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Résumé

Ces dernières années, le domaine de l’Intelligence Artificielle (IA) s’est développé avec des succès
spectaculaires et très médiatisés. En fait, l’IA est utilisé dans de nombreux domaines, de la vision
par ordinateur au traitement du langage naturel. Parmi toutes les techniques d’intelligence artificielle;
l’apprentissage profond basé sur les réseaux de neurones a montré des capacités d’apprentissage exception-
nelles avec de très bonnes performances dans de nombreux domaines. La conception et le développement
de ces réseaux sont des tâches ardues qui nécessite des connaissances avancées en matière d’architectures
parallèles modernes afin d’exploiter au mieux la puissance de calcul de ces machines. Une tendance notable
des réseaux de neurones est augmentation exponentielle de leur taille afin d’obtenir des résultats de clas-
sification et de prédiction plus précis. Les gigantesques réseaux de neurones profonds (DNN, Deep Neural
Networks) ont atteint des performances sans précédent dans des tâches d’IA difficiles et montrent une
excellente capacité de généralisation à de nouveaux types de données non vue. Parmi ces DNN, on peut
citer GPT-3 [9], GShard [42], Wide & Deep [94] et bien d’autres. Comme les DNN gigantesques peuvent
avoir des trillions de paramètres (par exemple, Google Gopher à 600B paramètres [64]), l’entraînement
d’un réseau étendu prend souvent des semaines, voire des mois. De plus, les plus grands réseaux peu-
vent généralement dépasser les limites de mémoire des accélérateurs de calcul individuels. Pour ces deux
raisons, les milieux académiques et industriels commencent à utiliser des clusters d’ordinateurs pour
distribuer l’entraînement des réseaux de neurones.

Les méthodes de partitionnement couramment utilisées pour distribuer un réseau de neurones com-
prennent le parallélisme de données, le parallélisme de modèles au niveau des opérateurs, le parallélisme de
flux, etc. De nos jours, les performances optimales d’un réseau de neurones complexe sont généralement
obtenues en utilisant un mélange des méthodes de parallélisme ci-dessus, appelé parallélisme hybride.
L’élaboration d’un plan parallèle exige des chercheurs et des ingénieurs en IA qu’ils aient des connais-
sances en matière de calcul parallèle et nécessite également du temps et des efforts pour concevoir et
vérifier les performances. Ce fait a donné lieu à un sujet de recherche essentielle: la génération automa-
tique de plans parallèles. Le calcul d’un plan parallèle pour des DNNs gigantesques est un défi. Un DNN
gigantesque peut contenir des dizaines de milliers d’opérateurs (par exemple, MatMul et Relu). Chaque
opérateur peut avoir plusieurs tenseurs, et de nombreuses dimensions peuvent être choisies lors de leur
partitionnement. Les combinaisons des dimensions de partitionnement potentiels sont énormes [35], et un
planificateur de parallélisme doit évaluer toutes les combinaisons pour trouver un plan optimal. De plus,
lors de la recherche d’un plan optimal, le planificateur doit prédire les performances des plans candidats.
Le profilage des opérateurs DNN permet souvent d’atteindre cet objectif du point de vue de l’utilisation
du calcul, de la mémoire et de la communication. Cependant, le profilage des opérateurs DNN avec
tous les dispositifs matériels possibles à un coût prohibitif et de telles données de profilage sont souvent
indisponibles.

Les planificateurs de parallélisme existants supportent mal les DNN gigantesques. OptCNN [36],
FlexFlow [35], ToFu [87] et TensorOPT [12] explorent largement les configurations de parallélisme pos-
sibles mais ne sont pas en mesure de déterminer des plans optimisés pour les DNN. Les planificateurs
optimisés pour les pipelines, tels que PipeDream [56], Dapple [20], et Piper [80], réduisent l’espace de
recherche de la configuration en utilisant d’abord des règles manuelles pour trouver des plans réalisables
pour le parallélisme de données et de modèles, puis en optimisant la configuration pour le parallélisme de
flux. Cette conception empêche ces planificateurs d’optimiser conjointement le parallélisme de données,
de modèle et de flux, ce qui entraîne la découverte de plans sous optimaux. Elle induit en outre un
temps d’exécution considérable, ce qui rend l’utilisation des planificateurs fastidieuse et coûteuse dans la
pratique.

Hormis les inconvénients distincts des travaux ci-dessus, ils présentent tous un inconvénient commun:
les modèles de coups numériques proposés pour tous basés sur le temps d’exécution de l’opérateur de
profilage sous un matériel particulier. Ce type d’approche introduit un effort de préparation coûteuse
sans garantie d’optimalité. En outre, il faut des heures, voire des jours, pour trouver le plan optimal d’un
réseau de neurones étendu. La méthode de ces travaux part de l’expérience existant d’experts, définit
un espace de recherche du plan parallèle, propose un modèle de coup basé sur les données de profilage et
transforme le problème en modélisation mathématique. Ils résolvent ensuite ce problème de recherche en
concevant un solveur. Cependant, cette méthode présente les lacunes suivantes:

• Si on définit un espace de recherche étendu, la préparation du profilage sera très longue, et la
recherche ultérieure du solveur prendra un temps inacceptable. Si la taille de l’espace de recherche
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est limitée manuellement, il y a un risque de ne pas trouver le plan optimal réel.

• Comme ces méthodes réduisent le temps de recherche en restreignant l’espace de recherche, on ne
peut jamais trouver de meilleurs plans que ceux définis par les experts.

• Le profilage est coûteux, et les chercheurs et ingénieurs en IA sans connaissance en parallélisme ne
savent pas comment effectuer une analyse de profilage.

• La conception de l’espace de recherche est basée sur l’expérience des experts. Les méthodes doivent
être repensées et reconstruites pour s’adapter à de nouvelles structures de réseaux qui n’ont pas été
considérées auparavant.

En résumé, ces méthodes ne fournissent pas un bon équilibre entre généralité et précision dans ce
problème de recherche NP-hard.

Afin de contourner le processus de profilage coûteux des méthodes de pointe et de fournir un algo-
rithme permettant d’obtenir un plan parallèle hybride précis en peu de temps, cette thèse propose une
machine abstraite hiérarchique symétrique et un modèle de coût symbolique qui découple le matériel
de l’algorithme parallèle. Basée sur le modèle BSP, cette approche élimine le besoin de profilage sur
du matériel spécifique pour chaque opérateur. En se basant sur la sémantique des réseaux de neurones
informatiques, le modèle de coût symbolique peut être transformé et réduit. Cette thèse propose un
algorithme qui réduit la complexité des problèmes de recherche NP-hard à une complexité linéaire et
peut générer des algorithmes parallèles hybrides efficaces en quelques secondes. Les résultats visent à
être intégrés dans l’environnement open-source MindSpore de Huawei et à contribuer aux produits et
solutions d’IA de Huawei afin d’exploiter toute la puissance des puces Ascend de Huawei.

Cette thèse utilise des approches de parallélisme structuré pour optimiser l’apprentissage profond
distribué afin que les cadres DL puissent gérer automatiquement les performances. Par conséquent, les
concepteurs de DL pourraient se concentrer davantage sur le développement de DNN plus précis sans
encourir de coûts supplémentaires. Pour décrire les caractéristiques d’une machine d’apprentissage d’IA
moderne, HSM2DL a créé une machine abstraite hiérarchique et symétrique. HSM2DL a également
proposé un modèle d’exécution pour caractériser le processus d’entraînement parallèle hybride et un
modèle de coût symbolique comme métrique pour évaluer le coût produit par divers plans parallèles.

L’objectif principal de HSM2DL est la découverte de plans parallèles hybrides optimaux. Le parti-
tionnement récursif et le graphe Flex-Edge Recursif (FER) sont deux contributions clés au niveau des
opérateurs. Le partitionnement récursif partitionne le graphe de calcul en deux parties, étape par étape,
jusqu’à ce que le graphe soit partitionné sur le nombre de dispositifs. Ce partitionnement récursif en
deux parties est basé sur une caractéristique de machine abstraite symétrique. Au lieu de parcourir di-
rectement toutes les possibilités, la complexité de la recherche est devient linéaire par rapport au nombre
de dispositifs. Le graphe FER permet de réordonner les opérateurs en fonction de leur importance, et
le retour en arrière est évité. Par conséquent, avec une complexité de recherche linéaire, l’algorithme
peut trouver un plan parallèle optimal au niveau des opérateurs. Le rôle et l’efficacité des techniques
de chevauchement tout-réduit dans le parallélisme distribué sont discutés en tant que complément au
parallélisme au niveau des opérateurs. Une méthode pour calculer le tail factor est également fournie
dans cette thèse. Elle peut être utilisée conjointement avec l’algorithme D-Rec pour le parallélisme au
niveau opérateur. Enfin, cette thèse présente une méthode de recherche conjointe pour le parallélisme
hybride flux et modèle. Basé sur le modèle de transformer et le nombre de dispositifs 2p, un algorithme
de recherche d’une stratégie de parallélisme est fourni. En comparaison avec la méthode SOTA Alpa [97],
l’efficacité de l’algorithme et la haute qualité du plan sont démontrées expérimentalement.

En conclusion, la principale contribution de cette thèse est de proposer HSM2DL pour l’apprentissage
profond distribué. Ce modèle propose une machine abstraite hiérarchique et symétrique pour simuler la
machine d’entraînement réel et le modèle d’exécution et le modèle de coût de l’entraînement distribué.
Sur la base de ce modèle, cette thèse propose un algorithme de recherche efficace à la fois pour la recherche
au niveau de l’opérateur et la recherche conjointe. L’avantage de cette méthode est qu’elle équilibre bien
l’optimalité des résultats de la recherche et la portabilité de l’algorithme de recherche.

Ce document est organisé comme suit:

• Le Chapitre 2 présente d’abord l’état de l’art de l’apprentissage profond distribué et de la recherche
automatique de plans parallèles. Ce chapitre aborde le contexte de l’apprentissage profond distribué,
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les principes de base de entraînement des DNN distribués et les travaux connexes de la recherche
automatique de plans parallèles.

• Le Chapitre 3 décrit d’abord la base des modèles de calcul parallèle et compare différents modèles
représentatifs, notamment PRAM, LogP et BSP. Sur la base du modèle de BSP, le chapitre détaille
HSM2DL. La machine abstraite de HSM2DL présente deux caractéristiques principales : hiérar-
chique et symétrique. Ensuite, le modèle d’exécution de HSM2DL décrit les méthodes de calcul
de l’entraînement distribué du DNN. HSM2DL propose un modèle de coût symbolique qui décrit
clairement les coûts des plans HP pour l’entraînement DNN distribué. Ce modèle offre une excel-
lente opportunité pour des analyses et optimisations ultérieures. Ce modèle permet la recherche
systématique de la HP optimale des DNNs. La définition des problèmes de recherche est également
définie dans ce chapitre. Enfin, ce chapitre se termine par une comparaison entre HSM2DL et les
travaux connexes.

• Le Chapitre 4 présente la méthodologie de recherche de plans parallèles optimaux au niveau des
opérateurs. En se basant sur la machine abstraite hiérarchique et symétrique, HSM2DL propose
un partitionnement récursif, qui réduit la complexité de la recherche en fonction du nombre de dis-
positifs. En outre, inspiré par le troisième homomorphisme, HSM2DL propose un graphe récursif
Flex-Edge dont les opérateurs peuvent être réorganisés librement, évitant ainsi le retour en ar-
rière du problème de recherche et réduisant donc la complexité de la recherche. L’optimalité du
partitionnement récursif et du réordonnancement des sommets est prouvée dans ce chapitre. Les
expériences montrent que la qualité des plans parallèles trouvés correspond aux plans SOTA avec
un temps de recherche très faible.

• Le Chapitre 5 décrit le comportement overlap de la synchronisation des paramètres. Ce chapitre
détaille comment le coût de synchronisation est généré et comment il peut être caché avec les
techniques overlap. Ce chapitre traite de la modélisation symbolique du tail factor et de son
modèle de coût. Un algorithme permettant de calculer les facteurs de queue pour un graphe de
calcul donné et un plan parallèle est également présenté. Les expériences montrent qu’avec un tail
factor précis, le résultat de la recherche de D-Rec peut être amélioré. L’exactitude de l’algorithme
du tail factor est également validée.

• Le Chapitre 6 décrit une premier tentative très préliminaire de recherche de partitionnement
pipeline. Cette tentative est basée sur deux hypothèses fortes. Tout d’abord, cette thèse sup-
pose que le nombre de dispositifs et le nombre d’étages sont tous deux une puissance de deux.
Une autre hypothèse est de ne considérer que le modèle DNN basé sur les transformers. Dans ce
chapitre, HSM2DL complète le modèle de coût symbolique du les temps d’attente et propose un
algorithme de recherche conjointe qui peut trouver les plans parallèles correspondant à SOTA en
un temps très court. Des expériences sur des clusters de grande envergure montrent que HSM2DL
peut surpasser les planificateurs SOTA jusqu’à 255× lorsqu’il traite des modèles à grande échelle
basés sur des transformers.
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Chapter 1

Introduction

1.1 Summary

The Artificial Intelligence (AI) field has been growing with spectacular, high-profile successes in recent
years. In fact, AI is applied in many fields, from computer vision to natural language processing. Among
all the techniques of artificial intelligence, neural network-based deep learning has shown outstanding
learning capabilities with outstanding performance in many areas. The design and development of such
networks is an arduous task that requires advanced knowledge of modern parallel architectures in order
to make the best use of the computing power of such machines. A noticeable trend in neural networks is
their exponential increase in size in order to search for more accurate classification and prediction results.
Gigantic deep neural networks (DNNs) have achieved unprecedented performance in challenging AI tasks
and show the excellent capability of generalizing to unseen data. Examples of such DNNs include GPT-
3 [9], GShard [42], Wide & Deep [94] and many others. As gigantic DNN can have trillions of parameters
(e.g., Google Gopher has 600B parameters [64]), training an extensive network often takes weeks or even
months. Moreover, the larger networks may usually exceed the memory limits of individual computational
accelerators. For these two reasons, both academia and industry are beginning to use computer clusters
to train neural networks in a distributed way.

Commonly partition methods used to distribute a neural network include data parallelism, operator-
level model parallelism, pipeline model parallelism, etc. The optimal performance of a complex neural
network nowadays is usually obtained using a mixture of the above parallelism methods called hybrid
parallelism. Building a parallel plan requires AI researchers and engineers to have parallel computing
knowledge and also needs time and effort to design and verify performance. This fact resulted in a hot
research topic: automatic parallel plan generation. The computation of a parallel plan for gigantic DNNs
is challenging. A gigantic DNN can contain tens of thousands of operators (e.g., MatMul and ReLu).
Each operator can have multiple tensors, and many dimensions can be chosen when partitioning tensors.
The combinations of the potential partitioning dimensions are enormous [35], and a parallelism planner
needs to evaluate all combinations to find an optimal plan. In addition, in the search for an optimal plan,
the planner must predict the performance of candidate plans. Profiling DNN operators often achieve this
from the perspective of computation, memory, and communication usage. Profiling DNN operators with
all possible hardware devices are prohibitively expensive, and such profiling data is often unavailable.

Existing parallelism planners exhibit poor support for gigantic DNNs. OptCNN [36], FlexFlow [35],
ToFu [87] and TensorOPT [12] explore possible parallelism configurations extensively, but they failed
to return optimized plans for gigantic DNNs. Pipeline-optimized planners, such as PipeDream [56],
Dapple [20], and Piper [80], reduce configuration search space by first using manual rules to return feasible
plans for data and model parallelism and then optimizing the configuration for pipeline parallelism. This
design prevents these planners from jointly optimizing for data, model, and pipeline parallelism, resulting
in finding sub-optimal plans. It further incurs tremendous execution time, making the planners tedious
and expensive to use in practice.

Except for the separate disadvantages of the related work, they all have a common drawback: the
numerical cost models proposed by the above methods are all based on the execution time of the profiling
operator under particular hardware. This kind of approach introduces an expensive preparation effort
without optimality guarantees. Besides, it needs hours or even days to find the optimal plan for an
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1.1. SUMMARY

extensive neural network. The related work’s methodology starts from the existing expert experience,
defines a parallel plan search space, proposes a cost model based on profiling data, and transforms
the problem into mathematical modeling. Then they solve this search problem by designing a solver.
However, this methodology has the following shortcomings:

• If defining an ample search space, the profiling preparation will be very time-consuming, and the
subsequent solver search will take an unacceptable amount of time. If the search space size is
restricted manually, there is a risk of missing the actual optimal plan.

• Because these methods reduce the search time by restricting the search space, the search can never
find better plans than those defined by experts.

• Profiling is expensive, and AI researchers and engineers without parallel domain knowledge do not
know how to perform profiling analysis.

• The search space design is based on expert experience, and the method needs to be redesigned and
constructed for new structures of new networks that have not been considered before.

In a word, these methods do not provide a good balance between generality and accuracy in this
NP-hard search problem.

In order to circumvent the state-of-the-art method’s expensive profiling process and provide an algo-
rithm to give an accurate hybrid parallel plan in a short time, this thesis proposes a symmetric hierarchical
abstract machine and a symbolic cost model that decouples the hardware from the parallel algorithm.
Based on the BSP model, this approach eliminates the need for profiling each operator on specific hard-
ware. Based on the semantics of computing neural networks, the symbolic cost model can be transformed
and reduced. This thesis proposes an algorithm that reduces the complexity of NP-hard search problems
to linearity and can generate efficient hybrid parallel algorithms in seconds. The results aim to be inte-
grated into Huawei’s MindSpore open-source environment and contribute to Huawei’s AI products and
solutions to explore the full potential power of its hardware of Ascend chips.

This thesis employs structured parallelism approaches to optimize distributed deep learning so that
DL frameworks can automatically handle performance. As a result, DL designers could focus more on
developing more precise DNNs without incurring additional costs. To describe the features of a modern
AI training machine, HSM2DL created a hierarchical and symmetric abstract machine. HSM2DL also
proposed an execution model to characterize the hybrid parallel training process and a symbolic cost
model as a metric to evaluate the cost produced by various parallel plans.

The main objective of HSM2DL is the discovery of optimal hybrid parallel plans. Recursive partition-
ing and the Flex-Edge Recursive (FER) graph are two key contributions to operator-level partitioning.
The recursive partitioning partitions the computational graph into two-parts step by step until the graph
is partitioned onto the number of devices. This recursive two-part partitioning is based on a symmetric
abstract machine feature. Instead of directly traversing all possibilities, the searching complexity is re-
duced to linear in relation to the number of devices. The FER graph allows the operators to be reordered
based on their importance. As a result, backtracking is avoided during the searching process, reducing
the searching complexity in relation to the number of operators to linear. As a result, with a linear
searching complexity, the algorithm can find a near-optimal operator-level parallel plan. The role and
effectiveness of all-reduce overlap techniques in distributed parallelism are discussed as a complement
to operator-level parallelism. A method for computing the tail factor is also provided in this thesis. It
can be used in conjunction with the D-Rec algorithm for operator-level parallelism. Finally, this thesis
presents a joint search method for pipeline plus operator-level hybrid parallelism. Based on the trans-
former model and the number of 2p devices, an algorithm for searching for a triple-hybrid parallel plan is
provided. In comparison to the SOTA method Alpa [97], the algorithm’s efficiency and high plan quality
are experimentally demonstrated.

In conclusion, the main contribution of this thesis is to offer a bridging model HSM2DL for distributed
deep learning. This model proposed a hierarchical and symmetric abstract machine to simulate the actual
training cluster and distributed training’s execution model and cost model. Based on this model, this
thesis proposes an efficient searching algorithm for both operator-level search and joint search, which
combines op-level and graph-level. The advantage of this method is that it nicely balances the quality of
the search results and the portability of the search algorithm.
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1.2 Overview

This document is organized as follows:

• Chapter 2 first introduces the state-of-the-art of distributed deep learning and automatic parallel
plan search. This chapter discussed the background of distributed deep learning, the basics of
distributed DNN training, and related works of automatic parallel plan search.

• Chapter 3 first describes the basis of the parallel computing models and compares different rep-
resentative models, including PRAM, LogP, and BSP. Based on the BSP bridging model, the
chapter details HSM2DL. The abstract machine of HSM2DL has two main features: hierarchical
and symmetric. Then the execution model of HSM2DL describes the computing procedures of the
distributed DNN training. HSM2DL proposed a symbolic cost model that clearly describes HP
plans’ costs for distributed DNN training. This model provides an excellent opportunity for further
analysis and optimizations. This model enables the systematic search for optimal HP of DNNs.
The definition of the searching problems is also defined in this chapter. Finally, this chapter ends
by giving a comparison between HSM2DL and the related works.

• Chapter 4 introduces the methodology to search for near-optimal operator-level parallel plans. By
taking advantage of HSM2DL, symbolic simplification and functional reduction are applied in order
to control the searching complexity without losing the optimal results. Based on the hierarchical and
symmetric abstract machine, HSM2DL proposed recursive partitioning, which reduces the searching
complexity with regard to the number of devices. Besides, inspired by the third homomorphism,
HSM2DL proposed a Flex-Edge Recursive graph whose operators can be reordered freely, thus
avoiding back-tracking of the searching problem and therefore reducing the searching complexity.
The optimality of recursive partitioning and vertices reordering is proved in this chapter. The
experiments show that the found parallel plans’ quality can match the SOTA plans with a very
small search time.

• Chapter 5 describes the parameter synchronization overlap behavior. This chapter details how
the synchronization cost is generated and how it can be hidden with the overlap techniques. This
chapter discussed the symbolic modeling of the tail factor and its cost model. An algorithm to
calculate the tail factors for a given computational graph and a parallel plan are also introduced.
Experiments show that with an accurate tail factor, the search result of D-Rec can be improved.
The correctness of the tail factor algorithm is also validated.

• Chapter 6 describes a very preliminary attempt at pipeline partitioning search. This attempt is
based on two strong assumptions. First, this thesis assumed that the number of devices and the
number of stages are both a power of two. Another one is that this thesis only considers the
transformer-based DNN model. In this chapter, HSM2DL completes the symbolic cost model of
the bubble ratio and proposes a joint-search algorithm that can find the SOTA-matched parallel
plans in a very short time. Large cluster experiments show that HSM2DL can outperform SOTA
planners by up to 255× when handling large-scale transformer-based models.

1.3 Publications

This section presents the accepted papers which are extended in this thesis:

• H. Wang, C. Li, T. Tachon, H. Wang, S. Yang, S. Robert, S. Limet. Efficient and Systematic
Partitioning of Large and Deep Neural Networks for Parallelization. European Conference on
Parallel Processing EuroPar 2021, 2021, Lisbon, Portugal. pp.201-216.

• H. Wang. Freeing hybrid distributed ai training configuration. in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021, pp. 16201624.

• H. Wang, T. Tachon, C. Li, S. Robert, S. Limet. SMSG: profiling-free parallelism modeling for
distributed training of DNN. International Journal of Parallel Programming, Springer Verlag, 2022,
to appear.
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Chapter 2

State Of the Art

2.1 Introduction

The main topic of this thesis is the automatic parallel plan generation for Deep Neural Networks
(DNNs). More precisely, it focuses on how to systematically choose an optimal parallel plan to train a
DNN model on a specific cluster without user interaction.

