . . . , k}} and π k,n m = {{1}, . . . , {k}} pour tout m ∈ { max 1≤i≤k G (i,n) , . . . , L n }.
En choisissant convenablement notre fonction f , nous sommes en mesure de donner, sous la probabilité annealed P * , la loi asymptotique de l'arbre généalogique des sommets X (n,1) , . . . , X (n,k) . En particulier, on observe la présence d'un caractère héréditaire dans cet arbre généalogique dû à l'environnement aléatoire, caractère absent dans le cas des toutes petites générations. Nous développons cette idée dans le chapitre II.

Nous donnons maintenant quelques idées de preuve permettant d'aboutir à (28). Commençons par le découpage suivant :

A k (D n , f ) = x∈∆ k (Dn) f (x)1 {S k (x)>an} + x∈∆ k (Dn) f (x)1 {S k (x)≤an} ,
avec a n := (2δ 0 ) -1 log n. On s'aperçoit que les k-uplets de D n dont au moins deux sommets partagent un ancêtre commun dans une génération supérieure à a n ne contribuent par à la trace :

E * x∈∆ k (Dn) 1 {S k (x)>an} = o((n 1/2 L n ) k ). Nous étudions ensuite A k (D n , f 1 C k an ) = x∈∆ k (Dn) f (x)1 {S k (x)≤an} .
Pour cela, nous considérons en premier lieu cette trace sur l'arbre R T s pour tout entier

ε 1 n 1/2 ≤ s ≤ n 1/2 /ε 1 , avec INTRODUCTION ε 1 ∈ (0, 1) : A k n (R T s , f 1 C k an ) := Ln m 1 ,...,m k =ℓn x∈∆ k (R T s ) f (x)1 {S k (x)≤an, |x (1) |=m 1 ,...,|x (k) |=m k } ,
Nous prouvons qu'en P * -probabilité

1 s k x∈∆ k (R T s ) f (x)1 {S k (x)≤an, |x (1) |=m 1 ,...,|x (k) |=m k } -→ n→∞ (c ∞ ) k A k ∞ (f ), ( 30 
) uniformément en ε 1 n 1/2 ≤ s ≤ n 1/2 /ε 1 et en m 1 , . . . , m k ∈ {ℓ n , . . . , L n }.
Il s'agit de montrer que la somme ci-dessus se concentre autour de sa moyenne quenched. Notons que pour tout sommet x ∈ T tel que |x| ≥ δ -1 0 log n, on a V (x) ≥ 3 log n avec grande probabilité. De ce fait, on déduit que tous les sommets du k-uplet x = (x (1) , . . . , x (k) ) ∈ (R T s ) ×k sont en réalité visités durant une unique excursion au dessus de la racine et que seuls les k-uplets dont les sommets sont visités durant des excursions distinctes contribuent à la trace. On obtient ainsi l'indépendance le long des trajectoires de la marche aléatoire X indispensable à la convergence de la trace vers sa moyenne quenched. Quant à la convergence de

E E [ 1 s k x∈∆ k (R T s ) f (x)1 {S k (x)≤an, |x (1) |=m 1 ,...,|x (k) |=m k } ] vers (c ∞ ) k A k ∞ (f )
, elle est assurée par l'événement {S k (x) ≤ a n }, qui ne fait rien d'autre que d'empêcher les lignes généalogiques des sommets x (1) , . . . , x (k) de se croiser entre les générations min 1≤i≤k m i et max 1≤i≤k m i , inhibition qui est transmise de génération en génération à travers f grâce à l'hypothèse d'hérédité (27). Pour faire le lien avec la trace sur R n , il suffit d'appliquer (30) avec s = L n e puis nous concluons en utilisant un résultat de Y. Hu ([Hu17], Corollaire 1.2) et le fait que

A k (D n , f 1 C k an ) et A k n (R T L n e , f 1 C k an
) sont en réalité très proches dans le sens suivent : en P * -probabilité

1 (L n e L n ) k A k (D n , f 1 C k an ) -A k n (R T L n e , f 1 C k an ) -→ n→∞ 0.
Nous achevons cette section en évoquant brièvement le cas des générations critiques.

Généalogie de la marche diffusive : les générations critiques

Supposons sans perte de généralité que 

ℓ n = L n = n 1/2 et k = 2. La généalogie des sommets X (1,n) et X (2,
(σ 2 n) 1/2 R n -→ n→∞ T |B| , (31) 5. 
(n) = ( X (1,n) , X (2,n) ) que lim ε→0 lim inf n→∞ P * (εℓ n < S k ( X (n) ) ≤ ℓ n ) > 0, mais aussi lim ε→0 lim inf n→∞ P * (S k ( X (n) ) ≤ 1/ε) > 0.
De plus, on observe que ces deux scénarios sont les seuls possibles :

lim ε→0 lim sup n→∞ P * (1/ε < S k ( X (n) ) ≤ εℓ n ) = 0.
En revanche, les techniques classiques notamment utilisées dans le cas des petites générations ne permettent ni de calculer INTRODUCTION max 1≤j≤n V (X j ) et V (X n ) se comportent comme les générations typiques de la marche X, c'està-dire en n 1-1 κ∧2 . Le deuxième résultat, qui concerne cette fois la marche lente, implique que V (X n ) est log n fois plus petit que les générations typiques de la marche X, c'est-à-dire de l'ordre de log n.

lim n→∞ P * (aℓ n ≤ S k ( X (n) ) ≤ bℓ n ) avec 0 < a < b ≤ 1 ni lim n→∞ P * (S k ( X (n) ) ≤ m) pour m ∈ N * .

Preuve de (9)

Commençons par la borne inférieure de

V (X n ). Pour tout t > 0 et ε ∈ (0, 1 -(κ ∧ 2) -1 ) P E (V (X n ) < tn 1-1 κ∧2 -ε ) ≤P E (V (X n ) < tn 1-1 κ∧2 -ε , n 1-1 κ∧2 -ε ≤ |X n | ≤ n 1-1 κ∧2 +ε ) + P E (|X n | < n 1-1 κ∧2 -ε ) + P E (|X n | > n 1-1 κ∧2 +ε ).
De ([AdR17], Théorème 6.1) et ([dR22], Théorème 1), on déduit que la somme de probabilités

P * (|X n | < n 1-1 κ∧2 -ε ) + P * (|X n | > n 1-1 κ∧2 +ε ) → 0 quand n → ∞. Par ailleurs P E (V (X n ) < tn 1-1 κ∧2 -ε , n 1-1 κ∧2 -ε ≤ |X n | ≤ n 1-1 κ∧2 +ε ) ≤ n 1-1 κ∧2 +ε |x|=n 1-1 κ∧2 -ε E E [L n x ]1 {V (x)<tn 1-1 κ∧2 -ε }
, où nous avons utilisé le fait que y) . Nous rappelons que T n est le n-ème instant de passage en e * . On en déduit que la probabilité ci-dessus est plus petite que

1 {Xn=x} ≤ n j=1 1 {X j =x} = L n x et puisque n ≤ T n , E E [L n x ] ≤ E E [L T n x ] = ne -V (x) + n y * ;y=x e -V (
2E * n 1-1 κ∧2 -ε |x|=n 1-1 κ∧2 +ε e -V (x) 1 {V (x)<tn 1-1 κ∧2 -ε } ≤ 2E * n 1-1 κ∧2 +ε |x|=n 1-1 κ∧2 -ε e -(1+r 0 )V (x)+r 0 tn 1-1 κ∧2 -ε ≤ 2n 1-1 κ∧2 +ε e -n 1-1 κ∧2 -ε (|ψ(1+r 0 )|-tr 0 ) ,
où on a choisi r 0 > 0 tel que ψ(1 + r 0 ) ∈ (-∞, 0), ce qui est possible car ψ est bien définie dans un voisinage de 1 et ψ ′ (1) < 0. On voit donc que pour tout t < |ψ(1

+ r 0 )|/r 0 , P * (V (X n ) < tn 1-1 κ∧2 -ε ) → 0 quand n → ∞ donnant ainsi la borne inférieure pour V (X n ) et max 1≤i≤n V (X j ).
Pour la borne supérieure, on procède de la même façon : pour tout ε, s > 0, la probabilité

P E (max 1≤i≤n V (X j ) > sn 1-1 κ∧2 +ε ) est plus petite que |x|≤n 1-1 κ∧2 +ε E E L n x 1 {n≤T n 1 κ∧2 +ε ′ } 1 {V (x)>sn 1-1 κ∧2 +ε } + P E max j≤T n 1 κ∧2 +ε |X j | > n 1-1 κ∧2 +ε + P E n > T n 1 κ∧2 +ε ′ , avec ε ′ = ε 2κ et ε = ε 2(κ∧2) et d'après ([AD20], Lemme 3.2), [AdR17], [ dR22 
], la somme de probabilités P * (max

j≤T n 1 κ∧2 +ε |X j | > n 1-1 κ∧2 +ε ) + P * (n > T n 1 κ∧2 +ε ′
) tend vers 0 quand n → ∞.
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Enfin, l'espérance annealed de la somme ci-dessus est inférieure à 2n

1 κ∧2 +ε ′ E |x|≤n 1-1 κ∧2 +ε e -V (x) 1 {V (x)>sn 1-1 κ∧2 +ε } ≤ 2n 1 κ∧2 +ε ′ E |x|≤n 1-1 κ∧2 +ε e -r 1 V (x)-s(1-r 1 )n 1-1 κ∧2 +ε ≤ 2n n+ε+ε ′ e n 1-1 κ∧2 +ε ψ(r 1 )-s(1-r 1 )n 1-1 κ∧2 +ε
, où on a choisi r 1 ∈ (0, 1) tel que ψ(r 1 ) ∈ [0, ∞), ce qui est possible car ψ est bien définie dans un voisinage de [0, 1]. On voit donc que pour tout s > ψ(r 1 )/(1 -r 1 ),

P * (max 1≤j≤n V (X j ) > sn 1-1 κ∧2 +ε ) → 0 quand n → ∞ donnant ainsi la borne supérieure pour max 1≤i≤n V (X j ) et V (X n ).

Preuve de (10)

Nous faisons l'hypothèse raisonnable suivante : pour tout A, d > 0, [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF], Théorème 2.1), en P * -probabilité

P * min |z|≤A(log n) 3 (V (z) - V (z * )) > -d(log n) → 1 quand n → ∞. Soit a, A > 0 deux réels. Regardons d'abord la probabilité P E (V (X n ) > a log n, X n ∈ O n , |X n | ≤ A(log n) 3 ) où nous rappelons que x ∈ O λ si et seulement si H z = e<w≤z e V (w)-V (z) ≤ λ pour tout e < z ≤ x. Nous avons P E (V (X n ) > a log n, X n ∈ O n , |X n | ≤ A(log n) 3 ) = |x|≤A(log n) 3 P E (X n = x)1 {V (x)>a log n,x∈On} , et d'après ([
x∈On P E (X n = x) - 2 Z n e -V (x) + y;y * =x e -V (y) -→ n→∞ 0
où Z n := Wn + 2 k≥1 W k avec Wn → 1 en P * -probabilité (voir [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF], Lemme 3.4). Soit B > 0 un réel. On déduit de la convergence vers 0 ci-dessus et de l'égalité précédente qu'en P * -probabilité

1 Da,n P E (V (X n ) > a log n, X n ∈ O n , |X n | ≤ A(log n) 3 ) - 2 Z n k≤A(log n) 3 (M n k,a + M n k,a ) -→ n→∞ 0 où D a,n := inf z∈T V (z) ≥ -B, min |z|≤A(log n) 3 (V (z) -V (z * )) > -(a/2)(log n) , M n k,a := |u|=k e -V (x) 1 {V (u)>a log n, x∈On, V (u)≥-B} , et M n k,a := |u|=k 1 {V (u)>a log n, x∈On, V (u)≥-B} x;x * =u e -V (x) 1 {Vu(x)≥-(a/2) log n} .

INTRODUCTION

L'étape suivantes est de montrer que ces deux variables aléatoires sont très proches lorsque n → ∞ : il existe γ a > 0 tel que pour tout ε > 0 et n assez grand

P k≤A(log n) 3 M n k,a - k≤A(log n) 3 M n k,a > ε ≤ n -γa .
En effet, d'après l'inégalité de Markov et en remarquant que

c a,n M n k,a = E[ M n k,a |F k ] avec c a,n := E[ |x|=1 e -V (x) 1 {V (x)≥-(a/2) log n} ] ∈ (0, 1] où nous rappelons que F k = σ((T, V (x); |x| ≤ k)), la probabilité ci-dessus est inférieure à 1 ε k≤A(log n) 3 E M n k,a -M n k,a 2 1/2 = 1 ε k≤A(log n) 3 E[( M n k,a ) 2 ] -(2c a,n -1)E[(M n k,a ) 2 ] 1/2 .
De plus, ( M n k,a ) 2 est inférieur à

u̸ =v |u|=|v|=k 1 {V (u)∧V (v)>a log n, u,v∈On, V (u)∧V (v)≥-B} x;x * =u e -V (x) 1 {Vu(x)≥-(a/2) log n} × y;y * =v e -V (v) 1 {Vv(y)≥-(a/2) log n} + |u|=k 1 {V (u)>a log n, u∈On V (u)≥-B} x̸ =y x * =y * =u e -V (x)-V (y) + x;x * =u e -2V (x) 1 {Vu(x)≥-(a/2) log n} , d'où E[( M n k,a ) 2 ] ≤ E[(c a,n M n k,a ) 2 ] + (c ′ 0 + n a/2 )E |u|=k e -2V (u) 1 {V (u)>a log n} ≤ E[(c a,n M n k,a ) 2 ] + n -a (c ′ 0 + n a/2 ), où c ′ 0 := E[ x̸ =y;|x|=|y|=1 e -V (x)-V (y) ] et donc pour n assez grand k≤A(log n) 3 E M n k,a -M n k,a 2 1/2 ≤ A(log n) 3 (1 -c a,n ) 2 sup k≤A(log n) 3 E[(M n k,a ) 2 ] + 2n -a/2 1/2 . Notons d'une part que sup k≤A(log n) 3 E[(M n k,a ) 2 ]/(log n) 3 < ∞ et d'autre part 1 -c a,n = E[ |x|=1 e -V (x) 1 {V (x)<-(a/2) log n} ] ≤ n -a(1-r 1 )
/2 e ψ(r 1 ) ,
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où r 1 ∈ (0, 1) est choisi tel que ψ(r 1 ) ∈ [0, ∞) ce qui prouve l'existence de γ a . Ainsi en P *probabilité

1 Da,n P E (V (X n ) > a log n, X n ∈ O n , |X n | ≤ A(log n) 3 ) - 4 Z n k≤A(log n) 3 M n k,a -→ n→∞ 0.
La suite de la preuve reprend le raisonnement de Y. Hu et Z. Shi ([HS16b], Corollaire 2.3) et un théorème de convergence fonctionnelle dû à T. Madaule ([Mad12], Théorème 1.2) : en

P * - probabilité, 4 k≥1 M n k,a /Z n → 1 -(2/π) 1/2 E[min(s -1 , am -1 1 )] où (m t ) t∈[0,1] est un méandre brownien et s := sup t∈[0,1] (sup s∈[0,t] m s -m t ). Notons que 2 π 1/2 E[min(s -1 , am -1 1 )] = ∞ 0 du (2πu) 1/2 P s < u -1/2 , u 1/2 m 1 ≤ a = µ V ((0, a]).
On conclut en utilisant le fait (voir (2) et (8)) que pour tout ε > 0, pour n assez grand, 

P * (X n ̸ ∈ O n ) + P * (|X n | > A ε (log n) 3 ) ≤ ε/2. De plus, nous savons que P * -presque sûrement, inf |z|=n V (z) → +∞ quand n → ∞ d'où l'existence d'un réel B ε > 0 tel que P * (inf z∈T V (x) < -B ε ) ≤ ε/4 et donc

Introduction

The construction of the process we are interested in starts with a supercritical Galton-Watson tree T with offspring distributed as a random variable ν such that E [ ν ] > 1. We adopt the following usual notations for tree-related quantities : the root of T is denoted by e, for any x ∈ T, ν x denotes the number of descendants of x, the parent of a vertex x is denoted by x * and its children by x i , 1 ≤ i ≤ ν x . For technical reasons, we add to the root e, a parent e * which is not considered as a vertex of the tree. We denote by |x| the generation of x, that is the length of the path from e to x and we write x < y when y is a descendant of x, also x ≤ y signifying that x can also be equal to y. Finally, we write T n for the tree truncated at generation n. We then introduce a real-valued branching random walk indexed by T : ( V (x), x ∈ T ). We suppose that V (e) = 0 and for any generation n, conditionally to E n = { T n , (V (x), x ∈ T n ) }, the vectors of increments ((V (x i ) -V (x), i ≤ ν x ), |x| = n) are assumed to be i.i.d. Finally, we denote by P the distribution of E = { T, ( V (x), x ∈ T ) } and P * , the probability conditioned on the survival set of the tree T.

We can now introduce the main process of this work which is a random walk (X n ) n∈N on T∪{ e * } : for a given realization of the environment E , (X n ) n∈N is a Markov chain with transition probabilities given by

P E ( X n+1 = e|X n = e * ) = 1 , ∀x ∈ T ∖ { e * } , P E ( X n+1 = x * |X n = x ) = e -V (x) e -V (x) + νx i=1 e -V (x i ) , ∀j ≤ ν x , P E X n+1 = x j |X n = x = e -V (x j ) e -V (x) + νx i=1 e -V (x i ) .
The measure P E is usually referred to as the quenched distribution of the walk (X n ) n∈N in contrast to the annealed distribution P which is the measure P E integrated with respect to the law of E :

P( • ) = P E ( • ) P( dE ) .
Similarly, P * is the annealed probability conditioned on the survival set of the tree T (defined by replacing P by P * in the above probability). For x ∈ T ∪ { e * }, we use the notation P E x for the conditional probability P E (•|X 0 = x) ; when there is no subscript, the walk is supposed to start at the root e. Recurrent criteria for these walks is determined from the fluctuations of log-Laplace transform ψ(s) := log E |z|=1 e -sV (z) , s > 0.

(I.1)

If inf 0≤s≤1 ψ(s) > 0 then (X n , n) is P almost surely transient and recurrent otherwise. It turns out that recurrent cases can be themselves classified, this can be found in the works of G. Faraud [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked Galton-Watson trees[END_REF] and equivalently for transient cases in E. Aidekon [START_REF] Aïdékon | Transient random walks in random environment on a Galton-Watson tree[END_REF].

Here we consider recurrent cases and more particularly the regime where the random walk is particularly slow (see [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF]), that is to say we put ourselves in the boundary case for which

ψ(1) = ψ ′ (1) = 0. (I.2)
In this paper, we are interested in the trace of X which is the set of vertices visited by this random walk until a given instant. The literature on the subject initially started with the study of the range, that is to say the volume of the trace of the simple random walk on Z d , where d ≥ 2 is the dimension. In particular P. Erdös and S. Taylor [START_REF] Erdös | Some problems concerning the structure of random walk paths[END_REF] prove that the asymptotic in time of the trace depends on the dimension d. If we put ourselves in the present context of random walk in random environment on trees then the trace naturally depends on the hypothesis on the environment E , see for example [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF], [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] and [dR16]. A first step in the extension of the notion of the range is to count, for example, the number of vertices visited a large number of time (instead of at least one time). This aspect has been studied for the simple random walk in [? ] and in our context by [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF] and [START_REF] Chen | Heavy range of the randomly biased walk on galton-watson trees in the slow movement regime[END_REF], about which we will give some details later in the paper. A second step in the study of the trace, especially in the case of random walk in random environment, is to select certain vertices not only with criteria on the trajectory of the walk but also on the underlying potential V . With this in mind we introduce a generalization of the range : for any n, let f n = {f n,k : R k → R + ; k ∈ N * } be a collection of bounded functions. Also, let g n : R + → R be a positive function. Then, the generalized range R n (g n , f n ) is given by

R n (g n , f n ) := x∈T g n (L n x )f n,|x| (V (x 1 ), V (x 2 ), • • • , V (x)), with (I.3) L n x := n k=1 1 {X k =x} , (x i , i ≤ |x|)
being the sequence of vertices of the unique path from the root (excluded) to vertex x and L n x is the usual local time of the walk at x before the instant n. As we may see, R n (g n , f n ) is quite general and can not be treated in this form, at once for every of these functions g n and f n , so additional assumptions (involving f n , g n and distribution P) will be introduced in Section 1.3. The aim of studying this extended range is twofold, first it allows to understand the interactions between the trajectories of the main process X and of the underlying branching potential V, second we develop a general tool allowing to treat many examples (for chosen f n and g n ). Note that if we take, for example, f n,k = 1 and g n = 1 [1,∞) for any integer n and k, then we get the regular range (treated in [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF]), and if g n = 1 [n b ,∞) with 0 < b < 1, then we get the heavy range (see [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF] and [START_REF] Chen | Heavy range of the randomly biased walk on galton-watson trees in the slow movement regime[END_REF]). The presentation of the results is divided into three subsections. In the first one below, we detail and comment particular examples showing a large variety of behaviors for the range for different f n and g n . In a second subsection, we present an informal statement of the general result, the aim of which is to give the main ideas without introducing too much technical material. Finally, in the last section, we introduce assumptions which leads to the full statement of the main theorem.

First results : examples

The first two theorems (Theorems 1.1 and 1.2) we present in this section derive from three other works : in the first one [START_REF] Hu | The potential energy of biased random walks on trees[END_REF], it is proved that, during its first n steps, the walk can reach height of potential of order (log n) 2 . More precisely, it is proved that the random variable ( max 1≤k≤n V (X k ) /(log n) 2 ) n≥2 converges almost surely to one half. Note that this behavior can be quite disappointing if we have in mind the intuitive behavior of Sinai's one dimensional random walk in random environment [START_REF] Ya | The limit behaviour of a one-dimensional random walk in a random medium[END_REF] for which the highest height of potential reached by the walk is of order log n. Of course the fact that the walk evolves on a tree instead of a one dimensional lattice changes the deal but at the same time it is also proved in [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] that this walk has a similar behavior than Sinai's one (they are both at a distance of order (log n) 2 from the origin at a given instant n). In both cases, the potential plays a crucial role. In the two other papers ([AC18] and [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF]), the range is studied : in [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF], it is proved that regular range (the number of visited vertices up to the instant n) is of order n /log n, whereas in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF], it is proved that the number of edges visited more than n b (with 0 < b < 1) times is typically of order n 1-b (this particular range is called «heavy range»in that paper, see also [START_REF] Chen | Heavy range of the randomly biased walk on galton-watson trees in the slow movement regime[END_REF] for a refinement of this work). Our first theorem below mixes the two approaches, showing the influence of a strong constraint on the trajectories of V on both regular or heavy range. What we mean by strong constraint here is a condition of the form V ≥ (log n) α with 1 < α < 2, that is to say when the potential is larger than what we can call regular height of potential for this walk (in the slow regime, a regular height is of order log n since it can be proved that ( V (Xn) /log n) n≥2 converges weakly, see [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF]) but smaller than the extreme value (log n) 2 of [START_REF] Hu | The potential energy of biased random walks on trees[END_REF]. Before stating this result, let us introduce the following hypothesis on the distribution of the branching random walk : there exists θ > 0 and δ 1 ∈ (0, 1/2) such that

E |z|=1 e -(1+θ)V (z) + E |z|=1 e θV (z) <∞, (I.4) E |z|=1 (1 + |V (z)|)e -V (z) 2 + E |z|=1 e -(1-δ 1 )V (z) 2 <∞, (I.5)
these are common hypothesis used for example in [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF].

Theorem 1.1. Assume (I.2), (I.4) and (I.5) hold. If for any n and k, f n,k (t

1 , t 2 , • • • , t k ) = 1 {t k ≥(log n) α } with α ∈ (1, 2) and if g n (t) = 1 {t≥n b } with b ∈ [0, 1), then log + Rn(gn,f n )-(1-b) log n (log n) α-1
n≥2 converges in P * -probability to -1,

where log + x = log(max(1, x)).
This result shows that the number of vertices with high potential visited at least once (resp. strongly visited, with b > 0) is of the same order, though smaller, than the regular range (resp. heavy-range). So visiting high potential is not just an accident appearing a couple of times on very specific paths of the tree. Far from that in fact, as the constraint of high potential creates a decrease of order e -(log n) α-1 +o(1) and therefore appears as a second order correction comparing to ranges without constraint on the environment. In the second theorem below, we add a slight different constraint which force the random walk to reach a high level of potential far from the ultimate visited vertices of given paths : Theorem 1.2. Assume (I.2), (I.4) and (I.5) hold. If for any n and k, f n,k (t

1 , t 2 , • • • , t k ) = 1 {t ⌊k/β⌋ ≥(log n) α } with β > 1, α ∈ (1, 2) (⌊x⌋ stands for the integer part of x) and for any b ∈ [0, 1), g n (t) = 1 {t≥n b } then log + Rn(gn,f n )-(1-b) log n (log n) α-1 ) n≥2 converges in P * -probability to -1 -π 2 √ β -1 + ρ (β -1) π 2 4 ,
where for any c > 0,

ρ(c) := cσ √ 2π +∞ 0 e -cσ 2 2 u 2 u 1/2 P(m 1 > 1/ √ uσ 2 ) - 1 2 +∞ u 1 y 3/2 P(m 1 > 1/ yσ 2 )dy du,
and m is a Brownian meander, m 1 := sup s≤1 m s and σ

2 := E[ |x|=1 V 2 (x)e -V (x) ].
As we may see, a slight change in function f n (comparing to previous theorem) makes appear something new, as the constant in the limit is very different than in Theorem 1.1. Note that ρ can be explicitly calculated : for any c > 0

ρ(c) = 2 √ c 1 -e - √ c sinh( √ c) -2 √ c -log((e √ c + 1)/2) , (I.6)
so we clearly obtain continuity when β converges to 1, getting back to the previous theorem. At this point, we also would like to discuss the appearance of the Brownian meander distribution in ρ. First, note that a Brownian meander appears in the asymptotic distribution of the (correctly normalized) generation of X n (see [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF]) which is the consequence of the positivity of V (see Fact 4 below, page 11) together with an induced constraint on the largest downfall of V (we call maximal downfall, for a given x ∈ T, the quantity max y≤x (V (y) -V (y)), where V (y) := max z≤y V (z)) visited by the walk before the instant n. Also in [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF], the distribution of two independent Brownian meanders (m 1 and m 2 ) appears in the result for the regular range R n (that is when f n,k = 1 and

g n = 1 [1,∞) ) : in P * -probability lim n→+∞ R n log n n = C(D m 1 , D m 2 ), (I.7)
one of these Brownian meanders also coming from the positivity of V and the other one coming from the fact that for a given visited vertex x, the maximum of V (on the unique path from the root to x) is attained pretty near the generation of x.

Here, the Brownian meander appears as we ask a visited vertex x to have reached a high level of potential in an early generation before the one of x and it turns out that the constraint of low downfall of V appearing in [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] (max y≤x (V (y) -V (y) ≤ log n) along this kind of path produces this appearance of the Brownian meander. However, contrarily to (I.7), the Brownian meander is involved in the correction of the main fluctuation (e -C(Dm)(log n) α-1 ) and not just in the constant of the limit (C(D m 1 , D m 2 )).

In the third example below, we choose f n,k in such a way that an interaction appears between the trajectory of X and the downfalls of V , which have an important role in the behavior of these walks. More particularly, let us introduce, for a given t = (t 1 , t 2 , • • • , t k ) with k a positive integer, the following quantity

H k (t) := k j=1 e t j -t k , then we call sum of exponential downfalls of V at x ∈ T with |x| = k the quantity H |x| (V x ) := H |x| (V (x 1 ), • • • , V (x k )) = |x| i=1 e V (x i )-V (x k ) . (I.8)
In order to simplify the notation and when there is no possible confusion, we will simply write H x instead of H |x| (V x ) in the sequel.

Theorem 1.3. Assume (I.2), (I.4) and (I.5) hold.

For any n and

k let f n,k (t 1 , t 2 , • • • , t k ) = 1 {t k ≥a(log n) α } ( k j=1 H j (t)) -d with α ∈ [1, 2), a ∈ R, d ∈ {0, 1} and g n (t) = 1 {t≥n b } with b ≥ 0. If b ∈ [0, 1/(1 + d)) and α = 1 (with a > 1/δ 1 when d = 1) then log + Rn(gn,f n ) log n n≥2 converges in P * -probability to 1 -(1 + d)b, otherwise if a = 1, b = 0, d = 1 and 1 < α < 2 log + Rn(gn,f n )-log n (log n) α/2
n≥2 converges in P * -probability to -2,

finally if a = 1, 0 < b < 1/2, d = 1 and 1 < α < 2 log + Rn(gn,f n )-(1-2b) log n (log n) α-1
n≥2 converges in P * -probability to -1/b.

For the first limit (when α = 1, implying that we have set a common height of potential -see Fact 1), by taking d = 0, we obtain the limit (1 -b) of the usual heavy range of [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF]. Otherwise, if we add the penalization with the cumulative exponential downfalls ( y≤x H y ), that is when d = 1, then an extra cost d * b = b appears.

The second case (with b = 0 but 1 < α < 2) has two constraints on the environment so the normalization (log n) α/2 appears as a compromise between the fact that high level of potential is asked (1 {t k ≥(log n) α } ), which alone yields by Theorem 1.1 a normalization (log n) α-1 , and the fact that cumulative exponential downfall fluctuations ( m≤k H m (t)) can not be two large as it appears in the denominator of the range. This yields the (log n) α/2 (note that as α < 2, α/2 > α -1).

For the last case (0 < b < 1/2 and 1 < α < 2), the range is of order n 1-2b e -(log n) α-1 /b comparing to ne -2(log n) α/2 when b = 0 of the previous case. In particular, the parameter b of the heavy range appears in both the main normalization n 1-2b and in the correction e -(log n) α-1 /b . This can be intuitively understood as follows : first n 1-2b = n * n -b * n -b , one n -b is classical from the heavy range when asking for a local time to be larger than n b (which already appears in the first part of the Theorem), the second n -b comes from the fact that a local time at a given vertex x can be larger than n b only if

|x| j=1 e V (x j )-V (x)
≥ n b and as this quantity appears in the normalization of the range (via

f n,k (t 1 , t 2 , • • • , t k )) this produced this second n -b . So this part (n 1-2b
) appears as a first interaction between the constraints on the trajectory of X and the one of V. Let us now discuss about e -(log n) α-1 /b = e -(log n) α /(b log n) . For this term, we see intuitively the constrains for the walk to reach height of potential of order (log n) α but a the same time, in order to keep the denominator j≤k H j (t) as low as possible, the maximal downfall has to remain smaller than b log n, thus producing the ratio (log n) α /(b log n).

In the ultimate example below, we ask similar constraints for the environment than above but only in the early visited generations : Theorem 1.4. Assume (I.2), (I.4) and (I.5) hold. For any β > 1, n and k, let

f n,k (t 1 , t 2 , • • • , t k ) = 1 {t ⌊k/β⌋ ≥(log n) α } ( ⌊k/β⌋ j=1 H j (t)) -1 , α ∈ (1, 2) and if g n (t) = 1 {t≥n b } with b ∈ (0, 1), then log + Rn(gn,f n )-(1-b) log n (log n) α/2
n≥2 converges in P * -probability to -2.

This last theorem just prove that if the factor ( ⌊k/β⌋ j=1 H j (t)) -1 only concerns the beginning of the trajectory, that is the sites at a distance ⌊|x|/β⌋ of the root (if x is a visited vertex), then things go back to normal : there is no more multiple interactions between X and V.

We can imagine more examples like the ones we present above (by acting more on the function g n as we did for example) but for now, let us introduce a more general result with general hypothesis on g n and f n .

A general result (informal statement)

In this section, we present an informal statement for the asymptotic in n of R n (g n , f n ) for general g n and f n (including, in particular, the results of the preceding section). The aim, in a first step, is to introduce the result and the main ideas but to minimize the technical materials.

First recall the expression of the generalized range (I.3)

R n (g n , f n ) = x∈T g n (L n x )f n,|x| (V (x 1 ), V (x 2 ), • • • , V (x)),
with L n x the local time of X at x before the instant n. We assume that g n can be written as the product of an indicator function and a function φ which is positive non-decreasing : for any b ≥ 0 and t ≥ 1, g n (t) := 1 {t≥n b } φ(t). The indicator function is here to include all types of range (regular or heavy). Also, we ask the function t → φ(t)/t to be non-increasing, so that φ(L n x ) remains reasonable (at most of the order of the local time itself).

Let us introduce the branching object Ψ as follows : let 0 ∨ λ ′ < λ be two real numbers and k ≥ 1 an integer, also let ϕ : R k -→ R be a bounded function. Ψ k λ,λ ′ (ϕ) is then defined as a mean of ϕ along the trajectory of V (with constraints) until generation k, that is

Ψ k λ,λ ′ (ϕ) := E |x|=k e -V (x) ϕ (V (x 1 ) , . . . , V (x)) 1 O λ,λ ′ (x) , (I.9) where O λ,λ ′ is the set of (λ, λ ′ )-regular lines O λ,λ ′ := x ∈ T; max j≤|x| H x j ≤ λ, H x > λ ′ , with H x j = j i=1
e V (x i )-V (x j ) , (I.10) also we denote

O λ := x ∈ T; max j≤|x| H x j ≤ λ , and Ψ k λ (ϕ) := E |x|=k e -V (x) ϕ (V (x 1 ) , . . . , V (x)) 1 O λ (x) . Note that since H x ≥ 1 (H x > 1 when |x| > 1), we have, for all λ ′ < 1, O λ,λ ′ = O λ and Ψ k λ,λ ′ (ϕ) = Ψ k λ (ϕ).
The appearance of this set of regular lines O λ,λ ′ is partly inspired from the works of [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] (λ representing extreme exponential downfalls of V related to a reflecting barrier for the walk (X k , k ≤ n)), and also (for λ ′ ) from the constraint on the local time appearing in the function g n . It turns out indeed that constraints on the value of the local time at a site x imply constraints on H x . In other words, there are constraints on the branching potential V induced by constraints on the random walk X and sometimes, these constraints have a major impact on the range. We call this type of contribution «contribution of type one», that is of order n θ where θ ∈ (0, 1] (this actually appears for example in Theorem 1.3). To be more specific, let us introduce the following notations : first

C ∞ := C ∞ ({f n ; n ≥ 1}) stands for the supremum of {f n ; n ≥ 1} that is C ∞ := sup m,ℓ ∥f m,ℓ ∥ ∞ . Then, define the set U b := κ ∈ [0, 1]; for all k ≥ 1, t ∈ R k , n ≥ 1 : 1 {H k (t)>n b } f n,k (t) ≤ C ∞ n -κ , (I.11) note that U b ̸ = ∅ because 0 ∈ U b
and as the supremum is attained, let

κ b =: max U b . (I.12)
When κ b > 0, we say that a mixing between the constraints on trajectories of the random walk X and on those of the branching potential V produce a contribution of type one.

To introduce a second type of contribution, which can be seen as the second order comparing to the contribution of type one, we present an important quantity which is the sum over all the generations of Ψ

• n,n b (f n,• ) : k≥1 Ψ k n,n b (f n,k
). First, let us give an heuristic about the way it appears in the asymptotic of the range. For any k ≥ 1, introduce the k th return time T k := inf{k > T k-1 , X k = e} to e and take T 0 = 0. Recall the definition of V before (I.7) and let R T n (g n , f n ) be the range on

{V (•) ≥ A log n} : R T n (g n , f n ) := x∈T g n (L T n x )f n,|x| (V x )1 {V (x)≥A log n} with A > 0 . R T n (g n , f n
) is a version of the generalized range where we have replaced the instant n by T n and we have made appear the additional constraint V (x) ≥ A log n. Note that it is known (following Lemma 2.1 in [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF] and its proof at the beginning of Section 4.2) that this additional condition 1 {V (x)≥A log n} has no effect on the normalization of the range, that is Fact 1 : There exists 0 < c 1 = c 1 (A) ≤ 1 such that lim n→+∞ P * R T n R T n = c 1 = 1. So here, we typically consider collections of functions

f n such that R T n (g n , f n )/R T n (g n , f n ) → Cte > 0.
One of the main gain of this consideration is the fact that relatively high potential yields interesting quasi-independence in the trajectory of (X n , n). With this fact, we have (see Section 3.1) something like

R T n (g n , f n ) ≳ nE E [R T 1 (g n , f n )]
in probability and thanks to the fact that φ is non-decreasing and to the expression of the quenched mean of R T 1 (g n , f n ), in probability, for large n

R T n (g n , f n ) ≳ nE E [R T 1 (g n , f n )] ≳ φ(n b ) n b n k≥1 Ψ k n,n b (f n,k ), which makes appear k≥1 Ψ k n,n b (f n,k
). It turns out that this lower bound is exactly the good quantity which leads to our main result. The following assumption ensures that k≥1 Ψ k n,n b (f n,k ) is not too small, which would correspond to an exaggerate penalization on the potential V : Assumption 1. For all b ∈ [0, 1), ε > 0 and n large enough

k≥1 Ψ k n,n b (f n,k ) ≥ 1 n (κ b +ε)∧1 . (A1)
The second type of contribution that we call «contribution of type two» strongly involves the term

n κ b k≥1 Ψ k n,n b (f n,k ).
It is negligible with respect to n ε for all ε > 0 and comes also from a mixing between the constraints on X and the constraints on V. So finally introduce (h n , n) which is certainly the most important sequence of the paper : for any n ≥ 2

h n :=    log n κ b k≥1 Ψ k n,n b (f n,k ) if ∃ γ ∈ (0, 1) : (log n) γ log n κ b k≥1 Ψ k n,n b (f n,k ) → 0 log n otherwise . (I.13)
Let us start by a discussion about (h n , n) with the following remark in which we note that either

h n = o(log n) or h n = log n.
Remark 1. By definition of κ b ,

n κ b k≥1 Ψ k n,n b (f n,k ) ≤ C ∞ k≥1 Ψ k n (1) = C ∞ E x∈T e -V (x) 1 {x∈On} ≤ C ∞ (log n) 3 ,
where the last inequality is a quite elementary fact that will be proved later (see Remark 2). This implies, in particular, that if there exists 0 < γ < 0 such that

(log n) γ /log n κ b k≥1 Ψ k n,n b (f n,k ) goes to 0 when n goes to ∞, then necessarily, we have log(n κ b k≥1 Ψ k n,n b (f n,k )) < 0 and lim n→+∞ log(n κ b k≥1 Ψ k n,n b (f n,k )) = -∞.
Moreover, in this case, there exists 0 < γ < 1 such that h n ≥ (log n) γ . Also assumption (A1) above ensures that

log(n κ b k≥1 Ψ k n,n b (f n,k )) ≥ log n κ b n (κ b +ε)∧1 ≥ -((κ b + ε) ∧ 1 -κ b ) log n ≥ -ε log n, overall, definition of h n implies, under (A1), that (log n) γ ≤ h n ≤ log n.
The sequence (h n , n) is the quantity which gives the contribution of type two and produces the second order in our result. It is important to note that we carefully assign an expression to h n depending on whether constraints are penalizing or not. According to the asymptotic behavior of the term

n κ b k≥1 Ψ k n,n b (f n,k ), we assign h n two possible expressions : if (log n) γ is negligible with respect to | log(n κ b k≥1 Ψ k n,n b (f n,k
))| for some γ ∈ (0, 1) (which then remains smaller than ε log n by Remark 1), constraints are considered penalizing and we set

h n := | log(n κ b k≥1 Ψ k n,n b (f n,k
))|, see Theorem 1.1 for example. Otherwise, constraints are not penalizing enough and we set h n := log n, see Theorem 1.3 with α = 1 for instance. In this latter case, the choice is significant since log n is the right order for the logarithm of the regular range, that is to say the range without any constraint on the trajectories of the branching random potential V. We are now almost ready to state a result. But first introduce two last values : L (with L = ±∞ 1. INTRODUCTION 49 possibly) and ξ ∈ {-1, 0} defined as follows

L := lim inf n→∞ h -1 n log n 1-b-κ b φ(n b )
, and (I.14)

ξ := lim n→∞ h -1 n log n κ b k≥1 Ψ k n,n b (f n,k ) , (I.15)
and note that, following Remark 1, ξ necessarily exists.

The full statement of our main result below need additional quite complex assumptions, involving f n in particular, they are described precisely in the next section (see (A2), (A3) and (A4)).

The interesting point is the fact that all of these assumptions concern k≥1 Ψ k . And more than that, we can resume the actions of (A2), (A3) and (A4) by saying that Ψ has to be stable for small perturbations of its parameters. In the informal statement below, we will say that Ψ should have controlled fluctuations.

Theorem 1.5 (Informal statement). Assume (I.2), (I.4) and (I.5) hold, b ∈ [0, 1), assume also that (A1) is satisfied and Ψ has controlled fluctuations. If L ∈ (-ξ, +∞], then in P * -probability

h -1 n log + R n (g n , f n ) -log(n 1-b-κ b φ(n b )) -→ n→∞ ξ, if L = -ξ, with ∆ n := h -1 n log(n 1-b-κ b φ(n b ))-inf ℓ≥n h -1 ℓ log(ℓ 1-b-κ b φ(ℓ b )), then in P * -probability h -1 n log + R n (g n , f n ) -∆ n -→ n→∞ 0, otherwise L ∈ [-∞, -ξ[ and in P * -probability R n ℓ (g n ℓ , f n ℓ ) -→ ℓ→∞ 0,
for some increasing sequence (n ℓ ) ℓ of positive integers. Note that when lim h

-1 n log(n 1-b-κ b φ(n b )) is equal to L, n ℓ = ℓ.
We now present particular examples which lead to different values of L and ξ. First, note that all theorems presented in the previous section satisfy L = +∞ and ξ = -1, corresponding, from our point of view, to the most interesting case. Let us take, for example,

g n (t) = 1 {t≥n b } and f n,k (t 1 , t 2 , • • • , t k ) = 1 {t k ≥a(log n) α } ( l≤k H l (t)) -1 as in Theorem 1.3, with a > 0, α ∈ [1, 2), but b ∈ [1/2, 1). When α > 1 and b > 1/2, we can prove that h n ∼ a(log n) α-1 /b (with the usual notation t n ∼ s n if and only if t n /s n → 1) and n 1-b-κ b φ(n b ) = n 1-2b so we obtain lim h -1 n log(n 1-b-κ b φ(n b )) = L = -∞.
However, when α = 1 and a > 1/δ 1 , we can prove that for all b ∈ [1/2, 1), κ b = b and h n = log n thus giving L = 1 -2b and ξ = 0. In other words, L ∈ (-∞, -ξ] (with L = -ξ if and only if b = 1/2). Let us finally take the simple example g n (t) = t1 {t≥n b } and f n,k = 1. We can prove that for all b ∈ (0, 1),

h n = log n, ξ = 0 and n 1-b-κ b φ(n b ) = n so lim h -1 n log(n 1-b-κ b φ(n b )) = L = 1 and
we are in the case L ∈ (-ξ, +∞).

To finish, we present an example for which f n,k is quite general but with a simple form. Assume

-f n,k = 1 A n,k with A n,k ⊂ R k and A n,k b := A n,k ∩ {t ∈ R k ; max 1≤j≤k H j (t) ≤ n, H k (t) > n b } ; -(A n,k b × R k ′ -k ) ∩ A n,k ′ b = ∅ for all k < k ′ ; -κ b = 0.
We obtain the following simple expression for

n κ b k≥1 Ψ k n,n b (f n,k ) = P(∪ k≥1 {(S 1 , . . . , S k ) ∈ A n,k b })
, where (S i , i) is a sum of i.i.d random variables with mean 0 and variance ψ ′′ (1) (this comes from the so-called many-to-one Lemma, see Lemma 2.1). So

log(n κ b k≥1 Ψ k n,n b (f n,k )) = -log P(∪ k≥1 {(S 1 , . . . , S k ) ∈ A n,k b }).
Consequently, if the probability

P(∪ k≥1 {(S 1 , . . . , S k ) ∈ A n,k b }) is small enough, that is to say such that (log n) γ is negligible comparing to -log P(∪ k≥1 {(S 1 , . . . , S k ) ∈ A n,k b }) for a certain γ ∈ (0, 1), then the constraint is penalizing enough and h n = -log P(∪ k≥1 {(S 1 , . . . , S k ) ∈ A n,k b }). Otherwise, h n = log n. For example, take A n,k = {t ∈ R k ; inf{j ≤ k; t j ≥ (log n) α } = k}
which leads to an example similar to Theorem 1.1.

A general result (full statement)

In this section, we explain precisely what «Ψ has controlled fluctuations» means. For that, we present the assumptions (A2), (A3) and (A4) mentioned in the previous section. We start with (A2), and then state a preliminary result (Proposition 1) of the main theorem (Theorem 1.5). This proposition is quite technical especially in its statement. However, it stresses on the fact that all the expressions involved depend deeply on k Ψ k .,. (f n,k ) and therefore justify the last two Assumptions (A3) and (A4) which leads to the formal statement of Theorem 1.5.

Assumption 2. Assumption (A2) below is an upper bound for a conditional version of

k≥1 Ψ k n,n b (f n,k
) actually requiring in order to be introduced two facts and additional notations. Fact 2 : By Lemma 2.3 in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF], there exists two real numbers c 2 , c2 > 0 such that for any h > 0

P * max |w|≤⌈h/c 2 ⌉ |V (w)| > h ≤ he -c 2 h . (I.16)
This fact, that will be useful when cutting on early generations of the tree, justifies the introduction of the following notation : for any n and k, f n,k h is the function defined by

f n,k h (t 1 , . . . , t k ) := inf s∈[-h,h] m f n,k+m (s 1 , . . . , s m , t 1 + s m , . . . , t k + s m ) , (I.17) 1. INTRODUCTION 51 with m = ⌈h/c 2 ⌉ and s = (s 1 , . . . , s m ) ∈ R m .
The second fact is about the largest generation visited by the walk before the instant n or before n excursions to the vertex e. Fact 3 : Let (ℓ n = (log n) 3 , n ≥ 2), by Lemma 3.2 in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF], there exists A > 0 such that :

lim n→+∞ P(max k≤T n |X k | ≤ Aℓ n ) = 1.
This fact is here essentially to justify the introduction of the sequence (ℓ n , n) which appears in our second assumption and all along the paper. Note that a very precise result on the largest generation visited by the walk before the instant n can be found in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] .

