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Abstract v

Polyhedral, Tropical and Analytic Geometry of Higher Rank

Abstract

With the aim of starting a systematic development of higher rank tropical geometry, we develop
a theory of higher rank polyhedral geometry over the ordered ring of generalized dual numbers
D := R[ε]/(εk). We generalize several classical results to this context, including, but not limited
to, Fourier-Motzkin Elimination, Farkas’ Lemma, the Minkowski-Weyl decomposition and the
basic results on the duality theory of cones and the theory of normal fans of polyhedra.

We use this theory to endow tropical hypersurfaces of higher rank with the structure of a poly-
hedral complex over D. As a first application, we show how the polyhedral structure on tropical
hypersurfaces of higher rank is dual to a layered regular subdivision of their Newton polytope.

Later on, we introduce a certain number of tools and results suitable for the study of valuations
of higher rank on function fields of algebraic varieties. This is be based on a study of higher rank
quasi-monomial valuations taking values in the lexicographically ordered group Rk.

We prove a duality theorem that gives a geometric realization of higher rank quasi-monomial
valuations as tangent cones of dual cone complexes acting as multi-directional derivative operators
on tropical functions.

Tangent cones of dual cone complexes provide an analogue of skeleton in higher rank non-
archimedean geometry. Generalizing the picture in rank one, we construct retraction maps to
tangent cones of dual cone complexes, and use them to obtain limit formulae in which we recon-
struct higher rank non-archimedian spaces with their tropical topology as the projective limit of
their higher rank skeleta.

Keywords: tropical geometry, polyhedral geometry, analytic geometry, valuations, higher rank,
okounkov bodies

Centre de Mathématiques Laurent Schwartz and Institut de Mathématiques
de Jussieu-Paris Rive Gauche
École Polytechnique – 91120 Palaiseau – and – Sorbonne Université – Campus Pierre
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vi Abstract

Résumé

Dans le but de commencer un développement systématique de la géométrie tropicale de rang
supérieur, nous développons une théorie de la géométrie polyédrale de rang supérieur sur l’anneau
ordonné des nombres duaux généralisés D := R[ε]/(εk). Nous généralisons plusieurs résultats
classiques dans ce contexte, y compris, mais sans s’y limiter, l’élimination de Fourier-Motzkin, le
lemme de Farkas, la décomposition de Minkowski-Weyl et les résultats de base sur la théorie de
la dualité des cônes et la théorie des ventilateurs normaux des polyèdres.

Nous utilisons cette théorie pour doter les hypersurfaces tropicales de rang supérieur de la structure
d’un complexe polyédral sur D. En guise de première application, nous montrons comment la
structure polyédrale sur les hypersurfaces tropicales de rang supérieur est duale à une subdivision
régulière en couches de leur polytope de Newton.

Plus tard, nous introduisons un certain nombre d’outils et de résultats adaptés à l’étude des
valuations de rang supérieur sur les corps de fonctions des variétés algébriques. Ceci est basé sur
une étude des valuations quasi-monomiales de rang supérieur prenant des valeurs dans le groupe
ordonné lexicographiquement Rk.

Nous démontrons un théorème de dualité qui donne une réalisation géométrique des valuations
quasi-monomiales de rang supérieur sous forme de cônes tangents des complexes de cônes duaux
agissant comme des opérateurs de dérivées multi-directionnelles sur les fonctions tropicales.

Les cônes tangents des complexes de cônes duaux fournissent une analogue de squelette dans
la géométrie non archimédienne de rang supérieur. En généralisant l’image en rang un, nous
construisons des cartes de rétraction vers les cônes tangents des complexes de cônes duaux, et
les utilisons pour obtenir des formules limites dans lesquelles nous reconstruisons des espaces non
archimédiens de rang supérieur avec leur topologie tropicale comme la limite projective de leurs
squelettes de rang supérieur.

Mots clés : géométrie tropicale, géométrie polyédrale, géométrie analytique, valuations, rang
supérieur, corps d’okounkov



Contents

Abstract v

Contents vii

Introduction 1
Chapter 1: Polyhedral Geometry Over the Generalized Dual Numbers . . . . . 4
Chapter 2: Geometry of Higher Rank Valuations . . . . . . . . . . . . . . . . . 19

1 Polyhedral Geometry Over the Generalized Dual Numbers 35
1.1 Basic Concepts in Higher Rank Polyhedral Geometry . . . . . . . . . . . . 35
1.2 The Fourier-Motzkin Elimination . . . . . . . . . . . . . . . . . . . . . . . 42
1.3 Farkas’ Lemma over the Generalized Dual Numbers . . . . . . . . . . . . . 48
1.4 The Relative Interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.5 Cone Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.6 The Structure of Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.7 The Support of the Normal Fan . . . . . . . . . . . . . . . . . . . . . . . . 67
1.8 Normal Fan Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9 The Support Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
1.10 The Fibration Point of View . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.11 Tangent Cones of real Polyhedra and Flags of real Polyhedra . . . . . . . 85
1.12 R-Rational Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1.13 Regular Subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
1.14 Higher Rank Tropical Hypersurfaces. . . . . . . . . . . . . . . . . . . . . . 106

2 Geometry of Higher Rank Valuations 121
2.1 Cone complexes and tangent cones . . . . . . . . . . . . . . . . . . . . . . 121
2.2 Tropicalization of rational functions . . . . . . . . . . . . . . . . . . . . . 127
2.3 Quasi-monomial valuations of higher rank . . . . . . . . . . . . . . . . . . 133
2.4 Tropical weak approximation theorem . . . . . . . . . . . . . . . . . . . . 144
2.5 Tropical topology on tangent cone bundles . . . . . . . . . . . . . . . . . . 154
2.6 Spaces of valuations and the retraction map . . . . . . . . . . . . . . . . . 160
2.7 Log-smooth pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2.8 Limit formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

vii



viii Contents

2.9 Variations of Okounkov bodies . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 179



Introduction

The research covered in this manuscript lays between two branches of mathematics: tropical
geometry and non-Archimedean geometry.

