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Titre :Méthodes d’apprentissage profond pour systèmes de vision 3DMots clés : apprentissage profond, nuage de points 3D, co-conception
Résumé : Dans cette thèse, nous étudions l’ap-port de l’apprentissage profond pour les sys-tèmes de vision 3D monoculaire, de l’acqui-sition de l’image au traitement. Nous propo-sons d’abord Pix2Point, une méthode d’esti-mation de nuage de points 3D à partir d’uneseule image en utilisant des informations decontexte, et entraînée avec une fonction decoût de transport optimal. Pix2Point réalise unemeilleure couverture des scènes lorsqu’il estentraîné sur des nuages de points lacunairesque les méthodes d’estimation de profondeurmonoculaire, entraînées sur des cartes de pro-fondeur lacunaires. Deuxièmement, pour ex-ploiter les indices de profondeur provenant ducapteur, nous proposons une méthode de ré-gression de profondeur à partir d’un patch dé-focalisé. Cette méthode surpasse la classifica-tion et la régression directe, sur données simu-

lées et réelles. Enfin, nous abordons la concep-tion d’un système de vision RVB-D, composéd’un capteur dont l’image est traitée par notreréseau de régression de profondeur basée surla défocalisation et par un réseau de déflou-tage d’image. Nous proposons un cadre d’op-timisation multi-tâches, conjointement aux pa-ramètres des capteurs et des réseaux, et nousl’appliquons à l’optimisation de lamise au pointd’une lentille chromatique. Le paysage d’opti-misation présente plusieurs optima liés à latâche de régression en profondeur, tandis quela tâche de défloutage semble moins sensibleau paramètre de mise au point. En résumé,cette thèse propose plusieurs contributions ex-ploitant les réseaux de neurones pour l’esti-mation 3D monoculaire et ouvre la voie d’uneconception conjointe de systèmes RVB-D.

Title : Deep Learning methods for monocular 3D vision systemsKeywords : Deep learning, 3D point clouds, Co-design
Abstract :In this thesis, we explore deep lear-ning methods for monocular 3D vision sys-tems, from image acquisition to processing. Wefirst propose Pix2Point, a method for 3D pointcloud prediction from a single image usingcontext information, trained with an optimaltransport loss. Pix2Point achieves a better co-verage of the scenes when trained on sparsepoint clouds than monocular depth estimationmethods, trained on sparse depth maps. Se-cond, to exploit sensor depth cues, we proposea depth regression method from a defocusedpatch, which outperforms classification and di-rect regression, on simulated and real data. Fi-nally, we tackle the design of a RGB-D monocu-

lar vision system for which the image is proces-sed jointly by our defocus-based depth regres-sion method and a simple image deblurringnetwork. We propose an end-to-end multi-taskoptimisation framework of sensor and networkparameters, that we apply to the focus optimi-sation for a chromatic lens. The optimisationlandscape presents multiple optima, due to thedepth regression task, while the deblurring taskappears less sensitive to the focus. This thesishence contains several contributions exploitingneural networks for monocular 3D estimationand paves the way towards end-to-end designof RGB-D systems.
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Synthèse en français
L’estimation 3D monoculaire est utile pour de nombreuses applications

qui requièrent des solutions compactes, telles que la robotique, la réalité vir-
tuelle, l’inspection industrielle oumédicale. Il s’agit d’un problèmedifficile à ré-
soudre dû à l’ambiguïté de profondeur,mais les récentes avancées enmatière
d’apprentissage profond ont montré des résultats remarquables pour cette
tâche. Dans cette thèse, nous avons exploré deux approches majeures pour
améliorer l’estimation 3D monoculaire par apprentissage profond. La pre-
mière est une approche à échelle globale utilisant des informations contex-
tuelles pour estimer des nuages de points, et la seconde est une approche à
l’échelle locale pour l’estimation de la profondeur en s’appuyant sur des in-
dices de flou de défocalisation. Nous avons également abordé l’optimisation
conjointe des paramètres d’un système optique afin de fournir aux modules
de traitement davantage d’indices pour la tâche considérée.

La reconstruction et la compréhension d’une scène reposent sur les mé-
thodes d’estimation de la 3D. Lesméthodes les plus anciennes pour extraire la
3D reposent sur des images acquises par stéréo-photogrammétrie, mais l’ap-
prentissage profond a récemment montré d’excellentes capacités pour l’esti-
mation monoculaire de la profondeur. Ces résultats nécessitent la constitu-
tion d’un ensemble de données d’entraînement suffisamment vaste et riche,
souvent le résultat d’un traitement fastidieux, comme par exemple la base de
données de référence KITTI. Au lieu de cela, nous avons abordé le problème
d’estimationmonoculaire de nuages de points 3D extérieurs issus de données
natives LiDAR parcimonieuses. Nous proposons Pix2Point, une approche uti-
lisant l’apprentissage profond pour la prédiction de nuages de points 3D mo-
noculaire, capable de traiter des scènes extérieures difficiles. Notre méthode
s’appuie sur une architecture de réseau de neurones hybride 2D-3D entraî-
née de bout-en-bout par minimisation d’une divergence de transport optimal
entre les nuages de points. Nous avons montré que notre approche simple
permet d’obtenir unemeilleure couverture 3D des scènes extérieures que les
méthodes de l’état de l’art pour l’estimation monoculaire de la profondeur,
entraînées dans des conditions similaires.

Pour un système optique donné, il est établi depuis plusieurs décennies
que le flou de défocalisation peut être utilisé pour estimer la profondeur lo-
calement. Cette tâche est historiquement appelée depth from defocus (DFD).
Elle a été traité par des méthodes non supervisées utilisant des a priori ba-
sés modèles, et plus récemment, par l’apprentissage supervisé de réseaux
de neurones. La plupart de ces méthodes de DFD modélisent généralement
cette tâche comme un problème de classification parmi un ensemble de flous
de défocalisation potentiels liés à une profondeur. Cependant, la profondeur
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est un paramètre continu et les approches de classification induisent des er-
reurs de quantification. Pour éviter ce problème, nous avons développé une
nouvelle approche pour la régression continue de la profondeur à partir du
flou de défocalisation sur des patchs, en adaptant unmodèle de classification
simple. Pour cela, nous utilisons pendant l’entraînement un codage de la pro-
fondeur réelle, dit de soft-assignment, en un vecteur de probabilité d’apparte-
nance, puis une échelle de régression pour prédire les valeurs de profondeur
intermédiaires. Notre méthode est plus performante que la classification et
la régression directe sur des images simulées provenant d’ensembles de don-
nées de textures structurées ou naturelles, et sur des données réelles prove-
nant d’une expérience de DFD active.

Le flou de défocalisation étant caractérisé par les paramètres du système
d’acquisition optique, on peut se demander s’il existe une combinaison op-
timale de système optique et de traitement par réseau de neurones pour la
DFD. Ce problème complexe peut être traité à l’aide de la deep co-design, une
approche récente qui traite de l’optimisation conjointe d’un système optique
et d’un réseau de neurones. Nous avons proposé d’utiliser cette approche
pour l’optimisation conjointe de la mise au point d’une caméra et de notre
réseau de régression du flou. Cette optimisation est réalisée grâce à un mo-
dèle optique basé sur le tracé de rayons différentiable, qui fournit un mo-
dèle réaliste de la caméra, y compris des aberrations optiques. L’utilisation
du DFD pour l’estimation de la profondeur implique que la caméra acquiert
des images de mauvaise qualité. Pour résoudre ce problème, il est possible
d’utiliser un traitement de restauration d’image. Alors que dans la littérature
les approches de deep co-design ne réalisent leur optimisation que pour une
seule tâche, nous avons envisagé une approche multi-tâche pour la restaura-
tion 3D et de restauration d’image. Nous nous sommes intéressé à l’optimisa-
tion de la mise au point d’un système optique réel pour les tâches de DFD et
de restauration d’image indépendamment dans un premier temps. De ces ex-
périences, nous avons observé que l’optimisation conjointe optique/réseaux
pour la tâche de DFD converge vers différentes valeurs de mise au point sui-
vant l’initialisation de ce paramètre, tandis que l’optimisation pour la tâche de
restauration d’image montre une certaine insensibilité du système complet
par rapport à la mise au point. De plus, la valeur de mise au point trouvée
pour le système offrant la meilleure performance pour chacune des tâches
est différente. Nous avons ensuitemis enœuvre une optimisationmulti-tâche
simple. Cette approche permet d’atteindre des systèmes plus performants en
DFD qu’en mono-tâche. En résumé, cette thèse propose plusieurs contribu-
tions en apprentissage profond pour l’estimation 3Dmonoculaire, et ouvre la
voie vers des systèmes de vision monoculaire 3D mieux conçus.
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1 - Introduction
1.1 . Motivation
Living beings have to extract information from their environment through

their senses to locate themselves in it, build a representation of it and make
decisions.

Some species, like bats or dolphins, use an active approach to build that
representation space. Such species emit a soundwave in a given direction and
collect echoes from their environment, these echoes are processed by their
neural system to infer a spatial (and dynamic) representation of their environ-
ment. Technologies like sonar, radar and LiDAR are based on this principle.
Other species, like humans, developed a passive approach to do so by using
the parallax from their binocular vision.

Computer vision aims to givemachines the same abilities to observe, ana-
lyse and understand the world they occupy, given the visual information from
oneormore cameras. Computer vision comprises various challenges for scene
understanding, especially the challenge of 3D geometry estimation. Solving
this challenge is helpful for many applications, such as autonomous driving
vehicles, industrial inspection for manufactured parts, and virtual or augmen-
ted reality. Historical 3D estimation techniques also exploit the parallax by
making use of two or more images of the scene [Faugeras, 1993, Hartley and
Zisserman, 2004]. These techniques rely on visual feature extraction in each of
the images, followed by a corresponding feature matching. The same feature
will appear at a different location in each image, and this location disparity
informs us of the depth of the feature point relative to the calibrated ima-
ging system.Most advances inmulti-view 3D estimation are related to feature
extraction and matching. The Semi-Global Matching algorithm (SGM) [Hirsch-
mueller, 2008] is one of the most popular stereo-matching methods for dis-
parity map estimation, as it proposes a good accuracy/computational com-
plexity for real-time applications.

However, using information from two cameras is not always possible, ei-
ther for cost or space constraints. Moreover, a precise calibration between
the camera and a large baseline is required for accurate measurements. Ple-
noptic cameras use micro-lens matrices in front of the sensor to capture the
light field of the scene, i.e., the light intensity as well as the direction of light
rays. Plenoptic images can be post-processed to refocus the image and to give
3D information of the scene [Ng et al., 2005, Perwass and Wietzke, 2012], ho-
wever, 3D capabilities are limited compared to previous methods due to the
small baseline between micro-lenses. 3D estimation is also possible with one
camera using motion parallax. This is approach is referred to in the literature
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as Structure from Motion (SfM) [Ullman, 1979]. The 3D reconstruction quality
depends on a good pose estimation between the multiple views and is also
subject to scale uncertainty.

Previously stated methods lean on multiple views of the environment to
perform the reconstruction. However, in this thesis, we are interested in a
single-view 3D estimation approach, which offers a solution that is more com-
pact, economical, and that does not require knowing the relative pose of the
images.Wewill tackle this challenging task by using deep learning techniques,
which demonstrated outstanding performances for many computer vision
tasks, including single-view 3D estimation.

1.2 . Single-view 3D estimation
To complete the task of single-view 3D estimation, learning-based tech-niques have been investigated and improved for the past few years [Saxena

et al., 2006, Eigen et al., 2014, Carvalho et al., 2018b, Lee et al., 2019a, Bhat et al.,
2021] and reached solid performances. All of these methods estimate depth
maps, i.e., a raster image which provides a depth value for each pixel. Yet, 3D
can also be represented using point clouds, which are sets of points sampling
the surfaces. This latter form is commonly used in robotics as it corresponds
to the raw measurement for active 3D sensors like LiDAR. Although useful,
only a few deep learningmethods tackled the problem of single-view 3D point
cloud estimation [Fan et al., 2017, Xia et al., 2018, Mandikal and Radhakrishnan,
2019], all applying only to 3D object models, and none of them deal with real
outdoor scenes. Thereby, the first question addressed in this thesis is "How
can a deep learning method for point cloud estimation from a single image extend
to real outdoor scenes?".

For training their models, the aforementioned methods depend on richand highly post-processed data, such as the NYU depth dataset V2 [Silber-
man et al., 2012] for an indoor setting, or the KITTI vision benchmark suite [Gei-
ger et al., 2013] for an outdoor setting. These clean databases are the result
of computationally expensive processing to accumulate and filter the points,
which we would like to avoid for a practical and cost-effective motive. There-
fore, we can wonder "How would a deep learning method perform using unrefi-
ned and sparse data for training the neural network?".

The aforementioned methods use the context contained in the images to
make their estimations, but physical cues on the sensor can be used as well.
One such visual depth cue is the defocus blur, which can guidemonocular 3D
estimation, either using several views as in [Pentland, 1987], or a single view
using statistical priors [Zhu et al., 2013, Trouvé et al., 2011, Buat et al., 2021].
Regarding deep learning techniques, defocus blur can also be added to the
context information to help thesemodels to performdepth estimation on full-
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scale images [Carvalho et al., 2018a, Anwar et al., 2021]. However, the estimates
of these previous methods use both the context and the blur information, so
we canwonder "Howwould a deep learningmodel performusing only the defocus
blur to regress the depth locally ?".

The defocus blur is characterised by the optical system that constructs
the image on the sensor. Previous works proposed to use coded aperture,
diffractive lenses, or lenses with chromatic aberrations to enhance the depth
information on the sensor, which can be retrieved using corresponding esti-
mator [Levin et al., 2007, Zhou et al., 2009, Martinello and Favaro, 2011, Trouvé
et al., 2013]. The parametrisation of those unconventional optics is obtained
via the specification and optimisation of performance criteria. The joint op-
timisation of the optics and the estimator is referred to as co-design, and a
particular instance of it, called deep optics or deep co-design, has recently been
addressed and considers the estimator as a neural network model. Deep co-
design approaches require to have a fully differentiable image formation mo-
del with respect to its parameters. Current deep co-design approaches consi-
der either Fourier optics [Haim et al., 2018, Chang and Wetzstein, 2019, Ikoma
et al., 2021], or differentiable ray tracers [Sun et al., 2021, Halé et al., 2021]. The
purpose of co-design for the problem of Monocular Depth Estimation (MDE),
the task of interest for this thesis, is to find the optical system that will inject as
much depth information in the image as possible using defocus blur. On the
other hand, this blur will deteriorate the overall image quality, so the ques-
tion is then "How to optimise jointly optics and neural network parameters for 3D
estimation and image deblurring?".

1.3 . Objectives & Contributions
In this thesis, we demonstrate how machine learning techniques can im-

prove all parts of the 3D perception pipeline, from smart sensing to informa-
tion processing, by addressing the questions that emerged from the shortco-
mings of previous methods :

1. How can a deep learning method for point cloud estimation from a single
image extend to real outdoor scenes?

2. How would a deep learning method perform using unrefined data for trai-
ning the neural network?

3. How would a deep learning model perform using only the defocus blur to
regress the depth locally ?

4. How to optimise optics and deep learning model parameters jointly for
both 3D estimation and image deblurring?

Figure 1.1 gives an overview of the thesis’s main questions and chapter
organisation, as detailed hereafter.
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Figure 1.1 – Outline of the thesis with respect to the 3D vision processing chain.

Questions 1 and 2 are addressed in chapter 2, inwhichwepropose Pix2Point,
a deep learningmodel trained using point clouds for outdoor scenes, by using
the famous KITTI vision benchmark dataset that provides image/point-cloud
matching data. Question 3 is addressed in chapter 3, in which we propose a
lightweight deep learning approach to regress locally the depth using defocus
blur. Our approach does not require any scene prior or optic calibration. It is
validated experimentally in the context of surface inspection. Question 4 is
addressed in chapter 4, in which we explore the joint co-design of an opti-
cal system for 3D estimation and image restoration tasks. Lastly, we conclude
and open new questions that would lead to future works in chapter 5.

1.4 . Publications
This work led to multiple scientific publications and talks.
One Published article in a journal with a review committee :
- R. Leroy, P. Trouvé-Peloux, B. Le Saux, B. Buat, F. Champagnat. (2022).
"Learning local depth regression fromdefocus blur by soft-assignment
encoding". Applied Optics. 61(29).

One published paper in an international conference with a reading com-
mittee and proceedings :

- R. Leroy, P. Trouvé-Peloux, F. Champagnat, B. Le Saux, M. Carvalho.
(2021). "Pix2Point : Learning outdoor 3D using sparse point clouds and
optimal transport". Int. Conf. onMachine Vision andApplications (MVA).
poster.
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Published papers in national conferences with reading committees and
proceedings :

- R. Leroy, B. Le Saux, M. Carvalho, P. Trouvé-Peloux, F. Champagnat.
(2020). "Pix2point : prédiction monoculaire de scènes 3D par réseaux
de neurones hybrides et transport optimal". RFIAP.

- R. Leroy, P. Trouvé-Peloux,B. Le Saux, B. Buat, F. Champagnat. (2022).
"Régression locale de la profondeur grâce au floudedéfocalisation et à
un réseau de neurones entraîné par soft-assignment". GRETSI. poster.

Oral presentations (without proceedings) :
- R. Leroy, P. Trouvé-Peloux, B. Le Saux, F. Champagnat. "Towards end-
to-end design of a monocular sensor for 3D point cloud prediction".
CLIM workshops 2021.

- R. Leroy, P. Trouvé-Peloux, B. Le Saux, F. Champagnat. "Estimation
Locale de Flou de Défocalisation par Réseau de Neurones" GDR ISIS
JIONC 2022.

- R. Leroy, P. Trouvé-Peloux, B. Le Saux, F. Champagnat. "Deep Neural
Networks for 3D Monocular Estimation". ODAS 2022.