A last notation we need to introduce is a conditional and translated version of

Ψ k λ,λ ′ (F ) for a given bounded function F . For all k ∈ N * , l ∈ N * , F : R l+k -→ R bounded and t = (t 1 , . . . , t l ) ∈ R l Ψ k λ,λ ′ (F |t) := E |x|=k e -V (x) F (t 1 , . . . , t l , V (x 1 ) + t l , . . . , V (x) + t l )1 O λ,λ ′ (x) , (I.18)
where |x|=k is the sum over all the individuals x of generation k. Otherwise, if l = 0, then

Ψ k λ,λ ′ (F |t) := Ψ k λ,λ ′ (F ).
We are now ready to introduce the second assumption : for all δ, ε, A, B > 0 and b ∈ [0, 1), there exists n 0 ∈ N * such that for any n ≥ n 0 , l ≤ ⌊Aℓ n ⌋ and any t

= (t 1 , . . . , t l ) ∈ R l with t l ≥ -B and H l (t) ≤ n k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t ≤ e δt l + ε A hn k≥1 Ψ k n,n b (f n,k ). ( A2 
)
Let us comment this inequality which plays two roles. A first one ensures that the fluctuations of V in the early generations of the tree have minor influence, this yields the presence of e ε A hn .

The second point is technical and aims to show that in probability, we have

E E [R T 1 (g n , f n )] ≳ n -b φ(n b ) k≥1 Ψ k n,n b (f n,k ) .
For that, the second moment of

Z n := x∈O n,n b e -V (x) f n,k εhn (V x )1 {V (x)≥A log n,V (x)≥-B,V (x)=V (x)}
has to be controlled, with V x := (V (x 1 ), . . . , V (x)) and V (x) := min v≤x V (v). We first observe that

Z 2 n ≈ z∈T x,y>z u∈{x,y} 1 {u∈O n,n b } e -V (u) f n,|u| εhn (V u )1 {V (u)≥A log n,V (u)≥-B,V (u)=V (u)} .
Then taking the expectation of

Z 2 n , k≥1 Ψ k n,n b -H l (t) (f n,l+k εhn |t) in (A2
) actually appears as the conditional expectation of a well chosen function of the translated potential (V z (u v) . Hence, for all δ ∈ (0, 1/2), by independence of the increments of the branching random walk (T, V (u); u ∈ T)

) := V (u) - V (z)) u>z . Indeed, note that u ∈ O n,n b together with V (u) = V (u) implies that u ∈ O z n,n b -Hz := {u > z : max z<v≤u H z,v ≤ n, H z,u > n b -H z } with H z,v := z<w≤v e Vz(w)-Vz(
E[Z 2 n ] ≲ e (1-2δ)B E z∈On e -V (z)
x,y>z u∈{x,y}

1 {u∈O z n,n b -Hz } e -Vz(u) F n,|u| Vz (V z (u |z|+1 ), . . . , V z (u)) ≈ e (1-2δ)B E z∈On e -V (z) e δV (z) k≥1 Ψ k n,n b -Hz (f n,l+k |V z ) 2 ,
where, for |z| = l and any t

= (t 1 , . . . , t l ) ∈ R l F n,|u| t (V z (u l+1 ), . . . , V z (u)) := e δt l f n,|u| εhn (t 1 , . . . , t l , V z (u l+1 ) + t l , . . . , V z (u) + t l ).
Assumption (A2) finally allows to say that

E[Z 2 n ] ≲ e εhn ( k≥1 Ψ k n,n b (f n,k
)) 2 for all ε > 0 and n large enough.

We are now almost ready to state an intermediate result which is a proposition giving a lower and an upper bound for the generalized range stopped at T n . This proposition is followed by the theorem, much easier to read, but requiring extra assumptions. First, let us introduce for any z > 0

H k z := (t 1 , . . . , t k ) ∈ R k ; t k ≥ z , H k B,z := {(t 1 , . . . , t k ) ∈ R k ; t k ≥ z, min 1≤i≤k t i ≥ -B}, (I.19)
respectively the set of vectors such that its last coordinate is larger than z and additionally with all coordinates larger than -B. The introduction of these last two objects is justified by Fact 4 : for any ε > 0, there exists a > 0 such that (see [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF])

P(min u∈T V (u) ≥ -a) ≥ 1 -ε,
and Fact 1 we have already talked about saying that, in P * -probability, ℓ 1/3 n is a height of potential usually reached by the walk.

Proposition 1. Recall (I.12), let ε b := min(b + 1 {b=0} , 1 -b)/13 and W := |z|=1 e -V (z) . Assume (I.2), (I.4) and (I.5) hold as well as (A1) and (A2). Lower bound : there exists c 5 > 0 such that for all b ∈ [0, 1), ε ∈ (0, ε b ), B > 0 and n large enough

P R T n (g n , f n ) n 1-b φ(n b )u 1,n < e -5εhn ≤ e -c 5 εhn (u 1,n ) 2 k≥1 Ψ k n,n b (f n,k εhn ) 2 + h n e -εc 2 hn + e -min(ε log n,3hn) (n κ b u 1,n ) 2 , (I.20) 1. INTRODUCTION 53 with u 1,n = u 1,n (ε) := k≥1 Ψ k λn/2,n b f n,k εhn 1 Υ k n , Υ k n := {t ∈ R k ; H k (t) ≤ n b e εhn } ∩ H k B,2ℓ 1/3 n /δ 1
and λ n = ne -min(10ε log n,5hn) . Upper bound : for any ε > 0 and n large enough

P R T n (g n , f n ) n 1-b φ(n b )u 2,n > e εhn ≤ e -ε 2 hn + o(1) (I.21) with u 2,n := k≥1 Ψ k n f n,k 1 R k \H k ℓ 1/3 n /δ 1 + Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) .
Note that (I.20) and (I.21) remain true replacing

R T n (g n , f n ) by R T kn (g n , f n ) with k n equal to ⌊n/(log n) p ⌋, p > 0.
This proposition is technical and difficult to read, we present it here however because it shows that all the estimations depend deeply on Ψ . .,. (f ) and g n , recall indeed that the key sequence (h n , n) defined in (I.13) depends both on Ψ .

.,. (f ) and κ b (with b coming from the function g n ). This also means that without any more information on Ψ .

.,. (f ), it is difficult to state a more explicit result. Finally, note that the exact role of (A1) and (A2) will appear clearly in the proof of the lower bound (Section 3.2).

We now present two new assumptions (A3) and (A4) which lead to the formal statement of the result. These assumptions tell essentially that quantities u 1,n and u 2,n , which appear in the previous proposition, are actually very similar. Now introduce (A3) and (A4) :

Assumption 3 : for all b ∈ [0, 1), ε ∈ (0, ε b ), ε 1 ∈ (0, ε) and n large enough u 1,n ≥ e -ε 1 hn k≥1 Ψ k n,n b (f n,k ). ( A3 
)
Assumption 4 : for all ε 1 > 0, b ∈ [0, 1) and n large enough

u 2,n ≤ e ε 1 hn k≥1 Ψ k n,n b (f n,k ). (A4)
The full statement of Theorem 1.5 then writes as follows :

Theorem 1.5 (Full statement). Assume (I.2), (I.4) and (I.5) hold, b ∈ [0, 1) and (A1), (A2), (A3) and (A4) are satisfied. If L ∈ (-ξ, +∞], then in P * -probability

h -1 n log + R n (g n , f n ) -log(n 1-b-κ b φ(n b )) -→ n→∞ ξ, if L = -ξ, with ∆ n := h -1 n log(n 1-b-κ b φ(n b ))-inf ℓ≥n h -1 ℓ log(ℓ 1-b-κ b φ(ℓ b )), then in P * -probability h -1 n log + R n (g n , f n ) -∆ n -→ n→∞ 0, otherwise L ∈ [-∞, -ξ[ and in P * -probability R n ℓ (g n ℓ , f n ℓ ) -→ ℓ→∞ 0,
for some increasing sequence (n ℓ ) ℓ of positive integers. Note that when lim

h -1 n log(n 1-b-κ b φ(n b )) is equal to L, n ℓ = ℓ.
The rest of the paper is decomposed as follows : in Section 2, after short preliminaries (Section 2.1), we prove the theorems of Section 1.1. For these proofs (Section 2.2), we check that the four assumptions (A1-A4) of Theorem 1.5 are realized, obtaining simultaneously the asymptotic of h n . In section 2.3, we prove Theorem 1.5 : essentially, Proposition 1 is assumed to be true and we only check that if Assumptions (A3) and (A4) are true then the theorem comes. We prove Proposition 1 in section 3, this is the most technical part of the paper which can be read independently of the other parts : in Section 3.1, we summarize usual facts, in a second sub-section we prove a lower bound for stopped generalized range R T n (g n , f n ) and finally in a last one an upper bound.

In section 4 we present some estimates on sums of i.i.d. random variables useful for the proof of the examples of Section 1.1. Finally, we resume in a last section (page 106) the notations which are transversal along the paper.

Proof of the theorems

This section is decomposed in three parts : in the first section below, one can find preliminaries that are useful all along the rest of the paper. In the second sub-section, we prove the four theorems presented as examples. Finally, the last section is devoted to the proof of Theorem 1.5.

Preliminary material

We recall the many-to-one formula (see [START_REF] Shi | Branching random walks. École d'été de Probabilités[END_REF] Chapter 1, and [FHS11] equation 2.1) which will be used several times in the paper to compute expectations related to the environment. Note that the identity below comes from a change of probability measure (see references above), however we still keep P and E for simplicity.
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Lemma 2.1 (Many-to-one Lemma). Recall the definition of ψ in (I.1). For any t > 0,

E |x|=m f (V (x i ), 1 ≤ i ≤ m) = E(e tSm+ψ(t)m f (S i , 1 ≤ i ≤ m)),
where (S n ) n∈N is the random walk starting at 0, such that the increments ( S n+1 -S n ) n∈N are i.i.d. and for any measurable function h : R m → [0, ∞),

E[h(S 1 )] = e -ψ(t) E( |x|=1 e -tV (x) h(V (x))).
A second very useful fact is contained in the following remark, it tells essentially that, in probability, the e -V (x) -weighted number of vertices x such that x ∈ O n (recall (I.10)) can be found in a quite small quantity when |x| ≤ Aℓ n and can not be found when |x| > Aℓ n . This remark is not precise at all but will be enough for our purpose.

Remark 2. There exists c 3 ∈ (0, 1) such that for any A > 0 and n large enough

E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ≤ n -Ac 3 and E |x|≤⌊Aℓn⌋ e -V (x) 1 {x∈On} ≤ ℓ n /2, which implies E x∈T e -V (x) 1 {x∈On} ≤ ℓ n .
Démonstration. We give a proof here which essentially use technical Lemma 4.6 (for the second inequality below), indeed by Lemma 2.1 above

E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ≤ k>⌊Aℓn⌋ P(sup i≤k (S i -S i ) ≤ log n) ≤ k>⌊Aℓn⌋ exp(- kπ 2 σ 2 (1 -ε) 8 log n ) ≤ n -Ac 3 .
A similar computation gives the second fact and both of them the last one.

Proofs of Theorems 1.1 to 1.4

The pattern of the proofs of each theorem is the following : we first prove two facts (an upper and a lower bound) about the sum k≥1 Ψ k

•,• (F ) with specific F , depending on the considered function f n,k and on a slightly different version of the latter whether we are looking for an upper or a lower bound. Then we use this two facts to prove that (A1), (A2), (A3) and (A4) are satisfied. In these proofs, we use several times the notation ε b = min(b + 1 {b=0} , 1 -b)/13 which was introduced in Proposition 1.

Proof of Theorem 1.1. Recall that f n,k (t 1 , t 2 , • • • , t k ) = 1 {t k ≥(log n) α } , α ∈ (1, 2) and see (I.10)
for the definition of O λ,λ ′ . All along the proof, we assume that B, δ > 0, ε ∈ (0, ε b ), n is large enough and t ≥ -B. Let us start with the proof of the following two facts :

E x∈On e -V (x) 1 {V (x)≥(log n) α -t} ≤ e δt-(log n) α-1 (1-ε) , (I.22)
and for any 0

≤ m ≤ log n E x∈O λn,n b e -V (x) 1 {V (x)≥(log n) α +m, Hx≤n b e ε(log n) α-1 , V (x)≥-B} ≥ e -(log n) α-1 (1+ε) , (I.23)
with λ n = ne -6(log n) α-1 and recall V (x) = min u≤x V (u). We first deal with the upper bound (I.22). Recall

ℓ n = (log n) 3 , E x∈On e -V (x) 1 {V (x)≥(log n) α -t} ≤ k≤⌊Aℓn⌋ E |x|=k e -V (x) 1 {V (x)≥(log n) α -t} 1 {x∈On} + E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ,
where

A > 0 is chosen such that E[ |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ] ≤ 1/n (see Remark 2). This yields, as α ∈ (1, 2), E[ |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ] ≤ e δ(t+B) 1 n ≤ 1 2 e δt-(log n) α-1 (1-ε)
for n large enough and any t ≥ -B. Thanks to many-to-one Lemma 2.1, the first sum in the above inequality is smaller than

k≤⌊Aℓn⌋ P S k ≥ (log n) α -t, max j≤k S j -S j ≤ log n ≤ ⌊Aℓ n ⌋P max j≤τ (log n) α -t S j -S j ≤ log n ,
with τ r = inf{i ≥ 1; S i ≥ r}. Then, thanks to Lemma A.3 in [START_REF] Hu | The potential energy of biased random walks on trees[END_REF], and as t ≥ -B ⌊Aℓ n ⌋P max

j≤τ (log n) α -t S j -S j ≤ log n ≤ ⌊Aℓ n ⌋e t log n -(log n) α-1 (1-ε 2 ) ≤ ⌊Aℓ n ⌋e t+B log n -(log n) α-1 (1-ε 2 ) ≤ e δt+δB-(log n) α-1 (1-ε 2 ) ≤ 1 2 e δt-(log n) α-1 (1-ε) ,
so we get exactly (I.22). We now turn to the lower bound (I.23). Let ℓ ′ n = (log n) 4 and α n = (log n) α + log n. By the many-to-one Lemma, for any m ≤ log n, the expectation in (I.23) is larger than

k≥1 P S k ≥ α n , max j≤k H S j ≤ λ n , n b < H S k ≤ n b e ε(log n) α-1 , S k ≥ -B ,
with H S j := j i=1 e S i -S j . For any b ∈ (0, 1), by Lemma 4.3 (I.77

) (with ℓ = (log n) 2 , t ℓ = α n , q = 1, a b = a = 6, d = (α-1)/2 and c = ε), above sum is larger than e -(log n) α-1 (1+ε) . Otherwise, 2. PROOF OF THE THEOREMS 57 if b = 0, observe that for all k ≤ ℓ ′ n , S k = S k implies H S k ≤ k ≤ ℓ ′ n so the sum is larger than k≤ℓ ′ n P S k ≥ α n , max j≤k H S j ≤ λ n , S k = S k , S k ≥ -B . Lemma 4.5 (with ℓ = (log n) 2 , t ℓ = α n , d = 1/2,
a = 6 and d ′ = (α -1)/2) leads to (I.23) also for b = 0. We are now ready to prove that f n satisfies assumptions (A1), (A2), (A3) and (A4). Recall that

Ψ k n,n b (f n,k ) = E |x|=k e -V (x) f n,k (V (x 1 ), . . . , V (x))1 {x∈O n,n b } where x ∈ O n,n b if and only if max j≤|x| H x j ≤ n and H x > n b , also U b = {κ ∈ [0, 1]; for all k ≥ 1, t ∈ R k , n ≥ 1 : 1 {H k (t)>n b } f n,k (t) ≤ C ∞ n -κ } with C ∞ = sup n,ℓ ∥f n,ℓ ∥ ∞ .
• Check of (A1) and asymptotic of h n . We obtain from (I.23) with m = 0 that for any ε ∈ (0, ε b ) and n large enough,

E[ x∈O n,n b e -V (x) 1 {V (x)≥(log n) α } ] is larger than (as λ n ≤ n) E x∈O λn,n b e -V (x) 1 {V (x)≥(log n) α } 1 {Hx≤n b e ε(log n) α-1 ,V (x)≥-B} ≥ e -(log n) α-1 (1+ε) .
Note that above inequality implies that for all b ∈ [0, 1), κ b = max U b = 0. Indeed, if we had κ b > 0, then this should imply that for any 

x ∈ T e -V (x) 1 {x∈O n,n b } f n,k (V (x 1 ), . . . , V (x)) ≤ C ∞ n -κ b e -V (x) 1 {x∈O n,n b } , which gives that E[ x∈O n,n b e -V (x) 1 {V (x)≥(log n) α } 1 {Hx≤n b e ε(log n) α-1 ,V (x)≥-B} ] is smaller than C ∞ n -κ b E[ x∈On e -V (x) ] ≤ C ∞ ℓ n n -κ b by
Ψ k n,n b (f n,k ) = E x∈O n,n b e -V (x) 1 {V (x)≥(log n) α } ≥ e -(log n) α-1 (1+ε) ,
and additionally with (I.22) (taking t = 0), asymptotic of h n is given by

h n = n κ b log k≥1 Ψ k n,n b (f n,k ) = log E x∈O n,n b e -V (x) 1 {V (x)≥(log n) α } ∼ (log n) α-1 .
We also deduce from the previous lower bound that (A1) is satisfied, indeed, as α ∈ (1, 2), 

k≥1 Ψ k n,n b (f n,k ) ≥ n -(κ b +ε 1 )∧1
1 {t j +sm≥(log n) α } = 1 {t j ≥(log n) α +εhn} .
Observe that for A > 0, n large enough, any l ∈ N and t = (t 1 , . . . , t l ), by definition of Ψ k n (F |t)

(see (I.18)) and (I.22) with ε/3A instead of ε

k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t = E x∈On e -V (x) 1 {V (x)+t l ≥(log n) α +εhn} 1 {Hx>n b -H l (t)} ≤ E x∈On e -V (x) 1 {V (x)≥(log n) α -t l } ≤ e δt l -(log n) α-1 (1-ε 3A ) . Moreover, e -(log n) α-1 (1-ε 3A ) = e 2ε 3A (log n) α-1 e -(log n) α-1 (1+ ε 3A ) ≤ e ε A hn k≥1 Ψ k n,n b (f n,k
), the last inequality coming from the fact that h n ∼ (log n) α-1 and (I.23) with m = 0 and as above ε 3A instead of ε. So (A2) is satisfied.

We are left to prove that technical assumptions (A3) and (A4) are realized.

• For (A3), recall first, from Proposition 1, that for all b ∈ [0, 1), Υ k n is the set

{t = (t 1 , . . . , t k ) ∈ R k ; H k (t) ≤ n b e εhn , t k ≥ 2ℓ 1/3 n /δ 1 , min j≤k t j ≥ -B}, with λ n = ne min(10ε log n,-5hn) = ne -5hn for large n. Let 0 < ε 1 < ε, note that λ n /2 ≥ λ n = ne -6(log n) α-1 so for n large enough u 1,n = k≥1 Ψ k λn/2,n b (f n,k εhn 1 Υ k n ) = E x∈O λn/2,n b e -V (x) 1 {V (x)≥(log n) α +εhn,Hx≤n b e εhn ,V (x)≥-B} ≥ E x∈O λn,n b e -V (x) 1 {V (x)≥(log n) α +hn,Hx≤n b e ε 1 3 (log n) α-1 ,V (x)≥-B} ≥ e -(log n) α-1 (1+ ε 1 3 ) ,
where we use that (log n) α > 2ℓ

1/3 n /δ 1 for the second equality and the last inequality comes from (I.23), with m = h n and ε 1 /3 instead of ε.

Moreover, e -(log n) α-1 (1+ ε 1 3 ) = e -2ε 1 3 (log n) α-1 e -(log n) α-1 (1-ε 1 3 ) ≥ e -ε 1 hn k≥1 Ψ k n,n b (f n,k
) which comes from the fact that h n ∼ (log n) α-1 and (I.22) with t = 0, ε 1 3 instead of ε. • Finally for (A4), recall the definition of u 2,n just below (I.21). First observe that as α ∈ (1, 2), for n large enough, (log n) α > ℓ 1/3 n /δ 1 so for any k

Ψ k n (f n,k 1 R\H k ℓ 1/3 n /δ 1 ) = E |x|=k e -V (x) 1 {V (x)≥(log n) α ,V (x)<ℓ 1/3 n /δ 1 } 1 {x∈On} = 0. Recall that E[W ] = e ψ(1) = 1 so k≥1 Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) ≤ k≥1 Ψ k n (f n,k ) + E W Ψ k n (f n,k ) = 2 k≥1 Ψ k n (f n,k ), 2. PROOF OF THE THEOREMS 59 2 k≥1 Ψ k n (f n,k ) = 2E[ x∈On e -V (x) 1 {V (x)≥(log n) α } ] ≤ 2e -(log n) α-1 (1-ε 1 6 ) ≤ e -(log n) α-1 (1-ε 1 3 ) thanks to (I.22) with t = 0, ε 1 /6 instead of ε. Moreover, e -(log n) α-1 (1-ε 1 3 ) = e 2ε 1 3 (log n) α-1 e -(log n) α-1 (1+ ε 1 3 ) ≤ e ε 1 hn k≥1 Ψ k n,n b (f n,k
). The last inequality comes from the fact that h n ∼ (log n) α-1 and (I.23) with m = 0 and ε 1 3 instead of ε.

Proof of Theorem 1.2. Here f n,k (t 1 , t 2 , • • • , t k ) = 1 {t ⌊k/β⌋ ≥(log n) α } with β > 1 and α ∈ (1, 2), let us start with the proof of the two following facts, for all B, δ > 0, ε ∈ (0, ε b ), n large enough, any t ≥ -B and i ∈ N E x,⌊(|x|+i)/β⌋>i e -V (x) 1 {V (x ⌊(|x|+i)/β⌋-i )≥(log n) α -t} 1 {x∈On} ≤ e δt-c β (log n) α-1 (1-ε) , (I.24)
and for any m ≤ log n

E x,⌊(|x|+i)/β⌋>i e -V (x) 1 {V (x ⌊(|x|+i)/β⌋-i )≥(log n) α +m} 1 {x∈Υn∩O λn,n b } ≥ e -c β (log n) α-1 (1+ε) , (I.25) with λ n = ne -6c β (log n) α-1 , for any a > 1 δ 1 Υ n = Υ n (ε) := {x ∈ T; H x ≤ n b e εc β (log n) α-1 , V (x) ≥ a log n, V (x) ≥ -B},
and

c β = -1 -π √ β -1/2 + ρ((β -1)π 2 /4) (for ρ see (I.6)). Recall ℓ n = (log n) 3 and introduce L n := ⌊(log n) 2+εα ⌋ with ε α ∈ (0, α -1).
Proof of (I.24) : first note that if t > (log n) α /2, (I.24) is obviously satisfied, indeed

E x,⌊(|x|+i)/β⌋>i e -V (x) 1 {V (x (⌊(|x|+i)/β⌋-i) )≥(log n) α -t} 1 {x∈On} ≤ E x∈On e -V (x) , and by Remark 2, E[ x∈On e -V (x) ] = E[ x∈On e -V (x) ]e δt-δt ≤ ℓ n e δt-δ 2 (log n) α ≤ e δt-c β (log n) α-1 for n large enough. Now assume t ≤ (log n) α /2. The expectation in (I.24) is smaller than k≤⌊Aℓn⌋ p≥1 1 {p=⌊ k+i β ⌋-i} E |x|=k e -V (x) 1 {V (xp)≥(log n) α -t} 1 {x∈On} + E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ,
with A > 0 such that the last term is smaller than 1/n (Remark 2). Note that p = ⌊ k+i β ⌋ -i implies k ≥ ⌈βp⌉ and as k≤⌊Aℓn⌋ 1 {p=⌊ k+i β ⌋-i} ≤ β for any p ≥ 1, the above sum is smaller, by the many-to-one Lemma, than

β p≤⌊Aℓn⌋ P S p ≥ (log n) α -t, max j≤⌈pβ⌉ H S j ≤ n + 1 n ≤β ⌊Aℓn⌋ p=Ln P S p ≥ (log n) α -t, max j≤⌈pβ⌉ H S j ≤ n (I.26) + β p<Ln P S p ≥ (log n) α -t + 1 n .
For the second sum in (I.26), by the exponential Markov inequality, for n large enough, all p < L n and t ≥ -B P S p ≥ (log n) α -t ≤ e δnt-δn(log n) α +pψ(1-δn) ≤ e δn(t+B)- 

(log n) 2α 2σ 2 Ln +Lnψ(1-δn) ≤ e δt-(1-ε) (log n) 2α 2σ 2 Ln , with δ n := (log n) α /σ 2 L n ,
H S j ≤ n ≤ e -p π 2 σ 2 (β-1) 8(log n) 2 (1-ε 2 ) = e -p π 2 σ 2 (β-1) 8((1-ε/2) -1/2 log n) 2 .
Hence, as log n ≤ (1 -ε/2) -1/2 log n,

⌊Aℓn⌋ p=Ln P S p ≥ (log n) α -t, max j≤⌈pβ⌉ H S j ≤ n is smaller than ⌊Aℓn⌋ p=Ln E 1 {τ (log n) α -t ≤p, max j≤k S j -S j ≤(1-ε/2) -1/2 log n} e -p π 2 σ 2 (β-1) 8((1-ε/2) -1/2 log n) 2 ≤ Aℓ n E 1 {max j≤τ (log n) α -t S j -S j ≤(1-ε/2) -1/2 log n} e -τ (log n) α -t π 2 σ 2 (β-1) 8((1-ε/2) -1/2 log n) 2 ≤ Aℓ n e √ 1-ε 2 c β t log n -c β (log n) α-1 (1-ε 2 ) ≤ Aℓ n e c β (t+B) log n -c β (log n) α-1 (1-ε 2 ) ≤ 1 3 e δt-c β (log n) α-1 (1-ε) ,
where Lemma 4.1 (with ℓ = ((1 -ε/2) -1/2 log n) 2 , r(ℓ) = (log n) α -t, c = π 2 (β -1)/4 and 1-1 -ε/2 instead of ε) provides the second inequality. Finally collecting all the upper bounds of the three sums in (I.26), for n large enough

E x;⌊(|x|+i)/β⌋>i e -V (x) 1 {V (x (⌊(|x|+i)/β⌋-i) )≥(log n) α -t} 1 {x∈On} ≤ 1 3 e δt-c β (log n) α-1 (1-ε) + βe δt-(1-ε) (log n) 2α 2σ 2 Ln + 1 n ≤ 2 3 e δt-c β (log n) α-1 (1-ε) + e δ(t+B) n , which is smaller than e δt-c β (log n) α-1 (1-ε) (we have used that (log n) 2α /L n ≥ (log n) 2(α-1)-εα and (log n) α-1 = o((log n) 2(α-1)-εα ))
. This yields the upper bound in (I.24). Proof of (I.25). Let α n := (log n) α + log n. For all m ≤ log n, by the many-to-one Lemma, the expectation in (I.25) is larger than p,k≥1

1 {p=⌊(k+i)/β⌋-i} P S p ≥ α n , n b < H S k ≤ n b e εc β (log n) α-1 , max j≤k H S j ≤ λ n , S k ≥ 2ℓ 1 3 n δ 1 , S k ≥ -B .
The above probability is larger than (as α n > a log n for all a > 1 δ 1 )

P S p ≥ α n , S p ≥ -B, S p = S p , n b < H S k ≤ n b e εc β (log n) α-1 , max j≤k H S j ≤ λ n , min p<j≤k S j ≥ S p .
Recall that H S j = j i=1 e S i -S j so we have, for any p < j ≤ k, H S j = e Sp-S j H S p + H S p,j where H S p,j = j i=p+1 e S i -S j . Note that S p = S p and min p<j≤k S j ≥ S p implies H S j ≤ p + H S p,j so the previous probability is larger than

P S p ≥ α n , S p ≥ -B, S p = S p , max j≤p H S j ≤ λ n , n b < H S p,k ≤n b e εc β (log n) α-1 -p , max p<j≤k H S p,j ≤ λ n -p, min p<j≤k S j ≥ S p ,
which, thanks to the Markov property at time p, is nothing but the product of

P S p ≥ α n , S p ≥ -B, S p = S p , max j≤p H S j ≤ λ n and P n b < H S k-p ≤ n b e εc β (log n) α-1 -p, max j≤k-p H S j ≤ λ n - p = ne -6(log n) α-1 -p, S k-p ≥ 0 . From now, let p ∈ {L n , . . . , ℓ ′ n = (log n) 4 }.
We first deal with the second probability. Observe that for all i ≥ 0,

p = ⌊(k + i)/β⌋ -i implies k -p ≥ ⌈(β -1)L n ⌉. It follows that for all ε ∈ (0, ε b ), n large enough, for all L n ≤ p ≤ ℓ ′ n , k ≥ 1, i ≥ 0 such that p = ⌊(k + i)/β⌋ -i, P n b < H S k-p ≤ n b e εc β (log n) α-1 -p, max j≤k-p H S j ≤ λ n -p, S k-p ≥ 0 is larger than (as λ n -p ≥ λ n -ℓ ′ n ≥ ne -7c β (log n) α-1 ) P n b < H S k-p ≤ n b e ε 2 c β (log n) α-1 , max j≤k-p H S j ≤ ne -7c β (log n) α-1 , S k-p ≥ 0 ≥ e -π 2 σ 2 8 (k-p) (log λ ′ n ) 2 , with λ ′ n := n (1+ε/2) -1/2
. The last inequality comes from Lemma 4.6 (I.80

) (with ℓ = (log n) 2 , a = 7, c = εc β 2 , d = α-1
2 , k-p and ε/2 instead respectively of k and ε). The equality p = ⌊(k+i)/β⌋-i also implies, for any 0 ≤ i ≤ log n that k -p ≤ (p + log n)(β -1) + β so it follows that the above probability is larger than C exp( π 2 σ 2 (β-1) 8(log λ ′ n ) 2 p) for some positive constant C ∈ (0, 1). Collecting the previous inequalities together with Lemma 4.4 gives, as k≥1 1 {p=⌊(k+i)/β⌋-i} ≥ 1, that for n large enough, the mean in (I.25) is larger than

C ℓ ′ n p=Ln E e - π 2 σ 2 (β-1) 8(log λ ′ n ) 2 p 1 {Sp≥αn,S p ≥-B,Sp=Sp,max j≤p H S j ≤ne -7c β (log n) α-1 } k≥1 1 {p=⌊(k+i)/β⌋-i} ≥ CP(S ℓ ′ n ≥ 0) 2 E e - π 2 σ 2 (β-1) 8(log λ ′ n ) 2 τα n 1 {Ln≤τα n ≤ℓ ′ n ,∀j≤τα n :S j -S j ≤log λ ′ n } ≥ CP(S ℓ ′ n ≥ 0) 2 P(S ℓ ′ n ≥ α n )E e - π 2 σ 2 (β-1) 8(log λ ′ n ) 2 τα n 1 {∀j≤τα n :S j -S j ≤log λ ′ n } -P(S Ln ≥ α n ).
Note that thanks to (I.69) and the fact that α ∈ (1, 2), we can find a constant

c (1.2) > 0 such that CP S ℓ ′ n ≥ 0 2 P S ℓ ′ n ≥ α n ≥ c (1.2) (ℓ ′ n ) -1 ≥ 2e -ε 2 (log n) α-1 . Then applying Lemma 4.1 (with ℓ = log λ ′ n , r = α n , c = π 2 (β -1)/4 and 1 + ε/2 -1 instead of ε), for n large enough E e - π 2 σ 2 (β-1) 8(log λ ′ n ) 2 τα n 1 {∀j≤τα n :S j -S j ≤log λ ′ n } ≥ e -c β (log n) α-1 (1+ ε 2 ) .
Finally, by Markov inequality, 1+ε) . Collecting the different estimates yields (I.25).

P(S Ln ≥ α n ) ≤ L n e -c ′ (1.2) α 2 n /Ln for some constant c ′ (1.2) > 0. Since α 2 n /L n ≥ (log n) 2(α-1)-εα and (log n) α-1 = o((log n) 2(α-1)-εα ), we get that P(S Ln ≥ α n ) ≤ e -c β (log n) α-1 (
We are ready to prove that f n satisfies assumptions (A1), (A2), (A3) and (A4). Recall that

Ψ k n,n b (f n,k ) = E |x|=k e -V (x) f n,k (V (x 1 ), . . . , V (x))1 {x∈O n,n b } where x ∈ O n,n b if and only if max j≤|x| H x j ≤ n and H x > n b , U b = {κ ∈ [0, 1]; for all k ≥ 1, t ∈ R k , n ≥ 1 : 1 {H k (t)>n b } f n,k (t) ≤ C ∞ n -κ } with C ∞ = sup n,ℓ ∥f n,ℓ ∥ ∞ .
• Check of (A1) and asymptotic of h n . We obtain from (I.25) with i = m = 0 and n large enough

E x∈O n,n b e -V (x) 1 {V (x ⌊|x|/β⌋ )≥(log n) α } ≥ E x∈T e -V (x) 1 {V (x ⌊|x|/β⌋ )≥(log n) α } 1 {x∈Υn∩O λn,n b } ≥ e -c β (log n) α-1 (1+ε) .
This implies that for all b ∈ [0, 1), κ b = max U b = 0 (we use a similar argument than in the proof of Theorem 1.1) and additionally with (I.24), gives, taking i = t = 0

h n = n κ b log k≥1 Ψ k n,n b (f n,k ) = log E x∈O n,n b e -V (x) 1 {V (x ⌊|x|/β⌋ )≥(log n) α } ∼ c β (log n) α-1 .
We also deduce from the previous lower bound that (A1) is satisfied.

• For (A2), recalling m n = ⌈εh n /c 2 ⌉ (c 2 is defined in (I.16)), by definition, for any j > 0

f n,j εhn (t 1 , . . . , t j ) = inf s∈[-εhn,εhn] mn f n,mn+j (s 1 , . . . , s mn , t 1 + s mn , . . . , t j + s mn ) = inf sm n ∈[-εhn,εhn] 1 {t ⌊(mn+j)/β⌋-mn ≥(log n) α -sm n } = 1 {⌊(mn+j)/β⌋>mn} 1 t ⌊(mn+j)/β⌋-mn ≥(log n) α +εhn .
Then for any l ∈ N * and all t = (t 1 , . . . , t l ) ∈ R l , f n,l+k εhn (t 1 , . . . , t l , V (x 1 ) + t l , . . . , V (x) + t l ), with |x| = k, is equal to .,. (F |t) in (I.18), we have

1 {mn<⌊(k+i)/β⌋≤i} 1 {t ⌊(k+i)/β⌋-mn ≥(log n) α +εhn} + 1 {⌊(k+i)/β⌋>i} 1 {V (x (⌊(k+i)/β⌋-i) )+t l ≥(log n) α +εhn} ,
k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t ≤ E x∈On e -V (x) f n,l+k εhn (t 1 , . . . , t l , V (x 1 ) + t l , . . . , V (x) + t l ) ≤ k≥1 1 {mn<⌊(i+k)/β⌋≤i} 1 {t ⌊(i+k)/β⌋-mn ≥(log n) α } Ψ k n (1) + E x;⌊(|x|+i)/β⌋>i e -V (x) 1 {V (x (⌊(|x|+i)/β⌋-i) )≥(log n) α -t l } 1 {x∈On} . k≥1 1 {mn<⌊(i+k)/β⌋≤i} 1 {t ⌊(i+k)/β⌋-mn ≥(log n) α } Ψ k n (1) is equal to l p=1 1 {tp≥(log n) α } k≥1 Ψ k n (1)1 {p=⌊ i+k β ⌋-mn} ≤ β l p=1 1 {tp≥(log n) α } ,
where we have used that k≥1

Ψ k n (1)1 {p=⌊ i+k β ⌋-mn} ≤ e ψ(1) k≥1 1 {p=⌊ i+k β ⌋-mn} ≤ β. Also by (I.24) with i = m n + l, t = t l and ε 4A instead of ε, E x;⌊(|x|+i)/β⌋>i e -V (x) 1 {V (x (⌊(|x|+i)/β⌋-i) )≥(log n) α -t l } 1 {x∈On} ≤ e δt l -c β (log n) α-1 (1-ε 4A ) , so k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t ≤ β l p=1 1 {tp≥(log n) α } + 1 2 e δt l -c β (log n) α-1 (1-ε 3A ) .
Note that β l p=1 1 {tp≥(log n) α } is very small for n large enough, any l < ⌊Aℓ n ⌋ and H l (t) ≤ n. Indeed, l p=1 e δ(tp-t l ) ≤ lH l (t) δ ≤ Aℓ n n δ so

β l p=1 1 {tp≥(log n) α } = e δt l β l p=1 e δ(tp-t l ) e -δtp 1 {tp≥(log n) α } ≤ e δt l βAℓ n n δ e -δ(log n) α , which, as α ∈ (1, 2), is smaller than 1 2 e δt l -c β (log n) α-1 (1-ε 3A ) . Finally observe that e -c β (log n) α-1 (1-ε 3A ) = e c β (log n) α-1 2ε 3A e -c β (log n) α-1 (1+ ε 3A ) ≤ e ε A hn k≥1 Ψ k n,n b (f n,k ),
where we have used that h n ∼ c β (log n) α-1 and (I.25) with i = m = 0.

We are left to prove that the technical assumptions (A3) and (A4) are realized. The ideas are very similar to those of the proof of these two assumptions in the previous theorem, we give details here however to keep the proofs independent from one another.

• For (A3), recall that Υ k n is the set

{t = (t 1 , . . . , t k ) ∈ R k ; H k (t) ≤ n b e εhn , t k ≥ 2ℓ 1/3 n /δ 1 , min j≤k t j ≥ -B}. Let 0 < ε 1 < ε and recall that λ n = ne -5hn . Note that λ n /2 ≥ λ n = ne -6(log n) α-1 so the sum k≥1 Ψ k λn/2,n b (f n,k εhn 1 Υ k n ) is larger than k≥1 Ψ k λn,n b (f n,k εhn 1 Υ k n ) which is nothing but E x∈O λn,n b e -V (x) 1 {⌊ |x|+mn β ⌋>mn} 1 {V (x ⌊(|x|+mn)/β⌋-mn )≥(log n) α +εhn,Hx≤n b e εhn ,V (x)≥ 2 δ 1 ℓ 1 3 n ,V (x)≥-B} ≥ E x,⌊(|x|+mn)/β⌋>mn e -V (x) 1 {V (x ⌊(|x|+mn)/β⌋-mn )≥(log n) α +hn} 1 {x∈Υn( ε 1 3 )∩O λn,n b } ≥ e -c β (log n) α-1 (1+ ε 1 3 ) ,
where this last inequality comes from (I.25

) with i = m = m n and ε 1 /3 instead of ε. Moreover, e -c β (log n) α-1 (1+ ε 1 3 ) = e -2ε 1 3 c β (log n) α-1 e -c β (log n) α-1 (1-ε 1 3 ) ≥ e -ε 1 hn k≥1 Ψ k n,n b (f n,k
), the last inequality comes from the fact that h n ∼ c β (log n) α-1 and (I.24) with i = t = 0.

• For (A4), first observe that for all k ∈ N * and α

∈ (1, 2), (log n) α -ℓ 1/3 n /δ 1 > log n for n large enough so Ψ k n (f n,k 1 R\H k ℓ 1/3 n /δ 1 ) = E |x|=k e -V (x) 1 {V (x ⌊|x|/β⌋ )≥(log n) α ,V (x)<ℓ 1/3 n /δ 1 } 1 {x∈On} ≤ E |x|=k e -V (x) 1 {V (x)≥(log n) α ,V (x)<ℓ 1/3 n /δ 1 } 1 {V (x)-V (x)≤log n} = 0. Recall that W = |z|=1 e -V (z) and k≥1 Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) ≤ k≥1 Ψ k n (f n,k ) + E W Ψ k n (f n,k ) , which is equal to 2 k≥1 Ψ k n (f n,k ) since E[W ] = e ψ(1)
= 1 and thanks to (I.24) with i = t = 0 and ε 1 4 in place of ε

2 k≥1 Ψ k n (f n,k ) = 2E x∈On e -V (x) 1 {V (x |x|/β )≥(log n) α } ≤ 2e -c β (log n) α-1 (1-ε 1 4 ) ≤ e -c β (log n) α-1 (1-ε 1 3 ) . Moreover, e -c β (log n) α-1 (1-ε 1 3 ) = e 2ε 1 3 c β (log n) α-1 e -c β (log n) α-1 (1+ ε 1 3 ) ≤ e ε 1 hn k≥1 Ψ k n,n b (f n,k
), the last inequality comes from the fact that h n ∼ c β (log n) α-1 and (I.25) with i = m = 0.

Proof of Theorem 1.3. Assume first that a = d = 1 and α ∈ (1, 2) which corresponds to the second and third case of 2. PROOF OF THE THEOREMS 65 the theorem. Let us start with the proof of the two facts, note that we distinguish whether b = 0 or b ∈ (0, 1/2). Facts for the case b = 0 : for all B, δ > 0, ε ∈ (0, ε b ) and n large enough, for any t ≥ -B,

E x∈On e -V (x) j≤|x| H x j 1 {V (x)≥(log n) α -t} ≤ e δt-2(log n) α/2 (1-ε) , (I.27)
and for all 0

≤ m ≤ log n, 0 ≤ M ≤ e (log n) α/2 E x∈T e -V (x) 1 {x∈Υ n,1 ∩O λ n,1 } M |x| + j≤|x| H x j 1 {V (x)≥(log n) α +m} ≥ e -2(log n) α/2 (1+ε) , (I.28) with λ n,1 = ne -12(log n) α/2 and Υ n,1 = Υ n,1 (ε) := {x ∈ T; H x ≤ e 2ε(log n) α/2 , V (x) ≥ -B}.
We first deal with the upper bound (I.27). Note that if t > (log n) α /2, then (I.27) is obviously satisfied. Indeed, ( j≤|x|

H x j ) -1 1 {V (x)≥(log n) α -t} ≤ 1 so for n large enough E x∈On e -V (x) j≤|x| H x j 1 {V (x)≥(log n) α -t} ≤ E x∈On e -V (x) e -δt e δt ≤ ℓ n e δt-δ 2 (log n) α ≤ e δt-2(log n) α/2 (1-ε) ,
where we have used Remark 2. Now assume t ≤ (log n) α /2, by the many-to-one Lemma, the expectation in (I.27) is smaller than

k≤⌊Aℓn⌋ E 1 k j=1 H S j 1 {τ (log n) α -t ≤k, max j≤k H S j ≤n} + E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} , (I.29)
the second sum is treated as usual : Remark 2 with a chosen A, together with the fact that α ∈ (1, 2) and t ≥ -B implies that

E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} ≤ 1/n ≤ 1 2 e δt-2(log n) α/2 (1-ε) . Also using that ( k j=1 H S j ) -1 ≤ e -max j≤k S j -S j leads to k≤⌊Aℓn⌋ E 1 k j=1 H S j 1 {τ (log n) α -t ≤k, max j≤k H S j ≤n} ≤ ⌊Aℓ n ⌋E e -max j≤τ (log n) α -t S j -S j . Since t < (log n) α /2, (log n) α -t > (log n) α /2 so by Lemma 4.2 with ε 2 instead of ε and any t ≥ -B E e -max j≤τ (log n) α -t S j -S j ≤ e -2(1-ε 2 ) √ (log n) α -t ≤ e -2(1-ε 2 ) (log n) α -(t+B) √ (log n) α +B ≤ 1 2 e δt-2(log n) α/2 (1-ε) .
This treats the first sum in (I.29) and yields (I.27).

We now turn to the lower bound (I.28). Recall ℓ ′ n = (log n) 4 , using that k j=1 H S j ≤ k max j≤k H S j and the fact that m ≤ log n, 0 ≤ M ≤ e (log n) α/2 and λ n,1 > e (log n) α/2 , we obtain thanks to the many-to-one Lemma

E x∈T e -V (x) 1 {x∈Υ n,1 ∩O λ n,1 } M |x| + j≤|x| H x j 1 {V (x)≥(log n) α +m} ≥ k≤ℓ ′ n E 1 2ke (log n) α/2 1 {S k ≥αn, max j≤k H S j ≤e (log n) α/2 , S k ≥-B, S k =S k } ≥ e -(log n) α/2 2ℓ ′ n k≤ℓ ′ n P S k ≥ α n , max j≤k H S j ≤ e (log n) α/2 , S k ≥ -B, S k = S k ,
where α n = (log n) α + log n. By Lemma 4.5 (with ℓ = (log n) 2 , t ℓ = α n , d = α/4 and a = 0), the previous probability is larger than e -(log n) α/2 (1+ ε 2 ) . Finally collecting the inequalities, we get (I.28).

Facts for the case b ∈ (0, 1/2) : for any t ≥ -B, r ≥ 0 and w > 0

E x∈On e -V (x) 1 {r+Hx>n b /(w(log n) 2 )} r + j≤|x| H x j 1 {V (x)≥(log n) α -t} ≤ (w + 1)n -b e δt-1-ε b (log n) α-1 . (I.30) Also for all 0 ≤ m ≤ log n, 0 ≤ M ≤ n b E x∈T e -V (x) 1 {x∈Υ n,2 ∩O λ n,2 ,n b } M |x| + j≤|x| H x j 1 {V (x)≥(log n) α +m} ≥ n -b e -1+ε b (log n) α-1 , (I.31) with λ n,2 = ne -6 b (log n) α-1 and Υ n,2 = Υ n,2 (ε) := {x ∈ T; H x ≤ n b e ε b (log n) α-1 , V (x) ≥ -B}.
We first deal with the upper bound (I.30). We split the sum according to the generation of x : when |x| > ⌊Aℓ n ⌋, we use that

1 {r+Hx>n b /(w(log n) 2 ),V (x)≥(log n) α -t} (r + j≤|x| H x j ) -1 ≤ 1 so the expectation in (I.30) is smaller than E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} + E |x|≤⌊Aℓn⌋ e -V (x) 1 {r+Hx>n b /(w(log n) 2 )} r + j≤|x| H x j 1 {V (x)≥(log n) α -t} 1 {x∈On} .
Then, when |x| ≤ ⌊Aℓ n ⌋, we again split the sum but this time according to max j≤|x| H x j : when 

max j≤|x| H x j > n b e 1 b (log n) α-1 , we use that 1 {r+Hx>n b /(w(log n) 2 ),V (x)≥(log n) α -t} (r+ j≤|x| H x j ) -1 ≤ (max j≤|x| H x j ) -1 ≤ n -b e -1 b (log n) α-1 . Otherwise, one can observe that 1 {r+Hx>n b /(w(log n) 2 )} (r + j≤|x| H x j ) -1 ≤ 1 {r+Hx>n b /(w(log n) 2 )} (r + H x ) -1 ≤ wn -b (log n) 2 .
E |x|>⌊Aℓn⌋ e -V (x) 1 {x∈On} + E |x|≤⌊Aℓn⌋ e -V (x) 1 {x∈On} n -b e -1 b (log n) α-1 + wn -b (log n) 2 E |x|≤⌊Aℓn⌋ e -V (x) 1 {V (x)≥(log n) α -t, max j≤|x| Hx j ≤n b e 1 b (log n) α-1 } ,
which, by Remark 2 and the many-to-one Lemma, is smaller, for n large enough, than

1 n + ℓ n n -b e -1 b (log n) α-1 + wn -b (log n) 2 k≤⌊Aℓn⌋ P S k ≥ (log n) α -t, max j≤k H S j ≤ n b e 1 b (log n) α-1 . Also, k≤⌊Aℓn⌋ P S k ≥ (log n) α -t, max j≤k H S j ≤ n b e -1 b (log n) α-1 is smaller than ⌊Aℓ n ⌋P max j≤τ (log n) α -t S j -S j ≤ b log n + 1 b (log n) α-1 ≤ e t log n -1 b (log n) α-1 (1-ε 2 ) ,
where Lemma A.3 in [START_REF] Hu | The potential energy of biased random walks on trees[END_REF] provides us the last inequality for n large enough and any t.