The main objective of tropical geometry is to provide tools to translate questions from
algebraic geometry into questions about polyhedral geometry and its combinatorics. There
have been applications of this line of work in many areas of algebraic geometry such as
enumerative geometry [Mik05; Mik06], the study of linear series [Bou14; LM09a], the
theory of singularities [Thu07; Ste06], the theory of degenerations [AB15], the theory of
moduli spaces [CGP18; ACP15], and many others. Recently, tropical geometry has also
allowed going in the opposite direction dealing with combinatorial problems using algebro-
geometric ideas. A notable example of this is the combinatorial Hodge theory initiated
in [AHK18] that has had striking results in the theory of matroids.

Tropical geometry can be introduced in different ways. One of them is the synthetic
approach in which one works with the tropical semifield or min-plus algebra, denoted by T,
whose underlying set is R∪{∞} and whose addition and multiplication is given by the usual
minimum and addition respectively. One can use this to define tropical varieties. These
are the set of common zeros of certain families of tropical polynomials, where tropical
polynomials are those polynomials whose coefficients lie in T and the notion of zero is
defined in a clever way to make it compatible with its algebraic counterpart.

A different way of looking at tropical geometry is given by the valuative approach. From
this point of view, one has to consider a field κ endowed with a valuation val : κ→ R with
a dense image. Then, given a subvariety X of the algebraic torus Gn

κ one can consider its
tropicalization as the euclidean closure of the set of all images

trop(x) := (val(x1), . . . , val(xn))

as x = (x1, . . . , xn) goes over the elements of X. A tropical variety is then defined as the

1



2 Introduction

tropicalization of an algebraic subvariety of a torus.

The fact that these two points of view agree is an important result of the area that
earned the name of the fundamental theorem of tropical geometry [EKL06; SS04]. We
refer to [Mik07; MS15; MR09; IMS09; Gub13; Bru+15] and the references therein for an
introduction to tropical geometry.

Having these different points of view has made the theory evolve in many directions.
From one part, the synthetic approach gives us a setting to study tropical geometry entirely
in combinatorial terms, without reference to algebraic geometry. On the other hand, the
valuative approach remains more in touch with its algebraic side and allows to generalize
the theory to other settings such as the theory of toric varieties or non-Archimedean analytic
geometry.

Non-Archimedean analytic geometry is the branch of algebraic geometry dealing with
algebraic varieties defined over valued fields, that is, fields endowed with valuations val : κ→
R. It allows us to consider “analytic version” of our varieties, called analytifications, mim-
icking the construction of the complex manifold associated to an algebraic variety defined
over C. It was introduced by Tate in his seminal work [Tat71] and developed in different
forms by other authors. We refer to [Con08] for an overview of these ideas.

The approach to non-Archimedean analytic geometry which relates arguably more nat-
urally to tropical geometry is the one introduced by Berkovich [Ber12]. On it, given a
variety X defined on a valued field val : κ → R we can construct its Berkovich analytifi-
cation, denoted by XAn. The underlying set1 of XAn corresponds to the family of all the
valuations ν : k(η) → R whose domain is the residue field of a schematic point η ∈ X

and such that it extends the base field valuation, in the sense that the following diagram
commutes:

k(η) R

κ.

ν

val

Any closed point x ∈ X has κ as residue field and hence induces a unique point νx in XAn

given by νx(f) = val(f(x)). Moreover, for each element ν ∈ XAn with domain κ(η), each
regular function f defined on a neighborhood of η can be evaluated

f 7−→ ν(f).

1Although the usual construction of the Berkovich analytification uses multiplicative seminorms, here
we use the point of view of valuations as it fits better the content of the manuscript.
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These evaluation maps allow us to turn XAn into a topological space by considering the
coarsest topology making the projection XAn → X sending a valuation k(η)

η→ R to η

continuous, together with all the evaluation maps at regular functions over affine open
subsets.

Now, if we suppose that X has some global non-vanishing coordinates, that is, X
is a subvariety of Gn

κ, the considerations above allow us to extend the map trop(x) =

(val(x1), . . . , val(xn)) to a map defined on its analytification XAn. We do this by evaluation
on the coordinates

trop(ν) := (ν(x1), . . . , ν(xn)).

In this way, we have extended the valuative approach of tropical geometry to those analytic
spaces obtained as the Berkovich analytification of an algebraic subvariety of a torus.

There is, on the other hand, an intrinsic approach to tropical geometry on Berkovich
spaces provided by the notion of skeleton. These are polyhedral complexes living inside
the Berkovich space which are constructed in terms of local coordinates of the original
variety. The idea is that, by putting weights on these local coordinates, one can construct
quasi-monomial valuations which will naturally be parametrized in terms of polyhedra.

These skeleta provide an approximation of the analytic space in terms of finitely many
data and, surprisingly, it gives us a considerable amount of information of it. This is
exemplified in the fact that there is a way to connect these different polyhedral complexes
in such a way that the entire space is the inverse limit of all these. Moreover, under suitable
assumptions, the entire space is a deformation retraction of these skeleta.