To be submitted :
- R. Leroy, M. Dufraisse, P. Trouvé-Peloux, B. Le Saux, J.-B. Volatier, F.
Champagnat. "Multi-Task Deep Co-design". Applied Optics.
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2 - Monocular 3D estimation from sparse trai-
ning data

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . 5
1.2 Single-view 3D estimation . . . . . . . . . . . 6
1.3 Objectives & Contributions . . . . . . . . . . 7
1.4 Publications . . . . . . . . . . . . . . . . . . . . 8

Recently, deep learning techniques have revolutionised 3Destimation from
images, allowing to obtain excellent results even with a single view [Eigen
et al., 2014, Carvalho et al., 2018b, Fu et al., 2018, Amiri et al., 2019, Lee et al.,
2019a]. These impressive results rely upon large and highly accurate data-
bases like KITTI [Geiger et al., 2013] that involve the simultaneous collection
of stereo pairs and LiDAR data, post-processing and temporal integration in
order to provide accurate, reliable and dense ground truth for learning pur-
poses. The overall process requires large-scale cooperation and is therefore
lengthy. In this chapter, in contrast, we are interested in solving monocular
3D estimation for outdoor scenes using rough unfiltered data such as sparse
LiDAR point clouds.

Most state-of-the-art methods for 3D reconstructions usually use depth
map as ameans of representation, a raster image indicating the distance from
the point of view to the surface of the observed scene pixel-wise [Eigen et al.,
2014, Saxena et al., 2006, Carvalho et al., 2018b, Lee et al., 2019a]. 3D can also
be represented as a point cloud corresponding to a 3D sampling of the consi-
dered scene surfaces, which can be acquired using native 3D sensors such as
LiDARs. Unlike depth maps, this latter mode of representation does not suf-
fer from alignment and rigid sampling on the image grid. Besides, depthmaps
are usually smoothed to provide dense results, leading to less reliable depth
values locally. Finally, the Pseudo-LiDAR [Wang et al., 2019] and Pseudo-LiDAR
++ [You et al., 2019] methods have shown a significant beneficial contribution
of the point cloud representation compared to depth maps for the task of
detection and localisation of obstacles in scenes. Therefore, the point cloud
representation is a good candidate for 3D estimation. Hence, in this chapter,
we choose to output directly 3D point clouds from a single image, as illustra-
ted by Figure 2.1.

However, handling 3D point clouds leads to several technical challenges
related to architecture able to process such data, learning scheme and asso-
ciated loss tomeasure point cloud discrepancy. In this thesis, we have tackled
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Figure 2.1 – A RGB image is translated directly to a 3D point cloud by a trainedneural network.

these challenges with the development of amethod named Pix2Point, a deep-
learning approach for single-view 3D point cloud estimation. This method is
trained on a sparse point cloud dataset.

2.1 . Related Work
Single image 3D estimation has been addressed in terms of 3D point set

with PSGN by Fan et al., [Fan et al., 2017], a method that aims to predict an
unordered set of points sampling the envelope of an object using a single view
of it and its location in the image. Mandikal and Babu [Mandikal and Radha-
krishnan, 2019] address the limitations of PSGN regarding the poor number
of predicted points with DensePCR, a pyramidal structure allowing tomultiply
the number of points. Xia et al., [Xia et al., 2018], also tackles the generation
of a monocular point cloud for objects using prior knowledge of their shapes,
making it robust to occlusions and varying poses. Sun et al., [Sun et al., 2019]
have explored monocular point cloud generation using self-supervision me-
chanisms. Lastly, a generative flow-based model allowing single-view object
point cloud prediction has been proposed with C-flow [Pumarola et al., 2020].
It leverages a back-and-forth prediction loop from image to point cloud, then
to image for consistency.

It is important to note that the aforementioned point cloud works only
consider the reconstruction of a single 3D object model, i.e., on data that are
obtained through demanding procedures, either scanned objects using RGB-
D sensors or laser scanners, or handcraftedmodels. These procedures do not
apply to real-life scenes with various settings and where lies multiple objects.
[Denninger and Triebel, 2020] tackles the problem of monocular volumetric
reconstruction with occlusion completion only for indoor scenes. In addition
to the input RGB image, this approach requires a corresponding normal image
that is hardly obtainable for outdoor scenes.

None of thesemethods deals with the reconstruction of complex outdoor
11



scenes in the form of 3D point clouds, solely conditioned by a single RGB
image, and trained on sparse point clouds.

2.2 . Contributions and chapter organisation
In this chapter, we present ourmethod for 3D point cloud estimation from

a single image. Our contributions are :
— a first approach to reconstruct a 3D point cloud for an entire out-door scene given only a single image using a 2D-3D hybrid neural net-

work architecture, inspired by DensePCR [Mandikal and Radhakrish-
nan, 2019].

— an end-to-end learning scheme of the hybrid model using a sparse
point clouds dataset.

— a first benchmark for the single-view sparse-point-cloud estimation
problem with a comparison of our method to state-of-the-art mono-
cular depth map prediction methods.

— an ablation study of the neural network architecture.
— a study about the sensitivity of ourmodels to the typesof point clouds

used for training.
This chapter is structured as follows : in Section 2.3, we first describe the va-
rious components of the proposed method, namely Pix2Point, i.e., the neural
network architecture and the point cloud loss functions for the optimisation
process, as well as the quality criteria for point cloud reconstruction. Then in
Section 2.4, we define various experimental settings to test empirically several
neural network architectures, loss functions, and types of data used for trai-
ning. We present and analyse the results for each scenario in Section 2.5. We
conclude this chapter with a discussion on the limitations and improvements
to the Pix2Point method in Section 2.6.

Thiswork appeared in theproceedings for the 2020 FrenchNational Confe-
rence RFIAP [Leroy et al., 2020], and for the 2021 International Machine Vision
and Applications conference (MVA) with a poster presentation [Leroy et al.,
2021].

2.3 . Description of Pix2Point
Pix2Point, illustrated by Figure 2.2, has the following characteristic : it pre-

dicts a set of 3D point coordinates with an arbitrary number of elements given
a single colour image, the number of elements, or points, is fixed before trai-
ning. There are two principal components to themethod : the neural network
architecture, and the parameter optimisation scheme. We will describe each
component in that order.
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Figure 2.2 – Pix2Point : 3D point set prediction for real outdoor scenes from asingle image. A first 2D CNNmodule encodes the RGB image for the followingfully connected layer to predict a coarse 3D point cloud. Then a 3D point-wisedensification module grows of the number of points of this point cloud usingPointNet-like MLP. All models are trained end-to-end to minimise point setdistances, e.g. , Optimal Transport or chamfer distances.

Figure 2.3 – Illustration of the densification method from [Mandikal andRadhakrishnan, 2019]. The method comprises the computation of one globalfeature vector for the whole point cloud and a local feature vector for eachpoint, that will be used to compute the denser point cloud.

2.3.1 . Neural Network Architecture
Similarly to DensePCR [Mandikal and Radhakrishnan, 2019], Pix2Point’s ar-

chitecture consists of an encodingmodule to predict a first coarse point cloud
that will be enriched using a densification module.
Encoding The encoding block is a series of convolution, pooling and nor-
malisation layers to extract a feature description of the full RGB input image,
which is then processed by a fully connected layer to obtain a first coarse set
of 3D point coordinates. This is exactly the fully connected layer that fixes the
image resolution the network can process, as well as the total number of 3D
points. We try and compare several renowned feature encoding approaches
following either VGG [Simonyan and Zisserman, 2014], DenseNet [Huang et al.,
2017] and ResNet [He et al., 2016] architectures in section 2.5. We refer to them
as backbones.
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Decoding We refer to decoding as the densification of the first coarse 3D
point cloud, as illustrated in Figure 2.3. We duplicate every point k times, and
to describe each point we concatenate : the 3D coordinates, both global point
cloud feature vector and the corresponding local feature vector, obtained
using dedicated PointNet-like shared Multi Layer Perceptron (MLP) [Qi et al.,
2017a, Qi et al., 2017b], and lastly a grid alignment feature vector in order to
identify every clone of the same point and to suggest geometric information
between every clone. This point description is processed by another shared
MLP resulting in 3D coordinates for 1 point.

2.3.2 . Optimisation Scheme
To account for simplicity, the parameters of our models are trained in

an end-to-end fashion unlike DensePCR [Mandikal and Radhakrishnan, 2019].
The choice of the loss function used for training enforces the achievable per-
formances of our approach. Unlike the depth map prediction methods which
exploit the grid structure of the image for the evaluation of errors, our me-
thod uses distances between unordered point sets. These distances require
an additional computationally expensive step to match points between the
predicted and the target point clouds. In the following, we expose two usual
distances for this task.
Chamfer distance The chamfer distance is the average of squared Eu-
clidean distances to the nearest neighbour from one set to the other. It is
defined between two point-clouds S1 and S2 as follows

dC(S1, S2) =
1

|S1|
∑
x∈S1

∆(x, S2) +
1

|S2|
∑
y∈S2

∆(y, S1), (2.1)

where ∆( · , S) = miny∈S ‖ · −y‖22.Figure 2.4 illustrates the nearest neighbour pairing used to compute the
chamfer distance for a 1D example.

Figure 2.4 – Nearest neighbour pairing for the chamfer distance computationfor a 1D case.

Optimal Transport orOTdistance To compute this distance, also known
as Earth Mover’s distance, one has to find a one-to-one mapping φ from one
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set to the other that minimises the sum over each point of the squared dis-
tance between them and their corresponding image :

dOT (S1, S2) = min
φ:S1→S2

∑
x∈S1

‖x− φ(x)‖22. (2.2)

Figure 2.5 – Optimal transport pairing for a 1D case.
This minimised sum is called the OT distance and it informs about the

eventual discrepancy between point sets distributions. The above formula-
tion requires that both point clouds have the same cardinality, this will be the
case in our experiments, however, it is possible to slightly change the problem
formulation to handle unbalanced cardinality.

Figure 2.5 illustrates the optimal transport map, deduced from the mini-
misation problem, used to compute the OT distance for a 1D example.

The exact computation of an OT distance is time and memory expensive
especially for several thousand elements lying in a space strictly higher than 2
dimensions, hence, we consider in our work an approximation of the OT dis-
tance obtained by adding a regularising term and using the Sinkhorn-Knopp
algorithm [Cuturi, 2013, Feydy et al., 2019].
Test on a toy example To provide a better understanding of the conver-
gence behaviour of each distance function, we first consider the following 2D
toy example, as shown by Figure 2.6. We set a target point cloud with 100
fixed elements, and then define a source point cloud, whose elements are gi-
ven with random initial coordinates. The objective is to move the elements of
the source point cloud altogether in order to fit the target point cloud. The up-
date of the coordinates for the source point cloud is performed iteratively by
minimising either distance function using a gradient descent algorithm. Even
though the chamfer distance and the OT distance have a similar objective,
minimising those two distances for fitting a target point cloud from a random
initial point cloud leads to a significantly different outcome. Indeed, the source
point cloud resulting from the minimisation of the chamfer distance exhibits
two significant behaviours. The first is thatmultiple source points tend to stack
over one target point, and the second is that one source point finds itself lying
in the middle of its closest target points. Those two kinds of local optima can
be easily interpreted, as the chamfer distance is constructed with a sum of
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independent local terms. In this regard, the chamfer distance is more sensi-
tive to the initialisation and to the order of magnitude of the learning rate.
In contrast, the source point cloud obtained by minimisation of the OT dis-
tance offers greater coverage of the target point cloud, this is coming from
the global minimisation term of the OT distance.

initialisation chamfer OT
Figure 2.6 – 100 2D point coordinates optimised by gradient descent algorithm(orange) according to the chamfer distance and the OT distance with respectto the target point cloud (blue).

2.3.3 . Quality measures for point cloud reconstruction
From either optimisation, we observe two distinct qualities for the final

source point cloud with respect to the target point cloud ; The first quality is
about the precision of the point coordinates ; The second quality is about the
overall coverage of the target by the source point cloud. To assess these qua-
lities, we use the performance criteria from [Tylecek et al., 2018], namely accu-
racy and completeness. We also define and propose to use relative accuracy.
All 3 measures are defined hereafter.
Completeness is the coverage in per cent of the target point cloud by the
predicted points. A target point is covered if a predicted point lies in its sur-
rounding (i.e., fixed radius ball). This is illustrated for a 2D elementary confi-
guration in Figure 2.7.
Accuracy is the distance d, in meter, from the r-th percentile of the dis-
tances to the nearest neighbour, from thepredicted point cloud to the ground-
truth point cloud. It measures the longest distance to the nearest neighbour
among the predicted points closest to the ground truth. Figure 2.8 illustrates
the accuracy measure for the same 2D elementary configuration.
Relative accuracy is similar to the accuracy, where every distance to their
nearest neighbour is divided by the distance of the corresponding target point
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Figure 2.7 – Illustrated example of the completeness for a given radius thre-shold value, of the 2D blue point cloud by the red point cloud. In this case, thecompleteness is 3/4, or 75%.

from the origin. It provides a higher penalty for short-range prediction errors.
In the following, we formally define these measures. First, we define Pjand Tj as the predicted and target point clouds of the j-th scene respectively.Every point from one point cloud is provided with the nearest neighbour dis-

tance to the other point cloud. δ(j)
i = miny∈Tj ‖xi − y‖ is the distance froma predicted point xi ∈ Pj to the closest target point. Reciprocally we note

γ
(j)
i = minx∈Pj ‖x− yi‖ where yi ∈ Tj .
We also provide respective relative distances δrel(j)i =

miny∈Tj
‖xi−y‖

‖y‖ , and
γ
rel(j)
i =

minx∈Pj
‖yi−x‖

‖x‖ .
Let ∆ = {δ(j)

i ,∀j, i} and Γ = {γ(j)
i ,∀j, i}, we compute the performance mea-

sures as follows :
Accuracy accuracy(r) = {d s.t. |∆<d||∆| = r}
Relative accuracy relative accuracy(r) = {d s.t. |∆rel<d|

|∆rel| = r}
Completeness completeness(d) = |Γ<d||Γ|

where d is the nearest neighbour distance threshold, r ∈]0, 1] and | · |
denotes the cardinality.

2.4 . Experiments on Real Outdoor Scenes
This section presents the dataset we are considering for real scene point

cloud estimation from a single image and some implementation details.
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Figure 2.8 – Illustrated example of the accuracy for the 2D red point cloud,with respect to the blue point cloud. Nearest blue neighbour distances fromred points are computed and ordered ; The accuracy for a given percentile isthe corresponding nearest neighbour distance.

2.4.1 . Dataset
To assess our method, we operate on RGB image sequences of real ur-

ban scenes and corresponding LiDAR point cloud acquisitions from the KITTI
depth estimation benchmark dataset [Geiger et al., 2013]. Every scene point
cloud is an accumulation of filtered LiDAR acquisitions over a few successive
time instants. We use the split defined by [Eigen et al., 2014], that is 22 600
training scenes and 697 testing scenes.

2.4.2 . Implementation Details
Experiments were conducted using the Pytorch Framework [Paszke et al.,

2019]. We kept the original image resolution and cropped every picture to
1224 × 370 pixel definition. Due to heavy computational cost for loss back-
propagation, parameters were updated after every sample forward, making
batchnormalisation ineffective. Instance normalisationwas applied instead [Ulya-
nov et al., 2016]. The number of predicted points was determined to fully
load the 8GB GPU during training. Therefore, 2500 elements point clouds are
first predicted by the fully connected encoding module, then up-scaled by a
DensePCR-like module making a point cloud with 10k elements.Training vs. Testing point clouds : Using an OT loss enables, in principle,
the comparison of any ground-truth point cloud to the predicted one, howe-
ver, in practice, computation and optimisation of an OT loss are computa-
tionally much more efficient with point sets of equal cardinality. Therefore,
ground-truth point cloud databases are randomly sub-sampled to 10k points,
which is asmany points as Pix2Point predicts. In comparisonwith depthmaps,
10k points amount to 15% of the depth map information on average, which
makes our method train on sparse data. When testing we measure perfor-
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mances with respect to the whole ground-truth point cloud.

2.5 . Experimental Results
In this sectionwefirst present the performances of Pix2Point using various

encoding backbones and losses, then we compare our method to depth map
prediction approaches through evaluation metrics defined in 2.3.3.

2.5.1 . Network parameter study
We trained severalmodelswith varying encoding backbones and loss func-

tions.We considered the following configurations : Pix2Point architecturewith
VGGbackbone and training on theminimisation end-to-endof either the cham-
fer or OT distance, and Pix2Point with ResNet backbone and minimising the
OT distance. The performances of these models are given in Table 2.1 respec-
tively as P2P-VGG-C, P2P-VGG-OT and P2P-ResNet-OT. From these figures, we
can notice that the minimisation of chamfer distance thrives toward predic-
tions with low local error, and minimising the OT distance grants predictions
with higher completeness, hence, better coverage of the scenes. In order to
find if these distances could help each other, combinations of both distances
have been tested. However, they lead to convergence issues during training
and overall worse performances due to opposite objectives of the distances.
Changing the backbone from VGG to ResNet has also a slight impact on the
completeness and accuracy. The small gain in relative accuracy indicates that
far predictions are more accurate. We also provide a comparison to a simi-
lar image-to-point-cloud approach, DensePCR [Mandikal and Radhakrishnan,
2019], initially proposed for 3D graphics models.
Table 2.1 – Comparison of 3D scene reconstructions on KITTI. We re-port completeness and accuracy. Allmethods are trainedwith 10k pointclouds.

