N

N

Development of a dynamic resource allocation controller
for partially reconfigurable FPGAs with service
guarantee approach
Alexis Duhamel

» To cite this version:

Alexis Duhamel. Development of a dynamic resource allocation controller for partially reconfigurable
FPGAs with service guarantee approach. Electronics. Nantes Université, 2022. English. NNT:
2022NANU4077 . tel-04088507

HAL Id: tel-04088507
https://theses.hal.science/tel-04088507

Submitted on 4 May 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-04088507
https://hal.archives-ouvertes.fr

I\l Nantes

W Université

THESE DE DOCTORAT DE

Rapporteurs avant soutenance :

M. DE LA TORRE Eduardo Associate Professor, Universidad Politécnica de Madrid
M. TESSIER Russell Professor, University of Massachussets

Composition du Jury :

Président : M. VERDIER Francois Professeur, Université Cote d'Azur

Examinateurs : M. CHILLET Daniel Professeur, Université de Rennes 1
M. DE LA TORRE Eduardo Associate Professor, Universidad Politécnica de Madrid
M. TESSIER Russel Professor, University of Massachussets

Directeur de thése : M. PILLEMENT Sébastien Professeur, Nantes Université

Encadrante : Mme. KOUKI Wiem Ingénieure de recherche, Capgemini Engineering, Nantes

Contents

Table of Contents
List of Figures
List of Tables
Résumé long

1 Introduction

1.1 Contributions L oL
1.2 Dissertation organization

Background and model definition

2.1 Self-reconfigurable system design
2.1.1 Reconfigurable region definition
2.1.2 DPR management methodology
2.1.3 Architecture design for reconfigurable systems
2.1.4 Frameworks and libraries
2.1.5 Proposed architecture,

2.2 Self-reconfigurable systems management
2.2.1 Management methodologies
2.2.2 Mapping and scheduling for self-reconfigurable systems
2.2.3 Hybrid methodologies

2.3 Conclusion

Quality-oriented application management

3.1 Overview e

3.2 Qualitymodel
3.2.1 Execution modes,
3.2.2 Quality of Experience
3.2.3 Quality of Service L.

3.3 Hybrid mapping and scheduling management
3.3.1 Design-time computation
3.3.2 Run-time computations L.,

3.4 Experiments
3.4.1 Platform evaluation

ii

iv

vii

W N

o O O O

11
15
26
29
30
33
42
43

ii

Contents

3.4.2 Simulation environment
3.4.3 Resulting quality scores
3.4.4 Resulting decision times

3.5 Conclusion

4 Runtime scheduling for self-reconfigurable systems

4.1 Overview. e
4.2 List-based PEFT scheduling heuristic

4.2.1 Optimistic Cost Table

4.2.2 Optimistic Earliest Finish Time

4.3 Self-reconfigurable system considerations
4.3.1
4.3.2 Bitstream pre-fetching for makespan reduction

4.3.3 OCT reuse and partial computation

4.4 Quality-oriented management with runtime scheduling
4.4.1

4.4.2 Using module reuse
4.5 PF-PEFT performance experiments

4.5.1

4.5.3 Synthetic workloads
4.6 Quality-oriented methodology experiments
4.6.1
4.6.2 Experimental results

4.7 Conclusion

5 Conclusion and discussion
5.1 Contribution summary
5.2 Future works

Appendices
Bibliography

A Scientific communications

Reconfiguration tasks

Proposed methodology

Experimental setup
4.5.2 Real application benchmarks

Experimental setup

131

145

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1

3.2

3.3
3.4

3.5

3.6
3.7
3.8
3.9
3.10

3.11
3.12

List of Figures

Column-based and Region-based reconfigurable regions defini-

tion in FPGA matrices. 7
PCAP and ICAP partial bitstream flow 9
The three main RR architecture styles in DPR-capable FPGAs 12
Functional abstraction levels 16
CAP-based hardware preemption example. 18
Software delegate thread concept illustration 21
Overview of FUSE’s targeted architecture 22
Overview of ReconOS’s targeted architecture 24
Overview of FOS’ targeted architecture 24
Overview of the proposed architecture 27
Local control interface FSM 27
Autonomic quality management 31
Roy et al. quality-oriented scheduling principle 32
Canonical application with its adjacency matrix 35
[lustration of the pre-fetch and reuse scheduling techniques. . 39
Critical Path Aware scheduling principle 42

Task graph representation of the multi-resolution H.264 en-

coder benchmark with optional filtering and encryption tasks. 47
Overview of the proposed quality-oriented hybrid design-time /run-
time management of self-reconfigurable system. 53
Deadline violation due to a task assignment overload on RR1. 56
Schedule of a sample task graph on a RR and a CPU using the

fixed mapping scheduling heuristic. a7
Scheduling decision time of the fixed mapping ASAP heuristic

by the number of nodes in the DAG task graph 58
Database solution space in the QoE-QoS domain. 59
Content of the run-time workload package. 60
Mlustration of the potential constraints on FPGA resources . . 62
Hardware programmable deadline monitor 63
Mlustration of downgrade and upgrade operations in the system
timeline 66
Considered architecture for the experiments 69

Simulation environment of the run-time manager. 71

iv

List of Figures

3.13

3.14

3.15

4.1
4.2
4.3
4.4

4.5
4.6

4.7
4.8
4.9
4.10

4.11
4.12

4.13
4.14

4.15

4.16

4.17

4.18
4.19

H.264 QoE score evolution of the greedy-based heuristic on ran-
dom constraints
H.264 QokF score evolution of the greedy-based heuristic on the
restriction of service scenario.
H.264 QoS score evolution upon application of new constraint
levels

Overview of the PEFT scheduling heuristic
Example cases of OCT computation
[lustration of schedule insertion policy
PEFT schedule of the canonical task graph on three CPU re-
SOUTCES. « v v v e e e e e e e e e e
Canonical task graph with reconfiguration tasks
[lustration of EFT policy with insertion, considering reconfig-
uration tasks L Lo oL
MNlustration of idle task constraint on pre-fetching
Just-In-Time bitstream pre-fetching scheduling cases
Partial OCT computation example
Example of reused task between iterations and execution modes
with the schedule-base methodology
Mlustration of Wide and Tall task graph topologies
Lane Detection task graph resulting schedules using ASAP PF
and PE-PEFT
Random synthetic workload decision times and resulting SLRs
Part of the decision time spent computing the OCT table when
OCT reuse is not possible, by system resources composition.

Random synthetic workload decision times and resulting SLRs,
longer task computation times
Comparison of graph topologies impact on SLR and decision
times L
Platform composition impact on resulting decision times and
SLRs.
Traction control application task graph
Constrained workload illustration

2.1
2.2

2.3

2.4
2.5
2.6

3.1
3.2
3.3

3.4

3.5

3.6

3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7

List of Tables

Comparison of DPR controllers 11
Context switching results of CAP-based hardware preemption

from Happeetal. 18
Comparison of different frameworks on selected features of in-

terest. L L 25
Self-reconfigurable system resource usage 29
List of system and application parameters. 35
Time complexity of popular scheduling policies for heteroge-

neous computing oL 41
List of quality parameters for the H.264 application. 48
Definition of the execution modes for the H.264 application. . 49

Application execution modes for the H.264 application, sorted
by increasing quality score Q5. L. 50
Number of unrestricted mappings by execution modes for the
H.264 application. L o 95
Application execution modes for the H.264 encoder benchmark

application after the pruning. 60
On-target profiled execution times of extended H.264 applica-

tion tasks in hardware and software. 70
Bitstream size and reconfiguration time by RRs 70
Profiled worst-case delay on the communication interface. . . 70
Average relative QoE score on 100k iterations 74
Average decision times on 100k iterations 75

Resulting continuity of service execution checks on downgrades 77

Considered architecture resource compositions. 100
Profiled worst-case delay on the communication interface. . . 101
List of benchmark application topologies. 103
On-target scheduling heuristic decision times comparison. . . . 104
Resulting Schedule Length Ratios comparison 104

Traction control execution modes and corresponding QokE values.114
Resulting average decision times of PF-PEFT based methodol-
ogy heuristic in constrained workload scenario. 116

vi

List of Tables

4.8 Part of iterations of H.264 Encoder and Traction Control exe-
cution modes and resulting average QoE score in the workload

constraint scenarioo 117
4.9 Resulting decision times of PF-PEFT based methodology heuris-
tic in denied resources scenario. 118

4.10 Part of iterations of H.264 Encoder and Traction Control ex-
ecution modes and resulting average QoE score in the denied
FESOUICES SCENATIO« . . v v v i v v e e et e e e e 119

4.11 Reusable tasks between execution modes 120

Résumé long

Les Field-Progammable Gate Arrays (FPGAs) reconfigurables dynamique-
ment présentent une solution prometteuse pour réduire 'empreinte des com-
posants électroniques, leur coiit, et leur consommation énergétique. Ce type
de systéme embarqué dit auto-reconfigurable permet le chargement a chaud
d’accélérateurs matériels dans des zones dédiées de la matrice FPGA, appelées
Régions Reconfigurables (RRs), grace a la Reconfiguration Dynamique Par-
tielle (RDP). Des architectures FPGAs et des méthodes de gestion d’allocation
de ressources dédiées a la RDP ont alors été congues pour exploiter au mieux
cette technique. En particulier, les architectures apportant une couche d’ab-
straction matérielle sont d’intérét, car elles simplifient leur utilisation et leur
intégration a des systémes déja existants.

Les latences introduites par la gestion de ces systémes, et en particulier
des opérations de reconfigurations dynamiques partielles, ne permettent pas
d’égaler la performance de plus gros FPGA statiques. Néanmoins, la flexibil-
ité offerte par le chargement a chaud de RRs permet d’exécuter plus de taches
applicatives, sur moins de ressources. Deés lors, la question de la garantie
d’exécution de service se pose. La complexité des charges de travail (ou ser-
vices) a exécuter sur le systéme se superposant a la complexité de la gestion
des RRs justifient le besoin de méthodologies garantissant 1’exécution de ser-
vices.

Ce travail de thése se concentre sur la gestion sur cible de ’exécu-
tion des applications sur systémes a base de FPGAs reconfigurables
dynamiquement avec une approche garantie de service.

Deux principaux verrous technologiques sont identifiés:

e Moduler la complexité de la charge de travail du systéme a
travers une modélisation de la notion de performance et de
service. En identifiant les paramétres d’'une application impactant la
qualité de service percue, il est possible d’influer sur la prise de dé-
cision de la gestion d’allocation de ressources. Cette modulation doit
permettre de résoudre le probléme de 'allocation des ressources afin
de satisfaire un niveau de contraintes de latences sur les différentes
ressources du systéme. En exploitant les invariants face aux parameétres
de 'application impactant la qualité, il serait aussi possible de réduire
le nombre d’opérations de reconfigurations.

viii Résumé long

e Sur la base des modéles de niveau de service précédents, abor-
der le probléme de l’allocation dynamique des ressources au
temps de ’exécution en garantissant ’exécution du service. Si
les modéles de qualité de service permettent l'identification d’actions
sur les parameétres pour réduire la complexité du service a exécuter,
I’application de ces décisions reste un probléme conséquent. En partic-
ulier, il est nécessaire de bien anticiper les différents temps de reconfigu-
ration et de prendre en compte la disponibilité des différentes ressources
du systémes (RRs et CPUs dans le cas de ressources hétérogénes).

L’aspect garantie de service doit étre couvert par un aspect temps réel,
i.e. respecter une échéance pour I'exécution de 'application, et d’observer
un niveau minimum de qualité du service défini par les concepteurs
d’applications. De plus, le temps de décision des algorithmes de gestion
d’allocation de ressources doit étre pris en compte dans I’échéance de
I’application afin que ce mécanisme apparaisse comme transparent pour
I'utilisateur.

Pour résoudre la premiére problématique, nous nous intéressons
a la définition de modes d’exécutions basé sur la décomposition
en paramétres qualité d’une application. Ces paramétres influent sur la
“Qualité d’Expérience” (QoE) percue par l'utilisateur et peut étre obtenue par
définition mathématique de métriques objectifs (eg: rapport signal & bruit),
ou par étude empirique (eg: appréciation de la qualité vidéo). Ainsi, il est
possible d’attribuer des scores obtenus par 1'étude de cette qualité percue
a plusieurs modes d’exécution d’une méme application, définissant par la le
mode de qualité dit “optimal”, et des modes dégradés.

Puis, un modéle de qualité de I'implémentation de 'application est intro-
duit. L’observation des métriques inhérents a I'exécution d’une application
quelconque sur les systémes auto-reconfigurables a base de FPGA dynamique-
ment reconfigurables (e.g. taux d’occupation des ressources, consommation
énergétique de la puce,) permet de dresser un modéle de préférence dit “Qual-
ité de Service” (QoS) dépendant de 1'objectif du systéme embarqué (sa mis-
sion) et du contexte dans lequel il évolue (son environnement).

La multiplication attendue de ces modes d’exécution di a I'augmentation
du nombre de paramétres qualités est adressée & travers de moyens d’observer
le rapport entre qualité d’expérience et de service des modes d’exécution.
Ainsi, les concepteurs d’applications peuvent au temps de la conception, déter-
miner les modes d’exécution pertinents en fonction de la mission et de ’environ-
nement du systéme embarqué. Cette réduction des modes d’exécution étant

particuliérement importante afin de réduire la complexité des décisions a pren-
dre sur cible.

Aprés avoir défini ces deux modéles de qualité permettant de
qualifier et quantifier le niveau de service percu par l’'utilisateur, et
de implémentation, nous proposons deux méthodologies de gestion
d’allocation des ressources:

e Nous avons dans un premier temps proposé une méthodologie
hybride découpée entre temps de la compilation et de ’exécution.
Cette méthodo-logie permet d’exécuter une partie des algorithmes de
gestion d’allocation de ressources afin de générer un grand nombre de
solutions. Ces solutions correspondent & différentes implémentations
des différents modes d’exécution de 'application. Ces solutions ainsi
pré-générées et pré-évaluées, la probléme de la gestion au temps de
I’exécution sur cible est réduit a une sélection d’une solution maximisant
les métriques de qualités.

Un compromis sur le nombre de solutions pré-évaluées a conserver sur
cible doit néanmoins étre observé. En effet, le temps passé a chercher
une solution dans la base de donnée satisfaisant le niveau de contraintes
imposé par environnement du systéme embarqué est lié a la taille (en
nombre de solutions) de la base de données. Nous adressons ce com-
promis en introduisant une méthode permettant, lors de la génération,
de ne pas évaluer les solutions d’implémentation d’un mode d’exécution
ayant peu ou pas de chance de retourner un niveau de qualité de ser-
vice suffisant. Puis, une fois les solutions générées, nous proposons une
méthode permettant de garder le front de Pareto de I'espace de solution
et un nombre de solutions voisines du front.

Une fois sur cible, nous proposons l'utilisation d’une heuristique de
recherche rapide qui permet de trouver une solution de la base de solu-
tions satisfaisant les contraintes de I’environnement du systéme embar-
qué. Afin de garantir 'exécution du service, cette heuristique améliore
incrémentalement la qualité d’expérience afin de réagir au plus vite aux
variations de niveaux de contrainte.

Enfin, 'approche proposée a été vérifiée fonctionnellement sur cible
Zynqg-7000, puis nous avons construit une simulation utilisant des métriques
d’une implémentation d’une application d’encodage H.264 sur cette plate-
forme ainsi que de métriques issus de ’état de ’art. Les résultats obtenus
montrent que cette méthode est capable de garantir ’exécution du ser-
vice, caractérisé par le respect de I’échéance et par un niveau quantifiée

Résumé long

par le modéle de qualité de service non-nul. En générant des situa-
tions de contraintes d’environnement, la simulation montre que notre
approche permet de réagir en moins d’une itération et sans couper le ser-
vice dans 94% des cas. Cette approche est néanmoins moins efficace face
aux situations ot une ou plusieurs ressources tombent en panne, ou elle
ne peut garantir 'exécution du service que 62% des cas. L’approche est
toutefois capable de maintenir un niveau de qualité d’expérience quan-
tifié allant de 82% a 94% de l'optimal, tout en donnant une réponse sous
la milliseconde en moyenne.

Dans un second temps, nous avons proposé une approche basée
sur le calcul d’ordonnancement des taches de 1’application sur
les ressources de la cible au temps de ’exécution. Compara-
tivement & la premiére approche, celle-ci ne nécessite pas le stockage
d’une base de données de solution, et a I’avantage d’étre déterministe.
Un autre compromis se présente alors, car I'exécution d’algorithmes
d’ordonnancement est plus long, et leurs temps de décisions évoluent
avec le nombre de taches composant 'application.

Le calcul d’ordonnancement sur cible doit donc étre rapide et performant
afin d’obtenir une solution permettant 'exécution du service tout en
respectant les contraintes. En ce sens, nous avons développé un heuris-
tique d’ordonnancement permettant d’obtenir des solutions au prob-
léme d’allocation de ressources. En particulier, cet algorithme prend en
compte l'unicité du gestionnaire de reconfiguration et du probléme de
partage de ressources que cela implique. Ainsi, ’heuristique d’ordon-
nancement proposé est capable de quérir les bitstreams des modules re-
configurables en avance de phase, pour que la RR assignée a une tache
soit reconfigurée au moment ou cette tache est préte a 'exécution. Cet
heuristique est plus performant qu'une approche similaire de I’état de
I’art en donnant des solutions dont la durée d’exécution sont plus courtes
de 13% environ sur un ensemble de dix applications benchmarks issues
de I'état de 'art. De plus, les résultats obtenus sur par génération de
graphe de taches d’applications montrent que bien que la complexité
temporelle de évolue quadratiquement avec le nombre de taches dans
I’application, ses performances compensent le temps passé a calculer
I'ordonnancement.

Cet heuristique a été utilisé en temps qu’algorithme d’ordonnancement
de la solution orientée qualité proposée. Des simulations ont été ef-
fectuées sur le méme simulateur que la premiére approche en ciblant

xi

I’application H.264 benchmark, ainsi qu’une application de controle de
traction. Les résultats montrent que cette approche est capable de con-
server la continuité de service dans 99% des cas en réponse a des con-
traintes de I’environnement, et jusqu’a 100% dans le cas de RRs ou CPU
restreintes.

En résumé, ce travail de thése répond au probléme de garantie de
service en prenant I’angle d’une gestion orientée qualité d’expérience
et de service. A Iavenir, des approches statistiques (type scoreboard) ou
d’apprentissage permettrai d’identifier des solutions particuliéres de la méth-
ode hybrides. Elles correspondraient alors des solutions permettant de répon-
dre & des niveaux de contraintes courants, et pourraient étre sélectionnées
plus fréquemment par la méthodologie afin de réduire le temps de décision.
Enfin, optimisation énergétique étant une problématique importante de la
littérature, I'impact sur la consommation du systéme dans sa globalité de
I'utilisation de la RPD permettrait d’apporter des réponses sur 'intérét de
cette technique pour la réduction de la consommation. Deux axiomes se font
alors écho: utiliser une matrice FPGA plus petite permet de réduire consom-
mation en puissance, et la latence introduite par la gestion de 1’allocation de
ressource rend les petits FPGA reconfigurables dynamiquement plus lent que
des plus gros FPGA statiques pour une méme application. La réduction en
consommation d’énergie reste alors a prouver.

Acknowledgments

First of all, I would like to express my gratitude toward my supervisor, Profes-
sor Sebastien Pillement. He allowed me to pursue this PhD and provided great
support throughout this project. I acknowledge his continued assistance and
the relevance of his numerous feedbacks have greatly contributed to this work.
[would also like to thank my defense committee; professors Daniel Chillet,
Eduardo de la Torre, Russel Tessier, and Francois Verdier, for their efforts and
time invested in reviewing my dissertation and attending my defense. 1 would
also like to thank Wiem Kouki, Chabha Hireche, Céline Mayousse and Ahmed
Kammoun from Capgemini Engineering’s Research & Innovation department
for their assistance during those past years.

I express my gratitude toward Sandrine Charlier, Marc Brunet for their
administrative and technical assistance, as well as all the members of the
IETR laboratory for their engaging discussions. I would like to express heart-
felt thanks to all the PhD students and interns with whom I shared a slice
of academic life: Safouane Noubir, Quentin Dariol, Guillaume Martin, An-
toine Laspeyres, Corentin Darbas, Loreine Makki, May Myat Thu, Tamar
Mosiashvili, Mustafa Ibrahim, Reem Ashi, Juliette Pottier, Nolwenn Dreano.
Throughout these years, you have all enriched my daily life and made this
experience unforgettable.

Finally, T would like to thank Séléna Marti for keeping faith in my abilities
and standing by my side throughout this long journey. I also dedicate this
thesis to my parents Valérie and Fabrice Duhamel, and my sisters Clara and
Alizée, as an expression of gratitude.

CHAPTER 1

Introduction

While the number of transistors on chips has effectively doubled for fifty
years [1], transistor miniaturization for single-core general-purpose CPUs has
slowed down as it became more difficult for the industry. To mitigate these
issues and to increase computing performances, a shift has been made toward
parallel computing. Using multi-core CPUs or GPUs, applications can be ex-
ecuted faster, but with higher energy consumption and more expensive chips.
These are major drawbacks for embedded systems as their batteries have lim-
ited energy supply, and the Internet of Things (IoT) tendency shifts toward
more computational power on smart devices.

To answer the energy consumption issue, the embedded systems industry
has considered Application-Specific Integrated Circuits (ASIC) instead. These
chips can be fully customized to meet application and system requirements,
achieving the best performance-energy trade-off [2]. However, the high design
cost of ASICs can only be compensated by economies of scale. In addition,
ASICs cannot execute other workloads than what they have been designed for,
which fails to meet the flexibility in usage that embedded systems require.

As an alternative, Field-Programmable Gate Arrays (FPGAs) offer a mid-
dle ground between performance, energy efficiency, and flexibility. They have
notably been used in the embedded system industry for signal processing [3]
and hardware acceleration on satellites [4]. In addition, while they offer high
application-specific performance, these chips can be reconfigured to support
a broad range of applications, or to mitigate firmware issues with the systems
at a distance.

This characteristic can also be exploited to reconfigure only some parts
of an FPGA, called Reconfigurable Regions (RRs), through Dynamic Partial
Reconfiguration (DPR). Dynamically reconfiguring the FPGA enables the sys-
tem to change hardware functionality at runtime. This helps reclaim unused
parts of an FPGA at a given time in such a way that only what needs to be
executed is implemented in the design. Using this technique, designers are
virtually capable of executing the same workload on a smaller FPGA chip, in
terms of available logic elements. However, this comes at the cost of having
to share and manage these regions, which introduces latency. While a fully

2 Chapter 1. Introduction

static FPGA most likely outperforms dynamically reconfigurable FPGAs due
to this latency, DPR can help reduce chip footprint, costs, and power con-
sumption [5].

To benefit from hardware acceleration offered by dynamically reconfig-
urable FPGAs, there is a need for abstraction layers and software libraries.
As a result, new architectural and methodology challenges are introduced to
make the most out of dynamically reconfigurable FPGAs. In particular, the
savings offered by smaller dynamically reconfigurable FPGAs should not come
at the cost of an embedded system becoming unreliable.

Providing accessibility for application designers helps reduce the time to
market for embedded systems [6]. To do so, new methodologies aiming to
manage dynamically reconfigurable FPGAs should not require deep knowledge
of the underlying hardware for the end-users, but still, provide enough control
over the architecture.

The environment in which such systems evolve can require reactivity and
flexibility, therefore the system must be robust and guarantees the service
execution. This means that on top of the targeted applications, additional
services can be executed in real-time to react to these events (eg. a drone
computing new trajectories to avoid obstacles), or to withstand a system
failure (eg: gamma-rays causing errors in satellite applications). In the context
of this work, the guarantee of service refers to the execution of a targeted
application under a real-time deadline, while maximizing the performance of
the application running on the hardware. This is a key factor for industry
as it ensures the benefits of using dynamically reconfigurable FPGAs do not
come at a loss in reliability, which is critical for embedded systems.

To do so, the dynamic resource allocation problem must be answered to
exploit the RRs in a time-multiplexed manner. This allocation must take
into account the latencies of DPR operations on the FPGA and must be
done at runtime to react to the constraints on the system. In addition, the
decision times of this management must be low enough that it doesn’t impact
negatively the capabilities of the system to withstand the constraints.

1.1 Contributions

To solve the challenges of guaranteeing service execution on dynamically re-
configurable FPGAs, we propose:

e A quality model for the guarantee of service characterization:
a model of quality is introduced to characterize the level of service of

1.2. Dissertation organization 3

an application running on the hardware. This model is described at
the functional level not to introduce extensive design efforts from the
application designers. The introduced model of quality is based on the
identification of parameters that impact the perceived quality. These pa-
rameters can then be tuned at runtime to increase or lower the compute-
intensiveness of the targeted application.

e Quality-oriented management methodologies: using our model of
quality, we introduce both a hybrid design-time/runtime methodology
and a runtime scheduling-based methodology to autonomously manage
the runtime of a targeted application in such a way that it ensures
the respect of its real-time deadline. These methodologies are capable
of upgrading and downgrading the modeled quality of the application
to maximize its perceived quality. When doing so, they dynamically
allocate resources to execute the applications. The runtime complexity
of these methodologies is considered as their decision latency impacts
the system’s performance.

e Fast and efficient runtime scheduling: to increase the adaptability
and scalability of the system, we introduce a novel scheduling heuristic
to help meet application deadlines. This scheduling heuristic is capable
of processing applications described at the functional task level to work
with the introduced quality model. Special attention is brought to the
management of FPGA dynamic partial reconfiguration management to
shorten the obtained schedules.

1.2 Dissertation organization

The remainder of this document is organized as follows:

e Chapter 2 introduces the architectural challenges introduced by dy-
namically reconfigurable FPGAs and describes different approaches of
interest from the literature. We compare frameworks and operating sys-
tem libraries for such systems on key features. In addition, we identify
gaps in the literature on the management of dynamically reconfigurable
FPGAs with a focus on the guarantee of service and application de-
signer accessibility. Finally, we conclude with the adopted methods and
hypotheses made in this thesis and introduce our targeted architecture.

e Chapter 3 introduces our quality model and concept of execution
modes of an application. This concept is then applied to a hybrid

Chapter 1. Introduction

design-time /runtime management methodology and illustrated with a
H.264 application example. An experimental setup is introduced with
emulation of the targeted architecture to introduce constraints on the
FPGA and CPU. We then evaluate its performance in terms of per-
ceived quality and guarantee of service, using application duration and
time before deadlines as primary metrics.

Chapter 4 describes and discusses the scheduling heuristic for dy-
namic resource allocation, which is the second main contribution of this
work. We first introduce its prediction capabilities to shorten schedule
makespan (or duration), then how the dynamic reconfiguration opera-
tions of the FPGA are taken into account. State-of-the-art techniques
for management latency minimization are introduced. Its performance
is evaluated and compared with another recent approach from the liter-
ature, identified in chapter 2. Finally, the heuristic is integrated into the
quality-oriented management methodology to increase the guarantee of
service.

Chapter 5 summarizes the contributions of this thesis and discusses
obtained results. We also identify future works required to improve the
flexibility and performance of our approach.

CHAPTER 2

Background and model definition

Contents
2.1 Self-reconfigurable system design 6
2.1.1 Reconfigurable region definition 6
2.1.2 DPR management methodology 8
2.1.3 Architecture design for reconfigurable systems 11
2.1.4 Frameworks and libraries 15
2.1.5 Proposed architecture 26
2.2 Self-reconfigurable systems management 29
2.2.1 Management methodologies 30

2.2.2 Mapping and scheduling for self-reconfigurable systems 33
2.2.3 Hybrid methodologies 42
23 Conclusion. i il 43

6 Chapter 2. Background and model definition

To save logic elements resources on FPGA matrices and optimize energy
consumption of the FPGA, Dynamic Partial Reconfiguration (DPR) has been
used in the past to modify the behavior of hardware functionalities during
runtime, such as for multi-standard software defined radio [3| and for high
performance computing [7, 8]. Over the years, multiple works have been con-
ducted to manage the DPR technique to dynamically reallocate the hardware
over time, i.e. in a time-multiplexed way as with threads on a CPU. In this
manuscript, we define self-reconfigurable systems as Systems on Chip (SoC)
embedding a FPGA matrix capable of performing DPR in order to adapt the
hardware accelerators.

This chapter first introduces the self-reconfigurable computing paradigm
at large and its associated challenges for FPGA architecture design. Existing
architectures are introduced, from which we propose our model. A focus is put
on functional abstraction layers for hardware resources. Then, we review exist-
ing management methodologies and techniques for self-reconfigurable systems
with guarantee of service.

2.1 Self-reconfigurable system design

Self-reconfigurable systems rely on the DPR capabilities of their FPGA ma-
trix. To benefit from DPR, Reconfigurable Regions (RRs) must be defined
offline when designing the FPGA architecture.

2.1.1 Reconfigurable region definition

The two mainstream competing vendors; AMD Xilinx and Intel Altera, pro-
pose FPGAs that are capable of performing DPR.

However, a fundamental difference lies in the way RRs are defined in their
matrices. Figure 2.1 introduces two ways to define RRs in a FPGA matrix.
The column-based definition takes whole columns in the matrix for partial
reconfiguration. This was how RRs were defined when DPR was first intro-
duced.

Since then, region-based definition has been introduced to perform DPR in
rectangular regions, defined by the coordinates of the logic elements located
at the corners of the defined RRs |9, 10]. Region-based definition is more
flexible than column-based as it only defines which logic elements are going
to be reconfigured, but requires more control.

The literature has mainly focused on Xilinx technologies as they natively
support region-based RR definition, whereas Altera still supports column-

2.1. Self-reconfigurable system design 7

FPGA Programmable Logic Matrix FPGA Programmable Logic Matrix

| . [1o]jio|10]10]10]10]10]10] ... | | . [1o]iof1o]10]10]10]10]10] . |

. |lcLB||cLB ||cLB |[cLB |[cLB CLB| |[cLB|[cLB ||cLB||cLB ||cLB CLB|| ...

. |lcLB||cLB||cLB |[cLB ||cLB ||BRAM |[pSP{fcLB || |[cLB|[cLB [|cLB ||cLB||cLB ||BRAM |DSP||CLB || ...

. |lcLB||cLB ||cLB |[cLB |[cLB CLB|| |[cLB|fcLB ||cLB||cLB ||cLB CLB|| ..

. |lcLB||cLB ||cLB |[cLB |[cLB CLB|| |[cLB|[cLB ||cLB||cLB ||cLB CLB|| ..

. |lcLB||cLB||cLB |[cLB ||CLB ||BRAM |[pSP(fCLB || |[cLB|[cLB [|cLB ||cLB ||cLB ||BRAM | DSP||CLB | ...

. |lcuB||cLB ||cLB |[cLB |[cLB CLB| |[cLB|fcLB ||cLB||cLB ||cLB CLB| ...

. ||cLB||cLB ||cLB |[cLB |[cLB CLB| |[cLB|[cLB [|cLB||cLB ||cLB CLB| ...

. ||cLB||cLB||cLB |[cLB ||cLB (|BRAM |jpSp|{cLB || |[cLB|[cLB [|cLB ||cLB||cLB ||BrAM |[psp|CLB]| ...

. |lcLB||cLB ||cLB |[cLB |[cLB CLB|| |[cLB|fcLB [|cLB||cLB ||cLB CLB|| ..
JeJololelefeelel]| | lelelololelololo]]

Column-based (a) Region-based (b)

Figure 2.1: Column-based (a) and Region-based (b) Reconfigurable Regions
(RRs) definition in FPGA matrices.

based definition. In addition, Xilinx currently offers an on-going support
for their DPR design flow [10] and through dedicated software libraries to
co-design software and DPR-capable hardware via the Vitis accelerated li-
braries [11] and the PYNQ project [12].

It has been proven that region-based definition can be used for Altera tech-
nologies by masking logic elements that should not be modified [9]. However
this adds an additional step when designing with column-based definition.

Therefore in this thesis we will focus on Xilinx technologies and their
terminology, yet self-reconfigurable systems using Altera technologies work
similarly, this RR definition difference set apart.

To configure the logic elements of a FPGA, a configuration file must be
loaded, called bitstream or bit file, in the FPGA’s SRAM configuration mem-
ory. This read /write memory contains the states of Configurable Logic Blocks

(CLBs), Block RAM (BRAMs) and DSP blocks, and the way they are con-
nected to each other to perform a given hardware behavior.

The statically defined RRs can then be filled with hardware accelerators
through a bitstream which will configure solely the defined part of the FPGA
matrix. Hardware accelerators targeting a specific RR are denoted as Re-
configurable Modules (RMs). After implementation by the toolchain, the
obtained configuration file is called partial bitstream, as opposed to the full
static bitstream which configures the whole FPGA.

8 Chapter 2. Background and model definition

Typically, the configuration bitstreams are stored in an SD card or any
read-only memory that’s on the board, and are loaded at startup. The CPU
of the system is generally used to load the configuration bitstream in the
configuration memory through the Configuration Access Port (CAP) of the
FPGA. The latter being the only channel with the read/write configuration
memory. The Xilinx software development kit makes it possible to perform
this operation with the First Stage Boot Loader (FSBL) before loading an
Operating System (OS) [13].

Self-reconfigurable systems are still subject to this startup configuration.
Whereas the full static bitstream is usually loaded in the configuration mem-
ory via the CPU (or JTAG for debugging) once at startup, partial bitstreams
can be loaded at runtime via different methods. We’ll be referring to any of
such methods as DPR management methodology.

2.1.2 DPR management methodology

DPR controllers are responsible to manage the DPR. process. Performance of
this process, in terms of bandwidth, is crucial for self-reconfigurable systems.
In practice, faster reconfiguration operations lower the latency overhead when
changing the RM in a RR.

To load the configuration memory with a partial bitstream, two main
methods or paths can be used: Processor Configuration Access Port (PCAP)
and Internal Configuration Access Port (ICAP). Figure 2.2 illustrates both
paths for commonly-used Zyng-7000 device [14].

The PCAP path is the most supported by Xilinx vendor toolchain and de-
vices, notably with the support of dedicated software libraries [12, 15]. When
loading a partial bitstream, the CPU sends a request to the Device Configura-
tion (DevC) interface so that its embedded DMA engine fetches the bitstream
in the DDR memory. The partial bitstream must have been transferred from
local memories to the DDR memory beforehand. The bitstream is sent to
the PCAP controller which verifies the integrity and validity of the bitstream.
Finally, it is loaded in the configuration memory.

This path provides an easy way to handle DPR operations as it uses the
dedicated device configuration interface. This path comes with no additional
cost on the designer’s side as this interface is already implemented in modern
Xilinx SoPCs. However, the provided Python [12] and C [15] libraries suffer
from relatively low bandwidth (2.04 and 13.6MBps) compared to other custom
PCAP approaches which reach higher bandwidth at 145MBps as in [9]. Such
differences can be explained by different DevC interfaces and further library

2.1. Self-reconfigurable system design 9

PCAP Path ICAP Path
CPU i CPU
A i A

Configures v] Initiates process

v ' ' Static PL %

Device Configuration L D :
Bitstream interface with DMA vl [ICAP HCOHUOHQTH DMA . Bitstream
Memory (DevC) v ' | Memory

PCAP Controller E ICAP Controller

¢ ’ ¢
\ 1 Multiplexer 0 /

A

*

A 4

PL Configuration Memory

Figure 2.2: PCAP (left) and ICAP (right) paths for partial bitstream flow.
The asterisk between the Multiplexer and PL Configuration Memory boxes
indicates presence of another multiplexing step for JTAG PL configuration.

optimizations.

The PCAP path also actively uses the CPU as the latter configures the
DevC interface DMA engine so the bitstreams are properly fetched from the
memory (DDR or SD card).

The ICAP path is the other main method of performing DPR operations.
The main advantages of this reconfiguration path is that they reach higher
bandwidth, and free the CPU from the DPR operation. However, it comes
at the cost of having dedicated logic within the FPGA matrix to perform the
DPR operation.

