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ABSTRACT

Obesity is a common, complex condition that poses serious health problems worldwide. It is also a known critical risk factor for some non-communicable diseases including cancers. Different anthropometric measures such as body mass index (BMI) and waist-to-hip ratio (WHR) have been used to assess obesity. The latter is an index for central or abdominal obesity while the former represents total or overall obesity. Epidemiological studies provide evidence that central and overall obesity measures may relate to cancer risk differently. The exact physiological mechanisms that enable the obesity and cancer co-morbidity remain unclear. However, certain factors such as insulin-like growth factors, hyperglycaemia, dysregulated lipid profile and adipokine factors have been hypothesised. Genome-wide association studies (GWAS) have identified numerous common genetic variations for obesity and cancer phenotypes. However, these variations provide only modest clues as to the underlying comorbidity. Nevertheless, output from GWAS can be applied to statistical methods such as polygenic scores and Mendelian randomization that aid in the unravelling of shared determinants.

In this PhD project, I assessed the impact of overall and central obesity on the risk of cancers including overall breast, post-menopausal breast, prostate, colorectal, lung and pancreatic cancers. I defined the genetic correlation between BMI/WHRadjBMI and cancers using the UK Biobank dataset. I then used established BMI and WHRadjBMI genome-wide loci to create obesity polygenic scores which were then tested for association with cancer phenotypes in the UK biobank. Further, using established genetic variants associated with these phenotypes, I performed MR between the two obesity phenotypes and three cancers (breast, prostate and colorectal) to investigate the causal relationships between them. Moreover, cancer is the second leading cause of mortality worldwide, after cardiovascular disease, with nearly 10 million deaths attributed to cancer as of 2020 3 .

Measures of obesity

Since its development in the mid-1800s, the body mass index (BMI) is the most common anthropometric measure use in clinical and research settings to indirectly assess adiposity. It is computed by dividing someone's weight in kilograms by the square of their height in meters (kg/m 2 ). Based on the World Health Organization (WHO) guidelines, BMI is used to define four main weight categories 1 . Specifically, normal healthy weight includes BMI between 18.5 and 24.9 kg/m 2 , while BMI less than 18.5 kg/m 2 is considered underweight. Individuals with BMI greater than or equal to 25 kg/m 2 , but below 30 kg/m 2 are considered overweight. BMI greater than or equal to 30 kg/m 2 defines the obese category.

Despite being a routine measure of adiposity, BMI falls short of being a perfect measure for several reasons. For instance, BMI may not accurately define obesity since it does not distinguish between lean and fat mass [START_REF] Roche | Grading body fatness from limited anthropometric data[END_REF] . Additionally, individuals who may be metabolically unhealthy can be classified in the normal weight category 5 .

Adipose tissue distribution, which is a significant risk factor in type 2 diabetes (T2D), cardiovascular disease, and cancer, is also not captured using BMI. Therefore, other anthropometric measures that assess adipose tissue distribution and improve clinical evaluation of metabolic health have been developed including waist circumference (WC) and the waist-to-hip (WHR) ratio (unitless measure). WHR is defined by dividing someone's WC, measured in cm, to their hip circumference, in cm. According to the WHO, a healthy WHR is 0.8 or lower for women and 0.95 or lower for men [START_REF]Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation[END_REF] . A WHR of 0.86 and greater is considered a high health risk for women, while for men, a WHR equal to or greater than 1.0 poses high health risk 6 .

While BMI is considered an index for overall/total adiposity, WC and WHR assess central/abdominal/visceral adiposity. Central adiposity correlates to insulin resistance, dyslipidaemia, hypertension which comprise the metabolic syndrome [START_REF] Alberti | Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation[END_REF][START_REF] Lalia | Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in Adult Humans[END_REF][START_REF] Scully | Type 2 Diabetes, and Cancer Risk[END_REF] . It thus follows that overall and central adiposity measures may relate to disease risk/prevalence differently, with cancer being the disease of interest for my research.

Epidemiological associations

The relationship between cancer and obesity has been a growing topic of research over the last three decades. In fact, recent global estimates on obesity and cancer risk have indicated that among adults aged 30 and above, approximately 3.6% of all new cancer cases can be linked to high BMI [START_REF] Arnold | Global burden of cancer attributable to high body-mass index in 2012: A population-based study[END_REF] .

From multiple studies examining the relationship between body weight and cancer incidence and mortality, it appears that the link between the two is gender-, site-, ageand menopause status-specific [START_REF] Calle | Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults[END_REF][START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF][START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] .

For instance, in large prospective study among 900,053 cancer-free adults (404,576 men and 495,477 women) at baseline in the United States of America (USA), the authors defined the relationship between obesity and cancer mortality following a 16years follow-up period [START_REF] Calle | Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults[END_REF] . More specifically, they tested for epidemiological association between overweight and obesity (measured using BMI) and the risk of death caused by overall cancer at cancer-specific sites in the body, highlighting the following. 1) For both men and women with BMI > 40 kg/m 2 , the overall mortality due to all cancers was 52% and 62% higher, respectively, than their counterparts of normal BMI range (23 kg/m 2 -29 kg/m 2 ) 11 . 2) Additionally, high BMI was associated with a higher risk of death due to cancer of the colon, rectum, liver, oesophagus, gall bladder, kidney and pancreas in both men and women [START_REF] Calle | Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults[END_REF] .

3) The association between high BMI and cancer mortality was gender specific for specific cancer types [START_REF] Calle | Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults[END_REF] . For men with a BMI higher than 35 kg/m 2 , the authors observed an increased risk of death due to cancers of the prostate and stomach, compared to men within normal BMI range. Similarly, women with BMI higher than 40 kg/m 2 had significant risk of death due to cancers of the ovary, cervix, uterus, and breast. Overall, this study demonstrated, by leveraging on large scale data, that overweight and obesity was associated with greater risk of death from all cancers in both men and women.

While the study above focused on the relationship between obesity and the risk of death by cancer, others have assessed the relationship between obesity and cancer incidence [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF][START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] .

In a landmark systematic review and meta-analysis of prospective observational studies, Renehan et al. evaluated the relationship between incremental increase in BMI and the risk of cancer incidence for both men and women [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . In total, they analysed data from 141 articles spanning 221 datasets comprising 282,137 incident cancer cases (154,333 men and 127,804 women). They reported that for every 5 kg/m 2 increase in BMI among men, there was significant increase in risk of cancers of the colon, rectum, thyroid, kidney as well as oesophageal adenocarcinoma, non-Hodgkin's lymphoma, and leukaemia [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . In contrast, they report a significant decrease incidence of lung cancer and squamous cell carcinoma of the oesophagus associated with every 5 kg/m 2 BMI increase [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . In women, similar BMI increments were associated with increased incidence of endometrial, renal, thyroid, post-menopausal breast, pancreatic and colon cancers as well as oesophageal adenocarcinoma and leukaemia [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . Increase in BMI was however associated with a decreased risk of lung and premenopausal breast cancers and squamous cell carcinoma of the oesophagus. Additionally, the authors highlighted several points based on their analyses. 1) For post-menopausal breast cancer, the direct association observed with increased BMI was consistent in studies that included post-menopausal women only and those that included both preand post-menopausal breast cancer [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] .

2) The association between increased BMI and cancer differed between the sexes for some cancers [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . For instance, in colon cancer, the associations with increased BMI were stronger in men than in women. However, for rectal cancer, the associations with increased BMI were stronger in women than men. The association with increased BMI and pancreatic cancer appeared similar in both men and women [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . 3) Despite the association between increased BMI and most cancers being consistent across different populations, for some cancer sites the risk estimates varied from one population to the other [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . Case in point, the authors show that despite North America, European and Australian populations having an inverse association between increased BMI and premenopausal cancer, in Asia-Pacific populations the association was positive [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] .

Finally, in a more recent study based on routinely collected primary care records, the authors investigated the relationship between BMI and site-specific cancers in the United Kingdom (UK) [START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] . The UK Clinical Practice Research Datalink (CPRD) captures a wide range of computerised primary care data from general practitioners in the UK.

Data available in the CPRD include hospital admissions and referrals, primary and secondary diagnosis, information regarding lifestyle factors (e.g., smoking status) and body measurements such as height and BMI. In this cohort study, the authors present results for 22 cancers among 5.24 million individuals with BMI data and highlight several findings. 1) Higher BMI was associated with an increased risk of uterine, gallbladder, kidney, cervical, thyroid, liver, colon, ovarian, post-menopausal breast cancers, and leukaemia while inverse associations were shown between high BMI and lung, oral cavity, premenopausal breast and prostate cancers [START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] . 2) For colon and liver cancers, the associations with BMI were stronger in men than women [START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] . 3) There was a positive association between BMI and both pre-and post-menopausal breast cancers at BMI levels less than 22 kg/m 2 . However, above this BMI cut-off, the risk of premenopausal breast reduces [START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] . 4) A similar pattern was seen for prostate cancer in men where the risk associated with BMI peaked at 24 kg/m 2 , after which the risk of prostate cancer reduces markedly [START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] . 5) Low BMI was associated with higher risk for lung, oral cavity, and stomach cancers but only among current and former smokers [START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF] .