Approaches Completeness ↑(in %) Accuracy ↓50cm 25cm 10cm in m rel.
P2P-ResNet-OT 71.35 48.82 15.12 1.92 0.18P2P-VGG-OT 67.4 47.7 14.7 1.79 0.19P2P-VGG-C 64.4 36.0 8.0 0.85 0.05
DensePCR 59.9 23.5 3.5 1.77 0.18
BTS 67.59 31.29 6.28 1.23 0.06AdaBins 65.86 27.52 5.71 1.25 0.06

2.5.2 . Comparison to depth prediction approaches
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The current dominant approach to 3D estimation from a single image
consists of predicting corresponding depth maps by leveraging the power of
image-to-image translation networks. On KITTI, thesemethods are trained on
pseudo-dense depth maps built by accumulating several consecutive LiDAR
acquisitions. For comparison in a similar setting, we train two state-of-the-art
models for monocular depth estimation from the KITTI challenge 1, namely
BTS [Lee et al., 2019a] and AdaBins [Bhat et al., 2021], on the same 10k-point-
cloud as Pix2Point. At inference time, dense depthmaps are projected back to
3D using known camera parameters. Performance comparison with various
flavours of Pix2Point is reported in Table 2.1, where we choose to measure
the accuracy at r < 90% to include most of the points and discard eventual
outliers, and the completeness is measured for neighbourhood radii of 50cm,
25cm and 10cm.

These results reveal that Pix2Point, with only 15Mparameters, trainedwith
Chamfer distance performs better than BTS and Adabins, respectively 45M
and 78Mparameters. Moreover, when trainedwith the OT distance, Pix2Point
accuracy decreases but it covers three times more points than depth map
approaches for the closest neighbourhoods. These observations can bemade
through Figure 2.9 where we show point cloud predictions and the coverage
errormap for eachmethod (for comparison all predictions are visualized with
10k points). This error map displays for each ground-truth point the distance
to its nearest predicted point. We display the error from 0 to 50cm using the
jet colour map. While AdaBins and BTS preserve fine features, all Pix2Point
variants achieve better coverage of the scene and a lower error, especially for
far-away elements, that are not retrieved by AdaBins andBTS (see for instance
the right part of the bottom scene).

In this section, we showed experimentally the benefit of training the mo-
del using 3D point clouds to recover a good coverage of the scene, especially
when the data is spatially sparse.

2.5.3 . Sensitivity to point clouds nature
The surfaces of a scene can be punctually sampled in many various ways.

In this section, we interrogate the training of a neural network model to point
clouds obtained from different sampling schemes.
Type of point cloud sampling

For this experiment, we considered the following sampling scheme for
every image of the KITTI benchmark dataset, providing different types of point
clouds :

1. http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=
depth_prediction
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RGB and ground-truth scene AdaBins BTS P2P-VGG-C P2P-VGG-OT P2P-ResNet-OT

Figure 2.9 – For each scene, first row : 3D ground-truth and predictions forthe RGB image according to AdaBins [Bhat et al., 2021], BTS [Lee et al., 2019a],our Pix2Point VGG-chamfer, VGG-OT and ResNet-OT, all trained on 10k points.We follow the 3D representation of [Caccia et al., 2019]. Bird’s eye view wherethe colour encodes the altitude. Second row : the input RGB image and theground-truth-to-prediction error map for each method. Errors are from 0(blue) to 50cm (red).

Stereokeypoints Extraction andmatching of key points fromsalient parts
in stereo images to obtain 3D coordinates. Extracting this type of point cloud
requires 2 finely calibrated cameras and elementary geometry. Spatial reso-
lution and coordinate confidence for the extracted point cloud depend on the
image resolution, the baseline of the binocular system, and the texture of the
scene.
LiDAR Raw data are acquired from an active laser scanner by time-of-flight
measurement. These data represent point clouds with low spatial resolution,
whosedensity decreaseswith thedistance, and showing a characteristic streak
structure from the rotary motion of the sensor. Extracting this type of point
cloud requires active laser scanners, which sample points regardless of the
texture, but can also generate many outliers from the reflection of incident
rays.
KITTI-Depth Combination of the two previousmethods, accumulated over
several frames. The stereo keypoint point cloud is used to filter out outliers
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of the accumulated LiDAR point clouds.
Experimental settings

Regarding the neural network architecture, we considered the Pix2Point
architecture with a VGG encoding backbone and trained one model per type
of point cloud, i.e., 3 models.
Training vs. Testing The models are learned using only one type of point
cloud of 10k elements. Test point clouds have also 10k elements and are of the
same type that the training point clouds.

Table 2.2 – Performances in completeness for various threshold values,and in accuracy at 90%, for Stereo, LiDAR and KITTI-Depth point clouds.Models are trained and tested on point clouds having 10k elements.Best values are highlighted in bold.
Type Completeness ↑(in %) Accuracy ↓1m 50cm 10cm in m
Stereo 51.39 27.0 0.75 6.02LiDAR 86.11 68.16 10.23 2.29KITTI-Depth 87.39 70.88 15.28 2.18

Performance comparison Table 2.2 shows the performance in comple-
teness and accuracy of the model trained for each point cloud type. For the
stereo point clouds, only 51.39% of the target is covered at 1m, down to 0.75%
at 10cm, and 90% of the predicted points are at less than 6.02m from any tar-
get point. These are poor performances in comparison to training on LiDAR or
KITTI-Depth point clouds, which achieve similar performances ; slightly more
than 86% completeness at 1m and 10% at 10cm, and 90%of the predicted point
at less than 2.3m from any target point. This gap in performance shows that
training on stereo point clouds, compared to LiDAR-like point clouds, is amore
difficult task.

To understand the origin of this adversity, we can look at the distribu-
tion of the points for both point cloud types,i.e., stereo and LiDAR-like point
clouds. Figure 2.10 shows a top view of the corresponding stereo (blue) and
KITTI-Depth (red) point clouds for a given KITTI outdoor scene (RGB image).
KITTI-Depth point clouds are well diffused over the scene, with a high density
of points closer to the camera that decreases with the distance. Meanwhile,
stereo point clouds have a greater spatial dispersion and higher distribution
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Figure 2.10 – (Top) RGB image of an outdoor scene from the KITTI dataset, (Bot-tom) Top view of overlapping KITTI-Depth (red), and stereo keypoints (blue)point clouds for the corresponding scene.

variability through training and testing examples. We can also note that, un-
like LiDAR points, stereo points are extracted based on sharp textures in the
image, and not sharp geometry variation in the scene, as we can see in the
example of Figure 2.10, stereo points lying on the road mainly come from the
border of the shadow projected on the road.

Point clouds obtained from the stereo sampling are noticeably inefficient
in training our model despite its affordable passive nature. In contrast, point
clouds actively acquired are more stable for training our model with a slight
gain when the data is post-processed.

2.6 . Conclusion
In this chapter we presented an approach to tackle the problem of pointcloud reconstruction for complexoutdoor scenes fromasingleRGB image,

using a lightweight 2D-3D hybrid neural network. The proposed method re-
covers properly distributed point clouds by taking advantage of an optimaltransport loss. We also provided the first benchmark for this novel task on
the KITTI dataset and introduced performancemetrics to assess the quality of
point cloud reconstruction. We show that our method outperforms state-of-
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the-art depth map prediction methods when trained with sparse data. We
also showed that point clouds from active acquisition methods, which have
uniform coverage of the scene, were beneficial to the performance of the es-
timation model, compared to point clouds from passive approaches.
Perspectives for improvements Some parts of the method can be ad-
dressed to improve the point cloud estimation.

First, the coarse scale point cloud is constructed by the fully connected
layer using the whole feature image at the end of the encoder, or equiva-
lently, the receptive field of the fully connected layer is the entire image. The-
refore the 3D coordinates of any point depend on the whole image, meaning
a texture or intensity change locally in the image can affect the entire predic-
tion. Another limitation coming from the fully connected layer, as previously
stated in 2.3.1, is that the input image resolution and the total number of 3D
points are fixed by design, making the model rigid. These two shortcomings
can bemitigated by dividing the image into smaller regions and having a dedi-
cated neural network for each region to predict a local point cloud. The global
point cloud would be the aggregation of the local point clouds, potentially in-creasing the total number of points. Another approach to preserve spatialneighbourhood information would be to consider a fully convolutional net-
work, in that case, the total number of predicted points would be determined
by the input image resolution.

Secondly, we observed that close objects in the scene were not finely es-
timated by our method. One explanation could be that the current architec-
tures of our neural networks make our method unable to differentiate bet-
ween coarse-scale point clouds for which we can have higher error tolerance,
such as road or building surfaces and fine-scale point clouds which would
account for possible obstacles on the road. A multi-scale estimation mecha-
nism could also be added in order to enable that scale differentiation. One
approach would be first to estimate a coarse scale point cloud, then use it to
condition immediately finer scale estimations.
All the presentedmethods in this chapter make use of the context informa-

tion contained in the images to perform their estimations, yet other physical
depth cues captured by imaging sensors can be exploited. One such cue is the
defocus blur, leading to the next chapter, where we will address the problem
of single-image depth from defocus using deep learning techniques.
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3 - Learning local depthestimation fromasingle
image using defocus blur
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In the previous chapter, we introduced several deep learning approaches
using the context information from large-field-of-view images to solve the
problem of monocular depth estimation. Yet, depth information can be en-
coded locally by the sensor.

The defocus blur is one such powerful clue, and associated Depth from
Defocus (DFD) methods have a long history in computer vision and raise the
question of blur estimation from an image for unknown scenes. Early me-
thods use multiple acquisitions of the same scene for different focus [Pent-
land, 1987, Nayar and Nakagawa, 1994]. More recently, model-basedmethods
for single image DFD, have been proposed relying on the specification of a
scene prior, either analytical or statistical [Zhou et al., 2009, Trouvé et al., 2011].
Finally, learning-based methods have emerged [Martinello and Favaro, 2011,
Haim et al., 2018, Buat et al., 2021], and followingmodel-basedmethods [Levin
et al., 2007, Trouvé et al., 2011] still tackle this problem as a classification ap-
proach using a predefined finite set of Point Spread Function (PSF) associated
with a depth. Yet, the depth measure belongs to continuous space, making
classification approaches working on a discrete space accountable for una-
voidable quantisation error. In order to overcome this limitation, we propose
in this chapter a regression approach for single image DFD using deep lear-
ning. We will refer to single image DFD as DFD throughout the manuscript.
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Deep learning classification networks output a membership probability
vector corresponding to each potential class. In a classification setting, the
estimated depth is the depth label with the highest membership probability.
However, training of such networks usually relies on the hard-assignment en-
coding of the true depth, i.e., the corresponding target membership vector
has a non-zero probability value only for the depth class closest to the true
depth. Hence many depth values can be assigned to the same class. To alle-
viate the quantisation error and avoid themany-to-onemapping, we propose
to use a soft-assignment encoding of the true depth, which provides a unique
dispatch of the membership weights on adjacent depth classes.

We show that our method outperforms classification approaches as well
as direct regressions, on structured and natural texture datasets using small
patches. Finally, we train and test our method on real data from a recently
published paper on active DFD for industrial surface inspection [Buat et al.,
2021], surfaces on which a Random Binary (RB) pattern is projected.

Ourmethod, described in Section 3.2, solely requires a training set of patch/value
pairs, without any blur nor scene analyticalmodel, nor additional information.
Our method is able to process many image formats, such as grayscale, RGB,
or RAW. The latter format is considered in our experiments as it preserves the
blur information. Ourmethod is validated in simulation on structured and na-
tural scenes (Section 3.3.1) and in an experimental setting on real data from
an active DFD experiment [Buat et al., 2021] (Section 3.3.2). In each case, we
compare the estimation results using the proposed soft encoding with direct
regression and hard encoding-based methods. We conclude and enumerate
a set of perspectives in Section 3.4).

These works resulted in a communication to the French national confe-
rence GRETSI 2022 [Leroy et al., 2022b] and a journal article to Optica’s Applied
Optics [Leroy et al., 2022a].

3.1 . What is Depth from Defocus?
As its name suggests, Depth from Defocus (DFD) aims to estimate the

depth of an object based on its apparent defocus blur in the image. For a
conventional optical system, at fixed aperture size, and fixed focal length, the
blur is linked only to the relative depth of the object to the system, as illus-
trated by Figure 3.1. The image of an object located in the focal plane appears
sharp. If this objectmoves away from the focal plane, rays of light coming from
the object no longer hit the sensor at a single point, and a circle of confusion
grows bigger the further the object moves away, leading to a defocus blur.
This evidence makes the depth estimation problem analogous to a blur esti-
mation problem. Depth from Defocus methods aim to measure the blur and
they use the aforementioned equivalence to estimate the depth.
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Figure 3.1 – Defocus blur using a thin lens model. For a sensor placed at adistance s after the lens, light rays are focused on a point located at a distance
z before the lens (left). Moving the point at a distance dz away from z affectsthe radius ε of the circle of confusion (right).

3.1.1 . Related Works : Learning Depth from Defocus
Global Depth from Defocus with CNN
Several works have proposed to leverage defocus cues at a global scale

for depthmap prediction using deep learning [Carvalho et al., 2018a, Lee et al.,
2019b, Shajkofci and Liebling, 2020, Ranftl et al., 2020, Anwar et al., 2021], even
using unconventional optics such as phase mask or freeform lens to improve
depth estimation [Haim et al., 2018, Chang and Wetzstein, 2019, Wu et al.,
2019, Mel et al., 2022]. Besides, several learning methods for blur type classifi-
cation or deblurring also extract an intermediate relative defocus map during
the image processing [Zhang et al., 2018, Ma et al., 2022]. These methods are
effective to estimate a relative defocus or depthmaps from an image having a
spatially varying defocus blur size, but the spatial variation of the Point Spread
Function (PSF) due to optical aberrations is not taken into account. Besides,
complex networks are involved, requiring a relatively large input, so theywork
on a global scale. Hence, a local depth prediction method seems to be more
suited, especially for low-cost sensors having uncorrected optical aberrations.Local Depth from Defocus by classification

In the single image case, commonpatch-based approaches consist of a se-
lection of a blur within a finite set of potential blurs, using a selection criterion
derived from maximum likelihood (ML) approaches [Trouvé et al., 2011, Buat
et al., 2021, Zhu et al., 2013]. Recently, methods using supervised training of
neural network models on image patches have been proposed for local blur
parameter [Sun et al., 2015], or depth [Haim et al., 2018] classification. These
DFD methods proceed by classification, while in practice real data involve
continuous depth variation. This introduces a systematic estimation error due
to the quantisation step. Reducing this step increases the computational cost
for MLmethods and reduces the number of examples for each class, implying
convergence issues for learningmethods with a given database. Finally, these
classification approaches omit the existing neighbourhood relationship bet-
ween depth classes [Fu et al., 2018].
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Local Depth from Defocus by regression
Alternatively, methods for blur parameters or depth estimation from an

image patch have also been proposed in the literature. For instance, [D’An-
drès et al., 2016] use the vector of likelihoods obtained using a scene prior
and blur model parameters as an input of a regression tree to regress the
blur parameter values. [Yan and Shao, 2016] use a general regression neural
network on a prefiltered patch version, after a blur type identification step.
[Kashiwagi et al., 2019] use patch localisation as an attention map to benefit
from the lens aberrations to regress the depth. In the work of [Shajkofci and
Liebling, 2020], a Resnet is used directly to regress blur parameters using a
relatively large patch size (typically 128× 128). Direct depth regression from a
small defocused patch, without any preprocessing, nor additional information
is not trivial, especially due to the regression to themean problem, as discussed
in [Haim et al., 2018].

3.2 . From Classification to Regression

Figure 3.2 – Overview of the proposed method. A fully convolutional classifierestimates a logit vector from a blurred patch. A softmax operator is used toobtain the membership vector p̃. The regressed depth value is obtained bylinear combination of the membership vector p̃ and a regression scale. Thetrue depth is encoded into a targetmembership vector using soft-assignment.
We propose a depth regression network based on a simple depth classifi-

cationmodel, as thismodel shows good training stability and performances in
blur estimation [Haimet al., 2018, Sun et al., 2015]. Figure 3.2 illustrates the pro-
posedmethod and architecture. A fully Convolutional Neural Networks (CNN)
operates as the classifier network used in [Haim et al., 2018] and returns a lo-
git vector ỹ, then a membership vector p̃ = {p̃i}Ni=1 is obtained by a softmax
operator, N being the number of classes. To obtain regressed depth values,
a linear layer, referred to as regression scale, is parameterised by z = {zi}Ni=1
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and is applied to p̃ to yield our estimated value z̃.
In the following, we describe several approaches for training this architec-

ture, and in particular the proposed soft-assignment encoding.
3.2.1 . Output Space Regression

Figure 3.3 – Architecture of regression network from a classifier.
Supervised Deep Learning models for regression are usually trained by

minimising a data fidelity term on the output of the network. A first attempt to
regress the depth is to define a linear form that will convert the membership
vector p̃ coming from a classifier network into the depth scalar z̃. We named
that linear form as the regression scale. As shown by Figure 3.3, the model
parameters and the regression scale are then learned to minimise a L2 lossdirectly on the true depth values expressed as

Lout = (p̃T z + b− z)2 + λr‖ỹ‖1, (3.1)
where z and b are learned parameters. In this setting, Lout is invariant by per-mutations of p̃ and z indices, generating multiple local minima and complica-
ting the learning phase.

3.2.2 . Latent Space Regression
An auxiliary approach is to consider a data fidelity term over a latent space

variable instead. The data fidelity term for classification approaches is usually
a cross-entropy term over the softmax logit vector p, defined as

LCE = −
∑
i

pi log p̃i. (3.2)
This raises the question of the encoding, i.e., the assignment of a target mem-
bership vector p to the true depth.

Hard-AssignmentWith this encoding, a true depth value z is assigned to
only one class j = arg mini |z − zi|, or equivalently to a Dirac membership
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probability vector p with pj = 1 and pi 6=j = 0, as depicted in Figure 3.5. An es-
timate of z is obtainedwith the arg max operator : z̃ = zarg maxi(p̃i). This codingscheme corresponds to usual classification approaches. A way tomitigate the
arg max classification results, including the misclassification error sensitivity,
and obtain continuous depth values, is to use the soft-argmax operator defi-
ned as

z̃ =
N∑
i=1

p̃i · zi = p̃T z. (3.3)
Soft-AssignmentAnother approach is to guide the estimations using prior

class relationships, as in the work of [Proença and Gao, 2020], where a soft-
assignment encoding is used for pose estimation. Soft-assignment encodes
a given depth value into a multi-class membership probability vector p. This
probability vector will be used as a weighting to enable precise decoding of in-
termediate values, hence a continuous estimation. We consider zi as a depthlandmark associated to class i. The class membership probability of a given
sample at depth z is assigned using a kernelK with the classical rule [Liu et al.,
2011]

pi = K(zi, z)/
∑
j

K(zj , z). (3.4)
For a lossless decomposition,weuseB-spline kernel of order 1 such as :K(zi, z) =

[δ−|zi−z|]+, where δ is the distance between two consecutive landmarks. Fi-
gure 3.5 depicts the corresponding membership probability vector p of a true
value z using 7 landmarks {zi}7i=1. The estimated value z̃ is obtained via the
soft-argmax operator : z̃ = p̃T z.