Xilinx’s SoCs allow the static programmable logic to access the ICAP
resource. In theory, a static design could fetch a bitstream in DDR memory
and reconfigure a RR without using the CPU at all. In practice, the CPU, or
a soft processor like the Microblaze, is often used to initiate the DPR process
through dedicated libraries.

Coupled with a DMA engine in the FPGA programmable logic, Xilinx’s
hardware ICAP IP (HWIP) can achieve up to 82MBps bandwidth [16, 17].
Further optimizations on the bitstream fetching part in [17, 18| brings the
bandwidth up to 382MBps, which is near the maximum theoretic 400MBps

10 Chapter 2. Background and model definition

bandwidth for a 32b data bus at 100MHz.

Thanks to custom designs, works from the literature have achieved higher
bandwidth than PCAP approaches. Using on the fly lossless bitstream de-
compression and ICAP overclocking, other approaches |19, 20, 21| were able
to reach bandwidths as high as 1.5GBps. Those approaches store compressed
bitstreams and decompress them in the FPGA matrix so there are less data
to transfer from the memory.

To the best of our knowledge, the highest bandwidth of 2.2GBps has been
achieved by [22| with a custom ICAP design overclocked at 550MHz. Although
these approaches impose static design restrictions, authors of these works have
made efforts to lower the amount of occupied logic elements to 1K LUTs and
FFs on average (approximately 2% of LUTs and 1% of FFs in a ZYNQ-7000
XC7Z020 SoC FPGA) which makes it a relatively good trade-off between
bandwidth and implementation cost.

Table 2.1 introduces a comparison of DPR controllers sorted by increasing
bandwidth. Because self-reconfigurable systems require prior reconfiguration
of RRs, higher bandwidth is crucial to minimize the reconfiguration latency
overhead as higher bandwidth leads to lower reconfiguration time.

Spent resources for custom ICAP-based controllers takes between 1.8% to
7.52% of LUTs, and 0.38% to 1.42% of a Xilinx Zynq-7000 Artix-7 XC7Z020
FPGA matrix, which is a popular cost-optimized device. However, among
all DPR controller approaches, the ICAP-based DPR controllers have a clear
advantage over PCAP-based when it comes to bandwidth. ICAP-based ap-
proaches also free up the CPU to run OS services and application-related
processes.

In our work, we distinguish two categories of ICAP-based DPR controllers:
those who do not impose clock frequency constraints and the others. The first
category implies a standard 100MHz clock as it is most often used in FPGA
designs, which caps the theoretical bandwidth at 400MBps. In this category,
the recent ZYCAP DPR controller [18] is the best trade-off between bandwidth
and static implementation cost.

2.1. Self-reconfigurable system design 11
Table 2.1: Comparison of DPR controllers, sorted by bandwidth.
Bandwidth Resources usage Frequency
DP troll
R controller (MBps) (LUTs & FFs) (MHz)
PCAP controllers
PCAP Python Overlay [12] 2.04 - -
XilFPGA PCAP C Library [15] 13.6 - -
Custom PCAP bit. transfer |9]* 145 - -
ICAP controllers
Xilinx HWICAP [16] 19 1K LUTs, 0.7K FFs 100
Xilinx HWICAP (DMA) [16] 67 4K LUTs, 6.2K FFs 100
DMA HWICAP [17] 82 4K LUTs, 0.9K FFs 121
BRAM HWICAP [17] 332 1K LUTs, 0.5K FFs 121
ZYCAP [18] 382 1.1IK LUTs, 0.8K FFs | 100
FaRM [19] 800 3.2K LUTs, 0.4K FFs | 200
uPaRC [20] 1433 4K LUTs, 1.1 FFs 362.5
Pham et al.? [21] 1’480 44K LUTs, 1.5 FFs 370
Hansen et al.? |22] 2200 - 550

1 Authors made use of a custom devC interface.

2 Requires a Microblaze as introduced in [21], but can be modified to use the
SoC’s ARM CPU instead. Resources given without the Microblaze.

3 Authors did not disclose the resources usage of the full reconfiguration
controller.

The second category considers DPR controllers that overclocks the ICAP
resource. Those approaches make implementation more difficult as timing
requirements are harder to meet for the toolchain’s place and route steps.
Still, those approaches outperform the approaches from the first category with
bandwidths up to 5 times higher. In this category, we will consider the profiled

bandwidth of the uPaRC DPR controller [20].

2.1.3 Architecture design for reconfigurable systems

Self-reconfigurable systems can be classified based on their RR architecture
style when designing around DPR. Each architecture style comes with their
own pros and cons which can make them more suitable to specific paradigm of
hardware accelerators (or RM). Three architectures styles cover the majority
of DPR approaches: Island, Slots, and Grid styles, as illustrated in Figure 2.3.

12 Chapter 2. Background and model definition

To shared To shared
memor
To shared |RR4 RR3 ’ memory
Mod 3. A A A &
memory ¢ ¢ ¢ ¢ ¢ L RR _V i Y ERR |
RR | RR RR RR 0;0) | Module (0;m)
‘ :’: fl‘ 1|2 |3 n
- 2 —>>
Mod -4
Module Mod. | M;)d. <€ f > Mod. 3 <>
RR1 RR2 1 2 RR RR
Mod. 1 Module 2 B (n;0) >‘ A (n;m) I
Yl VTV Y
Island-style (a) Slot-style (b) Grid-style (c)

Figure 2.3: The three main RR architecture styles in DPR-capable FPGAs.
Black arrows denote communication channels between RRs and the external
shared memory.

In this figure, the FPGA matrix is represented by gray squares which
denote the static region, and RRs by colored rectangles inside. The footprint
difference of the RRs can be noted, as their number and size respectively
increases and shrinks from island style to grid style. This footprint difference
is referred to as granularity in the literature [23, 24, 25|, and ranges from
coarse to fine grain. Coarse-grain defines monolithic accelerators which define
RRs in the island styles, while medium-grain refers to functional units which
corresponds to slot and grid styles [25].

The fine granularity refers to RRs which comprises just a few specific logic
elements to fine-tune parts of the design [25]. However, this granularity fits
specific designs and do not focus on supporting a wider range of generic hard-
ware accelerators. For this reason, the fine granularity will not be discussed
further in this work.

2.1.3.1 Island style

Island style consists in having few coarse-grain RRs fitting monolithic hard-
ware accelerators (eg: vision application filtering, edge detectors...). A number
of works have focused on this style of architecture [24, 26, 23|, and it can be
considered the most commonly used style.

The communication infrastructures used in these architectures can employ
crossbar switches, which have the advantage of low congestion latency. How-
ever, crossbar switch resource usage scale exponentially with the number of
nodes connected to it [27].

2.1. Self-reconfigurable system design 13

Monolithic accelerators imply that all the dedicated logic elements have
to fit inside a single RR. This type of architecture is the easiest to design, as
users can make use of High Level Synthesis (HLS) vendor toolchain to rapidly
build hardware accelerators to populate the RRs.

Applications can then be described at the functional level to obtain a set of
hardware accelerators to speed it up, without much knowledge of the underly-
ing hardware except for what comprises the targeted RRs. This architecture
style is often considered high level in comparison to the other styles for this
reason.

Because the accelerators are functionally different, their synthesis can re-
sult very different number of spent logic elements. Hence the biggest RR in
the design has to be at least big enough to fit the largest accelerator. When
smaller accelerators are to be implemented, if they are placed in a bigger RR,
it causes resource wastage (or resource fragmentation), as the rest of the free
logic elements in the targeted RR cannot be used by other accelerators. An
island style comprising only RRs of similar logic elements count is considered
homogeneous.

Resource fragmentation can be reduced by introducing RRs of different
size [24], but this introduces some limitations at runtime as to which accelera-
tor can fit which RR. This hypothesis is called heterogeneous RR size. Using
those, it is possible that certain RMs do not fit in all RRs and that execution
times of RMs differ between RRs. Having RRs of different size can be bene-
ficial to minimize the reconfiguration latency as the size of partial bitstream
files scale with the region footprints, and not with the resource usage in the
RR [10].

Finally, this style of architecture gets the most support from Xilinx and
Intel as their dedicated toolchain official documentation explicitly supports
such architectures [10, 28].

2.1.3.2 Slot style

Slot style architectures tackle the resource fragmentation issue from another
point of view. They focus on accelerators that can span one or more RRs,
while considering a larger number of fixed size RRs called slots [29]. The
medium-grain RRs can fit functional units that may not always correlate to
high level functional description as would monolithic accelerators.

This style of architecture usually supports RRs with similar size and logic
elements content so that accelerators can be implemented in such a way that
they occupy a minimum number of slots to minimize resource fragmentation.

14 Chapter 2. Background and model definition

Because the number of considered RRs in the FPGA architecture increases
compared to island style, slot style greatly benefits from bitstream reloca-
tion [30, 31].

Bitstream relocation consists in taking a RM that targets a given RR
1, and relocating it to another RR j. This can be achieved by modifying
the configuration header of the bitstream files, which gives information on
the localization of a RR in the matrix [10]. Runtime bitstream relocation
imposes a latency overhead which in the range of tens of microseconds [31] to
milliseconds [30].

However it is paramount that the content (in logic elements) of the original
bitstream, and its rectangular shape in the matrix, are exactly identical to the
RR that the bitstream is relocated to [31].

This imposes a heavy constraint on the FPGA architecture when defining
RRs in the matrix. If slots are too big in proportion of the FPGA matrix,
finding similar RRs with the exact logic elements content and shape is harder.
This can be less constraining for high-end FPGA chips with Xilinx super logic
regions [32, 33] and multi-FPGA reconfigurable systems [33, 34| as they have
more resources to partition in slots.

2.1.3.3 Grid style

Finally, grid style further reduces the size of individual RRs. Here, the num-
ber of RRs increases significantly as RRs are reduced to a few logic elements
organized in a systolic array [35, 36, 37]. Because of the very high number
of RRs, grid style architectures rely on dedicated framework to generate flex-
ible partial bitstreams and make extensive use of the bitstream relocation
technique [38].

Compared to the other approaches, grid style architectures have the high-
est flexibility when it comes to implement RRs in the FPGA matrix. Thanks
to bitstream relocation, RMs spanning multiple RRs can be moved within the
RR grid, and arranged to minimize fragmentation [39, 40].

However, grid style architectures have a bigger static architecture overhead
compared to other styles [24]. As shown in Figure 2.3 (c), multiple communi-
cation gates between the dynamic and the static region must be defined when
designing the architecture. Each gate must be connected to a bigger communi-
cation infrastructure so that virtually any combination of RR implementation
is valid.

While slot and grid style architectures can minimize dynamic resource
fragmentation, the implementation costs brought by the different overlays and

2.1. Self-reconfigurable system design 15

frameworks can hinder their adoption by application designers. On the other
hand, commercial-off-the-shelf (COTS) accelerators and HLS-built modules
can easily be integrated into application designers design flow.

Slot and grid style approaches also require intensive use of runtime bit-
stream relocation. The latency introduced by bitstream relocation can become
problematic to the service execution of real-time applications.

In this work, we believe the island style architectures with coarse-grained
RRs of heterogeneous size are a good trade-off between resource fragmentation
and ease of use [24].

2.1.4 Frameworks and libraries

To make use of the introduced DPR capable island style architectures, works
have been focusing on designing dedicated operating system libraries and
frameworks. Their goal is to provide software abstraction of dynamically re-
configured accelerators, so that application designers benefit from software
flexibility and the computing performance of hardware accelerators. Re-
searchers have then tackled the challenge of building hardware abstraction
layers to manage the architecture’s RRs efficiently.

In the following sections, we first introduce the different abstraction levels
used in the literature, and then introduce the hardware preemption mechanism
for the real-time paradigm on self-reconfigurable systems. We then introduce
the features of interest when reviewing the existing frameworks and operating
system libraries.

2.1.4.1 Abstraction level

Hardware abstraction consists in providing the user with software routines
to manage the self-reconfigurable system’s FPGA architecture [41|. Choices
made on the FPGA architecture and the targeted functional level of abstrac-
tion define different approaches.

As the goal is to provide users a generic methodology to implement their
accelerated applications, a level of functional abstraction must be chosen. The
level of abstraction must reflect the granularity of the FPGA architecture and
its specificities.

We define 3 main levels of functional abstraction as illustrated Figure 2.4.
The application level of abstraction makes the targeted FPGA architecture a
black box for the user. By similarities with UNIX systems, the accelerated
application is considered holistically as a single process that the user can
interact with through a dedicated API.

16 Chapter 2. Background and model definition

$> /a.out

(a) (b) ©
Application Thread or task level Instruction
level level

Figure 2.4: Functional abstraction levels sorted from highest (left) to lowest
(right).

This type of approach was first considered in the early stages of recon-
figurable computing [42] with applications comprised of a single monolithic
accelerators. It is still employed in multi-tenant deployment of FPGA-based
accelerators |7], and can also describe recent frameworks that aim to compile
software into functional units for grid-style DPR-capable architectures [43].
Application level abstraction is the easiest to comprehend as generating big
monolithic accelerators is relatively easy with HLS languages and require no
prior knowledge of the underlying architecture. Because this level of abstrac-
tion implies the usage of large RRs to fit big accelerators, it mostly relies on
island-style coarse-grain architectures and multi-FPGA systems.

The thread or task level of abstraction, cf. Figure 2.4(b), consider a divi-
sion of the targeted application into accelerated threads or tasks. The result-
ing partition of the application can then be represented as a task graph, and
further parallel or pipeline execution optimization can be introduced at this
step [41]. Following this partition of the application, tasks or threads can be
identified as best candidates for acceleration and implemented as hardware
accelerators. The frameworks and libraries’ goals are then to manage those
threads and tasks, with respect of the FPGA DPR-capable architecture [44].
Parts that may not benefit much from hardware accelerator, such as purely
sequential code or monitoring tasks, can be executed on the self-reconfigurable
system’s CPU.

Smaller RRs in the architecture can fit with this abstraction level as the
application execution is spread across multiple RRs. High performance of the
communication infrastructure in terms of high bandwidth and low latency
becomes important to maximize application speedup.

Finally, instruction set level of abstraction achieves very low level accel-
erators description. Its goal is to accelerate the execution of software by
accelerating frequent instructions, for RISC-V CPU architecture [45] as a hot

2.1. Self-reconfigurable system design 17

topic example. This last level of abstraction requires application designers
to know which instructions, or low-level software routines equivalent, can be
accelerated when writing their software programs.

In our works, we focus on the task level of abstraction. Because it relies
on a functional level definition, we believe such an abstraction level is suitable
to define which parts of the application need to be accelerated.

Additionally, the application level might cause difficulties for guarantee of
service execution as the former can lead to high logic element fragmentation
because of the coarse-grain island style architecture, resulting in under per-
forming systems. Instruction level on the opposite can help fine-tuning the
targeted application’s acceleration, but requires a complex framework which
end-users can’t really tune at run-time for their own goals.

2.1.4.2 Hardware preemption

In a software real-time operating system, task-level preemption momentarily
interrupts the execution of a task to free up a CPU core to execute another
task. Preemptive multitasking has been used in conjunction with priority-
based scheduling to guarantee the execution of higher priority tasks over lower
priority ones. Hardware preemption for a self-reconfigurable system aims to
bring this feature to preempt hardware accelerators. This feature is interesting
for a self-reconfigurable system with guarantee of service as it is notably used
in the industry to increase systems reactivity.

To perform any kind of preemption, the system performs a context switch
on the task. This context switch consists in three steps: interrupting and
saving the task’s progress, executing an other task, restoring the preempted
task. In software, the task’s progress consists of the states of CPU registers,
stack pointer and program counter. In hardware however, progress of a task
implemented in a RR consists of its FFs and local BRAMs states, plus any
processed and unprocessed data that is in the shared DDR memory or still
transiting in the communication infrastructure.

To tackle the challenge of hardware preemption, researchers have come up
with two main methodologies: Configuration Access Port (CAP)-based and
Task-Specific Access Structures (TSAS).

CAP-based methodology consists in using bitstream read back of the con-
figuration memory. This feature allows to extract information on the logic
elements states in the FPGA, and can be applied to RRs as well. Then, the
partial bitstream which contains the FFs and local memories states can be
saved in a local or external memory to be restored later. This idea dates back

18 Chapter 2. Background and model definition

as early as 2000 where authors of [46] designed a hardware context switch
using this method.

Task 1 t1

Task 2 [to [Preempted and stored in memory I to]

DPR t% ‘ Save t}% Restore

Time >

Figure 2.5: CAP-based hardware preemption of Task 1 over Task 0 on a single
RR.

Figure 2.5 illustrates CAP-based hardware preemption of a task on a single
RR. The DPR schedule shows how the context switch operations can impact
the unique ICAP resource usage.

Bitstream size grows with the size of the corresponding RRs, and can reach
multiple hundreds of kilobytes. Because local BRAM memories are limited
within the FPGA, works have been trying to reduce the amount of extracted
data by storing only state information of slices that are used in the RR [47, 48|.

Finally, authors of [49] have used the CAP method on a recent frame-
work for preemptive multitasking and disclosed the resulting time spent saving
(Tsave) and restoring (T esiore) during a hardware context switch. Obtained
results on RR sizes S; and Sy occupying respectively 6% and 2% of a Virtex-6
FPGA are presented in Table 2.2.

Table 2.2: Context switching results of CAP-based hardware preemption on
a Xilinx Virtex-6 ML605 board from [49].

‘ | FFs in RR ‘ LUTs in RR | Bitstream size (kB) | Tsave (ms) | Trestore (MS) ‘

Sh 17k 8.6k 741 16.0 9.7
So 5.8k 2.9k 361 10.3 9.5

The approach introduced by authors of [49] get a 30MBps bandwidth for
the context switch operation as bitstreams are stored in the shared DDR mem-
ory. This bandwidth can be compared with the previously introduced DPR
controllers which had up to 382MBps without overclocking the design, even if
bandwidth optimizations cannot be applied to both the read and write band-
width equally [22]. In addition, the saved bitstream can only be restored on
the same RR, unless bitstream relocation is involved which also adds latency
and require specific architectures.

2.1. Self-reconfigurable system design 19

This highlights the main issue with the CAP-based hardware preemp-
tion as it occupies the unique ICAP resource in the FPGA during the con-
text switch operation. It can also be argued that CAP-based methodologies,
and their storage size reduction optimization in particular, are technology-
dependent. Recently, authors of [50] exposed the bitstream composition and
required manipulations to save and restore context on 7-series and Ultrascale-
series Xilinx FPGAs using ICAP read back capabilities, showing this approach
can still be applied nowadays.

To mitigate the added occupancy on the ICAP resource, researchers have
developed Task-Specific Access Structures (TSAS) methodologies [51, 52, 53,
54]. This type of hardware preemption consists in defining one or multiple
task checkpoint(s) within the accelerator description. Different ways to create
checkpoints have been studied such as using scan-chains copying the states of
LUTs inside the RRs [51, 55], storing the states of specific FFs in a memory-
mapped memory [51, 54|, and using HLS tools to generate checkpoints [53].
Then, when a hardware task is to be preempted, only the content of those
checkpoints is saved and restored, and the remaining uncheckpointed FFs and
BRAMSs states are dropped.

This type of hardware preemption can also support cross-RR preemption
as the content of those checkpoints can be made in a way that they’re not
dependent on a specific RR. However, checkpoints add extra logic inside the
RRs. This logic overhead depends on the used method, and recent approaches
[53, 54] disclose up to 7% of LUTs and FFs overhead in RRs while achieving
millisecond range context switches.

Finally, authors of [56] study the impact of preemption on priority-based
real-time scheduling policies for applications comprised of software and hard-
ware tasks. In this study, authors hypothesize an ideal hardware preemption
mechanism with no logic nor time overhead. They compare this ideal pre-
emption with non-preemptive scheduling (Block), and two other scheduling
policies (Drop and Rollback). The Drop policy erase any progress made by the
hardware task and restarts it from the beginning later on the same RR, while
the Rollback policy restarts immediately the task in software after dropping
the accelerator.

Comparison on AES encryption and Xvid video codec benchmarks show
that whether the tasks were short and frequents, or intermittent and long, the
ideal hardware preemption schedule is approximately 10% shorter than the
non-preemptive scheduling policies. This paper highlights that latency cost
of hardware preemption has to be seriously taken into account as they can
quickly outweigh any gains in schedule makespan.

20 Chapter 2. Background and model definition

As a conclusion, if hardware preemption has been made possible, the in-
herent overhead in context switch duration, spent logic elements and design
considerations hampers its use. Furthermore, works have shown that non-
preemptive scheduling policies can reach similar performance without those
limitations. For these reasons, we will not consider hardware preemption as a
feature.

2.1.4.3 Features of interest

In this section, we define four features of interests to review frameworks and
libraries for self-reconfigurable systems. We focus on approaches that target
task-level accelerators in coarse-grained RRs of heterogeneous size organized
in island style architectures. We define the following features:

e POSIX-like API: Presence of a dedicated API to manage hardware
accelerators makes for an easier development on the software side [41].
This API should abstract hardware to hide specific architecture specifi-
cations from the application designer.

¢ RR Point-to-point communication: Data transfer between hard-
ware accelerators using DMA access is a major bottleneck [24]. Point-
to-point (P2P) communication between RRs within the FPGA helps
reducing communication latency and decreases shared memory conges-
tion.

e Standardized RR interfaces: Generic standard interfaces between
the dynamic and the static regions helps designing the communication
and control infrastructure. These interfaces need to be the same across
all RRs so they are abstracted the same way on the software side through
the API. In addition, a standard interface helps designing accelerators
as designers only have one interface to study.

e Runtime resource management: Computational resources (RRs and
CPU) should be managed by the framework, through real-time paradigm,
task scheduling or autonomic management. In particular, the system
must be resilient to RR unavailability as a result of a failure [4], or
additional tasks or services to execute at runtime [57].

2.1.4.4 Related works

Operating System for Reconfigurable Systems (OS4RS) [58] was one of the
first OS designed for self-reconfigurable systems. It was built with the Real-

2.1. Self-reconfigurable system design 21

Time Application Interface (RTAI) extension of a Linux kernel. The RTAI
API was used to manage hardware accelerator as tasks in a standard real-
time system, and RTATI’s priority-based scheduler was employed as a mean to
manage resources. The OS4RS targeted architecture made use of a standard
RR interface to send data packets over a Network on Chip (NoC) which was
capable to transfer data between RRs within the FPGA matrix. While its
performance and used toolchain are now outdated, OS4RS still constitutes an
interesting approach given our selected features of interest.

Software ' Hardware
Middleware
[Communication VN
" Ll
| Delegate ' Interface Reconfigurable

API <P Thread ' dul
L rea ; Control VEN Module

Ll

: Interface

Figure 2.6: Software delegate thread concept enabling data communication
and control of a reconfigurable module.

HThreads [59] is to the best of our knowledge the first approach that
makes use of a POSIX-like hardware threads model. Hardware threads are
abstracted by a software delegate thread, illustrated Figure 2.6, that the ded-
icated API can interact with as if it was a standard software thread. This
concept is an interesting hardware abstraction solution as application design-
ers keep a software stub to manage the hardware accelerator, and actions taken
on the delegate thread are reflected to the accelerator. HThreads is based on
a Real Time OS (RTOS) kernel that makes use of a priority-based scheduler
that is able to manage hardware accelerators. However, while this approach
provides an interesting take on POSIX-like API with delegate thread, this
approach lacks most of the architectural considerations and offer no runtime
management.

The FOSFOR project (Flexible Operating System FOr Reconfigurable
platform) [60, 61] is an extension of RTEMS (Real-Time Executive for Mul-
tiprocessor Systems) for self-reconfigurable systems. Similarly to Hthreads,
FOSFOR comprises middle ware to abstract hardware communication. This
project’s goal was to demonstrate the feasibility of abstracting the hardware
accelerators for application designers by using RRs as threads.

FOSFOR’s middle ware follows the concept of delegate thread introduced

22 Chapter 2. Background and model definition

in Figure 2.6. In FOSFOR, the RRs interface between static and dynamic
region consists of a communication and control interface. The communication
interface is plugged to a flexible NoC called DRAFT [62]. It is a reconfigurable
fat-tree topology network for data flow communication, well adapted for RR
to RR communication. The control interface interacts with a dedicated finite
state machine located inside the RR that is customized to the accelerator.

The software part of FOSFOR’s middle ware is comprised of a custom
API to create and manage virtual communication channels. They consist of
delegate threads that are software images of the DRAFT configuration.

This work has achieved a speedup up of 50x for selected applications,
compared to full software RTEMS implementations. However, FOSFOR does
not provide any runtime resource management.

FUSE (Front-end USEr framework) [63] is a framework extending the
PetaLinux operating system (now one of Xilinx’s tools) with a multi-threaded
programming model approach. Its RRs, denoted as hardware threads, don’t
require a dedicated delegate threads as it was the case in FOSFOR. They in-
stead rely on its software POSIX-like API for RR management. As illustrated
in Figure 2.7, this management is done in the CPU from the user space via
the Top-Level FUSE Component (TLFC), then handled in the kernel space
by the Low-Level FUSE Component (LLFC).

CPU FPGA
OS User Space + OS Kernel Space A
H DMA Hardware
Software Top-Level FUSE + | Low-Level FUSE 9 9 Accelerator RRO
G rs ' Controller
Application Component (TLFC) | . |Component (LLFC) Interface
thread_create() E
|+(| ' Hardware Task 0 DPR e
' Controller
Software link LKM() ! LKM
process H Hardware
unlink_LKM() | () 9 Accelerator RR1
© < Interface
' Hardware Task 1
create_contexi '
— 1 LKM
! Shared
Software | destroy_context(| E PLB Bus
process init_context() . Hard
— ' Hardware Task 2 ardware
H LKM Peripherals 9 9 Accelerator RR2
run_context() H V Interface

Figure 2.7: Overview of FUSE’s targeted architecture [63].

When calling the APT from the TLFC to instantiate hardware threads,
management of the accelerator is abstracted by the LLFC. The latter is re-
sponsible for the management of the RRs and communicates with the FPGA.
In the FPGA, each RR has the same hardware accelerator interface with the
static region. Data and control communications are differentiated in the in-
terface, and those can either be fully customized or made standard.

2.1. Self-reconfigurable system design 23

To manage API calls, a kernel space Loadable Kernel Module (LKM) is
used instead of a user space delegate thread that the user can interact with.
Terminating a user space delegate thread unexpectedly, or without care for the
state of a RR, can leave an accelerator hanging with unprocessed data or non-
empty local memories. Therefore handling such operations in the kernel space
and only letting the user interact through the API ensures proper termination
of the accelerators.

When managing accelerators, the LLFC autonomously assigns RRs for
hardware accelerators via dedicated mapping policies [56]. This includes find-
ing a valid real-time schedule and dynamically reconfiguring the accelerators
to the assigned RRs.

However, because the API has been designed in such a way that a soft-
ware application only is accelerated, each LKM manages only one accelerator.
FUSE’s API works in a way that data must be sent to an accelerator via the
shared DDR memory, and the processed data from the RR must be sent back
the LKM in the same way. So the support of RR P2P communication hasn’t
been studied using FUSE.

ReconOS (Reconfigurable OS for reconfigurable computing) [64, 65] is a
long-term project aiming to develop a Linux-based OS and a multi-threaded
programming model together for self-reconfigurable systems. The project was
first introduced as open source in 2010 and was officially supported until 2017.
ReconOS was developed as an open-source framework for self-reconfigurable
systems to manage hardware accelerators. To do so, a POSIX-like API was
provided with software delegate threads. The targeted architecture of Re-
conOS is illustrated in Figure 2.8.

In the FPGA, each RR gets connected to a dedicated control interface.
It is in charge of passing commands to the hardware thread’s operating sys-
tem finite state machine control which can be customized for each accelerator,
similarly to FOSFOR. The control FSM is inside the RR and is dynamically
reconfigured with the RR. A second interface, namely the memory interface,
allows the RR to access a shared DDR memory through the memory subsys-
tem. It is comprised of a memory management unit (MMU) and an arbiter
to queue memory access requests.

In 2018, an implementation of a multi-threaded real-time image-processing
application in ReconOS has shown performance improvement compared to
its software counterpart [66]. However, ReconOS does not natively make
use of point-to-point communication between hardware tasks as SPREAD
does. Such communication has to go through the memory subsystem, which
increases the communication latency in the hardware part. The authors of [67]

24 Chapter 2. Background and model definition

CPU FPGA
/[Software \] H
Application General purpose | Control E: 3 Control E:) Memory O
control bus 7| Interface [V FSM RRO V| Interface
; 1
Delegate |4 1 E
Thread 0 1 '
General purpose w| Control !« |Control v | Memory Memory
) —
control bus 71 Interface (.2_) FSM RR1 (:) Interface QSubsyslem
S] !
Delegate |4 4 b
Control Control | Memo
Thread 1 [(—{ i(—) Yl
rea Interface | FSM (Empty) “"| Interface
— ' H
' p A
3 1
! Dynamic region \
Software Shared —— yhamic re son___. '
process DDR ICAP DPR
—
Memory Controller
A
(¢ {igh performance data bu:)

Figure 2.8: Overview of ReconOS’s targeted architecture [65].

have compared their RR P2P approach with ReconOS, and have shown that it
can increase communication bandwidths by up to 3,14 x. This speedup comes
at a cost of 1k slices and 360 FFs per communication interfaces, and dedicated
OS libraries. The ReconOS project being open source, this optimization can
be brought to the architecture. Although ReconOS’s runtime management of
applications is left to the designers, it offers a rich set of tools through the
ReconOS Development Kit (RDK).

More recently, FOS (FPGA Operating System) [6] was introduced as an
open source architecture-agnostic framework and OS libraries. It has been
designed to be modular so that it does not depend on specific custom FPGA
architecture considerations.

DDR

Memory
ICPADPR | g
Controller AXI DMA

- Engine
Ll

Software
Application

CPU FPGA
4 N (SR
Control
> o RRO <>
Register
i 4
FOS . N —
Libraries AXT4 Lit ' le—n—>
Cm141r0 : RRI AXI Stream
X Register 0 Interfaces
AXI 4 Lite r
Interfaces - H
API '
y [«——™—>
lg,on.trol ' RR2
Shared egister ; ey

Figure 2.9: Overview of FOS’ targeted architecture [6]

2.1. Self-reconfigurable system design 25

Although it has been thoroughly tested with a slot-style architecture, it is
capable of running on island-style architectures as well. The only hardware
design restriction is that each individual RR needs to be memory-mapped with
an AXT4-Lite bus for control, and an AXTI Stream bus for data communication.
Figure 2.9 introduces an overview of a suitable island-style architecture for
FOS.

In this framework, the static architecture is described using JSON file. Tts
purpose is to describe the number of RRs in the design, and what are their
associated memory address and range. This helps the FOS libraries to connect
with the accelerators in order to send control messages and read status words
in the RR’s control register. An API is provided in both C++ and Python to
communicate and dynamically reconfigure the RRs.

Each RR is described by its JSON accelerator descriptor which contains the
list of partial bitstreams that can be implemented in the corresponding RR,
or combination or RR in case of a slot style architecture. This is particularly
helpful for application designers as in this programming model, a POSIX-
like APT is provided, and is able to call the provided scheduling algorithm to
choose an accelerator implementation.

We mention now the cost of implementation of the FPGA architectures
used in the previously introduced frameworks. These costs consist mainly of
hardware control and communication infrastructure. The hardware control in-
frastructure is generally comprised of memory-mapped buses, some finite-state
machines, and the ICAP DPR controller. The communication infrastructure
includes DMA engine, interfaces (including local FIFOs), and interconnects
to transfer data between RRs and the DMA engine.

The hardware control infrastructure has a relatively low cost of imple-
mentation (hundreds of LUTs and FFs) in comparison to the communication
infrastructures (up to multiple thousands of LUTs and FFs) which in propor-
tion is the biggest part of this implementation cost. The costs are greatly
dependent on the scale of the system and should be considered in evaluation.

Table 2.3: Comparison of different frameworks on selected features of interest.

| Features | OS4RS | HThreads | FOSFOR | FUSE | SPREAD | ReconOS | FOS |
POSIX-like API No Yes No Yes Yes Yes Yes
RR P2P communication Yes No Yes No Yes Yes Yes
Standardized RR interfaces Yes No Yes Yes No Yes Yes
Runtime resource management Yes Yes No Yes Yes No Yes

We introduce Table 2.3 to compare the presented frameworks. As depicted
by the focus of the literature, there is a tendency in provided frameworks

26 Chapter 2. Background and model definition

and libraries for hardware abstraction, and some work offers some level of
runtime resource management. In addition, some approaches have considered
increasing the performance of the self-reconfigurable systems via RR P2P
communications.

We distinguish FOS as a notable work among the compared frameworks.
FOS supports most features of interest and offers runtime resource manage-
ment via a round-robin scheduler. The FOS scheduler was designed for a
slot-style architecture to tackle the problem of implementing accelerators on
multiple slots at once. In addition, as FOS is an open-source project, the
runtime management can be modified to increase resilience through quality-
oriented management.

In the FPGA, FOS requires dedicated bus adaptor interfaces to connect
the RRs to the static design. This bus adaptator comprises the communication
and control interfaces of each RR. In the version provided by the authors of
[6], the bus adaptator also comprises a DMA controller for each RR, which
brings a hardware overhead of 2k LUTs and 2.7k FFs per RR. Authors argue
that this cost is relatively low in comparison to the available resources of their
target (ZCU102 Evaluation Board). However, we can reduce this overhead as
the architecture can be modified for smaller FPGAs.

2.1.5 Proposed architecture

To build our management methodology for the guarantee of service and the
autonomic workload management problem, we introduce the proposed archi-
tecture in Figure 2.10. It has been implemented with four heterogeneous RRs
for functional verification and metrics extraction.

This architecture is supported by the FOS libraries [6] and accelerator
management and is inspired by features offered by other works. Notably,
the streaming-based intra-FPGA RR-to-RR communications of [67] can be
exploited to reduce communication latency and shared memory congestion.
ReconOS’ [65] control interface can also be used, and include command and
status registers to communicate via the RR, as well as a simple internal FSM
for the API to connect. To do so, we introduce a control and a communication
interface for each RR in the static region of the FPGA.

The control interface contains a simple control FSM that is illustrated in
Figure 2.11. It consists of three states: Idle, Running, and Reconfiguring. The
Idle state denotes a reconfigurable module that’s implemented on the RR and
is awaiting its input data. Once the local input FIFO has been filled by the
communication infrastructure, the task can enter the Running state. Then,

2.1. Self-reconfigurable system design 27

A i) SoC
AX14 i1
A 4 R
P FPGA
Local Control | : | % +
P [ESM&Regs |21 11 AXI4 MMIO Shared Bus
v : ".‘ for control commands and status ICAP DPR
e \ : : Controller
RR1 : £ i 9 ¢ ¢ .
P Y
i Control interface RR 1] [RR 2] [] [RR n ¢
JRT—— s ¢ : ¢ ¢ ¢ DMA
; Communication : g Communication Infrastructure Controller
Interface : : . >
: 3 (AXI4-Stream crossbar switch)
RR1 E] |
o Shared
:; / DDR
#| | Proposed run-time manager Software tasks RAM
W Dl & FOS Libraries

AXI4 Stream CPU
\4

Figure 2.10: Overview of the proposed architecture

RR DPB order Task is terminated.
received
DPR operation RR local input
done FIFO is filled

Figure 2.11: Local control interface FSM

once it has terminated its computation, the FSM returns to the Idle state,
where a new DPR process can be performed (Reconfiguring), or the task be
executed once again (Running). When the FSM goes to the Reconfiguring
state, it awaits confirmation from the ICAP DPR controller to go back to the
Idle state.