This chapter first introduces the background of the distributed training of DNNs in Section 2.2,
including the general knowledge of deep learning and its applications. Then this chapter introduces a
general example of the DNN training process. The necessity and bottleneck of distributed DNN training
are also stressed in this chapter. In Section 2.3, the basics of distributed DNN training are described,
including the definition of computational graphs, operators, and tensors. This section also introduces the
basic parallelism plans with their costs during the distributed training. Section 2.4 introduces the state
of the art of existing automatic plan searching approaches and their limitations. This chapter presents a
global view of distributed deep learning and introduces the key points when choosing an optimal hybrid
parallel plan

2.2 Background of distributed deep learning

In this section, the background of distributed deep learning will be presented. In Section 2.2.1, the
boom of deep learning and its application during the past decades will be introduced. Then the necessity
of distributed DNN training is described in Section 2.2.3. Next, in Section 2.3.2, commonly used parallel
plans of distributed training, including their advantages and disadvantages as well as their suitable applied
domain, are presented.

2.2.1 Deep learning

Artificial intelligence (AI) has been the ultimate dream that humans, especially computer scientists,
have wanted to realize for a long time. Since the 21st century, it can be seen artificial intelligence has
played a pivotal role in our daily life. Artificial intelligence can easily classify images, accurately realize
face recognition in traffic and security, and improve the automation ability in medical image processing.
Besides, people enjoy more accurate translation, text comprehension, and automatic article generation.
In addition, human beings can have real conversations with robots. Last but not least, AI surpasses the
level of professional players in Go [76] and computer games.

The take-off of AI discussed above can be attributed to the in-depth research of deep learning academia
and the wide application of deep learning in industry. Currently, deep learning (DL) as a term can be
synonymous with deep neural networks (DNN). When it points to a technical field, it refers to a subdomain
of machine learning [26].

The neural network is not a new word. It has been more than half a century since McCulloch [51] put
forward the mathematical model of M-P neurons in 1943. A neuron is the primary computing unit of
a neural network. It receives the output signals from other neurons and performs summation by weight
amplification. If the sum exceeds a threshold, the neuron is "activated" and outputs signals. The so-called
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neural network is a mathematical system composed of a series of input-output connected neurons. The
development of neural networks has experienced many twists and turns. In 1958, Rosenblatt proposed
the first generation of neural network single-layer perceptrons [68], which can distinguish basic shapes
such as triangles and squares. People began to think that neural networks would be the future of artificial
intelligence. In 1969, Minsky [52] proved the limitation of a single-layer perceptron: it could not solve
the XOR problem. Enthusiasm for neural networks began to decline until 1986 when Hinton et al. [70]
proposed the second generation of neural networks: replacing the original single fixed feature with multiple
hidden layers, using the sigmoid function as the activation function, and training the model using a loss
backpropagation algorithm. Such a neural network can effectively solve nonlinear classification problems.
In 1989, Cybenko and Hornik [31] proved the universal approximation theorem: any function can be
approximated by a three-layer neural network with any precision. In the same year, LeCun et al. [40]
invented convolutional neural networks to recognize handwriting. These studies have revived researchers’
enthusiasm for neural network research. In 1991, the backpropagation algorithm was pointed out to have
the problem of gradient disappearing [30]. Since then, the research on artificial intelligence turned to
shallow machine learning (e.g., support vector machine [63]), and the research on deep neural networks
was shelved. The third wave of research and application of neural networks took off in 2006 when Hinton
et al. [29] proposed to use pre-training to train deep belief networks quickly to suppress the problem of
gradient disappearance. Deep learning has since shown its powerful effects in various fields. Deep learning
was the first to make breakthroughs in speech recognition. Microsoft and Google [28, 15] successively used
deep learning to reduce speech recognition error rate from 30% to 20%, the most significant breakthrough
in this field in the past ten years. Hinton and his students reduced the top 5 error rate for Imagenet [17]
image classification problems from 26% to 15% [38], and deep learning entered an explosion period.

In addition to the key breakthroughs such as backward propagation, which is the gradient disappear-
ance resolution, the development of neural networks and their powerful effects are also because of the
increase in the number of their hidden layers. In fact, deep neural networks are profound neural networks
with multi-layers. Why are deep neural networks more effective? One may say that a more complicated
structure can learn more information and features to produce a more effective neural network. However,
a complicated, vast neural network is not as effective as a deep neural network with the same number of
neurons in practice.

Actually, deep learning is effective because it relies on a ‘representation learning’ [7] approach, which
is a consensus in the machine learning world. In traditional machine learning, data features need to be
manually extracted first. This step is called ‘feature engineering.’ Then classifier learning step takes
place on the data produced by the feature engineering steps. In many research fields, feature engineering
is an important step and directly determines the quality of machine learning algorithm output. However,
deep learning can be regarded as a black box. When data is input from one end of the black box, a
well-trained model can be obtained at the other end. The deep neural network can automatically extract
the features used in the process, which is so-called ‘representation learning.’ For representation learning,
the most crucial thing is layer-by-layer processing. For example, when inputting an image, pixels can be
seen at the bottom of the neural network, and layer by layer, more and more abstract descriptions, such
as edges and contours, are gradually displayed. Although there may not be such precise layering in neural
networks, there is a tendency to abstract from the bottom up. It is widely believed that "layer-by-layer
processing" is the key to learning and one of the critical factors for the success of deep learning. As
a result, deep neural networks can learn a high-level abstract representation of data and automatically
extract features from data [39, 24]. In addition, the hidden layers in deep learning are equivalent to a
linear combination of input features [6]. The model efficiency of deep learning increases exponentially
with its depth [54].

In conclusion, deep learning is a vital research part of artificial intelligence. It solves automation
problems in computer vision, natural language processing, recommendation system, and intelligent speech
by training a deep neural network. By calculating the hidden layers of deep learning, deep learning can
automatically extract features of input data. These features are abstracted as hidden layer parameters
and updated. Theoretically, the effect of deep learning becomes better as the scale of network models
grows and the number of hidden layers increases. In the last decade, the practices in this field also show
an exponentially increasing trend regarding the DNNs’ scale and better effect in various application fields.
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Figure 2.1: DNN Model Training Process

2.2.2 Training a deep neural network

There are various types of neural networks, such as multi-layer perceptrons, auto-encoders, convolu-
tional neural networks, and transformers. These neural networks apply to different application scenarios,
including anomaly detection, classification, clustering, dimensionality reduction, etc. For example, con-
volutional neural networks are more suitable for image processing, and transformers play an important
role in natural language processing. The training method of deep neural networks includes supervised,
unsupervised, self-supervised learning, reinforcement learning, etc. Supervised learning learns a function
that maps an input to an output based on an example of an input-output pair. This function is inferred
from the labeled training data consisting of a set of training examples. In supervised learning, each
instance is a pair of an input object (usually a vector) and the desired output value (also called a super-
vised signal). The supervised learning algorithm analyzes the training data and generates an inference
function that can be used to map new examples. In contrast, unsupervised models use unlabeled data,
and the DNN model must extract features and patterns to understand the data. Self-supervised learning
learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and
unsupervised learning. The neural network learns in two steps. First, the task is solved based on pseudo-
labels which help to initialize the network weights. Second, the actual task is performed with supervised
or unsupervised learning.

Although there are ever-changing neural networks, the training process of deep neural networks has
common characteristics, which can be summarized as the process shown in Figure 2.1.

A deep neural network is composed of multiple consecutive hidden layers. A trained DNN model can
provide the expected output based on input data after the computation of the hidden layers. The weights
and biases of each hidden layer are the keys to determining the input-output relationship. The weights
and biases are also named the parameters of a neural network. Training the whole input dataset one
time is called an epoch. There are multiple epochs in the neural network training process to obtain the
best accuracy. In practice, the neural networks are trained with multiple mini-batches of the dataset. In
Figure 2.1, a green rectangle represents a data mini-batch (the total dataset is split into three mini-batches
in this example).

The training process of the neural network includes forward propagation (FPG) and backward prop-
agation (BPG). In forward propagation, a mini-batch of data goes through each neural network’s hidden
layer (blue rectangle in Figure 2.1). Each hidden layer computes its output based on the mini-batch of
data and its current parameters. The output of the last layer will be compared with the labeled data.
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The quantification of the gap between them is called the Loss (orange rectangle in Figure 2.1). Backward
propagation computes the gradient (yellow rectangle in Figure 2.1) of each hidden layer based on Loss
and then updates local parameters based on the gradient. Backward propagation begins from the last
hidden layer and ends in the first hidden layer. The end of the backward propagation also indicates the
end of training the current small batch of data. The DNN model computes the next mini-batch and
updates the model’s parameters until the model can return an accurate enough output.

2.2.3 Distributed deep learning

As discussed in Section 2.2.1, deep learning is a representational learning method where more hidden
layers and a higher number of parameters are positively correlated with a more accurate output. In recent
years, the blossoming of artificial intelligence is closely related to the exponential upward trend of neural
network model size, hidden layer number, parameter number, and data set size. Currently, the largest
DNNs have trillion-level parameters. For example, OpenAI GPT-3 [9] has 175 billion parameters, while
Google’s Gophe [64] has 600 billion parameters.

Two main reasons restrict training such large-scale models: limited memory and extraordinarily long
training times. Although the size and scale of DNNs have increased exponentially, the memory growth
of training accelerators has been linear: from a few GBs to tens of GBs, such as Nvidia’s A100 and H100
with 80 GBs of memory. Limited memory forces the training of such large-scale models to rely on large
clusters of multiple devices. On the other hand, DNN training is an iterative process involving hundreds
or thousands of epochs. Training a large neural network can take weeks or even months. For example,
OpenAI uses 1024 Nvidia V100s to train GPT-3, which takes 34 days. Training GPT-3 costs millions of
dollars if renting the equipment from the cloud service provider. Note that it is only the cost of training
the DNN model for one time.

Training a good AI model is not easy. In recent years, more researchers have begun to conduct in-
depth research on parallelized and distributed deep learning technologies. That is, how to divide training
data, allocate training tasks, allocate computing resources, and integrate distributed training results to
achieve a perfect balance between training speed and training accuracy.

A. Krizhevsky [38] splits the kernel of the convolution neural network into two groups and uses two
GPUs to train AlexNet in parallel, which is an initiative and successful attempt for model parallelism.
Another typical early work is DistBelief [16], which employs data parallelism and model parallelism.
DistBelief utilizes the parameter server for data parallelism and applies model parallel for each sub-model.
In DistBelief’s experiments, the authors used up to 144 model chunks for parallel training. In such a
distributed model, each worker node aggregates the intermediate data from other nodes to complete its
local computation. Then it passes the generated data to the consecutive nodes. The experimental results
show that when the model is large, the speedup ratio will increase with the increase of the number of
machines, and the best case is using 128 machines to achieve a speedup ratio of 12 times. Moreover, when
the model is small, using more than 16 machines to implement model parallelism does not produce speedup
and sometimes is even slower than a single machine because of communication. Gpipe [32] pioneered the
concept of pipeline parallelism, which divides a neural network into multiple subnets called stages. Each
stage alternately trains different micro-batches of data on different devices. Pipeline parallelism has
proven to be a successful way to parallelize extensive models (e.g., transformer [85]-based networks)
which can be regarded as one kind of model parallelism. Megatron [74] is an expert-designed parallel
method proposed by NVIDIA that reasonably mixes pipeline, data, and model parallelism. It divides
the model into multiple stages. It takes advantage of the characteristics of Matrix Multiplication in each
stage. It proposes a parallel plan for a series of consecutive MatMul: the parallel plan of these operators
is along the row dimension and column dimension on the parameter tensor alternatively.

The research in distributed deep learning mainly includes two focuses: data and model partitioning
and communication control. These two parts’ specific implementation and interrelationships may vary
with different algorithms and systems, but they have some common basic principles. A brief introduction
of these two parts is given below.

• Data and model partition determines a reasonable and efficient parallel plan for a given DNN model
and training hardware. A parallel plan signifies how to distribute the data and DNN model onto
distributed devices. Different parallelism plans have different features and may be more suitable
for different kinds of DNN models. For example, determining how many stages are partitioned
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for pipeline parallelism and selecting data parallelism or model parallelism for specific operators.
Detailed descriptions and comparisons of different parallel plans are given in Section 2.3.2.

• Communication control concerns how to optimize the efficiency of communication caused by par-
tition. After computing nodes finish their local computation, they need to communicate with the
other nodes to finish the training process. The implementation of communication determines the
efficiency of the system. For data parallelism, at the end of each training epoch, communication
is required to make each node synchronize the parameters of the neural network. Common exam-
ples include AllReduce-based[72] collective communication and ParameterServer-based communica-
tion [16]. For model parallelism, in order to complete the calculation, point-to-point communication
is required between different nodes. The choice of an appropriate communication pattern determines
the speed of training.

This thesis considers the actual communication implementation but focuses more on the data and
model partition module. The objective is to free the users from the heavy tasks of deciding on an efficient
data and model partition plan.

2.3 Basics of distributed DNN training

2.3.1 Computational graph, operator and tensor

Now training neural networks in academics and industries usually use modern deep learning frame-
works (DL frameworks)[62, 2]in practice. Users can write Python code to define their own DNN models.
The DL frameworks process input data and determine training configurations of the DNN models. These
deep learning frameworks transform a high-level model declaration into a low-level computational graph
that can be trained on accelerators (e.g., GPU, TPU, and NPU). In order to perform deep learning
training, a deep learning system still needs to solve many problems:

• how to execute a complex deep learning model efficiently?

• how to identify parameters to be trained in a deep learning model?

• how to calculate the gradient needed to update the model automatically?

Modern deep learning frameworks solve these problems by using computational graph techniques. This
section will introduce the basic definitions of distributed training. These definitions include computational
graphs, which are the abstracted DNN models, tensors, which is the basic data structure in DNN training,
and operator, which is the computation unit in DNN training.

A tensor is the basic data structure in the DL frameworks. The definition of tensor in mathematics is
based on a generalization of vectors and matrices, covering the concepts of scalars, vectors, and matrices.
A scalar can be considered a zero-order tensor, a vector is a first-order tensor, and a familiar RGB color
image is a third-order tensor. In the DL framework, a tensor stores data and multiple attributes such as
data type, shape, dimension or rank, and gradient transfer status. For example, Table 2.1 lists the main
attributes and functions of a tensor. The dimension represents the number of tensor axes. The tensor’s
shape is an important property that records the length of each axis, which is the number of elements per
dimension of the tensor. Tensors can typically hold boolean, floating-point, integer, complex, and string
data. Each tensor has a unique data type, represented as dtype. During calculation, the framework checks
the types of all tensors involved in the operation. If the types do not match, an error will be reported.
Some special calculations must use the specified data type. For example, logical operations must be of
the Boolean type. In DL frameworks, an attribute of a tensor may indicate a device location where the
tensor is stored, for example, in a CPU or a GPU. A storage state of tensor data may be classified into
variable and immutable. An immutable tensor is generally used for data initialized by a user or input
by a network model. A variable tensor stores the network weight parameters and updates its own data
according to the gradient information.

A scalar is a zero-order tensor that contains a single value but no axis information. A vector is a
first-order tensor with an axis. A second-order tensor has two axes, which is known as a matrix. Usually,
tensors are "regular" with the same number of elements on each axis, like a ’matrix’ or ’cube.’ Special
types of tensors, such as irregular and sparse tensors, are also used in particular environments. This

9



2.3. BASICS OF DISTRIBUTED DNN TRAINING

Attributes Functions

shape Length of each dimension of the storage tensor, for example, [3,3,3]
dimension Indicates the number of tensor dimensions. The scalar value is 0, the vector value is 1,

and the matrix value is 2.
dtype Indicates the data type of the storage, such as bool, int8, int16, float32, and float64.
device When creating a tensor, you can specify the storage device location, such as CPU and

GPU.
name Identifier of tensor

Table 2.1: Tensor attributes

thesis will concentrate on the regular tensors because the majority of important DNN models only treat
regular tensors.

An operator is the primary computing unit of computational graphs. Based on their functionality,
operators can be classified into tensor operations, neural network operations, and control flow operations.
Tensor operations include tensor structure operations and mathematical tensor operations: tensor cre-
ation, index slicing, dimension transformation, and split are structure operations, while mathematical
operations include scalar operations, vector operations, and matrix operations. Scalar operators feature
element-by-element operations on tensors. The vector operator computes only on a specific axis, mapping
a vector to a scalar or another vector. Matrix operation includes matrix multiplication, matrix normal-
ization, matrix determinant, matrix eigenvalue, matrix decomposition, etc. Neural network operations
include feature extraction, activation function, loss function, optimization algorithm, etc. Feature extrac-
tion is a standard operation in deep learning. Its critical point is to extract more representative tensors
than the original input. For example, a standard convolution operation (Conv) is a feature extraction
operator. An activation function is responsible for mapping the input of the neural network layer to the
output end. The activation function is responsible for increasing the nonlinearity of the neural network
model. Common activation functions include an S-shaped growth curve (Sigmoid), a linear correction
unit (Rectified Linear Unit, ReLU), etc. The loss function estimates the degree of inconsistency between
the predicted value and the actual value of a model. Optimization algorithms use different strategies to
update parameter weights to minimize the loss function based on gradients. Standard optimization al-
gorithms include Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam), etc. Data
flow operations include operators related to data preprocessing and data loading. Data preprocessing
operators are mainly used to cut, fill, normalize, and enhance image and text data. Data loading usu-
ally performs shuffle, batch, and pre-loading operations on data sets. Finally, the control flow operation
controls the data flow direction in the calculation diagram. Control flows are required when representing
flexible and complex models like the Mixture of Expert (MoE). Use frequently used control flow operators,
conditional operators, and loop operators. The control flow operation affects the forwarding operation’s
data flow direction and the reverse gradient operation’s data flow direction.

A computational graph represents the forward and backward propagation of the DNN model in
the back-end of the DL frameworks, describing the computation logic and state of DNN models during
training. The computational graph consists of a fundamental data structure: tensor and a basic operation
unit: operator. In computational graphs, nodes are usually used to represent operators, and the directed
lines between nodes represent dataflow directions and describe the dependency between computations.
The data flow is updated by performing forward, and backward gradient computation based on the data
flow direction and operator in the graph to update the tensor status in the graph, thereby training the
model.

Computational graphs also implement the strategy of distributed parallel training. A computational
graph can be split into multiple sub-graphs to implement graph-level model parallelism, for example,
pipeline parallelism. The tangent sub-graph can be realized by appointing the sub-graph number to which
each operator belongs. In addition, an operator-level parallelism plan may be specified by assigning either
data parallelism or model parallelism to each operator in the computation graph. The following section
describes the segmentation dimensions of different parallel strategies and the distributed training process
through examples. For clarity, these examples are based on Figure 2.1, and the computational graphs are
partitioned into different dimensions of the hidden layer. Although the examples are demonstrated with
layers, the reader can understand that the hidden layers are equivalent to operators. Actually, a hidden
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Figure 2.2: Data Parallelism

layer is usually composed of a set of operators.

2.3.2 Standard parallelism plans

The necessity of distributed deep learning has been discussed in Section 2.2.3. In this section, different
parallelism plans to realize distributed training are discussed.

The emergence of large machine learning models has brought about a rapid increase in the demand
for computing power and memory, giving rise to distributed training. Distributed training systems
significantly improve computational performance allowing us to both reduce the training time and increase
the size of neural network models while using the limited memory of computing devices. The target of
developing parallelism plan is to correctly allocate models that exceed the device’s memory to distributed
clusters to train efficiently without compromising training accuracy.

Standard distributed parallel plans can be divided into operator-level and graph-level parallel plans.
In deep learning, most of the tensors are vectors of data. The dimension of this vector is called the
batch dimension of the tensor. At the operator level, the tensor may be partitioned - either in the batch
dimension, called data parallelism - or in the other dimensions, called operator-level model parallelism.
Another type of partition plan is graph-level parallel partitioning, where the computational graph is
partitioned into multiple sub-graphs. Graph-level parallel partitioning is also a kind of model parallelism
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(graph-level).

Data parallelism (DP) is a simple, efficient parallelism plan that is often used to address the lack of
computing power of a single node. Common DL frameworks have specific implementations of data par-
allelism, including TensorFlow Distributed Strategy [2], PyTorch Distributed [62], Horovod Distributed
Optimizer [72], etc. Data parallelism distributes a user-given batch size N equally across M devices,
with each device being allocated N/M training samples. An identical duplicate of the computational
graph is shared on each device, which independently trains its own N/M samples and computes the
gradient. Different devices will compute the gradient Gi based on the local N/M training samples. To
ensure consistency of the training program parameters, the local gradients Gi need to be aggregated to
calculate the average gradient (

∑N
i=1 Gi)/N . Eventually, the training procedure uses the average gradient

to update the model parameters and complete the training for the N samples.

Figure 2.2 shows an example of data parallelism consisting of 2 devices. Each device is allocated half
of the training samples but has the same neural network configurations (duplicated model). The local
training samples are sequentially passed through the operators in this computational graph duplication,
completing forward and backward propagation. During the backward propagation process, each com-
putational graph duplication generates the local gradients (Gradient1, 2, 3). The corresponding local
gradients on different devices (e.g., Gradient1 on each of Device1 and Device2) are aggregated to cal-
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culate the average gradient. The aggregation process is usually realized through All-Reduce collective
communication and is also referred to as parameter synchronization.

Operator-level model parallelism (OMP) is often used to solve the memory shortage problem for
single nodes [38]. The reason for applying OMP is that data parallelism can significantly improve the
training speed but is neither efficient nor solves the problem of insufficient memory when the number of
model parameters is large. A common under-memory scenario is when a model contains large operators,
such as a Fully Connected Layer in a deep neural network, which must compute many classifications. The
memory required to complete such large operators’ computations may exceed a single device’s memory
capacity. Then this large operator needs to be partitioned. Suppose this operator has P parameters and
is to be distributed on N devices. The P parameters can be evenly partitioned among the N devices
(P/N parameters per device) so that each device is responsible for less computation and can perform the
required computation in forward and backward propagation within the memory capacity limit.

Figure 2.3 gives an example of OMP implemented by two devices. In this example, assuming a
neural network with three operators, the memory required to store their parameters is 40GB, and the
memory needed to perform forward and backward propagation calculations are 10GB, i.e., a total of
50GB of memory is required. Assuming a single computing device has 32GB of memory, a single card
cannot complete the training of this neural network. Data parallelism between the two devices would also
require storing an entire computational graph duplication on each device, i.e., each device would need the
same 40GB to store the parameters, so data parallelism cannot solve the memory shortage problem. The
OMP divides the parameters of the three operators equally between the two devices, requiring only 20GB
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Figure 2.5: Pipeline execution process

of stored parameters per device plus the 10GB needed for computation, which is sufficient for training the
network. As shown in the Figure 2.3, OMP requires inter-device communication to obtain the missing
half of the parameter information to complete the operators’ computation when performing forward and
backward propagation. OMP does not require parameter synchronization because each sub-model trains
with the entire batch data.

Graph-level pipeline parallelism (PP) is a vital parallelism plan in natural language processing neural
networks which contains large-scale parameters. The way to partition the computational graph of pipeline
parallelism is also model parallelism. Unlike OMP, pipeline parallelism partitions the computational graph
into multiple sub-graphs with a subset of the operators (also called stage) distributed on each device and
is called graph-level model parallelism.

