
HAL Id: tel-04088137
https://theses.hal.science/tel-04088137v1

Submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Reasoning and Inference for (Maximum) Satisfiability:
New Insights

Mohamed Sami Cherif

To cite this version:
Mohamed Sami Cherif. Reasoning and Inference for (Maximum) Satisfiability: New Insights. Com-
puter Science [cs]. Aix-Marseille University, 2022. English. �NNT : 2022AIXM0589�. �tel-04088137�

https://theses.hal.science/tel-04088137v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


NNT/NL : 2022AIXM0589/033ED184

THÈSE DE DOCTORAT
Soutenue à Aix-Marseille Université
le 13 décembre 2022 par

Mohamed Sami Cherif

Reasoning and Inference for (Maximum) Satisfiability:
New Insights

Discipline
Informatique

École doctorale
ED 184 Mathèmatiques et Informatique

Laboratoire/Partenaires de recherche
Laboratoire d’Informatique et Systèmes

Composition du jury

Carlos Ansótegui Rapporteur
Universitat de Lleida, Spain

Gilles Audemard Rapporteur
Artois University, France

Felip Manyà Examinateur
Artificial Intelligence Research
Institute, CSIC, Spain

Christine Solnon Présidente
INSA Lyon, France

Djamal Habet Directeur de thèse
Aix-Marseille University, France

Richard Ostrowski Co-directeur de thèse
Aix-Marseille University, France



Affidavit

I, the undersigned, Mohamed Sami Cherif, hereby declare that the work presented in this
manuscript is my own work, carried out under the scientific direction of Djamal Habet and
Richard Ostrowski, in accordance with the principles of honesty, integrity and responsibility
inherent to the research mission. The research work and the writing of this manuscript have
been carried out in compliance with both the french national charter for Research Integrity
and the Aix-Marseille University charter on the fight against plagiarism. This work has not
been submitted previously in the same or in a similar version to any other examination body.

Marseille, 2022 October 7

This document is made available under the terms of the Creative Commons Licence
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


List of Publications

International Journals
1. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Proofs and Certificates for

Max-SAT”. in: J. Artif. Intell. Res. 75 (2022), pp. 1373–1400. DOI: 10.1613/jair.1.
13811

2. Mohamed Sami Cherif, Djamal Habet, and André Abramé. “Understanding the Power
of Max-SAT Resolution through UP-Resilience”. In: Artif. Intell. 289 (2020), p. 103397.
DOI: 10.1016/j.artint.2020.103397

International Conferences
1. Mohamed Sami Cherif, Djamal Habet, and Matthieu Py. “From Crossing-Free Reso-

lution to Max-SAT Resolution”. In: 28th International Conference on Principles and
Practice of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel.
Ed. by Christine Solnon. Vol. 235. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 12:1–12:17. DOI: 10.4230/LIPIcs.CP.2022.12

2. Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. “Combining VSIDS and
CHB Using Restarts in SAT”. in: 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference),
October 25-29, 2021. Ed. by Laurent D. Michel. Vol. 210. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 20:1–20:19. DOI: 10.4230/LIPIcs.CP.2021.
20

3. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Inferring Clauses and
Formulas in Max-SAT”. in: 33rd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2021, Washington, DC, USA, November 1-3, 2021. IEEE, 2021,
pp. 632–639. DOI: 10.1109/ICTAI52525.2021.00101

4. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Computing Max-SAT Refu-
tations using SAT Oracles”. In: 33rd IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2021, Washington, DC, USA, November 1-3, 2021. IEEE,
2021, pp. 404–411. DOI: 10.1109/ICTAI52525.2021.00066

5. Mohamed Sami Cherif, Djamal Habet, and André Abramé. Understanding the power
of Max-SAT resolution through UP-resilience. Thirtieth International Joint Conference
on Artificial Intelligence (IJCAI-21). Poster. Aug. 2021. URL: https://hal-amu.
archives-ouvertes.fr/hal-03334479

3

https://doi.org/10.1613/jair.1.13811
https://doi.org/10.1613/jair.1.13811
https://doi.org/10.1016/j.artint.2020.103397
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://doi.org/10.4230/LIPIcs.CP.2021.20
https://doi.org/10.4230/LIPIcs.CP.2021.20
https://doi.org/10.1109/ICTAI52525.2021.00101
https://doi.org/10.1109/ICTAI52525.2021.00066
https://hal-amu.archives-ouvertes.fr/hal-03334479
https://hal-amu.archives-ouvertes.fr/hal-03334479


6. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “A Proof Builder for Max-
SAT”. in: Theory and Applications of Satisfiability Testing - SAT 2021 - 24th Interna-
tional Conference, Barcelona, Spain, July 5-9, 2021, Proceedings. Ed. by Chu-Min Li
and Felip Manyà. Vol. 12831. Lecture Notes in Computer Science. Springer, 2021,
pp. 488–498. DOI: 10.1007/978-3-030-80223-3\_33

7. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Towards Bridging the Gap
Between SAT and Max-SAT Refutations”. In: 32nd IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA, November 9-11,
2020. IEEE, 2020, pp. 137–144. DOI: 10.1109/ICTAI50040.2020.00032

8. Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. “On the Refinement of
Conflict History Search Through Multi-Armed Bandit”. In: 32nd IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA,
November 9-11, 2020. IEEE, 2020, pp. 264–271. DOI: 10.1109/ICTAI50040.2020.
00050

National Conferences
1. Mohamed Sami Cherif, Djamal Habet, and Matthieu Py. “De la résolution à la max-

résolution”. In: Journées Francophones de Programmation par Contraintes (JFPC).
Saint-Étienne, France, June 2022

2. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Max-réfutations et oracles
SAT”. in: Journées Francophones de Programmation par Contraintes (JFPC). Saint-
Étienne, France, June 2022

3. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Explication de clauses
et de formules dans Max-SAT”. in: Journées Francophones de Programmation par
Contraintes (JFPC). Saint-Étienne, France, June 2022

4. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Certificats d’optimalité
pour Max-SAT”. in: Journées Francophones de Programmation par Contraintes (JFPC).
Saint-Étienne, France, June 2022

5. Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. “Un bandit manchot
pour combiner CHB et VSIDS”. in: Journées Francophones de Programmation par
Contraintes (JFPC). Online, France, June 2021

6. Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. “Raffiner l’heuristique CHS
à l’aide de bandits”. In: Journées Francophones de Programmation par Contraintes
(JFPC). Online, France, June 2021

7. Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. “Des réfutations SAT aux
réfutations Max-SAT”. in: Journées Francophones de Programmation par Contraintes
(JFPC). Online, France, June 2021

4

https://doi.org/10.1007/978-3-030-80223-3\_33
https://doi.org/10.1109/ICTAI50040.2020.00032
https://doi.org/10.1109/ICTAI50040.2020.00050
https://doi.org/10.1109/ICTAI50040.2020.00050


Abstract

At the heart of computer science and artificial intelligence, logic is often used as a powerful
language to model and solve complex problems that arise in academia and in real-world
applications. A well-known formalism in this context is the Satisfiability (SAT) problem
which simply checks whether a given propositional formula in the form of a set of con-
straints, called clauses, can be satisfied. A natural optimization extension of this problem is
Maximum Satisfiability (Max-SAT) which consists in determining the maximum number of
clausal constraints that can be satisfied within the formula. In our work, we are interested
in studying the power and limits of inference and resoning in the context of (Maximum)
Satisfiability. Our first contributions revolve around investigating inference in SAT and
Max-SAT solving. First, we study statistical inference within a Multi-Armed Bandit (MAB)
framework for online selection of branching heuristics in SAT and we show that it can
further enhance the efficiency of modern clause-learning solvers. Moreover, we provide
further insights on the power of inference in Branch and Bound algorithms for Max-SAT
solving through the property of UP-resilience. Our contributions also extend to SAT and
Max-SAT proof theory. We particularly attempt to theoretically bridge the gap between SAT
and Max-SAT inference.

Keywords: Artificial Intelligence, SAT, Max-SAT, Inference, Reasoning
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Résumé

Au cœur de l’informatique et de l’intelligence artificielle, la logique est souvent utilisée
comme un langage pour modéliser et résoudre des problèmes complexes issus du milieu
académique ou d’applications industrielles. Un formalisme bien connu dans ce contexte est
le problème de Satisfiabilité (SAT) qui vérifie simplement si une formule propositionnelle
donnée sous la forme d’un ensemble de contraintes, appelées clauses, peut être satisfaite.
Une extension naturelle de SAT en problème d’optimisation est la Satisfiabilité Maximum
(Max-SAT), qui consiste à déterminer le nombre maximal de contraintes clausales pouvant
être satisfaites dans la formule. Dans nos travaux, on s’intéresse à l’étude du pouvoir et
des limites de l’inférence et du raisonnement dans le contexte de ces deux paradigmes.
Nos premières contributions tournent autour de l’étude de l’inférence dans le cadre des
algorithmes de résolution pour SAT et Max-SAT. Tout d’abord, nous étudions l’inférence
statistique dans le cadre des solveurs modernes pour SAT qui sont basés sur l’apprentis-
sage de clauses. On introduit un formalisme bandit manchot pour la sélection adaptative
d’heuristiques de branchement et on montre qu’un tel mécanisme permet d’améliorer
l’efficacité des solveurs modernes. De plus, nous investiguons minutieusement la puissance
de l’inférence dans le cadre des algorithmes de type séparation et évaluation pour Max-SAT
grâce à la propriété de l’UP-résilience. Nos contributions s’étendent également à la théorie
des preuves pour SAT et Max-SAT, l’un de nos objectifs majeurs étant de combler le fossé
théorique entre l’inférence SAT et Max-SAT.

Mots clés : Intelligence Artificielle, SAT, Max-SAT, Inférence, Raisonnement
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Introduction

Since ancient times, humans have always sought to understand the laws of thought and
to formalize reasoning on factual knowledge. The emergence of computer science as a
full-fledged field helped to deepen our understanding of automating reasoning through
effective computation. One of the main challenges in this field is to simulate the learning
and inference process that the human brain can naturally and intuitively perform. This
led to the advent of Artificial Intelligence (AI) as a modern discipline aiming to further
investigate how machines can simulate human intelligence. In his work on the psychology
of judgment and decision-making [Kah11], Kahneman describes two different modes of
thought, one which is governed with rational, controlled, and factual reasoning while
another relies on an automatic, quite instinctive approach to judgment and decision
making. These systems intuitively correspond to the two main branches of AI. The first
branch, i.e., symbolic AI, relies on formal and logical reasoning through the manipulation
of symbols used to represent knowledge while the second branch, i.e., numeric AI, relies on
statistical and probabilistic techniques to infer information from plainly represented data.
Our work in this dissertation mainly falls within the first branch of AI relying on symbolism
but it also partly relies on techniques and formalisms that originate from numeric AI.

As human society is constantly evolving, it is often confronted with different problems
that arise in academia and in real-world applications. To give an example, checking whether
there exists a valid bus route that visits each specific location once within a city is a typical
problem that can arise in transportation. Another related problem is computing the shortest
route that the bus can take among all the possible valid ones. Note how these problems
can be very complex, typically when we consider a large set of locations to be visited.
They are also of different nature as the former is a decision problem whose solution is
either affirmative or negative while the latter is an optimization problem which requires
computing the optimal route with respect to distance among all the valid ones. To solve
such problems in the literature, we rely on well-established generic formalisms that can be
used to model and solve problems of similar nature. One of the most common and natural
ways to represent knowledge in symbolic AI is through logic as a highly expressive language.
In particular, propositional logic is a simple yet powerful tool that enables to represent
and deal with knowledge in the form of propositions, connected through logical operators
[Boo54].

A well-known formalism in this context is the Satisfiability (SAT) problem which simply
checks whether a given propositional formula in the form of a set of constraints can be
satisfied [BHM21]. The formula is defined over a set of boolean variables which can only
have values True or False while the constraints take the form of clauses which can contain
variables or their negation. SAT is at the heart of symbolic AI and complexity theory
as it is the first problem shown to be NP-complete [Coo71]. This problem also gained
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particular interest for its wide range of applications and its powerful solving methods.
In particular, the introduction of the Conflict Driven Clause Learning (CDCL) algorithm
[MLM09], which incorporates extensive learning during the search process, led to the
emergence of highly competitive modern solvers able to deal with large formula containing
millions of variables and clauses. Another formalism closely related to SAT is Maximum
Satisfiability (Max-SAT) [BJM21]. This problem is a natural optimization extension of SAT
which consists in determining the maximum number of clausal constraints that can be
satisfied in the formula. Max-SAT has many solving paradigms including Branch and Bound
(BnB) algorithms [LM21], which perform an exhaustive search relying heavily on inference
rules, and SAT-based algorithms [BJM21] which take advantage of the power of modern
SAT solvers as decision engines. Our contributions in this manuscript revolve around these
two problems. In particular, we are interested in studying the power and limits of inference
and reasoning in the context of (Maximum) Satisfiability, both in theory and in practical
solving.

Our first contribution falls within the scope of improving the efficiency of modern SAT
solvers through incorporating stochastic reasoning formalisms originating from numeric
AI and, more specifically, Reinforcement Learning (RL) [SB98]. This well-known paradigm
of machine learning focuses on how an autonomous agent should learn from its prior
actions and is often studied through the lens of the Multi-Armed Bandit (MAB) problem.
We specifically focus on an important component in CDCL solvers which is the branching
heuristic (used to pick the next variable to branch on in the search tree) and we study
whether statistical inference within a MAB framework can be incorporated into such solvers
to perform adaptive selection of branching heuristics. We perform an extensive evaluation
of different strategies to combine the two dominant branching heuristics in the state-of-
the-art, namely VSIDS [Mos+01] and CHB [Lia+16a]. We show that our MAB framework is
able to achieve considerable gain by relying on Upper Confidence Bound (UCB) strategies
[ACF02; AB09] enabling to conduct efficient inference based on the mean reward of each
heuristic.

Our second contribution focuses on understanding the power of inference and its limits
in the context of BnB algorithms for Max-SAT. Such algorithms construct a search tree and
compute, at each node, a Lower Bound (LB) estimation by counting the number of disjoint
Inconsistent Subsets (ISs) of the formula. When an IS is found, it is either temporarily
deleted or transformed to ensure that it will be counted only once in the LB estimation
[LMP07; HLO08; Li+10a; AH14d; AH14b; Abr15]. However, learning transformations of
ISs by memorizing them in the current subtree may negatively affect the quality of the LB
estimation. Therefore, state-of-the-art solvers learn transformations selectively mainly
in the form of inference patterns. Recently, André and Habet introduced a new property,
called UP-resilience, to characterize the transformations of ISs in the context of Max-SAT
BnB [Abr15; AH15b]. Our work is focused on further investigating this property in order to
provide a theoretical explanation for the efficiency of learning mechanisms used in BnB
solvers in the last decade. In particular, we study the relation between UP-resilience and
the Unit Clause Subset (UCS) patterns introduced in [AH14d; Abr15]. We assess the limits of
such learning mechanisms and we provide insights to extend them through UP-resilience.

Our contributions also extend to proof theory for Max-SAT. One of the first proof systems
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for Max-SAT is based on the Max-SAT resolution inference rule [BLM07; LHG08], which
is an extension of the resolution rule introduced in the context of SAT [Rob65]. Max-SAT
resolution is sound and complete for Max-SAT and has gained particular interest these
last years [LR20a; LR20b; BL20; Fil+20]. However, we still lack understanding of many
aspects related to Max-SAT resolution as an inference rule and as a proof system for Max-
SAT. SAT and Max-SAT are strongly related and share many aspects. However, unlike SAT
inference, Max-SAT resolution has unique features as it enforces a transfer of knowledge.
Consequently, bridging the gap between SAT and Max-SAT inference remains one of the
main challenges in the last decade. In this context, we contribute to the open question
of whether it is possible to adapt SAT proofs into Max-SAT proofs without substantially
increasing their size. We show that this is possible for certain refinements of resolution, both
when Max-SAT resolution is augmented with other inference rules or when it is exclusively
used in the resulting proofs. Our work in this regard led to the introduction of the first
independent proof builder for Max-SAT, called MS-Builder. The proof builder relies on
some of the adaptations that we introduced to compute certificates (i.e., proofs of the
optimal solution) for Max-SAT instances through iterative calls to a SAT oracle. Our work
also extends beyond the relative (refutational) power of proof systems for Max-SAT with
their counterpart in SAT. More specifically, we introduce the notion of explainability in
order to investigate the ability to deduce information within the Max-SAT paradigm and to
further assess the inferential power of Max-SAT proof systems.

Our work has been published in different venues including international journals (AIJ,
JAIR) [CHA20; PCH22d], international conferences (IJCAI, SAT, CP, ICTAI) [CHT20; PCH20;
PCH21a; PCH21b; PCH21d; CHA21; CHT21a; CHP22b] and national conferences
(JFPC) [CHT21c; CHT21d; PCH21c; PCH22a; PCH22b; PCH22c; CHP22a]. In particular,
we mention that our contributions in Chapter 6 are based on joint work with Matthieu Py.
Some known results are thus succinctly described in this chapter as full details can be found
in [Py21]. Other publications include our solver and benchmark descriptions submitted to
the SAT competitions [CHT21b; CHT21e; CHT22a; CHT22b]. Our solver Kissat_MAB won
gold medals in the Main and Main SAT tracks of the 2021 SAT competition 1 as well as silver
and bronze medals respectively in the Anniversary SAT and Main UNSAT tracks of the 2022
SAT competition 2.

This manuscript is organized into two parts. The first part, composed of the first three
chapters, is dedicated to the necessary background on the problems we will be studying in
our work. In Chapter 1, we recall preliminary definitions and notions related to computa-
tional problem solving and propositional logic. Chapters 2 and 3 include detailed overviews
on SAT and Max-SAT. We provide the formal definition of both problems and we introduce
their variants, their main solving methods and their main inference rules and proof systems.
The second part of the manuscript is dedicated to our contributions and also includes three
sections. In Chapter 4, we introduce and evaluate our MAB framework for adaptive SAT
branching. We investigate the inference mechanisms employed in BnB solvers through the
UP-resilience property in Chapter 5. In Chapter 6, we study the refutational and inferential

1results available on https://satcompetition.github.io/2021/
2results available on https://satcompetition.github.io/2022/
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power of proof systems for Max-SAT in an attempt to deepen our knowledge on Max-SAT
reasoning and its relation to SAT inference. We also finish the manuscript with a general
conclusion summarizing our results and discussing future research directions.
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In this Chapter, we present preliminary notions necessary for reading this manuscript.
We define decision and optimization problems and we recall major notions in algorithmics,
computability and complexity theory. We also introduce propositional logic and the Con-
junctive Normal Form (CNF) which will be used in the problems that we will study in our
work.

1.1 Computational Problems
In theoretical computer science, studying and efficiently solving academic and real-world
problems requires their formalization into clearly established computational problems
free of any superfluous information. An input to a computational problem is referred to
as an instance of the problem. A computational problem can therefore be viewed as a
set of instances corresponding each to a, possibly empty, set of solutions. Computational
problems are divided into several categories, two of which we will focus on in our work
namely decision and optimization problems. Note that we only consider problems of
combinatorial nature, in which the set of instances is a discrete finite set of objects.

In a decision problem, the required output can be expressed in the form of a question
whose answer is "yes" or "no". More formally, given a decision problem π, the set of
instances of the problem I (π) can be divided into two disjoints sets I+(π) and I−(π) repre-
senting respectively the set of positive instances for which the answer is "yes" and the set of
negative instances for which the answer is "no". We provide hereafter a formal definition as
well as some examples of well-known decision problems.
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1 Preliminaries – 1.1 Computational Problems

Definition 1.1 (Decision problem). Let π be a problem and I (π) be the set of instances of π.
We say that π is a decision problem if it has the following form:

Decision Problem π

Input: x ∈ I (π)
Question: x ∈ I+(π)?

Example 1.1 (Primality Testing). A natural number n is a prime number if it has exactly
two distinct divisors: 1 and n. The following problem which consists in testing whether a
natural number is prime is a well-known decision problem. Note that the set of instances
of this problem corresponds to the set of natural numbers, i.e., I (Primality Testing) = N,
while the set of positive instances corresponds to the set of natural prime numbers, i.e.,
I+(Primality Testing) = {n ∈N | n is prime}. This problem has many applications mainly in
cryptography [Mas20].

Primality Testing Problem
Input: n ∈N
Question: is n a prime number?

Example 1.2 (Hamiltonian Path/Cycle). A graph G is traceable if there exists a Hamiltonian
path in G, i.e., a path which visits each vertex exactly once. For instance, the graph G1

represented on the left in Figure 1.1 is traceable since A−B −C −D is a Hamiltonian path
in G1, while G2 represented on the right does not allow such a path and therefore is not
a traceable graph. The Hamiltonian path problem, defined below, is a well established
decision problem which consists in checking whether a graph is traceable. Note that the set
of instances of this problem corresponds to the set of graphs while the set of positive instances
corresponds to the set of traceable graphs. A variant of this problem is the Hamiltonian
cycle problem defined below. A Hamiltonian cycle is a path that starts and ends at the same
vertex and includes every other vertex exactly once. A graph containing such a cycle is a
Hamiltonian graph. These problems have several applications in vehicle route planning and
biology among others [Mas16; Kim+17; MP21].

Hamiltonian Path Problem
Input: a graph G
Question: is G traceable?

Hamiltonian Cycle Problem
Input: a graph G
Question: is G Hamiltonian?

A

BD

C

(G1)

A

BD

C

(G2)

Figure 1.1: A traceable (resp. non-traceable) graph G1 (resp. G2).
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1 Preliminaries – 1.1 Computational Problems

Next, we introduce the second category of problems: optimization problems. The task
in such problems consists in searching for the best evaluation of feasible solutions with
respect to a given measure and goal. We provide below a formal definition as well as some
known examples. Note that a feasible solution is optimal if it achieves the optimum value,
i.e., the goal specified in the output, and such a solution is often provided alongside or
instead of 1 the optimum.

Definition 1.2 (Optimization Problem). Let π be a problem and I (π) be the set of instances
of π. We say that π= (I (π), f ,m, g ) is an optimization problem if it is of the following form:

Optimization Problem π

Input: x ∈ I (π)
Output: opt (x) = g {m(x, y) | y ∈ f (x)}

where:

• f maps each instance x ∈ I (π) to its set of feasible solutions f (x)

• m(x, y) denotes a measure of the feasible solution y ∈ f (x)

• g is the goal function, either min (minimize) or max (maximize).

Example 1.3 (Shortest Path). Given graph G(V ,E ) where V and E respectively denote the set
of vertices and the set of edges, the length of a path p from a vertex v1 ∈V to a vertex v2 ∈V
in G, denoted l (G , p), is the number of its edges. The shortest path problem defined below,
which consists in finding the length of the shortest path between two vertices in a given graph,
is a well established problem. Note that the set of feasible solutions for a given graph G are the
available paths from v1 to v2 in G. The used measure is the length of the paths and the goal
is clearly minimization. This problem has many real-world applications including mapping,
social network analysis and logistics among others [Shu12; BSK11; Hai09].

Shortest Path Problem
Input: a graph G = (V ,E) and (v1, v2) ∈V 2

Output: mi n{l (G , p) | p is a path from v1 to v2 in G}

Example 1.4 (Traveling Salesman). The Traveling Salesman Problem (TSP) is a well-known
optimization problem which, given a list of cities and the distances between them, consists in
finding the shortest possible route that visits each city exactly once and returns to the origin
city. As showcased below, this problem can be modeled as a weighted graph problem which
consists in finding the minimum Hamiltonian cycle 2 weight, where the weight of a path is
simply the sum of the weights of its edges. This problem has many applications in scheduling

1in such case, we are dealing with a search variant of the optimization problem which may also be associated
with a different third category of computational problems called search problems.

2refer to Example 1.2
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1 Preliminaries – 1.2 Algorithmics

and routing among others [Pun07].

Traveling Salesman Problem
Input: a graph G = (V ,E) and a weighting function wG : E −→R+
Output: mi n{wG (p) | p is a Hamiltonian cycle in G}

1.2 Algorithmics
Algorithmics is a broad field of study within computer science which delves into the funda-
mental question of designing a correct method for solving a given problem. Such a method
will be referred to as an "algorithm". The term is derived from the name of the 9th century
Persian mathematician Al-Khwārizmı̄ 3 who introduced systematic solutions for linear
and quadratic equations [KR18]. Although, historically, the design and use of systematic
procedures date further back to 2500 BC, when Babylonians used rigorous procedures for
performing arithmetic operations [Cha99].

Definition 1.3 (Algorithm). An algorithm is a finite sequence of well-defined instructions
used to solve a specific problem.

When designing an algorithm we are usually interested in the following properties:

• Termination: It consists in determining whether the algorithm halts for each input.
A mathematical proof is usually provided as a termination proof, often invoking
the monotonic behaviour of certain bounded measures used in the algorithm as an
argument.

• Correctness: It consists in determining whether the algorithm is correct, i.e., generates
the correct output with respect to its input and specification. If this property is
associated with termination, we are dealing with total correctness. A mathematical
proof may be provided to prove correctness although complex algorithms/systems
may require more adapted formal and rigorous reasoning methods such as Hoare
logic [Hoa69; Pie+21].

• Efficiency: It relates to the consumption of resources by the algorithm, mainly time
and memory, with respect to the input size. This property pertains more specifically
to complexity theory which will be introduced in Section 1.4.

Example 1.5. A simple method for solving the Primality Testing Problem 4 is described in
Algorithm 1.1 5. The algorithm is correct since all possible non-trivial divisors of the input n
are tested. It also terminates since it loops on a finite set of numbers.

3Muhammad IbnM ūsā Al-Khwārizmı̄ (780 - 850)
4refer to Example 1.1
5The modulo (mod) operator returns the remainder of the Euclidean division of n by i . Therefore, checking

if n mod i = 0 stands is equivalent to testing if i divides n.
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Algorithm 1.1: Algorithm for Primality Testing

Input: a natural number n
Output: Tr ue if n is prime, F al se otherwise

1: for i = 2 to n −1 do
2: if n mod i = 0 then
3: return F al se
4: end for
5: return Tr ue

1.3 Computability
Computabiliy is a broad subject of study which is at the heart of computer science theory.
Indeed, computability is the ability to solve a problem in an effective manner which is
inextricably linked to the existence of an algorithm to solve it. The study of algorithms
and of computability in a broader sense as a full-fledged field of study started in the 1930s
when logicians tried to understand the limits of reasoning automation. At the time, several
attempts to formalise the notion of computability were made by Gödel 6 (µ-recursive func-
tions alongside Herbrand 7 and later Kleene 8) [Sie05; Kle37], Church 9 (λ-calculus) [Chu36]
and Turing 10 (Turing machines) [Tur37b]. These systems intuitively represent universal
computational models which are able to perform any task that is achievable by a computer.
More specifically, the intuitive notion of an algorithm corresponds to the effective calcula-
tion performed by a Turing machine. This last statement is referred to as the Church-Turing
thesis or conjecture and is strongly corroborated by the fact that the three mentioned
models are equivalent 11 [Kle36; Tur37a].

Next, we give a brief overview 12 of Turing machines, introduced in 1936 13. Turing
informally describes his model in [Tur48] as follows:

"[...] an infinite memory capacity obtained in the form of an infinite tape marked
out into squares, on each of which a symbol could be printed. At any moment
there is one symbol in the machine; it is called the scanned symbol. The machine
can alter the scanned symbol, and its behavior is in part determined by that
symbol, but the symbols on the tape elsewhere do not affect the behavior of the
machine. However, the tape can be moved back and forth through the machine,
this being one of the elementary operations of the machine."

6Kurt Gödel (1906 - 1978)
7Jacques Herbrand (1908 - 1931)
8Stephen Cole Kleene (1909 - 1994)
9Alonzo Church (1903 - 1995)

10Alan Mathison Turing (1912 - 1954)
11which remained valid for later formal attempts to characterize computability [Aho+74; Sch80]
12refer to the following textbooks [LP97; BBJ07; Dav13b] for a broader overview of Turing machines and

computability theory
13although formally published in [Tur37b] a year later
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Such a machine, formally defined below, starts from the initial state q0, scanning the
leftmost input symbol. At each computation step, it evolves with respect to its current state
and the scanned symbol as specified by the transition function. The machine stops when it
enters a final (accepting) state, in which case the input word is accepted. Note that the word
is considered rejected if the machine halts 14 on a non-final state or if it runs indefinitely
(infinite loop). The set of words accepted by a Turing machine M is called the language of
M , denoted L(M).

Definition 1.4 (Turing Machine [Tur37b]). A Turing machine is a tuple (Q,Γ,Σ, q0,δ,F )
where:

• Q is a finite set of states

• Γ is a finite set of alphabet symbols containing a blank symbol b ∈ Γ
• Σ⊆ Γ\ {b} is a finite set of input symbols

• q0 ∈Q is the initial state

• δ : Q ×Γ−→Q ×Γ× {←,→} is the transition function where ← (resp. →) denotes a left
(resp. right) shift

• F ⊆Q is the set of final (or accepting) states

Example 1.6. We consider the Turing machine M = (Q,Γ,Σ, q0,δ,F ) where:

• Q = {q0, q1} and F = {q1}

• Σ= {0,1} and Γ= {0,1, }

• δ(q0,0) = (q0,0,R) and δ(q0,1) = (q1,1,R)

The machine M accepts the words that contain the symbol "1" at least once, Indeed, as soon
as such a symbol is encountered, M transitions to the accepting state q1. Formally, we have
L(M) =Σ∗ \ {0}∗. Note that the machine always halts (on finite inputs) since only right shifts
are performed on the tape.

For a decision problem, the notion of computability corresponds to the notion of Turing-
decidability. More specifically, a problem is decidable if there exists a corresponding Turing
machine which halts on every input, either accepting or rejecting it. There exists many
known undecidable problems such as the halting problem [Tur37b; Kle52] which, given
a Turing machine and an input, consists in determining whether the machine will halt or
loop forever.

Note that the Turing machine described in Definition 1.4 is deterministic as its tran-
sition function associates to each (state,symbol) pair, for which it is defined, a single
unique (state,symbol,shift) triplet. On the other hand, the transition function in a non-
deterministic Turing machine, defined below, associates each (state,symbol) pair to a set of

14occurs when δ is not defined on the current (state,symbol) pair
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(state,symbol,shift) triplets, enabling many choices at each computation step. Intuitively,
such a machine is able to duplicate itself at each step thus creating different branches.
Furthermore, an input word is accepted if one of the branches leads to an accepting state.

Definition 1.5 (Non-Deterministic Turing Machine). A non-deterministic Turing machine
is a Turing machine M = (Q,Γ,Σ, q0,δ,F ) with a non-deterministic transition function
δ : Q ×Γ−→P (Q ×Γ× {←,→}) 15.

The execution time of a (deterministic or non-deterministic) Turing machine is measured
in terms of the number of its transitions. Finally, it is important to note that the non-
deterministic variant as well as many others such as multi-tape variants [Pap94] remain
equivalent to deterministic Turing machines in terms of computational power 16, making
Turing’s model sturdy with respect to moderate changes and further corroborating the
Church-Turing thesis.

1.4 Complexity Theory
Complexity Theory is a major sub-filed of theoretical computer science which focuses on
studying and classifying decidable computational problems with respect to their resource
usage. This involves studying and analyzing the complexity of algorithms designed to solve
a specific problem in terms of resource consumption, mainly time and space required
during their execution with respect to the size of the input. Note that this analysis may be
performed in the best, average and worst cases. Hereafter, we will focus on the worst case
time complexity 17, i.e., the highest possible execution time of an algorithm with respect to
all possible inputs.

One may argue that the highly increasing efficiency of computer processors may render
the analysis and the optimization of algorithm complexity unimportant or outdated. On
the contrary, this unceasing gain in machine performance and technological advancement
generally entails dealing with inputs of much larger size which may thus lead to a substan-
tially higher resource consumption as showcased in Table 1.1. Therefore, when analyzing
the complexity of an algorithm, we are interested in its asymptotic behavior in terms of
execution time, i.e., typically when dealing with inputs of large size. More specifically, we
want to bound the number of elementary instructions 18 executed by the algorithm with
respect to the size of its input. The Landau 19 notations, and particularly the big O notation
defined below, are often used to this end. The main asymptotic complexities are reported in
Table 1.2. It is important to note that the complexity of an algorithm should be established
with respect to a reasonable machine encoding of the input as showcased in Example 1.7.

Definition 1.6 (Big O). Let f , g :N−→ R+ be two functions. f is dominated by g , denoted
f =O(g ), if ∃ c ∈R∗+ and n0 ∈N s.t. ∀n ≥ n0, f (n) ≤ c ∗ g (n).

15Given a set S, P denotes the power set of S, i.e., the set of all subsets of S.
16recognize the same class of languages
17refer to the following textbooks [KT05; Gol08; Pap94] for a broader overview of complexity theory
18simple operations which are independent of the actual implementation of the algorithm
19Edmund Landau (1877-1938)
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Running Time
Input size n n n l og2n n2 n3 2n n!

10 0 0 0 0 0 4 s

100 0 0 0 1 s 36 y ∞
1,000 0 0 1 s 18 m 1017 y ∞

10,000 0 0 2 m 12 d ∞ ∞
100,000 0 2 s 3 h 32 y ∞ ∞

1,000,000 1 s 20 s 12 d 31,710 y ∞ ∞
Table 1.1: Running times rounded up in seconds (s), minutes (m), days (d) or years (y) on a
processor executing a million instructions per second with respect to increasing input size
and running-time bounds as reported in [KT05]. ∞ (resp. 0) denotes running times greater
than 1025 years (resp. less than 1 second).

Notation Name
O(1) constant

O(l og n) logarithmic
O(n) linear

O(n l og n) quasilinear
O(n2) quadratic
O(n3) cubic
O(nc ) polynomial
O(cn) exponential
O(n!) factorial

Table 1.2: Complexity of algorithms with respect to their asymptotic behavior

Example 1.7. We consider Algorithm 1.1 for primality testing 20. The algorithm performs at
most n −2 iterations in the loop with a division test of constant time c > 0 in each iteration
plus a single return instruction (either in or after the loop). Therefore, the number of iterations
can be bound with respect to n as follows: C (n) = c.n +1 =O(n). However, the complexity of
this algorithm is not linear in this case. Indeed, a natural number n is usually represented
in the machine by its digits and therefore its actual size is s =O(log n) 21. The complexity of
Algorithm 1.1 is therefore exponential as C (s) =O(e s).

Next, we focus on the complexity of computational problems which can be very difficult
to establish as it pertains to all possible algorithms that could be used to solve a problem.
More specifically, establishing the exact complexity of a problem usually requires proving
upper and lower complexity bounds which coincide. While the former is easier to prove as it
corresponds to the worst time complexity of a specific valid algorithm solving the problem,
the latter usually involves a much stronger argument through mathematical reasoning
over all possible algorithms that solve the problem. As few problems have known exact

20refer to Examples 1.1 and 1.5
21More specifically, it is represented by its digits in the binary base which amount to s = blog2nc+1 =O(l og n).
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complexities 22, mainly due to the difficulty of establishing their lower bound complexity,
it is more common to classify the problems with respect to their upper bound, i.e., the
worst time complexity of the best know algorithm. Note that, in the rest of this section,
we solely consider decision problems but complementary notions exist for optimization
problems [BCC94].

We introduce below three main complexity classes: P (Polynomial), NP (Non-deterministic
Polynomial) and EXP (Exponential). Intuitively, the class P contains "easy" or feasibly com-
putable problems, which can be solved in polynomial time. This correspondence between
the informal notion of "easiness" or "feasibility" with the formal complexity class P was
first asserted by Cobham [Cob65] and Edmonds [Edm65] and is referred to as the Cob-
ham–Edmonds thesis. On the other hand, the EXP class contains problems which are
extremely difficult and can only be solved in exponential time. The NP class introduced by
Cook 23 in [Coo71] is an intermediate class containing problems for which no polynomial
algorithm is known and it further seems very difficult to prove that such algorithms do not
exist. Intuitively, this class represents the problems which are polynomially verifiable, i.e.,
the validity of a solution certificate can be asserted in polynomial time as showcased in
Example 1.9. These three classes thus form the hierarchy established in Proposition 1.1.

Definition 1.7 (P). The class P is the class of problems that can be solved in polynomial time
by a deterministic Turing machine.

Definition 1.8 (NP [Coo71]). The class NP is the class of problems that can be solved in
polynomial time by a non-deterministic Turing machine.

Definition 1.9 (EXP). The class EXP is the class of problems that can be solved in exponential
time by a deterministic Turing machine.

Example 1.8. There exists a polynomial-time algorithm solving the primality testing problem
introduced in Example 1.1 and therefore it is in P [AKS04].

Example 1.9. There is no known polynomial algorithm for the Hamiltonian path problem
introduced in Example 1.2. This problem is in N P. Indeed, if the input graph is traceable,
exhibiting a Hamiltonian path is sufficient to certify its traceability. Note that the size of such
a path is exactly the number of vertices in the input graph G and therefore its size is linear
in the size of G. Furthermore, it is possible to check that the given path is a Hamiltonian
path in polynomial time with respect to the size of G. To this end, we can simply verify that
each consecutive pair of vertices in the path is linked by an edge and that all the vertices are
distinct. The same arguments hold to establish that the Hamiltonian cycle problem is also in
NP.

Proposition 1.1. P ⊆ N P ⊆ E X P.

22Simple examples include finding the minimum value within a list (linear complexity) or performing a
comparison sort (quasilinear complexity [Cor+09]).

23Stephen Cook (born in 1939)

31



1 Preliminaries – 1.4 Complexity Theory

The notion of polynomial-time reduction, introduced by Karp 24 [Kar72] and defined
below, allows to transform the instances of a problem into the instances of another while
preserving positive instances. Such reductions have also enabled to identify the hard-
est problems in NP, referred to as NP-complete problems and defined below. Many NP-
complete problems are known in the literature such as those in Example 1.10. Note that the
NP-completeness of a problem π ∈ NP is usually established through Proposition 1.2, i.e.,
by proving that a known NP-complete problem can be polynomially reduced to π.

Definition 1.10 (Polynomial-Time Reduction [Kar72]). Let π1 and π2 be two decision prob-
lems. A polynomial-time reduction from π1 to π2 is a function R : I (π1) −→ I (π2) computable
in polynomial-time which preserves positive instances:

∀x ∈ I (π1), x ∈ I+(π1) ⇐⇒ R(x) ∈ I+(π2)

Notation 1.1. We denote π1 ≤p π2 if there exists a polynomial time reduction from a problem
π1 to a problem π2,

Definition 1.11 (NP-hardness). A decision problem π is NP-hard if ∀π′ ∈ NP , π′ ≤p π.

Definition 1.12 (NP-completeness). A decision problem π is NP-complete if π ∈ NP and is
NP-hard.

Example 1.10. The Hamiltonian path and cycle problems introduced in Example 1.2 are
NP-complete [GJ79].

Proposition 1.2. Let π1 and π2 be two decision problems. If π1 is NP-difficult and π1 ≤p π2

then π2 is NP-difficult.

Finally, we must mention that the relation between some complexity classes are still not
clearly established. For instance, one of the major open problems in computer science is
the P vs NP problem 25 which consists in proving or disproving P=NP. Such a result would
have many implications in complexity theory as showcased in Figure 1.2 and also in fields
such as cryptography, artificial intelligence and philosophy among many others.

Figure 1.2: Euler diagram on the implications of P6= NP (left) and P=NP (right) 26

24Richard Manning Karp (born in 1935)
25one of the Millennium Prize problems selected by the Clay Mathematics Institute which are stated at

https://www.claymath.org/millennium-problems

32

https://www.claymath.org/millennium-problems


1 Preliminaries – 1.5 Propositional Logic

1.5 Propositional Logic
As the study of the laws of thought and of valid reasoning, logic has always been a sub-
ject of great interest which ancient and modern philosophers alike sought to investigate
and formalize [KK84]. Nowadays, this field of study is at the heart of several disciplines
including philosophy, mathematics and computer science. In particular, propositional
logic [Boo54], which deals with knowledge in the form of propositions connected through
logical operators, is of great importance in theoretical computer science and it is innately
linked to the classical problems which we will study in our work.

Propositional logic is defined on the following alphabet:

• Constants: > (True or 1) and ⊥ (False or 0)

• Propositional/Boolean variables: variables that can only have the Boolean values
True or False

• Logical connectives: ¬ or (negation), ∧ (conjunction), ∨ (disjunction), ⇒ (implica-
tion) and ⇔ (equivalence)

• Priority symbols: ( and )

We define propositional formulas below using this alphabet. An assignment maps each
variable to a truth value, i.e., a Boolean value of either True or False. In the following
sections, the term assignment is used to refer to either a complete or partial assignment
unless otherwise specified.

Definition 1.13 (Propositional formula). Let V be a set of propositional variables. A proposi-
tional formula on V is inductively defined as follows:

• >,⊥ and x ∈V are propositional formulas

• if φ and ψ are propositional formulas then (φ), ¬φ, φ∧ψ, φ∨ψ, φ⇒ψ and φ⇔ψ are
propositional formulas.

Example 1.11. φ=¬(x1 ∧x2)∧ (x2 ⇔ x3) is a propositional formula over the set of variables
V = {x1, x2, x3}.

Definition 1.14 (Assignment). Let V be a set of propositional variables. An assignment of
variables in V is a function α : V −→ {Tr ue,F al se}. If α assigns a Boolean value to all the
variables in V , it is a complete assignment; otherwise it is a partial assignment.

Given an assignment α of the variables in V and using the truth tables of logical connec-
tives reported in Table 1.3, the evaluation of a propositional formula φ with respect to α,
denoted �φ�α or simply α(φ), can be inductively deduced as follows:

26Figure made by Behnam Esfahbod, available under the Creative Commons Licence Attribution-ShareAlike
3.0 Unported (CC BY-SA 3.0).
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φ ψ ¬φ φ∧ψ φ∨ψ φ⇒ψ φ⇔ψ

False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Table 1.3: Truth tables of logical connectors

• �>�α = Tr ue and �⊥�α = F al se

• �x�α =α(x) for x ∈V

• �¬φ�α =¬�φ�α
• �φ∗ψ�α = �φ�α∗�ψ�α for ∗ ∈ {∧,∨,→,⇔}

• �(φ)�α = �φ�α

Example 1.12. We consider the formula φ over V = {x1, x2, x3} in Example 1.11 and the
assignment α which maps each variable in V to the value False (i.e., ∀x ∈V ,α(x) = F al se).
We have �φ�α =¬(α(x1)∧α(x2))∧ (α(x2) ⇔α(x3)) = Tr ue.

If there exists an assignment α under which the evaluation of a propositional formula
is True, we say that the formula is satisfiable and we refer to α as model of φ otherwise
the formula is unsatisfiable. If any assignment of the variables is a model, the formula
is referred to as a tautology. In addition, two formulas are logically equivalent if they are
evaluated to the same truth value under any assignment of the variables.

Definition 1.15 (Model). Let φ be a propositional formula over the set of variables V . A
model of φ is an assignment α s.t. �φ�α = Tr ue.

Definition 1.16 (Tautology). A propositional formula φ is a tautology if any assignment of
its variables is a model of φ.

Definition 1.17 (Equivalence). Two propositional formulas φ and ψ are equivalent if φ⇔ψ

is a tautology.

Notation 1.2. we denote φ≡ψ if φ and ψ are two equivalent propositional formulas.

Example 1.13. Let φ,ψ and γ be three propositional formulas. We have the following
established classical equivalences:

• Double negation law: ¬(¬φ) ≡φ

• De Morgan laws: ¬(φ∧ψ) ≡¬φ∨¬ψ and ¬(φ∨ψ) ≡¬φ∧¬ψ
• Distributivity laws: φ∨ (ψ∧γ) ≡ (φ∨ψ)∧ (φ∨γ) and φ∧ (ψ∨γ) ≡ (φ∧ψ)∨ (φ∧γ)
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• (bi)conditional laws: φ⇒ψ≡¬φ∨ψ and φ⇔ψ≡ (φ⇒ψ)∧ (ψ⇒φ)

Next, we introduce a classic subset of Boolean formulas which can be expressed through
a specific, easier to handle, syntactic form. To this end, given a set of variables V , we start
by defining below the basic forms that can be found in such formulas: literals and clauses.

Definition 1.18 (Literal). A literal is either a variable x ∈V or its negation x.

Definition 1.19 (Polarity). A literal l is a positive literal if it has a positive polarity, i.e. l is a
variable. Otherwise, l has a negative polarity and is a negative literal.

Definition 1.20 (Clause). A clause is a disjunction of literals.

Notation 1.3. Given a literal l , a clause C and a propositional formula φ, we denote
var (l ), var (C ) and var (φ) respectively the variables in l , C and φ.

Example 1.14. C = x1 ∨ x2 is a clause containing the negative literal x1 and the positive
literal x2. Furthermore, we have var (C ) = {x1, x2}.

Note that an assignmentα of the variables in V can be represented as a set of literals. More
specifically, α= {x ∈V |α(x) = Tr ue}∪{x | x ∈V and α(x) = F al se}. A clause C = l1∧ ...∧ ln

can also be represented as set of literals C = {l1, ..., ln}. The evaluation of literals and clauses
under assignments is very simple. Indeed, a literal l is satisfied (resp. falsified) by an
assignmentα if l ∈α (resp. l ∈α). A clause C is satisfied by an assignmentα if at least one of
its literals is satisfied by α, i.e., ∃l ∈C s.t. l ∈α; otherwise it is falsified by α. Note that some
interesting relations can occur between two clauses, mainly subsumption and opposition
defined below. Furthermore, specific clauses include:

• the empty clause, denoted �, which contains zero literals and is always falsified

• unit (resp. binary) clauses which contain exactly one literal (resp. two literals)

• tautological clauses, which contain a literal and its negation and are always satisfied

Definition 1.21 (Subsumption). A clause C subsumes a clause C ′ if C ⊆C ′.

Definition 1.22 (Opposition). A clause C opposes a clause C ′ if ∃l ∈C s.t. l ∈C ′.

Example 1.15. We consider the clauses C1 = x1, C2 = x1∨x2 and C3 = x1∨x2. The unit clause
C1 clearly subsumes the binary clause C2 as every literal in C1 is also in C2. C1 also opposes
the binary clause C3 as x1 ∈C1 and x1 ∈C2.

Finally, we introduce the Conjunctive Normal Form (CNF), in which formulas are simply
conjunctions of clauses. A CNF formula φ can also be represented as a set of clauses and
is satisfied by an assignment α if all its clauses are satisfied by α. The empty formula
φ = ; contains zero clauses and is always satisfied. It is important to note that every
propositional formula can be transformed into an equivalent CNF formula using truth
tables or the classical equivalences in Example 1.13. However, A transformation with
guaranteed efficiency may warrant the addition of new variables while only preserving
satisfiability instead of equivalence [Tse83; PG86].
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Definition 1.23 (Conjunctive Normal Form). A propositional formula in Conjunctive Nor-
mal Form (CNF) is a conjunction of clauses.

Notation 1.4. Let φ be a CNF formula and l be a literal. We denote φ|l the simplification of
φ by the literal l . Formally, we have:

φ|l = {C \ {l } |C ∈φ and l ∉C }

We can extend this notation to any assignment α as follows:

φ|α = {C \ {l ∈C | l ∈α} |C ∈φ and C ∩α=;}

Example 1.16. The formula ψ = (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x2 ∨ x3) is a satisfiable formula in
CNF form. Indeed, the assignment α which maps each variable in V to the value False clearly
satisfies each clause in φ and therefore is a model of φ. Note that this formula is equivalent
to the formula φ in Example 1.11.