Limitations of observational studies

Despite their usefulness in highlighting the associations between obesity and cancer, several limitations of epidemiological studies need to be considered.

Results from epidemiological studies often suffer from bias and confounding by factors that are either inaccurately or completely accounted for in the study design. A classic confounder that has emerged in almost all studies is smoking. Several studies have reported the inverse association between BMI and lung, oral cavity and stomach cancers [START_REF] Calle | Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults[END_REF][START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF][START_REF] Bhaskaran | Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults[END_REF][START_REF] Calle | Body-Mass Index and Mortality in a Prospective Cohort of U.S. Adults[END_REF] . This association, however, only holds among current and former smokers, and is not seen in those who have no history of smoking. Moreover, similar apparent confounding by smoking has been reported in oesophageal cancer [START_REF] Renehan | Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[END_REF] . High BMI is shown to be associated with higher risk of oesophageal adenocarcinoma but is inversely associated with squamous cell carcinoma of the oesophagus which is more associated with smoking. Indeed, it has been shown that for the same sex and age, smokers tend to have lower BMI than their non-smoking counterparts [START_REF] Canoy | Cigarette smoking and fat distribution in 21,828 British men and women: a population-based study[END_REF] . Therefore, the interpretation of such observational findings, as well as the study design, needs careful consideration of such factors.

Epidemiological studies assessing the relationship between obesity and cancer have focused mostly on overall obesity. As such, there are far fewer studies assessing the relationship between measures of central/abdominal obesity and cancers such as WC and WHR. BMI is shown to be an imperfect measure of obesity and it follows that other anthropometric measures such as those assessing central adiposity need addressing.

In fact, for some cancers such as of the prostate, central obesity appears to be a better predictor of cancer risk than overall BMI [START_REF] Tang | Waist-hip Ratio (WHR), a Better Predictor for Prostate Cancer than Body Mass Index (BMI): Results from a Chinese Hospital-based Biopsy Cohort[END_REF][START_REF] Nagrani | Central obesity increases risk of breast cancer irrespective of menopausal and hormonal receptor status in women of South Asian Ethnicity[END_REF] . Additionally, central obesity and other components of the metabolic syndrome have been shown to be elevate the risk of pancreatic, colon and breast cancers [START_REF] Xia | Metabolic syndrome and risk of pancreatic cancer: A population-based prospective cohort study[END_REF][START_REF] Gallagher | Obesity and diabetes: The increased risk of cancer and cancerrelated mortality[END_REF][START_REF] Dong | Abdominal obesity and colorectal cancer risk: systematic review and metaanalysis of prospective studies[END_REF] . More studies are therefore needed to quantify the relationship between central obesity and cancers.

Mechanisms linking obesity and cancer

Several mechanisms have been suggested to play a role in the manifestation of the obesity-cancer co-morbidity. 

Insulin and insulin-like growth factors

The insulin-like growth factor system comprises of the insulin receptor (IR), insulin-like growth factor 1 and 2 receptors (IGF-IR/IGF-IIR) and their ligands: insulin, IGF-I, IGF-II and insulin-like growth factor binding proteins (IGFBP) [START_REF] Belfiore | Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease[END_REF] . Circulating hyperinsulinemia, leading to insulin resistance has been associated with an increase in cancer [START_REF] Goodwin | High insulin levels in newly diagnosed breast cancer patients reflect underlying insulin resistance and are associated with components of the insulin resistance syndrome[END_REF][START_REF] Yee | Insulin-like growth factor receptor inhibitors: Baby or the bathwater[END_REF] . Overexpression of IGF-IR has been shown in breast, colorectal, liver and prostate cancers 24 with a loss of tumour suppressor genes BRCA1, p53 and PTEN potentially driving the increased cancer risk [START_REF] Zhao | PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells[END_REF][START_REF] Yakar | The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: Lessons from animal models[END_REF] . Hyperinsulinemia driven by IR overexpression on tumour cells may also lead to tumour growth and progression in breast, colon, lung and prostate cancers [START_REF] Belfiore | Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease[END_REF][START_REF] Yee | Insulin-like growth factor receptor inhibitors: Baby or the bathwater[END_REF] . The IR has two isoforms: IR-A and IR-B.

IR-A lacks exon 11 of the IR gene and is mainly expressed in cancer cells increasing their affinity for IGF-II and insulin, providing a possible link between the cancerpromoting effects of hyperinsulinemia seen in individuals with obesity [START_REF] Belfiore | Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease[END_REF] . Dysregulated signalling in tumour cells often leads to differential expression of splice factors (e.g., SRSF3) which leads to increased IR-A/IR-B ratio responsible for the effects of hyperinsulinemia on tumour development [START_REF] Belfiore | Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease[END_REF][START_REF] Sen | Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice[END_REF] . C-peptide levels, a more stable marker of insulin secretion, have been associated with increased incidences of breast and colorectal cancer [START_REF] Verheus | Serum C-peptide levels and breast cancer risk: Results from the European prospective investigation into cancer and nutrition (EPIC)[END_REF][START_REF] Jenab | Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition[END_REF] but have not been associated with prostate cancer [START_REF] Stevens | No association of plasma levels of adiponectin and c-peptide with risk of aggressive prostate cancer in the cancer prevention study II nutrition cohort[END_REF][START_REF] Ma | Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis[END_REF][START_REF] Lai | Association of C-peptide and leptin with prostate cancer incidence in the Health Professionals Follow-up Study[END_REF] .

Hyperglycaemia

Cancer cells preferentially use glycolysis for energy production over oxidative phosphorylation; a hallmark of cancer cells [START_REF] Warburg | The metabolism of tumors in the body[END_REF] . Metabolic tissues (skeletal and adipose) use the glucose transporter 4 (GLUT4) to take up glucose into their cells. However, most cancer cells use the GLUT1 with increased affinity for glucose [START_REF] Adekola | Glucose transporters in cancer metabolism[END_REF] . This promotes aerobic glycolysis in those cells which provides the precursors needed for lipid, amino acid and nucleotide synthesis [START_REF] Warburg | The metabolism of tumors in the body[END_REF] . Increase in HbA1c levels, a marker for circulating glucose levels, has been associated with a higher risk for breast and colorectal cancer but no correlation has been observed with prostate cancer [START_REF] De Beer | Does cancer risk increase with HbA 1c, independent of diabetes?[END_REF] . Circulating hyperglycaemia also leads to production of advanced glycation end products (AGEs)

and their receptors (RAGEs) [START_REF] Vlassara | Advanced Glycation Endproducts in Diabetes and Diabetic Complications[END_REF] . AGEs are formed when sugars such as glucose nonenzymatically react with the free amino groups on proteins, lipids, and nucleic acids [START_REF] Vlassara | Advanced Glycation Endproducts in Diabetes and Diabetic Complications[END_REF] .

Individuals with obesity and T2D have higher levels of AGEs and RAGEs. Oxidative stress and inflammation which arise from the interaction of RAGEs and their ligands lead to promoter tumour growth, angiogenesis, and metastases 37 .

Dyslipidaemia

Obesity is characterised by elevated levels of low-density lipoprotein (LDL)cholesterol and low levels of high-density lipoprotein (HDL) -cholesterol. Elevated levels of total cholesterol, triacylglycerides (TAGs) and low levels of HDL-cholesterol have been associated with up to 20% increase in cancer risk [START_REF] Melvin | Serum lipid profiles and cancer risk in the context of obesity: Four meta-analyses[END_REF] . In addition, polymorphisms in genes associated with hyperlipidaemia (APOE, APOA-1) have been associated with an increased breast cancer risk [START_REF] Chang | Influences of apolipoprotein E polymorphism on the risk for breast cancer and HER2/neu status in Taiwan[END_REF] . Cholesterol plays a chief role in cancer growth and progression through increased PI3K/AKT signalling as shown in vitro in breast, colon and prostate cancer cell lines which leads to increased cell proliferation [START_REF] Hea | Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction[END_REF][START_REF] Scheinman | Cholesterol affects gene expression of the Jun family in colon carcinoma cells using different signaling pathways[END_REF][START_REF] Alikhani | Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model[END_REF] . Cholesterol is also a precursor for progesterone, oestrogen, and androgen. Studies have shown that human prostate cancers are able to synthesise their own androgens, including testosterone, from cholesterol [START_REF] Montgomery | Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth[END_REF][START_REF] Pelton | Cholesterol and prostate cancer[END_REF] .