An example of graph-level parallelism implemented by two devices is given in Figure 2.4. In this
example, assuming a neural network with three operators, operator1 and operator2 require 10GB of
memory each to complete the computation while operator3 need 20GB, the model requires a total of 40GB
of memory. Each device can only provide 32G of memory. In this example, the user can place operator1,
operator2 on device1, and operator3 on device2. In forward propagation, the output of operator2 is sent
to device2 downstream. Device2 receives the data from upstream and completes the forward computation
of operator3. In backward propagation, device2 sends the backward computation of operator3 to device1.
device1 completes the backward computation of operators1, operator2 and then finishes this training.

However, during the execution of graph-level parallelism, the device assigned to the operators po-
sitioned in the back part of the computation graph must be continuously idle for a long time, waiting
for the previous operators to complete the computation, as shown in the figure above. The idle time
dramatically reduces the average usage of the devices. This phenomenon is known as the Bubble.

GPipe[32] proposes to divide a data mini-batch into multiple pipeline micro-batches. Suppose a data
mini-batch has D training data, and this mini-batch can be divided into M micro-batches, then the micro-
batch size is D/M . Each micro-batch enters the training system accordingly and completes forward and
backward propagation to compute the gradient. The gradients corresponding to each micro-batch will be
cached, and when all micro-batches are completed, the cached gradients will be summed up to calculate
the average gradient and update the model parameters.

Figure 2.5 further gives an example of pipelined parallel execution. In this example, the model
parameters need to be partitioned into four devices for storage. The mini-batch is cut into four micro-
batches to fully use these four devices. After device0 completes the forward propagation of the first micro-
batch (denoted as F0,0), it sends the intermediate results to device1, triggering the forward propagation
task (denoted as F1,0) in response. At the same time, device0 can also start the forward propagation task
for the second micro-batch (denoted as F0,1). The forward propagation is completed at the last device3
in the pipeline. The system then starts backward propagation. Device3 starts the backpropagation
task for the 1st micro-batch (denoted as B3,0). After this task is completed, the intermediate result
is sent to device2, triggering the backward propagation task (denoted as B2,0) in response. At the
same time, device3 caches the gradient corresponding to the 1st micro-batch and starts the 2nd micro-
batch calculation next (denoted as B3,1). When device3 has finished all the backward propagation
computations, he will sum the locally cached gradients and divide them by the number of micro-batches
to calculate the average gradient, which is used to update the model parameters. The bubble in the
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pipeline parallelism is the critical element of pipeline parallelism. When the device finishes forward
propagation, it must wait until complete backward propagation begins, during this time the device
will be idled. In Figure 2.5, it can be seen that device 1 has a long much time to start the second
backward propagation task after completing the second forward propagation task. In order to reduce
the waiting time, a common practice is to increase the number of micro-batches so that the backward
propagation starts as early as possible. However, a too-small micro-batch size may cause the devices to
be underutilized. The optimal micro-batch size is, therefore, a compromise between several factors. The
core factors are the pipeline bubble’s size and the devices’ computational power.

2.3.3 Parallel cost of standard plans

The previous section described the training process of standard parallelism plans and briefly in-
troduced their characteristics and application scenarios. This section analyzes the costs generated by
different parallelism plans during training to explain why they apply to different scenarios. It can also
be used as a guide to quantify costs in subsequent chapters.

The cost discussed here mainly refers to the extra cost incurred by distributed training compared
to training on a single node, such as communication due to data partitioning or idle time due to data
dependencies. Common costs like operator computation to both stand-alone and parallel training, are
not discussed.

In data parallelism, each device holds the complete model. Each sub-dataset is calculated indepen-
dently on each device when performing forward and backward computation, and there is no extra cost in
this computation process. Each device independently computes the gradients with a different sub-dataset.
It is necessary to exchange the gradients and parameters on different devices through inter-device com-
munication to calculate their average value (the average of gradients is the same gradient as training on a
single node), as shown in the red arrow in Figure 2.2. This exchange of the gradients is named "parameter
synchronization". Two well-known implementations of parameter synchronization are Parameter Server
and AllReduce collective communication. The computation overlap technique can hide the cost generated
by collective communication to improve efficiency. Thanks to the overlap technique, data parallelism is
a very efficient distributed training mode. Unfortunately, data parallelism is insufficient to deal with
large-scale neural networks with a large memory footprint since each device must implement the entire
model.

For OMP, because each device is trained on the complete data set, the parameters on each device are
inherently updated. However, as shown in Figure 2.3, each operator and its parameter are partitioned into
different devices, thus each operator must communicate internally (the communication happens inside the
operator computation, distinguish from tensor redistribution or parameter synchronization) to complete
the forward and backward computations. Different operator-level model partition plans incur different
communication costs, which are large compared to the parameter synchronization of data parallelism
after being overlapped. So, choosing the partition plan with the minimum communication cost is the
primary concern of OMP.

At the graph level operator partitioning, as shown in Figure 2.4, for forward propagation, the output
of opeartor2 on device1 needs to be transmitted to opeartor3 on device2 via point-to-point communication
Send, Receive, and symmetrically, the reverse gradient of opeartor3 on device2 needs to be communicated
to operator2 on device1. This communication cost is generally small or even negligible compared to the
data-parallel, model-parallel communication cost associated with the number of parameters. However,
because the computation of operator3 depends on the output of operator2, device2 remains idle until the
computation of operator2 on device1 is completed. Slicing the batch into a micro-batch and performing
pipeline training (as shown in Figure 2.5) can reduce the waiting bubble time, but the bubble time cannot
be completely removed, so the main cost of operator slicing at the graph level is the idle time.

2.3.4 Hybrid parallelism plans

All the standard parallel approaches help speed up the training of large-scale neural networks, but
the optimal results cannot be achieved by applying only a few of them. When training large AI models,
users often face both insufficient computing power and insufficient memory. Therefore, they need to
use a mixture of data parallelism and model parallelism. This approach is called hybrid parallelism.
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Figure 2.6: Model (graph-level) parallelism Training Process
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Representative previous work on hybrid parallelism includes OWT (One Weird Trick) [37], Megatron-
LM [74] and 3D-parallelism [67].

OWT applies data parallelism for the convolution layers and model parallelism for the last fully
connected layer because it found that the two parallel plans are respectively suitable for the two layers.

Developed by NVIDIA, Megatron-LM[74] is a large, powerful transformer with a mixture of DP, OMP,
and PP. It requires a user-given number of degrees for the three parallel plans and partitions the DNN
model according to the parallel plan degrees. Degrees denote the number of partitions of DP, OMP, and
PP. For example, to partition a transformer onto eight devices with the degrees of DP, OMP, and PP
all equal to 2 means that the computational graph is partitioned into two pipeline stages respectively
trained on four devices, and every four devices are partitioned into two parts along DP dimension once
and MP dimension once. It can also be extended and favors the other transformer-based DNN models
like BERT [18], GPT [10], T5 [65]. 3D-parallelism from DeepSpeed also combines the data parallel,
model parallel (operator-level), and pipeline parallel simultaneously. It assumes three different axes x, y,
z which respectively represent the three parallel plans and analyze their trade-offs on the axes.

Figure 2.6 provides an example of hybrid parallelism implemented on eight devices. The computational
graph in this example consists of three operators. The eight devices are first divided into two device
groups: devices1-4 and devices5-8. The two groups launched the graph-level pipeline parallelism, with
stage1 containing operator1,2 assigned to the first group of devices and stage2 containing operator3
assigned to the second group of devices. Devices1-4 first complete the forward propagation of stage1 and
pass it to devices 5-8. Devices 5-8 complete the forward and backward propagation of stage2 on the second
group of devices and pass the backward propagation result back to the first group of devices to complete
the backward propagation of the stage1. Each group of four devices also applies data parallelism and
OMP. Devices1-2 and 3-4 are grouped to perform data parallelism. Within the device group of devices1-2,
the two devices perform OMP via intra-communication to perform OMP to complete the computation
of operator1,2.

2.3.5 Challenges of training with hybrid parallel plans

Hybrid parallelism combining data and model parallelism is necessary to accelerate the training of
giant DNN models. However, acquiring highly distributed training benefits faces two significant problems:
system implementation and parallel strategy selection.

System implementation:

Because of the lack of available automatic differentiation modules [5] and auxiliary development APIs,
early research in deep neural networks required researchers to write their computational processes from
scratch. Researchers had to write parallel code manually if they wanted to perform distributed parallel
computation on the networks [37].

Later, auxiliary frameworks such as Caffe [34], Chainer [82], and Theano [4] emerged, allowing the
users to design their neural networks by means of building blocks that relieve them from the burden of
writing neural network code. However, these frameworks do not support distributed parallel computing
well and lack support for the accelerators such as GPUs.

TensorFlow [2] and PyTorch [62] support custom hybrid parallelism by explicitly assigning operators to
specific devices. Recent works have proposed different high-level primitives based on existing frameworks
for manual parallel configuration to facilitate the implementation of hybrid parallelism. With the help of
these high-level primitives, the users only need to specify the parallel plans but do not need to consider
the code generation, scheduling, mapping, etc., to realize distributed training. Mesh-Tensorflow [73]
implements a domain-specific language for specifying the parallelism of giant DNN models in Tensorflow.
However, this approach is intrusive and requires rewriting the entire model code using this language.
Moreover, it has some limitations. E.g., it does not allow applying different partitioning strategies to the
same tensor in different layers. DeepSpeed [66] provides simple APIs in Pytorch to configure and initiate
hybrid parallelism. However, it requires the user to modify the model to a sequential structure to achieve
pipeline parallelism and relies on external libraries such as Megatron-LM [74] or custom implementations
to support tensor model parallelism. Such programming work is still too complex for AI researchers.

Artificial intelligence researchers and engineers are now writing and training their neural network
models with the latest AI frameworks [2, 62, 1], which have their built-in machine learning compilers
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map(max(0)) map(×2) reduce(+)

Figure 2.7: Minimal neural network example

Figure 2.8: Possible distribution of a 3D tensor over 4 devices

such as XLA, ONNX, TVM, etc [45]. These compilers can automatically convert user-defined neural
network programs in Python into equivalent computational graphs, which can then be efficiently executed
on accelerated devices such as GPUs, Ascend, etc. The compiler applies multiple intermediate passes to
transform the computational graph before executing the training on the accelerator. Typical examples
of the passes include an automatic differentiation stage that automatically generates the operators and
edges needed to back-propagate the computational gradient; a computational graph simplification stage
that does not affect the computational result: graph pruning. These passes are applied sequentially
by the compiler and are orthogonal to each other, allowing the developer to extend the other stages to
achieve the desired functionality.

The GSPMD [91], Mindspore [1], PaddlePaddle [49], and Oneflow [92] all provide parallel processing
stages integrated into their compilers and can be called transparently in the compiler without affecting
the execution of the DNN model. These stages are currently capable of automatically partitioning the
computational graph according to a user-defined plan for each operator in Python, inserting the required
communication operators, and smoothing the sliced computational graph to the device cluster. These
stages are also being developed in an iterative phase to support more distributed operators, more parallel
paradigms, and the ability to search for parallel plans automatically.

Parallel strategy selection:

Deciding a suitable hybrid parallelism strategy is difficult for the following reasons:

• Different types of operators may prefer different parallelism strategies. For example, it is not suitable
to partition the kernel tensor of a Conv op because the shape of the kernel is usually 3 ∗ 3 or 5 ∗ 5.
A common practice for Conv op is to partition it along its batch dimension (data parallelism) or
channel dimension (one of the possible operator parallelism strategies) [25].

• Besides, the shape of the operators also affects the strategy choices [12]. A MatMul op is more suit-
able for data parallelism when the shape of the parameter tensor is small and should be configured
as operator parallelism when the shape of the parameter tensor is very large.

• The operators are not executed separately. They are all connected in the computational graph via
the edges. The output tensor of an operator is also the input tensor of its successive operator. If
the parallel plans are different for these two operators, the tensor needs to be redistributed in the
cluster, which generates additional cost and should also be taken into consideration.

Possibilities of hybrid parallel plans For operator-level, to split one tensor with x dimensions into
2p parts, it is equivalent to an unordered sampling with replacement, so there are C

p
x+p−1 possibilities.

Then to distribute a computational graph with n operators into 2p devices where each op includes two
x dimensions tensors. There are (Cp

x+p−1
2
)n possibilities. Graph-level pipeline partitioning is also an

NP-hard problem. If searching graph-level and operator-level parallel plans together, it is a mixture of
two NP-hard problems. Therefore, parallelizing a simple NN to only a few accelerators leads to already
near uncountable choices.
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The complexity of the operator-level problem is illustrated through the following minimal example.
Consider a toy neural network represented in Figure 2.7 of 3 operators on 3-dimensional tensors that
aimed to be distributed over four devices. Operators may be, for example, a relu followed by an
element-wise twofold increase followed by the sum of all elements. Possible distributions of a 3D tensor
over four devices are all illustrated in Figure 2.8, and the number is 6. As there are three operators, the
total number of possibilities for this whole tiny graph is 63 = 216.

2.4 Automatic parallel plan search

2.4.1 Introduction of automatic parallel plan search

Manual parallelization becomes highly infeasible treating huge DNN models. First, parallelizing a
model just for a specific hardware platform (e.g., NVIDIA DGX-2) requires a considerable engineering
effort because there are diverse hardware environments like cloud platforms, data centers, and local
machines. In addition, manually considering all possible parallelization opportunities for a giant model
is increasingly difficult. Even strategies designed by experts for small-scale models are considered sub-
optimal because they do not make good use of some of the parallelization opportunities in the model [35].
For large-scale neural networks, optimal performance is usually obtained by applying hybrid parallelism,
but it is not always possible to apply any hybrid parallelism strategy to obtain better performance than
the standard strategy. In fact, in some cases, the distributed training time may even become longer if
the hybrid parallelism strategy is not appropriately configured, incurring a higher communication cost
or large waiting time. Choosing a sensible, efficient hybrid parallelism strategy is therefore crucial to the
effectiveness of distributed parallelism. However, this is not an easy task, and developing a reasonable
parallel strategy requires researchers to understand both the semantic nature of neural network operator
computation and the structure of neural networks. In this context, researchers have to master both neural
networks and parallel computing, which is seldom the case.

Based on the exponential complexity of hybrid plans and the inadequacy of manual expert-defined
policies, automated search for parallel plans has become an important area of research.

Automatic parallel plan search algorithms can be divided into two categories. One is based on machine
learning, especially reinforcement learning methods, such as ColocRL [53], REGAL [61], Auto-MAP [88],
etc. They have the same disadvantages of requiring large amounts of training data, long time, poor
interpretability, and poor scalability, so they will not be discussed in this thesis. The following three
sections present representative related work on operator-level search (DP+OMP), graph-level search
(DP+PP), and three-mix joint search (DP+PP+OMP), respectively.

2.4.2 Problem Positioning

When talking about the "automatic parallelism" of compiling DNN models, people may think of
machine learning model compilers, such as XLA and TVM [45], which are designed for optimizing the
computation on a single accelerator. Another possible thinking of automatic parallelism is a system like
GSPMD[91], which enables parallelism in XLA with user-defined parallel strategies for operators. Such
a system fails to achieve full automation, especially for users without parallel computing knowledge.

Orthogonal to the above two kinds of "automatic parallelism" optimizations, this thesis focuses on the
scope of generating parallel plans automatically. A distributed DNN parallel planner/generator is able to
eliminate the time and labor-consuming process of determining the parallel plans. Output can be given
to the above two approaches to achieve further optimizations. In addition, the planner should be able to
be implemented in one of the state-of-art Deep Learning frameworks [2, 62, 1] to allow AI researchers and
engineers to write neural network code without the need for additional parallel code. After generating the
parallel plan, the DL frameworks will take charge of the rest part of distributed training, including the
code generation and run-time execution. The positioning of the planner/generator is shown in Figure 2.9.

2.4.3 Related works

Operator-level plan search methods

• OptCNN OptCNN [36] provides an automatic parallel plan searching solution for layer-level (a
more coarse-grain operator-level, a layer is normally composed of a series of operators) parallel
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is not very efficient and can incur high search times. Therefore, TensorOpt also tries to group op-
erators and apply the FT-LDP (Frontier Tracking Linear Dynamic Programming) algorithm to
help reduce the time complexity. In addition, the FT-LDP algorithm can be further enhanced by
multi-threaded parallelism to improve search efficiency. FT-LDP with multiple threads applied can
find the best strategy for WResnet [94] in 22 minutes, while FT-Elegation takes 5.5 hours. Because
ToFu’s plan does not make full use of the device’s memory, TensorOpt could find a higher quality
parallel plan (with much higher throughput than ToFu).

Graph-level plan search methods

• PipeDream PipeDream [56] provides an automatic parallel solution supporting asynchronous
pipeline training with data and pipeline parallelism. PipeDream first profiles the model to be
partitioned, obtaining the runtime, size of activations, and model parameter size for each layer.
Then, based on the profiling results, they create a Profiling-based cost model and design a dynamic
planning algorithm. The algorithm prioritizes load balancing, partitions the pipeline stages, and
determines the DP degree for each stage. PipeDream-2BW [57] is an extension of PipeDream. It
optimizes memory consumption by applying activation recomputation and reduces the number of
parameter weight buffers that store different versions of the computed gradients. PipeDream-2BW
groups the repeated structures (e.g., transformer) of the model and only considers configurations
where all stages of the model are replicated the same number of times. Another shortcoming of
PipeDream is that only linear graph structures are supported.

• DNN-partitioning To solve the problem of PipeDream only supporting linear graphs, Fiddle’s re-
searchers proposed DNN-partitioning [81]. DNN-partitioning extends the dynamic scheduling
algorithm in PipeDream and proposes an integer-based scheduling solution to solve the nonlinear
graph search problem.

• DAPPLE PipeDream-based networks are based on asynchronous computing. Asynchronous com-
puting may not guarantee the accuracy of training and prediction, although some measures are
taken to minimize the effects of asynchrony. However, in large-scale industrial production, accu-
racy is an important metric, so this thesis only considers the synchronous case. DAPPLE [20] is
a practical example of synchronous data and pipeline hybrid parallelism. It proposes a new paral-
lelized policy planner to solve the partitioning and placement problem and explores the best hybrid
strategy for data and pipeline parallelism. DAPPLE also proposes a new runtime scheduling algo-
rithm to reduce device memory usage. This scheduling method is orthogonal to the recomputation
approach and does not come at the expense of training.

Joint search methods

• DistIR DistIR [71] is an efficient intermediate representation for parallel training neural networks,
used to describe distributed DNN computation explicitly. It defines feasible cuts, including data
parallelism, pipeline parallelism, and limited model parallelism (operator-level) partition dimension.
It uses a linear regression model to model the operator’s cost for different model sizes to ease the
profiling effort. To finite cut-off possibilities, DistIR uses a simple grid search to find the minimum
cost strategy. Although DistIR is very effective in finding the best parallel plan in its search space,
as the search space is so limited, its optimal strategy may be too coarse to use compared to other
solutions.

• Piper Piper [80] uses a two-level dynamic programming approach to search for DP, MP, and PP
parallel plans. The external dynamic programming algorithm deals with pipeline parallel plans,
and the internal dynamic programming searches for operator-level plans by storing data profiled
in advance into a lookup table. External dynamic programming generates hundreds of NP-hard
knapsack sub-problems when computing the minimum throughput of a sub-graph for a given con-
figuration. Piper uses a bang-per-buck heuristic to speed up the process of solving the generated
backpack sub-problems, reducing the computational complexity. The internal dynamic program-
ming of Piper takes 2 hours to generate a partitioning plan for training 64 layers of BERT on 2048
devices. However, the current implementation of the algorithm is sequential and inefficient, and
the heuristic algorithm has no plan optimality guarantees. A potential advantage of Piper is that
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some of the processes in Piper can be executed in parallel, which can linearly scale the runtime of
the algorithm on a multi-core CPU server and further reduce the search time.

• Alpa Alpa [97] uses a two-level hierarchical algorithm to search for parallel plans and supports DP,
MP, and PP searching together for arbitrary directed acyclic graphs (DAGs). A formal integer
linear programming method solves the operator parallelism problem in the two-level hierarchy. The
inter-operator pipeline parallel partition problem is solved by a dynamic programming algorithm
based on TeraPipe[46], and additionally considers how device mesh is partitioned. During the
execution of the dynamic programming algorithm, Alpa invokes ILP to search for the best operator-
level parallel strategy for each subgraph. The operators are also clustered using another dynamic
planning algorithm. Alpa was able to find the best strategy for GPT-39B on 64 GPU devices in
40 minutes. However, searching for a strategy for GPT-175B[9] on 2048 GPU devices could take
thousands of hours, indicating poor scalability given the complexity and cost of this approach.

2.4.4 Limitations of existing approaches

To find the optimal hybrid parallel strategy, the above existing approaches are all following this
methodology:

1) Defining the problem and search space;

2) Creating a cost model to predict the execution time;

3) Profiling the execution time of different parallel plans on the specific hardware

4) Searching the results with an algorithm based on 2) and 3);

5) Outputting the optimal solution.

The only difference is that they differ in the search spaces, cost models, and search algorithms. The
quality of the outputted parallel plan of step 5) depends on the joint effect of steps 2), 3), and 4).
These approaches construct a generic cost model to estimate the actual execution time of the distributed
training process as detailed as possible. Step 3) profiles the time of a specific parallel plan on a given
hardware platform for a DNN model (or for an operator). These approaches invoke the time obtained by
step 3) in the cost model of step 2). Step 4) will select the optimal strategy with the lowest estimated
time.

Example of existing approaches’ cost model

Let us take OptCNN[36] as an example for operator-level plan search. All the existing solutions are
extensions of this simple example.

Let G = (V, E) be a computational graph. Vertices set V is a set of operators. The directed edges set
E represents the dataflow direction between operators. In the following denote eij ∈ E , the edge between
two connected vertices vi and vj . P is a hybrid parallelism plan of the computational graph G, which is
the set of operator-level strategies for operators.

The following gives an equation of the estimated training time T for the graph G, the training hardware
is represented as D and the strategy is:

T (G,P,D) =
∑

vi∈V

(te(vi, pvi ,D) + ts(vi, pvi
,D)) +

∑

eij∈E

tr(eij , pvi , pvj
,D) (2.1)

• te(vi, pvi
,D) is the execution time to process the operator vi under strategy pvi on hardware D. It

comprises the local computation time and the communication time caused by parallel computing.
te is obtained through profiling the operator’s execution vi with its parallel plan under hardware
environment D. It is an average time for several experiments. te(vi, pvi

,D) is the execution time
to process the operator vi under strategy pvi

on hardware D. It comprises the local computation
time and the communication time caused by parallel computing. te is obtained through profiling
the operator’s execution vi with its parallel plan under hardware environment D. It is an average
time for several experiments.
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• ts denotes the parameter synchronization time at the end of each iteration. It happens after
the BPG. Parameter updating is usually implemented by collective communication like all-reduce
and can be optimized with communication/computation overlap techniques. ts requires the same
profiling procedure as te.

• tr represents the cost of the same tensor in two connected operators (the output tensor of the first
operator is the input tensor of the second operator) are partitioned along different dimensions.
This tensor needs to be redistributed. The redistribution cost tr cost is usually estimated by the
multiplication of the data size and the known bandwidth.

Limitations

The above methodology seems understandable and practical: it only requires building an accurate
cost model and performing a profiling task to search for the optimal strategy. Experiments show that
optimal hybrid strategies of specific DNN models can be found in this way.