This thesis is in the context of generalizing these ideas to the case in which the valuations
have a higher rank, that is, they have values in Rk rather than R. This theory is therefore
called higher rank tropical geometry.

Organization of the thesis

This thesis is composed of two chapters and an introduction which presents in a succinct
way the results obtained during the thesis period. The content of Chapter 1 is based on
our paper [Iri21], and Chapter 2 comes from the joint work [AI21] with Omid Amini.

In Chapter 1 we construct a theory of higher rank polyhedral geometry that we expect
will play in higher rank tropical geometry the same role as the one that plays the usual
theory of polyhedral geometry in tropical geometry. We show how this theory helps us to
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understand higher rank tropical hypersurfaces from the synthetic point of view. In Chapter
2 we extend the intrinsic approach to tropical geometry on Berkovich analytifications to the
case in which we are working with higher rank analytifications with constant coefficients.

In the rest of the introduction, we will go more deeply into the contents of Chapter 1
and Chapter 2.

Chapter 1: Polyhedral Geometry Over the Generalized

Dual Numbers

This chapter is concerned with the polyhedral geometry behind a higher rank tropical
geometry.

Higher rank tropical geometry is a generalization of tropical geometry adapted to work
with a valued field K in which the valuation val is not necessarily of rank 1. It was initiated
by Aroca in [Aro10a] with a generalization to this setting of Kapranov’s theorem [Kap00],
that is, the hypersurface case of the fundamental theorem of tropical geometry.

Since then, higher rank tropical geometry has made appearance in the literature at
several occasions, mostly in the case in which Γ is contained in Rk with its lexicographic
order. This is however not a big restriction as, by the Hahn’s embedding theorem [Hah95],
every abelian group of finite rank k can be embedded into Rk with its lexicographic order.
In particular,

1. Banerjee proves in [Ban15] that the Euclidean closure of the tropicalization of a
dimension n subvariety of an algebraic torus over a local field of rank k can be
endowed with a polyhedral complex structure, in the usual sense, of non-necessarily
pure dimension kn.

2. In [FR16b], Foster and Ranganathan prove, by using non-Archimedean geometry in
the higher rank setting, that the higher rank tropicalization of a connected variety is a
path connected space when endowed with its Euclidean topology. Later, in [FR16a],
they use these ideas to construct multi-stage degeneration of toric varieties.

3. Kaveh and Manon outline, in an appendix to their work on Khovanskii bases [KM19a],
a theory of higher rank Gröbner fans for ideals for use in a possible higher rank
version of tropical geometry. They moreover introduce in [KM19b] a framework
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for tropicalization where the valuation takes value in semimodule of piecewise affine
functions, and use this in order to describe toric vector bundles.

4. Joswigh and Smith [JS18] use higher rank tropical geometry in the study of stable
intersection of tropical hypersurfaces, and discuss connection with potential applica-
tions of such a theory in generalizing the works of Allamigeon-Benchimol-Gaubert-
Joswig [All+14; All+15; All+18] and that of Develin and Yu [DY07].

5. A higher rank version of geometric tropicalization with connection to higher rank
non-Archimedean geometry was established in our work with Amini [AI21] where
tangent cone complexes were introduced as an analog notion of skeleton in higher
rank non-Archimedean geometry over trivially valued fields. This will be covered in
Chapter 2 of this manuscript.

6. In their recent works on hybrid geometry of curves and their moduli spaces [AN20;
AN21], Amini and Nicolussi introduce hybrid curves and higher rank versions of
tropical curves, as well as a moduli space of these higher rank geometric objects, and
develop a function theory in this higher rank setting.

7. In addition to the above results, we should mention recent model theoretic works of
Hrushovski and Loeser [HL16] and of Haskell, Hrushovski, and Macpherson [HHM06]
with possible connection to higher rank tropical geometry. (Note however that in
these works, the topology in the value group is the ordered topology, in contrast with
the Euclidean topology considered here over Rk.) We refer to the Bourbaki seminar
by Ducros [Duc12] for the discussion of this point of view and further references.

All these works can be viewed as indicators for the utility of establishing a higher rank
version of tropical geometry in which the structure and geometry of these higher rank
tropical objects can be described and used in applications.

The content of the first chapter of this manuscript is about the polyhedral geometry
underlying such a theory. We develop a polyhedral geometry over the ring of generalized
dual numbers D := R[ε]/(εk) which we expect will play in higher rank tropical geometry
the role the usual polyhedral geometry over R has in tropical geometry. As an application,
we provide a description of the polyhedral structure on higher rank tropical hypersurfaces,
answering questions asked by Joswig and Smith [JS18].
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In addition to building the basis of higher rank tropical geometry, the higher rank poly-
hedral geometry developed here is expected to have further connections and applications
in other places. For example, it should appear in connection with:

1. A general theory of skeleta for higher rank non-Archimedean geometry. This already
happens in the trivially valued case developed in Chapter 2 of this manuscript, in
which skeleta is given by higher rank polyhedral cone complexes, corresponding to
(iterated-)tangent cones over usual polyhedral cone complexes. An extension of the
results of [AI21] to the non-trivially valued situation is of particular interest in the
study of families of algebraic varieties.

2. Understanding the geometry in the theory of affine Λ-buildings developed by Bennett
and Hébert-Izquierdo-Loisel in [Ben90; HIL20].