1.6 Conclusion
In this chapter, we introduced some preliminary notions which form the necessary generic
background for reading this manuscript. We started with the nature of computational
problems and we particularly focused on decision and optimization problems. We also
recalled some notions related to algorithmics and computability. Then, we recalled the main
complexity classes and some major results in complexity theory. Finally, we introduced
propositional logic alongside the Conjunctive Normal Form (CNF) which we will consider
in the rest of the manuscript. In the following chapter, we introduce the Satisfiability
(SAT) problem which is a well-known decision formalism at the heart of AI and complexity
theory.
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In this chapter, we define the Satisfiability (SAT) problem as well as some of its known
variants. We also overview the main complete and incomplete methods for SAT solving.
Furthermore, we recall the major notions in proof theory for SAT. We particularly focus
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on the resolution rule as a proof system for SAT and we introduce some of its well-known
refinements. Finally, we define the Multi-Armed Bandit (MAB) problem and we review its
use in the context of Satisfiability and beyond.

2.1 Definition and Variants
The Satisfiability (SAT) problem 1 defined below is at the heart of theoretical computer sci-
ence. It is the first problem that was proven NP-complete [Coo71] and many other classical
problems in the literature were later shown NP-complete by reduction from SAT [Kar72].
There is no known polynomial algorithm for the SAT problem and finding such an algorithm
entails P=NP, thus solving the P vs NP problem. However, it is widely believed that no such
algorithm exists which is equivalent to the claim P 6=NP, although no valid mathematical
proof has been exhibited to support this claim.

Definition 2.1 (Satisfiability). The satisfiability (SAT) problem is defined as follows:

SAT
Input: a CNF formula φ
Question: is φ satisfiable?

Theorem 2.1 (Cook’s Theorem [Coo71]). The SAT problem is NP-complete.

There are many known variants of the SAT problem, two of which are defined below:
k-SAT and Horn-SAT. These two variants take specific formulas as input. While k-SAT
restricts the size of the clauses in the input CNF formula to at most k-literals, Horn-SAT
considers formulas where each clause contains at most one positive literal. Interestingly,
2-SAT and Horn-SAT are in P [Kro67; DG84]. Similar cases, referred to as traceable classes,
have been disclosed in the literature [Lew78; CH91; BHS94; Sch+95].

Definition 2.2 (k-CNF Formula). Let k be a natural number. A k-CNF formula φ is a CNF
formula s.t. each clause C ∈φ contains at most k literals.

Definition 2.3 (k-Satisfiability). Let k be a natural number. The k-satisfiability (k-SAT)
problem is defined as follows:

k-SAT
Input: a k-CNF formula φ
Question: is φ satisfiable?

Definition 2.4 (Horn Formula). A Horn formula φ is a CNF formula s.t. each clause C ∈φ is
Horn, i.e., contains at most one positive literal.

Definition 2.5 (Horn-Satisfiability). Let k be a natural number. The Horn-satisfiability
(Horn-SAT) problem is defined as follows:

Horn-SAT
Input: a Horn CNF formula φ
Question: is φ satisfiable?

1also referred to as Propositional/Boolean Satisfiability problem
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The SAT problem also has many known extensions such as Quantified Satisfiability
(QSAT) 2, Satisfiability Modulo Theories (SMT) 3 and Sharp Satisfiability (#SAT) 4 among
others. The reader can refer to the Handbook of Satisfiability [BHM21] for further details on
these classical problems as they are out of the scope of this thesis. A particular extension
we will be studying however is Maximum Satisfiability (Max-SAT), the natural optimization
extension of SAT which will be introduced in Section 3.

Satisfiability is a powerful formalism that can be used to model and solve many real-
world and crafted problems making it of great academic and industrial interest. It has a
wide range of applications in various fields which include, but are not limited to, bounded
model checking [Bie21], hardware and software verification [GGW06; Kro21], electronic
design automation [MS00], planning [Rin21], data mining [Bou+18], combinatorial design
theory [Zha21], cryptography [SNC09b; LJH14], statistical physics [Alt+21], and bioinfor-
matics [LM06; MOV07]. The extensions of SAT mentioned above allow further flexibility
and expressiveness thus enabling to model a larger set of problems.

A major event is held annually since 2002 5 to keep up the driving force in improving
SAT solving. SAT competitions 6 have become traditional venues to present, evaluate
and compare the latest SAT solving technologies [Jär+12]. In the main track 7, solvers are
evaluated on a benchmark set with varied real-word and crafted instances and are required
to conform to the DIMACS format 8 and to output certificates of unsatisfiability 9.

2.2 Algorithms
In this section, we present major methods for SAT solving in the literature which can be
divided into two main categories: complete and incomplete algorithms. Unlike complete
methods for SAT which are guaranteed to terminate and to return a correct solution stating
whether the given instance is satisfiable or unsatisfiable, incomplete methods are tailored
for satisfiable instances only and are not guaranteed to find a solution. Hereafter, we
overview the main complete and incomplete algorithms for SAT as well as the techniques
and heuristics used in modern SAT solvers.

2extends SAT in the context of quantified propositional logic where each variable can be bound through
existential or universal quantifiers

3extends SAT in the context of first-order logic with respect to a variety of theories, i.e., variables are replaced
by predicates in the underlying theory which can be bound using quantifiers

4natural extension of SAT as a counting problem which consists in determining the number of models of the
input formula

524 events have been held including three earlier SAT competitions in 1992, 1993 and 1996. 15 SAT com-
petitions, 5 SAT races (2006, 2008, 2010, 2015, 2019) and one SAT Challenge (2012) have been held after
2000.

6https://satcompetition.github.io/
7Other previous and current tracks include the no-limits track, the parallel track, the cloud track and the

random track.
8http://www.satcompetition.org/2009/format-benchmarks2009.html
9Refer to Section 2.3 for solution certification
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2.2.1 Complete Methods
In this section, we present the major complete algorithms for solving the SAT problem.
These algorithms explore the search space through an exhaustive branching over the
variables in the formula. One particular algorithm which is at the core of every modern
SAT solver is Conflict Driven Clause Learning (CDCL) [MLM09]. We start by introducing
its ancestor, DPLL [DLL62], which is a simple backtracking algorithm relying mainly on
the propagation of literals within unit clauses to prune the search space. Then, we present
the CDCL framework which relies on two powerful mechanisms: clause learning and
non-chronological backtracking. Furthermore, we overview additional techniques and
heuristics which are incorporated within modern solvers to enhance their performance.
Finally, we briefly introduce other complete solving methods for SAT.

2.2.1.1 DPLL Algorithm

The Davis–Putnam–Logemann–Loveland (DPLL) Algorithm 10 [DP60; DLL62] is a complete
procedure for SAT solving, which paved the way for modern complete algorithms. A
recursive version of this procedure is given in Algorithm 2.1. DPLL performs a systematic
search by enumerating all possible assignments of the variables. To this end, a search tree
where each node corresponds to a branching over a variable in the formula is constructed
(lines 7-8). If all variables are assigned without falsifying a clause, then the formula is clearly
satisfiable and the algorithm outputs the value Tr ue (lines 3-4). In order to prune the
search space, DPLL uses two simple yet powerful simplification rules (lines 5-6) which we
present below.

Unit Propagation (UP) If there is a unit clause C = l in the formula, it can only be
satisfied by propagating the literal l , i.e., assigning l to Tr ue which is equivalent to adding
it to current assignment. In DPLL, this rule is enforced through simplifying the current
formula by the literal l . In practice, this often leads to cascades of unit clauses being
generated and to many literals being propagated, thus pruning a large part of the search
space.

Pure Literals (PL) When a literal l appears with the same polarity (either positively or
negatively) in the formula, then it can also be propagated. Simplifying the formula by l
entails deleting the clauses containing l and therefore pruning the search space.

The above rules are performed in each node of the search tree. Furthermore, when an
assignment leads to the falsification of a clause in the formula, i.e., a clause becomes empty,
the current assignment cannot satisfy the formula (lines 1-2) and the algorithm backtracks
to the last assigned literal in order to branch on its negation (line 8). Note that the decisions,
i.e., branching on the variables, can be done simply in lexicographic or random order of
the variables [DLL62]. However, more efficient branching heuristics are used in practice

10named after Martin Davis (born in 1928), Hilary Putnam (1926-2016), George Logemann (1938-2012) and
Donald W. Loveland (born in 1934)
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and will be presented in Section 2.2.1.3.2. We provide below an example to illustrate the
execution of the DPLL algorithm.

Algorithm 2.1: Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: a CNF formula φ
Output: Tr ue if φ is satisfiable, F al se otherwise

1: if � ∈φ then
2: return F al se
3: if φ=; then
4: return Tr ue
5: if φ contains a unit clause or a pure literal l then
6: return DPLL(φ|l )

7: l ←− Branching_Heuristic(φ)
8: return DPLL(φ∧ l ) or DPLL(φ∧ l )

Example 2.1. We consider the formula φ=C1 ∧C2 ∧C3 ∧C4 ∧C5 where C1 = x1 ∨ x2, C2 =
x2∨x3, C3 = x3∨x4, C4 = x3∨x4 and C5 = x1∨x2∨x3. A search tree depicting the execution of
the DPLL algorithm on φ with lexicographic branching (i.e., x1 < x2 < x3 < x4) is showcased
in Figure 2.1.

c4 =� c4 =� c4 =� φ=;

x1 x1

x2

x3@C2

x4@C3

x2

x3@C5

x4@C3

x2@C1

x3

x4@C3

x3

x4

Figure 2.1: Search tree depicting the execution of the DPLL algorithm where branching is
made in lexicographic order of the variables. Solid, dashed and dotted arrows represent
respectively branching, propagation and backtracking. l@C denotes the propagation of
literal l through the clause C .
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2.2.1.2 CDCL Algorithm

Modern complete SAT solver are mainly based on the Conflict Driven Clause Learning
(CDCL) algorithm which is a refinement of the DPLL procedure [MLM09]. Notable CDCL
solvers include GRASP [Mar95; SS96], (z)Chaff [Mos+01; Zha+01; MFM05], MiniSat 11 [ES03a],
Glucose 12 [AS09a], Lingeling 13 [Bie10b], MapleSAT solver series 14 [Lia+16a; Lia+16b;
Lia+16c], Cadical 15 [Bie17] and Kissat 16 [Bie+20] among many others [PD07b; Bie08b;
SNC09a; Xia+19a]. The CDCL algorithm performs a similar search to DPLL by branching
over the variables in the formula to enumerate all possible assignments. CDCL also relies
on Unit Propagation (UP) as in DPLL to deduce information and prune the search space
when possible. Furthermore, CDCL has one major additional feature compared to DPLL:
clause learning.

In CDCL, we say that a conflict occurs when propagating a literal falsifies a clause in the
formula. When such a case is encountered during the search, CDCL learns information
in the form of a new clause, called learnt clause, to catch the cause of the failure and
avoid repeating it again [Mar95; SS96]. To this end, the algorithm retraces and analyzes its
actions done prior to the conflict. Formally, an implication graph, defined below, is used to
represent the assignments made by the algorithm either through decisions or propagations.
Decision levels of the literals are also usually reported in the implication graph. Each time a
literal l is branched on, a new decision level δ(l ) ∈ {1, . . . , |var (φ)|} is associated to l . On the
other hand, the decision level of a propagated literal l corresponds to the level of the last
literal assigned by branching before the propagation of l or 0 if l was propagated through a
unit clause in the formula. Formally, if l is propagated through the clause C then we have
δ(l ) = max({0}∪ {δ(l ′) | l ′ ∈C \ {l }}).

Definition 2.6 (Implication Graph [Mar95; SS96]). Letφ be a CNF formula andα be a partial
assignment falsifying a clause C ∈φ. An implication graph G = (V , A) is a directed labeled
acyclic graph where V =α∪ {κ} and A ⊆V ×V ×φ such that:

• If a clause C ′ ∈φ lead to the propagation of literal l ∈C ′ then for each l ′ ∈C \ {l }, we
have (l ′, l ,C ′) ∈ A. Vertices corresponding to decisions have no predecessors.

• The conflict is represented by the vertex κ ∈ V having incoming arcs labeled by the
clause C from the literals forcing it to be falsified.

Example 2.2. We consider the same formulaφ=C1∧C2∧C3∧C4∧C5 in Example 2.1, where
C1 = x1∨x2, C2 = x2∨x3, C3 = x3∨x4, C4 = x3∨x4 and C5 = x1∨x2∨x3, and the search tree
shown in Figure 2.1. The implication graph representing the assignments that lead to the
first conflict is represented in Figure 2.2.

11http://minisat.se/
12https://www.labri.fr/perso/lsimon/research/glucose/
13http://fmv.jku.at/lingeling/
14https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
15http://fmv.jku.at/cadical/
16http://fmv.jku.at/kissat/
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x1@1

x2@2 x3@2

x4@2

κ

λ1λ3 λ2

C2

C3

C4

C4

Figure 2.2: Implication graph representing assignments leading to the first conflict in
Figure 2.1. Circled nodes represent literals assigned through branching. l@δ denotes the
assignment of literal l at decision level δ. Dashed lines represent different cuts of the
implication graph.

Using the implication graph G = (V , A), we can identify the reason(s) of the conflict
which take the form of a partial assignment α that generated it. More specifically, α can be
obtained by identifying a bipartition (also called cut) of the implication graph such that
one partition has all the decision nodes (reason side) and the other contains the conflict
node κ (conflict side). The set α of vertices on the reason side that have at least one edge to
the conflict side constitute a possible reason for the conflict. Since assigning the literals of
α generates the same conflict, the clause C = {l | l ∈α} can be added to the formula to avoid
reaching it again. Formally, the clause C can be deduced by the resolution rule defined
below 17. Given two opposed clauses, this well-known inference rule for SAT deduces a new
clause, called resolvent, which can be added to the formula. A proof of the validity of the
learnt clause can be provided by iteratively applying resolution on the clauses between the
conflict node κ and the literals in α in the reverse order of propagation.

Definition 2.7 (Resolution [Rob65]). Given two opposed clauses C1 and C2, the resolution
rule is defined as follows:

C1 = x ∨ A C2 = x ∨B
C3 = A∨B

Example 2.3. We consider the implication graph in Example 2.2. The cuts λ1 , λ2 and
λ3 correspond to possible conflict reasons α1 = {x3, x4}, α2 = {x3} and α3 = {x2}. While α1

represents the clause C4, α2 and α3 represent respectively the clauses Cα2 = x3 and Cα3 = x2

which can be learned in the formula. In Figure 2.3, we showcase how these clauses can be
deduced using the resolution rule.

17We give a more detailed overview of resolution as a proof system for SAT in Section 2.3.
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cα1 =C4 = x3 ∨x4 C3 = x3 ∨x4

Cα2 = x3 C2 = x2 ∨x3

Cα3 = x2

Figure 2.3: Deducing the learnt clause through resolution in CDCL

Since there can be many possible reasons to the same conflict corresponding to different
cuts of the implication graph, CDCL solvers mainly use the First Unique Implication Point
(FUIP) scheme to deduce and learn a new clause [Zha+01]. More specifically, this scheme
consists in resolving the clauses from the conflict node until the First UIP node which is the
UIP closest to κ in the implication graph. It was shown that this scheme is quite robust and
effective and can provide smaller reasons for the conflicts [Zha+01].

Definition 2.8 (Unique Implication Point [Mar95; SS96]). Let G be an implication graph. A
Unique Implication Point (UIP) is any node in G such that any path from the decision nodes
the conflict node κ must pass through it.

Example 2.4. The nodes x2 and x3 are both UIPs of the implication graph represented in
Figure 2.2. Since x3 is closest to the conflict node, it is the First UIP (FUIP) and, therefore, the
clause Cα2 = x3 will be learned in the formula.

After determining the new clause C which is added to the formula, CDCL backtracks to
the second largest decision level in C [Zha+01]. Formally, given the current decision level δ
in which the conflict is detected, the backtrack level is obtained as follows:

β= max({0}∪ {δ(l ) | l ∈C and δ(l ) < δ})

It is worth noting that when β< δ−1 the algorithm backtracks over several levels, in which
case we say that CDCL backjumps to β. Non-chronological backtracking is a major feature
of CDCL alongside clause learning as both enable to avoid wasting a significant amount of
resources while exploring dead-end regions of the search space. This is clearly showcased
in the following example.

Example 2.5. We consider the same formula φ=C1∧C2∧C3∧C4∧C5 in Example 2.1 where
C1 = x1 ∨ x2, C2 = x2 ∨ x3, C3 = x3 ∨ x4, C4 = x3 ∨ x4 and C5 = x1 ∨ x2 ∨ x3. The search tree
corresponding to the execution of the CDCL algorithm on φ is represented in Figure 2.4. The
algorithm performs the same steps as in DPLL until the first conflict is detected by falsifying
the clause C4. As shown in Example 2.4, the clause C7 = {x3} is learned and the algorithm
backtracks to the level δ= 0. A sequence of unit propagations follows and a branching on
literal x4 leads to the satisfying assignmentα= {x1, x2, x3, x4}. Note how the CDCL framework
helped to avoid dead-end parts of the search space thus reaching a satisfying assignment
more efficiently compared to the search performed by DPLL in Figure 2.1.
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C4=�
lear n C6=x3 φ=;

x1 x3@C6

x2

x3@C2

x4@C3

x2@C2

x1@C5

x4

Figure 2.4: Search tree depicting the execution of the CDCL algorithm where branching is
made in lexicographic order of the variables. Solid, dashed and dotted arrows represent
respectively branching, propagation and backjumping. l@C denotes the propagation of
literal l through the clause C .

The basic CDCL procedure is given in Algorithm 2.2 where:

• α and δ represent respectively the current assignment and current decision level.

• Unit_Propagation(φ,α) applies UP on the formula φ and adds the propagated literals
to α. It returns Tr ue if a conflict is detected, i.e., a clause becomes empty, and F al se
otherwise.

• Analyse_conflict(α) analyzes the implication graph to deduce and return a clause C
to be learned and a backtrack level β .

• Backtrack(φ,α,β) undoes all the assignments made within and after the backtrack
level β by doing the necessary updates on φ and α.

• Branching_Heuristic(φ,α) chooses the literal (corresponding to a variable and its
truth value) to branch on in the search.

Note that in practice, CDCL solvers use an assignment trail in the form of a list of literals
associated each to a decision level and, if propagated, to an antecedent clause. This trail
is sufficient to perform conflict analysis without maintaining an actual graph structure.
Modern solvers also rely on a variety of powerful techniques and heuristics which we
present in the next section.
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Algorithm 2.2: Conflict Driven Clause Learning (CDCL) Algorithm

Input: a CNF formula φ
Output: Tr ue if φ is satisfiable, F al se otherwise

1: α←−; . Assignment
2: δ←− 0 . Decision Level
3: while True do
4: if Unit_Propagation(φ,α) then . Inference
5: if δ= 0 then
6: return F al se
7: C ,β←− Analyze_Conflict(φ,α) . Analysis
8: φ←−φ∪ {C } . Learning
9: Backtrack(φ,α,β) . Backtracking

10: δ←−β

11: else if |α| = |var (φ)| then
12: break
13: else
14: l ←− Branching_Heuristic(φ,α) . Branching
15: α←−α∪ {l }
16: δ←− δ+1
17: end while
18: return True

2.2.1.3 Modern Solvers

Modern SAT solver are able to casually solve instances with millions of variables and/or
clauses. This outstanding performance is not only due to the advent of the CDCL framework
but also to the variety of techniques and heuristics incorporated in these solvers. Indeed,
modern solvers rely on efficient data structures which are tailored for the CDCL algorithm,
powerful branching heuristics which cleverly explore the search space, cost-effective han-
dling of the learnt-clauses database to avoid exponential blow-up in the number of clauses,
restart mechanisms to deal with heavy-tailed behaviors and enhanced inference techniques
to further prune the search space. In this section we present these different techniques with
a particular focus on branching heuristics and restarts which are necessary components for
our contributions in Chapter 4.

2.2.1.3.1 Lazy Data Structures

One of the major ingredients in the success of modern CDCL solvers is the use of efficient
data structures. Indeed, formulas with a high number of clauses, which is constantly
evolving through the learning process, warrant the design of suitable data structures to
maintain a reasonable cost for recurring CDCL operations such as UP, conflict analysis
and backtracking. Traditional data structures for CDCL solvers take the form of adjacency
lists [DLL62; SS96; BS97; LA97a]. The clauses are represented as lists of literals and each
literal l is associated to its adjacent clauses, i.e., the clauses that contain l . The adjacency
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lists of l and l enable to access the clauses that are impacted by the assignment of l
and, therefore, the number of clauses that need to be checked is significantly reduced.
Furthermore, different approaches can be used to identify satisfied, unsatisfied or unit
clauses such as simply hiding assigned literals by keeping them in separate lists or by using
counters for the number of satisfied/unsatisfied literals to keep track of the status of a
clause without having to check all its literals as proposed in the GRASP solver [Mar95; SS96].
Note that adjacency lists are "accurate" data structures as they enable to know exactly the
value of each literal in the clause and have the common drawback of associating each literal
to a potentially large number of clauses, which often increases as the search proceeds.

Modern data structures opt for a more lazy approach, in which it is not necessary to
know the actual state of each literal in the clauses, hence their name. A key feature of these
structures is that they mainly need to capture the state of each clause when it is unit to
perform UP or when it is unsatisfied to perform conflict analysis. To this end, it is sufficient
to track only two literals in each clause as in the Head/Tail (HT) structure introduced in the
SATO solver [Zha97]. More specifically, this lazy data structure keeps track of two references
in each clause pointing to the head (H) and the tail (T ) literal. Initially, H points to the
first literal and T to the last literal in the clause. When a literal l pointed by H (resp. T )
is assigned, it is replaced by the next unassigned literal on the right (resp. on the left)
in the clause. As such, H and T always move towards the middle of the clause. In case
the other reference is reached and no unassigned literal can be identified, the clause is
declared unit, unsatisfied or satisfied. When the algorithm backtracks, H and T are placed
at their previous positions. The behaviour of this data structure is illustrated on the right in
Figure 2.5.

The Watched Literals (WL) structure introduced in the Chaff solver [Mos+01], at the
heart of modern CDCL solvers, was inspired by its predecessor HT and aimed to remedy
its major drawback of updating references during backtrack. To this end, WL does not
impose any order relation between the two maintained references. The lack of order
between the two watched literals entails that no literal references need to be updated when
backtracking. As such, it is also not necessary to keep additional references to save previous
positions of watched literals as showcased on the right of Figure 2.5. Many variations of
this structure have been introduced in the literature such as Watched Literals (WL) with
literal sifting [LM05], Watched List with Conflicts’ Counter (WLCC) [Nad02] as well as other
optimizations [Gel02; Bie08b; Gen13].
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Figure 2.5: Behavior of the Head/Tail (left) and Watched Literals (right) lazy data struc-
tures [LM05]. Vertical solid and dashed arrows respectively represent current and saved
references. @i denotes that the corresponding literal was the ith assigned literal in the
clause.

2.2.1.3.2 Branching Heuristics

Branching heuristics play an important role in modern solvers. Indeed, a good heuristic can
highly impact a solver’s performance as shown in Example 2.6. There are many heuristics
that were designed through the years since the emergence of DPLL and later the CDCL
framework. It is important to note that variable branching heuristics and phase branching
heuristics, which choose a truth value for the selected variable, can be distinguished. In
general, branching heuristics focus on choosing a "good" variable to branch on in the
search and can be seen as a scoring function scor e : V −→ R+ on the set of variables
V = var (φ) in the formula, although some exceptions on the nature of this function are
possible. The branching is therefore usually done by choosing the variable x with a maximal
score, i.e., x = ar g maxv∈V scor e(v). Phase heuristics are less common as they were usually
integrated with variable branching in the early heuristics whereas practically all modern
solvers implement phase saving [PD07a], which forces a variable to be reassigned to its last
truth value. As such, we will mainly focus in this section on variable branching heuristics.
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Example 2.6. We consider the same formulaφ=C1∧C2∧C3∧C4∧C5 where C1 = x1∨x2, C2 =
x2∨x3, C3 = x3∨x4, C4 = x3∨x4 and C5 = x1∨x2∨x3 as in Example 2.1. Note how branching
on x3 would have led to the propagation of x2 and x1 respectively through the clauses C2 and
C5. Then, branching on literal x4 would lead to a satisfying assignment without encountering
any conflict unlike the search trees with lexicographic branching in Figures 2.1 and 2.4.

Early heuristics for SAT solving were mainly of syntactic (i.e., lexicographic) nature and
tended to favor the variables that appeared in clauses of small size. They were also greedy as
they made decisions that satisfied immediate goals expected to simplify the problem. Note
that these heuristics can be static or dynamic depending on whether they are computed
with respect to the input formula or the formula simplified by the current assignment.
Hereafter, we present some of the best known traditional syntactic heuristics which were
popular in the 90s.

Jeroslow-Wang (JW) [JW90] This heuristics associates to each variable v ∈ V the
following score:

scor e(v) = o(h(v),h(v))

where:

• o ∈ {max, sum}. If o = max, we are dealing with the one-sided variant of JW, otherwise
we are dealing with the two sided variant.

• h(l ) = ∑
C∈φ s.t. l∈C 2−|C | and can be used to choose the truth value of the selected

variable by comparing h(v) and h(v).

Böhm’s Heuristic [BB92] This heuristic considers a different scoring function
scor e : V −→Rn+ whose output, given a variable v , is a vector (H1(v), . . . , Hn(v)) such that
for i ∈ {1, . . . ,n} we have:

Hi (v) =α∗max(hi (v),hi (v))+β∗min(hi (v),hi (v))

where:

• hi (l ) denotes the number of clauses of size i where the literal l appears.

• α and β are two parameters fixed empirically 18.

The heuristic chooses the variable v with maximal vector scor e(v) under the lexicographic
order. Furthermore, v is affected to Tr ue if

∑
1≤i≤n hi (v) ≥ ∑

1≤i≤n hi (v), and to F al se
otherwise.

18α= 1 and β= 2 in [BB92]
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Maximum Occurrences on Minimum Sized Clauses (MOMS) [ZM88; Dub+93;
Pre93] This heuristics associates to each variable v ∈V the following score:

scor e(v) = h(v)+h(v)+α∗mi n(h(v),h(v))

where:

• h(l ) denotes the number of occurrences of literal l in the shortest clauses.

• α is a parameters fixed empirically 19.

Literal Count Heuristics [Sil99] These heuristics implemented in the GRASP
solver [Mar95; SS96] associate to each variable v ∈V a score as in JW where:

• o ∈ {max, sum}. If o = max, we are dealing with the Dynamic Largest Individual Sum
(DLIS), otherwise we are dealing with Dynamic Largest Combined Sum (DLCS).

• h(l ) denotes the number of unresolved clauses in which l appears and can be used to
choose the truth value of the selected variable by comparing h(v) and h(v).

Note that literal count heuristics were also augmented by a random component to decrease
their greediness in [Sil99].

Many following heuristics were strongly inspired by those above. Such heuristics were
look-ahead by design as they mainly aimed to assess the impact of branching on the search.
Although these heuristics may lead to accurate choices, they usually require high resources
in term of computation time and storage space. Furthermore, these heuristics mainly
targeted random instances, on which they were evaluated. Hereafter, we present the main
look-ahead heuristics in the literature.

Look-Ahead MOMS Variations [Fre95; CA96; LA97b] There are several variants
of the MOMS heuristic that opted for a more look-ahead approach aiming to evaluate the
number of propagations that would be caused by a branching choice. These variations
used UP extensively [Fre95; CA96] or relied on composite approaches [LA97b] to evaluate
the variables. A slightly different scoring function was introduced in [Fre95] where, given a
natural number k 20, a variable v ∈V is scored as follows:

scor e(v) = h(v)+h(v)+2k ∗h(v)∗h(v)

19α= 1.5 in [Dub+93]
20k has a fairly high value initially which can be decreased during the search in [Fre95] whereas it is fixed to

1024 in [CA96; LA97b].
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Backbone Heuristics [DD01; DD04] These heuristics aimed to branch on variables
which are likely to be in the backbone 21. To this end, the heuristic in [DD01] for 3-SAT
scored each variable v ∈V as follows:

scor e(v) = h(v)∗h(v) s.t .

h(l ) = ∑
(l1∨l2)∈I (v)

(2p1(l1)+p2(l1))∗ (2p1(l2)+p2(l2))

where:

• I (v) is the set of all binary clauses derived from ternary 22 clauses of the current
formula such that each of these binary clauses assigned to False implies v either
directly or by virtue of certain unit clauses having the value False.

• For a given literal t , p1(t ) and p2(t ) denote respectively the number of unit and binary
clauses in φ|t where φ is the current formula.

Note that the above estimation is computed on a single level but can be done on multi-
ple levels as specified in [DD01]. This heuristic was also extended for k-SAT with k ≥ 3
in [DD04].

Recursive Weight Heuristic [MDH10; AF10] This heuristic originally intended for
3-SAT in [MDH10] and extended to k-SAT in [AF10] computes the scores (or weights) of
the variables by updating them recursively in each iteration. Given a variable v ∈V and an
iteration i , the score is defined as follows:

scor e(v) = max(hi (v),hi (v)) s.t .

hi+1(l ) = ∑
(l∨l1∨l2)∈φ

hi (l1)∗hi (l2)

µi
+γ ∑

l∨l1

hi (l1)

µi

where:

• For a literal l , hi (l ) is initialized to 1 (when i=0) and can be used to chose a truth value
for the best variable by comparing h(v) and h(v).

• µ = 1
2n

∑
x∈var (φ)(hi (x)+hi (x)) is the average value used to scale the hi (l ) values at

each step.

• γ is an empirically-fixed parameter expressing the relative importance of binary
clauses 23.

21The backbone of a satisfiable formula is the set of variables having the same truth value in every
model [Mon+99; WGS03; Kil+05]. The reader can refer to Section 2.2.3 for more details on structural
properties of SAT formulas.

22Ternary clauses contain exactly three literals.
23γ= 3.3 in [MDH10]
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It is worth noting that this heuristic can be considered as a generalization of the heuristics
in [LA97b; Li99; DD01].

The advent of CDCL and the emerging of Artificial Intelligence (AI) in the 2000s led to
ever increasing demands in terms of robust and effective heuristics. Furthermore, since
choosing the optimal literal to branch on was shown NP-difficult in [Lib00] and solvers
were required to deal with larger formulas, modern heuristics were designed in cohesion
with the CDCL framework while opting for a look-back approach in which the variables
are evaluated through the information accumulated during previous search with minimal
consumption of resources. Such heuristics also follow the fail-first principle which states
that "to succeed, try first where you are most likely to fail” [HE80].

One particular heuristic which reshaped the SAT heuristics landscape is the Variable State
Independent Decaying Sum (VSIDS) which was implemented in the Chaff solver [Mos+01].
After more than two decades since its introduction, VSIDS is still the dominant heuristic
used in reference solvers (e.g., MiniSat [ES03a], Glucose [AS09a] and Cadical [Bie17]) and
competitive solvers (e.g., MapleCOMSPS [Lia+16c], Maple_LCM [Xia+19a], Cadical [Bie17]
and Kissat [Bie+20]) alike, although with some variations. It is worth noting that VSIDS
was introduced alongside the Watched Literals (WL) lazy data structure described in Sec-
tion 2.2.1.3.1, and was therefore adapted to the lack of knowledge on the accurate dynamic
size of a clause during the search which renders most of the heuristics described above
unusable. Another recent heuristic which seems competitive with VSIDS is the Conflict
History-Based (CHB) branching heuristic [Lia+16a]. We introduce below these two major
heuristics and their variants as well as some other heuristics in the literature. Note that
modern solvers maintain a priority queue 24 in which unassigned variables are sorted with
respect to their scores.

Variable State Independent Decaying Sum (VSIDS) [Mos+01] This heuristic in-
troduced in the Chaff solver maintains a score, also called activity, for each variable which
is initialized to 0 at the beginning of the search and is used to chose the next branching
variable. Two operations are periodically performed on the activity score:

• Bump: after each conflict, the score of the variables in the learned clause is incre-
mented, typically by 1

• Decay: all the scores are multiplied by a decay factor 0 < f < 1 periodically, i.e., after
m conflicts 25

Another variant of VSIDS, more commonly used in modern solvers, is the version intro-
duced in MiniSat [ES03a] in which the scores of the variables in all the clauses involved
in conflict analysis (i.e., clauses which were resolved including the conflicting clause) are
bumped 26. Furthermore, in this variant, the score decay is performed at each conflict 27.

24often implemented as a binary heap [Cor+09]
25 f = 0.5 and m = 256 in Chaff
26Although this variation is often credited to MiniSAT, it is largely inspired by the branching heuristic of the

Berkmin solver which uses VSIDS as an auxiliary heuristic with a similar variation [GN02].
27m = 1 and f = 0.95 in MiniSat
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Another implementation feature of VSIDS decay in MiniSat is bumping the variable scores
with larger numbers until they reach a certain limit 28 after which they are scaled down.

The Normalised VSIDS (NVIDS) variant, introduced in [Bie08a] and implemented in
the Lingeling solver [Bie10b], represents an exponential moving average on how often a
variable occurred in antecedents of learned clauses. To this end, given the decay factor f ,
the score of all the variables are decayed after each conflict including the variables involved
in the conflict whose scores are bumped (and decayed) as follows:

scor e(v) = f ∗ scor e(v)+ (1− f )

The Exponential VSIDS (EVSIDS) variant was also introduced in [Bie08a] and aimed to
offset the NVSIDS disadvantage of updating all the variable scores at each conflict. Inspired
by MiniSAT’s sclaing, EVSIDS maintains an exponential increasing score increment g i (v)
where g = 1/ f and i (v) denotes the conflict index of variable v , i.e., the number of conflicts
when a variable was last bumped. Variable scores and the score increment can also be
rescored occasionally. As such, only scores of variables that are involved in the conflict
need to be updated as follows:

scor e(v) = scor e(v)+ g i (v)

Finally, the Average Conflict-Index Decision (ACIDS) variant introduced in [BF15] ensures
that the influence of earlier conflicts decreases exponentially with respect to the bumping
steps. Given a variable v ∈V , the score is updated as follows:

scor e(v) = (scor e(v)+ i (v))/2

Berkmin’s Heuristic [GN02; GN07] This heuristic introduced in the Berkmin solver
branches on the unassigned variable in the most recently learned clause that is not yet
satisfied by the current assignment. VSIDS is used as an auxiliary heuristic to pick a
variable when no such clause exists or to choose one among unassigned variables otherwise.
Berkmin introduced the following variation to VSIDS: the scores of all the variables involved
in the conflict are bumped with respect to their occurrence in the resolved clauses including
the conflicting clause.

Variable Move-To-Front (VMFT) [Rya04] This heuristic implemented in the Siege
solver 29 simply moves a subset of the variables in each learned clause to the front of
the decision queue. The size of this subset is a small constant m 30 and the variables are
positioned arbitrarily at the front of the queue. This heuristic does not necessarily require
associating scores to variable. However an efficient implementation is described in [BF15]
where variables are simply scored by their conflict index.

28the floating point number limit is used in MiniSat
29https://www2.cs.sfu.ca/research/groups/CL/software/siege/
30m = 8 in [Rya04]
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Conflict History-Based (CHB) Heuristic [Lia+16a] This heuristic, implemented in
the MapleCOMSPS solver [Lia+16c], is based on the Exponential Recency Weighted Average
(ERWA) 31 [SB98] and favors the variables involved in recent conflicts as in VSIDS. CHB
maintains a score (or activity) for each variable v ∈V , initially set to 0. The score is updated
when a variable is branched on, propagated, or asserted using ERWA as follows:

scor e(v) = (1−α)× scor e(v)+α× r (v)

The parameter 0 <α< 1 is the step-size, initially set to 0.4 and decayed by 10−6 after every
conflict to a minimum of 0.06. r (v) is the reward value for variable v which can decrease
or increase the likelihood of picking v . Higher rewards are given to variables involved in
recent conflicts according to the following formula:

r (v) = mul ti pl i er

Con f l i ct s − l astCon f l i ct (v)+1

where Con f l i ct s denotes the number of conflicts that occurred since the beginning of
the search and l astCon f l i ct(v) is updated to the current value of Con f l i ct s whenever
v is present in the clauses involved in conflict analysis. mul ti pl i er is set to 1.0 when
branching, propagating or asserting the variable that triggered the score update lead to a
conflict, otherwise it is set to 0.9. The idea is to give extra rewards for variables producing a
conflict.

A recent variant of CHB called the Learning Rate Branching (LRB) heuristic was intro-
duced in [Lia+16b]. This variant uses a more refined reward function which favors the
variables that contributed the most in recent conflicts. Whenever a variable is unassigned
through backtracking its score is updated using ERWA as in CHB but using a different
reward function defined as follows:

r (v) = nbCon f l i ct s(v)

ag e(v)

where:

• ag e(v) denotes the number of conflicts encountered in the period between the as-
signment of a value to v and its unassignment during backtrack.

• nbCon f l i ct s(v) denotes the number of conflicts in which the variable v is involved
during the same period.

This variant also included a decay component where the scores of unsigned variables are
decayed by a factor 0 < f < 1 after each conflict 32. The intuition behind the LRB heuristic is

31ERWA is originally used in the context of the Multi-Armed Bandit (MAB) problem which will be introduced
in Section 2.4

32 f is set to 0.95 in [Lia+16b] and the authors suggest performing the decays in batch, i.e., multiply the score
of a variable a single time by f k after k conflicts where it remains unassigned instead of performing k
multiplications.
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that a free variable contributing to most conflicts during the period in which it was assigned
a value is likely to help derive new conflicts quickly if it is assigned again.

Distance Heuristic [Xia+19b] This heuristic used in the Maple_LCM solver [Xia+19a]
relies on the longest distance between a variable and the conflict in the implication graph
to update the score, rather than its simple presence. The score of each variable v in the
implication graph, initially set to 0, is updated after each conflict as follows:

scor e(v) = scor e(v)+ i nc

Di st (v)

where:

• i nc is initialized to 1 and decayed after each conflict using a decay factor 0 < f < 1 33.

• Di st (v) denotes the number of vertices in the longest path from a node containing v
to the conflict node.

Since this heuristic requires more computations to calculate the distances, it is intended to
be used at the beginning of the search process when there are very few conflicts 34.

LBD-Based Heuristics [CWX17; CXC19; CMY19] These heuristics use the Literal
Block Distance (LBD) measure 35 of the learnt clauses to score the variables. For instance,
the heuristic in [CXC19] updates the scores of the variables involved in the conflict as
follows:

scor e(v) = scor e(v)+ 1

LBD
+ 1

BT L

where:

• LBD denotes the literal block distance of the learnt clause.

• BT L denotes the backtrack level.

We finish this section by referring the reader to different studies evaluating and comparing
modern branching heuristics [JN08; Lia+15; BF15; Lia+18a].

2.2.1.3.3 Managing Learnt-Clauses Database

Learning all the clauses produced by conflict analysis in CDCL can be impractical as it can
lead to an exponential growth of the number of recorded clauses, therefore exhausting
all the available memory space. To maintain a learnt-clauses database of reasonable size,
modern solvers employ reduction and deletion strategies based on different measures to

33 f is set to 0.95 in [Xia+19b].
34In Maple_LCM, the distance heuristic is only used in the 5∗104 first conflicts.
35The LBD of a learnt clause is the number of distinct decision levels of its literals. The reader can refer to

Section 2.2.1.3.3 for more details.
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estimate the quality of learnt clauses. The clauses that are deemed irrelevant with respect
to those measures are deleted from the learnt-clauses database.

One of the first measures used to evaluate learnt clauses is their size, as in the Grasp
solver [Mar95; SS96]. More specifically, GRASP keeps the clauses whose size is less than
a given threshold k while discarding larger clauses as soon as the number of unassigned
literals in them is greater than one. A different measure, called activity and inspired by the
VSIDS branching heuristic in Chaff [Mos+01], was introduced in the Berkmin solver [GN02]
and later used in MiniSat [ES03a]. A weight, referred to as activity, is associated with each
learnt clause and is bumped and decayed similarly to variables at each conflict. In [AS09b],
the authors introduce the Literal Block Distance (LBD) Measure in the Glucose solver, which
is defined as the number of distinct decision levels within a learnt clause. In particular, the
clauses whose LBD is 2, called glue clauses, contain one variable of the last decision level
and are always kept permanently in the database. In recent modern solvers, clauses whose
LBD is below a given threshold are usually kept longer or permanently in the learnt-clauses
database [Oh16]. Note that the LBD measure can be dynamically updated during the search
whenever a learnt clause is used in UP [AS09b; Son16]. Other less commonly used measures
were also introduced in [Jab+14; Guo+14; Ans+15a].

The general scheme used in most modern CDCL solver to reduce the learnt-clauses
database size is to sort the set of learned clauses with respect to a given measure 36 and
then delete half of the learned clauses. It is important to note that the efficiency of most
database-management strategies heavily depends on the reduction frequency and on the
amount of deleted clauses. Very few other database reduction schemes were designed
for CDCL solvers such as the one in [LN17] which attempts to circumvent the problem of
choosing a specific amount of clauses to delete at each step. Finally, other minimisation
techniques, aiming to reduce the size of learnt clauses, are also extensively used in modern
solvers [BKS04; SB09; HJS10b; Luo+17b].

2.2.1.3.4 Restarts

The restart mechanism is an important component of modern CDCL solvers which was
introduced to deal with the heavy-tailed phenomena in SAT [Gom+00]. This phenomena
is characterized by the non-negligible probability of an exponential increase in solving
time when encountering a difficult problem in a specific part of the search space [GSC97;
GSK98]. To deal with this phenomena, we can frequently restart the search somewhere else
in the search space and thus avoid heavy-tailed behaviors of SAT solvers. At each restart,
the solver would undo all the assignments and restart the search anew at the root of the
search tree. Note however that some acquired information is usually maintained after a
restart such as the learnt clauses and the variable scores. Furthermore, the restarts are
performed when a specific cutoff value is reached, usually represented by the number of
allowed conflicts per restart. The restart mechanism used in the earlier CDCL solvers was
usually coupled with randomization applied to branching heuristics therefore ensuring that
different parts of the search space were visited with high probability in each restart [SS96;

36or a combination of measures to break ties as in the latest versions of Glucose [AS18]
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GSK98; Mos+01; GN02]. Such simple mechanisms yielded considerable improvements on
random and real-world instances, including unsatisfiable ones [GSK98; BM00].

To ensure completeness, the cutoff value would be iteratively increased in each restart
originally in the form of an arithmetic sequence. However, other strategies are more
commonly used in recent modern solvers. One of these well-known strategies is geometric
restarts where a geometric sequence is used to increase the base cutoff [Wal99]. Another
strategy relies on a different sequence called the Luby sequence [LSZ93]. As defined below,
the Luby sequence generates the following terms 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, . . . which
are multiplied by the base cutoff value. Since the cutoff value is usually small 37, using the
Luby sequence entails more frequent restarts compared to a geometric one. Most recent
modern solvers use Luby restarts as it was shown that it is the best standalone restart policy
in [Hua07; HH14]. Other strategies rely on the LBD values of the learnt clauses [AS12;
Lia+18b]. For instance, the strategy in [AS12] used in the Glucose solver triggers a restart
when the recently produced clauses have high LBDs and is most effective on unsatisfiable
instances. More specifically, a restart is performed when the average LBD value in the last
X conflicts multiplied by a factor f ∈]0,1[ is higher then the LBD average of all the deduced
learnt clauses.

Definition 2.9 (Luby Sequence [LSZ93]). Given a natural number k, the Luby sequence is
defined as follows:

ti =
{

2k−1 if i = 2k −1

ti−2k−1+1 if 2k−1 ≤ i < 2k −1

The study in [Li+20b] investigates the theoretical power of restarts and proves that CDCL
augmented with this mechanism can be exponentially faster on a particular class of sat-
isfiable instances. Additional techniques involving the restart mechanism include phase
saving [PD07a] and target phases [BF20]. The former simply saves and reassigns the same
truth values to variables after restarts while the latter is an extension aiming to increase
the likelihood of generating models by saving promising assignments derived by the solver.
In [AS12; Oh15; BF19], it was shown that modern solvers could have different behaviors
on satisfiable and unsatisfiable instances depending on the chosen restart policy. This
observation could be exploited to enhance a solver’s performance on either satisfiable
or unsatisfiable instances or on both types of instances by using a hybrid strategy. For
example, Glucose’s restart policy combines LBD-based restarts while blocking fast (Luby)
restarts when approaching complete assignments [AS12]. The solvers Cadical and Kissat
also implement a hybrid strategy in which they alternate between a focused mode with
Glucose-style fast restarts targeting unsatisfiable instances and a stable mode with fewer
restarts targeting satisfiable instances [BF20]. Both solvers also use a hybrid branching
scheme in which VMTF [Rya04] and EVSIDS [Bie08a] are respectively used in focused
and stable modes, in the spirit of the MIRA solver [LSB05]. The solver MapleCOMSPS
[Lia+16c] similarly uses a hybrid branching scheme by blocking the restart-cutoff increases
to alternate CHB [Lia+16a] (or LRB [Lia+16b]) phases and VSIDS phases in a round-robin
fashion.
37For instance, MiniSat 2.2.0 implements both geometric and Luby restarts with a default base cutoff value of

100 conflicts and an increase factor of 2 for the geometric sequence.
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2.2.1.3.5 Enhanced Inference and Processing

Modern SAT solvers use powerful techniques aiming to infer information from the formula
or to simplify it by reducing the number of clauses, literals or variables [Bie12b; WGS13].
Unit propagation (UP), Pure Literals (PL) and clause learning introduced in Sections 2.2.1.1
and 2.2.1.2 are major examples showing how such techniques can dramatically enhance
the efficiency of SAT solvers. Similarly, many other techniques, attempting to balance
the trade-off between the amount of achieved inference/simplification and the resources
invested in them, were introduced in the literature. These techniques can be categorized
into preprocessing and inprocessing techniques, applied respectively before and during the
search, although many would fall into both categories. In addition, the inference entailed
by these different mechanisms should be sound for SAT by ensuring equivalence 38 or a less
constrained form of soundness defined below, called equisatisfiability. It is worth noting
that using such techniques became popular with the success of the SatELite preproces-
sor 39 [EB05] which would later be integrated into MiniSat 2. Following MiniSat’s footsteps,
recent modern solvers also integrate a variety of techniques to optimize their performance.

Definition 2.10 (Equisatisfiability). Let φ and φ′ be two formulas. φ is equisatisfiable to φ′ if
we have: φ satisfiable if and only if φ′ satisfiable.

A well-known generic simplification technique is the elimination of redundant
clauses [Fou+07; HS09]. Intuitively, a redundant clause represents information that can
be derived from the rest of the formula. Eliminating such clauses therefore produces a
smaller size equivalent formula. In its simpler form, this technique would consist in delet-
ing duplicated, tautological, or subsumed clauses. However, more complex forms exist
such as self-subsuming resolution [EB05] which eliminates clauses subsumed by resolvents
obtained through the application of the resolution rule 40 [Rob65; HJB10].