Though promising, the following facts limit the generality of these approaches:

• For one operator, all the dimensions of its tensors are splittable. The possible partition dimensions
for a DNN model increase exponentially with regard to the number of devices. This fact caused
high searching complexity for step 4) and an unacceptable profiling task for step 3) for large-scale
training (e.g., on 256-2048 devices cluster).

• The profiling results of an operator are heavily dependent on the hardware. Re-profiling is needed
when the DNN model and training accelerators change. If the unacceptable profiling task (e.g.,
more than 24 hours for 64 devices [97]) is repeated at every training attempt, it is a disaster for the
AI researchers.

• It is hard for these approaches to model the new enhancement techniques like communication and
computation overlap. Based on the profiling result without modeling, such kind of optimization
may lead to sub-optimal results.

These methods can obtain good results on small-scale models thanks to the accuracy of the cost
model. But this genuine cost model depends on the precise profiling task. When the search space and the
profiling task become large, it is not easy to balance accuracy and generality with this methodology. To
make these methods more general, either the accuracy of the strategy is pursued, which brings in NP-hard
complexity and unacceptable profiling efforts, or the search space and the cost model are simplified, with
simulated value instead of profiling. If this methodology aims to guarantee the accuracy of the strategy,
it will face an NP-hard complexity and unacceptable profiling work to the search. But to finish the plan
search within acceptable time limits, it needs to reduce the search space, abstract the cost model, and
add simulation value instead of profiling. For example, [97] reduces its searching space by limiting the
operator-level hybrid parallel plan to a mixture of only two 2-parts dimensions (e.g., MatMul has three
possible partition dimensions and Conv has 7) which significantly reduces the searching space but may
miss the optimal results. It announced that the profiling task for a 64 accelerator cluster for a GPT-like
model is more than 24 hours. To reduce that, it applies a simulation function to estimate the execution
time instead of profiling all the cases. These two examples help reduce the profiling time and searching
complexity but introduce inaccuracies.

Due to the strict limitation caused by the pre-defined cost model and combined profiling task, the
existing approaches lack portability and generality. Building a concrete and accurate cost model is
simple, but it throws the complex problem into the hands of the search algorithm and profiling work.
The increased number of devices results in a polynomial increase in the complexity of the search and
the amount of profiling work. Not to mention, profiling is not reusable; changing devices and networks
requires re-profiling. As a result, a more general method for new DNNs with different environments is
demanded.

2.5 Conclusion

This chapter first introduced the background of distributed deep learning, starting with the rise and
development of deep learning, and gave a basic definition and characteristics of deep neural networks. This
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chapter then represents the basic definitions of distributed parallelism, including computational graphs,
operators, tensors, etc. In addition, several standard parallel training plans are also described, including
data parallelism, OMP, and graph-level model parallelism (pipeline parallelism). Manually designing
parallel plans is labor-intensive and challenging, so automatic parallel plan search methods have become
a hot research topic in academia. This chapter introduces representative operator-level, graph-level, and
joint plan search schemes in recent years and explains the limitations of the related approaches. Based on
the above descriptions, this thesis proposes an automatic policy generation method based on a parallel
computing model, which will be described in the subsequent chapters.
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Chapter 3

Parallel computing model for
distributed deep learning

3.1 Introduction

In Chapter 2, representative automatic parallel plan search approaches in the scientific community are
presented, and the shortcomings of these profiling-based methods are presented in Section 2.4.4. Their
main limitation is that they don’t create an analyzable model for the parallel plan search problem. The
cost model is unsplittable, which mixes the parallel details with the hardware characteristics. Therefore,
the variables in the cost model can only be obtained through profiling the high-complexity possibilities on
real devices, which invokes unacceptable searching time. These approaches may miss the optimal parallel
plan by rule-based reducing the search complexity.

In order to overcome the shortcomings of these methods, this thesis aims to propose a method that
can efficiently generate hybrid parallel plans without the need for expensive profiling preparation. The
main idea is to create a specific parallel computing model to describe the parallel machine and distributed
training details. The parallel computing model proposed in this thesis is based on the well-known model in
the field of parallel computing: Bulk Synchronous Parallel (BSP) model [83]. BSP models the distributed
training process and the training cluster individually, thus avoiding the profiling process by decoupling
the hardware and software. The model also creates a symbolic cost model as an evaluation criterion for
the parallel plan decision. According to the abstract machine and AI domain-specific knowledge, this
symbolic cost model will first be transformed and reduced. The profiling values will be substituted in the
reduced-cost model, simplifying the profiling task and increasing search complexity. The main advantage
of this model is that it offers a flexible model that can balance the search complexity and accuracy well.

his chapter is organized as follows: First, the background of the parallel computing model is introduced
and followed by the typical computing models, including PRAM, BSP, and LogP model. Next, the
abstract machine of this thesis is introduced for DNN distributed training, whose structure is hierarchical
and symmetric for modern AI training clusters. The execution model built for the distributed training
process and the underlying cost model are presented in Section 3.4.2. Finally, Section 3.4.3 introduces a
basic cost model for distributed deep learning.

3.2 Basics of parallel computing model

A computing model helps algorithms to be designed, analyzed, and efficiently compiled in a high-
level language and finally implemented in hardware. The von Neumann model [69] is a serial computing
model that effectively separates the work of the hardware designer from that of the software engineer.
The hardware designer can design a variety of von Neumann machines without regard to the software
being executed, and the software engineer can write a variety of programs that can be executed efficiently
on the von Neumann model without regard to the hardware being used.

A parallel computing model usually refers to the abstraction and formalization of the analysis of
parallel computing. Under the conception of a parallel computing model, the abstract machine describes
the essential characteristics of various parallel computers (or at least a particular category of parallel
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computers); the execution model describes the design and behaviors of parallel algorithms in the model;
the cost model helps to evaluate the performance of the parallel computing model. In a broader sense,
a parallel computing model provides an ‘interface’ for hardware and software in parallel computing.
This interface is actually an abstraction that hides the complicating details but just keeps the main
characteristics. Under the convention of this ‘interface,’ parallel system hardware designers and software
designers can develop mechanisms to support parallelism and thus improve the system’s performance.

However, there is no parallel computing model as widely accepted and used as von Neumann’s machine
for parallel computers. The popular parallel computing models are either too simple and abstract or too
specialized, and none of them can effectively promote the development of parallel computing. Therefore,
either a more practical and general parallel computing model that can reflect modern parallel computers’
performance can be developed, or a precise parallel computing model for a specific application domain
can be created.

The roles of parallel computing models are:

• The fundamental of the conception of the parallel algorithms Usually, a parallel algorithm designer
can conceive many different algorithms for the same problem to fit the problem’s solution on different
models and analyze and evaluate the merits of parallel algorithms. The design and analysis of
parallel algorithms depend on parallel computing models.

• Provide a simple and convenient framework for analyzing parallel algorithms The parallel comput-
ing model abstracts the basic features of a class of parallel computers, avoiding the limitation of too
many tedious details of hardware structures, ensuring its generality in a considerable range while
reflecting the main features of different algorithms, providing inspiration, guidance and evaluation
basis for the design of algorithms.

• Enabling the design of parallel algorithms with both flexibility and accuracy Computing model
allows parallel algorithm designers to avoid a wide variety of specific parallel computing structures.
On the one hand, this allows the developer to concentrate on developing the parallelism inherent
in the application problem itself and analyzing the algorithm’s performance; on the other hand,
the designed algorithm has generality, thus making the research of parallel algorithms a relatively
independent activity.

As shown in the Figure 3.1, the relationship between the parallel computing model and the other
models in the parallel system is as follows.

• Machine model : the lowest level of the parallel model, including the hardware and operating system
description.

• Architecture model : describes the interconnection network and its role and the form of commu-
nication completion, but not the implementation details. It also defines whether the computer is
synchronous or asynchronous, SIMD or MIMD architecture [22], or other architectural features. It
is a higher level of abstraction than the machine model.

• Computing model : describes the cost and resources of the abstract machine for designing and
analyzing algorithms and predicting algorithm performance; it is a higher level of abstraction.

• Programming model : the highest level of abstraction, describing computation in terms of the se-
mantics of some programming language. For example, in the deep learning domain, the DL frame-
works [2, 1] offer the domain-specific language based on python which allows the users to create
their DNN model easily.

The purpose of building a computational model is to be able to decouple the parallel hardware from the
distributed algorithms. It allows the designer to analyze the parallel hardware and distributed algorithms
‘independently’. Here, ‘independently’ means the parallel experts can analyze the performance algorithm
based on a good abstraction of the hardware. The advantages of this ‘independent’ analysis are that it
is more general because it is not only for specific hardware and it is easier to analyze because there is
no need to have the profiling value of all the cases. The guidelines to be followed in establishing the
parallel computing model: (1) It should be simple and easy to use for users. (2) It can correctly reflect
architectural characteristics.
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Parallel Algorithm A parallel algorithm is a collection of multiple processes that can be
executed simultaneously, which interact and coordinate their work to
achieve the solution of a given problem. From different perspectives,
parallel algorithms can be classified into different categories: numerical
and non-numerical parallel algorithms; synchronous, asynchronous and
distributed parallel algorithms; shared-storage and distributed-storage
parallel algorithms; deterministic and stochastic parallel algorithms, etc.

Numerical Computing It is a class of numerical computation problems such as matrix computa-
tion, polynomial valuation, and solving systems of linear equations based
on algebraic relational operations. The algorithm for solving numerical
computation problems is called Numerical Algorithm.

Non-numerical Computing It is a class of computational problems based on comparative relational
operations, such as symbolic processing problems like sorting, selection,
searching, and matching. The algorithm for solving non-numerical com-
putational problems is called a Non-numerical Algorithm.

Synchronized Algorithm Synchronized Algorithm is a class of algorithms in which the execution
of individual algorithm processes must wait for each other.

Asynchronized Algorithm Asynchronized Algorithm is a class of algorithms in which the execution
of each algorithm process does not have to wait for each other.

Communication Communication is the spatial exchange of data between multiple con-
currently executing processes.

Synchronization Synchronization is the temporal forcing of a group of executing processes
to wait for each other at a certain point. During the asynchronous
execution of processes in a parallel algorithm, the programmer needs
to set the synchronization point at the right place in the algorithm to
ensure the processors’ correct working order and access to the shared
resources (mutually exclusive access to resources). Synchronization can
be achieved by software, hardware, or firmware methods.

Table 3.1: Some fundamental concepts of parallel programming

3.3 Typical parallel computing models

Some essential and typical parallel computing models include the PRAM (Parallel Random Access-
Machine) model [90], the BSP (Bulk Synchronous Paralle1) model [83], and the LogP model [14]. A
significant question that needs to be answered through their development is how to accurately reflect
the communication overheads specific to parallel machines. These models are generally used for homoge-
neous systems. The computational model of the recent development of heterogeneous systems, e.g., grid
systems, is generally based on the extension of the BSP model.

3.3.1 Parallel random access machine (PRAM)

The most influential early computing model is the PRAM model. Because it ignores synchronization
and communication overheads, the PRAM model is a theoretical model that cannot be used to model
memory hierarchies or message-passing systems and is difficult to apply in real-world scenarios. PRAM
is a natural extension of the sequential von Neumann memory program model, consisting of several
processors with local and shared memory with unlimited capacity, which is controlled by a standard
clock and operates synchronously. This is shown in Figure 3.2.

In the PRAM model, it is assumed that there exists a shared memory with infinite capacity and a finite
or infinite number of processors with the same function, and they all have simple arithmetic operations
and logical evaluation functions. The processors can interact with each other at any moment through
the shared memory unit. The PRAM model can be divided into the following categories according to the
restrictions on the simultaneous reading and writing of the shared memory unit by the processors:

• PRAM-EREW : Exclusive-Read and Exclusive-Write PRAM
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Figure 3.3: Bulk synchronous parallel machine (BSP)

communication. It is unrealistic to assume that each processor can access any memory cell per
unit of time while omitting practical, reasonable details such as resource contention and limited
bandwidth.

• The PRAM model assumes an infinite number of processors and no overhead for increasing the
number of parallel tasks.

• It fails to describe the threaded and pipeline prefetching techniques, the two most common tech-
niques used in parallel architectures today.

Generalizations of the PRAM model

As the understanding of the PRAM model deepened, some generalizations were made so that it could
be closer to the actual parallel computers. The main ones are

• The memory contention model divides memory into modules, each of which can handle one access
at a time so that memory contention can be handled at the storage module level.

• The latency model takes into account the communication delay between the moment when infor-
mation is generated and the moment when it can be made available.

• The local PRAM model considers communication bandwidth and assumes that each processor has
unlimited local memory and that accessing global memory is relatively expensive.

• The hierarchical storage model treats memory as hierarchical storage modules, each characterized by
size and transfer time, with multiprocessors organized into a module tree and individual processors
as leaf nodes of the tree.

• The asynchronous PRAM model, where there is no uniform global clock among the processors.

Although PRAM is now a very impractical model for parallel computing, it has been widely accepted
and used in algorithmic analysis. Thanks to the PRAM model, the classical parallel algorithms are
defined. The following are very successful BSP use cases
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packet), and L is the barrier synchronization time (note that in the BSP cost model, the I/O time is not
taken into account). Therefore, in the BSP calculation, if s supersteps are used, the total running time
is

TBSP =

s−1
∑

i=0

wi + g ×
s−1
∑

i=0

+s× L

This performance equation is simple and convenient for algorithm and program analysis.

Evaluations of the BSP model

• In parallel computing, Valiant also tries to build a bridge between software and hardware similar
to a von Neumann machine. It argues that the BSP model can serve such a purpose, which is why
the BSP model is often called the bridge model.

• In general, the MIMD distributed storage model [22] is difficult to program. Still, the BSP model
presents significant advantages in programmability if computation and communication can be suit-
ably balanced (e.g., g = 1).

• Some important algorithms (such as matrix multiplication, parallel preorder operations, FFT, and
sorting) have been directly implemented on the BSP model, and they all avoid the additional
overhead of automatic storage management.

• The BSP model can be effectively implemented on hypercube networks and optical cross-switch
interconnect technologies, showing that the model is independent of the particular technology im-
plementation, as long as the routers have a special communication throughput rate.

• In the BSP model, the length of the superstep must be able to accommodate arbitrary h-relation,
which is the least preferred adequate.

• In the BSP model, a message sent at the beginning of a superstep can only be used at the next
superstep, even if the network delay is shorter than the length of the superstep.

• the assumption of global barrier synchronization in the BSP model is supported with special hard-
ware, which may not have corresponding hardware in many parallel machines.

• The programming simulation environment proposed by Valiant may not have a small constant
during algorithm simulation. This constant may be extensive if inter-process switching is considered
(which may involve setting registers and possibly some cache).

Based on all the advantages discussed above, the BSP model is considered the most promising
model for parallel computing BSPLib [27], Apache Hama [75], and Pregel [50] from Google.

3.3.3 LogP model (LogP)

The LogP model was proposed by Culler et al. in 1993 [14]. It considers the shared storage paradigm
and the message passing paradigm as consisting of multiple processors with local memories connected
through a network. In the case of shared storage, messages are generated by accessing non-local memory.
This model has had a significant impact, and many parallel algorithms have been designed using it.

According to the trends of technological development, one of the mainstays of parallel computer de-
velopment in the late 1990s and in the future is the massively parallel machines, or MPCs (Massively
Parallel Computers), which consist of thousands of powerful processor/memory nodes connected through
interconnected networks with limited bandwidth and considerable latency. Therefore, we should model
parallel computing with this situation in mind so that the model-based parallel algorithms can run ef-
ficiently on existing and future parallel computers. According to the existing programming experience,
existing programming approaches such as shared storage, message passing, and data parallelism are pop-
ular. However, there is not yet an accepted and dominant programming approach, so a computing model
independent of the above programming approaches should be sought. Furthermore, according to the
existing theoretical models, the shared-storage PRAM model and the SIMD model [22] of interconnected
networks are not yet appropriate for developing parallel algorithms. Because they neither include the
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case of distributed storage nor take into account practical factors such as communication and synchro-
nization, thus they also do not accurately reflect the behavior of algorithms running on real parallel
computers. Therefore, in 1993, D. Culler et al. proposed a multi-computer model with peer-to-peer com-
munication based on analyzing the characteristics of distributed storage computers. It fully illustrates
the performance characteristics of interconnection networks without involving specific network structures
and assumes that algorithms must be described in terms of realistic message-passing operations.

The LogP model is a multiprocessor model for distributed storage, and point-to-point communication,
in which four main parameters describe the communication network.

• L (Latency) denotes the upper limit of the waiting or delay time required for a message (one or
several words) to be communicated between the source processor and the destination processor.

• o (Overhead) indicates the time overhead (including operating system core overhead and network
software overhead) for the processor to prepare to send or receive each message. During this time,
the processor cannot perform other operations.

• g (Gap) The minimum time interval that a processor sends or receives messages twice in a row, the
reciprocal of the microprocessor communication bandwidth.

• P (Processor) processor/memory module number

Assuming that one cycle completes a local operation and is defined as a unit of time, then L, o, and
g can all be expressed as integer multiples of processor cycles.

Features of the LogP model

• Captures the performance bottleneck between the network and the processors. g reflects the com-
munication bandwidth, with at most L/g messages per unit time capable of inter-processor trans-
mission.

• The processors are asynchronous, and synchronization is accomplished by inter-processor messaging.

• Some reflection of multi-threading technology. Each physical processor can emulate multiple virtual
processors (VPs), and computation does not terminate when a VP has an access request. Still, the
number of VPs is limited by the communication bandwidth and the overhead of context switching.
The network capacity limits VPs, and there are at most L/g VPs.

• The message delay is uncertain, but the delay is not greater than L. The waiting time experienced
by the message is unpredictable, but in the absence of blocking, the maximum does not exceed L.

• The LogP model encourages programmers to adopt good plans such as job allocation, computation
and communication overlap, and balanced communication patterns.

• The actual running time of the algorithm can be predicted.

Disadvantages of the LogP model

• The communication patterns in the network are not described deeply enough. For example, re-
transmitted messages may occupy total bandwidth, and intermediate router cache saturation is not
described.

• The LogP model mainly applies to the design of message-passing algorithms. The shared storage
model considers the remote read operation as equivalent to two message passes without considering
the pipeline prefetching technology, data inconsistency caused by Cache, and the impact of the
Cache hit rate on computation.

• The contextual overhead of multi-threading techniques is not considered.

• The LogP model assumes communication with a point-to-point message router, which increases the
burden on the programmer to consider the relevant communication operations on the router.
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3.3.4 Comparison of LogP model and BSP model

BSP treats all computation and communication as an overall behavior rather than an individual be-
havior of separate processes and communications. BSP uses delayed communication of each process to
combine individual messages into a communication entity as large as possible, routed and transmitted,
called large overall synchronization. It simplifies the design and analysis of algorithms (programs) but
simultaneously sacrifices runtime because delayed communication means that all processes must wait for
the slowest. An improved approach is to use subset synchronization, i.e., to divide all processes into
subsets according to their speed so that the large overall synchronization evolves into synchronization
within subsets. If the subsets are so small that each set contains only senders/receivers of messages, it
becomes asynchronous individual synchronization, as described by the LogP model. That is, if the over-
head caused by individual communication is taken into account in BSP and the barrier synchronization
is removed, it becomes LogP, which the following equation can illustrate:

BSP + Overhead− Barrier = LogP

L.G. Valiant, the author of the BSP model, theoretically proved that parallel computing does not
need to be optimized at the single-message level (e.g., LogP model). The gains in time do not outweigh
the drawbacks in computational performance that are difficult to analyze and predict. Currently, ques-
tions about the BSP model focus on two points. The first point is whether the latency to a particular
communication point can be the leading cause of performance degradation. Another questioned point is
about the synchronization barrier frequency. Proponents of the BSP model have investigated these two
issues, arguing that latency provides more opportunities to optimize communication. The use of commu-
nication aggregation and global communication synchronization can reduce congestion and competition.
The main reason the synchronization barrier is more expensive for systems with shared storage structures
is that most of the current underlying software does not support access to the corresponding hardware.
However, in any case, the cost of the synchronization barrier can be partially offset by discounting it to
global communication.

The BSP and LogP models are essentially equivalent and can be simulated with each other: the
computations performed by LogP are usually a constant multiple slower when using BSP to simulate
those performed by LogP and logarithmically slower when using LogP to simulate those performed by
BSP. Intuitively, BSP offers more algorithm design and analysis conveniences, while the LogP model
offers more control over machine resources. The loss in accuracy that BSP brings is acceptable compared
to the advantages it can offer in a more structured programming style. In summary, the BSP model
wins more favor due to its simplicity, performance predictability, portability, and structured nature of
programming.

3.4 Hierarchical and symmetric model for distributed deep
learning (HSM2DL)

This section introduces HSM2DL, which stands for the hierarchical and symmetric model for dis-
tributed deep learning. HSM2DL is an extension of the BSP parallel computing model designed for the
hybrid parallel policy generation problem for neural networks. This BSP-based extension is designed for
the problem of hybrid parallel plan generation. In the Section 3.5, the problem that HSM2DL aims to
solve is defined, including the inputs and the search range of parallel plans. The Section 3.4.1 introduces
the computer clusters used for large-scale training in deep learning and their architectures and features.
This thesis proposes a hierarchical and symmetric abstract machine model to describe the features and
connections of physical machines. Based on this abstract machine, the parallel algorithm analysis can
be independent of the actual physical hardware and thus can circumvent the expensive profiling process.
Section 3.4.2 describes the execution model of HSM2DL based on the BSP model. The execution model
describes data, operator-level model parallelism, and pipeline parallelism. Section ref introduces a simple
cost model of HSM2DL and describes how it simplifies and transforms the operator-level cost model
based on the abstraction machine. Two typical operators, MatMul and Conv, are given as examples to
demonstrate the symbolic cost model.
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Figure 3.5: A typical DNN cluster

3.4.1 Abstract Machine

The design of abstract machines is based on the characteristics of real physical hardware. This thesis
summarizes the characteristics of computer clusters used in academia and industry to train large-scale
neural networks. This thesis will follow the two key observations that serve as the basis for the abstract
machine. First, because of the intensive computation in neural networks, the training of the DNN model
requires large-scale cluster computers, even up to cluster sizes of 1024 or 2048. The computation of dis-
tributed training is regular, and in addition, distributed training requires parameters to be synchronized
between devices, so these clusters are usually using homogeneous accelerators and devices as a way to
ensure load balancing. The second key point is that the network topology of the clustered computers has
two main characteristics: symmetric and hierarchical characteristics [86]. These two characteristics are
a common practice in data center network design [3] and also can be seen in supercomputer [19, 93] or AI
training accelerator clusters[47, 59]. Figure 3.5 shows the architecture of a classic AI training accelerator
cluster. The homogeneous devices within the server are connected to the first-level switch (such as a PCIe
switch or NVSwitch). The second-level switch is typically named top-of-rack (ToR), and the network
connections within each layer are also often homogeneous.

Motivated by this architecture, HSM2DL proposes an abstract machine for distributed training clus-
ters of neural networks. The primary feature of this abstract machine is that it is symmetric and hi-
erarchical. In this abstract machine, we assume that the network components (accelerators, switches,
etc.) at each level of the device tree are isomorphic. The characteristics of this abstract machine can be
summarized in the following three points:

• The computational capacity (FLOPS) of the homogeneous devices is the same.

• The communication capability inside each hierarchical level is the same.