3. Understanding the current theory of perturbed polyhedra as a deformation theory of
polyhedra, in the sense of algebraic geometry.

4. Developing linear programming methods for problems in which the variable to op-
timize has a lexicographic nature. One could study, for example, how to generalize
the duality theory of linear programming to this setting.

In the following, we provide an overview of the main elements of this chapter.

The Ring of Generalized Dual Numbers

Along this work we work with the ring D = R[ε]/(εk) which we call the ring of generalized
dual numbers of rank k. An important fact about this ring is that it naturally captures the
lexicographic order in Rk by considering ε to be an infinitesimally small but positive quan-
tity. In this way, D becomes an ordered ring whose underlying abelian group corresponds
to Rk with its lexicographic order.

Given a lattice N ∼= Zn with dual lattice M , we proceed to study the module ND from
a geometric standpoint. Using the ordered ring structure of D, we can say that a subset
X ⊆ ND is convex if, for x, y ∈ X and λ ∈ D such that 0 ≤ λ ≤ 1 we have

λx+ (1− λ)y ∈ X
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or a cone if, for x, y ∈ X and λ, µ ∈ D≥0 we have

λx+ µy ∈ X.

Then, given elements x1, . . . , xn ∈ ND one can define their convex hull convD(x1, . . . , xn)
and cone hull coneD(x1, . . . , xn) as the minimal convex set, respectively cone, containing
these elements. Sets of these forms are called polytopes and finitely generated cones re-
spectively.

In the same way, one can define half-spaces in D as sets of the form

{x ∈ ND | ⟨y , x⟩ ≥ a}

for some y ∈ MD and a ∈ D. Intersection of sets of these forms are called polyhedra.
Moreover, a face of a polyhedra is a set of the form P∩H where H = {x ∈MD | ⟨y , x⟩ = a}
is a hyperplane such that the half-space {x ∈MD | ⟨y , x⟩ ≥ a} contains P .

The proof of basic properties of these objects, such as the fact that any polytope or
any finitely generated cone is a polyhedra, are more involved than in the classical setting.
Notice that D is not an integral domain, so we cannot reduce the problem to its fraction
field. Reduction to the integral domain R[[ε]] works neither as the inclusion D ↪→ R[[ε]] is
not a ring map. For these reasons, we need to develop the technical apparatus directly on
D to work around this.

Also, we remark that the structure of faces of a polyhedron is more complicated in this
context than in the usual case. For example, if the polyhedron is given as

P = {x ∈ ND | ⟨y1 , x⟩ ≥ a1, . . . , ⟨yr , x⟩ ≥ ar},

then not every face is of the form

P ∩ {x ∈ ND | ⟨y1 , x⟩ = ai, i ∈ I}

for some I ⊆ {1, . . . , n}. Similarly, if the polyhedron is given as

P = convD(x1, . . . , xn),
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then not every face is of the form

convD
(
{xi | i ∈ I}

)
for some I ⊆ {1, . . . , n}. See Remark 1.1.11 for more comments on this and Section 1.6
for some results in the structure of faces on this context.

The Fourier-Motzkin Elimination

One core technical result is the Fourier-Motzkin Elimination. Over the real numbers, given
a system of linear inequalities in Rn of the form

L = {a1x1 + · · ·+ anxn ≥ a}

with solution set S ⊆ Rn, this algorithms produces explicitly a system of linear inequalities
in Rn−1 of the form

L′ = {b1x1 + · · ·+ bn−1xn−1 ≥ b}

whose solution set is π(S) for π : Rn → Rn−1. This algorithm is based on the two observa-
tions:

1. Any system of one variable inequalities can be written in the form

x ≥ ai, x ≤ bj, ck ≥ 0 for some i, j, k.

2. The system of inequalities above has a solution if and only if ck ≥ 0 for each k and
bj ≥ ai for any i, j.

Then, the algorithm consists in looking at L as a system of inequalities only in the variable
xn.

Over the ring D, the first observation above does not remain true as, for example, a
linear inequality of the form εix ≥ a cannot be reduced to one of the form x ≥ a′. However,
any one variable linear inequality can be reduced to one of the form ±εix ≥ a or ci ≥ 0.
With this modification in mind, we can obtain an analog of the second observation. This
leads to a generalization of the Fourier-Motzkin Elimination to the ring D in Theorem
1.2.3.

Theorem A1 (Fourier-Motskin Elimination over D). Given an integer n ≥ 1 and a system
of linear inequalities L in Dn+1, there is another system of linear inequalities L′ in Dn such
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that (x1, . . . , xn+1) is a solution of L for some xn+1 ∈ D if and only if (x1, . . . , xn) is a
solution of L′.

Although the final algorithm to produce the new system of linear inequalities turns out
to be more involved (see Lemma 1.2.2), it will be of fundamental theoretical importance
for use in what follows.

Farkas’ Lemma

Arguably, one of the most important results in giving shape to a theory of polyhedral
geometry is Farkas’ Lemma. Over the real numbers, one way to state it is as follows.

Theorem (Farkas’ Lemma over R). If f, f1, . . . , fr are affine functions over NR, then we
have the equivalence

{f(x) ≥ 0} ⊇ {f1(x) ≥ 0, . . . , fr(x) ≥ 0}

⇐⇒ ∃λ1, . . . , λr, c ∈ R≥0 such that f = λ1f1 + · · ·+ λrfr + c.