Adipokines

Adipose tissue factors (adipokines), inflammatory cytokines and enzymes produced by adipose tissue are abnormally regulated in obesity and T2D promoting tumour growth and metastases. The adipose tissue presents a vital organ in tumour development and progression in many organs as it not only surrounds many organs (e.g. heart, kidney)

but is also abundant in organs where cancer develops, such as breast. The adipose tissue provides a local environment that enables cancer cells proliferation. Various adipokines and cytokines are relevant to cancer including leptin, adiponectin, resistin, TNF-α and interleukin 6 (IL-6) [START_REF] Ouchi | Adipokines in inflammation and metabolic disease[END_REF][START_REF] Garofalo | Leptin and cancer[END_REF][START_REF] Ziemke | Adiponectin in insulin resistance: Lessons from translational research[END_REF][START_REF] Steppan | The hormone resistin links obesity to diabetes[END_REF][START_REF] Harford | inflammation and insulin resistance: Insights to the role of macrophage and T-cell accumulation in adipose tissue[END_REF] . Leptin is a pro-inflammatory adipokine that is a regulator of appetite 50 that binds the leptin receptor (ObR). Higher ObR expression is observed in breast tumours [START_REF] Surmacz | Leptin and adiponectin: Emerging therapeutic targets in breast cancer[END_REF] and is associated with poor prognosis. Binding of the ObR by leptin activates key intracellular pathways that promote tumour growth and metastases. These pathways include those involved in cell growth and survival (PI3K/AKt, cyclin D1), inflammation response (NF-κβ, COX-2), angiogenesis (STAT4, VEGF) and differentiation (Notch, Wn) [START_REF] Garofalo | Leptin and cancer[END_REF][START_REF] Surmacz | Leptin and adiponectin: Emerging therapeutic targets in breast cancer[END_REF][START_REF] Sweeney | Leptin signalling[END_REF][START_REF] Jardé | Molecular mechanisms of leptin and adiponectin in breast cancer[END_REF][START_REF] Guo | Role of Notch and its oncogenic signaling crosstalk in breast cancer[END_REF] . Adiponectin (an anti-inflammatory adipokine) plasma protein levels have been shown to be low in individuals who are obese and is associated with increased cancer risk [START_REF] Ziemke | Adiponectin in insulin resistance: Lessons from translational research[END_REF][START_REF] Schäffler | Mechanisms of disease: Adipokines and breast cancer -Endocrine and paracrine mechanisms that connect adiposity and breast cancer[END_REF] . The protective role of adiponectin signalling in cancer progression is mediated through phosphorylation of the AMPK which antagonises leptin signalling [START_REF] Schäffler | Mechanisms of disease: Adipokines and breast cancer -Endocrine and paracrine mechanisms that connect adiposity and breast cancer[END_REF] . Resistin is another pro-inflammatory adipokine associated with insulin resistance and is elevated in obesity and T2D.

Resistin mediates the effects of insulin resistance (described in hyperglycaemia above) by activating the suppressor of cytokine signalling 3 (SOCS3) that interferes with insulin signalling [START_REF] Steppan | The hormone resistin links obesity to diabetes[END_REF] 

Genome-wide association studies

Genome-wide association studies (GWAS) are instrumental in dissecting the associations between common genetic variation (single nucleotide polymorphisms

[SNPs] with a minor allele frequency [MAF] > 5%) and diseases or traits of interest.

GWAS help unravel specific positions on a chromosome where a particular DNA variant or other genetic marker associated with a disease or trait is located. The identification of these positions on a chromosome, referred to as loci (singular locus), has enabled the successful elucidation of the genetic architecture of complex traits and diseases (https://www.ebi.ac.uk/gwas/). Since the first hallmark GWAS was conducted in the early 2000s [START_REF] Ozaki | Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction[END_REF] , there have been significant advances in GWAS. Notably, there has been an increase in the study sample sizes involved and the number of common SNPs amenable for association analysis. Equally, the downstream application of GWAS output has seen remarkable improvements.

GWAS of obesity phenotypes

The largest-to-date GWAS of obesity phenotypes have been realised in-part through the Genetic Investigation of Anthropometric Traits (GIANT) consortium (GIANT consortium -Giant Consortium (broadinstitute.org)).

BMI GWAS

In the most recent and largest GWAS of BMI to-date [START_REF] Yengo | Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry[END_REF] , the authors meta-analysed previous GWAS of BMI by GIANT consortium [START_REF] Locke | Genetic studies of body mass index yield new insights for obesity biology[END_REF] and UK biobank (UKBB) BMI GWAS.

Altogether, there were 681,275 participants in this meta-analysis. Leveraging on this sample size, there were 670 genome-wide significant loci (P<5X10 -8 ) associated with BMI (Figure 1). The proportion of phenotypic variance in BMI attributable to common SNPs (SNP heritability was 22.4% (standard error (SE)=0.037). 

WHR/WHRadjBMI GWAS

Similarly, as with BMI GWAS, the largest WHR and BMI adjusted WHR (WHRadjBMI)

GWAS was a meta-analysis performed by the GIANT consortium [START_REF] Pulit | Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry[END_REF] . They metaanalysed studies included previous WHR/WHRadjBMI GWAS [START_REF] Shungin | New genetic loci link adipose and insulin biology to body fat distribution[END_REF] and UKBB GWAS on WHR/WHRadjBMI. In total, there were 697,734 and 694,649 study participants in the meta-analysis for WHR and WHRadjBMI respectively. There were 316 and 346 genome-wide significant loci associated with WHR and WHRadjBMI respectively (Figure 2). The SNP heritability of WHR and WHRadjBMI was 19.4% (SE=0.002) and 17.4% (0.002) respectively. 

Cancer GWAS

In the same way as with obesity GWAS, concerted efforts through working groups and consortia led to the discovery of common genetic variation associated with different cancers.

Breast cancer

According to the WHO, the most common cancer in the word in terms of new cases was breast cancer [START_REF]Cancer[END_REF] . The most recent and largest GWAS of breast cancer was achieved through a meta-analysis of 82 breast cancer studies across 20 countries under the Breast Cancer Association Consortium (BCAC) [START_REF] Zhang | Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses[END_REF] . The total sample size in the meta-analyses included 133,384 cases and 113,789 controls (N=247,173) of European ancestry. This meta-analysis brought the total number of genome-wide significant loci associated with breast cancer to 201.

Prostate cancer

Prostate cancer is the most common cancers among men. The largest GWAS to date of prostate cancer is a meta-analysis composed of 52 studies [START_REF] Schumacher | Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci[END_REF] . In total, there were 79,148 cases and 61,106 controls (N=140,254) of European ancestry. From this effort, the resultant number of genome-wide significant loci for prostate cancer was 248.

Colorectal cancer

Recent global data on cancer suggest that colorectal cancer is the second leading cause of cancer deaths. The most recent GWAS of colorectal cancer comprises a meta-analysis of 16 studies 66 . This study had 34,627 cases and 71,379 (N=106,006) controls of European ancestry. Currently, there are 137 genome-wide significant loci associated with colorectal cancer.

Pancreatic cancer

Pancreatic cancer is a leading cause of cancer-related mortality worldwide. In fact, in America, it ranks third after lung and colon cancers in terms of cancer-related deaths.

The largest GWAS of pancreatic cancer comprises of 9,040 cases and 12,946 controls (N=21,536) of European ancestry [START_REF] Klein | Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer[END_REF] . The two consortia involved in this meta-analysis were the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Currently, there are 22 genome-wide significant loci for pancreatic cancer.

Lung cancer

Globally, lung cancer ranks first among the leading cause of cancer-related deaths [START_REF]Cancer[END_REF] .

The largest GWAS to date of lung cancer included 27,065 study participants of European ancestry (14,803 cases and 12,262 controls) [START_REF] Mckay | Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes[END_REF] . This meta-analysis identified 18 susceptibility loci associated with lung cancer. Legend: loci=number of genome-wide significant loci

Limitations of GWAS

GWAS have been pivotal in broadening our understanding of complex diseases over the last decade. However, several limitations have hampered the utility of GWAS in understanding the pathophysiology underlying most complex, polygenic phenotypes.

GWAS study design focuses mostly on SNP of common allele frequency (MAF>5%).