• The communication capability between hierarchical levels is different, and the higher the level, the
worse the communication capability.
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parameters. The iterative process of training one mini-batch is called Forward/Backward Propagations
(FPG/BPG). An FPG computes a mini-batch of inputs across the DNN to get outputs. A BPG starts
from the last operator back to the first operator and updates the parameters according to the Loss
Function.

Figure 3.6 and Figure 3.7 abstract the neural network training as a partitionable square, where its
x-axis represents the input data of the neural network, and partitioning x is equivalent to cutting the data
of a batch. Y-axis represents the intra-operator dimension, and the partitioning of the y-axis is equal to
the intra-operator partitioning. Z-axis represents the whole computational graph from the input to the
output, which denotes the inter-operator dimension. Partitioning the z-axis is equivalent to partitioning
different operators onto different subgraphs. The cubes in the two figures include the process of forward
propagation, loss function, backward propagation, and operator update. The areas marked in red in
the diagram are the main cost areas arising from the cuts. The following list describes each base cut’s
execution logic and cost generation.

The description of the three standard parallel plans is the following:

• Data Parallelism (DP): In data parallel, each device possesses a DNN model replication. A mini-
batch is distributed equally across the devices. Each device computes a subset of the mini-batch
separately. Because each device has a complete replica of the DNN model, no communication
cost is incurred in the forward and backward propagation. Because each device trains a different
subset of the mini-batch, the updated parameters are different on each device at the end of the
back-propagation. In order to obtain the same results as training a mini-batch on a single machine,
parameter synchronization needs to be performed for devices that have different mini-batch sub-
sets (as indicated by the red markings in the left panel of Section 3.6), and standard methods are
parameter server [72] and all-reduce set communication [96]. The computation can hide the commu-
nication cost of parameter synchronization with the help of all-reduce overlap techniques Chapter 5,
thus improving training efficiency. Because each device has the complete model and parameters,
data parallelism does not significantly reduce memory usage. DP is inefficient for DNNs with large
parameter sizes because of the time required to synchronize the updated parameters. Parameters of
the DNN will be synchronized at the end of each BPG. Note that asynchronous parameter updates
will not be considered, as it is impractical in critical industrial applications for convergence reasons
[20].

• Model Parallelism - operator level (OMP): Unlike data parallelism, operator-level model parallelism,
also called operator parallelism, allows each device to have a complete mini-batch during training
so that no additional communication occurs when parameters are updated. By assigning operators
and parameters to different devices, operator parallelism also helps to solve the problem of saving
memory usage and supporting training on larger devices. However, because the operators are
partitioned, and additional point-to-point and rescheduling communication is generated during
forwarding and backward propagation (as shown in the labeling of Section 3.6(b), the computational
performance is heavily dependent on the quality of the slicing. In practical partitioning, there may
be several different operator parallelism plans for a given operator, and the resulting cost needs to
be analyzed on a case-by-case basis, as described in detail later in the cost model section.

• Pipeline Parallelism (PP): The Pipeline model parallelism parallelizes the computational graph
of a DNN model into several computational subgraphs, each of which is called a stage, and each
stage consists of a set of connected operators. In addition to partitioning the stages, PP minimizes
the latency due to computation dependencies by dividing mini-batches into micro-batches and
training them in a pipelined manner. In Fig.3.7(b), F1.0 (i.e., FPG of the second sub-model’s
first micro-batch) is trained in the pipeline with F0.1. PP helps large models adapt to limited
memory. Its communication occurs only at the boundaries between sub-models. PP leads to non-
negligible Bubble Time unlike traditional pipelining due to data dependencies. The calculation of
F1.0 requires waiting for the result of F0.0. In addition, the calculation of B0.3 (i.e. the BPG of
F0.3 ) cannot start before B1.3 is finished. The ratio between bubble time and computation time is
referred to as Bubble Ratio. The scalability of the PP is affected by the number of operators in the
DNN. Communication between different stages will be ignored in our modeling because they are by
nature small. Modeling this communication is feasible but would add additional inaccuracies and
reduce search efficiency, which is therefore not discussed here.
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described and can also be used as a basis for designing a cost model that can be used as a criterion to
select the optimal hybrid parallel plan.

3.4.3 Symbolic cost model

HSM2DL proposes the following double level symbolic model where MS and SS denotes respectively
MicroStep and SuperStep:

CostMS = αqx + β(qc + qr) (3.1)

CostSS = Rb

∑

CostMS + γβ
∑

qs, (3.2)

• α is the abstract variable that reflects the computation capacity ratio of the training accelerator.

• β is the abstract variable that reflects the communication capacity ratio of the training accelerator.

• γ is an abstract parameter reflecting the relationship between synchronization with FPG/BPG. It
varies with the structure of the DNN model, and the implementation of the communication com-
putation overlap technique of the DL framework will affect its value. Section 5.2 is an exploration
of it.

• Rb is the Bubble Ratio of the SuperStep, which is vital for evaluating graph-level pipeline parallel
plan search. It is detailed in Chapter 6.

• qx signifies the amount of local computation excluding the communication time.

• qc denotes the quantity of data that needs to be transferred between devices, known as the com-
munication quantity of each operator.

• qr denotes tensor redistribution quantity when one tensor is shared by two connected operators and
is assigned a different parallel plan by the two operators, respectively.

• qs denotes the number of parameters to be synchronized, which is also a kind of communication.

CostMS describes the execution cost of an operator, including the computing cost and the commu-
nication cost. The communication cost comprises the cost caused by the partitioned computation and
the redistribution cost caused by two operators assigned different plans. On the other hand, CostSS is
composed of the summation of the CostMS of all the operators multiplied by the bubble ratio and the
synchronization cost.

This double level symbolic model could be used as a metric for parallel plan searching: For operator-
level parallel plan search, without pipeline bubble, Rb is fixed to 1, and this cost model can be used as
the main metric for operator-level search and is detailed in Chapter 4. Chapter 6 will introduce how to
use CostSS for graph-level parallel plan search.

The above symbolic cost model can be used as a metric to evaluate the cost generated by the dis-
tributed training and helps to choose the optimal parallel plans. However, to use this cost model directly,
it goes back to the methodology of the related works. The advantage of this symbolic cost model is that
the hardware and implementation parameters (α, β, γ) and the parallel parameters (Rb, qx, qc, qr, qs) are
distinguished. All these parameters can be regarded as a mathematical function that could be redefined,
simplified, and transformed according to abstract machine and AI domain-specific knowledge. The sim-
plification and transformation first help reduce the search complexity without losing accuracy and also
avoid profiling each operator. A detailed introduction and comparison of HSM2DL’s methodology are
presented in the next section.

3.5 Inputs and parallel plan range of HSM2DL

3.5.1 Planner input

The hybrid parallelism planner of HSM2DL takes the following inputs:
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• A directed computational graph given by DNN frameworks.

– The graph G = (V, E) where V is the set of vertices and E is the set of edges.

– A vertex v ∈ V represents a DNN operator (e.g., Matrix Multiplication, Convolution and
ReLU), which contains a set of tensors (denoted by Tv)

– A tensor is denoted by t. Each tensor has a shape: t.shape, which is an integer vector where
each integer represents the size of a dimension of the tensor

– Each edge e = (u, v) ∈ E corresponds to a data transfer: operator v requires the output of u
as its input

• Device parameters that describe the device’s computation, memory and communication perfor-
mance characteristics. These parameters include

– the number of devices N

– device memory capacity M

– device floating-point-operations-per-second (FLOPS) α

– device network bandwidth β

– the ratio of overlapping gradient synchronization with computation r where 0 ≤ r ≤ 1, and
this ratio is decided based on the computational graph and the devices being used

– the number of micro-batches K in a pipeline parallelism system

The above inputs are designed to be model-agnostic and can be obtained from DL frameworks directly.
We can thus avoid requesting users to define model-specific parameters when using the planner, making
this planner easy to be adopted by a large number of framework users.

3.5.2 Hybrid parallelism plan

Given the above inputs, the planner aims to compute a hybrid parallelism plan to minimize the epoch
time of training a DNN. A hybrid parallelism plan P = (Pg,Po) comprises:

• A graph-level plan Pg = (S0, . . . ,Sl−1) that partitions the input computational graph into a col-
lection of l continuous pipeline stages S0 ∪ · · · ∪ Sl−1. Each stage contains a series of consecutive
operators.

• An operator-level plan Po is the set of pv, where pv is an operator configuration (formally defined
in Definition 3.5.2) that denotes how to partition the multiple dimensions (e.g., data and model
dimension) of each operator v ∈ V .

Definition 3.5.1 (Tensor configuration). For an m-dimensional tensor t, the tensor configuration pt =
⟨d0, . . . , dm−1⟩ is a vector of m integers, where di, 0 ≤ i < m denotes the number of partitions along
dimension i.

Definition 3.5.2 (Operator configuration). For an operator v with n input tensors, the operator con-
figuration pv = ⟨pt0, . . . , p

t
n−1⟩ is a vector of n tensor configurations.

Note that not all operator configurations are valid. For example, ⟨⟨1, 2⟩, ⟨1, 1⟩⟩ is an invalid config-
uration for Op 0 in Figure 3.9 because the dimension of the partitioned first tensor mismatch with the
corresponding dimension of the second tensor.

Figure 3.9 shows an example where the planner takes a graph and device parameters as inputs. This
graph contains two MatMul operators (i.e., Op 0 and Op 1). The planner needs to generate a plan
that combines pipeline, data, and model parallelism. The plan consists of graph-level sub-plan pg and
operator-level sub-plan po. pg = (S0 = {v0},S1 = {v1}) implies that the computational graph is divided
into l = 2 pipeline parallelism stages, where Op 0 is assigned to stage 0 and Op 1 to stage 1. Along with
pipeline parallelism, po describes the operator-level plan for each operator v ∈ V . pv0 = ⟨⟨2, 1⟩, ⟨1, 1⟩⟩
indicates that the first tensor of Op 0 is partitioned on the batch dimension (first dimension) across two
devices (i.e. data parallelism). Similarly, pv1 = ⟨⟨1, 1⟩, ⟨1, 2⟩⟩ indicates that the model dimension (second
dimension) of the second tensor of Op 1 is partitioned across two devices (i.e. model parallelism).
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In a nutshell, simplifying modeling throws the problem’s complexity to the search algorithm and the
profiling effort. This approach is systematically customized and has no way to balance accuracy and
generality, thus losing the possibility of future optimization.

3.6.2 HSM2DL’s methodology

The related works cannot find the balance between accuracy and complexity because, from the point
of view of an AI expert, the operators are the minimal unit to be evaluated in the cost model analysis.
Besides, they only model the cost but not the hardware machine. When the hardware characteristics and
the parallel plans are combined, the variables in the cost model can only be obtained through profiling.
Therefore, either they go through the unrealizable search space to get an accurate result, or they reduce
the search space to lose the possibility of finding the optimal parallel plan.

The insight of HSM2DL is to take advantage of the computing parallel model to decouple the hardware
characteristics and the parallel analysis. As shown in Figure 3.10, after creating the cost model of the
execution time (similar to that of the related works), HSM2DL will apply the features of its abstract
machine and AI domain-specific knowledge to simplify and transform the cost model. HSM2DL doesn’t
need the exact execution time to make a parallel plan decision but to compare the extra cost caused by
different parallel plans. In fact, the objective is to choose a better parallel plan instead of an accurate
estimation of the execution time.

Because of such a modeling methodology, the parallel cost analysis is split from the hardware infor-
mation. The heavy profiling task is avoided. Also, the search space is reduced according to the abstract
machine and AI domain-specific knowledge. From the Figure 3.10, it can be conducted that the com-
puting parallel model ensures that the searching space of the searching algorithm is relatively tiny. And
the profiling task is also limited to profiling some fundamental information about the hardware like the
floating-point-operations-per-second(FLOPS) and the actual communication capacity. In fact, the opti-
mality of the founded parallel plan depends on how the computing parallel model is built. Chapter 4
and Chapter 6 detailed how HSM2DL searches the operator-level plan and joint search of op-level and
graph-level, respectively.

An example demonstrates how a basic operator-level symbolic cost model is created. Note that
this example doesn’t do any symbolic simplification so it is actually equal to the cost model of the
related works. The simplification in order to reduce the searching complexity and guarantee the results’
optimality is introduced in Chapter 4.

This equation is an example of an operator-level symbolic cost model (Rb = 1) to compare the
performance of two plans Po on a computational graph G:

C(G,Po) =
∑

vi∈V

(α× qx(vi, pvi
) + β × (qc(vi, pvi

) + γ × qs(vi, pvi
)))+

∑

eij∈E

β × qr(eij , pvi
, pvj

)
(3.3)

The variables in the above equation are:

• α is an abstract parameter representing the accelerator’s real-time computation capacities.

• β is an abstract parameter representing the hardware cluster’s communication capacity.

• γ is an abstract parameter for the ratio of the parameter synchronization overlap.

The value of γ is between zero and one: γ ∈ [0, 1]. If parameter synchronization is not activated
or some DL frameworks do not support this enhancement method, in this case, γ = 1; if the
synchronization quantity is small, which could be totally overlapped under the computation, γ = 0.
Chapter 5 describes how to calculate γ.

• qx(vi, pvi
) denotes the symbolic function of the computation quantity for an operator vi under the

plan Svi
.

• qc(vi, pvi
) denotes the symbolic function of the intra-communication quantity caused by model

(op-level) parallel.
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• qr(e, pvi , pvj ) denotes the symbolic function of the quantity of data redistribution caused by con-
flicting plans of two connected operators.

• qs(vi, pvi
) denotes the symbolic function of the parameter synchronization caused by data parallel.

HSM2DL classes the variables into two categories:

• Profiled hardware parameters: α, β, γ

During the distributed training, the calibrated FLOPS and bandwidth usually cannot be fully used,
and these two values are obtained through profiling the hardware environment. The parameter
synchronization ratio’s value varies regarding the DNN model and DL framework implementation.
The profiled value of these variables would be substituted into the cost model in the last step of
the search.

• Symbolic function of data quantity: qx(vi, pvi
), qc(vi, pvi), qr(e, pvi

, pvj ), qs(vi, pvi)

These symbolic functions reflect the data computing or movement caused by the distributed train-
ing, which are the critical points for evaluating the performance of parallel plans. They are created
in advance of the search for each operator type.

Diverse modern DNN models have come to earth recently, but all of them are composed of the
20+ basic computational operators like MatMul, Conv, etc., and 100+ element-wise operators like
elementary arithmetic Add. HSM2DL classes these operators into 20+ types and analysis their
semantics to build the symbolic cost model. The cost models are built for each operator type under
different plans.

From the above analysis, we can conduct that the symbolic cost model is essentially an abstraction
of the numerical cost model proposed by the related works. The two models 2.1 and 3.3 are basically
the same cost but described in different scope: te(vi, pvi , D) in the profiling-based model is actually the
summation of α× qx(vi, pvi)+β× qc(vi, pvi

) in our symbolic model. ts(vi, pvi
, D) equals to β× qs(vi, pvi)

and tr(e, pvi , pvj
, D) = β × γ × qr(e, pvi

, pvj
).

Therefore, the symbolic cost model can help to find the optimal parallel plan as accurately as the
related works without heavy profiling tasks. HSM2DL quantitatively evaluates the cost of computation,
intra-communication, and redistribution with the defined symbolic cost model. HSM2DL only profiles
the communication and computation capacity of the hardware. However, until now, HSM2DL faces the
same searching complexity. The following chapters Chapters 4 and 6 will introduce how HSM2DL deals
with the searching complexity without losing accuracy. In other words, how HSM2DL overcomes the
disadvantage of the related works is that they cannot balance optimality and feasibility well.

3.6.3 Conclusion

This section first introduces the parallel computing model and illustrates the advantages and shortcom-
ings of typical models such as PRAM, LOGP, and BSP. Then this section proposes a parallel computing
model HSM2DL for deep neural network training is introduced, including the definition of the abstract
machine, the description of the execution model, and the cost model. Finally, by comparing with the
methodology of related work, it is shown that HSM2DL can well handle the balance between complexity
and accuracy in large-scale model parallel plan search.
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Chapter 4

Operator Level Parallel Plan Search

4.1 Introduction

Chapter 2 discusses the standard parallel plans in distributed DNN training and the difficulties of hy-
brid parallel plan searching. Chapter 2 presents current academic work on hybrid plan search. Chapter 3
discusses the parallel computing model and HSM2DL, the bridging-model-based model for deep learning
parallel computing, including its abstract machine, execution, and preliminary cost model.

In a hybrid parallel plan searching, the related works first build a cost model to estimate the execution
time for distributed training on different hybrid parallel plans. These works profile operators’ performance
under different parallel plans on specific hardware. The profiled execution times are directly substituted
into the cost model to select the hybrid parallel plan with the shortest estimated execution time. This ’top-
down’ tuning method may find accurate results on small-scale models, but as the networks become larger
and the number of devices increases, the parallel search time and the amount of profiling work become
unacceptable (>24 hours). The hybrid plan’s quality is reduced if the workload is reduced by manually
compressing the search space and omitting particular possibilities. In other words, this methodology
cannot find a balance between parallel plan search accuracy and complexity and is, therefore, difficult to
apply to industrial production. Another drawback of the methodology of the correlation method is its
poor extensibility. For example, building an operator-level cost model and wanting to extend this model
to support more parallelisms, such as pipeline parallelism, is equivalent to rebuilding a new model from
the top down for the whole problem.

This chapter will describe how we take advantage of the HSM2DL bridge model for hybrid parallel
plan search. In fact, unlike related work that first proposes a concrete cost model and then simplifies it,
HSM2DL starts from a bridging model and builds a symbolic cost model based on an abstract machine.
HSM2DL’s methodology is a bottom-up solution like ‘putting together building blocks’. This bottom-
up modeling methodology allows HSM2DL to balance the search complexity with the optimality of the
parallel plan; on the other hand, the analysis of HSM2DL is modularly extensible and not as customizable
as related work.

A symbolic cost model, equivalent to the cost model of the related work, is introduced in Chapter 3 and
can circumvent the expensive profiling effort. However, the giant search space remains a pressing problem
in operator-level plan searches. It is pointed out in Section 2.3.5 that this search space is exponentially
related to the number of operators and polynomially related to the logarithm of the number of devices.
Section 4.2 will present how HSM2DL proposes a recursive partitioning method based on the symmetry
and hierarchical properties of the abstract machine, which transforms the directly partitioning 2n devices
into n times 2-parts partitioning, compressing the complexity associated with the number of devices to
linear with guaranteed accuracy.

DL frameworks [2, 62, 1] provide good functionalities on data loading, computational graph execution,
and fault tolerance. Some of the frameworks [1, 49] support hybrid parallelism with a manually configured
parallel plan. However, the biggest challenge for these frameworks is how to decide the optimal hybrid
parallel plan automatically. Starting with this chapter, the main focus is on how to use the features of
HSM2DL to perform parallel plan searches and send the results to the DL frameworks.

This chapter gives examples of 2-parts possible partition dimensions and the cost model for the
two typical operators, MatMul and Conv. The cost of redistribution between different operators brings

45



4.2. SYMBOLIC SIMPLIFICATION BASED ON THE ABSTRACT MACHINE

exponential complexity w.r.t the number of operators for the search. Symbolic transformation and sim-
plification based on the third homomorphism are presented in Section 4.3. Furthermore, a flex-edge
graph structure is proposed that can be flexibly ordered to search the high-quality parallel plan in a
heuristic way and within as much control as possible. Section 4.4 demonstrates a double recursive algo-
rithm based on recursive 2-parts partitioning and functional recursive searching, which can compress the
search complexity to linearity and give a near-optimal hybrid parallel plan in a search time of seconds
while ensuring the accuracy of the parallel plan. Section 4.5 demonstrates experimentally that the double
recursive algorithm of HSM2DL can find high-quality parallel plans in linear search time while balancing
search accuracy and complexity.

4.2 Symbolic simplification based on the abstract machine

As shown in Figure 3.10, the most significant advantage of HSM2DL is its ability to simplify the
symbolic cost model based on abstract machine and AI domain-specific knowledge. This feature-based
abstraction does not decrease the accuracy of the search but can significantly reduce the complexity. This
section will describe the recursive 2-parts partitioning proposed by HSM2DL based on the features of
symmetric and hierarchical abstraction machines. This recursive partitioning converts directly partition-
ing the computational graph onto 2n devices into partitioning n times the graph into two parts. On the
other hand, this section discusses how the cost model is reduced based on AI domain-specific knowledge
and that only additional communication costs need to be considered in an operator-level parallel plan
search. Examples of classical operators MatMul and Conv in possible partition dimensions are given in
Section 4.2.2.

4.2.1 Symbolic simplification

As discussed in Equation (3.3), for operator-level parallel plan searching, the cost model is :

Co(G,Po) =
∑

vi∈V

(α× qx(vi, pvi) + β × (qc(vi, pvi) + γ × qs(vi, pvi
))) +

∑

eij∈E

β × qr(eij , pvi , pvj )

For a parallel program, the total cost is the summation of the local computation and communication
costs. The local computation is the process executed locally on each device without external data.
Communication denotes data transferring between devices caused by the distribution.

Before symbolically reducing this cost model by integrating the AI domain-specific knowledge and
the abstract machine characteristics, this thesis focuses on application domains that are widely used in
industries, including computer vision, natural language processing, and recommended systems. Other
computational graph parallelization problems (e.g., scientific computing) are out of the scope of this
thesis.

Within the scope of this thesis, the following are some AI domain-specific facts and assumptions:

• Tensors in DNNs are dense multi-dimensional arrays.

• The operators (e.g., Matmul, Conv, Add, etc.) are massively parallelizable computations. The dense
computation (in contrast to the sparse computation) is able to be evenly parallelized among the
devices. Therefore, it is possible to ensure load-balancing of the computation.

• DL platforms [1] automatically and intelligently control the operators’ mapping and scheduling,
which ensures load-balancing.

Based on the above facts and assumptions, it can be conducted that the number of operations to
perform is constant for any parallel plan and a fixed number of devices. Therefore qx(vi, pvi

) is equal
for any chosen parallel plan on a given number of devices. Recall that the objective of HSM2DL’s cost
model is not to predict the real execution value of a given parallel plan but to be used as a metric
to compare the performance of different parallel plans. It is unnecessary to calculate the real value of
qx(vi, pvi

) to compare different partition plans but the relative costs just need to be compared. Taking
the assumption of the abstract machine that the computational capacity of the training devices is the
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Because the computation cost Cc and the computation capability α are independent of the partition plan
(i.e., α=α′ and qx(vi, pvi

) = qx(vi, p
′
vi
)), we eliminate the first term on both sides to obtain

∑

vi∈V

β × (qc(vi, pvi
) + γ × qs(vi, pvi

)) +
∑

eij∈E

β × qr(eij , pvi
, pvj

) ≥

∑

vi∈V

β′ × (qc(vi, p
′
vi
) + γ′ × qs(vi, p

′
vi
)) +

∑

eij∈E

β′ × qr(eij , p
′
vi
, p′vj )

While generally, network bandwidths vary in modern DNN training clusters, cost models are only used
at the same level in our algorithm, which implies that network capacities are equal for different partition
plans (i.e., β = β′). Therefore, we can further simplify the above equation to

∑

vi∈V

qc(vi, pvi
) + γ × qs(vi, pvi

) +
∑

eij∈E

qr(eij , pvi , pvj ) ≥

∑

vi∈V

qc(vi, p
′
vi
) + γ′ × qs(vi, p

′
vi
)) +

∑

eij∈E

qr(eij , p
′
vi
, p′vj

)

The proof is finished by recalling the definition of Ĉo(G,Po).