Table 3.1 shows a summary of the loss function and the estimationmethod
for each of the above approaches.

3.2.3 . Naive Regression
The naive regression approach consists in considering an encoder net-

work that ends with only one scalar instead of the classification logit vector
and performing the optimisationminimising an L2 distance between that sca-
lar and the actual value. There is no regression scale within this neural net-
work architecture, as illustrated by Figure 3.4.
Table 3.1 – Summary of respective encoding, loss functions and estima-tion rules for each considered approach.
Method Encoding Loss function Estimation
Output Regression None (z̃ − z)2 + λr‖ỹ‖1 z̃ = p̃Tz+ bClassification Hard

LCE(p̃,p)
z̃ = zargmax(p̃)Hard-Assignment Hard z̃ = p̃TzSoft-Assignment Soft z̃ = p̃Tz
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Figure 3.4 – Architecture of naive regression.

z1 z2 z3 z4 z7z5 z6

p
z1 z2 z3 z4 z7z5 z6

p

z

1

1

0

0

Figure 3.5 – Illustration of hard-assignment (top) and soft-assignment enco-ding (bottom) for a true depth value z (blue) on 7 classes. The correspondinghard-assignment codewill result in a probability of 1 for the closest depth land-mark, i.e., z4. Whereas the soft-assignment codingwill dispatch theweights onadjacent depth landmarks, i.e., z3 and z4.

3.2.4 . Network Architecture
For the classification network, we consider a simple CNN similar to the

InnerNet proposed in [Haim et al., 2018] that is composed of 6 successive nor-
malisation and convolution layers. It is designed to take a 32×32 grayscale
image patch as input and to predict a scalar output. We provide details of the
neural network architecture in Table 3.2.
Image normalisation The first layer of the network is a normalisation of
the image pixels, according to the image format, to process images indepen-
dently from their light exposure. The operation is a channel-wise operation
for grey-scale and RGB images. When processing RAW images, we consider a
normalisation operation of the image that operates independently for each
colour channel by taking into account the particular Bayer RGGB layout. First,
the first-order and second-order statistical moments, respectively µC and σC ,where C denotes the colour, are computed for each colour channel indepen-
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dently over the whole patch. Then, each pixel is normalised using the usual
rule p′ij = (pij − µC)/σC . This operator ensures every pixel shows the same
intensity dynamic.
Optimisation : The optimisation is done at a learning rate γ = 1e−3 using
Adam with the moments β1 = 0.9 and β2 = 0.999.
Table 3.2 – Description of the neural network used in all the experi-ments. It is a simple CNN without skip connection inspired by the In-nerNet from [Haim et al., 2018]. N is the number of classes
# Layer patch kernel feature space paddingshape (stride) input output
1 Image Normalisation 32× 32 -2 Conv2D 32× 32 9× 9 (2) 1 64 43 BatchNorm2D + ReLU 16× 16 -4 Conv2D 16× 16 5× 5 (2) 64 64 25 BatchNorm2D + ReLU 8× 8 -6 Conv2D 8× 8 5× 5 (2) 64 64 27 BatchNorm2D + ReLU 4× 4 -8 Conv2D 4× 4 5× 5 (2) 64 64 29 BatchNorm2D + ReLU 2× 2 -10 Conv2D 2× 2 5× 5 (2) 64 64 211 BatchNorm2D + ReLU 1× 1 -12 Dropout2D (p=0.2) 1× 1 -
13 Conv2D 1× 1 1× 1 (1) 64 N 014 Softmax 1× 1 - N N
15 Conv2D 1× 1 1× 1 (1) N 1 0

3.3 . Experiments
In this section, we detail the various experimental settings we considered

to challenge and characterise the proposed method described in Section 3.2.
As stated in Section 3.1, the DFD problem could be solved by a blur mea-

surement approach under the assumption of known PSF calibration. For this
reason,we tested first ourmethod in aGaussian blurmeasurement task using
simulated data. Then we extended our test approach to a real DFD using ex-
perimental depth-annotated data.

3.3.1 . Blur Estimation on Simulated Data
In order to demonstrate the ability of ourmethod to discern blurs, we first

build a simulated dataset. To model the defocus blur, we use a Gaussian mo-
del which is a standard approximation used in the literature on DFD. Hence,
the goal here is to estimate the standard deviation of a patch blurred with an
isotropic Gaussian PSF. Each training example consists of a simulated blurred
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and noisy sharp image patch and the corresponding Gaussian standard de-
viation σ in pixel. We consider two datasets of sharp images for training. The
first dataset is a set of Simulated Random Binary (S-RB) texture images with
50% probability used in [Buat et al., 2021] for active chromatic DFD. This da-
taset comprises 10000 different patterns, 7500 are used for training and 2500

for testing. The second dataset is the Describable Texture Dataset [Cimpoi
et al., 2014] (DTD), a collection of natural and artificial texture images, distri-
buted equally across 48 texture categories. Homogeneous patches have been
filtered out as they would be insensitive to blur. The filtering results in a 5640
image dataset with 4512 training and 1128 testing examples. The models are
trained to regress 70 uniformly spaced blur sizes, i.e., the standard deviation
for the 2DGaussian PSF, from 0.4pixel to 3.0pixels. Figure 3.6 shows examples
of blurred patches for both datasets.

(a) (b) (c) (d) (e)
Figure 3.6 – (a) Image patches for the S-RB pattern (top) and DTD (bottom)datasets, and corresponding blur standard deviation σ : (b) 0.4, (c) 1.0, (d) 2.0,and (e) 3.0 pixels.

Table 3.3 shows performance metrics for the best model of the methods
described in Table 3.1, trained on both datasets. We chose to encode the ac-
tual depth over a very low number of classes (N = 7). We also test the use of
the ordinal loss [Fu et al., 2018]. It only implies increasing the size of the mem-
bership vector by 2, as this loss characterises the probability for the depth
to lie between two ordered depth classes. The output space regression ap-
proach seems to be ill-conditioned and leads to a model that predicts the ex-
pectation of the blur value over the training set, this phenomenon is referred
to as regression to the mean issue in [Haim et al., 2018].

In comparison, assuming the ordinality of depths as in [Fu et al., 2018]
leads to significantly better performances. The classification approach highly
improves the depth estimation score, with another slight improvement by ad-
ding a soft-argmax operation. Finally, our method based on soft-assignment
encoding clearly outperforms the other regression approaches on both da-
tasets. Figure 3.7 shows for both datasets and at each tested blur value σ
the mean estimated blur value and the corresponding standard deviation
(a) and bias (b), for the classification, the hard-assignment, and our method
using soft-assignment. For the S-RB dataset, a quantisation of the estimation
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Table 3.3 – Absolute and relative errors (RMSE and MAE) results on S-RB pattern and DTD datasets for several state-of-the-art methods andthe proposed soft-assignement method. * indicates that only the localscale classification architecture of [Haim et al., 2018] is considered. Allmethods are trained using N = 7 classes.
Method RMSE MAE RMSE MAES-RB dataset (in pix) relative (in %)Output Regression 0.76 0.65 8.9 58.2Ordinal 0.35 0.19 6.9 24.9Classification *[Haim et al., 2018] 0.13 0.11 1.1 8.3Hard-Assignment 0.12 0.10 1.1 7.9Soft-Assignment 0.01 0.01 0.01 0.6Naive Regression 0.02 0.01 0.1 0.8DTD datasetOutput Regression 0.76 0.65 8.9 58.2Ordinal 0.34 0.24 4.4 20.8Classification *[Haim et al., 2018] 0.3 0.23 2.47 17.12Hard-Assignment 0.26 0.19 2.1 14.41Soft-Assignment 0.23 0.18 1.94 13.1Naive Regression 0.29 0.22 2.5 17.0

is clearly visible for both classification and hard-assignment approaches as
well as a dispersion of the estimations near the borders of representation
classes. Whereas our approach fits closely the identity line. In comparison,
the greater diversity in texture and the potential native blur in DTD images
cause greater dispersion in the estimations. While the overall error is greater
for all, our approach performs better than hard-assignment and classification
approaches. Misclassifications induce a bias that is necessarily positive (resp.
negative) near the lowest (resp. highest) values of σ, making the estimation
curve tilted as the estimated value can only be higher (resp. lower) in average.

The gap in performance between the S-RB and DTD datasets comes from
the different nature of texture. RB images are built from simulation using a
constrained scene model, and hence have high contrast, while DTD images
have more variability in contrast and texture, making the training more chal-
lenging.

Regarding the naive regression, this approach performs almost as well
as the soft-assignment on the S-RB dataset and slightly worse on the DTD
dataset. This highlight theweaker robustness of the naive approach to greater
texture variability.

3.3.2 . Depth Estimation on Real Data
The goal of this section is to demonstrate the ability of our method to es-

timate the depth of real data. For this experiment, we use a dataset of real
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(a) (b)
Figure 3.7 – Mean predicted blur value σ (a), bias (b) and confidence intervalfor classification, hard-assignment and soft-assignment approaches trainedon the S-RB patterns (top) or DTD (bottom).

images used for industrial surface inspection using active DFD [Buat et al.,
2021]. This dataset is an image collection of an RB pattern projected on a flat
surface that sweeps a distance range going from 300 mm to 350 mm with a
step of 0.2mm, as illustrated in Figure 3.8.We refer to this dataset as Real Ran-
dom Binary (R-RB). The camera has a focal length f=25 mm, with an aperture
of f/4, and axial chromatic aberration characterised by a difference of 200 µm
between the focal length for the red and for the blue channels. The chromatic
aberrations separate the respective in-focus planes of the RGB channels to in-
crease the depth cues encoded by the defocus blur in the image. As the three
colour channels have different blurs, we process the RAW images to avoid any
blur perturbation due to demosaicing. The experimental data exhibit strong
off-axis aberrations, therefore we divide the full image into smaller rectangu-
lar regions where the PSF shape is assumed to be shift-invariant. We chose to
use a regression scale with 15 depth classes linearly spaced between 300 and
350mm.

Table 3.4 shows the performances of our method on the central region of
a 3 by 3 division, compared to hard-assignment and classification methods,
the method proposed by Buat et al., [Buat et al., 2021] for 51 linearly spaced
depth classes, and the naive regression. We also tested our method using 51
classes. Our method achieves significantly smaller estimation errors compa-
red to other methods supporting the benefit of using a soft assignment for
depth regression. Using either 15 or 51 classes lead to similar performances,
with a slight improvement for 51 classes. This slight benefit is not worth the
added cost of training our method with 51 classes.

The naive regression approach shows a significantly large estimation error
35



Figure 3.8 – Top view of the R-RB dataset acquisition setup [Buat et al., 2021].On the right, the camera is mounted with a chromatic add-on, next to the pat-tern projector. On the left, the fronto-parallel screen that can translate alongthe optical axis and on which the RB pattern is projected.

due to a folding of the estimations near the edge of the depth domain, and
also because of a greater bias in the estimations. These poor performances
confirm the high sensitivity of this approach to slight perturbations, such as
texture diversity or spatial variation of the PSF within the central region of
experimental images.

Figure 3.9 shows the bias, standard deviation of estimations per depth and
average bias for our method and that of Buat et al., [Buat et al., 2021] trained
and tested on the same region. Both methods exhibit a small estimation bias,
however, our method shows less deviation in the estimations and an average
bias closer to 0 mm.
Table 3.4 – RMSE andMAE, absolute and relative for classification (sub-part of [Haim et al., 2018]), the proposed soft-assignment approach andBuat et al., [Buat et al., 2021] approach trained on R-RB dataset, nearthe optical center.
Method RMSE MAE RMSE MAE(# classes) (in mm) relative (in %)
Classification *[Haim et al., 2018] (15) 1.17 9.8 e-1 3.6 e-2 3.0 e-1Hard-Assignment (15) 7.5 e-1 6.0 e-1 2.3 e-2 1.9 e-1Soft-Assignment (15) 4.7 e-1 3.7 e-1 1.5 e-2 1.2 e-1Soft-Assign. (51) 4.6 e-1 3.7 e-1 1.4 e-2 1.1 e-1Buat et al., [Buat et al., 2021] (51) 9.7 e-1 5.7 e-1 2.9 e-2 1.7 e-1Naive Regression 3.90 1.65 1.3e-1 5.1e-1

Figure 3.11 shows depth map estimation using the method of [Buat et al.,
2021] and ours on large RAW images for two 3D printed objects. In order to
take into account optical aberrations, as in [Buat et al., 2020], we consider
image subdivisions, using respectively 4× 4 and 5×5 overlapping grids, as
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Figure 3.9 – Bias with estimation standard deviation per depth, average bias(dotted) for the method of Buat et al., [Buat et al., 2021] and our proposedsoft-assignment method trained on R-RB dataset.

Figure 3.10 – Overlay of real data training data with (a) 4× 4 division, and (b)5×5 division. The final estimation is the fusion of overlapping subdivisionsestimation. (c) Test object data with the fusion overlay.

shown in Figure 3.10. The covariance matrices learned for the method of Buat
et al., [Buat et al., 2021] and the proposed architecture are trained separately
using 32× 32 patches from each subdivision, so 41 different models are trai-
ned. Hence as each image patch belongs to two subdivisions, we compute the
mean of the two depths regression obtained using the corresponding trained
models. To produce the depth map, we process patches with overlapping of
50%.

The first object is a set of steps that is characterised by depth discontinui-
ties, the second object is a cone that is characterised by a linear spatial varia-
tion of depth. A reference depth map is provided for each object. It consists
of a 3D printing specification of the models completed with a single reference
depth value measured with a telemeter on a characteristic point of the mo-
del [Buat et al., 2021]. Estimated depth maps are very similar to the reference
depth maps on the whole image for both methods.

The method of Buat et al., produces granular depth maps with visible bor-
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ders of training subdivisions, especially on the cone example. On the contrary,
the depthmapproduced by ourmethod is smoother and sharper at the edges
of each step, while circular depth levels are clearly visible on the cone depth
map. These results highlight the efficacy of the proposed method, and its ro-
bustness in particular to patches showing either continuous or discontinuous
depths values.

input RAW [Buat et al., 2021] ours reference depth map
Figure 3.11 – Test of the proposed method on RAW images of 3D printed ob-jects : steps (top) showing depth discontinuity, and cone (bottom) showing li-near variation of depth. From left to right : input RAW image, estimated depthmap for the method of Buat et al., [Buat et al., 2021], our proposed method,and the reference depthmap obtained with a telemeter and known 3D objectprofile.

3.4 . Conclusion
In this chapter, we tackled the problem of Depth fromDefocus using deep

learning. One major drawback of state-of-the-art DFD methods is that they
proceed using a classification approach, which does not take into account the
continuous nature of depth.

In order to account for the continuous nature of depth, we proposed to
explore methods for depth regression on small patches showing defocus
blur. We especially developed a regression approach that takes advantage of
a simple and stable classification architecture and a linear operator, named
regression scale. The particularity of our method is that the training process
lies in the soft-assignment encoding of the ground truth depth value to build
a targetedmembership probability vector that will be ultimately estimated by
the network. The regression is then performed using the regression scale on
the estimated membership probability vector.
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Our method is simple, requires no image prior nor additional informa-
tion, and can be applied to any image/value matching data. We applied our
approach to the DFD problem and showed it performs well on simulated and
experimental data for small patches, on both planar scenes and natural 3D
objects.

Moreover, our method could extend to a more generic blur characterisa-
tion problem, in order to estimate the blur parameter as in [Debarnot and
Weiss, 2022]. Further works will follow including the analysis of various ex-
perimental settings, such as the robustness to different noise levels and the
patch size. The current approach for processing full-resolution images and ta-
king into account the spatial variation of the defocus blur relies on learning
a model locally dedicated to a small image portion. This approach can be-
come time and memory expensive. A way to mitigate this limitation would be
to inject the patch location into the network to regularise the estimation as
in [Kashiwagi et al., 2019].

Previously presented methods all rely on the defocus blur that originates
from the optical system and the imaging settings, such as the focus and the
aperture size. One can wonder if an optimal optical setting exists for the DFD
task. In the next chapter, we will develop a co-designmethod to solve the joint
optimisation of both the optical system and the neural network parameters
for the DFD task.
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4 - DeepCo-Design for depth fromdefocus and
depth of field extension
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In the previous chapter, we showed how a neural network could regress
locally the depth using the information brought by defocusing blur. As the
defocus blur is closely related to the optical parameters, the question about
the choice of these parameters for the most depth-informative blur arises.
In other terms, is it possible to learn the neural network and the optical sys-
temparameters jointly for DFD?Moreover, as the DFD deteriorates the image
quality, can we pair up the image deblurring and the DFD is one single co-
design framework?