Each RR has a communication interface for input and output data trans-
mission. These communication interfaces comprise input and output FIFOs
capable of storing 1024 x32-bit words, directly connected to the communica-
tion infrastructure, comprised of an AXI4 Stream crossbar switch. Those local
FIFOs memories act like buffers to transfer data while the RRs is reconfigured
to reduce data congestion in the AXI4 Stream switch. This enables faster data

28 Chapter 2. Background and model definition

transfers because intra-FPGA communication has a minimal time overhead.

However, crossbar switches use a lot of logic resources in the FPGA and
this number grows exponentially with the number of regions: for £ RRs, each
of them needs to have its own bus interface with the other £ — 1 RRs. On
the other side of the spectrum, a shared bus use fewer logic resources as only
one instance of the bus exists. This can create a lot of communication delays
as the bus becomes inaccessible to the other RRs as long as one RR occupies
the bus. A middle ground approach would be the use of a Network on Chip
(NoC) in the FPGA static architecture [68|, which consists in implementing
a network of buses to transfer packets between RRs in the design. Commu-

nication congestion prediction is out of this work’s scope and is addressed in
other works such as [69, 70].

Finally, both the RRs and CPU can access 512MB DDR3 RAM memory
to store and transfer data. The RRs can do so via a DMA controller instan-
tiated on the static part of the FPGA and connected to the communication
infrastructure.

The RRs also have an AXI4 Lite bus connected to the Control Interface
to receive orders from the run-time manager, and send back a status word for

termination. The Control Interface also forwards orders from the CPU to the
ICAP Controller.

The RRs are reconfigured by the ICAP controller which fetches bitstreams
located in the DDR RAM. We used Xilinx’s HWICAP IP as DPR controller for
functional verification. Implementing other DPR controllers required exten-
sive implementation work on the FPGA design and the FOS libraries, which
was not the focus of this work. To profile the functionalities of such complex
designs, we extrapolated bandwidth obtained by uPaRC [20] as metrics for
our run-time methodology.

Finally, the system comprises a multi-core CPU: two cores for Zynqg-7000
series, and four for Ultrascale-series SoCs. A core can be used to execute the

run-time manager and OS services, while software tasks runs concurrently on
the other(s).

A breakdown of resource usage per architecture element is made in Table
2.4. These implementation results were obtained on a ZedBoard Evaluation
Board featuring a Zyng-7000 XC7Z020-CLG484-1 SoC. Overall, the static
design used as architecture supporting the self-reconfigurable capabilities oc-
cupies approximately 15% of LUTs and 8% of FFs registers and BRAMs.

2.2. Self-reconfigurable systems management 29

Table 2.4: Self-reconfigurable system resource usage by functional elements for
the proposed platform. The summary section results are given as percentages
of the available resources of a Zyng-7000 XC7Z020 SoC.

‘ Available resources LUTs FFs BRAM36 DSPs ‘
RR1 6.4k 12.8k 20.0 40
RR2 10.0k 20.0k 30.0 50
RR3 12.8k 25.6k 30.0 40
RR4 9.6k 19.2k 30.0 60

| Architecture element
ICAP DPR Controller* 520 1.1k 1.0 0
DMA Controller 3.5k 4.5k 2.0 0
Communication Interface 1.5k 1.5k 8.0 0
Control Interface 2.9k 2.0k 0.0 0

‘ Summary ‘
Static design 8.4k (15.8%) 9.1k (8.5%) 11.0 (7.9%) 0
Reconfigurable design 38.8k (72.9%) 77.6k (72.9%) 110.0 (92%) 190 (86.4%)
Total 47.2k (88.7%) 86.7k (81.4%) 110.0 (99.9%) 190 (86.4%)

*Xilinx’s AXI HWICAP controller used in functional implementation

2.2 Self-reconfigurable systems management

In this section, we discuss the existing management methodologies, or runtime
managers, of self-reconfigurable systems. As introduced in the previous sec-
tion, we focus on the management of coarse-grain accelerators for island-style
architectures containing RRs with heterogeneous sizes. These runtime man-
agers are capable of allocating tasks to resources based on a given architecture
and application information.

Generally speaking, most introduced frameworks possess some kind of run-
time management that is either explicitly defined, as in FOS, with a dedicated
mapping and scheduling algorithm. It can also be done with real-time OS li-
braries with priority-based schedulers [58, 59, 71]. In either case, these runtime
manager focus on a task scheduling problem under time and space constraints.

However, more advanced runtime management methodology can increase
the system resilience against faults [4, 72|, or make use of hardware-software
co-design approach to meet real-time deadlines |73, 74].

In particular, approaches that focus on quality-oriented management to
render a guaranteed minimum service level are of interest to our work. Addi-
tionally, other approaches capable of efficiently managing application execu-
tion will be reviewed as it directly impacts the capability of a system to adapt
itself to evolving execution context.

30 Chapter 2. Background and model definition

2.2.1 Management methodologies

To adequately manage self-reconfigurable systems, a dedicated runtime man-
ager must find mappings of tasks on the system’s resources to optimize an
objective function. Mappings correspond to the assignment of tasks to the
system’s resources (RRs or CPUs).

When more than one task is assigned (or mapped) to a resource, the tasks
are time-multiplexed. If the resource is a RR, multiple accelerators must be
dynamically reconfigured in the RRs throughout an application’s execution.
In this case, scheduling algorithms are used to find a schedule of tasks on
the resources. Scheduling algorithms typically minimize the execution time of
targeted applications, but they can also minimize energy consumption [75] or
maximize a quality metric [76].

Mappings can also be space-multiplexed, notably in the case of slot and
grid-style architectures [39]. Then tasks can be mapped in such a way that
they occupy multiple RRs at once to increase the speedup of a task or reduce
resource fragmentation. Combinations of space and time-multiplexing map-
ping and scheduling approaches exist [6, 77| to minimize the execution time
of an application.

Runtime management can also be used to increase system resilience. The
authors of [4] introduce a runtime management method to increase the mean
time to failure in an aerospace environment. In this environment, RRs become
unstable due to gamma-ray exposition, and the proposed methodology must
execute the application using fewer resources over time. Similarly, work in |78]
introduces a runtime management method with fault mitigation capabilities
to maximize the quality of service. The latter is characterized by the number
of faulty application iterations (lower is better).

2.2.1.1 Quality-oriented management

Quality-oriented management requires the definition of quality models. In [79],
authors introduce definitions of Quality of Experience (QoE) and Quality of
Service (QoS). QoE is defined as the perceived quality by the end-user, tied
to the functionalities of the executed application (eg. signal processing ap-
plication SNR, video framerate...). QoS on the other hand is defined by the
capability of the underlying hardware to execute the application under func-
tional constraints (eg: the time before a deadline, resources occupancy...),
regardless of QoE level. However, QoS can have an indirect effect on QoE
(eg: schedule not respecting a deadline due to bad mapping decisions), and
vice versa (eg. high QoE setting requiring a heavy workload to execute on the

2.2. Self-reconfigurable systems management 31

resources). Using those two quality definitions, the goal of quality-oriented
management is to guarantee a minimum level of QoE from the end user point
of view, and optimization strategies are applied to maximize the QoE and
QoS levels.

Quality-oriented management has been the focus of the literature for MP-
SoC and GPU management [80, 81, 82]. Through case-specific quality models,
application designers can employ quality-oriented management methodologies
to their own needs. This makes them capable of managing the runtime of the
an application while maximizing its quantified quality.

The authors of [57] and [83] introduce a context and resource-aware run-
time manager for autonomous UAV drones. In this approach, multiple ap-
plications constitute a workload to execute within a soft real-time deadline
called the threshold. This workload evolves with additional or fewer tasks
throughout the mission of the UAV, depending on its environment. To main-
tain a minimum level of QoE, the runtime manager checks if the workload
can hold the threshold. If the resulting implementation doesn’t, the runtime
manager downgrades it to a lower QoE version, based on the hypothesis that
a lower QoE level is associated with lower compute-intensiveness [76]. On
the other hand, if the implementation’s execution time holds the threshold
by a significant margin, the workload is upgraded to a higher QoE version.
This mechanism is called autonomic quality management and is illustrated in
Figure 2.12.

Constraints are
relaxed

N
>

<]

E New constraints Application is

= are applied ¢ upgraded

2 S

‘é Maximum ¢ Application is r=- *— -
d ded —

% threshold ownerace !

U == === === - 1 * 1

=

8 1 1

= Application 1 1

= . .

2 execution time = = = === === !

<

E

= U I l I I l I I >

1 2 3 4 5 6 7 8

Application iterations

Figure 2.12: Autonomic quality management downgrade case.

At iteration 4, as the maximum execution time threshold is lowered, the
application does not respect the new deadline. Its quality is downgraded to
lower its computation intensiveness to meet the new constraint. Once the
constraints are relaxed (step 7), the application is allowed to be upgraded
again.

32 Chapter 2. Background and model definition

This autonomic quality management approach is close to our goal, but
it was implemented as part of a mapping algorithm and did not tackle the
challenge of runtime time-multiplexing scheduling of tasks on RRs.

The energy consumption and image quality trade-off have been studied
by the authors of [84]. Their approach considers quality as a function of
approximate computing error on the processed image. Although this approach
does not target self-reconfigurable systems but static FPGA designs, it shows
an insight as to how a QoE model can be defined from a functional point of
view.

Recently, authors of [76] introduced an interesting quality-oriented man-
agement methodology for MPSoCs. Tasks from an application task graph can
individually be tuned to different QoE levels. For each QoE level, a given
task yields a different reward, which is a dimensionless score reflecting an end
user’s interest. Given this QoE model, this work’s objective is to maximize
the reward of a schedule while respecting a given deadline.

Then, a scheduling algorithm is executed to find a schedule that can run
the application on the MPSoC within a defined deadline using the lowest QoE
level for all tasks. This gives a base schedule, as in Figure 2.13 (a), where
all tasks are assumed to be at their lowest QoE level, which gives an overall
reward of 15. Then, the runtime manager introduced in [76] checks if each
task can be upgraded to a higher QoE level without breaking the schedule’s
coherency. In Figure 2.13 (b), tasks T1 and T4 are upgraded which gives an
additional 3 reward points as per the authors’ example.

(@

Gl) & (=

| ts t] Reward = 15 : ~

I I [[I I [| I I g
2 3 4 5 6 7 8 9 100 11 12 13

Gl e)) =

]

ts t I Reward=18 1
I
9

1
I I I g

10 11 12 13

2 3 4 5 6 7 8

Figure 2.13: Quality-oriented scheduling principle from [76| for MPSoC ar-
chitectures, applied to an example task graph. Schedule (a) contains only the
lowest QoE level tasks for a reward score of 15. Schedule (b) upgrades the
QoE of tasks t; and ¢, to higher quality levels to increase the schedule reward
to 18.

2.2. Self-reconfigurable systems management 33

While some introduced approaches can manage applications at runtime in
MPSoC environments [76, 81|, there is a lack of quality-oriented management
for self-reconfigurable architectures. Moreover, the approaches that did focus
on such architectures have been targeting specific use cases which cannot be
applied generically to other applications.

The quality-oriented scheduling introduced in [76] is an interesting take for
its genericity, but this approach does not target self-reconfigurable systems.
In addition, individually managing the QoE level of tasks can be case-specific,
and authors do not disclose a method to attribute rewards to application
tasks.

The autonomic quality management from [83| offers another interesting
take on the concept of upgrading and downgrading but did not tackle the
scheduling problem for self-reconfigurable systems. To the best of our knowl-
edge, no work exists regarding quality-oriented runtime management for self-
reconfigurable architectures with runtime time-multiplexing scheduling.

2.2.2 Mapping and scheduling for self-reconfigurable sys-
tems

In the following paragraphs, we review works focusing on the mapping and
scheduling problem for self-reconfigurable systems. Finding optimal mappings
and schedules of workloads on such systems is an ongoing challenge in the lit-
erature. Given an appropriate set of metrics and constraints on the system
and targeted application, computing mappings and schedules is an optimiza-
tion problem with one or more objectives. As this problem is known to be
NP-Hard, multiple heuristics have been developed over the years. Mapping
and scheduling algorithms that are both fast and yield the shortest sched-
ules are crucial for real-time embedded operating systems to hold application
deadlines [24, 85|.

Typically, these algorithms are executed alongside the software operating
system. Some relatively rare approaches have considered implementing the
scheduling algorithm in hardware [86, 87|, although if decision times of those
hardware schedulers are very low (sub-microsecond), these results are plagued
by high LUTs and FFs implementation costs (multiple thousands of each).

Hardware scheduling could be more suitable for multi-tenant FPGA for
cloud-computing. These platforms are based on much bigger FPGA matri-
ces than those of cost-optimized FPGA-based embedded systems, and the
proportion of used logic elements would be lower.

Compared with the multi/many-core domain which employs such algo-

34 Chapter 2. Background and model definition

rithms, scheduling for self-reconfigurable systems comes with the additional
challenge of managing DPR operations. These operations can be seen as addi-
tional tasks to schedule on a DPR controller resource or be included within the
tasks execution times. This management isn’t trivial, and the schedule con-
straints brought by DPR introduce additional latency in the schedule. This
is even harder when dealing with heterogeneous size of RRs in the platform.

In this section, we define formally the problem of mapping and scheduling
for self-reconfigurable systems, and introduce methods from the literature to
mitigate DPR-induced latencies. Finally, we review scheduling heuristics for
runtime use.

2.2.2.1 Problem statement

As a general definition, the mapping and scheduling problems consist of time-
multiplexing a set of tasks 7 = {t1,...,t,} on a set of computational resources
P = {Py,...P,} for n tasks and p resources. In its non-preemptive general
form, this set contains at least the following constraints: each task from the
application must be executed once, and each resource can execute one task
at a time. This implies that a task t; can be executed at least one resource
from P. In this section, we formulate the mapping and scheduling problem
applied to self-reconfigurable systems. Therefore, the set of resources P can
be comprised of either RRs or CPU cores, and there exists an additional DPR
resource onto which reconfiguration operations can be assigned and scheduled.

While mapping and scheduling are two separate problems, the literature
comprises many examples of approaches that solve both together [88, 89, 90].
By doing so, the mapping can be computed in such a way that it minimizes
the schedule duration.

We introduce Table 2.5 a list of parameters to describe systems and tar-
geted applications.

Applications are represented by their directed acyclic graph (DAG), as
illustrated by the canonical application task graph from [88], presented in
Figure 2.14. In DAGs, vertices or nodes denote the tasks to execute, and
edges illustrate data dependencies (i.e. communications) between tasks at the
functional level.

DAGs can be formally modeled using an adjacency matrix A, which is a
square matrix of size n. Elements A(i; j) from this matrix denote the number
of tokens (abstract unit of data) flowing through the DAG edge between tasks
1 and j. The corresponding adjacency matrix of the canonical example is
presented in the right side of Figure 2.14.

2.2. Self-reconfigurable systems management 35

Table 2.5: List of system and application parameters.

| Symbol | Name | Size |

n Number of tasks scalar
P Number of resources scalar
T Set of tasks n

P Set of resources P

A Adjacency matrix nxn
C Communication matrix | p X p
w Computation matrix nxmp
R Reconfiguration vector | p x 1
D Designation vector nx1
E Earliest start vector nx1
F Finish time vector nxl1

—t
—ty
—t3
—ty
—_ t5
—tg
—t

tg

ty

t10

17 31 29 13 7 . 4

. .3 30 _t

6 . . . |y

1 7 . —t4

57 —t5

A= 5 . —t
42 |-t

7 |-t

0 —tio

Figure 2.14: Canonical application from [88] with its adjacency matrix A.
Dots denote zeroes for readability.

DAG adjacency matrices are given with their upper triangular matrix rep-
resentation as in Figure 2.14. DAGs always produce such types of matrices
for verification purposes: given an adjacency matrix A, if there exist no topo-
logical sorts such that for i < j, A(i;j) > 0, then A illustrates a task graph
that doesn’t comprise any loops and is therefore acyclic.

Tasks can be executed once all their parent (or predecessor) tasks have
been executed. The tasks are atomic and executed until termination as pre-
emption is not considered.

A (n x p) computation matrix W gives the execution times of the different
tasks on the different resources (in milliseconds). As an example, Equation
2.1 is the computation matrix of the canonical example from Figure 2.14 on

36 Chapter 2. Background and model definition

three processing elements platform. Execution time W (i; j) denotes the time
during which a resource P; is busy executing the task ¢;. If W (i;j) = 0, then
task t; cannot be implemented on resource P;.

€ & &
I

22 21 36\ —t
22 18 18 | — ¢t
32 27 43| —t3
7 10 4 |-t
29 27 35| —t5
26 17 24 | —t6
14 25 30 | —¢t;
29 23 36 | —ts
15 21 8 | —t
13 16 33/ —ti

(2.1)

As parameters for the platform, we finally introduce the (p X p) communi-
cation matrix C' and (p x 1) reconfiguration vector R. Element C(i;j) denote
the communication time between two resources i and j. When ¢ = j (same
resource), then the data don’t need to be transferred over the communication
infrastructure, and C'(¢; j) = 0. Element R(i) denotes the reconfiguration time
of a resource i, regardless of the task as this time depends solely on the size of
the RR (in logic elements). If that resource is a CPU, then its reconfiguration
time is null: R(i) = 0.

The mapping of the tasks is stored in a (p x 1) Designation vector. Its
elements D; = P; returns the processing element that is assigned to the task ¢;.
In addition, the (nx 1) Earliest start time and Finish time vectors, respectively
E and F, denote the start and termination time of a task ¢; that is assigned
to a resource.

Based on these system and application definitions, we define the following
set of constraints that mapping and scheduling heuristics must answer to find
a valid schedule.

The mapping and scheduling problem for self-reconfigurable systems is
stated as follows:

Variables

e Set of tasks T, of resources P.

e Unique reconfiguration resource DPR to which reconfiguration tasks
can be assigned

2.2. Self-reconfigurable systems management 37

e Application parameters: adjacency and computation matrices A and W.
e System parameters: communication C' and reconfiguration vector R.

e Designation vector D of size n, which elements D; € P denote the
resource that has been assigned to task ;.

e Earliest start vector E of size n, which elements F; denote the start time
of task t; after being mapped on the resources.

e Finish time vector F' of size n, which elements F; denote the termination
time of task t; after being scheduled on the resources.

Constraint 1: Mapping completion
All tasks from the task graph must be assigned to a resource. Several tasks
can be assigned to the same resource.

Vt,eT, D;,eP (2.2)

Constraint 2: No concurrency
Tasks are atomic and non-preemptible. Therefore a resource can execute
only one task at a time.

Fi 1 <E
VP; € P, {Vt; € T : D; =B}, ! (2.3)
F; < Eiq
With

This ensures that no task can have a termination time while the resource
P; is busy executing the previous or next task assigned to this resource.

Constraint 3: Graph dependency

A task cannot start earlier than the termination time of its predecessor
tasks. Assuming A is an adjacency matrix topologically sorted in its upper
triangular matrix form:

Vt; € T, D, = Pj, Vi, € pred(ti), F, <F,— W(Z,j) (25)

With
pred(t;) = {Vty € T : k <i, A(k;i) > 0} (2.6)

38 Chapter 2. Background and model definition

Constraint 4: Available data
A task cannot start unless it has received the data from its predecessors
through the communication infrastructure.

{Vti € T : Dy =B}, {Vtx € pred(t;) : Dy = P}, Fr < E—[W(i;7) + C(m;j)]
(2.7)
It is to be noted that this constraint is a super set of constraint 3.

Constraint 5: Task reconfiguration

If the designated resource P; for a task ¢; is a RR, the latter must be
reconfigured before its execution by a reconfiguration task tz; on the unique
reconfiguration resource DPR.

{th - D; = Pj, R(]) > O}, {EltRl € DPR: Fg; < Ez} (28)

Once those constraints have been defined, we define the goal of the map-
ping and scheduling problem to minimize the schedule duration, or makespan.

2.2.2.2 DPR operations latency mitigation

Integration of DPR operations in the schedule has been the source of schedul-
ing techniques to mitigate their inherent time overhead. In particular, bit-
stream reuse and pre-fetch techniques illustrated Figure 2.15, have been used
to reduce the impact of DPR operations on the resulting schedules.

The pre-fetch technique, as employed in recent works [91, 90| consists in
pipelining a reconfiguration job on the DPR controller in parallel with another
task execution. This must be done in such a way that the RR is reconfigured
before the corresponding task is ready for execution, and on an available RR
(i.e. in Idle state).

Pre-fetch is illustrated in Figure 2.15 (a). The top schedule doesn’t use
any form of bitstream pre-fetching, while the bottom schedule makes use of it.
In that bottom schedule, task t5 can be executed right after ¢; has finished,
effectively hiding the latency behind the execution of t;. Without pre-fetching
in the top schedule, the reconfiguration job of task t, starts at the end of task
t; and introduces a delay equal to the reconfiguration job duration. Finally,
t4 cannot be pre-fetched as the targeted RR for ¢4 is busy executing ¢, and
the DPR schedule is busy executing the reconfiguration operation ¢ff. This
technique is very useful in the case of relocatable bitstreams or for task with
several potential RR targets. This is a substantial gain on schedule makespan

2.2. Self-reconfigurable systems management 39

(a)

DPR H R
Initial RR1 EE KN
RR2 | 2 ta I @

=
2
v

(=)

ppr (&[] [&] [:&]
e B () (W)
Pre-fetch RR1 [t ts |
RR2 | & | t4]
Time . >
(b)
DPR i (] :t{l & (]

Initial P :
. RR1 | t - | t :
(with pre-fetch) ! - 1 :
RR2 ts ts i ts ts '
: —> 8
DPR (&) & (2] (& (&) () ()

Reuse ; :
RR1 :
(with pre-fetch) 2 2} |

RR2 t2 i3] t2 t3]

Time

\ 4

Figure 2.15: The pre-fetch (a) and reuse (b) scheduling techniques.

as DPR operations duration is non-negligible and the ICAP resource is unique
in modern FPGAs [10, 28].

The reuse technique is illustrated in Figure 4.9 (b). Task ¢, is being reused
between two iterations of the application, delimited by the dashed bold red
line in the bottom schedule. In comparison with the top schedule that doesn’t
use this technique, the duration of the schedule has been reduced by one
reconfiguration job, and this saving will be kept for any subsequent iteration
of the application. RR reuse has notably been used in [92, 93] to limit the
number of DPR operations during the execution of time-multiplexed mapping.

Between two iterations of an application or within a workload execution,

40 Chapter 2. Background and model definition

keeping a task idle for some time might be better than overwriting the RR with
a new task. When keeping the task, there is no further need to reconfigure the
used RR, so its DPR operation latency is introduced only once when it is first
reconfigured. However, this implies that no other tasks can be implemented
on this RR while the task is idle. This technique is particularly helpful when
dealing with coarse-grain island-style architectures as DPR costs are higher
than with smaller RRs. Also, when dealing with heterogeneous sizes of RRs,
if one region can be used by only a few modules anyway, this might be of use.

Both techniques can be applied conjointly to reduce the impact of DPR
operations on the resulting schedule [90].

2.2.2.3 Scheduling heuristics for self-reconfigurable systems

The reviewed multi-objective and quality-oriented approaches have in common
that they all consider, in one way or another, the capability of mapping and
scheduling the tasks on the resources to hold deadlines. In real-time systems,
this time constraint is even more important as failure to meet a deadline
can nullify any other accomplished scheduling objectives. In addition, when
performing runtime scheduling, the decision time of the scheduling algorithm
matters. As when new constraints are applied, systems need to react on time
for reactivity [83]. Therefore, a trade-off exists between schedule duration (or
makespan) reduction and the scheduler’s time complexity.

The quest for obtaining an optimal schedule has always been a motivation
for software engineers. NP-hard problems are notoriously difficult to solve op-
timally. MILP formulations run by complex solvers such as CPLEX or Gurobi
have been used in the literature to find optimal schedules. Some approaches
such as [94, 95| have been using MILP formulations on host computers target-
ing self-reconfigurable architectures, but as their results show, such algorithms
cannot, be ported to the target for runtime scheduling as their decision time
is up to minutes on host computers.

Heuristics are employed to cut decision time short for runtime scheduling,
accepting that the resulting schedules are sub-optimal. In this regard, the
authors of |40, 96| have considered an range of scheduling heuristics based on
the Earliest Deadline First (EDF) and the Lookahead heuristic [97] to sched-
ule applications with respect of their respective mapping strategies. More
recently, the authors of [98, 90| have implemented the pre-fetch feature on
an ASAP scheduling policy to achieve a lower schedule makespan versus a
non-pre-fetched scheduling policy.

In 2018, authors of [89] made a comparison of popular scheduling heuristics

2.2. Self-reconfigurable systems management 41

for MPSoC with a focus on the trade-off between time complexity and result-
ing schedule makespan. The reviewed heuristics are the Heterogeneous Ear-
liest Finish Time (HEFT) and Predict Earliest Finish Time (PEFT) [99, 88]
algorithms, the Lookahead [97], and a Critical Path Aware (CPA) heuristic
[99]. These heuristics are part of the list-based scheduling family. The main
characteristic of this heuristic family is that throughout the scheduling of an
application, they conjointly use a mapping strategy to minimize the schedule
makespan.

In particular, the introduced heuristics are efficient in handling heteroge-
neous MPSoC systems, which self-reconfigurable architectures belong to, and
for being capable of predicting the impact of scheduling decisions throughout
the scheduling process. Predictive scheduling can be achieved by parsing the
task graph once to detect potential execution bottlenecks, and then parsing
it once again with this knowledge. The goal here is to find a topological
order that maximizes the occupancy rates of resources to ensure maximum
paralellization of task execution. The prediction feature lowers the result-
ing scheduling makespan, but has an impact on the time complexity of those
approaches, as shown in Table 2.6.

Table 2.6: Time complexity of popular scheduling policies for heterogeneous
computing for n tasks and p resources.

] Name \ Time complexity | Concept ‘
ASAP [90] O(n - p) Greedy
PEFT, HEFT [88], [99] O(n?-p) Task prioritizing
CPA [99] O(n? - p) Critical Path
Lookahead [97] O(n* - p?) Lookahead

Time complexity typically starts growing with the square of the number of
tasks as the task graph needs to be parsed at least twice to properly predict
decisions impacts.

The importance of predictive scheduling is highlighted in Figure 2.16 that
showcases the CPA heuristic [99]. This figure illustrates three rounds of this
algorithm. In this simple example, let tasks have the same execution time on
any resource denoted by the number next to their respective node in the graph.
In Figure 2.16 (a), task ¢; has already been selected for scheduling as it’s the
source task of the graph. Amongst the three possible paths, the critical path
is {t3;t5;t6}. Thus t3 is added to the schedule, and the critical path search
is repeated in (b) after having removed t3 from the task graph. This step
is repeated in (c), and up until schedule completion. Critical path search

42 Chapter 2. Background and model definition

ensures the topological ordering in which tasks are prioritized, according to
the probability that they could cause a bottleneck in the schedule.

Figure 2.16: Critical Path Aware topological ordering principle.

The family of HEFT-based scheduling heuristics has been used recently in
[100, 101] to schedule DAGs on Multi-FPGA architectures for cloud comput-
ing. However, authors do not address schedule optimizations (i.e. pre-fetch
and reuse) nor runtime scheduling for embedded systems.

However, and to the best of our knowledge, no other works have considered
employing the pre-fetching technique to benefit from the efficiency of PEFT on
self-reconfigurable systems and mitigate DPR latency overhead. The closest
approach would be As Soon As Possible (ASAP) with bitstream pre-fetching
from [90], but that work does not consider architectures comprised of RRs of
different sizes, which helps reduce resource fragmentation [102]. Among the
compared scheduling heuristics for heterogeneous MPSoC in [89], the PEFT
[88] has shown to be the most efficient in terms of schedule makespan re-
duction. We believe it can be adapted to with self-reconfigurable systems
considerations.

2.2.3 Hybrid methodologies

As an alternative for runtime scheduling, we review here works on hybrid
design-time /runtime methodologies. The main interest of such methodol-
ogy is that it reduces the runtime management problem complexity by pre-
computing part of the problem offline on a host computer.

Hybrid management methodologies have found usage for self-reconfigurable
systems [39, 98], and in particular to map tasks onto RRs for grid-style archi-
tectures. Their design time step consists in finding optimized implementations
of tasks on RRs in the FPGA architecture (i.e. valid mappings). These im-
plementations are evaluated in a vacuum at design time to find only specific

2.3. Conclusion 43

Pareto-optimum implementations on grid-style architectures. Then those op-
timum implementations are used at runtime to instantiate tasks onto the RRs.

However, while the approach from [98] did consider some form of ASAP
scheduling, these approaches did not address the impact of heterogeneous
RR sizes. Nevertheless, results in [98| show their hybrid design-time/runtime
approach outperforms an OpenMP API in a MPSoC (CPU only) environment
when taking decision times into account. This shows how efficient runtime
management can deeply impact runtime performance.

As we target cost-optimized FPGA-based embedded systems, reducing the
runtime management problem complexity is of interest. In particular, as it
can decrease the decision time, we believe this could increase the reactivity of
our system to evolving constraints.

2.3 Conclusion

Self-reconfigurable systems arouse great interest in the literature. Many styles
of architectures and abstraction paradigms exist with their pros and cons, and
works have been conducted to demonstrate the feasibility of such architectures
and associated frameworks [66]. The island-style architectures, coupled to a
coarse-grain tasks abstraction layer, is a good trade-off between performance
and ease of use |67, 65, 6]. In particular, island-style accelerators are easy to
manipulate by application designers as they can make use of custom-designed
or vendor IPs. Xilinx vendor is pushing for such dedicated accelerator IPs with
the Vitis accelerated libraries [11]|, and offers official DPR support through
open source projects such as PYNQ [12]. In addition, some approaches have
considered POSIX-like APIs [65, 6] to help software designers integrate such
accelerators in their designs without requiring too much effort.

Self-reconfigurable systems management approaches have since been intro-
duced to benefit from the full hardware acceleration potential that DPR offers.
Efficient management isn’t an easy problem to solve, and recent approaches
have tackled this challenge through system resilience |78, 4|, speedup perfor-
mance [40, 90|, and quality of experience maximization [83, 76]. To speedup
the management process, hybrid design-time/runtime approaches have been
introduced [39, 103]. Design Space Exploration (DSE) steps are conducted
offline to either reduce the runtime management problem complexity or pre-
compute a set of solutions that can be used at runtime.

To adapt to evolving system environment context, which can lead to in-
creased resource constraints such as lowered RR availability [83], increased

44 Chapter 2. Background and model definition

workload [57] or restricted RRs [4], systems must provide management solu-
tion as efficiently as possible. In the case of real-time behaviors, this must
be done on time, before reaching the application deadline. To answer this
problem, scheduling heuristics have been introduced for MPSoC architectures
[89], but few approaches have been considered in-schedule DPR. operation
management [90].

In this thesis, we build our architecture and framework on interesting
features from the literature such as P2P RR communication [67] to lower
communication times, and fast ICAP-based DPR controllers [18, 20]. The
state-of-the-art FOS operating system framework [6] providing API and li-
braries to manage RRs from the software side.

In this chapter, we identified quality-oriented hybrid management method-
ology as an answer to the evolving system environment context problem to
guarantee a minimum level of quality of experience. In addition, popular
scheduling heuristics for MPSoC are efficient at time-multiplexing tasks on
an architecture’s resources, yet we identified a lack of such heuristics for self-
reconfigurable systems.

CHAPTER 3

Quality-oriented application

management
Contents
3.1 Overview i e e e e e e e e e 46
3.2 Quality model000..... 46
3.2.1 Executionmodes 46
3.2.2 Quality of Experience 49
3.2.3 Quality of Service. 51
3.3 Hybrid mapping and scheduling management 52
3.3.1 Design-time computation o4
3.3.2 Run-time computations 60
3.4 Experiments e 68
3.4.1 Platform evaluation 68
3.4.2 Simulation environment oL 71
3.4.3 Resulting quality scores 72
3.4.4 Resulting decision times 75
3.5 Conclusion. e 78

46 Chapter 3. Quality-oriented application management

3.1 Overview

To guarantee service execution, self-reconfigurable systems must cope with
run-time changes in RRs and CPU cores availability, and modifications in
application requirements. These changes are introduced by additional tasks
or services that must be executed on the resources (eg. evolving workload
throughout a drone mission [57]), or restrictions on the resources themselves
(eg. resources experiencing failures in highly constrained environment [4]).
Reacting to those resource availability changes on time is crucial to maintain
continuity of service. It is characterized by the capacity of the system to meet
the application deadlines.

In this chapter, we introduce a quality-oriented hybrid manager to manage
the introduced self-reconfigurable system. It can react to run-time evolutions
of resource availability and additional workload while maintaining continuity
of service. To do so, the proposed approach makes use of execution modes
that are based on different combinations of functional parameters. Each mode
is related to a quality score, and the runtime manager can change the cur-
rent execution mode to react to the evolving situation while maximizing this
quality score.

We first detail how execution modes can be defined using a H.264 appli-
cation benchmark as an example. We then show how QoE and QoS models
can be built for this application. Finally, we introduce our hybrid design-
time /run-time methodology.

3.2 Quality model

3.2.1 Execution modes

Functional parameters (eg: image resolution for a video codec application,
targeted SNR for signal processing ...) have an impact on perceived quality as
they change how an application behaves. Different combinations of functional
parameters of a given application denote different execution modes. In this
thesis, applications are defined by their task graph, described at the functional
level. Therefore changes in the functional parameters have an impact on the
task graph, as in the scenario-aware synchronous data flow (SADF) model of
computation [104]. This means that between execution modes, changes in the
task graph can be introduced, by adding or removing tasks, modifying the
tasks execution, or a combination of these changes.

When describing the application at the functional level, parameters that

3.2. Quality model 47

have such an effect can be defined. Then, for each combination of these
parameters, a new execution mode can be defined.

To illustrate this vision, we introduce the H.264 application benchmark.
The H.264 video standard [105] is one of the most commonly used formats
for video compression. Its high compression rate is achieved thanks to an
integer discrete cosign transform (integer DCT) which can be accelerated by
hardware. This application offers two functional parameters commonly ma-
nipulated to increase or reduce its compute-intensiveness: the video framerate
and image resolution [106].

H264 Slice
Encoder x4

s , (480p) , :
E Sobel filter 5_ 1) Macrob.lock Entropy | _)E AES. E
' . Ordering encoder « encryption

H264 Slice
Encoder x4
(360p)

Optional H264 Core Optional

Figure 3.1: Task graph representation of the multi-resolution H.264 encoder
benchmark with optional filtering and encryption tasks.

The H.264 encoder application task graph is illustrated in Figure 3.1. It is
comprised of ‘Core’ H.264 tasks, and two optional tasks (Sobel filter and AES
encryption). The Core H.264 is comprised of a Macroblock Ordering task
which decomposes an image into four slices following the Flexible Macroblock
Ordering Type 0 [107]. Each slice is encoded in parallel using the H.264
Slice Encoder tasks, which are comprised of an integer DCT transform and
a quantization step. Then the encoded slices are merged into a compressed
bitstream via entropy encoding. As only one image resolution can be selected
at a time, only one set of H.264 Core tasks can be active at a time (orange
for 480p and green for 360p).

The Sobel filter and AES encryption tasks are introduced to enhance the
application and show their impact on execution modes.

We denote a unique execution mode of a targeted application as M;. The
number of unique execution modes is ngy (0 < @ < ngy — 1). To define
execution modes, we must identify functional parameters that have an impact
on the perceived quality or quality parameters for short. Using the H.264

48 Chapter 3. Quality-oriented application management

application as an example, we introduce Table 3.1 a list of the relevant quality
parameters (); and their respective possible values.

Table 3.1: List of quality parameters for the H.264 application.

| Parameter name | Values |

Image resolution Qo = { 360p; 480p }

Video frame rate Q1 = { 30fps; 45fps; 60fps }
Image filtering Q2 = { No; Sobel }
Encryption Qs = { No; AES }

Each quality parameter must have at least two values. Changing values on
these parameters must have an impact on the task graph properties (topology,
execution times, or both). In this example, the image resolution impacts the
execution times of the Slice Encoder tasks. Changing the Image filtering pa-
rameter adds or removes the Sobel task from the task graph. The video frame
rate has an indirect impact on the application, as it changes the application
deadline.