In this simplified cost model, the device parameters α, β are eliminated and would not impact the
operator partition plan searching and let the results be robust.

4.2.2 Recursive partitioning

Given the simplified cost model in Equation (4.1), the cost analysis can only focus on the communi-
cation cost. However, it is still too expensive to list symbolic cost functions for all possible configurations
because of the high search complexity. Therefore, this section introduces recursive partitioning, which
partitions a computational graph into 2p parts by recursively partitioning the graph into 2 parts through
p recursive steps.

The parallel plan determines how tensors are distributed into devices. The parallel plan search can be
formalized by logically setting how to input, and output tensors of operators are evenly distributed among
the devices (e.g., GPU0-7 in Figure 4.1). The parallel plans for each level of the recursive tree (GPU
architecture) in Figure 4.1 depend on the number of branches of the architecture. A specific number of
branches acquires a specific set of cost functions. For the related works Section 2.4.3, it is required to
profile each possibility on targeted devices. For HSM2DL, the same number of possible cost functions
could be defined for each operator, but it is an unrealistic task.

However, in the abstract machine defined by HSM2DL, each level of the recursive tree is homogeneous,
like GPU0-3 in Figure 4.1. It can be transformed again into a multi-level tree. Besides, in real academic
and industrial practices, the number of devices is usually a power of 2 to achieve the best performance.
Therefore, the recursive tree can be transformed into a full binary tree, and the partitioning of the
symmetric architectures can be realized by recursive dichotomy. As a result, the cost function defined
for the operators is the cost for each primitive configuration that partitions the operators into two parts.
The examples of cost functions of primitive configurations are given in Section 4.2.4.

Instead of predicting the execution time, the goal is to find the best parallel plan. As a result, it is
sufficient to assume that all devices operate consistently, and minor performance differences between the
same devices can be ignored. Furthermore, the hierarchical abstract machine can be used to decompose
the heterogeneity of symmetric architecture. Based on the assumptions stated above, homogeneity is
applied to all of the 2-part analyses in this thesis.

Definition 4.2.2 (Composition). Let two tensors t, t′ and their configurations pt = ⟨d0, . . . , dm−1⟩, p
t′ =

⟨d′0, . . . , d
′
m−1⟩ of tensor t. The composition of pt and pt

′

is the element-wise multiplication of the two
vectors. Correspondingly, the composition of two operator configurations pv = ⟨pt0 , . . . , ptn−1⟩, pv′ =

⟨pt
′
0 , . . . , pt

′
n−1⟩ of operator v is the element-wise composition of pti , pt

′
i , 0 ≤ i < n.

Definition 4.2.3 (Primitive Configuration). A primitive configuration pρ is an operator configuration
that cannot be composed by other configurations. Also referred to as the 2-parts partitioning configuration
in this thesis. Pv denotes the set of all primitive configurations of v.
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• The composition (Definition 4.2.2) of two optimal parallelism configurations is still optimal. The
proof can be found in Section 4.2.3. Intuitively, this is because the composition of the cost function
is commutative and associative.

Given the above two properties, the idea is to find the optimal configurations step by step. For
example, to find an optimal configuration to partition an operator into 4, first find the optimal primitive
configuration (formally defined in Definition 4.2.3) to partition an operator into two sub-operators and
then find an optimal primitive configuration to partition one sub-operator into 2. Finally, the combination
of two optimal primitive configurations is optimal.

Example 4.2.5. It is obvious that partitioning an operator evenly into 2p parts can be done by dichotomy

with p recursions. Let us take a matrix as an example of a tensor, a matrix partitioned into eight parts

along columns can be the result of partitioning into two parts along columns recursively twice; a matrix

can be partitioned into 2× 2 grids by firstly partitioning along columns and then recursively along rows.

Therefore the recursive 2-part partitioning can be well-mapped to the symmetric architecture.

Definition 4.2.6 (Split). Split specifies the change in variation of the tensor in the operator during the
Composition process. We define the process of applying a configuration ct to tensor t as

split(t, pt) = (t.shape[0]/d0, ..., t.shape[m− 1]/dm−1),

where di ∈ pt, 0 < i < m− 1.

4.2.3 Optimality proof

The section tries to show that the recursive partitioning in Section 4.2.2 can continuously optimize the
quality of a plan by iteratively creating and composing primitive configurations. The initial computational
graph describes the primitive configuration of all the operators. The complexity of this algorithm is
reduced to linear w.r.t the logarithm of the number of devices because, at each step (from 0 to log2 N−1),
only the optimal primitive plan is kept. The recursive partitioning is based on the assumption that per-
step optimality can lead to global optimality. In other words, the optimal operator-level plan combines
the optimal primitive configurations.

Recall the simplified cost model Equation (4.1) here:

Ĉo(G,Po) =
∑

vi∈V

(qc(vi, pvi) + γ × qs(vi, pvi
)) +

∑

eij∈E

qr(eij , pvi
, pvj )

At the operator level, the cost functions qc, qs are pre-defined for the operators v according to their
semantics and shapes. qr is pre-defined to the edge e = (u, v) according to the shape of the output tensor
of u and one of the input tensor shapes of v, and the two tensors are actually the same tensor in the
DNN model. Therefore qr can be bound from the operator v. All these cost functions can be represented
as the following equations:

qx(v, p
ρ
v) = µv

x

∏

pρ∈Pv
L(v, pρ)

L(v, pρv)
, (4.3)

where x ∈ {c, s, r} and µv
x denotes coefficients related to qc, qs, qr for operator v. They vary with different

types of operators. L(v, pρ) denotes the length (shape) of the dimension partitioned by pρ of v, where pρ

is the primitive configuration (Definition 4.2.3).

Theorem 4.2.7 (Per-step optimality leads to global optimality). The optimal operator-level partition

plan Po can be obtained by the composition of optimal primitive configurations p
ρi

V for the set of vertices

V. which is the set of pρi
v for all the vertices v at each step i.

Proof. From Equation (4.1) and Equation (4.3), it can be deduced that the cost of the graph can be
represented as a summation of the qx. The minimum of the summation of independent terms is the
summation of the minimum value of each term. If the per-step optimality for a single operator is proved,
it could be extended to the whole graph.

Therefore, the following proof only concentrates on the per-step optimality of an operator by binding
the redistribution cost qr with its related qc:
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ĉ(v, pρv) = qc(v, p
ρ
v) + γ × qs(v, p

ρ
v) (4.4)

Let L0(v, pρ) be the original length of the dimension corresponding to the primitive configuration pρ,
i.e. at step 0; let fc(piv, pρi

v ) be the function used to calculate the number of appearances of pρi
v in the

previous step i; and let piv =
∏

i p
ρi
v be the configuration of v which is the composition of the primitive

configurations pρi
v chosen at step i of the recursive partitioning.

In Equation (4.3), L is the length of the dimension which would be split (value updation) defined
in Definition 4.2.6:

L(v, pρi
v ) =

L0(v, pρi
v )

2fc(pi
v,p

ρi
v )

.
Transform Equation (4.3) with the above function L for specific step i :

qx(v, p
ρi
v ) =

2fc(pi
v,p

ρi
v )

2i+1

µv
x

∏

pρ∈Pv
L0(v, pρ)

L0(v, pρi
v )

Let Xv be a new constant as follows:

Xv =
(µv

m + µv
s ∗ r)

2
∗

∏

pρ∈Pv

L0(v, pρ)

By substituting the above equations into Equation (4.4), the cost function of an operator v with
primitive configuration pρi

v at step i is represented as:

ĉ(v, pρi
v ) = qc(v, p

ρi
v ) + γ × qs(v, p

ρi
v ) =

2fc(pi
v,p

ρi
v )

2iL0(v, pρi
v )

Xv (4.5)

Due to the symmetry of each workgroup, the cost function of operator v with configuration piv can be
calculated by summing the intra-group costs incurred by each composition primitive:

ĉ(v, piv) =

i
∑

j=0

2jĈo(v, p
ρj
v ) =

i
∑

j=0

2fc(pj
v,p

ρj
v )Xv

L0(v, p
ρj
v )

Function fc is the number of occurrences of one primitive configuration so that we can change the
base of the summation from the recursion steps to the possible primitive configurations pρ ∈ Pv:

ĉ(v, piv) = Xv

∑

pρ∈Pv

∑fc(pi
v,p

ρ)
j=1 2j−1

L0(v, pρ)
= Xv

∑

pρ∈Pv

2fc(pi
v,p

ρ) − 1

L0(v, pρ)
(4.6)

Therefore, from the formulation Equation (4.6), we can deduce that minimizing the cost of a con-

figuration ĉ(v, piv) is equivalent to minimizing
∑

pρ∈Pv
2fc(pi

v,p
ρ)/L0(v, pρ). As

∑

pρ∈Pv
fc(pi

v, pρ) = i, the
searching targets can be transformed to find a number of partition times for each partition primitive
configurations, which are approximately proportional to the length of the related dimensions.

On the other hand, to find the per-step optimal primitive configuration pρi
v in Equation (4.5), the

target is to find the primitive configuration which minimizes 2fc(p
i
v,p

ρi
v )/L0(v, pρi

v ) which equals to find
the primitives whose related dimension has the largest remaining length. By recursively applying the
per-step optimal searching to the algorithm, it is obvious that we could find the same number of partition
times for each primitive configuration approximately proportional to the dimensions.

We can conclude that the minimize goals of Equation (4.5) and Equation (4.6) are the same, so the
per-step optimality can lead to global optimality is thus proved.

4.2.4 Primitive configurations and their costs

This section aims to show how the symbolic cost functions are designed via examples of representative
operators, MatMul, Convolution, and Elementwise operators.

For each primitive configuration, a cost function is defined to return the communication data quantity.
The training of DNN is an iterative process that consists of forwarding and backward propagations.
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Forward Propagation computes the operators with the intermediate parameters from input to output and
calculates the loss, which estimates the distance between the output and the expected value. Backward
Propagation will update the intermediate parameters from output to input based on the loss using an
optimizer like Adam [13].

There exist two kinds of data communication during the DNN training:

• Communication inside operators is the quantity of data needed to be transferred inside an operator.
It is composed of qc and qs. qc is the communication quantity between two groups of devices
during forward propagation. qs denotes the communication for updating the parameters during the
backward propagation process.

• Communication between operators is the communication quantity between two connected operators.
In fact, the output tensor of the previous operator is the same as the input tensor of the second
operator. However, these tensors may have different parallel plans for the two connected operators,
the data may need to be redistributed. qr models this specific communication.

Communication Inside Operators

An operator is defined by a type that describes its computational task (e.g., Type = Add, Conv,
MatMul, Relu, etc.). It takes tensors as input and produces tensors as output. Denote P = {pρ0, p

ρ
1, . . . p

ρ
2}

the set of possible partition dimensions (PPDs) for each type of operator. Each PPD can be converted
to the partition dimensions of all the tensors in an operator.

Define the following notions:

• shape(tensor) denotes the shape of a tensor (e.g., shape(t) = [4; 4]).

• shape(d) denotes the shape of a dimension of a tensor (e.g., shape(d0) = 4).

• inputn denotes an operator input tensor according to its index.

• output denotes the operator output tensor of the operator.

Forward communication qc

Communication occurs when an operator is executed on multiple devices. Each device possesses only
a part of the data. Therefore, data need to be moved between devices to perform the whole computation.
We detail here the most representative operators.

MatMul OP is the operator for Matrix Multiplication, described as:

output[i][j]→
∑

k

input0[i][k]× input1[k][j].

Recall the set of primitive configurations of MatMul in Definition 4.2.3 here:

P = {pρ0 = ⟨⟨1, 1⟩, ⟨1, 2⟩⟩, pρ1 = ⟨⟨2, 1⟩, ⟨1, 1⟩⟩, pρ2 = ⟨⟨2, 1⟩, ⟨1, 2⟩⟩, pρ3 = ⟨⟨1, 2⟩, ⟨2, 1⟩⟩}

If we cut along the output-independent dimension p
ρ
3 = ⟨⟨1, 2⟩, ⟨2, 1⟩⟩, a reduction still needs to occur

to combine the partial results. The dimension cut is not specified for the output (represented with a
diagonal dashed line on purple in Figure 4.3) but still exists. Hence, for any dimension cut, each device
is responsible for computing half of the output tensor. To this end, each device preserves half of its data
and communicates the other half to the other device. As we assume both communications can happen
simultaneously, the communication cost will be proportional to the amount of data communicated by one
of them. The 2-part cost function is as follows:

qc(v, p
ρ
4) =

shape(i)× shape(j)

2
.

If we cut along an output-dependent dimension p
ρ
2, partial results simply have to be concatenated.

However, one input is wholly needed by each device to compute their partial result. As this input will be
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graph recursively. Finding the optimal parallel plan for real-life deep neural networks is impossible in a
reasonable amount of time.

The complexity of this problem is reduced by taking decisions based on local contexts and not ques-
tioning them afterward, which is a greedy method. To mitigate the difference between our cost and the
optimal one, vertices are treated by order of decreasing importance. This way, the most critical vertices
will have a configuration that benefits them the most. Although the less important ones may not benefit
from the best configuration, the global impact on performances will be smaller. In order to justify this
reordering, the algorithm is formulated as a homomorphism that presents the benefit of being computable
in any order.

To do so, the following first introduces how the cost may be computed from a homomorphism of a
vertex list in Section 4.3.1. However, the data-flow representation of the computation is not a list but a
directed acyclic graph (DAG). Morihata [55] showed that the homomorphism theory (and especially its
third theorem) might be extended to trees. The only difference between a tree and a DAG lies in the
number of parents (outputs) that may be more than 1 in a DAG which leads to the existence of several
possible paths from one vertex to another. To remove the existence of these different paths, HSM2DL
propose to consider the spanning tree of the DAG that would select only one of those paths for each case.

Notations

The operator-level parallel plan Po is the set of all parallel plans of the vertices in G and pvi is the
parallel plan of vertex vi in Po. The cost of the computational graph is shown as follows:

costop(vi, pvi
) = α× qx(vi, pvi

) + β ×
(

qc(vi, pvi) + γ × qs(vi, pvi)
)

costrdst(vi, vj , pvi , pvj
) = β × qr(eij , pvi

, pvj
)

(4.7)

This way, equation Equation (4.7) can be rewritten

Ĉo(G,Po) =
∑

vi∈V

costop(vi, pvi
) +

∑

(vi,vj)∈E

costrdst(vi, vj , pvi , pvj
) (4.8)

Remark that if pvj
/∈ Po (because vj has not been seen yet) then costrdst(vi, vj , pvi , pvj

) = 0. Assume
function plan(v) gives the set of possible parallel plans for a given vertex v. We note Po_i<|V | the
configurations of the first i vertices visited. The plan generation consists of taking for each vertex the
parallel plan that minimizes its cost. It may be expressed recursively as

Po_0 = ∅

Po_i<|V| = search(vi, pvi ,G)
costv(vi, pvi

,Po,G) = costop(vi, pvi
) +

∑

(vi,vj)∈E costrdst(vi, vj , pvi
, pvj

)

search(vi,Po,G) = Po ∪ {pvi
} such that pvi ∈ plan(vi) minimizes costv(vi, pvi ,G,Po)

(4.9)

The remaining of this section will express equations Equation (4.9) as a homomorphism. As a prelim-
inary, the following notations are taken from [23]. hom(⊕, f, a)(l) is a homomorphism that maps function
f on each element of l before reducing with the binary operator ⊕ whose first application will be with
initialization element a. For example

hom(⊕, f, a)([x, y, z]) = a⊕ f(x)⊕ f(y)⊕ f(z)

Let us note µ-list, the type of list of elements of type µ. The function will be noted in Curry notation.
For example, f : A→ B → C is the function f that, when applied to an argument of type A, will produce
a function of type B → C that when applied to an argument of type B will produce a value of type C.
Denoting ++ : µ-list→ µ-list→ µ-list as the concatenation operator. The function composition is noted
(f ◦ g)(x) = f(g(x)). To access elements of a pair, we use function first fst(x, y) = x and function second
snd(x, y) = y
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v0 v1 v2 v3 v4
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(b) Rightward processing of costall_rdst

Figure 4.6: Leftward and rightward processing of costall_rdst over a vertex list

Redistribution cost as a homomorphism

We define the leftward operation costall_rdst to compute all redistribution costs of a linear graph (list).
A leftward operation is a recursive operation for which the elements are added to the left (input) side
(see fig. 4.6(a)). To be a leftward operation, costall_rdst needs to be defined in the form

h([v] ++x) = v ⊕ h(x)

with

h : µ-list→ ω-list
⊕ : µ→ ω → ω

The form with the operation costall_rdst leftward is instantiated as follows

costall_rdst = fst ◦ h
h([v] ++x) = v ⊕ h(x)

h([v0]) = (0, v0)

vi ⊕ (c, vj) = (c+ costrdst(vi, vj , pvi
, pvj

), vi)

(4.10)

Suppose that Po such that pvi
, pvj

∈ Po, is a global constant fixed for the whole cost computation.
As the direction of the edges has no influence on the redistribution cost, the function costall_rdst is also
computable rightward (in the output direction, as illustrated in Figure 4.6(b)). A rightward operation
must respect the form

h(x++[v]) = h(x)⊗ v

with

h : µ-list→ ω-list
⊗ : ω → µ→ ω

The form with the operation costall_rdst rightward is instantiated as follows

costall_rdst = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([v0]) = (0, v0)

(c, vj)⊗ vi = (c+ costrdst(vi, vj , pvi
, pvj ), vi)

(4.11)

Thus, by the third homomorphism theorem [23], costall_rdst is a homomorphism because it is defined
both leftward (Equation (4.10)) and rightward (Equation (4.11)).

Cost and plan generation as a homomorphism

The intra-communication cost is defined directly as the homomorphism
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costall_op = hom(+, costop, 0)

Hence, the whole cost of the linear graph (costl) may be defined as the addition of the two homomor-
phisms

costl(l) = costall_op(l) + costall_rdst(l)

The two may also be computed together as

costl = fst ◦ h
h([v] ++x) = v ⊕ h(x)

h([v0]) = (costop(v0, pv0
), v)

vi ⊕ (c, vj) = (c+ costrdst(vi, vj , pvi , pvj ) + costop(vi, pvi), vi)

(4.12)

and symmetrically for the rightward notation.

costl = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([v0]) = (costop(v0, pv0), v)

(c, vj)⊗ vi = (c+ costrdst(vi, vj , pvi , pvj ) + costop(vi, pvi), vi)

(4.13)

In this case, the third homomorphism theorem tells us that costl is a homomorphism because it is
defined both leftward (Equation (4.12)) and rightward (Equation (4.13)). Now that we have shown how
the cost may be formulated as a homomorphism, the plan generation may be in turn written leftward

costl = fst ◦ h
h([v] ++x) = v ⊕ h(x)

h([v0]) =
(

search(v0, ∅, [ ]), [v0]
)

vi ⊕ (Po, L) =
(

search(vi,Po, L), vi ++L
)

(4.14)

and rightward

costl = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([v0]) =
(

search(v0, ∅, [ ]), [v0]
)

(Po, L)⊗ vi =
(

search(vi,Po, L), vi ++L
)

(4.15)

The plan generation being a homomorphism allows us to state that the vertex list (linear graph) may
be processed in any order. This homomorphism may be extended to trees thanks to the work of Morihata
[55] thereby enabling us to consider a much more complex graph topology than a mere vertex list.

Tree homomorphism

For the sake of understanding, this section will simply consider homomorphisms of binary trees defined
in Equation (4.16).

data Tbin = Node (V × Tbin × Tbin) | Leaf (4.16)

In order to define homomorphisms, we need to be able to describe contexts and paths in the tree.
These will be represented thanks to a zipper [33]. A path in the binary tree would be a sequence of left
or right choices that we represent in Equation (4.17).

data zip =
(

Left (V × Tbin) | Right (V × Tbin)
)

list (4.17)

Applying the third theorem of homomorphism on trees requires the definition of an upward and
downward computation. The downward version is represented Equation (4.18) and the upward version
in Equation (4.19).

57



4.3. FUNCTIONAL RECURSIVE COST ANALYSIS

cost↓ = fst ◦ h↓

h↓([ ]) = (∅,Leaf)
h↓

(

[Left(vi, l)]++x
)

= let (Po, T ) = h↓(x)

in
(

search(vi,Po, T ),Node (v0, l, T )
)

h↓

(

[Right(vi, r)]++x
)

= let (Po, T ) = h↓(x)

in
(

search(vi,Po, T ),Node (v0, T, r)
)

(4.18)

cost↑ = fst ◦ h
h(x++[v]) = h(x)⊗ v

h([ ]) = (∅,Leaf)
(Po, T )⊗ [Left(vi, l)] =

(

search(vi,Po, T ),Node (vi, l, T )
)

(Po, T )⊗ [Right(vi, r)] =
(

search(vi,Po, T ),Node (vi, T, r)
)

(4.19)

Remark that going from a binary tree to any (bounded) degree trees requires a minor adjustment to
the tree, zipper, and computation definition by adding the required number of cases.

Extension from trees to DAGs

Trees differ from DAGs in the sense that a node may have several parents in the case of a DAG. To
address this issue, we treat the DAG as its spanning tree (only picking one parent of each node) while
computing the redistribution cost with respect to all of the DAG edges. The number of parents (inputs)
of each node can easily be bounded by the maximum number of inputs an operator in neural networks can
have. This allows us to treat any DAG cases, but our proof that the reordering of the vertices preserves
the cost cannot be extended to general DAGs in their current form.

4.3.2 Flex-Edge Recursive graph

This section introduces how we take advantage of the homomorphism-based symbolic transforma-
tion presented in the previous section. Homomorphism theory states that the order of operators can
be arbitrarily swapped when computing the cost of the whole graph. This section proposes a topology-
independent graph structure named Flex-Edge Recursive graph(FER graph), which is used for the cost
analysis of the neural network parallel plan. FER graph supports arbitrary reordering of the operators.
The costs of different parallel plans on vertices and edges can be computed through the defined concate-
nation rules, and finally, the parallel plan can be decided. With the reordering feature of the Flex-Edge
graph, backtracking when traversing the graph is eliminated and thus reducing the searching complexity
from exponential to linear w.r.t. the number of operators.

FER Graph

Let us recall the definition of a computational graph here:
A computation graph is defined as G = (V, E) where V is a set of Vertices and E is a set of Edges. A

vertex v ∈ V is an operator. An edge e is defined as a tuple (u, v) where u, v ∈ V .

Definition 4.3.1. Let σ denote an order on the vertices v ∈ V such that σi(V) ∈ V is the ith visited
vertex. From σ order, the Flex-Edge Recursive Graph (FER Graph) Gf can be redefined as

Gf = (σ(V), E)

Associated with the FER graph Gf a list of sub-graphs is defined in order to establish a traversal rule.
This list is built thanks to a concatenation operator denoted ++ .
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Definition 4.3.4 (Function OptP()). OptP(σi(V), Ei) returns the chosen primitive configuration p
ρ
opt

which minimizes the cost ĉ:

OptP(σi(V), Ei) = p
ρ
opt s.t. min

pρ∈P

ĉ(σi(V), Ēi, p
ρ) is reached for pρ = p

ρ
opt

The idea of our traversal order is to find the optimal parallel plan for the new sub-graph Gif when

concatenating a vertex σi(V) to a sub-graph Gi−1
f . So that by finding the optimal parallel plan for every

sub-Graph recursively, we can ensure the near-optimal parallel plan for the whole graph.
For a vertex v, pρ

mopt denotes a dimension in P, such that

qm(v, pρmopt) = min
pρ∈P

qm(v, pρ)

If there is no redistribution cost between σi(V) and Gi−1
f (i.e., qr = 0), the optimal parallel plan of Gif

is the union of the optimal parallel plan of Gi−1
f and the p

ρ
mopt of σi(V). However, if the redistribution

cost qr is large, either σi(V) or Gi−1
f needs to change its configuration.