The joint optimisation of optics and image processing is a paradigm that
was first introduced by [Dowski and Cathey, 1995] with the design of a cubic-
phase-modulation phase mask for Extended Depth of Field (EDOF). This was
followed with the works of [Diaz et al., 2009, Falcón et al., 2017, Fontbonne
et al., 2019, Lévêque et al., 2020] that consider an MSE criterion over the de-
blurred image from a Wiener filter for designing phase masks. Co-design for
the problem of DFD has also been addressed with [Levin et al., 2007], pro-
posing to use a Kullback-Leibler divergence score to discriminate potential
blurs in the frequency domain on a constrained set of binary coded aperture.
[Martinello and Favaro, 2011] learns projections of simulated blurs onto ortho-
gonal feature spaces to help blur identification according to a coded aperture.
From this approach, a suitable binary-coded mask can be chosen by maximi-
sing the discriminating power for the learned feature space. [Trouvé et al.,
2013, Trouvé-Peloux et al., 2014, Buat et al., 2022] propose to use depth esti-
mators derived frommaximum likelihood, and use the Cramér-Rao Bound to
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Figure 4.1 – Schematics of the deep co-design from [Akpinar et al., 2019] forimage deblurring. The neural network (D-CNN) processes the image resultingfrom the differentiable camera model and provides an estimation of the de-blurred image. A reconstruction error is computed, and the gradient of theerror is propagated through the network to the cameramodel to update theirparameters.

estimate a theoretical depth estimation accuracy and find the best parame-
ters for conventional and unconventional optics.

All these methods aim to find a suitable optical system with respect to
analytically defined performance and estimation models, such as Wiener fil-
ters or maximum likelihood. However, neural networks offer more degrees
of freedom regarding image processing tasks. Therefore we address in the
chapter the joint optimisation of neural networks and optical parameters.

4.1 . Related works
The deep co-design approach makes use of deep learning tools to jointly

optimise the optical and neural network parameters for a given task. The neu-
ral network process the image resulting from the differentiable image for-
mation model and provides an estimate for the given task. Then, an asso-
ciated loss function is evaluated, and the gradient of the loss is propagated
through the network to the image formation model to update their parame-
ters through a gradient-based optimisation scheme. Figure 4.1 illustrates one
instance of deep co-design framework for EDOF [Akpinar et al., 2019]. Because
the images are processed by a neural network, a great variety of tasks can be
addressed.

For instance, regarding optical components optimisation for theMDE, [Haim
et al., 2018] proposed to learn an annular phase-coded mask and a simple
fully-convolutional classification neural network jointly. [Wu et al., 2019, Chang
and Wetzstein, 2019] both proposed to co-optimise the height profile of a
phase mask and the parameters of a U-Net to regress depth maps. Similarly,
[Mel et al., 2022] proposed a several-step training scheme that jointly opti-
mises a phase-coded mask and a U-Net for depth estimation first, then trains
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and fine-tunes the depth estimation model and a deblurring model for the
given optimal phase mask. [Sitzmann et al., 2018, Elmalem et al., 2018, Akpinar
et al., 2019] addressed depth of field extension.

One challenge of the deep co-design is to define the differentiable imaging
formation model that will enable the optimisation of the optical parameters.
Each of these works aims to design an optimal phase mask for their respec-
tive task and use a differentiable model of Fourier optics to form the images.
This model assumes a paraxial thin-lens approximation for a simplified lens
system. Differential Ray-Tracing (DRT) is another image formation model that
requires the lens system specification, i.e., number of surfaces, curvature and
layout. This model can lead to the fine design of complex optical systems.
This model has been used to optimise the focus distance of a known optics
in [Halé et al., 2021] and for the optimisation of a complete optical system
in [Sun et al., 2021] for EDOF. A greater computational cost accompanies the
DRT, compared to Fourier optics, as it takes into account the complete optical
design. [Dufraisse et al., 2022] compared both models for co-design perspec-
tives, and observed that a Gaussian approximation on the DRTmodel granted
a good compromise between computational cost and accuracy of the PSF.

We summarise all the aforementioned methods into Table 4.1, detailing
the task considered for optimising the optical element, as well as the image
formation model used for the optimisation. We can notice a great number
of methods tackling phase mask optimisation using a Fourier optics model,
as well as the emergence of methods dealing with DRT models instead. All
these methods consider the optimisation of the optical system for a single
task. The first take on deep co-design for both DFD and EDOF has been pro-
posed in [Ikoma et al., 2021], where a phase mask is optimised with a neural
network estimating RGB-D images.

In the following, we propose to address themulti-objective deep co-design
of one particular optical parameter, that is the focus distance, using a DRT
model. We also investigate the impact of the initialisation on the the resulting
optical system, which, except from [Fontbonne, 2021], has a limited number
of comments in the deep co-design literature.

4.2 . Chapter organisation
In this chapter, we explore the joint optimisation of a ray-tracing optical

model and two neural networks. The first neural network deals with the DFD,
and the second with the deblurring for image quality recovery over a prede-
fined depth range, for the EDOF task.

We givemore details about the considered optical system, the optical mo-
del, and the neural networks in Section 4.3. First, we address the deep co-
design for each task independently to understand how the optimisation af-
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Table 4.1 – Summary of deep co-design methods showing their respec-tive task of interest, the image formation model used and the opticalcomponent that is optimised. FO : Fourier Optics, DRT : Differential ray-tracer.
Method Task Image Optimisedformation component

[Sitzmann et al., 2018] EDOF/super-resolution FO Phase mask[Elmalem et al., 2018] EDOF FO Phase mask[Haim et al., 2018] MDE FO Phase mask[Wu et al., 2019] MDE FO Phase mask[Chang and Wetzstein, 2019] MDE FO Phase mask[Akpinar et al., 2019] EDOF FO Phase mask[Halé et al., 2021] EDOF DRT Focus[Sun et al., 2021] EDOF DRT Lens design[Ikoma et al., 2021] MDE +EDOF FO Phase mask[Mel et al., 2022] MDE (EDOF) FO Phase mask

fects the optical system, and if a unique optical system that would be satis-
factory for both tasks exists. To test the uniqueness, we propose to look at
the obtained optimal settings given various initialisation for an optical system
with only one degree of freedom.

Then we consider the simultaneous optimisation of both neural networks
with a common optical system. See Figure 4.2 for an overview of the optimi-
sation chain.

Figure 4.2 – Overview of the multi-task co-design framework.

4.3 . Settings
In order to simplify the problem of the joint optimisation, we consider the

optical model of an actual unconventional optical system that has been de-
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(a) (b)
Figure 4.3 – (a) Schematics of the lens triplet, also known as the Cooke triplet,composing the optical system. (b) View of the camera mounted with the lenstriplet. [Trouvé et al., 2013]
signed in [Trouvé et al., 2013] for DFD. This optics is characterised by a lens
that has been built to display sufficient longitudinal chromatic aberration to
have separated RGB depth of field in the required depth range. This design
was also constrained to reduce all other aberrations as much as possible in
order to maintain good image quality. The design starting point was a clas-
sical Cooke 25 mm f/4 triplet made of two convergent lenses separated by
a divergent lens, which is the triplet aperture stop because this configuration
naturally helps to reduce lateral chromatic aberration. Several choices of glass
for the triplet have been compared and it turned out that a focal shift of 200
µm,obtainedwith the glassesN-BK7/LLF1/N-BK7,was an amount of chromatic
aberration that correctly separated the RGB depth of field in the depth range
of 1 to 5 m, which was the original depth range of interest in this reference
for robotic application. As the lens specifications are known, we can provide
them to a DRTmodel, which enables the deep co-design of that particular op-
tics. Here, as in [Buat et al., 2021], this lens is used in a closer depth range from
300mm to 350mm. This optical system has only one degree of freedom left,
which is the focus distance, on which we perform the joint optimisation.

4.3.1 . Image formation model
For our experiments, we consider the following image formation model

for patches
B = Bayer(IS ? Hθoptics(z)) + η (4.1)

Where ? is the convolution operator, IS an RGB sharp image,Hθoptics the chro-matic PSF as a function of depth, and η a Gaussian noise. The Bayer opera-
tor converts a 3-channel RGB image into a 1-channel RGGB Bayer image of
the same resolution that accounts for the actual camera sensor. θoptics is thesingle optical parameter to optimise, in our case, the focus distance.

We chose to estimate the PSFs using the differentiable ray-tracing model
developed in [Volatier et al., 2017] and also used in [Halé et al., 2021], as it
accounts for the real optical system layout, and can simulate the spatial va-
riation of the PSF and off-axis aberrations. The computation of the PSF is done
by casting from a punctual source numerous rays in different directions that
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will propagate through the lens system according to reflection laws until they
reach the sensor. This results in a spot diagram

S = {si ∈ R2, i ∈ J1, NraysK} (4.2)
, that accounts for every possible location si where a ray hit the sensor, i.e.,a density map from which a PSF can be inferred. We chose to use the Gaus-
sian approximation of the model for the PSF, as it offers a good trade-off bet-
ween computational cost and accuracy, as discussed in [Dufraisse et al., 2022].
Hence, the shape of the PSF is given by the standard deviation obtained from
the spot diagram. Even though DRT handles off-axis aberrations, we decide
for our preliminary study to consider an optimisation setting near the axis.

4.3.2 . Depth estimation method
To perform the DFD estimation, we use the method previously described

in Chapter 3, with the architecture presented in Section 3.2.4 with 15 classes
for the encoding, and the associated loss function LDFD is the cross-entropy
loss between the true and predictedmembership probability vectors, respec-
tively p and p̃.

LDFD = −
N∑
i=1

pi log(p̃i), (4.3)
with :

p̃i = ΨθDFD
(B)|i = P (z = zi|B, θDFD). (4.4)

The estimated depth is obtained using the following linear form :
ẑ =

N∑
i=1

p̃izi. (4.5)
Here the set of parameters to optimise is θDFD of 400K parameters, which is
a relatively small number of parameters compared to other neural network
architectures for depth estimation. We find it important to have as few pro-
cessing parameters as possible not to undermine the depth cues provided by
the optical model.

4.3.3 . Deblurring method
In order to perform the deblurring for the EDOF task, we consider a neu-

ral network architecture inspired by the Residual Encoder-Decoder network
(RED-Net) [Mao et al., 2016]. This architecture comprises a sequence of convo-
lution layers (encoder) followedby the samenumber of "deconvolution" layers
(decoder) and makes use of periodic additive skip connections between the
encoder and decoder at equivalent scales. We are interested to retrieve an
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Figure 4.4 – Adaptation of the RED-Net for deblurring RAW patches. The net-work performs the demosaicing and outputs an RGB image.

RGB image IE from the RAW image B. So, in addition to deblurring, the net-
work performs demosaicing. The architecture of the neural network is illus-
trated in Figure 4.4.

IE = ΦθEDOF
(B). (4.6)

The loss function for this task is a simple variation of the `1 distance bet-ween IE and IS , the true sharp patch image :
LEDOF = `1(IE , IS)× σS , (4.7)

where σS is the standard deviation of the pixel intensities per channel of
the ground truth sharp image. This weights down the patch examples having
smooth textures and little contrast.

4.3.4 . Optimisation scheme
For the gradient-based optimisation, we considered the Adam optimiser

over 80 epochs, with two different learning rates for the optical parameters
and the neural network parameters. In the following experiments, we set
ηoptics = 0.01 and ηnet = 0.001.

4.4 . Deep co-design for a single task
In this section, we address the optical and neural network joint optimisa-

tion for each task separately in order to understand what optical system suits
best the task. As a reminder, the optical parameter we optimise is the focus
plane distance for the green colour, corresponding to a wavelength of 530nm,
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(a) (b)
Figure 4.5 – (a) Evolution of the focus during training for the DFD on RB pat-terns given various initial sensor positions. The shaded area shows the depthrange of interest. (b) Scatter plot of the RMSE performances with respect tothe focus plane distance for the last 10 epochs (over 80). The cross marksthe best performance obtained for the optimisation with fixed optics at fo-cus=319.7mm. The dotted lines indicate the RMSE and focus distance valuesfor the best DFD system.

or equivalently, the distance of the sensor to the lens system. To address the
sensitivity to the initialisation for the joint optimisation, we consider several
initial sensor positions : 31.5, 32.0, 32.05, 32.1, 32.5, and 33.5mm.

We perform the optimisation and the testing on two texture datasets al-
ready described in Chapter 3 : RB pattern, and DTD. Each patch is associa-
ted with a depth value drawn randomly and uniformly between 300mm and
350mm, which defines the depth range of interest.

4.4.1 . Deep co-design of DFD on Random Binary patterns
We first consider the joint optimisation of the focus distance and the neu-

ral network parameters on RB patterns.
Figure 4.5.a shows the evolution of the focus during the joint optimisa-

tion for each initial sensor position. The shaded area defines the depth range
of possible values for training and testing. Some initial sensor positions are
chosen to make a focus out of this range : 33.5, 32.5, and 31.5mm.

Weobserve that, except for the initialisation at 33.5mmthat doesn’t converge,
all the other models tend to quickly reach a stable focus distance inside the
depth range. However, the optimal focus is different depending on the ini-
tial sensor position value. Besides, the ordering between the initial focus dis-
tances and between the optimised focus distances seems to be preserved.
This might suggest that the optimisation landscape might contain several lo-
cal minima for the sensor position.

In order to have a definite answer on which system, i.e., focus, to consi-
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der for our task, we characterise the performances of each potential system
using the RMSE on a validation set. For each optimisation trajectory, we show
the RMSE and corresponding focus for the last 10 epochs in Figure 4.5.b. Note
that the trajectory that did not converge, corresponding to a sensor position
initialised at 33.5mm, is out of the window because of its unsatisfactory esti-
mation performances.We also display, using a crossmark, the best RMSE per-
formance of a DFD network trained on image patches from an optical system
focused and fixed at 319.7mm. The best performance achieved by this parti-
cular optimisation setting is similar to the other co-design approaches. Yet, it
is important tomention that several settings obtained by optimising the focus
distance offer lower RMSE. We can notice that the obtained performances for
each trajectory are concentrated around distinct focus distances, which cor-
responds to the previously observed convergence in focus distance. However,
for a given focus point, we canwitness a dispersion in performances which re-
sults from the variability in the neural network parameters during training and
we can evaluate a quantitative measure of these dispersions using the ave-
rage and standard deviation. We report these measures for the final sensor
position [and corresponding focus distance], the final loss, and the final RMSE
in Table 4.2. From this table, we can note that these measures for the loss are
similar for each trajectory, meaning they have reached a similar objective for
different optical parameters.
Table 4.2 – Review for the joint optimisation of the sensor position andthe DFDmodel for various initial sensor positions on RB patterns. Ave-rage value (± standard deviation) over the 10 last epochs.
sensor position [focus @530nm] (in mm) Loss RMSEinitial final CE (in mm)
33.50 [199.1] 34.92 [147.1 (±3.4)] 2.69 (±2.0e-2) 14.4 (±6.6e-2)32.50 [271.4] 32.11 [317.5 (±3.6e-1)] 6.01e-1 (±5.9e-2) 6.64e-1 (±1.63e-1)32.10 [319.7] 32.06 [324.4 (±3.4e-1)] 5.80e-1 (±4.3e-2) 6.81e-1 (±2.00e-1)32.05 [327.1] 32.05 [326.2 (±2.2e-1)] 5.79e-1 (±4.4e-2) 4.94e-1 (±4.5e-2)32.00 [334.8] 32.00 [333.5 (±2.5e-1)] 5.78e-1 (±3.8e-2) 4.88e-1 (±6.8e-2)31.50 [441.1] 31.98 [336.8 (±2.9e-1)] 5.97e-1 (±4.4e-2) 5.70e-1 (±7.9e-2)
Table 4.2 reports marginal statistics for each optimisation trajectory, so

the best focus setting, here 333.5mm, does not correspond to a system expe-
rimentally obtained during training. When choosing the most suitable optical
parameters, we would rather base our decision on a system experimentally
obtained. Therefore the decision is made based on Figure 4.5.b. Hence we
would choose to focus at 333.7mm for the depth estimation as it is the set-
ting with the lowest known RMSE of 0.37mm, which is highlighted with the
dotted lines. Note that the difference in performance with other settings is
small.
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sharp patch 300mm 310mm 320mm 330mm 340mm 350mm
Figure 4.6 – Example of a simulated RB pattern at various depths with the op-timal system : (top) RGB images to visualise the chromatic blur, and (bottom)RAW images that are processed by the neural network.

We also show some examples of a RB pattern acquired at various depths
for the chosen setting in Figure 4.6. The neural network processes the RAW
images, so we display the RGB images for visualisation of the chromatic blur.

4.4.2 . Deep co-design for EDOF on Random Binary patterns
Now we investigate the deep co-design for the problem of deblurring for

a large depth range, namely EDOF. As before, we perform end-to-end optimi-
sations of the deblurring neural network and the optical sensor position, for
various optical initialisation and depth values.

Figure 4.7.a shows the evolution of the focus during training for each sen-
sor position initialisation. The optimisation process guides every system to
have a focus distance into the depth range of interest. However, inmost cases,
the sensor position suffers from significant variations inside the depth range
of interest during the optimisation and it does not converge to a definite focus
value. Only one trajectory initialised at 31.5mm shows convergence in sensor
position during training. As for DFD, these different behaviours may account
for the complex optimisation landscape. It would also suggest that the focus
distance is not a determinant parameter for the EDOF network to be able to
process the image as long as it is within the depth range of interest. We ex-
plain this insensitivity from the simplicity of the EDOF task for deblurring a RB
patterns.