The majority of common SNPs tend to have moderate to small effects sizes on a phenotype. Consequently, individual associations from typical GWAS often have modest effect sizes, while attaining to the strict significance thresholds set up for multiple testing correction. The proportion of phenotypic variance explained by genetic factors is referred to as heritability [START_REF] Visscher | Heritability in the genomics era -concepts and misconceptions[END_REF][START_REF] Tenesa | The heritability of human disease: estimation, uses and abuses[END_REF] . Narrow-sense (h 2 ) and broad sense (H 2 ) heritability, usually defined from pedigree studies, refer to the phenotypic variance explained by additive and total (additive and non-additive) genetic effects respectively [START_REF] Visscher | Heritability in the genomics era -concepts and misconceptions[END_REF][START_REF] Tenesa | The heritability of human disease: estimation, uses and abuses[END_REF] . SNP heritability (h 2 SNP) on the other hand refers to the proportion of variance explained by genome-wide significant loci from GWAS [START_REF] Manolio | Finding the missing heritability of complex diseases[END_REF] .

Since the advent of GWAS, there has emerged the so-called "issue of missing heritability", where h 2 SNP estimates are usually much less than h 2 estimates 71,72 . One explanation suggested to account for the "missing heritability" is the lack of coverage of rare and low-frequency variation in genotyping arrays, as seen in most GWAS of the past decade [START_REF] Locke | Genetic studies of body mass index yield new insights for obesity biology[END_REF][START_REF] Shungin | New genetic loci link adipose and insulin biology to body fat distribution[END_REF][START_REF] Yang | Common SNPs explain a large proportion of the heritability for human height[END_REF] . Other explanations proposed include the existence of gene-bygene, or gene-by-environment interactions [START_REF] Manolio | Finding the missing heritability of complex diseases[END_REF][START_REF] Maher | Personal genomes: The case of the missing heritability[END_REF][START_REF] Yang | Common SNPs explain a large proportion of the heritability for human height[END_REF] .

The results from individual GWAS studies offer little in elucidating potential shared pathophysiology between related phenotypes. For any two related phenotypes, such as obesity and cancer, their individual GWAS results provide association results independent of each other. The genetic correlation and/or heritabilities between such traits is not taken into consideration in typical GWAS pipelines. However, there are methods that have been developed to jointly analyse phenotypes in GWAS [START_REF] Mägi | SCOPA and META-SCOPA: software for the analysis and aggregation of genomewide association studies of multiple correlated phenotypes[END_REF][START_REF] Turley | Multi-trait analysis of genome-wide association summary statistics using MTAG[END_REF][START_REF] Kaakinen | MARV: a tool for genome-wide multi-phenotype analysis of rare variants[END_REF] and are described in Section 1.5.4.3.

Application of GWAS outputs

The above-mentioned limitations notwithstanding, output from GWAS can be incorporated in downstream analyses that enhance the utility of GWAS. As highlighted previously, GWAS identified numerous genetic variations associated with complex, polygenic phenotypes. However, independently these variants have modest effect sizes thus limiting their utility in predictive analyses. Statistical genetics methods such as polygenic scores (PGS, continuous phenotypes) or polygenic risk scores (PRS, binary phenotypes) have been developed to combine the effects of multiple variants across the genome to improve their predictive power [START_REF] Lewis | Polygenic risk scores: From research tools to clinical instruments[END_REF][START_REF] Choi | Tutorial: a guide to performing polygenic risk score analyses[END_REF] .

A polygenic score (PGS) refers to the weighted sum of (genome-wide) risk variants associated with a particular phenotype. The variants are weighted by their effect sizes and are derived from the most informative GWAS, usually the largest. Summary Both the base and target data must undergo further quality control steps [START_REF] Choi | Tutorial: a guide to performing polygenic risk score analyses[END_REF] . The base pair positions in both base and target data should be from the same genome build.

Additionally, strand ambiguous SNPs which cannot be resolved using allele frequencies, and duplicated SNPs should be excluded from the analysis. Strandflipping of mismatching alleles between the base and target data is performed as part of most PGS software pipelines. Otherwise, unresolved mismatching SNPs should be excluded from the analyses.

PGS calculation can be done using various platforms including Plink [START_REF] Purcell | PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses[END_REF] and dedicated PRS software such as LDpred 81 and PRSice-2 [START_REF] Choi | PRSice-2: Polygenic Risk Score software for biobank-scale data[END_REF] . Once constructed, PGS can be used to test for association with phenotypes of interest, disease status prediction among other uses [START_REF] Lewis | Polygenic risk scores: From research tools to clinical instruments[END_REF][START_REF] Choi | Tutorial: a guide to performing polygenic risk score analyses[END_REF] . Another application of GWAS output has been in Mendelian randomization (MR)

Mendelian randomization

studies. Genetic variants associated with the exposure constitute the "instrument"; their distribution in the populations is random, given the random nature of inheritance patterns and fixation of alleles at the point of conception. In MR analyses, genetic variants (typically SNPs from GWAS) are used as instrumental variables [START_REF] Verbanck | Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[END_REF] (IVs) (G) to assess the causal relationship between a risk factor (exposure, X) and a health outcome of interest Y (Figure 5) [START_REF] Lawlor | Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology[END_REF] .

Three core IV assumptions exist (Figure 5) [START_REF] Lawlor | Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology[END_REF][START_REF] Pierce | Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators[END_REF] :

1. G should be associated with the exposure.

2. G should be independent of confounders of the exposure-outcome association

G is associated with the outcome only through the exposure

In most MR studies, the relationship between an exposure and an outcome, plus the reverse is investigated. This gives rise to bi-directional MR studies. Leveraging on GWAS summary statistics of both the exposure and the outcome, researchers are able to perform two-sample bi-directional MR through software such as the TwoSampleMR R package [START_REF] Hemani | The MR-base platform supports systematic causal inference across the human phenome[END_REF] .

In a recent MR study, the authors investigated the relationship between two obesity related traits (BMI and WHR) and breast, colorectal, ovarian, prostate and lung cancers [START_REF] Gao | Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer[END_REF] . They used cancer GWAS summary statistics from the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium which constituted 51,537 cases and 61,600 controls across the cancers analysed. 77 and 14 SNPs of BMI and WHR respectively derived from published GWAS [START_REF] Locke | Genetic studies of body mass index yield new insights for obesity biology[END_REF][START_REF] Heid | Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution[END_REF] were used as instrument variables in the one-sample MR study. They reported a statistically significant inverse relationship between BMI and both overall and oestrogen-receptor (ER)-negative breast cancer.

Additionally, BMI was causal for ovarian, lung and colorectal cancers. WHR MR tests were not significant for any cancer tests. However, there were an inverse association between WHR and overall breast cancer that was marginally outside significance threshold. The reverse direction, cancers to obesity phenotypes, was however not investigated. Given the limited number of instrument variables for BMI and WHR, as well as the cancer sample sizes, the statistical power was limited in this analysis.

Therefore, larger sample sizes and more instrument variables would boost the findings of such analysis.

Multi-phenotype GWAS

Conventional GWAS analyse diseases and phenotypes independently. Therefore, the association results from standard GWAS offer little in explaining underlying genetic determinants between related traits.

By jointly taking into account information from related traits, multi-phenotype GWAS approaches help improve the power for loci discovery, improve the accuracy of effect size estimates and provide potential indicators of multi-phenotype effects such as pleiotropy. Several tools exist to perform multi-phenotype analyses of GWAS using either individual level or summary level data [START_REF] Mägi | SCOPA and META-SCOPA: software for the analysis and aggregation of genomewide association studies of multiple correlated phenotypes[END_REF][START_REF] Turley | Multi-trait analysis of genome-wide association summary statistics using MTAG[END_REF][START_REF] Kaakinen | MARV: a tool for genome-wide multi-phenotype analysis of rare variants[END_REF] . GWAS summary statistics of related traits can thus be jointly analysed to unravel underlying genetic co-morbid determinants.

Genetic correlation

The proportion of phenotypic variance between two phenotypes that is attributable to genetic causes is referred to their genetic correlation (rG). Genetic correlation estimates range from 0 to 1 with 0 signifying no genetic correlation and 1 suggesting complete genetic correlation.

Tools such as the linkage disequilibrium score (LDSC) regression tool have enabled the efficient computation of genetic correlation estimates between phenotypes 89 using GWAS summary statistics. Genetic correlation between phenotypes may be the result of linkage disequilibrium, biological pleiotropy or underlying confounding [START_REF] Solovieff | Pleiotropy in complex traits: challenges and strategies[END_REF] .

PROBLEM STATEMENT

There is growing evidence from observational studies of the link between obesity and risk of cancer incidence and mortality. Several mechanisms that potentially contribute to the emergence of the two diseases have over the years been postulated. However, our understanding of the co-morbidity remains limited.