Remark. The exact statement over D turns out to be false. To obtain a counterexample,
notice that it is possible to have {f(x) ≥ 0} = ND in a nontrivial way as in

D = {x ∈ D | εx+ 1 ≥ 0} ⊇ {x ∈ D | ε2x ≥ 0}.

However, there are no λ, c ∈ D≥0 such that

εx+ 1 = λ(ε2x) + c.

Similarly, it is possible to find a counterexample by having {f1(x) ≥ 0, . . . , fr(x) ≥
0} = ∅ in a nontrivial way as in

{x ∈ D | x ≥ 0} ⊇ {x ∈ D | −1 + εx ≥ 0, 1 + εx ≥ 0} = ∅.

But there are no λ1, λ2, c ∈ D≥0 such that

x = λ1(−1 + εx) + λ2(1 + εx) + c

With these considerations in mind, the correct statement of Farkas’ lemma over D goes
as follows (See Theorem 1.3.1).
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Theorem B1 (Farkas’ Lemma over D). Let f1, . . . , fr : ND → D be a family of affine
functions such that the set

P = {f1 ≥ 0, . . . , fr ≥ 0}

is non-empty. Then, any affine function f : ND → D achieving its minimum over P can
be written in the form

f −min
P
f = λ1f1 + · · ·+ λrfr

for some λ1, . . . , λr ∈ D≥0.
The novel part of the hypothesis is that f should achieve its minimum over P . The

proof is based on an induction argument relying on the Fourier-Motzkin Elimination over
D.

Although there are several generalizations of Farkas’ Lemma in the literature, the gen-
eralization given here, in a context with nilpotent elements, appears to be novel. We refer
to [DJ14] for an overview on generalizations of Farkas’ Lemma and to [Bar21] for other
results in this direction.

General Strucstural Results

With Fourier-Motzkin Elimination and Farkas’ Lemma under our belt, we have enough
core results to come back to our basic questions about the structure of polyhedra over D.
Here is a statement collecting some of the results we obtain.

Theorem C1 (Some Structure Results on Polyhedra over D).

1. Finitely generated cones are exactly the same as polyhedral cones (See Proposition
1.2.4 and Proposition 1.5.2).

2. Polytopes are polyhedra and moreover, a polyhedron is a polytope if and only if any
linear function attains its minimum over it (see Proposition 1.2.4 and Corollary
1.9.9)

3. The poset of faces of a polyhedron forms an order lattice (see Corollary 1.6.3).

4. There are explicit ways to compute the faces of a polyhedron in terms of its generators
or, dually, in terms of an intersection of half-spaces (see the content of Section 1.6)

5. There is a notion of relative interior defined by algebraic (rather than topological)
means (see Definition 1.4.1). This notion preserves the usual properties of the relative
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interior over R. For example, the relative interior of a non-empty polyhedron is non-
empty and any polyhedron can be written as the disjoint union of the relatives interiors
of its faces (see Proposition 1.4.2).

6. It is not always true that a polyhedron accepts a Minkowski-Weyl decompostion, that
is, that it can be written as the Minkowski sum of a polytope and a polyhedral cone
(see Remark 1.9.10). However, we have the following characterization: A polyhedron
P can be written as the Minkowski sum of a polytope and a polyhedral cone, if and
only if, each time two linear functions achieve their minimum over P , their sum also
achieves its minimum over P (see Corollary 1.9.9).

Duality Theory of Polyhedra

We generalize to D some duality results for polyhedra. In particular, we generalize the
duality theorem for cones, which gives an order reversing bijection between the faces of a
cone and the faces of its dual (see Theorem 1.5.3).

Theorem D1 (Higher Rank Cone Duality). Given a polyhedral cone σ ⊆ ND and its dual

σ∨ := {y ∈MD | ⟨y , x⟩ ≥ 0,∀x ∈ σ},

there is an order reversing bijection between the poset of faces of σ and the poset of faces
of its dual σ∨ given by

τ 7−→ τ ∗ := τ⊥ ∩ σ∨,

where
τ⊥ := {y ∈MD | ⟨y , x⟩ = 0, ∀x ∈ τ}.

Given a polyhedron P , each face of P is of the form

facey(P ) := arg.minP ⟨y , ·⟩

for some y ∈ MD achiving its minimum over D. The Normal Fan Duality says that this
function is locally constant over the faces of a fan lying onMD. More concretely, in Theorem
1.8.5 we prove the following.
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Theorem E1 (Higher Rank Normal Fan Duality). Given a polyhedron P ⊆ ND, let us
consider the set

|NF(P )| := {y ∈MD | ⟨y , ·⟩ achieves its minimum over P}.

Moreover, for each face F of P , consider its normal cone as the set

C(F ) := {y ∈ |NF(P )| | facey P ⊇ F}.

Then, each C(F ) is a polyhedral cone and the family

NF(P ) = {C(F ) | F ⪯ P}

is a fan whose support is |NF(P )| and such that the map y 7→ facey(P ) is locally constant
over the faces of |NF(P )|. In particular, there is an order reversing bijection between the
faces of P and the faces of NF(P ).

Remark. One new aspect of this setting is that, unlike over R, the support of the normal
fan of a polyhedron is not always convex. Nevertheless, its convex hull is a polyhedral cone
whose dual is the recession cone of the polyhedron. Moreover, a polyhedron has a convex
normal fan if and only if it is the Minkowski sum of a polytope and a polyhedron.