For the EDOF task, we consider the PSNR to assess the goodness of the
estimations : the higher, the better. We show in Figure 4.7.b the PSNR and the
focus during the last 10 epochs for each optimisation trajectory. Unlike for
the DFD, the position of the sensor does not seem to be crucial for the EDOF.
However, one sample stands out with a PSNR of 59.1 for a focus at 317.3mm.
Any other focus distance for the system may lead to a similar PSNR close to
55. We also observe, from the cross mark, that the optimisation of the EDOF
neural network for a focus distance fixed at 319.7mm leads to a system with a
high PSNR, due to greater stability in training for the simple task of RB pattern
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(a) (b)
Figure 4.7 – (a) Evolution of the focus during training for the EDOF on RB pat-terns given various initial sensor positions. The shaded area shows the depthrange of interest. (b) Scatter plot of the PSNR performances with respect tothe focus plane distance for the last 10 epochs (over 80). The cross marksthe best performance obtained for the optimisation with fixed optics at fo-cus=319.7mm. The dotted lines indicate the PSNR and focus distance valuesfor the best EDOF system.

deblurring. Yet, as for DFD, deep co-design discovered a better setting. Again,
we report statistics over the last 10 epochs for the final sensor position, loss
and PSNR in Table 4.3. We notice the great value of standard deviation for the
final sensor position over the last 10 epochs.
Table 4.3 – Review for the joint optimisation of the sensor position andthe EDOF model for various initial sensor positions. Average value (±standard deviation) over the 10 last epochs.

sensor position [focus] (in mm) Loss PSNRinitial final L1
33.50 [199.1] 32.05 [325.7 (±7.3)] 6.63e-4 (±1.03e-4) 53.0 (±2.6)32.50 [271.4] 32.11 [317.0 (±3.9)] 8.63e-4 (±1.53e-4) 50.9 (±2.1)32.10 [319.7] 32.06 [325.8 (±8.7)] 1.07e-3 (±2.16e-4) 48.2 (±3.6)32.05 [327.1] 32.03 [329.8 (±9.6)] 9.16e-4 (±1.62e-4) 51.1 (±2.9)32.00 [334.8] 32.05 [328.7 (±9.6)] 8.66e-4 (±1.54e-4) 51.0 (±4.2)31.50 [441.1] 32.06 [326.1 (±0.8)] 9.64e-4 (±1.88e-4) 51.7 (±1.9)

Conclusion on Random Binary patterns We observed that optimisa-
tion for DFD is subject to local minima with similar performance in terms of
RMSE, and that EDOF is not sensitive to the sensor position as long as the fo-
cus is within the depth range of interest. Moreover, the best estimation for
both tasks, i.e., 333.7mm for depth estimation and 317.3mm for deblurring
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sharp patch 300mm 310mm 320mm 330mm 340mm 350mm
Figure 4.8 – Example of a simulated RB pattern at various depths with theoptimal system for EDOF : (top) RGB, (middle) RAW, (bottom) deblurred.

on RB patterns correspond to different settings. If the co-design approach
helps to discover better focus settings for each task, the benefit in terms of
performance is however limited in these experiments, possibly because of
the deblurring task for RB patterns that seems too easy. For this reason, we
consider another dataset in the following section.

4.4.3 . Deep co-design for DFD on natural images
We performed the optimisations for the DFD on the DTD used in Chap-

ter 3, which contains a great variety of natural textures, hence, having lower
contrast than binary patterns.

Figure 4.9.a shows the evolution of the focus given different initialisations.
As with the RB dataset, the convergence of the focus is not assured when the
initial focus is far from the depth range of interest, as shown by the blue curve
and the late convergence of the brown curve. On this dataset, we can notice
two optimal focus distances standing out : 321mm and 330mm. Compared to
RBdataset, the greater variability in texture seems to smooth the optimisation
landscape and reduce the number of local minima.

When looking at the RMSE for the depth estimations and their respective
focus distance on Figure 4.9.b, we can see that each optimal focus distance
displays overall similar performances with the lowest RMSE of 2.9mm obtai-
ned with a focus at 330mm. We see that the optimisation with fixed focus,
marked by the cross, is close to an optimal focus distance obtained by co-
design, and offers a good estimation performance. However, as with the RB
dataset, a better system is reached using deep co-design. We report the trai-
ning statistics over the last 10 epochs in Table 4.4. Again, the final loss value
is similar for each optimisation trajectory. We notice that, for DTD, the loss
value is twice as high as for RB dataset, which indicates that natural textures
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(a) (b)
Figure 4.9 – (a) Evolution of the focus during training for the DFD on DTD gi-ven various initial sensor positions. The shaded area shows the depth rangeof interest. (b) Scatter plot of the RMSE performances with respect to the fo-cus plane distance for the last 10 epochs (over 80). The cross marks the bestperformance obtained for the optimisation with fixed optics.

are more difficult to process.
Table 4.4 – Review for the joint optimisation of the sensor position andthe DFD model for various initial sensor positions on DTD. Average va-lue (± standard deviation) over the 10 last epochs.

sensor position [focus @530nm] (in mm) Loss RMSEinitial final CE (in mm)
33.50 [199.1] 35.85 [126.8 (±1.83)] 2.69 (±2.0e-2) 14.5 (±1.5e-1)32.50 [271.4] 32.09 [321.1 (±3.7e-1)] 1.00 (±1.1e-1) 3.85 (±3.1e-1)32.10 [319.7] 32.03 [330.1 (±4.1e-1)] 9.67e-1 (±1.56e-1) 3.98 (±4.0e-1)32.05 [327.1] 32.03 [330.4 (±4.8e-1)] 9.76e-1 (±9.9e-2) 4.02 (±2.7e-1)32.00 [334.8] 32.03 [330.6 (±4.2e-1)] 9.56e-1 (±9.2e-2) 3.49 (±4.0e-1)31.50 [441.1] 32.02 [332.1 (±4.4e-1)] 1.04 (±1.1e-1) 4.15 (±3.1e-1)

4.4.4 . Deep co-design for EDOF on natural images
Lastly, we consider the co-design of the sensor position for the EDOF. Fi-

gure 4.10.a shows the evolution of the focus during training given different
initialisation. Regardless of the initialisation, the focus falls quickly into the
depth range of interest. Yet, there is a noticeable variability in the focus dis-
tance during the optimisation process, which happens to be smaller than for
RB patterns. This suggests that the greater diversity of texture provided by
DTD is more challenging for the EDOF, hence the system is more sensitive to
the sensor position.

We show the performance in PSNR and the respective focus distance in
Figure 4.10.b. Each optimisation leads to systems with comparable perfor-
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(a) (b)
Figure 4.10 – (a) Evolution of the focus during training for the EDOF on DTD gi-ven various initial sensor positions. The shaded area shows the depth rangeof interest. (b) Scatter plot of the PSNR performances with respect to the fo-cus plane distance for the last 10 epochs (over 80). The cross marks the bestperformance obtained for the optimisation with fixed optics.

mances as long as the focus is between 317mm and 333mm, the best PSNR
being 25.62 at 325mm. Again, we observe the benefit of the deep co-design re-
garding the best achievable PSNR compared to optimising the neural network
with fixed focus distance.

We also report the statistics over the last 10 epochs in Table 4.5 andwe can
notice the smaller standard deviation of the final focus distance for training
on DTD compared to RB dataset.
Table 4.5 – Review for the joint optimisation of the sensor position andthe EDOF model for various initial sensor positions on DTD. Averagevalue (± standard deviation) over the 10 last epochs.

sensor position [focus] (in mm) Loss PSNRinitial final L1
33.50 [199.1] 32.07 [323.1 (±2.3)] 6.99e-3 (±1.08e-3) 25.1 (±1.1e-1)32.50 [271.4] 32.05 [327.7 (±2.7)] 6.72e-3 (±1.05e-3) 25.0 (±2.9e-1)32.10 [319.7] 32.05 [324.7 (±2.8)] 6.74e-3 (±9.42e-4) 25.2 (±1.4e-1)32.05 [327.1] 32.05 [328.3 (±2.9)] 6.60e-3 (±9.51e-4) 25.2 (±1.5e-1)32.00 [334.8] 32.05 [326.2 (±2.5)] 6.86e-3 (±1.02e-3) 25.4 (±7.7e-2)31.50 [441.1] 32.06 [324.7 (±3.0)] 6.72e-3 (±9.55e-4) 25.4 (±1.4e-1)

Conclusion on natural texture We observed that training on natural
texture, having less contrast than binary patterns, leads to fewer local mi-
nima for the DFD, and a higher sensitivity to the sensor position for the EDOF.
Hence, the benefit of the deep co-design is more visible for natural textures.
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4.4.5 . Conclusion on the single-task co-design
In this section, we managed to perform separate end-to-end optimisa-

tions of the parameters of a neural network for either DFD or EDOF, and of
an image formation model in order to find the best focus for each task.

We noticed similar behaviour for each task regarding convergence and va-
riability of the focus distance during the optimisation on either texture type.
Optimisation for DFD must face multiple local optima but with similar perfor-
mances, and EDOF is less sensitive to the focus distance.

Regarding the performances, we showed that deep co-design approaches
can find systems having better performances than just training a neural net-
work for an arbitrarily chosen and fixed optical system.

The optimisation process on natural texture led to advantageous focus
distances for each task closer to each other compared to the optimisation
on RB patterns. However, since there is no clear optimal focus distance for
both tasks, a compromise must be made by hand. Hence, can we delegate
the choice of the compromise to the optimiser?

4.5 . Multi-Task Co-Design
To answer that question we consider an end-to-end multi-task optimisa-

tion scheme, where both tasks are performed simultaneously using the same
image,meaning they are linkedwith only one parameter : the sensor position.
The joint optimisation is performed to minimise the following loss function :

Lmulti = LDFD + λLEDOF (4.8)
LDFD andLEDOF have a difference ofmagnitude by a factor 500, as shown in
Tables 4.2, 4.5, 4.4 and 4.3. To prioritise the DFD, which is the task of interest
for this thesis, We choose to set λ=1.

4.5.1 . Multi-task on Random Binary patterns
As for Section 4.4, we first perform the optimisation on RB patterns.
Figure 4.11 shows the evolution of the focus distance during the optimisa-

tion process for various initialisations. We first notice that for every initialisa-
tion, the focus falls and remains in the depth range of interest, which seems
to be a benefit from the EDOF. Besides, 3 plateaus are reached : 318mm (blue
and orange), 326mm (green and red), and 335mm (purple and brown), simi-
larly to the DFD in single-task optimisation.

Regarding the performance in depth estimation, Figure 4.12.a shows the
achievedRMSEand corresponding focus during the last 10 epochs of themulti-
task optimisation on RB patterns, as well as the lowest RMSE reached by the
single-task DFD training (dotted line). Overall reached performances are simi-
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Figure 4.11 – Evolution of the focus during themulti-task training (DFD + EDOF)on RB patterns given various initial sensor positions. The shaded area showsthe range of depth of interest.

lar to single-task DFD, yet, the lowest RMSE value that is similar to the single-
task optimisation is reached for a focus at 337mm instead of 330mm.

Regarding the performance in deblurring, Figure 4.12.b shows the PSNR
of the deblurred image with respect to the focus for the multi-task optimisa-
tion, and the highest PSNR for the single-task optimisation (dotted line). The
highest PSNR for this multi-task approach is slightly lower than for the single-
task approach and is reached for a focus at 333mm instead of 317mm. The
PSNR value is also really close to the PSNR obtained via fixed optics optimi-
sation. This slight cost in performance for EDOF might be the result of the
priority given to the DFD through the loss balancing.

We report the statistics over the last 10 epochs for the final sensor position,
the loss for either task, PSNR, and RMSE in Table 4.6. We notice the loss for
DFD is similar to the single-task optimisation, while the loss for EDOF is slightly
higher due to the loss unbalance.
Table 4.6 – Review for the joint optimisation of the sensor position andtheDFD+EDOFmodel for various initial sensor positions. Average value(± standard deviation) over the 10 last epochs.

sensor position [focus] (in mm) Loss EDOF DFDinitial final L1 CE PSNR RMSE (mm)
33.50 [199.1] 32.10 [319.5 (±3.2e-1)] 1.02e-3 (±2.63e-4) 5.89e-1 (±5.5e-2) 50.6 (±0.9) 5.86e-1 (±8.4e-2)32.50 [271.4] 32.12 [317.4 (±3.7e-1)] 1.09e-3 (±1.58e-4) 6.00e-1 (±5.4e-2) 50.1 (±1.2) 6.12e-1 (±1.72e-1)32.10 [319.7] 32.06 [325.3 (±3.2e-1)] 8.91e-4 (±1.68e-4) 5.80e-1 (±4.2e-2) 52.2 (±1.6) 5.49e-1 (±1.46e-1)32.05 [327.1] 32.05 [326.3 (±2.8e-1)] 7.39e-4 (±1.46e-4) 5.84e-1 (±4.8e-2) 53.6 (±1.0) 5.95e-1 (±1.43e-1)32.00 [334.8] 32.01 [333.8 (±2.7e-1)] 7.62e-4 (±1.11e-4) 5.84e-1 (±4.6e-2) 53.8 (±1.9) 5.13e-1 (±4.06e-2)31.50 [441.1] 31.99 [336.9 (±2.2e-1)] 1.17e-3 (±3.37e-4) 5.81e-1 (±4.5e-2) 48.1 (±4.8) 5.02e-1 (±9.8e-2))
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(a) (b)
Figure 4.12 – (a) Scatter of RMSE for depth estimation, and (b) PSNR for deblur-ring, with respect to the focus (at 530nm) for the last 10 epochs (over 80) ofDFD+EDOF training on RB patterns. Each colour accounts for an initial sensorposition. The horizontal dotted line indicates the best performance achievedduring single-task optimisation.

Conclusion on Random Binary patterns We observed that the multi-
task optimisation has a stabilising effect on the convergence of the focus dis-
tance. However, it did not solve the problem of multiple local optima. And,
again, the choice for the optimal optical system is not obvious and is still sub-
ject to a compromise.

4.5.2 . Multi-task on natural images
Similarly, weperform the end-to-endmulti-task optimisation using natural

images from DTD.
Figure 4.13 shows the evolution of the sensor position during the training.

We observe the same behaviour as for the multi-task optimisation on the RB
dataset, that is the stability to the initialisation brought by the EDOF task, as
well as the multiple plateaus for the sensor position brought by the DFD task.
Again, the range of optimal focus distances is narrower for natural texture
than for RB patterns, illustrating a greater sensibility to the focus position for
this database.

Regarding the performance in depth estimation, Figure 4.14.a shows the
achieved RMSE with respect to the focus distance. We can note that 2 fo-
cus distances achieve better RMSE compared to single-task training. The lo-
west RMSE reached for this multi-task optimisation is obtained for a focus at
320mm, and happens to be quite lower than the lowest RMSE for the optimi-
sation with a fixed focus at 319.7mm.

Regarding the performance in EDOF, Figure 4.14.b shows the achieved
PSNR for the deblurred images with respect to the focus distance. We notice
that the highest PSNR achieved by this multi-task approach is slightly smaller
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Figure 4.13 – Evolution of the focus during themulti-task training (DFD + EDOF)onDTD patterns given various initial sensor positions. The shaded area showsthe range of depth of interest.

than the highest PSNR for the single-task training on DTD.
We report the statistics over the last 10 epochs for the final sensor position,

the loss for either task, PSNR, and RMSE in Table 4.7.
Once more, we can not find a single optimal focus distance that would

yield the best estimations for both tasks. At the current stage, a trade-off in
performance is impliedwhen choosing a focus distance for the optical system.
Table 4.7 – Review for the joint optimisation of the sensor position andtheDFD+EDOFmodel for various initial sensor positions. Average value(± standard deviation) over the 10 last epochs.

sensor position [focus] (in mm) Loss EDOF DFDinitial final L1 CE PSNR RMSE (mm)
33.50 [199.1] 32.07 [324.6 (±5.2e-1)] 6.81e-3 (±1.0e-3) 1.03 (±1.2e-1) 25.2 (±7.1e-2) 3.56 (±2.7e-1)32.50 [271.4] 32.09 [321.2 (±5.7e-1)] 6.90e-3 (±9.1e-4) 1.01 (±1.1e-1) 25.1 (±5.6e-2) 3.03 (±4.5e-1)32.10 [319.7] 32.05 [327.3 (±4.2e-1)] 6.61e-3 (±9.6e-4) 9.92e-01 (±1.09e-1) 25.4 (±9.0e-2) 3.40 (±3.3e-1)32.05 [327.1] 32.03 [330.6 (±3.3e-1)] 6.69e-3 (±9.7e-4) 9.74e-01 (±9.8e-2) 25.4 (±9.0e-2) 3.64 (±3.1e-1)32.00 [334.8] 32.02 [330.9 (±4.7e-1)] 6.78e-3 (±1.0e-3) 9.77e-01 (±1.16e-1) 25.3 (±9.2e-2) 3.54 (±4.1e-1)31.50 [441.1] 32.03 [330.8 (±3.7e-1)] 6.93e-3 (±9.2e-4) 9.73e-01 (±1.01e-1) 25.1 (±6.8e-2) 3.82 (±3.4e-1)

4.5.3 . Conclusion on multi-task deep co-design
We performed joint optimisation for the focus distance of the optical sys-

tem and for both DFD and EDOF networks simultaneously, by considering the
simplest loss fusion. We observed that the evolution of the focus distance du-
ring the optimisation benefited from both tasks, in terms of stability to the ini-
tialisation and steadiness due to local optima introduced by the DFD task. We
observed a performance gain from the multi-task optimisation, compared to
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(a) (b)
Figure 4.14 – (a) Scatter of RMSE for depth estimation, and (b) PSNR for de-blurring, with respect to the focus (at 530nm) for the last 10 epochs (over 80)of DFD+EDOF training on DTD. Each colour accounts for an initial sensor posi-tion. The horizontal dotted line indicates the best performance achieved du-ring single-task optimisation.

the single-task, for DFD on natural textures. We suppose that multi-task trai-
ning triggers a different exploration of the optimisation landscape, leading to
different outcomes.

As for the single-task optimisation, the choice for the optimal focus is not
obvious, as a trade-off in performance for both tasks needs to be considered,
mostly because of the multiple local optima.

4.6 . Conclusion
In this chapter, we showed that it is possible to learn a parameter of an

optical system and of our DFD network on image patches. For that, we per-
formed supervised training of a chromatic optical system with one degree of
freedom, modelled by a differential ray-tracer, and a lightweight neural net-
work to produce depth estimations from blurred image patches. We found
that the optimisation process falls in various local optima, or does not converge
at all, depending on the initial optical setting, resulting inmultiple optimal set-
tings for the optical system. Each of these local optima provides relatively si-
milar performances for the given task of DFD. Additionally, in order to build a
full imaging systemwith good image quality and 3D capabilities, we addressed
the problem of deblurring to mitigate the quality deterioration introduced by
the defocus blur. We showed that the deblurring task is less sensitive to the
optical setting, i.e., the focus distance, compared to DFD.