As sample sizes in GWAS increase, numerous SNPs have been identified for both obesity and cancer phenotypes. However, individually these GWAS contribute modestly to explaining the shared genetic determinants between obesity and cancer.

Various tools that leverage on GWAS output have been developed including PGS and MR. However, existing studies have been limited in statistical power due to limited number of published variants and low sample sizes at the time these studies were conducted.

As most GWAS studies make their summary statistics publicly available, and the emergence of large biobanks such as the UK biobank, researchers can design more powerful studies leveraging on improved statistical power.

HYPOTHESIS AND AIMS

We hypothesize that there are shared genetic determinants between obesity and cancer that can be elucidated using polygenic scores and Mendelian randomization analyses applied to large scale genetic data.

The present project includes the following aims:

1. To define the genetic correlation between overall (BMI) and central and those who self-reported to have a pancreatic cancer diagnosis (code 1026) were set as cases. In total, there were 629 cases and 458,987 controls of European ancestry for pancreatic cancers after exclusions (Supplementary Figure 1). 1,340 European pancreatic cancer cases were defined from hospital admissions data (ICD-10 code C25). 544 of these cases were shared with the 629 cases defined using ICD-10 and self-report data only. 85 cases (self-reported) from the 629 cases defined earlier were added to the 1340 hospital admissions cases. 796 controls which had case status in the hospital admissions data were excluded from controls. In total, after all exclusions were applied, there were 1,416 cases and 455,854 controls of European ancestry for pancreatic cancer (Supplementary Figure 1).

Type 2 diabetes definition in UKBB

To determine the role of type 2 diabetes (T2D) in the relationship between obesity and pancreatic cancer, we sought to first define the genetic correlation between T2D and pancreatic cancer. Secondly, we included T2D as an additional covariate in our polygenic scores (PGS) analyses. A T2D case in UKBB was defined if a participant self- 

Polygenic score analyses

The SNP lists for BMI and WHRadjBMI were obtained from GIANT consortium's metaanalyses [START_REF] Yengo | Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry[END_REF][START_REF] Pulit | Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry[END_REF] . The meta-analyses included previous GIANT studies [START_REF] Locke | Genetic studies of body mass index yield new insights for obesity biology[END_REF][START_REF] Shungin | New genetic loci link adipose and insulin biology to body fat distribution[END_REF] and UKBB.

Since we used the UKBB as the target data (testing cohort for our PGS), we use the weights from the studies that did not include UKBB in the meta-analyses. The workflow for PGS analyses is shown in Figure 7. 

Insights

In this article prepared in brief communication format for EJHG, I presented the results dissecting the relationship between two obesity phenotypes and pancreatic cancer. I showed that central/abdominal obesity is potentially a more important causal risk factor pancreatic cancer than overall obesity. Additionally, we show that after adjusting for T2D in our polygenic scores analyses, the association between central obesity and pancreatic cancer was lost. This suggests that T2D could be the driver of the association between the metabolic syndrome and pancreatic cancer.

The findings presented in this article provide evidence of the need to stratify obesity into discrete categories when assessing the contribution of obesity in the risk of pancreatic cancer. Both in research and clinical contexts.

Several limitations that have been highlighted in this study should also be taken into perspective when interpreting our findings. Future studies will focus on utilising larger sample sizes for pancreatic cancer in order to improve statistical power. Additionally, as more GWAS studies consortia make their summary statistics public, the instruments variables for pancreatic cancer will get stronger and provide an opportunity to validate our findings.

Overall, the study presented suggests that central obesity independent of BMI is associated with the risk of pancreatic cancer with T2D possibly driving this association.

Therefore, there is need to maintain a healthy weight and minimising the risk of T2D as the two factors may predispose an individual to pancreatic cancer. Future work leveraging on larger samples sizes for pancreatic cancer is needed to confirm our findings. 

Insights

In this second article submitted to Obesity journal, I implemented genetic correlation, polygenic scores, and Mendelian randomization approaches to assess how BMI and WHRadjBMI, used as proxies for overall and central obesity respectively, relate to the risk of breast, prostate, colorectal and lung cancers.

The polygenic scores analyses indicated that both central and overall obesity relate to prostate cancer risk in opposite direction. Specifically, overall obesity has an inverse association with prostate cancer risk while central obesity has a direct association with prostate cancer risk. Furthermore, Mendelian randomization corroborated these findings while using published GWAS data from non-overlapping datasets. While the exact mechanisms underlying this observed paradoxical relationship between obesity and prostate cancer, factors such as growth factors (IGF-1), androgens (testosterone)

and differences in tumour characteristics may play a role in the manifestation of this co-morbidity. Further work to characterise in detail how central obesity and other components of the metabolic syndrome affect prostate cancer risk are needed.

Moreover, the impact of height on prostate cancer needs careful consideration when interpreting these results.

The polygenic scores and Mendelian randomization analyses of breast cancer indicate

that central obesity has an inverse association with overall breast cancer risk. Several factors such as sex hormones, menopause status, tumour characteristics, BMI at age of menarche are potentially involved. More work to unravel the exact involvement of these and other factors is required.

Insights

This last paper presents a study investigating the genetic relationship between two common disorders: T2D and depression.

Using publicly available GWAS summary statistics of T2D and depression, I assessed the causal relationship between the two diseases using two-sample bi-directional Mendelian randomization. The results of this investigation show that depression is causal for type 2 diabetes while there was no evidence of the reverse direction being significant.

Additionally, using the UKBB, I implemented a multi-phenotype GWAS approach to jointly analyse T2D and depressive phenotypes. The depressive phenotypes included in this study were depressive symptoms based on self-report questionnaires, and clinically diagnosed major depressive disorder (MDD). Multi-phenotype GWAS demonstrated shared genetic loci between T2D and self-reported definitions of depression which was not seen in the standard GWAS approach of analysing phenotypes independently. Majority of the identified shared loci between T2D and depression have a role in insulin secretion pathways. However, T2D and the strictly MDD did not reveal shared loci after multi-phenotype GWAS.

I further sought to establish the target genes associated with both T2D and depression using expression quantitative trait loci (eQTL) analysis. Here, I used data from the GTEx and TIGER databases.

From this study I illustrate how genetic determinants that are shared between related traits can be revealed through various statistical genetics methods such as Mendelian randomization and multi-phenotype GWAS approaches. As with the obesity and cancer study, I illustrate how Mendelian randomization utilising publicly available

GENERAL DISCUSSION

In my PhD project, I leveraged on both published GWAS and large-scale biobank data to assess the relationship between two distinct measures of adiposity and breast, prostate, colorectal, pancreatic and lung cancers.

By implementing statistical genetics methods that capitalize on GWAS output, such as genetic correlation, polygenic scores, and Mendelian randomization, I demonstrated that both central and overall measures of obesity relate differently to the risk of certain types of cancers.

Several considerations are currently in place for future research to build on the present work. These considerations include perspectives on the study design as well as improvement on various aspects of the methodology.

The metabolic syndrome and its components, including dyslipidaemia, insulin resistance and hypertension, should also be added to future study designs to further boost our findings surrounding central adiposity and cancer risk. In the current study, the metabolic syndrome is inferred using the WHRadjBMI phenotype. Other potential phenotypes to add to our analyses include fasting glucose levels, HDL cholesterol, systolic and diastolic blood pressure. To build on our conclusions of a significant contribution of the metabolic syndrome in cancer development, it follows logically that assessing the impact of the other components of the metabolic syndrome is needed to corroborate our findings.

The definition of the sex-specific cancer cases could be updated to improve the specificity of phenotypes. This would involve considering tumour heterogeneity by hormone receptor state as well as tumour grade in addition to overall cancer incidence definitions. In the case of breast cancer, oestrogen-receptor(ER) and progesteronereceptor positive breast cancer as well as tumour aggressiveness should be added in the case definition criteria. Similarly, for prostate cancer, ERa-and ERb status and tumour aggressiveness could be accounted for. Since hormone receptor status and tumour behaviour characteristics data in UKBB may be limited in both sample size and detail, there exists an opportunity to collaborate with consortia such as BCAC in actualising this study.