Finally, note that for any δ > 0, n large enough, any w > 0 and any t ≥ -B,

1/n ≤ 1 3 n -b e -δB-1-ε b (log n) α-1 ≤ w+1 3 n -b e δt-1-ε b (log n) α-1 , ℓ n n -b e -1 b (log n) α-1 ≤ 1 3 n -b e -δB-1-ε b (log n) α-1 ≤ w+1 3 n -b e δt-1-ε b (log n) α-1 , wn -b (log n) 2 e t log n -1 b (log n) α-1 (1-ε 2 ) ≤ w+1 n b (log n) 2 e t+B log n -1 b (log n) α-1 (1-ε 2 ) ≤ w+1 3n b e δt-1-ε b (log n) α-1
and this finish the proof of the first fact. We now turn to the lower bound (I.31). By the many-to-one Lemma, for any m ≤ log n, 0 ≤ M ≤ n b and A > 0, the mean in (I.31) is larger than (as

λ n,2 > n b e ε 3b (log n) α-1 ) k≤⌊Aℓn⌋ E 1 kn b + k j=1 H S j 1 {S k ≥αn,max 1≤j≤k H S j ≤n b e ε 3b (log n) α-1 ,H S k >n b ,S k ≥-B} ≥ n -b 2Aℓ n e -ε 3b (log n) α-1 k≤⌊Aℓn⌋ P S k ≥ α n , max 1≤j≤k H S j ≤ n b e ε 3b (log n) α-1 , H S k > n b , S k ≥ -B , with α n := (log n) α + log n. By Lemma 4.3 (I.77) (with ℓ = (log n) 2 , t ℓ = α n , q = b, a b = -a = -ε 3b , d = α-1 2 and c = ε 3b ) the above sum is larger, for n large enough, than e -1 b (log n) α-1 (1+ ε 2 ) ≥ 2Aℓ n e -1 b (log n) α-1 (1+ε)
, which completes the proof of the upper bound.

We are ready to prove that f n satisfies assumptions (A1), (A2), (A3) and (A4).

• Check of (A1) and asymptotic of h n . (I.28) with m = M = 0 implies, for b = 0 and n large enough

k≥1 Ψ k n (f n,k ) ≥ E x∈T e -V (x) j≤|x| H x j 1 {V (x)≥(log n) α } 1 {x∈Υ n,1 ∩O λ n,1 } ≥ e -2(log n) α/2 (1+ε) .
This implies that κ 0 = max U 0 = 0 (see the part concerning κ b in the proof of Theorem 1.1 for 68 CHAPITRE I. GENERALIZED RANGE IN THE SLOW REGIME details) and additionally with (I.27) and t = 0

h n = n κ b log k≥1 Ψ k n,n b (f n,k ) ∼ 2(log n) α/2 .
We also deduce from the previous lower bound that (A1) is satisfied. From (I.30) with r = t = 0, w = 1 and ε 2 instead of ε, we get for all b ∈ (0, 1) and n large enough

k≥1 Ψ k n,n b (f n,k ) ≤ E x∈On e -V (x) 1 {Hx>n b /(log n) 2 } j≤|x| H x j 1 {V (x)≥(log n) α } ≤ n -b e -1-ε b (log n) α-1 .
This implies that for all b ∈ (0, 1), κ b ≥ b. From (I.31) with m = M = 0, we get that for all b ∈ (0, 1)

k≥1 Ψ k n,n b (f n,k ) ≥ E x∈T e -V (x) j≤|x| H x j 1 {V (x)≥(log n) α } 1 {x∈Υ n,2 ∩O λ n,2 ,n b } ≥ n -b e -1+ε b (log n) α-1 .
This implies that for all b ∈ (0, 1/2), κ b ≤ b. Finally, for any b ∈ (0, 1/2), κ b = b and

h n = n κ b log k≥1 Ψ k n,n b (f n,k ) ∼ 1 b (log n) α-1 .
We also deduce from the previous lower bound that (A1) is satisfied.

• For (A2), recalling m n = ⌈εh n /c 2 ⌉ (see (I.16)) and for all s = (s 1 , . . . , s mn ) ∈ R mn , t = (t 1 , . . . , t k ) ∈ R k , with u = (s 1 , . . . , s mn , t 1 + s mn , . . . , t k + s mn )

f n,mn+k (s 1 , . . . , s mn , t 1 + s mn , . . . , t k + s mn ) =

1 {t k +sm n ≥(log n) α } 1 mn+k j=1 H j (u) . (I.32) Note that mn+k j=1 H j (u) = mn j=1 H j (s) + k j=1 e -t j H mn (s) + H j (t)) ≥ k j=1 H j (t so f n,k εhn (t 1 , . . . , t k ) = inf s∈[-εhn,εhn] mn
f n,mn+k (s 1 , . . . , s mn , t 1 + s mn , . . . , t k + s mn )

≤ inf sm n ∈[-εhn,εhn] 1 {t k +sm n ≥(log n) α } 1 k j=1 H j (t) = 1 {t k ≥(log n) α +εhn} k j=1 H j (t)
. 

It follows that f n,k εhn (t 1 , . . . , t k ) ≤ 1 {t k ≥(log n) α } k j=1 H j (t j ) -1 and for |x| = k with u x = (t 1 , . . . , t l , V (x 1 ) + t l , . . . , V (x) + t l ) f n,l+k εhn (t 1 , . . . , t l , V (x 1 ) + t l , . . . , V (x) + t l ) ≤ 1 {V (x)≥(log n) α -t l } 1 l+k j=1 (u x ) . Assume b = 0. Observe again that l+k j=1 (u x ) = l j=1 H j (t) + k j=1 e -V (x j ) H l (t) + H x j ≥ j≤k H x j .
) ∈ R l with t l ≥ -B k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t ≤ E x∈On e -V (x) f n,l+k εhn (t 1 , . . . , t l , V (x 1 ) + t l , . . . , V (x) + t l ) ≤ E x∈On e -V (x) 1 {V (x)≥(log n) α -t l } 1 j≤k H x j ≤ e δt l -2(log n) α/2 (1-ε 3A ) ,
where we have used (I.27) with t = t l and replaced ε by ε 3A for the last inequality. Finally, observe that

e -2(log n) α/2 (1-ε 3A ) = e 4ε 3A (log n) α/2 e -2(log n) α/2 (1+ ε 3A ) ≤ e ε A hn k≥1 Ψ k n,n b (f n,k ),
where we have used that h n ∼ 2(log n) α/2 and (I.28) with m = M = 0. Assume b ∈ (0, 1/2). Note that l+k j=1 H j (u x ) ≥ H l (t) + j≤k H x j . Then for all A, B, ε, δ > 0, n large enough, for any l ∈ N * and all t = (t 1 , . . . ,

t l ) ∈ R l with t l ≥ -B k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t ≤ E x∈On e -V (x) 1 {V (x)≥(log n) α -t l } H l (t) + j≤|x| H x j 1 {H l (t)+Hx>n b /(log n) 2 } ≤ 2n -b e δt l -1 b (log n) α-1 (1-ε 4A ) ≤ n -b e δt l -1 b (log n) α-1 (1-ε 3A ) ,
where we have used (I.30) with r = H l (t), w = 1, t = t l and ε 4A instead of ε for the last inequality. Finally, observe that

n -b e δt l -1 b (log n) α-1 (1-ε 3A ) = e 2ε 3bA (log n) α-1 n -b e -1 b (log n) α-1 (1+ ε 3A ) ≤ e ε A hn k≥1 Ψ k n,n b (f n,k ),
where we have used that h n ∼ 1 b (log n) α-1 and (I.31) with m = M = 0.

We are left to prove that technical assumptions (A3) and (A4) are realized.

• For (A3), recall that Υ k n = {t = (t 1 , . . . , t k ) ∈ R k ; H k (t) ≤ n b e εhn , V (x) ≥ 2ℓ 1/3 n /δ 1 , t k ≥ -B}. By (I.32), for |x| = k with v x = (s 1 , . . . , s mn , V (x 1 ) + s mn , . . . , V (x) + s mn ) f n,k εhn (V (x 1 ), . . . , V (x)) = inf s∈[-εhn,εhn] mn 1 {V (x)+sm n ≥(log n) α } 1 mn+k j=1 H j (v x )
, and recall that mn+k j=1 H j (v x ) = mn j=1 H j (s) + k j=1 e -V (x j ) H mn (s) + H x j . For |x| = k such that V (x) ≥ -B, observe, as s ∈ [-εh n , εh n ] mn , that mn+k j=1 H j (v x ) ≤ m n e 2εhn +km 2 n e 2εhn+B + k j=1 H x j . Also recall, by definition, that h n ≥ (log n) γ for γ ∈ (0, 1) so

mn+k j=1 H j (v x ) ≤ 70 CHAPITRE I. GENERALIZED RANGE IN THE SLOW REGIME 2km 2 n e 2εhn+B + k j=1 H x j ≤ ke 3εhn + k j=1 H x j . It follows that f n,k εhn (V (x 1 ), . . . , V (x)) ≥ 1 {V (x)≥(log n) α +εhn} ke 3εhn + k j=1 H x j -1
.

Let 0 < ε 1 < ε and recall λ n = ne -5hn ≥ 2λ n,i , i ∈ {1, 2}. Thanks to the previous inequality and the fact that (log n) α > 2ℓ

1/3 n /δ 1 , we have k≥1 Ψ k λn/2,n b (f n,k εhn 1 Υ k n ) ≥ E x∈O λ n,i ,n b e -V (x) 1 {V (x)≥(log n) α +εhn} |x|e 3εhn + j≤|x| H x j 1 {Hx≤n b e εhn ,V (x)≥-B} .
Assume b = 0. By (I.28) with m = h n , M = e (log n) α/2 and ε 1 3 instead of ε, together with the fact that h n ∼ 2(log n) α/2 , for n large enough k≥1

Ψ k λn/2 (f n,k εhn 1 Υ k n ) ≥ E x∈T e -V (x) 1 {V (x)≥(log n) α +hn} |x|e (log n) α/2 + j≤|x| H x j 1 {x∈Υ n,1 ( ε 1 3 )∩O λ n,1 } ≥ e -2(log n) α/2 (1+ ε 1 3 ) . Moreover, e -2(log n) α/2 (1+ ε 1 3 ) = e -4ε 1 3 (log n) α/2 e -2(log n) α/2 (1-ε 1 3 ) ≥ e -ε 1 hn k≥1 Ψ k n,n b (f n,k
), the last inequality comes from the fact that h n ∼ 2(log n) α/2 and (I.27) with t = 0. Assume b ∈ (0, 1/2). By (I.31) with m = h n and M = n b , together with the fact that

h n ∼ 1 b (log n) α-1 , for n large enough k≥1 Ψ k λn/2,n b (f n,k εhn 1 Υ k n ) ≥ E x∈T e -V (x) 1 {V (x)≥(log n) α +hn} |x|n b + j≤|x| H x j 1 {x∈Υ n,2 ( ε 1 3 )∩O λ n,2 } ≥ n -b e -1 b (log n) α-1 (1+ ε 1 3 ) . Moreover, e -1 b (log n) α-1 (1+ ε 1 3 ) = e -2ε 1 3b (log n) α-1 e -1 b (log n) α-1 (1- ε 1 3 ) ≥ n b e -ε 1 hn k≥1 Ψ k n,n b (f n,k
), the last inequality comes from the fact that h n ∼ 1 b (log n) α-1 and (I.30) with r = t = 0, w = 1 and we have used that n b (log n) -2 < n b .

• Finally for (A4), we first observe that for all k ∈ N * and α ∈ (1, 2), (log n) α > 2ℓ

1/3 n /δ 1 for n large enough so Ψ k n (f n,k 1 R\H k ℓ 1/3 n /δ 1 ) = E |x|=k e -V (x) k j=1 H x j 1 {V (x)≥(log n) α ,V (x)<ℓ 1/3 n /δ 1 } 1 {x∈On} = 0. Recall that W = |z|=1 e -V (z) and E[W ] = e ψ(1) = 1 so when b = 0 k≥1 Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) ≤ k≥1 Ψ k n (f n,k ) + E W Ψ k n (f n,k ) = 2 k≥1 Ψ k n (f n,k ),
and thanks to (I.27) for n large enough with t = 0

2 k≥1 Ψ k n (f n,k ) = 2E x∈On e -V (x) j≤|x| H x j 1 {V (x)≥(log n) α } ≤ 2e -2(log n) α/2 (1-ε 1 4 ) ≤ e -2(log n) α/2 (1-ε 1 3 ) .
Moreover, e -2(log

n) α/2 (1-ε 1 3 ) = e 4ε 1 3 (log n) α/2 e -2(log n) α/2 (1+ ε 1 3 ) ≤ e ε 1 hn k≥1 Ψ k n,n b (f n,k
), the last inequality comes from the fact that h n ∼ 2(log n) α/2 and (I.28) with m = M = 0. Otherwise, b ∈ (0, 1/2) and thanks to (I.30) for n large enough with r = t = 0, w = 1 and

ε 1 4 instead of ε k≥1 Ψ k n,n b /(log n) 2 (f n,k ) = x∈On e -V (x) 1 {Hx>n b /(log n) 2 } r + j≤|x| H x j 1 {V (x)≥(log n) α } ≤ 1 n b e -1 b (log n) α-1 (1- ε 1 
3 ) , and we also get from (I.30) with r = t = 0 and w = W that for n large enough

Ψ k n,n b /(W (log n) 2 ) (f n,k ) = E x∈On e -V (x) 1 {Hx>n b /(W (log n) 2 )} r + j≤|x| H x j 1 {V (x)≥(log n) α } ≤ W + 1 n b e -1 b (log n) α-1 (1- ε 1 4 ) .
By (I.5), telling that

E[W 2 ] < ∞, we have C 4 := E[W (W + 1) + 1] = E[W 2 + 2] < ∞ and then k≥1 Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) ≤ C 4 n b e -1 b (log n) α-1 (1- ε 1 4 ) ≤ 1 2n b e -1 b (log n) α-1 (1- ε 1 3 ) . Moreover, e -1 b (log n) α-1 (1- ε 1 3 ) = e ε 1 3b (log n) α-1 e -1 b (log n) α-1 (1+ ε 1 3 ) ≤ n b e ε 1 hn k≥1 Ψ k n,n b (f n,k
), the last inequality comes from the fact that h n ∼ 1 b (log n) α-1 and (I.31) with m = M = 0. This completes the proof for these two cases.

Assume now α = 1 and a ∈ R (with a > 1/δ 1 when d = 1), which corresponds to the first case of the theorem. As usual, let us first state the following two facts : for all b ∈ [0, 1/(d + 1)), B, δ > 0, ε ∈ (0, ε b ) and n large enough, for any t ≥ -B, r ≥ 0 and w > 0

E x∈On e -V (x) 1 {r+Hx>n b /(w(log n) 2 )} r + j≤|x| H x j d 1 {V (x)≥a log n-t} ≤ (w + 1)ℓ 2 n e δt n -bd , (I.33) For any 0 ≤ M ≤ n b , ε < b/3 (when b > 0) E x∈T e -V (x) 1 {x∈Υn∩O λn,n b } M |x| + j≤|x| H x j d 1 {V (x)≥a log n} ≥ 1 ℓ 2 n n -bd , (I.34)
with λ n = n 1-11ε and for any a ′ > 1/δ 1

Υ n = Υ n (ε) := {x ∈ T; H x ≤ n b+ε , V (x) ≥ a ′ log n, V (x) ≥ -B}.
These facts ensure that f n satisfies assumptions (A1), (A2), (A3) and (A4) for b ∈ (0, 1/(d + 1)). (A3) does not hold exactly when b = 0 so we use (I.38) (which appears in the proof of Theorem 1.5) together with the result when b > 0 to conclude this case.

• Check of (A1) and asymptotic of h n . We get from (I. Indeed, on the one hand, (I.33) with r = t = 0 and w = 1 gives, for n large enough

n κ b k≥1 Ψ k n,n b (f n,k ) = n bd E x∈O n,n b e -V (x) k j=1 H x j d 1 {V (x)≥a log n} ≤ 2 d ℓ 2 n ,
and on the other hand, we get from (I.34), for n large enough that

n κ b k≥1 Ψ k n,n b (f n,k ) ≥ 1 ℓ 2 n .
From these inequalities, we get that for any γ ∈ (0, 1), | log(n

κ b k≥1 Ψ k n,n b (f n,k ))| ≤ 3 log ℓ n = o((log n) γ
). Then h n = log n and we also deduce that (A1) is satisfied.

• For (A2), let |x| = k and observe that f n,l+k εhn (t 1 , . . . , t l , V (x 1 ), . . . , V (x)) ≤ (H l (t) + H x ) -d so it follows, for all ε ∈ (0, ε b ), A, δ, B > 0, n large enough, any l ∈ N * , t = (t 1 , . . . , t l ) ∈ R l and t l ≥ -B, by (I.33) with r = H l (t), t = t l and w = 1

k≥1 Ψ k n,n b -H l (t) f n,l+k εhn |t ≤ 2 d ℓ 2 n e δt l n -bd ≤ e δt l + ε A hn k≥1 Ψ k n,n b (f n,k ),
where the last inequality comes from (I.34).

• For (A3), recall that k≥1

Υ k n = {t = (t 1 , . . . , t k ) ∈ R k ; H k (t) ≤ n b+ε , V (x) ≥ 2ℓ 1/3 n /δ 1 , t k ≥ -B}. For |x| = k, we have f n,k εhn (V (x 1 ), . . . , V (x)) ≥ 1 {V (x)≥(a+ε)(log n)} kn 3ε + k j=1 H x j -d , 2 
Ψ k λn/2,n b (f n,k εhn 1 Υ k n ) ≥ E x∈T e -V (x) 1 {Υn∩O λn,n b } (|x|n b + j≤|x| H x j ) d ≥ 1 ℓ 2 n n -bd ≥ e -ε 1 hn k≥1 Ψ k n,n b (f n,k ),
where we recall λ n = n 1-10ε .

• Finally, for (A4) with d = 1 (and then a > 1/δ 1 )

Ψ k n (f n,k 1 R\H k ℓ 1/3 n /δ 1 ) = E |x|=k e -V (x) 1 {x∈On} k j=1 H x j d 1 {V (x)≥a log n,V (x)<ℓ 1/3 n /δ 1 } = 0.
Otherwise, d = 0 and for any a ∈ R, thanks to Remark 2

k≥1 Ψ k n (f n,k 1 R\H k ℓ 1/3 n /δ 1 ) = E x∈On e -V (x) 1 {V (x)≥a log n,V (x)<ℓ 1/3 n /δ 1 } ≤ E x∈On e -V (x) ≤ ℓ n ,
which, thanks to (I.34), is smaller than e ε 1 hn k≥1 Ψ k n,n b (f n,k ) for all ε 1 > 0. We get from (I.33) with r = t = 0 and w = W that for n large enough

Ψ k n,n b /(W (log n) 2 ) (f n,k ) = E x∈On e -V (x) 1 {Hx>n b /(W (log n) 2 )} ( j≤|x| H x j ) d 1 {V (x)≥a log n} ≤ (W + 1)ℓ 2 n n -bd .
By (I.5), telling that

E[W 2 ] < ∞, we have C 4 := E[W (W + 1) + 1] = E[W 2 + 2] < ∞ and then k≥1 Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) ≤ 2C 4 ℓn -bd ≤ e ε 1 hn k≥1 Ψ k n,n b (f n,k ),
where, again, the last inequality comes from (I.34). This finishes the proof of the result of the theorem for b ∈ (0, 1/(d + 1)). Now assume b = 0 and let ε > 0. Using the result of the theorem with b ε = ε/(2 + d) and the fact that

R n (1 [n bε ,∞) , f n ) ≤ R n (1 [1,∞) , f n ), we get the following lower bound for R n (1 [1,∞) , f n ) : P(log + R n (1 [1,∞) , f n ) < (1 -ε) log n) is smaller than P log + R n (1 [n bε ,∞) , f n ) < (1 -(1 + d)b ε -ε/(2 + d)) log n → 0,
where we have used the case b > 0. For the upper bound, we use an intermediate result in the proof of Theorem 1.5 : recall that κ 0 = 0 and h n = log n.

Also recall ξ = lim n→∞ h -1 n log(n κ b k≥1 Ψ k n,n b (f n,k )).
It's easy to see that ξ = 0 and by (I.38)

P(log + R n (1 [1,∞) , f n ) > (1 + ε) log n) ≤ P 1 n R n (1 [1,∞) , f n ) > e εhn → 0,
this ends the proof of the theorem for all b ∈ [0, 1/(d + 1)).

Proof of Theorem 1.4.

Here f n,k (t 1 , t 2 , • • • , t k ) = 1 {t ⌊k/β⌋ ≥(log n) α } ( ⌊k/β⌋
j=1 H j (t)) -1 with β > 1 and α ∈ (1, 2). We state the following facts : for all B, δ > 0, ε ∈ (0, ε b ), n large enough, any t ≥ -B and i ∈ N

E x;⌊|x|+i/β⌋>i e -V (x) 1 {x∈On} ⌊|x|/β⌋ j=1 H x j 1 {V (x ⌊(|x|+i)/β⌋-i )≥(log n) α -t} ≤ e δt-2(log n) α/2 (1-ε) , (I.35)
and for all 0

≤ i, m ≤ log n, 0 ≤ M ≤ e (log n) α/2 E x;⌊|x|+i/β⌋>i e -V (x) 1 {x∈Υn∩O λn } M |x| + ⌊|x|/β⌋ j=1 H x j 1 {V (x ⌊(|x|+i)/β⌋-i )≥(log n) α +m} ≥ e -2(log n) α/2 (1+ε) , (I.36)
with λ n = ne -12(log n) α/2 and for any a > 1

δ 1 Υ n = Υ n (ε) := {x ∈ T; H x ≤ e 2ε(log n) α/2 , V (x) ≥ a log n, V (x) ≥ -B}.
Using these two facts, we follow the same lines as in the previous theorem to prove that h n ∼ 2(log n) α/2 and that (A1) to (A4) are satisfied.

Proof of Theorem 1.5

First, note that Remark 1 implies that ξ = lim n→∞ h -1 n log(n κ b k≥1 Ψ k n,n b (f n,k )) well exists. To prove Theorem 1.5, we first show that Assumptions (A3) and (A4) yield a simpler statement for both lower and upper bound of Proposition 1. This implies a convergence in probability for stopped ranges R T kn with k n = ⌈n/(log n) 3/2 ⌉ and R T n . Then, we use a result of [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF] (Proposition 2.4) implying that T n /(n log n) converges in probability to a positive limit in order to obtain the result for R n . Let us start with the Lower bound : Recalling the expression of

u 1,n = k≥1 Ψ k λn/2,n b (f n,k εhn 1 Υ k n ) (see below (I.20)), together with (A3) choosing ε 1 = min(1, c 5 ) ε 4 (see Proposition 1 for c 5 ), we get u 1,n ≥ e -min(1,c 5 ) ε 4 k≥1 Ψ k n,n b f n,k .
This, together with the fact that, by definition of ξ, n

κ b k≥1 Ψ k n,n b (f n,k ) > e (ξ-ε)hn for n large enough, implies P R T kn (g n , f n ) n 1-b-κ b φ(n b ) < e (ξ-7ε)hn ≤ P R T kn (g n , f n ) n 1-b φ(n b ) k≥1 Ψ k n,n b (f n,k ) < e -6εhn ≤ P R T kn (g n , f n ) n 1-b φ(n b )u 1,n < e -5εhn .
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Also considering (I.20), P

R T kn (gn,f n ) n 1-b φ(n b )u 1,n < e -5εhn
is smaller than e (-c 5 + min(1,c 5 )

2

)εhn + h n e -εhn + e -min(ε log n,3hn)+min(1,c 5 ) ε 2 hn

n κ b k≥1 Ψ k n,n b (f n,k ) 2 ≤ e -εc 5 2 hn + h n e -εhn + e -min(ε log n,3hn)+ ε 2 hn+2| log(n κ b k≥1 Ψ k n,n b (f n,k ))| . Now, thanks to Remark 1, for n large enough, | log(n κ b k≥1 Ψ k n,n b (f n,k ))| is smaller than ε 8 log n ≤ -min(-ε 8 log n, -h n ) and ε 2 h n is smaller than ≤ -1 2 min(-ε log n, -h n ) so we have that -min(ε log n, 3h n )+ ε 2 h n +2| log(n κ b k≥1 Ψ k n,n b (f n,k ))| is smaller than -1 2 min(ε log n, h n ).
Finally, for all ε ∈ (0, ε b ) and n large enough

P R T kn (g n , f n ) n 1-b-κ b φ(n b
) < e (ξ-7ε)hn ≤ e -εc 5 2 hn + h n e -εc 2 hn + e -1 4 min(ε log n,hn) , then switching ε by ε/7 in the above probability, we obtain as h n → +∞, the desired expression : for all ε ∈ (0, 7ε b )

lim n→∞ P R T kn (g n , f n ) n 1-b-κ b φ(n b ) < e (ξ-ε)hn = 0.
We are now ready to move from R T kn to R n . First note that

P R n (g n , f n ) n 1-b-κ b φ(n b ) < e (ξ-ε)hn ≤ P R n (g n , f n ) n 1-b-κ b φ(n b )
< e (ξ-ε)hn , T kn ≤ n + P(T kn > n),

recalling that R n (g n , f n ) = x∈T g n (L n x )f n,|x| (V (x 1 ), V (x 2 ), • • • , V (x)
) and g n (t) = φ(t)1 {t≥n b } with b ∈ [0, 1). Then, as φ is non-decreasing and positive, so is g n , hence

T kn ≤ n implies g n (L T kn x ) ≤ g n (L n x ) and therefore R T kn (g n , f n ) ≤ R n (g n , f n ) since f n,k ≥ 0. It follows that P R n (g n , f n ) n 1-b-κ b φ(n b ) < e (ξ-ε)hn ≤ P R T kn (g n , f n ) n 1-b-κ b φ(n b ) < e (ξ-ε)hn + P(T kn > n),
and thanks to the above convergence, together with the fact that (T n /(n log n)) n convergences in P-probability to an almost surely finite and positive random variable, we obtain the desired expression : for all ε ∈ (0, 7ε b ) :

lim n→∞ P R n (g n , f n ) n 1-b-κ b φ(n b )
< e (ξ-ε)hn = 0. (I.37)

Upper bound : we prove the following statement, for all ε > 0

lim n→∞ P R n (g n , f n ) n 1-b-κ b φ(n b ) > e (ξ+ε)hn = 0. (I.38) Recall that u 2,n = k≥1 (Ψ k n (f n,k 1 R k \H k ℓ 1/3 n /δ 1 )+Ψ k n,n b /(log n) 2 (f n,k )+E[W Ψ k n,n b /(W (log n) 2 ) (f n,k )]). Assumption (A4) with ε 1 = ε 4 gives that u 2,n ≤ e ε 4 hn k≥1 Ψ k n,n b (f n,k ), so for n large enough, as n κ b k≥1 Ψ k n,n b (f n,k ) ≤ e (ξ+ ε 2 )hn and T n ≥ n P R n (g n , f n ) n 1-b-κ b φ(n b ) > e (ξ+ε)hn ≤ P R T n (g n , f n ) n 1-b-κ b φ(n b ) > e (ξ+ε)hn ≤ P R T n (g n , f n ) n 1-b φ(n b ) k≥1 Ψ k n,n b (f n,k ) > e ε 2 hn ≤ P R T n (g n , f n ) n 1-b φ(n b )u 2,n > e ε 4 hn ≤ e -ε 8 hn + o(1),
where the last inequality comes from (I.21) replacing ε by ε 4 . Then, taking the limit, we get (I.38). We are now ready to prove the theorem. We split this proof in three parts depending on the values of (recall

) L = lim inf n→∞ h -1 n log n 1-b-κ b φ(n b ) . • Assume L ∈ (-ξ, +∞].
For any t ∈ R, e log + t = e log(t∨1) ≥ t so for any ε ∈ (0, ε b ) and n large enough,

P log + R n (g n , f n ) -log(n 1-b-κ b φ(n b )) < (ξ -ε)h n is smaller than P e log + Rn(gn,f n ) < n 1-b-κ b φ(n b )e (ξ-ε)hn ≤ P R n (g n , f n ) n 1-b-κ b φ(n b )
< e (ξ-ε)hn → 0, where the limit comes from (I.37). Note that this lower bound remains true even when L ̸ ∈ (-ξ, +∞]. However, we need that L ∈ (-ξ, +∞] for the upper bound. Indeed, in this case, for n large enough, n 1-b-κ b φ(n b ) > e -ξhn and for any ε > 0, n 1-b-κ b φ(n b )e (ξ+ε)hn > e εhn > 1 so for n large enough

P(log + R n (g n , f n ) -log(n 1-b-κ b φ(n b )) > (ξ + ε)h n ) = P(log + R n (g n , f n ) > log(n 1-b-κ b φ(n b )e (ξ+ε)hn ), R n (g n , f n ) > 1). Moreover, when R n (g n , f n ) > 1, log + R n (g n , f n ) = log R n (g n , f n ) so the previous probability is equal to P log R n (g n , f n ) > log(n 1-b-κ b φ(n b )e (ξ+ε)hn ), R n (g n , f n ) > 1 ≤ P R n (g n , f n ) n 1-b-κ b φ(n b )
> e (ξ+ε)hn .

Then, taking the limit, we get the result thanks to (I.38).

• Assume L = -ξ. Recall that ∆ n = h -1 n log(n 1-b-κ b φ(n b )) -inf ℓ≥n h -1 ℓ log(ℓ 1-b-κ b φ(ℓ b )). L = -ξ implies that for any ε ∈ (0, ε b ) and n large enough, inf ℓ≥n h -1 ℓ log(ℓ 1-b-κ b φ(ℓ b )) > -ξ -ε 2 so h n ∆ n < log(n 1-b-κ b φ(n b )) + (ξ + ε 2 )h n and as e log + t ≥ t P h -1 n log + R n (g n , f n ) < -ε + ∆ n ≤ P R n (g n , f n ) < e -εhn+hn∆ n ≤ P R n (g n , f n ) n 1-b-κ b φ(n b ) < e (ξ-ε 2 )hn → 0,
where the limit comes from (I.37). Also, L = -ξ implies that for any ε ∈ (0, ε b ) and n large enough, inf ℓ≥n h

-1 ℓ log(ℓ 1-b-κ b φ(ℓ b )) < -ξ + ε 2 so h n ∆ n > log(n 1-b-κ b φ(n b )) + (ξ -ε 2 )h n and as h n (ε + ∆ n ) > 0, P(h -1 n log + R n (g n , f n ) > ε + ∆ n ) = P(log R n (g n , f n ) > h n (ε + ∆ n ), R n (g n , f n ) > 1) which is smaller than P R n (g n , f n ) > e εhn+hn∆ n ≤ P R n (g n , f n ) n 1-b-κ b φ(n b ) > e (ξ+ ε 2 )hn → 0,
where the limit comes from (I.38).

• Assume L ∈ [-∞, -ξ). In this case, there exists an increasing sequence (n ℓ ) ℓ of positive integers (with

n ℓ = ℓ when lim h -1 n log(n 1-b-κ b φ(n b )) = L) and ε L > 0 such that for any ℓ ∈ N * , n 1-b-κ b ℓ φ(n b ℓ ) < e -( ξ+2ε 
L )hn and for any ε ′ > 0

P R n ℓ (g n ℓ , f n ℓ ) > ε ′ ≤ P R n ℓ (g n ℓ , f n ℓ ) > e -ε L hn ≤ P R n ℓ (g n ℓ , f n ℓ ) n 1-b-κ b ℓ φ(n b ℓ )
> e (ξ+ε L )hn → 0, where the limit comes from (I.38) with ε = ε L , which ends the proof. □

3 Proof of Proposition 1

The proof of Proposition 1 is decomposed as follows. In the first short section below, we present the expression of the generating function with constraint of edge local time. In a second sub-section, we prove the lower bound (I.20), this section is itself decomposed in different steps treating successively the random walk at fixed environment and then an important quantity of the environment. Finally, in a third section, we obtain the upper bound (I.21). Note that the fact that the upper and the lower bounds are robust when replacing T n by T kn with k n = ⌊n/(log n) p ⌋, with p > 0, does not need extra arguments than the ones that follow.

Preliminary

We first introduce the edge local time N n x of a vertex x ∈ T, that is the number of times the random walk X visits the edge (x * , x) before the instant n :

N n x := n i=1 1 {X i-1 =x * , X i =x} , (I.39)
the law of N T 1 x (recall that T 1 is the instant of the first return to the root e) and y;y * =x N T 1 y at fixed environment, that is under P E , are given by Lemma 3.1. Let x ∈ T, and

T x := inf{k > 0, X k = x}, then P E (T x < T 1 ) = e -V (x) /H x and for any i ∈ N * , s ∈ [0, 1] and ν ≥ 0, i) The distribution of N T 1 x under P E x (•) = P E (•|X 0 = x) is geometrical on N with mean H x -1 = 1≤j<|x| e V (x j )-V (x) .
In particular

E E s νN T 1 x 1 {N T 1 x ≥i} = e -V (x) H 2 x 1 - 1 H x i-1 s iν 1 -s ν (1 -1 Hx )
.

ii) For any z ∈ T such that z * = x, the distribution of y;y * =x N T 1 y under P E z is geometrical on N with mean Hx := H x y;y * =x e -Vx(y) with V x (y) = V (y) -V (x) . In particular

E E s ν y;y * =x N T 1 y 1 { y;y * =x N T 1 y ≥i} = e -V (x) H x Hx (1 + Hx ) 2 1 - 1 1 + Hx i-1 s iν 1 -s ν (1 -1 1+ Hx
) .

Démonstration. The fact that P E (T x < T 1 ) = e -V (x) /H x comes from a standard result for onedimensional random walks in random environment, see for example [START_REF] Golosov | Localization of random walks in one-dimensional random environments[END_REF]. The proofs of points i) and ii) are very similar and elements for the first one can be found in [AD20] so we will only deal with the second one.

For any x ∈ T, min y;y * =x T y is the first hitting time of the set {y ∈ T; y * = x} of children of x and let β x := P E x (min y;y * =x T y < T 1 ) be the quenched probability, starting from x, to reach a children of x before hitting the root e. Hence, y;y * =x N T 1 y is the number of times the random walk X visits the «edge» (x, {y ∈ T; y * = x}) before the instant T 1 . It follows, thanks to the strong Markov property, that for all z ∈ T such that x * = z and k ∈ N

P E z y;y * =x N T 1 y = k = β k x (1 -β x ). (I.40)
Note that the right part above does not depend on z. We now compute β x . On the one hand, thanks to (I.40), we have

E E z [ y;y * =x N T 1 y ] = β x /(1 -β x )
and on the other hand, thanks to the first point,

E E z [ y;y * =x N T 1 y ] = y;y * =x E E z [N T 1 y ] = y;y * =x (H y -1) = H x y;y * =x e -Vx(y) = Hx . y;y * =x N T 1
y is finally geometrical on N under P E z with mean Hx and β x = Hx /(1 + Hx ). Introduce α x := P E (min y;y * =x T y < T 1 ), the quenched probability to reach the set {y ∈ T; y * = x} during the first excursion. Thanks to (I.40), we have for all k ∈ N *

P E y;y * =x N T 1 y = k = α x β k-1 x (1 -β x ) and P E y;y * =x N T 1 y = 0 = 1 -α x ,
so on the one hand, E E [ y;y * =x N T 1 y ] = α x /(1 -β x ) and on the other hand, thanks to the first point, y) . It follows that α x is equal to y;y * =x e -V (y) /(1 + Hx ) and the result is proved.

E E [ y;y * =x N T 1 y ] = y;y * =x E E [N T 1 y ] = y;y * =x e -V (

Lower bound for R

T n (g n , f n ) Let us first introduce two key random variables denoted R T n (f n ) and R(f n ). R T n (f n ) is a simplified version of R T n (g n , f n )
which does not depend on the function g n and with a constraint on V : recall λ n = ne -min(10ε log n,5hn) and H k zn = {(t 1 , . . . , t k ) ∈ R k ; t k ≥ z n } where we set for convenience z n := ℓ 1/3 n /δ 1 with ℓ n = (log n) 3 and δ 1 ∈ (0, 1/2) (see (I.5)), then

R T n (f n ) := n i=1 x∈O λn,n b 1 {N T i x -N T i-1 x ≥n b } 1 {∀j̸ =i:N T j x -N T j-1 x =0} f n,|x| 1 H |x| zn (V x ),
where we use the notation

F (V x ) = F (V (x 1 ), • • • , V (x)). Note that the local time until T n which appears in R T n (g n , f n ) is replaced in R T n (f n
) by edge local times excursion by excursion. Also, visited vertices are restricted to some V -regular lines O λn,n b . R T n (g n , f n ) and R T n (f n ) are related as follows, first since φ is non-decreasing

R T n (g n , f n ) ≥ φ(n b ) x∈T 1 {L T n x ≥n b } f n,|x| 1 H |x| zn (V x ). Then, introduce E n x = n i=1 1 {L T i x -L T i-1 x ≥1}
, the number of excursions to the root where the walk hits vertex x. Notice that E n x = 1 if and only if there exists i ∈ {1, . . . , n} such that

L T i x -L T i-1
x ≥ 1 and for any j ∈ {1, . . . , n}, j

̸ = i, L T j x -L T j-1 x = 0 that is N T j x -N T j-1 x = 0. Thus x∈T 1 {L T n x ≥n b } f n,|x| 1 H |x| zn (V x ) ≥ x∈O λn,n b 1 {L T n x ≥n b ,E n x =1} f n,|x| 1 H |x| zn (V x ) ≥ n i=1 x∈O λn,n b 1 {L T i x -L T i-1 x ≥n b } 1 {∀j̸ =i: N T i x -N T i-1 x =0} f n,|x| 1 H |x| zn (V x ),
so finally, as

L T i x -L T i-1 x ≥ N T i x -N T i-1
x , we have the following relation

R T n (g n , f n ) ≥ φ(n b )R T n (f n ). (I.41)
The second random variable R(f n ) depends only on the environment :

R(f n ) := x∈O λn,n b e -V (x) 1 H x 1 - 1 H x n b -1 f n,|x| 1 H |x| zn (V x ),
it can be related to the quenched mean of R T n (f n ) as follows

1 ≤ nR(f n ) E E [R T n (f n )]
≤ (1 -e -zn ) -(n-1) . (I.42) Indeed, the random variables

N T i x -N T i-1
x , i ∈ {1, . . . , n}, are i.i.d under P E so,

E E [R T n (f n )] = n x∈O λn,n b P E (N T 1 x ≥ n b )P E (N T 1 x = 0) n-1 f n,|x| 1 H |x| zn (V x ).
Moreover, on the event {V (x) ≥ z n }, thanks to Lemma 3.1,

P E (N T 1 x = 0) n-1 = P E (T x > T 1 ) n-1 = (1 -e -V (x) /H x ) n-1 ≥ (1 -e -V (x) ) n-1 ≥ (1 -e -zn ) n-1 since H x ≥ 1, and thanks to Lemma 3.1 i) with ν = 0, P E (N T 1 x ≥ n b ) = e -V (x) (1 -1/H x ) n b -1 /H
x which gives (I.42). We are now ready to obtain a relation between a lower bound for R T n (g n , f n ) and a lower bound for R(f n ).

Lemma 3.2. Recall ε b = min(b + 1 {b=0} , 1 -b)/13 and let (a n ) be a sequence of positive numbers. For all ε ∈ (0, ε b ) and n large enough

P * R T n (g n , f n ) < nφ(n b )a n /4n b ≤ P * R(f n ) < a n /n b + ne -min(9ε log n,4hn) n 2κ b a 2 n . (I.43)
Démonstration. Note that thanks to (I.42), for n large enough, nR(

f n ) ≤ 2E E [R T n (f n )], so by (I.41), on the event {R(f n ) ≥ a n /n b } P E R T n (g n , f n ) < nφ(n b )a n /4n b ≤ P E R T n (f n ) < E E [R T n (f n )]/2 .
Using Bienaymé-Tchebychev inequality and the fact that

N T i x -N T i-1
x , i ∈ {1, . . . , n}, are i.i.d under P E implies, on the event

{R(f n ) ≥ a n /n b } P E (R T n (f n ) < E E [R T n (f n )] /2) ≤ 4 E E [R T n (f n )] 2 nVar E (R T 1 (f n )) ≤ 16n 2b a 2 n n x,y∈O λn,n b P E (N T 1 x ∧ N T 1 y ≥ n b )f n,|x| 1 H |x| zn (V x )f n,|y| 1 H |y| zn (V y ). (I.44)
The last inequality coming from the fact that, on {R(f n ) ≥ a n /n b }, thanks to (I.42), we have

E E [R T n (f n )] 2 ≥ n 2 R(f n ) 2 /4 ≥ n 2 a 2 n /4n 2b . Markov inequality in (I.44) yields P E (N T 1 x ∧ N T 1 y ≥ n b ) ≤ E E [N T 1 x N T 1 y ]/n 2b , so finally, on the event {R(f n ) ≥ a n /n b } P E (R T n (g n , f n ) < nφ(n b )a n /4n b ) ≤ 16 na 2 n x,y∈O λn,n b E E [N T 1 x N T 1 y ]f n,|x| 1 H |x| zn (V x )f n,|y| 1 H |y| zn (V y ).
(I.45)

To treat the above sum, we first make a simplification by using the uniform upper bound of the 3. PROOF OF PROPOSITION 1 81 set U b , see (I.11)

x,y∈O λn,n b

E E [N T 1 x N T 1 y ]f n,|x| 1 H |x| zn (V x )f n,|y| 1 H |y| zn (V y ) ≤ C 2 ∞ n 2κ b x,y∈O λn E E [N T 1 x N T 1 y ]. (I.46)
We then split the computations in two distinct steps : the first step is dedicated to the cases x ≤ y or y ≤ x and the second one to the cases nor x ≤ y neither y ≤ x. The key here is to take into account that we are only interested in vertices belonging to λ n -regular lines O λn with λ n = ne -min(10ε log n,5hn) for ε ∈ (0, ε b ).

We start with the cases x ≤ y and y ≤ x and as they are symmetrical, we only deal with the first one. First note that as

E E N T 1 x N T 1 y ≤ 2e -V (y) H x = 2H x e -V (x) e -Vx(y) (see [AD20] Lemma 3.6) E x≤y x,y∈O λn E E [N T 1 x N T 1 y ] ≤ 2E x∈O λn e -V (x) H x y≥x y∈O x λn e -Vx(y) ≤ 2E x∈O λn e -V (x) 2 λ n ≤ 2ℓ 2 n λ n ,
where for all λ > 0, O x λ is translated set of λ-regular lines

O x λ = y ∈ T, y > x; max |x|<j≤|y| H x,y j ≤ λ , H x,y j = x<w≤y j
e Vx(w)-Vx(y j ) , also, the second inequality is obtained thanks to the regular line which yields H x 1 O λn (x) ≤ λ n and the last one comes from Remark 2.

We then move to the second case, neither x ≤ y nor y ≤ x, that we denote x ̸ ∼ y. In this case,

E E N T 1 x N T 1 y = 2H x∧y e V (x∧y)-V (x)-V (y) (see [AD20] Lemma 3.6). Thus E E [N T 1 x N T 1 y ] ≤ 2λ n l≥1 |z|=l e -V (z) 1 {z∈O λn } u̸ =v u * =v * =z e -Vz(u) e -Vz(v) x≥u x∈O u λn e -Vu(x) y≥v y∈O v λn e -Vv(y) ,
where we have used again the regular line O λn which gives an upper bound for H x∧y . Finally, independence of the increments of V conditionally to (T, V (w); w ∈ T, |w| ≤ l + 1) and Remark 2 yields

E x̸ ∼y x,y∈O λn E E [N T 1 x N T 1 y ] ≤ 2λ n E |u|=1 e -V (u) 2 E z∈O λn e -V (z) 3 ≤ 2λ n E |u|=1 e -V (u) 2 (ℓ n ) 3 ,
and thanks to (I.5), the second moment above is finite. 

E E [N T 1 x N T 1 y ]f n,|x| 1 H |x| zn (V x )f n,|y| 1 H |y| zn (V y ) ≤ (ℓ n ) 4 λ n n 2κ b ≤ ne -min(9ε log n,4hn) n 2κ b , (I.47)
the last inequality is justified by the fact (see Remark 1) that (ℓ n ) 4 = o(e hn ) and (ℓ n ) 4 = o(e ε log n ). We are now ready to conclude the proof of the lemma :

P * R T n (g n , f n ) < nφ(n b )a n /4n b is smaller than P * (R(f n ) < a n /n b ) + P * R T n (g n , f n ) < nφ(n b )a n /4n b , R(f n ) ≥ a n /n b ,
then, as the second term in the above inequality is nothing but

E * P E R T n (g n , f n ) < nφ(n b )a n /4n b 1 {R(f n )≥an/n b } ,
the proof ends thanks to (I.45) and (I.47).

Lower bound for R(f n ) This is the most technical part of the proof of Proposition 1. For any n ≥ 2 and ε ∈ (0, ε b ), recall that λ n = ne -min(10ε log n,5hn) and z n = ℓ 1/3 n /δ 1 , δ 1 ∈ (0, 1/2) (see (I.5)) with ℓ n = (log n) 3 . For any ε > 0, let us choose (a n ) as follows

a n := e -4εhn k≥1 Ψ k λn/2,n b f n,k εhn 1 Υ k n (I.48) with Υ k n = {t ∈ R k ; H k (t) ≤ n b e εhn } ∩ H k B,2zn . Recall that Ψ k λ,λ ′ , h n , H k B,2zn
and f n,k εhn can be found respectively in (I.9), (I.13), (I.19) and (I.17).