Finally, in Theorem 1.9.6 we generalize a result of Minkowski to higher rank: There
is a correspondence between polyhedral cones endowed with piecewise concave functions
and polyhedra. In particular, there is a bijection between polytopes and piecewise linear
concave functions.

Theorem F1 (Higher Rank Minkowki Theorem). There is a bijection between polyhe-
dra with convex normal fan and polyhedral cones endowed with concave linear functions.
Explicitly, this bijection sends a polyhedron P to the pair (|NF(P )|, hP ), where hP is its
support function defined as

hP : |NF(P )| −→ D

y 7−→ min
x∈P
⟨y , x⟩.
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Iterated Fibrations

For i = 1, . . . , k let Di := R[ε]/(εi). Then, we have a sequence of projections

D = Dk → Dk−1 → · · · → D1 = R.

Applying the tensor product with N yields a sequence of projections

ND = NDk
→ NDk−1

→ · · · → ND1 = NR.

In this way, the subsets X ⊆ ND can be regarded as iterated fibrations.

Definition. For a given lattice N , an iterated fibration of subsets of NR or simply, an
iterated fibration, is a diagram of sets of the form

X = X [r] πr−1−→ X [r−1] πr−2−→ . . .
π1−→ X [0]

where each map is surjective, X [0] ⊆ NR, and for each x ∈ X [i], the fiber π−1i (x) can be
identified with a subset of NR, denoted by X [i+1]

x .

To obtain an iterated fibration fromX ⊆ ND we just need to defineX [i] as the projection
of X to NDi . This gives a new geometrical perspective to polyhedra over D: These are
certain iterated fibrations in which the base and each fiber are polyhedra over R.

One particular kind of iterated fibration is the tangent cone bundle of a set X ⊆ NR.
In order to define it, consider the set TCk−1X whose elements are vectors of the form
(x,w1, . . . , wk−1) where x ∈ X, w1 is an element pointing inside of X, that is, such that
x+ δw1 ∈ X for every δ ∈ R>0 small enough, and more generally, w1, . . . , wi satisfy

x+ δw1 + · · ·+ δiwi ∈ X

for every δ ∈ R>0. Then, the sequence

TCk−1X −→ TCk−2X −→ · · · −→ TCX −→ X.

is an iterated fibration.

More generally, for a flag of sets

A : A0 ⊆ A1 ⊆ · · · ⊆ Ak−1
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we can consider the tangent cone of A, which we denote by TC A, as the set of all elements
(x,w1, . . . , wk−1) ∈ Nk

D such that

x ∈ A0, x+ δw1 ∈ A1, . . . x+ δw1 + · · ·+ δk−1wk−1 ∈ Ak−1

Theorem G1 (Tangent Cone of Polyhedra).

1. If P ⊆ NR is a usual real polyhedron, then TCk−1 P is a polyhedron over D. Con-
versely, any polyhedron over D which is defined completely in terms of real numbers
is of the form TCk−1 P for some real polyhedron P .

2. If P : P0 ⊆ P1 ⊆ · · · ⊆ Pk−1 is a flag of real polyhedra, then TC P is a polyhedron
over D. Conversely, any polyhedron which is defined completely in terms of elements
of the form εia with a ∈ R is of the form TC P for some flag of polyhedra.

In the manuscript, this is developed in Theorem 1.11.2 and Corollary 1.11.3.
The first part of the theorem above should be regarded as a polyhedral version of the

equality
TX(C) = X(C[ε]/(ε2))

from algebraic geometry. That is, if one does a base change of a real polyhedron P to the
ring D, one obtains the tangent cone bundle TCk−1 P which we understand as the correct
analog of its tangent space. The second part of the theorem has to be regarded as a first
instance between the correspondence between layered objects and fibered objects on this
theory.

Tangent cone bundles will appear again in our work in [AI21] which will be covered in
Chapter 2.

R-Rational Polyhedra and Regular Subdivisions

We use all this information to study R-rational polyhedra, that is, polyhedra obtained as
intersection of half-spaces of the form

a1x1 + · · ·+ anxn ≥ a

with a1, . . . , an ∈ R and a ∈ D. These are the kind of polyhedra appearing in higher rank
tropical geometry. In order to do this study, we introduce layered normal fans over the real
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numbers and show how the normal fan duality already obtained gives us a combinatorial
correspondence between R-rational polyhedra and this layered normal fan. We call this
result the Local Duality Theorem.

Theorem H1 (Layered normal fans). To each R-rational polyhedron P we can construct
a sequence of fans

∆(P ) := ∆0 ⪯ ∆1 · · · ⪯ ∆k−1. (⋆)

in which each term is a subdivision of the previous one by considering for each i ∈
{0, . . . , k − 1} and each δ ∈ R>0 the normal fan of the polyhedron

Pi(δ) :=
{
x ∈ NR

∣∣∣ ⟨y , x⟩ ≥ a
(0)
j + δa

(1)
j + · · ·+ δia

(i)
j , ∀ 1 ≤ j ≤ r

}
,

which is independent of δ it is small enough. Moreover, any sequence of fans as in (⋆)
in which each fan is a subdivision of the previous one is the layered normal fan of some
R-rational polyhedron.

To see this and other two different definitions of the layered normal fan of an R-rational
polyhedron we refer to Proposition 1.12.2.

The theorem below (Theorem 1.12.4 in the manuscript) allow us relates the layered
normal fan of an R-rational polyhedron with its usual normal fan over D. In particular, it
allow us to understand combinatorially the iterated fibration of an R-rational polyhedron.