In the PGS and MR analyses, the next step would be to implement hierarchical clustering of the obesity SNPs (BMI and WHRadjBMI) to partition these variants into mechanistic groups. These mechanistic groups, based on their effects on the phenotype, would represent hypothesised mechanisms underlying the obesity-cancer mechanisms. The PRS based on these groups would be calculated and tested for each cancer. Likewise, I could apply MR to assess the causality between each of these groups and cancers. Furthermore, implementation of multi-phenotype GWAS approaches, such as those that use individual level data [START_REF] Mägi | SCOPA and META-SCOPA: software for the analysis and aggregation of genomewide association studies of multiple correlated phenotypes[END_REF] , could enable better definition of loci with pleiotropic effects, latter to be carefully evaluated for the use or exclusion from MR analyses for specific phenotype relationships [START_REF] Hemani | The MR-base platform supports systematic causal inference across the human phenome[END_REF] .

A key notable strength of this PhD is the large number of BMI and WHRadjBMI variants used in both PGS and MR studies. The resultant PGS base data that were therefore of higher quality and our conclusions based on their application are thus credible.

Moreover, the UKBB offers a large database with close to 500,000 individuals with both genetic and phenotypic data amenable for analyses. The wide range of phenotypic data in the UKBB also allowed for the investigation of potential confounding factors such as menopause and smoking status.

The interpretation of our findings should consider several limitations. Our analyses were based on European data due to its availability compared to data of other populations. Consequently, generalizability of our results across different populations is not recommended. Further, the lack of information of hormone receptor status in the UKBB limited the extent to which the associations between obesity and cancer can be performed. The unavailability of public GWAS summary statistics of certain cancers such as post-menopausal breast and lung cancers also limited our ability to investigate causality using MR. While for some cancers in the UKBB, our sample sizes were low and thus GWAS, and subsequent analyses were statistically underpowered.

In conclusion, using large scale genetic data (published GWAS and biobank data), I

show that central obesity, proxied using WHRadjBMI, may be a more important causal risk factor for pancreatic cancer than overall obesity. Additionally, I show an inverse association between overall obesity and prostate cancer, while central adiposity has a direct association with prostate cancer. These results additionally suggest that central obesity may be a causal risk factor for breast cancer. 
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 1 Figure 1. Mechanisms linking obesity and cancer. The liver, adipose and muscle tissues play a role in the link between obesity and cancer. The mechanisms involved include insulin and insulin-like growth factors, hyperglycaemia, dyslipidaemia and adipokines. (Source: Adapted from Gallagher and LeRoith. Physiological Reviews (2015) 95(3) 727-748)

Figure 2 .

 2 Figure 2. Manhattan plot of BMI GWAS meta-analysis performed by GIANT consortium (Source: Yengo et al. Human Molecular Genetics (2018) 27:20)

Figure 3 .

 3 Figure 3. Manhattan plot of WHR and WHRadjBMI GWAS meta-analysis conducted by GIANT consortium (Source: Pulit et al. Human Molecular Genetics (2019) 28:1)

Figure 4 .

 4 Figure 4. Graph highlighting the relationship between effect size estimates and the minor allele frequency (Source: Roten et al. BMC Pregnancy and Childbirth (2015) 15:319)
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 5415 Figure 5. Polygenic scores analyses overview (Source: Choi et al. Nature Protocols (2020) 15 :2759-2772)

  statistics from GWAS (effect sizes and their p-values), through which the PGS are based on, constitute what is referred to as the base data. On the other hand, target data refers to the genotype-phenotype data for the individuals used to calculate the PGS. It is important to ensure that the base and target data are independent with no sample overlap. The independence of datasets reduces the inflation of the association between the PRS and phenotypes of interest. At the same time, the predictive ability of PGS also depends on the ancestral similarity between base and target datasets[START_REF] Willer | Discovery and refinement of loci associated with lipid levels[END_REF] .

Figure 6 .

 6 Figure 6. Mendelian randomization framework and assumptions. G represents the genetic variants (SNPs), X is the exposure, Y is the outcome, and U represents confounders. Ɣ is the SNP-exposure association. β is the causal effect estimate of the exposure on the outcome. (Source: Adapted from Bowden and Holmes. Research Synthesis Methods (2019) 10(4)486-496)
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 41 WHRadjBMI) obesity and cancers in the UK Biobank resource. These cancers included overall and post-menopausal breast, prostate, colorectal, pancreatic and lung cancers 2. To construct BMI and WHRadjBMI polygenic scores from the largest GWAS of these phenotypes and test for their association with the above-mentioned cancers defined in the UK Biobank 3. To assess the causal relationships between the two obesity phenotypes (BMI and WHRadjBMI) and breast, prostate, pancreatic and colorectal cancers to perform a two-sample bi-directional Mendelian randomization approach 4 FIRST ARTICLE "Abdominal obesity is a more important causal risk factor for pancreatic cancer than overall obesity" (Brief communication article: Accepted by the European Journal of Human Genetics) Supplementary data Pancreatic cancer definition in UKBB Pancreatic cancer in UKBB was defined using a combination of the tenth revision of the International Classification of Disease (ICD-10) codes and self-report data. Additionally, hospital admissions data, recently made available to researchers by UKBB, were used to supplement the number of cases. Individuals with an ICD-10 code (C25)

  reported a diabetes diagnosis made by a doctor, were on insulin medication one-year post-diagnosis and were at least 40 years old by the time the diagnosis was made. T2D controls included individuals who did not meet the case criterion. From both cases and controls, we excluded individuals with gestational diabetes (UKBB field 4041, code=1), individuals on insulin medication within the first year of diagnosis (UKBB field 2986) and individuals who were younger than 40 years old at the time of diagnosis (UKBB field 2976). In total, we had 19,344 cases and 463,641 controls of European ancestry.Genetic correlation estimation in UKBBWe used the LDSC regression tool[START_REF] Bulik-Sullivan | LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[END_REF] to estimate the genetic correlation between BMI, WHRadjBMI and pancreatic cancer in UKBB. UKBB GWAS summary statistics were filtered based on the following parameters: imputation score > 0.9, minor allele frequency (MAF) > 0.01 and 0.1 ≥ P-value > 0. Strand ambiguous, duplicated SNPs and variants that did not represent SNPs (e.g., indels) were removed. The Bonferroni corrected significance threshold to determine significant genetic correlation estimates was set as P<0.025 (0.05/2, the number of genetic correlation tests done in our analyses; one for BMI and one for WHRadjBMI). Nominal significance threshold was set at 0.05 ≥ P > 0.025.

Figure 7 .

 7 Figure 7. (A) BMI and (B) WHRadjBMI polygenic score analyses pipeline. A two-sample approach was used to construct our PGS base data. The SNPs used for the PGS were from GIANT's latest BMI and WHRadjBMI meta-analyses. Since the meta-analyses comprised of the UK Biobank (our target data), we used weights from the non-UK Biobank study in GIANT's meta-analyses.

  

  

  

  

  

  

  RÉSUMÉ L'obésité est une affection courante et complexe qui pose de graves problèmes de santé dans le monde entier. Elle est également un facteur de risque critique connu pour certaines maladies non transmissibles, dont les cancers. Différentes mesures anthropométriques telles que l'indice de masse corporelle (IMC) et le rapport taillehanche (RTH) ont été utilisées pour évaluer l'obésité. Ce dernier est un indice de l'obésité centrale ou abdominale, tandis que le premier représente l'obésité totale ou globale. Des études épidémiologiques fournissent des preuves que les mesures de
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l'obésité centrale et de l'obésité globale peuvent avoir un rapport différent avec le risque de cancer. Les mécanismes physiologiques exacts qui permettent la comorbidité entre l'obésité et le cancer restent flous. Cependant, certains facteurs tels que les facteurs de croissance analogues à l'insuline, l'hyperglycémie, la dérégulation du profil lipidique et les facteurs adipokines ont fait l'objet d'hypothèses. Les études d'association pangénomique (GWAS) ont identifié de nombreuses variations génétiques communes pour les phénotypes de l'obésité et du cancer. Cependant, ces variations ne fournissent que de modestes indices sur la comorbidité sous-jacente. Néanmoins, les résultats des études d'association pangénomique peuvent être appliqués à des méthodes statistiques telles que les scores polygéniques et la randomisation Mendélienne (MR) qui aident à démêler les déterminants communs.

Dans ce projet de doctorat, j'ai évalué l'impact de l'obésité globale et centrale sur le risque de cancers, notamment le cancer du sein, le cancer du sein postménopausique, le cancer de la prostate, le cancer colorectal, le cancer du poumon et le cancer du pancréas. J'ai défini la corrélation génétique entre l'IMC/l'RTH et les cancers en utilisant l'ensemble des données de la UK Biobank. J'ai ensuite utilisé des loci génomiques établis pour l'IMC et l'RTH afin de créer des scores polygéniques d'obésité dont l'association avec les phénotypes de cancer a ensuite été testée dans la UK Biobank. En outre, à l'aide de variantes génétiques établies associées à ces phénotypes, j'ai effectué une MR entre les deux phénotypes d'obésité et trois cancers (sein, prostate et colorectal) afin d'étudier les relations causales entre eux.