Another redundancy-based technique is the elimination of blocked clauses [JBH10;
Bal+14; Kie+18]. Informally, a clause C is blocked if it contains a literal l such that all
possible resolvents derived from C with another clause in the formula by resolution on
var (l ) are tautologies [Kul99]. This technique generalizes failed-literal probing [Fre95; Le
01] which is extensively used in SAT solvers as it can enhance the power of UP in inferring
literals that must be satisfied in the current formula. More specifically, when UP is not
applicable, we can check if assigning a literal l leads to a conflict, in which case the literal l
should be satisfied and can be propagated in the current formula. Other extensions of this
technique include clause vivification [PHS08; Li+20a] and distillation [JS05; HS07].

Bounded variable elimination [EB05; SP05; RH21] uses the original Davis-Putnam (DP)
procedure in [DP60] to remove variables from the formula. This technique consists in
simply applying the resolution rule on all the clauses opposed on a given variable v to
derive all the non-tautological resolvents while deleting all the clauses containing v . To
prevent exponential blow-up in the number of clauses, variables are only eliminated if
the number of derived clauses is less than the number of deleted clauses. Finally, to be

38refer to Definition 1.17
39http://minisat.se/SatELite.html
40refer to Definition 2.7
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exhaustive, we mention some other techniques related with variable elimination such as
the detection of functional dependencies between variables [Ost+02; Gré+05; OP09; Ise20]
or the elimination of hidden literals (i.e., implying other literals in the same clause) [HJB11].

2.2.1.4 Other methods

In this section, we overview other complete algorithms for SAT solving. One particular
family of algorithms in the literature relies on parallel solving [BS18]. Parallel solvers for
SAT can be divided into two main categories: portfolio and divide-and-conquer algorithms.
The underlying idea behind the portfolio approach is to rely on multiple CDCL-based
SAT solvers equipped with different strategies and settings to solve an instance. Indeed, a
standalone solver (or solver instance with a specific setting) might perform well on a given
set of instances while struggling or even drastically failing on another. Since it is difficult
to predict a solver’s performance on a specific instance, launching many competitive
solvers in parallel on different processors to deal with the same instance may lead to more
efficient solving. Once a solver terminates, its result is reported and all other solvers are
terminated. State-of-the-art solvers based on this approach include ManySAT [HJS10a],
Glucose-Syrup [AS14], HordeSAT [BSS15] and Plingeling [Bie10a; Bie+20] among others.

The second category of algorithms, i.e., divide-and-conquer, splits the search space into
partitions which are solved in parallel. Such methods have been applied in the 1990s
on the DPLL framework [BS96; ZBH96]. A recent known variant paradigm of divide-and-
conquer, which can be applied on CDCL, is the cube-and-conquer algorithm [Heu+12].
The problem is divided into many sections called cubes through a look-ahead solver. Intu-
itively, cubes are conjunctions of subsets of variables of the original formula that can be
solved independently by CDCL solvers. The problem is then tackled using the cubes to
guide the search. Solvers that fall within the divide-and-conquer category include Treen-
geling [Bie12a], MapleAmpharos [Nej+17] and P-CLONE-FLIPS [Le +19], which is based on
the Painless framework [Le +17]. Finally, it is worth noting that state-of-the-art solvers in
both concurrent categories rely on different clause-sharing techniques [Guo+10; Laz+12;
HJS12; AS14; Val+20; PSM21].

Other complete methods for SAT solving include hybrid algorithms which boost DPLL/CDCL
solvers through incomplete local search methods which will be presented in the follow-
ing section. For example, the DPLL framework is augmented with a call to a local search
algorithm at each node in [MSG98; Hab+02]. A local search solver is also called to incremen-
tally identify subformulas which are solved by CDCL in [LM08]. More recently, the solvers
CaDiCaL and Kissat call a local search solver to produce a promising assignment used for
target phases [BF20]. A deeper cooperation between CDCL and local search is proposed in
[CZ21b; Cai+22] to improve target phases, rephasing and branching. Finally, other solving
paradigms can be used to solve SAT although this is not common as satisfiability is a power-
ful formalism with highly efficient dedicated solvers. Nevertheless, one can exploit more
generic formalisms with more powerful expressiveness and inference such as the recent
work in [AL21] which relies on reduction from SAT to Max-2-SAT 41.

41refer to Section 3
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2.2.2 Incomplete Methods
Unlike complete solvers which are based on exhaustive branching and backtracking search,
incomplete methods are mainly based on Stochastic Local Search (SLS) [Gu92]. For some
problems and specifically for randomly generated satisfiable instances, incomplete meth-
ods for SAT can significantly outperform DPLL-based methods. In this section, we first
introduce the general outline of an SLS algorithm for SAT. Then, we present the two major
SLS architectures in the literature, namely GSAT [SLM92] and WalkSAT [SKC94]. Further-
more, we introduce the main metaheuristics used to enhance the performance of modern
local search SAT solvers. Finally, to be exhaustive, we briefly overview other less common
incomplete methods.

2.2.2.1 Stochastic Local Search

Stochastic Local Search (SLS) methods for SAT [Gu92; SLM92], whose outline is described
in Algorithm 2.3, seek to improve an initial random assignment of the formula with respect
to a cost function through a sequence of simple steps, called flips, which aim to locally
repair the current assignment. The cost (or objective/evaluation function), defined below,
is used to evaluate each assignment α and is usually set to the number of clauses falsified
by α. As such, SLS algorithms for SAT aim to optimize the cost of an assignment α until it
reaches a global optimum, defined below. Clearly, in case the global optimum costα(φ) = 0
is achieved, then α is a satisfying assignment of the formula φ and is returned by the
algorithm (lines 4-5).

Definition 2.11 (Cost). Let φ be a CNF formula and α be an assignment of φ. The cost of α is
defined as follows:

costα(φ) = |{C ∈φ |C |α =�}|
Definition 2.12 (Global Optimum). Let φ be a CNF formula, A be the set of all possible
complete assignments of φ and α be an assignment in A . costα(φ) is a global optimum of
the cost function if we have:

∀α′ ∈A ,costα(φ) ≤ costα′(φ)

To optimize the current assignment, SLS goes through an intensification phase in which
only neighboring assignments can be visited in each step. The set of neighbors of an
assignment, defined below, consists of the assignments that differ in exactly one literal.
The assignment to be visited in this neighborhood is determined through the choice of a
variable, whose truth value is flipped to obtain the new assignment (lines 7-8).

Definition 2.13 (Assignment Neighborhood). Let φ be a CNF formula and A be the set of
all possible complete assignments of φ. The neighborhood of an assignment α ∈A is defined
as follows:

N (α) = {α′ ∈A | |α∩α′| = |α|−1}
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Algorithm 2.3: Stochastic Local Search for SAT

Input: a CNF formula φ, two natural numbers maxTr i es and maxSteps
Output: a satisfying assignment α of φ, UNKNOWN otherwise

1: for i = 1 to maxTr i es do
2: α←− random complete assignment of φ
3: for j = 1 to maxSteps do
4: if α satisfies φ then
5: return α

6: else
7: x ←−C hoose_V ar i able(φ,α)
8: α←−α with truth value of x flipped

9: end for
10: end for
11: return UNKNOWN

Definition 2.14 (Flip). Let φ be a CNF formula, α be an assignment of φ and v be a variable
of φ. A flip step on v produces the assignment α′ ∈N (α) defined as follows:

α′ = (α\ {l })∪ {l }

where l is the literal in α s.t. var (l ) = v.

Note that the intensification phase could lead to a local optimum. Informally, a local
optimum corresponds to an optimal cost within a restricted region of the search space such
that visiting neighboring assignments can only degrade the cost function. To avoid getting
stuck in local optima, SLS goes through a diversification phase by restarting the search to
visit other parts of the search space (lines 1-2) or by diversifying variable choices. Ensuring a
good trade-off between intensification and diversification is necessary in devising efficient
SLS algorithms. It is worth mentioning that random restarts in SLS inspired the restart
mechanism used in modern complete solvers introduced in Section 2.2.1.3.4.

Definition 2.15 (Local Optimum). Let φ be a CNF and α be an assignment of φ. costα(φ) is
a local optimum of the cost function if we have:

∀α′ ∈N (α), costα(φ) ≤ costα′(φ)

SLS algorithms mainly differ in the way they choose variables to be flipped. In the
next sections, we present the two main SLS architectures for SAT then we overview some
well-known metaheuristics that are incorporated into SLS algorithms.

2.2.2.2 SLS Architectures

Two major SLS architectures were introduced for SAT, namely GSAT and WalkSAT. These
architectures are in fact basic SLS algorithms which are at the heart of every SLS solver.
The GSAT algorithm [SLM92], introduced earlier in 1992, tries to minimise the number
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of unsatisfied clauses by a greedy descent in the space of variable assignments. Variable
selection in GSAT is based on the score of a variable v under the current assignment α,
which is defined as follows:

scor e(v) = br eak(v)−make(v)

where br eak(v) and make(v) denote the number of clauses unsatisfied respectively by
α and the assignment obtained by flipping v in α. In each local search step, one of the
variables with maximal score is flipped. Random selection with uniform distribution is
used when there are several variables with maximal score. The key to efficiently imple-
menting GSAT is to evaluate the complete set of scores only once at the beginning of each
try, and then after each flip to update only the scores of the variables which were possibly
affected by the flipped variable. A well-known variant of this algorithm with more pro-
nounced diversification in variable selection aiming to avoid getting stuck in local minima
is GSAT with random walk (GWSAT) [SKC94]. As its name suggests, GWSAT augments the
variable selection heuristic in GSAT with a random walk step. In such a step, a currently
unsatisfied clause C is first randomly selected. Then, one of the variables appearing in C
is flipped, thus effectively forcing C to become satisfied. The basic idea of GWSAT is to
decide at each local search step with a fixed probability w p, called walk probability or noise
setting, whether to perform a standard GSAT step or a random walk step. Many SLS algo-
rithms and/or solvers for SAT are based on the GSAT architecture such as H(W)SAT [GW93;
GWH95], G(W)SAT with Tabu search [MSG97; SSS97], Sparrow [BF10], G2SAT [LH05b],
TNM [LWL12], sattime [LL12], gNovelty+ [Ngh+08] as well as the configuration-checking-
based algorithms [CS11; LSC12; CS12; CS13b; Luo+14; CLS15a].

The WalkSAT architecture [SKC94] is based on a two-stage variable-selection process
which randomly chooses a currently unsatisfied clause C then selects one of its variables, as
in the the random walk step of GWSAT. However, WalkSAT has two major differences. Firstly,
the scoring function used by WalkSAT considers only the break values, i.e., the score of a
variable v is simply br eak(v). Secondly, if there exists a variable v in C such that br eak(v) =
0, it is immediately selected. Indeed, flipping this variable would satisfy the clause C
without falsifying another clause thus leading to a zero-damage flip. If no such variable
exists, WalkSAT selects the variable having minimal score value with a probability w p
similarly to GWSAT. Furthermore, in the remaining cases, a random walk flip is performed
in which a variable in C is randomly chosen to be flipped. Major algorithms/solvers based
on WalkSAT include Novelty and its variants [MSK97; Hoo99; LH05b; Ngh+08; AHT17]
WalkSATlm [CSL13; CLS15b] and ProbSAT [BS12] among others. Finally, we refer the reader
to the study in [HS00] which includes an empirical evaluation of the standard algorithms
mentioned above.

2.2.2.3 Metaheuristics

Like complete solvers, modern local search solvers for SAT incorporate a variety of tech-
niques to enhance their performance. In this section, dedicated to these different tech-
niques, we start by presenting some well-known metaheuristics relying on information
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acquired through the search. Then, we present clause weighting schemes employed in
dynamic local search algorithms for SAT. Finally, we describe some search mechanisms
used to adaptively set different parameters in SLS solvers.

2.2.2.3.1 History-Based Local Search

Recent SLS algorithms often include techniques that rely on information acquired through
the search. One particular information that is used in a variety of algorithms is variable
age, i.e., the number of steps since a variable has been flipped. For example, the Tabu
mechanism [Glo89] which was combined with both GSAT and WalkSAT in [MSG97; SSS97;
MSK97] uses this information to forbid reversing the effect of a flip move. More specifically,
a variable cannot be flipped if its age is less than a given parameter, called Tabu tenure. In
WalkSAT, if all the variables in the chosen unsatisfied clause are tabooed, another clause
is chosen. If no such clause exists, the Tabu mechanism is temporarily ignored. The
underlying idea behind this mechanism is to avoid the cycling problem in local search
where candidate assignments which have been explored recently are constantly revisited
again.

The HSAT algorithm [GW93], based on GSAT, uses variable age to break ties. When several
variables with maximal score are identified, HSAT selects the oldest flipped variable. The
intuition behind this algorithm is that some relevant variables which are often eligible to be
chosen may not get flipped thus causing the search to stagnate. Breaking ties with respect
to age also helps to alleviate the cycling problem. HSAT was also extended with GWSAT’s
random walk mechanism in [GWH95].

The Novelty algorithm [MSK97], a well-known variant of WalkSAT, also keeps track of the
age of all flipped variables. After randomly choosing an unsatisfied clause as in WalkSAT,
Novelty selects the best variable with respect to the break score only if it does not have
minimum age. Otherwise, the second best variable is chosen with probability w p. Similarly
to the Tabu mechanism, the intuition behind Novelty is to avoid repeatedly flipping the
same variable back and forth. Many variations were introduced to Novelty. For example, the
R-Novelty algorithm [MSK97] takes into account the difference in scores between the best
and second best variables to choose a relevant one. Other variants include Novelty+ [Hoo99]
and Novelty++ [LH05b] among others [Ngh+08; AHT17]. Given a randomly selected un-
satisfiable clause C , Novelty+ simply picks a random variable in C with probability w p ′

while Novelty++ picks the variable with minimal age in C and both use basic Novelty as a
sub-procedure with probability 1−w p ′ otherwise.

Configuration Checking (CC), initially introduced in [CS11], is a powerful technique
where a variable is tabooed with respect to the age of its neighboring variables. The neigh-
borhood N (v) of a given variable v consists of all the variables which occur in at least
one of the clauses containing v . The notion of configuration, formally defined below, is
thus introduced for a variable by considering the restriction of an assignment α under its
neighbors. The underlying idea of CC is to forbid flipping variables whose configurations
has not been changed since their last flip. Intuitively, a variable can only be flipped if its age
is higher than at least one of its neighbors’.
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Definition 2.16 (Variable Neighborhood in CC [CS11]). Let φ be a CNF formula, and v be a
variable in φ. The neighborhood of v is defined as follows:

N (v) = {v ′ ∈ var (φ) \ {v} |∃c ∈φ s.t. v, v ′ occur in c}

Definition 2.17 (Variable Configuration in CC [CS11]). Let φ be a CNF formula, α be a
complete assignment of φ and v be a variable in var (φ). The configuration of v is a vector
CCv ∈ {0,1}|N (v)| consisting of the truth values of all variables in N (v) under assignment α.

Many variations and extensions were introduced for the CC mechanism [LSC12; CS12;
CS13b; Luo+14; CLS15a; AHT17]. The work in [LSC12] introduces Quantitative Configura-
tion Checking (QCC) with variations on the notions of neighborhood and configuration. As
defined below, the configuration is based on the state of the clauses (satisfied or not) with
respect to an assignment. The same work also uses the quantity of variations within the
configuration, i.e., the number of times the configuration changes smoothed over time, to
break ties when choosing a variable.

Definition 2.18 (Variable Neighborhood in QCC [LSC12]). Let φ be a CNF formula, and v
be a variable in φ. The neighborhood of v is defined as follows:

N (v) = {C ∈φ |v occurs in C }

Definition 2.19 (Variable Configuration in QCC [LSC12]). Let φ be a CNF formula, α be
a complete assignment of φ and v be a variable in φ. The configuration of v is a vector
CCv ∈ {0,1}N (v) consisting of the states (satisfied or falsified) of all the clauses in N (v) under
assignment α.

The Configuration Checking with Aspiration (CCA) algorithm described in [CS12] extends
CC with a greedy aspiration mechanism where variables whose flips can bring a consid-
erable benefit have a chance to be selected even if they do not satisfy the CC criterion.
In [CS13b], CCA is extended with a subscore property used to break ties on variable scores
and mainly targeting k-CNF formulas with k > 3. The Double Configuration Checking with
Aspiration (DCCA) strategy introduced in [Luo+14] employs a double CC scheme com-
bining the two different notions of configuration introduced above based on variable and
clause neighborhoods. The CC strategy was also incorporated within the Novelty framework
in [AHT17]. Finally, most recent state-of-the-art SLS solvers implement the CC strategy
such as Swcc and its variants [CS11; LSC12; CS12], (D)CCASat [CS13b; Luo+14], Cscore-
SAT [CS13a; CLS14] , CCAnr [CLS15a] and Ncca+ [HTA13; AHT17]. In particular, the solver
CCAnr 42 based on the CCA strategy augmented with the preprocessor 43 CP3 [Man12]
shows better performance on structured instances compared to other SLS solvers.

42http://lcs.ios.ac.cn/~caisw/SAT.html
43refer to Section 2.2.1.3.5 for processing techniques
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2.2.2.3.2 Dynamic Local Search

Dynamic Local Search (DLS) schemes for SAT, also called clause weighting schemes, asso-
ciate a weight (or penalty) to each clause in the formula. Intuitively, the weight represents
the difficulty of a clause as a constraint in the formula. Clause weights have a fixed initial
weight, typically 1, and are dynamically adjusted during the search so as to penalize clauses
which are difficult to satisfy within local minima. Unlike previously discussed algorithms
and techniques which mainly rely on break and/or make scores of variables, clause weights
are used to guide the search in DLS. More specifically, the variable which produces the
greatest reduction in the sum of weights of unsatisfied clauses is flipped as first specified
in [Mor93]. DLS algorithms differ primarily in the schemes used to adjust the clause weights.
Two major schemes have emerged in the literature: additive and multiplicative weighting.

The first clause weighting methods [Mor93; SK93] relied on a purely additive scheme
where the weights of unsatisfied clauses are incremented whenever the search encounters a
local minimum, i.e., the objective function cannot be improved, or simply at the end of each
try. Such methods allowed unrestricted weight growth during the search. In subsequent
work, the Discrete Lagrangian Method (DLM) [WW00] additionally decremented clause
weights after a fixed number of increases while allowing zero-damage flips (called flat
moves in [WW00]). One of the best DLS schemes is the Pure Additive Weighting Scheme
(PAWS) [Tho+04; Tho06] used in current state-of-the-art solvers. The major feature of PAWS
is the use of a smoothing probability sp to decrement the clause weights during the search,
otherwise the weights are incremented as in DLM.

Multiplicative weighting emerged with the Smoothed Descent and Flood (SDF) method
for breaking ties between zero-damage flips. In the case where no improving flips are possi-
ble, SDF increases weights of unsatisfied clauses and then smooths clause weights so that
the greatest cost difference between any two flips remains constant. Other works include
the exponentiated subgradient algorithm in [SSH01] which inspired the well-known Scaling
And Probabilistic Smoothing (SAPS) scheme [HTH02]. The additional characteristics of
SAPS compared to the work in [SSH01] are the periodic smoothing of weights with respect
to a smoothing probability, which was later applied in PAWS, and their increase only for
unsatisfied clauses within local minima.

The study in [Tho06] provides a more detailed overview of clause weighting schemes. It
is worth noting that clause weighting, mainly in the form of the PAWS scheme, has been
combined with state-of-the-art techniques including Configuration Checking (CC) within
recent SLS solvers such as CCAsat [CS13b], CCAnr [CLS15a] or Ncca+ [AHT17]. Other
works related to DLS also include switching between non-weighting, clause weighting, and
variable weighting schemes as described in [WLZ08] or efficiently handling tie-breaking
situations encountered in the landscapes of additive weighting [FT05].

2.2.2.3.3 Adaptive Local Search

State-of-the-art SLS solvers often rely on different parameters which can critically impact
their performance [MSK97; Hoo02]. Although such parameters are usually fixed empirically,
many studies introduced and investigated schemes in which their values are adaptively set
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during the search. For example, an adaptive noise mechanism for WalkSAT was introduced
in [Hoo02]. Through this mechanism, the walk probability is increased during intensifi-
cation phases to further guide the search with more greedy steps whereas it is decreased
when there is stagnation in the cost function for a set period of search steps, thus further
diversifying the search to escape local minima. This mechanism can be easily applied to
other algorithms with a similar parameter such as the noise setting in GWSAT and can be
combined with other metaheuristics such as Dynamic Local Search (DLS) as in [Ngh+08].
In particular, in the context of DLS and particularly the Scaling and Probabilistic Smoothing
(SAPS) multiplicative scheme [HTH02], the authors propose to adaptively tune the smooth-
ing probability parameter during the search similarly to [Hoo02]. Such a mechanism can
also be applied to the PAWS scheme as showcased in [Tho06].

2.2.2.4 Other Methods

One of the major challenges in terms of incomplete methods for SAT is to devise algorithms
which are efficient on industrial instances. Indeed, SLS solvers in the literature lag far behind
competitive CDCL-based SAT solvers in this regard, including the configuration-checking-
based local search solver CCAnr [CLS15a] which is tailor-made for real-world instances. One
research area that may circumvent this problem is devising hybrid algorithms which take
advantage of the power of local search and CDCL. Note that many studies have incorporated
techniques used in complete solvers into SLS. For instance, Unit Propagation (UP) was
used to simplify the formula before the search in [LL12; CLS15a] or to generate a relevant
initial assignment at the beginning of each try in [Cai+21]. UP was also used during search
steps [LSB04; HK05] and within local minima [GH11]. Many attempts to devise efficient
fully hybrid incomplete solvers were made in the literature. Examples of such solvers
include hybridGM [BHG09] and SATHYS [Aud+10] which call a CDCL solver in local minima.
Other incomplete methods for SAT also include parallel local search [Rol02; AH11; BS18],
simulated annealing [Spe93; Bee+94] and evolutionary algorithms [GV98; Lov15; Fu+18].

2.2.3 Behind the Success of SAT Solving
The theoretical difficulty of SAT has been established since the 70s as it was the first problem
to be proven NP-complete in [Coo71]. Indeed, no polynomial algorithm has been devised
for the SAT problem and it is highly plausible that no such algorithm exists. However,
modern solvers are extremely efficient and manage to outstandingly solve formulas with
millions of variables and clauses. Many studies have attempted to investigate this conflict-
ing gap between the theoretical difficulty of SAT and the remarkable practical performance
of modern solvers [AMM22a].

One of the first research directions aiming to shed the light on instance hardness is
phase transitions [MSL92; LT92; GW94a; FB+99; XL99; ZPV10; BH22]. These transitions are
distinguished by a sharp satisfiability threshold rk for random k-SAT formulas where k ≥ 2.
This critical value represents a ratio of the number of clauses to the number of variables
which characterizes an easy-hard-easy pattern in the median difficulty of the problems, with
the hardest problems being close to rk . It was shown in [AM02; CP16] that for large values of
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k, the asymptotic order of the phase transitions threshold is rk ∼ (ln 2).2k . Note that phase
transitions are mainly studied on purely-random formulas although a recent study [ABL19]
investigated this feature for random formulas based on realistic models [ABL09c; GL17].

A second promising research area in this context is identifying traceable classes for the
SAT problem such as 2-SAT [Kro67] and Horn-SAT [DG84] 44 among many others [Lew78;
CH91; BHS94; Sch+95]. The notion of Backdoor introduced in [WGS03] generalizes this
concept with the underlying motivation that assigning a certain subset of the variables
in the formula may produce a simplified formula within a tractable class and therefore
which is easy to solve. Formally, a strong 45 backdoor of a SAT instance is the set of variables
which, however they are assigned, give a simplified formula which can be solved in polyno-
mial time. Note that the polynomial sub-solver can be defined algorithmically, e.g., Unit
Propagation (UP), or syntactically using an established tractable class. The size of strong
backdoors is highly related to the hardness of SAT instances [LM04; Kil+05]. The notion
of backdoor was extended in the context of clause learning in [DGS09], and it was shown
that the smallest backdoors which take into account learning and branching can be expo-
nentially smaller than traditional backdoors thus giving some insights on the additional
power of clause learning in CDCL. Other extensions include deletion [NRS06], pseudo [08],
recursive [MSV21] and probabilistic [Sem+22] backdoors. Note that, under the assumption
P 6= NP, identifying backdoors is NP-hard [DGS07]. Nevertheless, many attempts were made
to efficiently identify (small) backdoors in the literature [Kil+05; Ost+06; KKS08; LB11; GK22]
including Fixed-Parameter Tractable (FPT) algorithms 46 [NRS04; GS12a; GS12b; LPR22].

Another hidden structure which is often associated with backdoors is the notion of back-
bones [Mon+99; WGS03; Kil+05]. Formally, the backbone of a satisfiable formula is the set
of variables which have the same truth value in every model. Many methods were devised
to compute backbones in the literature [MJL10; Zhu+11; JLM15; Zha+18] although it is
established as an NP-hard problem [Mon+99; Kil+05]. The study in [Kil+05] highlights
the correlation between the size of backbones (and strong backdoors) and problem hard-
ness while the empirical evaluations carried out in [MJL10; JLM15] show that real-world
instances harbor large backbone sets. Many studies also rely on this notion to boost SAT
solving both for complete and incomplete algorithms [DD01; DD04; Zha04; AMM22b].
The notion of variable entropy introduced in [CS18] can be seen as a generalization of
backbones. Intuitively, this property approximates the freedom of assigning variables in
satisfiable formulas and have shown promising results in predicting problem hardness.

A different structural feature, broadly investigated in the literature, is the potential func-
tional dependencies between variables which are usually recovered and exploited for
preprocessing [Ost+02; Gré+05; OP09]. Intuitively, a dependency takes the form of a gate
where an output variable v is semantically linked to a set of input variables {v1, v2, . . . , vn}
in the formula through connectors. Formally, the gate can be expressed in the form of an
equation v = f (v1, v2, . . . , vn) where f ∈ {∧,∨,⇔}, although more generic definitions of f as

44Refer to Section 2.1
45in contrast to weak backdoors which are restricted to satisfiable formulas
46In parameterized complexity [DF13], a problem is called Fixed-Parameter Tractable (FPT) if there exists

an algorithm deciding the problem in time f (k).nc where n is the input size, k is the parameter, f is a
computable function and c is a constant.
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a boolean function are possible [Ise20]. Gate structure is mainly a result of explicit structural
encodings [Tse83; PG86] but gates can be more implicitly nested within formulas [IMS15;
Ise20].

Structural properties of graphical representations of SAT formulas have also been widely
studied in the literature. This trend started with the study in [Wal99] where the graphs
associated with different combinatorial problem were shown to have small-world topology
inducing heavy-tailed distribution, i.e., nodes are highly clustered with small path length
between them. Subsequent studies for SAT focused on analyzing the structural properties of
the Variable Incidence Graph (VIG)47 and/or the Clause-Variable Incidence Graph (CVIG),
defined below. In [ABL09d], the authors show that, in contrast to random formulas, the
CVIGs of industrial instances seem to exhibit scale-free structure where the arity of nodes
follow a power-law distribution P (a) ∼ a−γ (with γ around 3). The same authors relied
on this structure to generate random instances with more realistic (i.e., industrial-like)
features [ABL09c; ABL22].

Definition 2.20 (Primal Graph). Let φ be a CNF formula. The primal graph G = (V ,E) is
defined as follows:

• V = var (φ)

• (v1, v2) ∈ E iff ∃C ∈φ s.t. v1 and v2 occur in C

Definition 2.21 (Clause-Variable Incidence Graph). Let φ be a CNF formula. The Clause-
Variable Incidence Graph (CVIG) is a bipartite graph G = (V ∪Γ,E) defined as follows:

• V = var (φ) and Γ=φ

• (v,C ) ∈ E iff v ∈ var (φ) occurs in C ∈φ
Another property which gained particular interest in recent years is the modularity of

SAT instances [AL11; AGL12; Ans+19; Li+21b]. More specifically, a modular graph exhibits
independent partitions of its vertices, called communities, which are highly constrained
as they internally harbor many edges. On the other hand, the communities are externally
linked through very few edges. It is established that the VIG and CVIG graphs 48 of industrial
formulas are highly modular in contrast to random formulas, as showcased in Figure 2.6.
Modularity is shown to be correlated to the runtime of CDCL solvers in [New+14; New+15]
but the study in [MFS16] indicates that industrial instances may have some other relevant
structure not captured by this model. Community structure was also used to detect relevant
learnt clauses in [Ans+15b] and to generate random SAT instances in [GL15; GL16]. Other
(C)VIG-based structural features studied in the literature include treewidth 49, variable

47also called primal graph
48These graphs are weighted so as to ensure that the sum of weights of edges generated by a given clause

always equals one.
49This measure intuitively represents the closeness of a graph to a tree. Note however that the attempt in

[Mat11] was not successful as the authors concluded that the treewidth of the primal graph is not a good
indicator for the hardness of SAT instances.
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centrality [KS12; JM17; JM18], self-similarity 50 [Ans+14] and entropy 51 [ZXZ21].

Figure 2.6: Community structure of industrial (left) and random (right) SAT in-
stances [New+15]

2.3 Proofs and Certificates for SAT
In this section, we are interested in certificates and proof systems for the SAT problem. We
start by defining some necessary notions and overviewing proof systems for SAT. Then, we
focus on resolution [Rob65] as a proof system for SAT, which is one of the first and most
studied refutation systems in the literature. Finally, we present some known classes of
resolution which will be used in our contributions in Chapter 6.

2.3.1 Proof Systems for SAT
A SAT solver tasked to solve a given formula can easily provide a short certificate if the
formula is satisfiable. Indeed, this certificate of satisfiability can simply take the form of a
satisfying assignment α. Such a certificate not only has a reasonable size with respect to
the size of the input formula but can also be easily verified by checking that all the clauses
in the formula are satisfied by α. In the context of decision problems and particularly the
SAT problem, the need of certifying the solution can arise both for positive and negative
instances. When a formula is unsatisfiable, a certificate is mainly provided through the
lens of proof systems. Intuitively, if a contradiction can be inferred from the formula using
sound inference steps for SAT, then the formula can never be satisfied and the sequence of
deductions form a proof that can be used as certificate of unsatisfiability.

Formally, a proof system for SAT is a set of inference rules. An inference rule is defined
by its antecedents and conclusions, both usually expressed in the form of a set of clauses

50This feature intuitively means that rescaling a graph by replacing groups of nodes with single nodes does
not change its structure.

51This feature is closely related to the variable entropy measure in [CS18].
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(although other forms are possible), such that the conclusions can be added if the an-
tecedent clauses are within the formula. An example of a simple inference rule for SAT,
called weakening, is given below. We denote φ`S φ

′ (resp. φ`S C ) if the formula φ′ (resp.
the clause C ) can be derived from φ in the system S. To guarantee correctness of inference
induced by the different rules, their soundness must be ensured. More specifically, an
inference rule is sound for SAT if it preserves SAT equivalence, defined below.

Definition 2.22 (Weakening). Given two clauses C1 and C2, the weakening rule is defined as
follows:

C1

C1 ∨C2

Definition 2.23 (SAT Equivalence 52). Let φ and φ′ be two formulas. φ and φ′ are equivalent
(for SAT), denoted φ≡φ′, if for any assignment α of φ, α is a model of φ iff α is a model of φ′.

Definition 2.24 (Soundness). A proof system S is sound if, for any formulasφ andφ′, φ`S φ
′

implies φ≡φ′.

Example 2.7. Weakening is clearly sound for SAT since each assignment satisfying C1 also
satisfies (C1)∧ (C1 ∨C2) and vice-versa.

Another property which is often associated with proof systems is completeness. Intu-
itively, a proof system is complete if it is able to derive any logically sound information.
This elegant property, also referred to as inferential completeness, is very powerful and thus
usually restricted to deriving inconsistencies. This restricted form, called refutational com-
pleteness, intuitively represents the ability of a system to derive an inconsistency (usually in
the form of an empty clause) from any unsatisfiable formula, which is sufficient to generate
certificates of unsatisfiability for SAT, referred to as a refutations. Note that (inferential)
completeness clearly entails refutational completeness while the opposite statement on
any given proof system is not always true.

Definition 2.25 (Completeness). A proof system S is (inferentially) complete if, for any
formulas φ and φ′, φ≡φ′ implies φ`S φ

′.

Definition 2.26 (Refutational Completeness). A proof system S for SAT is refutationally
complete if, for any unsatisfiable formula φ, φ`S �.

Example 2.8. Let S be the proof system consisting solely of the weakening rule. S is not
(refutationally and inferrentially) complete for SAT since, given a variable x, it cannot derive
� from x ∧x.

Many proof systems that can be used in the context of satisfiability were introduced in
the literature. One of the first and most studied systems is resolution [Rob65], which we
will overview in the following sections. Other known systems include Frege [Hei13; Bus15],
natural deduction [Gen64; Pra65], cutting-plane [Chv85; CCT87; Juk12], algebraic [Bea+96;

52The following definition is equivalent to Definition 1.17
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CEI96], analytic tableau [DAg99; Häh01] and circular proof [AL19] systems. In proof theory,
the relative strengths of proof systems is usually compared in terms of the size of their
refutations, using the notion of simulation. We provide a common definition of simulation
below [BP07a] however we may abuse the term as other variations are used in the litera-
ture [PS10; BN21b]. To give some examples, it is known that Frege and natural deduction
systems are p-equivalent [CR79] and both p-simulate resolution and the cutting-plane
proof systems [Goe91]. The reader can refer to the surveys in [BP01; Seg07; Bus12; BN21a]
for more details on major results in proof theory.

Definition 2.27 (Polynomial Simulation). Let S and S′ be two proof systems. S polynomially
simulates (p-simulates) S′ if there exists a polynomially-computable function f such that for
any refutation π of formula φ in S′, f (π) is a refutation of π in S. S and S′ are p-equivalent if
S p-simulates S′ and S′ p-simulates S.

2.3.2 Resolution Proofs for SAT
A well-known proof and refutation system for SAT is based on the resolution rule (Res)
whose definition we recall below. Given two opposed clauses, this sound and complete rule
for SAT deduces a resolvent clause which can be added to the formula. Resolution plays an
important role in the context of SAT theory and solving. The original Davis-Putnam (DP)
procedure introduced in [DP60] relies extensively on resolution to delete literals from the
formula but with a worst-case exponential blow-up in its size. It was not until 1965 that
resolution was established as an independent proof system in [Rob65]. Later, resolution
was efficiently integrated in the context of Conflict Driven Clause Learning (CDCL) 53 thus
paving the way for modern SAT solvers [MLM09]. The relationship between the resolution
proof system and the CDCL framework was investigated in the literature. In [Her+08],
Hertel et al. showed that clause learning can effectively p-simulate 54 resolution. This result
was extended to traditional simulation, in the sense of Definition 2.27, by Pipatsrisawat and
Darwiche including for CDCL augmented with the restart mechanism [PD11].

Definition 2.28 (Resolution [Rob65]). Given two opposed clauses C1 and C2, the resolution
rule is defined as follows:

C1 = x ∨ A C2 = x ∨B
C3 = A∨B

Theorem 2.2 ([Rob65]). Resolution is sound and refutationally complete for SAT.

A resolution proof or derivation of a clause C from a formula φ is a finite sequence of
resolutions starting from the clauses of φ and deriving C , usually represented as a finite
sequence of clauses. If C is the empty clause �, the proof is referred to as a (resolution)
refutation of φ. A resolution proof can also be represented in the form of a Directed Acyclic
Graph (DAG) G = (V , A) whose nodes are clauses in the proof either having two or zero

53Refer to Section 2.2.1.2
54Intuitively, effective simulation corresponds to simulation modulo preprocessing, i.e., an initial encoding

on the original formula.
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incoming arcs, respectively when they are resolvents or clauses of the initial formula. Note
that in the latter case, we refer to these clauses as leafs. We will use two typical measures
to establish our results in Chapter 6: size and width. The size (or length) of a resolution
derivation π, denoted s(π) (or simply |π|), is the number of resolution steps (or resolvent
clauses) in π whereas its width, denoted w(π), is the maximum size of all its clauses.

Example 2.9. We consider the unsatisfiable CNF formulaφ= (x1)∧(x1∨x3)∧(x1∨x2)∧(x2∨
x3). A resolution refutation π of φ, with s(π) = 4 and w(π) = 2, is represented in Figure 2.7.

x1 ∨x3 x1 x1 ∨x2 x2 ∨x3

x3 x2

x3

�

Figure 2.7: Resolution refutation as a certificate of unsatisfiability

In practice, resolution refutations can be provided as a certificate of unsatisfiability. For
instance, the Booleforce solver 55 is able to generate such proofs and is also equipped
with the tool TraceCheck 56 to test the validity of the generated certificate. However, mem-
ory may become a bottleneck for very large plain refutation proofs. Therefore, modern
solvers usually provide clausal proofs in more adapted formats such as DRUP 57 [HJW13] or
DRAT 58 [HHW13; WHH14], with more reasonable memory usage and faster proof checking
which relies on Unit Propagation (UP).

2.3.3 Resolution Classes
Many restricted classes of resolution refutations have been studied in the literature namely
read-once resolution [IM95], regular resolution [Tse83], tree (or tree-like) resolution refuta-
tions [Kun86] and linear resolution [Lov70] among many others[BP07b; HU09; BJ16]. In
this section, we define the classes mentioned above which are necessary to establish our
results in Section 6.

We start by defining read-once resolution which is a fragment encompassing resolution
proofs where all the clauses are read-once, i.e., used at most once in the derivations. It was
shown in [IM95] that there exists unsatisfiable CNF formulas which cannot be refuted using
read-once resolution. This particular class is also of particular interest in the context of
maximum satisfiability, as will be showcased in Section 3.3.2.

55http://fmv.jku.at/booleforce/index.html
56http://fmv.jku.at/tracecheck/index.html
57https://www.cs.utexas.edu/~marijn/drup/
58https://www.cs.utexas.edu/~marijn/drat-trim/
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Definition 2.29 (Read-Once Resolution [IM95]). A resolution proof is read-once if each
clause is used at most once in the proof.

Example 2.10. We consider the same unsatisfiable CNF formula φ in Example 2.9. The
resolution refutation π of φ represented in Figure 2.7 is not read-once since the clause C = x1

is used twice in the proof.

Next, we present another well-known class called tree (or tree-like) resolution. This class,
defined below, consists of the proofs in which it is possible to have non-read-once clauses
but only if they are within the original formula, having zero incoming arcs in the DAG
representation. Clearly, every read-once proof is also tree-like. This particular fragment was
highly investigated in the literature. In particular, tree resolution and DPLL are p-equivalent
[Seg07]. Furthermore, a separation between general (or DAG) resolution and tree resolution
was established in [Bon+98; BIW04], meaning that the latter cannot p-simulate the former.

Definition 2.30 (Tree Resolution [Kun86]). A resolution proof is tree-like if each derived
resolvent is used at most once in the proof.

Example 2.11. We consider the same unsatisfiable CNF formula φ in Example 2.9. The
resolution refutation π of φ represented in Figure 2.7 is tree-like since the non-read-once
clause C = x1 is in φ.

The third fragment of resolution, called regular resolution, contains proofs in which
variables are resolved on at most once in each branch of the DAG, i.e., path from a clause
of the initial formula to the last derived clause. A separation between general resolution
and this class was also established in [Ale+02; Urq11; Vin+20]. In the context of refutations,
minimal-size tree proofs are regular. This result was first stated in [Tse83] and later formally
proved in [Urq95]. The proof relies on a transformation which consists in iteratively fixing
irregularities through pruning. An irregularity is a sequence of clauses in the proof such that
the first clause and the last one contain a literal l but at least one of the intermediate clauses
does not contain this literal. The first resolution step in each irregurality is discarded and
the rest of the proof is updated accordingly, potentially discarding other resolution steps
which are no longer necessary, to generate a smaller-size tree-like regular refutation.

Definition 2.31 (Regular Resolution [Tse83]). A resolution proof π of clause C from a CNF
formula φ is regular if no variable is resolved twice in every path from an initial clause in φ

to C .

Example 2.12. We consider the same unsatisfiable CNF formula φ in Example 2.9. The
resolution refutation π of φ represented in Figure 2.7 is regular since in each branch of the
DAG, all variables are resolved at most once.

Lemma 2.1 (cf. Lemma 5.1 in [Urq95]). A tree-like resolution refutation of minimal size is
regular.
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Example 2.13. We consider the formula φ= (x1)∧ (x3)∧ (x1 ∨x2)∧ (x1 ∨x2)∧ (x1 ∨x3). The
tree-like resolution refutation of φ represented on the left in Figure 2.8 is not regular since
x1 is resolved on two times in the same branch. As shown on the right in the same figure,
this refutation can be made regular by discarding the first resolution step on variable x1

and updating the rest of the proof accordingly. Notice how after the transformation, the
irregularity in the branch of clause x1∨x2 is fixed and a refutation of smaller size is produced
where the clauses x1 ∨x3 and x3 are no longer used.

x1 ∨x2 x1 ∨x3

x2 ∨x3 x3

x2 x1 ∨x2

x1 x1

�

x1 ∨x2 x1 ∨x2

x1 x1

�

Figure 2.8: From a tree resolution refutation (left) to a regular tree resolution refutation
(right)

Finally, we introduce linear resolution, formally defined below, which lies between tree-
like and general resolution in terms of proof complexity [BP07b; BJ16]. In this fragment,
the proofs are linear in the sense that each deduced clause is used as a premise in the next
resolution step. Note that, when the first condition of (c) holds in the following definition,
the clause Di is called the input parent clause of Ci+1.

Definition 2.32 (Linear Resolution [Lov70]). A linear resolution proof of clause C from a
CNF formula φ is a sequence of clauses C1, ...,Cm such that:

1. C1 is a clause in φ

2. Cm is the clause C

3. For every i < m, Ci+1 is the resolvent of Ci either with a clause Di from φ or with a
clause Ck for some k < i .

Example 2.14. We consider the same unsatisfiable CNF formula φ in Example 2.13. The two
resolution refutations of φ represented in Figure 2.7 are both linear since each deduced clause
is used as premise in the next resolution step.
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2.4 Bandits for Satisfiability and Beyond
In this section, we focus on the Multi-Armed Bandit (MAB) problem which is used to
study the exploration-exploitation dilemma in the context of Reinforcement Learning (RL)
[SB98; WGG11; LS20]. We start by defining this well-known problem then we present the
major strategies used to solve it. Furthermore, we review the use of MAB in the context of
satisfiability and beyond. MAB will be used as a framework to establish our contributions
in Chapter 4.

2.4.1 Multi-Armed Bandit Problem
Reinforcement Learning (RL) [SB98] is a well-known paradigm of machine learning 59

focusing on studying the way in which an autonomous agent learns from its actions. More
specifically, RL investigates how intelligent agents should interact with a specific environ-
ment by exploring and exploiting certain actions, called arms or levers, while aiming to
maximize the cumulative payoff. The exploration-exploitation dilemma in RL is often
studied through the lens of the Multi-Armed Bandit (MAB) problem 60 [WGG11; LS20].

Formally, MAB consists of an agent and a set of candidate arms from which the agent
has to choose while maximizing the expected gain. The agent relies on information in
the form of rewards given to each arm and collected through a sequence of trials. MAB
clearly expresses a dilemma in the tradeoff between exploitation and exploration as the
agent needs to explore underused arms often enough to have a robust feedback while also
exploiting good candidates which have the best rewards. The term itself is derived from
gambling slot machines, which are also referred to as one-armed bandits. The first MAB
model, stochastic MAB, was introduced in [LR85]. In this setting, a stochastic environment
is considered where each arm is associated with an unknown probability distribution.
Another well-known model is adversarial MAB, typically with a non-stationary environment
where rewards can be generated without any specific probabilistic assumption on their
nature [Aue+95]. Hereafter, we mainly consider the stochastic MAB framework. We start
by presenting some necessary notations then we provide in Algorithm 2.4 an abstract
description of the MAB framework.

Notation 2.1. We use the following notations for the MAB framework:

• A denotes the set of arms where |A| = K ≥ 2

• T denotes the total number of trials, referred to as horizon

• rt (a) denotes the reward of arm a ∈ A in the trial t ∈ {1, . . . ,T }

• nt (a) denotes the number of times the arm a is selected during the t −1 previous runs,

59Detailed reviews on other paradigms such as supervised and unsupervised learning can be found in the
following textbooks [MM97; Has+09; RN20].

60specifically when the RL environment has a single state, in contrast to multi-state environments which are
mainly stated in the form of a Markov decision processes [SB98]
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• r̂t (a) denotes the empirical mean of the rewards of arm a over its number of selections

nt (a) in the t −1 previous runs, i.e., r̂t (a) =
∑t−1

1 rt (a)
nt (a) .

Algorithm 2.4: Multi-Armed Bandit Framework

Input: set of arms A, horizon T
1: for t = 1 to T do
2: Agent selects arm a ∈ A with respect to a specific strategy
3: Environment selects a reward rt (a)
4: Agent observes reward

5: end for

Note that the strategies used by MAB to choose relevant arms are theoretically evaluated
through the notion of regret 61 [LS20]. This notion, defined below, considers the difference
between the expected cumulative value of the reward of the best action and its expected
cumulative value for all the arms chosen by the agent through the trials. Since the objective
of the agent is to find an optimal arm which maximizes the cumulative reward through the
trials, each time a sub-optimal arm is chosen, the reward difference with the optimal arm is
wasted. A relevant policy should thus minimize the regret throughout the trials.

Definition 2.33 (Regret [ACF02]). Let µ1, . . . ,µK be the distributions associated with the arms
in A in stochastic MAB. The regret RT is defined as follows:

RT = max
a∈A

E

[
T∑

t=1
rt (a)−

T∑
t=1

rt (at )

]
= Tµ∗−E

[
T∑

t=1
rt (at )

]

where:

• at denotes the arm chosen in the trial t ∈ {1, . . . ,T }

• µ∗ is the optimal arm mean, i.e., µ∗ = max1≤i≤K µi

2.4.2 Strategies for MAB
In this section, we present different strategies for MAB, specifically those relevant within a
stochastic context. Recall that these strategies must find a good tradeoff between explo-
ration of underused arms and exploitation of the best ones. We can categorize the strategies
into two major families: randomized and deterministic strategies. The first category con-
tains policies which perform random exploration and, thus, which may produce different
results even for a fixed setting and environment. The second category consists of strategies
which are deterministic, mainly relying on smart exploration with preference to uncertainty.
We start first by describing some well known randomized strategies for MAB.

61also called pseudo-regret in the context of stochastic MAB
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ε-Greedy [SB98] This simple policy for stochastic MAB, which falls within the first
category of randomized policies, is described in Algorithm 2.5. It relies on a probability
parameter ε, usually of small value in [0,1], to randomly explore uncharted territory. At
each trial, ε-Greedy selects a random arm a ∈ A with the probability ε, otherwise it per-
forms greedy exploitation by selecting the arm maximizing the mean reward through the
previous trials. This strategy has linear regret in T . However, in [ACF02], Auer et al. proved
that ε-greedy can achieve logarithmic regret in T if ε is set as a decreasing sequence εt

parametrized by t ∈ {1, ...,T }. More specifically, if εt = mi n{1, K
(d 2t )

}, then the regret can

be bound by O( K .ln(T )
d 2 ) provided that 0 < d ≤ mi nµ∈{µ1,...,µK },µ<µ∗ µ∗−µ. Finally, note that

other RL policies based on the ε-Greedy strategy were introduced in the literature including
for different variations of MAB [Tok10; Tra+10; BBG12; GSL19].