Lemma 3.3. There exists c 4 > 0 such that for any ε ∈ (0, ε b ) and n large enough

P * R(f n ) < a n /n b ≤ e -ε c 4 c 2 hn E[Z 2 n ] k≥1 Ψ k λn/2,n b f n,k εhn 1 Υ k n 2 + h n e -εc 2 hn , (I.49)
with, recall, m n = ⌈εh n /c 2 ⌉ (see (I.16)).

Démonstration. Recall the expression of R(f n ) :

R(f n ) = x∈O λn,n b e -V (x) 1 H x 1 - 1 H x n b -1 f n,|x| 1 H |x| zn (V (x 1 ), • • • , V (x)),
with H x and H |x| zn respectively defined in (I.8) and (I.19). The main idea here is to cut the tree 3. PROOF OF PROPOSITION 1 83 at the generation m n to introduce independence between generations. First note that

R(f n ) ≥ |u|=mn k≥1 |x|=k+mn x>u; x∈O λn,n b e -V (x) H x 1 - 1 H x n b f n,k+mn 1 H k+mn zn (V (x 1 ), . . . , V (x)),
from here we would like to make a translation to decompose the trajectories of V before and after the generation m n and to do that, we have in particular to re-write H x j for j ≤ |x|. Let u < x with |u| = m n . For all m n < j ≤ |x|, we have H x j = H u e -Vu(x j ) + H u,x j where, for any z < v, H z,v := z<w≤v e Vz(w)-Vz (v) .

So on the events {max |w|≤mn |V (w)| ≤ εh n } and {V u (x):= min u<w≤x (V (w) -V (u)) ≥ -B}, for any B > 0 :

∀i ≤ m n : H x i ≤ m n e 2εhn and ∀ m n < j ≤ |x| : H x j ≤ m n e 2εhn+B + H u,x j .
Assume n b < H u,x ≤ n b e εhn . Then, H x > n b and for n large enough (recall

h n ≤ log n for n large enough, h n → ∞ and ε ∈ (0, ε b )) 1 H x 1 - 1 H x n b ≥ (1 -1/n b ) n b m n e 2εhn+B + H u,x ≥ (1 -1/n b ) n b m n e 2εhn+B + n b e εhn ≥ e -3εhn n b .
Now introduce the translated (λ, λ ′ )-regular lines

O v λ,λ ′ := y ∈ T, y > v; max |v|<j≤|y| H v,y j ≤ λ, H v,y > λ ′ .
Note that for n large enough, O u λn/2,n b ⊂ O λn,n b . Indeed, if |u| = m n and m n < j ≤ |x|, then H x j ≤ m n e 2εhn+B + H u,x j . Moreover, m n e 2εhn+B ≤ e 3εhn ≤ λ n /2 for n large since ε ∈ (0, 1/13), so H u,x j ≤ λ n /2 implies H x j ≤ λ n . For f n,mn+k , we simply write (still on the event { max

|w|≤mn |V (w)| ≤ εh n }) f n,mn+k (V (x 1 ), . . . , V (x)) ≥ f n,k εhn (V u (x mn+1 ), . . . , V u (x)),
where we recall that

f n,k h (t 1 , . . . , t k ) = inf s∈[-h,h] m f n,m+k (s 1 , . . . , s m , t 1 + s m , . . . , t k + s m ) with m = ⌈h/c 2 ⌉. In the same way, if |V (u)| ≤ εh n then 1 {V (x)≥zn} ≥ 1 {Vu(x)≥2zn} since ε < 1 and h n ≤ ℓ 1/3
n . We finally obtain, for n large enough (independently of the environment) on

{max |w|≤mn |V (w)| ≤ εh n } that R(f n ) is larger than e -3εhn n b |u|=mn e -V (u) k≥1 |x|=k+mn x>u; x∈O u λn/2,n b e -Vu(x) 1 {Hu,x≤n b e εhn } f n,k εhn 1 H k B,2zn (V u (x mn+1 ), . . . , V u (x)) ≥ e -4εhn n b |u|=mn k≥1 |x|=k+mn x>u; x∈O u λn/2,n b e -Vu(x) f n,k εhn 1 Υ k n (V u (x mn+1 ), . . . , V u (x)). (I.50) Now, introduce the random variable Z u n Z u n := k≥1 |x|=k+mn x>u; x∈O u λn/2,n b e -Vu(x) f n,k εhn 1 Υ k n (V u (x mn+1 ), . . . , V u (x)),
we obtain

P R(f n ) < e -4εhn E[Z n ]/n b , max |w|≤mn |V (w)| ≤ εh n ≤ P |u|=mn Z u n < E[Z n ] ,
with

Z n := x∈O λn/2,n b e -V (x) f n,|x| εhn 1 Υ |x| n (V (x 1 ), . . . , V (x)). (I.51)
Hence, by Lemma 2.4 in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF], there exists c 4 > 0 such that for n large enough

P * R(f n ) < e -4εhn E[Z n ]/n b , max |w|≤mn |V (w)| ≤ εh n ≤ e -c 4 mn E[Z 2 n ] E[Z n ] 2 , (I.52)
and finally, (I.48) yields

P * R(f n ) < a n /n b , max |w|≤mn |V (w)| ≤ εh n ≤ e -ε c 4 c 2 hn E[Z 2 n ] k≥1 Ψ k λn/2,n b f n,k εhn 1 Υ k n 2 , we have used that E[Z n ] = k≥1 Ψ k λn/2,n b f n,k εhn 1 Υ k n
and m n = ⌈εh n /c 2 ⌉. Finally, (I.16) finishes the proof.

The next step is to give a lower bound for E[Z 2

n ], we do that in the dedicated section below.

Control of the second moment E[Z 2 n ]

In this section we prove the following lemma, Lemma 3.4. Assume (A1) and (A2) hold. For all ε ∈ (0, ε b ), A > 2/c 3 and n large enough

E[Z 2 n ] ≤ e 6ε A hn k≥1 Ψ k n,n b (f n,k ) 2 ,
recall also that c 3 comes from Remark 2.
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Démonstration. The expression of Z 2 n is given by the following sum

x,y∈O λn/2,n b e -V (x)-V (y) f n,|x| εhn 1 Υ |x| n (V x )f n,|y| εhn 1 Υ |y| n (V y )
(see (I.51)) and λ n ≤ n so

Z 2 n ≤ x,y∈O n,n b e -V (x) e -V (y) f n,|x| εhn 1 H |x| B,2zn (V x )f n,|y| εhn 1 H |y| B,2zn
(V y ), (I.53) with (recall) F (V w ) = F (V (w 1 ), . . . , V (w)). Let us split the computations of the upper bound of the mean of Z 2 n into two main cases : the first one is when x and y in the sum (I.53) are directly related in the tree and the second one when it is not : Cases 1 (x ≤ y or y ≤ x) : recall z n = ℓ 1/3 n /δ 1 with ℓ n = (log n) 3 , δ 1 ∈ (0, 1/2) (see (I.5)). For this case, we simply use the fact that f n,i εhn ≤ C ∞ and e -2V (w) 1 {V (w)≥2zn} ≤ e -V (w) /n 2 so by symmetry

E x≤y or y≤x x,y∈O n,n b e -V (x)-V (y) 1 {V (x)≥2zn} ≤ 2E x∈On e -2V (x) 1 {V (x)≥2zn} y≥x y∈O x n e -Vx(y) ≤ 2 n 2 E x∈On e -V (x) y≥x y∈O x n e -Vx(y) ,
which is equal, by using that the increments of V are conditionally independent and stationary, to 2E[ x∈On e -V (x) ] 2 /n 2 . Then, thanks to Remark 2 and the fact that h n ≥ (log n) γ with 0 < γ ≤ 1, 2E[ x∈On e -V (x) ] 2 ≤ ℓ n ≤ e εhn/A . In addition with assumption (A1), the part {x ≤ y or y ≤ x} in the sum (I.53) is smaller than

e ε A hn k≥1 Ψ k n,n b (f n,k ) 2 .
Cases 2 (x ̸ ∼ y) : recall that x ̸ ∼ y if and only if neither x ≤ y nor y ≤ x. First let

Σ 0 (z) := x̸ ∼y x,y∈O n,n b 1 {x∧y=z} e -V (x) e -V (y) f n,|x| εhn 1 H |x| B,2zn (V x )f n,|y| εhn 1 H |y| B,2zn (V y ).
We decompose Σ 0 (z) as follows : for all A > 2/c 3 z∈T

Σ 0 (z) = |z|≥⌊Aℓn⌋ Σ 0 (z) + |z|<⌊Aℓn⌋ (Σ 1 (z) + Σ 2 (z)), (I.54)
and for any i ∈ {1, 2},

Σ i (z) := x̸ ∼y x,y∈O n,n b 1 {x∧y=z} e -V (x) e -V (y) f n,|x| εhn 1 H |x| B,2zn (V x )f n,|y| εhn 1 H |y| B,2zn (V y )1 {(x,y)∈C i,z } ,
with C 1,z := {(x, y) ∈ T 2 ; x * > z and y * > z} and C 2,z := {(x, y) ∈ T 2 ; x * = z or y * = z}. Let us start with the easiest part : |z|≥⌊Aℓn⌋ Σ 0 (z). Observe that

|z|≥⌊Aℓn⌋ Σ 0 (z) ≤ C 2 ∞ l≥⌊Aℓn⌋ |z|=l 1 {V (z)≥-B, z∈On} u̸ =v u * =v * =z x≥u x∈On e -V (x)
y≥v y∈On e -V (y) .

By conditional independence of the increments of V and Remark 2, for any n large enough

E |z|≥⌊Aℓn⌋ Σ 0 (z) ≤ C 2 ∞ e B E |u|=1 e -V (u) 2 E x∈On e -V (x) 2 l≥⌊Aℓn⌋ E |z|=l e -V (z) 1 {z∈On} ≤ C 2 ∞ e B E |u|=1 e -V (u) 2 ℓ 2 n n -2 ≤ k≥1 Ψ k n,n b (f n,k ), (I.55)
where we have used (A1) and (I.5) for the last inequality.

For Σ 1 (z), |z| < ⌊Aℓ n ⌋, we decompose according to the value of V (w) with w ∈ {u, v} : Σ

1 (z) = Σ 1,1 (z) + Σ 1,2 (z) with Σ 1,1 (z) := u̸ =v u * =v * =z 1 {V (u)∨V (v)<2zn} x>u x∈O n,n b e -V (x) f n,|x| εhn 1 H |x| B,2zn (V x ) y>v y∈O n,n b e -V (y) f n,|y| εhn 1 H |y| B,2zn (V y ), and Σ 1,2 (z) := u̸ =v u * =v * =z 1 {V (u)∨V (v)≥2zn} x>u x∈O n,n b e -V (x) f n,|x| εhn 1 H |x| B,2zn (V x ) y>v y∈O n,n b e -V (y) f n,|y| εhn 1 H |y| B,2zn (V y ). We first deal with Σ 1,1 (z). Observe that x ∈ O n,n b (resp. y ∈ O n,n b ) means H u ≤ n (resp. H v ≤ n), x ∈ O u n (resp. y ∈ O v n ) and n b -H u e -Vu(x) < H u,x (resp. n b -H v e -Vv(y) < H v,y ). Besides, V (u) < 2z n and V (x) > 2z n (resp. V (v) < 2z n and V (y) > 2z n ) implies V u (x) > 0 (resp. V v (y) > 0) that is n b -H u < H u,x (resp. n b -H v < H v,y ), so Σ 1,1 (z) is smaller than u̸ =v u * =v * =z 1 {V (u)∧V (v)≥-B,Hu∨Hv≤n} x>u x∈O u n,n b -Hu e -V (x) f n,|x| εhn (V x ) y>v y∈O v n,n b -Hv e -V (y) f n,|y| εhn (V y ). (I.56) We now move to Σ 1,2 (z). Note that {V (u) ∨ V (v) ≥ 2z n } = {V (u) ≥ 2z n , V (v) < 2z n } ∪ {V (v) ≥ 2z n , V (u) < 2z n } ∪ {V (u) ∧ V (v) ≥ 2z n }. By symmetry, Σ 1,2 (z) is equal to 2 u̸ =v u * =v * =z 1 {V (u)≥2zn,V (v)<2zn} x>u x∈O n,n b e -V (x) f n,|x| εhn 1 H |x| B,2zn (V x ) y>v y∈O n,n b e -V (y) f n,|y| εhn 1 H |y| B,2zn (V y ) 3. PROOF OF PROPOSITION 1 87 + u̸ =v u * =v * =z 1 {V (u)∧V (v)≥2zn} x>u x∈O n,n b e -V (x) f n,|x| εhn 1 H |x| B,2zn (V x ) y>v y∈O n,n b e -V (y) f n,|y| εhn 1 H |y| B,2zn (V y ).
The same decomposition of H y we used for Σ 1,1 (z) also works for the part {V (v) < 2z n } in the above sum, so as in (I.56) and first using that on

{V (u) ≥ 2z n } ∩ {V (y) ≥ -B} ,V (u) ≥ (1-δ 1 )V (u)+2 log n and δ 1 V (v) ≥ -δ 1 B, then using that on {V (u)∧V (v) ≥ 2z n }, V (u)+V (v) ≥ (1 -δ 1 )(V (u) + V (v)) + 4 log n, Σ 1,2 (z) is smaller than 1 {V (z)≥-B,z∈On} 2e δ 1 B C 2 ∞ n 2 u̸ =v u * =v * =z e -(1-δ 1 )(V (u)+V (v)) x>u x∈O u n e -Vu(x) y>v y∈O v n e -Vv(y) + 1 {V (z)≥-B,z∈On} C 2 ∞ n 4 u̸ =v u * =v * =z e -(1-δ 1 )(V (u)+V (v)) x>u x∈O u n e -Vu(x) y>v y∈O v n e -Vv(y) ≤ 1 {V (z)≥-B,z∈On} 3e δ 1 B C 2 ∞ n 2 u̸ =v u * =v * =z e -(1-δ 1 )(V (u)+V (v)) x>u x∈O u n e -Vu(x) y>v y∈O v n e -Vv(y) .
Note that the genealogical common line between x and y is the common line of individuals before u and v so for any p ≤ |z|, x p = y p = u p = v p and

f n,|x| εhn (V x ) = f n,|x| εhn (V (u 1 ), • • • , V (u), V u (x |u|+1 ) + V (u), • • • , V u (x) + V (u)), and f n,|y| εhn (V y ) = f n,|y| εhn (V (v 1 ), • • • , V (v), V v (y |v|+1 ) + V (v), • • • , V v (y) + V (v)).
Recall that for all q ≥ 1 and t q = (t 1 , . . . , t q ) ∈ R q , Ψ k n (F |t p ) = E |x|=k e -V (x) F (t 1 , . . . , t p , V (x 1 ) + t p , . . . , V (x) + t p )1 On (x) .

We naturally note Ψ k n (F |V w ) when we evaluate the function

Ψ k n (F |•) at (V (w 1 ), . . . , V (w)). By conditional independence of the increments of V , E[ |z|=l Σ 1 (z)] = E[ |z|=l Σ 1,1 (z) + Σ 1,2 (z)] is smaller, for n large enough with l < ⌊Aℓ n ⌋, than E |z|=l u̸ =v u * =v * =z 1 {V (u)∧V (v)≥-B,Hu∨Hv≤n} i,j≥1 (k,w)∈{(i,u);(j,v)} e -V (w) Ψ k n,n b -Hw f n,|w|+k εhn |V w + 3e δ 1 B ℓ 2 n C 2 ∞ n 2 E |z|=l 1 {V (z)≥-B,z∈On} u̸ =v u * =v * =z e -(1-δ 1 )(V (u)+V (v)) ,
where we have used that E[ x∈On e -V (x) ] ≤ ℓ n . Then, by assumption (A2) with δ = δ 1 (see (I.5) for the definition of δ 1 ), for all l < ⌊Aℓ n ⌋ (|u| = |v| = l + 1) and n large enough, on the event

{V (u) ∧ V (v) ≥ -B, H u ∨ H v ≤ n} i,j≥1 (k,w)∈{(i,u);(j,v)} Ψ k n,n b -Hw f n,|w|+k εhn |V w ≤ e δ 1 V (u)+δ 1 V (v)+ 2ε A hn k≥1 Ψ k n,n b (f n,k ) 2 .
Hence, E[ |z|<⌊Aℓn⌋ Σ 1 ] is smaller, for n large enough, than

e 2ε A hn E |w|=1 e -(1-δ 1 )V (w) 2 E |z|<⌊Aℓn⌋ e -V (z)-(1-2δ 1 )V (z) 1 {V (z)≥-B} k≥1 Ψ k n,n b (f n,k ) 2 + 3e δ 1 B ℓ 2 n C 2 ∞ n 2 E |w|=1 e -(1-δ 1 )V (w) 2 E z∈On e -V (z)-(1-2δ 1 )V (z) 1 {V (z)≥-B} .
Finally, thanks to assumption (A1), (I.5) and by Remark 2, for n large enough

E |z|<⌊Aℓn⌋ Σ 1 (z) ≤ e 5ε A hn k≥1 Ψ k n,n b (f n,k ) 2 . (I.57)
We now turn to Σ 2 (z), that is the sum

x̸ ∼y x,y∈O n,n b 1 {x∧y=z} e -V (x) e -V (y) f n,|x| εhn 1 H |x| B,2zn (V x )f n,|y| εhn 1 H |y| B,2zn (V y )1 {(x,y)∈C 2,z } ,
with C 2,z := {(x, y) ∈ T 2 ; x * = z or y * = z}. The first step is to split the set {x * = z or y * = z} into three disjoint sets : {x * = z and y * > z}, {x * > z and y * = z} and {x * = z and y * = z}. By symmetry, the previous sum is equal to

2 x̸ =v x * =v * =z 1 {x∈O n,n b } e -V (x) f n,|x| εhn 1 H |x| B,2zn (V x ) y>v y∈O n,n b e -V (y) f n,|y| εhn 1 H |y| B,2zn (V y ) + x̸ =y x * =y * =z e -V (x) e -V (y) 1 {x,y∈O n,n b } f n,|x| εhn 1 H |x| B,2zn (V x )f n,|y| εhn 1 H |y| B,2zn (V y ).
We then use a similar approach as the one we used for Σ 1 (z) to obtain

|z|=l Σ 2 (z) ≤ 2C 2 ∞ n 2 |z|=l x̸ =v x * =v * =z e -(1-δ 1 )V (x) 1 {V (v)≥-B} y>v y∈O v n e -V (y) + C 2 ∞ n 4 |z|=l 1 {V (z)≥-B} x̸ =y x * =y * =z e -(1-δ 1 )(V (x)+V (y)) .
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Hence, by using conditional independence of the increments of V , E[ |z|=l Σ 2 (z)] is smaller, for n large enough, than

2e δ 1 B ℓ n C 2 ∞ n 2 E |z|=l 1 {V (z)≥-B} x̸ =v x * =v * =z e -(1-δ 1 )(V (x)+V (v)) + C 2 ∞ n 4 E |z|=l 1 {V (z)≥-B} x̸ =v x * =y * =z e -(1-δ 1 )(V (x)+V (y)) ,
where we used as usual E[ x∈On e -V (x) ] ≤ ℓ n . Hence, thanks to assumption (A1) and (I.5), for n large enough

E |z|<⌊Aℓn⌋ Σ 2 (z) ≤ e 3ε A hn k≥1 Ψ k n,n b (f n,k ) 2 . (I.58)
Collecting Case 1, Case 2 ((I.54), inequalities (I.55), (I.57) and (I.58)) and considering (I.53) give the lemma.

We are now ready to prove the lower bound of

R T n (g n , f n ) in Proposition 1. Recall u 1,n = k≥1 Ψ k λn/2,n b f n,k εhn 1 Υ k n where Υ k n = {t ∈ R k ; H k (t) ≤ n b e εhn } ∩ H k B,2zn , H k B,2zn
is defined in (I.19) and z n = 2ℓ 1/3 n /δ 1 . Thanks to Lemmata 3.2, 3.3 and the expression of a n (I.48), for n large enough, as e -εhn ≤ 1 4 , the probability

P(R T n (g n , f n ) < n 1-b φ(n b )e -5εhn u 1,n ) is smaller than P R T n (g n , f n ) < nφ(n b )e -4εhn u 1,n /4n b ≤ e -ε c 4 c 2 hn E[Z 2 n ] u 2 1,n + h n e -εc 2 hn + e 8εhn-min(9ε log n,4hn) n 2κ b u 2 1,n . 
Then, Lemma 3.4 provides the upper bound of

E[Z 2 n ] so P R T n (g n , f n ) < nφ(n b )e -4εhn u 1,n /4n b is smaller, for n large enough, than (recall that h n ≤ log n) e -( c 4 c 2 -6 A )εhn k≥1 Ψ k n,n b (f n,k )/u 1,n 2 + h n e -εc 2 hn + e -min(ε log n,3hn) n 2κ b u 2 1,n
, which yields the lower bound of Proposition 1.

Upper bound for

R T n (g n , f n )
For all n ≥ 1 and x ∈ T, recall that E n x is the number of excursions, among the first n excursions to the root, for which the edge (x * , x) is reached. In a similar way, Ẽn

x is the number of excursions such that the vertex x is reached more often from above than from below :

E n x = n i=1 1 {N T i x -N T i-1 x ≥1} and Ẽn x := n i=1 1 { y;y * =x N T i y -N T i-1 y >N T i x -N T i-1 x } .

CHAPITRE I. GENERALIZED RANGE IN THE SLOW REGIME

Also introduce the event A n such that all vertices of the trace of {X k , k ≤ T n } have exponential downfall fluctuation lower than n, potential larger than z n = ℓ 1/3 n /δ 1 and which are visited during a single excursion to the root

A n := ∀ j ≤ T n , X j ∈ O n , x∈On (1 {E n x ≥2} + 1 { Ẽn x ≥2} )1 H |x| zn (V x ) = 0 . (I.59) Note that lim n→∞ P(A n ) = 1. Indeed, Ẽn x ≥ 2 implies E n x ≥ 2 so 1 -P(A n ) ≤ P(∃ j ≤ T n : X j ̸ ∈ O n ) + P x∈On 1 {E n x ≥2} 1 H |x| zn (V x ) > 0 . By [AC18] (equation 2.2), P(∃ j ≤ T n : X j ̸ ∈ O n ) → 0. Moreover, P( x∈On 1 {E n x ≥2} 1 H |x| zn (V x ) > 0) is smaller than E x∈On P E (E n x ≥ 2)1 H |x| zn (V x ) = E x∈On P E (E n x ≥ 1) -P E (E n x = 1) 1 H |x| zn (V x ) .
Thanks to the strong Markov property,

N T i x -N T i-1
x , i ∈ {1, . . . , n}, are i.i.d under P E so

P E (E n x ≥ 1) -P E (E n x = 1) ≤ E E [E n x ] -P E (E n x = 1) = nP E (N T 1 x ≥ 1)(1 -P E (N T 1 x = 0) n-1 ) ≤ n 2 P E (N T 1
x ≥ 1) 2 and by Lemma 3.1, for all x with V (x) ≥ z n ,

n 2 P E (N T 1 x ≥ 1) 2 ≤ n 2 e -2V (x) ≤ n 2-1/δ 1 e -V (x) /ℓ 1/δ 1 n . δ 1 ∈ (0, 1/2), hence, by Remark 2 P x∈On 1 {E n x ≥2} 1 H |x| zn (V x ) > 0 ≤ n 2-1/δ 1 ℓ 1/δ 1 n E x∈On e -V (x) ≤ n 2-1/δ 1 ℓ 1/δ 1 -1 n → 0.
Lemma 3.5. Let (u n , n) be a sequence of positive numbers, then

P E (R T n (g n , f n ) > u n , A n ) ≤ 2n 1-b φ(n b ) u n (X 1,n + X 2,n + X 3,n ),
where Démonstration. Since g n (0) = 0, we have, by Markov inequality, that P

X 1,n := x∈On 1 {V (x)<zn} e -V (x) + y;y * =x e -V (y) f n,|x| (V x ), (I.60) X 2,n := x∈On 1 {V (x)≥zn} e -V (x) H x 1 - 1 H x ⌈n b /2⌉-1 (n b + H x )f n,|x| (V x ), (I.
E (R T n (g n , f n ) > u n , A n ) is smaller than 2 u n x∈On 1 {V (x)<zn} E E g n L T n x f n,|x| (V x ) + x∈On 1 {V (x)≥zn} E E g n L T n x 1 {E n x , Ẽn x ∈{0,1}} f n,|x| (V x ) .
The first part in the above sum is the easiest to deal with. Indeed, the application t ∈ [1, ∞) → φ(t)/t is non-increasing so g n (t) ≤ tn -b φ(n b ) and we have

x∈On 1 {V (x)<zn} E E g n L T n x f n,|x| (V x ) ≤ n 1-b φ(n b ) x∈On 1 {V (x)<zn} E E L T 1 x f n,|x| (V x ) = n 1-b φ(n b )X 1,n .
We have used that for all 1

≤ i ≤ n, L T i x -L T i-1
x is distributed as L T 1 x under P E with mean e -V (x) + y;y * =x e -V (y) by Lemma 3.1.

We then move to the high potential part. Assume E n

x ∈ {0, 1} and Ẽn x ∈ {0, 1}. If E n x = 0, then the vertex x is never visited during any of the first n excursions and Ẽn x = 0. Thus,

g n L T n x = g n (0) = 0. If E n
x = 1 and Ẽn x = 0, then there exists i ∈ {1, . . . , n} such that N T i x -N T i-1

x ≥ 1 and ∀j ̸ = i, N T j

x -N T j-1 x = 0 and ∀m ∈ {1, . . . , n}, y;y

* =x N T m y -N T m-1 y ≤ N T m x -N T m-1
x . In particular, since, starting from the root e,

L T n x = n j=1 N T j x -N T j-1 x + y;y * =x N T j y -N T j-1 y , we have, on {E n x = 1, Ẽn x = 0} L T n x = N T i x -N T i-1 x + y;y * =x N T i y -N T i-1 y ≤ 2 N T i x -N T i-1 x . (I.63)
Otherwise, if E n x = 1 and Ẽn x = 1, then there exists i ∈ {1, . . . , n} such that

N T i x -N T i-1 x ≥ 1 and ∀j ̸ = i, N T j x -N T j-1 x = 0 and ∃m ′ ∈ {1, . . . , n} such that y;y * =x N T m ′ y -N T m ′ -1 y > N T m ′ x -N T m ′ -1 x and ∀m ̸ = m ′ , y;y * =x N T m y -N T m-1 y ≤ N T m x -N T m-1
x . So we have necessarily m ′ = i and, on

{E n x = 1, Ẽn x = 1} L T n x = N T i x -N T i-1 x + y;y * =x N T i y -N T i-1 y ≤ 2 y;y * =x N T i y -N T i-1 y . (I.64)
g n is non-decreasing so (I.63) and (I.64) give, when E n x ∈ {0, 1} and Ẽn x ∈ {0, 1}

g n L T n x ≤ n i=1 g n 2 N T i x -N T i-1 x + n i=1 g n 2 y;y * =x N T i y -N T i-1 y .
From this inequality, it follows that

E E g n L T n x 1 {E n x , Ẽn
x ∈{0,1}} is smaller than

nE E g n 2N T 1 x + nE E g n 2 y;y * =x N T 1 ≤n 1-b φ(n b )E E N T 1 x 1 {N T 1 x ≥⌈n b /2⌉} + n 1-b φ(n b )E E y;y * =x N T 1 y 1 { y;y * =x N T 1 y ≥⌈n b /2⌉} .
We have used that for all 1

≤ i ≤ n, N T i x -N T i-1 x (resp. y;y * =x N T i y -N T i-1 y ) is distributed as N T 1
x (resp. y;y * =x N T 1 y ) under P E and the fact that the application t ∈ [1, ∞) → φ(t)/t is non-increasing. Then, by Lemma 3.1

E E N T 1 x 1 {N T 1 x ≥⌈n b /2⌉} ≤ e -V (x) H x 1 - 1 H x ⌈n b /2⌉-1 (n b + H x ),
and

E E y;y * =x N T 1 y 1 { y;y * =x N T 1 y ≥⌈n b /2⌉} ≤ e -V (x) H x Hx 1 + Hx 1 - 1 1 + Hx ⌈n b /2⌉-1 (n b + 1 + Hx ),
which ends the proof. Lemma 3.6. Let b ∈ [0, 1). For n large enough

E[X 1,n + X 2,n + X 3,n ] ≤ 3(log n) 2 u 2,n .
where we recall u

2,n = k≥1 Ψ k n f n,k 1 R k \H k zn +Ψ k n,n b /(log n) 2 (f n,k )+E[W Ψ k n,n b /(W (log n) 2 ) (f n,k )] , with W = |z|=1 e -V (z) .
Démonstration. We start with the easiest part, that is the expression of E[X 1,n ]. Thanks to hypothesis (I.2)

E[X 1,n ] = E x∈On 1 {V (x)<zn} e -V (x) + e -V (x) y;y * =x e -Vx(y) f n,|x| (V x ) = 2E x∈On 1 {V (x)<zn} e -V (x) f n,|x| (V x ) = 2 k≥1 Ψ k n f n,k 1 R k \H k zn . Let λn := ⌈n b /2⌉ -1 log q n with q n := 4C ∞ ℓ n n b k≥1 Ψ k n,n b /(log n) 2 f n,k ,
and let us find an upper bound for E[X 2,n ]. For that, we decompose X 2,n into two parts according 3. PROOF OF PROPOSITION 1 93 to the value of H x :

X 2,n ≤ x∈On (1 {Hx≤ λn} + 1 {Hx> λn} ) e -V (x) H x 1 - 1 H x ⌈n b /2⌉-1 (n b + H x )f n,|x| (V x ) ≤ C ∞ n b + λn 1 - 1 λn ⌈n b /2⌉-1 x∈On e -V (x) + 1 + n b λn x∈O n, λn e -V (x) f n,|x| (V x ).
By definition of λn and q n (see above), (1

-1/ λn ) ⌈n b /2⌉-1 ≤ 1/q n . Moreover, by Remark 2, E[ x∈On e -V (x) ] ≤ ℓ n and E[ k≥1 Ψ k n,n b f n,k ] ≤ C ∞ E[ x∈On e -V (x) ] ≤ C ∞ ℓ n so for n large enough (q n ≥ 4n b implying λn ≤ n b ), we obtain E[X 2,n ] ≤ 1 2 k≥1 Ψ k n,n b /(log n) 2 f n,k + 1 + n b λn k≥1 Ψ k n, λn f n,k .
For E[X 3,n ], we decompose X 3,n into two parts according to the value of Hx : X 3,n is smaller than

x∈On (1 {1+ Hx≤ λn} + 1 {1+ Hx> λn} ) e -V (x) H x Hx 1 + Hx 1 - 1 1 + Hx ⌈n b /2⌉-1 (n b + 1 + Hx )f n,|x| (V x ) ≤ C ∞ n b + λn 1 - 1 λn ⌈n b /2⌉-1 x∈On e -V (x) + 1 + n b λn x∈On e -V (x) 1 {1+ Hx> λn} × y;y * =x e -Vx(y) f n,|x| (V x ).
Then, as above,

C ∞ n b + λn 1 -1/ λn ⌈n b /2⌉-1 ≤ k≥1 Ψ k n,n b /(log n) 2 f n,k /2
, also recall that Hx = H x y;y * =x e -Vx(y) so by conditional independence of H x and y;y * =x e -Vx(y) together with the fact that this random variable has the same law as W = |x|=1 e -V (x) ,

E x∈On e -V (x) 1 {1+ Hx> λn} y;y * =x e -Vx(y) f n,|x| (V x ) = k≥1 E W Ψ k n,( λn-1)/W (f n,k ) . Hence E[X 3,n ] ≤ 1 2 k≥1 Ψ k n,n b /(log n) 2 f n,k + 1 + n b λn k≥1 E W Ψ k n,( λn-1)/W (f n,k ) . Finally, note that Ψ k n,n b (f n,k ) ≤ Ψ k n,n b /(log n) 2 f n,
k so using assumption (A1), we get q n ≤ 4C ∞ ℓ n n 1+b thus giving λn -1 ≥ n b (log n) -2 for all b ∈ (0, 1) and n large enough. Hence, for all b ∈ [0, 1) and n large enough, (1

+ n b / λn ) ≤ 2(log n) 2 and Ψ k n,( λn-1)/W (f n,k ) (resp. Ψ k n, λn (f n,k )) is smaller than Ψ k n,n b /(W (log n) 2 ) (f n,k ) (resp. Ψ k n,n b /(log n) 2 (f n,k
)) so we obtain the result.

CHAPITRE I. GENERALIZED RANGE IN THE SLOW REGIME

We are now ready to prove the upper bound in Proposition 1. Recall (I.59) and let ε > 0

P R T n (g n , f n ) n 1-b φ(n b )u 2,n > e εhn ≤ P R T n (g n , f n ) n 1-b φ(n b )u 2,n > e εhn , A n + 1 -P(A n ),
where

u 2,n = k≥1 (Ψ k n f n,k 1 R k \H k zn + Ψ k n,n b /(log n) 2 (f n,k ) + E W Ψ k n,n b /(W (log n) 2 ) (f n,k ) )
. By Lemma 3.5 with u n = e εhn n 1-b φ(n b )u 2,n and Lemma 3.6, for n large enough

P R T n (g n , f n ) n 1-b φ(n b )u 2,n > e εhn , A n ≤ 2e -εhn u 2,n E[X 1,n + X 2,n + X 3,n ] ≤ 6(log n) 2 e -εhn ,
and then for n large enough

P R T n (g n , f n ) n 1-b φ(n b )u 2,n > e εhn ≤ 6(log n) 2 e -εhn + 1 -P(A n ).
Finally, observe (see Remark 1) that (log n) 2 = o(e εhn ) and we complete the proof of the upper bound recalling (see below (I.59)) that 1 -P(A n ) = o(1).

Technical estimates for one-dimensional random walk

In this section, we prove some technical expressions involving sums of i.i.d. random variables introduced via the many-to-one Lemma at the beginning of Section 2. Recall that (S i -S i-1 , i ≥ 1) is a sequence of i.i.d. random variables such that E(S 1 ) = 0, there exists η > 0 for which E(e ηS 1 ) < +∞. Also we denote σ 2 = ψ ′′ (1) = E(S 2 1 ). We also use the following notations : for any a, τ a := inf{k > 0, S k ≥ a}, τ - a := inf{k > 0, S k ≤ a} and τ S-S a := inf{k > 0, S k -S k ≥ a} with S k := max 1≤m≤k S m and H S j := j i=1 e S i -S j .

Two Laplace transforms

In this section, we deal with Laplace transforms which appear when we study the range with underlying constraint on V . Lemma 4.1. Let r := r(ℓ) such that lim ℓ→+∞ r(ℓ)/ℓ = +∞, then for any ε > 0

e -(1+ √ c-ρ(c)) r ℓ (1+ε) ≤ E e -cσ 2 2ℓ 2 τr 1 τr≤τ S-S ℓ ≤ e -(1+ √ c-ρ(c)) r ℓ (1-ε) , with ρ(c) = cσ √ 2π +∞ 0 e -cσ 2 2 u f (u)du, and f (u) = 2 u 1/2 P(m 1 > 1/ √ uσ 2 ) -1 2 +∞ u 1 y 3/2 P(m 1 > 1/ yσ 2 )dy.
Note that ρ can be explicitly calculated : for any c > 0

ρ(c) = 2 √ c 1 -e - √ c sinh( √ c) -2 √ c -log((e √ c + 1)/2) .
Démonstration. We start with the upper bound.

Let us introduce the usual strict ladder epoch sequence (T

k := inf{i > T k-1 , S i > S T k-1 }, k; T 0 = 0). Then for any k E e -cσ 2 2ℓ 2 τr 1 τr≤τ S-S ℓ ≤ E e -cσ 2 2ℓ 2 τr 1 S T k <r 1 τr≤τ S-S ℓ + P(S T k ≥ r) ≤ E e -cσ 2 2ℓ 2 τ 0 1 τ 0 ≤τ - -ℓ k + P(S T k ≥ r), (I.65)
where the last equality comes from the strong Markov property and equality T 1 = τ 0 := inf{m > 0, S m > 0}. From here we need the asymptotic in ℓ of E e -cσ 2 2ℓ 2 τ 0 1 τ 0 ≤τ - -ℓ

. First we use following identity

E e -λ ℓ 2 τ 0 1 τ 0 ≤τ - -ℓ = E[e -λ ℓ 2 τ 0 ] -P(τ 0 > τ - -ℓ ) + E (1 -e -λ ℓ 2 τ 0 )1 τ 0 >τ -ℓ , (I.66)
and then give an upper bound for each of the three terms. Lemma 2.2 in [START_REF] Aïdékon | Tail asymptotics for the total progeny of the critical killed branching random walk[END_REF] gives for m large enough

P(τ 0 > τ - -ℓ ) = E(S τ 0 ) ℓ + o 1 ℓ , (I.67)
Both of the other terms can be obtained with a Tauberian theorem, we give here some details for the third one which is more delicate. Let dH ℓ (u) the measure defined by

P(τ 0 > zℓ 2 , τ 0 > τ - -ℓ ) = ∞ z dH ℓ (u), integration by part gives E (1 -e -λ ℓ 2 τ 0 )1 τ 0 >τ - -ℓ = +∞ 0
(1 -e -λu )dH ℓ (u) = λ +∞ 0 e -λu P(τ 0 > uℓ 2 , τ 0 > τ - -ℓ )du. So we need an asymptotic in ℓ of the tail probability P(τ 0 > uℓ 2 , τ 0 > τ - -ℓ ). Let us decompose this probability as follows

P(τ 0 > zℓ 2 , τ 0 < τ - -ℓ ) = P(τ 0 > τ - -ℓ > zℓ 2 ) + P(τ 0 > zℓ 2 , τ - -ℓ ≤ zℓ 2 ) = P(τ - 0 > τ ℓ > zℓ 2 ) + P(τ 0 > zℓ 2 , τ ℓ ≤ zℓ 2 ) =: P 1 + P 2 . (I.68)
where τ - 0 := inf{k > 0, S k < 0} with for any k, S k = -S k and similarly τ ℓ := inf{k > 0, S k ≥ ℓ}.

For P 2 , we just use Donsker's theorem for conditioned random walk to remain positive obtain in [START_REF] Bolthausen | On a functional central limit theorem for random walks conditioned to stay positive[END_REF] which gives lim ℓ→+∞ P(

τ ℓ ≤ zℓ 2 |τ 0 > zℓ 2 ) = P(m 1 > 1/σ √ z)
, where m is the Brownian meander and m 1 = sup s≤1 m s . Also we know from Feller [START_REF] Feller | An Introduction to Probability Theory[END_REF] (see the first equivalence page 514 of Caravenna [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF] for the expression we use here) that for any z > 0 :

lim ℓ→∞ ℓP(τ 0 > zℓ 2 ) = 2 π E(S τ 0 ) √ zσ 2 , (I.69) so lim ℓ→∞ ℓP 2 = 2 π E(S τ 0 ) √ zσ 2 P(m 1 > 1/σ √ z).
(I.70)

For P 1 we use a similar strategy, for any A > x, ε > 0 and ℓ large enough

P 1 ≤ P(zℓ 2 ≤ τ ℓ ≤ Aℓ 2 , τ 0 > τ ℓ ) + P(τ 0 > Aℓ 2 ) ≤ Aℓ 2 k=zℓ 2 P(S k-1 ≤ ℓ, S k > ℓ| τ 0 > k)P(τ 0 > k) + P(τ 0 > Aℓ 2 ) ≤ (1 + ε) 2 π E(S τ 0 ) ℓσ Aℓ 2 k=zℓ 2 P(S k-1 ≤ ℓ, S k > ℓ| τ 0 > k) ℓ k 1/2 + C ℓA 1/2 ,
where we have used (I.69) for the last inequality and C > 0 is a constant. Also functional limit theorem [START_REF] Bolthausen | On a functional central limit theorem for random walks conditioned to stay positive[END_REF] implies that lim ℓ→+∞ Aℓ 2

k=zℓ 2 P(S k-1 ≤ ℓ, S k > ℓ| τ 0 > k) ℓ k 1/2 = - A z 1 y 1/2 dP(m 1 > 1/ yσ 2 ).
We deduce from that, taking limits A → +∞ and ε → 0,

lim ℓ→∞ ℓ * P 1 ≤ - 2 π E(S τ 0 ) σ +∞ z 1 y 1/2 dP(m 1 > 1/ yσ 2 ) = 2 π E(S τ 0 ) σ 1 z 1/2 P(m 1 > 1/ √ zσ 2 ) - 1 2 +∞ z 1 y 3/2 P(m 1 > 1/ yσ 2 )dy .
Note that just by noticing that P 1 ≥ P(zℓ 2 ≤ τ ℓ ≤ Aℓ 2 , τ 0 > τ ℓ ), above expression is also a lower bound for lim ℓ→∞ ℓ * P 1 . Considering this, (I.70) and (I.68), we obtain

lim ℓ→∞ ℓP(τ 0 > zℓ 2 , τ 0 > τ - -ℓ ) = 2 π E(S τ 0 ) σ f (z) (I.71)
where f is the function given in the statement of the Lemma. Note that this convergence is uniform on any compact set in (0, ∞) by monotonicity of z → ℓP(τ 0 > zℓ 2 , τ 0 < τ - -ℓ ), continuity of the limit and Dini's theorem. From here we follow the same lines of the proof of a Tauberian theorem (Feller [Fel68]) for completion we recall the main lines for our particular case. For any ε > 0, by the uniform convergence we have talked about just above,

lim ℓ→+∞ ℓ 1/ε ε e -λu P(τ 0 > uℓ 2 , τ 0 > τ - -ℓ )du = 2 π E(S τ 0 ) σ 1/ε ε e -λu f (u)du.
By (I.69), we also have for any ℓ and z > 0, P(τ 0 > zℓ 2 , τ 0 > τ - -ℓ ) ≤ Const z 1/2 ℓ and since we have Note also that just by using (I.69) we also have lim ℓ→+∞ ℓE[1 -e -λ ℓ 2 τ 0 ] = √ 2λE(S τ 0 )σ -1 . Then collecting (I.66), (I.67) and (I.72) and taking λ = cσ 2 /2 we obtain for ℓ large enough

E e -cσ 2 2ℓ 2 τ 0 1 τ 0 ≤τ - -ℓ = 1 - E(S τ 0 ) ℓ 1 + √ c - cσ √ 2π +∞ 0 e -cσ 2 u 2 f (u)du + o 1 ℓ . (I.73)
To obtain an explicit expression for the above integral, we integrate by parts

+∞ 0 e -λu f (u)du = 2 +∞ 0 e -λu u 1/2 P(m 1 > 1/ √ uσ 2 )du - 1 2λ +∞ 0 1 u 3/2 (1 -e -λu )P(m 1 > 1/ √ uσ 2 )du,
then using the expression of P(m 1 > u) := -2 k=1 (-1) k exp(-(ku) 2 /2), ∀u > 0, and elementary computations

+∞ 0 e -λu f (u)du = 2 π λ 1 sinh( √ 2λ/σ) - e - √ 2λ/σ sinh( √ 2λ/σ) - σ √ 2π λ √ 2λ σ -log((e √ 2λ/σ + 1)/2) .
(I.74)

Now we deal with the probability P(S T k ≥ r) in the same way as [START_REF] Hu | The potential energy of biased random walks on trees[END_REF]. As T k can be written as a sum of i.i.d random variables with common law given by τ 0 , the exponential Markov property gives for any η > 0, P(S T k ≥ r) ≤ e -ηr (E(e ηSτ 0 )) k . Taking k = (1 -ε)r/E(S τ 0 ) we can find constants c ′ and c" such that P(S T k ≥ r) ≤ c ′ e -c"r for any r ≥ 1. So replacing this and (I.73) in (I.65), we finally get for any m large enough

E e -cσ 2 2ℓ 2 τr 1 τr≤τ S-S ℓ ≤ E e -cσ 2 2ℓ 2 τ 0 1 τ 0 ≤τ -ℓ k + P(S T k ≥ r) ≤ 1 - E(S τ 0 ) ℓ 1 + √ c - cσ √ 2π +∞ 0 e -cσ 2 2 u f (u)du (1-ε)r/E(Sτ 0 )
+ c ′ e -c"r , which gives the upper bound.

For the lower bound the very beginning starts with the same spirit as the proof of Lemma A.2 in [START_REF] Hu | The potential energy of biased random walks on trees[END_REF] : let r k = a * k for 0 ≤ k ≤ N := r a and a > 0 (chosen later) then

∩ N k=0 {inf{i > τ r k , S i ≥ r k+1 } < inf{i > τ r k , S i ≤ r k -ℓ}} ⊂ {τ r ≤ τ S-S ℓ },
then, the strong Markov property gives

E e -cσ 2 2ℓ 2 τr 1 τr≤τ S-S ℓ ≥ Π N k=0 E r k e -cσ 2 2ℓ 2 τr k+1 1 τr k+1 <τ - r k -ℓ = Π N k=0 E e -cσ 2 2ℓ 2 τ r k+1 -r k 1 τ r k+1 -r k <τ - -ℓ = E e -cσ 2 2ℓ 2 τa 1 τa<τ - -ℓ N +1
.