For a given application with n, quality parameters @);, the number ngy,
of execution modes is equal to the number of permutations with repetitions
of quality parameters:

np—1

Npm = H |Qz| (3-1)
i=0

The theoretical number of execution modes for the H.264 application is
ngy = 2*3x2 %2 = 24, This number denotes a theoretical maximum
limit of execution modes as some may not be implemented or desirable. For
instance, AES and Sobel functionalities are considered optional for the H.264
application, they aren’t made available for lower resolutions.

Execution modes should be exploited to minimize the number of changes
when switching from one mode to another. Specifically, by putting a focus
on the reuse technique which consists in reusing an accelerator that’s already
implemented on a RR between application iterations. Then if the task is the
only one that’s executed on this RR, there is no need to reconfigure it, which
in turn frees up the ICAP DPR controller.

In this regard, we introduce the concept of quality-parameter-dependent
tasks. These dependent tasks are impacted when changing a quality parameter
when switching execution modes. Let two execution modes M; and M; (i #
j) of an application. The task graph difference between M, and M, are the

3.2. Quality model 49

dependent tasks that need modifications (inducing reconfiguration) due to a
change of quality parameters.

For instance, with the H.264 application, the difference between execu-
tion modes M (360p; 30fps) and M (360p; 30fps; Sobel) is the Sobel task.
The other tasks are quality parameter independent as they don’t require re-
configuration. If one of those quality-parameter-independent tasks is already
implemented on a RR and the only one in this schedule, then we can reuse it
when transiting from one execution mode to another.

Table 3.2: Definition of the execution modes for the H.264 application.

’Execution mode ‘ ./Vlo ‘ Ml ‘ MQ ‘ Mg ‘ M4 ‘ ./\/l5 ‘ Mﬁ ‘ M7 ‘ Ms ‘ ./\/lg ‘
Image resolution 360p|360p [480p|480p|360p|360p|480p |480p|480p [480p
Video framerate (fps)| 30 | 60 | 30 | 60 | 30 | 30 | 30 | 60 | 30 | 45

Sobel filter No | No | No | No | Yes | No | Yes | No | Yes | Yes
AES encryption No | No | No | No | No | Yes | No | Yes | Yes | Yes

Out of the 24 theoretical execution modes, only 10 were retained as execu-
tion modes of interest for the H.264 application benchmark. These execution
modes are summarized and defined in Table 3.2. This choice was based on the
different feasible implementations on the targeted architecture, and coherency
with the quality-assessment study results from [106] to introduce solely exe-
cution modes with significant changes in the task graph.

3.2.2 Quality of Experience

Quality of experience (QoE) indicates the user’s perceived quality of a given
execution mode. Depending on the nature of this perception, this metric can
be very subjective (perceived quality from an end-user), or more objective
(measured performance to reach a given task). For instance, the video frame
rate may be significant for a car’s infotainment system (eg: headrest video
players) or a drone camera, but not as much as for an embedded system ex-
ecuting a high frame rate target acquisition program. As there is no unified
QoE model, the effect of quality parameters on perceived quality can be mod-
eled using empiric quality assessment [106], mathematical models [108], or a
combination of both.

Empiric quality assessment is a study of the users’ observations on per-
ceived quality. It is best used for qualitative and subjective quality parame-
ters, or when the number of different settings is relatively low and cannot be
easily described mathematically. The typical usage of empiric quality assess-
ment is to define video quality settings. There, a panel of end-users is asked

50 Chapter 3. Quality-oriented application management

to give quality scores to various quality settings videos being played. The
subjective nature of QoE in that use-case is highlighted when end-users speak
in terms of image definition or details, which perception may vary with the
content of the video and end-users eyesight. Finally, quality scores are used
to define which settings the users prefer and illustrate how much better one
setting is compared to another.

Comparatively, mathematical models are best suited for quantifiable qual-
ity parameters. Those are related to the application’s performance, eg: Signal
to Noise Ratio (SNR) for signal processing applications, or bandwidth of an
encryption application. When such performance can be directly quantified,
mathematical models can describe the preference. Eg: a 20dB SNR of a
software defined radio has 10x less noise than one that has an SNR of 10dB.

Once a QoE model has been identified for the application with respect
to the quality parameters, a QoE score QE function can be defined. This
function takes a given execution mode M; as parameter, which is comprised
of its associated set of quality parameters (eg: My = {360p;30fps}). To
apply our methodology to other applications and QoE models, this function
must return a score such that for any execution mode M;; 0 < QE(M;) < 1.

Using the H.264 application quality parameters from Table 3.1, functional
descriptions such as { 360p; 480p } and { No; Yes } are reduced to numerical
values based on their indices (i.e. “360p” counts as 0 and “480p” counts as 1).
The frame rate parameter retains its numerical value (i.e. “45fps” counts as
45). The quality of experience score QF function for the H.264 application has
been extrapolated using a quality-assessment study from [106], and is defined
in Equation 3.2:

QE(M,) = 0.75Q0 + 2.5@5‘.21;2 + Q2+ Qs (3.2)

Finally, using this equation we can attribute a quality score to each exe-

cution mode, and the list of possible execution modes for a given application
can be drawn in Table 3.3.

Table 3.3: Application execution modes for the H.264 application, sorted by
increasing quality score QE.

’Execution mode ‘Mo‘Ml‘Mg‘Mg‘M4‘M5‘M6‘M7‘M8‘M9‘
Number of tasks | 6 [6 [6 [6 [7 [7] 7] 7]8] 8]
|Quality score Q£]0.18]0.35]0.35]0.53]0.59]0.59]0.76|0.76]0.82[0.87]

3.2. Quality model 51

3.2.3 Quality of Service

Quality of Service (QoS) answers the question “how well is the service executed
by the system?”. Whereas the QoE of an application can be evaluated offline,
the QoS of a mapping and scheduling solution evolves at runtime. As it takes
into account the system’s current resource constraints, it reflects a runtime
state of execution.

Two implementations of an application can only compare their QoS at an
equal QoE setting. If those implementations run different execution modes,
then their inherent functional difference might have an impact on the re-
sources. Therefore the difference in QoS might be caused by the change in
QoE. A trivial example is a 480p mode having to compute more pixels than a
360p mode, making the higher resolution implementation more demanding in
terms of resource usage. However, two instances of the same execution mode
can compare their QoS scores since they deliver the same service. Following
the axiom that a higher QoS score implies a more efficient implementation,
the system should use the one that maximizes QoS whenever possible.

Similarly to the QoE model, QoS is subjective to the system’s specifications
and the goal of the embedded system. We introduce here the example of real-
time operating system QoS modelization, although QoS can also be modeled
to consider mean time to failure [4] or energy consumption considerations [84].

In a real-time operating system, QoS would typically be related to occu-
pancy rates of the CPU and soft or hard time constraints. Two paradigms
exist concerning the QoS modelization of occupancy rates:

e Load balancing is performance-oriented and implies the system must
be as busy as possible to make the most out of its available resources
to execute an application. Here, the QoS level is higher the more the
occupancy rates of the system’s resources.

e Slack is power-oriented and rewards implementation solution that min-
imizes the occupancy rates and maximizes the time before the deadline.
A preference is made toward systems that use as few resources as pos-
sible to execute the application.

A well-tuned QoS model based on the load balancing paradigm can value
implementations that offload most of the work on hardware accelerators and
free CPUs. However, it can over-value implementations that result in high
occupancy rates for the sole reason of making accelerators and CPUs busy.

A QoS model based on slack favors implementations executing the targeted
application as fast as possible. As they become more compute-intensive, high

52 Chapter 3. Quality-oriented application management

QoE execution modes can return lower QoS scores with the slack paradigm.
However, because QoS scores can only be compared at equal execution modes,
this only means that high QoS might be harder to achieve as QoE increases.
For the H.264 application example, we chose to represent QoS using the
slack paradigm which was also the choice made in [76]. Let a solution S be
running on the system’s resources. Its slack is defined as resource idle time du-
ration between the end of the implementation execution 75 and its application
deadline 7p. We introduce the QoS score Q3(7s; 7p) in Equation 3.3.

™D —Ts .
g — = if Ts < Tp;
Q2(7s; D) = D (3.3)
0 else

For the same reasons as the QoE model definition, this QoS function is
defined in such a way that 0 < Q2(7s;7p) < 1.

Finally, as we aim to guarantee the continuity of service execution while
maximizing quality, we introduce the concept of continuity of service breaks,
or service breaks for short. They are characterized by an unmet application
deadline (failure to deliver the service), or when QoS is equal to zero.

3.3 Hybrid mapping and scheduling management

The proposed hybrid management approach is introduced in Figure 3.2. It is
divided into two parts: design time and run time.

The design-time step’s objective is to find a large number of mapping and
scheduling solutions that take into account the application and system models
introduced in chapter 2, and quality models. The mapping and scheduling so-
lutions correspond to application implementations on the self-reconfigurable
system. These solutions are then evaluated, sorted, and pruned. The remain-
ing solutions are stored in a solution database, which is a JSON file containing
mapping and scheduling solutions for the runtime manager to parse through.
This database is then uploaded onto the self-reconfigurable system.

The runtime step of the proposed management approach is activated upon
detection of new system constraints (e.g. additional workload changes, restric-
tions on resources), or in case of service break detection. It is responsible for
the selection of a new solution from the pre-computed database to maximize
the QoE first, then the QoS. The decision time to find this new solution is
taken into account, as the system must react quickly to adapt to the new

3.3. Hybrid mapping and scheduling management 53

System model Application model Quality model

Design-time
(off-line, on host computer)

[Mapping and scheduling solution generation and evaluation J
Y
[Reduction of the solution space]

v

Database of pre-computed solutions

v

Run-time
(online, on target)

System monitoring:

detection of new system constraints or application service break
\ J

Y

Selection of new mapping and schduling solution from the database
& J

Current mapping and scheduling solution

Figure 3.2: Overview of the proposed quality-oriented hybrid design-time /run-
time management of self-reconfigurable system.

constraints or to fix the service breaks. Finally, the returned mapping and
scheduling solution can be enforced via the FOS libraries [6].

This methodology can be used for any use-case described at the function
task graph level targeting a self-reconfigurable system with similar architec-
ture as introduced in Section 2.1.5.

54 Chapter 3. Quality-oriented application management

3.3.1 Design-time computation

Defining a mapping and a schedule of the application task graph means as-
signing tasks to RRs or CPU cores, and defining their order of execution, or
schedule, to respect the application schedule. As the system doesn’t know be-
forehand what constraints will be imposed to the system at runtime, a variety
of mapping and scheduling solutions must be generated to store on the target,
and provide more freedom for the online stage. If the system doesn’t have a
solution that fits the system given the current constraints (i.e. non null QoS
score), then it must downgrade the QoE and run a sub-optimal one. In the
worst-case scenario, if the manager cannot downgrade further the QoE, then
a service break occurs.

Here, the trade-off of hybrid design-time/runtime management between
efficiency and runtime complexity is addressed by generating and evaluating a
set of solutions for each execution mode. These sets must comprise a variety
of high QoS solutions to answer the runtime events.

Given an application and its corresponding quality model, as well as the
model of the targeted self-reconfigurable system, the design-time step consists
of three consecutive operations:

1. Combinatorial fixed mapping generation;
2. Schedule evaluation of the mappings;

3. Reduction of the solution space and creation of the data set.

After which the data set is fully generated and compiled as a JSON file
containing multiple valid solutions for each execution mode, ready to be ex-
ploited by the run-time step.

3.3.1.1 Combinatorial mapping generation

The mapping (i.e. assignation of tasks to resources) and scheduling (i.e.
time-multiplexing of tasks on resources) are separated here as the schedul-
ing heuristic aims to find mappings that minimize the schedule duration, or
makespan. Because constraints can impact resources that will be used by the
obtained schedules, we must provide solutions for the runtime manager that
are sub-optimal when there are no constraints but may become useful when
constraints are applied.

The list of mappings can be obtained by combinatorial mathematics for-
mulas. A mapping corresponds to an assignment of tasks to computation

3.3. Hybrid mapping and scheduling management 55

resources (RRs or CPU). Given a number ngys of execution modes, a number
n; of tasks in the task graph of execution mode M;, and p resources to exe-
cute the tasks. Considering no restrictions on the mapping, i.e. all tasks can
be executed on all resources, the maximum number of unrestricted mappings
Niap 18:

Noap <> k™ (3.4)

As an example, let’s consider a system comprised of 4 RRs and a CPU core.
Given the benchmark H.264 application execution modes from Table 3.3, we
can draw Table 3.4 which computes the number of unrestricted mappings for
each execution mode.

Table 3.4: Number of unrestricted mappings by execution modes for the H.264
application.

‘Execution mode HMO‘Ml‘MQ‘Mg‘M4‘M5‘M6‘M7‘ Mg ‘ Mg ‘
Number of tasks [6]6]6]6|7[7]7]7]8] 8]
15k| 15k |15k |15k| 78k | 78k | 78k| 78k 390k |390k|

]Unrestricted mappings k™

In total, this yields 1’156’250 fixed mappings that our methodology needs
to find a schedule for. It becomes obvious that for larger self-reconfigurable
systems and more complex workloads, this number grows considerably and
severely hampers exhaustive algorithms. Constraints on the mapping genera-
tion and heuristics to evaluate and exploit the database are then needed.

This exhaustive mapping of Equation 3.4 doesn’t limit the number of tasks
assigned to a single resource (RR or CPU), i.e. for n tasks in the task graph,
up to n task can be assigned to a single RR. In such a case, the sum of task
execution times on this RR can become greater than the application timing
deadline. Thus, the mapping can be considered invalid before even trying to
find a valid schedule for it.

Figure 3.3 illustrates a timing deadline violation due to a bad mapping. In
this thought experiment, many tasks are assigned through fixed mapping to
RR1 and the scheduler has no choice but to execute them sequentially. How-
ever, such mapping had no chance to work in the first place, as the sum of task
execution times 7; assigned to resource RR1 is greater than the application
deadline 7p.

To prevent the design-time mapping generation from spending time com-
puting schedules for invalid mappings, we introduce a constraint on the max-
imum number of assigned tasks to a single resource.

56 Chapter 3. Quality-oriented application management

A

Tn [I */| Application
T.. ; 77| Deadline
T;....;. ™D

Mapping and T.. l C]
T : :

scheduling

Application
task graph

RR1 RR2 CPU1

Figure 3.3: Deadline violation due to a task assignment overload on RR1.

Constraint 1: For a set of tasks 7 assigned to a resource P; through fixed
mapping. Given the computation time matrix W and reconfiguration vector
R (from scheduling parameters in chapter 2), and the application deadline 7p.
Mappings are considered worthy to compute a schedule if:

> (W(isj) + R(j) < 7o (3.5)
t,eT
In addition, as we consider self-reconfigurable systems with different sizes
of RRs, some tasks might not have a module for certain RRs. In such a case,
no schedule can be computed for such mappings, and we introduce a second
constraint on the fixed mapping generation.
Constraint 2: For a set of tasks 7 assigned to a resource p; through the
fixed mapping. Mappings are considered worthy to compute schedule if:

Vi e T, W(ij)#0 (3.6)

Once the set of fixed mappings has been generated with the proposed
constraints, the design-time step enters the schedule evaluation phase. These
two constraints enable the phase to reduce the design space down to 35.8k
solutions out of the 1’152k theoretical unrestricted mappings from Table 3.4.
This 96.81% reduction ensures only mappings that have a chance of yielding
a valid schedule with a high enough QoS score are being evaluated.

3.3.1.2 Schedule evaluation

The set of fixed mapping now defined, we run a fixed-mapping scheduling
algorithm that considers the application’s and system’s specifications to define

3.3. Hybrid mapping and scheduling management 57

a working schedule. Given the size of the solution space to evaluate, the choice
of ASAP scheduling is motivated by its O(n-p) time complexity for n tasks and
p resources (RRs and CPU). Using fixed mappings, this time complexity even
drops to O(n) because the scheduler doesn’t need to find the best mapping
according to its scheduling policy.

The fixed mapping scheduling heuristic used in this section is described
in Algorithm 1 and illustrated in Figure 3.4 using application and system
parameters from Table 2.5.

Algorithm 1 Fixed mapping scheduling heuristic

Input : task graph, application, and system information, and fixed map-
ping
Output : valid schedule
1: Put source tasks in the list of tasks ready for execution

2: while list of tasks ready for execution is not empty do
3: let task t; be the next task in the list

4: let resource P; be the selected resource for ¢; from the fixed mapping
5: compute earliest start of ¢; on resource P; given R, C' and W

6: if last task on resource P;’s schedule is identical to ¢; then

7 // Reuse the task that’s already implemented

8: else if R(j) > 0 then // Resource P; is a RR

9: append reconfiguration job ¢ for task ¢; in the DPR resource

10: add t; to the schedule of resource j

11: mark ¢; as done

12: update list of tasks ready for execution

13: return schedule

(1) RR t ts 2
@ @ CPU to ts te
tR

@ @ DPR |t !
W >

Time

Figure 3.4: Schedule of a sample task graph on a single RR and CPU. Manage-
ment of reconfiguration operations by the Configuration Access Port (CAP)
is shown in the DPR timeline.

58 Chapter 3. Quality-oriented application management

For each task t; to schedule on a RR, the heuristic schedules the corre-
sponding reconfiguration job tf*. As the Configuration Access Port (CAP)
controller is unique, the reconfiguration jobs cannot be executed in parallel.

Taking the schedule on a single RR and CPU example from Figure 3.4 the
reconfiguration operation ¢ needs to be executed before the source task ;.
Once t; ends, to and t3 are added to the list of tasks ready for execution. The
corresponding reconfiguration job of t3, as it is executed on the RR, is added
to the CAP schedule. t£ then delays the start of ¢3 as it needs to wait for the
end of t&.

No tasks can be executed on a RR during the reconfiguration job of this RR
because the targeted programmable logic is unavailable during the operation.

90

80
- 70
= 60
£ 50
g 40
g 30
2 20

10

0

Number of nodes in DAG

Figure 3.5: Scheduling decision time on a host computer of the fixed mapping
ASAP heuristic by the number of nodes in the DAG task graph.

This fixed mapping scheduling respects the unicity of the ICAP controller
for schedule coherency with the characteristics of self-reconfigurable systems.
However, it does not make use of bitstream pre-fetching as this topic is dis-
cussed in chapter 4.

The scheduling decision time of the fixed mapping scheduler has been
benchmarked using random synthetic application workloads. By generating
a million random DAGs comprised of 5 to 100 nodes, we run the heuristic
written in C++ on a host computer’s CPU (Intel i5-7300U 2.60GHz). The
scheduling decision times are shown in Figure 3.5. Overall, obtained results
show the heuristic yields schedule within 100us, which is sufficiently low con-
sidering the high number of mappings to evaluate. This schedule evaluation is
operated on the 35.8k mapping solutions from the combinatorial generation.

3.3. Hybrid mapping and scheduling management 59

3.3.1.3 Solution space reduction

After having processed the schedule of all unique mappings and applied con-
straints, the design-time step enters the solution space reduction phase. As
illustrated in Figure 3.6, the Pareto front can be drawn to find the best map-
ping and scheduling solutions for each execution mode. However, the final
database that must be stored on target must contain more than only the
Pareto-optimal solutions as the runtime manager must parse through it to
find a solution that works given the resource constraints.

The trade-off between the number of solutions kept in the database and
their quality of service must be addressed. Typically, solutions with a very
low QoS score have little chance of being used at runtime as this implies they
barely meet the requirements.

1 T T T
. Database solutions —+—
: : Pareto fron
0.8 : :
S 06
@
n
8 04
0.2
0 I l l |
0 0.2 0.4 0.6 0.8 1

QoE score

Figure 3.6: Database solution space in the QoE-QoS domain.

In the H.264 example, we propose here to keep the best QoS half of the
solutions of an execution mode, if that set comprises more than 1k solutions.
In addition, we prune any solution that has a QoS score below 0.10 as they
are likely not to execute properly. The solution space profile is illustrated in
the QoE-QoS domain in Figure 3.6. All database solutions are plotted in the
red bars following with their evaluated QoS and QoE scores as coordinates.
We see a correlation between the two scores, as when the QoE score grows,
the QoS decreases. This validates the hypothesis that high QoE workloads
are harder to implement for the self-reconfigurable system

The result of this step is shown in Table 3.5. In total, there are 15.8k
mapping and scheduling solutions that are saved in the database for the H.264

60 Chapter 3. Quality-oriented application management

application. It is to be noted that the execution mode My is heavily reduced,
as there are few mappings that can make the application meet the deadlines.
The constraints proposed at the combinatorial mapping step helped remove a
large majority of the potentially invalid mappings.

Table 3.5: Application execution modes for the H.264 encoder benchmark
application after the pruning.

[Execution mode || Mo | M, [My | Mz M| Ms|[M| M7| Ms | M, |

Number of tasks 666 |6 |77]7][7]8]38]
Unrestricted k" 15k | 15k | 15k | 15k | 78k | 78k | 78k | 78k |390k|390k
After constraints 7.8k[5.2k|6.9k|2.5k|6.4k|3.5k|1.2k|2.0k| 2.2k | 110
After pruning 3.3k|2.8k|2.4k|1.0k|2.9k|1.4k|0.4k|0.6k| 1.0k | 110
QoE score Q% 0.18(0.35/0.35|0.53]0.59|0.590.76|0.76|0.82 | 0.87
Average QoS score 2(/0.65/0.54/0.56]0.49|0.34|0.33/0.19(0.18{0.18 | 0.11

Figure 3.6 and Table 3.5 can help determine execution modes that may
not be used frequently. Let two execution modes M; and M; such that
QEM;) > QE(M;), if QI(M,;) > Q%(M,), then execution mode M; is
likely to be used less than M;, if at all.

3.3.2 Run-time computations

Once the design-time step on the host computer is completed, a workload
package is generated to be sent to the target. The components of this package
are illustrated in Figure 3.7.

/ Workload package ~ _____________ \

.bit H
.pbit ' .out

Runtime Static Reconfigurable

N (Optionnal)
AMa‘lflagéf Solution BPQSIEH NIID(;?:;;S Software
pplication Datab itstream
\ atabase Bitstreams Modules /

Figure 3.7: Content of the run-time workload package.

The Runtime Manager Application is the program responsible for fetching
the best solution from the database to maximize the QoE and QoS scores at
runtime. Once a mapping and scheduling solution from the solution database

3.3. Hybrid mapping and scheduling management 61

has been identified, the corresponding reconfigurable modules (RMs) and soft-
ware modules (SMs), if any, are used to execute the chosen mapping.

As mentioned in the quality model section, our runtime manager aims to
avoid service breaks. Thus the runtime managers don’t have to find the best
solution in the database as long as respecting the application deadline and
returning a non-null QoS solution is paramount. Finding solutions with a
good QoE score is still important though, as once the service execution has
been guaranteed, the runtime manager must maximize QoE.

In addition to the workload package, the self-reconfigurable system’s FPGA
must be properly set up using a static bitstream that contains the proposed
architecture (see section 2.1.5). It is assumed that all reconfigurable mod-
ules’ partial bitstreams that are considered in the application model must be
provided by the application designers and have been correctly generated.

3.3.2.1 System monitoring

A new mapping and scheduling solution is needed for anytime the system
cannot hold the application deadline. This can happen when the currently
selected solution doesn’t meet the deadline. We define here the causes of such
delays, and the system monitoring implemented.

Hardware task execution times should not vary over time as their used
logic elements have stable timings. Also, tasks are assumed to be atomic
(no preemption on either hardware or software tasks as concluded in Sec-
tion 2.1.4.2). Therefore once a task has its input data, we should not expect
any delay other than what’s been profiled. However, given the proposed archi-
tecture in section 2.1.5, shared resources can introduce execution delays due
to congestion. In particular, the communication infrastructure management
and shared memory accesses have been proven to be critical and has been the
focus of many works to reduce congestion [27]| or to predict communication
delay [109].

An illustration of the source and targets of delays that cause discrepancies
with the defined schedule is shown in Figure 3.8.

Any communication infrastructure approach that must be shared at some
point can be confronted with the congestion problem, therefore discrepancies
are expected. In addition, regardless of the communication infrastructure, ac-
cess to the DDR memory by DMA is limited by the number and bandwidth of
instantiated DMA controllers. Therefore some form of congestion is expected.
While we do not aim to predict the level of congestion, we consider it as a
form of constraint on tasks as they need to wait for their input to begin. By

62 Chapter 3. Quality-oriented application management

System fault Concurrent

or restrictions service execution

|
L Shared
Communication Infrastructure (Data
¢ ¢ ¢ Memory
AN N
»(RR1 RRn
B S, S S
. . External
Hardware Reconfiguration Manager (Bitstream

Memory
FPGA

Figure 3.8: Illustration of the potential constraints on the FPGA resources
(red arrows).

this logic, reconfiguration times can also vary slightly as bitstreams are stored
on shared memory.

Finally, resources (RRs or CPUs) can become temporarily or permanently
unavailable by the decision of the user or due to system faults. The user could
typically manually implement a task on an RR that they wish to run perma-
nently such as data flow services like encryption or signal filtering. Resources
could either be fully faulty as a result of a gamma-ray exposition in aero-
spatial environments [4], or the user could restrict usage of one or more CPU
or RR resources to reduce energy consumption or chip temperature, following
their QoS model.

We define here two points of attention that needs to be monitored:

e Execution times and application deadlines;
e Resource restrictions (either from the user or system failure).

The targeted application deadline can be checked by a polling thread run-
ning in the CPU core dedicated to OS commands. It checks the state of
execution after waiting for the expected application duration. To do so, it
checks the content of a progression register of n bits for n tasks in the static
design. When tasks executed in RRs are terminated, the bit that corresponds
to their task index in the register is set to ‘1’. Similarly in software if tasks
are executed on a CPU core, a size n register is stored in the software space.

3.3. Hybrid mapping and scheduling management 63

At the end of the application deadline, those registers can be checked to see
if all tasks have been executed. When OR-gating comparing those registers
if not all bits have been set to ones at the end of the expected application
duration, then we know the application wasn’t fully executed by the end of
the deadline.

Using this simple monitoring system, the system can know the tasks which
are not set to ‘1’ aren’t finished yet. A resilience methodology could use this
information to deduct the cause of this delay and introduce fault-mitigation
capabilities. In the case of faulty resources, we believe that a statistical ap-
proach could take this decision. If mapping solutions repeatedly fail to execute
tasks on the same resource, then the system could decide to stop using this
resource until user intervention. However, as this type of resilience was not
the main study of our work, it has not been implemented. We instead consider
resource restriction coming from the user.

When the application terminates before the deadline, the difference be-
tween the pre-evaluated schedule duration time of the solution 75 and the real
duration of the application 7§ gives the constraint level 7o = 75 — 75. If 7¢ is
positive, then the application took longer to execute than expected, and the
level of constraints considered by the runtime manager needs to be updated.
On the other hand, if 70 is negative, then there were less constraints than
anticipated.

/ Deadline Monitor N
Y :

Programmable Binary : Deadline
Logic clock 1 Counter 2 —> Interrupt
' . .

v A . MMIO
MMI.O : Deadline Progression : Read-Only
Deadline —!* . . .
Setting ' Register Register Progression

v\ J Registers

'Done’
Signals

Figure 3.9: Hardware programmable deadline monitor.

This functionality can be implemented at a low logic elements cost on
the programmable logic by implementing a binary counter (see Figure 3.9
for an illustration of the design). Memory-Mapped deadline and progression
registers (MMIO) can be accessed by the CPU through AXI interfaces. When
a new iteration of the application starts, the counter is reset and counts with
each clock cycle of the programmable logic clock.

64 Chapter 3. Quality-oriented application management

Whenever this counter reaches the set value in the deadline register, an
interrupt is sent to the Run-time Manager Application. Upon termination,
each task sends a ‘Done’ signal to the progression register, which sets the bit
corresponding to the task ID (task ¢; sets bit 1). The progression register can
be checked by the CPU to see the state of execution.

Other system or application specific metrics can be used as per the defined
QoS model, such as temperature [110, 111] or energy consumption |75, 84|
monitoring. In this chapter, without loss of genericity, we chose to use the
application execution time deadline as it is simple to model and is coherent
with the nature of our H.264 application benchmark.

The system monitoring pseudo-code is described in Algorithm 2 to illus-
trate the course of actions of our quality-oriented methodology.

Algorithm 2 System Monitoring pseudo-code

Input : workload package, deadline interrupt, user action
Output : call to the greedy-based run-time manager

apply first scheduling solution
set deadline register
while true do
wait for (new set of constraints or deadline monitor interrupt)
if deadline monitor interrupt then
read Progression Register
if all tasks aren’t finished then // Service break — downgrade
// Find a new solution with QoS score Q3 >0
else
// Look for a solution maximizing QoE and QoS — upgrade

._.
<

—
N =

if updated constraints then // Potential service break — downgrade?
// Find a new solution with QoS score Q3 >0

3.3.2.2 Greedy-based run-time manager

After receiving a call from the monitoring mechanism, a new schedule from
the solution database needs to be found. Because the initial solutions were
evaluated at design time without prior knowledge of the run-time system state,
their fitness with the current constraints needs to be re-evaluated. Since the
schedules and QoE scores have already been computed, this leaves the run-
time manager to find which solutions fit best and maximize the QoE given
the current state of the system.

3.3. Hybrid mapping and scheduling management 65

The main interest of our approach is the capability of the run-time man-
ager to automatically upgrade or downgrade the quality (and thus, compute-
intensiveness) of the targeted application according to the runtime context.
This behavior is the general case condition illustrated in line 10 of Algorithm 2.

Quality downgrades refer to the process of lowering the QoE to avoid
service breaks. When the current implementation quality setting cannot hold
the targeted application deadlines because of monitored constraints, a less
resource-intensive setting is chosen. On the other hand, when the system’s
constraints are relaxed enough, an application upgrade aims to increase QoE.

The speed at which downgraded solutions are found by our run-time man-
ager needs to be fast enough as once near-service breaks (i.e. when QoS is
below a user-set threshold) are detected, the system must react accordingly.
For instance, if the deadline trigger shows an incomplete application execu-
tion, the manager should aim to find a downgraded solution fast enough for
it to be executed at the next application iteration.

Upgrades aim to increase the QoE first given the current level of constraints
on the resources, then QoS. The upgrading process implies the current imple-
mentation is meeting the set deadlines and has a QoS score above the user-set
threshold. So, as there is no urgency, the upgrading process can take more
time to find a better solution.

The choice of whether the run-time manager downgrades or upgrades the
application process is based on the monitored QoS score Q9 when the run-time
manager is called. If the QoS score is non-null, then the run-time manager
may upgrade to find a better QoE solution. If it is null, then the system is
too constrained and a downgrade is required.

Because pre-computed scheduling solutions were computed on a system
free of any constraints (i.e. for 7z = 0), the heuristic needs to check if a
selected solution has a better QoS than the one currently implemented. Once
the decision to upgrade or downgrade has been made, the run-time manager
uses a greedy-based search heuristic to find a new solution for the application
that respects the constraint level, called a compatible solution.

A solution §; is called compatible if the sum of the pre-computed schedule
duration 7s, and the monitored constraint level 7¢ are inferior to the applica-
tion deadline 7p:

Ts, +7¢ < Tp (3.7)

and its QoS score is positive, i.e. Q2(S;;7p) > 0 using previously introduced
QoS model in Equation 3.3. We remind here that the QoS score is not neces-
sarily correlated with the execution times, hence the two constraints.

66 Chapter 3. Quality-oriented application management

Figure 3.10 illustrates a downgrade and an upgrade operation. The top
timeline illustrates the overall system resources occupancy caused by the mon-
itored constraint level 70 and the execution of the solutions 7s; on the sys-
tem resources. In this example, it is assumed that the constraint level 7¢ is
constant. The bottom timeline illustrates the execution time spent by the
run-time manager on the CPU looking for a solution in the database.

The first iteration runs a default solution Sy of the targeted application
at an execution mode M. This solution causes a service break, however,
as once the deadline monitor sends an interrupt at the deadline mark 7p,
the application hasn’t been terminated. This triggers the run-time manager
which begins a downgrading process (denoted by D). Let this process execute
fast enough that a new solution & has been found such that Q3(7,.4s1) > 0.
Then the heuristic restored the continuity of service for the second iteration.

At the end of the second iteration execution, we illustrate a long upgrading
process (denoted by U) as the runtime manager is called to maximize QoE
and QoS. This long term upgrade process starts right after S; ends, and for
example, spans up to nearly the end of the third application iteration. At the
start of the third iteration, because the run-time manager hasn’t returned its
decision yet, the last valid solution is kept. Then the newly found solution S,
of the execution mode M, is applied on the fourth iteration. In this example,
as QE (M) > QE(M,), the runtime manager has upgraded the application.

The pseudo-code of the greedy-based heuristic is introduced Algorithm 3.

Downgrade Upgrade Upgrade
(Service break) start found

1%t iteration 2" jteration 3" jteration 4™ jteration
R
esourees S[) (Mo) |Sl (Mo) 81 (Mo) 82 (Ml)
occupancy
—T¢c+——Tso— - Tc—+—Ts1— Tc+—Ts1— Tc+—Ts2—
Run-time D u
manager
E | .
™ Time 4
§ D D J
Y Y Y
Q3(tp) =0 Q3(rc +751) > 0 QE(M1) > QE(My)

Figure 3.10: Illustration of downgrade D and upgrade U operations in the
system timeline. &y, S, and S; denote different mapping and scheduling
solutions of an application. &y and &; are solutions for the M, execution
mode, and Sy for M;.

3.3. Hybrid mapping and scheduling management 67

In this heuristic, we must quickly compute the QoS given current constraints,
as per lines 5 and 12. Those statements are the most time critical and need to
be very fast for the heuristic to parse through the database as fast as possible.

Given the H.264 benchmark, as the QoS score has been defined as a func-
tion of a solution’s schedule makespan, we add the constraints execution times
Tc to the pre-evaluated solution makespan to return a quick worst-case esti-
mation of the solution’s QoS.

Algorithm 3 Greedy-based search heuristic

Input : solution database, current context level, current QoS, and QoE
score
Output : valid solution

1: if downgrade then

2 target QoE — current QoE score

3 while no solution found do

4 for new solution from database with QoE = Target QoE do
5: compute QoS given the current constraints

6 if new solution QoS > 0 then

7 return new solution

8 decrease target QoE score to the next execution mode

9

: else if upgrade then

10: while no compatible solution found do

11: for new solution from database with QoE = Target QoE score do
12: compute QoS given the current constraints

13: if new solution QoS > 0 then

14: if (new QoS > cur. QoS) or (target QoE > cur. QoE) then
15: return new solution

16: increase target (QoE score to the next best execution mode

This greedy-based heuristic stops once a compatible solution has been
found. While greedy heuristics are known to be sub-optimal, it ensures a
solution is yielded as soon as possible. We address this issue by incrementally
maximizing the QoE and then QoS, therefore the greedy manager isn’t stuck
using a local optimum solution.

In case the manager doesn’t find any compatible solution (cf. line 3 of
Algorithm 3), then that means it has parsed all solutions from the database
and the system is too constrained. Then the system is fully breaking the
service in this worst-case scenario as it must compute a new schedule online.
However, this situation is critical as the solutions in the database are among
the best that were pre-evaluated. As a failsafe safety, the system can always

68 Chapter 3. Quality-oriented application management

default to the solution with the highest QoS score in the database if the
runtime manager doesn’t return a new solution while experiencing a service
break. This default solution is the less likely to fail the deadline, but at a cost
of a low QoE score as per the trade off illustrated by the solution space in
Figure 3.6.

3.4 Experiments

In this section, we evaluate our quality-oriented hybrid management method-
ology. The goal of those experiments is to:

e highlight how quality, through the proposed QoE and QoS models for
our benchmark H.264 encoder application, is maximized over time;

e show our approach’s capability to minimize service breaks;

e evaluate the overheads of the approach on the targeted platform.