Algorithm 2.5: ε-Greedy

Input: set of arms A, trial number t ∈ {1, . . . ,T }, parameter ε ∈ [0,1]
Output: an arm at ∈ A to use in the trial t

1: with probability ε do
2: at ←− random arm a ∈ A
3: else
4: at ←− ar g maxa∈A r̂t (a)
5: return at

Thompson Sampling (TS) [Tho33] This method was introduced in one of the earlier
works on reinforcement learning and relies on the simple idea of assuming a prior distribu-
tion for every arm, mainly a beta distribution [Gup11; Eld11]. As described in Algorithm 2.6,
TS maintains a beta distribution for each arm a ∈ A defined by its two shape parameters
α(a) and β(a) which are initially set to 1 (lines 2-5). After each trial, the α and β values
of the used arm are updated with respect to its reward (lines 7-9). TS then selects an arm
maximizing the beta distribution probabilities at trial t (returned by function Bet a(α,β) in
line 10), which represent the likelihood of being the optimal arm. This strategy was shown
to have a regret bound of O(

p
T.K .ln(K )) in [AG17].

Exponential-Weight Algorithm for Exploration and Exploitation (EXP3) [Aue+02]
This strategy, originally introduced in the context of adversarial MAB, maintains a probabil-
ity distribution (p(a))a∈A on the set of arms. As described in Algorithm 2.7, the probabilities
are updated through weights assigned to each arm, initially set to 1 (lines 2-4) and mul-
tiplicatively updated (lines 6-7) so as to ensure a mixture of uniform and exponential
probabilities in the estimated cumulative rewards of each arm (lines 8-11). EXP3 thus
selects an arm according to the computed distribution in each trial (line 12) while ensuring
a regret bounded by O(

p
T.K .ln(K )) [AB09].
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Algorithm 2.6: Thompson Sampling

Input: set of arms A, trial number t ∈ {1, . . . ,T }
Output: an arm at ∈ A to use in the trial t

1: if t = 1 then . Initialize
2: for a ∈ A do
3: α(a) ←− 1
4: β(a) ←− 1

5: end for
6: else . Update
7: at−1 ←− arm selected in trial t −1
8: α(at−1) =α(at−1)+ rt−1(at−1)
9: β(at−1) =β(at−1)+1− rt−1(at−1)

10: at ←− ar g maxa∈A Bet a(α(a),β(a)) . Select
11: return at

Algorithm 2.7: Exponential-Weight Algorithm for Exploration and Exploitation (EXP3)

Input: set of arms A of size K , trial number t ∈ {1, . . . ,T }, parameter γ ∈]0,1]
Output: an arm at ∈ A to use in the trial t

1: if t = 1 then . Initialize
2: for a ∈ A do
3: w(a) ←− 1

4: end for
5: else . Update
6: at−1 ←− arm selected in trial t −1

7: w(at−1) = w(at−1)∗e
γ
K ∗ rt−1(at−1)

p(at−1)

8: s ←−∑
a∈A w(a)

9: for a ∈ A do
10: p(a) ←− (1−γ)

w(a)
s + γ

K
11: end for
12: at ←− random arm in A according to the distribution

(
p(a)

)
a∈A . Select

13: return at

Next, we present a family of well-known policies of deterministic nature. One of the
simplest strategies in this case is a pure exploitation strategy where no random exploration
is performed. The arms can be chosen with respect to their mean reward as in the specific
case of ε-greedy where ε= 0. Clearly, such a naive strategy has a major flaw as it does none
of the exploration required to generate relevant information for estimating the optimal
arm. To circumvent this drawback, policies performing smart exploration while ensuring
a certain confidence in terms of regret bounds were introduced in the literature. This
family of strategies is referred to as Upper Confidence Bound (UCB) and includes two major
strategies which we present hereafter.
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UCB1 Strategy [ACF02] This strategy, introduced by Auer et al. in 2002 and inspired by
the work of Argwal in [Agr95], is described in Algorithm 2.8. UCB1 selects the arm a ∈ A
which maximizes UC B1(a) defined as follows (line 4):

UC B1(a) = r̂t (a)+
√

4ln(t )

nt (a)

where the left side term, i.e., the reward mean, aims to put emphasis on arms that received
the highest rewards and, conversely, the right-side term ensures the exploration of under-
used arms. UCB1 tests all the arms once (lines 1-2) to initialize the rewards and ensure
that nt (a) 6= 0 for all a ∈ A before selecting the arms with respect to UC B1(a). This strategy
achieves a regret bound of O(

p
K .T.lnT ). Many variations of this strategy were introduced

in the literature for different MAB contexts and specifications [AMS09; Chu+11b; GC11;
KCG12; Val+13; Bou+19]. One particular variation which we present next achieves optimal
regret bound [AB09].

Algorithm 2.8: Upper Confidence Bound (UCB1)

Input: set of arms A, trial number t ∈ {1, . . . ,T }
Output: an arm at ∈ A to use in the trial t

1: if ∃a ∈ A s.t. nt (a) = 0 then . Initialize
2: at ←− a
3: else . Select
4: at ←− ar g maxa∈A r̂t (a)+

√
4l n(t )
nt (a)

5: return at

Minimax Optimal Strategy in the Stochastic Case (MOSS) [AB09] This strategy,
described in Algorithm 2.9, is a variation of UCB1 which selects the arm a ∈ A maximizing
MOSS(a) defined as follows:

MOSS(a) = r̂t (a)+
√

4

nt (a)
l n

(
max

(
t

K .nt (a)
,1

))
where the left term is similar to UCB1 while the right one, meant for exploration, additionally
takes into account the number of arms and the number of executed trials. An important
property of MOSS is its regret bound of O(

p
K .T ) which is optimal for stochastic MAB

[AB09] since a similar lower bound was proved by Lai and Robbins in [LR85].
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Algorithm 2.9: Minimax Optimal Strategy in the Stochastic Case

Input: set of arms A, trial number t ∈ {1, . . . ,T }
Output: an arm at ∈ A to use in the trial t
Output: an arm at ∈ A to use in the trial t

1: if ∃a ∈ A s.t. nt (a) = 0 then . Initialize
2: at ←− a
3: else . Select

4: at ←− ar g maxa∈A r̂t (a)+
√

4
nt (a) ln

(
max

(
t

K .nt (a) ,1
))

5: return at

2.4.3 Applications in SAT and Beyond
Reinforcement learning, particularly in the context of MAB, has many applications in
various real-life domains such as healthcare, finance and telecommunication among oth-
ers[BRA20]. In recent years, there has also been a surge of interest in applying reinforcement
learning techniques in the context of combinatorial problems and particularly SAT solving
[YP19; SB19; Kur+19; Kur+20; Vae+20]. However, very few research studies integrate MAB-
based or MAB-inspired techniques in the context of SAT. A recent example is the heuristic
CHB [Lia+16a] and its variant LRB [Lia+16b], presented in Section 2.2.1.3.2, which are based
on the Exoponentioal Recency Weighted Average (ERWA) [SB98]. Note that ERWA, which
is used to update the variable scores in those heuristics, is used in non-stationary MAB
problems to estimate the average rewards for each arm. Another more explicit applica-
tion of MAB is the work of Lazaar et al. in [Laz+12] where a new approach, called Bandit
Ensemble for parallel SAT Solving (BESS), was devised for parallel SAT solvers to control
the clause-sharing cooperation topology, i.e., pairs of units able to exchange clauses. BESS
relies on a MAB formalization of the cooperation choices and uses the UCB1 policy to pick
arms at each trial.

In contrast, MAB frameworks were extensively used in the context of Constraint Program-
ming (CP) and specifically the Constraint Satisfaction Problem (CSP) 62. In particular, MAB
frameworks were used to select the consistency level of propagation [BBP15] or a restart
strategy [GS07] for CSP solving. In terms of heuristics, CHB was also implemented in the
context of CSP [Sch18] and was further adapted to this problem in the form of a new heuris-
tic, called Conflict-History Search (CHS), which similarly adopts a constraint weighting
scheme on the basis of ERWA [HT21]. Rewards updated through ERWA were also used
to adaptively select a backtracking strategy in [Bac+15]. Furthermore, MAB frameworks
were used to select a search heuristic among a set of candidate ones at each node of the
search tree in [XY18] or at each restart in [Wat+20; Kor+22]. Simple bandit-driven pertur-
bation strategies to incorporate random choices in constraint solving with restarts were
also introduced and evaluated in [PW20]. Finally, it is worth noting that upper confidence
bound strategies have been used in most of these works and were shown to achieve good

62The reader can refer to the Handbook of Constraint Programming [RBW06] for a detailed overview of this
problem which is closely related to SAT.
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performance results.

2.5 Conclusion
In this chapter, we focused on the well-known satisfiability formalism. We defined the SAT
problem and some of its known variants. Furthermore, we presented the main complete
and incomplete methods to solve this problem. In particular, we introduced Conflict Driven
Clause Learning (CDCL), which is a complete algorithm for SAT incorporating extensive
inference during the search. We also described the major mechanisms used in modern
solvers, based on CDCL, including branching heuristics and restarts among others. Then,
we focused on SAT proof theory, for which we recalled the main notions. We specifically
presented resolution as a proof system for SAT and we introduced some of its well-known
classes. Finally, we focused on the Multi-Armed Bandit (MAB) problem, which is used to
study the exploration-exploitation dilemma in the context of reinforcement learning, and
we reviewed its dedicated strategies in the literature as well as its marginal use in the context
of SAT. Our results in Chapter 4 revolve around SAT as we devise a MAB framework for
adaptive branching by taking advantage of the restart mechanism in modern solvers. Our
contributions also extend to Maximum Satisfiability (Max-SAT), the natural optimization
extension of SAT which we will present in the following chapter. We particularly attempt to
theoretically bridge the gap between SAT and Max-SAT inference in Chapter 6.
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In this chapter, we define the Maximum Satisfiability (Max-SAT) problem and its variants.
We also review the major complete and incomplete methods for Max-SAT solving. We
particularly present Branch and Bound (BnB) algorithms for Max-SAT which perform
exhaustive search relying on extensive inference. We also introduce the main notions in
proof theory for Max-SAT and we specifically focus on the Max-SAT resolution rule as a
proof system for Max-SAT.

3.1 Definition and Variants
The Maximum Satisfiability (Max-SAT) problem is a natural optimization extension of
SAT which simply consists in determining the maximum number of clauses satisfied by
an assignment of a given CNF formula 1. A more common definition in the literature is

1CNF formulas are represented as multisets of clauses in the context of Max-SAT
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determining the optimum value of a given CNF formula φ defined below in the form of
the minimum number of clauses that each assignment of φ must falsify 2. Note that in the
case where a CNF formula φ is satisfiable, we have opt (φ) = 0, otherwise opt (φ) ≥ 1 since
at least one clause is falsified by each assignment of φ. Furthermore, it is common to return
an assignment which achieves the optimum value in Max-SAT, called optimal assignment.
This problem is NP-hard as solving it can easily lead to a solution for the SAT problem, and
therefore it does not admit a polynomial-time algorithm unless P=NP [Pap94].

Definition 3.1 (Optimum). Letφ be a CNF formula. The optimum ofφ is defined as follows 3:

opt (φ) = min
I assignment of φ

costα(φ)

.

Definition 3.2 (Maximum Satisfiability). The Maximum Satisfiability (Max-SAT) problem is
defined as follows:

Max-SAT Problem
Input: a CNF formula φ
Output: opt (φ)

Theorem 3.1 ([Pap94]). The Max-SAT problem is NP-hard.

Example 3.1. We consider the formulaφ= (x1)∧(x2)∧(x2)∧(x1∨x3)∧(x1∨x2)∧(x2∨x3) and
the assignments α= {x1, x2, x3} and α∗ = {x1, x2, x3}. We have costα(φ) = 3 > costα∗(φ) = 2.
Since no other assignment of φ achieves a smaller cost, α∗ is an optimal assignment and we
have opt (φ) = 2.

A simple variant of Max-SAT is Max-k-SAT which is a natural optimization extension of
k-SAT, taking a k-CNF formula as input 4. Moreover, there are many extensions of Max-SAT
each providing a more generic abstraction to deal with broader constraints. In the following
definitions, we present a first variant called Partial Max-SAT in which partial formulas are
considered. Such formulas contain a set of hard clauses that must be satisfied and a set
of soft clauses to be optimized similarly to plain Max-SAT. Clearly, every plain Max-SAT
instance can be represented as a partial Max-SAT formula where all clauses are soft.

Definition 3.3 (Partial Formula). A partial CNF formula is a bipartite set of clauses φ= H ∪S
where H is the set of hard clauses that must be satisfied and S is the set of soft clauses as in
plain Max-SAT.

Definition 3.4 (Partial Max-SAT). The Partial Maximum Satisfiability (Partial Max-SAT)
problem is a variant of Max-SAT defined as follows:

Partial Max-SAT Problem
Input: Partial CNF formula φ= H ∪S
Output: opt (S) s.t. all the clauses in H are satisfied, "no solution" otherwise

2in which case returning the value |φ|−opt (φ) corresponds to an equivalent output of the original definition
3The cost of an assignment costα(φ) corresponds the number of clauses in φ falsified by α, as specified in

Definition 2.11.
4refer to Section 2.1
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Another variant of Max-SAT is the Weighted Maximum Satisfiability (Weighted Max-SAT)
problem, defined below, where positive finite weights are associated with each clause in the
formula to represent the penalty of falsifying it. Weighted Max-SAT consists in determining
the maximal sum of weights of clauses falsified by an assignment of the variables. Note
that this problem can be combined with the partial version defined above by authorizing
infinite weights. This most generic variant, called Partial Weighted Max-SAT, considers
weighted formulas where hard clauses have infinite weight and must be satisfied, otherwise
the returned optimum value would also be infinite. Note that in the following sections we
mainly consider the plain Max-SAT problem but we may provide further comments on its
variants when necessary 5.

Definition 3.5 (Weighted Formula). A weighted CNF formula is a set of tuples (C , w) where
C is a clause and w ∈ N∗ is its associated weight, denoted w(C ).

Definition 3.6 (Weighted Cost). Let φ be a weighted CNF formula and α be an assignment
of φ. The (weighted) cost of α is defined as follows:

costα(φ) = ∑
(C ,w)∈φ s.t. C |α=�

w

Definition 3.7 (Weighted Max-SAT). The Weighted Maximum Satisfiability (Weighted Max-
SAT) problem is a variant of Max-SAT defined as follows:

Partial Max-SAT Problem
Input: a weighted CNF formula φ
Output: opt (φ)

It is important to note that Max-SAT soundness notions on formula transformations
differ from SAT [ABL13]. In particular, Max-SAT equivalence preservers the cost of each
assignment as defined below. Another notion, most commonly used in the context of
Max-SAT solving, is Max-SAT reducibility which allows to performs sound encodings as
long as the original cost of each assignment is maintained. A third weaker notion is equiop-
timality which simply preserves the optimum value and can be seen as the extension of
equisatisfiability 6 for Max-SAT. Hereafter, we provide a formal definition of these three
notions.

Definition 3.8 (Equivalence). Let φ and φ′ be two CNF formulas. φ is equivalent (in the
sense of Max-SAT) to φ′, denoted φ ≡ φ′, if for any assignment α : var (φ)∪ var (φ′) −→
{Tr ue,F al se}, we have costα(φ) = costα(φ′).

Definition 3.9 (Reducibility). Let φ and φ′ be two CNF formulas. φ is Max-SAT reducible to
φ′ if for any assignment α : var (φ) −→ {Tr ue,F al se}, we have costα(φ) = costα(φ′).

Definition 3.10 (Equioptimality). Let φ and φ′ be two CNF formulas. φ is equioptimal to φ′

if opt (φ) = opt (φ′).

5In particular, we may abuse the term weighted Max-SAT to refer to both weighted variants with or without
infinite weights.

6refer to Definition 2.10
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The Max-SAT problem and its variants are powerful formalisms which can be used to
represent and solve many real-world and crafted problems making it of great academic
and industrial interest 7. In particular, Max-SAT can be used to encode and solve several
well-known academic problems such as Minimum Satisfiability (Min-SAT) [Li+10b; Küg12;
Zhu+12], Maximum Clique (Max-CLIQUE) [Cha+97; LQ10; FLX16; Jia+18] and Maximal
CSP (Max-CSP) [Arg+08; Arg+09a; Arg+09b] among others. Major industrial applications
of Max-SAT and its variants include scheduling [AN14; Bof+15; DM17; DMW19; Lia+19;
Lia+21], explainable AI [HSJ17; Ign+18; MM18; GM19; CSJ20], security [WQL09; BDS11;
LZK16; Fen+17; SA20], hardware and software debugging [Che+09; Che+10; MVN12; Saf+07;
JM11], routing [JKS95; XRS03; FM06a; Li+20c; GLM14], data analysis [BJ13; Hyt+17; BHJ18]
and bioinformatics [Gra+10; GL12; GML11; JCZ16]. The expressiveness of Max-SAT, its close
association with SAT and its various applications explain the importance of studying this
problem in terms of theory and solving. This importance is also attested by the Max-SAT
evaluation events 8 which are organized each year since 2006 to evaluate current state-of-
the-art Max-SAT solvers and to incite further improvement in their empirical performance.

3.2 Algorithms
In this section, we present the major complete algorithms for solving the Max-SAT problem.
We first review Branch and Bound (BnB) algorithms for Max-SAT which explore the search
space through an exhaustive branching over the variables in the formula. Then, we focus on
SAT-based approaches which take advantage of the power of SAT solvers as decision engines.
We also briefly present other complete methods for Max-SAT including direct encodings
to other optimization problems as well as sequential portfolio algorithms. Finally, to be
exhaustive, we briefly review incomplete methods for Max-SAT.

3.2.1 Branch and Bound
Branch and Bound (BnB) is one of the oldest methods introduced for solving optimization
problems in the literature [LD60]. Its name was first suggested by Little et al. in [Lit+63] were
it was used to solve the Traveling Salesman Problem (TSP) 9. Later, BnB became a common
tool for solving various optimization problems including Max-SAT [BT83; CZ12; LM21].
In the subsequent sections, we first start by presenting the outline of a BnB algorithm for
Max-SAT. We present the inference mechanisms used in such algorithms. Then, we focus
on the lower bound estimation component and the different learning schemes used in the
literature. Finally, we recall a recently introduced property aiming to explain the results
achieved by BnB Max-SAT solvers in the last decade and which will be used to establish our
contributions in Chapter 5.

7A detailed overview of Max-SAT applications can be found in [BJM21].
8https://maxsat-evaluations.github.io/
9refer to Example 1.4
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3.2.1.1 Outline

A Branch and Bound (BnB) algorithm for Max-SAT explores the search space by construct-
ing a search tree while maintaining two values: the Upper Bound (UB) and the Lower
Bound (LB) which correspond respectively to the best computed solution so far and to
the estimation of the best accessible solution. In each node of the search tree, the current
assignment is extended, if possible, using different inference rules. Then, the value of LB is
computed and compared to UB. If it is greater, finding a better solution in the current sub-
tree is not possible and, thus, a cut is performed by forcing the algorithm to backtrack. A
simple estimation of LB in the current node is the number of falsified clauses by the current
assignment. If a complete assignment is reached, the UB value and the optimal assignment
are updated and a backtrack is performed. Otherwise, an unassigned variable is chosen
using a specific branching heuristic. These steps are repeated until the whole search space
is explored. As the efficiency of a BnB algorithm depends on the quality of UB and LB, BnB
solvers rely on a variety of techniques and heuristics mainly dedicated to generate more
cuts in the search tree. Major BnB solvers in the literature include MiniMaxSat [HLO07;
HLO08], MaxSatz [LMP07; Li+08; Li+09; Li+10a], Akmaxsat [Küe12], Ahmaxsat [AH15a;
Abr15] and the recent MaxCDCL solver [Li+21a; Li+22a]. The outline of a BnB algorithm for
Max-SAT is presented in Algorithm 3.1 where:

• U B contains the current upper bound value which is updated each time a complete
assignment is visited. When the search space has been fully explored, U B would
contain the optimum value of the input formula which is to be returned by the
algorithm. Note that an initial value for UB can be set by considering the number
of clauses in the input formula or by computing the cost of a random assignment.
Another more commonly used method is to launch a local search algorithm dedicated
to Max-SAT 10, to rapidly generate a good initial UB value, as suggested first in [BF98].

• α represents the current assignment, updated when branching, backtracking or when
a semantic inference rule, used to assign further literals, is applied.

• LB contains the estimation of the lower bound in the current node which is computed
through the function Compute_LB(φ,α). In its simplest form, this function returns
the number of clauses in φ falsified by the current assignment α. However better
LB estimations can be computed as will be explained in Section 3.2.1.3. A good LB
estimation helps to prune the search tree by performing cuts whenever LB ≥U B .

• Inference_Apply(φ,α) denotes the application of syntactic or semantic rules with
respect to the current formula, i.e., φ|α, which is updated alongside the current
assignment when necessary.

• Backtrack(φ,α) undoes all the assignments made within and after the backtrack level
β by doing the necessary updates on φ and α.

• Branching_Heuristic(φ,α) picks a promising literal to branch on in the search tree.

10refer to Section 3.2.4
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Algorithm 3.1: Branch and Bound (BnB) for Max-SAT
Input: a CNF formula φ
Output: opt (φ)

1: U B ←− |φ| . Upper Bound
2: α←; . Assignment
3: repeat
4: Appl y_In f er ence(φ,α) . Inference
5: LB ←− Compute_LB(φ,α) . Estimation
6: if LB ≥U B then . Cut
7: Backtrack(φ,α)
8: else
9: if |I | = |var (φ)| then

10: U B ←− LB
11: Backtrack(φ,α) . Backtracking
12: else
13: l ←− Branching_Heuristic(φ,α) . Branching
14: α←−α∪ {l }

15: until |α| = 0
16: return U B

Example 3.2. We consider the formula φ=C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 where C1 = x1, C2 =
x2, C3 = x2, C4 = x1 ∨x3, C5 = x1 ∨x2 and C6 = x2 ∨x3. A search tree depicting the execution
of the BnB algorithm on φ with lexicographic branching (i.e., x1 < x2 < x3) is showcased in
Figure 2.1. The initial upper bound value is U B = |φ| = 6. Assigning literal x1 does not falsify
any clause in φ and therefore we have LB = 0. Next, the algorithms assigns the literals x2 and
x3 leading to the falsification of the clauses C3 and C6 and thus to the respective LB values 1
and 2. Since all the variables are assigned, the UB value is updated and becomes 2. When
assigning x3 we have LB = 2 ≥U B and thus a cut is performed. The algorithm continues to
explore the search space while performing cuts when necessary until all possible assignments
have been visited or discarded. Finally, the last U B value corresponds to the optimum of φ,
i.e., opt (φ) = 2, achieved by the assignment α= {x1, x2, x3}.

Complete solvers for SAT and BnB solvers for Max-SAT share many aspects. Indeed,
practically all branching heuristics for (weighted) Max-SAT BnB are similar, based on, or
inspired by those devised for SAT. In particular, the first solvers dedicated for Max-SAT used
the traditional Jeroslow-Wang (JW) [JW90] and MOMS [ZM88; Fre95] heuristics 11, some-
times with very small variations [BF98; AMP03; Pla03; XZ05; AMP05; LMP05]. More recent
solvers introduced more variations to further adapt these heuristics to (weighted) Max-SAT.
The aim is to focus on generating shorter clauses and specifically unit clauses, which en-
ables a better estimation of the lower bound, and also to balance the search by considering
opposed literal polarities for each variable. In particular, MaxSatz and Ahmaxsat use a
heuristic based on MOMS, taking into account the presence of literals in unit, binary and

11refer to Section 2.2.1.3.2
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LB = 0

LB = 1

LB = 2
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x3 x3
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Figure 3.1: Search tree depicting the execution of a BnB algorithm for Max-SAT where
branching is made in lexicographic order of the variables. Solid and dotted arrows represent
respectively branching and backtracking.

ternary 12 clauses. Akamaxsat [LMP07; Li+10a] uses a similar heuristic while additionally
considering the presence of literals within inconsistent subsets of the formula during lower
bound estimation, which will be explained in Section 3.2.1.3. MiniMaxSat [HLO07; HLO08]
uses a hybrid heuristic scheme in the context of weighted partial Max-SAT where VSIDS
is used only on hard clauses and a weighted version of Jerslow-Wang is used otherwise.
MaxCDCL [Li+21a; Li+22a] is also based on a hybrid scheme, similar to the one used in the
MapleCOMSPS SAT solver [Lia+16c], which alternates alternates LRB phases and VSIDS
phases while using Luby restarts for the former and glucose-style restarts for the for latter.
Other SAT mechanisms incorporated into Max-SAT BnB include lazy data structures first
used in [AMP04; AMP05; AM06] and later in MiniMaxSat and MaxCDCL. SAT inference
rules which are sound for Max-SAT can also be used in BnB as will be showcased in the
following section.

3.2.1.2 Inference

In each node of the search tree, BnB algorithms use a variety of inference rules to sim-
plify the formula, extend the current assignment or efficiently compute a better lower
bound estimation. Syntactic rules apply a sound transformation on the formula, usu-
ally by maintaining Max-SAT equivalence 13, and are used for simplification to reduce
the size of the clauses or the formula. Semantic inference rules enable to assign further
literals while maintaining equioptimality and thus help to prune the search space. It is
important to note that rules applicable for SAT are not necessarily sound for Max-SAT. For
instance, resolution [DP60; Rob65] and Unit Propagation (UP) [DP60; DLL62] are not valid

12clauses that contain exactly three literals
13refer to Section 3 for soundness notions
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for Max-SAT [BLM07; LMP05]. Hereafter, we start by presenting valid semantic rules for
Max-SAT.

Pure Literals (PL) [DP60; DLL62] This rule originally used in the context of SAT
solving 14 is also valid for Max-SAT. Indeed, assigning a literal with a unique polarity can be
used to extend the current assignment as it maintains equioptimality [NR00].

Hard Unit Propagation (HUP) [BF98] This rule consists in assigning literal l when
LB =U B −1 and a unit clause C = l is in the current formula. Indeed, assigning l cannot
lead to a better assignment as it already achieves a previously established UB value. In the
weighted case, this rule is applied if we have:∑

C=l

w(C ) ≥U B −LB

.

Dominant Unit Clause (DUC) [NR00] This rule consists in assigning literal l if the
number of unit clauses containing l is greater or equal to the number of clauses where
l appears. The sum of weights of the clauses can be used in the context of weighted Max-SAT.

In terms of Syntactic inference rules, BnB algorithms for Max-SAT mainly rely on the
Max-SAT resolution rule [LH05a; BLM06; BLM07; LHG08], defined below. This sound and
complete rule for Max-SAT 15 can be considered as extension of the resolution rule used
in the context of SAT [Rob65]. One major difference between resolution and Max-SAT
resolution is that the former adds the conclusions without deleting the premises whereas
the latter replaces the premises in by the conclusions. Furthermore, Max-SAT resolution
produces many clauses including a resolvent clause and a set of compensation clauses. As
their name suggests, these clauses are necessary to preserve equivalence in the sense of
Max-SAT. Note that tautological clauses generated by Max-SAT resolution can be discarded.

Definition 3.11 (Max-SAT resolution [LH05a; BLM06; BLM07; LHG08]). Given two clauses
C1 = x ∨ A and C2 = x ∨B s.t. A = a1 ∨ ...∨as and B = b1 ∨ ...∨bt , the Max-SAT resolution
rule is defined as follows:

14refer to Section 2.2.1.1
15We give a more detailed overview of Max-SAT resolution as a proof system in Section 3.3.
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C1 = x ∨ A C2 = x ∨B
Cr = A∨B

CC1 = x ∨ A∨b1

CC2 = x ∨ A∨b1 ∨b2
...

CCt = x ∨ A∨b1 ∨ ...∨bt−1 ∨bt

CCt+1 = x ∨B ∨a1

CCt+2 = x ∨B ∨a1 ∨a2
...

CCt+s = x ∨B ∨a1 ∨ ...∨as−1 ∨as

where Cr is the resolvent clause and CC1, ...,CCt+s are compensation clauses.

Example 3.3. The application of the Max-SAT resolution rule on clauses C1 = x1 ∨ x2 and
C2 = x1 ∨x3 generates the resolvent clause Cr = x2 ∨x3 and the compensation clauses CC1 =
x1 ∨x3 and CC2 = x1 ∨x1

In practice, specific cases of Max-SAT resolution or hyper Max-SAT resolution patterns,
i.e., patterns involving a sequence of Max-SAT resolution applications, are used to simplify
the formula or to detect and transform inconsistent subsets of the formula in order to
enhance the lower bound estimation process as will be explained in the following section.
Hereafter we present some of the generic syntactic rules used by BnB Max-SAT solvers in
the literature.

Almost Common Clauses (ACC) [BR99] This rule also known as symmetric cut or
neighborhood resolution [LH05a] is a specific case of Max-SAT resolution, formally defined
below, where A is equal to B in Definition 3.11.

Definition 3.12 (Symmetric cut [BR99]). Given two clauses C1 = x ∨ A and C2 = x ∨ A where
A is a disjunction of literals, the symmetric cut rule is defined as follows:

C1 = x ∨ A C2 = x ∨ A
A

Chain Resolution [LMP07; LHG08] This rule is a hyper resolution pattern deducing
the empty clause without increasing the size of the clauses and the formula. It is mainly
used in the context of lower bound estimation. Given k ≥ 1, it has the following form:

l1, l1 ∨ l2, l2 ∨ l3, . . . , lk−1 ∨ lk , lk

�, l1 ∨ l2, l2 ∨ l3 , . . . , lk−1 ∨ lk

Cycle Resolution [LHG08] This rule is also a hyper resolution pattern used in lower
bound estimation which, given k ≥ 2, has the following form:
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l1 ∨ l2, l2 ∨ l3, . . . , lk−1 ∨ lk , lk ∨ l1

l1, (l1 ∨ li ∨ li+1)2≤i<k , (l1 ∨ li ∨ li+1)2≤i<k

Note that in the context of weighted Max-SAT, the weighted version of the Max-SAT
resolution introduced in [BLM07; LHG08] can be used 16. In general, the above patterns
remain similar as we can suppose without loss of generality that the clauses have similar
weight. Indeed, in the context of weighted Max-SAT, the fold and unfold rules are used to
deal with weights. In particular, the unfold rule enables to partition clauses with respect to
the minimum weight and thus to produce copies such that the patterns above, containing
clauses with similar weights, can be identified. In contrast, the fold rule enables to merge
similar clauses when necessary in order to simplify the formula.

Definition 3.13 (Fold & Unfold). Given a clause C and two positive weights w1 and w2, the
fold and unfold rules are respectively defined as follows:

(C , w1) (C , w2)
(C , w1 +w2)

(C , w1 +w2)
(C , w1) (C , w2)

Other forms of inference that can be incorporated in BnB for Max-SAT include preprocess-
ing mechanisms [BMM13; BSJ15a; BSJ15b; Kor+17; IBJ22] and SAT-inspired clause-learning
techniques 17. [DCB10b; AH16; Li+21a; Li+22a]. While the former can be applied on the
formula in any solving context prior to the search, the latter specifically pertains to Max-SAT
BnB and recent works mainly focus on learning clauses when cuts are performed in the
search tree. Such a mechanism was first used in [AH16] where a hard clause, referred to as
nobetter clause, is learned to forbid a partial assignment which cannot lead to a better solu-
tion. To this end, the authors extend the traditional implication graph notion in SAT [SS96]
to encompass reasons of the semantic inference rules presented above, such that an analy-
sis on the graph would generate a clause capturing the reasons of the cut. However, the
computed nobetter clauses are usually of large size. In [Li+21a; Li+22a], Li et al. circumvent
this problem by renaming clauses using newly introduced soft literals. More specifically,
each soft clause C becomes hard after adding the hard encoding of l ↔C in CNF form to
the formula where l is a new soft literal. The authors thus devise a new solver on top of
an existing SAT solver where clauses are learned both when a hard clause is falsified as
in CDCL SAT solvers, similarly to the earlier attempt in [DCB10b], or when a soft conflict
occurs, i.e., when the current partial assignment cannot be extended to a complete one
falsifying fewer than UB soft clauses. The authors show that such a mechanism can make
Max-SAT BnB competitive on industrial instances compared to the SAT based approaches
presented in Section 3.2.2.

3.2.1.3 Lower Bound Estimation

The LB estimation is one of the most critical components of a BnB Max-SAT algorithm.
Indeed, computing lower bounds with better quality entails more cuts in the search tree

16refer to Section 3.3.3
17clause-learning techniques using rules described above during lower bound estimation will be accounted

for in the following sections
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and, thus, faster solving. However, as these computations are done frequently during the
search, the time devoted to them is closely correlated to the efficiency of the BnB algorithm.
Therefore, it is important to strike a balance between the computation time for LB and its
quality. A simple estimation for LB is the number of falsified clauses in the formula φ by the
current assignment α, i.e., LB = costα(φ). As this simple estimation is often quite far from
the best accessible solution, BnB Max-SAT solvers refine it by calculating the number of
disjoint Inconsistent Subsets (ISs), also referred to as cores, in the current formula φ|α.

Definition 3.14 (Inconsistent Subset). Let φ be an unsatisfiable CNF formula. An Inconsis-
tent Subset (IS) (or core) of φ is an unsatisfiable set of clauses Ψ⊆φ.

To detect ISs, BnB algorithms use Simulated Unit Propagation (SUP) [LMP05]. SUP
replicates the Unit Propagation (UP) mechanism used in SAT solvers which, as described in
Section 2.2.1.1, consists in iteratively satisfying the literals appearing in unit clauses until a
conflict is found, i.e., an empty clause is generated. Note that UP is not a valid inference rule
for Max-SAT, i.e., it does not necessarily maintain equioptimality [LMP05], and therefore,
the variables assigned by UP are not added to the current assignment after LB estimation.
More specifically, these variable assignments are stored in a separate temporary trail which
is discarded after the LB computation process. That is why we say that BnB Max-SAT
algorithms simulate UP, instead of actually applying it, and we refer to this mechanism as
simulated UP.

The propagation steps generated by SUP can be formally represented in the form of an
implication graph, defined below in the context of BnB solvers for Max-SAT. It is important
to note that implication graphs used in the context of LB estimation in Max-SAT BnB
are different from the traditional ones used in CDCL SAT 18. In particular, the graph is
only representative of the propagation steps performed during SUP in the last decision
level. As such, the graph does not include decision nodes. Nodes with zero incoming arcs
represent the literals present in unit clauses which form the first propagation layer in the
SUP mechanism. In [AH14c], Abramé and Habet propose to maintain all SUP propagation
reasons in the implication graph by considering all the unit clauses causing the assignment
of the variables and show that this can help efficiently handle the SUP process as it enables
to undo propagations in non-chronological order thus reducing the number of redundant
propagation steps made in BnB solvers.

Definition 3.15 (Implication Graph of an IS). Let ψ be an IS of a CNF formula φ and α an
assignment. We suppose that exactly one clause is falsified by α (SUP stopped when the first
empty clause is generated). An implication graph of ψ is a directed acyclic graph G = (V , A)
defined as follows:

• V = {l ∈α}∪ {¦C | C ∈ψ and |C | = 1}∪ {�}

• A = {(l , l ′,C ) | l , l ′ ∈α and C ∈ψ is reduced by l and propagates l ′}∪
{(¦C , l ,C ) | l ∈α and C = {l } ∈ψ}∪
{(l ,�,C ) | l ∈α and C ∈ψ is falsified by α and l ∈ψ}

18refer to Section 2.2.1.2
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The directed edges are labeled by clauses and the nodes ¦ are omitted in G.

Notation 3.1. For an implication graph G and a literal l ∈V (possibly �), we denote :

• pr edG (l ) (resp. succG (l )) the predecessors (resp. successors) of l in G

• nei g hG (l ) = pr edG (l )∪ succG (l )

• sr cG (l ) the clause that lead to the propagation of the literal l in G

The index G will be omitted if there is no confusion.

Example 3.4. We consider the IS ψ= {x1, x2, x3, x3 ∨x4, x1 ∨x2 ∨x4}. An implication graph
corresponding to a propagation sequence leading to the detection of ψ is represented in
Figure 3.2.

x1

x2

x4

x3

�

x1 x1 ∨x2 ∨x4

x2 x1∨x2∨x4

x3

x3 ∨x4

x 3∨x 4

Figure 3.2: Implication graph representing the SUP steps in Max-SAT BnB

When an IS is detected, it must be counted only once in the LB estimation. To this
end, detected ISs are treated using two methods to ensure that they are disjoint. They are
either temporarily deleted or transformed by Max-SAT resolution. The deletion of ISs has
several advantages: it is less time-consuming and it doesn’t increase the size of the formula.
However, it produces a formula that is not equivalent to the original and, thus, that may
contain less ISs. Therefore, this method applies local changes on the formula that are only
preserved during the LB estimation in the current node.

The second method to treat ISs, outlined in Algorithm 3.2, relies on a local application of
the Max-SAT resolution rule 19 [AH14b]. A Max-SAT resolution transformation requires an
implication graph describing the sequence of propagations leading to the detection of the
IS. The transformation is usually done in the reverse order of propagation. The treatment
performed by Apply_Resolution(φ,C1,C2, var (l )) (line 6) consists in deleting the clauses C1

and C2 from the formula and adding the resolvent (returned in line 6) and compensation
clauses described in the Max-SAT resolution rule.

Definition 3.16 (Transformation of an IS). Let ψ be an IS and S = 〈x1, ..., xk〉 be a sequence
of variables appearing in ψ. The Max-SAT resolution transformation of ψ with respect to
S, denoted Θ(ψ,S), is the set of clauses obtained from ψ after the application of Max-SAT

19refer to Definition 3.11
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resolution steps in accordance to the sequence S, i.e.,Θ(ψ,S) = θ(θ...(θ(ψ, x1), x2)..., xk ) where
θ(ψ, x) denotes the application of the Max-SAT resolution step on two clauses C and C ′ s.t.
x ∈C and x ∈C ′.

Remark 3.1. A transformationΘ(ψ,S) is not unique in general as the application of Max-SAT
resolution steps with respect to a given variable sequence S is not deterministic and, thus,
Θ(ψ,S) represents any of the possible outcomes after the transformation of ψ with respect to
S. However, if S represents the reverse propagation order, the transformation with respect to
S becomes deterministic and Θ(ψ,S) becomes unique.

Algorithm 3.2: Max-SAT resolution transformation of an IS in Max-SAT BnB
Input: an IS ψ, an implication graph G of ψ
Output: Θ(ψ,S) where S represent the reverse propagation order sequence

1: C1 ← sr cG (�)
2: while C1 6=� do
3: l ← the last propagated literal in G
4: C2 ← sr cG (l )
5: C ← Apply_resolution(ψ,C1,C2, var (l ))
6: C1 ←C

7: return ψ

Example 3.5. We consider the same IS ψ= {x1, x2, x3, x3 ∨ x4, x1 ∨ x2 ∨ x4} in Example 3.4
detected through the implication graph represented in Figure 3.2. The Max-SAT resolution
transformation of ψ with respect to the variable sequence S = 〈x4, x3, x2, x1〉 (reverse order of
propagation) is given in Figure 3.3. After the transformation, we obtainΘ(ψ,S) = {�, x1 ∨
x2 ∨x3 ∨x4, x1 ∨x3 ∨x4, x1 ∨x2 ∨x3 ∨x4, x1 ∨x3, x1 ∨x2 ∨x3, x1 ∨x2}.

x1 ∨x2 ∨x4 x3 ∨x4

x1 ∨x2 ∨x3
x3

x1 ∨x2
x2

x1
x1

�

x1 ∨x2 ∨x3 ∨x4

x1 ∨x3 ∨x4

x1 ∨x2 ∨x3 ∨x4

x1 ∨x3

x1 ∨x2 ∨x3

x1 ∨x2

Figure 3.3: Max-SAT resolution transformation of an IS in Max-SAT BnB. Compensation
clauses for each step are represented in boxes.
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It is important to note that, unlike the deletion method, the changes entailed by Max-SAT
transformations can be maintained in the sub-tree thus ensuring that the detected IS is
computed and counted only once. This is possible since Max-SAT resolution produces
an equivalent formula and this entails an incremental calculation of LB while reducing
redundancy in the detection of ISs. Nevertheless, this method has several shortcomings: it
is time-consuming and it may increase the size of the formula by adding the compensation
clauses obtained after each Max-SAT resolution step. We explain in the next section how
state of the art solvers overcome these limits.

3.2.1.4 Learning Schemes

One of the major challenges for Max-SAT BnB solvers is to perform efficient Max-SAT
resolution transformations of ISs. There are different learning schemes in the literature.
The first scheme implemented in the MiniMaxSat solver learns a transformation only if
all the intermediary resolvents contain less than four literals[HLO08]. A family of other
schemes consists in learning transformations matching particular patterns. These patterns
are mainly described by inference rules that can be deduced from Max-SAT resolution.
They can be specific cases of Max-SAT resolution or a combination of several Max-SAT
resolution steps as described in Section 3.2.1.2. We give below three major patterns used in
state-of-the-art solvers:

l1 ∨ l2, l1 ∨ l2 (P1)
l1

l1 ∨ l2, l1 ∨ l3, l2 ∨ l3 (P2)
l1, l1 ∨ l2 ∨ l3, l1 ∨ l2 ∨ l3

l1, l1 ∨ l2, l2 ∨ l3, . . . , lk−1 ∨ lk , lk (P3)
�, l1 ∨ l2, l2 ∨ l3 , . . . , lk−1 ∨ lk

P1 a particular case of the ACC rule (where A = l1 in Definition 3.12) [BR99]. Pattern
P2 is a specific case of cycle resolution (where k = 2) while P3 corresponds to the chain
resolution rule [LMP07; LHG08]. The particular case of P3 where k = 1 is also referred to
as the complementary unit clause rule in the literature, which can be used to replace two
opposed unit clauses with an empty clause [NR00] (also a particular case of ACC where
A =; in Definition 3.12). A pattern can cover an IS entirely as in pattern P3, or partially as in
patterns P1 and P2. These patterns present several advantages: they can be easily identified
and they don’t increase the number of clauses in the formula. Furthermore, patterns P1 and
P2 produce a unit resolvent clause which enables the solver to detect more ISs using SUP.
More generic patterns, called Unit Clause Subsets (UCS), were introduced and empirically
studied in [AH14d]. Hereafter, we give the formal definition of these patterns and we
explain how they can be easily detected using the implication graph of an IS.

Definition 3.17 (Unit Clause Subset [AH14d]). Let φ be a CNF formula and k ≥ 2 be a
natural number. A k-Unit Clause Subset, denoted k-UCS, is a set of clauses {C1, ...,Ck } ⊆φ

such that there exists a sequence of Max-SAT resolution steps on C1, ...,Ck that produces a
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unit clause reslovent. In particular, if ∀i ∈ {1, ...,k} we have |Ci | = 2, it is a binary k-UCS,
denoted kb-UCS.

Example 3.6. The patterns P1 and P2 which are learned in state-of-the-art BnB solvers,
correspond respectively to a 2b-UCS and a 3b-UCS.

UCS patterns have a high apparition frequency (in more than 57% of the detected
ISs [Abr15]). Furthermore, certain k-UCS patterns are easily detectable by analyzing the
implication graph of the obtained IS. Indeed, as outlined in the following example, the
clauses which are between the conflict and the FUIP node [SS96] produce a unit resolvent
clause if they are transformed by Max-SAT resolution in the reverse propagation order.

Example 3.7. We consider the IS ψ= {x1, x2, x1 ∨ x2 ∨ x3, x3 ∨ x4, x3 ∨ x5, x4 ∨ x5} detected
by the sequence of unit propagations represented in the form of the implication graph G
on the left in Figure 3.4. Clearly, the node x3 is the FUIP of G. The Max-SAT resolution
transformation of ψ with respect to the variable sequence S = 〈x5, x4, x3〉 (representing the
reverse order of propagation until the FUIP is encountered) is given on the right in Figure 3.4.
This transformation produces the unit resolvent x3. Therefore, the set of clauses ψ′ = {x3 ∨
x4, x3 ∨x5, x4 ∨x5} ⊂ψ is a 3-UCS. More specifically, since all the clauses in ψ′ are binary, it
is a 3b-UCS.

x1

x2

x3

x4

x5

�

x1 x1 ∨x2 ∨x3

x2 x1∨x2∨x3

x 3∨x 4

x3 ∨x5

x
4 ∨x

5

x 4
∨x 5

x4 ∨x5 x3 ∨x5

x3 ∨x4 x3 ∨x4

x3

x3 ∨x4 ∨x5

x3 ∨x4 ∨x5

Figure 3.4: Detection (left) and transformation (right) of a UCS in Max-SAT BnB. Compen-
sation clauses are represented in boxes.

3.2.1.5 UP-Resilience

The empirical study of UCS patterns in [AH14d] led to the first observations on the relation
between Max-SAT resolution transformations and the efficiency of the SUP mechanism.
These observations were formally stated by the introduction of a new property called
UP-resilience [AH15b]. This new theoretical property aims to characterize Max-SAT res-
olution transformations in order to explain the efficiency of learning schemes observed
in state-of-the-art BnB Max-SAT solvers. The main motivation behind this property is the
fragmentation phenomenon [AH15b] which occurs when the information within a clause
is fragmented into two (or more) clauses after transformation by Max-SAT resolution. This
phenomenon, illustrated in the following example, may obstruct the exploitation of clauses
by the SUP mechanism.
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Example 3.8. We consider the same IS ψ in Example 3.4 detected by the implication graph
represented in Figure 3.2 and whose Max-SAT resolution transformation with respect to the
the reverse order of propagation is represented in Figure 3.3 producing Θ(ψ,S) = {�, x1 ∨
x2∨x3∨x4, x1∨x3∨x4, x1∨x2∨x3∨x4, x1∨x3, x1∨x2∨x3, x1∨x2}. If the unique neighbor
of x1 in the implication graph is set to True in the transformed IS, we obtain Θ(ψ,S)|{x4} =
{x1 ∨x3, x1 ∨x3, x1 ∨x2, x1 ∨x2 ∨x3, x1 ∨x2 ∨x3}. Clearly, the literal x1 can’t be propagated
in Θ(ψ,S)|{x4}. We can produce the resolvent x1 if we perform a Max-SAT resolution step
between the clauses x1 ∨ x3 and x1 ∨ x3 but the SUP mechanism alone cannot ensure the
propagation of this literal in the transformed IS even with respect to its neighborhood in
the implication graph. We say that the information leading to the propagation of x1 was
fragmented into several compensation clauses.

When fragmentation occurs, the compensation clauses which may propagate a literal of
the constructed implication graph can contain additional literals which are not in its initial
neighborhood. More specifically, the neighborhood of a literal l in the implication graph
contain literals which are in direct interaction with it and should enable, once propagated
in the detected IS, the propagation of l . However, if after the transformation of the IS, the
fragmentation occurs, new literals that interact directly with l are introduced and may thus
obstruct the propagation of l by SUP even when considering all the literals appearing in
its neighborhood. Clearly, the power of SUP is depleted in such cases. Thus, to detect if
a transformation is not affected by the fragmentation phenomenon, we can rely on the
capability of SUP to propagate the literals of the constructed implication graph when
their neighborhood literals are set to True. From here on, we will say that a literal l can be
propagated in a formulaφ if the unit clause C = l can be inferred fromφ by unit propagation.
We provide hereafter a formal definition of UP-resilience in a given implication graph.