So we only need a lower bound for Laplace transform of the form E(e -hτa 1 τa<τ - -ℓ

), with h = h(ℓ) → 0. From here we follow the same lines as for the upper bound with following differences, τ 0 (resp. τ - 0 ) is replaced by τ a (resp. by τ - -a ), also estimation (I.69) should be replaced by following one that can be found in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] : there exists 0 < θ < +∞ such that uniformly in a ∈ [0, a ℓ ] with

a ℓ = o(ℓ 1/2 ) ℓP(τ - -a ≥ zℓ 2 ) ∼ θR(a) √ z ,
for large ℓ, where R is the usual renewal function (see (2.3) in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]) with following property (see (2.6) together with Lemma 2.1 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF])

lim a→∞ R(a) a = 1 θ 2 πσ 2 1/2 . (I.75)
Now considering (I.68), with the change we have just talked above, as for any a > 0, the limit

lim ℓ→+∞ P(τ ℓ ≤ zℓ 2 |τ - -a > zℓ 2 ) is equal to P(m 1 > 1/σ √ z), we obtain lim m→∞ ℓP 2 = lim ℓ→∞ ℓP(τ - -a > zℓ 2 , τ ℓ ≤ zℓ 2 ) = θR(a) √ z P(m 1 > 1/σ √ z),
similarly for P 1 = P(τ - a > τ ℓ > zℓ 2 ), for ℓ large enough and then taking the limit A → +∞

P 1 ≥ (1 -ε) θR(a) ℓ Aℓ 2 k=zℓ 2 P(S k-1 ≤ ℓ, S k > ℓ| τ - a > k) ℓ k 1/2 ≥ (1 -2ε) θR(a) ℓ +∞ z 1 y 1/2 dP(m 1 > 1/ yσ 2 ).
We then obtain the equivalent of (I.71), that is lim ℓ→∞ ℓP(τ a > zℓ 2 , τ a > τ - -ℓ ) = θR(a)f (z) from which we deduce following lower bound for associated Laplace transform :

lim ℓ→+∞ mE (1 -e -λ ℓ 2 τa )1 τa>τ -ℓ = λθR(a) +∞ 0 e -λu f (u)du.
In the same spirit lim ℓ→+∞ ℓE[1 -e -λ ℓ 2 τ -a ] = √ λπθR(a). Also first Lemma 2.2 in [START_REF] Aïdékon | Tail asymptotics for the total progeny of the critical killed branching random walk[END_REF] gives for any a > 0 and any ℓ large P(τ -a > τ - -ℓ ) = P -a (τ 0 > τ - -ℓ-a ) ∼ E(-S τ -a )/ℓ. So finally collecting these estimates and taking λ = σ 2 c/2, for any ε > 0 and ℓ large enough

E e -cσ 2 2ℓ 2 τr 1 τr≤τ S-S ℓ ≥ 1 - E(-S τ -a ) ℓ + θR(a) ℓ π 2 σ √ c - cσ 2 2 +∞ 0 e -cσ 2 2 u f (u)du (1 + ε) N +1
. Now recall that N = r/a, so let us take a large enough in such a way that (using (I.75)) R(a)/a ≤ 1 θ 2 πσ 2 1/2 (1 + ε). Also for large a, E(-S τ -a )/a ≤ (1 + ε) (this can be seen easily, noticing that undershoot S τ -a -a has a second moment). This finishes the proof.

Lemma 4.2. For any ε > 0, β > 0, any r large enough uniformly in t = t(r) with lim r→+∞ r-t = +∞, E e -max 1≤j≤τ r-t S j -S j ≤ e -2 √ r-t(1-ε) .

Démonstration. Like in the proof of Lemma 4.1 we use strict ladder epoch sequence (T k := inf{s > T k-1 , S s > S T k-1 }, k; T 0 = 0), also let us introduce the following random variable : Y k := max T k-1 ≤j≤T k S j -S j for any k ≥ 1. Let m a positive integer to be chosen later, by the strong Markov property

E e -max 1≤k≤m Y k = m k=1 E(e -Y k 1 Y k >max i≤k-1 Y i , Y k ≥max k+1≤i≤m Y i ) ≤ mE(e -Y 2 (1 -P(Y 1 > Y 2 |Y 2 )) m-1 ).
At this point we need an asymptotic in y of M (y) := P(Y 1 > y) = P(max 0≤s≤T 0 S s < -y) = P(τ 0 > τ -y ), for that we use following equality (see for example [START_REF] Aïdékon | Tail asymptotics for the total progeny of the critical killed branching random walk[END_REF] Lemma 2.2) : for large y, P(τ 0 > τ -y ) = E(S τ 0 )/y + o(1/y). So for any large A, and ε > 0

e -Y 2 (1 -P(Y 1 > Y 2 |Y 2 )) m-1 =e -Y 2 (1 -P(Y 1 > Y 2 |Y 2 )) m-1 1 Y 2 >A + e -Y 2 (1 -P(Y 1 > Y 2 |Y 2 )) m-1 1 Y 2 ≤A ≤e -Y 2 1 -E(S τ 0 )(1 -ε)(Y 2 ) -1 m-1 1 Y 2 >A + (1 -P(Y 1 > A)) m-1 ,
For the second term above we can find constant c = c(A) such that (1 -P(Y 1 > A)) m-1 ≤ e -cm . For the first term , let us introduce measure dM defined as M (x) = +∞ x dM (z)dz, then integrating by parts

E(e -Y 2 1 -E(S τ 0 )(1 -ε)(Y 2 ) -1 m-1 1 Y 2 >A ) = - +∞ A e -x 1 - E(S τ 0 )(1 -ε) x m-1 dR(x) ≤ e -A 1 - E(S τ 0 )(1 -ε) A m-1 - +∞ A e -x 1 - E(S τ 0 )(1 -ε) x m-1 R(x)dx 100 CHAPITRE I. GENERALIZED RANGE IN THE SLOW REGIME -(m -1)S τ 0 (1 -ε) +∞ A e -x x 2 1 - E(S τ 0 )(1 -ε) x m-2 R(x)dx ≤ e -2(1-4ε) √ E(Sτ 0 )m ,
the last inequality is definitely not optimal but enough for what we need, we can obtain it easily decomposing the interval (A, +∞) on the intervals (A,

E(S τ 0 )m(1 -ε)), ( E(S τ 0 )m(1 - ε), E(S τ 0 )m(1 + ε))
and ( E(S τ 0 )m(1 + ε), +∞). Collecting the above inequalities, we obtain that for any ε > 0 and m large enough

E e -max 1≤k≤m Y k ≤ 2me -2(1-4ε) √ E(Sτ 0 )m .
To finish the proof we follow the same lines as the end of the proof of Lemma 4.1 (below (I.74)), that is saying that E e -max 1≤j≤τ r-t S j -S j ≤ E e -max 1≤k≤m Y k + P(S

T k ≥ r -t) then taking k = (1 -ε)(r -t)/E(S τ 0 ).

Additional technical estimates

Lemma 4.3. Let (t ℓ ) a positive increasing sequence such that t ℓ ℓ -1/2 → +∞ but t ℓ ℓ -1 → 0. For any B > 0 and ℓ large enough

P(τ S-S ℓ 1/2 ∨ τ - -B > τ t ℓ ) ≥ e - t ℓ √ ℓ
(1+o(1)) .

(I.76)

Let A > 0 large, d ∈ (0, 1/2), a > 0, 0 < b < 1, q ∈ [b, 1], a b := a(21 q>b -1) and c > 0

j≤Aℓ 3/2 P S j ≥ t ℓ , sup m≤j H S m ≤ e q √ ℓ-a b ℓ d , e b √ ℓ ≤ H S j ≤ e b √ ℓ+cℓ d , S j ≥ -B ≥ e - t ℓ q √ ℓ (1+o(1)) .
(I.77)

Démonstration. The proof of (I.76) follows the same lines as the proof of Lemma A.2 in [START_REF] Hu | The potential energy of biased random walks on trees[END_REF]. For (I.77), as j ≤ Aℓ 3/2 , for any (d, e) and any m ≤ j, Aℓ

3/2 exp(S m -S m ) ≤ e d √ ℓ+eℓ d implies H S m ≤ e d √ ℓ+eℓ d then P S j ≥ t ℓ , e b √ ℓ ≤ H S j ≤ e b √ ℓ+cℓ d , sup m≤j H S m ≤ e q * √ ℓ-a b ℓ d , S j ≥ -B ≥ P S j ≥ t ℓ , b √ ℓ ≤ S j -S j ≤ b √ ℓ + c ′ ℓ d , sup m≤j S m -S m ≤ q √ ℓ -a ′ ℓ d , S j ≥ -B
with c ′ = c/2 and a ′ = a b + 1. To obtain a lower bound for the above probability, the idea is to say that maximum of S is obtained at a certain instant k ≤ j and that this maximum is larger than t ℓ + b √ ℓ + c ′ ℓ d + r for a certain r > 0 to be chosen latter, then above probability is larger 4. TECHNICAL ESTIMATES FOR ONE-DIMENSIONAL RANDOM WALK 101 than :

k≤j P(S k-1 < S k , S k ≥ t ℓ + b √ ℓ + c ′ ℓ d + r, sup m≤k S m -S m ≤ √ ℓ -a ′ ℓ d , S k ≥ -B; S j -S k ≥ t ℓ -S k , b √ ℓ ≤ S k -S j ≤ b √ ℓ + c ′ ℓ d , ∀m ≥ k + 1, S m ≤ S k , S k -S m ≤ √ ℓ -a ′ ℓ d , S m -S k ≥ -B -S k ).
Now, the events {S m -S k ≥ -B -x}, as well as {S j -S k ≥ t ℓ -x} increases in x and as

S k ≥ t ℓ + b √ ℓ + c ′ ℓ d +
r so we can replace, in the two events of the above probability,

«-S k » by -(t ℓ + b √ ℓ + c ′ ℓ d + r).
This makes appear two independent events, so above probability is larger than

P(S k-1 < S k , S k ≥ t ℓ + b √ ℓ + c ′ ℓ d + r, sup m≤k S m -S m ≤ √ ℓ -a ′ ℓ d , S k ≥ -B)× P(S j -S k ≥ -b √ ℓ -c ′ ℓ d -r, b √ ℓ ≤ S k -S j ≤ b √ ℓ + c ′ ℓ d , ∀m ≥ k + 1, -B -t ℓ -b √ ℓ + c ′ ℓ d -r ≤ S m -S k ≤ 0, S m -S k ≥ - √ ℓ + a ′ ℓ d ) =: p 1 (k) * p 2 (k, j). (I.78)
Probability p 2 can be easily simplified, indeed as lim ℓ→+∞ t ℓ / √ ℓ = +∞ and ℓ large, -B -

t ℓ - b √ ℓ + c ′ ℓ d -r ≤ - √ ℓ and by taking r = c ′ ℓ d , p 2 is smaller than P(-b √ ℓ -c ′ ℓ d ≤ S j -S k ≤ -b √ ℓ, ∀m ≥ k + 1, - √ ℓ + a ′ ℓ d ≤ S m -S k ≤ 0) =P(∀m ≤ j -k, - √ ℓ + a ′ ℓ d ≤ S m ≤ 0, -b √ ℓ -c ′ ℓ d ≤ S j-k ≤ -b √ ℓ) =P(∀m ≤ j -k, S m ≤ √ ℓ -a ′ ℓ d |S j-k ≥ 0, S j-k ∈ [b √ ℓ, b √ ℓ + c ′ ℓ d ])× P(S j-k ≥ 0, S j-k ∈ [b √ ℓ, b √ ℓ + c ′ ℓ d ]),
with S m = -S m for any m. For the conditional probability we can use a similar result proved by Caravenna and Chaumont [START_REF] Caravenna | An invariance principle for random walk bridges conditioned to stay positive[END_REF] telling that the distribution

P x (•|∀m ≤ n, S m ≥ 0, S n ∈ [0, h))
converges. Note that they need in their work additional hypothesis on the distribution of S 1 (more especially absolute continuity of the distribution of S 1 ) which is not necessary here as the size of interval

[b √ ℓ, b √ ℓ + c ′ ℓ d ] equals c ′ ℓ d → +∞. So as a ′ ℓ d = o( √ ℓ) lim ℓ→+∞ P(∀m ≤ ℓ, S m ≤ c √ ℓ -a ′ ℓ d |S ℓ ≥ 0, S ℓ ∈ [b √ ℓ, b √ ℓ + c ′ ℓ d ]) = Cte > 0.
Moreover another work of Caravenna ([Car05] Theorem 1) gives for large ℓ,

P(S ℓ ≥ 0, S ℓ ∈ [b √ ℓ, b √ ℓ + c ′ ℓ d ) ≥ b/ℓ.
So finally when j -k is of the order of ℓ, there exists a constante Cte > 0 such that p 2 (k, j) ≥ Cte * ℓ -1 . Turning back to (I.78) and summing over k and j, we obtain

j≤Aℓ 3/2 k≤j p 1 (k)p 2 (k, j) = k≤Aℓ 3/2 p 1 (k) j≥k p 2 (k, j) ≥ k p 1 (k) j,j-k∼ℓ p 2 (k, j) ≥ Cte ℓ k≤Aℓ 3/2 P(S k-1 < S k , S k ≥ t ℓ + b(1 + 2ε ℓ ) √ ℓ, sup m≤k S m -S m ≤ √ ℓ, S k ≥ -B) ≥ Cte ℓ P(τ S-S √ ℓ ∨ τ -B > τ t ℓ +b √ ℓ+c ′ ℓ d ) - k>Aℓ 3/2 P( sup m≤k S m -S m ≤ √ ℓ)
Now we can check that above sum k>Aℓ 3/2 • • • as a negligible contribution, indeed the probability P(sup m≤k S m -S m ≤ √ ℓ) is smaller, thanks to Proposition 3.1 in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF], to e -π 2 σ 2 j/4ℓ this implies that k>Aℓ 3/2 P(sup m≤k S m -S m ≤ √ ℓ) ≤ e -π 2 σ 2 Aℓ 1/2 /2 . Now if we apply (I.76) to the first probability above as b

√ ℓ + c ′ ℓ d = o(t ℓ ), this finishes the proof.
Lemma below is a simple extension of FKG inequality.

In the following, a function F : R k -→ R is said to be non-decreasing if : for all s = (s 1 , . . . , s k ) ∈

R k and t = (t 1 , . . . , t k ) ∈ R k , s ≤ k t implies F (s) ≤ F (t)
where s ≤ k t if and only if s j ≤ t j for all j ∈ {1, . . . , k}.

Lemma 4.4. Let r > 0, k ∈ N * , f 1 , f 2 : R k -→ R + . For any i ∈ {1, 2}, introduce fi (u 1 , . . . , u k ) := f i (u 1 , u 1 + u 2 , . . . , u 1 + u 2 + . . . + u k ).
If f1 and f2 are non-decreasing then

E f 1 (S 1 , S 2 , . . . , S k )f 2 (S 1 , S 2 , . . . , S k ) ≥ E f 1 (S 1 , S 2 , . . . , S k ) E f 2 (S 1 , S 2 , . . . , S k ) .
Démonstration. When R k is a totally order set, the first inequality above is the well known regular FKG inequality. Here, we can easily extend it to the partial order ≤ k . Indeed, since fi is non-decreasing for any i ∈ {1, 2}, we have, by independence of increments of S i∈{1,2}

E f i (S 1 , S 2 , . . . , S k ) = i∈{1,2} E fi (S 1 , S 2 -S 1 , . . . , S k -S k-1 ) = E[F 1 (S 1 )]E[F 2 (S 1 )],
with F i (u 1 ) := E fi (u 1 , S 2 -S 1 , . . . , S k -S k-1 ) for any i ∈ {1, 2}. Since fi is non-decreasing, F i is also non-decreasing so thanks to the regular FKG inequality,

E[F 1 (S 1 )]E[F 2 (S 1 )] ≤ E[F 1 F 2 (S 1 )].
Again, using that the increments of S are independent and stationary, the result follows by induction.

Lemma 4.5. Let (t ℓ ) a sequence of positive numbers such that t ℓ /ℓ → 0. For all d ∈ (0, 1/2] such that t ℓ /ℓ d → +∞ and all ε, B > 0, a ≥ 0 and 0 ≤ d ′ < d for n large enough

k≤ℓ 2 P S k ≥ t ℓ , max j≤k H S j ≤ e ℓ d -aℓ d ′ , S k ≥ -B, S k = S k ≥ e - t ℓ ℓ d (1+ε) .
Démonstration. Recall that τ r = inf{i ≥ 1; S i ≥ r}. First, observe that for all j ≤ k ≤ ℓ 2 , H S j ≤ ℓ 2 e S j -S j so

k≤ℓ 2 P S k ≥ t ℓ , max j≤k H S j ≤ e ℓ d -aℓ d ′ , S k ≥ -B, S k = S k ≥ k≤ℓ 2 P k = τ t ℓ , max j≤k S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S k ≥ -B , which is equal to P S ℓ 2 ≥ t ℓ , ∀j ≤ τ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B . Now let k ℓ = ⌊(e ℓ t ℓ ) 2 ⌋ + ℓ 2 . First note that, since ℓ 2 ≤ k ℓ , we have, on {S ℓ 2 ≥ t ℓ }, τ t ℓ = τ k ℓ t ℓ with τ k ℓ t ℓ := k ℓ ∧ inf{i ≤ k ℓ ; S i ≥ t ℓ } so P S ℓ 2 ≥ t ℓ , ∀j ≤ τ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B = P S ℓ 2 ≥ t ℓ , ∀j ≤ τ k ℓ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B .
For any k ∈ N * and r > 0, let t = (t 1 , . . . , t k ) ∈ R k and define the t-version τ k,t r of τ k r that is

τ k,t r := k ∧ inf i ≤ k; t i ≥ r ,
with the usual convention inf ∅ = +∞. Then

P S ℓ 2 ≥ t n , ∀j ≤ τ k ℓ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B = E f 1 f 2 (S 1 , S 2 , . . . , S k ℓ ) ,
with for all i ∈ {1, 2},

f i := 1 A ℓ i , f 1 f 2 (u) = f 1 (u)f 2 (u) and
A ℓ 1 := u = (u 1 , . . . , u k ℓ ) ∈ R k ℓ ; ∃ j ≤ ℓ 2 : u j ≥ t ℓ , and 
A ℓ 2 := u = (u 1 , . . . , u k ℓ ) ∈ R k ℓ ; ∀ j ≤ τ k ℓ ,t t ℓ , ∀i < j : u j -u i ≥ -ℓ d + aℓ d ′ + 2 log ℓ, u j ≥ -B .
Then, it is easy to see that for all i ∈ {1, 2}, fi (see Lemma 4.4 for the definition) is nondecreasing according to the partial order ≤ k ℓ defined above. Then, thanks to Lemma 4.4,

E[f 1 f 2 (S 1 , S 2 , . . . , S k ℓ )] is larger than ≥ P (S 1 , S 2 , . . . , S kn ) ∈ A ℓ 1 P (S 1 , S 2 , . . . , S k ℓ ) ∈ A ℓ 2 ≥ P(S ℓ 2 ≥ t ℓ )P ∀j ≤ τ k ℓ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B, τ t ℓ ≤ k ℓ .
Again, on {τ t ℓ ≤ k ℓ }, τ k ℓ t ℓ = τ t ℓ and thanks to [START_REF] Kozlov | On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment[END_REF] (Theorem A), there exists C K > 0 such that for ℓ large enough

P ∀j ≤ τ k ℓ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B, τ t ℓ ≤ k ℓ ≥ P ∀j ≤ τ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B -P(τ t ℓ > k ℓ ) ≥ P ∀j ≤ τ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B -C K e -ℓ .
Moreover, t ℓ /ℓ → 0 so P(S ℓ 2 ≥ t ℓ ) → 1. Finally, by (I.76) together with the fact that 1+ε) and since t ℓn /ℓ d = o(ℓ), C K e -ℓ ≤ e -t ℓ ℓ -d (1+ε) , the result follows. 

ℓ d ∼ ℓ d -aℓ d ′ -2 log ℓ (as d > d ′ ) for ℓ large enough, P ∀j ≤ τ t ℓ : S j -S j ≤ ℓ d -aℓ d ′ -2 log ℓ, S j ≥ -B ≥ 2e -t ℓ ℓ -d (
k ∈ N, k > L ℓ P max j≤k H S j ≤ e √ ℓ ≤ P max j≤k S j -S j ≤ √ ℓ ≤ P max j≤L ℓ S j -S j ≤ √ ℓ ⌊ k L ℓ ⌋ ,
and thanks to [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF], for ℓ large enough,

P max j≤L ℓ S j -S j ≤ √ ℓ ≤ e -π 2 σ 2 L ℓ 8ℓ (1-ε 2 )
, so for any ε, ℓ large enough and any k > L ℓ

P max j≤k S j -S j ≤ √ ℓ ≤ e -(1-ε 2 ) π 2 σ 2 L ℓ 8ℓ ⌊ k L ℓ ⌋ ≤ e -(1-ε) kπ 2 σ 2 8ℓ .
For the lower bound, observe that for any k ≤ ℓ 2 , P max j≤k H S j ≤ e

√ ℓ-aℓ d , e b √ ℓ < H S k ≤ e b √ ℓ+cℓ d , S k ≥ 0 is larger than P max j≤k S j -S j ≤ λ ′ ℓ , b √ ℓ < S k -S k ≤ b √ ℓ+cℓ d -log ℓ 2 , S k ≥ 0 , where λ ′ ℓ := √ ℓ -aℓ d -log ℓ 2 . As c 2 ℓ d ≥ log ℓ 2 (d > 0), the previous probability is larger than P max j≤k S j -S j ≤ λ ′ ℓ , b √ ℓ < S k -S k ≤ b √ ℓ + c 2 ℓ d , S k ≥ 0 .
We need independence to compute this probability so for all k ∈ N * , L ℓ < k ≤ ℓ 2 , we say that S k = S k-ℓ ≥ λ ′ ℓ which gives that for all k -ℓ < j ≤ k, S j ≤ S k-ℓ and then, max

k-ℓ<j≤k S k-ℓ -S j ≤ λ ′ ℓ implies that S j ≥ S k-ℓ -λ ′ n ≥ 0 for all k -ℓ < j ≤ k. Hence P max j≤k S j -S j ≤ λ ′ ℓ , b √ ℓ < S k -S k ≤ b √ ℓ + c 2 ℓ d , S k ≥ 0 ≥ P(A k,ℓ ∩ B k,ℓ ) = P(A k,ℓ )P(B k,ℓ ), with A k,ℓ := max j≤k-ℓ S j -S j ≤ λ ′ ℓ , S k-ℓ ≥ 0, S k-ℓ = S k-ℓ ≥ λ ′ ℓ , and 
B k,ℓ := ∀ k -ℓ < j ≤ k, S k-ℓ -S j ≤ λ ′ ℓ , S j ≤ S k-ℓ , b √ ℓ < S k-ℓ -S k ≤ b √ ℓ + c 2 ℓ d .
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Let S := -S. P(B k,ℓ ) is nothing but

P S ℓ ≤ λ ′ ℓ , S ℓ ≥ 0, S ℓ ∈ (b √ ℓ, b √ ℓ + c 2 ℓ d ] =P(S ℓ > 0)P S ℓ ∈ (b √ ℓ, b √ ℓ + c 2 ℓ d ]|S ℓ ≥ 0 × P S ℓ ≤ λ ′ ℓ |S ℓ > 0, S ℓ ∈ (b √ ℓ, b √ ℓ + c 2 ℓ d ] ,
which is larger than C/ℓ for ℓ large enough (see Lemma 4.3).

We then deal with P(A k,ℓ ). Thanks to Lemma 4.4, this probability is larger than

P max j≤k-ℓ S j -S j ≤ λ ′ ℓ P S k-ℓ ≥ λ ′ ℓ P S k-ℓ ≥ 0 2 ,
and again, using [START_REF] Kozlov | On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment[END_REF] together with the fact that P(S L ℓ ≥ λ ′ ℓ ) → 1, there exists C > 0 such that for ℓ large enough and any k ∈ {L ℓ , . . . , ℓ 2 },

P S k-ℓ ≥ √ ℓ P S k-ℓ ≥ 0 ≥ P S L ℓ ≥ √ ℓ P S ℓ 2 ≥ 0 2 ≥ C ℓ 2 .
We now turn to the most important part : P max j≤k-ℓ S j -S j ≤ λ ′ ℓ . We follow the same lines as the proof of (I.79) : for any

k ∈ {L ℓ , . . . , ℓ 2 }, k -ℓ > L ℓ -ℓ so max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ together with S L ℓ -ℓ = S L ℓ -ℓ ≤ S j and max L ℓ -ℓ<i≤j S i -S j ≤ λ ′ ℓ for all L ℓ -ℓ < j ≤ k -ℓ implies that max j≤k-ℓ S j -S j ≤ λ ′ ℓ . It follows that P max j≤k-ℓ S j -S j ≤ λ ′ ℓ is larger than P max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ , S L ℓ -ℓ = S L ℓ -ℓ , max L ℓ -ℓ<i≤j S i -S j ≤ λ ′ ℓ , S j ≥ S L ℓ -ℓ ∀ L ℓ -ℓ < j ≤ k -ℓ = P max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ , S L ℓ -ℓ = S L ℓ -ℓ P max j≤k-ℓ-(L ℓ -ℓ) S j -S j ≤ λ ′ ℓ , S k-ℓ-(L ℓ -ℓ) ≥ 0 .
Moreover, by Lemma 4.4,

P max j≤k-ℓ-(L ℓ -ℓ) S j -S j ≤ λ ′ ℓ , S k-ℓ-(L ℓ -ℓ) ≥ 0 is larger than P(max j≤k-ℓ-(L ℓ -ℓ) S j -S j ≤ λ ′ ℓ )P(S k-ℓ-(L ℓ -ℓ) ≥ 0)
. By induction, we get that P max j≤k-ℓ S j -S j ≤ λ ′ ℓ is larger than

P max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ , S L ℓ -ℓ = S L ℓ -ℓ L ℓ (k) i≤L ℓ (k) P S k-ℓ-i(L ℓ -ℓ) ≥ 0 with L ℓ (k) := ⌊(k -ℓ)/(L ℓ -ℓ)⌋. Again, by Lemma 4.4, P(max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ , S L ℓ -ℓ = S L ℓ -ℓ ≥ P max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ )P(S L ℓ -ℓ ≥ 0) and as k ≤ ℓ 2 , P(S k-ℓ-i(L ℓ -ℓ) ≥ 0) ≥ P S k ≥ 0 ≥ P S ℓ 2 ≥ 0 . Hence, by [Koz76] P max j≤k-ℓ S j -S j ≤ λ ′ ℓ ≥ C ℓ √ L ℓ -ℓ P max j≤L ℓ -ℓ S j -S j ≤ λ ′ ℓ L ℓ (k)
for some C > 0. Then, thanks to [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF], for all ε > 0 and ℓ large enough P(max j≤L ℓ -ℓ S j -S j ≤

λ ′ ℓ ) ≥ e -(1+ ε 4 ) π 2 σ 2 (L ℓ -ℓ) 8
(λ ′ ℓ ) -2 so for ℓ large enough and any k ∈ {L ℓ , . . . , ℓ 2 }, P max j≤k-ℓ S j -

S j ≤ λ ′ ℓ is larger than C ℓ √ L ℓ -ℓ e -(1+ ε 4 ) π 2 σ 2 (L ℓ -ℓ) 8(λ ′ ℓ ) 2 L ℓ (k) ≥ e -(1+ ε 3 ) π 2 σ 2 (L ℓ -ℓ) 8(λ ′ ℓ ) 2 L ℓ (k) ≥ e -(k-ℓ)(1+ ε 2 ) π 2 σ 2 8(λ ′ ℓ ) 2 ,
where we have used for the first inequality that e

-η π 2 σ 2 (L ℓ -ℓ) 8(λ ′ ℓ ) 2
is smaller than 1 ℓ η ′ for any η, η ′ > 0. Collecting previous inequalities, we obtain

P(A k,ℓ ) ≥ C ℓ 2 e -(k-ℓ)(1+ ε 2 ) π 2 σ 2 8(λ ′ ℓ ) 2 .
Finally, observe that λ ′ ℓ ∼ √ ℓ and then for any k ∈ {L ℓ , . . . , ℓ 2 }

P(A k,ℓ ) ≥ e -kπ 2 σ 2 8ℓ (1+ε) ,
which completes the proof.

Notations

In this section, we have summarized the transversal notations, give a short description of them when it is possible and the page or equation where they are introduced.

Sequences and constants in the statement of the main theorem κ b (equation (I.12)), critical exponent.

h n (equation (I.13)), resume the constraint on V and second order for R n (g n , f n ).

L (equation (I.14)). ξ (equation (I.15)).

Different form of the cumulative exponential drop of V H x (below (I.8)), variable appearing in the distribution under P E of the edge local time at x before the instant T 1 . Hx (Lemma 3.1), variable appearing in the distribution under P E of the sum of edge local times of the descendants of x before the instant T 1 .

H S (page 56) version of above H after the many to one Lemma is applied. 

The regular lines and their possible parameters

: O λ,λ ′ := x ∈ T; max j≤|x| H x j ≤ λ, H x > λ ′
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Secondary constraints on the environment :

H k B,z = {(t 1 , . . . , t k ) ∈ R k ; t k ≥ z, min i≤k t i ≥ -B} z = z n = ℓ 1/3 n /δ 1 (beginning of Section 3.2). Υ .
. (Proposition 1) : various intersections of conditions on H and H k B,. .

The branching function Ψ Ψ k λ,λ ′ (equation (I.9)), k is a generation, λ an upper bound for H, λ ′ a lower bound for H.

Ψ k λ,λ ′ (•|•) (equation (I.18)) a conditional version of Ψ k λ,λ ′ .
Elementary random variables related to the random walk X N n x Edge local time at (x * , x) before n (equation (I.39)). T n (page 47) n-th instant of return to the root e. E n

x , Ẽn x (above I.59).

Different ranges

R n (g n , f n ) the generalized range (equation (I.3)) with

g n function of constraints on the trajectory of (X n , n),

f n function of constraints on the potential V . R T n (g n , f n ) variant of R T n (g n , f n ) with additional condition on V (page 47).

Chapitre II

Coalescence in small generations for the diffusive randomly biased walk on Galton-Watson tree Abstract : We investigate the range R T of the diffusive biased walk X on a Galton-Watson tree T in random environment, that is to say the sub-tree of T of all distinct vertices visited by this walk up to the time T . We study the volume of the range with constraints and more precisely the number of k-tuples (k ≥ 2) of distinct vertices in this sub-tree, in small generations and satisfying an hereditary condition. A special attention is paid to the vertices visited during distinct excursions of X above the root of the Galton-Watson tree as we observe they give the major contribution to this range. As an application, we study the genealogy of k ≥ 2 distinct vertices of the tree R T picked uniformly from those in small generations. It turns out that two or more vertices among them share a common ancestor for the last time in the remote past. We also point out an hereditary character in their genealogical tree due to the random environment. Let (N, A) be a random variable under a probability measure P taking values in N × R and consider the following Galton-Waston marked tree (T, (A x ; x ∈ T)) rooted at e : the generation 0 contains one marked individual (e, A e ) = (e, 0). For any n ∈ N * , assume the generation n -1 has been built. If it is empty, then the generation n is also empty. Otherwise, any vertex x in the generation n -1 gives progeny to N x marked children (x 1 , A x 1 ), . . . , (x Nx , A x Nx ) independently of other vertices in generation n -1 according to the law of (N, A), thus forming the generation n, denoted by T n . We assume E[N ] > 1 so that T is a super-critical Galton-Watson tree, that is P(non-extinction of T) > 0 and we define P * (•) := P(•|non-extinction of T). For any vertex x ∈ T, we denote by |x| the generation of x, by x i its ancestor in generation i ∈ {0, . . . , |x|} and x * := x |x|-1 stands for the parent of x. In particular, x 0 = e and x |x| = x. For any x, y ∈ T, we write x ≤ y if x is an ancestor of y (y is said to be a descendent of x) and x < y if x ≤ y and x ̸ = y. We then write x i , x := {x j ; j ∈ {i, . . . , |x|}}. Finally, for any x, y ∈ T, we denote by x ∧ y the most recent common ancestor of x and y, that is the ancestor u of x and y such that max{|z|; z ∈ e, x ∩ e, y } = |u|.

Let us introduce the branching potential V : let V (e) = A e = 0 and for any x ∈ T \ {e}

V (x) := e<z≤x A z = |x| i=1 A x i .
Under P, E := (T, (V (x); x ∈ T)) is a real valued branching random walk such that (V (x) -V (x * )) x∈T\{e} is distributed as A. We will then refer to E as the random environment. For convenience, we add a parent e * to the root e and we introduce the T ∪ {e * }-valued random walk X := (X j ) j∈N reflected in e * such that under the quenched probabilities {P E z ; z ∈ T ∪ {e * }}, the transition probabilities are given by : for any x ∈ T

p E (x, x * ) = e -V (x) e -V (x) + Nx i=1 e V (x i )
and for all 1

≤ i ≤ N x , p E (x, x i ) = e -V (x i ) e -V (x) + Nx i=1 e -V (x i )
.

Otherwise, p E (x, u) = 0 and p E (e * , e) = 1. Let P E := P E e and we finally define the following annealed probabilities

P(•) := E[P E (•)] and P * (•) := E * [P E (•)].
R. Lyons and R. Pemantle [START_REF] Lyons | Random walk in a random environment and first-passage percolation on trees[END_REF] initiated the study of the randomly biased random walk X. When, for all x ∈ T, V (x) = log λ for a some constant λ > 0, the walk X is known as the λ-biased random walk on T ∪ {e * } and was first introduced by R. Lyons (see [START_REF] Lyons | Random walks and percolation on trees[END_REF] and [START_REF] Lyons | Random walks, capacity and percolation on trees[END_REF]). The 

if λ ≥ E[N ] then, P * -almost surely, X is recurrent (positive recurrent if λ > E[N ]). It is known since Y. Peres and O. Zeitouni [PZ06] that when λ = E[N ], X is diffusive : there exists σ 2 ∈ (0, ∞) such that (|X ⌊nt⌋ |/ √ σ 2 n) t≥0
converges in law to a standard reflected brownian motion. R. Lyons, R. Pemantle and Y. Peres (see [START_REF] Lyons | Ergodic theory on Galton-Watson trees : Speed of random walk and dimension of harmonic measure[END_REF] and [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF]), later joined by E. Aïdékon [START_REF] Aïdékon | Speed of the biased random walk on a galton-watson tree[END_REF] studied the transient case and showed that X has a deterministic and positive speed v λ := lim n→∞ |X n |/n. Moreover, the expression of v λ is explicit. When the bias is random, the behavior of X depends on the fluctuations of the following log-Laplace transform ψ(t) := log E[ |x|=1 e -tV (x) ] which we assume to be well defined on [0, 1] : if inf t∈[0,1] ψ(t) > 0, then P * -almost surely, X is transient and we refer to the work of E. Aïdékon [START_REF] Aïdékon | Transient random walks in random environment on a Galton-Watson tree[END_REF] for this case. Otherwise, it is recurrent. More specifically, G. Faraud [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked Galton-Watson trees[END_REF] proved that the random walk X is P * -almost surely positive recurrent either if inf t∈[0,1] ψ(t) < 0 or if inf t∈[0,1] ψ(t) = 0 and ψ ′ (1) > 0. It is null recurrent if inf t∈[0,1] ψ(t) = 0 and ψ ′ (1) ≤ 0. When ψ ′ (1) = 0, the largest generation reached by the walk X is of order (log n) 3 and the walk is in the slow regime (see [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF] and [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF]) In the present paper, we focus on the null recurrent randomly biased walk X and assume

Assumption 1. inf t∈[0,1] ψ(t) = ψ(1) = 0 and ψ ′ (1) < 0. (II.1)
Let us introduce

κ := inf{t > 1; ψ(t) = 0}, (II.2)
and assume κ ∈ (1, ∞). Under (II.1) and some integrability conditions, it has been proven that |X n | and max 1≤j≤n |X j | is of order n 1-1/ min(κ,2) (see [START_REF] Hu | A subdiffusive behavior of recurrent random walk in random environment on a regular tree[END_REF], [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked Galton-Watson trees[END_REF], [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] and [dR22]). In other words, the random walk X is sub-diffusive for κ ∈ (1, 2] and diffusive for κ > 2. In this paper, we put ourselves in the latter case. We now define the range of the random walk X. Let T ∈ N * . The range R T of the random walk X is the set of distinct vertices of T visited by X up to the time

T : if L T u := T j=1 1 {X j =u} denotes the local time of a vertex u ∈ T at time T then R T = {u ∈ T; L T u ≥ 1}, (II.3)
its cardinal is denoted by R T and we also called it range. It has been proved by E. Aïdékon and L. de Raphélis that R n is of order n (see [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF]). Moreover, R n is a finite sub-tree of T and properly renormalized, it converges in law to a random real tree when n goes to infinity. Introduce T j , the j-th return time to e * : T 0 = 0 and for any j ≥ 1,

T j = inf{i > T j-1 ; X i = e * }.
Thanks to (II.31), we know that T n 1/2 is of order n. We will be focusing our attention on the range R T n 1/2 and we shall finally present an extension of the range R n .

Let us now define an extension of the volume R T n 1/2 : for any integer k ≥ 2 and any subset

D of T with cardinal |D| ≥ k, let D ×k := D × • • • × D, introduce ∆ k := {x = (x (1) , . . . , x (k) ) ∈ T ×k ; ∀i 1 ̸ = i 2 , x (i 1 ) ̸ = x (i 2 )
} which is the set of k-tuples of distinct vertices of T. Also introduce the set (assumed to be nonempty) ∆ k (D) := ∆ k ∩ D ×k of k-tuples of distinct vertices of D. For any n ∈ N * , any subset D n of R T n 1/2 with cardinal D n and for any function

f : ∆ k -→ R + , if D n ≥ k, we define the range A k (D n , f ) by A k (D n , f ) := x∈∆ k (Dn) f (x). (II.4) Otherwise, A k (D n , f
) is equal to 0. The aim of studying the range A k (D n , f ) is to understand the interactions between the vertices in the tree R T n 1/2 and most of all to give a description of the genealogy of the vertices in R T n 1/2 . Note that the range we investigate here differs from the range studied in [START_REF] Andreoletti | Generalized range of slow random walks on trees[END_REF], where authors focus on the interactions between the trajectories of the random walk X and on the trajectories of the underlying branching potential V .

Genealogy of uniformly chosen vertices in the range

For a nonempty subset D n of R T n 1/2 , introduce the random variable X n = (X (1,n) , . . . , X (k,n) ) taking values in ∆ k with law defined by : for any x = (x (1) , . . . , x (k) ) ∈ ∆ k , if P * (D n ≥ k) > 0, then

P * X n = x = 1 P * (D n ≥ k) E * 1 {x∈∆ k (Dn)} |∆ k (D n )| 1 {Dn≥k} , (II.5) and P * (X n = x) = 0 otherwise. Note that |∆ k (D n )| = D n (D n -1) × • • • × (D n -k + 1
) so the vertices X (1,n) , . . . , X (k,n) are nothing but k vertices picked uniformly and without replacement in the set D n . For any bounded function f : ∆ k -→ R + , we actually have

E * [f (X n )] = 1 P * (D n ≥ k) E * A k (D n , f ) A k (D n , 1) 1 {Dn≥k} , (II.6)
thus making a link between the generalized range A k (D n , •) and the law of X n . Recall that our main interest is the genealogy of the k vertices X (1,n) , . . . , X (k,n) so let us define the genealogical tree of these k vertices. First, introduce the largest generation M n := max x∈Dn |x| of the set D n .

Recall that in the diffusive regime (see (II.1) and (II.2) with κ > 2), max x∈R T n 1/2 |x|, the largest generation of the tree R T n 1/2 , is of order n 1/2 when n → ∞. If D n ≥ k, we then define for any m ∈ {0, . . . , M n } the equivalence relation ∼ m on {1, . . . , k} by : i 1 ∼ m i 2 if and only if X (i 1 ,n) and X (i 2 ,n) share a common ancestor in generation m. We denote by π k,n m the partition of {1, . . . , k} whose blocks are given by equivalent classes of the relation ∼ m . The process (π k,n m ) 0≤m≤Mn is called the genealogical tree of X (1,n) , . . . , X (k,n) . Let ,n) . By definition, π k,n 0 = {{1, . . . , k}} and π k,n m = {{1}, . . . , {k}} for any m ∈ { max 1≤i≤k G (i,n) , . . . , M n }.
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G (i,n) = |X (i,n) | be the generation of X (i
Replacing R T n 1/2 by a regular Galton-Watson tree T and D n by {x ∈ T; |x| = T } (the T -th generation of T), the genealogy of k vertices X

T , . . . , X

uniformly chosen in {x ∈ T; |x| = T } has been deeply studied for fixed T as well as for T → ∞. First, when k = 2, K.B. Athreya [START_REF] Athreya | Coalescence in the recent past in rapidly growing populations[END_REF] proved that when T is super-critical (the mean of the reproduction law in larger than 1) X

(1) T and X

(2) T share a common ancestor for the last time in the remote past : if

M T := |X (1) T ∧ X (2)
T | denotes the generation of the most recent common ancestor of X

(1) T and X

(2) T then (M T ) converges in law to a non-negative random variable depending on the reproduction law N when T goes to ∞. However, when T is critical (the mean of the reproduction law is equal to 1), X

(1) T and X

(2) T share a common ancestor for the last time in the recent past : (M T /T ) converges in law to a [0, 1]-valued random variable which doesn't depend on the reproduction law N when T goes to ∞, see [START_REF] Athreya | Coalescence in critical and subcritical Galton-Watson branching processes[END_REF]. K.B. Athreya also dealt with the sub-critical case (the mean of the reproduction law is smaller than 1) in the latter paper and it is quite similar to the critical case. More recently S. Harris, S. Johnston and M. Roberts gave a full description of the genealogy of the vertices X

(1) T , . . . , X (k) T for a given integer k ≥ 2 for both fixed T and T → ∞, when the underlying process is a continuous-time Galton-Watson process (see [START_REF] Harris | The coalescent structure of continuous-time Galton-Watson trees[END_REF] and [START_REF] Johnston | The genealogy of Galton-Watson trees[END_REF]). See also [START_REF] Abraham | Exact simulation of the genealogical tree for a stationary branching population and application to the asymptotics of its total length[END_REF] for a study of the genealogy of randomly chosen individuals when the underlying process is a continuous-state branching process.

Let us return to the case of the random walk in random environment. The generations at which the vertices X (1,n) , . . . , X (k,n) are chosen have a major influence on their genealogical structure. The next four subsections are dedicated to the three regimes we observe : the tiny generations, the small generations, on which we spend most of our time and the critical generations. For the second regime, we are able to give a quite full description of the genealogy of X (1,n) , . . . , X (k,n) , displaying five examples we believe to be relevant, see subsection 1.4, and a general result is proven in 1.5. Finally, we show that we can easily extend our results on R T n 1/2 to the range up to the time n.

The tiny generations

Recall that ψ(t) = log E[ |x|=1 e -tV (x) ] and introduce γ := sup{a ∈ R; inf t≥0 (ψ(-t) -at) > 0}. By tiny generations, we mean those of order ℓ n where ℓ n → ∞ when n → ∞ and ℓ n ≤ G log n with G ∈ (0, (2γ) -1 ). The fact is that for these generations, the random environment has a uniform impact. Indeed, P. Andreoletti and P. Debs proved in [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] that with high probability, R n = {x ∈ T; |x| ≤ G log n} for all G ∈ (0, (2γ) -1 ). Moreover, the value (2γ) -1 is optimal : if G n denotes the largest generation entirely visited by the random walk X up to the time n, then

P * -almost surely G n log n -→ n→∞ 1 2γ .
For this case, we are therefore capable of giving a description of the genealogy of k ≥ 2 vertices uniformly chosen by adapting the works of S. Harris, S. Johnston and M. Roberts to discrete super-critical Galton-Watson trees.

The small generations : examples

In this subsection, we focus on the small generations of the tree R n 1/2 where we recall that T j is the j-th return time to e * : T 0 = 0 and for any j ≥ 1, T j = inf{i > T j-1 ; X i = e * }. Let (L n ) be a sequence of positive integers such that L n ≥ δ -1 0 log n (see Lemma 3.4 for the definition of δ 0 ) but smaller than the typical generations of the diffusive random walk X :

Assumption 2 (The small generations). Let (Λ i ) i∈N be the sequence of functions defined recursively by : for all t > 0, Λ 0 (t) = t and for any i ∈ N * , Λ i-1 (t) = e Λ i (t) . There exists l 0 ∈ N such that

lim n→∞ L n n 1/2 Λ l 0 (L n ) = 0. (II.7)
Assumption 2 ensures that L n /n 1/2 , renormalized by a sequence that grows very slowly, goes to 0 when n goes to ∞. Note that when k = 2, it is enough to assume that L n = o(n 1/2 ). Let (ℓ n ) be a sequence of positive integers such that δ -1 0 log n ≤ ℓ n ≤ L n and introduce the set

D n := {x ∈ R T n 1/2 ; ℓ n ≤ |x| ≤ L n },
with high L n -1 where L n := L n -ℓ n + 1. Recall that D n is the cardinal of D n . Note that lim n→∞ P * (D n ≥ k) = 1 so we will refer to the set {D n ≥ k} only if necessary.

For any m ∈ N, recall that T m = {x ∈ T; |x| = m} be the m-th generation of the tree T and let ∆ j m := ∆ j (T m ). In addition, we also require the following technical assumption.

Assumption 3. There exists

δ 1 > 0 such that ψ(t) < ∞ for all t ∈ [1 -δ 1 , ⌈κ + δ 1 ⌉] and for all 1 ≤ j ≤ ⌈κ + δ 1 ⌉, for all β = (β 1 , . . . , β j ) ∈ (N * ) ×j such that j i=1 β i ≤ ⌈κ + δ 1 ⌉ c j (β) := E x∈∆ j 1 e -⟨β,V (x)⟩ j < ∞, (II.8) where ⟨β, V (x)⟩ j := j i=1 β i V (x (i) ).
The next assumption is an ellipticity condition.

Assumption 4. There exists h > 0 such that

P inf x∈T (V (x) -V (x * )) ≥ -h = 1.
(II.9)

Remark 3. Although we assumed k ≥ 2, the case k = 1, that is to the say the volume D n = ℓn≤|z|≤Ln 1 {z∈R T n 1/2 } of the regular range D n is interesting. The convergence of (D n /(n 1/2 L n )) n does not requires all the previous assumptions and holds for κ > 2. However, since it is an easy consequence of Theorem 1.6 with k = 2 and f = 1, we state the following result : Theorem 1.1. Let κ > 4. Under the assumptions 1, 2, 3 and 4, in P * -probability

1 n 1/2 L n D n -→ n→∞ c ∞ W ∞ ,
where c ∞ is defined in (II.26), W ∞ is the limit of the x) and according to [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF],

F n := σ((T; V (x), |x| ≤ n)) addi- tive martingale W n = |x|=n e -V (
P * (W ∞ > 0) = 0. Moreover, lim t→∞ t κ P(W ∞ > t) exists (see [Liu00]). In particular, if R n (ℓ) = |z|=ℓ 1 {z∈R T n 1/2 } denotes the volume of the ℓ-th generation of the range R T n 1/2 and log n = o(L n ), then both (R n (L n )/n 1/2 ) and ( Ln ℓ=δ -1 0 log n R n (ℓ)/(n 1/2 L n )) converge in P * -probability to c ∞ W ∞ .
In view of Theorem 1.1, we deduce that whenever L n is large enough but not to close to the largest generation of the tree R T n 1/2 , the range R n (L n ) is of order n 1/2 . Moreover, L n -1 denotes the height of the set D n in the tree R T n 1/2 and the volume of

D n behaves like L n × R n (L n ).
The following theorems are composed of two parts : the first part will be a convergence of the range A k n (f ) for a given function f and the second part will be an application of this convergence to the genealogy of the vertices X (1,n) , . . . , X (k,n) .