3.4.1 Platform evaluation

The functional architecture is illustrated Figure 3.11 and is representative
of the literature (see Section 2.1.5). The targeted board is a PYNQ-Z2 de-
velopment board [12] which embeds a Xilinx Zyng-7000 SoC featuring 85K
logic cells Artix-7 FPGA and a dual-core ARM Cortex A9 CPU. Such SoC is
commonly found in the industry thanks to its cost-effective performance.

From this architecture, the following metrics have been acquired from the
H.264 application benchmark: execution times of tasks on RRs, profiled recon-
figuration times of RRs, and average communication time delay. These metrics
are used to design a simulation environment to benchmark our methodology

Tasks execution times of the H.264 encoder benchmark application were
measured on target using Xilinx’s Integrated Logic Analyzer (ILA). The fre-
quency of the clock used in this design is 100MHz. The measures from the ILA
start upon reception of all input data and end after having finished processing
and sending all output data. The execution times of the software implementa-
tion of the encoder’s tasks were measured on the SoC CPU using the time.h
library. Execution times of the profiled tasks are shown in Table 3.6.

It is to be noticed that RRs were large enough so that all tasks that can
be executed in hardware can do so on all RRs in the design. This is not
necessarily the case as we consider RRs of heterogeneous size in our design, as
concluded in Section 2.1.3.1. In the case presented here, this is a consequence

3.4. Experiments 69

ZYNQ-7000 XC7Z020-1CLG400C SoC

+ Artix-7 FPGA

AXI4 MMIO Shared Bus
for control commands and status ICAP DPR

¢ ¢ ¢ ¢ Controller

) () () (] =
¢ v v ? DMA

Communication Infrastructure Controller
(AXI4-Stream crossbar switch)

—

Proposed run-time manager Software task
Core 0 Core 1

Dual-Core ARM Cortex-A9 CPU

Figure 3.11: Considered architecture for the experiments (cf. Section 2.1.5).

of not optimizing the usage of logic gates in each RR, thus the number of used
resources for any task is less than the number of resources in RR1, which is
the smaller RR in this design (cf. Table 3.7). As partial bitstreams weigh the
same regardless of the logic elements used in the RRs, we recommend making
the most out of the RRs’” available resources.

Table 3.7 lists the bitstream size of the considered RRs and the corre-
sponding reconfiguration times 7 profiled using the 1GBps ICAP controller
uPaRC |20] data and guidelines. Because of the heterogeneous RR design
choice made in Section 2.1.3.1, bitstream relocation cannot be practiced here.
There is one bitstream for each different hardware implementable task from
Table 3.6, and there are two sets of those corresponding to the two targeted
resolution settings. Thus the total weight of the uncompressed bitstreams to
store on target is 37.95MB. With compression, this size drops to 9.94MB.

Table 3.8 introduces the profiled worst-case delay on the communication
interface. Those were measured using a task transmitting a full output FIFO
content (1024x32b words) from a source in the design to a destination. The
intra-FPGA RR to RR delay is caused by the AXI4 Stream switch. This
Xilinx IP uses a round-robin arbiter. In the worst-case scenario, the source is
last in the round-robin arbitration order, and all 4 RRs and the DMA need
to send their 1024 words. The FPGA-CPU cross-domain communication (RR

70

Chapter 3. Quality-oriented application management

Table 3.6: On-target profiled execution times of H.264 application tasks in

hardware and software.

Sobel Filter can only be executed in software, as

Macroblock Ordering and AES Encryption can only be executed in hardware.

Execution time (in ms)

Task Hardware ‘ Software | Resolution ‘

Sobel Filter - 3.630

Macroblock Ordering 0.332 -

H.264 Slice Encoder 0.540 18.720 360p
Entropy Encoder 2.916 5.590

AES Encryption 1.289 -

Sobel Filter - 5.842

Macroblock Ordering 0.568 -

H.264 Slice Encoder 0.960 30.445 480p
Entropy Encoder 5.184 11.803

AES Encryption 2.579 -

Table 3.7: Bitstream size and reconfiguration time 7z by RRs profiled with
1GBps ICAP Controller from |20] with compression using X-MatchPRO al-
gorithm. The full static design bitstream is provided for comparison with the
size of the partial bitstream.

‘ Region ‘ Uncompressed size Compressed bit size TR ‘
RR1 895 KB 231 KB 0.89 ms
RR2 1.18 MB 314 KB 1.21 ms
RR3 1.46 MB 386 KB 1.49 ms
RR4 1.23 MB 327 KB 1.26 ms

| Full static design | 3.85 MB - -]

Table 3.8: Profiled worst-case delay on the communication interface using the

AXI4 Stream interconnect.

| Source Destination | Worst-case delay (ms) |

RR RR
RR CPU
CPU RR
CPU CPU

0.06

0.30

0.30
<0.01

3.4. Experiments 71

to CPU and back) has a higher delay caused by the DMA controller IP. In
the worst-case, all other RRs are sending their word to the CPU first, which
causes DMA controller and switch congestion. The intra-CPU communication
delay is negligible as software tasks can access DDR memory directly.

Finally, the design-time steps of our methodology have been executed on a
host computer (Intel Quad-Core i5-7300U 2.60Ghz, 8GB DDR4 RAM). Given
the targeted application, execution modes, and architecture, 1’156’242 solu-
tions have been generated and pre-evaluated in 110s. After the solution-space
reduction step, 15.8k solutions were kept in the solution database, achieving
a 98.63% reduction. The composition of the solution database is shown in
Table 3.5 introduced earlier. The resulting database has been stored in a
JSON file, which size to load on target is 1.8MB. Considering all elements in
the workload package, the latter weighs a total of 14.49MB to be stored on
target, representing 2.93% of the DDR.

3.4.2 Simulation environment

Once the metrics have been profiled from the architecture, we built a simu-
lation environment to benchmark and stress-test our run-time manager using
those values. The motivation for simulating the environment was to intro-
duce constraints level scenarios to resources. This is used to benchmark the
methodology, as it otherwise requires development works on uPaRC’s integra-
tion to FOS using the functional implementation introduced in Section 2.1.5.

An illustration of the simulation environment is given in Figure 3.12. This
environment, including the run-time manager, has been written in C++ and
executed on the target’s CPU.

Monitored system states

Constraints levels

. Simulated
Runtime
self-reconfigurable
Manager | Selected architecture
solution
Mapping and Additionnal context tasks or
scheduling solutions resource constraints

Selected

Solution constraint

scenario

database

Figure 3.12: Simulation environment of the run-time manager.

72 Chapter 3. Quality-oriented application management

In our experiments, constraints refer to the additional services or applica-
tions that share the resources with the targeted application or the monitored
latency overhead. The constraint level for each resource denotes the amount of
time in the schedule we consider to be completely unavailable for the applica-
tion. To reflect the unpredictability of such constraints and test the resilience
of our approach against changes in resource availability, we modeled random
constraint levels. We consider two test scenarios:

1. random constraint levels where each resource gets independently as-
signed a constraint level;

2. restriction of service where a random number of resources are re-
stricted from usage to execute the targeted application.

When generating random constraint levels, we used a uniform law taking
values (in ms) between 0 and 75% of the deadline to guarantee a minimum of
25% of resource occupancy saved for the application. Similarly, the maximum
number of resources that can be reserved is 4 out of 5 (4RR+1CPU), since
some solutions can execute the H.264 at a low QoE setting with only one RR.
This guarantees that a minimum service can be ensured and our approach
tries not find a solution to an insolvable problem (as mentioned at the end of
Section 3.3.2.2).

Each scenario is studied in an ‘aggressive’ and a ‘periodic’ manner with
respectively new constraint levels values for each iteration, and every 10 iter-
ations. The ‘aggressive’ scenarios are much more demanding for the system
as the values vary a lot between two iterations. It makes for a good stress
test as the system has to make lots of decisions to guarantee the service. The
‘periodic’ scenarios are more realistic in the sense that decisions from the user
(or its mission management application) to increase or reduce the number of
context services shouldn’t happen this frequently, and typical system latencies
don’t vary as much in comparison.

In the following paragraphs, we compare the greedy-based search heuristic
to an exhaustive search. The first goal is to determine how close our approach
is to the optimal solution in terms of QoE score. The second goal is to show
the capability of the approach to guarantee continuity of service execution in
constrained scenarios.

3.4.3 Resulting quality scores

Figure 3.13 shows the evolution of the QoE score on 50 iterations of the
greedy-based heuristic compared to the exhaustive search respectively for the

3.4. Experiments

73

(a) ‘aggressive’ and (b) ‘periodic’ constraint scenarios.

(a)

L
Exhaustive ——
E-Greedy

L7

Quality of Experience

0
0 5 10 15 20 25 30 35 40 45 50

Iterations

Quality of Experience

(b)

T
Exhaustive ——
E-Greedy

Iterations

0
0 5 10 15 20 25 30 35 40 45 50

Figure 3.13: H.264 QoE score evolution of the greedy-based heuristic versus
the Exhaustive search for the (a) ‘aggressive’ and the (b) ‘periodic’ random
constraints scenarios.

The aggressive scenario introduces more changes and the greedy-based
cannot precisely find every best solution. This is illustrated during iterations
38 to 43 where the QoE score is lower than optimal. As the greedy-based
approach do not scan the whole solution database to find the appropriate
solution, it returns a sub-optimal one.

In contrast, the periodic scenario makes the greedy-based heuristic find a
solution with the optimal QoE score more often. When a context constraint is
introduced, it can take a few iterations before finding an optimal QoFE solution.
Similarly, when downgrading the heuristic can downgrade the application too
much as illustrated in iteration 30 of Figure 3.13 (b) as it pick the first feasible
solution.

In Figure 3.14, we show the restriction of service scenario resulting QoE
score evolution. In this scenario, entire resources can be restricted from usage
for the targeted application. Thus a lot of solutions from the database are
unusable and make the search harder for the heuristic. In the aggressive
scenario Figure 3.14 (a), the greedy-based heuristic rarely reaches the optimal
QokE score as it relies on whether the heuristic immediately finds one or not.
In the periodic scenario (b), it has more time to process more solutions but
still fails regularly to reach the optimal score.

Table 3.9 summarizes the obtained simulation results using the greedy-
based approach. These are the average QoE score on the four studied test

scenarios. The heuristic yields a better QoE score in the periodic scenar-

74 Chapter 3. Quality-oriented application management

1 1
8 08] 8 08]
= =
R 2
& 06 & 06
< | <
H | H
O R = o 04
= 3 = | o
= : = [
S 02 F bbb b S 02 fF bbb
Exhaustive —— [Exhaustive ——
b E—Greedy b E—Greedy
0 [[[0 R I R B [
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Iterations Iterations

Figure 3.14: H.264 QoE score evolution of the greedy-based heuristic versus
the Exhaustive search for the ‘aggressive’ (a) and the ‘periodic’ (b) restriction
of service scenario.

ios than in the Aggressive ones. This is because the heuristic is in a more
demanding environment where it can experience downgrade situations more
frequently. As a consequence, it sometimes defaults to downgrade the QoE to
find a suitable solution more easily, even if the exhaustive search proves there
is a working solution while keeping the same execution mode. In the periodic
scenario, however, the environment is a bit more relaxed and after a few it-
erations, the heuristic eventually finds a near-optimal solution by gradually
upgrading the QoE.

Table 3.9: Average relative QoE score on 100k iterations in percentage of the
average optimal score.

’ Scenario \ Aggressive Periodic ‘

Random constraint 90.52% 93.76%
Restriction of service | 81.37% 82.68%

The difference between random constraints and restriction of service is ex-
plained by the brutal changes brought by the latter. In restriction of service,
more solutions from the database suddenly become infeasible due to the re-
striction of the resource(s) availability. This causes more frequent downgrade
decisions from the heuristic, and a longer time before finding a better QoE
solution when upgrading later on.

Finally, because the QoS varies a lot and we can only compare QoS at
equal QoE score, we highlight the QoS evolution over a few iterations of the

3.4. Experiments 75

random ‘periodic’ constraints scenario in Figure 3.15. At iterations 28 and
29, we see in inset (a) that the QoE score was stable at 0.59 as it had a few
iterations to stabilize. This is also reflected in inset (b) with the QoS score
sitting at 0.44.

1 0.5
s 08 bo] S T N 7 A W SN SRS S
— I
5 i : Z i :
& 0.6 === """" o g 03— """" IR
2 i s s s s s i s s s s
o ! ! ! ! ! ! ! ! ! !
S U s S R P P N e R ¢ P e
E i i i i i g i i H o
g | i i i i & i 5 ; i i
02 T e o

0 | | | | | 0 | | | | |

28 29 30 31 32 33 34 35 28 29 30 31 32 33 34 35

Iterations Iterations

Figure 3.15: H.264 QoS score evolution (b) upon application of new constraint
levels at iteration 30, with QoE evolution (a) as reference.

While constraints are relaxed at iteration 30, the run-time manager can
upgrade the application at iteration 31 as the QoE score increases. In con-
sequence, the QoS score changes as it is a new solution. Over the following
iterations, the run-time manager changes solutions twice to increase QoS in
iterations 32 and 33.

3.4.4 Resulting decision times

The average decision times measured on the targeted SoC’s ARM A9 CPU
for 100k iterations of the greedy-based heuristic and the exhaustive search are
highlighted in Table 3.10.

Table 3.10: Average decision times of the greedy-based and exhaustive ap-
proaches on 100k iterations.

| | Decision time (ms) |
Greedy-based 0.28 ms
Exhaustive 5.29 ms

As expected, the greedy heuristic is much faster than the Exhaustive al-
gorithm. To put those decision times in perspective, an ASAP scheduling

76 Chapter 3. Quality-oriented application management

heuristic [90] yields schedules for the H.264 application within 0.24ms on
average. While this is slightly faster than the average greedy-based search
heuristic, computing a schedule online does not guarantee finding a solution
that meets the application deadline at the given execution mode. Typically,
in downgrade situations, this would mean a schedule is to be computed for
each execution mode going downward from the starting execution mode until
a valid schedule is computed.

In addition, online scheduling requires specific heuristics with low time
complexity, which are generally outperformed by more compute-intensive al-
gorithms that can be used at design-time [112].

To check how our approach is capable of respecting continuity of service
execution, we measured how often the decision time overhead makes the ap-
plication break the deadline. In other words, we check the inequality 3.8 for
each iteration.

2

Te+Ta+Tc < Tp (3.8)

With 7. as the decision time, 75 as the schedule duration of the selected
application’s solutions, 7¢ as the overhead brought by constraints, and 7 as
the deadline:

We introduce Table 3.11 the percentages of downgrade iterations resulting
in success or failure, 100% being the ideal case where continuity of service is
always observed. ‘In time’ means the previous inequality is respected. ‘Late’
means a solution has been found, but because the found solution didn’t have
time to execute before the deadline, a single iteration has been dropped and
the service has been restored at the next iteration. Considering our scenarios,
lateness cannot be studied for Aggressive scenarios as constraints change every
iteration, and the heuristic needs to adapt to those immediately. Finally,
‘Failed” means that the run-time manager wasn’t able to find a new valid
solution before at least two iterations. Given the constraint scenarios, it is
guaranteed there is at least one solution that can be found by the exhaustive
search. Therefore the approach was always capable of finding a solution.

In the H.264 benchmark situation, a late solution implies a dropped frame
which is not very noticeable by users [106], and a failed situation translates to
multiple frames at once. This can be acceptable depending on the application
constraints.

In the random constraints scenarios, our run-time manager successfully
finds a valid solution in 94% of the cases. In the case of the periodic ran-
dom scenario, 5.20% downgrade situations were solved late by one iteration,

3.4. Experiments

77

Table 3.11: Resulting continuity of service execution checks on downgrades
for the proposed approach.

Aggressive | Periodic || Aggressive | Periodic

Random | Random || Restriction | Restriction
In time | 94.03% 94.29% 61.69% 61.87%
Late - 5.20% - 21.15%
Failed 5.97% 0.51% 38.31% 16.98%

bringing the continuity of service ratio on downgrade situations to 99.49%.

The restriction of service scenario is a harder situation for the search
heuristic as the resource availability changes are more brutal. In consequence,
those scenarios show worse results than the random constraint ones with
61.87% of in-time solutions. Late results were registered in 21.15% of the
situation, bringing the continuity of service ratio to a maximum of 83.02%.

To increase this continuity of service rate, we believe that organizing the
database solutions in a tree structure could help quicken the search. The main
cause of the lower continuity rate in the restriction of service scenario is that
the runtime manager spends time evaluating solutions that aren’t compatible
with the given constraints. Organizing the solutions in a tree structure where
each branch answers a specific type of constraint could help reach compatible
solutions in fewer steps.

Another method could be to use a statistical approach or learning-based
approaches to identify particular solutions of the hybrid method. These par-
ticular solutions would be those that answer common levels of constraints and
could be selected more frequently by the methodology to reduce the decision
time.

Compared to [39] that used space-multiplexing of modules on a RR grid,
we made use of time-multiplexing of tasks on RRs of heterogeneous sizes
and CPUs, while managing the reconfiguration processes through a dedicated
fixed-mapping scheduler. Our approach maximizes the quality of experience
through upgrades and downgrades of execution modes of self-reconfigurable
systems, as in [83]. However, this work didn’t make use of quality models and
focused on discrete control of the application. Moreover, the homogeneous
RRs size in their work does not correlate with our conclusions on the island-
styles architectures for partially reconfigurable FPGAs in Section 2.1.3.1.

Finally, works from [76] in the MPSoC domain made use of a reward
model to compute schedules on multi-core CPUs. This reward model could
be compared to our QoE model as their goal was to maximize the reward

78 Chapter 3. Quality-oriented application management

score of a schedule while holding a deadline. However, this work doesn’t
target self-reconfigurable systems.

3.5 Conclusion

In this chapter, we introduced our novel hybrid design-time/run-time quality-
oriented manager. Its goals are to maximize the Quality of Experience and
Quality of Service through models defined at design time and to minimize
the number of service breaks when the system is constrained. To do so, our
proposed methodology computes mappings on a host computer using com-
binatorial formulas. It then compute schedules for the targeted application,
considering the specifications of our self-reconfigurable system. The size of
the resulting solution space has been reduced using mapping constraints and
pruning after schedule evaluation. A workload package is then generated,
containing the pre-computed solutions and the partial bitstreams. Those so-
lutions are sorted by execution modes, which are different functional imple-
mentations of the targeted application. They are ranked by QoE, under the
hypothesis that a lower QoE is less compute-intensive than a higher one.

Once the workload package has been pre-computed, it is loaded on the
target for the run-time steps of our methodology. The latter consists in mon-
itoring the current state of the system to verify if it can hold a high level of
QoS, which is an image of how well the service is currently being executed.
If the QoS level is too low and the application risks a service break, then our
run-time manager can find a new applicable solution.

Using metrics obtained from the implementation of a H.264 encoder ap-
plication, we ran a simulation of different constraint scenarios on the target’s
resources. At the end of the design time phase, a total of 1.15M mappings have
been identified. Using the proposed constraints, 35.8k mappings have been
considered worthy to evaluate using the fixed-mapping scheduler. Finally, the
final solution database contained 15.8k solutions for the runtime manager.
This database accounted for 1.8MB to store on the target’s RAM, in addition
to the 12.69MB of compressed bitstreams. This adds up to 14.49MB, which
represents 2.83% of the target’s RAM.

The proposed hybrid methodology achieved continuity of service by finding
valid solutions on time in 94% of the cases when resources are shared with
context services and 62% when entire RR(s) are restricted from usage by the
user. Those results go respectively as high as 98.20% and 83.02% on soft
real-time constraints.

CHAPTER 4
Runtime scheduling for
self-reconfigurable systems

Contents
4.1 Overview it i e e e e e e e e e e 80
4.2 List-based PEFT scheduling heuristic 80
4.2.1 Optimistic Cost Table 81
4.2.2 Optimistic Earliest Finish Time 84
4.3 Self-reconfigurable system considerations 87
4.3.1 Reconfiguration tasks 88
4.3.2 Bitstream pre-fetching for makespan reduction 90
4.3.3 OCT reuse and partial computation 92

4.4 Quality-oriented management with runtime scheduling 96

4.4.1 Proposed methodology 96
442 Usingmodulereuse. 97
4.5 PF-PEFT performance experiments 99
4.5.1 Experimental setup. 100
4.5.2 Real application benchmarks 101
4.5.3 Synthetic workloads 106
4.6 Quality-oriented methodology experiments 113
4.6.1 Experimental setup. 113
4.6.2 Experimental results 116

4.7 Conclusion. v v v i i e e e e e e e e e e e e e e e 121

80 Chapter 4. Runtime scheduling for self-reconfigurable sys.

4.1 Overview

In chapter 3, we used a hybrid design-time and runtime methodology to man-
age the targeted self-reconfigurable system. Experiments show we were able
to maximize the quality of experience with a decision time small enough to
guarantee the service execution thanks to a greedy search engine parsing a
pre-computed set of solutions.

However, this comes at a cost of storing a mapping and scheduling solution
database. The latter grows exponentially with the number of tasks in the ap-
plication, RRs in the architecture, and quality-related execution modes. This
can impact the performance of the proposed approach in two ways: increased
solution database size in the system’s memory, and as a consequence longer
decision time to find a solution in the database. Although reduction of the
solution space has been considered to minimize those impacts, it comes with
its drawback of removing potential solutions that can be used at runtime.

In this chapter, we tackle this flexibility issue by adapting a state-of-the-
art scheduling algorithm used in multi/many-core architectures to compute
schedules for self-reconfigurable systems. The resulting scheduling algorithm
keeps a good trade-off between time complexity and efficiency as it yields
schedules that are shorter than current state-of-the-art approach.

4.2 List-based PEFT scheduling heuristic

In this section, we introduce the list-based Predict Earliest Finish Time (PEFT)
scheduling heuristic [88]. This heuristic has historically been developed within
the context of heterogeneous multi/many-core architectures such as ARM
big. LITTLE, where execution times of tasks vary depending on the processor
it has been assigned. As it has been shown in the literature, PEFT is one of the
best-performing scheduling heuristics for heterogeneous processors [88, 89].

This is particularly of interest for our self-reconfigurable system as from a
high level of abstraction, RRs can be abstracted as heterogeneous processors.
As considered self-reconfigurable systems, introduced Section 2.1.5, make use
of heterogeneous RRs, the execution times of implemented tasks in the FPGA
exhibit similar heterogeneous processors behavior. Therefore PEFT can be
applied to the scheduling problem for self-reconfigurable systems.

The main interest of this heuristic is its trade-off between its performance,
in terms of application makespan reduction, and its O(n?-p) (for n tasks and
p resources) time complexity.

Its performance comes from its ability to foresee the impact of scheduling

4.2. List-based PEFT scheduling heuristic 81

decisions on the resulting application schedule duration, before beginning the
scheduling steps. Such ability is also highlighted in the Lookahead heuristic
[97], however the latter yields a O(n? - p) time complexity.

An overview of the PEFT runtime scheduling heuristic is shown in Fig-
ure 4.1. It is based on an Optimistic Cost Table (OCT) which is a matrix
containing all shortest paths to the exit task (or sink node) and acts as the
prediction engine for this heuristic. From this table, we can compute ranks for
each task, which relates to how impactful is each task on the shortest paths.
A topological order can be obtained from these ranks. Finally, the tasks are
then scheduled using the Earliest Finish Time (EFT) strategy, taking into
account the prediction table, until there are no more tasks to schedule. As
PEFT is a list-based scheduling heuristic, it finds both a mapping and its
corresponding schedule.

application and system Resulting schedule
information

PEFT LNo

Remaining task
W

e
I—Predlctlon table—>» Optimistic Resource

. lection
Earliest selectio

- Finish Ti P &
Optimistic Cost Ccl)[rlrlls . altrir(l)i schedule Yes
Table P insertion
computation

S

Figure 4.1: Overview of the PEFT scheduling heuristic.

4.2.1 Optimistic Cost Table

The Optimistic Cost Table (OCT) is a matrix that the PEFT heuristic uses
to predict the impact of a single task scheduling decision on the resulting
schedule. The OCT table is notably used to define a topological order that
prioritizes tasks that have the biggest impact on the schedule and could po-
tentially cause resource usage bottlenecks.

The OCT is computed in such a way that critical paths (in execution
times) are evaluated for each task, and for each resource that the task is
possibly being implemented on. This gives valuable information on what is
left to schedule for the heuristic.

The OCT table is a matrix of size n X p for n tasks and p resources. Each
value OCT(t;;P;) denotes the critical path from task ¢; to the sink node,

82 Chapter 4. Runtime scheduling for self-reconfigurable sys.

considering the task t; assigned to the resource P;. We remind here that the
PEFT scheduling heuristic was originally developed for MPSoC architectures.
Adaptations for self-reconfigurable systems are covered in Section 4.3.

The OCT computation considers and evaluate all task-resource implemen-
tations for schedule makespan prediction purpose. OCT values being indi-
cations of scheduling impact, they are not a perfect reflection of the final
impacts.

Formally, for a task ¢; and a resource P;, OCT'(t;; P;) is defined recursively
from the sink to source task in Equation 4.1, with parameters from Table 2.5.

DN . OCT (t;; Pw) + W(t;; Pw)
OCT(t;Py) = Max | [%\fé% { VA(tity) - C(Py; Pa) (4.1)

For each successor task ¢; of a given task ¢;, the formula computes the
shortest paths to the exit task (backward propagation) for each resource P,, €
P that t; can be assigned to. The paths are evaluated in such a way that data
dependencies and communication latencies are comprised in the evaluated
paths. Element OCT'(t;;P;) is then equal to the maximum of those shortest
paths.

We illustrate Figure 4.2 an example of OCT table computation using
the canonical workload using adjacency and computation matrices A and W
(cf. Equation 4.2). In this canonical example, we consider a set P of three
CPUs, and communication latencies between resources C'(P;; P;) being equal
to 1 if P; # P;. The resulting OCT table of this example is given in Equa-
tion 4.2:

58 8 I B S5 2 2 & € € & € < g

e [Do

17 31 29 13 7 . s 22 21 36\ —t; 64 68 86

.3 30 _t 22 18 18 | —ty 42 39 42

6 . . it 32 27 43| —t3 27 41 43

w7 —t 7 10 4 | —t4 42 39 50

.57 —t5 W 29 27 35| —t5 por— 28 37 28

5 < |-t T2 17 24| —t6 42 39 4

9 |-t 14 25 30| —t; 13 16 22

42 *tS 29 23 36 7t8 13 16 33

0 ’ :20 15 21 8 | —t, 103 1;3 200
13 16 33/ —ty

—t
—ty
—t3
— 1

—tg
—tr
—t1o

(4.2)

4.2. List-based PEFT scheduling heuristic 83

(@) (b) ©
1 t1 a1
—
to ts ta ts te. ty. t3 ta ts ts. ity ty [ta)] (ts5) [ts

tr tg tg tr tg

@ @ t1o

Figure 4.2: Example cases of OCT computation.

The OCT table is computed recursively by evaluating the paths of the first
level of successors of each task. Sink tasks (i.e. 1o in the canonical example)
don’t have any successor per definition, cf. Figure 4.2 (a) where ¢y is the sink
task. Therefore OCT values of a sink task are always zero for any resource.

As an example in Figure 4.2 (b), the only successor of tg is t19. There are
three paths corresponding to tiy being assigned to Py, P; or P;. The OCT
value for ty9 being assigned to Py is:

OCT(ty; Po) = Max

OCT (t10;Po) + W(t1o;Po) + A(tg;tig) - C(Po;Py) =0+13+7-0=13
Min OCT(t10;P1) + W(t10; P1) + A(to;t10) - C(Po;P1) =0+ 16 +7-1=23

(4.3)
OCT(tm;'Pz) + W(tlo;Pz) + A(tg;tlo) . C(Po;Pz) =0+33+7-1=40

= Max[Min{13; 23; 40}] = 13

Finally, in inset (c) we illustrate the case of OCT(t4;Py) (i.e. impact of
t, assigned to Py) with multiple successors. In this case there is a total of six
paths to evaluate in Equation 4.4: 3 task-resource assignment to evaluate for
the 2 successor tasks of t4: tg and tg.

84 Chapter 4. Runtime scheduling for self-reconfigurable sys.

OCT(t4;Py) = Max

([OCT(tg;Po) + Wits; Po) + A(ta;ts) - C(Po; Py) = 13 +29+ 11 -0 = 42
Min) OCT(tg;P1) + Wi(ts; P1) + A(ta;ts) - C(Po;P1) =16 +23+11-1=50
OCT (tg; P2) + W(ts; P2) + A(ts;ts) - C(Po; P2) =33 +36+11-1 =280

(4.4)
OCT(tg; Poy) + W(te; Po) + A(ta;tg) - C(Po;Py) =13 +154+7-0=28
Min { OCT(tg;P1) + W(te; P1) + A(tasty) - C(Po;P1) =16 +21+7-1=44
OCT(tg; P2) + W(tg; P2) + A(ta;te) - C(Po;P2) =20+8+7-1=35

= Max[Min{42; 50; 80}; Min{28; 44; 35}] = Max[42; 28] = 42

In practice, the number of paths to evaluate each value OCT(t;; P) table
is equal to the number of successors tasks of ¢; times the number of resources
p. Hence the maximum number of OCT evaluations is n? - p.

Once the OCT table is computed, we can obtain the OCT rank of each
task using Equation 4.5, by averaging the OCT of each task.

_ S OCT (t:; Py)
p

The rank vector can be used to get a topological sort of tasks in which

they will be scheduled. In the canonical example, the resulting decreasing

rank topological sort is {t1;t4;tg; to; t3; ts; ts; t7; to; t10}. Finally, the resulting

OCT rank vector from the canonical example is introduced in Equation 4.6:

rankooT(ti) (45)

727\ —t1
a1 | —t
37 — i3

43.7 | —t4
31 —t

rankocr = a7l - tz (4.6)

17 — 7

20.7 | —tg

16.3 | —tg
0 —t1o

4.2.2 Optimistic Earliest Finish Time

Once the OCT table and rank vector has been computed, the heuristic enters
the task-scheduling phase. In this phase, tasks are processed in the decreasing

4.2. List-based PEFT scheduling heuristic 85

OCT rank topological order.

The mapping of a task ¢; intends to minimize the Optimistic Earliest Finish
Time Ogpr. Instead of choosing whichever resource minimizes the time at
which task ¢; finishes, the Oppy formula represents how much it costs (in
terms of schedule makespan) to implement it on a resource. Ogpr for a task
t; on a resource P; is defined as:

OEFT(ti§ Pj) = EFT(ti; Pj) + OCT(ti; Pj) (47)

With EFT(t;; P;) being the Earliest Finish Time (EFT) at which a task
t; can be terminated on a resource P; given the task graph execution depen-
dencies.

A task can be inserted in the current schedule (insertion policy) as illus-
trated in Figure 4.3 for the task ¢4. It can be done so if there is enough idle
time in a resource’s schedule between tasks execution, also known as insertion
windows.

ORI i
DY » Leis [&]

Insertion
4K <indow >
it Time >
Earliest
start of

ty on Py

Next task
start on Py

Figure 4.3: Illustration of insertion policy on task ¢, from an example task
graph on two resources. t) (in blue) is inserted in the schedule, while ¢] (in
red) is appended to the schedule.

The insertion policy’s goal is to reduce the resulting schedule makespan by
using the idle moments of the resources that are caused by task dependencies.
In Figure 4.3, we give the example of a small task graph comprising six tasks,
and the scheduling process has been paused at task ;.

In this example, we suppose tasks {t1;1o;t3;t5} have already been pro-
cessed and thus are static in this schedule. Because t5’s execution requires
prior execution of its predecessors t5 and t3, there is an idle time in resource
Po. This lets a possible insertion of task ¢/, the latter requiring solely prior
execution of task t5. The alternative scheduling decision ¢} illustrates how a

86 Chapter 4. Runtime scheduling for self-reconfigurable sys.

heuristic without insertion policy would insert this task on the earliest finish
time basis. The earliest finish time scheduling policy with insertion is given
in Algorithm 4.

This policy is executed for each resource P; € P in the resource selection
and schedule insertion step (cf. Figure 4.1). The resource that’s assigned to
the task is the one that minimizes the Ogpr.

Algorithm 4 Farliest Finish Time scheduling policy, with insertion

Input : Task ¢; to schedule on resource P;, actual schedule state, appli-
cation, and system information
Output : Earliest finish time (EFT) of ¢; on P;

1: let LETp be the latest finish time of ¢;’s predecessors, or 0 if none
2: let ny be the number of tasks scheduled on resource P;

3: if np =0 then // No tasks on P;: run t; as soon as possible

4: t;’s start = LFTp

5: ti’s EFT = t;’s start + execution time of ¢; on P;

6: return EFT of ¢; on P;

7: else

8: for k € [0: ny — 1] do // Parsing tasks in P;’s schedule

9: if t;, =ty then

10: // First task : can we insert t; before ty starts?

11: earliest start = LEF'Tp

12: else

13: // Can t; be inserted between two tasks scheduled on P;?
14: earliest start = max(LFTp ; ty_1’s end)

15: if earliest start + execution time of ¢; on P; < t;’s start then
16: // If the insertion window is large enough

17: t,’s start = LFTp

18: ti's EFT = t;’s start + execution time of ¢; on P;

19: return EFT of ¢; on P;
20: // No insertion possible: append task at the end of P;’s schedule
21: t;’s start = t,,_1’s end
22: ti’s EF'T = t;’s start + execution time of ¢; on P;
23: return EF'T of ¢; on P;

Once Ogpr has been computed for all tasks and the scheduling decisions
have all been taken, the PEFT heuristic stops with the resulting schedule.
The resulting PEFT schedule of the canonical graph is shown in Figure 4.4.
Gaps in the schedule such as between tasks t; and 1y are explained by the
communication latencies of the canonical application example.

4.3. Self-reconfigurable system considerations 87

P

Py

[t]

Po

\ 4

0 20 40 60 80 100 120
Time (ms)

Figure 4.4: PEFT schedule of the canonical task graph on three CPU re-
sources.

4.3 Self-reconfigurable system considerations

To enable the PEFT heuristic to schedule applications on self-reconfigurable
systems, DPR operations must be considered in the system model. A sim-
ple method often used as an approximation, is to include reconfiguration and
communication times in the execution time of tasks. However, this solution
hides the complexity of sharing the unique DPR controller. Thus the resulting
schedules by including reconfiguration in the execution times become wrong
when two tasks start at the same time, implying two DPR operations hap-
pening at the same time. Moreover, this approach jeopardizes optimizations
such as task pipelining and bitstream pre-fetching.

To successfully implement DPR operations in the schedule, modifications
need to be made to the PEFT heuristic. Here, we introduce the following
features:

e DPR operations management with the introduction of reconfiguration
tasks when scheduling tasks on RRs;

e Bitstream pre-fetch management to reduce the impact of DPR opera-
tions on the schedule makespan;

e OCT table reuse and partial re-computation to accommodate for run-
time changes in resource availability.

These features make our proposed heuristic capable of tackling the chal-
lenges of mapping and scheduling for self-reconfigurable systems with RRs of
heterogeneous sizes. Providing a fast and efficient heuristic that can help to
enhance the quality-oriented management methodology with flexibility.

88 Chapter 4. Runtime scheduling for self-reconfigurable sys.

4.3.1 Reconfiguration tasks

Reconfiguration tasks denote the process of dynamically reconfiguring a RR
before executing a task in the FPGA. From the scheduling problem point of
view, reconfiguration operations can be seen as additional tasks with condi-
tional edges. Those tasks can be executed solely on a specific resource: the
DPR controller.

Figure 4.5: Canonical task graph with reconfiguration tasks denoted with
dotted lines.