Definition 3.18 (UP-Resilience in an Implication Graph). Let ψ be an IS detected through
the propagation steps described by an implication graph G = (V , A) and S be a sequence of
variables appearing in ψ. The transformation Θ(ψ,S) is UP-resilient for literal l ∈V in G if:

� ∈ nei g h(l ) or l can be propagated in Θ(ψ,S)|nei g h(l )

Θ(ψ,S) is UP-resilient for L ⊆ V in G if it is UP-resilient for each literal l ∈ L in G and it is
UP-resilient in G if it is UP-resilient for V in G.

Remark 3.2. Note that the neighborhoods which include the special node � are not valid
assignments. All transformations are considered UP-resilient for literals with such neighbor-
hoods.

Example 3.9. We consider the same IS ψ in Example 3.4 and the implication graph G
leading to the detection of ψ represented in Figure 3.2. In Example 3.8, we showed that the
fragmentation phenomenon occurs after transformation of ψ with respect to the reverse
propagation sequence S since the literal x1 can’t be propagated in Θ(ψ,S)|nei g h(x1). Thus, the
described transformation is not UP-resilient in the implication graph G.

The previous definition of UP-resilience depends on the neighborhoods of the literals
in the implication graph. However, the same IS can be detected by several sequences of
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propagation steps which can be described by distinct implication graphs as illustrated in
Example 3.10. To overcome this limitation, the notion of possible neighborhoods of a literal
appearing in an IS is introduced in [AH15b]. We provide a formal definition below then we
define the generic notion of UP-resilience which does not depend on the propagation steps
leading to the IS discovery by taking all the possible implication graphs into account.

Example 3.10. We consider the same IS ψ = {x1, x2, x1 ∨ x2 ∨ x3, x3 ∨ x4, x3 ∨ x5, x4 ∨ x5}
in Example 3.4. In addition to the original implication graph, represented in Figure 3.2
(and also on the left in Figure 3.5), another sequence of propagations corresponding to the
implication graph represented on the right in Figure 3.5 can lead to the detection of the IS ψ.
The propagation sequences corresponding to the same implication graph are considered as
equivalent.

x1

x2

x4

x3

�

x1 x1 ∨x2 ∨x4

x2 x1∨x2∨x4

x3

x3 ∨x4

x3∨x4

x1

x2

x3 x4

�

x1 x1 ∨x2 ∨x4

x2 x1 ∨x2 ∨x4

x3

x3 ∨x4
x 1∨x 2∨x 4

Figure 3.5: Implication graphs corresponding to the possible propagation sequences of an
IS

Definition 3.19 (Possible Neighborhoods). Let ψ an IS and l be a literal appearing in ψ.
The possible neighborhoods of l are defined as follows

pnei g h(l ) = {nei g hG (l )|G = (V , A) implication graph of ψ s.t. l ∈V }

. We naturally extend this definition on any set of literals L appearing in ψ as follows:

pnei g h(L) = {
⋃
l∈L

nei g hG (l )|G = (V , A) implication graph of ψ s.t. L ⊆V }

.

Definition 3.20 (UP-Resilience). Let ψ be an IS and S be a sequence of variables appearing
in ψ. The transformation Θ(ψ,S) is UP-resilient for a literal l appearing in ψ if we have:

∀N ∈ pnei g hψ(l ) :� ∈ N or l can be propagated in Θ(ψ,S)|N
Θ(ψ,S) is UP-resilient if it is UP-resilient for all the literals appearing in ψ.

Example 3.11. We consider the same IS ψ in Example 3.4, whose distinct implication graphs
corresponding to the possible propagation sequences are represented in Figure 3.5. We have
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pnei g h(x1) = {{x4}, {�}}. As showcased in Example 3.8, for N = {x4}, the literal x1 can’t
be propagated in Θ(ψ,S)|N . Therefore, the transformation is not UP-resilient for x1 and,
consequently, it is not UP-resilient.

The impact of Max-SAT resolution transformations on the SUP mechanism was studied
through UP-resilience in [AH15b]. In particular, UP-resilient transformations maintain the
propagations which are not necessary anymore to an IS (e.g., if it is not minimal). Indeed, if
a transformation is UP-resilient for a set of literals L, then the literals of L can be propagated
in the transformed formula if the literals of one of its possible neighborhoods are set to True.
This is highlighted in the property established in Proposition 3.1. Furthermore, the major
patterns P1,P2 and P3 are UP-resilient and, thus, UP-resilience contributes to explain the
empirical efficiency of learning mechanisms used in the literature [LMP07; Li+10a; AH14d;
Abr15; AH15a].

Proposition 3.1 ([AH15b]). Let ψ be an IS of and S be a sequence of variables appearing in
ψ. For any set of literals L appearing in ψ, if the transformation Θ(ψ,S) is UP-resilient for L
then ∀N ∈ pnei g h(L) :� ∈ N or ∀l ∈ L, l can be propagated in Θ(ψ,S)|N \{l }.

Proposition 3.2 ([AH15b]). Let ψ be an IS. For any ψ′ ⊆ψ that matches one of the pattern
P1, P2 or P3. There exists a sequence S of variables in ψ′ s.t. Θ(ψ,S) is UP-resilient.

Finally, it was empirically shown in [AH15b] that the order of application of Max-SAT
resolution impacts the UP-resilience of the transformations by comparing two orders. The
Reverse Propagation Order (RPO) applies Max-SAT resolution steps in the reverse order
of propagation which is used in most of state-of-the-art solvers while the second order,
called Smallest Intermediary Resolvent (SIR) and initially introduced in [AH14a], applies
the Max-SAT resolution steps based on the size of the obtained resolvents, favoring the
smallest ones. Furthermore, learning schemes in the literature were empirically evaluated
through UP-resilience in [AH15b]. More specifically, the authors show that the learning
scheme implemented in MiniMaxSat [HLO08] behaves very differently than the family of
schemes relying on patterns as it learns more transformations in average (more than 60%
compared to patterns) however it achieves the lowest percentage in terms of UP-resilience.
In contrast, the schemes relying on patterns learn less than 20% of the transformations
but achieve a high percentage of UP-resilience (100% if using a scheme relying on all the
traditional patterns P1,P2 and P3 and 97% if they are extended by specific UCSs as described
in [AH14d]). Since the MiniMaxSat scheme achieves the worst results in terms of solved
instances and average solving time, these results indicate that the UP-resilience property is
a valid characterization and quality measure of Max-SAT resolution transformations in the
context of Max-SAT BnB.
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3.2.2 SAT-Based Approaches
SAT-based algorithms for Max-SAT rely on the power of SAT solvers as effective engines
for solving decision problems [ABL13; BJM21]. These algorithms became popular this
last decade as they are able to harness the efficiency of modern SAT solvers on industrial
instances. In the following sections, we present the three major SAT-based algorithm
families. We start by plain iterative search methods which call SAT solvers to determine the
optimum value within the interval of feasible solutions. Then, we focus on core-guided
algorithms which take advantage of the ability of SAT solvers to return cores when the
formula is unsatisfiable. Finally, we review the Implicit Hitting Set (IHS) approach which
mainly relies on a reformulation to the implicit hitting set paradigm.

3.2.2.1 Iterative Algorithms

A well-known family of SAT-based approaches to solve the Max-SAT problem consists in
iterative algorithms which straightforwardly consider the decision version of Max-SAT
defined below [ABL13; Mor+13; BJM21]. This decision transformation of Max-SAT simply
checks whether the optimum of the input formula is bounded by a given value. Solving
the Max-SAT problem for a given input CNF formula φ is equivalent to determining the
threshold cost ∈ {0, . . . , |φ|} such that the pairs (φ,cost −1) and (φ,cost ) form respectively a
negative and a positive instance of the decision version. Indeed, in such case we clearly
have opt(φ) = cost 20. Iterative Algorithms for Max-SAT are based on this simple idea
and mainly differ in the search methods used to explore the interval of feasible solutions
I = {0, . . . , |φ|} in order to determine the threshold.

Definition 3.21. The decision version of Max-SAT is defined as follows:

Decision Version of Max-SAT
Input: a CNF formula φ, cost ≥ 0
Question: opt (φ) ≤ cost?

A given bound on the optimum of a formula can be easily established by enforcing
cardinality constraints 21 on a set of relaxation (or blocking) variables which are added to
each clause in the formula as described in Algorithm 3.3. Each variable in R is a newly
created variable (line 2) which is added to a clause in the formula (line 4). Formally, given a
set of relaxation variables R and a whole number k, a cardinality constraint ensures a certain
(in)equality on the sum of the variables in R and k with respect to a specific comparison
operator as defined below. In particular, when ⊗=≤ (resp. ⊗=≤) the cardinality constraint
is a typical AtMost (AtLeast) constraint on the set R. Such constraints are extensively
studied in the literature and many CNF encodings have been proposed with varied degrees
of efficiency [BBR06; HN13; BTS19; Ngu+20; RM21].

20Note that, in the case of a satisfiable formula, a simple verification with cost = 0 is sufficient to establish
opt (φ) = 0, although it is common to abuse Definition 3.21 by allowing the negative value cost =−1 which
forms a negative instance of the decision version when coupled with any CNF formula.

21more generally referred to as pseudo-boolean constraints
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Algorithm 3.3: Augmenting a set of clauses with relaxation variables
Input: a CNF formula φ
Output: (R,φR ) where R is the set of relaxation variables and φR is the relaxed formula

1: for C ∈φ do
2: r ←− new_var i abl e()
3: R ←− R ∪ {r }
4: φ←−φ\ {C }∪ {C ∨ r }

5: return (R,φ)

Definition 3.22 (Cardinality Constraint). Le R be a set of variables and k be a whole number.
A cardinality constraint on R has the following form:∑

r∈R
r ⊗k

where ⊗∈ {=,<,≤,>,≥} is a comparison operator.

Notation 3.2. Given a cardinality constraint ζ, we denote C N F (ζ) an encoding of ζ in CNF
form.

Clearly, augmenting a formula with relaxation variables R and a CNF encoding of an
AtMost constraint enforcing a given bound cost on R followed by a call to SAT solver is
equivalent to solving the decision version of Max-SAT. In the following algorithms, we will
denote S AT (φ) the call of a SAT solver on the input formula φ. The oracle returns True if the
formula is satisfiable and False otherwise. Iterative algorithms rely on such a mechanism
to determine the optimum of a given formula. Hereafter, we present the major iterative
methods used to explore the interval of feasible solutions.

Linear Search [FM06b; ES06a; BP10] An iterative algorithm relying on linear search
mainly explores the solution interval through a simple variation of k. A simple method,
referred to as linear SAT-UNSAT search and described in Algorithm 3.4, consists in starting
from the upper cost value |φ| and then iteratively decrementing its value by 1 until obtaining
a positive instance of the decision version. The origins of this method can be traced back
to the works in [Alo+02; XRS03]. In contrast, the linear UNSAT-SAT search where k is
incremented until the optimum is found is mostly used, modulo certain refinements as
first described in [FM06b], in the context of core-guided Max-SAT solvers which will be
presented in the following section. Notice that the number of decision calls needed to solve
the input formula using basic linear search is in O(|φ|).

Binary Search [FM06b; Kos+12] This method is similar to the traditional binary search
algorithm performed on sorted arrays [Cor+09]. As described in Algorithm 3.5, it consists in
reducing the search space interval by refining both its upper and lower bounds. In each
step, the middle value of the interval is computed and provided alongside the formula as
input to the decision version. If it is a positive instance the middle value becomes the new
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upper bound of the interval otherwise it become the new lower bound. This treatment is
repeated until the threshold value is identified. Binary search helps to reduce the number of
decision calls which become bounded by O(log (|φ|)). This approach was also incorporated
in different core-guided algorithms [MP08; HMM11; MHM12]. In [Kos+12], the authors
propose a hybrid method in which linear and binary search are alternated.

Bit-Based Search [GM07; CLS08; GM11] This approach takes advantage of the
fact that the solution is a natural number. As described in Algorithm 3.6, it consists in
determining the bits in the binary representation of the optimum starting from the most
significant one. Similarly to binary search, this method requires O(log (|φ|)) calls to a SAT
solver.

Example 3.12. We consider the formula φ=C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 where C1 = x1, C2 =
x2, C3 = x2, C4 = x1 ∨ x3, C5 = x1 ∨ x2 and C6 = x2 ∨ x3. An iterative algorithm for Max-
SAT augments the formula φ with relaxation variables to generate φr el axed =∨

1≤i≤6(Ci ∨
ri ) where R = {ri |1 ≤ i ≤ 6} is a set of new relaxation variables. The execution of algo-
rithms 3.4, 3.5 and 3.6 are summarized in Table 3.1. The returned optimum value is
opt (φ) = 2.

LSU Binary Bit-Based
cost SAT cost SAT (cmin,cmax) cost SAT (k,cost)

6 True (-1,7) (2,0)
... True 3 True (-1,3) 4 True (1,2)
2 True 1 False (1,3) 2 False (0,3)
1 False 2 True (2,3) 3 True (-1,2)

Table 3.1: Iterative Search methods for Max-SAT. The column SAT refers to the value re-
turned by the oracle call on the formula φr el axed ∪C N F (

∑
r∈R r ≤ cost ) (with a strict bound

in Bit search), i.e., True if the formula is satisfiable and False otherwise. For the Binary and
Bit-based algorithms we additionally specify the values of the receptive pairs (cmi n,cmax)
and (k,cost ) at the beginning of each iteration in the main loop.

It is easy to extend the previous methods to weighted (partial) Max-SAT. Indeed, one
can easily check whether the set of hard clauses is satisfiable through a single call to a SAT
oracle, in which case a search can be performed on the interval I = {0, . . . ,

∑
(C ,w)∈φ s.t. w<∞ w}

through relaxation variables added to soft clauses. The SAT calls are thus performed using
cardinality constraints of the following form:∑

(C ,w)∈φ s.t w<∞
wC ∗ rC ≤ cost

where each soft clause C of weight wC is augmented with the relaxation variable rC . Ma-
jor Max-SAT solvers in the literature which perform pure iterative search include Min-
iSat+ [ES06a], Sat4j [BP10], QMaxSAT [Kos+12] and Pacose [PRB18].
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Algorithm 3.4: Linear SAT-UNSAT (LSU) algorithm for Max-SAT
Input: a CNF formula φ
Output: opt (φ)

1: (R,φ) ←− Add_Rel axati on_V ar i ables(φ)
2: cost = |φ|
3: while S AT (φ∪C N F (

∑
r∈R r ≤ cost )) do

4: cost ←− cost −1
5: end while
6: return cost +1

Algorithm 3.5: Binary search algorithm for Max-SAT
Input: a CNF formula φ
Output: opt (φ)

1: (R,φ) ←− Add_Rel axati on_V ar i ables(φ)
2: cmi n =−1
3: cmax = |φ|+1
4: while cmi n +1 < cmax do
5: cost ←−b cmi n+cmax

2 c
6: if S AT (φ∪C N F (

∑
r∈R r ≤ cost )) then

7: cmax ←− cost
8: else
9: cmi n ←− cost

10: end while
11: return cmax

Algorithm 3.6: Bit-based search algorithm for Max-SAT
Input: a CNF formula φ
Output: opt (φ)

1: (R,φ) ←− Add_Rel axati on_V ar i ables(φ)
2: k ←−blog2|φ|c
3: cost ←− 0
4: while k ≥ 0 do
5: cost ←− cost +2k

6: if S AT (φ∪C N F (
∑

r∈R r < cost )) then
7: cost ←− cost −2k

8: k ←− k −1
9: end while

10: return cost
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Note that other techniques can be used to further enhance the power of iterative search.
For instance, models provided by the decision oracle for satisfiable instances can be ex-
ploited to refine the upper bounds within the interval of feasible solutions as described
in [BP10]. Furthermore, more relevant variations in the cost values can be performed in
weighted Max-SAT by ensuring the validity of certain bounds as suggested in [ABL10a].
Finally, large formulas require the addition of many relaxation variables and the generation
of CNF encodings of cardinality constraints with large size which may render pure iterative
search inefficient in such cases. In the next section, we present a second family of SAT-based
approaches, called core-guided algorithms, which try to offset this disadvantage by further
exploiting the power of modern SAT solvers.

3.2.2.2 Core-Guided Algorithms

The core-guided approach for Max-SAT solving regroups a family of algorithms which
take advantage of the ability of SAT solver to return cores when the input formula is un-
satisfiable [ABL13; Mor+13; BJM21]. Since these algorithms often maintain a set of hard
clauses, we present them in the context of partial Max-SAT while supposing that the set
of hard clauses is initially satisfiable. The first core-guided algorithm for Max-SAT was
introduced in [FM06b; Fu07]. This procedure, commonly referred to as the Fu and Malik
(FM) Algorithm, is described in Algorithm 3.7. It consists in adding cardinality constraints
solely on the clauses of the core returned by the SAT solver. More specifically, a call to
a SAT oracle on the current formula is performed in each step (line 3). If the formula is
unsatisfiable, the solver returns a core in the form of a subset of clauses in the formula.
Relaxation variables are then added to these clauses and an at most constraint enforcing a
bound of one is encoded and added to the set of hard clauses (lines 6-8). Furthermore, the
optimal cost is incremented by 1 (line 9) until the formula becomes satisfiable, in which
case it is returned by the algorithm as the optimum of the input formula (lines 4-5).

Algorithm 3.7: Fu and Malik Algorithm
Input: a partial CNF formula φ= H ∪S
Output: opt (φ)

1: cost ←− 0
2: while Tr ue do
3: (sol ved ,ψ) ←− S AT (H ∪S)
4: if sol ved then
5: return cost
6: (R,ψ′) ←− Add_Rel axati on_V ar i ables(ψ∩S)
7: S ←− S \ (S ∩ψ)∪ψ′

8: H ←− H ∪C N F (
∑

r∈R r ≤ 1)
9: cost ←− cost +1

10: end while
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Example 3.13. We consider the partial CNF formula φ = H ∪ S where H = ; and S =
C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 where C1 = x1, C2 = x2, C3 = x2, C4 = x1 ∨ x3, C5 = x1 ∨ x2 and
C6 = x2 ∨ x3. The Fu and Malik algorithm calls a SAT oracle on φ which returns that the
formula is unsatisfiable alongside, for instance, the core ψ = {C2, C3}. Note however that
the returned core is not necessarily minimal in terms of size. The algorithm adds relaxation
variables to coreψ to obtainψ′ = {x2∨r1, x2∨r2} where r1 and r2 are new relaxation variables.
Sinceψ contains soft clauses only, the set S is updated as follows S = S\ψ∪ψ′. The cardinality
constraint is also added to the set of hard clauses, i.e., H =C N F (r1+r2 ≤ 1), and the cost value
is incremented by 1. A second SAT call is then performed. The formula is still unsatisfiable
and the oracle returns the core ψ= {C1, C4, C5, C6}. Similarly to the above treatment, we add
relaxation variables to ψ and the relaxed set ψ′ = {C1 ∨ r3, C4 ∨ r4, C5 ∨ r5, C6 ∨ r6} is used to
update the set of soft clause S while adding the encoding C N F (r3 + r4 + r5 + r6 ≤ 1) to the
set of hard clauses. After incrementing the cost, a last call to the SAT oracle returns that the
formula is satifiable and the optimum value 2 is returned by the FM algorithm.

Many variations of this algorithm have been proposed in the literature. In particular, a
weighted version of FM, the WPM1 algorithm, was introduced in [ABL09b] 22. The idea is
similar to FM except that the clauses are replicated with respect to the minimum weight in
the core. This treatment corresponds to application of the unfold rule in Definition 3.13.
Formally, let mi nw denote the minimum weight over the clauses in the coreψ, i.e., mi nw =
mi nC∈ψw(C ). For each soft clause C in ψ of weight higher than mi nw , a copy is generated
with weight w(C )−mi nw . Then, relaxation variables are added to all soft clauses in the core,
which now have weight mi nw . A cardinality constraint is added to the set of hard clauses
as in FM. Finally, the value mi nw is used to update the cost (instead of incrementing it by
1).

Other variations of FM include (W)MSU3 [MP07], (W)PM2 [ABL09a; ABL09b; ABL10b]
and OLL [MDM14] among many others [MM08; MP08; HMM11; ADG15; ADR15; IMM19;
IBJ21]. The MSU3 algorithm adds relaxation variables on demand as in FM but main-
tains one variable only for each clause [MP07]. More specifically, when a core is found,
the soft clauses which were not relaxed in prior steps are augmented with new relaxation
variables and the bound enforced on the relaxation variables is updated. This algorithm,
implemented in the MSCG [MIM14] and Open-WBO 23 [MML14] solvers, is very simi-
lar to iterative linear search but relaxation variables are added depending on the cores
as is expected of a core-guided approach. The PM2 algorithm similarly maintains one
relaxation variable per clause but allows to split disjoint cores over different cardinality
constraints [ABL09b; ABL09a; ABL10b]. To this end, PM2 maintains a record of each core
found so far along with their sets of relaxation variables. When a new core disjoint with the
previous ones is found, new relaxation variables are added to its soft clauses and an addi-
tional AtMost constraint is enforced over its variables. Otherwise, the previous constraints
which clash with it are merged into a new AtMost constraint enforcing the sum of bounds
(plus one for the current core) over their relaxation variables and the additional variables
necessary to relax soft clauses in the core.

22A similar algorithm, called WMSU1, was also introduced independently in [MSP09].
23http://sat.inesc-id.pt/open-wbo/
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A more sophisticated core-guided algorithm introduced in the literature for Max-SAT
solving is OLL [MDM14] 24 which is implemented in the MSCG [MIM14] and RC2 [IMM19]
solvers. The main idea behind OLL is to reuse cardinality constraints as they are discovered
while mixing the strengths of previously introduced methods. Similarly to MSU3, OLL
adds one relaxation variable per clause while also adding a new cardinality constraint for
each core as in FM. The main difference between OLL and these algorithms is that the soft
clauses are hardened after relaxation while cardinality constraints are added as unit soft
clauses. More specifically, whenever a new core is found, the working formula is updated
with a new soft constraint allowing to set one newly introduced relaxation variable to True if
all the previous soft constraints in the core are satisfied. Furthermore, the bounds enforced
on the previous constraints are also increased by 1. Note that this algorithm takes advantage
of well-known encodings which allow to independently encode the sum side in a cardinality
constraint and to enforce a specific bound through a single literal [BB03; Sin05; ES06b;
Mar+14a].

Unlike the previously described algorithms which use cardinality constraints through
the addition of relaxation variables, other core-guided algorithms in the literature use pure
Max-SAT inference to transform cores returned by SAT solvers. Similarly to BnB solvers,
these methods rely on the Max-SAT resolution rule in Definition 3.11 to transform the cores
returned by the SAT oracle. The first attempt in [HM11] using such a method consists in
retrieving a resolution proof whenever a core is returned by the oracle 25. If the proof is
read once, it is simply adapted into a Max-SAT resolution proof otherwise a traditional
core-guided algorithm such as FM is applied. To adapt the read-once resolution proof, one
only needs to replace each resolution step by a Max-SAT resolution step 26 [BLM06; BLM07]

Algorithm 3.8 describes another inference-based core guided procedure called PMRes
which was implemented in the EVA solver [NB14]. Whenever a core ψ is returned by
the SAT solver, PMRes renames the soft clauses by introducing equivalent literals (lines
5-9). Let R be the set containing the negation of such literals. Since at least one soft
clause must be falsified, the clause C =∨

r∈R r can be added as a hard clause to ensure this
context-induced constraint while maintaining Max-SAT reducibility 27. Then, a sequence
of Max-SAT resolution applications is performed in Apply_MaxSAT_Resolution(H ,S,R)
(line 6) and the transformed set of hard and soft clauses are returned after this procedure.
More specifically, at each step, a literal l is chosen in R and a Max-SAT resolution step
between clauses l and

∨
r∈R r is performed while adding the generated resolvent clause and

compensation clauses to the set of soft clauses. The literal l is then deleted from l and the
next step is performed with respect to the updated set R . Note that the premises of the first
step corresponds to l and C 28 while the conclusion of the last step is the empty clause, in
which case the cost is updated to account for it instead of adding it to the formula (lines 13).

24OLL was originally introduced in the context of Answer Set Programming (ASP) [And+12].
25refer to Section 2.3
26refer to Section 3.3.2 for more details.
27refer to Definition 3.9
28C can be considered as a soft clause in this step since hard clauses can be used as a premise in the Max-SAT

resolution rule multiple times without being deleted. In the weighted case, this corresponds to the scission
of an infinite weight clause to generate a clause of weight 1 using the unfold rule in Definition 3.13
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Algorithm 3.8: PMRes Algorithm
Input: a partial CNF formula φ= H ∪S
Output: opt (φ)

1: cost ←− 0
2: while Tr ue do
3: (sol ved ,ψ) ←− S AT (H ∪S)
4: if sol ved then return cost
5: for C ∈ψ∩S do
6: r ←− new_var i abl e()
7: R ←− R ∪ {r }
8: H ←− H ∪C N F (C ⇔ r )
9: S ←− S \ {C }∪ {r }

10: end for
11: H ←− H ∪ {

∨
r∈R r }

12: H ,S ←− Appl y_M axS AT _Resoluti on(H ,S,R)
13: cost ←− cost +1
14: end while

It is easy to notice that, if a new literal d such that d ⇔∨
r∈R\{l } r is introduced in each step,

then the compensation clauses generated by Max-SAT resolution between l and
∨

r∈R r
can be compressed into the form l ∨d . The PMRes algorithm employs this mechanism by
introducing new literals in the Max-SAT resolution transformation process and adding the
required equivalences to the set of hard clauses.

Example 3.14. We consider the partial CNF formula φ = H ∪ S where H = ; and S =
C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 where C1 = x1, C2 = x2, C3 = x2, C4 = x1 ∨ x3, C5 = x1 ∨ x2 and
C6 = x2 ∨x3. The PMRes algorithm calls a SAT oracle on φ which returns that the formula is
unsatisfiable alongside the core ψ= {C2, C3}. Two new variables r1 and r2 are introduced to
represent the soft clauses in the core and we update the hard and soft clause sets as follows:
H =C N F (C2 ⇔ r1)∪C N F (C2 ⇔ r1)∪ {r1∨r2} and S = S \ψ∪ {r1, r2}. Under a lexicographic
ordering of the variables, the Max-SAT resolution rule is applied first on the clauses r1 ∨ r2

and r1 to generate the resolvent clause r2 and the compensation clause r1∨r2 then on clauses
r2 and r2 to generate the empty clause and thus the cost is incremented by 1. Consequently,
after the transformation we have S = {C1, C4, C5, C6, r1 ∨ r2} and cost = 1. The SAT oracle is
called again on H ∪S and returns the core ψ= {C1, C4, C5, C6}. We update the sets of hard
and soft clauses as follows H = H∪C N F (C1 ⇔ r3)∪·· ·∪C N F (C6 ⇔ r6)∪{r3∨r4∨r5∨r6} and
S = S \ψ∪ {r3, r4,r5,r6}. As in the previous transformation, several Max-SAT resolution steps
are performed to obtain the empty clause, which we represent in Figure 3.6 (in lexicographic
order). The transformation produces the set S = {r1∨r2, r3∨r4, r3∨r4∨r5, r3∨r4∨r5∨r6, r4∨
r5, r4 ∨ r5 ∨ r6, r5 ∨ r6} while the cost is also incremented by 1 to account for the empty clause.
A last call to the sat oracle returns that the formula is satisfiable and thus the algorithm
terminates specifying that the optimum value is 2. Note that the compensation clauses
can also be compressed as specified in [NB14] by introducing additional variables. For
instance, if we introduce a new variable d with the hard encoding C N F (d ⇔ x4 ∨ x5 ∨ x6)
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x3 ∨x4 ∨x5 ∨x6 r3

r4 ∨ r5 ∨ r6 r4

r5 ∨ r6 r5

r6
r6

�

r3 ∨ r4

r3 ∨ r4 ∨ r5

r3 ∨ r4 ∨ r5 ∨ r6

r4 ∨ r5

r4 ∨ r5 ∨ r6

r5 ∨ r6

Figure 3.6: Max-SAT resolution transformation of core in PMRes. Compensation clauses
for each step are represented in boxes.

the compensation clauses generated in the first step in figure 3.6 can be compressed in the
form of a single clause x3 ∨d.

Finally, we briefly recall some specific metaheuristics and techniques used in core-guided
solvers 29. One major technique used in the context of weighted Max-SAT is stratifica-
tion [Ans+13]. This technique aiming to generate cores with higher minimum weights
consists in partitioning the soft clauses into k sets such that the clauses in set i ∈ {2, . . . ,k}
have high weight than those in the set i − 1. The solving process starts by considering
only the set k with the highest weights, ignoring all the other soft clauses, thus potentially
ensuring the detection of better cores in terms of minimal weight. Once the problem
restricted to the higher-weight clauses is solved, the search process is restarted by adding
the next set until all the soft clauses become included in the working formula. The boolean
lexicographic optimization approach in [Mar+11] can also be helpful in this regard.

An important feature of SAT-based algorithms for Max-SAT is that they rely on the power
of assumption-based SAT solving. Modern SAT solvers often provide interfaces for solving
formulas where assumptions are provided in the form of a set of literals. This feature
originates from the work in [ES03b] and is now commonly used in modern SAT solvers.
When the solver is called on a given formula, it is forced to assign the assumption literals
before starting the actual search. If a new literal l is added to a clause C before passing it
to the SAT oracle, then adding l as an assumption can render the clause inactive (since it
will be satisfied by l ) while assuming l can activate the clause for the subsequent search to
be performed by the SAT solver. Assumptions are a powerful tool that can help Max-SAT
solvers take advantage of incremental SAT solving where a single instance of the oracle is
used to solve all of the formulas while maintaining information acquired throughout the
the previous calls. In the context of Max-SAT, such a mechanism was first employed and

29Note that some of the mentioned techniques can also be applied in other SAT-based approaches.
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shown effective in [Mar+14b]. A restart mechanism was proposed in [Si+16] enabling to
discard learned information if deemed useful. More recently, Hickey and Bacchus showed
that two light-weight techniques, namely enqueuing assumptions in bulk and enhancing
trail-savings, can entail non-trivial performance improvement in the context of incremental
SAT-based Max-SAT solving [HB19].

Another mechanism used in modern core-guided solvers is core exhaustion [Ans+13;
IMM19]. The idea behind this heuristic is to quickly increase the bound within an At-
Most constraint on the relaxation variables of a core. More specifically, given a newly
identified and relaxed core ψ alongside its set of relaxation variables R, the formula
H ∧ψ∧C N F (

∑
r∈R r ≤ 1) (where H denotes the set of hard clauses) may still be unsatisfi-

able. Successive incremental calls to the SAT solver focusing on the last core may therefore
enable a cost-effective improvement of the bound on the cardinality constraint. A different
mechanism which is also specific to cores, and which simply aims to reduce their size, is
core reduction. The first reduction technique, called core trimming, was used in [MIM14]
by performing successive SAT calls on each detected core alongside the set of hard clauses
until a fixed point (in terms of core size) is reached. Another reduction mechanism used
in [IMM19] is based on the deletion-based minimal core extraction method introduced
in [Sil10] while limiting the total number of conflicts encountered during the successive
SAT calls.

3.2.2.3 Implicit Hitting Set Approach

The implicit Hitting Set (IHS) approach for Max-SAT described in Algorithm 3.9 was initially
introduced in [DB11; Dav13a]. IHS-based Max-SAT solving also relies on the ability of SAT
solvers to return cores. However, cores are stored in a list K and are exploited differently
then the core-guided approaches presented in the previous section. Indeed, as its name
suggests, this approach is based on the implicit hitting set paradigm [DCB10a; Cha+11].
Formally, given a set of cores K , a hitting set HS of K is a set of soft clauses such that for
all ψ ∈ K we have HS ∩ψ 6= ;. A minimal hitting set HS of K is a hitting set of K with
minimal size, i.e., |HS| ≤ |HS′| for any hitting setting HS′ of K . Clearly, the size of a minimal
hitting set HS of K such that a call to a SAT solver on φ\ HS, where φ is the input formula,
corresponds to the optimum of φ since the clauses in the minimal set HS are sufficient to
cover all the cores in K . Note how this approach does not include any treatment on the
detected cores nor on the input formula which is why it is usually considered as a separate
approach, different from the core-guided algorithms described in the previous section.

Example 3.15. We consider the CNF formula φ = C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 where C1 =
x1, C2 = x2, C3 = x2, C4 = x1 ∨ x3, C5 = x1 ∨ x2 and C6 = x2 ∨ x3. The set of detected cores is
initially empty, i.e., K =;, and thus a minimal hitting set on K is clearly HS =;. The IHS-
based algorithm thus calls a SAT oracle on φ which returns that the formula is unsatisfiable
alongside the core ψ1 = {C2, C3}. The set of detected cores is thus updated as follows: K = {ψ1}.
The algorithm then computes a minimal hitting set on K . For instance HS = {x2} is such a
set as the clause x2 is sufficient to cover the only core in K . Next, the algorithm calls the SAT
solver on the formula φ\ {x2}. The core ψ2 = {C1 ∧C4 ∧C5 ∧C6} is returned and added to the
set K . Now, a minimal hitting set on K is for example HS = {x1, x2} as clauses x1 and x2 are
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Algorithm 3.9: Implicit Hitting Sets for Max-SAT
Input: a CNF formula φ
Output: opt (φ)

1: K ←−;
2: while Tr ue do
3: HS ←− Mi n_Hi t ti ng _Set (K )
4: (sol ved ,ψ) ←− S AT (φ\ HS)
5: if sol ved then
6: return |HS|
7: K ←− K ∪ψ
8: end while

clearly sufficient to cover ψ1 and ψ2 and no better hitting set, with respect to size, exists. A
last call to the SAT oracle is performed on φ\ HS, which returns that formula is satisfiable
and therefore the algorithm returns the optimum value [HS| = 2.

Different methods can be used to compute minimal-size hitting sets including BnB [DB11;
Blä+22] and SAT-based methods [Ign+15]. However, it is more common to reduce this
problem to an Integer Linear Programming (ILP) instance which is solved by a dedicated
solver [DB11; Dav13a; SBJ16]. Extensions to the basic IHS approach described in Algo-
rithm 3.9 include maintaining lower and upper bounds throughout the search as is the
case in binary iterative search [DB13b]. Other mechanisms aiming to enhance the effi-
ciency of the ILP component were introduced in the literature such as additional con-
straints extracted from the formula [DB11; DB13a] or employing bounding techniques
to harden clauses [Bac+17]. Recent work also addresses the large worst-case number
of cores that IHS solvers may have to extract before terminating by introducing the no-
tion of abstract cores, which enables a compact representation for a potentially expo-
nential number of regular cores [BBP20b]. Solvers based on the IHS approach include
MaxHS 30 [DB11; Dav13a], which invokes the CPLEX solver 31 for the ILP optimization
component, and LMHS 32 [SBJ16], which includes interfaces to two ILP solvers, namely
CPLEX and SCIP 33 [Ach09].

3.2.3 Other Complete Approaches
In this section, we briefly overview other complete methods that were not accounted
for in previous sections. One such approach which was investigated in the literature is
reducing Max-SAT to other well-known optimization problems. Note that it is common to
use reformulations and relaxations for specific components in Max-SAT algorithms as is
the case for the IHS SAT-based approach presented in the previous section. Full encodings

30http://www.maxhs.org/
31https://www.ibm.com/products/ilog-cplex-optimization-studio
32https://www.cs.helsinki.fi/group/coreo/lmhs/
33https://www.scipopt.org/
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from Max-SAT to other problems have also been introduced in the literature although with
less success compared to the current methods dedicated for Max-SAT. Known reductions
include modeling Max-SAT as an ILP program which is passed to a dedicated solver such
as CPLEX or SCIP [AG13]. Other paradigms used in the literature include Answer Set
Programming (ASP) [OJ09] and Constraint Programming (CP) [De +03].

Complete methods for Max-SAT also include sequential portfolio algorithms which take
advantage of the diversity in the Max-SAT solving landscape by predicting the suitability of
different solvers for specific instances. To this end, features such as problem size, balance
and local search probes 34 were used to approximate the runtime of a solver on a particular
instance through linear regression in [Mat+08]. A classifier based on a cost-sensitive hier-
archical clustering model, able to handle larger feature sets, was also devised in [Mal+13].
The most recent algorithm in this category is the instance-specific algorithm configurator
introduced in [AMS14; Ans+16] and based on the ISAC clustering method in [Kad+10].
Finally, as in SAT 35, different parallel algorithms were also devised for Max-SAT in the
literature including (parallel) portfolios and space-splitting methods which perform an
exhaustive exploration of the search space [LMM18].

3.2.4 Beyond Complete Methods
In addition to complete approaches for Max-SAT solving, state-of-the-art methods also
include incomplete algorithms. Incomplete algorithms for Max-SAT mainly rely on Stochas-
tic Local Search (SLS) as in SAT 36. In fact, SLS algorithms for SAT, modulo some minor
variations, can be used for Max-SAT. Indeed, the aim of Max-SAT SLS methods is to find a
good cost value that can be achieved by an assignment of the input formula and which is
as close as possible to its optimum value. As such, the value of the objective function in
Definition 2.11 is saved and updated whenever it can be improved during a traditional SLS
search as described Algorithm 2.3. This value is then returned by the algorithm when all the
tries are done. Historically, the first SLS algorithm devised specifically for Max-SAT can be
traced back to the work in [HJ90]. The traditional SLS architechtures, i.e., GSAT and Walk-
SAT, can be applied in the context of Max-SAT as shown in [SKC94]. More complex methods
were adapted or tailor-made for Max-SAT. In [YI98; YI01], the notion of neighborhood is
extended to encompass all the possible assignments when simultaneously flipping two
or three variables. History-based metaheuristics, such as Tabu Search and Configuration
Checking (CC), were also adapted for Max-SAT [SHS03; BD05; Luo+15; CJS15; Luo+17a].
Different dynamic search techniques [HTH02; Cai+16; LC18; CL20; LC20] and adaptive
search mechanisms [LH12; AM21] were similarly tailored for Max-SAT. Note that in the
context of weighted (partial) Max-SAT, the weighted cost in Definition 3.6 can be used,
although it is more common in recent SLS solvers to distinguish between soft and hard
clauses by considering different cost functions and/or using different mechanisms favoring
the satisfaction of hard clause [Cai+14; Luo+15; Luo+17a; Cai+16; LC18; CL20; LC20]. More
recently, Zheng et al. proposed a Multi-Armed Bandit (MAB) framework in [Zhe+22] to help

34These features are detailed in [Nud+04].
35refer to Section 2.2.1.4
36refer to Section 2.2.2.1 on SLS for SAT
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escape local optima by selecting a relevant arm within the set of soft clauses. Competitive
SLS solvers for Max-SAT include CCLS [Luo+15], Dist [Cai+14; Cai+16] and SATLike [LC18;
CL20] among others.

Approximation algorithms for Max-SAT have also been extensively studied in the liter-
ature. Such algorithm must be efficient while providing approximate solutions to opti-
mization problems with certain guarantees. Formally, an approximation algorithm for a
maximization problem is a polynomial-time algorithm A such that for any instance x there
exists an approximation factor ρ < 1 providing a guarantee on the returned solution s = A(x)
as in ρ.s∗ ≤ s where s∗ denote the optimal solution on input x. In the context of Max-SAT,
we expect such algorithms to provide a solution cost such that for any input formula φ we
have cost ≤ δ.opt(φ) where δ= 1

ρ
. The first approximation algorithms for Max-SAT were

based on simple greedy methods and achieved a guarantee factor δ= 1
2 [Joh73; Joh74]. More

refined algorithms relying on network flow techniques [Yan92; Yan94] and ILP relaxation
of Max-SAT [GW94b] enabled to provide better guarantees with a factor of 3

4 . In [Hås97;
Hås01], Håstad showed that it is not possible to achieve a factor better than 7

8 unless P=NP.
This bound was achieved by Karloff and Zwik in [KZ97] through a semidefinite program-
ming reformulation of Max-3-SAT. More recent works in this context focus on proving
approximation results for specific variants of Max-SAT or on devising simpler algorithms for
approximating Max-SAT and its variants [AW02; ABZ05; MNH08; Zuy11; PWZ14]. Finally, an
empirical evaluation of fast approximation algorithms for Max-SAT is conducted in [PW16;
PW17] showing that such algorithms can deliver very good solutions at low computational
cost and that a hybrid scheme combining the strengths of such algorithms with SLS could
provide better cost-effective solutions. Note however that classical approximation algo-
rithms are not used in a competitive context. A recent incomplete paradigm that was
used in competitive incomplete solvers, such as Open-WBO-Inc [Jos+18; Jos+19] and LinS-
BPS [DS19], relies on solution approximation through iterative search without any formal
guarantees.

3.3 Proofs and Certificates for Max-SAT
In this section, we are interested in certificates and proof systems for the Max-SAT problem.
We start by defining some necessary notions and overviewing proof systems for Max-SAT.
Then, we focus on Max-SAT Resolution [Rob65] as a proof system for Max-SAT, which is one
of the first and most studied systems in the literature. We particularly recall some known
results on poof adaptations and completeness of Max-SAT resolution which will motivate
our contributions in Chapter 6.

3.3.1 Proof Systems for Max-SAT
Similarly to SAT, a certificate of optimality for maximum satisfiability is a proof that the
cost value returned by a Max-SAT solver is indeed the optimum of the formula and this
notion is mainly studied through the lens of proof systems. However, unlike SAT, such
certificates have been marginally studied and generated in practice. Therefore, we focus
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hereafter on reviewing proof systems for Max-SAT whose study has seen a surge of interest
these last years. Formally, a proof system for Max-SAT is a set of inference rules defined by
their antecedents and conclusions, both usually expressed in the form of a set of clauses.
A major difference compared to SAT inference rules is that the conclusions replace the
antecedent clauses if they are within the formula. This is necessary to ensure the soundness
of the rules which is ensured by Max-SAT equivalence introduced in Definition 3.8. We
maintain the same notations introduced in Section 2.3.1. The definitions of soundness
and completeness where, Max-SAT equivalence is considered instead of SAT equivalence,
also remain valid for Max-SAT. We provide below a definition of refutational completeness
which is valid for Max-SAT.

Definition 3.23 (Refutational Completeness). A proof system S for Max-SAT is refutationally
complete if, for any formula φ, φ`S �∧·· ·∧�︸ ︷︷ ︸

opt (φ)

∧φ′ where φ′ is a satisfiable CNF formula.

Many proof systems for Max-SAT have been introduced and studied in the literature. One
of the first and most studied systems is Max-SAT resolution [Rob65], which we will overview
in the following sections. Other known systems include tableau calculus [LMS16], dual-
rail [IMM17; Bon+18], circular proofs [AL19; BL20] and subcube sums [Fil+20]. Similarly to
SAT, the relative strengths of proof systems for Max-SAT is compared through the notion
of simulation in Definition 2.27 and was investigated in recent works specifically with
respect to Max-SAT resolution and its extensions [LR20a; LR20b; BL20]. In our work in
Section 6.5.2, we also consider a the more generic notion of simulation, defined below,
which we refer to as inferential simulation. It differs from the traditional definition of
simulation in Definition 2.27 37, in the sense that it does not restrict the proofs to refutations.
Clearly, if P1 i-p-simulates P2 then P1 also r-p-simulate P2 but the opposite is not necessarily
true.

Definition 3.24 (Inferential Polynomial Simulation). Let S and S′ be two proof systems. S in-
ferentially polynomially simulates (i-p-simulates) S′ if there exists a polynomial computable
function f such that for any proof π in S′ deducing C from φ, f (π) is a proof deducing C
from φ in S. S and S′ are i-p-equivalent if S i-p-simulates S′ and S′ i-p-simulates S.

3.3.2 Max-SAT Resolution Calculus
One of the first and most studied proof systems for Max-SAT is the Max-SAT resolution cal-
culus (MaxRes) which relies on an inference rule extending resolution for Max-SAT [LH05a;
BLM06; BLM07; LHG08] 38. Other than the resolvent clause, this rule, called Max-SAT
resolution, introduces new clauses referred to as compensation clauses and essential to
preserve Max-SAT equivalence. We provide below a more compact definition of this rule
relying on the following rewriting:

C ∨a1 ∨a2 ∨ ...∨an = (C ∨a1)∧ (C ∨a1 ∨a2)∧ ...∧ (C ∨a1 ∨a2 ∨ ...∨∨an)

37which we refer to as refutational polynomial simulation (r-p-simulation) in Section 6.5.2 to avoid confusion
38refer to Definition 3.11
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This rewriting was introduced in [LHG08] as a recursive rule to transform the compensation
clauses into CNF form. This also entails that the Max-SAT resolution rule depends on
the ordering of the literals, as reported in [BLM07; LHG08]. Max-SAT resolution plays
an important role in the context of Max-SAT theory and solving as it is extensively used
and studied in the context of BnB algorithms for Max-SAT [LMP07; Küe12; AH14b; AH15a;
AH15b; Abr15; CH19] and more marginally in the context of core-guided approaches [HM11;
NB14] 39.

Definition 3.25 (Max-SAT Resolution [LH05a; BLM06; BLM07; LHG08]). Given two opposed
clauses C1 and C2, the Max-SAT resolution rule is defined as follows:

C1 = x ∨ A C2 = x ∨B
Cr = A∨B

CC1 = x ∨ A∨B
CC2 = x ∨ A∨B

where Cr is the resolvent clause and CC1,CC2 are compensation clauses.

A Max-SAT resolution proof or derivation of a formula φ′ (resp. clause C ) from φ is a
finite sequence of Max-SAT resolutions starting from the clauses of φ and deducing φ′ (resp.
such that C ∈φ′) and is usually represented as a finite sequence of formulas. A Max-SAT
resolution proof can be represented as a bipartite DAG whose nodes are either clauses or
inference steps (in which case they will be omitted for more simplicity). We maintain the
size and width measure introduced in Section 2.3.1. As a proof system, Max-SAT resolution
is sound and refutationally complete for Max-SAT [BLM06; BLM07]. In particular, for a
given CNF formula φ, it is possible to generate a Max-SAT resolution proof of its optimum
by applying the saturation algorithm [BLM07] which consists in successively saturating
each variable x by applying Max-SAT resolution on x until all pairs of clauses containing
x are opposed on another variable. Using saturation it is possible to provide a Max-SAT
resolution proofs of the optimum of a given formula φ containing O(|φ| ×n × 2|var (φ|))
inference steps as established in the following theorem.

Theorem 3.2 ([BLM06; BLM07]). Let φ be a CNF formula. We can deduce φ `M axRes

�∧·· ·∧�︸ ︷︷ ︸
opt (φ)

∧φ′ where φ′ is satisfiable in O(|φ|× |var (φ)|×2|var (φ)|) inference steps.

Example 3.16. We consider the formula φ = (x1) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3). The
saturation algorithm applied in lexicographic order (x1 < x2 < x3) on φ enables to deduce
φ `M axRes �∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). The corresponding proof is represented in
Figure 3.7.

39refer to Section 3.2 for more details.
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x1 ∨x3 x1 x1 ∨x2 x2 ∨x3

x3
x1 ∨x3

x2 ∨x3
x1 ∨x2 ∨x3
x1 ∨x2 ∨x3 x3

�

Figure 3.7: A Max-SAT resolution proof

Note that Max-SAT resolution is not (inferentially) complete as shown in Proposition 3.3.
In recent work, Max-SAT resolution was augmented with the split rule, defined below,
forming the system ResS [LR20b; BL20; Fil+20]. It was shown that the addition of this
rule to Max-SAT resolution is sufficient to generate a complete stronger proof system for
Max-SAT. Note that ResS is stronger than MaxRes in the sense that the former p-simulates
the latter while the opposite simulation is not possible. This result is established in [LR20b]
by relying on a variation of the Pigeon Hole Problem (PHP) problem 40.