In the second example, we present a range such that for a k-tuple x ∈ ∆ k , some of the vertices are free while others are obliged to interact with each other. Let λ = (λ 1 , . . . , λ k ) ∈ (N * ) ×k and introduce

f λ (x (1) , . . . , x (k) ) := k i=2 1 {|x (i-1) ∧x (i) |<λ i } .
Note that there is no constraint between x (i 1 ) and

x (i 2 ) if i 1 ̸ ∈ {i 1 -1, i 1 + 1}.
Theorem 1.2. Let k ≥ 2 and assume κ > 2k. Under the assumptions 1, 2, 3 and 4, in P *probability

1 (n 1/2 L n ) k A k (D n , f λ ) -→ n→∞ (c ∞ ) k A k ∞ (f λ ),
where

A k ∞ (f λ ) = lim l→∞ x∈∆ k l e -V (x (1) ) k i=2 e -V (x (i) )
1 {|x ((i-1)) ∧x (i) |<λ i } and this limit holds in L 2 (P * ).

In the next example, we are interested in the number of vertices of D n sharing a common ancestor for the last time at the bottom of the tree R T n 1/2 . Let k ≥ 2 be an integer. For any x = (x (1) , . . . , x (k) ) ∈ ∆ k , let S k (x) be the first generation at which none of x (1) , . . . , x (k) share a common ancestor :

S k (x) := min{m ≥ 1; ∀ i 1 ̸ = i 2 , |x (i 1 ) ∧ x (i 2 ) | < m}, (II.10)
where we recall that |x (i 1 ) ∧ x (i 2 ) | is the most recent common ancestor of x (i 1 ) and x (i 2 ) . For any

m ∈ N * , introduce C k m := {x ∈ ∆ k ; S k (x) ≤ m} (see Figure II.1
). Let us also introduce the coalescent times (or split times) of the vertices X (1,n) , . . . , X (k,n) , uniformly chosen in the set D n . For a given partition π of {1, . . . , k}, we denote by |π| the total number of blocks of π. Define the coalescent times by : S k,n 0 := 0 and for all j ∈ N * , k ≥ 2

S k,n j := min m ≥ S k,n j-1 ; |π k,n m | > |π k,n S k,n j-1 | ∧ (k -1) . (II.11)
Note that there exists J k,n ∈ N such that for any j ≥ J k,n , S k,n j = S k (X (n) ) and by definition, 2 ≤ |{S n j ; j ∈ N}| ≤ k. One can notice that seen backwards in time, each random time S k,n j -1 with 0 < j ≤ J k,n corresponds to a generation at which two or more vertices among X (1,n) , . . . , X (k,n) share a common ancestor for the first time. J k,n j is usually referred to as the j-th split time while J k,n J k,n -j+1 is the j-th coalescent time. It appears that the number of vertices visited by the random walk X belonging to C k m is large and as a consequence, the sequence of random times (S k (X

e generation 0 S 4,n 1 -1 S 4,n 2 -1 S 4,n 3 -1 = S 4,n (X (n) ) -1 m X (3,n) X (1,n) X (4,n) X (2,n)
(n) ) = inf{m ≥ 1; π k,n m = {{1}, . . . , {k}}}) n converges in law. 1. INTRODUCTION 117 Theorem 1.3. Let k ≥ 2. Assume that κ > 2k and for any m ∈ N * , x ∈ ∆ k , f m (x) = 1 C k m (x). Recall that A k (D n , f m ) is the number of k-tuples x of distinct vertices of D n such that S k (x) ≤ m.
Under the assumptions 1, 2, 3 and 4 1. in P * -probability

1 (n 1/2 L n ) k A k (D n , f m ) -→ n→∞ (c ∞ ) k A k ∞ (f m ),
where

A k ∞ (f m ) is defined in (II.23). Note that lim m→∞ A k ∞ (f m ) = (W ∞ ) k in L 2 (P * ).
2. Moreover, the sequence of random times (S k (X (n) )) converges in law, under P * : for any

m ∈ N * P * S k (X (n) ) ≤ m -→ n→∞ E * A k ∞ (f m ) (W ∞ ) k . (II.12)
The convergence in (II.12) is somewhat reminiscent of the result of K.B Athreya ([Ath12b],

Theorem 2) for a super-critical Galton-Watson tree stated earlier : each coalescence occurs in a generation close to the root.

In the following result, we compute the law of π k,n . Before that, we add, for convenience, a collection {e (i) ; i ∈ N * } of distinct leafs in the generation 0. Let q ≥ 2 be an integer and π be a partition of {1, . . . , q}. For any m ∈ N * , define the set Υ m,π by : x = (x (1) , . . . , x (q) ) ∈ Υ m,π if and only if x ∈ ∆ q and ∀B ∈ π, ∀i 1 , i 2 ∈ B : (x (i 1 ) ) m = (x (i 2 ) ) m ,

and if |π| ≥ 2 ∀B ̸ = B ∈ π, ∀i 1 ∈ B, i 2 ∈ B : (x (i 1 ) ) m ̸ = (x (i 2 ) ) m ,
where we recall that, when |x (i) | ≥ m, (x (i) ) m denotes the ancestor of x (i) in generation m. Otherwise, if |x (i) | < m, we set (x (i) ) m := e (i) so Υ m,π is well defined. Now, let 1 ≤ d < q be two integers. A collection (Ξ i ) 0≤i≤d of partitions of {1, . . . , q} is said to be increasing if it satisfies Ξ 0 = {{1, . . . , q}}, Ξ d = {{1}, . . . , {q}} and for all i ∈ {1, . . . , d}, |Ξ i-1 | < |Ξ i |, where we recall that |Ξ i | is the total number of blocks of the partition Ξ i . For p ∈ {1, . . . , d} , the j-th block B p-1 j of the partition Ξ p-1 (blocks are ordered by their least element) is the union of b p-1 (B p-1 j ) ≥ 1 (we will write b p-1 (B j ) instead) block(s)

B p l 1 , . . . , B p l b p-1 (B j ) , 1 ≤ l 1 < . . . < l b p-1 (B j ) ≤ |Ξ p |,
of the partition Ξ p and for any i ∈ {1, . . . , l b p-1 (B j ) }, define

β p-1 j,i := |B p l i |, (II.13) be the cardinal of the block B p l i . e e (1) e (2) e (3) (x (4) ) m ′ = e (4) 0 m m ′ generation x (3) 
x (1)

x (4)

x (2)

z (1) z (2) Figure II.2 -In the present illustration, the 4-tuple of vertices (x (1) , x (2) , x (3) x (4) ) belongs to Υ m,π with π = {{1, 3}, {2, 4}}, since z (1) = (x (1) ) m = (x (3) ) m , z (2) = (x (2) ) m = (x (4) ) m and z (1) ̸ = z (2)
. However, it doesn't belong to Υ m ′ ,π .

Let (Ξ i ) 0≤i≤d be an increasing collection of partitions of {1, . . . , q} and let t = (t 1 , . . . ,

t d ) ∈ N ×d such that t 1 < • • • < t d . Introduce the set Γ i t,Ξ := Υ t i -1,Ξ i-1 ∩ Υ t i ,Ξ i .
We then define the function f d t,Ξ by : for all x ∈ ∆ q

f d t,Ξ (x) = d i=1 1 Γ i t,Ξ (x). 
(II.14)

The function defined in (II.14) plays a key role in our study : f d t,Ξ (x) characterizes the genealogy of x := (x (1) , . . . , x (q) ). Indeed, for any i ∈ {1, . . . , d}, the partition Ξ i corresponds to the i-th generation of the genealogical tree of x (1) , . . . , x (q) while t i -1 denotes the i-th generation at which at least two branches of this genealogical tree split (t i -1 therefore corresponds to a coalescent/split time, see Figure II.3 for instance). We are now ready to state our result : Theorem 1.4. Let k ≥ 2 and assume that κ > 2k. Under the assumptions 1, 2, 3 and 4, for any ℓ ∈ N * such that ℓ < k, any s = (s 1 , . . . , s ℓ ) ∈ N ×ℓ such that s 1 < • • • < s ℓ and any increasing collection Π = (π i ) 0≤i≤ℓ of partitions of {1, . . . , k} 1. in P * -probability

1 (n 1/2 L n ) k A k (D n , f ℓ s,Π ) -→ n→∞ (c ∞ ) k A k ∞ (f ℓ s,Π ). (II.15) 1. INTRODUCTION 119 2. Moreover, for any non-negative integers m 0 < m 1 < • • • < m ℓ P * (π k,n m 0 = π 0 , . . . , π k,n m ℓ = π ℓ ) -→ n→∞ E * 1 (W ∞ ) k s=(s 1 ,...,s ℓ ) m i-1 <s i ≤m i A k ∞ (f ℓ s,Π ) , (II.16) where A k ∞ (f ℓ s,Π ) is the limit in L 2 (P * ) of the martingale (A k l (f ℓ s,Π )) l , satisfying Π increasing s=(s 1 ,...,s ℓ ) m i-1 <s i ≤m i A k ∞ (f ℓ s,Π ) = (W ∞ ) k ,
and

E * A k ∞ (f ℓ s,Π ) = e ψ(k) ℓ i=1 |π i-1 | j=1 c b i-1 (B j ) (β i-1 j ) B∈π i |B|≥2
e s * i+1 ψ(|B|) , (II.17)

with s * i+1 = s i+1 -s i -1, s * ℓ+1 = 1, β p j := (β p j,1 , . . . , β p j,bp(B j ) ) (see (II.13))
. We also use the convention ∅ = 1 and see the assumption 3 for the definition of c l (β).

Remark 4 (An hereditary character).

There is an hereditary character hidden in the previous formula (II.17) due to the random environment. The fact is, unlike the case of regular supercritical Galton-Watson trees depending on (b i (B); B ∈ π i , 0 ≤ i ≤ ℓ -1) (see [START_REF] Johnston | The genealogy of Galton-Watson trees[END_REF], Theorem 3.5), the limit law of the present genealogical tree depends on the collection (β i j ; 1 ≤ i ≤ ℓ, 1 ≤ j ≤ |π i-1 |) and on (|B|; B ∈ π i , 1 ≤ i ≤ ℓ), making a huge difference. Indeed, by definition, the latter take more account of the genealogical structure than (b i (B); B ∈ π i , 0 ≤ i ≤ ℓ -1). For instance, let k = 4, ℓ = 3 and define the increasing collection of partitions Π = (π i ) 1≤i≤ℓ by π 3 = {{1}, {2}, {3}, {4}}, π 2 = {{1, 3}, {2}, {4}}, π 1 = {{1, 3}, {2, 4}} and π 0 = {1, 2, 3, 4}. We have

β 3 1 = (1, 1), β 3 2 = 1, β 3 1 = 1 ; β 2 1 = 2, β 2 2 = (1, 1) ; β 1 1 = (2, 2
) and thanks to (II.17), for any t = (t 1 , t 2 , t 3 ) ∈ N ×3 such that t 1 < t 2 < t 3

E * [A 4 ∞ (f 3 t,Π )] = E |x|=1 e -2V (x) E x̸ =y |x|=|y|=1 e -V (x)-V (y) 2 E x̸ =y |x|=|y|=1 e -2V (x)-2V (y) × e t * 3 ψ(2)+2t * 2 ψ(2)+ψ(4) .

Also introduce the increasing collection of partitions Π

′ = (π ′ i ) 1≤i≤ℓ such that π ′ 3 = π 3 , π ′ 2 = π 2 , π ′ 1 = {{1, 3, 4}, {2}} and π ′ 0 = π 0 . We have β 3 1 = (1, 1), β 3 2 = 1, β 3 3 = 1 ; β 2 1 = (2, 1), β 2 2 = 1 ; β 1 1 = (3, 1
) and thanks to (II.17), for any t = (t 1 , t 2 , t 3 ) ∈ N ×3 such that t 1 < t 2 < t 3 The difference between these two examples is that in the second one, we ask (X (4,n) ) t 1 -1 (the ancestor of X (4,n) of in generation t 1 -1) to belong to both genealogical line (X (1,n) ) t 1 -1 , X (1,n) and (X (3,n) ) t 1 -1 , X (3,n) . This constraint can be satisfied only if the vertex (X (4,n) ) t 1 -1 is often visited by the random walk X, inducing more dependence in the trajectories of X thus giving the factor t * 2 ψ(3) instead of 2t * 2 ψ(2) = t * 2 ψ(2) + t * 2 ψ(2). However, in the case of regular super-critical Galton-Watson trees, the events ∩ 3 i=0 {π i } and ∩ 3 i=0 { πi } have the same probability under the limit law of the genealogical tree. Indeed, one can notice (see Figure II.3) that for all i ∈ {1, 2, 3} and all j ∈ {1, . . . ,

E * [A 4 ∞ (f 3 s,Π ′ )] = E x̸ =y |x|=|y|=1 e -V (x)-V (y) E x̸ =y |x|=|y|=1 e -2V (x)-V (y) E x̸ =y |x|=|y|=1 e -3V (x)-V (y) X (3,n) X (1,n) X (4,n) X (2,n) e 0 generation t 1 -1 t 3 -1 X (3,n) X (1,n) X (4,n) X (2,n) t 2 -1 Figure II.3 -An example of a genealogical tree of the four vertices X (1,n) , X (2,n) , X (3,n) , X (4, 
|π i |} (|π i | = |π ′ i | by defi- nition), b i,Π (B j ) = b i,Π ′ (B p(j)
) for some permutation p on 1, |π i | , but this not the case when

replacing b i,Π (B • ) by β i,Π • and b i,Π ′ (B • ) by β i,Π ′ • .
Since all coalesences of the genealogical lines of X (1,n) , . . . , X (k,n) occur in the remote past with large probability, one could focus on this particular vertices of the tree R T n 1/2 . To do that, we pick a k-tuple

Y (n) = (Y (1,n) , . . . , Y (k,n) ) uniformly in the set D ×k n ∩ C k s for s ∈ N * . In other words, the law of Y (n) is given in (II.5) by replacing ∆ k (D n ) with ∆ k (D n ) ∩ C k s .
We keep the same notations for Y (n) as for X (n) . The last example gives the law of the coalescent times (S k,n ) 1≤j≤J k,n of Y (1,n) , . . . , Y (k,n) :

1. INTRODUCTION 121 Theorem 1.5. Let k ≥ 2 and assume that κ > 2k. Let 1 ≤ ℓ < k, s ∈ N * be two integers, and s = (s 1 , . . . , s ℓ ) ∈ N ×ℓ such that s 1 < . . . < s ℓ ≤ s. Assume that for all x ∈ ∆ k ,

F ℓ s (x) = Ξ increasing f ℓ s,Ξ (x),
where Ξ increasing means here that Ξ = (Ξ i ) 0≤i≤ℓ is an increasing collection of partitions of {1, . . . , k}. Under the assumptions 1, 2, 3 and 4, 1. in P * -probability

A k (D n , F ℓ s ) A k (D n , 1 C k s ) 1 {Dn≥k} -→ n→∞ A k ∞ (F ℓ s ) A k ∞ (1 C k s )
.

(II.18)

2. Moreover

P * (S k,n 1 = s 1 , . . . , S k,n ℓ = s ℓ , J k,n = ℓ) -→ n→∞ E * A k ∞ (F ℓ s,Ξ ) A k ∞ (1 C k s ) , (II.19)
where A k ∞ (F ℓ s,Ξ ) is the limit in L 2 (P * ) of the martingale (A k l (F ℓ s,Ξ )) l and satisfying k-1 ℓ=1 s=(s 1 ,...,s ℓ )

s 1 <•••<s ℓ ≤s A k ∞ (F ℓ s ) = A k ∞ (1 C k s ).
1.5 The small generations : a general result

In this section, we present results for the range A k (D n , f ) with f satisfying a very natural heredity condition we will discuss later and including previous examples. First, recall that D n = {x ∈ R T n 1/2 ; ℓ n ≤ |x| ≤ L n } with (L n ) a sequence of positive integers such that δ -1 0 log n ≤ L n ≤ n 1/2 (see Lemma 3.4 for the definition of δ 0 ) and (ℓ n ) is a sequence of positive integers such that δ -1

0 log n ≤ ℓ n ≤ L n . Then recall the definition of A k (D n , f ) defined in (II.4) : if D n ≥ k A k (D n , f ) := x∈∆ k (Dn) f (x), with ∆ k (D n ) = {x = (x (1) , . . . , x (k) ) ∈ D ×k n ; ∀i 1 ̸ = i 2 , x (i 1 ) ̸ = x (i 2 )
} and equal to 0 otherwise. Although we obtain quite general results, we however require the following assumption on f : recall that for all k ≥ 2, x = (x (1) , . . . , x (k) ) ∈ ∆ k , C k m = {x ∈ ∆ k ; S k (x) ≤ m} where S k (x) -1 denotes the last generation at which two or more vertices among x (1) , . . . , x (k) share a common ancestor (see (II.10)). Assume Assumption 5. there exists g ∈ N * such that for all integer p ≥ g and all x = (x (1) , . . . , x (k) ) ∈ ∆ k , if min 1≤i≤k |x (i) | ≥ p and x ∈ C k p then f ((x (1) , . . . , x (k) )) = f (x (1) ) p , . . . , (x (k) ) p , (II.20)

where we recall that (x (i) ) p is the ancestor of x (i) in the generation p. In other words, we ask the constraint f to be hereditary from a given generation g.

Introduce the local time L n := n j=1 1 {X j =e * } of the parent e * of the root e at time n. Recall that T j is the j-th return time to e * : T 0 = 0 and for any j ≥ 1, T j = inf{i > T j-1 ; X i = e * }. Let s ∈ N * and introduce D n,T s := {x ∈ R T s ; ℓ n ≤ |x| ≤ L n }. We denote by E k,s the set defined by : for a given x = (x (1) , . . . , x (k) ) ∈ ∆ k , x ∈ E k,s if and only if the vertices of x (1) , . . . , x (k) are visited during k distinct excursions before the instant T s :

E k,s := j∈ 1,s k k i=1 {x = (x (1) , . . . , x (k) ) ∈ ∆ k ; L T j i x (i) -L T j i -1 x (i) ≥ 1}, (II.21)
where we denote by 1, s k the set of k-tuples j of {1, . . . , s} such that for all i 1 ̸ = i 2 ∈ {1, . . . , s},

j i 1 ̸ = j i 2 . Our first proposition is a convergence of the range A k (D n,T s , f 1 E k,s ) for any ε 1 n 1/2 ≤ s ≤ n 1/2 /ε 1 , ε 1 ∈ (0, 1).
Proposition 2. Let k ≥ 2 and assume κ > 2k. Under the assumptions 1, 2, 3 and 4, if f satisfies the hereditary assumption 5 then for all ε, ε 1 ∈ (0, 1),

ε 1 n 1/2 ≤ s ≤ n 1/2 /ε 1 P * 1 (sL n ) k A k (D n,T s , f 1 E k,s ) -(c ∞ ) k A k ∞ (f ) > ε -→ n→∞ 0,
where (S i -S i-1 ) i∈N * is a sequence of i.i.d real valued random variables such that S 0 = 0 and

E[h(S 1 )] = E |x|=1 h(V (x))e -V (x) , (II.22)
and, in L 2 (P * )

A k ∞ (f ) := lim l→∞ A k l (f ), (II.23) with A k l (f, β) := x∈∆ k l f (x)e -⟨β,V (x)⟩ k , A l (f ) := A l (f, 1
) and 1 := (1, . . . , 1) ∈ N ×k .

In the next proposition, we claim k-tuples in ∆ k \ E k,s with n 1/2 /ε 1 and ε 1 ∈ (0, 1), that is k-tuples of vertices such that at least two among them are visited during the same excursion above e * and before T s , have a minor contribution to the range A k (D n , 1).

Proposition 3. Let ε ∈ (0, 1), k ≥ 2 and assume κ > 2k. Under the assumptions 1, 2, 3 and 4

P * sup s≤n 1/2 /ε 1 A k (D n,T s , 1 ∆ k \E k,s ) > ε(n 1/2 L n ) k -→ n→∞ 0 (II.24) 1. INTRODUCTION 123 
We are now ready to state our main result :

Theorem 1.6. Let k ≥ 2 and assume κ > 2k. Under the assumptions 1, 2, 3 and 4, if f satisfies the hereditary assumption 5 then, in P * -probability

A k (D n , f ) (n 1/2 L n ) k -→ n→∞ (c ∞ ) k A k ∞ (f ), (II.25)
and if g ̸ ≡ 0 also satisfies assumption 5 then in P * -probability

A k (D n , f ) A k (D n , g) 1 {Dn≥k} -→ n→∞ A k ∞ (f ) A k ∞ (g) , (II.26)
where

L n = L n -ℓ n + 1, c ∞ := E[( j≥0 e -S j ) -1 ] and A k ∞ (f ) is defined in (II.23).
Note that a constraint satisfying assumption 5 doesn't have any influence on the normalization of the range. Moreover, A k (D n , f ) behaves like (L n max x∈R T n 1/2 |x|) k and the limiting value A ∞ (f ) contains all the information about the interactions between the vertices of the tree. Since ψ(2) < 0, c ∞ and c 0 are well defined in (0, ∞). Indeed, the sequence (( l j=0 e -S j ) -1 ) l∈N is bounded and non-increasing and by Jensen inequality,

1 ≥ E[( l j=0 e -S j ) -1 ] ≥ E[( l j=0 e -S j )] -1 = ( l j=0 e jψ(2) ) -1 ≥ 1 -e ψ(2) > 0.
We end this subsection by stating an extension of Theorem 1.6 to the range R n . Before that, introduce Dn := {x ∈ R n ; ℓ n ≤ |x| ≤ L n } with cardinal Dn .

Theorem 1.7. Let k ≥ 2. There exists a non-increasing sequence of positive integers (q j ) j , satisfying q j ∈ (0, 1/2) and q j → 0 when j → ∞ such that if κ > 2ξk for some integer ξ ≥ 2 and L n = o(n 1/2-q ξ ), then, in law, under

P * A k ( Dn , f ) (n 1/2 L n ) k -→ n→∞ A k ∞ (f ) (W ∞ ) k c ∞ c 1/2 0 |N | k , (II.27)
and if g ̸ ≡ 0 also satisfies assumption 5 then in P * -probability

A k ( Dn , f ) A k ( Dn , g) 1 {Dn≥k} -→ n→∞ A k ∞ (f ) A k ∞ (g) , (II.28)
where c 0 := E[ x̸ =y;|x|=|y|=1 e -V (x)-V (y) ]/(1 -e ψ(2) ) and N is a standard Gaussian random variable.

In particular, all the previous results on D n hold for Dn with L n = o(n 1/2-q ξ ).

Further discussion : the critical generations

The critical generations, that is to say of order n 1/2 , correspond to the typical generations but also to the largest reached by the diffusive random walk X up to the time n. E. Aïdékon and L.

de Raphélis [START_REF] Aïdékon | Scaling limit of the recurrent biased random walk on a Galton-Watson tree[END_REF] showed that n 1/2 is also the right normalisation for the tree R n : in law, under P * c

1/2 0 n 1/2 R n -→ n→∞ T |B| ,
where for any c > 0, cR T is tree R T with edge lengths equal to c and T |B| is the real tree coded by the standard reflected Brownian motion |B| = (|B t |) t∈[0,1] on [0, 1] (see [START_REF] Gall | Random real trees[END_REF]). T |B| is what we can call a Brownian forest thus suggesting that two vertices X (1,n) and X (2,n) chosen uniformly in the range R n at a generation of order n 1/2 can share a common ancestor in both remote past and recent past. That is actually what is happening when considering two vertices X (1,n) and X (2,n) picked uniformly at generation n 1/2 in the tree R tn , where t n is the n 

lim ε→0 lim sup n→∞ E * 1 n x̸ =y |x|=|y|=n 1/2 1 {x,y∈Rt n , 1/ε≤|x∧y|<εn 1/2 } = 0.
Although T is a super-critical Galton-Watson tree, the genealogy of R tn (or R n ) is a mix of the super-critical case and the critical case for a regular Galton-Watson trees (see subsection 1.2). The fact is using standard techniques for randomly biased random walks and branching random walks, we are able to deal with the quenched mean of (D tn ) p 1 for p 1 ≤ ⌊κ⌋ and (A 2 (D tn , f )) p 2 with p 2 ≤ ⌊κ/2⌋ but not with the actual random variables. The computation for any m > 0 and any 0 < a < b < 1 of P * ( Mn < m) and P * (an 1/2 ≤ Mn < bn 1/2 ) is part of an ongoing work with P. Andreoletti and L. de Raphélis. The present paper aims in some way to describe the interaction between the vertices of the tree R T n 1/2 in the set of generations «squashed» when rescaling the tree by n 1/2 . Remark 5. The curiosity here is the fact that critical generations and small generations equally contributed to the range. Indeed, whether L n is negligible with respect to n 1/2 (with L n ≥ δ -1 0 log n) or not, |u|=Ln 1 {u∈Rt n } is of order n 1/2 . This fact makes a deep difference with the slow regime in which only the critical generations (that is typical generations, of order (log n) 2 ) contribute significantly to the range (see [START_REF] Andreoletti | Range and critical generations of a random walk on Galton-Watson trees[END_REF], Theorem 1.2 and Proposition 1.4).

Proofs of the theorems

In this section, we prove theorems presented as examples and end it with the proof of Theorem 1.6.

PROOFS OF THE THEOREMS 125

2.1 Proofs of Theorems 1.2 to 1.5

In this subsection, we give a proof of each example stated above except for the Theorem 1.1 which is the simplest application of Theorem 1.6, taking f = 1. For each example, the procedure is as follows : we first prove the function f we consider satisfies the hereditary assumption 5 and we then give useful precisions on A k ∞ (f ) for the description of the genealogy of the vertices X (1,n) , . . . , X (k,n) .

Proof of Theorem 1.2. Recall that for x = (x (1) , . . . ,

x (k) ) ∈ ∆ k and λ = (λ 1 , . . . , λ k ) ∈ (N * ) ×k f λ (x (1) , . . . , x (k) ) := k i=2 1 {|x (i-1) ∧x (i) |<λ i } .
Let us prove that the hereditary assumption 5 is satisfied by f λ . Recall that for x = (x (1) , . . . , x (k) ) ∈ ∆ k , S k (x) -1 denotes the last generation at which two or more vertices among x (1) , . . . , x (k) share a common ancestor. If p ≥ max 2≤i≤k λ i and x ∈ ∆ k such that p ≤ min 1≤i≤k |x (i) |, then S k (x) ≤ p implies that for any z ∈

(x (1) ) p , x (1) ו • •× (x (k) ) p , x (k) , we have S k (z) = S k (x)
since, by definition of f λ , the highest obliged coalescence between at least two vertices among (x (1) , . . . , x (k) ) must append at generation max 2≤i≤k λ i . Thus, S k ((x (1) ) p , . . . , (x (k) ) p ) ≤ m. Moreover, by definition, S k ((x (1) ) p , . . . , (x (k) ) p ) ≤ max 2≤i≤k λ i implies S k (x) ≤ max 2≤i≤k λ i . Consequently, assumption 5 holds for g = max 2≤i≤k λ i . We conclude using Theorem 1.6.

We now prove Theorem 1.3 :

Proof of Theorem 1.3. Recall that for x = (x (1) , . . . , x (k) ) ∈ ∆ k , S k (x) -1 denotes the last generation at which two or more vertices among x (1) , . . . , x (k) share a common ancestor and for m ∈ N * , recall that

f m (x) = 1 {S k (x)≤m} .
First, note that the hereditary assumption 5 is satisfied by k) , we have S k (z) = S k (x). Thus, S k ((x (1) ) p , . . . , (x (k) ) p ) ≤ m. Moreover, by definition, S k ((x (1) ) p , . . . , (x (k) ) p ) ≤ m implies S k (x) ≤ m. Consequently, assumption 5 holds for g = m.

f m . Indeed, if p ≥ m and x ∈ ∆ k such that p ≤ min 1≤i≤k |x (i) |, then S k (x) ≤ p implies that for any z ∈ (x (1) ) p , x (1) × • • • × (x (k) ) p , x ( 
We then deduce the converge of the trace in (II.15) by using Theorem 1.6. We now move to the limit law of (S k (X (n) )) in (II.12). Note, by definition, that

P * S k (X n ) ≤ m = 1 P * (D n ≥ k) E * A k (D n , f m ) A k (D n , 1) 1 {Dn≥k} , so P * (S k (X n ) ≤ m) goes to E * [A k ∞ (f m )/(W ∞ ) k ]
when n goes to ∞ thanks to Theorem 1.6 with f = f m and g = 1 together with the fact that lim n→∞ P

* (D n ≥ k) = 1. It is left to show that lim m→∞ A k ∞ (f m ) = (W ∞ ) k .
For that, we use Lemma 3.9 with f = 1 and p = (l, . . . , l) ∈ (N * ) ×k sup l>m

E * A k l (f m ) -A k l (1) 2 -→ m→∞ 0. Moreover, lim l→∞ A k l (1) = (W ∞ ) k and lim l→∞ A k l (f m ) = A k ∞ (f m ) so (A k ∞ (f m )) m converges to (W ∞ ) k in L 2 (P *
), which allows to end the proof.

We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. Recall that for any 1 ≤ d < q ∈ N * , for an increasing collection Ξ = (Ξ i ) 0≤i≤d of partitions of {1, . . . , q}, for all x = (x (1) , . . . , x (q) ) ∈ ∆ q and all t = (t 1 , . . . , t d ) ∈ N ×d such that

t 1 < t 2 < • • • < t d , f d t,Ξ (x) = d i=1 1 Γ i t,Ξ (x) 
, where Γ i t,Ξ = Υ t i -1,Ξ i-1 ∩ Υ t i ,Ξ i and for any r ∈ {1, . . . , d} and any m ∈ N * , x belongs to Υ m,Ξr if and only if

∀B ∈ Ξ r , ∀i 1 , i 2 ∈ B : (x (i 1 ) ) m = (x (i 2 ) ) m ,
and for r ̸ = 0

∀B ̸ = B ∈ Ξ r , ∀i 1 ∈ B, i 2 ∈ B : (x (i 1 ) ) m ̸ = (x (i 2 ) ) m ,
where we recall that (x (i) ) m denotes the ancestor of x (i) in generation m if exists, (x (i) ) m = e (i) otherwise. Recall that C k g = {y ∈ ∆ q ; S q (y) ≤ g} where S q (y) -1 is the last generation at which two or more vertices among y (1) , . . . , y (q) share a common ancestor. Let p ≥ t d such that min 1≤i≤q x (i) ≥ p and x ∈ C k p . If x ∈ ∩ d j=1 Γ j t,Ξ , then (z (i) ) t = (x (i) ) t for all z ∈ (x (1) ) p , x (1) × • • • × (x (q) ) p , x (q) , 1 ≤ i ≤ q and t ∈ {0, . . . , p} thus giving ((x (1) ) p , . . . , (x (q) ) p ) ∈ ∩ d j=1 Γ j t,Ξ . Moreover, by definition, ((x (1) ) p , . . . , (x

(q) ) p )) ∈ ∩ d j=1 Γ j t,Ξ implies x ∈ ∩ d j=1 Γ j t,Ξ , then (z (i) ) t = (x (i) ) t . Consequently, f d t,Ξ
satisfies assumption 5 with g = t d and this prove that the convergence in (II.15) holds. We move to the limit law of (π k,n ) in (II.16). Recall the definition of S k,n i in (II.11). First, note that

P * (π k,n m 0 = π 0 , . . . , π k,n m ℓ = π ℓ ) = P * ℓ i=1 π k,n m i-1 = π i-1 , π k,n m i = π i , m i-1 < S k,n i ≤ m i .
Indeed, for all 1 ≤ i ≤ ℓ, |π i-1 | < |π i | so the interval (m i-1 , m i ] necessarily contains at least one coalescent time. But since π 0 = {{1, . . . , k}} and π ℓ = {{1}, . . . , {k}}, ∪ ℓ i=1 (m i-1 , m i ] can't contain more than ℓ coalescent times so S k,n i is the only one belonging to (m i-1 , m i ]. We now write

P * ℓ i=1 π k,n m i-1 = π i-1 , m i-1 < S k,n i ≤ m i = m 1 s 1 =m 0 +1 • • • m ℓ s ℓ =m ℓ-1 +1 P * ℓ i=1 π k,n m i-1 = π i-1 , π k,n m i = π i , S k,n i = s i = m 1 s 1 =m 0 +1 • • • m ℓ s ℓ =m ℓ-1 +1 P * ℓ i=1 π k,n s i -1 = π i-1 , π k,n s i = π i , Moreover, π k,n s i -1 = π i-1 , π k,n s i = π i means nothing but X (n) ∈ Γ i
s,Π and it follows that

P * ℓ i=1 π k,n m i-1 = π i-1 , π k,n m i = π i , S k,n i = s i = E * f ℓ s,Π (X (n) ) = E * A k (D n , f ℓ s,Π ) A k (D n , 1) 1 {Dn≥k} ,
where we have used the definition of X (n) (see (II.6)) in the last equation. Since f ℓ s,Π satisfies the hereditary assumption 5, we finally get (II.15) from (II.25) with f = f ℓ s,Π and by (II.26) with g = 1

lim n→∞ P * (π k,n m 0 = π 0 , . . . , π k,n m ℓ = π ℓ ) = m 1 s 1 =m 0 +1 • • • m ℓ s ℓ =m ℓ-1 +1 E * A k ∞ (f ℓ s,Π ) (W ∞ ) k .
We now compute the conditional expectation of A k ∞ (f ℓ s,Π ) conditionally given the sigma-algebra F sp-1 = σ(T; (V (x); |x| < s p )). Start with p = ℓ. Let s i ∈ {m i-1 +1, . . . , m i } for all i ∈ {1, . . . , ℓ}.

Using the definition of A k

∞ (f ℓ s,Π ) and the fact that x ∈ ∆ k l ∩ Γ ℓ s,Π for l > s ℓ implies S k (x) ≤ s ℓ , we obtain, on the set of non-extinction

E * A k ∞ (f ℓ s,Π )|F s ℓ = lim l→∞ E * x∈∆ k l f ℓ s,Π (x)e -⟨1,V (x)⟩ k |F s ℓ = x∈∆ k s ℓ f ℓ s,Π (x)e -⟨1,V (x)⟩ k ,
since s ℓ -1 corresponds to the last generation at which two or more vertices among x (1) , . . . , x (l) share a common ancestor and we recall that ⟨1, V (x)⟩ k = k i=1 V (x (i) ). In particular, these vertices don't share any common ancestor in generation s ℓ and last inequality comes from independence of the increments of the branching random walk (T, (V (x), x ∈ T)) together with the fact that ψ(1) = 0. Before going any further, let us define a transformation of the collection of partitions Π. We build from Π, which is a collection of partitions of the set {1, . . . , k}, a new collection Π ℓ-1 = ( πi ) 0≤i≤ℓ-1 of partitions of the set {1, . . . , |π ℓ-1 |} as follows :

• πℓ-1 = {{1}, . . . , {|π ℓ-1 |}} ;

• for any 1 ≤ i ≤ ℓ -2 and any 1 ≤ j ≤ |π i |, the j-th block B i j of the partition π i is the union of b ℓ-1 (B i j ) ≥ 1 block(s) of the partition π ℓ-1 . We then denote by Bi j the subset of {1, . . . , |π ℓ-1 |} composed of all indices of these b ℓ-1 (B i j ) block(s) and let πi = { Bi 1 , . . . , Bi |π i | }. By definition, π0 remains a one-block partition : π0 = {{1, . . . , |π ℓ-1 |}}. Note that for any 0 ( Bj ), where Bj ∈ πi is the union of bi ( Bj ) ≥ 1 block(s) of πi+1 .

≤ i ≤ ℓ -1, | πi | = |π i | and for any 0 ≤ i ≤ ℓ -2, 1 ≤ j ≤ |π i |, b i (B j ) = bi
Example 6. If Π is defined by π 4 = {{1}, {2}, {3}, {4}, {5}},π 3 = {{1, 3}, {2}, {4}, {5}}, π 2 = {{1, 3}, {2, 5}, {4}}, π 1 = {{1, 3, 4}, {2, 5}} and π 0 = {{1, 2, 3, 4, 5}} then we have : π3 = {{1}, {2}, {3}, {4}}, π2 = {{1}, {2, 4}, {3}}, π1 = {{1, 3}, {2, 4}}, and π0 = {{1, 2, 3, 4}}.

If Π ℓ := Π, then for any i ∈ {0, . . . , ℓ -1}, let Π i be the collection of partitions of {1, . . . , |π i |} resulting from the previous procedure applied to Π i+1 . Note that Π i is an increasing collection of partitions of {1, . . . , |π i |}. This construction is a way of preserving the genealogical information through the generations. Let s ℓ-1 = (s 1 , . . . , s ℓ-1 ) and recall the definitions regarding partitions in (II.13). One can now notice that, since that the number of vertices of the k-tuple x ∈ ∆ k s ℓ sharing the same parent u (j) is b ℓ-1 (B j ) (where we recall that b ℓ-1 (B j ) stands for b ℓ-1 (B ℓ-1 j )), we have

x∈∆ k s ℓ f ℓ s,Π (x)e -⟨1,V (x)⟩ k = u∈∆ |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 (u) |π ℓ-1 | j=1 x (j) ∈∆ b ℓ-1 (B j ) s ℓ b ℓ-1 (B j ) i=1 1 {(x (j,i) ) * =u (j) } × e -V (x (j,i) ) ,
where x (j) = (x (j,1) , . . . , x (j,b ℓ-1 (B j )) ) and (x (j,i) ) * is the parent of x (j,i) . Moreover, by definition, b ℓ-1 (B j ) = |B ℓ-1 j | (it comes from the fact that π ℓ = {{1}, . . . , {k}}) so

|π ℓ-1 | j=1 x (j) ∈∆ b ℓ-1 (B j ) s ℓ b ℓ-1 (B j ) i=1 1 {(x (j,i) ) * =u (j) } e -V (x (j,i) ) = e -⟨β ℓ-1 ,V (u)⟩ |π ℓ-1 | |π ℓ-1 | j=1 x (j) ∈∆ b ℓ-1 (B j ) s ℓ × b ℓ-1 (B j ) i=1 1 {(x (j,i) ) * =u (j) } e -V u (j) (x (j,i) ) ,
where

β ℓ-1 = (|B ℓ-1 1 |, . . . , |B ℓ-1 |π ℓ-1 | |) and V u (j) (x (j,i) ) = V (x (j,i) ) -V (u (j)
). By independence of the increments of the branching random walk (T, (V (x), x ∈ T)), since ψ(1) = 0 ) 2. PROOFS OF THE THEOREMS 129

E x∈∆ k s ℓ f ℓ s,Π (x)e -⟨1,V (x)⟩ k |F s ℓ -1 = A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 |π ℓ-1 | j=1 c b ℓ-1 (B j ) (1) B∈π ℓ |B|≥2 e ψ(|B|
= A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 |π ℓ-1 | j=1 c b ℓ-1 (B j ) (β ℓ-1 j ),
where β ℓ-1 j := (β ℓ-1 j,1 , . . . , β ℓ-1 j,b ℓ-1 (B j ) ) = (1, . . . , 1), see (II.13). We also recall that A m l (g, β) = x∈∆ m l g(x)e -⟨β,V (x)⟩m and see assumption 3 for the definition of c l (β). Now recall that Π ℓ-2 is the collection of partitions of {1, . . . , |π ℓ-2 |} obtain from Π ℓ-1 with the same procedure as above (see Example 6). Let s ℓ-2 = (s 1 , . . . , s ℓ-2 ). Again, exactly b ℓ-2 (B j ) vertices in generation s ℓ-1 are sharing the same parent z (j) so

A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 = z∈∆ |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 (z) |π ℓ-2 | j=1 u (j) ∈∆ b ℓ-2 (B j ) s ℓ-1 b ℓ-2 (B j ) i=1 1 {(u (j,i) ) * =z (j) } × e -β ℓ-2 j,i V (u (j,i) ) x (j) ∈∆ b ℓ-2 (B j ) s ℓ -1 1 {x (j,i) ≥u (j,i) } e -β ℓ-2 j,i V u (j,i) (x (j,i) ) ,
where u (j) = (u (j,1) , . . . , u (j,b ℓ-2 (B j )) ), x (j) = (x (j,1) , . . . , x (j,b ℓ-2 (B j )) ) and V u (j,i) (x (j,i) ) is the increment V (x (j,i) )-V (u (j,i) ). Then, by independence of the increments of the branching random walk (T, (V (x), x ∈ T)),

E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 |F s ℓ-1 = z∈∆ |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 (z) |π ℓ-2 | j=1 u (j) ∈∆ b ℓ-2 (B j ) s ℓ-1 b ℓ-2 (B j ) i=1 × 1 {(u (j,i) ) * =z (j) } e -β ℓ-2 j,i V (u (j,i) ) e s * ℓ ψ(β ℓ-2 j,i ) , with s * ℓ = s ℓ -s ℓ-1 -1. Moreover, since b ℓ-2 (B j ) i=1
β ℓ-2 j,i = |B ℓ-2 j | (see (II.13)), we have

|π ℓ-2 | j=1 u (j) ∈∆ b ℓ-2 (B j ) s ℓ-1 b ℓ-2 (B j ) i=1 1 {(u (j,i) ) * =z (j) } e -β ℓ-2 j,i V (u (j,i) ) = e -⟨β ℓ-2 ,V (z)⟩ |π ℓ-2 | |π ℓ-2 | j=1 u (j) ∈∆ b ℓ-2 (B j ) s ℓ-1 b ℓ-2 (B j ) i=1 1 {(u (j,i) ) * =z (j) } e -β ℓ-2 j,i V z (j) (u (j,i) ) , with β ℓ-2 = (|B ℓ-1 1 |, . . . , |B ℓ-2 |π ℓ-2 | |)
and again, by independence of the increments of the branching random walk (T, (V (x), x ∈ T)), using again that

b ℓ-2 (B j ) i=1 β ℓ-2 j,i = |B ℓ-2 j | E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 |F s ℓ-1 -1 = A |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 , β ℓ-2 |π ℓ-2 | j=1 c b ℓ-2 (B j ) (β ℓ-2 j ) × B∈π ℓ-1 |B|≥2 e s * ℓ ψ(|B|) ,
where β ℓ-2 j = (β ℓ-2 j,1 , . . . , β ℓ-2 j,b ℓ-2 (B j ) ). Thus, we obtain

E x∈∆ k s ℓ f ℓ s,Π (x)e -⟨1,V (x)⟩ k |F s ℓ-1 -1 = A |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 , β ℓ-2 ℓ i=ℓ-1 |π i-1 | j=1 c b i-1 (B j ) (β i-1 j ) × B∈π i |B|≥2 e s * ℓ ψ(|B|) .
By induction on 2 ≤ p ≤ ℓ, we finally get, on the set of non-extinction

E * A k ∞ (f ℓ s,Π )|F sp-1 = A |π p-1 | sp-1 f p-1 s p-1 ,Π p-1 , β p-1 ℓ i=p |π i-1 | j=1 c b i-1 (B j ) (β i-1 j ) B∈π i |B|≥2 e s * i+1 ψ(|B|) .
Taking p = 2 in the above formula, we have, on the set of non-extinction

E * A k ∞ (f ℓ s,Π )|F s 2 -1 = A |π 1 | s 2 -1 f 1 s 1 ,Π 1 , β 1 ℓ i=2 |π i-1 | j=1 c b i-1 (B j ) (β i-1 j ) B∈π i |B|≥2 e s * i+1 ψ(|B|) ,
where for any i ∈ {2, . . . , ℓ}, s * i = s i -s i-1 -1 and s * ℓ+1 = 1. Since b 0 (B 1 ) j=1

|B 1 j | = k (it comes from the fact that π 0 = {{1, . . . , k}}), we have

E * A |π 1 | s 2 -1 f 1 s 1 ,Π 1 , β 1 |F s 1 -1 = |z|=s 1 -1 e -kV (z) c b 0 (B 1 ) (β 1 ) B∈π 1 |B|≥2 e s * 2 ψ(|B|) = |z|=s 1 -1 e -kV (z) |π 0 | j=1 c b 0 (B j ) (β 0 j ) B∈π 1 |B|≥2 e s * 2 ψ(|B|) ,
the last equality coming from the fact

β 0 j = β 1 = (|B 1 1 |, . . . , |B 1 |π 1 | |). Finally, E * A k ∞ (f ℓ s,Π ) = e ψ(k) ℓ i=1 |π i-1 | j=1 c b i-1 (B j ) (β i-1 j ) B∈π i |B|≥2 e s * i+1 ψ(|B|) ,
thus completing to proof.

We end this subsection with the proof of Theorem 1.5.
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Proof of Theorem 1.5. First recall that for 1 ≤ ℓ < k, s ∈ N * and s = (s 1 , . . . , s ℓ ) ∈ N ×ℓ such that s 1 < • • • < s ℓ ≤ s, for all x ∈ ∆ k such that min 1≤j≤k |x (j) | ≥ s,

F ℓ s (x) = Ξ increasing f ℓ s,Ξ (x).
By Ξ increasing, we mean here that Ξ = (Ξ i ) 0≤i≤ℓ is an increasing collection of partitions of {1, . . . , k}. Since f ℓ s,Ξ satisfies the hereditary assumption 5, the same goes for F ℓ s by taking g = s. Using the linearity of g → A k l (g), we get (II.18) thanks to Theorem 1.6. First note that

{J k,n = ℓ, S k (Y (n) ) ≤ s} = m;m 1 <•••<m ℓ ≤s Π increasing ℓ i=1 π k,n m i -1 = π i-1 , π k,n m i = π i ,
where Π increasing means here that Π = (π i ) 0≤i≤ℓ is an increasing collection of partitions of {1, . . . , k}. It follows that

P * S k,n 1 = s 1 , . . . , S k,n ℓ = s ℓ , J k,n = ℓ = E * A k (D n , F ℓ s ) A k (D n , 1 C k s )
1 {Dn≥k} , and we conclude using Theorem 1.6.