In order to avoid backtracking, define the order σ(V) ensures that it is always the configuration of
σi(V) that needs to be changed. This change of configuration is referred to as a compromise.

Recall that qr is either 0 or a fixed positive value. The compromise consists in changing the p
ρ
mopt to a

parallel plan p
ρ
ropt s.t. qr = 0. In this way, the price of reducing an operator’s qr to zero is the increment

of its qm. Therefore, the compromise price of an operator (i.e., the price to change the configuration of an
operator) is defined as λσi(V) = qm(pρropt)− qm(pρmopt). The order σ(V) of the operators is in descending
order of their compromise price λσ(V).

Definition 4.3.5. Let Gf = (σ(V), E) a FER graph where |V| = n, such that

∀ 1 ≤ j < k ≤ n, σj(V) is ordered before σk(V) if λσj(V) < λσk(V)

The list of sub-graphs of Gf is referred as G = [Gif = (σ(Vi), Ei)], where 1 ≤ i ≤ n.

Definition 4.3.6 (compromise price). The compromise price of the sub-graph Gi−1
f is λGi−1

f
.

It is obvious that λGi−1
f
≥ λσi−1(V) ≥ λσi(V). As a result, if we can order the vertices in descending

order according to its compromise price, the minimized communication cost can be guaranteed.
However, it is not trivial to find the p

ρ
ropt because qr relies on the connected vertices. It seems that we

return to the original complexity problem, but the features of DNN help us handle it. Actually, what we
really need is the value of qm(pρropt)) instead of pρropt. For typical operators, we can find their compromise
price λ because of the characteristics of their semantics.

MatMul OP The primitive configuration of MatMul needs to compromise when its pρmopt leads to a
large qr. However, no matter pρropt = ∀p

ρ ∈ P, when it compromises to the other two dimensions, qr = 0.
The compromise price of MatMul is defined as λ = min

pρ∈P−p
ρ
mopt

qm(pρ)− qm(pρmopt).

Conv OP Although Conv has many possible partition dimensions, in current real Convolution Neural
Networks (e.g., VGG[77], ResNet[25]), only batch dimension b and input channel dimension k will be
actually chosen. The reason is that in a DNN, the size of the kernels is very small, so partitioning kernel
tensor usually leads to a super large communication cost. Besides, the channel number increases from
input to output of DNN, so the size of the output tensor is always much bigger than the input. As there
remain only two possible partition dimensions, let p

ρ
0 denotes the other dimension except p

ρ
mopt. The

compromise price is defined as λ = qm(pρ0)− qm(pρmopt).
Elementwise OP qm of Elementwise OP is always 0. It is evident they do not have compromise

price. When an Elementwise OP is located between two operators that have redistribution costs between
them. This elementwise OP can compromise its plan to any of its neighbors, so the qr for both sides is 0.
However, this elementwise OP has zero redistribution cost with the neighbor that it compromises to but
may have a redistribution cost with another neighbor. As a result, the real redistribution cost between the
two no-elementwise operators will not be correctly considered. To avoid this problem, Elementwise OPs
are eliminated before the parallel plan searching. They will reuse one of the neighbor’s configurations.

Other OP Except MatMul, Conv, and Elementwise OP, all the other operators (MaxPool, Re-
duceMean, ReduceSum, ReduceMax, Squeeze... etc.), we noticed in the real DNNs, may have multiple
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dimensions but they only have two values of qm. In other words, qm of several dimensions has the same
value. Let p

ρ
0 denote the dimension which has a different qm as p

ρ
mopt. The compromise price is defined

as λ = qm(pρ0)− qm(pρmopt).

4.4 Double recursive algorithm

Based on the recursive partitioning Section 4.2.2 and FER Graph Section 4.3.2, this section proposes
the double recursive algorithm (D-Rec algorithm). Algorithm 1 describes the D-Rec algorithm composed
of Inner Recursion and Outer Recursion. The traversing of the FER Graph is called Inner Recursion,
which takes charge of the choice of a dimension in each vertex to partition it into two parts. At the same
time, Outer Recursion is responsible for extending this 2-part partitioning to all devices. Both the two
recursions are functional recursions and represented in a for-loop format.

Outer Recursion takes a FER Graph Gf with an empty parallel plan and the number of partition times
n as inputs and returns the parallel plan assigned Graph as the output. The initial n is obtained from the
logarithm of the number of devices n = log2N . The function Reorder sorts the vertex in FER Graph Gf
according to the compromise price (see Section 4.3.2). At each Outer Recursion step, all the operators
in the graph are partitioned into two parts with Inner Recursion. The function ShapeUpdate updates
the Shape of each Vertex in Gf according to the chosen parallel plan with split() (Definition 4.2.6). N is
decreased by one at each recursion step. Outer Recursion ends when N = 0.

Inner Recursion takes the sub-graph list G and an empty FER Graph Gfin as inputs at each Outer
Recursion step. pop_end() denotes the operation on Gf that pops the last graph in the list: Gf =
pop_end(G),G ← G − Gf . In Algorithm 1, vGf

denotes the visited vertex to construct Gf from its
predecessor and ¯EGf

denotes the added new edges. At each step of Inner Recursion, a sub-graph Gf is
popped, and the configurations of its vertices is chosen by OptP (vGf

, ¯EGf
) according to the symbolic cost

model. The reconstructed Graph G′fin is composed by concatenating the configuration updated vertex
vGf

. The process is recursively applied on the sub-graph list G. The recursion ends when all vertices
have been visited.

Algorithm 1 Double Recursive Algorithm

Require: Initial FER Graph Gf . The number of partition times n = log2N .
Ensure: Operator parallel plan Po.

1: function OuterRecursion(Gf , n)
2: if n = 0 then

3: return Gf
4: else

5: (σ,G) = Reorder(Gf )
6: Gfin = InnerRecursion(G, (∅,∅))

7: G
′

f = ShapeUpdate(Gfin) // updates the vertices’ shape according to the chosen parallel plan

8: return OuterRecursion(G
′

f , n− 1)
9: end if

10: end function

11: function InnerRecursion(G,Gfin)
12: if G = ∅ then

13: return Gfin
14: else

15: Gf = pop_end(G) // pop_end() will pop the last FER graph Gf from the list G

16: p
ρ
opt = OptP(vGf

, ¯EGf
)

17: Po → pρvGf
+= p

ρ
opt

18: G′fin = Gfin ++ vGf

19: return InnerRecursion(G,G′fin)
20: end if

21: end function
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4.5 Experiments

This section aims to evaluate the search efficiency and the quality of the parallel plans found by D-
Rec for operator-level searching. The analysis of HSM2DL is currently based on synchronous distributed
training, which ensures that the loss and accuracy in each training step are the same as in the stand-alone
training. On the other hand, the D-Rec algorithm only finds the theoretically near-optimal parallel plans,
and the DL framework executes the real distributed parallel training. The competitive methods are also
trained on the same DL framework, so even if the framework’s implementation impacts accuracy, the
impact is the same for both. Therefore, it is not needed to compare the accuracy when we conduct the
experimental analysis again. The experimental results also show that the parallel plan has no effect on
the accuracy under our experimental framework.

4.5.1 Environment setup

DNN models:

The experiments are executed on real-world DNN models:

• Computer Vision:

– ResNet50 with Cifar10 dataset,

– ResNet50/101/152 [25] with ImageNet dataset,

– Fully Convolution Network (FCN) [48];

• Recommendation Systems:

– Wide&Deep [94] with Criteo dataset;

• Neural Language Processing:

– BERT [18],

– PanGu-Alpha 2.6B and 13B [95] (B stands for billion, which signifies the size of parameters),

– T5 [65] (Text-to-Text Transfer Transformer) with dedicated text dataset.

Evaluation metric:

Training throughput, often defined as the capacity of processing Items Per Second (IPS), is used to
evaluate the quality of a parallel plan. The higher IPS denotes that the training process can compute
more items within one second which means better performance.

Hardware environments:

The experiments are conducted on an Atlas900 AI cluster [47]. Each Atlas node is composed of eight
Ascend910 accelerators. The operator-level experiments test until 64 accelerators where the four nodes
are connected with a 64-port switch. All the Ascend910 clusters are interconnected directly, even from
a different node. An 8 NVIDIA-V100 GPU cluster is also implemented as a control group to show the
better portability of HSM2DL and D-Rec algo. All GPUs of a node communicate with each other via
the PCIe (e.g., Figure 4.1).

Deep Learning Framework:

The D-Rec algorithm1 is implemented on the SOTA DL framework MindSpore2. The experiments
are conducted on MindSpore, which supports automatically distributed training with a given plan. The
parallel plans found by the D-Rec algorithm will be taken as input for Mindspore, and the training will
be conducted on this DL framework.

1https://github.com/mindspore-ai/mindspore/tree/master/mindspore/ccsrc/frontend/parallel/auto_parallel/

rec_core
2https://www.mindspore.cn/en
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Performance: step time/ms (8 Ascends)
DNN models Baseline HSM2DL Percentage

CV

ResNet50-cifar 48.58 45.91 105.83%

ResNet50-ImageNet 57.53 61.18 94.03%

ResNet101-ImageNet 86.73 93.38 92.88%

ResNet152-ImageNet 120.57 127.46 94.59%

FCN 485 512 94.72%

Rec.Sys. Wide&Deep 21.6 22.38 96.51%

NLP

BERT 110.63 122.38 90.40%

PanGu-Alpha 2.6B 4826 4876 98.91%

PanGu-Alpha 13B 13990 13988 100.01%

T5 1288 1279 100.70%

Table 4.1: Performance on varieties of DNN models

can find good hybrid parallel plans for varieties of real-world DNN models with a correct performance
higher than 90% than the Expert-Designed parallel plans. The −10% variations are not statistically
significant and can be said to be a good performance. Even though the results of TensorOpt are not
given in Table 4.1, it can be deduced from Table 4.2 that a bad parallel plan leads to more than −60%
performance decrease.

Portability

The experiments here demonstrate the portability of the HSM2DL algorithm and the competitive
method when the training environments are changed. For TensorOpt, profiling the operators under
different parallel configurations of typical DNN models usually takes more than one day. On the con-
trary, for HSM2DL, thanks to the recursive partitioning, the profiling tasks are avoided for operator-level
searching. In Table 4.2 and Table 4.3, TensorOpt kept one profiling base and varied the training con-
figurations. The results of TensorOpt show the impact of its profiling data. Two typical DNN models,
ResNet152-ImageNet and Wide&Deep, are chosen to be evaluated because TensorOpt does not support
transformer-based DNN models whose graph structure is linear.

Performance: Percentage w.r.t the Baseline

DNN models Dev. Num.
TensorOpt

(Profiled with
8 Ascend)

HSM2DL

ResNet152-
ImageNet

8 93.16% 94.59%

16 79.15% 110.74%

32 63.25% 90.17%

64 42.12% 91.22%

Wide&Deep

8 96.23% 96.51%

16 77.96% 98.15%

32 59.93% 102.82%

64 39.12% 99.26%

Table 4.2: Portability w.r.t. the scale of cluster

Table 4.2 shows the percentage performance of TensorOpt and HSM2DL w.r.t. the number of cluster
devices. For both ResNet and Wide&Deep, it can be easily conducted that with the increase in device
numbers, the quality of parallel plans found by TensorOpt decreases because they do not have enough
profiling data on the possible partition dimensions, so they miss the optimal choices. However, the
profiling-free approach HSM2DL can keep a good parallel plan quality because of the leveraged profiling
time.

The same interpretation can be made from Table 4.3 that searching the parallel plan with different
profiled data from a different architecture for TensorOpt, the decrease of parallel plan quality is evident,
while HSM2DL keeps good results. The cost model of TensorOpt is based on the profiled execution
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Performance: Percentage w.r.t the Baseline

Profiling Base DNN models
TensorOpt
(8 Ascends)

TensorOpt
(8 GPUs)

HSM2DL

8 GPUS
ResNet152-ImageNet 62.12% 99.18% 99.53%

Wide&Deep 49.55% 98.25% 98.33%

8 Ascend
ResNet152-ImageNet 98.16% 71.56% 94.59%

Wide&Deep 97.23% 66.89% 96.51%

Table 4.3: Portability w.r.t. hardware architecture

time of operators on the actual hardware. The execution time of an operator with the same parallel
plan is different on GPUs and Ascends. That is why the parallel plan quality of TensorOpt decreases
when executed on GPUs with profiling data on Ascends. Heavy profiling tasks (a few days) limit the
portability of these profiling-based approaches, while HSM2DL is more practical thanks to the symbolic
transformation and reduction to eliminate the requirement of the profiling data.

4.6 Conclusion

This chapter described how to apply HSM2DL for operator-level parallel plan search. Firstly, the
proposed symbolic cost model is reduced using the symmetric multi-order property of abstract machines
and deep learning domain-specific knowledge. Recursive partitioning is proposed to compress the search
complexity associated with the number of devices to linearity. Also, it is shown that the computation of
the cost model on computational graphs can be implemented in any order from the third homomorphism
theory. Based on this, the Flex-Edge Recursive graph and the double recursive algorithm D-Rec are
proposed for operator-level parallel plan search. The experiments demonstrated that D-Rec could find
high-quality parallel plans with a search time in the order of seconds, which is much better than the
related methods, reaching more than ninety percent of the baseline in terms of linear search complexity
in a large range of DNN models. In addition, it outperforms competing methods regarding supported
network breadth and portability.
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Chapter 5

Parameter synchronization overlap

5.1 Introduction

Chapter 4 describes how to build a cost model based on HSM2DL and how to perform symbolic
transformations and simplifications on the cost model to make operator-level parallel plan searching
practical.

As a complement and enhancement to distributed data parallelism, parameter synchronization overlap
has recently attracted plenty of academic attention [96, 72], and can significantly improve the efficiency
of distributed training. It is difficult for cost in a profiling-based approach to describe the optimization
of this technique, and in Section 3.6.2, HSM2DL uses γ to describe the role of overlap techniques in cost
models. However, γ is a dynamic value that changes with the DL framework’s implementation and the
neural network’s structure. This Chapter describes how HSM2DL calculates the value of γ for a specific
case. The final experiments show an improvement in the results compared to data parallelism.

5.2 Hybrid parallelism and parameter synchronization overlap

Recall basic knowledge about distributed training first. DL frameworks use computational graphs
to represent DNN models. The computational graphs are composed of operators, some operators (e.g.
Matmul, Conv, etc.) have parameters. Figure 5.1(a) gives an example of a DNN model represented in
computational graph format. Training a DNN aims to update its parameters so that the trained model
can predict expected results from new inputs.

The DNN training comprises Forward/ Backward Propagations (FPG/BPG), an iterative process.
FPG computes the operators in DNN from input to get the outputs. BPG updates the parameters of
each operator from the last operator back to the first operator. An epoch is one iteration of FBG/BPG
on the whole input data. These data are composed of one or several mini-batches. A mini-batch is a set
of samples processed together by DNN. The training consists in updating the parameters through many
epochs to reach close to optimal values. Figure 5.1(b) show the timeline of a training iteration on a single
device: FPG is composed of the computations from Op1 to Op5, and the execution order of BPG is the
reverse.

In general, pipeline parallelism and parameter synchronization overlap techniques are incompatible,
as pipelines split mini-batch data into multiple micro-batches. There are dependencies on the data when
back-propagating, so the overlap-able part is very small and can be ignored. Therefore, this section only
discusses operator-level overlapping.

The timeline of training one mini-batch training of Data Parallel is shown in Figure 5.1(c). Under Data
Parallelism, each accelerator possesses the entire DNN model and computes with a subset of the mini-
batch. The sizes of each subset of data are equal, thus ensuring load balancing. The distributed training
should follow the same semantics as training on a single device. Therefore, the parameters need to be
computed and updated together within a mini-batch of data. Data Parallelism partitions each mini-batch
into several subsets of data among devices and computes the parameters, respectively. In order to keep
the same semantics as training on a single device, DL frameworks implement parameter synchronization
to compute the average value of the parameters and broadcast it to all devices. In Figure 5.1, the process
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5.3 Tail factor calculation based on HSM2DL

Here is a restatement of the problem we are trying to solve: This chapter aims to find a way to
calculate the cost of parameter synchronization when using the computation/communication overlapping
technique, i.e., this corresponds to γ defined in Equation (3.3). γ is called the parameter synchronization
ratio, or simply the tail factor, which represents the proportion of the cost of parameter synchronization
that cannot be overlapped.

5.3.1 Modeling the tail factor

Chapter 4 demonstrated that the computation cost, communication cost, and parameter synchro-
nization cost could be abstracted and represented as math functions (i.e., in a symbolic way) from the
semantics of operators. Their values can be inferred from the functions with input data shapes. D-Rec
evaluates the symbolic cost model Equation (4.1) and decides parallel plans for each operator.

This chapter will concentrate on how to find proper γ in Equation (4.1) to improve its accuracy.
Profiling γ as a global value for all the operators is not accurate enough because the tail factor varies
for different operators. Besides, profiling needs to be re-executed each time for different DNN structures,
which is time costly. Therefore, tail factors γi are defined as separate values for each operator Opi.

This section attempts to build a symbolic model of synchronization overlap based on the following
observations

• The computation cost is a fixed value for each operator, whether it is assigned data parallel or
model parallel (operator-level).

• The parameter synchronization is actually an overlap of communication and computation. Both
the intra-communication cost of model parallel (operator-level) and synchronous communication
occupy exclusive bandwidth, so they cannot be overlapped.

Based on these two observations, it can be inferred that the two kinds of time to be overlapped are
actually the computational cost of all operators and the parameter synchronization cost. These values
are fixed for a given neural network on a given piece of hardware. The tail factor for each operator can
be calculated with an independent algorithm of a particular DNN model before applying the tail factor
in D-Rec.

It is incorrect to calculate the tail factor directly by comparing the synchronization cost of an operator
with the computation cost. Indeed the order of computation in BPG is fixed, as in Figure 5.1(e), the
synchronization cost of Op5 cannot overlap without its own computation being finished. It is essential
to consider whether the computation cost of subsequent operators can overlap the synchronization cost
of Op5.

From Figure 5(e), if the computation of subsequent operators can overlap the synchronization time,
then the previous operators’ tail factors are equal to 0, meaning they can completely overlap. Only the
last operator in the BPG,op0, has no subsequent operators to overlap. Its tail factor γOp0 = 1. Figure
5(f) shows the large trailing when the synchronization time is too large to be overlapped. In fact, this
dragging is caused by each of the previous operators with a parameter: the synchronization cost of Sync5
cannot be fully overlapped by the computational cost of Op4, 3, 2, so it takes up part of the computational
part of Op1, resulting in Sync2 should be postponed, and these contribute to the final trailing.

5.3.2 Tail Factors Algorithm

Algorithm 2 shows the searching algorithm for all γi. The key idea of this algorithm is to use an
intermediate variable Overlap to summarize the computation that can be overlapped for the synchro-
nization of the current operator.

Variables definition

• A DNN model is represented as a computational graph G = ⟨vi⟩ which is a list of operators. The
operators in the list are sorted by the reverse order of the BPG processing (i.e. from Op0 to Op5
in Fig.5.2).
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possible partition dimension in the fully connected layer parameter tensor. Therefore, the size of param-
eters can be changed by varying the NoC. In order to show the impact of γ on the symbolic cost model
of HSM2DL, the experiments evaluate the training performance of Resnet50 with different NoCs. The
dataset for the experiment is ‘fake data’ (generated randomly), for which the NoC can be easily tuned.

The purpose of the experiments is to validate the effect of γ and how much improvement can be
brought about by Algorithm 2. The founded γ will be substituted into the cost model Equation (4.1)
of HSM2DL, and the parallel plans will be searched with D-Rec Algorithm 1. D-Rec is tested in two
situations: 1) γ = 1 and 2) determining γ by Algorithm 2. Data parallel is chosen as the baseline to
find out the operator-level parallel trade-off where such Hybrid Parallelism provides better performance.
Other factors like the number of layers are not considered in our experiments since their main impacts
are on the network precision but not the Hybrid Parallel plan changing.

5.4.2 Results
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Figure 5.3: HP speedup with the number of classes

Training throughput denotes the training performance of distributed DNN training, and a higher
training throughput signifies a better HP strategy. Here, the training throughput speedup compared to
that of DP is used to evaluate the training performance of the hybrid parallel plan found by our approach.
To show the effects of γ found by Algorithm 2, the NoC is varied in the experiments to change the size
of the parameters.

Generally speaking, when the parameter size is small, DP is more efficient because the synchronization
cost is small. When the parameter size is large, OMP is more efficient because of the high synchronization
cost, which cannot be overlapped.

The results are shown in Fig.5.3. The NoC varies from 1K to 256K. The experiments of γ = 1 are
called Exp1 and the experiments of γ found by Algorithm 2 are called Exp2. For Exp1, γ = 1 means it
does not take the overlap technique into consideration.
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For small NoCs (less than 4K), the training performances of data parallel and the two Exps found by
D-Rec are similar. The reason is that the parameter size is relatively small. The synchronization cost is
small, so the three methods (including the baseline) all choose a data parallel-based plan.

For NoC = 16k, the performance of Exp1 is worse than data parallel because when the synchronization
cost increase, it tends to change part of data parallel to model parallel. However, in this case, the
parameter synchronization can be majorly overlapped by the computation, DP is still better than model
parallel. On the contrary, Exp2 can accurately determine the tail factor γ and find a better parallel plan.

From 32K-256K, the training performance of DP is getting worse than hybrid parallel. This is because
the size of the parameters increases with the NoC as well as the synchronization cost. The computation
cannot overlap the expensive synchronization. Therefore D-Rec applies OMP strategy on the operators
with big γ, thus avoiding the important synchronization cost and permitting a good training performance.
Although both Exp1 and Exp2 return better performance than data parallel, it can be conducted that
with a good tail factor found by Algorithm 2, the cost model is more accurate and can find higher quality
parallel plans.

5.5 Conclusion

This Chapter introduced the parameter synchronization overlap, including how it is generated and how
to quantitatively evaluate its impact on the cost model of HSM2DL. Section 5.3 represents an algorithm
to determine the tail factor γ, which is the key point to evaluating the synchronization cost. Experiments
show that with the help of Algorithm 2, HSM2DL can be more efficient and find parallel plans with
higher performance.
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Chapter 6

Graph level plan search

6.1 Introduction

Gigantic models have achieved unprecedented performance in challenging AI tasks and have shown
the excellent capability of generalizing to unseen data. Chapter 4 introduced how to search operator-level
parallel plans, including symbolic reduction of the cost model and linear complexity D-Rec algorithm.
However, another trend of the DNN model today is that the scale of those gigantic models (including GPT-
3 [9], GShard [41] etc.) may have trillions of parameters (e.g., Google Gopher has 600B parameters [64]).
Their training needs to be parallelized across hundreds of distributed devices (e.g., CPUs, GPUs, and
NPUs). However, the communication capacity between servers is very low, so operator-level parallelism
is insufficient to train them efficiently. These large-scale models are usually trained through a parallelism
plan that combines data parallelism [2], operator parallelism [36, 74], and pipeline parallelism [32].