Proposition 3.3 ([LR20b]). Max-SAT resolution is not complete.

Proof. Consider the formula φ= (x1)∧ (x2). Clearly, we have φ≡ (x1 ∨x2)∧ (x1 ∨x2)∧ (x2).
However, φ0M axRes (x1 ∨x2).

�

Definition 3.26 (Split). Given a clause C and a variable x, the split rule is defined as follows:

C
C ∨x C ∨x

Theorem 3.3 ([LR20b]). ResS is complete.

Unlike resolution, the Max-SAT resolution rule replaces the premises by the conclusions.
Larrosa et al. describe Max-SAT resolution as "a movement of knowledge" [LHG08]. Because
of this specificity, it is not easy to adapt a resolution proof to obtain a Max-SAT resolution
proof. Indeed, in resolution proofs, several resolution steps can share the same premise,
because the premises are not consumed after the application of a resolution step. On the
other hand, the premises of a Max-SAT resolution step are consumed after its application.
Consequently, the immediate adaptation of a resolution proof for Max-SAT is only possible
if it is read-once [BLM06; BLM07]. Yet, this simple observation was exploited to devise the
SAT based algorithm described in [HM11]. Our contributions in Section 6 will aim to tackle
the open question of whether this result could be extended to other resolution classes,
potentially by augmenting Max-SAT resolution with other rules. In this context, a max-
refutation will refer to a sound Max-SAT proof, using Max-SAT resolutions and potentially

40In PHP, the goal is to assign m +1 pigeons to m holes without any pair of pigeons sharing their hole.
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splits, deducing the empty clause. It is important to distinguish between max-refutations
and Max-SAT resolution refutations as the former may rely on additional rules (mainly the
split rule) while the latter relies exclusively on Max-SAT resolution.

Proposition 3.4 ([BLM06; BLM07]). Max-SAT resolution p-simulates read-once resolution.

Proof. Clearly, every read-once resolution proof can be trivially adapted to Max-SAT proofs
by replacing each resolution step with a Max-SAT resolution step.

�

3.3.3 Weighted Max-SAT Resolution Calculus
A weighted version of Max-SAT resolution was introduced in [LH05a; BLM07; LHG08] and
shown sound and complete for Max-SAT. We provide a formal definition of this rule below
in compacted form [LHG08]. Note that this rule is often naturally augmented with the fold
and unfold rules in Definition 3.13, in which case the premise clauses can be considered of
equal weight w.l.o.g. In [LR20a], it was shown that augmenting MaxRes with the extension
rule defined below produces a system stronger than MaxRes and at least as strong as dual
rail. Note the particularity of the extension rule in allowing negative weights. A similar rule,
called virtual, was introduced in [LR20b]. The system composed of Max-SAT resolution,
split and virtual, called ResSV, was shown stronger than ResS (i.e., MaxRes augmented with
split) and was also proven at least as strong as dual rail.

Definition 3.27 (Weighted Max-SAT Resolution [LH05a; BLM07; LHG08]). The weighted
Max-SAT resolution rule is defined as follows:

(x ∨ A, w1) (x ∨B , w2)
(A∨B ,mi n(w1, w2))

(x ∨ A, w1 −mi n(w1, w2))
(x ∨B , w2 −mi n(w1, w2))
(x ∨ A∨B ,mi n(w1, w2))
(x ∨ A∨B ,mi n(w1, w2))

Definition 3.28 (Extension [LR20a]). Given a clause C , a finite weight w > 0 and a variable
x, the extension rule is defined as follows:

(C ,−w)
(x ∨C , w)
(x ∨C , w)

Definition 3.29 (Virtual [LR20b]). Given a clause C , a finite weight w > 0, the virtual rule is
defined as follows:

(C , w) (C ,−w)
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3.4 Conclusion
In this chapter, we introduced the Maximum Satisfiability (Max-SAT) problem and its vari-
ants. We reviewed the major methods for Max-SAT solving. In particular, we provided a
detailed review on Branch and Bound (BnB) methods for Max-SAT which perform exhaus-
tive search and rely on extensive inference, specifically during lower bound computation.
We also included a comprehensive review on SAT-based approaches, which take advan-
tage of the power of SAT oracles as decision engines, as well as other methods including
incomplete ones. Then, we focused on proof theory for Max-SAT and particularly on the
Max-SAT resolution rule as a sound and refutationally complete rule for Max-SAT extending
the well-known SAT resolution rule. We further recalled the unique features of Max-SAT
resolution as an inference rule performing a transfer of knowledge and we presented its
weighted form. Our contributions in Chapter 5 specifically revolve around Max-SAT and
aim to provide further understanding and insights on the extensive use of inference during
lower bound estimation in BnB algorithms for Max-SAT. Our work in 6 also pertains to this
problem although it also touches upon SAT as we mainly aim to bridge the gap between
inference mechanisms dedicated to SAT and Max-SAT.
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4.1 Introduction & Motivation
The advent of the CDCL framework and of the powerful techniques designed for SAT these
last decades led to a huge breakthrough in terms of SAT solving. Indeed, modern solvers
are now able to effortlessly solve instances with millions of variables while it was difficult to
solve ones involving only hundreds of variables in the early 90s. However, as solvers became
very competitive, it naturally ensues that improving their efficiency is becoming more and
more difficult. In fact, quoting Audemard and Simon, we point out that "improving SAT
solvers is often a cruel world. To give an idea, improving a solver by solving at least ten more
instances (on a fixed set of benchmarks of a competition) is generally showing a critical new
feature. In general, the winner of a competition is decided based on a couple of additional
solved benchmarks” [AS12].

Our contributions in this chapter fall within this scope of improving the efficiency of
modern SAT solvers. We particularly focus on an important component in CDCL solvers
which is the branching heuristic used to pick the next variable to branch on in the search
tree. We recall, as showcased in Section 2.2.1.3.2, that the Variable State Independent
Decaying Sum (VSIDS) [Mos+01] has been the dominant heuristic since its introduction
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two decades ago. Liang and al. also recently devised the new Conflict History-Based (CHB)
branching heuristic [Lia+16a], and showed that it is competitive with VSIDS. In the last
years, VSIDS and CHB have dominated the heuristics landscape as practically all the CDCL
solvers presented in recent SAT competitions incorporate a variant of one of them.

Recent research has also shown the relevance of reinforcement learning in designing
efficient search heuristics for combinatorial problems including CSP [Sch18; XY18; Wat+20;
PW20; HT21; Kor+22] and, more marginally, SAT [Lia+16a; Lia+16b]. One of the main
challenges is defining a heuristic which can have high performance on any considered
instance. Indeed, it is well-known that a heuristic can perform outstandingly on a family
of instances while failing drastically on another. To this end, we propose to augment
the branching component in CDCL solvers with a Multi-Armed Bandit (MAB) framework
which takes advantage of the restart mechanism to pick an adequate heuristic between
VSIDS and CHB. Note that simple combinations of VSIDS and CHB have shown promising
results in the MapleCOMSPS solver which has won several medals in the 2016 and 2017
SAT competitions. MapleCOMSPS switched from VSIDS to CHB after a set amount of time
in its earlier version [Lia+16c] while it alternated between both heuristics by allocating
the same duration of restarts to each one in [Lia+17]. Yet, we still lack a thorough analysis
and comparison of such strategies in the state-of-the-art as well as a comparison with new
promising methods based on reinforcement learning. Our MAB framework is devised to
incorporate more adaptive strategies which enable to conduct inference based on the mean
reward of each heuristic to select the most relevant one. In particular, the reward function
is used to estimate the efficiency of each heuristic by relying on information acquired
during the runs between restarts. We rely on the Upper Confidence Bound (UCB) strategies
introduced in Section 2.4.2 to choose an arm at each restart. Such strategies are compared
to simple random and static strategies and are shown to achieve considerable gain in terms
of SAT solving.

This chapter is organized as follows. First, we start by presenting our MAB framework
which relies on the restart mechanism to adaptively choose a relevant heuristic. Then, we
describe different strategies that can be used to combine VSIDS and CHB through the restart
mechanism in CDCL solvers including static and random strategies as well as the MAB
strategies based on our framework. A thorough experimental evaluation and comparison of
the different strategies is conducted in the following sections showing that the considered
strategies, specifically UCB strategies used in the context of our MAB framework, can bring
further gains to practical SAT solving. Finally, we mention that our contributions in this
chapter have been published in [CHT21a; CHT21d].

4.2 Multi-Armed Bandit Framework for SAT
In order to use MAB strategies, we first introduce a MAB framework for adaptive branching
in SAT through restarts. Let A = {h1, . . . ,hK } be the set of arms for the MAB containing
different candidate heuristics. The trials are the runs, i.e., executions, of the CDCL algorithm
between restarts. The proposed framework selects a heuristic hi where i ∈ {1 . . .K } at each
restart of the backtracking algorithm. To choose an arm, MAB relies on a reward function
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calculated during each run to estimate the performance of the chosen heuristic. The reward
function plays an important role in the proposed framework and has a direct impact on its
efficiency. We choose a reward function that estimates the ability of a heuristic to reach
conflicts quickly and efficiently. If t denotes the current run, the reward of arm h ∈ A is
calculated as follows:

rt (h) = l og2(deci si onst )

deci dedV ar st

deci si onst and deci dedV ar st respectively denote the number of decisions and the num-
ber of variables fixed by branching in the run t . Consequently, the earlier conflicts are
encountered in the search tree and the fewer variables are instantiated, the greater the
assigned reward value will be for the corresponding heuristic. This reward function is
closely related to the explored sub-tree measure introduced in [PW20].

4.3 Strategies to Combine VSIDS and CHB Using
Restarts

In this section, we describe different strategies which take advantage of the restart mecha-
nism in SAT solvers to combine VSIDS and CHB. First, we describe simple strategies which
are either random or static then we specify the reinforcement learning strategies that we
will use in the context of the MAB framework.

Random Strategy (RDR) This strategy randomly picks a heuristic among VSIDS and
CHB at each restart with equal probabilities, i.e., each heuristic is assigned a probability of
1
2 . This strategy is denoted RDR in contrast with RDD which randomly picks a heuristic at
each decision.

Single Switch Strategy (SS) This strategy switches from VSIDS to CHB after a set
amount of time and was used in the 2016 version of MapleCOMSPS [Lia+16c]. We main-
tain the threshold time in which the heuristic is switched to t

2 where t is the timeout as
in [Lia+16c].

Round-Robin Strategy (RR) This strategy alternates between VSIDS and CHB in the
form of a round-robin. This is similar to the strategy used in the latest version of Maple-
COMSPS [Lia+17]. However, since we want to consider strategies which are independent
from the restart policy and which only focus on choosing the heuristics, we do not assign
equal amounts of restart duration (in terms of number of conflicts) to each heuristic and,
instead, let the duration of restarts augment naturally with respect to the restart policy of
the solver.

Upper Confidence Bound Strategies (UC B1 & MOSS) in the context of our MAB
framework, we consider the deterministic UCB family of strategies, namely the UCB1
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and MOSS strategies presented in 2.4.2. Although these strategies have not been experi-
mented upon in the context of SAT, they have shown promising results in the context of
combinatorial problem solving and particularly the CSP problem [XY18; Wat+20; PW20;
Kor+22].

4.4 Experimental Protocol
Before presenting the results of our experimental evaluation, we detail in this section our
experimental protocol. We consider the benchmarks from the Main Track of the last three
SAT Competitions/Races, totalling to 1,200 instances. For our experiments, we use the
state-of-the-art solver Kissat [Bie+20] which won first place in the main track of the SAT
Competition 2020. Note that this solver is a condensed and improved reimplementation
of the reference and competitive solver CaDiCaL [Bie17; Bie+20] in C. Data provided by
Bierre and Marjin 1 show that Kissat is highly competitive and outperforms all-time winners
of SAT competitions/Races particularly on the 2020 and 2019 Benchmarks. Kissat alter-
nates between stable and non-stable phases as is the case in Cadical [Bie17], renamed to
stable mode and focused mode in [Bie+20]. VSIDS is used in stable phases which mainly
target satisfiable instances. During non-stable phases targeting unsatisfiable instances,
the solver uses the Variable Move-To-Front (VMTF) heuristic [Rya04; BF15] 2, in which
analyzed variables are moved to the front of the decision queue. It is important to note that
the only modified components of the solver are the decision component and the restart
component, i.e., all the other components as well as the default parameters of the solver are
left untouched. Even the changes to the restart component are as minimal as possible, i.e.,
we maintain the phase alternation mechanism and the restart policies set for each mode as
described in [Bie+20]. Furthermore, we maintain the VSIDS variant already implemented
in Kissat, i.e., EVSIDS [Bie08a; BF15]. Therefore, in the experimental evaluation, VSIDS
corresponds to default Kissat. Moreover, we augment the solver with the heuristic CHB
as specified in [Lia+16a] except that we update the scores of the variables in the last deci-
sion level after BCP. In addition, we have implemented the MAB framework specified in
Section 4.2 with A = {V SI DS,C HB}. The rewards for UCB1 and MOSS are both initialized
by launching each heuristic once during the first restarts. Finally, The experiments are
performed on Dell PowerEdge M620 servers with Intel Xeon Silver E5-2609 processors
under Ubuntu 18.04 with a timeout of 5,000 s for each instance.

4.5 Decisions vs Restarts
First, we would like to emphasize that taking advantage of the restart mechanism to com-
bine VSIDS and CHB was not an arbitrary choice. Indeed, we conducted an experiment to
help us choose the appropriate level, i.e., decisions or restarts, to combine VSIDS and CHB.
To this end, we implemented and tested the two random strategies RDD and RDR which

1Data available on http://fmv.jku.at/kissat/
2refer to Section 2.2.1.3.2
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VSIDS CHB RDD RDR SS RR UCB1 MOSS VBS

Competition 2018
(400 instances)

SAT 160 159 160 164 163 165 167 168 169
UNSAT 111 109 109 110 113 110 110 110 113
TOTAL 271 268 268 274 276 275 277 278 282

Race 2019
(400 instances)

SAT 158 149 155 158 154 162 161 162 162
UNSAT 97 95 95 96 96 96 96 97 99
TOTAL 255 244 250 254 250 258 257 259 261

Competition 2020
(400 instances)

SAT 131 146 146 151 147 152 154 156 157
UNSAT 121 119 117 120 118 120 120 122 123
TOTAL 252 265 263 271 265 272 274 278 280

TOTAL
(1,200 instances)

SAT 449 454 461 473 464 479 482 486 488
UNSAT 329 323 321 326 327 326 326 329 335
TOTAL 778 777 782 799 791 805 808 815 823

Table 4.1: Comparison between VSIDS, CHB, the different strategies and the VBS (over
VSIDS and CHB) in terms of the number of solved instances in Kissat. For each row, the
best results without considering the VBS are written in bold.

randomly choose a heuristic among VSIDS and CHB respectively in each decision and in
each restart. The average results (over 10 runs with different seeds) of RDD and RDR on
the whole benchmark are reported in Table 4.1 and indicate that RDR outperforms RDD

with a gain of more than 2% in terms of solved instances and 3.5% in terms of solving time
with a penalty of 10,000 s for unsolved instances. This is not surprising as the structures
needed for VSIDS and CHB need to be maintained and updated simultaneously which
can be quite costly. On the other hand, they are used independently in RDR during each
restart, i.e., only the chosen heuristic is used and its structures updated during the restart.
Furthermore, combining both heuristics at the decision level can cause interference and
may not allow each heuristic to conduct robust learning since they are being constantly in-
terchanged. Surprisingly, both versions are competitive with CHB and VSIDS. In particular,
RDR outperforms them and solves, on average, 21 additional instances (+ 2.7%) compared
to the best heuristic. This is due to randomization and diversification which help to avoid
heavy tail phenomena in SAT and which can therefore improve the performance of SAT
solvers [HG95; Gom+00].

4.6 Comparison of Strategies
In this section, we evaluate and compare the different strategies aiming to combine VSIDS
and CHB through restarts in terms of solved instances and solving time. We also analyze the
results achieved by these strategies with respect to instance families within the benchmark.

123



4 Bandits for Adaptive Branching in SAT – 4.6 Comparison of Strategies

4.6.1 Number of Solved Instances
In Table 4.1, we present the results in terms of solved instances for CHB and VSIDS as
standalone heuristics and for the different strategies presented in Section 4.3. We also
include the results of the Virtual Best Solver (VBS) over VSIDS and CHB 3. The results
clearly indicate that MOSS outperforms VSIDS and CHB as well as all the other strategies.
Indeed, MOSS manages to solve 37 additional instances in total (+4.8%) compared to the
best heuristic (among VSIDS and CHB). The UCB1 (resp. RR) strategy is also competitive
and manages to solve 30 (resp. 27) additional instances in total which corresponds to an
increase of 3.9% (resp. 3.5%) in terms of solved instances compared to the best heuristic.
The strategies UCB1 and RR remain comparable with a difference of 3 instances in favor
of UCB1. SS also outperforms VSIDS and CHB although to a lesser degree as it solves 13
additional instances only which is worse than RDR . If we focus on the individual yearly
benchmarks, we observe that although the overall results obtained by VSIDS and CHB
are comparable, they have different behaviours on each benchmark and yet MOSS, UCB1
and RR manage to capture the behaviour of the best heuristic and even outperform it on
each individual benchmark. In particular, MOSS maintains its top rank on the individual
benchmarks with an average of 8 (resp. 17) additional instances for each one compared to
the best (resp. worst) heuristic. Moreover, the results achieved by MOSS are very close to
the VBS. Indeed it achieves 99% (resp. 99.6%) of the performance of the VBS on the whole
benchmark in terms of the number of solved instances (resp. satisfiable instances) while
the best heuristic does not exceed 95% (resp. 93%).

However, it is important to note that the gain is mainly in satisfiable instances whereas,
for unsatisfiable instances, all the strategies (except RDD ) remain comparable to both
heuristics and slightly outperform CHB but not VSIDS. Nevertheless, they remain compet-
itive with VSIDS and particularly MOSS which solves the same number of unsatisfiable
instances as VSIDS. This shows that MOSS is a robust strategy as it is able to improve
the performance globally and on each individual benchmark without decreasing it for
unsatisfiable instances. Note that the observed behaviour of these different strategies
on unsatisfiable instances may be due to different factors. First, the results in terms of
unsatisfiable instances seem very homogeneous for each year and are very close to the
results obtained by the VBS as both heuristics (resp. the best heuristic) achieve more than
96% (resp. 98%) of its performance in terms of the number of unsatisfiable instances. Since
our motivation is to bridge the gap between the heuristics and the VBS with these strategies,
it is expected that this would be very difficult for unsatisfiable instances, for which the gap
is very small already. It is also very difficult to simultaneously improve the performance on
both satisfiable and unsatisfiable instances. For instance, SS which seems to work better
for unsatisfiable instances especially in terms of solving time (as will be showcased in the
next section) fails on satisfiable instances compared to the three top strategies. Another
possible factor for this behaviour is Kissat’s restarting policy which alternates between the
stable mode and focused mode [Bie+20]. The heuristics VSIDS and CHB are only used in

3If an instance is solved by one heuristic, we report its results in the VBS. If both heuristics manage to solve
an instance, we report the best result in the VBS. The VBS over VSIDS and CHB thus gives an estimate on
the best performance that can be expected from a solver employing both heuristics.
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the stable mode while the focused mode targets unsatisfiable instances. This may also help
to explain the homogeneity of the results obtained by the solver for unsatisfiable instances
with respect to the different heuristics and strategies.

4.6.2 Solving Time
In this section, we want to evaluate the different strategies in terms of solving time. In
Figure 4.1, we represent the number of solved instances as a function of the execution time
for VSIDS, CHB, the static and MAB strategies and the VBS on the whole benchmark. One
would think that MAB based strategies in this regard would be worse than the considered
heuristics and/or other strategies as UCB1 and MOSS need to conduct continuous explo-
ration in order to ensure the selection of the most adequate arm. This does not seem to be
the case. In fact, conducting exploitation with the best arm and alternating the heuristics
seems to offset this disadvantage. We observe that MOSS is the best strategy as it achieves
6.1% gain in terms of solving time on the whole benchmark compared to the best heuristic
if we give a penalty 10,000 s to unsolved instances while UCB1, RR and SS respectively
achieve a gain of 5.7%, 5.2% and 1.7%. This gain is substantial especially considering that
we are working on the solver Kissat which won the SAT competition 2020 with a remarkable
performance.

We represent in Figure 4.2 the number of solved satisfiable and unsatisfiable instances
separately as a function of the execution time for VSIDS, CHB, the static and MAB strategies
and the VBS on the whole benchmark. Notice how the gap between MOSS and the VBS
(and even UCB1 and RR) narrows if we consider the satisfiable instances only. On the other
hand, these top three strategies present a small gap in terms of solving time for unsatisfiable
instances compared to the best heuristic, i.e., VSIDS, while remaining comparable to CHB.
In particular, MOSS shows better results with respect to VSIDS and SS for instances whose
solving time exceeds 3,000 s. Surprisingly, although SS seems to be the worst strategy
overall and remains globally comparable to VSIDS and CHB while achieving a slight gain
in solving time especially on instances whose solving time exceeds 4,000 s, it achieves the
best results in terms of solving time for unsatisfiable instances and is comparable to VSIDS
and the VBS in this regard. On the other hand, RR and UCB1 achieve substantial gain while
remaining comparable to each other and with results slightly in favor of UCB1. To provide
more detailed results, we represent in Figures 4.3, 4.4 and 4.5 the runtime comparison
per instance with VSIDS, CHB and the VBS respectively for the top three best strategies,
i.e., MOSS, UCB1 and RR. These figures confirm the trends that we observed above. More
interesting, we can note that, for a noticeable number of instances, MOSS, UCB1 or RR lead
to a more efficient solving than the VBS. In Figure 4.6, we represent the runtime comparison
per instance betwenn MOSS, UCB1 and RR. These figures show that MOSS performs better
than UCB1 and RR. Surprisingly, MOSS’s results are closer to RR than UCB1. However, we
will show in Section 4.7.1 that this is consistent with the observed behavior of MOSS.
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Figure 4.1: Number of solved instances as a function of execution time for VSIDS, CHB,
static and MAB strategies and the VBS w.r.t the whole benchmark.
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Figure 4.2: Number of solved satisfiable (a) and unsatisfiable (b) instances as a function
of execution time for VSIDS, CHB, static and MAB strategies and the VBS w.r.t the whole
benchmark.
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Figure 4.3: Runtime comparison (in seconds) of MOSS w.r.t. VSIDS (a), CHB (b) and VBS (c)
in logarithmic scale.
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Figure 4.4: Runtime comparison (in seconds) of UCB1 w.r.t. VSIDS (a), CHB (b) and VBS (c)
in logarithmic scale.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000

V
S

ID
S

RR

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000

C
H

B

RR f
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000

V
B

S

RR

(a) (b) (c)

Figure 4.5: Runtime comparison (in seconds) of RR w.r.t. VSIDS (a), CHB (b) and VBS (c) in
logarithmic scale.
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4.6.3 Instance Families
In order to provide a more thorough analysis, we describe in Tables 4.2 and 4.3 the results
obtained by VSIDS, CHB, static and MAB strategies and the VBS on instance families within
the benchmark [HJS+18; HJS19; Bal+20]. The best strategy, i.e., MOSS, manages to rank first
in 9 different families over 39 in total (23%), e.g., it places fist for Antibandwidth, Bitcoin
and Stedman Triples. Interestingly, this strategy achieves remarkable results, which are
better than those of the VBS over VSIDS and CHB, for certain families such as Logical
cryptanalysis, RPHP and Station Repacking. SS also achieves the top performance on
several different families such as Factoring, Scrambled and SHA-1 Pre-image Attack.
More precisely, SS also manages to rank on top for 9 different families which shows the
interest of this strategy even though it ranks last overall compared to RR, UCB1 and MOSS.
As for UCB1, it achieves top rank in 6 different families. In particular, its performance on
the families Hgen, CNP and Keystream Generator Cryptanalysis is noteworthy since it
manages to outperform the VBS. On the other hand, RR ranks top in only 4 instance families
but this does not necessarily reflect its overall performance since it falls slightly behind the
top ranked heuristic/strategy in other families, yet this is clearly another point in favor of
UCB1 as a comparable strategy. Finally, VSIDS and CHB are ranked first in several families
which shows that these heuristics remain robust as standalone heuristics.

4.7 Further Analysis of MAB Strategies
In this section, we cconduct a more through analysis on the behavior of UCB strategies used
in the context of the MAB framework. We also include a discussion on the MAB framework
and specifically the relevance of some choices that we made within this context.

4.7.1 MAB Behaviour
In this section, we focus on the behaviour of MAB strategies and particularly the use
of arms. In Figures 4.7 and 4.8, we represent the percentage of use, i.e., percentage of
restarts where each arm gets chosen respectively by UCB1 and MOSS. We observe that
both strategies alternate between the heuristics but the percentages are mainly within the
interval [40%,60%] and are often close to 50%. MOSS seems to choose in a more balanced
way between VSIDS and CHB in comparison to UCB1 which introduces more variations
in its choices. This behaviour is consistent with the observations made in Section 4.6.1
concerning Figure 4.6. The fact that the percentages are mostly within a tight interval
is not surprising considering that the number of stable restarts in Kissat, during which
heuristics are used, is usually very low. To give an idea, the average number of stable restarts
performed by Kissat for instances solved with MOSS (resp. UCB1) is 765 (resp. 771) while
the median value is much lower and amounts to 313 (resp. 338). Therefore, the obtained
percentages seem adequate especially taking into account that these strategies need to
achieve a good trade-off between exploration and exploitation. Notice the consecutive
dents and bumps in Figures 4.7 and 4.8 which correspond to an homogeneous behaviour
within the same instance family in the benchmark. It is important to note that, although the
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Figure 4.7: Percentages of use of each arm in UCB1 w.r.t the whole benchmark. The
instances are reported consecutively for each yearly benchmark (from 2018 to 2020) and
are alphabetically ordered. For unsolved instances, the percentages of use at the timeout
are provided.
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Figure 4.8: Percentages of use of each arm in MOSS w.r.t the whole benchmark. The
instances are reported consecutively for each yearly benchmark (from 2018 to 2020) and
are alphabetically ordered. For unsolved instances, the percentages of use at the timeout
are provided.

behaviour of MAB strategies may seem close to RR, this is not exactly the case. Indeed, these
strategies rely on the computed reward to choose the most relevant arm during exploitation
and especially when there is a large gap between the performance of the heuristics, whereas
RR is a static strategy and cannot adapt its choices. This helps to explain the better results
of the MAB strategies not only in terms of solved instances but also in terms of solving time
and particularly in the case of MOSS. In fact, the remarkable performance of MOSS is also
due to the fact that it takes into account the number of arms and has better regret than
UCB1 although the latter also remains competitive in practice as shown in our results.

4.7.2 On MAB strategies and Branching Heuristics
In this section, we discuss the relevance of choosing Upper Confidence Bound strategies
in the Multi-Armed Bandit framework and VSIDS and CHB as candidate heuristics. As
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mentioned in Section 2.4.2, many strategies were divised and theoretically studied in the
context of MAB and can therefore be used in our framework. For instance, we can mention
the two well-known strategies ε-greedy [SB98] and EXP3 [Aue+02] which were presented
in Section 2.4.2. However, these strategies are not deterministic, i.e., there is a factor of
uncertainty or probability. Therefore, unlike UCB strategies, they cannot always guarantee
top performance and may produce different results on the same benchmark. Furthermore,
UCB strategies were shown relevant and more efficient for similar MAB frameworks in the
context of CSP [XY18; Wat+20; PW20; Kor+22]. This remains true in Kissat as we similarly
observed through experimentation that ε-greedy and EXP3 perform poorly compared to
UCB strategies and remain comparable to VSIDS and CHB.

In addition, notice that the MAB framework enables the use of several heuristics. In
fact, one would argue that adding more heuristics may enable to reach more families and
instances through diversification. However, recall that modern SAT solvers, and in particular
Kissat, are highly competitive and rely on powerful heuristics to achieve impressive results.
A bad heuristic or tuning of the parameters (e.g., the restart policy settings) can greatly
deteriorate the performance of a solver. Furthermore, practically all heuristics used in
modern SAT solvers are variants of VSIDS, which has been the dominant heuristic since
its introduction in 2001 [Mos+01]. Only recently CHB has been introduced and shown
competitive with VSIDS [Lia+16a]. The results reported in Table 4.1 also show that CHB
can reach new instances (the VBS achieves a gain of more than 5.8% in terms of solved
instances) while remaining competitive and comparable overall with respect to VSIDS in
the context of a highly competitive solver such as Kissat.

4.8 Kissat_MAB at the SAT Competitions
We submitted the solver Kissat augmented with our MAB framework relying on the UCB1
strategy to the SAT competition 2021 under the name Kissat_MAB 4 [CHT21b]. This solver
won the Main Track of the competition and managed to solve 296 instances over 400 with a
gap of 8 instances compared to the second ranked solver. The summary of the Main Track
results are reported in Figure 4.9. Kissat_MAB also placed first in the Main SAT and NoLimits
tracks. Compared to default Kissat, which also participated in the competition under the
name Kissat_sc2021_default with several new improvements over its last version [BFH21],
Kissat_MAB achieves better results with 9 (resp. 11) additional solved (resp. satisfiable)
instances. Furthermore, Kissat_MAB remains highly competitive on unsatisfiable instances
and comparable to default Kissat as it managed to solve 148, only 2 instances less than
Kissat_sc2021_default. We also submitted the solver Kissat augmented with both UCB
strategies, i.e., UCB1 and MOSS, to the SAT competition 2022 under the names Kissat_-
MAB_UCB and Kissat_MAB_MOSS 5 [CHT22a]. The solvers placed respectively fifth and
fourth in the Main sequential track solving 287 and 288 instances over 400. Note that the
first three solvers in the track are all based on our Kissat_MAB solver [Bal+22]. The results
of the SAT competitions thus seem to corroborate our experimental study and to confirm

4Results and source code available on https://satcompetition.github.io/2021/.
5Results and source code available on https://satcompetition.github.io/2022/.
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the relevance of combining VSIDS and CHB using restarts in improving the performance of
highly competitive SAT solvers.

Figure 4.9: Main tack results of the 2021 SAT competition [Bal+21]

4.9 Conclusion & Future Work
In this chapter, we evaluated different strategies which take advantage of the restart mech-
anism to combine two state of the art heuristics, namely VSIDS and CHB. In particular,
we introduced a MAB framework for SAT relying on two well-known Upper Confidence
Bound strategies, called UCB1 and MOSS. These strategies rely on a reward function which
evaluates the capacity of the heuristics to reach conflicts quickly and efficiently. Our ex-
perimental evaluation shows that VSIDS and CHB are compatible since their combination
through different strategies taking advantage of the restart mechanism is able to substan-
tially increase the performance of the competitive solver Kissat. In particular, the MOSS
and UCB1 strategies outperform VSIDS and CHB as well as the other considered strategies.
Overall, the considered strategies achieve substantial gain in terms of solved instances,
mainly satisfiable ones, and in terms of solving time. Moreover, these strategies achieve
results which are very close to the VBS over VSIDS and CHB. Our solver Kissat_MAB won
several medals in the two last SAT competition including the gold medal the Main track of
the SAT competition 2021 thus showing the relevance of combining VISDS and CHB using
restarts and its ability to improve the performance of highly competitive SAT solvers.

Our work in terms of incorporating reinforcement learning techniques into combinatorial
problem solving also extends to the CSP problem. In [CHT20; CHT21c], we devised a
MAB framework, coupled with a training phase, to select an appropriate value of the
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step parameter in the CHS heuristic 6 [HT21] during the restarts performed by the search
algorithm. Each arm represents a different value for this parameter and is rewarded by its
ability to improve the search. A training phase is introduced earlier in the search to help
MAB choose a relevant arm. The experimental evaluation shows that this approach leads
to significant improvements over plain CHS and other state-of-the-art heuristics in CSP
solving.

As future work, it would be interesting to refine the reward function used in MAB strategies
by relying on a combination of different criteria [Chu+11a] so as to improve the MAB
framework especially with respect to unsatisfiable instances. Furthermore, it would be
relevant to use such strategies to improve other components in modern SAT solvers. For
instance, the attempt in [Li+22b] uses our MAB framework to perform adaptive restarts by
choosing a relevant restart strategy at each trial. A similar mechanism can be devised for
other components such as clause deletion or inference techniques. Finally, since Max-SAT
solvers rely heavily on SAT oracles as decision engines, our work can naturally enhance
Max-SAT solving specifically in the context of SAT-based solvers and, more marginally, in
the context of BnB solvers 7. However, it would be relevant to devise dedicated adaptive
mechanisms relying on similar MAB frameworks in the context Max-SAT and, particularly,
BnB solvers such as MaxCDCL [Li+21a; Li+22a].

.

6We recall that this heuristic is an adaptation of the CHB heuristic in the context of CSP and similarly includes
a step parameter as explained for CHB in Section 2.2.1.3.2.

7refer to Section 3.2
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5.1 Introduction & Motivation
Brand and Bound (BnB) based approaches construct a search tree and compute, at each
node, the Lower Bound (LB) by counting the disjoint Inconsistent Subsets (ISs) of the
formula using Simulated Unit Propagation (SUP) [LMP05]. When an IS is found, it is either
temporarily deleted or transformed by Max-SAT resolution to ensure that it will be counted
only once. However, learning Max-SAT resolution transformations, i.e., memorizing them
in the current subtree, may negatively affect the quality of the lower bound estimation.
Therefore, state-of-the-art solvers learn transformations selectively mainly in the form of
patterns [LMP07; AH14d]. The most significant feature of these patterns is reducing the
size of the formula or producing unit clauses whose propagation through SUP may lead to
the detection of more ISs.

The empirical study of the Unit Clause Subset (UCS) patterns in [AH14d] led to the
first observations on the relation between Max-SAT resolution transformations and the
efficiency of the SUP mechanism. It was particularly observed that in some cases the
information which can be used by SUP in the original formula are fragmented into several
clauses after the transformation. This observation was later formalized through the the
notion of UP-resilience introduced in [AH15b]. This property aims to characterize the
transformations which are not affected by fragmentation and, more generally, to measure
the impact of the transformations on the SUP mechanism. The study of the major learning
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mechanisms through this property helped to explain, from a theoretical point of view, the
empirical results of Max-SAT BnB obtained in the last decade.

In this chapter, we further investigate the power of inference in the context of Max-
SAT BnB through the UP-resilience property. We conduct a more through analysis of this
property which helps to shed the light on more recent results in the literature. In particular,
we further study the relation between UP-resilience and the orders of application of Max-
SAT resolution when transforming ISs. Relying on our observations on the direct impact of
application orders on the UP-resilience of literals appearing in ISs, we conduct a theoretical
study on the recent UCS patterns and their relation with UP-resilience. We prove that binary
UCSs are UP-resilient with respect to specific orders and we generalize this result on UCSs
where only one clause of any size is involved in the conflict. Furthermore, we explain how
our results can help extend the current learning schemes used in Max-SAT BnB by studying
their limits.

This chapter is organized as follows. We first state some known results to which we provide
simpler or new formal proofs including results on the relation between UP-resilience and
many components and mechanisms in Max-SAT BnB such as IS detection, application
orders during IS transformation and the traditional patterns in the literature. Then, we
further investigate the recently introduced and their relation with UP-resilience. We also
show the limits of the current mechanisms thus providing insights on how to extend them
through the UP-resilience property. Finally, we mention that our contributions in this
chapter have been published in [CHA20; CHA21].

5.2 UP-Resilience and IS detection
One of the most interesting properties of UP-resilient transformations is their ability to
maintain the propagations which are not necessary anymore to the detection of an IS. As
explained in Section 3.2.1.5, if a transformation is UP-resilient for a literal l , then l can be
propagated in the transformed formula when the literals of each possible neighborhood, not
containing the empty clause, are set to True. This is extended to sets of literals as stated in
Proposition 3.1, i.e., if a transformation is UP-resilient for a set of literals L, then the literals of
L can be propagated in the transformed formula with respect to the possible neighborhoods
of L, not containing the empty clause. This proposition was proved in [AH15b] but we
provide below a much simpler proof. Note that when a subset ψ′ of an IS ψ is not necessary
anymore 1, this property ensures that SUP can perform the same propagations in the
transformed formula as in the original clauses of ψ′. More specifically, the UP-resilience of
a set of literals L with respect to its neighborhood nei g h(L) is maintained individually on
every literal in L.

Proposition 5.1. Let ψ an IS and S be a sequence of variables appearing in ψ. For any
set of literals L appearing in ψ, if the transformation Θ(ψ,S) is UP-resilient for L then
∀N ∈ pnei g h(L) :� ∈ N or ∀l ∈ L, l can be propagated in Θ(ψ,S)|N \{l }.

Proof. We prove this property by induction on |L| = n:

1for instance when ψ is not minimal
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• If n = 1, then L = {l } and the property is verified.

• Suppose the property is true for every set of size n. Let L be of size n + 1 and l a
literal in L. We set L′ = L \ {l } and let N ∈ pnei g h(L). Clearly, N = N1 ∪ N2 where
N1 ∈ pnei g h(L′) and N2 ∈ pnei g h(l ). Moreover, since |L′| = n, we know by induction
that∀N ∈ pnei g h(L′) :� ∈ N or every literal l ′ in L′ can be propagated inΘ(ψ,S)|N \{l ′}.
In particular, � ∈ N1 or every literal l ′ in L′ can be propagated inΘ(ψ,S)|N1\{l ′}. Also,
The transformation Θ(ψ,S) is UP-resilient for L and particularly for l and thus, we
have ∀N ∈ pnei g h(l ) : � ∈ N or l can be propagated in Θ(ψ,S)|N . In particular,
� ∈ N2 or l can be propagated inΘ(ψ,S)|N2 . Thus, We have the following cases:

– If � ∈ N1 or � ∈ N2 then � ∈ N

– Else, every literal l ′ in L′ and l can be propagated respectively in Θ(ψ,S)|N1\{l ′}
andΘ(ψ,S)|N2 . Therefore, the clauses that ensure the propagation of every literal
l ′ in L′ in Θ(ψ,S)|N1\{l ′} also ensure their propagation in Θ(ψ,S)|(N1∪N2)\{l ′} and,
similarly, the clauses that ensure the propagation of l inΘ(ψ,S)|N2 also ensure its
propagation inΘ(ψ,S)|(N1∪N2)\{l }.

We deduce that ∀N ∈ pnei g h(L) : � ∈ N or every literal l in L can be propagated in
Θ(ψ,S)|N \{l }.

�

5.3 UP-Resilience and IS Transformation
An important factor that has a direct impact on the UP-resilience property is the Max-SAT
resolution application order. Recall that two generic orders have been used in BnB solvers
for Max-SAT, i.e., the Reverse Propagation Order (RPO) and the Smallest Intermediary
Resolvent (SIR) order [AH14a] 2, and were empirically shown to influence the UP-resilience
of transformations [AH15b]. In the following example, we exhibit this observation by
showing that application orders can have a direct impact on the UP-resilience of certain
literals appearing in the detected IS and therefore on the UP-resilience of the Max-SAT
resolution transformation of an IS.

Example 5.1. We consider the same IS ψ= {x1, x2, x3, x3 ∨x4, x1 ∨x2 ∨x4} in Example 3.10,
whose distinct implication graphs corresponding to the possible propagation sequences are
represented in Figure 3.5. In Example 3.11, we showed that the transformation of ψ with
respect to RPO is not UP-resilient since, in particular, it is not UP-resilient for literal x1.
Now, we consider the Max-SAT resolution transformation of ψ with respect to the variable
sequence S = 〈x3, x4, x1, x2〉 corresponding to SIR which is given in Figure 5.1. We have
Θ(ψ,S) = {x1 ∨x2, x1 ∨x4, x3 ∨x4, x1 ∨x2 ∨x4, �}. The empty clause appears in the possible
neighborhoods of the literals x4 and x4. The propagation of the literal x3 with respect to
its possible neighborhood {x4}, not containing the empty clause, is ensured by the clause
x3 ∨ x4. Furthermore, the propagation of literals x1 and x2 with respect to their possible

2refer to Section 3.2.1.5
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neighborhood {x4}, not containing the empty clause, is ensured by the clauses x1 ∨ x4 and
x1 ∨x2 ∨x4. Therefore, the transformation Θ(ψ,S) is UP-resilient.

x3 x3 ∨x4

x4 x1 ∨x2 ∨x4

x1 ∨x2 x1

x2
x2

�

x3 ∨x4

x1 ∨x4

x1 ∨x2 ∨x4

x1 ∨x2

x3

x4

x1

x2

Figure 5.1: Implication graph corresponding to the Max-SAT resolution transformation of
ψ with respect to SIR

5.4 UP-Resilience and Traditional Patterns
The UP-resilience property can help explain the efficiency of learning schemes in the
literature. In particular, Proposition 3.2 establishes the UP-resilience of the traditional
patterns P1, P2 and P3 presented in Section 3.2.1.4 with respect to a specific ordering.
However, no formal proof was provided for this proposition in [AH15b] whereas a proof for
pattern P1 only has been provided in [Abr15]. Hereafter, we provide formal proofs for the
UP-resilience of patterns P1, P2 and P3. In particular, unlike the result of Proposition 3.2,
we show that any order of application consistent with these patterns ensures a UP-resilient
transformation. This fact provides further insight on the relevance of the UP-resilience
property in characterizing Max-SAT resolution transformations in Max-SAT BnB and in
explaining the efficiency of the major patterns observed in the last decade. In the next
section, we will also study the relation between UP-resilience and the recently introduced
UCS patterns in [AH14d].

Proposition 5.2. Let ψ be an IS and ψ′ ⊂ψ bet a set matching the premises of pattern P1.
Then, the Max-SAT resolution transformation described in P1 is UP-resilient.

Proof. ψ′ = {l1∨ l2, l1∨ l2}. Therefore, there are two possible propagation sequences whose
implication graphs are represented in Figure 5.2. Since all possible neighborhoods of literals
l1, l2 and l2 contain the empty clause, the transformation of ψ′ as in P1 with respect to the
only possible variable sequence S =< var (l2) > is UP-resilient.
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l1

l2

�

l1 ∨ l2 l1 ∨ l2

l1 ∨ l2

l1

l2

�

l1 ∨ l2 l1 ∨ l2

l1 ∨ l2

Figure 5.2: Implication graphs corresponding to the possible propagation sequences for an
IS containing the premises of pattern P1

�

Proposition 5.3. Let ψ be an IS and ψ′ ⊂ψ bet a set matching the premises of pattern P2.
Then, the Max-SAT resolution transformation described in P2 is UP-resilient.

Proof. ψ′ = {l1∨ l2, l1∨ l3, l2∨ l3}. Therefore, there are two possible propagation sequences
whose implication graphs are represented in Figure 5.3. There are two Max-SAT resolution
application orders S1 = < var (l2), var (l3) > and S2 = < var (l3), var (l2) > that produce the
same transformation described by pattern (P2). Since all possible neighborhoods of l2 and
l2 contain the empty clause, the transformation of ψ by Max-SAT resolution is UP-resilient
for l2 and l2. We have pnei g h(l1) = {{l3,�}∪pr ed(l1), {l2, l3}∪pr ed(l1)}, where pr ed(l1))
denotes the predecessors of l1, and clearly the clause C = l1∨ l2∨ l3 propagates l1 when the
literals l2, l3 in its second neighborhood are set to True. Also, pnei g h(l3) = {{l1,�}, {l1, l2}}
and similarly the clause C ′ = l1 ∨ l2 ∨ l3 propagates l3 when the literals in its neighborhood
{l1, l2} are set to True.

l1

l3 l2

�

l1 ∨ l3

l2 ∨ l3

l1 ∨ l2

l1 ∨ l2
l1

l3

l2

�
l 1∨ l 3

l1 ∨ l2

l2 ∨ l3

l 2∨ l 3

Figure 5.3: Implication graphs corresponding to the possible propagation sequences for an
IS containing the premises of pattern P2

�

Proposition 5.4. Let ψ an IS that matches the premises of pattern P3. Then, the Max-SAT
resolution transformation described in P3 is UP-resilient.

Proof. ψ= {l1, l1 ∨ l2, l2 ∨ l3, ..., lk−1 ∨ lk , lk }. Therefore, there are k possible propagation
sequences whose implication graphs are represented in Figure 5.4. In each graph a different
clause of ψ, containing the literal li where 1 < i < k is falsified. When i = 1 (resp. i = k), the
unit clause li (resp. lk ) is falsified. We have pnei g h(li ) = {{li−1, li+1}, {li−1,�}} for 1 < i < k
and, clearly, the clause li ∨ li+1, obtained after the transformation, ensures the propagation
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of the literal li with respect to its neighborhood {li−1, li+1}. Also, for literals l1 and lk , we have
respectively pnei g h(l1) = {{l2}, {�}} and pnei g h(lk+1) = {{lk ,�}} and, clearly, the clause
l1 ∨ l2 ensures the propagation of the literal l1 with respect to its neighborhood {l2}. The
same arguments ensure UP-resilience for literals li for 1 ≤ i ≤ k. It is important to note that
this proof on the UP-resilience of ISs matching the premises of pattern P3 is clearly valid for
every Max-SAT resolution application order consistent with P3.

l1

lk+1

...

...

li−1

li

�

l1

lk+1

l1 ∨ l2

lk ∨ lk+1

li−2 ∨ li−1

li ∨ li+1

li−1 ∨ li

l i−1
∨ l i

Figure 5.4: Implication graphs corresponding to the possible propagation sequences for an
IS matching the premise of pattern P3

�

5.5 UP-Resilience and UCS Patterns
In this section, we study the relation between UP-resilience and the recently introduced UCS
patterns in [AH14d]. We prove that the Max-SAT resolution transformation of binary UCSs is
UP-resilient with respect to two newly introduced orders. This result is established through
a characterization of the implication graphs corresponding to propagation sequences
leading to the detection of such patterns. We also show that, unlike the devised orders, the
current used mechanisms can’t ensure UP-resilience for binary UCSs thus providing an
explanation to the recent empirical results established in [AH14d] and showing that UP-
resilience can help extend the current patterns used in state-of the-art solvers. Furthermore,
we generalize our result on the resilience of kb-UCSs to UCSs where all clauses are binary
except one of any size that is involved in the conflict.

5.5.1 On Implication Graphs of UCS Patterns
In this section, we establish a characterization of implication graphs of the studied k-
UCSs. More specifically, we study the portion of the graph representing the propagation
sequence of the detected k-UCS which is delimited by the FIUP and the empty clause. This
characterization is established in the following lemma for k-UCS whose clauses are binary
except for the conflict clause which can be of any size s ≥ 2.

Lemma 5.1. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for the conflict
clause of size s ≥ 2, recognized by the FUIP l in an implication graph G of an IS such that
|succ(l )| = s. Then, there exists exactly s disjoint paths from l to � in G.
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Proof. Since l is a UIP, all the paths from the literals propagated by unit clauses to the
conflict node in G pass through it. We have |succ(l )| = s. Therefore, there are at least s
different paths from l to � in G . Let p1,...,ps be those paths. Suppose we have a different
path ps+1 from l to �. We have two possible cases:

• |pr ed(�)| 6= s. This is absurd since the conflict clause is of size s and thus |pr ed(�)| =
s.