So, through deep co-design, we found that for DFD and EDOF, there exists
a reachable optimal performance that is better than when the optics is fixed.
However, the focus distance that provides the best performance is different
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for each task, so a compromise is necessary.
We proposed to address this compromise by making use of the deep co-

design approach on both tasks simultaneously. The same optical model pro-
vides both neural networks with the same images, and the optimisation of the
focus distance and network parameters is performed using a loss function
that accounts for both tasks with a priority for the DFD. This led to several ob-
servations : Regarding the evolution of the focus distance during the learning
phase, the optimisation process benefits the robustness to the initial focus
distance from the EDOF. Besides, focus distances converge toward multiple
optimal values, which might be a result of the priority given to the DFD for
the optimisation. Then, regarding the performance for each task, we showed
that the multi-task training led to instances of DFD neural networks reaching
better or similar performances for DFD at a negligible cost in EDOF capabili-
ties, especially for natural textures that are more challenging than structured
binary patterns.

Finally, we found that a clear optimal setting for both tasks could not be
obtained from the current deep co-design approach. Themain reason for this
is the existence of multiple local optima that appear in the DFD optimisation.
Perspectives The optimisation process of DFD for only one parameter (fo-
cus distance) is subject tomultiple local optima, whichmakes the optimisation
and the choice of the design sensitive to the initialisation. Except from [Font-
bonne, 2021], very few comments on such sensitivity for co-design methods
exist in the literature, and we showed with this preliminary work the impor-
tance of overcoming it.

In order to investigate further this local optima problem, a first step would
be to try various optimisers, learning rates, and hyperparameters. A second
step could be adding more degrees of freedom in the design of the optical
system via more parameters to optimise, such as lens curvatures, and also
considering large-field imaging, which is possible using DRT.

DFD and EDOF are closely related tasks, and someworks use intermediate
depth estimation to regularise deblurring [Zhang et al., 2018, Ma et al., 2022].
Therefore we could also investigate having both branches mutually share in-
formation to guide their estimation. It could be, for instance feeding the EDOF
network with the depth estimation. We could also explore shared feature en-
coding between both tasks and two distinct heads for each estimate, or as
in [Ikoma et al., 2021], one single convolutional neural network estimating di-
rectly the RGB-D image.
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5 - Conclusions and Perspectives
5.1 . Conclusion
In this thesis, we addressed the problem of monocular depth estimation

using deep-learningmethods in order to designnovel 3D vision systems,which
led to the development of various estimation methods.

First, we presented in Chapter 2 an approach to tackle the problem of
point cloud reconstruction for complex outdoor scenes from a single RGB
image, using a lightweight 2D-3D hybrid neural network. The proposed me-
thod recovers properly distributed point clouds by taking advantage of an op-
timal transport loss. We also provided the first benchmark for this novel task
on the KITTI dataset and introduced performance metrics to assess the qua-
lity of point cloud reconstruction. We showed that our method outperforms
state-of-the-art depthmappredictionmethodswhen trainedwith sparse data.
We also showed that point clouds from active acquisition methods, which
have uniform coverage of the scene, were beneficial to the performance of
the estimation model, compared to point clouds from passive approaches.

Then, in Chapter 3, we addressed the problemof local depth estimation by
exploiting the defocus blur. We developed a regression approach for Depth
from Defocus (DFD) on small texture patches, to take into account the conti-
nuous nature of depth. This approach takes advantage of a simple and stable
classification architecture and a linear operator, named regression scale. The
particularity of our method is that the training process relies on the soft-
assignment encoding of the ground truth depth value to build a targeted
membership probability vector that will be ultimately estimated by the net-
work. The regression is then performed using the regression scale on the es-
timated membership probability vector. Our method is simple, requires no
image prior nor additional information, and canbe applied to any image/value
matching data. We applied our approach to the DFD problem and showed it
performs well on simulated and experimental data for small patches, on both
planar scenes and natural 3D objects.

Finally, in Chapter 4, we addressed the problem of joint optimisation of an
optical system and a neural network for DFD, in order for the optics to supply
the estimator with images having the most informative defocus blur. We sho-
wed that it is possible to learn the parameters of the optical system and of
the neural network jointly for DFD on image patches. For that, we performed
supervised training of a chromatic optical system with one degree of free-
dom, modelled by a differential ray-tracer, and a lightweight neural network
to produce depth estimations from blurred image patches. We found that the
DFD task showedmultiple optimal settings with similar performance. Additio-
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nally, in order to build a full imaging system with good image quality and 3D
capabilities, we addressed the problem of deblurring to mitigate the quality
deterioration introduced by the defocus blur. We showed that the EDOF task
is less sensitive to the focus distance, compared to DFD.

So, through deep co-design, we found that for DFD and EDOF, there exists
a reachable optimal system that has a better performance than when the op-
tics is fixed. However, the focus distance that provides the best performance
is different for each task, so a compromise is necessary. We used a deep co-
design approach on both tasks simultaneously to find a compromise. This led
to several observations : regarding the evolution of the focus distance du-
ring the learning phase, the optimisation process benefits the robustness to
the initial focus distance from the EDOF. Besides, focus distances converge
toward multiple optimal values, which might be a result of the priority given
to the DFD for the optimisation. Then, regarding the performance for each
task, we showed that the multi-task training led to instances of DFD neu-
ral networks reaching better or similar performances at a negligible cost in
EDOF capabilities, especially for natural textures that are more challenging
than structured binary patterns.

5.2 . Perspectives & future works
Following our works, we discern two parts to our perspectives : the first

part relates to data we consider for building our models, and the second part
accounts for algorithmic developments for each of our methods.

5.2.1 . Collecting "in the wild" data
For the development of our local DFD estimation method, as well as the

deep co-design approach, we considered two datasets of image patches ha-
ving different styles of texture : the Random Binary dataset, whose textures
are structured and apply to controlled environments, and the Describable
Texture Dataset [Cimpoi et al., 2014], whose textures aremore natural and ap-
ply to uncontrolled environments. We developed the local DFDmethod using
simulated blurs for both styles of textures and we tested it on the experimen-
tal data of [Buat et al., 2020], which involve only RB patterns in a controlled
environment setting. However, it would be interesting to also apply our me-
thods to experimental data of natural images, whose blur can be controlled
using lenses dedicated to DFD. This latter problem expresses a need to build
our own databases. For that exact motive, a portable acquisition platform, for
both image and 3D, named Maratus has been developed at ONERA prior to
my thesis. This platform, shown in Figure 5.1, comprises a stereo baseline of
two identical cameras and a RealSense RGB-D camera, which gives Maratus
both passive and active 3D capabilities. Unconventional camera systems are
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Figure 5.1 – Description of Maratus, a nomad platform for image and 3D ac-quisition.

also mounted in between the stereo cameras. With that setting, Maratus can
provide us with databases of images from unconventional optics and corres-
ponding depth.

camera focal distance f-number sensor resolution pixel size
Stereo 5.5mm 1.8 1600×1200 4.5µmRealSense D435 1.93mm 2.0 1280×720 3µmDFD (chromatic add-on) 16mm 1.8 2046×2592 4.8µmDFD (Cooke) 25mm 4.0 2456×2054 3.45µm

Table 5.1 – Specifications for cameras mounted on Maratus.
The first optical system for which Maratus supplied depth is a set of two

cameras having different apertures, controlled by Tamron lenses. The idea
behind this setting was to characterise experimentally the effect of defocus
blur for deep learning depth estimation methods [Carvalho et al., 2018a]. Fi-
gure 5.2 shows available data for one example of this dataset : (a) and (b)
the RealSense RGB-D images, (c) a large depth-of-field image, sharper than
(d) the corresponding small depth-of-field image having stronger variation of
defocus blur within the depth range of interest. A greater concern was given
to chromatic blur during my thesis. In [Trouvé-Peloux et al., 2018], an optical
element has been developed in order to enhance the chromatic aberration
for conventional optics, giving the resulting camera system 3D capabilities
through chromatic DFD. In order to build a database with outdoor chroma-
tic images, we considered adding that particular optical element to one of the
Tamron lenses. We also added ontoMaratus, the Cooke triplet camera system
used in Chapter 3, with the focus set at 2 meters away from the camera. Un-
like the Tamron lens, the Cooke triplet’s lens architecture and specifications
are known and can be given to a DRT model, hence allowing experimental
validation for the optimisation of the focus setting using deep co-design ap-
proaches. Figure 5.3 shows available data for one example of the dataset I
have built after calibration of the platform : (a) and (b) are the stereo RGB and
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(a) (b)

(c) (d)
Figure 5.2 – Example of data for the small depth of field set. (a) RealSenseRGB, (b) RealSense depth map, (c) Tamron small aperture, and (d) Tamronlarge aperture images.

projected depth map, (c) the chromatic image from the Cooke triplet, and (d)
the image from the Tamron camera with the chromatic add-on. The system
with the chromatic Tamron has a greater field of view compared to the Cooke
triplet, which will be used to investigate depth estimation and image restora-
tion problems in off-axis regions.

The optical and sensor specifications for each camera mounted on Mara-
tus are reported in Table 5.1.

Even though they have not been used yet, these databases will have seve-
ral uses. In addition to previously stated problems, these databases will help
us characterise the robustness of the estimators to "in the wild" settings, i.e.,
natural images subject to motion blur, and noise inconsistency throughout
the image due to uncontrolled lighting.

These databases were built using arbitrary fixed optical settings, however,
as we have developed a working deep co-design framework, we could use it
to find the best optical setting for the chromatic system, and build tailored
databases for outdoor depth estimation.
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(a) (b)

(c) (d)
Figure 5.3 – Example of data for the chromatic set. (a) Stereo RGB, (b) Stereodepth map, (c) Cooke triplet image, and (d) Tamron image with the chromaticadd-on.

5.2.2 . Algorithmic perspectives
Now, we will present the perspectives accompanying the different algo-

rithmic contributions we have made during this thesis.
Outdoor point cloud estimation

We have seen in Chapter 2 that the point cloud estimation of Pix2Point
could be improved in several aspects.

The first aspect relates to the global scale estimation and the rigidity of the
network for processing the images. These two characteristics originate from
the fully connected layer in charge of converting the encoded spatial features
from the whole image, into a first coarse point cloud, whose number of ele-
ments is fixed by design. However, using the whole image can be detrimen-
tal to the estimation of objects at a finer scale, as a local texture or intensity
change in the image can affect the entire estimation. These two shortcomings
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can bemitigated by dividing the image into smaller regions and having a dedi-
cated neural network for each region to predict a local point cloud. The global
point cloud would be the aggregation of the local point clouds, therefore in-
creasing the total number of points. Another approach to preserve spatial
neighbourhood information would be to consider a fully convolutional net-
work, in that case, the total number of predicted points would be determined
by the input image resolution.

A second aspect relates to the spatial resolution of the estimations. We
observed that close objects in the scene were not finely estimated by our me-
thod. We explain this behaviour as a result of the global scale approach. This
makes our method unable to differentiate between coarse features in the
image - such as road or building surfaces, that could be assigned to a coarse-
scale point cloud, and for which we could have higher error tolerance - and
finer features that would account for possible obstacles on the road, road si-
gns, or pedestrians, for which estimation accuracy is critical. To mitigate this,
a multi-scale estimation mechanism could be added in order to enable that
scale differentiation. For instance, one approach would be first to estimate
a coarse scale point cloud, then use it to condition immediately finer scale
estimations.

Maratus can support these aspectswith training data acquired in both pas-
sive (with stereo) and active (with RealSense) ways.

As semantic understanding of 3D scenes is a crucial task for autonomous
driving, a third and broader aspect we could consider is adding semantic seg-
mentation of the estimated point cloud on top of the geometric estimation.
This could be implemented using a multi-task learning scheme that could be
beneficial for both task, as in [Carvalho et al., 2019].
Combination of global and local estimation

In this thesis, we addressed both global and local estimation approaches
independently, however, it would be interesting to develop MDE methods
combining both estimation scales.We could find inspiration in thework of [Lee
et al., 2019a] that proposes a global scaleMDEmethod guided by local geome-
trical constraints. The global scale could help regularise the local DFD estima-
tions using context information for patches having low texture, and conver-
sely. Yet, for local approaches to handle large-field images, the problem of
off-axis aberrations must be engaged, especially for unconventional optics
that may reinforce this phenomenon. It was previously handled in our work
by dividing the large-field images into several regions where the PSF is consi-
dered invariant, and on which a different model is learned. To address this is-
sue more simply, we could use an approach similar to [Kashiwagi et al., 2019]
by providing the estimator with the patch location of the processed patch in
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the large-field image. Again, this topic could be supplied with substantial data
acquired by Maratus.
Deep co-design

In Chapter 4, we highlighted several progression axes resulting from our
preliminary work on multi-task deep co-design of an optical system and dedi-
cated neural networks. First, we faced a phenomenonofmultiple local conver-
gences that is rarely commented on in the literature, which reveals the sen-
sitivity of the optimal optical settings to the initialisation [Fontbonne, 2021]
and to the optimisation algorithm. Our first take on this issue would be to
have a better characterisation of that phenomenon by trying different op-
timisers and settings. The next step would be to consider more degrees of
freedom for the optical element to optimise. For instance, the radius of cur-
vature for one lens of the Cooke triplet could be added to the optimisation.
Over-parametrisation could avoid the optical system to collapse in a local op-
timum during training. This local optima issue could also originate from the
differential ray-tracing model used for the optimisation. Therefore, we could
try a different optical model, such as Fourier optics, to characterise the origin
of this problem.

Regarding the choice of themost suitable optical system for both DFD and
EDOF, we looked at the optical setting for which each task exhibited the best
performance at a given optimisation stepwhen the optical parameter was still
free to vary. We saw that the best-reached performance for both tasks could
be different for the same focus distance. Therefore, it could be interesting to
add a supplementary step to the optimisation in which the optical parame-
ter is fixed after convergence, in order to only optimise the neural network
model. Exploring further this topic is currently subject to a PhD proposal in
our team. Moreover, a PhD thesis currently conducted by Marius Dufraisse
in our team aims to explore deep co-design of complete lens structures [Du-
fraisse et al., 2022] for higher-level tasks, such as classification and adversarial
tasks [Hinojosa et al., 2022].

5.3 . Concluding note
In this thesis, we addressed the different parts composing a 3D mono-

cular vision system, from information sensing to processing. We proposed
deep learning methods that could be used in a co-design framework. We be-
lieve that intricate optimisation for smart sensing, enabled by deep co-design,
would lead to more efficient and compact vision systems, for tasks ranging
from 3D perception to higher-level tasks such as classification and decision-
making.

66



Bibliography
[Akpinar et al., 2019] Akpinar, U., Sahin, E., and Gotchev, A. (2019). Learning

optimal phase-coded aperture for depth of field extension. In 2019 IEEE
International Conference on Image Processing (ICIP), pages 4315–4319.

[Amiri et al., 2019] Amiri, A. J., Loo, S., and Zhang, H. (2019). Semi-supervised
monocular depth estimation with left-right consistency using deep neural
network. In IEEE Int. Conf. on Robotics and Biomimetics (ROBIO).

[Anwar et al., 2021] Anwar, S., Hayder, Z., and Porikli, F. (2021). Deblur and
deep depth from single defocus image. Machine Vision and Applications.

[Bhat et al., 2021] Bhat, S. F., Alhashim, I., and Wonka, P. (2021). AdaBins :
Depth estimation using adaptive bins. Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR).

[Buat et al., 2022] Buat, B., Trouvé-Peloux, P., Champagnat, F., and Le Bes-
nerais, G. (2022). Single image depth-from-defocus with a learned
covariance : algorithm and performance model for co-design. In
SPIE PHOTONICS EUROPE 2022, volume 12136 of Proceedings of SPIE,
STRASBOURG, France.

[Buat et al., 2020] Buat, B., Trouvé-Peloux, P., Champagnat, F., Le Besnerais,
G., and Simon, T. (2020). Active chromatic depth from defocus for industrial
inspection. In Unconventional Optical Imaging II. International Society for
Optics and Photonics.

[Buat et al., 2021] Buat, B., Trouvé-Peloux, P., Champagnat, F., and Besnerais,
G. L. (2021). Learning scene and blur model for active chromatic depth from
defocus. Applied Optics, 60(31).

[Caccia et al., 2019] Caccia, L., van Hoof, H., Courville, A., and Pineau, J. (2019).
Deep generativemodeling of LiDAR data. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS).

[Carvalho et al., 2018a] Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Almansa,
A., and Champagnat, F. (2018a). Deep Depth from Defocus : How can de-
focus blur improve 3D estimation using dense neural networks? In Proc.
IEEE/CVF Eur. Conf. on Computer Vision Worskhops (ECCVW).

[Carvalho et al., 2018b] Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Champa-
gnat, F., and Almansa, A. (2018b). On regression losses for deep depth esti-
mation. In Proc. IEEE Int. Conf. on Image Processing (ICIP).

[Carvalho et al., 2019] Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Champa-
gnat, F., and Almansa, A. (2019). Multitask learning of height and seman-
tics from aerial images. IEEE Geoscience and Remote Sensing Letters,
17(8) :1391–1395.

67



[Chang and Wetzstein, 2019] Chang, J. and Wetzstein, G. (2019). Deep optics
for monocular depth estimation and 3D object detection. In Proc. IEEE/CVF
Int. Conf. on Computer Vision (ICCV).

[Cimpoi et al., 2014] Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , and Ve-
daldi, A. (2014). Describing textures in the wild. In Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[Cuturi, 2013] Cuturi, M. (2013). Sinkhorn distances : Lightspeed computation
of optimal transport. In Advances in Neural Information Processing System
26.

[Debarnot and Weiss, 2022] Debarnot, V. and Weiss, P. (2022). Deep-blur :
Blind identification and deblurring with convolutional neural networks.

[Denninger and Triebel, 2020] Denninger, M. and Triebel, R. (2020). 3D scene
reconstruction from a single viewport. In IEEE/CVF Eur. Conf. on Computer
Vision.

[Diaz et al., 2009] Diaz, F., Goudail, F., Loiseaux, B., and Huignard, J.-P. (2009).
Increase in depth of field taking into account deconvolution by optimization
of pupil mask. Opt. Lett., 34(19) :2970–2972.