  . Resistin is highly expressed in prostate cancer and promotes its proliferation via the P13K/AKt signalling pathways[START_REF] Kim | Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation[END_REF] . TNF-α and IL-6 are proinflammatory cytokines that are overexpressed in obesity. The pro-inflammatory environment created by such cytokines promotes insulin resistance by blocking adipocyte insulin action[START_REF] Harford | inflammation and insulin resistance: Insights to the role of macrophage and T-cell accumulation in adipose tissue[END_REF] . The ensuing insulin resistance can promote tumour development as illustrated earlier. Inflammatory cytokines also promote cancer development via activation of NFκβ and Stat3 signalling pathways involved in angiogenesis giving the cancer cells metastatic properties 57 .

Table 1 . Summary of the cancer GWAS studies to date Cancer Cases Controls Total Number of associated Loci PubMed ID

 1 

	Breast	133,384	113,789	247,173	201	32424353
	Prostate	79,148	61,106	140,254	248	29892016
	Colorectal	34,627	71,379	106,006	137	31089142
	Pancreatic	9,040	12,946	21,536	22	29422604
	Lung	14,803	12,262	27,065	18	28604730

Table 2 . Genetic correlation between adiposity measures, type 2 diabetes and pancreatic cancer in UKBB

 2 

			BMI		WHRadjBMI		Type 2 diabetes	
		rG	Z		rG	Z		rG	Z	
	Cancer	(SE)	score	P	(SE)	score	P	(SE)	Score	P
	Pancreatic	0.472	0.708 0.479	0.098	0.425	0.671	-0.0139	-0.0484 0.961
		(0.667)			(0.230)			(0.287)		

Legend: rG(SE)=genetic correlation estimate and the standard error, Z score=rG/SE

Table 3 . Detailed results of the Mendelian randomization results between adiposity phenotypes and pancreatic cancer Legend
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							Q statistic
	Exposure	Outcome	MR Method	NSNPs	OR(95%CI)	P value	(P value)
	BMI	PanC	MR Egger	566	0.999 (0.997-1.001)	0.389	500.41 (0.974)
	BMI	PanC	Weighted median	566	1.000 (0.999-1.002)	0.561	NA
	BMI	PanC	Inverse variance	566	1.001 (1.000-1.001)	0.090	502.99 (0.971)
			weighted				
	BMI	PanC	Simple mode	566	1.001 (0.997-1.004)	0.714	NA
	BMI	PanC	Weighted mode	566	1.000 (0.998-1.002)	0.802	NA
	WHRadjBMI PanC	MR Egger	278	1.001 (0.999-1.0032)	0.268 258.035 (0.774)
	WHRadjBMI PanC	Weighted median	278	1.0012 (0.9998-1.0027)	0.095	NA
	WHRadjBMI PanC	Inverse variance	278	1.00095 (1.00011-1.0018)	0.027 258.078 (0.787)
			weighted				
	WHRadjBMI PanC	Simple mode	278	0.9998 (0.997-1.0032)	0.927	NA
	WHRadjBMI PanC	Weighted mode	278	1.0009 (0.9987-1.0031)	0.417	NA
	PanC	BMI	MR Egger	16	0.444 (0.000-11023.55)	0.877	99.368
							(6.27x10-15)
	PanC	BMI	Weighted median	16	58.105 (3.997-844.69)	0.003	NA
	PanC	BMI	Inverse variance	16	58.526 (0.301-11367.20)	0.130	108.025
			weighted				(3.86x10-16)
	PanC	BMI	Simple mode	16	70.019 (3.66-1341.18)	0.013	NA
	PanC	BMI	Weighted mode	16	91.921 (7.73-1092.50)	0.003	NA
	PanC	WHRadjBMI MR Egger	16	21.142 (0.00-64574354.85)	0.695	32.171
							(3.79x10E-03)
	PanC	WHRadjBMI Weighted median	16	0.070 (0.000-74.001)	0.454	NA
	PanC	WHRadjBMI Inverse variance	16	0.143 (0.000-222.403)	0.604	33.487
			weighted				(4.018x10-03)
	PanC	WHRadjBMI Simple mode	16	1.057 (0.000-11211.818)	0.991	NA
	PanC	WHRadjBMI Weighted mode	16	0.137 (0.000-99.21)	0.563	NA

: PanC=pancreatic cancer, NSNPs=number of SNPs/genetic instruments used to estimate causality, OR(95%CI) =Odds ratio and the lower and upper 95% confidence intervals (CI).

Table 4 . Phenotype definition criteria for cancer phenotypes in UKBB
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	Cancer	UK Biobank field description	ICD-10 Codes
	Overall breast	Have been diagnosed with breast	C50
	cancer (BrC)	cancer AND Breast cancer is the first	
		cancer diagnosed OR Death cause is	
		breast cancer	
	Post-menopausal	Have been diagnosed with breast	C50 and X2724
	breast cancer (Post-	cancer AND Breast cancer is the first	(Menopause status)
	BrC)	cancer diagnosed OR Death cause is	
		breast cancer AND Self-reported	
		menopause status	
	Colorectal cancer	Have been diagnosed with colon and	C18-C21
	(CrC)	rectal cancer AND colon and rectal	
		cancers are the first cancers diagnosed	
		OR Death cause is colon and rectal	
		cancers	
	Prostate cancer	Have been diagnosed with prostate	C61
	(PrC)	cancer AND prostate cancer is the first	
		cancer diagnosed OR Death cause is	
		prostate cancer	
	Lung cancer	Have been diagnosed with lung cancer	C34
	(LungC)	AND lung cancer is the first cancer	
		diagnosed OR Death cause is lung	
		cancer	

Table 5 . Genetic correlation estimates between BMI/WHRadjBMI and cancer in UKBB

 5 

			Genetic		
		Adiposity	correlation		
	Cancer	trait	(rG)	SE	P
	BrC	BMI	-0.035	0.03	0.236
	Post-BrC	BMI	-0.0803	0.03	0.014
	PrC	BMI	-0.076	0.028	0.0075
	CrC	BMI	0.0089	0.039	0.82
	LungC	BMI	0.18	0.056	0.0014
	BrC	WHRadjBMI	0.009	0.028	0.75
	Post-BrC	WHRadjBMI	-0.017	0.035	0.63
	PrC	WHRadjBMI	0.025	0.03	0.408
	CrC	WHRadjBMI	0.103	0.043	0.017
	LungC	WHRadjBMI	0.159	0.058	0.0065

Table 6 . SNP heritability estimates of BMI, WHRadjBMI and cancer in UKBB
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	Phenotype	h 2	SNP	SE
	BrC	0.0323	0.0041
	Post-BrC	0.0215	0.003
	PrC	0.0441	0.005
	CrC	0.0072	0.0013
	LungC	0.0036	0.0011
	BMI	0.2459	0.0072
	WHRadjBMI	0.1343	0.0066

Table 7 . BMI PRS association with cancer in UKBB by BMI categories
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	Cancer	BMI Class	Case/Control	OR (95%CI)	P
		Underweight	83/1775	0.94 (0.78-1.13)	0.497
		Normal	4,796/93,114	0.98 (0.96-1.01)	0.178
	BrC				
		Pre-obesity	5,277/86,114	0.98 (0.95-1.00)	0.053
		Obesity	3,164/54,072	0.96 (0.93-0.99)	0.012
		Underweight	124,1,734	0.87 (0.70-1.09)	0.242
		Normal	6,872/91,058	0.97 (0.94-1.00)	0.029
	Post-BrC				
		Pre-obesity	7,188/84,240	0.98 (0.95-1.01)	0.161
		Obesity	4,436/52,830	0.96 (0.92-0.99)	0.017
		Underweight	18.456	0.90 (0.55-1.47)	0.68
		Normal	2,926/48,880	0.98 (0.94-1.02)	0.351
	PrC				
		Pre-obesity	6,128/97,260	0.98 (0.95-1.00)	0.066
		Obesity	2,728/50,611	0.98 (0.94-1.02)	0.412
		Underweight	27/2,305	0.89 (0.60-1.32)	0.569
		Normal	2,440/147,476	0.98 (0.94-1.02)	0.35
	CrC				
		Pre-obesity	3,711/191,068	0.99 (0.96-1.03)	0.65
		Obesity	2,193/108,380	0.97 (0.93-1.02)	0.215
		Underweight	46/2,289	1.13 (0.84-1.50)	0.417
		Normal	1,293/148,528	1.04 (0.99-1.10)	0.136
	LungC				
		Pre-obesity	1,		

763/193,131 1.08 (1.03-1.14) 0.001

  

	Obesity	1,105/109,592	1.01 (0.95-1.07)	0.856
	Associations with P<0.05 are shown in bold		

Table 8 . Obesity PRS association with lung cancer by smoking status
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	BMI PRS	WHRadjBMI PRS

Table 2 .