• Else, since |pr ed(�)| = s, there exists l ′ 6= l ∈ ps+1 and i ∈ {1, ..., s} such that l ′ ∈ pi

and |pr ed(l ′)| > 1. This is absurd since all clauses of ψ except the conflict clause are
binary.

We deduce that there are exactly s different paths from l to � in G . The same argument of
the second case ensures that these paths are disjoint.

�

As explained in Section 3.2.1.5, when a UCS is detected, we know that the reverse prop-
agation order ensures the production of a unit resolvent clause after the transformation.
However, in general, this is not necessarily true for all application orders. Since this is the
main feature of UCS patterns, we must ensure that the introduced orders produce a unit
resolvent clause. It is important to note that the condition on the successors of the FUIP in
Lemma 5.1 ensures the production of such clause for all possible orders. In the next section,
we prove the UP-resilience of binary k-UCSs. To this end, we show in the next proposition
that the condition on the FUIP successors in Lemma 5.1 is always verified for binary k-UCSs.
Later, when we generalize our result on further UCS patterns, we only consider the graphs
described by Lemma 5.1, i.e., which verify the condition on the successors of the FUIP.

Proposition 5.5. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in an implication
graph G of an IS. Then, |succ(l )| = 2.

Proof. Suppose that |succ(l )| 6= 2. We have two possible cases:

• if |succ(l )| > 2 then, since |succ(�)| = 2, there exists a literal with two predecessors.
This is absurd since all the clauses are binary.

• if |succ(l )| = 1 then l is not the FUIP which is absurd.

�

Corollary 5.1. Let k ≥ 2 andψ be a kb-UCS recognized by the FUIP l in an implication graph
G of an IS. There exists exactly two disjoint paths from l to � in G.

Proof. Result trivially implied by Lemma 5.1 and Proposition 5.5.
�
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5.5.2 On the UP-Resilience of Binary UCSs
In Section 5.5, we proved the UP-resilience of the main patterns P1 and P2 with respect
to any order of application of Max-SAT resolution. The next corollary is an immediate
consequence of this result.

Corollary 5.2. For k ∈ {2,3}, the transformation of a kb-UCSs is UP-resilient.

Proof. 2b-UCSs and 3b-UCSs are all of the respective forms ψ2b = {l1 ∨ l2, l1 ∨ l2} and
ψ3b = {l1 ∨ l2, l1 ∨ l3, l2 ∨ l3} which correspond to the premises of patterns P1 and P2. Thus,
we obtain the wanted result using Propositions 5.2 and 5.3.

�

We want to generalize the result of Corollary 5.2 to all binary k-UCSs, even for specific
orders of application of Max-SAT resolution. To this end, we introduce new orders using
the characterization established in Corollary 5.1. We prove the resilience of kb-UCSs with
respect to these orders. In the following section, we will also explain the inefficiency of the
current orders for these patterns.

Definition 5.1 (Path Resolvent Order). Let p1 = 〈l , l p1
1 , ..., l p1

n1
,�〉 and p2 = 〈l , l p2

1 , ..., l p2
n2

,�〉
where n1,n2 ≥ 1 denote two disjoint paths from l to �. The Path Resolvent Order (PRO) of p1

and p2 is defined as follows:

PRO(p1, p2) = 〈var (l p1
1 ), ..., var (l p1

n1
), var (l p2

1 ), ..., var (l p2
n2

)〉

Theorem 5.1. For any k ≥ 2, the transformation of a kb-UCSs with respect to PRO is UP-
resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication graph
G of an IS. By Corollary 5.1, we know that there are 2 disjoint paths from l to � in G.
Let p1 = 〈l , l p1

1 , ..., l p1
n1

,�〈(n1 ≥ 0) and p2 = 〈l , l p2
1 , ..., l p2

n2
,�〉(n2 ≥ 0) denote these paths in G

where n1 +n2 = k −1. And, suppose w.l.o.g that l p1
n1

= l ′ is the conflict literal, i.e., the last
propagated literal. We have two possible propagation sequences whose implication graphs
are G and G ′ represented in Figure 5.5.

l

l p1
1

l p2
1

...

...

l p1
n1

= l ′

l p2
n2

�G l

l p1
1

l p2
1

...

...

l p1
n1−1

l p2
n2 l ′

�G ′

Figure 5.5: Implication graphs corresponding to the possible propagation sequences for
kb-UCSs.

We prove that the Max-SAT resolution transformation relatively to the order O = PRO(p1, p2)
is UP-resilient:
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• The clause propagating l is not deleted after the transformation by Max-SAT resolution
relatively to the order O so it clearly propagates l if its predecessors are set to True and
thus the transformation by Max-SAT resolution relatively to the order O is UP-resilient
for l . This argument also applies for the literals that were involved in the propagation
of l .

• All possible neighborhoods of literals l p1
n1

= l ′ and l ′ contain the empty clause. There-
fore, the transformation by Max-SAT resolution relatively to the order O is UP-resilient
for l ′ and l ′.

• For i ∈ {1,2}, we set l pi
0 = l . Every literal l pi

j such that 1 ≤ j < ni admits exactly

one neighborhood nei g h(l p1

j ) = {l pi
j−1, l pi

j+1} that doesn’t contain the empty clause.

Similarly, for l p2
n2

, we have nei g h(l p2
n2

) = {l pi
n2−1, l ′}. The Max-SAT resolution step on

var (l p1

j )(1 ≤ j < ni ) is of the form:

l ∨ l pi
j , l pi

j ∨ l pi
j+1

l ∨ l pi
j+1, l ∨ l pi

j ∨ l pi
j+1, l ∨ l pi

j ∨ l pi
j+1

The clause C = l ∨ l pi
j ∨ l pi

j+1 clearly ensures the propagation of literal l pi
j+1 if l pi

j ∈
nei g h(l pi

j+1) is set to True since l is propagated by the unit resolvent clause {l }. Also,

for j = 1, the clause C ′ = l∨l p1
1 ∨l p1

2 ensures the propagation of l p1
1 if l , l p1

2 ∈ nei g h(l p1
1 )

are set to True. Thus, We deduce that the transformation is UP-resilient for l pi
j where

1 ≤ j ≤ ni ( j 6= n1).

We conclude that the transformation of ψ by Max-SAT resolution relatively to the order O is
UP-resilient.

�

Definition 5.2 (Path Resolvent Circular Order). Let p1 = 〈l , l p1
1 , ..., l p1

n1
,�〉 and p2 =

〈l , l p2
1 , ..., l p2

n2
,�〉 where n1,n2 ≥ 1) denote two disjoint paths from l to �. The Path Resolvent

Circular Order (PRCO) of p1 and p2 is defined as follows:

PRCO(p1, p2) = 〈var (l p1
1 ), ..., var (l p1

n1
), var (l p2

n2
), ..., var (l p2

1 )〉

Theorem 5.2. For any k ≥ 2, the transformation of kb-UCSs with respect to PRCO is UP-
resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication graph G
of an IS. By corollary 5.1, let p1 = 〈l , l p1

1 , ..., l p1
n1

,�〉(n1 ≥ 0) and p2 = 〈l , l p2
1 , ..., l p2

n2
,�〉(n2 ≥ 0)

denote the two disjoint paths from l to � in G where n1 +n2 = k −1. And, suppose w.l.o.g
that l p1

n1
= l ′ is the conflict literal. We have two possible propagation sequences whose

implication graphs are G and G ′ represented in Figure 5.5. We prove that the Max-SAT
resolution transformation relatively to the order O = PRCO(p1, p2) is UP-resilient:
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• The same arguments in the proof of Theorem 5.1 ensure the UP-resilience of the
transformation respectively to O for l p1

j (1 ≤ j ≤ n1) and l ′ as well as l and all the
literals involved in its propagation.

• Every literal l p2

j such that 1 ≤ j ≤ n2 admits exactly one neighborhood nei g h(l p2

j ) =
{l p2

j−1, l p2

j+1} that doesn’t contain the empty clause (we set l p2
0 = l and l p2

n2+1 = l ′). The

Max-SAT resolution step on var (l p2

j ) ( j 6= 1) is of the form:

l ∨ l p2

j , l p2

j ∨ l p2

j−1

l ∨ l p2

j−1, l ∨ l p2

j ∨ l p2

j−1, l ∨ l p2

j ∨ l p2

j−1

The clause C = l ∨ l p2

j ∨ l p2

j−1 clearly ensures the propagation of literal l p2

j when l p2

j−1 ∈
nei g h(l p2

j ) is set to True since l is propagated by the unit resolvent clause {l }. Also,

the clause C ′ = l ∨ l p2
2 ∨ l p2

1 , generated by the Max-SAT resolution step on var (l p2
2 ),

clearly ensures the propagation of l p2
1 when its neighbors l , l p2

2 ∈ nei g h(l p2
1 ) are set to

True. Thus, the transformation is UP-resilient for l p2

j where 1 ≤ j ≤ n2.

We conclude that the transformation by Max-SAT resolution relatively to the order O is
UP-resilient.

�

There is a major difference between the orders we introduced. Indeed, PRCO ensures a
linear input resolution transformation, i.e., at each intermediary Max-SAT resolution step
we use the resolvent obtained in the previous step and a clause from the detected kb-UCS.
This is not always the case for PRO. The following result is an immediate consequence of
either Theorem 5.1 or 5.2.

Corollary 5.3. For any k ≥ 2, there exists a sequence of variables S in any kb-UCSs ψ such
that Θ(ψ,S) is UP-resilient.

5.5.3 On the Limits of Current Orders for Binary UCSs
Empirical results show that 2b-UCSs and 3b-UCSs, which correspond respectively to the
patterns P1 and P2 have a positive impact on the performance of BnB solvers for Max-
SAT [AH14d; Li+10a]. The result in corollary 5.2 obtained through properties 5.2 and 5.3
prove that 2b-UCSs and 3b-UCSs are UP-resilient for any given order of application of
Max-SAT resolution which explains why learning them has a positive impact regardless of
the chosen order. This is not the case for kb-UCSs when k > 3. Empirical studies on the
Ahmaxsat solver in [AH14d] show that learning 4b-UCSs and 5b-UCSs can have a negative
impact on its performance. This can be explained by the inadequacy of the Max-SAT
resolution application orders used in state-of-the-art BnB solvers for kb-UCSs when k > 3.
This result is established in the following propositions.
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Proposition 5.6. For any k > 3, there exists a kb-UCS whose transformation with respect to
RPO is not UP-resilient.

Proof. We provide a counter example for 4b-UCSs which can be easily extended to any
kb-UCS for k > 4. We consider the IS ψ= {l , l ∨ l1, l ∨ l2, l1 ∨ l3, l2 ∨ l3} detected by one of
the possible implication graphs represented on the left in Figure 5.6 after the respective
propagation of literals l1, l2 and l3 (or l3). Clearly, the subsetψ′ = {l∨l1, l∨l2, l1∨l3, l2∨l3} ⊂
ψ is a 4b-UCS recognized by the FUIP l . The Max-SAT resolution transformation of ψ′ with
respect to RPO which corresponds to the variable sequence S = 〈var (l3), var (l2), var (l1)〉
is represented on the right in Figure 5.6.

l l1 l3

l2

�
l l ∨ l1 l1 ∨ l3

l ∨ l2 l 2∨ l 3

l2 ∨ l3

l l2 l3

l1

�
{l }

l ∨ l2 l2 ∨ l3

l ∨ l 1
l1 ∨ l3

l1 ∨ l3

l2 ∨ l3 l1 ∨ l3

l1 ∨ l2 l ∨ l2

l ∨ l1 l ∨ l1

l

l1 ∨ l2 ∨ l3

l1 ∨ l2 ∨ l3

l ∨ l1 ∨ l2

l ∨ l1 ∨ l2

var (l3)

var (l2)

var (l1)

Figure 5.6: Implication graphs corresponding to the possible propagation sequences of ψ
and the application of Max-SAT resolution steps relatively to RPO

The literal l1 has one neighborhood nei g h(l1) = {l , l3} that doesn’t contain the empty clause.
Clearly, the literal l1 can’t be propagated inΘ(ψ,S)|nei g h(l1) = {l1 ∨ l2, l1 ∨ l2}. Similarly, the
fragmentation phenomenon also occurs for l2 and we conclude that the transformation of
ψ′ relatively to RPO is not UP-resilient.

�

Proposition 5.7. For any k > 3, there exists a kb-UCSs whose transformation with respect to
SIR is not UP-resilient.

Proof. The SIR heuristic becomes practically unusable for kb-UCSs since all the intermedi-
ary resolvents have the same size (binary) as shown in the proofs of Theorems 5.1 and 5.2.
The same argument in the proof of Proposition 5.6 is therefore sufficient to prove the same
result on the SIR order.

�

5.5.4 Generalization to Other UCSs
In this section, we generalize our result to k-UCSs where all clauses are binary except one
of any size that is involved in the conflict when the implication graph corresponds to the
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characterization established in Lemma 5.1. A clause involved in the conflict is either the
falsified clause or contains the conflict literal, i.e., the last propagated literal. Unfortunately,
although PRCO has the advantage of ensuring a linear input transformation, we couldn’t
generalize it to obtain the wanted result. Nevertheless, we managed to prove our result
using a generalization of PRO to a multitude of paths.

Definition 5.3 (Multiple Path Resolvent Order). Let s ≥ 2 and p1 =
〈l , l p1

1 , ..., l p1
n1

,�〉, ..., ps = 〈l , l p2
1 , ..., l ps

ns
,�〉 denote s disjoint paths from l to �. The Multiple

Path Resolvent Order (MPRO) of p1, ..., ps is defined inductively on s as follows:

- If s = 2, MPRO(p1, p2) = PRO(p1, p2)

- Else MPRO(p1, ..., ps) = PRO(〈l , MPRO(p1, ..., ps−1),�〉, ps).

Theorem 5.3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for the conflict
clause C of size |C | = s ≥ 3, recognized by the FUIP l in the implication graph G of an IS such
that |succ(l )| = s. The transformation of ψ with respect to MPRO is UP-resilient.

Proof. We suppose w.l.o.g that C = {l1, ..., ls}. By Lemma 5.1, there are exactly s disjoint
paths p1 = 〈l , l p1

1 , ..., l p1
n1

,�〉, ..., ps = 〈l , l ps
1 , ..., l ps

ns
,�〉 from l to � in the implication graph G ,

represented in Figure 5.7, such that
∑s

i=1 ni = k −1 and l pi
ni

= li for i ∈ {1, ..., s}. Other than G ,

there are exactly
(s−1

s

)= s possible implication graphs all similar to the graph G ′ represented
in Figure 5.7.

l

l p2
1

l p1
1

...

l ps
1

...

...

l p1
n1

= l1

l p2
n2

= l2

...

l ps
ns

= ls

�C

C

C l

l p2
1

l p1
1

...

l ps−1
1

l ps
1

...

...

l p1
n1

= l1

l p2
n2

= l2

...

...

l ps−1
ns−1

= ls−1

ls

l ps
ns−1

�C

C

C

Figure 5.7: Implication graphs corresponding to the possible propagation sequences for
k-UCSs with binary clauses except for the conflict clause

We prove that the Max-SAT resolution transformation relatively to the order O =
MPRO(p1, ..., ps) is UP-resilient:

• The same arguments in the proof of Theorem 5.1 ensure the UP-resilience of the
transformation respectively to O for l pi

j where 1 ≤ i ≤ s and 1 ≤ j < ni as well as l
and all the literals involved in its propagation. Furthermore, all the neighborhoods of
literals l1, ..., ls contain the empty clause.

• For i ∈ {1, ..., s}, ∀N ∈ pnei g h(l pi
ni

) (ni > 1) s.t. � ∉ N , we have l pi
ni−1 ∈ N (exists since

ni > 1). Clearly, the clause l ∨ l pi
ni−1 ∨ l pi

ni
obtained by the application of Max-SAT
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resolution on var (l pi
ni−1) ensures the propagation of l pi

ni
in any of these neighborhoods

when l pi
ni−1 is set to True since l is propagated by the unit resolvent clause containing

it. We deduce that the transformation relatively to the order O is UP-resilient for l pi
ni

where 1 ≤ i ≤ s and ni > 1.

• We still need to prove the UP-resilience of the transformation for literals l pi
ni

= li when

ni = 1, with respect to their possible neighborhoods {l , l j } for j ∈ {1, .., s} \ {i } not con-
taining the empty clause. For this end, we prove by induction on |C | ≥ 3 that the com-
pensation clauses produced by the Max-SAT resolution steps on var (l1), ..., var (ls)
ensure the propagation of each literal li if we consider the neighborhoods as men-
tioned above. For simplification, in the first Max-SAT resolution step, we replace C by
the clause C ′ = l ∨ l1 ∨·· ·∨ ls . This doesn’t affect our result since we only omit a single
clause containing the literal l :

– If |C | = 3 then C = l1∨l2∨l3. The Max-SAT resolution steps are represented on the
left in Figure 5.8 and we can easily check that the compensation clauses ensure
the propagation of the literals li , for 1 ≤ i ≤ 3, if we consider the neighborhoods
mentioned above.

– Suppose the property is true for any clause of size s ≥ 3. Let C = l1 ∨ ·· ·∨ ls+1

be a clause of size s +1. The first Max-SAT resolution step is represented on the
right in Figure 5.8. The resolvent clause is l ∨ l2 ∨ ·· ·∨ ls+1 and if we consider
C ′ = l2∨·· ·∨ ls+1 of size s we ensure by induction the propagation of any literal li

where 2 ≤ i ≤ s +1 with respect to the neighborhoods {l , l j } for j ∈ {2, .., s +1} \ {i }.

Thus, each compensation clause CCk = l ∨ l1 ∨ l2 ∨·· ·∨ lk ∨ lk+1} for k ∈ {1, ..., s}
ensures the propagation of literal l1 with respect to the neighborhood {l , lk+1}
since, by induction, the propagation of literals l2, ..., lk is ensured in the same
neighborhood. Now, we prove by induction on k ∈ {1, ..., s} that the clause CCk

ensures the propagation of lk+1 with respect to the neighborhood {l , l1}:

* If k = 1, CC1 = l ∨ l1 ∨ l2 clearly ensures the propagation of l2 with respect to
the neighborhood {l , l1}.

* Suppose for 1 ≤ k ′ < k ≤ s, CCk ′ ensures the propagation of lk ′+1 with respect
to the neighborhood {l , l1}. CCk = l ∨l1∨l2∨·· ·∨lk ∨lk+1 clearly ensures the
propagation of literal lk+1 with respect to the neighborhood {l , l1} since, by
induction, the propagation of l2, ..., lk is ensured in the same neighborhood
by the clauses CC1, ...,CCk−1.

We conclude that the transformation by Max-SAT resolution relatively to the order O is
UP-resilient.

�

Corollary 5.4. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for a single clause
C of size |C | = s ≥ 3 involved in the conflict, recognized by the FUIP l in the implication graph
G of an IS such that succ(l ) = s. There exists a UP-resilient transformation of ψ.
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l ∨ l1 ∨ l2 ∨ l3 l ∨ l1

l ∨ l2 ∨ l3 l ∨ l2

l ∨ l3 l ∨ l3

l

l ∨ l1 ∨ l2

l ∨ l1 ∨ l2 ∨ l3

l ∨ l2 ∨ l3

var (l1)

var (l2)

var (l3)

l ∨ l1 ∨·· ·∨ ls+1 l ∨ l1

l ∨ l2 ∨·· ·∨ ls+1 l ∨ l2

CC1 = l ∨ l1 ∨ l2
...

CCs = l ∨ l1 ∨ l2 ∨·· ·∨ ls ∨ ls+1

...

var (l1)

Figure 5.8: Application of Max-SAT resolution steps on the variables of the non binary
clause C by induction on its size

Proof. If C is the conflict clause then we obtain the result by Theorem 5.3. Else, C contains
the conflict literal and the detected implication graph G has the same form as the second
graph represented in Figure 5.7. Clearly, there is a propagation sequence where C is falsified,
i.e., corresponding to an implication graph G ′ similar to the first graph represented in
Figure 5.7. Thus, we deduce the UP-resilience of the transformation with respect to MPRO
through the same arguments in the proof of Theorem 5.3.

�

The SIR order is defined relatively to the size of the intermediary resolvents. Thus, it
may theoretically simulate any order when the sizes of the resolvents are the same or many
different orders when many resolvents share the same size which is the case of the studied
UCSs. That’s why this heuristic remains practically unusable even in the generalized case.
Furthermore, RPO doesn’t necessarily ensure the UP-resilience of k-UCSs described in
the previous corollary. We finish this section by an example that highlights this fact. This
example where the non binary clause is tertiary can be easily extended to any size s > 3.

Example 5.2. We consider the IS ψ= {l , l ∨ l1, l ∨ l2, l ∨ l3, l1 ∨ l4, l2 ∨ l3 ∨ l4} (we name the
tertiary clause C ) detected by the first implication graph represented on the left in Figure 5.9
after the respective propagation of literals l1, l2, l3 and l4. In the second graph on the left in the
same figure, we represent another possible propagation sequence which outlines the possible
neighborhood of l4, nei g h(l4) = {l1, l3} not containing the empty clause. Clearly, the subset
ψ′ =ψ\ {l } is a 5-UCS recognized by the FUIP l such that C participates in the conflict and
|succ(l )| = |C | = 3. The Max-SAT resolution transformation of ψ′ with respect to RPO which
corresponds to the variable sequence S = 〈var (l4), var (l3), var (l2), var (l1)〉 is represented
on the right in Figure 5.9. Clearly, the literal l4 can’t be propagated in Θ(ψ,S)|nei g h(l4) =
{l , l ∨ l2, l2 ∨ l4, l2 ∨ l4}. We conclude that the transformation of ψ′ relatively to RPO is not
UP-resilient.
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l l1 l4

l2

l3

�
l l ∨ l1 l1 ∨ l4

l ∨ l2l ∨
l3

C

C

C

l l1 l4

l2

l3

�

l l ∨ l1 l1 ∨ l4

l ∨ l2

l ∨ l3

C

l ∨ l3

C

l1 ∨ l4 l2 ∨ l3 ∨ l4

l1 ∨ l2 ∨ l3 l ∨ l3

l ∨ l1 ∨ l2 l ∨ l2

l ∨ l1 l ∨ l1

l

l1 ∨ l2 ∨ l3 ∨ l4

l1 ∨ l2 ∨ l4

l1 ∨ l2 ∨ l3 ∨ l4

l ∨ l1 ∨ l2 ∨ l3

l ∨ l1 ∨ l3

l ∨ l1 ∨ l2 ∨ l3

l ∨ l1 ∨ l2

var (l4)

var (l3)

var (l2)

var (l1)

Figure 5.9: Implication graphs corresponding to the possible propagation sequences of ψ
in Example 5.2 and the application of Max-SAT resolution steps relatively to RPO

5.6 Conclusion & Future Work
In this chapter, we have thoroughly investigated the power of inference in the context of
Max-SAT BnB through the property of UP-resilience. We showed that this notion can help
quantify the impact of Max-SAT resolution transformations on the SUP mechanism. We
particularly observed that the order of application of Max-SAT resolution during the trans-
formation of ISs can directly impact its UP-resilience. We showed that, while the traditional
patterns are UP-resilient with respect to any order, the recently introduced k-UCS patterns
are not necessarily UP-resilient with respect to the current orders specifically when k > 3.
They are nevertheless UP resilient with respect to other newly introduced orders. Our
results thus contribute to theoretically explain the efficiency of the traditional patterns
observed in the literature as well as the recent empirical results established in [AH14d;
Abr15].

To our best knowledge, this is the first work in which UP-resilience is used to theoretically
characterize the transformations by Max-SAT resolution with respect to the possible orders
of its application. Indeed, this can be a starting point of a new approach to extend Max-SAT
resolution patterns. In our case, we chose UCS patterns because they present several advan-
tages, i.e., the introduction of unit clauses as well as the high frequency of their apparition.
More importantly, the specific UCS patterns studied in this chapter exhibit a particular
structure in terms of the implication graphs representing their possible propagation se-
quences, which we exploited to introduce our new orders ensuring the UP-resilience of
Max-SAT resolution transformations.

The prospects of our research include the extension of our studies to k-UCSs in general.
It also opens new perspectives for finding orders of application of Max-SAT resolution that

149



5 Understanding Inference in Max-SAT BnB – 5.6 Conclusion & Future Work

ensure UP-resilience or maximize its percentage by thoroughly studying the implication
graphs corresponding to the propagation sequences of certain ISs. Another interesting
prospect is extending our work on more sophisticated mechanisms that are used to detect
disjoint ISs such as Generalized Unit Propagation (GUP) [Kue12] which combines SUP
whith Failed Literals (FL) [LMP06]. For instance, if the reason of unsatisfiablity of the
detected IS after applying GUP can be represented in the form of an implication graph,
our results would be applicable for GUP. Moreover, it would be relevant to study whether
Max-SAT inference under the Max-SAT resolution rule can be efficiently incorporated in
the recent BnB paradigm introduced in [Li+21a; Li+22a] which seems to bring forth a new
family of BnB algorithms that rely on extensive learning. The extended local learning
mechanisms deduced in our work may therefore allow to further guide the exploration
of the search tree if properly incorporated during the search or can simply be used in the
context of preprocessing. Finally, increasing knowledge about Max-SAT resolution can be
useful for SAT-based solvers as some solvers 3 such as EVA [NB14], already exploit Max-SAT
resolution to transform cores returned by SAT solvers.

3refer to Section 3.2.2
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6.1 Introduction & Motivation
One of the first proof systems for Max-SAT is based on the Max-SAT resolution inference
rule [BLM06; LH05a; BLM07; LHG08], which is an extension of the resolution rule in-
troduced in the context of SAT [Rob65]. Max-SAT resolution is sound and complete for
Max-SAT and has recently been extensively studied in the context of proof theory for Max-
SAT [LR20b; LR20a; BL20; Fil+20]. However, we still lack understanding of many aspects
related to Max-SAT resolution as an inference rule and as a proof system. Our contributions
in Chapter 5 provides a more through understanding on the power of Max-SAT resolution
as an inference rule in the context Max-SAT BnB algorithms. In this chapter, we tackle
more generic open problems and investigate some aspects related to Max-SAT resolution,
potentially augmented with other relevant rules, as a proof system for Max-SAT.

SAT and Max-SAT are strongly related and share many aspects. In fact, SAT solving tech-
niques are often used in the context of Max-SAT solving, particularly in SAT-based and
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Branch and Bound (BnB) algorithms for Max-SAT 1. Yet, in theory, bridging the gap between
SAT and Max-SAT inference remains one of the main challenges in the last decade. In partic-
ular, adapting a resolution proof to get a valid proof for Max-SAT of reasonable size remains
an open problem since the introduction of Max-SAT resolution 15 year ago. Bonet et al.
state that "it seems difficult to adapt a classical resolution proof to get a Max-SAT resolution
proof, and it is an open question if this is possible without increasing substantially the size of
the proof " [BLM07]. Indeed, unlike resolution, the Max-SAT resolution rule replaces the
premises with the conclusions, which is necessary to maintain Max-SAT equivalence after
its application. Moreover, aside from the traditional resolvent clause, additional compen-
sation clauses are also added to ensure Max-SAT equivalence. In [LHG08], Larrosa et al.
describe Max-SAT resolution as "a movement of knowledge" and this is typically expected
of any sound Max-SAT inference rule preserving Max-SAT equivalence. Many complica-
tions thus arise when adapting resolution proofs into Max-SAT resolution proofs. More
specifically, read-once resolution proofs, where each clause is used once, represent the only
fragment of resolution for which an immediate and trivial adaptation is possible 2. Our first
contributions in this chapter fall within this context and particularly aim to bridge the gap
between SAT and Max-SAT inference. We propose different adaptations from resolution
refutations into max-refutation where Max-SAT resolution is augmented with the split rule.
We show that, in this case, we can obtain linear adaptations with respect to the size of
the resolution refutations in the following cases: regular tree resolution, tree resolution
and semi-tree resolution. We also generalize our results to unrestricted resolution refuta-
tions but with a worst case exponential blow up in the size of the proofs. Then, we tackle
the more specific and difficult problem of adapting resolution refutations into Max-SAT
resolution proofs without any additional inference rules. More specifically, we identify a
new fragment of resolution, called crossing-free resolution, for which an adaptation using
exclusively Max-SAT resolution is possible without substantially increasing the size of the
proof. Our adaptations led to the the introduction of the first independent proof builder
for Max-SAT, called MS-Builder, which relies on iterative calls to a SAT oracle in order to
generate certificates. Our work also tackles a more generic aspect on proof systems for
Max-SAT. We particularly introduce and investigate the notion of explainability to study the
inferential power of Max-SAT proof systems.

This chapter is organized as follows. First, we propose our different adaptations aiming
to bridge the gap between SAT and Max-SAT inference. We first describe our adaptations
to max-refutations, where Max-SAT resolution is augmented with the split rule, ensuring
linear size guarantees for specific classes of resolution. Then, we introduce our new class of
resolution for which an adaptation using exclusively Max-SAT resolution is possible without
a considerable increase in the size of the proofs. We also study the limits and features of our
adaptations with respect to specific resolution patterns. We also briefly describe further
results on certificate generation and on explainability for Max-SAT. Finally, we mention that
our contributions in this chapter are in collaboration with Matthieu Py. These results have
been the subject of joint publications in different international [PCH20; PCH21a; PCH21d;

1refer to Section 3.2
2Refer to Section 3.3.2
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CHP22b] and national [PCH21c; PCH22a; PCH22b; CHP22a] venues. The results succinctly
described in Sections 6.2 and 6.5 are presented with further details in the manuscript of
Mathieu Py [Py21].

6.2 From SAT Refutations to Max-Refutations
In this section, we attempt to tackle the problem of adapting resolution refutations into
max-refutations with size guarantees on the resulting proofs. Note that, in these results,
we augment Max-SAT resolution with the split rule thus generating Max-SAT proofs in
the ResS system [LR20b]. We propose linear adaptations for specific classes of resolution.
We first deal with regular tree resolution refutations, showing that a linear adaptation is
possible in this case by applying the split rule on to duplicate non-read-once clauses when
necessary. Then, we extend this result to tree resolution refutations using the known result
established in Lemma 2.1 stipulating that minimal tree resolution refutations are regular.
Furthermore, we introduce a new class of refutations that we refer to as semi-tree-like,
which generalizes tree resolution refutations, and we extend our linear result to this class
of refutations. Finally, we propose a complete adaptation of any (unrestricted) resolution
refutation into a max-refutation, although with a worst case exponential blow-up in the
size of the resulting refutations.

6.2.1 From Regular Tree Resolution Refutations to
Max-Refutations

In this section, we show that it is possible to adapt a regular tree resolution refutation to
obtain a max-refutation with linear size in ResS. If a clause C is used k times (k > 1) as
a premise of a resolution step, we use the split rule to duplicate clause C into k distinct
clauses subsumed by C . We will then use these new clauses to replace C as a premise of a
resolution step. Given a branch starting from a clause C , we say that this branch accepts
the substitution of C by C ∨ l if updating the branch after the substitution of C by C ∨ l does
not affect the validity of the resolution refutation. The following lemma guarantees that, for
a given non-read-once clause, there exists a variable x such that some branches starting
from C accept the substitution of C by C ∨x while the rest accept the substitution of C by
C ∨ x. Note that a node where a set of given paths in a resolution proof intersect will be
referred to as their junction node.

Lemma 6.1. Given a non-read-once regular tree resolution refutation π and a non-read-
once clause C in π, there exists a variable x ∉ var (C ) such that it is possible to partition the
branches starting from C into two non-empty subsets of branches, the branches in the first
subset accepting the substitution of C by C ∨x and the branches in the second accepting the
substitution of C by C ∨x.

Proof. Given a non-read-once regular tree resolution refutation π and a non-read-once
clause C inπ, there exists a node v of the DAG ofπ representing a resolution step on variable
x such that v is the first junction point of all the paths starting from C . The existence of this
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node is ensured since this junction point is eventually the empty clause. Furthermore, every
path starting from the clause C leads to one (and only one) of the premises of the resolution
step in the node v . Indeed, a path leading to both premises entails the existence of an
intermediate non-read-once clause which is not possible since the refutation is tree-like.
We partition the branches starting from C into two subsets containing respectively the
paths leading to the first and second premise of the resolution step in the node v . Each
partition is non empty since if there exists an empty subset v can’t be the first junction
point of the branches. Let x be the variable eliminated at this resolution step and suppose
w.l.o.g that the first premise contains literal x while the second contains literal x. As π is
regular, x is not a variable of C and the subset of branches starting from C leading to the
first premise accepts the substitution of C by C ∨x while the subset of branches leading to
the second premise accepts the substitution of C by C ∨x.

�

The result established in Lemma 6.1 ensures the possibility to fix any non-read-once
clause used k > 1 times by using the split rule. Indeed, we can apply this rule to replace
a non-read-once clause used k > 1 times by two clauses used respectively 1 ≤ k1 < k and
1 ≤ k2 < k such that k = k1 +k2. By iterating this method, we can fix every non-read-once
clause. Then, we only need to replace the resolution rule by the Max-SAT resolution rule
to obtain an adaptation from any regular tree resolution refutation to a max-refutation in
linear size.

Theorem 6.1. Given an unsatisfiable formula φ and a regular tree resolution refutation π of
φ, there exists a max-refutation of φ containing O(|π|) inference steps.

Proof. Let π be a regular tree resolution refutation of φ. We set T1 = ; and T2 = MR(π),
where MR(π) is obtained from π after replacing each resolution by Max-SAT resolution.
If π is read-once, T2 is a max-refutation of φ containing |π| inference steps. Now, let C be
a non-read-once clause of π. Using Lemma 6.1, there exists a variable x ∉ var (C ) and a
partition of the branches starting from C into two non-empty subsets, the first accepting
C ∨x and the second accepting C ∨x. We apply the Max-SAT split rule on C to obtain C ∨x
and C ∨ x and we replace C as premise by C ∨ x on the first subset of branches and C by
C ∨x on the second. Doing this, we augment T1 by adding one split and we change T2 by
replacing the premise clause C as described above. As T2 is a tree-like regular resolution
refutation of (φ\C )∧ (C ∨ x)∧ (C ∨ x), it is possible to iteratively apply this operation on
T2 until we obtain a read-once regular tree resolution refutation. Therefore, after the last
iteration, we have a pair (T1,T2) such that T1 is a sequence of applications of the split rule
transforming φ into a Max-SAT equivalent φ′ and T2 is a read-once regular max-refutation
of φ′. Therefore, these transformations form a max-refutation of φ.

Next, we prove that the size of the max-refutation is in O(|π|). Given a non-read-once
leaf clause C used k > 1 times, we can easily prove by induction on k that it is possible to
fix C using at most k −1 splits. Now, let C1, ...,Cp be the leaf clauses of π used respectively
k1,k2, ...,kp times. Notice that k1+k2+ ...+kp = |π|+1 since π has exactly 2|π| premises and
|π|−1 intermediate clauses. Using the previous induction, we need at most k1 −1+k2 −1+
...+kp −1 ≤ |π| splits to fix every non-read-once leaf clause of π. Consequently, |T1| ≤ |π|.
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On the other hand, the number of Max-SAT resolutions in T2 is by construction equal to the
number of resolution steps in π and, therefore, |T2| = |π|. We conclude that the complete
max-refutation contains at most 2|π| inference steps, which is in O(|π|).

�

Example 6.1. We consider the regular tree resolution refutation of φ= (x1)∧ (x1 ∨x3)∧ (x1 ∨
x2)∧ (x2 ∨x3) represented in Figure 2.7. We observe that the original clause (x1) is used two
times as a premise of a resolution step. The junction point of the left and right branches
eliminates variable x3 such that the branch on the left leads to the premise containing literal
x3 and the branch on right leads to the premise containing literal x3. We apply the split
rule on clause (x1) to get (x1 ∨x3) and (x1 ∨x3) and we replace (x1) by (x1 ∨x3) and (x1 ∨x3)
respectively on the left and right branches. Finally, we replace all resolutions by Max-SAT
resolutions to obtain the complete max-refutation represented in Figure 6.1.

x1

x1 ∨x3 x1 ∨x3 x1 ∨x3 x1 ∨x2 x2 ∨x3

x3

x2 ∨x3
x1 ∨x2 ∨x3
x1 ∨x2 ∨x3 x3

�

Figure 6.1: From regular tree resolution refutations to linear-size max-refutations

6.2.2 From (Semi-)Tree Resolution Refutations to Max-Refutations
In the previous section, we proposed a linear adaptation from regular tree resolution
refutations to max-refutations. We propose to extend the case where this adaptation
guarantees linear size of the obtained max-refutation to tree resolution refutations. To this
end, we simply rely on the known transformation from any tree resolution refutation to a
regular tree resolution refutation established in Lemma 2.1. Since it is possible to make a
tree resolution refutation regular without increasing the size of the proof, we can apply the
adaptation in Theorem 6.1 to produce a max-refutation with linear size as shown in the
following corollary.

Corollary 6.1. Given an unsatisfiable formula φ and a tree resolution refutation π of φ, there
exists a max-refutation of φ containing O(|π|) inference steps.

To go further in terms of linear adaptations, we propose the class of semi-tree resolution
refutations defined below. This class of refutations clearly extends tree resolution refuta-
tions, i.e., every tree resolution refutation is semi-tree-like. To extend our linear adaptation

155



6 Bridging the Gap between SAT and Max-SAT Inference – 6.2 From SAT Refutations to
Max-Refutations

result to semi-tree-like resolution refutations, we propose a method which relies on the
simple fact that semi-tree resolution refutations can be partitioned into two parts where
the first part is a read-once sequence of resolutions and the second part is a tree-like resolu-
tion refutation. As the first part is a read-once sequence of resolutions, it can be trivially
adapted into a max-refutation by replacing each resolution by a Max-SAT resolution while
the second part can be adapted using the result in Corollary 6.1. After transforming the two
parts, we glue them back to construct the complete max-refutation.

Definition 6.1 (Semi-Tree Resolution Refutation). A resolution refutation is semi-tree-like if,
for any branch of the refutation, at most one clause is non-read-once.

Corollary 6.2. Given an unsatisfiable formula φ and a semi-tree resolution refutation π of φ,
there exists a max-refutation of φ containing O(|π|) inference steps.

Example 6.2. We consider the resolution refutation π in Figure 6.2. π is clearly semi-tree-like
since in each branch at most one clause is non-read-once. Note that π is not tree-like since
(x1) is an intermediate non-read-once clause. To adapt this semi-tree resolution refutation
to a max-refutation, we put aside the top resolution on variable x1 taking clauses (x1 ∨x4)
and (x1 ∨x4) and we obtain the tree-like resolution refutation represented in Figure 2.7. We
adapt this tree-like resolution refutation as in Example 6.1 and we replace the resolution
step on x1 by a Max-SAT resolution step. We glue back the two parts to obtain the complete
max-refutation represented in Figure 6.3.

x1 ∨x4 x1 ∨x4

x1 ∨x3 x1 x1 ∨x2 x2 ∨x3

x3

x2

x3

�

Figure 6.2: Semi-tree-like resolution refutation
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x1 ∨x4 x1 ∨x4

x1

x1 ∨x3 x1 ∨x3 x1 ∨x3 x1 ∨x2 x2 ∨x3

x3

x2 ∨x3
x1 ∨x2 ∨x3
x1 ∨x2 ∨x3 x3

�

Figure 6.3: Adapting a semi-tree resolution refutation to a max-refutation

6.2.3 From Unrestricted Resolution Refutations to
Max-Refutations

In the previous sections, we proposed linear adaptations from specific classes of resolution
refutations to max-refutations. These results are established in the following corollary using
the notion of simulation. Next, we want to devise an adaptation for the unrestricted case,
even with a potential blow-up in the size of the resulting max-refutation.

Corollary 6.3. ResS p-simulates regular tree, tree and semi-tree resolution.

To devise our generic adaptation, we simply extend the one described in section 6.2.2
by adding a first transformation to make the initial resolution refutation tree-like. Notice
that we could make the initial resolution refutation semi-tree-like (instead of tree-like) but
this choice does not affect the theoretical size of the obtained max-refutation. To achieve
this first intermediate transformation, we will iteratively search in the proof for the first
non-read-once intermediate clause C . If this clause is used k > 1 times as a premise of
another resolution step, we consider the part of the proof leading to C and we duplicate it k
times in order to get a tree-like sequence of resolutions generating k resolvents C1,C2, ...,Ck ,
each resolvent Ci containing exactly the same literals as C and is generated by a similar
sequence of resolution steps. Consequently, C is no longer used several times as a premise
of a resolution step, the input clauses are. Repeating this operation forces the resolution
refutation to become tree-like. Fixing a non-read-once intermediate clause can, in the worst
case, double the size of the current resolution refutation. As such, the size of the obtained
tree-like resolution refutation is exponentially bounded by the size of the initial unrestricted
resolution refutation. To polish this upper bound, we introduce a new parameter defined
below, which is the number of multi-uses of intermediate clauses. Notice how, in the
definition, we subtract 1 use for each clause. Intuitively, we consider the first use of any
non-read-once intermediate clause as authorized.
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Definition 6.2. Let π be a resolution refutation. The number of multi-uses of intermediate
non-read-once clauses, denoted µ(π), is defined as follows:

µ(π) = ∑
C intermediate non-read-once in π

(d+(C )−1)

where d+(C ) denotes the number of uses of the clause C , i.e., the number of outgoing arcs
from C in the DAG representation of π.

Theorem 6.2. Given an unsatisfiable formula φ and an unrestricted resolution refutation π

of φ, there exists a max-refutation of φ with O(2µ(π) ×|π|) inference steps.

Proof. Let π be a resolution refutation of φ. We iteratively make the intermediate non-
read-once clauses read-once. Each time, we pick the first intermediate non-read-once
clause C and duplicate the sub-proof deriving C exactly d+(C )−1 times. Each iteration
decrements the number of intermediate non-read-once clauses by 1 until the resolution
refutation becomes tree-like. Clearly, for each duplication, the size of the proof is doubled
in the worst case and we perform exactly µ(π) duplications. The size of the obtained tree
resolution refutation π′ is thus bounded by O(2µ(π) × |π|). Then, using Theorem 6.1, we
obtain a max-refutation of size O(2µ(π) ×|π|).

�

Example 6.3. We consider the resolution refutation represented in Figure 6.4. This refutation
is not semi-tree-like since the clauses (x1) and (x4) are two non read-once clauses in the
same branch. First, we duplicate the resolutions leading to (x1) and we obtain the tree-like
resolution refutation represented in Figure 6.5. Then, we apply the transformations described
in Corollary 6.1 to get the max-refutation represented in Figure 6.6.

x1 ∨x3 ∨x4 x4 x1 ∨x4 x1 ∨x2 x2 ∨x3

x1 ∨x3 x1

x3 x2

x3

�

Figure 6.4: Unrestricted resolution refutation
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x1 ∨x3 ∨x4 x4 x1 ∨x4 x1 ∨x2 x2 ∨x3

x1 ∨x3 x1 x1

x3 x2

x3

�

Figure 6.5: Adapting a resolution refutation to a tree-like resolution refutation

x4

x3 ∨x4 x3 ∨x4

x1 ∨x3 ∨x4 x1 ∨x3 ∨x4 x1 ∨x4

x1 ∨x3 ∨x4 x1 ∨x3 ∨x4x1 ∨x3 ∨x4

x1 ∨x2

x2 ∨x3

x1 ∨x3 x1 ∨x3 x1 ∨x3
x1 ∨x3 ∨x4

x3 x2 ∨x3
x1 ∨x2 ∨x3
x1 ∨x2 ∨x3

x3

�

Figure 6.6: Adapting an unrestricted resolution refutation to a max-refutation

6.3 From SAT Refutations to Max-SAT Resolution
Refutations

In the previous section, we contributed to the open problem of adapting resolution refu-
tations into Max-SAT resolution refutations. However, we circumvented the problem by
augmenting Max-SAT resolution with the split rule thus generating max-refutations in the
ResS system [LR20b]. In this section, we tackle the original and more difficult problem
of adapting resolution proofs into proofs valid for Max-SAT using exclusively Max-SAT
resolution. More specifically, we identify a new fragment of resolution, called crossing-free
resolution, for which an efficient adaptation using only Max-SAT resolution is possible.
Crossing-free derivations are defined using the ensuing derivations of non read-once
clauses. Intuitively, non read-once clauses are used independently to infer new information
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in crossing-free resolution proofs. The adaptation of such proofs to Max-SAT resolution
proofs is shown possible modulo some minor syntactic subtleties.

6.3.1 Crossing-Free Resolution
The main difficulty in adapting resolution proofs to Max-SAT resolution ones lies in inferring
a substitute for non read-once clauses. Indeed, such clauses must be naturally inferred
using Max-SAT resolution while unfolding (i.e., reading and applying) the initial resolution
proof, contrary to the previous adaptations in Section 6.2 where non read-once clauses are
artificially fixed using the split rule before the actual unfolding of the proof. In this section,
we define a new fragment of resolution, referred to as crossing-free resolution. The idea
behind this refinement is to ensure enough maneuverability of proofs in terms of structure
in order to infer substitutes for non read-once clauses when necessary. To this end, we
define below the notion of ensuing derivation of a non read-once clause. Intuitively, this
particular derivation is ensued from a non read-once clause in the sense that it is sufficient
to delimit the impact of its multiple uses. We recall that a node where a set of given paths in
a resolution proof intersect is referred to as their junction node.

Definition 6.3 (Ensuing Derivation). Let φ be a CNF formula and π a resolution derivation
of clause C fromφ. The ensuing derivation of a non read-once clause C ′ inπ, denoted ED(C ′),
is the sub-derivation of π formed by all the resolution steps in the paths starting from C ′ in π

until their first junction node. We call the clause derived in the junction node, the ensued
clause of C ′, denoted EC (C ′).

Example 6.4. We consider the resolution derivation π represented in Figure 6.7 of clause
C = x6 from the formula φ= {x1 ∨x3 ∨x4, x4 ∨x5, x4 ∨x5, x1 ∨x4, x2 ∨x4 ∨x6, x5 ∨x7, x2 ∨
x3∨x7, x5∨x7}. The non read-once clauses x4 and x2∨x3∨x7 and their ensuing derivations
are respectively represented in red and blue. Furthermore, we have EC (x4) = x6 and EC (x2 ∨
x3 ∨x7) = x2 ∨x3.

x4 ∨x5 x4 ∨x5

x1 ∨x3 ∨x4 x4 x1 ∨x4 x2 ∨x4 ∨x6

x1 ∨x3 x1 x2 ∨x6

x3 x3 ∨x6

x2 ∨x3

x6

x2 ∨x3 ∨x5 x2 ∨x3 ∨x5

x5 ∨x7 x2 ∨x3 ∨x7 x5 ∨x7

Figure 6.7: Ensuing derivations in a crossing-free resolution proof

Recall that clauses are consumed after the application of Max-SAT resolution. Therefore,
it seems difficult to adapt resolution derivations in which ensuing derivations of non
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read-once clauses cross. Indeed, in such cases, the formula can significantly evolve as
compensation clauses may be used while others may be generated. As such, crossing-free
resolution ensures that ensuing derivations are disjoint, i.e., do not cross, as defined below.

Definition 6.4 (Crossing-Free Resolution). Let φ be a CNF formula and π a resolution
derivation of clause C from φ. π is crossing-free if for every pair of non read-once clauses
(C1,C2), ED(C1) and ED(C2) are disjoint, i.e., they do not contain a shared arc.