[Dowski and Cathey, 1995] Dowski, E. R. and Cathey, W. T. (1995). Extended
depth of field through wave-front coding. Appl. Opt., 34(11) :1859–1866.

[Dufraisse et al., 2022] Dufraisse, M., Trouvé-Peloux, P., Volatier, J.-B., and
Champagnat, F. (2022). On the use of differentiable optical models for lens
and neural network co-design. In Unconventional Optical Imaging III, vo-
lume 12136, pages 164–173. SPIE.

[D’Andrès et al., 2016] D’Andrès, L., Salvador, J., Kochale, A., and Süsstrunk, S.
(2016). Non-parametric blur map regression for depth of field extension.
IEEE Transactions on Image Processing.

[Eigen et al., 2014] Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map
prediction from a single image using amulti-scale deep network. Advances
in neural information processing systems, 27.

[Elmalem et al., 2018] Elmalem, S., Giryes, R., and Marom, E. (2018). Learned
phase coded aperture for the benefit of depth of field extension. Opt.
Express, 26(12) :15316–15331.

[Falcón et al., 2017] Falcón, R., Goudail, F., Kulcsár, C., and Sauer, H. (2017).
Performance limits of binary annular phase masks codesigned for depth-
of-field extension. Optical Engineering, 56(6) :065104.

[Fan et al., 2017] Fan, H., Su, H., and Guibas, L. J. (2017). A point set generation
network for 3D object reconstruction from a single image. In Proc. IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR).

68



[Faugeras, 1993] Faugeras, O. (1993). Three-Dimensional Computer Vision : A
Geometric Viewpoint.

[Feydy et al., 2019] Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S.-i., Trouvé, A.,
and Peyré, G. (2019). Interpolating between optimal transport and MMD
using sinkhorn divergences. In Int. Conf. on Artificial Intelligence and
Statistics.

[Fontbonne, 2021] Fontbonne, A. (2021). Conception conjointe combinaison
optique / traitement : Une nouvelle approche de la conception optique de
haut niveau. PhD thesis. Thèse de doctorat dirigée par Goudail, François
Physique université Paris-Saclay 2021.

[Fontbonne et al., 2019] Fontbonne, A., Sauer, H., Kulcsár, C., Coutrot, A.-L.,
and Goudail, F. (2019). Experimental validation of hybrid optical–digital
imaging system for extended depth-of-field based on co-optimized binary
phase masks. Optical Engineering, 58(11) :113107.

[Fu et al., 2018] Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D.
(2018). Deep ordinal regression network for monocular depth estimation.
In Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR).

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vi-
sion meets robotics : The KITTI dataset. International Journal of Robotics
Research (IJRR).

[Haim et al., 2018] Haim, H., Elmalem, S., Giryes, R., Bronstein, A. M., and Ma-
rom, E. (2018). Depth estimation from a single image using deep learned
phase coded mask. IEEE Transactions on Computational Imaging.

[Halé et al., 2021] Halé, A., Trouvé-Peloux, P., and Volatier, J.-B. (2021). End-
to-end sensor and neural network design using differential ray tracing.
Optics Express, 29(21) :34748.

[Hartley and Zisserman, 2004] Hartley, R. I. and Zisserman, A. (2004). Multiple
View Geometry in Computer Vision.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778.

[Hinojosa et al., 2022] Hinojosa, C., Marquez, M., Arguello, H., Adeli, E., Fei-
Fei, L., and Niebles, J. C. (2022). Privhar : Recognizing human actions from
privacy-preserving lens. In Computer Vision – ECCV 2022 : 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IV, page
314–332. Springer-Verlag.

[Hirschmueller, 2008] Hirschmueller, H. (2008). Stereo processing by semi-
global matching and mutual information. Trans. Pattern Analysis and
Machine Intelligence, 30 :328–41.

69



[Huang et al., 2017] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
4700–4708.

[Ikoma et al., 2021] Ikoma, H., Nguyen, C. M., Metzler, C. A., Peng, Y., and
Wetzstein, G. (2021). Depth from defocus with learned optics for ima-
ging and occlusion-aware depth estimation. In Proc. IEEE Int. Conf. on
Computational Photography (ICCP).

[Kashiwagi et al., 2019] Kashiwagi, M., Mishima, N., Kozakaya, T., and Hiura, S.
(2019). Deep depth from aberration map. In Proc. IEEE/CVF Int. Conf. on
Computer Vision (ICCV).

[Lee et al., 2019a] Lee, J., Han,M., Ko, D., and Suh, I. (2019a). FromBig to Small :
Multi-scale local planar guidance for monocular depth estimation. arXiv
preprint arXiv :1907.10326.

[Lee et al., 2019b] Lee, J., Lee, S., Cho, S., and Lee, S. (2019b). Deep defocus
map estimation using domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

[Leroy et al., 2020] Leroy, R., Le Saux, B., de Carvalho, M. P., Trouvé-Peloux, P.,
and Champagnat, F. (2020). Pix2point : prédiction monoculaire de scènes
3d par réseaux de neurones hybrides et transport optimal. In RFIAP.

[Leroy et al., 2022a] Leroy, R., Trouvé-Peloux, P., Saux, B. L., Buat, B., and
Champagnat, F. (2022a). Learning local depth regression from defocus blur
by soft-assignment encoding. Appl. Opt., 61(29) :8843–8849.

[Leroy et al., 2021] Leroy, R., Trouvé-Peloux, P., Champagnat, F., Le Saux, B.,
and Carvalho, M. (2021). Pix2Point : Learning outdoor 3D using sparse
point clouds and optimal transport. In Int. Conf. on Machine Vision and
Applications (MVA).

[Leroy et al., 2022b] Leroy, R., Trouvé-Peloux, P., Saux, B. L., Buat, B., and
Champagnat, F. (2022b). Régression locale de la profondeur grâce au flou
de défocalisation et à un réseau de neurones entraîné par soft-assignment.
In 28Â° Colloque sur le traitement du signal et des images, number 001-
0301, pages p. 1205–1208, Nancy. GRETSI - Groupe de Recherche en Traite-
ment du Signal et des Images.

[Lévêque et al., 2020] Lévêque, O., Kulcsár, C., Lee, A., Sauer, H., Aleksanyan,
A., Bon, P., Cognet, L., and Goudail, F. (2020). Co-designed annular binary
phase masks for depth-of-field extension in single-molecule localization
microscopy. Optics Express, 28(22) :32426–32446.

[Levin et al., 2007] Levin, A., Fergus, R., Durand, F., and Freeman, W. (2007).
Image and depth from a conventional camera with a coded aperture. In
Proc. ACM SIGGRAPH.

70



[Liu et al., 2011] Liu, L., Wang, L., and Liu, X. (2011). In defense of soft-
assignment coding. In 2011 International Conference on Computer Vision.
IEEE.

[Ma et al., 2022] Ma, H., Liu, S., Liao, Q., Zhang, J., and Xue, J. (2022). Defocus
image deblurring network with defocus map estimation as auxiliary task.
IEEE Transactions on Image Processing.

[Mandikal and Radhakrishnan, 2019] Mandikal, P. and Radhakrishnan, V. B.
(2019). Dense 3D point cloud reconstruction using a deep pyramid network.
In IEEE Winter Conf. on Applications of Computer Vision (WACV).

[Mao et al., 2016] Mao, X., Shen, C., and Yang, Y.-B. (2016). Image restoration
using very deep convolutional encoder-decoder networks with symmetric
skip connections. Advances in neural information processing systems, 29.

[Martinello and Favaro, 2011] Martinello, M. and Favaro, P. (2011). Single
image blind deconvolution with higher-order texture statistics. In Video
Processing and Computational Video. Springer.

[Mel et al., 2022] Mel, M., Siddiqui, M., and Zanuttigh, P. (2022). End-to-end
learning for joint depth and image reconstruction from diffracted rotation.
arXiv preprint arXiv :2204.07076.

[Nayar and Nakagawa, 1994] Nayar, S. and Nakagawa, Y. (1994). Shape from
focus. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(8) :824–831.

[Ng et al., 2005] Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and
Hanrahan, P. (2005). Light field photography with a hand-held plenoptic
camera. PhD thesis, Stanford University.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., et al. (2019). Pytorch : An
imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32.

[Pentland, 1987] Pentland, A. P. (1987). A new sense for depth of field. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[Perwass and Wietzke, 2012] Perwass, C. and Wietzke, L. (2012). Single lens
3d-camera with extended depth-of-field. In Human vision and electronic
imaging XVII, volume 8291, pages 45–59. SPIE.

[Proença and Gao, 2020] Proença, P. F. and Gao, Y. (2020). Deep learning for
spacecraft pose estimation from photorealistic rendering. In 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.

[Pumarola et al., 2020] Pumarola, A., Popov, S., Moreno-Noguer, F., and Fer-
rari, V. (2020). C-Flow : Conditional generative flow models for images
and 3D point clouds. In IEEE/CVF Conf. on Computer Vision and Pattern
Recognition.

71



[Qi et al., 2017a] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). PointNet :
Deep learning on point sets for 3D classification and segmentation. In IEEE
Conf. on Computer Vision and Pattern Recognition, CVPR.

[Qi et al., 2017b] Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). PointNet++ :
Deep hierarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems 30.

[Ranftl et al., 2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and Kol-
tun, V. (2020). Towards robust monocular depth estimation : Mixing da-
tasets for zero-shot cross-dataset transfer. IEEE transactions on pattern
analysis and machine intelligence.

[Saxena et al., 2006] Saxena, A., Chung, S., and Ng, A. Y. (2006). Learning
depth from single monocular images. In Advances in Neural Information
Processing Systems 18.

[Shajkofci and Liebling, 2020] Shajkofci, A. and Liebling, M. (2020). Spatially-
variant cnn-basedpoint spread function estimation for blind deconvolution
and depth estimation in optical microscopy. IEEE Transactions on Image
Processing, 29 :5848–5861.

[Silberman et al., 2012] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R.
(2012). Indoor segmentation and support inference from rgbd images. In
ECCV.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv :1409.1556.

[Sitzmann et al., 2018] Sitzmann, V., Diamond, S., Peng, Y., Dun, X., Boyd, S.,
Heidrich, W., Heide, F., and Wetzstein, G. (2018). End-to-end optimization
of optics and image processing for achromatic extended depth of field and
super-resolution imaging. ACM Transactions on Graphics (TOG), 37(4) :114.

[Sun et al., 2015] Sun, J., Cao, W., Xu, Z., and Ponce, J. (2015). Learning a convo-
lutional neural network for non-uniform motion blur removal. In CVPR.

[Sun et al., 2021] Sun, Q., Wang, C., Fu, Q., Dun, X., and Heidrich, W. (2021).
End-to-end complex lens design with differentiate ray tracing. ACM Trans.
Graph.

[Sun et al., 2019] Sun, R., Gao, Y., Fang, Z., Wang, A., and Zhong, C. (2019). Ssl-
net : Point-cloud generation network with self-supervised learning. IEEE
Access, 7 :82206–82217.

[Trouvé et al., 2013] Trouvé, P., Champagnat, F., Besnerais, G. L., Sabater, J.,
Avignon, T., and Idier, J. (2013). Passive depth estimation using chromatic
aberration and a depth from defocus approach. Appl. Opt., 52(29) :7152–
7164.

72



[Trouvé-Peloux et al., 2014] Trouvé-Peloux, P., Champagnat, F., Le Besnerais,
G., and Idier, J. (2014). Theoretical performance model for single image
depth from defocus. JOSA A, 31(12) :2650–2662.

[Trouvé-Peloux et al., 2018] Trouvé-Peloux, P., Sabater, J., Bernard-Brunel, A.,
Champagnat, F., Le Besnerais, G., and Avignon, T. (2018). Turning a conven-
tional camera into a 3D camera with an add-on. Applied Optics.

[Trouvé et al., 2011] Trouvé, P., Champagnat, F., Besnerais, G. L., and Idier, J.
(2011). Single image local blur identification. In Proc. IEEE Int. Conf. on Image
Processing (ICIP).

[Trouvé et al., 2013] Trouvé, P., Champagnat, F., Le Besnerais, G., Druart, G.,
and Idier, J. (2013). Design of a chromatic 3D camera with an end-to-end
performance model approach. In IEEE Conf. Comput. Vis. Pattern Recog.
Workshops.

[Tylecek et al., 2018] Tylecek, R., Sattler, T., Le, H.-A., Brox, T., Pollefeys, M., Fi-
sher, R. B., and Gevers, T. (2018). The second workshop on 3D Reconstruc-
tion Meets Semantics : Challenge results discussion. In IEEE/CVF Eur. Conf.
on Computer Vision Workshops.

[Ullman, 1979] Ullman, S. (1979). The interpretation of structure frommotion.
Proceedings of the Royal Society of London. Series B. Biological Sciences,
203(1153) :405–426.

[Ulyanov et al., 2016] Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Ins-
tance normalization : The missing ingredient for fast stylization. arXiv
preprint arXiv :1607.08022.

[Volatier et al., 2017] Volatier, J.-B., Álvaro Menduiña Fernández, and Erhard,
M. (2017). Generalization of differential ray tracing by automatic differen-
tiation of computational graphs. J. Opt. Soc. Am. A, 34(7) :1146–1151.

[Wang et al., 2019] Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell,
M., and Weinberger, K. Q. (2019). Pseudo-LiDAR from visual depth esti-
mation : Bridging the gap in 3D object detection for autonomous driving.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

[Wu et al., 2019] Wu, Y., Boominathan, V., Chen, H., Sankaranarayanan, A.,
and Veeraraghavan, A. (2019). Phasecam3d — learning phase masks for
passive single view depth estimation. In 2019 IEEE International Conference
on Computational Photography (ICCP), pages 1–12.

[Xia et al., 2018] Xia, Y., Zhang, Y., Zhou, D., Huang, X., Wang, C., and Yang, R.
(2018). RealPoint3D : Point cloud generation from a single image with com-
plex background. arXiv preprint arXiv :1809.02743.

[Yan and Shao, 2016] Yan, R. and Shao, L. (2016). Blind image blur estimation
via deep learning. IEEE Transactions on Image Processing.

73



[You et al., 2019] You, Y., Wang, Y., Chao, W.-L., Garg, D., Pleiss, G., Hariharan,
B., Campbell, M., and Weinberger, K. Q. (2019). Pseudo-LiDAR++ : Accu-
rate depth for 3D object detection in autonomous driving. In International
Conference on Learning Representations.

[Zhang et al., 2018] Zhang, S., Shen, X., Lin, Z., Mech, R., Costeira, J. P., and
Moura, J. M. (2018). Learning to understand image blur. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

[Zhou et al., 2009] Zhou, C., Lin, S., and Nayar, S. (2009). Coded aperture pairs
for depth from defocus. In 2009 International Conference on Computer
Vision, pages 325–332. IEEE.

[Zhu et al., 2013] Zhu, X., Cohen, S., Schiller, S., andMilanfar, P. (2013). Estima-
ting spatially varying defocus blur from a single image. IEEE Transactions
on Image Processing.



Titre :Méthodes d’apprentissage profond pour systèmes de vision 3DMots clés : apprentissage profond, nuage de points 3D, co-conception
Résumé : Dans cette thèse, nous étudions l’ap-port de l’apprentissage profond pour les sys-tèmes de vision 3D monoculaire, de l’acqui-sition de l’image au traitement. Nous propo-sons d’abord Pix2Point, une méthode d’esti-mation de nuage de points 3D à partir d’uneseule image en utilisant des informations decontexte, et entraînée avec une fonction decoût de transport optimal. Pix2Point réalise unemeilleure couverture des scènes lorsqu’il estentraîné sur des nuages de points lacunairesque les méthodes d’estimation de profondeurmonoculaire, entraînées sur des cartes de pro-fondeur lacunaires. Deuxièmement, pour ex-ploiter les indices de profondeur provenant ducapteur, nous proposons une méthode de ré-gression de profondeur à partir d’un patch dé-focalisé. Cette méthode surpasse la classifica-tion et la régression directe, sur données simu-

lées et réelles. Enfin, nous abordons la concep-tion d’un système de vision RVB-D, composéd’un capteur dont l’image est traitée par notreréseau de régression de profondeur basée surla défocalisation et par un réseau de déflou-tage d’image. Nous proposons un cadre d’op-timisation multi-tâches, conjointement aux pa-ramètres des capteurs et des réseaux, et nousl’appliquons à l’optimisation de lamise au pointd’une lentille chromatique. Le paysage d’opti-misation présente plusieurs optima liés à latâche de régression en profondeur, tandis quela tâche de défloutage semble moins sensibleau paramètre de mise au point. En résumé,cette thèse propose plusieurs contributions ex-ploitant les réseaux de neurones pour l’esti-mation 3D monoculaire et ouvre la voie d’uneconception conjointe de systèmes RVB-D.

Title : Deep Learning methods for monocular 3D vision systemsKeywords : Deep learning, 3D point clouds, Co-design
Abstract : In this thesis, we explore deep lear-ning methods for monocular 3D vision sys-tems, from image acquisition to processing. Wefirst propose Pix2Point, a method for 3D pointcloud prediction from a single image usingcontext information, trained with an optimaltransport loss. Pix2Point achieves a better co-verage of the scenes when trained on sparsepoint clouds than monocular depth estimationmethods, trained on sparse depth maps. Se-cond, to exploit sensor depth cues, we proposea depth regression method from a defocusedpatch, which outperforms classification and di-rect regression, on simulated and real data. Fi-nally, we tackle the design of a RGB-D monocu-

lar vision system for which the image is proces-sed jointly by our defocus-based depth regres-sion method and a simple image deblurringnetwork. We propose an end-to-end multi-taskoptimisation framework of sensor and networkparameters, that we apply to the focus optimi-sation for a chromatic lens. The optimisationlandscape presents multiple optima, due to thedepth regression task, while the deblurring taskappears less sensitive to the focus. This thesishence contains several contributions exploitingneural networks for monocular 3D estimationand paves the way towards end-to-end designof RGB-D systems.
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