In Figure 4.5, we introduce a modified version of the canonical task graph
to illustrate the concept of reconfiguration tasks. In this example, the canoni-
cal task graph is filled with reconfiguration tasks that are yet to be connected.
Dependencies may appear depending on the mapping of tasks on the resources.
If task ¢, and 5 are executed on the same RR, then an edge connects the nodes
“t,” and “t£”. This must be done to represent the impossibility of reconfig-
uration task R2 to begin while task ¢; is still running: else this would erase
the configuration in the respective RR. This must answer the 5th constraint
(task reconfiguration) of the mapping and scheduling problem as introduced
in Section 2.2.2.1.

Naively adding reconfiguration jobs increases the count of nodes in the
graph to a maximum of 2n for a number n of original tasks, and increases sig-
nificantly the number of edges. The PEFT heuristic increases quadratically
with the number of nodes, and the edge growth increases the amount of pre-
decessor termination checks in the EFT scheduling policy. Additionally, this
rather simple method implies that a mapping decision has been taken before
the scheduling process as the task graph needs to be fixed.

4.3. Self-reconfigurable system considerations 89

Po ty @ i]
DPR th tk (b) tf
N
»
P1 t |
Po to] Busy] (c) ty]
A
DPR tf th | tr ti
AN
»

Figure 4.6: Ilustration of EFT policy with insertion of a task ¢; on two RRs
Py and P, considering their reconfiguration tasks in three steps: (a) insertion
window for ¢; and tg;, (b) insertion windows for ¢g;, and (c) updated insertion
window for ¢;.

In the proposed approach, we instead let the scheduling heuristic add
reconfiguration tasks on the fly. We illustrate the updated EFT with insertion
policy in Figure 4.6. When computing the EFT for a task ¢; on a resource P;,
we first check for the insertion window (a) on P;’s schedule for both ¢; and
its corresponding reconfiguration task ¢z;. Since the DPR operation makes
the targeted RR temporarily unavailable, it must be counted as part of the
execution time in this insertion window.

When scheduling a software task, denoted by the absence of reconfiguration
task, the insertion policy can stop here, otherwise, it must check if the cor-
responding reconfiguration task can be inserted in the DPR schedule. A new
insertion window (b) then needs to be found to ensure the DPR controller is
properly shared. We consider the previously scheduled reconfiguration tasks,
as well as the other application tasks, to be fixed in the schedule. Once the
reconfiguration task has been scheduled on the DPR insertion window (b),
the original insertion window (a) is reduced to (c) to take into account the
RR unavailability during the DPR process.

If the insertion window (c) becomes too small to fit the task ¢;, then it is
dropped and the algorithm looks for another insertion window in P;’s schedule.
If there isn’t, then ¢; is appended at the end of P;’s schedule.

At the end of these three steps, we obtain the earliest finish task of ¢;
on P;, with respect to ¢;’s predecessors’ terminations and the corresponding

90 Chapter 4. Runtime scheduling for self-reconfigurable sys.

reconfiguration process.

In addition to the EFT policy with insertion modification, the reconfigu-
ration cost needs to be added to the OCT table computation. At the OCT
computation step, the PEFT heuristic cannot know if the reconfiguration task
can be pipelined with the communication time. This is reflected in the original
OCT formulation in Equation 4.1 which now becomes:

OCT(t;; Pj) = Max [Min {

t;€ succ(t;) | PweP

OCT(t;; Pyw) + R(Py) + W (tj; Pu)
+A(ti; 1) - C(Pj; Pu
4.

(4.8)

4.3.2 Bitstream pre-fetching for makespan reduction

The heuristic is now capable of managing hardware tasks with DPR opera-
tions. However, those reconfiguration tasks can benefit from further optimiza-
tion. Namely, the bitstream pre-fetching technique which has been introduced
in Section 2.2.2.2. The pre-fetching technique makes use of the precedence of
the reconfiguration task t? of a task ¢; (end of ¢t < start of ¢;) in a way that
s end can happen earlier than the start of #;. Then the DPR controller is
free earlier to reconfigure other tasks in the FPGA. The constraint is that the
reconfigured task is mapped on a free (or idle) RR.

Bitstream pre-fetching can effectively parallelize the DPR operations with
other tasks execution to minimize the latency introduced by reconfigurations.
This is a desirable feature for our quality-oriented methodology as our quality
of service model is based on slack (or time before deadline) optimization.

The pre-fetching technique creates an idle task constraint in the schedule.
When a bitstream has been pre-fetched, there is a period in which the task is
idle in the RR and waiting for its predecessor to terminate. The idle period
effectively prevents other tasks from being reconfigured in this RR. This can
be taken advantage of in the case of periodic tasks, which are not covered in
this work. This constraint is the result of fixing previously scheduled tasks to
limit the heuristic’s time complexity. The idle task constraint is illustrated in
Figure 4.7 (a).

To mitigate the idle task constraint, we introduce the Just-In-Time (JIT)
bitstream pre-fetching. To do so, JIT pre-fetching minimizes idle times so
there is no need to evaluate the idle task constraints if possible.

The idle task constraint can also be mitigated by delaying the reconfigu-
ration of tasks that have an idle period, which could yield better schedules
in terms of makespan reduction. This requires the scheduling heuristic to

4.3. Self-reconfigurable system considerations 91

(a) (b)
S Pi)] m to
© P de [4 | Po 0 | [u |
@ ¥
DPR [t [¢F] tR pPR (i | R

Figure 4.7: Illustration of idle task constraint on pre-fetching when scheduling
task ¢ on a platform comprised of two RR resources. In (a), t; cannot be
scheduled on P, before t; as the RR has already been reconfigured and is
waiting for ty’s termination. In (b), the pre-fetch has occurred just-in-time
and lets ¢ run before ¢;, assuming a large enough insertion window.

backtrack and re-schedule the reconfiguration task that causes the idle pe-
riod. This would increase the heuristic’s time complexity, however, which is a
drawback as the goal of the proposed heuristic is to be efficient with relatively
low decision time and a short schedule makespan.

To implement the JIT pre-fetching, three cases of reconfiguration task
schedules are identified. The cases are illustrated in Figure 4.8. In those
examples, we assume the heuristic tries to schedule task ¢; (colored in blue),
and all other tasks are scheduled.

In the first case, the heuristic finds no insertion window in P; as it com-
putes FFT(t1;Py). It must append task ¢; at the end of the P; schedule. In
this example, ¢, requires y’s termination, and so does ¢ otherwise it would
overwrite ty’s configuration. Therefore no pre-fetching can be applied here,
and t,’s earliest start is delayed by the duration of reconfiguration task tp;.

In the second case, the heuristic computes FFT'(t1;Py), and the only other
task in the schedule has been assigned to P;. The reconfiguration tasks ¢
depend only on the other tasks assigned to Py (none in this example), and the
other events in the DPR schedule. Thus the earliest start of ¢; is later than
t1s as t}, does not depend on #;’s termination. The insertion window between
tl’s end and the earliest start of ¢, is assumed long enough to fit ¢/ in this
example. Applying JIT pre-fetching, ¢ is scheduled in such a way that /s
end corresponds to the earliest start of #;, avoiding idle time.

Finally, we illustrate JIT pre-fetching in the third case with a schedule
insertion when computing FFT(t1;Py). In this case, there is an insertion
window for ¢; and t}, respectively in P;’s and the DPR schedule. This is
possible thanks to the JIT pre-fetching of task ¢3 that depends on t5’s ter-
mination. Here, pre-fetching is possible as it was in the second case, but the

92 Chapter 4. Runtime scheduling for self-reconfigurable sys.

Case 1 : append reconfiguration task
for the same RR

@ P1 [to tq]
@ @ Po -
(ts) DPR| t | tR

A
@ Earliest start for £ Updated earliest
andtp; start for 1

Case 2 : append reconfiguration task
for a different RR

P ’T‘ P, [IdleI to]

Po b P to-
DPR(F] [F Po il ts |

Case 3 : insertion between reconfiguration tasks

K 1
Earliest start Earliest start DPR [tOR tf t{? t?
fortp for ¢; LN
Earliest start ¢ Updated earliest
for tp, Earlieststart start for £;
for ¢1

Figure 4.8: Just-In-Time (JIT) bitstream pre-fetching scheduling cases of an
example task graph snippet.

end of the reconfiguration job ¢f is later than the initial earliest start of ¢;.
Because t; cannot start before termination of ¢, its earliest start is updated.
As the insertion window has been evaluated at large considering the execution
time of tg; and ¢; with no initial pre-fetch (cf. Section 4.3.1), it is guaranteed
not to break the schedule’s coherency.

Our heuristic considers those three cases to implement JI'T pre-fetching on
reconfiguration tasks. This feature does not require any modification on the
original application task graph from the application designer.

4.3.3 OCT reuse and partial computation

In this section, a way to reduce the proposed heuristic’s decision time is pre-
sented to tackle the efficiency challenge. To do so, we speed up our heuristic by
pre-computing the OCT table offline as it takes a significant amount of time
for path evaluations. The OCT table can then be reused fully or partially
updated.

The first step of the PEFT heuristic is to compute the OCT table, which
serves as prediction table, and to compute the optimistic earliest finish time

4.3. Self-reconfigurable system considerations 93

for computational resource selection. This can be used to our advantage as
no modification is brought to this table in the later stages of the heuristic.

In the context of runtime quality-oriented application management, com-
puting new schedules at runtime makes sense as constraints change over time
(eg. deadlines, faulty or restricted resources...), or the workload to execute
has changed in nature (eg. new QoE setting, additional services...).

However, reusing the OCT table isn’t as trivial as it sounds. If the change
brought by the context implies restricting one or more tasks on one or more
resources, the OCT table must be at least partially recomputed. Indeed,
the OCT’s purpose is to reflect the impact of single-task scheduling decisions
based on the computational resources pool and task graph dependencies. If
one or more tasks cannot be implemented on one or more resources, then it
is not guaranteed that the OCT table remains the same, as evaluated graph
path costs are impacted.

To correlate OCT reuse with the proposed quality-oriented application
management, different execution modes are represented by different adja-
cency and computation matrices. The corresponding OCT tables can be
pre-computed and stored on-target to find schedules at runtime. Swapping
OCT tables when implementing a different execution mode doesn’t necessi-
tate any modification and lets the heuristic reuse them in their entirety. This
implies that for each execution mode, a different OCT table is stored for reuse
purpose.

However, any hardware constraint or user restriction which directly im-
pacts scheduling decisions requires partial OCT table computation. Such
constraints and restrictions include forced implementation of specific tasks-
resources assignments, denied resources for the scheduling heuristic, and can
come from QoS user needs such as lowering chip temperature by reducing
resource occupancy rates [113].

It is possible to partially compute the OCT table by computing only values
that are impacted by a modification in their computation matrix W. Figure
4.9 illustrates the partial OCT computation when restricting task tg9 from
using resource Py: W (tg; P2) = (). For the canonical task graph example, three
paths lead to the source node from tg through its first order predecessors: t,
t4, and t5 and second order predecessor t1. Because the OCT table is computed
recursively from the sink to the source node, all predecessors on those paths
need to have their OCT value updated.

The subset of tasks impacted by a modification on a task ¢; can be found
by graph analysis with Breadth First Search (BFS) or Depth First Search
(DFS) from t; to the source node (t; in the case of the canonical application).

94 Chapter 4. Runtime scheduling for self-reconfigurable sys.

fee
an 22 21 36 7 7 7\ —t
P 22 18 18 7 7 7|l —t
A v * 32 27 43 27 41 43 | -t
ORI, 7 10 4 77 7| —ts
wo |2 2| e T 7] -4
@ 26 17 24 42 39 44 | —t
14 25 30 13 16 22 | -t
20 23 36 13 16 33 | —ts
15 21 [0] 13 16 20 | —tg
13 16 33 0 0 0/ —ty

Figure 4.9: Partial OCT computation when restricting task ty from being
implemented on resource P,. The paths highlighted with red dashes are im-
pacted by the modification in the computation matrix W and cause the partial
OCT computation of the corresponding tasks.

We introduce the inheritance matrix / in Equation 4.9 which is the result of
this graph analysis on the canonical example. Element /(7; j) indicates if task
t; is a predecessor of ¢;, with I(i; j) = 1 if true, else 0. The diagonal elements
of I are always equal to zero as a task cannot be its predecessor. This matrix
can be computed offline at design time.

_—
— 1y
_t4
_t5
_t6
_t7
_ts
_tg
—t1o

—t
—ty
—t3
— iy
—t5
i, (4.9)
—tr
—tg

—ty

o e e e e e e e

~

—t1o

A last optimization can also be made here by benefiting from the DAG

4.3. Self-reconfigurable system considerations 95

property on the adjacency matrix. Similarly with the adjacency matrix A,
because the studied graphs are DAGs there exists a topological order such that
I is a lower triangular matrix (with diagonal elements equal to zeroes) and A
is an upper triangular matrix. To avoid computing performing runtime graph
analysis for partial OCT computation, we can merge the I and A matrices for
runtime reference.

Finally, we introduce Pre-Fetch PEFT (PF-PEFT) in Algorithm 5, which
takes into account the self-reconfigurable systems adaptations, JIT bitstream
pre-fetching, and OCT reuse and partial computation optimizations presented
in the previous Sections.

Algorithm 5 PF-PEFT scheduling heuristic
Input: Matrices A, C, W and vector R
Input (Optional): Pre-computed OCT table, Modified W matrix
Output: Application mapping and schedule for DPR capable architecture

1: if No OCT table or Modified W matrix then //Complete PF-PEFT

2: Update OCT table recursively with Equation 4.8

3: Compute OCT ranks vector using Equation 4.5

4: Sort OCT ranks vector in decreasing order

5: Put source task in the list of tasks ready for execution (ready-list)

6: while ready-list not empty do

T t; < highest OCT ranked task from ready-list

8: for each P; € P do

9: Compute EFT(t;;P;) using insertion policy (cf. Algorithm 4)
10: if R(P;) > 0 then // If P; is a RR
11: Set reconfiguration task tZ for RR P; with JIT pre-fetch
12: if delay > 0 then // JIT pre-fetch case 1 or & from Figure 4.8
13: Update EFT(t;;P;)
14: else
15: // JIT pre-fetch case 2 from Figure 4.8
16: // EFT(t;; Pj) doesn’t need an update as there is no delay
17: Orrr(ti; P;) < OCT(t;;P;) + EFT (t;;Pj)
18: Assign task ¢; to resource P; that minimizes Ogpr
19: Update ready-list with t;’s successors that are now ready for execution

20: return Application mapping and schedule for DPR capable architecture

96 Chapter 4. Runtime scheduling for self-reconfigurable sys.

4.4 Quality-oriented management with runtime
scheduling

The proposed approach makes use of the quality of experience (QoE) and
service (QoS) models introduced in chapter 3 as inputs.

By making use of the proposed PF-PEFT scheduling heuristic, the ap-
proach can benefit from being able to compute new schedules at runtime so
there’s no previously computed solution database to store on the target.

Execution modes are kept as the key element of the contribution, which en-
ables the methodology to automatically downgrade and upgrade the targeted
application to maximize the QoE score.

4.4.1 Proposed methodology

The proposed methodology is described in Algorithm 6. It starts from the
highest QoE execution mode and downgrades it iteratively until it finds a
valid solution with a positive QoS score.

The constraint update interrupt comes from either a hypervisor program
(asin |83, 57|) or a manual demand from the user that increases the number of
additional tasks or services to execute conjointly with the targeted application.
This update can also come from a system failure detection on one or more RRs
(as in [4]). Schedules can be kept between application iterations if constraints
didn’t change in this time frame.

QoS prediction in line 6 uses the QoS function defined by the application
and system designers. In our case, as in chapter 3, the QoS value is equal to
the proportion of slack in the schedule (time before the deadline).

As PF-PEFT is deterministic, there is always only one schedule to compute
for each considered execution mode. Therefore, with j execution modes, n
tasks and m additional context tasks, p resources and k restricted resources,
the time complexity of the methodology can be estimated to:

O(j - (n+m)*- (p— k) = O(j.n’p) (4.10)

4.4. Quality-oriented management with runtime scheduling 97

Algorithm 6 PF-PEFT based quality-oriented methodology

Input : Application and system information
Output : Valid schedule maximizing QoE

1: while true do

2 current execution mode <— mode of highest QoE

3 wait for constraint update interrupt

4 while no next schedule do

5: compute new schedule with PF-PEFT heuristic (cf. Algorithm 5)
6 if new schedule has predicted QoS > 0 then

7 next schedule <— computed schedule

8 else if Execution mode is at lowest QoE then

9 // Can’t downgrade anymore, will cause a service break

10: next schedule <— computed schedule

11: else

12: downgrade QoFE and pick the next execution mode
13: apply new schedule

4.4.2 Using module reuse

The proposed methodology can be enhanced with module reuse capabilities.
To benefit from module reuse, the system must be in a state where only one
task has been assigned to a RR. In this case, the DPR operation on this RR
can be skipped for each iteration as there is no functional need to reconfigure
this task.

Because module reuse prevents other tasks from being executed on the
same RR, it creates a restricted resource. Therefore there must be clear
benefits for reuse on the resulting makespan as the proposed approach is
capable of reducing the impact of DPR operations. It can be hypothesized
that module reuse happens more frequently on applications that possess one
parallel task with a longer execution time (in regards to the full schedule),
and on systems where this task can be executed only on few RRs with high
reconfiguration time.

We introduce Figure 4.10 an example task graph with two execution modes.
In this example, the DAG topology does not change between execution modes
and they only differ by their task computation times (W and W5), except for
t1 which is considered functionally identical between both execution modes.

In iteration 1, we let the methodology schedule the first execution mode,
and the heuristics find a schedule in which ¢; is the only task assigned to P.

98 Chapter 4. Runtime scheduling for self-reconfigurable sys.

(t) 3 4 3 3 4 3
9 22 20 9 22 20
R (L
@ 9 5 5 7 6 6 8
4 7 4 5 8 b
(ts) 8 3 3 9 4 4
Same execution mode,
/ new schedule (fixed Pop)'\
P() (tl ; tl idlle 1 tl ;
P1 t3] ts E t3 T
A ty | [& |t0 ty | | t
prr(g[4 A4 [& &) @& 0
Time L _ ZGi 24J}

Iteration 2; reuse iSlel effect and reduces the
schedule makespan. tf is absent of the DPR
schedule

Iteration 1; initializing t;'s reuse
with JIT bitstream pre-fetching

New execution mode,

new schedule, ¢; is
a reusable task x

z] i t’5
S T t
170 R 4 5
‘tR tr g tr th
Time 2 2;5\
L A J
T e

Iteration n; every tasks but ¢; change,

Iteration n-1; reuse still in effect A
’ the latter is kept and reused

Figure 4.10: Example of reused task ¢; between iterations and execution modes
with the schedule-base methodology. In this example we consider that ¢; can
only be executed in Py (illustrating a bigger RR), while P; and P, are smaller
RRs. Communications times between resources are neglected in this example
for readability.

4.5. PF-PEFT performance experiments 99

With ¢; being alone on Py and now reconfigured, the conditions for reuse are
met, the methodology fixes t;. For the scheduling heuristic, this means ¢, has
to be scheduled on Py, and #* is not required, as at this point ¢; is already
implemented in Py. In addition, Py is now restricted for the other tasks when
mapping and scheduling.

A new schedule is then computed at the end of iteration 1 to make use
of the reuse of ¢t;. It is to be noticed that the computed schedule with the
reuse constraint will be applied only if its evaluated QoS value is higher than
the one without. Reusing making the corresponding RR unavailable for other
tasks.

The self-reconfigurable system can keep using this schedule until iteration
n where in this example an upgrade is required (bottom part of Figure 4.10).
Because t; is identical between execution mode 1 and 2, and is still in the
reuse configuration, the methodology can reuse t;.

Similarly as between iterations 1 and 2, if a solution with a positive QoS
value is found when reusing ¢, then it is kept. A final schedule can be com-
puted without considering the reuse of ¢; to verify if getting rid of the reused
task increase the QoS.

It is important to note that tasks that can be reused between execution
modes can do so only if it makes sense at the functional level.

4.5 PF-PEFT performance experiments

In this section, we measure the performance of our Pre-Fetch (PF) PEFT
heuristic. We compare the obtained results to ASAP PF [90] that comprises
reconfiguration job management and bitstream pre-fetching. Both heuris-
tics can consider software resources in addition to RRs as they are special
cases of null reconfiguration time. In addition, we differentiate Partial and
Complete PF-PEFT, with the former making use of a pre-computed OCT
table for decision time optimization, and the latter computing the OCT table
from scratch. Conducted experiments aim to highlight the efficiency of our
approach by measuring the obtained schedules makespan and the on-target
decision time.

The heuristics are compared on a set of profiled task graphs from real
applications from the literature and synthetic benchmarks.

100 Chapter 4. Runtime scheduling for self-reconfigurable sys.

4.5.1 Experimental setup

The PF-PEFT and the ASAP PF heuristics have been written in C++ and
cross-compiled for the ZCU102 Ultrascale+’s ARM A53 processor with g++-
aarch64-1linux-gnu. The -02 flag has been used to optimize execution speed,
but no multi-core optimizations have been made in the code as embedded
targets do not always comprise multiple CPU cores. To mitigate OS latencies
and cache optimization, resulting decision times for given benchmark times
are averaged on 125k schedules.

The heuristics take as inputs adjacency and computation matrices (A and
W) which describe the DAG workload to schedule on the given system. It
will also be given a communication matrix and a reconfiguration vector (C
and R) to describe the time taken to transfer data using the communication
infrastructure latencies and the time taken to reconfigure the underlying RR.
Each different set of A, W, C, and R constitutes a different benchmark.

To analyze the efficiency of both algorithms, we ran the scheduling heuris-
tics on task graph topologies that came from self-reconfigurable systems such
as our H.264 application, using extrapolated results from heterogeneous plat-
forms from the literature [76, 88, 114], or standard workload topologies [115].

We also made use of synthetic task graph benchmarks as in [4, 90, 88| to
generate lots of benchmark task graphs and evaluate our heuristic on a large
combination of graph topologies and latencies. The generated task graphs can
then be scheduled on the platforms to compare the algorithms’ performance.

Table 4.1: Considered architecture resource compositions.

] Composition H RR sizes ‘ Description ‘

ARR+1SW || 4 large Coarse-grain island style[102]
8RR+2SW || 3 large, 5 small | Balanced coarse-grain|6]
12RR+3SW || 2 large, 10 small | Fragmented

16RR+4SW || 1 large, 15 small | Highly parallel

In addition, we experiment with a range of resource compositions that
comprise both CPUs and RRs resources. The studied resource composition
can comprise up to 16 RRs to study the impact on the heuristics decision
times and makespan reduction. The four studied platform compositions are
illustrated in Table 4.1.

Architectures are represented by the communication matrix C' and re-
configuration vector R. We give values from the communication matrix in

4.5. PF-PEFT performance experiments 101

Table 4.2, obtained in the platform evaluation in Section 3.4.1. Reconfigu-
ration times of the RRs scale with the number of logic blocks in the RRs,
and the generated reconfiguration vector R illustrate this range of heteroge-
neous, coarse-grained RR size. We consider RRs holding 1k up to 10k slices
of a ZCU9EG FPGA (ZCU102 board). The size of the resulting partial bit-
streams ranges from 400KB to 2MB. Using high bandwidth ICAP controllers
[18, 20|, profiled reconfiguration times are comprised between 1.23ms and 5.24
ms.

Table 4.2: Profiled worst-case delay on the communication interface using the
AXI4 Stream interconnect.

| Source Destination | Worst-case delay (ms) |

RR RR 0.06
RR CPU 0.30
CPU RR 0.30
CPU CPU <0.01

Finally, the results are evaluated using the Schedule Length Ratio (SLR).
SLR denotes normalized schedule makespan to a lower bound and is the ratio
of the sum of the critical path nodes running on an ideal system with no
communication nor reconfiguration costs. It is defined as:

makespan

mian [W(t;; Pj)])

t,€CPyIN (Pi €P

With makespan as the schedule duration to normalize, t; € C'Py;;n denot-

SLR =

(4.11)

ing the tasks (or nodes) in the minimum critical paths, and min [W(t;; P;)]
P;EP J

denoting the fastest computation time of ¢; among the resources in the set of
resources P. A heuristic schedule always yields a value greater or equal to 1
as it cannot be less than the denominator of Equation 4.11, as it is not a real-
istic schedule makespan but the shortest path to sink node without platform
constraints. When comparing heuristics with SLRs, the lower the better.

4.5.2 Real application benchmarks

We employ benchmark applications listed in Table 4.3. They are character-
ized by their tasks count in the workload, the number of resources they can be
scheduled on, and their topology types. We distinguish two general types of
graph topologies: Tall and Wide. They are illustrated in Figure 4.11 respec-

102 Chapter 4. Runtime scheduling for self-reconfigurable sys.

tively with the Epigenomics and CyberShake task graphs. The Tall topology
denotes graphs that contain more tasks in their critical paths than the num-
ber of forked tasks and vice versa for the Wide topology. For instance, the
Epigenomics task graph is a Tall graph with 8 tasks in its critical path and
only 4 parallel tasks. The CyberShake on the other hand is a Wide graph
with 6 tasks in its critical path and up to 8 parallel tasks.

Epigenomics CyberShake

Figure 4.11: Illustration of Tall (Epigenomics) and Wide (CyberShake) task
graph topologies.

Because there are too few data sets available online, such as our H.264 im-
plementation, the StereoVision application from [91] and the Edge Detection
mix from [98], we extrapolated datasets from other heterogeneous platforms
approaches. Such platforms feature different CPUs and GPUs and provide
realistic data for our scheduling heuristic, and FPGAs can have similar or
better execution times as GPUs [24]. With this assumption, data sets from
cryptography and lane detection applications from [114]| were used, as well as
the canonical task graph [88] and the traction control application from [76].
As these platforms were not implemented on FPGA, we extrapolated recon-
figuration times by considering RRs that can fill 1k to 10k slices of a ZCU9EG
FPGA (ZCU102 Board), assuming longer task computations on GPUs were
loosely related with bigger RRs. Finally, Epigenomics, CyberShake, and Mon-
tage task graph topologies [115] were considered, although their data sets were
incomplete and task computation times had to be extrapolated from the pre-
viously introduced applications.

As can be seen in Table 4.4, differentiating Partial and Complete PF-PEFT
gives a lower and upper bound for the partial OCT computation optimization.

4.5. PF-PEFT performance experiments 103

Table 4.3: List of benchmark application topologies.

Task | Resource | Topology
Benchmark

count count type
CryptoGraphy! [114] 4 2 Tall
StereoVision [91] 7 3 Tall
Edge Detection Mix [98] 9 3 Tall
Canonical® [8§] 10 3 Wide
H.264 + AES/Sobel 10 5 Wide
Traction control' [76] 10 5 Wide
Lane Detection! [114] 14 6 Tall
Epigenomics? [115] 20 4 Tall
CyberShake? [115] 22 5 Wide
Montage? [115] 26 5 Tall

! Extrapolated results from heterogeneous CPU-GPU platforms.
2 Topologies only with synthetic computation times.

The ASAP PF from [90] yields a schedule in less than 100us in all introduced
application benchmarks, and grows linearly with the task count in the graphs.
In comparison, our Complete PF-PEFT grows quadratically and reaches de-
cision times up to 3 times longer than ASAP PF. However, those on-target
decision times remain within half a millisecond, which is fairly low considering
the duration of the resulting schedules is 10x to 100x longer.

Table 4.5 introduces the Schedule Length Ratios (SLR) of the resulting
schedules. For each benchmark, we give the SLRs with (w/) decision times
in the SLR computation, and without (w/0) to show how our higher decision
times compared to ASAP PF impact the quality of the resulting schedule. This
is because decision times need to be factored in for our runtime management
methodology. Because PF-PEFT is deterministic, Complete PF-PEFT SLRs
are denoted by ‘/’ in Table 4.5 as it yields the same SLR as Partial PF-PEFT
without factoring decision times.

On average, PF-PEFT approach outperforms ASAP PF by yielding sched-
ules 11.54% shorter on average on the 10 benchmarks. Taking into account in
the decision times in the SLR computation, this drops to 11.45%.

In the CryptoGraphy benchmark, both approaches yield the same SLR
without factoring decision times and are worse for PF-PEFT by up to 0.18%.

104 Chapter 4. Runtime scheduling for self-reconfigurable sys.

Table 4.4: On-target scheduling heuristic decision times comparison.

Decision times (us)

ASAP PF PF—PEFT PF-PEFT

Partial Complete
CryptoGraphy 12.55 12.30 23.42
StereoVision 25.14 31.47 58.21
Edge Detection Mix 32.00 38.26 72.57
Canonical 36.62 42.63 85.11
H.264 + AES/Sobel 37.79 43.51 72.69
Traction control 43.60 77.14 137.50
Lane Detection 45.95 78.13 131.82
Epigenomics 70.37 110.71 194.93
CyberShake 86.76 149.15 281.06
Montage 97.89 177.92 325.57

Table 4.5: Resulting Schedule Length Ratios comparison per heuristic, with
decision time included in the SLR (w/) or without (w/o).

SLR
ASAp pp | PE-PEET PF-PEFT
Partial Complete
w/o 18.24 1824 (+0%) /
CryptoGraph
FYPROTApRY w/ | 1827 | 1827 (+0.17%) | 1827 (10.18%)
StereoVision w/o| 1329 |1.304 (-1.94%) /
w/ | 1.320 |1.304 (-1.94%) | 1.304 (-1.94%)
Edge Detection Mix | /0| LT70_ [1631 (:6.54%) /
w/ | L1770 | 1.655 (-6.51%) | 1.655 (-6.50%)

w/o| 3350 | 2.906
w/ | 3351 | 2908

()

()

w/o 1.809 1.460 ()
w/ 1.810 1.461 (-19.20%) | 1.462 (-19.17%)

()

()

()

()

C ical
anonica 2.908 (-13.18%)

H.264 + AES/Sobel

Traction Control w/o 2.253 1.971 /

w/ 2.254 | 1.972 (-12.44%) | 1.974 (-12.38%)
Lane Detection w/o | 2951 |2307 (-21.82% /
w/ 2.953 | 2315 (-21.61%) | 2.317 (-21.54%)
: : w/o 1.775 1.742 (-1.84%) /
Epigenomics
w/ 1775 | 1742 (-1.84%) | 1.742 (-1.84%)
w/o | 2167 |1.588 (-26.75%) /
CyberShak
yhershake w/ | 2167 | 1.588 (-26.75%) | 1.588 (-26.74%)
. 1. -3.
Montage w/o | 1.946 869 (-3.97%) /

w/ 1.946 1.869 (-3.97%) | 1.869 (-3.97%)

4.5. PF-PEFT performance experiments 105

This can be explained by the sequential nature of this benchmark. Because
there aren’t many bottlenecks to predict, the ASAP makes the same decisions
as PF-PEFT by merely following the ASAP topological order.

In the Lane Detection benchmark illustrated in Figure 4.12, PF-PEFT
outperforms ASAP PF by 21.54% with the complete version, including deci-
sion time. This can be explained by the topology of the Lane Detection task
graph. The ASAP PF heuristic schedules the tasks in the numerical order, so
it performs pre-fetch on tasks t3 to tg in Figure 4.12 (b). But then tasks ¢
is blocked as tasks t; to t1; need to be executed. Because ASAP PF couldn’t
predict the bottleneck on t7, it cannot insert those tasks in the schedule and it
has to append the sequence at the end of the schedule instead. By comparison
in Figure 4.12 (c), PF-PEFT scheduled those tasks alternatively and allowed
insertion windows thanks to JI'T pre-fetching, regardless of the order in which
the tasks were sorted originally.

CPU1 | tu | | tu |
RR1

RR2 ta | [ta] [t]] tio 1
RR3 f} tr [| 13

RR4
O 7 I A A 2 P 2 A Han N
Ll
©
CPU1 [tn | |t |

RR1 ts | te | t10 | *Q
RR2 [&%]
RR3 @l f A

RR4

orr] FFEETEET] T

ty
R
10

RLE
1213

»
>

Figure 4.12: Lane Detection task graph (a) resulting schedules using ASAP
PF (b) and PF-PEFT (c).

Finally, we draw attention to the minimal differences between Partial and

106 Chapter 4. Runtime scheduling for self-reconfigurable sys.

Complete PF-PEFT results when factoring in decision times in the SLR. This
highlights the fact that even if our PF-PEFT approach is noticeably slower
than ASAP PF, it has little impact down the line as the schedule duration
takes up the majority of the resulting makespan.

4.5.3 Synthetic workloads

In this section, we evaluate the introduced heuristics with synthetic work-
loads. Workload generation can help generate a large amount of diverse data
set, inspired by real application benchmarks, to characterize and evaluate the
heuristics. Using our application and architecture models introduced in Chap-
ter 2, we produce parameters previously introduced in Table 2.5 as inputs for
the heuristics.

Synthetic workload topologies are made of layers comprising a random
number of tasks to construct a random DAG topology. Each task in a layer
is connected randomly with one or more tasks from previous layers. The
characteristics of those DAGs are their height h (number of layers), and their
width w (maximum number of tasks in a layer). Each node can be connected
randomly with a number m(X) of nodes from previous layers, with X being a

random uniform value in [0;1] and m(X) = [{e~?X]. This makes each DAG
node capable of being connected with one to [{5| previous nodes.

We define Tall and Wide topologies as follows:
e Tall : h e [1;50], w € [2;4];
e Wide : h € [1;4], w € [2;50].

Both topologies are restricted to a number of nodes n € [20; 100] for a repre-
sentative industry workload [57, 115].

Values in the computation matrix W, denoting execution times of tasks
on resources, are generated uniformly in [0.5;500] (in ms). We defined this
range as a set of execution times used in self-reconfigurable system bench-
marks introduced previously. Such executions times are representative of task
execution times on FPGA as they stay quite low compared to CPU implemen-
tations [24], and correlate with values from self-reconfigurable system imple-
mentations from [98, 91]. Each value of the computation matrix is generated
independently to support the heterogeneous RR size hypothesis which typ-
ically causes reconfigurable modules to behave differently. We added a 2%
probability that W (i; j) is assigned a value of +o0o to reflect the possibility of
no implementation of a task ¢; on a resource P;, while we guarantee that there

4.5. PF-PEFT performance experiments 107

is a least one implementation of ¢; on a resource. The generated topologies
are kept for all platforms compositions.

4.5.3.1 Partial OCT computation savings

Figure 4.13 introduces the results for an RR+2CPU architecture composition
on generated topologies, including 50% of Tall and Wide graphs respectively.
Here, we show the part of the PF-PEFT decision time spent in OCT com-
putation. PF-PEFT typically spends 48.2% of its decision time on average
for the OCT table computation in this experiment. This can be used to the
system’s advantage when recomputing a new schedule, as decision times can
be reduced by half (if no OCT update is required) while retaining the SLR
reduction performance of our approach.

The SLR graph show values obtained while factoring in the decision times.
The Partial and Complete PF-PEFT values are extremely close to each other.
This indicates that the decision time is marginal compared to the resulting
schedule makespan in the SLR computation.

6 T T T T T T 25 T T T T T T —
ASAP Pre-fetch + : ASAP PF + ; #H#
s L PF-PEFT (Partial) X | ¥ PF-PEFT (Partial) X ﬁ
PF-PEFT (Complete) ‘ ; o 20 PF-PEFT (Complete) ja##m—* ———— —
z 3 3 3 3 3 1 ‘ = e
L B S B R 1 % o
2 = I {Pq:&%w """"""""""""""
R B e e L e 1 3 5 M o
Z B 10 R N
Q 2 0 S —
a -
RS e oo N N S U S H
1
0 0 | | | | | | |
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count

Figure 4.13: Random synthetic workload decision times (left) and resulting
SLRs (right).

In addition, we introduce Figure 4.14, which summarizes the average de-
cision time spent computing the OCT table on the four considered platform
compositions from Table 4.1, for task graphs comprised of 20 to 100 nodes.
Results show the more resources in the self-reconfigurable system, the more
time it spends. This was expected from the PF-PEFT heuristic as the critical
paths evaluations must be done for each resource (cf. Equation 4.8), and for
each successor of each node in the graph. This highlights that while the OCT
table can help predict the impact of individual task-resource assignments, its
impact on the overall decision time can reach as high as 61%.