Example 6.5. We consider the same formula φ in Example 6.4. The resolution derivation π

of clause C = x6 from φ represented in Figure 6.7 is crossing-free since the ensuing derivations
of the non read-once clauses x4 and x2 ∨x3 ∨x7 are disjoint.

Note that the crossing-free resolution refinement entails an interesting property estab-
lished in the following proposition. Intuitively, this property ensures that non read-once
clauses are used independently to infer new information in crossing-free resolution proofs.
This entails that each ensuing derivation in a crossing-free resolution proof can be adapted
independently as described in the next section.

Proposition 6.1. Let φ be a CNF formula, π be a crossing-free resolution derivation of clause
C from φ and C ′ a non read-once clause in π. Every clause C l in ED(C ′) s.t. C l ∉ {C ′,EC (C ′)}
is read-once.

Proof. Let C l be a clause in ED(C ′) s.t. C l ∉ {C ′,EC (C ′)}. Clearly, if C l is not read once,
ED(C l ) shares at least one arc with ED(C ′) which is absurd since π is crossing-free.

�

Note that in the following section where we will introduce our adaptation from crossing-
free proofs into Max-SAT resolution proofs, we may allow the addition of tautological
clauses to any formula in the proof. Furthermore, for the sake of simplification, we will
temporarily allow the use of the following rewriting C∨a1 ∨a2 ∨ ...∨an = (C∨a1)∧(C∨a1∨
a2)∧ ...∧(C ∨a1∨a2∨ ...∨∨an) 3 [LHG08] as two full-fledged rules to manipulate clauses in
compacted form. We will refer to the left-right rewriting as expansion and to the right-left
one as compaction. This may entail abusing some notations in the following section and
we thoroughly discuss these syntactic subtitles in Section 6.3.3.

6.3.2 From Crossing-Free Resolution to Max-SAT Resolution
In this section, we show that crossing-free resolution derivations can be adapted to Max-
SAT resolution derivations modulo some minor syntactic subtleties without substantially
increasing their size. In the following proposition, we first provide some patterns which will
be encountered in the adaptation.

Proposition 6.2. Let A,B ,C and {l } be four sets of literals s.t. |C | > 0. The following deduc-
tions can be done in O(|C |) inference steps:

3refer to Section 3.3.2
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(a) (A∨C )∧ (B ∨C ) `M axRes A∨B

(b) (l ∨ A∨C )∧ (l ∨B) `M axRes A∨B ∨C

(c) (l ∨ A∨C )∧ (l ∨B ∨C ) `M axRes A∨B ∨C

Proof. We provide the proof for case (a) by induction on |C | = n:

• If n = 1, then C = {l ′}. Clearly, (A ∨ l ′)∧ (B ∨ l ′) `M axRes A ∨B by application of a
Max-SAT resolution step on literal var (l ′).

• Suppose n > 1 and let l ′ ∈ C . By the induction hypothesis, we can deduce (A ∨
C )∧ (B ∨C \ {l ′}) `M axRes A ∨B ∨ l ′ in n −1 inference steps. Furthermore, B ∨C =
(B∨C \ {l ′})∧(B∨l ′) by expansion and (A∨B∨l ′)∧(B∨l ′) `M axRes A∨B by application
of a Max-SAT resolution step on variable var (l ′). Therefore, we conclude that we can
deduce (A∨C )∧ (B ∨C )} `M axRes A∨B in O(n) inference steps.

Proofs for cases (b) and (c) are similar by induction on |C |.
�

Next, we start dealing with the adaptation of crossing-free resolution derivations and
particularly ensuing derivations. To generate a substitute for a non read-once clause, note
that we can use the literals in the junction nodes of an ensuing derivation, i.e., the nodes
where paths starting from the non read-once clause intersect. To generate such substitutes
using Max-SAT resolution, we start by dealing with read-once linear parts in the proof.
Informally, we want to drag (i.e., bring along) each non read-once clause while unfolding
the proof until they are reused. This is formally established for read-once linear parts of the
proof in the following lemma. Note that the implications of equality

∗= in the proof will be
further discussed in Section 6.3.3.

Lemma 6.2. Let φ be a CNF formula, π=C1, ...,Cs(π) be a read-once linear resolution deriva-
tion of clause C 6=� fromφ. We can deduceφ`M axRes C∧(C1∨C ) in O(s(π)×w(π)) inference
steps.

Proof. Let m = s(π). Since π is read-once, it can be trivially adapted into a Max-SAT res-
olution derivation of C from φ of the same size by replacing every resolution step with a
Max-SAT resolution step. Next, we prove by induction on i ∈ {1, ..,m −1} that we can infer
C ′

i =C1 ∨Ci+1 at the i th Max-SAT resolution step:

• For i = 1, the first Max-SAT resolution on clauses C1 = l1 ∨ A1 and D1 = l1 ∨B1 w.r.t
var (l1) generates the following compensation clause:

CC1|1 = l1 ∨ A1 ∨B1
∗= l1 ∨ A1 ∨ A1 ∨B1 =C1 ∨C2 =C ′

1

Note that to establish the equality
∗= 4, we can add the tautological clauses l1 ∨ A1 ∨

B1 ∨ A1 (or alternatively l1 ∨ A1 ∨ A1) to the formula) in which case l1 ∨ A1 ∨ A1 ∨B1

4which is sound for Max-SAT (c.f. Remark 13 in [LHG08])
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Ci = li ∨ Ai Di = li ∨Bi

Ci+1 = Ai ∨Bi

CC1|i = li ∨ Ai ∨Bi

C ′
i−1 =C1 ∨Ci =C1 ∨ li ∨ Ai

C1 ∨ li ∨ Ai

C1 ∨ Ai

C1 ∨ Ai ∨Bi

C ′
i =C1 ∨ Ai ∨Bi =C1 ∨Ci+1

var (li )

var (li )

Figure 6.8: Induction step to infer C ′
i at the i th step. Solid lines represent the application

of the Max-SAT resolution rule whereas dashed lines represent compaction or expansion.
Unused compensation clauses are omitted.

can be trivially inferred by compaction. Furthermore, if D1 is a unit clause, CC1|1 is
not generated. However, we can simply add the tautological clauses l1∨A1∨A1 which
correspond to C1 ∨C2 since D1 = l1 (i.e., B1 is empty).

• Suppose that we can generate C ′
i−1 =C1 ∨Ci at the i th −1 Max-SAT resolution step.

The i th step on Ci = li ∨ Ai and Di = li ∨Bi w.r.t var (li ) generates the resolvent
Ci+1 = Ai ∨Bi and the compensation clauses CC1|i = li ∨Ai ∨Bi and CC2|i = li ∨Ai ∨B .
The induction step to infer C ′

i is represented in Figure 6.8. Note that similarly to

the base case, if Di = li (i > 1) is a unit clause, i.e., the i th step corresponds to a
deletion of literal li from Ci = li ∨Ai deducing the resolvent Ci+1 = Ai , the tautological
clauses li ∨ Ai ∨ Ai can be added to the formula thus replacing CC1|i in Figure 6.8.
However, as showcased in the same figure, the addition of such clauses in case D1

is unit can be avoided since the initial expansion step on C ′
i−1 suffices to generate

C1 ∨ Ai =C1 ∨Ci+1 =C ′
i .

Finally, by Proposition 6.2 (case b.), the inference of C1 ∨ Ai ∨Bi in Figure 6.8 requires
O(|Bi |) Max-SAT resolution steps and, thus, every step in π is clearly adapted in O(w(π))
inference steps to generate C and C1 ∨Cm . Therefore, we conclude that we can deduce
φ`M axRes C ∧ (C1 ∨Cm) in O(s(π).w(π)) inference steps.

�

Example 6.6. We consider the read-once linear derivation of clause x3∨x6 fromφ= {x4, x2∨
x4 ∨x6, x2 ∨x3} represented on the left of Figure 6.9. The Max-SAT resolution proof deducing
x3 ∨x6 and x4 ∨x3 ∨x6 is represented on the right of Figure 6.9.

Next, we establish our main result on the adaptation of crossing-free resolution deriva-
tions. The proof in the following theorem particularly deals with the junction nodes in
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x4 x2 ∨x4 ∨x6

x2 ∨x6 x2 ∨x3

x3 ∨x6

x4 x2 ∨x4 ∨x6

x2 ∨x6

x4 ∨x2 ∨x6

x2 ∨x3

x3 ∨x6

x2 ∨x6 ∨x3

x4 ∨x6

x4 ∨x2 ∨x6

x4 ∨x6 ∨x3

x4 ∨x3 ∨x6

Figure 6.9: Dragging the non read-once clause while unfolding a read-once linear sec-
tion of the proof. Solid lines represent the application of the Max-SAT resolution rule
whereas dashed lines represent compaction or expansion. Unused compensation clauses
are omitted.

ensuing derivations, i.e., nodes where the paths starting from the non read-once clauses in-
tersect. More specifically, we want to drag or bring along the non read-once clause through
these particular nodes. We provide an illustration of a full adaptation in Example 6.7.

Theorem 6.3. Letφ be a CNF formula and π be a crossing-free resolution derivation of clause
C from φ. We can deduce φ`M axRes C in O(s(π)× (s(π)+w(π))2) inference steps.

Proof. Property 6.1 ensures that each ensuing derivation can be adapted independently.
Let C l be a non read-once clause in π and w.l.o.g we only consider it ensuing derivation
ED(C l ). We prove that at each step of ED(C l ) deriving clause C ′, we can infer C ′ and SC∨C ′
where SC is either C l or its substitute in the path leading to C ′. The proof is by induction on
the size of the derivation. The base case where the derivation is empty is trivial. Next, using
Lemma 6.2, we can suppose w.l.o.g that C ′ is derived in a junction node (of paths starting
from C l ). Let l ∨ A and l ∨B be the premises of the resolution step deriving C ′ = A∨B .

The induction hypothesis ensures that there exists a Max-SAT resolution derivation of
l∨A and C∨l ∨ A. As showcased in Figure 6.10, C l∨l can be used to replace the occurrences
of C l in the derivation of l ∨B . Note that to avoid using tautological substitutes, we can
suppose w.l.o.g that l ∉C l by interchanging the proofs of l ∨ A and l ∨B when necessary
thus entailing a different unfolding order of the original proof and the generation of the
exact same clause as a substitute in such nodes. Again, similarly to the left side, the
induction hypothesis ensures the existence of a Max-SAT resolution derivation of l ∨B and

C l ∨ l ∨ l ∨B and, therefore, C l ∨ l ∨B by expansion. Clearly, C ′ = A∨B can be derived by
Max-SAT resolution and we showcase in Figure 6.10 how C l ∨C ′ =C ∨A∨B can be inferred
using the compensation clauses as well as C l ∨ l ∨ A and C l ∨ l ∨B .
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l ∨ A l ∨B

A∨B

l ∨ A∨B

l ∨ A∨B

C l ∨ l ∨ A C l ∨ l ∨B

...
...

C l C l ∨ l

C l ∨ l ∨ A
C l ∨ A∨B

C l ∨ l ∨ A∨B

C l ∨ l ∨ A
C l ∨ A

C l ∨ A∨B

var (l )

var (l )

var (B)var (l )

Figure 6.10: Inferring C l ∨ A∨B in a junction node of ED(C l ). Solid lines represent the
application of the Max-SAT resolution rule, bold double arcs represent the application of
Max-SAT resolution to delete opposed sets of literals and dashed lines represent compaction
or expansion. Unused compensation clauses are omitted.

Note that the following particular cases can occur:

• A or B is empty, in which case a unit clause is used to derive C ′ = A∨B . We represent
in Figure 6.11 how to derive C l ∨C ′ in case A is empty. The derivation in case B is
empty is symmetric and thus omitted. Notice that in the case both A and B are empty,
π is a refutation and there is no need to derive C l ∨C ′ in the last Max-SAT resolution
step. In fact, more generally, this is also not necessary for the last junction node in an
ensuing derivation in π.

• A = B in which case the generated compensation clauses are tautological and are not
necessary to derive C l ∨C ′ =C l ∨ A as showcased in Figure 6.12.
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l l ∨B

B

l ∨B

C l ∨ l ∨B

...
...

C l C l ∨ l

C l ∨B

var (l )

var (l )

Figure 6.11: Inferring C l ∨C ′ in case A is empty in a junction node of ED(C l ). Solid lines
represent the application of the Max-SAT resolution rule whereas dashed lines represent
compaction and expansion. Unused compensation clauses are omitted.

l ∨ A l ∨ A

A

C l ∨ l ∨ A C l ∨ l ∨ A

...
...

C l C l ∨ l

C l ∨ l ∨ A

C l ∨ A

var (l )

var (l )

Figure 6.12: Inferring C l ∨C ′ in case A = B in a junction node of ED(C l ). Solid lines
represent the application of the Max-SAT resolution rule whereas dashed lines represent
compaction and expansion. Unused compensation clauses are omitted.

Finally, in each junction node we need O(|B |) inference steps to deduce C l ∨ A∨B using
case (c) in Proposition 6.2. Similarly, using expansion on A and pattern (b) in Proposition 6.2,
we need O(|A|×|B |) inference steps to deduce C l∨l∨A. It is important to note that the width
of the proof may evolve while generating substitutes for non read-once clauses as literals
may be added in junction nodes. However, the width remains bounded by w(π)+ s(π) and
thus each junction node can be adapted in O((w(π)+ s(π))2) inference steps. Therefore, we
conclude that we can deduce φ`M axRes C in O(s(π)× (s(π)+w(π))2) inference steps.

�

Example 6.7. We consider the formula φ= {x1 ∨ x3 ∨ x4, x4 ∨ x5, x4 ∨ x5, x1 ∨ x4, x2 ∨ x4 ∨
x6, x2 ∨x3} and the derivation π of clause x6 from φ represented in Figure 6.7. We omit the

166



6 Bridging the Gap between SAT and Max-SAT Inference – 6.3 From SAT Refutations to
Max-SAT Resolution Refutations

section of the proof (in blue) deriving clause x2∨x3 for simplicity. Note that this omitted part,
i.e., the ensuing derivation of the non read-once clause x2∨x3∨x7 corresponds to a diamond
pattern. Such patterns will be studied in Section 6.4. The adaptation of proof π is reported in
Figure 6.13. We reuse the adaptation of the linear read-once section in Example 6.9. The non
read-once clause and its substitutes are colored in red and added tautological clauses are
represented in green. Note that this is one of the possible adaptations depending on the order
chosen for adapting the branches of ED(x4). Finally, we stress the fact that we could have
generated the clause C = x4 ∨x6 after the last Max-SAT resolution step on clauses x3 ∨x3 (but
we omit this inference since x6 = EC (x4) as mentioned in the proof of Theorem 6.3). Indeed,
C can be inferred by an additional Max-SAT resolution step on the compensation clauses
obtained in the last step, i.e., clauses x3∨x6 and x4∨x3∨x6. In the proof of Theorem 6.3, this
corresponds to the case where B is empty in a junction node of an ensuing derivation.

x4 ∨x5 x4 ∨x5

x4 x4 ∨x2 ∨x6

x2 ∨x6

x4 ∨x2 ∨x6

x3 ∨x6

x2 ∨x3

x2 ∨x6 ∨x3

x4 ∨x6

x4 ∨x2 ∨x6

x4 ∨x6 ∨x3
x4 ∨x3 ∨x6

x4 ∨x3 ∨x6

x4 ∨x3 x4 ∨x1

x1 ∨x3

x4 ∨x3 ∨x1 x4 ∨x3 ∨x1 ∨x3

x4 ∨x3 ∨x1 ∨x3

x4 ∨x3 ∨x1 ∨x3

x4 ∨x1 ∨x3 x4 ∨x1 ∨x3

x1 ∨x3

x3

x6

Figure 6.13: Adaptation of a crossing-free resolution derivation. Solid lines represent the
application of the Max-SAT resolution rule whereas dashed lines represent compaction and
expansion. Unused compensation clauses are omitted.

6.3.3 On Orderings and Tautological Clauses
In this section, we discuss some minor syntactic subtleties that occur in the adaptation.
First, it is important to note that the use of the expansion and compaction rewritings as
full fledged rules is relevant for simplification but not necessary. Recall that these two rules
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are mainly used in order to switch between the different equivalent forms of C when it
is written in CNF form. Each form corresponds to a different ordering of the literals in
C . When applying Max-SAT resolution, a relevant order may be chosen when necessary.
However, an application of a compaction followed by an expansion may correspond to a
certain rearrangement of the variables in CNF form. This may occur when adapting the
read-once linear part of the proof. Indeed, as showcased in Figure 6.8, a compaction may
be followed by an expansion to isolate the clause C1∨li ∨Ai from the compact form C1∨Ai .
Similarly, as shown in Figure 6.10, it may be necessary to isolate the clause C l ∨ l from the
compact form C l ∨ l ∨ A when dealing with junction nodes.

More specifically, we may need to rearrange a certain literal at the beginning or at the
end of the ordering. In Proposition 6.3, we prove that it is possible to switch the first and
last literals in the CNF form of C in O(|C |) inference steps. This entails that in the proof
of Theorem 6.3, the compaction and expansion rules can be omitted and replaced with
O(s(π)× (s(π)+ w(π))) Max-SAT resolutions. Clearly, this does not impact our result in
terms of the size of the resulting adaptation. In Example 6.8, we provide the full simplified
adaptation of the proof in Example 6.7 without the use of rewriting rules.

Proposition 6.3. Let n be a natural number and l1, ..., ln be n literals. We can deduce
(l1)∧ (l1 ∨ l2)∧ ...∧ (l1 ∨ ...∨ ln−1 ∨ ln) `M axRes (ln)∧ (ln ∨ l2)∧ ...∧ (ln ∨ l2 ∨ ...∨ ln−1 ∨ l1) in
O(n) inference steps.

Proof. By induction on n we have:

• If n = 1 the result is trivial.

• For n > 1, the application of Max-SAT resolution on clauses l1 ∨ ....∨ ln−2 ∨ ln−1 and
l1∨....∨ln−1∨ln w.r.t var (ln−1) generates the resolvent clause C = l1∨....∨ln−2∨ln and
the compensation clause CC = l1∨....∨ln−2∨ln∨ln−1. Furthermore, by induction, we
can deduce (l1)∧(l1∨l2)∧...∧(l1∨...∨ln−2∨ln) `M axRes (ln)∧(ln∨l2)∧...∧(ln∨l2∨...∨
ln−2 ∨ l1) in O(n −1) inference steps. A single additional Max-SAT resolution step on
clauses CC and ln ∨l2∨ ...∨ln−2∨l1 w.r.t var (l1) is sufficient to generate the resolvent
clause ln ∨ l2 ∨ ...∨ ln−2 ∨ ln−1 and the compensation clause ln ∨ l2 ∨ ...∨ ln−1 ∨ l1.
Therefore, we deduce the wanted result in O(n) inference steps.

�

Example 6.8. We consider the same formula φ in Example 6.7. We represent in Figure 6.14
a Max-SAT resolution proof (without rewriting) of clause x6 from φ. Notice how we use the
following rearrangement x6∧(x6∨x3) `M axRes x3∧(x3∨x6) to generate the substitute x4∨x3.
Furthermore, the tautological clause x4 ∨x3 ∨x1 ∨x3 colored in green in Figure 6.13 and the
rearrangement in which it is involved are not necessary since the last required substitute for
x1, i.e x4 ∨x1 ∨x3 is naturally generated by the preceding Max-SAT resolution step. Therefore,
they can be deleted as is the case for the full adaptation without rewriting in Figure 6.14.
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x5 ∨x4 x5 ∨x4

x4 x4 ∨x2 ∨x6

x2 ∨x6

x3 ∨x6

x2 ∨x3

x2 ∨x6 ∨x3

x4 ∨x6

x4 ∨x2 ∨x6

x4 ∨x6 ∨x3

x4 ∨x3 x4 ∨x1

x1 ∨x3

x4 ∨x1 ∨x3 x4 ∨x1 ∨x3

x1 ∨x3

x3

x6

Figure 6.14: Adaptation of a crossing-free resolution proof to a Max-SAT resolution proof.
Unused compensation clauses are omitted.

Next, we discuss the implications of the equality
∗= used in the proof of Lemma 6.2, i.e.,

l ∨A∨B
∗= l ∨A∨A∨B . This equality is sound for Max-SAT 5. However, to avoid adding it as

a standalone rule and as explained in the proof of Lemma 6.2, we can consider the addition
of tautological clauses. This may also be required in case of unit clauses. It is important to
note that the number of tautological clauses added to the formula in an adaptation of a
crossing-free resolution derivation π is in O(s(π)× (w(π)+ s(π))). A similar phenomenon
was also noted in [BP07a] for general and linear resolution 6. In addition, notice how the
adaptation may also rely on tautological compensation clauses which are generated by
Max-SAT resolution. Such clauses are usually deleted or omitted in the literature [LH05a;
BLM06; BLM07; LHG08] but they may carry important information which is necessary to
infer substitutes for non read-once clauses.

6.3.4 From Crossing-Free Resolution Refutations to Max-SAT
Resolution Refutations

In the previous sections, we established our result on any resolution derivation, i.e., not
necessarily deducing the empty clause. In the following corollary, we project our results on

5c.f. Remark 13 in [LHG08]
6We similarly avoid the p-simulation terminology in this case although the definition can be relaxed to allow

such a subtlety.
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the specific case of crossing-free refutations. We also illustrate in Example 6.9 an adaptation
of a crossing free resolution refutation into a Max-SAT resolution refutation.

Corollary 6.4. Let φ be an unsatisfiable CNF formula and π be a crossing-free resolution
refutation of φ. We can deduce φ`M axRes � from φ in O(s(π)3) inference steps.

Proof. Trivially entailed from Theorem 6.3 since w(π) =O(s(π)) for refutations.
�

x1 ∨x3 x1 x1 ∨x2 x2 ∨x3

x3

x1 ∨x3

x2 ∨x3

x3

�

x1 x1 ∨x2 x2 ∨x3

x2

x1 ∨x2

x1 ∨x3

x3

x2 ∨x3

x3

x1 ∨x3

�

Figure 6.15: Two possible adaptations of the crossing-free resolution refutation represented
in Figure 2.7 depending on the ordering of the resolution steps involving the non-read-once
clause x1. Unused compensation clauses are omitted.

Example 6.9. We consider the unsatisfiable CNF formula φ= (x1)∧ (x1 ∨ x3)∧ (x1 ∨ x2)∧
(x2 ∨x3) and the refutation π of φ represented in Figure 2.7. Clearly, π is crossing-free since
there is only one non read-once clause, i.e., x1. In fact, π also corresponds to the ensuing
derivation of x1 and � is its ensued clause, i.e., ED(x1) = π and EC (x1) =�. Two possible
adaptations of π are illustrated in Figure 6.15. The non read-once clause and its substitutes
are colored in red. The possible adaptations correspond to different possible orderings of the
proof. In the adaptation on the left, we consider that the resolution step on clauses x1 ∨ x1

and x1 precedes the one on clauses x1 and x1 ∨ x2, and inversely for the adaptation on the
right. Note that the adaptation on the left corresponds to the handmade example provided
by Bonet et al. in [BLM06; BLM07] 7 and thus provides a theoretical understanding of why
this handmade proof is valid through the lens of crossing-free resolution.

6.4 On Diamond Patterns
In this section, we study specific resolution refutations in order to determine the limits
and/or features of the proposed adaptations in previous sections. In particular, we show
that the adaptation proposed for unrestricted resolution in Corollary 6.2 has a worst case
exponential blow-up in the size of the refutations. First, we introduce in the following

7c.f. Example 1 in [BLM06] or Example 3 in [BLM07]
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definition a new pattern which we will use to build such refutations. We can represent this
pattern by a diamond as in Figure 6.17. Notice that the particular diamond pattern (x, y,�)
is a resolution refutation. Furthermore, each diamond pattern π can be trivially adapted
into a Max-SAT resolution proof of size |π|−1 as shown in Figure 6.18. Our aim is thus to
simply use these patterns to theoretically evaluate and compare the proposed adaptations
regarding specific resolution refutations.

Definition 6.5 (Diamond). Let A be a disjunction of literals and let x ∉ var (A) and y ∉
var (A) two distinct variables. We define the diamond pattern (x, y, A) as the sequence of
resolutions represented in Figure 6.16.

x ∨ Ax ∨ y x ∨ y

y ∨ A y ∨ A

A

Figure 6.16: Diamond pattern (x, y, A)

Figure 6.17: Simplified representation of a diamond pattern

x ∨ y x ∨ y

x x ∨ A

A

x ∨ A

Figure 6.18: Trivial adaptation of a diamond pattern (x, y, A)

Now, imagine that the topmost clause of a diamond pattern (x, y,�) is derived through
another diamond pattern. We iterate the same reasoning to define below a k-stacked
diamond pattern. Such a pattern can be represented as a stack of diamonds as shown in
Figure 6.19 for k = 3. Clearly, k-stacked diamonds are resolution refutations as they deduce
the empty clause �.

Definition 6.6 (k-Stacked Diamond). Let k ≥ 1 be a natural number and let xi and yi where
1 ≤ i ≤ k be distinct variables. A k-stacked diamond pattern is formed by k diamond patterns
(xi , yi , Ai ) where 1 ≤ i ≤ k as follows:
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• A1 =� and Ai = (x1 ∨·· ·∨xi−1) for 1 < i ≤ k

• each diamond (xi , yi , Ai ) is stacked on top of (xi−1, yi−1, Ai−1) s.t. the last conclusion of
the former is the topmost central premise of the latter

Figure 6.19: Simplified representation of a 3-stacked diamond pattern

Note that, when k > 2, a k-stacked diamond is not semi-tree-like. The size of a k-stacked
diamond π is |π| = 3k. Furthermore, we have µ(π) = k−1. Therefore, after the application of
the adaptation described in Theorem 6.2, we obtain a max-refutation whose size is at least
2k−1 showing that the proposed adaptation for the unrestricted case can be exponential in
the worst case. However, it is worth noting that if each diamond πd = (x, y, A) is considered
independently, we can simply add a single split step on x ∨ A with respect to y and replace
each resolution with a Max-SAT resolution to obtain a valid Max-SAT derivation of A of size
|πd |+1 as showcased in Figure 6.20. This is possible since each diamond can be considered
as a regular tree resolution derivation of A in the spirit of Theorem 6.1. Finally, noticing
that (k-stacked) diamond patterns fall within the crossing-free resolution fragment. We can
adapt such proofs without increasing their size as showcased in Figure 6.21. This particular
adaptation is entailed by the fact that each diamond is a crossing-free derivation and more
specifically an ensuing derivation of a non read-once clause.

x ∨ y x ∨ y ∨ A

y ∨ A

x ∨ y ∨ A x ∨ y

y ∨ A

x ∨ A

A

Figure 6.20: Adaptation of a diamond pattern as a regular tree resolution proof using the
split rule
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x ∨ y x ∨ A x ∨ y

y ∨ A

x ∨ y ∨ A

x ∨ y ∨ A y ∨ A

A

Figure 6.21: Adaptation of a diamond pattern as a crossing-free resolution proof

6.5 Certificates & Explanations for Max-SAT
In this section, we briefly describe other results which are detailed in [Py21]. We first present
some results on certificate generation for Max-SAT. Indeed, our adaptations in Section 6.2
led to the introduction of the first independent proof builder for Max-SAT, called MS-
Builder, which relies on successive calls to a SAT solver. Our work also extends to studying
the inferential power of proof system for Max-SAT through the notion of explainability.

6.5.1 Certificates for Max-SAT
Our adaptations in Section 6.2 led to the introduction of the first independent proof builder
for Max-SAT. This builder, called MS-Builder, generates certificates for the Max-SAT Problem
in the particular form of a Max-SAT-equivalence-preserving transformation from the initial
formula into a formula composed of a set of empty clauses and a satisfiable sub-formula,
plus a model for this satisfiable sub-formula. Given an initial formula, the idea behind
MS-Builder is to iteratively call a SAT oracle to get a resolution refutation which is first
adapted into a max-refutation and then applied to the current formula. The builder halts
when the SAT oracle returns that the current formula is satisfiable, in which case a model
can be provided. The complete sequence of transformations which generates k empty
clauses is a proof that the Max-SAT optimum is at least k while the the model ensures that
it is possible to falsify exactly k clauses and, therefore, that the Max-SAT optimum k.

The proof builder can be also augmented with an additional preprocessing step before
performing an adaptation. As resolution refutations are computed using SAT oracles, we
can to fix non read-once unit clauses in the returned refutations when possible. Indeed, SAT
algorithms rely heavily on UP 8 which simply consists in propagating literals in unit clauses
in the whole formula, because satisfying those literal is necessary to satisfy the formula.
Applying unit propagation can be seen as the use of a particular unit clause in several
resolution steps. Transforming resolution refutations to fix non-read-once unit clauses
can therefore be a useful preprossessing technique. The soundness of such a mechanism
is established in the following proposition. We also provide two examples illustrating

8refer to Section 2.2.1
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respectively the preprocessing mechanism and the generation of certificates by the proof
builder.

Proposition 6.4. Let φ be an unsatisfiable CNF formula, π be a resolution refutation of φ
and C be a non-read-once unit clause in π s.t. every path in π from C to � contains no
irregularity on var (C ). There exists a resolution refutation of φ such that C is read-once
containing O(|π|) inference steps.

Proof. We assume w.l.o.g. that C = x. Since every path in π from C to � contains no
irregularity on var (C ), we can delete the resolution steps on clause C and prune the
refutation accordingly to deduce the clause C ′ = x instead of�. We can now add a resolution
step on clauses C and C ′ to get a resolution refutation of φ containing O(|P |) inference
steps.

�

Example 6.10. We consider the φ= (x1)∧ (x1 ∨x3)∧ (x1 ∨x2)∧ (x2 ∨x3) and the resolution
refutation of π represented in Figure 2.7. Note how the non-read-once unit clause C = x1

can be fixed by the preprocessing described in Proposition 6.4. To this end, we simply need
to delete the unit clause and prune the proof and then re-inject it at the end of the proof to
deduce the empty clause. The resulting refutation after preprocessing is represented on the left
in Figure 6.22. Since it is a read-once proof, it can be trivially adapted into the max-refutation
represented on the right in the same figure.

x1 ∨x3 x1 x1 ∨x2 x2 ∨x3

x1 ∨x3

x1

�

x1 ∨x3x1 x1 ∨x2 x2 ∨x3

x1 ∨x3
x1 ∨x2 ∨x3
x1 ∨x2 ∨x3x1

�

Figure 6.22: Preprocessing proofs in MS-builder

Example 6.11. We consider the formula φ= (x1)∧ (x1 ∨x3)∧ (x1 ∨x2)(x2)∧ (x3)∧ (x2 ∨x3)
passed to MS-Builder in standard WCNF format 9. MS-Builder calls a SAT oracle for the first
time which returns that the initial formula is unsatisfiable alongside a read-once refutation
π represented on the left in Figure 6.23. π is then adapted into the max-refutation represented
on the right in the same figure. After applying the max-refutation, we obtain the current
formula φ = (x1 ∨ x3)∧ (x1)∧ (x1 ∨ x2)∧ (x2 ∨ x3)∧�. MS-Builder calls the SAT oracle for
the second time without including the empty clause. The formula is unsatifiable and the
oracle returns the resolution refutation represented in Figure 2.7 which is preprocessed to
fix the non-read-once unit clause and adapted as specified in Example 6.10. After applying

9https://maxsat-evaluations.github.io/2022/rules.html
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the max-refutation, the current formula becomes φ= (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3)∧�∧�.
MS-Builder calls a SAT oracle for the third and last time since it returns that the current
formula without the empty clauses is satisfied by the assignment α= {x1, x2, x3}.

x2 ∨x3 x2 x3

x3

�

x2 ∨x3 x2 x3

x2 ∨x3

x3

�

Figure 6.23: Adaptation of a resolution refutation in MS-Builder

The proof builder is also coupled with an extendable proof checker, called MS-checker,
which takes the CNF formula and a Max-SAT certificate as input. After reading the formula,
it verifies that the proposed inference rules are correct and that the premises are still in
the formula then applies the transformation. Finally, it checks if the truth assignment
satisfies the final formula without considering the empty clauses. Both the builder and
the checker were implemented in C++ 10 while the resolution refutations were computed
using Booleforce 11. An experimental evaluation was conducted on the benchmarks of
the unweighted and weighted complete tracks of the 2020 Max-SAT Evaluation 12. The
unweighted (resp. weighted) benchmark consists of 576 (resp. 600) industrial and crafted
instances. With a timeout set to 1 hour, MS-Builder has succeeded to construct full proofs
for 163 unweighted (resp. 144 for weighted) instances over 576 (resp. 600). More inter-
estingly, MS-Builder has succeeded to build at least half of the proofs, with respect to the
optimum of the input formula, for 302 unweighted instances over 463 (resp. 326 weighted
instances over 489) for which the optimum cost is known. We refer the reader to [Py21] for
the detailed experimental evaluation.

6.5.2 Explanations for Max-SAT
Our work also extends to the study of the inferential power of Max-SAT proof systems.
Hereafter, we succinctly describe the major results and the reader can refer to [Py21] for
the detailed results and proofs. First, we introduce the notion of explainable clauses which
intuitively represent information that can be deduced from a formula. If we exhibit an
equivalence-preserving transformation π from φ to C ∧φ′, we say that π is an explanation
of C in φ. Such proof is sufficient to certify that the wanted information, i.e., a clause, can
be inferred soundly from the formula. We characterize explainable clauses in Theorem 6.4.
Inferential completeness is strongly related to the notion of explanation. Naturally, a proof
system is inferentially complete if it is possible to provide an explanation using its rules for
every explainable clause. Recall that, as stated in Proposition 3.3, Max-SAT resolution is
not inferentially complete. We will therefore use a new proof system for explanation, called

10Source code available on https://pageperso.lis-lab.fr/matthieu.py/en/software.html
11http://fmv.jku.at/booleforce/index.html
12https://maxsat-evaluations.github.io/2020/
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the Explanation Calculus (ExC), composed of two rules: the symmetric cut rule 13 and the
expansion rule 14. The expansion rule is defined below and proved sound for Max-SAT and
it can be intuitively considered as an extension of the weakening rule used in the context of
SAT 15.

Definition 6.7 (Explainable Clause). Let φ be a CNF formula and C be a non-tautological
clause, we say that C is explainable in φ if there exists a CNF formula φ′ such that φ≡C ∧φ′

otherwise we say that C is unexplainable in φ.

Theorem 6.4. Let φ be a CNF formula and C be a non-tautological clause. C is explainable
in φ if and only if ∃C ′ ∈φ such that C ′ doesn’t oppose C and ∀x ∉ var (C ), C ∨ x and C ∨ x
are both explainable in φ.

Definition 6.8 (Expansion). Given a clause C and a set of literals B = {b1, . . . ,bk }, the expan-
sion rule applied on C w.r.t B is defined as follows:

C

CC1 = A∨b1

CC2 = A∨b1 ∨b2

...

CCk = A∨b1 ∨ ...∨bk−1 ∨bk

Ce = A∨B

where Ce is the expanded clause and CC1, . . . ,CCk are compensation clauses.

Proposition 6.5. The expansion rule is sound for Max-SAT.

Definition 6.9 (Explanation Calculus). The Explanation Calculus (ExC) is composed of two
rules: symmetric cut and expansion.

Proposition 6.6. ExC is inferentially complete.

We study the relation between ExC and other proof systems. It is important to note that
we are interested in the notion of inference in the context of Max-SAT on a wider scope, i.e.,
we want to study the general inferential power of proof systems and compare them in this
sense and not just focus on their refutational power. We prove that ExC i-p-simulates 16

symmetric cut + split, Max-SAT resolution and ResS [LR20b]. Finally, we observe that it is
possible to weaken Max-SAT resolution into the symmetric-cut without loosing any power
if we add expansion. These results are summarized in Figure 6.24.

Next, we show that, given a CNF formula φ, we can exhibit an explanation containing
O(2|V ar (φ)|) inference steps in ExC for any explainable clause C in φ. This result is estab-
lished in Theorem 6.5 by showing that it is possible to reverse infer the wanted transforma-
tion starting from C instead of φ as specified in the characterization proved in Theorem 6.4.

13refer to Definition 3.12
14Note that the expansion rule used here is different from the expansion rewriting used in Section 6.3.2.
15refer to Definition 2.22
16refer to Definition 3.24
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ExC
i-p-equivalent Max-SAT resolution

+
expansion

i-p-simulate r-p-simulate

ResS

i-p-sim
ulate [BL20]

r-p-sim
ulate [BL20]

symmetric cut
+

split

i-p-simulate

Max-SAT resolution
r-p-simulate [BL20]

Figure 6.24: Relationship between ExC and other proof systems

This result provides a better bound on the size of the proofs than the existing result satura-
tion 17. We illustrate how to generate clause explanations in ExC in Example 6.12. Note that
the notion of explainability as well as our results can be extended to formulas as detailed
in [PCH21d; Py21].

Theorem 6.5. Let φ be a CNF formula and C be an explainable clause in φ. There exists an
explanation of C in φ using ExC rules containing O(2|var (φ)|) inference steps.

Example 6.12. We consider the CNF formula φ= (x1 ∨x2)∧ (x1 ∨x2 ∨x3)∧ (x3)∧ (x1) and
we want to explain C = x1. As showcased in the proof of Theorem 6.5, we can construct the
explanation of C in ExC represented in Figure 6.25. Indeed, considering the variables in
lexicographic order, since C is not subsumed by a clause inφnor it is opposed to all the clauses,
we thus try to explain x1 ∨x2 and x1 ∨x2 in φ. While the former is trivially explained since it
is in the formula, the latter not subsumed by a clause nor opposed to all the clauses. Therefore,
we need to explain the clauses x1 ∨x2 ∨x3 and x1 ∨x2 ∨x3. The first clause is subsumed by
x3 and therefore it can be explained by expansion while the second one is in the formula and
therefore is trivially explained. We conclude that φ ` (x1 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1)∧ (x1)
by applying the transformation represented in Figure 6.25. Notice how the explanation is
constructed from the bottom to the top starting from C . Furthermore, clauses (x1 ∨x3) and
(x1∨x2∨x3) play the role of compensation clauses, essential to preserve Max-SAT equivalence.

Our result on clause explainability can also be used to build certificates for Max-SAT as
established in Theorem 6.6. Intuitively, the idea is to iteratively try to explain the empty
clause until it is no longer explainable in the current formula. By doing this, we iteratively
infer as many empty clauses as the optimum of the initial formula. Finally, we mention that
our results can be easily extended to weighted Max-SAT as detailed in [PCH21d; Py21].

17refer to Section 3.3.2
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x3

x1 ∨x3 x1 ∨x2 ∨x3 x1 ∨x2 ∨x3 x1 ∨x2 ∨x3

x1 ∨x2 x1 ∨x2

x1

Figure 6.25: Explanation of clause C = x1 in φ

Theorem 6.6. Let φ be a CNF formula. we can deduce φ `E xC �∧·· ·∧�︸ ︷︷ ︸
opt (φ)

∧φ′ where φ′ is

satisfiable in O(|φ|×2|var (φ)|) inference steps.

6.6 Conclusion & Future Work
In this chapter, we tackled the open problem of adapting resolution refutations into proofs
valid for Max-SAT. In particular, we proposed linear adaptations with respect to the size of
the resolution refutations in the following cases: regular tree resolution, tree resolution and
semi-tree resolution. These results are achieved by augmenting Max-SAT resolution with
the split rule which enabled us to duplicate clauses by adding literals when necessary. We
have also generalized our adaptation to unrestricted resolution refutations, even though
the proposed transformation can produce a max-refutation whose size is exponential in
the worst case. We also proposed a new class of resolution, called crossing-free resolution,
for which an adaptation to Max-SAT resolution proofs is possible without a substantial
increase in the size of the proofs. Furthermore, we relied on particular resolution proofs,
called (k-stacked) diamond patterns to study the features and limits of our proposed
adaptations specifically in the unrestricted case. Note that our results on proof adaptations
also include the attempt in [PCH21b; PCH22c] where we study adaptations from SAT
proofs to Max-SAT proofs through the lens of SAT oracles, exploiting their ability to return
resolution refutations, although we did not manage to provide formal guarantees on the
resulting proofs in this case. Our results contribute to the difficult open problem of adapting
resolution proofs to Max-SAT resolution proofs without increasing their size thus helping to
bridge the gap between resolution for SAT and Max-SAT. Furthermore, unlike SAT solvers,
Max-SAT solvers are still not able to output certificates in the form of Max-SAT equivalent
proofs mainly due to the variety of solving paradigms and due to the theoretical gap between
SAT and Max-SAT resolution. Our work has been useful in this regard as it led to the
introduction of the first independent Max-SAT proof builder, able to compute certificates
by relying on successive calls to a SAT oracle [PCH21a; Py21]. Our work also extends beyond
the refutational power of proof systems for Max-SAT as our results on explainability provide
further insights on the inferential power of proof systems for Max-SAT [PCH21d; Py21].

As future work, it would be interesting to characterize a larger intersection between
SAT and Max-SAT resolution by proving that an adaptation of an extended refinement of
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resolution (ideally unrestricted resolution) is possible without a substantial increase in
the size of the proofs. We could look into whether this can be achieved by augmenting
Max-SAT resolution with other inference rules like the split rule. Overall, the existence of
an adaptation that does not increase substantially the size of an unrestricted resolution
proof remains an open question and it would be relevant to further investigate this topic
either by exhibiting a polynomial adaptation or refuting its existence. Other prospects
of our work include using the proposed adaptations in the context SAT-based algorithms
for Max-SAT. For instance, it would be interesting to extend core-guided algorithms with
our linear adaptations when deemed possible in the spirit of [HM11]. Our proof builder
could also benefit from more advanced processing techniques used in SAT-based solvers
such as stratification 18 or from new techniques specifically devised for the builder such as
extending the preprocessing mechanism in Proposition 6.4 to non-unit clauses.

18refer to Section 3.2.2.2
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Conclusion

Our work in this manuscript revolved around two major logic-based formalisms: the well-
known SAT problem and its natural optimization extension Max-SAT. Our contributions
aimed to deepen our understanding of the power and limits of reasoning and inference
and how to efficiently apply them in the context of the SAT and Max-SAT paradigms. Our
first contribution involved the evaluation of different strategies which take advantage of
the restart mechanism to combine two state-of-the-art heuristics, i.e., VSIDS and CHB.
In particular, we proposed a reinforcement learning approach relying on a Multi-Armed
Bandit (MAB) framework for adaptive branching in SAT. We used a reward function which
evaluates the capacity of the heuristics to reach conflicts quickly and efficiently. Our results
indicate that Upper Confidence Bound (UCB) strategies such as UCB1 and MOSS which
conduct stochastic inference on the mean reward of each heuristic in the context of our
MAB framework are able to achieve a considerable gain in terms of solved instances and
solving time. Our work in this regard touches upon the major challenge of combining
or finding a middle ground between symbolic and numeric AI, which are often seen as
incompatible or opposed with one another. Recent works including ours in the context of
SAT [CHT21a; CHT21b; CHT21d; CHT22a] and CSP [CHT20; CHT21c] suggest that there
is an interest in applying techniques originating from non-symbolic AI and particularly
reinforcement learning in combinatorial problem solving. It would be therefore interesting
to further investigate this line of research by trying to apply similar frameworks to enhance
the reasoning power of SAT solvers. One can target other components in modern solvers
such as restarts, backtracking and clause-database management among others. It would
be also relevant to investigate whether such frameworks can be incorporated both in BnB
solvers and SAT based solvers for Max-SAT.

Our second contribution consisted in thoroughly investigating the power of inference
in the context of Max-SAT BnB through the property of UP-resilience. We showed that
this notion can help quantify the impact of Max-SAT resolution transformations of ISs on
the SUP mechanism. Our observation on the direct impact of the order of application
of Max-SAT resolution during the ISs transformation on its UP-resilience, led to a more
in-depth understanding of the efficiency (or the lack thereof) of learning mechanisms used
during LB estimation in the literature including the traditional patterns [LMP07; Li+10a]
and the recently introduced UCS patterns [AH14d]. In particular, we showed that, while the
traditional three patterns are UP-resilient with respect to any order of application of Max-
SAT resolution, the recently introduced UCS patterns are not necessarily UP-resilient. They
are nevertheless UP resilient with respect to other newly introduced orders. Our results thus
contribute to explain the limits of the current learning mechanisms and to shed the light on
the recent empirical observations in [AH14d]. To our best knowledge, this is the first work
in which UP-resilience is used to theoretically characterize the transformations by Max-SAT
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resolution with respect to the possible orders of its application. Indeed, this can provide
new insights on how to extend learning mechanisms used in Max-SAT BnB solvers. It would
be relevant to study whether Max-SAT inference under the Max-SAT resolution rule can be
efficiently incorporated in the recent BnB paradigm introduced in [Li+21a; Li+22a] either
to further guide the exploration of the search or simply to preprocess the formula before
the actual search. It would also be relevant to study whether similar learning mechanisms
can be used in the context of SAT-based solvers and specifically those which already exploit
Max-SAT resolution to transform cores returned by SAT solvers [HM11; NB14].

Our contributions also extend to the study of the refutational and inferential power of
proof systems for Max-SAT and their relation with SAT inference. We particularly tackled
an open problem since the introduction of Max-SAT resolution as a complete calculus
for Max-SAT in [BLM06; BLM07] which consists in adapting resolution refutations into
max-refutations of reasonable size. We proposed linear adaptations with respect to the
size of the resolution refutations in the case of regular tree resolution, tree resolution and
semi-tree resolution when Max-SAT resolution is augmented with the split rule. Moreover,
we showed that an adaptation of general resolution refutations is possible but with a
worst case exponential blow-up in the size of the proofs. We also proposed a new class
of resolution, called crossing-free resolution, for which an adaptation using exclusively
Max-SAT resolution is possible without a substantial increase in the size of the proofs.
These results also helped to devise an independent proof builder for Max-SAT, called MS-
Builder, which is able to compute certificates for Max-SAT by relying on successive calls
to a SAT oracle. Our work also extends beyond the refutational power of proof systems
for Max-SAT as we study the inferential power of Max-SAT proof systems through the
notion of explainability. As future work, it would be interesting to characterize a larger
intersection between SAT and Max-SAT resolution by proving that an adaptation of an
extended refinement of resolution (ideally unrestricted resolution) is possible without
a substantial increase in the size of the proofs. We could look into whether this can be
achieved by augmenting Max-SAT resolution with other inference rules like the split rule.
Overall, the existence of an adaptation that does not increase substantially the size of
an unrestricted resolution proof remains an open question and it would be relevant to
further investigate this topic either by exhibiting a polynomial adaptation or refuting
its existence. Other prospects of our work include using the proposed adaptations in
the context of SAT-based algorithms for Max-SAT. As mentioned above, increasing the
knowledge on Max-SAT inference and particularly Max-SAT resolution can be used to
extend and enhance the efficiency of SAT-based algorithms for Max-SAT. For instance, it
would be interesting to extend core-guided algorithms with our linear adaptations when
deemed efficient compared to cardinality encodings or simply in the spirit of [HM11]. The
proof builder could also benefit from more advanced mechanisms based on or inspired
from SAT-based solvers for Max-SAT [BJM21]. Finally, it would be relevant to extend some
of our results on close problems such as Minimum Satisfiability (Min-SAT) [LM22] or
Constraint Optimization (COP) [RBW06].
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