2.2 Proof of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6. First,

A k (D n,T n 1/2 , f ) = A k (D n , f 1 E k,n 1/2 ) + A k (D n , f 1 ∆ k \E k,n 1/2
) and then for any ε ∈ (0, 1)

P * 1 (n 1/2 L n ) k A k (D n , f ) -(c ∞ ) k A k ∞ (f ) > ε ≤ P * 1 (n 1/2 L n ) k A k (D n , f ) -(c ∞ ) k A k ∞ (f ) > ε 2 + P * A k (D n , 1 ∆ k \E k,n 1/2 ) > ε 2 (n 1/2 L n ) k .
Noticing that D n = D n,T n 1/2 , the first probability in this sum goes to 0 when n → ∞ thanks to Proposition 2 with s = n 1/2 and the second one also goes to 0 thanks to Proposition 3 thus giving (II.25). For the convergence in P * -probability (II.26), note that

P * A k (D n , f ) A k (D n , f ) 1 {Dn≥k} - A k ∞ (f ) A k ∞ (g) > ε ≤ P * A k (D n , f ) A k (D n , f ) - A k ∞ (f ) A k ∞ (g) > ε, D n ≥ k + P * (D n < k),
these two probabilities go to 0 when n → ∞ and the proof is completed.

We now prove Theorem 1.7. Recall that Dn = {x ∈ R n ; ℓ n ≤ |x| ≤ L n }. The main idea of the proof is to show that, when κ > 2ξk, ξ ≥ 2, and L n = o(n 1/2-q ξ ) for some non-increasing sequence q such that q j → 0 when j → ∞, the volume Dn of the range Dn behaves like the volume of the range up to the last complete excursion of (X) j≤n above the parent e * of the root e.

For that, one can notice that for this choice of κ, Proposition 2 holds uniformly in s : there exists a non-increasing sequence of positive integers (q j ) j , satisfying q j ∈ (0, 1/2) and q j → 0 when j → ∞ such that if κ > 2ξk for some integer ξ ≥ 2 and L n = o(n 1/2-q ξ ) then, for any ε 1 ∈ (0, 1)

P * n 1/2 /ε 1 s=ε 1 n 1/2 1 (sL n ) k A k (D n,T s , f 1 E k,s ) -(c ∞ ) k A k ∞ (f ) > ε -→ n→∞ 0. (II.30)
The proof of (II.30) is the same as the proof of Proposition 2 but for any ε, ε 1 ∈ (0, 1), by Markov inequality

P n 1/2 /ε 1 s=ε 1 n 1/2 j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) > ε(sL n ) k /16 ≤ n 1/2 /ε 1 s=ε 1 n 1/2 16 2ξk ε 2ξk (sL n ) 2ξk E j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) 2ξk ≤ 16 2ξk C 3.7 n 1/2 /ε 1 s=ε 1 n 1/2 L n s qξ ≤ C 2 (L n ) qξ n (q ξ -1)/2 ,
where we have used Lemma 3.7 with a = ξ for second inequality. Note that qξ ≥ 2 since ξ ≥ 2 so, as in the proof of Proposition 2, we obtain (II.30) by taking q j := (2q j ) -1 .

Proof of Theorem 1.7. First, let us state the following fact, proved by Y. Hu ([Hu17], Corollary 1.2) : in law, under

P * 1 n 1/2 n j=1 1 {X k =e} -→ n→∞ 1 p E (e, e * ) c 1/2 0 W ∞ |N |.
We can actually adapt this result to the local time L n of the parent e * of the root e : in law, under

P * 1 n 1/2 L n -→ n→∞ c 1/2 0 W ∞ |N |, (II.31)
where c 0 is defined in (II.26). Moreover, recall that N denotes, under P E , a standard Gaussian variable. Then, we show that A k (D n,T L n , f ) and A k (D n , f ) are close in the following :

P * 1 (L n L n ) k A k (D n,T L n , f ) -A k (D n , f ) > ε -→ n→∞ 0.
(II.32) 2. PROOFS OF THE THEOREMS 133 Indeed, by (II.31), lim ε 1 →0 lim sup n→∞ P * (ε 1 n 1/2 ≤ L n ≤ n 1/2 /ε 1 ) = 1 so thanks to Proposition 3, together with Lemma 3.6 taking R = ∆ k \ C k an and Lemma 3.10, (A

k (D n,T L n , f 1 ∆ k \C k an ) + A k (D n , f 1 ∆ k \C k an ))/(L n L n ) k → 0 when n → ∞
, in P * -probability where we recall that a n = (2δ 0 ) -1 log n. Therefore, it is enough to show that

P * 1 (L n L n ) k A k (D n,T L n , f 1 C k an ) -A k (D n , f 1 C k an ) > ε -→ n→∞ 0.
For that, assume L n = s ∈ {ε 1 n 1/2 , . . . , n 1/2 /ε 1 }. By definition, L n = sup{j ≥ 1; T j ≤ n} so on the set {D n,T s ≥ k}, where D n,T s is the cardinal of D n,T s , both D n,T s and D n are nonempty and note that

A k (D n , f 1 C k an ) -A k (D n,T s , f 1 C k an ) = p∈{ℓn,...,Ln} ×k x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {T s <Tx≤n} ≤ p∈{ℓn,...,Ln} ×k x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {T s <Tx<T s+1 } ,
where |x| = |p| means that for all 1 ≤ i ≤ k, x (i) = p i . Using the strong Markov property at time T s first and Markov inequality then, we have

P E 1 (sL n ) k A k (D n , f 1 C k an ) -A k (D n,T s , f 1 C k an ) > ε, D n,T s ≥ k, L n = s ≤ P E 1 ((sL n ) k p∈{ℓn,...,Ln} ×k x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {Tx<T 1 } > ε ≤ 1 (εsL n ) 2k E E p∈{ℓn,...,Ln} ×k x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {Tx<T 1 } 2 . Moreover E E [( x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {Tx<T 1 } ) 2 ] is equal to x,y∈∆ k x̸ =y 1 {|x|=|y|=p, S k (x)∨S k (y)≤an} P E (T x ∨ T y < T 1 ) + x∈∆ k 1 {|x|=p, S k (x)≤an} P E (T x < T 1 ),
where t ∨ s = max(t, s) and thanks to Lemma 3.2

E E x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {Tx<T 1 } 2 ≤ C ′ (a n L n ) 2k ,
for some constant C ′ > 0 that doesn't depend on p thus giving

P * 1 (sL n ) k p∈{ℓn,...,Ln} ×k x∈∆ k 1 {|x|=p, S k (x)≤an} 1 {T s <Tx≤n} > ε, L n = s ≤ C(a n ) 2k (εs) 2 ,
for some constant C > 0. Finally, for all ε 1 ∈ (0, 1)

P * 1 (L n L n ) k A k (D n,T L n , f 1 C k an ) -A k (D n , f 1 C k an ) > ε ≤ P * (D n,T L n < k) + n 1/2 /ε 1 s=ε 1 n 1/2 P * 1 (sL n ) k p∈{ℓn,...,Ln} ×k x∈∆ k |x|=p 1 {S k (x)≤an} 1 {T s <Tx≤n} > ε, D n,T s ≥ k, L n = s + P * (L n < ε 1 n 1/2 ) + P * (L n > n 1/2 /ε 1 ) ≤ C(a n ) 2k ε 2 ε 1 n 1/2 + P * (L n < ε 1 n 1/2 ) + P * (L n > n 1/2 /ε 1 ).
Note that lim n→∞ P * (D n,T L n < k) = 0 and using (II.31) with the definition of a n = (2δ 0 ) -1 log n, we have lim 

ε 1 →0 lim sup n→∞ ( C(a n ) 2k /(ε 2 ε 1 n 1/2 ) + P * (L n < ε 1 n 1/2 ) + P * (L n > n 1/2 /ε 1 )) = 0, which yields (II.32). Now, since A k (D n,T L n , f 1 ∆ k \E k,L n )/(L n L n ) k → 0 when n → ∞
(D n,T L n , f 1 E k,L n )/(L n L n ) k . Note the A k (D n,T L n , f 1 E k,L n ) concentrates around (c ∞ ) k A k ∞ (f )
. Indeed, for any ε, ε 1 ∈ (0, 1)

P * 1 (L n L n ) k A k (D n,T L n , f 1 E k,L n ) -(c ∞ ) k A k ∞ (f ) > ε ≤ P * n 1/2 /ε 1 s=ε 1 n 1/2 1 (sL n ) k A k (D n,T s , f 1 E k,s ) -(c ∞ ) k A k ∞ (f ) > ε + P * (L n < ε 1 n 1/2 ) + P * (L n > n 1/2 /ε 1 ).
Thanks to equation (II.30), the first probability above goes to 0 when n goes to ∞ and by (II.31), lim ε 1 →0 lim n→∞ (P * (L n < ε 1 n 1/2 ) + P * (L n > n 1/2 /ε 1 )) = 0 thus giving

lim n→∞ P * 1 (L n L n ) k A k (D n,T L n , f 1 E k,L n ) -(c ∞ ) k A k ∞ (f ) > ε = 0. (II.33)
We obtain from (II.33), together with (II.32) that

lim n→∞ P * 1 (L n L n ) k A k (D n , f 1 C k an ) -(c ∞ ) k A k ∞ (f ) > ε = 0,
which gives (II.26). We also deduce (II.25) using (II.31). For the convergence in P * -probability (II.26), note that

P * A k (D n , f 1 C k an ) A k (D n , f 1 C k an ) 1 {Dn≥k} - A k ∞ (f ) A k ∞ (g) > ε ≤ P * A k (D n , f 1 C k an ) A k (D n , f 1 C k an ) - A k ∞ (f ) A k ∞ (g) > ε, D n ≥ k + P * (D n < k),
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Proofs of Propositions 2 and 3

This section is devoted to the proofs of our two propositions. We show that relevant k-tuples of visited vertices are those in the set E k,• .

Let us recall the well-known many-to-one lemma : Lemma 3.1 (many-to-one). For any p ∈ N * and any bounded function h

E[h(S 1 , . . . , S p )] = E |x|=p e -V (x) h(V (x 1 ), . . . , V (x p )) ,
where (S i ) i∈N is the real valued random walk defined in (II.22).

We now state and prove a lemma that will be useful all along this section. For any vertex x ∈ T, introduce T x := inf{i ≥ 1 X i = x}, the hitting time of x and for any x = (x (1) , . . . , x (q) ) ∈ ∆ q , T x := max 1≤i≤q T x (i) . Recall that for any j ∈ N * , T j denotes the j-th return time to the parent e * of the root e. For 1 ≤ ℓ < q two integers, m = (m 1 , . . . , m ℓ ) ∈ N ×ℓ such that m 1 < • • • < m ℓ and Π = (π) 0≤i≤ℓ an increasing collection of partitions of {1, . . . , q} that is to say |π i-1 | < |π i | with π 0 = {{1, . . . , q}} and π ℓ = {{1}, . . . , {q}}, recall the definition of f ℓ m,Π in (II.14).

Lemma 3.2. Let k ≥ 2 and a ≥ 1 be two integers and assume κ > 2ak. Let q ∈ {k, . . . , 2ak} and p = (p 1 , . . . , p q ) ∈ N ×q . Under the assumptions 1 and 3, there exists a constant C > 0 doesn't depending neither on p, nor on m such that

E x∈∆ q |x|=p f ℓ m,Π (x)P E (T x < T 1 ) ≤ C,
where |x| = p means that |x (i) | = p i for any i ∈ {1, . . . , q}. In particular, for any integer m ∈ N * , there exists a constant C 3.2 > 0 doesn't depending on p such that

E x∈∆ q |x|=p 1 C k m (x)P E (T x < T 1 ) ≤ C 3.2 m q-1 . (II.34)
Proof in the case ∩ ℓ j=1 Γ j m,Π ⊂ {x ∈ ∆ q ; C q (x) < min 1≤i≤q p i }. First recall that Π i is the partition of {1, . . . , |π i |} obtained via the procedure defined above Example 6 and for any i ∈ {1, . . . , ℓ}, any j ∈ {1, . . . , |π i-1 |}, the j-th block B i j of the partition π i-1 is the union of b i-1 (B j ) ≥ 1 block(s) of the partition π i . Note (see the proof of Theorem 1.4) that

x∈∆ q |x|=p f ℓ m,Π (x)P E (T x < T 1 ) = z∈∆ |π ℓ-1 | m ℓ -1 f ℓ-1 m ℓ-1 ,Π ℓ-1 (z) |π ℓ-1 | j=1 u (j) ∈∆ b ℓ-1 (B j ) m ℓ b ℓ-1 (B j ) i=1 1 {(u (j,i) ) * =z (j) } × x∈∆ q 1 {|x|=p, x≥u} P E (T x < T 1 ),
where m ℓ-1 = (m 1 , . . . , m ℓ-1 ), u is the concatenation of u (1) , . . . , u (|π ℓ-1 |) and x ≥ u means that x (p) ≥ u (p) . Thanks to the strong Markov property at time T z (i) , there exists a constant C q ≥ 1 such that

x∈∆ q |x|=p f ℓ m,Π (x)P E (T x < T 1 ) ≤ C q z∈∆ |π ℓ-1 | m ℓ -1 f ℓ-1 m ℓ-1 ,Π ℓ-1 (z)P E (T z < T 1 ) |π ℓ-1 | j=1 u (j) ∈∆ b ℓ-1 (B j ) m ℓ b ℓ-1 (B j ) i=1 × 1 {(u (j,i) ) * =z (j) } x (j) ∈∆ b ℓ-1 (B j ) |x (j) |=p (j) 1 {x (j,i) ≥u (j,i) } P E z (j) (T x (j,i) < T 1 ),
where p is now seen as the concatenation of p (1) , . . . , p (|π ℓ-1 |) . Moreover, it is known that for all z ≤ x in T, w) . By independence of the increments of the branching random walk (T, (V (x), x ∈ T)), using that b ℓ-1 (B j ) = |B ℓ-1 j | and ψ(1) = 0

P E z (T x < T 1 ) = e≤w≤z e V (w) e≤w≤x e V (w) if z ̸ = e, P E (T x < T 1 ) = 1 e≤w≤x e V (w) else, (II.35) so P E z (T x < T 1 ) ≤ e -V (x) e≤w≤z e V ( 
E x∈∆ q |x|=p f ℓ m,Π (x)P E (T z < T 1 ) ≤ C ℓ-1 E z∈∆ |π ℓ-1 | m ℓ -1 f ℓ-1 m ℓ-1 ,Π ℓ-1 (z)P E (T z < T 1 ) |π ℓ-1 | j=1 (H z (j) ) |B ℓ-1 j | × C q B∈π ℓ-1 c |B| (1), with H z = e≤w≤z e V (w)-V (z) and C ℓ-1 = C q B∈π ℓ-1 c |B| ( 
1) ∈ (0, ∞) thanks to assumption 3 since for any B ∈ π ℓ-1 , |B| < q ≤ 4k < κ. Again, thanks to the strong Markov property at time T w (i)

z∈∆ |π ℓ-1 | m ℓ -1 f ℓ-1 m ℓ-1 ,Π ℓ-1 (z)P E (T z < T 1 ) |π ℓ-1 | j=1 (H z (j) ) |B ℓ-1 j | 3. PROOFS OF PROPOSITIONS 2 AND 3 137 ≤ C ℓ-1 w∈∆ |π ℓ-2 | m ℓ-1 -1 f ℓ-2 m ℓ-2 ,Π ℓ-2 (w)P E (T w < T 1 ) |π ℓ-2 | j=1 v (j) ∈∆ b ℓ-2 (B j ) m ℓ-1 b ℓ-2 (B j ) i=1 1 {(v (j,i) ) * =w (j) } × z (j) ∈∆ |π ℓ-1 | s ℓ -1 1 {z (j,i) ≥v (j,i) } (H z (j,i) ) β ℓ-2 j,i P E w (j) (T z (j,i) < T 1 ),
for some constant C ℓ-1 ≥ 1, where v (j) = (u (j,1) , . . . , u (j,b ℓ-2 (B j )) ) and recall the definition of β ℓ-2 j,i in (II.13). Thanks to (II.35)

(H z (j,i) ) β ℓ-2 j,i P E w (j) (T z (j,i) < T 1 ) = H w (j) e -V w (j) (z (j,i) ) (H z (j,i) ) β ℓ-2 j,i -1 , and 
H z (j,i) = H v (j,i) e -V v (j,i) (z (j,i) ) + H v (j,i) ,z (j,i)
where, for any u < x, H u,x := u<w≤x e V (w)-V (x) . Since H u ≥ 1 for all u ∈ T, we have

H z (j,i) ≤ H w (j) e -V w (i) (v (j,i) ) + 1 e -V v (j,i) (z (j,i) ) + H v (j,i) ,z (j,i) , thus giving that (H z (j,i) ) β ℓ-2 j,i P E w (j) (T z (j,i) < T 1 ) is smaller than (H w (j) ) β ℓ-2 j,i e -V w (j) (v (j,i) ) e -V w (i) (v (j,i) ) +1 β ℓ-2 j,i -1 e -V v (j,i) (z (j,i) ) × e -V v (j,i) (z (j,i) ) + H v (j,i) ,z (j,i) β ℓ-2 j,i -1 .
By independence of the increments of the branching random walk (T, (V (x), x ∈ T)), using that

b ℓ-2 (B j ) i=1 β ℓ-2 j,i = |B ℓ-2 j | E z∈∆ |π ℓ-1 | m ℓ -1 f ℓ-1 m ℓ-1 ,Π ℓ-1 (z)P E (T z < T 1 ) |π ℓ-1 | j=1 (H z (j) ) |B ℓ-1 j | ≤ C ℓ-2 E w∈∆ |π ℓ-2 | m ℓ-1 -1 f ℓ-2 m ℓ-2 ,Π ℓ-2 (w)P E (T w < T 1 ) |π ℓ-2 | j=1 (H w (j) ) |B ℓ-2 j | ,
where, thanks to the many-to-one Lemma 3.1

C ℓ-2 = |π ℓ-2 | j=1 E v∈∆ b ℓ-2 (B j ) 1 b ℓ-2 (B j ) i=1 e -V (v (i) ) (e -V (v (i) ) + 1) β ℓ-2 j,i B∈π ℓ-1 E (e -S m * ℓ + H S m * ℓ ) |B|-1 , m * ℓ = m ℓ -m ℓ-1 -1, H S m := m p=1
e Sp-Sm (the random walk (S p ) is defined in (II.22)). Note that C ℓ-2 ∈ (0, ∞). Indeed, the first mean in the definition of C ℓ-2 belongs to (0, ∞) thanks to assumption 3 since for any 1

≤ j ≤ |π ℓ-2 |, b ℓ-2 (B j ) < q ≤ 2ak < κ and b ℓ-2 (B j ) i=1 β ℓ-2 j,i = |B ℓ-2 j | < q.
The second one also belongs to (0, ∞) since for all B ∈ π ℓ-1 , |B| -1 ≤ q -2 < κ -2 and as it is proved in [AD20] that sup m∈N * E[(H m ) κ-1-ε ] < ∞ for any ε > 0. We also deduce from this, together with the fact that ψ ′ (1) < 0 and m * ℓ ≥ 0 that C ℓ-2 is bounded by a positive constant doesn't depending on m. By induction, there exists a constant C 2 ∈ (0, ∞) (still not depending on m) such that

E x∈∆ q |x|=p f ℓ m,Π (x)P E (T x < T 1 ) ≤ C 2 E |z|=m 1 -1 u∈∆ |π 1 | m 2 -1 P E (T u < T 1 ) |π 1 | i=1 (H u (i) ) |B 1 i | 1 {u (i) >z} .
Thanks to the strong Markov property,

P E (T u < T 1 ) ≤ C |π 1 | P E (T z < T 1 ) |π 1 | i=1 P E z (T u (i) < T 1 ) = C |π 1 | P E (T z < T 1 ) |π 1 | i=1 e -V (u (i) ) /H u (i)
for some constant C |π 1 | ≥ 1 and then, using (II.35) together with the many-to-one Lemma 3.1

E x∈∆ q |x|=p f ℓ m,Π (x)P E (T x < T 1 ) ≤ C 1 E |z|=m 1 -1 e -V (z) (H z ) |π 1 |-1 = C 1 E (H S m 1 -1 ) |π 1 |-1 . Again, |π 1 |-1 ≤ q-1 ≤ 2ak-1 < κ-1 so E[(H S m 1 -1 ) |π 1 |-1 ] ≤ sup m∈N * E[(H S m-1 ) |π 1 |-1 ] ∈ (0, ∞) which ends the proof.

The range on E k,•

This section is dedicated to the proof of Proposition 2 in which the range is restricted to the k-tuples of vertices belonging to the set E k,• , that is such that the vertices are visited during k distinct excursions, see (II.21) for the definition of E k,• .

The relevant vertices : the set C k an First recall that C k m = {x ∈ ∆ k ; S k (x) ≤ m} where, for any x = (x (1) , . . . , x (k) ) ∈ ∆ k and S k (x) -1 is the last generation at which two or more vertices among x (1) , . . . , x (k) share a common ancestor (see (II.10)). In this subsection, we focus on the range on E k,• ∩ C k an with a n = (2δ 0 ) -1 log n, which is the set of relevant k-tuples of vertices in the case of small generations. Before going any further, let us state and prove the following lemma. Recall that H u = e≤z≤u e V (z)-V (u) . Lemma 3.3. Let k ≥ 2 and a ≥ 1 be two integers and assume κ > 2ak. Under the assumptions 1, 3 and 4 (i) for any integer q ∈ {k, . . . , 2ak} and any β = (β 1 , . . . , β q ) ∈ (N * ) ×q such that q j=1 β j ≤ 2ak, there exists a constant C 3.3,1 > 0 such that sup p∈(N * ) ×q E x∈∆ q |x|=p e -⟨β,V (x)⟩q ≤ C 3.3,1 ; 3. PROOFS OF PROPOSITIONS 2 AND 3 139 (ii) for any integer q ∈ {k, . . . , 2ak} there exists a constant C 3.3,2 > 0 such that for n large enough and any h > 0

E x∈∆ q an 1 {max 1≤i≤q H x (i) >h} e -⟨1,V (x)⟩q ≤ C 3.3,2 h κ-1 + o(1). Proof in the case ∩ ℓ j=1 Γ j m,Π ⊂ {x ∈ ∆ q ; C q (x) < min 1≤i≤q p i }. Not that, since H u ≥ 1, we have E[ x∈∆ q
an e -⟨1,V (x)⟩q ] = E[ x∈∆ q an 1 {max 1≤i≤q H x (i) >h} e -⟨1,V (x)⟩q ] for all h ≤ 1. The proof of (i) is similar to the proof of Theorem 1.4 and Lemma 3.2 so we focus on (ii). In order to avoid unnecessary technical difficulties, we prove it for any a ≥ 2. Recall the definition of f ℓ s,Π in (II.14) for ℓ ∈ {1, . . . , q -1}, s = (s 1 , . . . , s ℓ ) ∈ N ×ℓ such that s 1 < • • • < s ℓ and Π = (π i ) 0≤i≤ℓ an increasing collection of partitions of {1, . . . , q}. Note that

x∈∆ q an q j=1 1 {max 1≤i≤q H x (i) >h} e -⟨1,V (x)⟩q = q-1 ℓ=1 s;s 1 <...<s ℓ ≤an Π increasing x∈∆ q an f ℓ s,Π (x)e -⟨1,V (x)⟩q × 1 {max 1≤i≤q H x (i) >h} ,
and x∈∆ q an f ℓ s,Π (x)1 {max 1≤i≤q H x (j) >h} e -⟨1,V (x)⟩q is equal to

z∈∆ |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 (z) |π ℓ-1 | j=1 u (j) ∈∆ b ℓ-1 (B j ) s ℓ b ℓ-1 (B j ) i=1 1 {(u (j,i) ) * =z (j) } x (j) ∈∆ b ℓ-1 (B j ) an 1 {x (j,i) ≥u (j,i) } × e -V (x (j,i) ) 1 {max 1≤j ′ ≤|π ℓ-1 | max 1≤i ′ ≤b ℓ-1 (B j ′ ) H x (j ′ ,i ′ ) >h} .
Recall that for any u < x, H u,x = u<z≤x e V (z)-V (x) , thanks to assumption 4 together with the fact that H z (j ′ ) ≥ 1

H x (j ′ ,i ′ ) ≤ H z (j ′ ) (1 + e h )e -V u (j ′ ,i ′ ) (x (j ′ ,i ′ ) ) + H u (j ′ ,i ′ ) ,x (j ′ ,i ′ ) , so H x (j ′ ,i ′ ) > h implies that H z (j ′ ) (1 + e h )e -V u (j ′ ,i ′ ) (x (j ′ ,i ′ ) ) > h/2 or H u (j ′ ,i ′ ) ,x (j ′ ,i ′ ) > h/2.
We also decompose according to the values of H z (j ′ ) :

1 max 1≤j ′ ≤|π ℓ-1 | max 1≤i ′ ≤b ℓ-1 (B j ′ ) H z (j ′ ) (1+e h )e -V u (j ′ ,i ′ ) (x (j ′ ,i ′ ) ) >h/2 ≤ 1 {max 1≤j ′ ≤|π ℓ-1 | H z (j ′ ) >h} + 1 max 1≤j ′ ≤|π ℓ-1 | max 1≤i ′ ≤b ℓ-1 (B j ′ ) 2(1+e h )e -V u (j ′ ,i ′ ) (x (j ′ ,i ′ ) )

>1

.

We therefore deduce that

1 {max 1≤j ′ ≤|π ℓ-1 | max 1≤i ′ ≤b ℓ-1 (B j ′ ) H x (j ′ ,i ′ ) >h} is smaller than 1 {max 1≤j ′ ≤|π ℓ-1 | H z (j ′ ) >h} + |π ℓ-1 | j ′ =1 b ℓ-1 (B j ′ ) i ′ =1 1 {H u (j ′ ,i ′ ) ,x (j ′ ,i ′ ) >h/2} + 1 2(1+e h )e -V u (j ′ ,i ′ ) (x (j ′ ,i ′ ) )

>1

.

By independence of the increments of the branching random walk (T, (V (x), x ∈ T)), since ψ(1) = 0

E x∈∆ q an f ℓ s,Π (x)1 {max 1≤i≤q H x (i) >h} e -⟨1,V (x)⟩q ≤ E z∈∆ |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 (z)1 {max 1≤j ′ ≤|π ℓ-1 | H z (j ′ ) >h} e -⟨β ℓ-1 ,V (z)⟩ |π ℓ-1 | |π ℓ-1 | j=1 c b ℓ-1 (B j ) (1) + q(z 1,n + z 2,n ) |π ℓ-1 | j=1 c b ℓ-1 (B j ) (1)E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 ,
where we recall that A q l (g, β)

= x∈∆ q l e -⟨β,V (x)⟩q , z 1,n = E[ |x|=an-s ℓ e -V (x) 1 {Hx>h/2} ] and z 2,n = E[ |x|=an-s ℓ e -V (x) 1 {2(1+e h )e -V (x) >1} ].
Thanks to the many-to-one Lemma 3.1

z 1,n = P(H S an-s ℓ > h/2) ≤ C 3.3,3 /h κ-1 ,
for some constant C 3.3,3 > 0, the last inequality coming from ([AD20], Lemma 2.2). We now turn to z n,2 . If s ℓ ≤ a n /2 then, for any ρ ∈ (0, κ -1) z 2,n ≤ 2 ρ (1 + e h ) ρ e anψ(1+ρ)/2 .

Otherwise s ℓ -1 ≥ a n /2 and thanks to the Cauchy-Schwarz inequality

E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 ≤E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 1 Ṽn + + 1 -P( Ṽn ) 1/2 E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 2 1/2 ,
where Ṽn := {min an/2≤|z|≤an V (z) > 3/2 log n} (recall that a n = (2δ 0 ) -1 log n). On the one hand, by definition, there exists i βℓ-1 j are smaller than 2k since q ≤ 2k. Hence, thanks to (i)

α ∈ {1, . . . , |π ℓ-1 |} such that |B ℓ-1 iα | ≥ 2. It follows that E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 1 Ṽn ≤ n -3/2 E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , βℓ-1 ,
E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , βℓ-1 + E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 2 1/2 ≤ C 3.3,4 ,
for some constant C 3.3,4 > 0. We obtain

E x∈∆ q an f ℓ s,Π (x)1 {max 1≤i≤q H x (i) >h} e -⟨1,V (x)⟩q ≤ E z∈∆ |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 (z)1 {max 1≤j ′ ≤|π ℓ-1 | H z (j ′ ) >h} e -⟨β ℓ-1 ,V (z)⟩ |π ℓ-1 | |π ℓ-1 | j=1 c b ℓ-1 (B j ) (1) + qz 1,n |π ℓ-1 | j=1 c b ℓ-1 (B j ) (1)E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 + n -ρ 6 ,
thanks to the assumption 3 and for ρ 6 > 0. Note (see the proof of Theorem 1.4) that

E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 = A |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 , β ℓ-2 |π ℓ-2 | j=1 c b ℓ-2 (B j ) (β ℓ-2 j ) B∈π ℓ-1 |B|≥2 e s * ℓ ψ(|B|) ,
with β ℓ-2 j = (β ℓ-2 j,1 , . . . , β ℓ-2 j,b ℓ-2 (B j ) ) and s * ℓ = s ℓ -s ℓ-1 -1. Since for any B ∈ π ℓ-1 such that |B| ≥ 2, ψ(|B|) < 0, we have

an s ℓ =s ℓ-1 +1 E A |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 , β ℓ-1 ≤ E A |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 , β ℓ-2 B∈π ℓ-2 c b ℓ-2 (B) (β ℓ-1 ) 1 - B∈π ℓ-1 |B|≥2
e ψ(|B|) -1 .

Doing the same for E[

z∈∆ |π ℓ-1 | s ℓ -1 f ℓ-1 s ℓ-1 ,Π ℓ-1 (z)1 {max 1≤j ′ ≤|π ℓ-1 | H z (j ′ ) >h} e -⟨β ℓ-1 ,V (z)⟩ |π ℓ-1 | ], we ob- tain, thanks to assumption 3 s;s 1 <...<s ℓ ≤an E x∈∆ q an f ℓ s,Π (x)1 {max 1≤i≤q H x (i) >h} e -⟨1,V (x)⟩q ≤ s 1 <...<s ℓ-1 ≤an E z∈∆ |π ℓ-2 | s ℓ-1 -1 f ℓ-2 s ℓ-2 ,Π ℓ-2 (z)1 {max 1≤j ′ ≤|π ℓ-2 | H z (j ′ ) >h} e -⟨β ℓ-2 ,V (z)⟩ |π ℓ-2 | + C 3.3,5 h κ-1 + n -ρ 7 ,
for some constant C 3.3,5 > 0 and ρ 7 > 0. We conclude by induction together with assumption 3.

We remind the definition of the range A k (D n,T s , g)

A k (D n,T s , g) = x∈∆ k ℓn≤|x|≤Ln g(x)1 {Tx<T s } , where T x = max 1≤i≤k T x (i) and ℓ n ≤ |x| ≤ L n means that ℓ n ≤ |x (i) | ≤ L n for all i ∈ {1, . . . , k}.
Vertices with high potential have a major contribution to the range. One can note that under the assumption 1, the potential V (u) of the vertex u ∈ T behaves like |u| when |u| is large (see [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching branching process[END_REF] and [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] for instance). It allows to say that Fact 1. For all ε ∈ (0, 1), there exists a ε > 0 such that

P * inf z∈T V (z) ≥ -a ε ≥ 1 -ε.
(II.36) Moreover, Lemma 3.4. Under the assumption 1, there exists δ 0 > 0 and ρ 1 > 1/2 such that for any positive integer ζ

P min |z|=δ -1 0 ζ V (z) ≥ 3ζ ≥ 1 -e -ρ 1 ζ ,
Using Lemma 3.4, we are able to prove that any vertex x ∈ T in a generation between δ -1 0 log n and n 1/2 is visited during a single excursion above the parent e * of the root e. For that, let us define the edge local time N T u := T j=1 1 {X j-1 =u * ,X j =u} of the vertex u ∈ T and introduce

E s u := s j=1 1 {N T j u -N T j-1 u ≥1} ,
the number of excursions during which the vertex x is visited by the random walk X.

Lemma 3.5. Under the assumption 1, for all ε 1 ∈ (0, 1), there exists ρ 2 := ρ 2 (ε 1 ) > 0 such that for n large enough

P * n 1/2 /ε 1 s=ε 1 n 1/2 n 1/2 |z|=δ -1 0 log n E s z ≥ 2 ≤ n -ρ 2 .
The proof of Lemma 3.5 is similar to the one of Lemma 3.5 in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF].

Introduce the set S k,s of k-tuples of vertices visited during a single excursion :

S k,s := {x = (x (1) , . . . , x (k) ) ∈ ∆ k ; ∀ 1 ≤ i ≤ k, E s x (i) = 1}. (II.37)
In other words, Lemma 3.5 says that we can restrict the study of the range A k (D n,T s , f 1 E k,s ∩C k an ) to the set S k,s . This restriction allows to get quasi-independence in the trajectory of the random walk X and the resulting quasi-independent version of the range A k (D n,T s , f 1 E k,s ∩C k an ) is easier to deal with. A similar idea is developed in [START_REF] Andreoletti | The heavy range of randomly biased walks on trees[END_REF] and [START_REF] Andreoletti | Generalized range of slow random walks on trees[END_REF]. Let j ∈ 1, s k , p ∈ {ℓ n , . . . , L n } ×k and define

A k,n p (j, g) := x∈∆ k |x|=p g(x) k i=1 1 {N T j i x (i) -N T j i -1
x (i)

≥1}

and A k,n (j, g) := p∈{ℓn,...,Ln} ×k A k,n p (j, g), (II.38)

where for any x = (x (1) , . . . , x (k) ), |x| = p means nothing but |x (i) | = p i for all i ∈ {1, . . . , k}.

In the next lemma, we show that

A k (D n,T s , f 1 E k,s ∩C k • ) and j∈ 1,s k A k,n (j, f 1 C k • )
have the same behavior Lemma 3.6. Let k ≥ 2 be an integer and assume κ > 2k. Under the assumptions 1 and 3, for all bounded function g, any ε, ε 1 ∈ (0, 1), there exists ρ 4 := ρ 4 (ε, ε 1 ) > 0 such that for n large enough and any subset R of T ×k

P * n 1/2 /ε 1 s=ε 1 n 1/2 A k (D n,T s , g1 E k,s ∩R ) - j∈ 1,s k A k,n (j, g1 R ) > ε(sL n ) k ≤ n -ρ 4 .
Démonstration. We first decompose as follows

A k (D n,T s , g1 E k,s ∩R ) = A k (D n,T s , g1 E k,s ∩S k,s ∩R ) + A k (D n,T s , g1 E k,s ∩R∩∆ k \S k,s ).
We first deal with A k (D n,T s , g1 E k,s ∩S k,s ∩R ). Note that x ∈ E k,s ∩ S k,s means nothing but there exists j ∈ 1, s k such that for any i ∈ {1, . . . , k}, N T j i x (i) -N T j i -1

x (i)

≥ 1 and for all j ̸ = j i ,

N T j x (i) -N T j-1 x (i) = 0, thus giving that A k p (D n,T s , g1 E k,s ∩S k,s ∩R ) is equal to p∈{ℓn,...,Ln} ×k j∈ 1,s k x∈∆ k |x|=p g1 R (x) k i=1 1 {N T j i x (i) -N T j i -1 x (i) ≥1; ∀j̸ =j i ,N T p x (i) -N T p-1 x (i) =0}
, Thanks to the strong Markov property, the random variables N T l z -N T l-1 z are i.i.d under P E and distributed as N T 1 z . It follows that

E E x∈∆ k |x|=p g1 R (x) k i=1 1 {N T j i x (i) -N T j i -1 x (i) ≥1; ∀j̸ =j i ,N T p x (i) -N T p-1 x (i) =0} = x∈∆ k |x|=p g1 R (x) k i=1 P E (T x (i) < T 1 )(1 -P E (T x (i) < T 1 )) s-1 .
Using (II.35), P E (T x (i) < T 1 ) ≤ e -V (x (i) ) and on

V n = {min δ -1 0 log n≤|x|≤n 1/2 V (z) ≥ 3 log n} (1 -P E (T x (i) < T 1 )) s-1 ≥ (1 -e -V (x (i) ) ) s ≥ (1 -n -3 ) s ≥ (1 -n -3 ) n 1/2 /ε 1 , so E E j∈ 1,s k x∈∆ k |x|=p g1 R (x) k i=1 1 {N T j i x (i) -N T j i -1 x (i) ≥1} -E E j∈ 1,s k x∈∆ k |x|=p g1 R (x) k i=1 1 {N T j i x (i) -N T j i -1 x (i) ≥1; ∀p̸ =j i ,N T p x (i) -N T p-1 x (i) =0} ≤ s(s -1) × • • • × (s -k + 1) x∈∆ k |x|=p g(x)e -⟨1,V (x)⟩ k 1 -(1 -n -3 ) kn 1/2 /ε 1 .
The next step is to show that the mean of the previous sum goes to 0 when n goes to ∞, uniformly in p. For that, one can notice that

E x∈∆ k |x|=p g(x)e -⟨1,V (x)⟩ k 1 -(1 -n -3 ) kn 1/2 ε 1 ≤ 2kn -5/2 ε 1 ∥g∥ ∞ E x∈∆ k |x|=p e -⟨1,V (x)⟩ k , thus giving, thanks to Lemma 3.3 (i) with β = 1 E x∈∆ k |x|=p g1 R (x)e -⟨1,V (x)⟩ k 1 -(1 -n -3 ) n 1/2 ε 1 ≤ 2kn -5/2 ε 1 ∥g∥ ∞ sup p∈(N * ) ×k E x∈∆ k p |x|=p e -⟨β,V (x)⟩ k ≤ C 3.6 n -5/2 , (II.39)
for some constant C 3.6 > 0 doesn't depending on p. We then use (II.39) to conclude. Note that

P * n 1/2 /ε 1 s=ε 1 n 1/2 A k (D n,T s , g1 E k,s ∩R ) - j∈ 1,s k A k,n (j, g1 R ) > ε(sL n ) k ≤ P * n 1/2 /ε 1 s=ε 1 n 1/2 A k (D n,T s , g1 E k,s ∩R ) - j∈ 1,s k A k,n (j, g1 R ) > ε(sL n ) k , V n + 1 -P * (V n ).
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P * n 1/2 /ε 1 s=ε 1 n 1/2 A k (D n,T s , g1 E k,s ∩R ) - j∈ 1,s k A k,n (j, g1 R ) > ε(sL n ) k , V n ≤ P * n 1/2 /ε 1 s=ε 1 n 1/2 {A k (D n,T s , g1 E k,s ∩R∩∆ k \S k,s ) > ε(sL n ) k /2} + n 1/2 /ε 1 s=ε 1 n 1/2 p∈{ℓn,...,Ln} ×k j∈ 1,s k 2 ε(sL n ) k E x∈∆ k |x|=p g1 R (x)e -⟨1,V (x)⟩ k 1 -(1 -n -3 ) kn 1/2 ε 1
, which, thanks to Lemma 3.5 and (II.39), is smaller than n -ρ 2 + 2C 3.6 n 2 ε 1 ε for n large enough and the proof is completed.

The next lemma relates j∈ 1,s k A k,n (j, f 1 C k an ) with its quenched mean and illustrates why this quasi-independent version of the range is easier to deal with. Lemma 3.7. Let k ≥ 2 and a ≥ 1 be two integers and assume κ > 2ak. Under the assumptions 1, 2 and 3, there exits a constant C 3.7 > 0 and a non-decreasing sequence of positive numbers (q j ) j≥2 satisfying q2 = 1 and qj → ∞ when j → ∞ such that for n large enough and any

ε 1 n 1/2 ≤ s ≤ n 1/2 /ε 1 E j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) 2a ≤ C 3.7 (L n ) 2ak (L n ) qa s 2ak-qa .
Démonstration. Recall the definition of A k,n (j, f 1 C k an ) in (II.38). Thanks to the strong Markov property, the random variables N T i z -N T i-1 z are i.i.d under P E and distributed as N T 1 z for any z ∈ T. It follows that

E E j∈ 1,s k A k,n (j, f 1 C k an ) = s(s -1) • • • (s -k + 1) p∈{ℓn,...,Ln} ×k x∈∆ k |x|=p f 1 C k an (x) k i=1 P E (N T 1 x (i) ≥ 1).
and for a = 1, the term s 2k in the above mean is equal to 0 and using again the strong Markov property leads to

E j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) 2 ≤ C 3.7,1 (L n ) 2k (L n ) 2 s 2k-2 + L n s 2k-1 ≤ 2C 3.7,1 (L n ) 2k L n s 2k-1 ,
where the constant C 3.7,1 > 0 comes from Lemma 3.2 and the last inequality comes the fact that L n ≤ s for n large enough. When a ≥ 2, using similar arguments we have

E j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) 2a ≤ C 3.7,2 ≤ (L n ) 2ak (L n ) 2⌊a/2⌋ s 2ak-2⌊a/2⌋ .
We finally obtain the result by taking q a := a1 a=1 + 2⌊a/2⌋1 a≥2 .

Convergence of the quenched mean of the range on C k an

We prove that the quenched mean of the quasi-independent version j∈ 1,s k A k (j, f C k an ) of the range on the set C k an converges in P * -probability by using the hereditary assumption 5.

Lemma 3.8. Let k ≥ 2 be an integer and assume κ > 2k. Under the assumptions 1, 3 and 4, if f satisfies the hereditary assumption 5 then

lim n→∞ E * 1 (L n ) k x∈∆ k ℓn≤|x|≤Ln f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) -(c ∞ ) k A k an (f ) = 0 Démonstration. The first step is to decompose x∈∆ k ;ℓn≤|x|≤Ln f 1 C k an (x) k i=1 e -V (x (i) ) /H x (i) : x∈∆ k ℓn≤|x|≤Ln f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) = p∈{ℓn,...,Ln} ×k z∈∆ k an x∈∆ k |x|=p; x (i) >z (i) f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) = p∈{ℓn,...,Ln} ×k z∈∆ k an f (z) x∈∆ k |x|=p; x (i) >z (i) k i=1 e -V (x (i) ) H x (i)
,

where the last equality comes from the hereditary assumption 5. As we did above, we decompose H x (i) : H x (i) = H z (i) e -V z (i) (x (i) ) + H z (i) ,x (i) . By independence of the increments of the branching random walk (T, (V (x), x ∈ T))

E x∈∆ k |x|=p f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) F an = z∈∆ k an f (z) k i=1
e -V (z (i) ) φ n,p i (H z (i) ), (II.40)

where F an = σ(T, (V (x); |x| ≤ a n )) and φ n,p i (r) = E[ |x|=p i -an e -V (x) /(re -V (x) + H x )]. 

E x∈∆ k |x|=p f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) - x∈∆ k an f (x) k i=1 e -V (x (i) ) φ n,p i (H x (i) ) 2 = E x∈∆ k |x|=p f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) 2 -E x∈∆ k an f (x) k i=1
e -V (x (i) ) φ n,p i (H x (i) )

2 .

For x, y ∈ ∆ k , denote by xy = (x (1) , . . . , x (k) , y (1) , . . . , y (k) ) the concatenation of x and y. Note that

x∈∆ k |x|=p f 1 C k an (x) k i=1 e -V (x (i) ) H x (i) 2 = x,y; xy∈∆ 2k |x|=|y|=p f 1 C k an (x)f 1 C k an (y) k i=1 e -V (x (i) ) H x (i)
e -V (y (i) ) H y (i)

+ x,y∈∆ k ; xy̸ ∈∆ 2k |x|=|y|=p f 1 C k an (x)f 1 C k an (y) k i=1 e -V (x (i) ) H x (i)
e -V (y (i) ) H y (i) ,

where for any x, y ∈ ∆ k , xy ̸ ∈ ∆ 2k means that there exists α ∈ {1, . . . , k} and i 1 , . . . , i α ∈ {1, . . . , k} distinct such that x (i j ) = y (i j ) for all j ∈ {1, . . . , α}. It follows

lim n→∞ sup ℓn≤p≤Ln E x,y∈∆ k ; xy̸ ∈∆ 2k |x|=|y|=p f 1 C k an (x)f 1 C k an (y) k i=1 e -V (x (i) ) H x (i)
e -V (y (i) ) H y (i) = 0, Indeed, by independence of the increments of the branching random walk (T, (V (x), x ∈ T)), since

H x ≥ 1 E x,y∈∆ k ; xy̸ ∈∆ 2k |x|=|y|=p f 1 C k an (x)f 1 C k an (y) k i=1 e -V (x (i) ) H x (i) e -V (y (i) ) H y (i) ≤ ∥f ∥ 2 ∞ k α=1 k i 1 ̸ =i 2 ...̸ =iα=1 α j=1
e (p i j -an)ψ(2) E z∈∆ 2k-α an e -⟨1,V (x)⟩ 2k-α .

By Lemma 3.3, n∈N E[ z∈∆ 2k-α an e -⟨1,V (x)⟩ 2k-α ] < ∞ and for any p i ∈ {ℓ n , . . . , L n }, i ∈ {1, . . . , k}, e (p i j -an)ψ(2) ≤ e (ℓn-an)ψ(2) → 0 when n → ∞ since ℓ n ≥ δ -1 0 log n and a n = (2δ 0 ) -1 log n, which gives (II.41). We now prove that e -V (z (i) ) φ n,p i (H z (i) )

≤ ∥f ∥ ∞ E z∈∆ k an k i=1 e -V (z (i) ) |c ∞ -φ n,p i (H z (i) )|1 {H z (i) ≤hn} + 2∥f ∥ ∞ E z∈∆ k an 1 {max 1≤i≤k H z (i) >hn} e -⟨1,V (z)⟩ k .
We show that lim n→∞ sup {ℓn≤p i ≤Ln, 1≤r≤hn} |φ n,p i (r) -c ∞ | = 0. For that, on the first hand, φ n,p i (r) ≤ E[1/H S ℓn-an ] where we recall that H S m = m j=1 e S j -Sm (see (II.22) for the definition of the random walk S). On the other, for any ℓ n ≤ p i ≤ L n and 1 ≤ r ≤ h n , φ n,p i (r) is larger, for any r 1 > 0, than

E |x|=p i -an e -V (x)
h n e -V (x) + H x 1 {V (x)≥r 1 log n} ≥ E 1 h n n -r 1 + H S Ln-an -P(S p i -an < r 1 log n).

where we have used the many-to-one Lemma 3.1. Note that P(S p i -an < 3 log n) ≤ P(min (2δ 0 ) -1 log n≤j≤Ln S j < r 1 log n) → 0 when n → ∞ for some r 1 > 0 since a n = (2δ 0 ) -1 log n and ψ ′ (1) < 0. Moreover, by definition, both (E[1/H S ℓn-an ]) and (E[1/(h n n -r 1 + H S Ln-an )]) goes to c ∞ when n goes to ∞ and we obtain the convergence. Then e -β i V (x (i) ) and A k l (f ) = A k l (f, 1).