108 Chapter 4. Runtime scheduling for self-reconfigurable sys.

weoces [N
30 35 40 45 50 55 60 65

Part of OCT computation (in %)

Figure 4.14: Part of the decision time spent computing the OCT table when
OCT reuse is not possible, by system resources composition.

This also shows that attractiveness of reusing a pre-computed OCT table,
the time taken by the heuristic to compute the OCT table must be consid-
ered as there are some cases where partial OCT computation or reuse cannot
be applied. Typically, when resources are denied from being used by the
methodology.

4.5.3.2 Effect of tasks computation times on SLR

In this experiment, we study how computation times from the synthetic work-
loads affect the resulting SLRs. The computation time values are reduced
from [0.5;500] to [0.5;5] (in ms) to correlate with smaller values from self-
reconfigurable system from [98]. Results are shown in Figure 4.15 for 100k
DAGs on the same 8RR+2CPU platform.

8 T T T T 110 T T T T T T LI
ASAP Pre-fetch + N 100 ASAP PF + BT
7 PE-PEFT (Partial) X PF-PEFT (Partial) X T
'PF-PEFT (Complete) . O PF-PEFT (Complete)
z or s E 8O =
R g
= 2 60
ER g
8 z 0
£ 3 B
3 i 40
A 22 d 30
! 10 Lppaneee®
0 0
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count

Figure 4.15: Random synthetic workload decision times (left) and resulting
SLRs (right), with longer task computation times.

The decision times aren’t impacted much by this change, as the main
difference compared to the first experience was that there is more possibility

4.5. PF-PEFT performance experiments 109

to insert tasks in the schedule thanks to JIT pre-fetching.

On the SLR graph though, the decision times play a bigger impact on
the SLR computation. Thus the difference between Partial and Complete
PF-PEFTs SLRs is bigger and can be distinguished for larger task graphs.
However, this difference grows linearly in this experience from 2% at 20 tasks
per graph, to 5% in the largest graphs.

The ASAP PF also does worse, as a consequence of reconfiguration tasks
management impacting the schedule. Pre-fetch optimization saves on recon-
figuration times and is a more effective makespan reduction solution when
computation times are low. In this situation, computation times are lower
and pre-fetching can help reduce makespan by at most one reconfiguration
time (up to 5.23ms) per task. Thus pre-fetch management and schedule in-
sertion play a larger role in makespan optimization.

This experiment features a very high SLR compared to the first one for
both heuristics.

This is a reflection of the SLR metric computing the shortest path without
considering reconfiguration or communication times. In this experiment, those
times play a big part in the schedule and cannot compete with the ideal
shortest path, leading to higher SLR.

4.5.3.3 Graph topologies impacts

In this experiment, we compare the impact of Wide and Tall topologies on
the resulting decision times and SLR on the SRR+2CPU platform with the
original [0.5 : 500] values (in ms) for the computation matrix W. Figure 4.16
introduces the resulting decision times in insets (a) and (b), and their corre-
sponding SLRs in insets (¢) and (d) for Wide and Tall topologies respectively.

Partial PF-PEFT measures the decision time when fully reusing an OCT
table, whereas the Complete PF-PEFT takes into account the OCT computa-
tion in the decision time as it has to compute one from scratch. Therefore the
difference between Partial and Complete PF-PEFT is the part of the decision
time taken to compute the OCT table.

In insets (a) and (b), we see that the OCT computation takes a bigger
part of the decision time in the Tall versus the Wide topologies, going as high
as 75% for the Tall topology. This is because the OCT table is computed
recursively, and many tasks in a Wide graph can have a common successor
(eg: task t15 from the CyberShake application, introduced earlier in Figure
4.11). As the OCT value for a task needs to be computed only once for
each resource, the OCT values of the common successors can be reused. This

110 Chapter 4. Runtime scheduling for self-reconfigurable sys.

(a) Wide (b) Tall
10 T T T T T T 10 T T T T T T
ASAP Pre-fetch + : ASAP Pre-fetch +
PF-PEFT (Partial) X | PE-PEFT (Partial) X |
8 PF-PEFT (Complete) IR R — 8 PF-PEFT (Complete) RS —
g o g
gop g g e
E L E I S
R S e e e e e T T e e e e e
8 | | 8 | | | ; | | |
A m A L
P R T UL SR NI - 2 g g R
OM OM
20 30 40 50 60 70 8 90 100 20 30 40 50 60 70 80 90 100
Task count Task count
(c) Wide (d) Tall
40 T T T T T T T 40 T T T T T T T
ASAP Pre-fetch + : ASAP Pre-fetch + :
EAN PF-PEFT (Partial) X =i 35 PF-PEFT (Partial) X ﬁ
PF-PEFT (Complete : PF-PEFT (Complete .
g 30 [IR B g g o TS
; ' ' ' ' ' ' ' ;
S 8
o =]
E E
2 ~
- -
wn wn
0 | | | | | | | 0 | | | | | | |
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count

Figure 4.16: Comparison of the impact of Wide and Tall graph topologies on
SLR and decision times.

optimization is topology-dependent as there are fewer common successors in
Tall topologies.

In (¢) and (d), we distinguish the differences in the resulting SLRs. Our
approach has a lower SLR for both topologies, but the SLR reduction over
ASAP PF is more important with the Tall topologies. Taller topologies give
less space for parallel computations, and bottlenecks can happen as we've
shown with the Lane Detection application in Section 4.5.2. ASAP PF’s
aggressive pre-fetching strategy can hinder the scheduling decisions to insert
tasks in the schedule to cope with such bottlenecks.

By comparison, our resulting SLRs are 41% lower on the Taller topologies
on average when scheduling 125k different synthetic task graphs between 20
and 100 tasks. The PF-PEFT approach is capable of predicting such bottle-
necks and considers reconfiguration and communication times in its predic-

4.5. PF-PEFT performance experiments 111

tion. Therefore it is capable of scheduling tasks that could cause bottlenecks
in advance to maximize execution parallelization on RRs.

On the other hand, Wide topologies can be easier to schedule for the ASAP
PF heuristic as at a given step in the scheduling process, there are more
available tasks that are ready for execution. Thus, there is less opportunity
for ASAP PF to wrongly choose a task that finishes earlier over a task that
causes a bottleneck. Still, thanks to a more efficient insertion policy on the
PF-PEFT heuristic, we were able to yield a shorter makespan by 29% on
average on the Wide synthetic workloads.

4.5.3.4 Effect of platform composition

In this last experiment, we consider a set of 4 different architectures comprised
of 4, 8, 12, and 16 RRs with respectively 1, 2, 3, and 4 additional CPUs, as
introduced in Table 4.1. The goal here is to highlight the impact on both
decision times and resulting SLLRs and give insights into the design of coarse-
grained self-reconfigurable systems.

A set of 125k random synthetic workload benchmarks is run for each of
the 4 architecture compositions for both the Wide and Tall topologies, i.e.
250k benchmarks per platform, and one million synthetic task graphs in total
for the four platforms.

Figure 4.17 introduces the result of decision times and SLR with the 4 self-
reconfigurable system compositions. Each set of graphs compiles data from a
combined 250k Wide and Tall synthetic workload benchmarks.

Results on decision times in the left insets show how the number of re-
sources impacts our PF-PEFT heuristic. This result isn’t surprising as the
time complexity is O(n?-p) on unconstrained systems. At most, on a hundred
task on the more resourceful platforms containing 16 RRs and 4 CPU cores,
the heuristic reaches a decision time of 21.34ms on average for the Complete
OCT computation version.

Decision times are relatively high compared to ASAP PF which stays at
most under the millisecond. However, the SLR results on the right side of
Figure 4.17 show that the impact of decision time is marginal in the SLR,
even for the highest decision times.

ASAP PF fails to yield better SLR results with more resources as it doesn’t
support task insertion. This coupled with a lack of prediction capabilities
cannot guarantee a better usage of the resources. PF-PEFT on the other
hand is capable of making locally sub-optimal scheduling decisions if that
reduces the overall schedule duration without causing bottlenecks later.

112 Chapter 4. Runtime scheduling for self-reconfigurable sys.
(a) 4 RR + 1 CPU
25 T T T T T T T 30 T T T T T T T
ASAP Pre-fetch + : ASAP PF +
PF-PEFT (Partial) X 2 L PF-PEFT (Partial) X | o
20 PF-PEFT (Complete) =~ & oo — ° PF-PEFT (Complete)
z s s s s E 1 s s s
g B20 [t T
ERT 5
F g §
o
£l =
(9] —
] 4
w
b 0 | | | | | | |
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count
(b) 8 RR + 2 CPU
25 T T T T 30 T T T T T T T
ASAP Pre-fetch + ASAP PF +
PF-PEFT (Partial) X 25 | PF-PEFT (Partial) X |
20 PF-PEFT (Complete) ~ * -ooooopeeee — ° PF-PEFT (Complete) h
’g : : : : § : : : :
g = 2
ERT 5
! 3
o
£l =
Q
] 4 :
@ 3
0 | | | \ | | |
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count
(c) 12 RR + 3 CPU
25 T T T T T T T 30 T T T T T T T
ASAP Pre-fetch + : ASAP PF +
PF-PEFT (Partial) X 2 L PF-PEFT (Partial) X<
20 |+ PF-PEFT (Complete) ~ * -ooooopeoee — ° PF-PEFT (Complete)
2 : : : : g : : : :
£ E
R -
= g d
= :
B 10 | s 3 i
Q h
& - ;
@ |
0 | | | \ | | |
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count
(d) 16 RR + 4 CPU
25 T T T T T T 30 T T T T T T T
ASAP Pre-fetch + : ASAP PF +
PF-PEFT (Partial) X 2 L PF-PEFT (Partial) X<
20 |~ PF-PEFT (Complete) . ° PF-PEFT (Complete)
2 s s | s £ s s s s
g E
E g
Z 10 3
Q
A =
v
§ . 0
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Task count Task count

Figure 4.17: Platform composition impact on resulting decision times and

SLRs.

4.6. Quality-oriented methodology experiments 113

4.6 Quality-oriented methodology experiments

4.6.1 Experimental setup

We make use of the same architecture as in Section 3.4.1 that is comprised
of four heterogeneous RRs and a CPU core for task execution, and the same
H.264 encoder implementation metrics and quality models.

In addition, we use the Traction Control application from |76] as illustrated
in Figure 4.18. This application was used in a quality-oriented scheduling
methodology for heterogeneous MPSoCs, and each task from the graph has a
reward score attached that we can use to define a QoE score function for this
application.

11111 .1

e

tsnk A=

Figure 4.18: Traction control application task graph, with unique source and
sink nodes t,,. and t,,; added in the corresponding adjacency matrix.

This original task graph doesn’t feature single source or sink nodes. This is
an issue for the PF-PEFT heuristic as it requires a single entry and exit point
to evaluate the longest paths. However, this can be mitigated for any similar
DAG by creating dummy source and sink tasks. In Figure 4.18, placeholders
tsre and tg,, are used to connect respectively tasks that do not initially have
predecessors (ty, to, t3, t4, t5 and t7), and those which do not have successors
(tg and t19). When running the scheduler, those tasks are considered to have
a null computation time with no reconfiguration or communication delay.

The traction control management methodology in [76] made use of reward
scores to measure the user’s interest in defined execution modes, which can
be assimilated into quality assessment. Using those rewards as metrics for a
quality of experience model on the three execution modes (low, medium, and
high precision), we obtain Table 4.6 from [76].

114 Chapter 4. Runtime scheduling for self-reconfigurable sys.

Table 4.6: Traction control execution modes and corresponding QoE values.

‘ Execution mode ‘ Reward scores ‘ QoE value ‘

Low precision 567 0.37
Medium precision 984 0.64
High precision 1’533 1

Conversely to the H.264 Encoder which features optional tasks that are
executed only in some execution modes, the traction control application’s
graph topology doesn’t change. Thus the adjacency matrix remains the same
for all three execution modes and only the computation matrices differ as task
execution times change between execution modes.

Finally, this application has a deadline of 134 ms which will be used to
check service breaks.

Two scenarios are considered in the following experiments, repeated for
both the H.264 and the traction control application:

1. Counstrained workload: several random tasks are added to the set of
tasks to schedule, on top of the targeted application;

2. Restricted resources: several resources are restricted from usage by the
targeted applications.

Both constraints scenarios are similar to the two scenarios used in our
experiments in chapter 3. In this set of experiments, however, there will
be only aggressive scenarios (i.e. constraints change every iteration) as the
scheduling approaches are deterministic.

4.6.1.1 Workload constraints

In this scenario, we generate a synthetic constraint task graph that needs to be
scheduled along with the targeted application. These constrained task graphs
contains between 2 to 12 nodes that can be executed on all the resources from
the architecture. Their execution time are generated randomly between 0.5
and 5.0ms for the H.264 Encoder, and between 0.5 and 10.0ms for the Traction
Control. These execution times ranges fit execution times from the targeted
applications. The random synthetic workload generation is performed in such
a way that the resulting constraint schedule makespan takes up to 75% of the
targeted application deadline. Figure 4.19 illustrates the workload that needs
to be scheduled at runtime and executed before the application deadline.

4.6. Quality-oriented methodology experiments 115

Constrained workload

Constraint
DAG

Targeted application

I
Mo Ml

- J
Y

Multiple execution modes to pick from

Figure 4.19: Constrained workload to implement on the targeted self-
reconfigurable system.

4.6.1.2 Denied resources

In this scenario, we deny up to a number k out of p resources in the architecture
(k < p) from being used by PF-PEFT to schedule the targeted application.

The H.264 Encoder benchmark features one CPU and 4 RRs, and up to 3
RRs can be denied. This application requires at least one CPU core and one
RR to work, as some tasks can only be executed in software and some others
in hardware. A scenario featuring all RRs being denied, or an unusable CPU
cannot lead to a valid schedule by any scheduling heuristic.

Similarly, the Traction Control features 4 RRs solely, and up to 2 RRs
can be denied at most. Should a third RR be denied, not even the optimal
scheduling algorithm can find a valid schedule.

A simple schedulability analysis can be done. With only one RR available
to schedule the application, in the lowest precision mode, the application
makespan is equal to the sum of computation times of all tasks in this RR
plus the sum of all DPR operations. Because every task and DPR operation
would target the same RR, no optimization can be made. Therefore, the
minimum schedule duration on a single RR would be equal to the minimum
sum of execution times of tasks on a resource, and the reconfiguration latency
times the number of tasks.

The computation matrix in the low precision mode and the platform re-
configuration vector are given in Equation 4.12.

116 Chapter 4. Runtime scheduling for self-reconfigurable sys.

14 14 26 26
15 15 17 17
14 14 11 11
27 27 29 29 1.7
20 20 10 10 1.7
W= 22 22 17 17 |’ = 2.5 (4.12)
25 25 28 28 2.5
16 16 24 24
26 26 25 25

18 18 14 14

The minimum schedule makespan with only one RR is 214ms long using
resource Py or Py as they are assumed equal. The makespan is greater than
the application deadline (134ms), therefore no scheduling algorithm can hold
this deadline.

4.6.2 Experimental results
4.6.2.1 Workload constraints

In Table 4.7, we introduce the decision times of the PF-PEFT-based method-
ology algorithm for the targeted applications in the constrained workload sce-
nario.

Because the scheduling heuristic can be called multiple times, as a result of
not finding a valid solution with a positive QoS score, those values can differ
from that of the previous chapter where the heuristic was always called once.
In this scenario, the partial OCT computation can be fully employed as there
is no runtime restriction on which RR can be used for any task.

Table 4.7: Resulting average decision times of PF-PEFT based methodology
heuristic in constrained workload scenario.

‘ ‘ H.264 Encoder ‘ Traction Control ‘
‘ Decision times ‘ 0.171 ms ‘ 0.153 ms ‘
[Continuity of service | 99.19% | 97.71% |

Using the scheduling-based methodology, obtained results show a high
continuity of service with only 0.81% and 2.28% iterations resulting in a ser-
vice break. Results show that our approach spends typically less than 0.2ms
computing schedule at runtime. This is respectively 0.51% of the targeted

4.6. Quality-oriented methodology experiments 117

application deadline for the H.264 Encoder application, and 0.11% for the
Traction Control application. Because the PF-PEFT-based methodology is
efficient in terms of decision time and performance, the sub-one percent part of
the deadline spent computing schedules puts rarely the system in a situation
of a service break.

Table 4.8 summarizes the frequency of use of the targeted applications’
execution modes.

Table 4.8: Part of iterations (in % of total) of H.264 Encoder and Traction
Control execution modes and resulting average (QoE score in the workload
constraint scenario.

| Execution Mode | H.264 Encoder | Traction Control |

Break 0.81 % 2.29 %
Mode 0 0.27 % 22.56 %
Mode 1 0.001 % 60.74 %
Mode 2 4.38 % 14.41 %
Mode 3 0.008 %

Mode 4 1.30 %

Mode 5 25.95 %

Mode 6 0.0004 %

Mode 7 8.23 %

Mode 8 58.74 %

Mode 9 0.31 %

| Average QoE | 0.724 | 0.634 |

The H.264 Encoder sees four dominant execution modes (2, 5, 7, and 8)
that adds up to 97.3% of iterations. This doesn’t mean that the PF-PEFT-
based methodology finds modes such as Mode 6 (0.0004% usage) hard to
schedule, but rather that Mode 7 provides a higher QoS value in this scenario,
as Mode 6 and 7 shares the same QoE value.

The Traction Control on the other hand has a higher service break rate
(2.28%). The presence of a further degraded mode with lower task compu-
tation times could help mitigate this higher rate, but there is a trade-off for
application designers as there are only so many functionally working and de-
sirable execution modes.

In comparison, authors of [76] did not tackle the challenge of scheduling
for DPR nor runtime scheduling for constrained systems. Their approach
was based on offline scheduling based on MILP formulations to obtain near-
optimal schedules in terms of QoE. Running on a full software implementation
in similar conditions as in [76], the resulting average QoE of PF-PEFT was

118 Chapter 4. Runtime scheduling for self-reconfigurable sys.

worse by 7.2%. However, we argue that in these conditions, those results do
not highlight our contributions on the DPR operations management, although
it shows the scheduling is relatively fast and efficient in comparison.

Finally, a direct comparison with our previous hybrid approach cannot be
made fairly, as this scheduling-based approach is capable of runtime scheduling
tasks from the targeted application in addition to tasks from the constraint
DAG. This causes less resource fragmentation as using a dedicated runtime
scheduler offers flexibility in resource usage.

On the other hand, using pre-computed solutions makes the system sched-
ule one application and then the other. However, in an unconstrained scenario,
pre-computed solutions can be better than runtime-computed ones. This is
especially true if the offline scheduler is near-optimal as in [91, 76]. In addi-
tion, the runtime performance of the hybrid approach introduced in Chapter
3 does not scale with the number of tasks in the targeted application.

4.6.2.2 Denied resources

Table 4.9 shows the resulting decision times for the PF-PEFT based method-
ology when some resources are unavailable. In this scenario, because all tasks
are being restricted from being scheduled onto one or more resources, par-
tial OCT computation cannot be applied. This scenario is critical for Partial
PF-PEFT and highlights why the self-reconfigurable system must be able to
switch to Complete PF-PEFT.

Table 4.9: Resulting decision times of PF-PEFT based methodology heuristic
in denied resources scenario.

‘ ‘ H.264 Encoder ‘ Traction Control ‘
‘ Decision times ‘ 0.177 ms ‘ 0.287 ms ‘
| 100.0% | 100.0% |

‘ Continuity of service

Compared to the workload constraint scenario, one can see a reduction in
decision time for the H.264 Encoder use case. This is due to the PF-PEFT-
based methodology downgrading fewer times the execution modes until it
finds a solution, as seen in Table 4.10 where the lowest QoE mode is Mode 5.
Because there are fewer downgrades, there are fewer calls to the scheduler.

On the other hand for the Traction Control, decision times increase slightly
as there are slightly more downgrades, impacting the average QoE value which
drops to 0.582.

Continuity of service reaches 100.0% for both use cases, which indicates the

4.6. Quality-oriented methodology experiments 119

PF-PEFT-based methodology could find an execution mode of the targeted
application that can be executed on the constrained platform.

These results can be nuanced as the challenge here is more to find a suitable
scheduling solution and execute it before the deadline. The maximum number
of restricted resources guarantees that there is at least one scheduling solution
that can execute the targeted application.

Table 4.10: Part of iterations (in % of total) of H.264 Encoder and Traction
Control execution modes and resulting average QoE score in the denied re-
sources scenario. Dashes denote a usage rate of 0.0%.

‘ Execution Mode ‘ H.264 Encoder ‘ Traction Control ‘

Break 0.00 % 0.00 %
Mode 0 - 54.50 %
Mode 1 - 18.22 %
Mode 2 - 27.28 %
Mode 3 -
Mode 4 -
Mode 5 23.35 %
Mode 6 -
Mode 7 -
Mode 8 47.92 %
Mode 9 28.74 %

‘ Average QoE ‘ 0.780 ‘ 0.582 ‘

Table 4.10 introduces the part of iterations spent in each execution mode.
Here, a direct comparison with our previous hybrid approach is fairer as the
scenario is the same and cannot use at all the denied resources. In this con-
straint scenario, he PF-PEFT-based methodology is more efficient as for each
execution mode there is only one schedule to compute, with respect to the
platform constraints, whereas the hybrid approach needs to parse multiple
solutions before finding one that fits the constraints.

4.6.2.3 Module reuse impact

The impact of reconfigurable module reuse can be observed using the con-
strained workload experimentation on the H.264 Encoder. The Traction Con-
trol from [76] has three different quality modes (low, medium, and high preci-
sion) and the authors do not comment on the potential reuse of certain tasks.
In addition, the DAG topology does not differ between execution modes, and
the computation times of all tasks vary between those. Therefore, as authors

120 Chapter 4. Runtime scheduling for self-reconfigurable sys.

of [76] do not disclose if functional differences between execution modes are
worth a reconfiguration, we cannot extrapolate reusable tasks for this appli-
cation.

The H.264 Encoder execution modes can be functionally compared to see
which task can be reused from going to a mode ¢ to a mode j. From the
10 execution modes, we can identify the DAG impact of functional changes
between execution modes, as represented in Table 4.11. As we can see, the
H.264 encoder application offers many possibilities for task reuse.

Table 4.11: Reusable tasks between execution modes. Empty elements denote
the absence of reusable tasks between a mode M; and M.

 Joftf2]3] 4 [5 [6 [7 [8 | 9 |
0 (2) (b)

1] (a) (b) (b) (b)

2 (2) (b) (b) (b)
3 (a) (b) (b) (b)
4 (b) (b) (c) (b),(c) | (c)
5 (b) (b) (d) (b),(d) | (d)
6 (b) | (b) (b) (¢) | (b),(c)
7 (b) | () (d) | (b),(d)
8 || (b) | (b) (b),(¢) | (b),(d) | (c) (d) (d),(c)
9 (b) | () | (c) (d) | (b),(c) | (b),(d) | (d),(c)

(a) all: only the framerate constraints change, all tasks can potentially be
reused

(b) core: tasks from the core H.264 encoder can be reused (i.e. all but
Sobel/AES)

(c) sobel and (d) AES: only Sobel and AES respectively can be reused

We then ran the constrained workload scenario again on the H.264 encoder
application benchmark to check how many times the proposed methodology
made use of the reuse technique. Obtained results show that 48.58% of the
computed schedules featured a single task on a resource, that can be reused
at the following application iteration as defined in Section 4.4.2. Then, upon
a change in the constraints tasks to execute, only 14.52% of schedules that
included a reused task led to another schedule with reuse.

This difference in reuse setups iterations and applied reuse schedules can
be explained by the execution mode transitions. As seen in Table 4.11, if
the H.264 Encoder is running on execution mode 5 (360p60fps+AES) with a
reused task in the schedule, and the constrained workload makes our method-
ology capable of scheduling the application at execution mode 6 (480p60fps+Sobel),

4.7. Conclusion 121

no task can be reused as these two execution modes are too different on the
functional level.

To apply the reuse technique, the methodology must detect when a sched-
ule is computed with a task that’s mapped alone on a RR (reuse technique
setup). Then, a new schedule must be computed while fixing the task on
the resource to properly apply the reuse technique. This comes at a cost of
an additional PF-PEFT call in the methodology which increases the decision
time by up to 28.52% (up to 0.364ms), with an average of 18.31% (0.336ms)
using the complete PF-PEFT version.

However, as the decision times of the proposed methodology are still very
short, this latency overhead caused only an overall 0.02% decrease in conti-
nuity of service. The benefits of the reuse technique outweigh this negligible
decrease as it lowers the usage of the ICAP resource and energy consumption.
Furthermore, because the reuse technique is more efficient with heterogeneous
RR sizes [92], the DPR controller may avoid fetching larger partial bitstreams
from the DDR, which could also help reduce the memory access congestion.

4.7 Conclusion

In this chapter, we introduced our task graph scheduling heuristic, PF-PEFT,
for self-reconfigurable systems that can be used within our quality-oriented
management methodology. The goal of this methodology is to efficiently find
a mapping of tasks on the system resources to minimize the resulting schedule
makespan while maximizing the quality of experience.

To do so, we determined a fast and efficient heuristic used in the field of
heterogeneous multi/many-cores computing. This field shares similarities with
our scheduling problem and predictive scheduling are effective to deal with
task graph bottlenecks. This scheduling heuristic was then adapted for self-
reconfigurable systems with the introduction of reconfiguration tasks, which
takes into account the unicity of the DPR controller resource. Then, the
Just-In-Time (JIT) bitstream pre-fetching is introduced to reduce resulting
schedule makespan. JIT pre-fetching allows easier insertion of tasks in the
schedule, and does not increase the time complexity of the algorithm.

The introduced heuristic has been thoroughly evaluated on a set of real-
world data and extrapolated data sets from heterogeneous computing works.
Synthetic workloads inspired by those data sets were also used as is customary
in the literature. Those workloads were evaluated on different coarse-grained
heterogeneous self-reconfigurable platforms to demonstrate the interest of our

122 Chapter 4. Runtime scheduling for self-reconfigurable sys.

approach.

Results show our approach outperforms a state-of-the-art scheduling heuris-
tic for self-reconfigurable systems by up to 11% on average on a set of real
application benchmarks. If the former is capable of finding valid schedules in
less time than a millisecond on large task graphs of up to a hundred tasks, we
argue that our longer decision times of up to 21ms on these large task graphs
are mitigated by the resulting schedule makespan reduction.

In addition, we introduced a method for reducing significantly the decision
times by pre and partially computing the Optimistic Cost Table (OCT) which
is used for scheduling prediction. This reduction reaches up to 61% for runtime
scheduling.

The PF-PEFT heuristic has then been employed as part of the quality-
oriented management methodology. On-target experiments conducted with
PF-PEFT have shown we were able to reach a high continuity of service and
average QoE when conducting experiments with simulated constraint levels.

CHAPTER 5

Conclusion and discussion

This thesis work aimed to provide dynamic resource allocation methodologies
to manage self-reconfigurable systems with a guarantee of service execution.
The focus was put on FPGA architectures comprised of multiple RRs contain-
ing different numbers of logic elements (so called heterogeneous RRs). These
types of architectures can be used to time-multiplex hardware accelerators
(or hardware tasks) in the RRs, to execute an application workload while us-
ing a smaller FPGA matrix than doing a fully static implementation. This
is particularly of interest as it can reduce costs, chip size, and potentially
energy consumption. However, this makes the runtime management of the
resources paramount to guarantee service execution. The latter is character-
ized by meeting a given application deadline (i.e. real-time constraint) and
respecting a minimum level of quality of service.

To do so, we proposed models of quality and quality-oriented manage-
ment methodologies to exploit the dynamic partial reconfiguration of FPGAs.
Quality-oriented management has previously been used in CPU-GPU systems,
as identified in chapter 2. However and to the best of our knowledge, no such
approaches have been used for self-reconfigurable systems.

Using existing frameworks and operating system libraries, we introduced
two quality-oriented management methodologies to dynamically allocate self-
reconfigurable systems resources to targeted applications. Conducted experi-
ments have shown that service execution can be guaranteed consistently while
the system is constrained in execution times and communication latencies.
These constraints are characterized by: unpredicted latencies within the com-
munication infrastructure and or shared memories, additional tasks or services
to execute concurrently with the targeted application or faulty resources that
need to be deactivated at runtime.

5.1 Contribution summary

To achieve a high level of guarantee of service, we first introduced a quality
model in chapter 3 to define quality parameters at the functional level, which
impact end-users perceived quality, or Quality of Experience (QoE). In the

124 Chapter 5. Conclusion and discussion

context of embedded systems, QoE can relate to the system’s efficiency to
reach a goal, such as reaching high precision with traction control, or a higher
signal-to-noise ratio in signal processing applications.

These quality parameters can be exploited to define functional execution
modes that application designers can associate with a QoE score to quantify
either empirically or mathematically for their own needs. Then, a model of
Quality of Service (QoS) that reflects the performance of the system when
running the application can be defined. Using this quality model, application
designers can qualify their definition of system performance for the quality-
oriented management methodologies. Using the QoE and QoS models allows
us to quantify how good a service is executed on the system, and how good
this service is to reach a given goal.

In chapter 3, we introduced a hybrid design-time/runtime methodology
that generates a pre-computed database of time-multiplexed implementations
of a targeted application on the self-reconfigurable system’s resources. These
solutions are generated for each execution mode of the application, in such a
way that the runtime part of the methodology possesses an array of statically
optimized implementations. Then, to react to a given level of constraints
on the system resources, the methodology can downgrade the quality of the
application. Alternatively, the methodology can upgrade the quality of the
application once the constraints are low enough that a higher-quality imple-
mentation can meet deadlines.

Using profiled metrics from an H.264 application implementation as a
benchmark, the methodology achieved 94% continuity of service upon the
addition of contextual services and latency, and up to 61% when some re-
sources are being restricted from usage. Because this methodology does not
require computing new mappings and schedules at runtime, it decreases the
complexity of the runtime management as it only scales with the size of the
database, and not the complexity (in terms of number of tasks) of the work-
load to execute. However, experiments have shown this has other impacts on
the system as the database needs to be stored in the target’s memory. To
mitigate this issue, we pruned the solution database, which has shown an 18x
speedup over the exhaustive search in the H.264 use case’s database, for a
decrease of at most 19% in quantified quality of experience.

To enhance the flexibility of the quality-oriented management approach,
we introduced a runtime scheduling-based methodology in chapter 4. After
identifying the Predict Earliest Finish Time (PEFT) as a scheduling heuristic
offering the best trade-off between time complexity and application makespan
reduction, we adapted it for self-reconfigurable systems with state-of-the-art

5.2. Future works 125

bitstream pre-fetch and reuse techniques. The introduced PF-PEFT heuris-
tic outperforms a recent similar scheduling algorithm for self-reconfigurable
systems by producing shorter schedules by 11% on average on a set of 10
applications from the literature.

The PF-PEFT heuristic has then been employed as part of a second
quality-oriented management methodology. The latter makes use of runtime
scheduling to find time-multiplexed implementation solutions for the targeted
applications on self-reconfigurable systems resources. Obtained results show
this helped reach a higher continuity of service rate than the first hybrid
design-time /runtime approach. The continuity of service rate goes up to 99%
on the additional service scenario and 100% on the resource restriction sce-
nario, at the cost of implementing the scheduler in the platform.

5.2 Future works

In this work, the resource allocation methodologies focused solely on time-
multiplexed resources for island-style architectures as we could not func-
tionally verify functional behavior of our H.264 implementation on slot or
grid-style architectures. As the end goal of our methodology is to execute
more tasks using smaller FPGA matrices, time-multiplexing was performed
on coarse-grained island-style dynamically reconfigurable architectures. How-
ever, works in the literature have shown an interest in dynamic resource allo-
cation using relocatable tasks as it could reduce the fragmentation of resource
usage. In particular, time-multiplexed grid-style architectures could make the
most out of the available dynamically reconfigurable resources.

Space and time-multiplexing of FPGAs is a much harder challenge as other
parameters need to be taken into consideration. As a consequence, the time
complexity of the runtime management of the resources must be carefully
studied so that it stays reactive. In addition, the partial bitstream man-
agement would be an issue that needs to be addressed as such architecture
would require to either store additional bitstreams or compute runtime bit-
stream relocation, imposing respectively a memory and a latency overhead.
However, space and time-multiplexing management could be used to further
increase the system’s efficiency in execution times, energy consumption, or
chip temperature management.

Concerning the quality model, while execution modes introduce a method
for application designers to easily define ways to upgrade and downgrade their
targeted application at runtime, the quality of experience and service models

126 Chapter 5. Conclusion and discussion

impact the decisions of the runtime management methodologies. An inter-
esting future work would be to introduce multiple quality of service models
for a given application and see how they impact the decisions. An interesting
quality of service models for the industry would be energy [84] or temperature-
oriented [113]. Then, based on a user’s decision or a mission plan [57], the
self-reconfigurable system could switch its quality of service goal at runtime.
As a motivational example, a drone performing a target acquisition mission
could use an energy-saving oriented quality of service model when reaching
observation points. It could switch to a performance-oriented quality of ser-
vice model during the mission, then return to the energy-saving model on its
way back.

In the case of coarse-grain island-style architectures, we introduced dif-
ferent RRs compositions in our experiments with the PF-PEFT heuristic.
These results show some preliminary works toward a definition of architec-
ture guidelines when designing with DPR. It can be hypothesized that for
a given application, there exists an optimal DPR-capable FPGA that best
supports its execution. Considering slot or grid-style architecture, the FPGA
footprint allowed for a hardware accelerator can differ. The topology of the
architecture can then evolve to meet the requirements of targeted applications
(eg: accelerator taking up to three slot-type RRs to reduce its execution time).
Therefore, similarly to the quality of service metric, a quality of architecture
could be introduced to monitor the efficiency of the current architecture to
support the service execution.

In this work, we also made the hypothesis that application designers were
capable of drawing the functional task graph of their applications. However,
that is not always easy. Graph partitioning for complex workloads can result
in very large task graph, notably with loop unrolling graphs into DAGs. In
addition, graph partitioning for self-reconfigurable systems is similar to hard-
ware/software co-design. This comes with added problem, such as defining
task graphs that possess as little communication channels as possible to reduce
congestion in the communication infrastructure. We believe graph analysis
methods could help find the best resource compositions (in terms of logic el-
ements) and application task graph decomposition. Addressing this trade-off
could help reduce resource fragmentation, and decrease the reconfiguration
latencies.

The proposed DPR-capable architecture could be enhanced with a NoC
which possesses the advantage of better scaling with the number of RRs to
interconnect compared to an AXIS crossbar, in terms of used logic elements.
In addition, local cache memories could be used within the FPGA to store

5.2. Future works 127

frequently used variables. In the hypothesis that a lot of RRs are defined,
this could reduce congestion on the DDR memory. Also, proper placement of
these cache memories within the FPGA could help distribute the packets in
the NoC.

Finally, multiple works from the literature consider energy savings as a
motivation for using smaller dynamically reconfigurable FPGA versus bigger
fully static ones |116, 75, 117]. If it can be verified that smaller FPGAs have
lower average power consumption than bigger ones using vendor tools, we
argue that for an equal workload to compute, we believe the smaller dynam-
ically reconfigurable would take longer. Resources need to be shared on the
latter and the DPR operations take a non-negligible time, whereas a fully
static can fully pipeline and parallelize the workload. In addition, the fully
static FPGA does not have a power overhead caused by the management of
the self-reconfigurable system. Therefore, as the energy spent by the system
is the quantity of power used over time to process the workload, it can be as-
sumed that self-reconfigurable systems consume more energy than fully static
FPGAs. As for future works, the study of the energy overhead could help
characterize the best candidates for using self-reconfigurable systems in the
embedded electronics industry.