This chapter first introduces the DL-domain-specific hypothesis of HSM2DL for pipeline parallelism
and the cost model analysis based on that. Section 6.3 introduces a joint parallel plan search algorithm of
HSM2DL for the gigantic DNN models. The main idea to generate an optimized parallel plan for gigantic
DNN models on a heterogeneous cluster is the following: 1) Split the network into several stages. 2) The
total latency of the stages should be optimized. 3) The stage partition point should be searched jointly
with the operator-level parallel plan.

This joint parallel search algorithm is conceived with a hierarchical structure. The operator-level
search takes the main idea of the D-Rec algorithm (Section 4.4). The difference between them is that
D-Rec returns the optimal parallel plan for N devices, but here the algorithm saves a series of optimal
candidate plans for different numbers of devices 2n, n = 0, 1, 2, ..., N . These candidate plans are used as
the input for the pipeline search, and the performances of the global parallel plans are evaluated to select
the minimum one. The property of recursive partitioning (Definition 4.2.4) that per-step optimality leads
to global optimality also benefits pipeline partitioning. Indeed, HSM2DL can thus reduce the graph-level
planning complexity to linear (i.e., O(log2 N × |V|) where N is the number of devices and |V| is the
number of DNN operators). Thus the efficiency of HSM2DL in handling gigantic DNNs with massive
devices is proved.

Applying the D-Rec algorithm (Algorithm 1) to find the operator-level parallel plan. Supposing that
the number of devices equals N , saving all the candidate optimal op-level plans for different numbers of
devices of 2n, n = 0, 1, ... log2 N .

To verify the effectiveness of HSM2DL, extensive cluster experiments have been conducted on a large-
scale accelerator cluster. For BERT and GPT-3, HSM2DL can return optimized parallelism plans for a
cluster with thousands of devices in less than 50s seconds. Specifically, for GPT-3 with 39B parameters,
HSM2DL can return a plan in 1.02 seconds while Alpa takes 804.5 seconds for extra profiling and 1582.66
seconds for computing a plan. Note that both the two times of Alpa for profiling and computing are
optimized through simulations, decreasing the searching optimality. On the other hand, HSM2DL does
not compromise the quality of plans. Its plans exhibit optimized performance matching the well-known
Expert-Designed parallel system Megatron-LMv2 [58].

73







6.2. GRAPH-LEVEL PARTITIONING ANALYSES

abstract machine, HSM2DL deals with 2n devices. More precisely, graph-level pipeline partitioning
splits the computational graph into 2n1 stages, and each stage is partitioned into 2n2 parts by
operator-level partitioning. Here, the number of devices N = 2n = 2n1 × 2n2 .

An example of pipeline partitioning is illustrated in Figure 6.1. In the example sub-figure (a), a
training cluster consists of four computing machines, each containing eight fully connected accelerators.
There are a total of 32 accelerators. On the top level of the cluster, the communication bandwidth between
the four computing machines is very poor. Therefore, a pipeline parallel plan is assigned between the
machines because the bubble time does not rely on the communication bandwidth. In Figure 6.1, each
color represents a stage. In sub-figure (a), each stage is arranged on a single computing machine. From
sub-figure (b), it can be seen that the different stages are computed in order. On the other hand, the
communication bandwidth between the eight accelerators inside the computing devices is higher, so that
operator-level parallel is assigned to the accelerators, as shown in sub-figure (b): OMP=4, DP=2.

6.2.2 Pipeline partitioning analysis

In practice, the partition of pipeline parallelism focuses on two main points:

• How many stages to partition?

• At which point the computational graph is partitioned into the stages?

Balanced partition points

To ensure that the pipeline can be computed efficiently and to avoid generating extra idle time except
for the inevitable bubble, it is necessary to control that the number of micro-batches K is equal within
each stage and the computation time for each micro-batch (as in each small square in Figure 6.4) is as
equal as possible. The user determines the number of micro-batches used as input to the algorithm.

Generally, the number of stages can be any integer instead of restricted to 2n, and each stage can
consist of a different number of devices. However, when different stages are assigned to different numbers
of devices, it is complicated to guarantee load-balancing for each micro-batch. In the following discussion,
the number of stages is fixed to 2n, and the per-stage device number is set to the same integer. This
may seem to reduce the search space significantly and miss the optimal result. Still, in reality, the load
balancing of uneven partitioning is very difficult to control at the DL framework design level. Therefore,
this assumption is actually consistent with the fact that transformer-based networks are used in practice.
The uneven partitioning is also not treated in this thesis but is a perspective.

The structure of the transformer is discussed below to illustrate the theoretical basis of even parti-
tioning:

• The main structure of the transformer is composed of a large number of dense MatMul which com-
putation and amount of communication can be computed relatively linearly. The communication
bandwidth and the computational performance of the device can be used at a high utilization rate
to maintain a stable value, so the cost model based on α, β, qx, qm can express the trade-off between
different stages very well and therefore make the relatively accurate partitioning decision.

• A transformer is made up of several repeating layers. Generally, a transformer-based network has
an equal amount of computation per layer. Load-balancing can be easily guaranteed.

• For other models, it is necessary to extend the computing model to support uneven partitioning.
Because sparse or non-parallelizable operators result in inaccurate profiling parameters α, β and the
uneven partitioning of stages need to improve the concept of 2-parts partitioning. The inaccurate
value issue can be solved by adding some profiling information to the operator but this is not
discussed in this thesis.

In summary, this chapter focuses on the typical DNN model transformer. For optimal pipeline parti-
tioning, it is necessary to ensure that the computation time of each micro-batch is approximately equal.
Based on the scope of this thesis and the practical needs of industrial production, two more substantial
constraints are imposed:
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• The number of stage cuts must be 2n to guarantee better load-balancing.

• The number of devices per stage is equal, based on the relatively average computation of each layer
of the transformer.

Pipeline stage numbers

The next problem to be solved is the number of stages to partition the computational graph. As
introduced in CostSS (Equation (3.2)), the cost of the waiting time generated by the pipeline is expressed
by the bubble ratio Rb for graph-level partitioning, and pipeline partitioning does not impose additional
communication costs (the smaller communication costs between stages can be ignored). Therefore, the
costs of graph-level parallelism and operator-level parallelism are orthogonal. DP generates qs, MP
generates qm, and PP generates Rb.

Because the operator-level partitioning cost is independent of the pipeline cost, the operator-level
parallel plans will be searched first. Since the operator level guarantees per-step optimality, the joint
algorithm will save all optimal partitions of the computational graph into 2n2 , n2 = 0, 1, ..., log2N parts.
Different n1 = n/n2 stage numbers will be evaluated with the CostSS by substituting the CostMS (Equa-
tion (3.1)) under the assumption of ensuring load-balancing. The optimal hybrid parallel plan is the one
with the minimized CostSS.

The cost model of the pipeline is an extension of CostSS. Bubble ratio Rb refers to the ratio of the
pipeline execution time compared to the execution time of the same device numbers for data parallelism.
Let us note that the bubble ratio Rb can be represented by the number of stages l and the micro-batch
number K: Rb = (l +K − 1)/K.

There are different scheduling implementations for pipeline partitioning. Figure 6.2 gives two types
of scheduling implementations: Gpipe pipeline schedule [32] and Early backward schedule from DAP-
PLE [20]. We give both types two examples with different micro-batches. With guaranteed load-balancing
and a synchronous pipeline scope, GPipe proposes a straightforward implementation, in which backward-
phase stages do not start until all forward-phase stages finish, as shown in Figure 6.2. While it is
confirmed by DAPPLE that the early backward schedule has less peak memory consumption than the
GPipe’s schedule. As shown in Figure 6.2, the early backward schedule enforces the backward-phase
stages to start as soon as possible so that the activation memories can be released early to mitigate the
peak memory. From Figure 6.2, it can be deduced that Rb is always the same for any different scheduling
implementations.

Thus in this chapter, the cost of the entire joint cut is as follows:

Cp(G,Po, l) =
l +K − 1

K
(α× qx (V,Po) + β × qm (V, E ,Po)) + γβ × qs(V,Po) (6.1)

where the first two terms calculate the cost of forward and backward passes for pipeline parallelism, and
the last term calculates the cost of data parallelism. The algorithm returns the hybrid parallelism plan
with minimal cost.

The joint search algorithm is represented in the following section.

6.3 Joint search algorithm for pipeline and operator parallelism

This section introduces a two-step joint search algorithm based on HSM2DL and the assumptions
discussed in Section 6.2. The operator-level search of the joint algorithm (Algorithm 3) is based on the
D-Rec algorithm (Algorithm 1), since D-Rec can guarantee the per-step optimality of the operator-level
parallel plan for each 2-parts partitioning. Therefore, the optimal operator-level parallel plans for 2n+1

(n = {0, 1, ..., log2 N}) devices can be saved in a list with one execution of D-Rec. These saved operator-
level parallel plans are called candidate parallel plans. The list of the different numbers of devices’ optimal
parallel plans is taken as input for the graph-level search.

The graph-level search iterates through the different stage numbers (from 1 to log2 N) and finds a
balanced partition point for these stage numbers to guarantee the maximum efficiency of the pipeline.
Finally, the optimal graph-level parallel plan is chosen by comparing the cost of the whole graph with
different stage numbers.
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6.3.1 Operator-level candidate plans searching

Algorithm 3 Operator parallelism plans generation (D-Rec Algorithm 1 serves for the joint search)

1: Input: Graph G = (V, E), number of devices N .
2: Output: List of candidate plans L
3: L = []
4: for i = 0, . . . , log2 N do // Line 1 in Algorithm 1
5: σ(V) = order V by λ // Line 5 in Algorithm 1
6: L.append([])
7: for j = 0, . . . , size(V)− 1 do // Line 11 in Algorithm 1
8: v = σj(V)
9: p

ρ
best = argmin

pρ∈P
ρ
v

ĉ(v, pρ) // Line 16 in Algorithm 1

10: if i > 0 then

11: pv = L[i− 1][j] ∗ pρbest
12: else

13: pv = ⟨⟨1, 1⟩, ...⟨1, 1⟩⟩
14: end if

15: L[i].append(pv)
16: σj(V) = (split(v.t[0], pρbest.p

t[0]), ..., split(v.t[m− 1], pρbest.p
t[m− 1])) // Line 7 in Algorithm 1

17: end for

18: end for

In order to search the candidate parallel plans for the computational graph, Algorithm 3 takes the
main idea of the recursion-style algorithm Algorithm 1 and rewrites it in a loop iteration style. Besides,
the optimal parallel plans for different numbers of devices are all saved in a list L. Algorithm 3 takes
the computational graph G = (V, E) as well as the cluster information (i.e., the number of devices N)
as inputs and generates a list of candidate optimal plans for all possible cluster partitions. The outer
loop (i.e., beginning at line 4) enumerates all possible cluster partitions (i.e., partitioning N devices
into 2i+1, i = 0, . . . , log2 N − 1 groups). In each step, all operators are first reordered according to
their compromise price (i.e., lines 5-8,λ is defined in Definition 4.3.6) to ensure that operators with a
larger impact on the cost will be considered before those with a smaller impact. The candidate plans
are updated during the loop (i.e., line 16). The inner loop (i.e., beginning at line 10) searches the
optimal primitive configuration p

ρ
best for each operator v ∈ V according to Equation (4.4). The optimal

primitive configuration is combined with the previous optimal configuration to obtain the current optimal
configuration. Finally, the shape of the operators in the computational graph is updated with split
(Definition 4.2.6).

A running example of Algorithm 3 is shown in Figure 6.3, where the algorithm generates the candidate
plans for two operators. Here, supposing the computational graph is composed of two MatMul Op0 and
Op1 as shown in Figure 3.9. The algorithm starts with initial states where the computational graph
is not partitioned. In the first step, the optimal primitive configurations are p

ρ
1 and p

ρ
0 (Equation (4.2))

for Op0 and Op1, respectively. After combining the optimal primitive configurations with P0
o , the first

candidate plan P1
o is obtained. Similarly, in step 2, the optimal primitive configurations are p

ρ
0 and p

ρ
3

for Op0 and Op1, respectively. After combining the optimal primitive configurations with P1
o , the second

candidate plan P2
o is obtained. Above all, the candidate plan list L =

[

P1
o ,P

2
o

]

. Therefore, for the given
computational graph G, the optimal parallel plans for 2 devices P1

o and the optimal parallel plans for 4
devices P2

o is saved in L and can serve for the pipeline partitioning.

6.3.2 Pipeline search based on the candidate plans

After generating a list of candidate plans for operator parallelism using Algorithm 3, the next step is to
explore the optimal hybrid parallelism plans that combine operator parallelism with pipeline parallelism.
The goal is to find a graph-level partition such that the computational graph is partitioned into consecutive
stages: Pg = (S0, ...,Sl−1). The key point is that the computational workloads are balanced among the
different partitions to avoid resource underutilization.
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Algorithm 4 Joint search for pipeline and operator plans

1: Input: Graph G = (V, E), operator parallelism candidate plans L.
2: Output: Parallelism plan P = (best_Pg, best_Po)
3: min_cost = 0
4: for i = 0, . . . , log2 N do

5: Po = L[log2 N − i]
6: Pg = find_pipeline_partition(V,Po, 2

i) // Algorithm 5
7: if max_memory_usage(G,Pg,Po) < M then // M : available memory
8: cost = Cp(G,Po, 2

i)
9: if cost < min_cost then

10: min_cost = cost
11: best_Pg = Pg

12: best_Po = Po

13: end if

14: end if

15: end for

Algorithm 5 Finding a balanced graph partition for pipeline parallelism

1: Input: Set of vertices V, operator parallelism candidate plans Po, number of pipeline stages l.
2: Output: Graph level parallelism sub-plan Pg

3: // Group the vertices to generate a balanced pipeline

4: cost_per_stage =
∑

v∈V
co(v,Po)

l

5: ctemp = 0
6: i = 0
7: for v ∈ V do

8: ctemp = ctemp + co(v,Po)
9: if ctemp > cost_per_stage and i < l then

10: // the current stage is full
11: ctemp = co(v,Po)
12: i = i+ 1
13: end if

14: add v to Pg.Sj
15: end for

16: return Pg

6.4 Experiments

6.4.1 Environment setup

This section evaluates HSM2DL using real-world gigantic DNN models in large-scale clusters. In
particular, this section compares the planning time and parallel plan quality achieved by HSM2DL with
SOTA planners.

DNN models: The experiments consider a wide range of transformer-based DNN models, as shown
in Table 6.1. These natural language processing models include three types of GPT-3 [9] and BERT [18].
The different types of GPT-3 have different numbers of DNN layers, tailored for different kinds of tasks,
and they are named GPT3SMALL, GPT3MEDIUM, and GPT3LARGE, respectively. There are several
dimensions to scale up/down transformer-based [85] models (e.g., the number of layers, the number of
heads, etc.). GPT3LARGE and BERT models are scaled only along the number of layers, which are
denoted by their parameter size (i.e., GPT3LARGE-xxB and BERT-xxB).

Baselines: HSM2DL is compared with: (i) Alpa [97] is the SOTA planner for GPT-3 models; (ii)
Piper [80] is another SOTA planner for BERT; (iii) Megatron-LMv2 implements the NVIDIA Megatron-
LMv2 [58], and (iv) Megatron-LMv2-tuned employs parallelism experts (who are working on real-world
large-scale DNN clusters) to fine-tune the plan produced by Megatron-LMv2.

Hardware configuration: The evaluation is conducted within a deep learning cluster that has 32
servers, and each server has 8 Ascends, summing up to 256 Ascends devices. Each server has 512 GB
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Table 6.3: Plan quality of transformer-based DNN models

Model Setting Throughput (sample/second)
# Devices Megatron-LMv2 Megatron-LMv2-Tuned HSM2DL

BERT-5.9B 8 297.75 329.25 320.25
BERT-8.9B 16 150.26 168.28 164.46
BERT-11.8B 64 86.80 91.01 91.25

GPT3-2.6B 8 13.12 13.26 13.12
GPT3-13B 16 4.57 4.57 4.58

GPT3-200B 256 3.15 5.17 5.24

Indeed, as discussed at the beginning of this chapter, for DNN models with overall model equilibrium,
like BERT and GPT-3, finding the correct pipeline stage number and the stages’ partition point is not
the most critical challenge for parallel plan searching. As shown in Table 6.3, all three methods, in fact,
find the same and an optimal number of stages (i.e., Pg is optimal for all of them). The difference in
performance in Table 6.3 is caused by the difference in the operator-level plan for each stage.

According to Table 6.3, Megatron-LMv2-Tuned outperforms Megatron-LMv2 because the operator-
level plan is optimized in all cases, particularly for the DNN model with a small size. The larger the
size of the DNN model, the less evidence of performance improvement. This is because the difficulty of
optimizing operator-level parallel plans increases exponentially as the network size grows, resulting in
a tuning method that can not guarantee quality improvements. For example, for a very large network,
an expert optimizing the performance of one module may cause the performance of other parts to drop,
resulting in no overall performance improvement.

As expected, HSM2DL’s performance matches Megatron-LMv2-Tuned with all BERT and GPT-
3 configurations and even goes beyond their performance on large-scale models. This indicates that
HSM2DL’s joint search for the pipeline, model and data parallelism can indeed improve the quality
of plans, matching those extensively optimized by experts. The most advantage of HSM2DL can be
conducted here, it can infer the optimal parallel plans for the super large-scale DNN models in a reasonable
time and even output the expert tuning. To the best of our knowledge, HSM2DL is the first planner to
automatically produce a high-quality plan for a GPT-3 model with 200B parameters.

Here is an investigation into why HSM2DL performs better than Megatron-LMv2-Tuned: A key
reason is that: the Megatron-LMv2-Tuned, tuning is at layer-level (more coarse-grain than operator-
level) because of the limitation of human efforts. So the parallel plans for the operators in one layer must
follow one specific rule, which is not universally optimal. The automatic joint-search algorithm helps
to find what is hidden beyond the capacity of human efforts and can find better parallel plans for the
operators than the specific rule.

6.5 Conclusion

This chapter proposes the graph-level partition method of HSM2DL, including the hypothesis, cost
analysis, and algorithms. The graph-level searching space is also limited because of the hierarchical
and symmetric abstract machine and also the restricted application domain of transformer-based DNN
models. Large cluster experiments show that HSM2DL can outperform SOTA planners by up to 255
times when handling large-scale transformer-based models.

83



6.5. CONCLUSION

84



Chapter 7

Conclusion

7.1 Conclusion

The goal of this thesis is to use structured parallelism approaches to systematically optimize dis-
tributed deep learning so that DL frameworks can control the execution of training automatically. With
the help of this work, DL designers could focus more on their expertise to create more precise DNNs
without considering the implementation of parallel programming. This thesis introduced HSM2DL, a
distributed DNN training bridging model based on the BSP bridging model. HSM2DL developed a hi-
erarchical and symmetric abstract machine to describe the features of the modern AI training machine.
HSM2DL also proposed an execution model to characterize the hybrid parallel training process, as well
as a symbolic cost model as a metric to evaluate the cost produced by different parallel plans. HSM2DL
avoids the pitfalls of existing methods that struggle to balance accuracy and portability.

HSM2DL aids in the discovery of optimal hybrid parallel plans. Recursive partitioning and the
Flex-Edge Recursive graph are two important contributions to operator-level partitioning. Step by step,
recursive partitioning partitionsăthe computational graph into two parts until the graph is partitioned
into the number of devices. This recursive two-part partitioning is based on the feature of the symmetric
abstract machine. The operators in the Flex-Edge Recursive graph can be reordered based on their
compromise price. Therefore, backtracking is avoided during the searching process, reducing the searching
complexity in relation to the number of operators to linear.ăăWith a linear searching complexity, the D-
Rec algorithm can find an optimal operator-level parallel plan.

The role and effectiveness of all-reduce overlap techniques in distributed parallelism are discussed
as a complement to operator-level parallelism. This thesis also provides a method for computing the
tail factor, which can be used in conjunction with the D-Rec algorithm for arithmetic-level parallelism.
Finally, this thesis presents a joint search method for pipeline plus operator-level hybrid parallelism.
Based on the transformer model and the number of 2p devices, an algorithm for searching a triple-hybrid
parallel strategy in conjunction with double recursion is provided.

Experiments in Chapter 4 show that HSM2DL can find high-quality parallel plans in seconds. The
quality of the operator-level plans can match the SOTA expert-designed plans and is better than the re-
lated work TensorOpt [12]. The experiments in Chapter 5 show that an accurate tail factor γ can enhance
the effectiveness of the D-Rec algorithm. In Chapter 6, under the hypothesis and strong assumptions
of HSM2DL, the efficiency of the joint-search algorithm and the high plan quality are experimentally
demonstrated in comparison with the SOTA method Alpa [97] and the plan quality can match the SOTA
plans Megatron-lmv2 [58]. And it is very interesting and important further to develop the generality and
portability of the pipeline partitioning.

7.2 Perspectives

Extend the generality of HSM2DL

Although HSM2DL proves its generality and portability in the operator-level search. But for the
graph-level pipeline partitioning discussed in this thesis, the design of the model and algorithm is based
on two stronger assumptions. First, this thesis assumed that the number of devices and the number of
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stages are both a power of two. Another one is that this thesis only considers the transformer-based DNN
model.

In production environments, users often give the number of devices as the power of two to best utilize
hierarchical and symmetry data center networks. They, however, can also give non-prime numbers of
devices. To address this, HSM2DL could decompose this nonprime number into several prime number
levels. HSM2DL computes the plans for prime number level problems and combines the prime-level
solutions. This thesis has demonstrated how to partition two parts as primitive. For a practical need,
such primitive partitioning could be any number equal to or bigger than two, with cost model adjustment.
Moreover, a cluster with a nonprime number of devices could always be decomposed to multiple prime
number levels, and our algorithms can be adjusted for such settings. For a big cluster with a prime
number of devices, we could approximate the number to the above possibilities by accepting a small bias
of load balancing.

In order to support pipeline partitioning for the other types of DNN models, the execution model and
cost model of pipeline parallelism need to be improved. When necessary, more profiling information may
be added to keep the accuracy of the results.

Accurate memory estimation model

The cost model of HSM2DL mainly focuses on performance. The searching algorithm only checks
if the computational graph trained with the found plan would exceed the device memory or not. Here,
memory verification is used as a security check, but no memory cost model exists.

In practice, for large-scale DNN training, out-of-memory is one of the most frequent problems the
users would meet. Trying to build an accurate memory cost model to estimate the expected memory
usage and apply it to the joint search algorithm would be very helpful for HSM2DL. This is one of the
most interesting perspectives for the auto parallel plan generation.

Guiding DL frameworks to support better parallel skeletons

The common industrial DL frameworks, all open source projects that are still in the development
stage, have not been developed in a very long time. More specifically, the comparatively advanced DL
frameworks first appeared in 2015, whereas most distributed training came to earth in 2019 and only
supported data parallelism at that time. In fact, current DL frameworks do not yet fully support hybrid
distributed parallelism. Their point-to-point communication and collective communication library is
created case-by-case for expert-defined parallel plans. Because they first support parallel plans that have
been demonstrated to be reliable. HSM2DL has the ability to guide the creation of more effective parallel
skeletons in these areas and determine the best parallel plans.
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