E (c ∞ ) k z∈∆ k an f (z) k i=1 e -V (z (i) ) - z∈∆ k an f (z) k i=1 e -V (z (i) ) φ n,p i (H z (i) ) ≤ ∥f ∥ ∞ E
The aim of this subsection is to prove that A k ∞ := lim l→∞ A k l (f ) exists when f satisfies our hereditary assumption 5. For that, let us define for any p ∈ (N * ) ×k

A k p (f ) := x∈∆ k |x|=p f (x)e -⟨1,V (x)⟩ k ,
where we recall that for any x = (x (1) , . . . , x (k) ) ∈ ∆ k , |x| = p if and only if |x (i) | = p i for all i ∈ {1, . . . , k}. One can notice that when p = (l, . . . , l) ∈ (N * ) ×k , we have A k l (f ) = A k p (f ).

Lemma 3.9. Let k ≥ 2 be an integer and assume κ > 2k. Under the assumptions 1, 3 and 4, for any bounded function f : ∆ k → R + , there exists two constants C 3.9 > 0 and b ∈ (0, 1) such that for any p ∈ (N * ) ×k and any integer m ≥ 1 such that m ≤ max p := max 1≤i≤ p i

E * A k p (f 1 C k m ) -A k p (f )
2 ≤ C 3.9 e -bm .

Démonstration. In order to avoid unnecessary technical difficulties, we prove it for any κ > 4. First note that A k p (f ) -A k p (f 1 C k m ) = x∈∆ k ; |x|=p f (x)1 {S k (x)>m} e -⟨1,V (x)⟩ k which is smaller than ∥f ∥ ∞ x∈∆ k ; |x|=p 1 {S k (x)>m} e -⟨1,V (x)⟩ k . Using a similar argument as we developed in the proof of Lemma 3.8, it is enough to show the following estimation :

E * x∈∆ q |x|=p
1 {S q (x)>m} e -⟨1,V (x)⟩q ≤ C 3.9,1 e -bm , (II.43)

for any q ∈ {k, . . . , 2k} and some constant C 3.9,1 > 0. Assume that min p < max p (the proof is similar when min p = max p). Note that if m < min p, then E x∈∆ q |x|=p 1 {S q (x)>m} e -⟨1,V (x)⟩q =E x∈∆ q |x|=p 1 {m<S q (x)≤min p} e -⟨1,V (x)⟩q + E x∈∆ q |x|=p 1 {S q (x)>min p} e -⟨1,V (x)⟩q .
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One can notice that, if |x| = p and S q (x) ≤ min p, then S q (x) = S q (u) for any u ∈ ∆ q such that max |u| = min |u| = min p. Hence, as usual

E x∈∆ q |x|=p
1 {m<S q (x)≤min p} e -⟨1,V (x)⟩q = E u∈∆ q min p 1 {S q (u)>m} x∈∆ q ; x≥u e -⟨1,V (x)⟩q = E u∈∆ q min p 1 {S q (u)>m} e -⟨1,V (u)⟩q , thus giving

E x∈∆ q |x|=p
1 {S q (x)>m} e -⟨1,V (x)⟩q =E u∈∆ q min p 1 {S q (u)>m} e -⟨1,V (u)⟩q

+ E x∈∆ q |x|=p
1 {S q (x)>min p} e -⟨1,V (x)⟩q .

We deduce from this equality that it is enough to prove (II.43) for any m ≤ min p with q ≥ 3. Again, we focus on the case min p < max p. Assume m ≤ min p. Let x ∈ ∆ q such that |x| = p and C q (x) > m. There exists an integer f ∈ {m + 1, . . . , max p} such that, seen backwards in time, at least two vertices among x (1) , . . . , x (q) share a common ancestor for the first times in the generation f -1 and there exits at least one vertex among these vertices in a generation smaller or equal to f -1. Then, one can notice that x∈∆ q |x|=p 1 {S q (x)>m} e -⟨1,V (x)⟩q = max p f=m+1 π partition of {1,...,q}, |π|<q x∈∆ q |x|=p 1 Υ f-1,π ∩Υ f,η (x)e -⟨1,V (x)⟩q , where η = {{1}, . . . , {q}} (recall the definition of Υ p-1,π ∩ Υ p,η in (II.14)). By definition, there exists y ∈ {1, . . . , q -2} and (i 1 , . . . , i y , i y+1 , . . . , i q ) ∈ 1, q q such that max 1≤l≤y p i l ≤ f -1 and min y+1≤l≤q p i l ≥ f -1. By definition of the set Υ •,• , for all l ∈ {1, . . . , y}, if i l belongs to the block B of the partition π, then B = {i l }. Let π := π \ {{i 1 }, . . . , {i y }} and for all j ∈ {1, . . . , |π| -y}, denote by Bj the j-th block (ordered by their least element) of the partition π of the set {i y+1 , . . . , i q } = {1, . . . , q} \ {i 1 , . . . , i y }. We have V (w) < r 0 (f -1) 1/2 , and thanks to Lemma 3.3 (i), E[( u∈∆ |π|; |u|= p e -⟨1,V (u)⟩ |π| ) 2 ] ≤ C 3.3,1 , where we recall that C 3.3,1 > 0 is a constant doesn't depending on p (or p) since |π| < q ≤ 2k. Moreover, since ψ ′ (1) < 0, we can find r 0 > 0 and a constant C 3.9,3 > 0 such that P(min |w|=f-1 V (w) < r 0 (f -1)) ≤ C 3.9,3 e 2(f-1) . This yields (II.44). Now, note that, since |π| < q, there is at least one block of the partition π with cardinal larger or equal to 2 so ⟨ β, V (z)⟩ |π| ≥ ⟨1, V (z)⟩ |π| + min |w|=f-1 V (w) thus giving that the mean E[ x∈∆ q ; |x|=p 1 Υ f-1,π ∩Υ f,η (x)e -⟨1,V (x)⟩q ] is smaller than + E e -min |w|=f-1 V (w) u∈∆ |π| |u|= p e -⟨1,V (u)⟩ |π| 1 {min |w|=f-1 V (w)≥r 0 (f-1)} , which, thanks to Lemma 3.3 (i) and (II.44), is smaller than C 3.9,4 e -(1∧r 0 )(f-1) for some constant C 3.9,4 > 0. Finally E x∈∆ q |x|=p 1 {S q (x)>m} e -⟨1,V (x)⟩q ≤ C 3.9,5 max p f=m+1 e -(1∧r 0 )(f-1) ≤ C 3.9,1 e -(1∧r 0 )m ,

E x∈∆ q |x|=p 1 Υ f-1,π ∩Υ f,η ( 
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for some constant C 3.9,5 > 0 and (II.43) is proved.

The convergence of the sequence of random variables (A k l (f )) l directly follows from Lemma 3.9. Indeed, let f be a bounded function satisfying the hereditary assumption 5. For any l > l ′ > m > g

A k l (f 1 C k m ) = x∈∆ k l f 1 C k m (x)e -⟨1,V (x)⟩ k = u∈∆ k l ′ f 1 C k m (u) x∈∆ k l x>u e -⟨1,V (x)⟩ k , so E[A k l (f 1 C k m )|F l ′ ] = A k l ′ (f 1 C k m )
where F m = σ(T, (V (x); |x| ≤ m)) and (A k l (f 1 C k m )) l>m is a martingale bounded in L 2 (P). In particular, for any integer m > g, (A k l (f 1 C k m )) l>m converges in L 2 (P * ) and P * -almost surely. Hence, thanks to Lemma 3.9, (A l (f )) l is a Cauchy sequence in L 2 (P * ) and therefore, A k ∞ (f ) exists.

k-tuples in the set ∆ k \ C k an Before proving Proposition 2, let us show that the contribution of the k-tuples in the set

E k,• ∩ ∆ k \ C k
an is not significant. To do that, the following lemma provides an estimation for the quasi-independent version (II.38) of the range on the set C k an :

Lemma 3.10. Let ε 1 ∈ (0, 1), k ≥ 2 and assume κ > 2k. Under the assumptions 1, 3 and 4, there exist two constants C 3.10 > 0 and ρ 8 > 0 such that with s n = n 1/2 /ε 1 .

E * 1 (n 1/2 L n ) k
Démonstration. Recall that, thanks to the strong Markov property together with (II.35) 1 {S k (x)>an} e -⟨1,V (x)⟩ k ≤ (s n L n ) k C 3.9 e -ban = (s n L n ) k C 3.9 n -b(2δ 0 ) -1 , which ends the proof.

E E A k,n (j, 1 ∆ k \C k an ) = x∈∆ k ℓn≤|x|≤Ln 1 ∆ k \C k an (x) k i=1 e -V (x (i) ) H x (i) ,
We are now ready to prove Proposition 2.
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Proof of Proposition 2. We have to prove that for any ε 1 n 1/2 ≤ s ≤ n 1/2 /ε 1 , ε 1 ∈ (0, 1)

P * 1 (sL n ) k A k (D n,T s , f 1 E k,s ∩C k an ) -(c ∞ ) k A k ∞ (f ) > ε/2 -→ n→∞ 0.
(II.46)

We deduce from Lemma 3.7 with a = 1 that the range j∈ 1,s k A k,n (j, f 1 C k an ) concentrates around its quenched mean. Indeed, for any ε ∈ (0, 1), by Markov inequality

P j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) > ε(sL n ) k /16 ≤ 16 2 ε 1 (sL n ) 2k E j∈ 1,s k A k,n (j, f 1 C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) 2 ≤ 16 2 C 3.7 L n s ≤ C 2 L n n 1/2 -→ n→∞ 0,
where the last inequality comes from the fact that L n = o(n 1/2 ). Then, we know, thanks to Lemma 3.6 with g = f and R = C k an , that A k (D n,T s , f 1 E k,s ∩C k an ) behaves like its quasiindependent version j∈ 1,s k A k,n (j, f 1 C k an ) : for n large enough One can notice that

P * A k (D n,T s , f 1 E k,s ∩C k an ) - j∈ 1,s k A k,n (j, f 1 C k an ) > ε(sL n ) k /16 ≤ n -ρ 4 ,
E E j∈ 1,s k A k,n (j, f 1 C k an ) = s(s -1) • • • (s -k + 1) x∈∆ k ℓn≤|x|≤Ln f 1 C k an (x) k i=1
e -V (x (i) ) H x (i) .

Finally, Lemma 3.8 yields

P * 1 (sL n ) k A k (D n,T s , f 1 E k,s ∩C k an ) -(c ∞ ) k A k an (f ) > ε/4 -→ n→∞ 0,
and the result of the subsection 3.1 leads to the convergence in (II.46). Now using Lemma 3.10, we show that A k,n (j, f 1 ∆ k \C k an ) > ε(sL n ) k /4 ≤ n -ρ 4 , with ρ 4 = ρ 4 (ε/4, ε 1 ) instead of ρ 4 (ε, ε 1 ). Finally, note that for any s ≤ n 1/2 /ε 1 , the sum j∈ 1,s k A k,n (j, f 1 ∆ k \C k an ) is smaller than j∈ 1,n 1/2 /ε 1 k A k,n (j, f 1 ∆ k \C k an ) so Lemma 3.10, together with Markov inequality leads to (II.47). We end the proof putting together (II.46) and (II.47).

P * 1 (sL n ) k A k (D n,T s , f 1 E k,

The range on

∆ k \ E k,• Recall A k (D n,T s , g) = x∈∆ k ℓn≤|x|≤Ln g(x)1 {Tx<T s } ,
where T x = max 1≤i≤k T x (i) , T z = min{j ≥ 0; X j = z}, T 0 = 0 and T s = min{j > T s-1 ; X j = e} for s ∈ N * . Also recall that (ℓ n ) and (L n ) are two sequences of positive integers such that δ -1 0 log n ≤ ℓ n ≤ L n ≤ n 1/2 . The last step of our study is to show that the contribution of the k-tuples of vertices in small generations (see (II.7)) and such that at least two of these vertices are visited during the same excursion is not significant. This section is thus devoted to the proof of Proposition 3, claiming that

P * sup s≤n 1/2 /ε 1 A k (D n,T s , 1 ∆ k \E k,s ) > ε(n 1/2 L n ) k -→ n→∞ 0
Lemma 3.11. Let ε 1 ∈ (0, 1), k ≥ 2, let s n = n 1/2 /ε 1 and assume κ > 2k. Assume that the assumptions 1, 3, 4 hold and that L n = o(n 1/2 ). Démonstration. In order to avoid unnecessary technical difficulties, we prove it for any κ > 4. Let us start with the proof of (i). By definition, x ∈ S k,s ∩ E k,s 1 if and only if there exists j ∈ {1, . . . , s} such that for all 1 ≤ i ≤ k, N T j x (i) -N T j-1 x (i) ≥ 1 and for all p ̸ = j, N T p x (i) -N T p-1 x (i) = 0. Thus, using again the strong Markov property 

) ≤ C 3,1 ε 1 L n n 1/2 k-1
, which goes to 0 when n goes to ∞ since L n = o(n 1/2 ) and this yields (i).

We now focus on (ii). Since k ≥ 3, E k,s 2 is nothing but the set of k-tuples of distinct vertices of T neither visited during k distinct excursions, nor during the same excursion. Therefore, there exists e ∈ {2, . . . , k -1} and e disjoint subsets I 1 , . . . , I e of {1, . . . , k} such that {1, . . . , k} = I 1 ∪ • • • ∪ I e and for any j ∈ {1, . . . , e}, i, i ′ ∈ I j if and only if x (i) and x (i ′ ) are visited during the same excursion before the instant T s : ∃ j ∈ {1, . . . , s} : L T j x (i) -L T j-1

x (i) ∧ L T j x (i ′ ) -L T j-1

x (i ′ )

≥ 1.

Let m ∈ N * and introduce the following subset of ∆ k Υ k,s m := {x = (x (1) , . . . , x (k) ) ∈ ∆ k ; ∀j ̸ = j ′ ∈ {1, . . . , e}, ∀ i ∈ I j , ∀ i ′ ∈ I j ′ : |x (i) ∧ x (i ′ ) | < m}, where we recall that u ∧ v is the most recent common ancestor (MRCA) of u and v. Υ k m is the set of k-tuples of vertices such that the MRCA of two vertices visited during two distinct excursions before the instant T s has to be in a generation smaller than m. Note that the MRCA of two vertices visited during the same excursion can be in a generation larger or equal to m. Recall that (Λ l ) l∈N is the sequence of functions such that for all t > 0, Λ 0 (t) = t and for any l ∈ {1, . . . , l 0 }, Λ l-1 (t) = e Λ l (t) (see the assumption 2). Introduce g l,n := 4kδ -1 0 Λ l (L n ). Note that g 0,n > L n so

E sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s 2 1 {V (•)≥-B} ) = E sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s 2 1 {V (•)≥-B}∩C k g 0,n
) .

Recall that for any x = (x (1) , . . . , x (k) ) ∈ ∆ k , it belongs to S k,s if and only if x (i) is visited during a single excursion before the instant T s for all i ∈ {1, . . . , k}. Using what we previously said, we have, for any s ≤ s n where the genealogical tree function f ℓ t,Π is defined in (II.14). Recall that t 1 -1, . . . , t ℓ -1 correspond to the consecutive coalescent/split times. We then define In other words, if the genealogical tree of x ∈ ∆ k is given by f ℓ t,Π , then τ ℓ = τ ℓ (x) and t τ ℓ -1 is the last generation at which two or more vertices visited during two distinct excursions share a common ancestor.

By definition of τ ℓ , for all j ≥ τ ℓ , if B ∈ π j , then B is necessarily a subset of I p ′ for some p ′ ∈ {1, . . . , e}. In other words, each coalescence that occurs between t τ ℓ +1 and t ℓ involves exclusively two or more vertices visited during the same excursion. As a consequence, for any i ∈ {τ ℓ , . . . , ℓ} and p ∈ {1, . . . , e}, we can defined the set I i p as follows : we first set I ℓ p := I p so I ℓ 1 , . . . , I ℓ e form a partition of {1, . . . , k}. As we said before, by definition of τ ℓ , coalescences can only happen between two or more vertices which indexes belong to the same I ℓ p . Thus, for any p ∈ {1, . . . , e}, there exists an integer e A coalescence between vertices visited during distinct excursions has to happen in this zone.

The last common ancestor between vertices visited during distinct excursions.

Figure II.4 -An example of a 12-tuple belonging to Υ 12,• g l-1,n \ Υ 12,• g l,n whose genealogical tree is given by f ℓ t,Π . 6 means that the corresponding vertex is visited during the 6-th excursion above e * . In the present example, ℓ = 8 and τ 8 = 4. (x) ≤ f ℓ t,Π (x)1 {g l,n ≤t τ ℓ (x) -1<g l-1,n } = f ℓ t,Π (x)1 {g l,n ≤t τ ℓ -1<g l-1,n } , it is enough to show (II.49) for g l,n ≤ t τ ℓ -1 < g l-1,n . We then have for some constant C 3.11,2 > 0 where t τ ℓ and Π τ ℓ are defined in Example 6. Note that t τ ℓ -1 is the first generation (backwards in time) at which a coalescence between two or more vertices visited during distinct excursions occurs so there exists a subset J ℓ of {1, . . . , |π t τ ℓ -1 |} and a collection {α i ; i ∈ J ℓ } of |J ℓ | integers satisfying α i ≥ 1 for all i ∈ J ℓ and f τ ℓ -1 t τ ℓ -1 ,Π τ ℓ -1 (z)P E (T z < T 1 )

E x∈∆ k m 1 {V (x)≥-B} f ℓ t,Π 1 Υ k,sn g l-1,n \Υ k,sn g l,n (x) 
i∈J ℓ α i ≤ k such that E x∈∆ k m 1 {V (x)≥-B} f ℓ t,Π 1 Υ k,sn g l-1,n \Υ k,sn g l,n (x) 
|π τ ℓ -1 | j=1 (H u (j) ) |B τ ℓ -1 j | i∈J ℓ
e -α i V (z (i) ) 1 {V (z)≥-B} .

Note that

i∈J ℓ e -α i V (z (i) ) 1 {V (z)≥-B} ≤ i∈J ℓ e -α i V (z (i) ) 1 {min i∈J ℓ V (z (i) )≥-B, min |z|=t τ ℓ -1 V (z)<δ 0 (tτ ℓ -1)} + e

-min |z|=t τ ℓ -1 V (z)

1 {min |z|=t τ ℓ -1 V (z)≥δ 0 (tτ ℓ -1)} , so E[ x∈∆ k m 1 {V (x)≥-B} f ℓ t,Π 1 Υ k,sn g l-1,n \Υ k,sn g l,n

(x) e p=1 P E (max i∈Ip T x (i) < T 1 )] is smaller than

E C 3.11,3 z∈∆ |π τ ℓ -1 | t τ ℓ -1 f τ ℓ -1 t τ ℓ -1 ,Π τ ℓ -1 (z)P E (T z < T 1 ) |π τ ℓ -1 | j=1 (H u (j) ) |B τ ℓ -1 j |
× e kB 1 {min |z|=t τ ℓ -1 V (z)<δ 0 (tτ ℓ -1)} + e -3δ 0 (tτ ℓ -1) .

Using the same argument as the one we used in the proof of Lemma 3.2 together with the Cauchy-Schwarz inequality, we obtain that the previous mean is smaller than In the same way, we can prove that Using the fact that Λ l 0 +1 (L n ) k = (log Λ l 0 (L n )) k , we obtain (ii) thanks to the assumption 2.

E x∈∆ k |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l,n (x) 
We are now ready to prove Proposition 3 : Proof of Proposition 3. Let ε ′ > 0. First, note that thanks to Lemma 3.5 and Fact 1 (II.36) there exists a ε ′ > 0 such that we can restrict our study to the k-tuples of vertices in the set

S k,s ∩ {V (•) ≥ -a ε ′ } lim ε ′ →0 lim sup n→∞ P * sup s≤sn A k D n,T s , 1 ∆ k \E k,s (1 -1 S k,s ∩{V (•)≥-a ε ′ } ) > ε(n 1/2 L n ) k = 0,
where we recall that s n = n 1/2 /ε 1 . Then, note that A k (D n,T s , 1 ∆ k \E k,s 1 S k,s ∩{V (•)≥-a ε ′ } ) is smaller than 

A k (D n,T s , 1 S k,s ∩E k,s 1 ) + A k (D n,T s , 1 S k,s ∩E k,s 2 1 {V (•)≥-a ε ′ } ).

  x))].Le point de vue développé dans ces deux articles est celui des arbres de Galton-Watson multitypes. Soient i 0 ∈ N et ((N i ) i∈N , D) une suite de variables aléatoires à valeurs dans N N × N. Un arbre de Galton-Watson multitypes (T MT , (β(u); u ∈ T MT ), i 0 ) de type initial i 0 est la donnée d'un arbre aléatoire T MT et d'une collection de types (β(u); u ∈ T MT ) avec β u ∈ N dont la construction est la même que pour l'arbre de Galton-Watson T de la section 1.2 sauf qu'on assigne à chaque sommet u un type β(u) (avec la convention β(e) = i 0 ). Chaque sommet u donne naissance, indépendemment des sommets de sa génération à N u sommets typés (u 1 , β(u 1 )), . . . , (u Nu , β(u Nu )) suivant la loi de (N β(u) , D). Ainsi, le nombre d'enfants d'un sommet u ∈ T MT dépend de son type β(u). En réalité, la motivation principale de E. Aïdékon et L. de Raphélis est l'étude de la trace R n = {x ∈ T; L n x ≥ 1}. Ces derniers ont cependant besoin d'une estimation précise de son cardinal R n et utilisent le fait que pour tout N ∈ N * , (T MT , (β(x); x ∈ T MT ), N ) := (R T N \ {e * }, (N T N

  Soit T ∈ N * et x ∈ T. On rappelle que L T x = T j=1 1 {X j =x} est le temps local du sommet x à l'instant T . Pour tout réel b ≥ 0, la trace lourde R (b) T n de la marche X jusqu'à l'instant T n est l'ensemble {x ∈ T; L T n x ≥ n b } des sommets de l'arbre T visités au moins n b fois. On note R (b) T n son cardinal. Remarquons que R (0) T n = R T n mais qu'en général, R (b) T n n'est pas un sous-arbre de T pour b > 0. La trace R (b)

T

  n dépend naturellement de b et il est aisé de voir que P * (R (b)

  )) est la partie positive de log(x). Le résultat ci-dessus (15) nous dit que R (b) T n ≈ n/n 1-ξ b signifiant que la contrainte « le sommet x ∈ T doit être visité au moins n b fois par la marche aléatoire X » produit un facteur n -(1-ξ b ) . Tentons d'expliquer brièvement l'apparition de ce facteur, par exemple dans le cas (D) avec κ ∈ (1, 2]. L'idée est de montrer que R (b) T n se comporte comme sa moyenne annealed E[R (b)

  2. PROOF OF THE THEOREMS 63 with i = m n + l. Recall the definition of Ψ .

  34) that κ b = max U b ≤ bd and (I.33) gives κ b ≥ bd. It follows that for all b ∈ [0, 1/(d + 1)), κ b = bd and for any n ≥ 2, h n = log n.

  . PROOF OF THE THEOREMS 73 and thanks to (I.34) with M = n b , b ∈ (0, 1/(d + 1))

  61) and X 3,n := x∈On 1 {V (x)≥zn} e -V (x) ⌈n b /2⌉-1 (n b + 1 + Hx )f n,|x| (V x ), (I.62) 3. PROOF OF PROPOSITION 1 91 recall the definition of Hx in Lemma 3.1.

+∞ 0 e 0 ( 1

 001 -λu u -1/2 du < +∞, we get lim ε→0 lim ℓ→+∞ ε 0 e -λu ℓP(τ 0 /ℓ 2 > u) = 0. 4. TECHNICAL ESTIMATES FOR ONE-DIMENSIONAL RANDOM WALK 97 Similarly lim ε→0 lim ℓ→+∞ +∞ 1/ε e -λu ℓP(τ 0 /ℓ 2 > u, τ 0 > τ - -ℓ )du = 0. Finally lim ℓ→+∞ ℓ +∞ -e -λu )dH ℓ (u) = lim ℓ→+∞ ℓE (1 -e -λ ℓ 2 τ 0 )1 τ 0 >τ -ℓ

Lemma 4. 6 .√

 6 Let α ∈ (1, 2) and ε α ∈ [0, α -1) and introduce L ℓ := ⌊χℓ 1+ εα 2 ⌋, χ > 0. For all ε > 0, ℓ large enough and any k ∈ {L ℓ , . . . , ℓ 2 } P max j≤k H S j ≤ e √ ℓ ≤ e -kπ 2 σ 2 8ℓ (1-ε) , (I.79) and for any a, d, c > 0, b ∈ (0, 1), ℓ large enough and any k ∈ {L ℓ , . . . , ℓ 2 } ℓ+cℓ d , S k ≥ 0 ≥ e -kπ 2 σ 2 8ℓ (1+ε) . (I.80) Démonstration. Let us start with the upper bound. Thanks to the Markov property, for any

λ

  = λ n (above I.21), λ = λ n (below (I.23)), λ = λ n,1 and λ = λ n,2 (in the proof of Theorem 1.3), λ = λn in the proof of Lemma 3.6. All along the paper λ ′ is typically of order n b .
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  random walk is transient unless the bias is strong enough :

Figure II. 1 -

 1 Figure II.1 -An example of four vertices belonging to C 4 m together with their three coalescent times.

  Figure II.3 -An example of a genealogical tree of the four verticesX (1,n) , X (2,n) , X (3,n) , X (4,n) associatedto Π (left) and associated to Π ′ (right). [1, 2] means that b 1,Π ({1, 3}) = 1 and β 2,Π 1 = 2, [2, (1, 1)] means that b 2,Π ({2, 4}) = 2 and β 2,Π 2 = (1, 1). In the same way, [2, (2, 1)] means that b 1,Π ′ ({1, 3}) = 2 and β 2,Π ′ 1

=

  |B ℓ-1 j | for all j ̸ = i α and βℓ-1 iα = |B ℓ-1 iα | -1 ≥ 1.One the other hand, 1 -P( Ṽn ) ≤ n -ρ 5 with ρ 5 > 0 thanks to Lemma 3.4. Moreover, both |π ℓ-1 | j=1 β ℓ-1 j and |π ℓ-1 | j=1

  (x (i) ) φ n,p i (H x (i) ) 2 = 0. (II.41)Thanks to (II.40)

  (z (i) ) φ n,p i (H z (i) ) = 0. (II.42) Let h n = log n (the choice of h n is almost arbitrary, h n → ∞ with h n = o(n θ ) for all θ > 0 should be enough). Note that |c ∞ -φ n,p i (H z (i) )| ≤ 2 so E (c ∞ )

  ,V (x)⟩ k max 1≤i≤k sup ℓn≤p i ≤Ln, 1≤r≤hn |φ n,p i (r) -c ∞ | k + 2∥f ∥ ∞ E z∈∆ k an 1 {max 1≤i≤k H z (i) >hn} e -⟨1,V (z)⟩ k . Using Lemma 3.3, first (i), then (ii) with h = h n , sup n∈N E[ z∈∆ k an e -⟨1,V (x)⟩ k ] < ∞ and3. PROOFS OF PROPOSITIONS 2 AND 3 149 lim n→∞ E[ z∈∆ k an 1 {max 1≤i≤k H z (i) >hn} e -⟨1,V (z)⟩ k ] = 0 thus giving (II.42). Finally, putting together (II.41) and (II.42), we obtain the result.Convergence of the quasi-martingale A k l

× 1

 1 x)e -⟨1,V (x)⟩q F f = {(v (j,i) ) * =z (j) } e -V (v (j,i) ) , 3. PROOFS OF PROPOSITIONS 2 AND 3 151 where |u| = p • means that u (l) = p i l for all l ∈ {1, . . . , y}, v (j) = (v (j,1) , . . . , v (j,| Bj |) ). ThusE x∈∆ q |x|=p 1 Υ f-1,π ∩Υ f,η (x)e -⟨1,V (x)⟩q F f-1 = p e -⟨ β,V (u)⟩ |π| ,where p = (p 1 , . . . , p y , f -1, . . . , f -1) ∈ (N * ) ×|π| and β = (1, . . . , 1, B1 , . . . , B|π|-y ) ∈ (N * ) ×|π| . One can notice that there exists r 0 > 0 such thatE u∈∆ |π| |u|= p e -⟨ β,V (u)⟩ |π| 1 {min |w|=f-1 V (w)<r 0 (f-1)} ≤ C 3.9,2 e -(f-1) , (II.44)for some constant C 3.9,2 > 0. Indeed, By the Cauchy-Schwarz inequality,E u∈∆ |π| |u|= p e -⟨1,V (u)⟩ |π| 1 {min |w|=f-1 V (w)<r 0 (f-1)} ≤E u∈∆ |π| |u|= p e -⟨1,V (u)⟩ |π|

B∈ π c

 c B (1) E u∈∆ |π| |u|= p e -⟨ β,V (u)⟩ |π| 1 {min |w|=f-1 V (w)<r 0 (f-1)}

  j∈ 1,sn k A k,n (j, 1 ∆ k \C k an ) ≤ C 3.10 n -ρ 8 , (II.45)

  and since H x (i) ≥ 1 E * j∈ 1,sn k A k,n (j, 1 ∆ k \C k an ) ≤ (s n ) k p∈{ℓn,...,Ln} ×k E * x∈∆ k |x|=p

P

  * A k (D n,T s , f 1 E k,s ∩C k an ) -E E j∈ 1,s k A k,n (j, f 1 C k an ) > ε(sL n ) k /8 = 0.

  s ∩∆ k \C k an ) > ε/2 -→ n→∞ 0. (II.47) 154 CHAPITRE II. GENEALOGY IN THE DIFFUSIVE CASE Indeed, by Lemma 3.6 with g = f and R = ∆ k \ C k anP * A k (D n,T s , f 1 E k,s ∩∆ k \C k an ) -j∈ 1,s k

  x (1) , . . . , x(k) ) ∈ ∆ k ; L T j x (i) -L T j-1 x (i) }denotes the set of k-tuples of vertices visited during the same excursion before the instant T s , thenlim n→∞ E * 1 (n 1/2 L n ) k sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s 1 ) = 0.3. PROOFS OF PROPOSITIONS 2 AND 3 155(ii) Let E k,s 2 := ∆ k \ (E k,s ∪ E k,s1). If k ≥ 3 and the assumption 2 hold, then, for all B > 0lim n→∞ E * 1 (n 1/2 L n ) k sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s 2 1 {V (•)≥-B} ) = 0,with V (x) ≥ -B if and only if V (x (i) ) ≥ -B for all i ∈ {1, . . . , k}.

P

  E sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s 1 ) = E sup s≤sn s j=1 x∈∆ k ℓn≤|x|≤Ln 1 ∩ k i=1 ∩ p̸ =j {N T j x (i) -N T j-1 x (i) ≥1,N T p x (i) -N T p-1 x (i) =0} E (T x < T 1 ) ≤ C 3,1 s n (L n ) k (L n ) k-1 ,where we have used Lemma 3.2 (II.34) with m = L n for the last inequality, recalling that the constant C ′ 3,1 > 0 doesn't depend on p. By definition of s nE 1 (n 1/2 L n ) k sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s1

1e=2e=2e=21

  S k,s ∩E k,s 2 (x) ≤ k-1 e=2 j∈ 1,s e I 1 ,...,Ie sets ∪ e l=1 I l ={1,...,k} j∈ 1,sn e I 1 ,...,Ie sets ∪ e l=1 I l ={1,...,k} e p=1 Y p , where, for any p ∈ {1, . . . , e}, Y p := 1∩ i∈Ip {L T jp x (i) -L T jp-1 x (i)≥1}. It follows that E sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s j∈ 1,sn e I 1 ,...,Ie sets ∪ e l=1 I l ={1,...,k}E x∈∆ k |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n j∈ 1,sn e I 1 ,...,Ie sets ∪ e l=1 I l ={1,...,k} E x∈∆ k |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l 0 ,n us prove that for any p ∈ {ℓ n , . . . , L n } ×k , E x∈∆ k |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n(x)e p=1 Y p ≤ C 3.11,1 (L n ) k-e .(II.49)The proof of (II.49) is quite technical so in order to keep it as clear as possible, as one can notice in the proof of Lemmas 3.3 (i) and 3.2 (II.34) with m = L n , we can and shall restrict to the case p = (m, . . . , m) ∈ {ℓ n , . . . , L n } ×k .3. PROOFS OF PROPOSITIONS 2 AND 3 157Thanks to the strong Markov property, the random variables Y 1 , . . . , Y e are i.i.d under P E andE x∈∆ k |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n i∈Ip T x (i) < T 1 . As usual, x∈∆ k m 1 {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n(x) e p=1 P E (max i∈Ip T x (i) < T 1 ) is equal to k-1 ℓ=1 Π increasing t;t 1 <...<t ℓ <m x∈∆ k m 1 {V (x)≥-B} f ℓ t,Π 1 Υ k,sn g l-1,n \Υ k,sn g l,n

  τ ℓ := max{j ∈ {1, . . . , ℓ}; ∃ p ̸ = p ′ ∈ {2, . . . , e}, ∃ B ∈ π j-1 : B ∩ I p ̸ = ∅ and B ∩ I p ′ ̸ = ∅},and the x-version τ ℓ (x) of τ ℓ : τ ℓ (x) := max{j ∈ {1, . . . , ℓ}; ∃ p ̸ = p ′ ∈ {2, . . . , e}, ∃ i ∈ I p , i ′ ∈ I p ′ : |x (i) ∧ x (i ′ ) | = t j -1}.

  . . . , |π ℓ-1 |} such that for any j ∈ {k ℓ-1 p,1 , . . . , k ℓ-1 p,e ℓ-1 p }, the block B ℓ-1 j of the partition |π ℓ-1 | is the union of b ℓ-1 (B j ) block(s) of the partition π ℓ of elements of F ℓ p . We set F ℓ-1 p := {k ℓ-1 p,1 , . . . , k ℓ-1 p,e ℓ-1 p } so I ℓ-1 1 , . . . , I ℓ-1 e form a partition of {1, . . . , |π ℓ-1 |}. Now, let i ∈ {τ ℓ + 1, . . . , ℓ} and assume that F i p has been built. By definition of τ ℓ , for any p ∈ {1, . . . , e}, there exists an integer e i-1 p ≥ 1 and e i-visited during distinct excursions are not permitted in this zone.

  distinct integer k i-1 p,1 , . . . , k i-1 p,e i-1 p in {1, . . . , |π i-1 |} such that for any j ∈ {k i-1 p,1 , . . . , k i|π i-1 | is the union of b i-1 (B j ) block(s) of the partition π i of elements of I i p . We set I i-1 p := {k i-1 p,1 , . . . , k ℓ-1 p,e i-1 p } so I i-1 1 , . . . , I i-1e form a partition of {1, . . . , |π i-1 |}. Hence, noticing thatf ℓ t,Π 1 Υ k,sn g l-1,n \Υ k,sn g l,n

1

  i∈Ip T x (i) < T 1 F t τ ℓ {V (u)≥-B} f τ ℓ t τ ℓ ,Π τ ℓ (u) (j) ) |B τ ℓ j | ,

≤

  i∈Ip T x (i) < T 1 F t τ ℓ -1

  ) 4k-1 ] e kB P min|z|=t τ ℓ -1 V (z) < δ 0 (t τ ℓ -1)1/2 + e -3δ 0 (tτ ℓ -1)≤ C 3.11,3 sup d∈N * E[(H S d-1 ) 4k-1 ](e kB + 1)e -kΛ l (Ln) ,where we have used Lemma 3.4 with ζ = δ 0 t τ ℓ and the fact that t τ ℓ -1 ≥ g l,n . Back to (II.50) together with what we have just obtained and the fact that for all j ∈ {1, . . . , τ ℓ },160 CHAPITRE II. GENEALOGY IN THE DIFFUSIVE CASE t j ≤ g l-1,n , E[ x∈∆ k , |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n (x)1 S k,sn ∩E k,sn 2 (x)] is smaller than C 3.11,3 sup d∈N * E[(H S d-1 ) 4k-1 ](e kB + 1)e -kΛ l (Ln) k-1 ℓ=1 Π increasing (g l-1,n ) τ ℓ (L n ) ℓ-τ ℓ .Note that τ ℓ ≤ ℓ < k. Moreover, by definition, ℓ -τ ℓ is smaller than the total number of coalescences occurring between two or more vertices which indexes belong to the same set I ℓ p and this number is smaller than e p=1 (|I ℓ p | -1) = k -e thus givingE x∈∆ k |x|=p 1 {V (x)≥-B} 1 Υ k,sn g l-1,n \Υ k,sn g l,n(x)e p=1 Y p ≤ C 3.11,1 Λ l-1 (L n )e -Λ l (Ln) k (L n ) k-e ,which, by definition of Λ l (L n ), is equal to C 3.11,1 (L n ) k-e and it yields (II.49).

e p=1 Y

 p=1 p ≤ C ′ 3.11,1 1 + Λ l+1 (L n ) k (L n ) k-e ,(II.51)for some constant C ′ 3.11,1 > 0. Putting together (II.48), (II.49) and (II.51), we obtain, for some constant C 3.11,4 > 0E 1 (n 1/2 L n ) k sup s≤sn A k (D n,T s , 1 S k,s ∩E k,s 2 1 {V (•)≥-B}∩C k l 0 +1 (L n ) k .

  Markov inequality, the result follows using Lemma 3.11 with B = a ε ′ .

Table des matières

 des Introduction 1 Arbres marqués . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Lower bound for R T n (g n , f n ) . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Upper bound for R T n (g n , f n ) . . . . . . . . . . . . . . . . . . . . . . . . . 4 Technical estimates for one-dimensional random walk . . . . . . . . . . . . . . . 4.1 Two Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Additional technical estimates . . . . . . . . . . . . . . . . . . . . . . . . II Genealogy in the diffusive case 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Randomly biased random walk on trees . . . . . . . . . . . . . . . . . . .

	6 1 Arbres marqués 3 1.2 INTRODUCTION TABLE DES MATI ÈRES 1.2 Arbres de Bienaymé-Galton-Watson marqués

1.1 Définitions et notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Arbres de Bienaymé-Galton-Watson marqués . . . . . . . . . . . . . . . .

  Or, sous P * , avec grande probabilité, un sommet x ∈ T tel que V (x) ≥ 3 log n n'est pas visité ou est visité durant une unique excursion au dessus de e * . De ce fait, on déduit l'indépendance le long de la trajectoire de la marche aléatoireX nécessaire pour prouver que R(T n , A n , λ n ) est du même ordre que nE E [R(T 1 , A n , λ n )].La condition O λn a permis ici de contrôler la variance de la trace. Nous montrons ensuite que cette espérance quenched se concentre autour de E[R(T 1 , A

n , λ n )] et c'est précisément à cette étape (que nous ne détaillons pas ici) que les hypothèses (A1) et (A2) sont indispensables. Pour ce faire, nous créons cette fois de l'indépendance le long des trajectoires du potentiel V en sacrifiant les générations inférieures à h n nous permettant ainsi d'appliquer une inégalité de concentration pour E E

  R n sont tirés uniformément et sans remise dans D n . En pratique, nous nous intéressons aux ensembles D n de la forme {x ∈ R n ; ℓ n ≤ |x| ≤ L n } où (L n ) est une suite d'entiers strictement positifs telle que L n → ∞ quand n → ∞ mais L n ≤ n 1/2 et (ℓ n ) est une suite d'entiers positifs telle que ℓ n ≤ L n pour tout n ∈ N * et lim n→∞ P

	(D n ≥ k) = 1. Rappelons que les plus grandes générations visitées par la marche
	aléatoire diffusive X sont de l'ordre de n 1/2 (voir la sous-section 2.2), d'où le choix L n ≤ n 1/2 .
	L'arbre généalogique de ces k sommets est très différent suivant si L n = o(n 1/2 ) (il s'agit du
	cas des petites générations) ou non (c'est-à-dire le cas des générations critiques).

* 

  une fonction bornée. A k (D n , f ) n'est rien d'autre que le nombre kuplets de sommets distincts du sous ensemble D n de l'arbre R n satisfaisant la contrainte jointe f . En pratique, nous considérons des contraintes f vérifiant la propriété suivante : il existe un entier g ∈ N * tel que pour tout entier p ≥ g et toutx ∈ ∆ k , si min 1≤i≤k |x (i) | ≥ p et L n ) k où L n -1 = L n -ℓ n est lahauteur de l'ensemble D n dans l'arbre T, c'est-à-dire le diamètre de D n pour la topologie naturelle sur T. Pour tout entier k ≥ 2, si κ > 4k et f satisfait (27) alors en loi, sous P *

	x = (x (1) , . . . , x (k) ) ∈ C k p alors	
	f (x (1) , . . . , x (k) ) = f (x (1) ) p , . . . , (x (k) ) p .	(27)
	Autrement dit, nous demandons à ce que la contrainte imposée soit héréditaire pour chaque
	sommet à partir d'une génération donnée.	
	Nous montrons dans [Kag22] que A k (D n , f ) est de l'ordre de (n 1/2	
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  for any ε 1 > 0 and n large enough.• For (A2), recalling m n = ⌈εh n /c 2 ⌉ (see (I.16)), then by definition , . . . , s mn , t 1 + s mn , . . . , t j + s mn )

	f n,j εhn (t 1 , . . . , t j ) = f n,mn+j (s 1 = inf s∈[-εhn,εhn] mn inf
	sm n ∈[-εhn,εhn]

  and we have used that ψ(1 -δ n ) ∈ R + for the second inequality and that δ n → 0 (α ∈ (1, 2)) together with ψ(1) = ψ ′ (1) = 0 and ψ ′′ (1) = σ 2 for the last one. For the first sum in (I.26), which gives the main contribution, by the Markov property at time p, P S p ≥ (log n) α -t, max j≤⌈βp⌉ H S j ≤ n is smaller than P S p ≥ (log n) α -t, max j≤p H S j ≤ n P max j≤⌈(β-1)p⌉ H S j ≤ n . Then thanks to Lemma 4.6 (I.79) (with ℓ = (log n) 2 , ⌈(β -1)p⌉ and ε/2 in place of, respectively, k and ε), for n large enough and any p ∈ {L n , . . . , ⌊Aℓ n ⌋}

	P	max
		j≤⌈(β-1)p⌉

  1/2 -th return time of X to e * (which is quite similar to R n ) : let Mn be the most recent common ancestor of X (1,n) and X (2,n) . First observe that

	lim ε→0	lim inf n→∞	P * ( Mn < 1/ε) > 0 and lim ε→0	n→∞ lim sup	P * (εn 1/2 ≤ Mn < n 1/2 ) > 0.	(II.29)
	Moreover, coalescence can't occur anywhere else :		

  , in P * -probability and thanks to (II.32), we can focus our attention on A k

AnnexeDans cette section, nous proposons une preuve des résultats (9) et (10). On rappelle que le premier résultat, qui concerne la marche (sous-)diffusive, implique qu'avec grande probabilité,

Alexis KAGAN Traces de marches aléatoires en milieux aléatoires sur des arbres

Résumé : Si on considère une marche aléatoire à valeurs dans un graphe G, la trace de cette dernière jusqu'à un instant n donné est définie comme le nombre de sites distincts visités par la marche jusqu'à l'instant n. Lorsque G est un arbre de Bienaymé-Galton-Watson sur-critique marqué, nous introduisons, sur une réalisation de ce processus, une marche aléatoire au plus proche voisin. Ces marches sont, sauf dans certains cas particuliers, transientes. On ajoute donc un biais vers la racine qui, s'il est suffisant, va rendre la marche récurrente. Ces marches biaisées introduites par R. La première partie de cette thèse est consacrée à une extension de ce résultat dans le régime lent. Nous étudions une trace généralisée: au lieu de regarder seulement la trace usuelle, nous nous intéressons à des traces avec des contraintes à la fois le long des trajectoires de la marche aléatoire et le long de celles du potentiel branchant sous-jacent. Un exemple important est d'imposer que les sommets visités par la marche aient un potentiel supérieur à une valeur donnée. A travers l'étude de cette trace généralisée, nous souhaitons mettre en lumière les interactions entre la marche aléatoire et son potentiel aléatoire branchant. La deuxième partie ce cette thèse est consacrée à la marche diffusive et plus particulièrement à la généalogie de l'ensemble des sommets visités par cette dernière. Nous étudions une trace avec des contraintes sur les sommets visités permettant ainsi de mieux comprendre les interactions entre ces derniers. Nous considérons enfin le fameux problème de généalogie suivant: tirons uniformément et sans remise k sommets visités par la marche aléatoire. A quoi ressemble l'arbre généalogique de ces sommets? L'étude de la trace contrainte permet d'apporter quelques éléments de réponses.

Mots clés : Arbres de Bienaymé-Galton-Watson, Généalogie, Marches aléatoires branchantes, Marches aléatoires sur des arbres, Traces.

Ranges of random walks in random environments on trees

Abstract : If we consider a random walk on a graph G, the range of this walk until a given instant n is defined to be the number of vertices visited by the walk up to the time n. When G is a super-critical Bienaymé-Galton-Watson marked tree, we introduce, on a realization of this process, a nearest-neighbour random walk. These walks are in general transient, but it can be added a bias towards the root so that the walk is recurrent. Inroduced by R. Lyons, these processes present various behaviours and have been deeply studied by Y. Hu and Z. Shi. Lately, in some cases with a specific bias, it has been proved that the range (well renormalized) converges in probability towards an explicit positive constant (X. Chen and P. Andreoletti, E.Aïdékon and L. de Raphélis). The first part of this thesis is devoted to an extension of this result in the slow regime. We study a generalized range: instead of looking at the classical range, we are interested in a range with both constraints on the trajectories of the random walk and on the trajectories of the underlying branching random potential. An important example of that is to enforce the vertices visited by the walk to have a potential larger than a given value. By studying this generalized range, we do wish to highlight interactions between the random walk and its random branching potentiel. The second part of this thesis is dedicated to the diffusive random walk and most particularly to the genealogy of the set of vertices visited by the walk. We study a range with constraints on visited vertices to better understand interactions between them. We finally consider the following well known genealogy problem: pick k visited vertices uniformly and without replacement. What does their genealogical tree look like? The study of the previous range with constraints allows to answer this question.