Theorem I1 (Local Duality). Given an R-rational polyhedron P , we can recover the
normal fan of P from the layered normal fan as

NF(P ) = TC∆(P ).

In the sense that, NF(P ) is the fan consisting of all the polyhedral cones of the form TC δ
where

δ : σk−1 ⊆ σk−2 · · · ⊆ σ0

is a layered face of ∆.

Regular Subdivisions

In a similar way as we work with normal fan of R-rational polyhedra we can work with
regular subivisions of real polyhedra by height functions with coefficients in D.
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We extend the notion of regular subdivision of a polytope to the ring D in two different
ways. Given a finite set A ⊆MR and a height function of the form

h : A −→ D

a 7−→ h(a).

we define the layered regular subdivision of convR(A) with respect to h as the sequence of
regular subdivision

∆h(convR(A)) : ∆0 ⪯ ∆1 ⪯ · · · ⪯ ∆k−1

in which ∆i is defined as the usual regular subdivision of A by the height function

h(a)(0) + δh(a)(1) + · · ·+ δih(a)(i)

which is independent of δ ∈ R>0 if it is small enough. To see other two equivalent definitions
for the layered regular subdivision we refer to Proposition 1.13.3.

On the other hand, we can define a regular subdivision over D of the polytope convD(A) ⊆
MD by considering its lifting

convD
({

(a, h(a)) | a ∈ A
})
⊆MD × D

and projecting the lower faces of this lifted polytope back to convD(A). We denote this
regular subdivision by ∆h(convD(A)).

In this way we have the following result (See Theorem 1.13.4 and Proposition 1.13.3)

Theorem J1 (Layered Regular subdivisions).

1. Any sequence
∆: ∆0 ⪯ ∆1 ⪯ · · · ⪯ ∆k−1

of regular subdivisions of a real polyhedron P in which each term subdivides the pre-
vious one is the layered regular subdivision of P with respect to a height function
h : A→ D for a finite set A ⊆MR such that convR(A) = P .

2. Consider a finite set of real points A ⊆MR and a height function h : A→ D. Then,
we have an equality of the form

∆h(convD(A)) = TC∆h(convR(A)).
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In the sense that, the elements of ∆h(convD(A)) are exactly the polyhedra of the form
TC(F ) for

F : Fk−1 ⊆ Fk−2 ⊆ · · · ⊆ F0

where Fi is a face of ∆i for each i.

Higher Rank Tropical Hypersurfaces

In this section we give some applications of tropical geometry to higher rank tropical geom-
etry. For this we work with the tropical semifield of rank k, given by Tk = (D∪{∞},min,+)

in which the addition is the minimum between two elements and the multiplication is given
by the usual addition in D. Expressions in this semifield are written between quotation
marks and with the usual symbols + and ·. For example,

“x+ y + εxy ” = min{x, y, ε+ x+ y}.

Given a lattice M , a Laurent tropical polynomial with coefficients in M is an expression
of the form

f = “
∑
m∈M

amT
m ”

such that am = ∞ for all but finitely many m in M . Laurent tropical polynomials are
manipulated as usual polynomials following the rules of the ring Tk. An element x ∈ ND

is a zero of f if the minimum in

f(x) = min{⟨m,x⟩+ am | m ∈M}

is achieved at least twice. Moreover, the tropical hypersurface induced by f , denoted by
V (f), is the set of all zeros of f .

Theorem K1 (Hypersurface Duality). Given a Laurent tropical polymonial f . The tropical
hypersurface V (f) has naturally the structure of an iterated fibration. Explicitly, it is given
by

V (f) = V (f [k−1]) −→ V (f [k−2]) −→ · · · −→ V (f [0])

where f [i] is the tropical polynomial with coefficients in Ti+1 whose coefficients has been
obtained as the image of the coefficients of f under the projection Tk → Ti+1. Moreover,
the base of this iterated fibration and each fiber are tropical hypersurfaces of rank one. If
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one consider the Newton polytope of f

New(f) := convR
(
m ∈MR | am ̸=∞

)
Then, one can read the combinatorics of all these rank one tropical hypersurfaces from the
layered regular subdivision of New(f) induced by the coefficients of f .

See Proposition 1.14.5 and Theorem 1.14.12 for the complete statements.
In particular, these show us that there is a combinatorial correspondence between lay-

ered regular subdivisions of polytopes and higher rank tropical hypersurfaces, as was con-
jectured by Joswigh and Smith in [JS18].

Finally, we show that higher rank tropical hypersurfaces can be endowed with a poly-
hedral structure compatible with the fibration point of view above. To state the result,
given a Laurent tropical polynomial f , an element x ∈ ND and an integer 0 ≤ i ≤ k − 1,
let us consider its i-initial part by

inix(f) = “
∑
m∈M

⟨m,x⟩+a[i]m=f [i](x)

a(i+1)
m Tm ” ∈ T[M ].

where a(i) correspond to the coefficient of εi in am and a[i]m. The i-initial parts are the rank
one tropical polynomials encoding the fibers of the iterated fibration appearing in V (f).

Theorem L1 (Polyhedral Structures on Hypersurfaces). The tropical hypersurface V (f)

has a natural polyhedral complex structure over D on which the vector

(in0
x(f), in

1
x(f), . . . , in

k−1
x (f))

remains constant as x vary over the interiors of the cells. In this way, it is compatible with
the description of the fibration described in the duality theorem. See Theorem 1.14.17 for
the complete statement.