Appendices

[1]

2]

3]

4]

[5]

6]

|7l

18]

Bibliography

Karl Rupp. 50 Years of Microprocessor Trend Data.
github.com /karlrupp /microprocessor-trend-data, 2022.

Qianru Zhang, Meng Zhang, Tinghuan Chen, Zhifei Sun, Yuzhe Ma, and
Bei Yu. Recent advances in convolutional neural network acceleration.
In Neurocomputing, 2018.

Sherif Hosny, Eslam Elnader, Mostafa Gamal, Abdelrhman Hussien,
Ahmed H. Khalil, and Hassan Mostafa. A Software Defined Radio

Transceiver Based on Dynamic Partial Reconfiguration. In 2018 New
Generation of CAS (NGCAS), pages 158-161, November 2018.

S. S. Sahoo, T. D. A. Nguyen, B. Veeravalli, and A. Kumar. Multi-
objective design space exploration for system partitioning of FPGA-
based Dynamic Partially Reconfigurable Systems. Integration, 67:95—
107, 2019.

Ashutosh Dhar, Edward Richter, Mang Yu, Wei Zuo, Xiaohao Wang,
Nam Sung Kim, and Deming Chen. DML: Dynamic Partial Reconfigu-
ration with Scalable Task Scheduling for Multi-Applications on FPGAs.
IEEE Transactions on Computers, pages 1-1, 2021. Conference Name:
IEEE Transactions on Computers.

Anuj Vaishnav, Khoa Dang Pham, Joseph Powell, and Dirk Koch. FOS:
A Modular FPGA Operating System for Dynamic Workloads. ACM

Transactions on Reconfigurable Technology and Systems, 13(4):20:1-
20:28, September 2020.

Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, Alex Shuping, and
Christophe Bobda. Deploying multi-tenant FPGAs within Linux-based
cloud infrastructure. ACM Trans. Reconfigurable Technol. Syst., 15(2),
December 2021.

Chao Wang, Xi Li, and Xuehai Zhou. SODA: Software defined FPGA
based accelerators for big data. In 2015 Design, Automation Test in Eu-
rope Conference Exhibition (DATE), pages 884-887, March 2015. ISSN:
1558-1101.

132

Bibliography

|9] Kizheppatt Vipin and Suhaib A. Fahmy. FPGA dynamic and partial

reconfiguration: A survey of architectures, methods, and applications.
ACM Comput. Surv., 51(4), jul 2018.

[10] Xilinx. Partial reconfiguration user guide. UG909 (2018).

[11] Xilinx. Vitis Accelerated Libraries Documentation, 2019. (v2022.1).

[12| Xilinx. PYNQ - Python productivity for Zynq, 2021.

[13] Xilinx. ZYNQ Ultrascale+ First Stage Boot Loader Documentation.

[14]

[15]

[16]

[17]

18]

[19]

[20]

2021.

Xilinx. Zyng-7000 SoC Technical Reference Manual, 2021. UGbH85
(v1.13).

Xilinx. Baremetal Drivers and Libraries Documentation, 2020.

Xilinx. AXI HWICAP LogiCORE IP Product Guide, 2016. PG134
(v3.0).

Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch. Run-
time partial reconfiguration speed investigation and architectural de-
sign space exploration. In 2009 International Conference on Field Pro-
grammable Logic and Applications, pages 498502, 2009.

Bushra Sultana, Anees Ullah, Arsalan Ali Malik, Ali Zahir, Pedro Re-
viriego, Fahad Bin Muslim, Nasim Ullah, and Waleed Ahmad. VR-
ZYCAP: A Versatile Resourse-Level ICAP Controller for ZYNQ SOC.
Flectronics, 10(8):899, January 2021. Number: 8 Publisher: Multidisci-
plinary Digital Publishing Institute.

Francois Duhem, Fabrice Muller, and Philippe Lorenzini. FaRM: Fast
reconfiguration manager for reducing reconfiguration time overhead on
FPGA. In Andreas Koch, Ram Krishnamurthy, John McAllister, Roger
Woods, and Tarek El-Ghazawi, editors, Reconfigurable Computing: Ar-
chitectures, Tools and Applications, pages 253-260, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

Robin Bonamy, Hung-Manh Pham, Sébastien Pillement, and Daniel
Chillet. UPaRC—Ultra-fast power-aware reconfiguration controller.
In 2012 Design, Automation Test in Europe Conference FExhibition
(DATE), pages 1373-1378, March 2012. TSSN: 1558-1101.

Bibliography 133

[21]

[22]

23]

[24]

[25]

26]

[27]

28]

29]

Hung-Manh Pham, Van-Cuong Nguyen, and Trong-Tuan Nguyen.
DDR2/DDR3-based ultra-rapid reconfiguration controller. In 2012
Fourth International Conference on Communications and FElectronics
(ICCE), pages 453-458, 2012.

Simen Gimle Hansen, Dirk Koch, and Jim Torresen. High speed partial
run-time reconfiguration using enhanced ICAP hard macro. In 2011
IEEFE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pages 174-180, 2011.

Francesca Palumbo, Carlo Sau, and Luigi Raffo. Coarse-grained recon-

figuration: dataflow-based power management. IET Computers Digital
Techniques, 9(1):36-48, 2015.

Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr,
Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Sri-
vatsan, Duncan Moss, Suchit Subhaschandra, and Guy Boudoukh. Can
FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Net-
works? In Proceedings of the 2017 ACM/SIGDA International Sympo-
stum on Field-Programmable Gate Arrays, FPGA 17, pages 514, New
York, NY, USA, February 2017. Association for Computing Machinery.

Rafael Zamacola, Andrés Otero, and Eduardo de la Torre. Multi-grain
reconfigurable and scalable overlays for hardware accelerator composi-
tion. Journal of Systems Architecture, 121:102302, 2021.

Mohamad Najem, Théotime Bollengier, Jean-Christophe Le Lann, and
Loic Lagadec. Extended overlay architectures for heterogeneous FPGA

cluster management. Journal of Systems Architecture, 78:1-14, August
2017.

El Mehdi Abdali, Maxime Pelcat, Francois Berry, Jean-Philippe Diguet,
and Francesca Palumbo. Exploring the Performance of Partially Recon-
figurable Point-to-point Interconnects. In 12th International Symposium

on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC
2017), Madrid, Spain, July 2017.

Intel. Partial reconfiguration user guide. UG-20136 (2019).

Anuj Vaishnav, Khoa Pham, Dirk Koch, and James Garside. Resource
elastic virtualization for FPGAs using OpenCL. 09 2018.

134

Bibliography

[30]

31]

32]

33]

[34]

[35]

[36]

137]

38

Khoa Dang Pham, Edson Horta, and Dirk Koch. BITMAN: A tool and
API for FPGA bitstream manipulations. In Design, Automation Test
in Furope Conference Ezhibition (DATE), 2017, pages 894-897, March
2017. ISSN: 1558-1101.

Godwin Enemali, Adewale Adetomi, Gopalakrishnan Seetharaman, and
Tughrul Arslan. A functionality-based runtime relocation system for
circuits on heterogeneous FPGAs. IEEE Transactions on Circuits and
Systems 1I: Frpress Briefs, 65(5):612-616, 2018.

Xilinx. UG949: UltraFast Design Methodology Guide for Xilinx FP-
GAs and SoCs. (2021).

Ghada Dessouky, Ahmad-Reza Sadeghi, and Shaza Zeitouni. Sok: Se-
cure fpga multi-tenancy in the cloud: Challenges and opportunities. In
2021 IEEE European Symposium on Security and Privacy, pages 487
506, 2021.

Miho Yamakura, Ryousei Takano, Akram Ben Ahmed, Midori Sugaya,
and Hideharu Amano. A multi-tenant resource management system for
multi-FPGA systems. IEICE Transactions on Information and Systems,
104(12):2078-2088, 2021.

A. Otero, E. De La Torre, T. Riesgo, T. Cervero, S. Lopez, G. Callico,
and R. Sarmiento. Run-time scalable architecture for deblocking filtering
in H.264/AVC-SVC video codecs. In 2011 21st International Conference
on Field Programmable Logic and Applications, pages 369-375, 2011.

Cheng Liu, Ho-Cheung Ng, and Hayden Kwok-Hay So. QuickDough:
A rapid FPGA loop accelerator design framework using soft CGRA

overlay. In 2015 International Conference on Field Programmable Tech-
nology (FPT), pages 56—63, December 2015.

Rafael Zamacola, Andrés Otero, Alberto Garcia, and Eduardo De
La Torre. An integrated approach and tool support for the de-
sign of FPGA-based multi-grain reconfigurable systems. IEEE Access,
8:202133-202152, 2020.

Rafael Zamacola, Andrés Otero, Alfonso Rodriguez, and Eduardo de la
Torre. Just-In-Time Composition of Reconfigurable Overlays. In
Francesca Palumbo, Joao Bispo, and Stefano Cherubin, editors, 15th

Bibliography 135

[39]

[40]

[41]

42]

[43]

[44]

Workshop on Parallel Programming and Run-Time Management Tech-
niques for Many-Core Architectures and 11th Workshop on Design
Tools and Architectures for Multicore Embedded Computing Platforms
(PARMA-DITAM 2022), volume 100 of Open Access Series in Infor-
matics (OASIcs), pages 2:1-2:13, Dagstuhl, Germany, 2022. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik.

Andreas Weichslgartner, Stefan Wildermann, Johannes Gé&tzfried, Fe-
lix Freiling, Michael Glak, and Jiirgen Teich. Design-Time/Run-Time
Mapping of Security-Critical Applications in Heterogeneous MPSoCs. In
Proceedings of the 19th International Workshop on Software and Com-
pilers for Embedded Systems, SCOPES ’16, pages 153-162, New York,
NY, USA, May 2016. Association for Computing Machinery.

Zakarya Guettatfi, Paul Kaufmann, and Marco Platzner. Optimal and
Greedy Heuristic Approaches for Scheduling and Mapping of Hardware
Tasks to Reconfigurable Computing Devices. In International Sympo-
stum on Applied Reconfigurable Computing, pages 108-117. Springer,
2020.

Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do OS abstrac-
tions make sense on FPGAs? In 14/th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 991-1010.
USENIX Association, November 2020.

Robert Brodersen, Artem Tkachenko, and Hayden Kwok-Hay So. A
unified hardware /software runtime environment for FPGA-based recon-
figurable computers using BORPH. In Proceedings of the 4th Interna-
tional Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS °06), pages 259-264, October 2006. ISSN: null.

Rafael Zamacola, Alberto Garcia Martinez, Javier Mora, Andrés Otero,
and Eduardo de La Torre. IMPRESS: Automated tool for the imple-
mentation of highly flexible partial reconfigurable systems with xilinx
vivado. In 2018 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig), pages 1-8, 2018.

Diana Gohringer, Michael Hiibner, Etienne Nguepi Zeutebouo, and Jiir-
gen Becker. CAP-OS: Operating system for runtime scheduling, task
mapping and resource management on reconfigurable multiprocessor

136

Bibliography

[45]

|46]

[47]

48]

[49]

[50]

[51]

architectures. In 2010 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), pages 1-8,
April 2010. TSSN: null.

Stefano Sordillo, Abdallah Cheikh, Antonio Mastrandrea, Francesco
Menichelli, and Mauro Olivieri. Customizable vector acceleration in
extreme-edge computing: A RISC-V software/hardware architecture
study on vgg-16 implementation. Electronics, 10(4), 2021.

L. Levinson, R. Manner, M. Sessler, and H. Simmler. Preemptive mul-
titasking on FPGAs. In Proceedings 2000 IEEE Symposium on Field-
Programmable Custom Computing Machines (Cat. No.PR00871), pages
301-302, April 2000. ISSN: null.

H. Kalte and M. Porrmann. Context saving and restoring for multi-
tasking in reconfigurable systems. In International Conference on Field
Programmable Logic and Applications, 2005., pages 223-228, August
2005. ISSN: 1946-1488.

Krzysztof Jozwik, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki
Takada. A Novel Mechanism for Effective Hardware Task Preemption in
Dynamically Reconfigurable Systems. In 2010 International Conference
on Field Programmable Logic and Applications, pages 352-355, August
2010. ISSN: 1946-1488.

Markus Happe, Andreas Traber, and Ariane Keller. Preemptive Hard-
ware Multitasking in ReconOS. In Kentaro Sano, Dimitrios Soudris,
Michael Hiibner, and Pedro C. Diniz, editors, Applied Reconfigurable
Computing, Lecture Notes in Computer Science, pages 79-90, Cham,
2015. Springer International Publishing.

Marcel Eckert, Dominik Meyer, and Bernd Klauer. Context Save
and Restore of Partial Reconfiguration Regions for Xilinx FPGAs. In
2019 14th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), pages 5-12, July 2019. ISSN: 2642-
7222,

Dirk Koch, Christian Haubelt, and Jiirgen Teich. Efficient hardware
checkpointing: concepts, overhead analysis, and implementation. In
Proceedings of the 2007 ACM/SIGDA 15th International Symposium
on Field Programmable Gate Arrays, pages 188-196, 2007.

Bibliography 137

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Krzysztof Jozwik, Hiroyuki Tomiyama, Masato Edahiro, Shinya Honda,
and Hiroaki Takada. Comparison of Preemption Schemes for Partially
Reconfigurable FPGAs. IEEE Embedded Systems Letters, 4(2):45-48,
June 2012. Conference Name: IEEE Embedded Systems Letters.

Alban Bourge, Olivier Muller, and Frédéric Rousseau. Generating Ef-
ficient Context-Switch Capable Circuits Through Autonomous Design
Flow. ACM Trans. Reconfigurable Technol. Syst., 10(1):9:1-9:23, De-
cember 2016.

Ye Tian, Jean-Christophe Prevotet, and Fabienne Nouvel. Efficient OS
Hardware Accelerators Preemption Management in FPGA. In 2019
International Conference on Field-Programmable Technology (ICFPT),
pages 367-370, December 2019.

Slavisa Jovanovic, Camel Tanougast, and Serge Weber. A hardware pre-
emptive multitasking mechanism based on scan-path register structure
for FPGA-based reconfigurable systems. In Second NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS 2007), pages 358-364.
IEEE, 2007.

Kyle Rupnow, Wenyin Fu, and Katherine Compton. Block, Drop or
Roll(back): Alternative Preemption Methods for RH Multi-Tasking. In
2009 17th IEEE Symposium on Field Programmable Custom Computing
Machines, pages 6370, April 2009.

Chabha Hireche, Catherine Dezan, Stéphane Mocanu, Dominique
Heller, and Jean-Philippe Diguet. Context/Resource-Aware Mission
Planning Based on BNs and Concurrent MDPs for Autonomous UAVs.
Sensors, 18(12):4266, December 2018. Number: 12 Publisher: Multidis-
ciplinary Digital Publishing Institute.

J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and
R. Lauwereins. Infrastructure for design and management of relocatable
tasks in a heterogeneous reconfigurable system-on-chip. In Automation

and Test in Europe Conference and Exhibition 2003 Design, pages 986—
991, March 2003. ISSN: 1530-1591.

D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley,
and R. Sass. hthreads: a hardware/software co-designed multithreaded
RTOS kernel. In 2005 IEEE Conference on Emerging Technologies and

138

Bibliography

[60]

[61]

[62]

(63]

[64]

[65]

[66]

67]

68

Factory Automation, volume 2, pages 8 pp.—338, September 2005. ISSN:
1946-0759.

FOSFOR - ANR Project - "Architectures du futur" Polytech Nice
Sophia website.

Fabrice Muller, Jimmy Le Rhun, Fabrice Lemonnier, Benoit Miramond,
and Ludovic Devaux. A Flexible Operating System for Dynamic Appli-
cations. XCell, (73):30-34, November 2010.

Devaux Ludovic, Sana Sassi, Sébastien Pillement, Daniel Chillet, and
D. Demigny. Flexible interconnection network for dynamically and par-
tially reconfigurable architectures. International Journal of Reconfig-
urable Computing, 2010, 01 2010.

FUSE: Front-end user framework for OS abstraction of hardware accel-
erators.

Enno Liibbers and Marco Platzner. Reconos: An operating system for
dynamically reconfigurable hardware. In Dynamically Reconfigurable
Systems, pages 269-290. Springer, 2010.

Andreas Agne, Marco Platzner, Christian Plessl, Markus Happe, and
Enno Liibbers. ReconOS. In Dirk Koch, Frank Hannig, and Daniel
Ziener, editors, FPGAs for Software Programmers, pages 227-244.
Springer International Publishing, Cham, 2016.

Syam Sanal and J. Pinalkumar. Multithreaded Image Processing Using
ReconOS on Reconfigurable Computing System. In 2018 International
Conference on Emerging Trends and Innovations In Engineering And
Technological Research (ICETIETR), pages 1-5, July 2018. ISSN: null.

Ying Wang, Xuegong Zhou, Lingli Wang, Jian Yan, Wayne Luk,
Chenglian Peng, and Jiarong Tong. Spread: A streaming-based par-
tially reconfigurable architecture and programming model. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 21(12):2179-
2192, 2013.

Andreas Ehliar and Dake Liu. An FPGA based open source network-
on-chip architecture. In 2007 International Conference on Field Pro-
grammable Logic and Applications, pages 800-803, 2007.

Bibliography 139

[69]

[70]

71

72]

73]

[74]

[75]

[76]

[77]

Hai-Dang Vu, S. Le Nours, S. Pillement, Ralf Stemmer, and Kim Griit-
tner. A Fast Yet Accurate Message-level Communication Bus Model for
Timing Prediction of SDFGs on MPSoC. In 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 17-22, Jan-
uary 2021. ISSN: 2153-697X.

Ralf Stemmer, Hai-Dang Vu, Sébastien Le Nours, Kim Griittner,
Sébastien Pillement, and Wolfgang Nebel. A measurement-based
message-level timing prediction approach for data-dependent SDFGs on
tile-based heterogeneous mpsocs. Applied Sciences, 11(14), 2021.

Cornelia Wulf, Michael Willig, and Diana Goehringer. RTOS-supported
low power scheduling of periodic hardware tasks in flash-based FPGAs.
Microprocessors and Microsystems, 92:104566, 2022.

A. Pérez, A. Rodriguez, A. Otero, D. G. Arjona, A Jiménez-Peralo, M. A
Verdugo, and E. De La Torre. Run-Time Reconfigurable MPSoC-Based
On-Board Processor for Vision-Based Space Navigation. IEEE Access,
8:59891-59905, 2020. Conference Name: IEEE Access.

Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro
Marinoni, and Giorgio Buttazzo. A Framework for Supporting Real-
Time Applications on Dynamic Reconfigurable FPGAs. In 2016 IEEE
Real-Time Systems Symposium (RTSS), pages 1-12, November 2016.

Alessandro Biondi and Giorgio Buttazzo. Timing-aware FPGA parti-
tioning for real-time applications under dynamic partial reconfiguration.
In 2017 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), pages 172-179, July 2017. ISSN: 2471-769X.

Ta-Wei Liu, Yen-Fang Liu, and Ya-Shu Chen. Energy-aware run-time
task partition and allocation in dynamic partial reconfigurable systems.
Journal of Systems Architecture, 78:55-67, August 2017.

Sanjit Kumar Roy, Rajesh Devaraj, Arnab Sarkar, and Debabrata Sena-
pati. SLAQA: Quality-level Aware Scheduling of Task Graphs on Het-
erogeneous Distributed Systems. ACM Transactions on Embedded Com-
puting Systems, 20(5):1-31, 2021.

Tetsuro Nakamura, Shogo Saito, Kei Fujimoto, Masashi Kaneko, and
Akinori Shiraga. Spatial- and time- division multiplexing in CNN ac-
celerator. Parallel Computing, 111:102922, 2022.

140

Bibliography

78]

[79]

[80]

[81]

[82]

83]

[84]

[85]

Siva Satyendra Sahoo, Tuan D. A. Nguyen, Bharadwaj Veeravalli, and
Akash Kumar. QoS-Aware Cross-Layer Reliability-Integrated FPGA-
Based Dynamic Partially Reconfigurable System Partitioning. In 2018
International Conference on Field-Programmable Technology (FPT),
pages 230233, Naha, Okinawa, Japan, December 2018. IEEE.

Obinna Izima, Ruairi de Fréin, and Ali Malik. A Survey of Machine
Learning Techniques for Video Quality Prediction from Quality of De-
livery Metrics. Electronics, 10(22):2851, January 2021. Number: 22
Publisher: Multidisciplinary Digital Publishing Institute.

Qingxiao Sun, Liu Yi, Hailong Yang, Mingzhen Li, Zhongzhi Luan, and
Depei Qian. QoS-aware dynamic resource allocation with improved uti-
lization and energy efficiency on GPU. Parallel Computing, 113:102958,
2022.

Samuel Isuwa, Somdip Dey, Andre P. Ortega, Amit Kumar Singh,
Bashir M. Al-Hashimi, and Geoff V. Merrett. QUAREM: Maximising
QoE through adaptive resource management in mobile MPSoC plat-
forms. ACM Trans. Embed. Comput. Syst., 21(4), sep 2022.

Boonyarith Saovapakhiran, Wibhada Naruephiphat, Chalermpol
Charnsripinyo, Sebnem Baydere, and Suat Ozdemir. QoE-driven IoT
architecture: A comprehensive review on system and resource manage-
ment. IEEE Access, 10:84579-84621, 2022.

Soguy Mak-Karé Gueye, Eric Rutten, and Jean-Philippe Diguet. Au-
tonomic Management of Missions and Reconfigurations in FPGA-based
Embedded System. In The 2017 NASA/ESA Conference on Adaptive
Hardware and Systems, page 8, Pasadena, California, United States,
July 2017.

Xiaokun Yang and Shi Sha. Exploiting Energy—Quality (E-Q) Trade-
offs: A Case Study on Color-to-Grayscale Converters with Approximate
Design on FPGA. Journal of Circuits, Systems and Computers, page
2150062, June 2020. Publisher: World Scientific Publishing Co.

Adil Iguider, K. Bousselam, Oussama Elissati, M. Chami, and Abdeslam
En-Nouaary. Heuristic algorithms for multi-criteria hardware/software
partitioning in embedded systems codesign. Comput. Flectr. Eng., 2020.

Bibliography 141

[86]

87]

88

[89]

[90]

[91]

92]

193]

[94]

195]

Yi Tang and Neil W. Bergmann. A hardware scheduler based on task
queues for FPGA-based embedded real-time systems. I[IEEE Trans.
Comput., 64(5):1254-1267, may 2015.

Alexander Fusco, Sahil Hassan, Joshua Mack, and Ali Akoglu.
Hardware-based scheduler implementation for dynamic workloads on
heterogeneous socs, 2022.

Hamid Arabnejad and Jorge Barbosa. List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table. IEEE Transac-
tions on Parallel and Distributed Systems, 25:682—694, March 2014.

Ashish Kumar Maurya and Anil Kumar Tripathi. On benchmarking
task scheduling algorithms for heterogeneous computing systems. The
Journal of Supercomputing, 74(7):3039-3070, July 2018.

Reza Ramezani. A prefetch-aware scheduling for FPGA-based multi-
task graph systems. The Journal of Supercomputing, January 2020.

Alexander Dorflinger, Mark Albers, Johannes Schlatow, Bjorn Fiethe,
Harald Michalik, Phillip Keldenich, and S’andor P. Fekete. Hardware
and Software Task Scheduling for ARM-FPGA Platforms. In 2018
NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pages 66—73, August 2018. ISSN: 2471-769X.

E. A. Deiana, M. Rabozzi, R. Cattaneo, and M. D. Santambrogio. A
multiobjective reconfiguration-aware scheduler for FPGA-based hetero-

geneous architectures. In 2015 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), pages 1-6, December 2015.

Zhe Wang, Qi Tang, Biao Guo, Ji-Bo Wei, and Ling Wang. Resource
Partitioning and Application Scheduling with Module Merging on Dy-
namically and Partially Reconfigurable FPGAs. Flectronics, 9(9):1461,
September 2020. Number: 9 Publisher: Multidisciplinary Digital Pub-
lishing Institute.

Y. Ma, J. Liu, C. Zhang, and W. Luk. HW /SW partitioning for region-
based dynamic partial reconfigurable FPGAs. In 2014 IEEE 32nd In-
ternational Conference on Computer Design (ICCD), pages 470-476,
October 2014. ISSN: 1063-6404.

Qi Tang, Biao Guo, and Zhe Wang. Sw/Hw Partitioning and Schedul-
ing on Region-Based Dynamic Partial Reconfigurable System-on-Chip.

142

Bibliography

[96]

197]

198

[99]

[100]

[101]

[102]

103

FElectronics, 9(9):1362, September 2020. Number: 9 Publisher: Multi-
disciplinary Digital Publishing Institute.

Zakarya Guettatfi, Omar Kermia, and Abdelhakim Khouas. Over effec-
tive hard real-time hardware tasks scheduling and allocation. In 2015
25th International Conference on Field Programmable Logic and Appli-
cations (FPL), pages 1-2, September 2015. ISSN: 1946-1488.

Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo R. M. Madeira.
DAG Scheduling Using a Lookahead Variant of the Heterogeneous Earli-
est Finish Time Algorithm. In 2010 18th Euromicro Conference on Par-
allel, Distributed and Network-based Processing, pages 27-34, February
2010. TSSN: 2377-5750.

George Charitopoulos, Tosif Koidis, Kyprianos Papadimitriou, and Dion-
isios Pnevmatikatos. Run-time management of systems with partially
reconfigurable FPGAs. Integration, 57:34-44, 2017. Publisher: Elsevier.

H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Transactions on Parallel and Distributed Systems, 13(3):260-274, March
2002.

Matteo Bertolino, Renaud Pacalet, Ludovic Apvrille, and Andrea Enrici.
Multi-resource scheduling for FPGA systems. Microprocessors and Mi-
crosystems, 87:104373, 2021.

Reza Ramezani. Dynamic scheduling of task graphs in multi-FPGA
systems using critical path. The Journal of Supercomputing, 77(1):597—
618, January 2021.

Abhishek Kumar Jain, Douglas L. Maskell, and Suhaib A. Fahmy.
Are Coarse-Grained Overlays Ready for General Purpose Applica-
tion Acceleration on FPGAs? In 2016 IEEE 14th Intl Conf
on Dependable, Autonomic and Secure Computing, 14th Intl Conf
on Pervasive Intelligence and Computing, 2nd Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pages 586-593, Au-
gust 2016.

Jan Spieck, Stefan Wildermann, and Jiirgen Teich. Scenario-Based Soft
Real-Time Hybrid Application Mapping for MPSoCs. In 2020 57th

Bibliography 143

[104]

[105]

[106]

[107]

[108]

[109]

[110]

ACM/IEEE Design Automation Conference (DAC), pages 1-6, July
2020. ISSN: 0738-100X.

B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheo-
rghita, and S. Stuijk. A scenario-aware data flow model for combined
long-run average and worst-case performance analysis. In Fourth ACM
and IEEFE International Conference on Formal Methods and Models for
Co-Design, 2006. MEMOCODE ’06. Proceedings., pages 185-194, July
2006. ISSN: null.

D. Marpe, T. Wiegand, and G.J. Sullivan. The H.264/MPEG4 advanced
video coding standard and its applications. IEEE Communications Mag-
azine, 44(8):134-143, 2006.

Kurt Debattista, Keith Bugeja, Sandro Spina, Thomas Bashford-
Rogers, and Vedad Hulusic. Frame Rate vs Resolution: A Subjective
Evaluation of Spatiotemporal Perceived Quality Under Varying Com-
putational Budgets. Computer Graphics Forum, September 2017.

P. Lambert, W. De Neve, Y. Dhondt, and R. Van de Walle. Flexible
macroblock ordering in h.264/ave. Journal of Visual Communication
and Image Representation, 17(2):358-375, 2006. Introduction: Special
Issue on emerging H.264/AVC video coding standard.

Pamela C Cosman, Robert M Gray, and Richard A Olshen. Evaluat-
ing quality of compressed medical images: Snr, subjective rating, and
diagnostic accuracy. Proceedings of the IEEFE, 82(6):919-932, 1994.

Quentin Dariol, Sebastien Le Nours, Sebastien Pillement, Ralf Stem-
mer, Domenik Helms, and Kim Griittner. A hybrid performance predic-
tion approach for fully-connected artificial neural networks on multi-core
platforms. In Alex Orailoglu, Marc Reichenbach, and Matthias Jung, ed-
itors, Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation, pages 250-263, Cham, 2022. Springer International Publishing.

Phillip H. Jones, Young H. Cho, and John W. Lockwood. Dynamically
Optimizing FPGA Applications by Monitoring Temperature and Work-
loads. In 20th International Conference on VLSI Design held jointly
with 6th International Conference on Embedded Systems (VLSID’07),
pages 391-400, January 2007. ISSN: 2380-6923.

144

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Behnam Khaleghi and Tajana Simuni¢ Rosing. Thermal-Aware Design
and Flow for FPGA Performance Improvement. In 2019 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 342-347,
March 2019. ISSN: 1558-1101.

Ashish Kumar Maurya and Anil Kumar Tripathi. Performance Com-
parison of HEFT, Lookahead, CEFT and PEFT Scheduling Algorithms
for Heterogeneous Computing Systems. In Proceedings of the 7th In-
ternational Conference on Computer and Communication Technology -

I1CCCT-2017, pages 128—-132, Allahabad, India, 2017. ACM Press.

Athena Abdi and Hamid R. Zarandi. HYSTERY: a hybrid scheduling
and mapping approach to optimize temperature, energy consumption
and lifetime reliability of heterogeneous multiprocessor systems. The
Journal of Supercomputing, 74(5):2213-2238, May 2018.

Dowhan Jeong, Jangryul Kim, Mari-Liis Oldja, and Soonhoi Ha. Parallel
scheduling of multiple sdf graphs onto heterogeneous processors. IEEE
Access, 9:20493-20507, 2021.

Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gau-
rang Mehta, and Karan Vahi. Characterizing and profiling scientific
workflows. Future Generation Computer Systems, 29(3):682-692, 2013.
Special Section: Recent Developments in High Performance Computing
and Security.

Yohei Hori, Toshihiro Katashita, and Kazukuni Kobara. Energy and
area saving effect of dynamic partial reconfiguration on a 28-nm process
fpga. In 2013 IEEFE 2nd Global Conference on Consumer Electronics
(GCCE), pages 217-218. IEEE, 2013.

Tian Gao, Zishen Wan, Yuyang Zhang, Bo Yu, Yanjun Zhang, Shaoshan
Liu, and Arijit Raychowdhury. iELAS: An ELAS-Based Energy-
Efficient Accelerator for Real-Time Stereo Matching on FPGA Platform.
arXiw:2104.05112 [es], April 2021. arXiv: 2104.05112.

APPENDIX A

Scientific communications

Published

e Duhamel, A., Pillement, S. “QoS Aware Design-Time/Run-Time Man-
ager for FPGA-Based Embedded Systems” (2022). In: Desnos, K., Per-
tuz, S. (eds) Design and Architecture for Signal and Image Process-
ing (DASIP). Lecture Notes in Computer Science (LNCS), vol 13425.
Springer, Cham. DOI: 10.1007/978-3-031-12748-9_8

e Duhamel, A., Pillement, S., Kouki, W. “Gestion orienté qualité d’expé-
rience de systémes embarqués reconfigurables par réutilisations de mod-
ules” [Quality of experience oriented management of reconfigurable em-
bedded systems with module reuse| (2022). In: Groupe de Recherche et
d’Etudes de Traitement du Signal et des Images (GRETSI). Available
at: gretsi.fr/colloque2022/programme/

INl Nantes
W Université

Développement d'un contréleur dynamique d'allocation de ressources pour FPGAs
reconfigurables partiellement avec approche garantie de service

Mots clés : FPGA, reconfiguration dynamique partielle (RDP), gestion d’allocation de ressources,

garantie de service, accélération matérielle

Résumé : Les FPGAs dynamiquement recon-
figurables permettent le changement d’accé-
lérateurs matériels au temps de [I'exécution.
Cette technique permet notamment de réduire la
taille des FPGAs dans les systémes embarqués,
réduisant les colts de fabrication et Ila
consommation d’énergie. Dés lors, de nouvelles
problématiques de conception d’architectures et
de leur gestion se posent, afin d’exploiter au
mieux cette technique. La question de la
garantie d'exécution des services se pose
notamment en raison des besoins changeants
des applications embarquées et de Ila
complexité des algorithmes de gestion des res-
sources.

L'objectif de ce travail est de proposer une
méthodologie de gestion d’allocation des

ressources matérielles afin de garantir un
niveau minimum de service d’'une application.
Pour cela, un modeéle de qualité est présenté,
permettant de qualifier le niveau de service
d’'une application exécutée sur une architecture
dynamiquement reconfigurable. Ce modéle de
qualité est utilisé afin de proposer deux
meéthodes permettant de gérer dynamiquement
l'allocation des régions reconfigurables tout en
maximisant la qualité du service rendu par le
systeme. Enfin, un algorithme d’ordon-
nancement rapide et performant est introduit,
permettant d'exploiter les caractéristiques des
architectures dynamiquement reconfigurables.
Les résultats obtenus sur un ensemble de
benchmarks démontrent [I'efficacité de I'ap-
proche proposée.

Development of a dynamic resource allocation controller for partially reconfigurable

FPGAs with service guarantee approach

Keywords : FPGA, Dynamic partial reconfiguration (DPR), Resource allocation management,
Service guarantee, Reconfigurable computing, Hardware acceleration

Abstract Embedded systems based on
dynamically reconfigurable FPGAs allow hard-
ware accelerators to be swapped at runtime.
This technique enables to reduce the size of
FPGAs in embedded systems, reducing
manufacturing costs and energy consumption.
From then on, new challenges of architecture
design and management arise, in order to make
the most of this technique. Guarantee of service
execution should be observed as embedded
systems applications have changing compu-
tational needs, and the time complexity of
resource allocation algorithms introduce latency
overheads.

The objective of this thesis is to propose a
methodology for managing the allocation of

hardware resources to guarantee a minimum
level of service of an application. A quality
model is introduced, allowing to qualify the
service level of an application executed on a
dynamically reconfigurable architecture. This
quality model is wused to propose two
methodologies to dynamically manage the
allocation of reconfigurable regions while
maximizing the quality of service provided by
the system. Finally, a fast and efficient
scheduling algorithm is introduced to exploit
the characteristics of our dynamically
reconfigurable architecture.

Results on a set of benchmarks demonstrate
the effectiveness of the proposed approaches.

	Table of Contents
	List of Figures
	List of Tables
	Résumé long
	Introduction
	Contributions
	Dissertation organization

	Background and model definition
	Self-reconfigurable system design
	Reconfigurable region definition
	DPR management methodology
	Architecture design for reconfigurable systems
	Frameworks and libraries
	Proposed architecture

	Self-reconfigurable systems management
	Management methodologies
	Mapping and scheduling for self-reconfigurable systems
	Hybrid methodologies

	Conclusion

	Quality-oriented application management
	Overview
	Quality model
	Execution modes
	Quality of Experience
	Quality of Service

	Hybrid mapping and scheduling management
	Design-time computation
	Run-time computations

	Experiments
	Platform evaluation
	Simulation environment
	Resulting quality scores
	Resulting decision times

	Conclusion

	Runtime scheduling for self-reconfigurable systems
	Overview
	List-based PEFT scheduling heuristic
	Optimistic Cost Table
	Optimistic Earliest Finish Time

	Self-reconfigurable system considerations
	Reconfiguration tasks
	Bitstream pre-fetching for makespan reduction
	OCT reuse and partial computation

	Quality-oriented management with runtime scheduling
	Proposed methodology
	Using module reuse

	PF-PEFT performance experiments
	Experimental setup
	Real application benchmarks
	Synthetic workloads

	Quality-oriented methodology experiments
	Experimental setup
	Experimental results

	Conclusion

	Conclusion and discussion
	Contribution summary
	Future works
	Appendices
	Bibliography
	Scientific communications