 2 Independent genome-wide significant signals (P<5x10 -8) for overall breast cancer in UK Biobank GWAS

				Inverse variance	MR Egger	Weighted median	Simple mode	Weighted mode	Heterogeneity	MR-Egger Intercept
					weighted											
	Exposure	Outcome NSNPs	OR	P	OR	P	OR	P	OR	P	OR	P	Q stat (P)	Intercept(SE)	P
				(95% CI)		(95% CI)		(95% CI)		(95% CI)		(95% CI)				
	BMI	BrC		1.000	0.897	0.985	0.051	0.996	0.266	0.944	0.634	0.994	0.462	755.9 (5.34E-07) 0.0003 (0.0001)	0.034
				(0.995-		(0.971-		(0.988-		(0.968-		(0.977-				
				1.005)		1.000)		1.003)		1.020)		1.011)				
	BMI	PrC		0.993	0.0042	0.995	0.473	0.993	0.039	0.984	0.22	0.995	0.491	863.64 (3.93E-14)	-45.47 (0.0001)	0.713
				(0.988-		(0.982-		(0.985-		(0.960-		(0.981-				
				0.998)		1.009)		0.999)		1.009)		1.009)				
	BMI	CrC		1.000	0.92	1.001	0.682	1.000	1	0.999	0.768	1.000	0.923	656.59 (0.0094)	-20.71	0.689
				(0.998-		(0.996-		(0.997-		(0.989-		(0.995-			(0.00004)	
				1.002)		1.006)		1.003)		1.008)		1.005)				
	BrC	BMI		0.997	0.557	1.004	0.686	1.008	0.1	1.030	0.983	1.030	0.982	510.98 (1.27E-53)	-0.006 (0.0007)	0.372
				(0.985-		(0.984-		(0.998-		(0.061-		(0.076-				
				1.008)		1.025)		1.017)		17.321)		13.925)				
	PrC	BMI	74	1.004	0.333	0.993	0.471	0.998	0.639 0.995 (0977-	0.57	0.997	0.626	194.16 (6.04E-13) 0.001 1 (0.0008)	0.184
				(0.995-		(0.974-		(0.988-		1.013)		(0.987-				
				1.014)		1.102)		1.007)				1.008)				
	CrC	BMI	48	0.752	0.435	1.648	0.529	1.031	0.939	1.153	0.944	1.153	0.937	102.89 (4.71E-06)	-0.001 (0.0009)	0.268
				(0.368-		(0.352-		(0.473-		(0.021-		(0.035-				
				1.538)		7.729)		2.246)		62.240)		38.392)				
	WHRadjBMI	BrC		0.990	0.0068	1.000	0.974	0.991	0.105	1.003	0.83	0.993	0.338	529.41 (3.63E-17)	-0.0002	0.226
				(0.983-		(0.982-		(0.981-		(0.974-		(0.978-			(0.0002)	
				0.997)		1.017)		1.002)		1.033)		1.008)				
	WHRadjBMI	PrC		1.0046	0.179	1.016	0.048	1.007	0.094	1.018	0.209	1.022	0.0053	493.63 (1.32E-13)	-0.0002	0.119
				(0.998-		(1.00018-		(0.999-		(0.990-		(1.00067-			(0.0002)	
				1.011)		1.032)		1.016)		1.045)		1.038)				
	WHRadjBMI	CrC		1.002	0.125	1.000	0.885	1.000	0.917	0.995	0.391	1.000	0.988	410.68 (1.02E-06)	0.00003	0.578
				(0.994-		(0.995-		(0.996-		(0.984-		(0.994-			(0.00006)	
				1.004)		1.006)		1.004)		1.006)		1.006)				

Table 3 .

 3 Independent genome-wide significant signals (P<5x10 -8 ) for post-menopausal breast cancer in UK Biobank GWAS

	18 rs17621185	AQP4-AS1	A	G 0.789	0.0051 0.00091	1.60x10 -08
	21	rs2823129	NRIP1,USP25	C	T 0.675	0.0052 0.00079	4.40x10 -11
	22 rs183387906	MKL1	G	A 0.912	-0.0096 0.00134	8.60x10 -13
	22 rs73169097	MKL1	C	T 0.901	-0.0101 0.00125	5.80x10 -16

SECOND ARTICLE"Genetic relationships and causality between overall and central adiposity and breast, prostate, lung, and colorectal cancer" (Under review at Obesity journal. Preprint link https://doi.org/10.1101/2022.12.19.22283607) 

THIRD ARTICLE"Bi-directional Mendelian randomization and multi-phenotype GWAS show causality and shared pathophysiology between depression and type 2 diabetes" (Preprint link https://doi.org/10.1101/2022.12.06.22283143)
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Mendelian randomization (MR)

We assessed the causal relationships between BMI, WHRadjBMI and pancreatic cancer using bi-directional MR. The TwoSampleMR R package [START_REF] Hemani | The MR-base platform supports systematic causal inference across the human phenome[END_REF] was used for this analysis. We tested the effect of obesity (BMI and WHRadjBMI) as an exposure for pancreatic cancer (outcome), and the reverse direction with pancreatic cancer as a risk factor for obesity (BMI and WHRadjBMI) using summary statistics from independent datasets. The genetic instruments for BMI (670 SNPs) and WHRadjBMI (346 SNPs) were obtained from GIANT consortium [START_REF] Yengo | Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry[END_REF][START_REF] Pulit | Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry[END_REF] . Additionally, the pancreatic cancer genetic instruments (22 SNPs) were obtained from a recent large-scale metaanalysis by Klein et al [START_REF] Klein | Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer[END_REF] .

Supplementary data

UKBB GWAS

We performed single phenotype GWAS in the UKBB phenotypes using the BOLT-LMM version 2.3 software [START_REF] Loh | Efficient Bayesian mixed-model analysis increases association power in large cohorts[END_REF] which implements a linear mixed model (LMM) association testing. Consequently, as a result of applying a linear mixed model, related individuals in the UKBB were included in the association analyses. The standard BOLT-LMM v2.3 infinitesimal model was used. Among the 487,409 individuals with genetic data, the genetic data was filtered based on MAF > 0.01, imputation score > 0.4, Hardy-Weinberg Equilibrium (HWE) P-value >1x10 -6 and per SNP variant missingness <0.015. As a result, 471,095 individuals passed these filters. We included age, sex, genotyping array and six principal components (PCs) as covariates in the LMM for BMI, WHRadjBMI, colorectal cancer (CrC) and lung cancer (LungC). For the sexspecific cancer phenotypes breast (BrC), post-menopausal breast (PostBrC) and prostate (PrC) cancers, sex was not included as a covariate. Moreover, BMI was included as an additional covariate in WHR association testing to obtain the WHRadjBMI phenotype. The threshold for statistically significant genome-wide signals (SNPs) was P<5x10 -8 . Manhattan plots for the association results are show in Supplementary Figures 3456.

Despite nominally significant positive genetic correlation estimates for colorectal cancer and WHRadjBMI, polygenic scores and Mendelian randomization showed no significant results for colorectal cancer. Future work will focus on larger sample sizes for colorectal cancer so as to improve statistical power.

Lung cancer polygenic scores analyses indicated a nominally significant positive association between BMI and lung cancer risk. On the other hand, WHRadjBMI was not significantly associated with lung cancer. Sensitivity analyses, however, suggested that among individuals with no smoking experience, WHRadjBMI may be inversely associated with lung cancer risk. This is despite evidence that smokers, and not their non-smoking counterparts, have lower body fat. Consequently, validation of these findings is needed using larger sample sizes.

Unfortunately, Mendelian randomization analyses could not be performed for lung cancer and post-menopausal breast cancer due to the unavailability of GWAS summary statistics. Therefore, the causality between obesity and these cancers remain unaddressed in this study and thus future studies will aim to fill this gap.

In summary, this article I demonstrates how central and overall obesity have different risk patterns for different cancers. I also illustrate how different statistical genetics tools can assist in disentangling the relationship between obesity and cancer. Researchers and clinical health advisors should thus broaden their definition of obesity in practice to accurately capture the involvement of adiposity in cancer risk. GWAS summary statistics can aid in the dissection of causal relationships between related traits. In addition, and perhaps most importantly, I illustrate the utility of multiphenotype GWAS approaches in identifying shared genetic loci between related traits. 
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