Organization of the Chapter

In Section 1.1, we introduce the ring of generalized dual numbers and the basic polyhedral
objects over it. After that, we start developing the technical apparatus by generalizing
Fourier-Motzkin Elimination in Section 1.2 and Farkas’ Lemma in Section 1.3. This allow
us to develop results in the structure of polyhedra and their faces in Sections 1.4 and 1.6
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along with some other results in Sections 1.5, 1.7, 1.8 and 1.9, both in the structure of
polyhedra and the duality theory of cones and normal fans at different levels.

Starting this point we change the perspective and move to study higher rank polyhedra
as fibered objects. In Section 1.10 we introduce iterated fibration and the example of the
tangent cone bundle. In Section 1.11 we see how tangent cone bundle of real polyhedra
and, more generally, tangent cone bundle of flags of real polyhedra, produce polyhedra
over D. We use all this information to study R-rational polyhedra in Section 1.12, where
we introduce layered normal fans and show how to understand the combinatorics of faces
of an R-rational polyhedron from its layered normal fan.

In Section 1.13 we introduce regular subdivisions for polytopes over D and layered
regular subdivision for polytopes over R. We show how they correspond to each other
in the real case by means of the tangent cone operator. In section Section 1.14 we use
all these ideas to understand tropical hypersurfaces. In particular, using layered regular
subdivisions, we understand the combinatorics coming from the fibration point of view and
how to put a polyhedral structure over D compatible with this fibration point of view.

Chapter 2: Geometry of Higher Rank Valuations

Within this chapter, we introduce a certain number of tools and results suitable for the
study of valuations of higher rank on function fields of algebraic varieties. This will be
based on finite type approximations of the valuation spaces under consideration via a
theory of higher rank skeleta that we develop in this chapter, by providing a geometric
interpretation of higher rank quasi-monomial valuations in terms of tangent cones of cone
complexes.

The motivations behind the undertaken study is multifold:

• On one side, the theory of Newton-Okounkov bodies and their variations [Oko96;
KK12; LM09b; Bou12; BC11; Ami14; Cam+18; Cil+17; KM19a; RW19; EH19;
CMM21; Bos21; HKW20]. One desires to understand continuity and wall-crossing
behavior of convex bodies associated to big line bundles when the corresponding
defining valuations vary. We propose a possible answer to a folklore open question
in the field by providing a suitable base space for the study of families of Newton-
Okoukov bodies.
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• On the other, the recent works of Amini-Nicolussi on hybrid geometry of curves
and their moduli spaces, concerning the constructions of higher rank hybrid and
tropical compactifications [AN20; AN21] and the development of a function theory
in higher rank non-Archimedean analysis [AN21]. This highlights the importance of
higher rank non-Archimedean and tropical geometry in the study of the asymptotic
geometry of multiparameter dependent families of complex varieties.

In the rest of this introduction, we provide an overview of our results and comment on
the links to the related works.

All through this chapter we fix a field κ that we can assume to be algebraically closed.
For a positive integer k ∈ N, we set [k] := {1, . . . , k}.

Valuations

We start by fixing ideas and notations on the valuations that will be used through this
chapter.

Let (Γ,⪯) be a totally ordered abelian group and let K/κ be a field extension. A
valuation ν on K over κ with values in Γ is a map ν : K → Γ ∪ {∞} which verifies the
following properties for any pair of elements a, b ∈ K.

1. ν(a) =∞⇐⇒ a = 0.

2. ν(a+ b) ≥ min{ν(a), ν(b)} and ν(ab) = ν(a) + ν(b).

3. ν(a) = 0 provided that a is in κ.

In this chapter we consider the additive group (Rk,⪯lex), for a fixed k ∈ N, endowed with
the lexicographic order ⪯lex. This is the order defined by saying x ⪯lex y, x = (x1, . . . , xk)

and y = (y1, . . . , yk), if either x = y or there is i ∈ [k] such that xj = yj for j < i and
xi < yi. Moreover, we will suppose that K has finite transcendence degree over κ, that
is we suppose the existence of a smooth connected variety X over κ such that K is the
function field K(X) of X. The integer number k will be regarded as a bounding rank for
the valuations considered in this chapter. The idea to consider valuations of different rank
simultaneously comes from practical situations in the study of degenerations of families of
algebraic varieties over higher dimensional bases, see e.g. [AN20; AN21].

Basic examples of valuations in this setting are the followings:
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– (Monomial valuations). Let X = A2 = Spec (κ[X, Y]) and K = κ(X, Y). For (a, b) ∈
R+, there is a unique valuation

νa,b : K → R ∪ {∞}

called monomial valuation with respect to (a, b) and given by

νa,b(f) := min
{
ai+ bj

∣∣ aij ̸= 0
}
, f =

∑
(i,j)∈Z2

aijx
iyj ∈ κ[x, y].

Here and all through the chapter, R+ is the set of non-negative real numbers.

– (Divisorial and flag valuations). Suppose X/κ is a normal irreducible variety and
let F ⊊ X be a closed irreducible subvariety of codimension one. The order of vanishing
along F denoted by ordF is a rank one valuation on K = K(X), and any positive scalar
multiple of ordF is called a divisorial valuation. More generally, we can consider a flag of
normal irreducible subvarieties

F : F0 ⊋ F1 ⊋ · · · ⊋ Fk

where F0 = X and codimX(Fℓ) = ℓ, ℓ ∈ [k]. Each Fℓ thus defines a discrete valuation
ordFℓ

over K(Fℓ−1). This gives rise to a flag valuation νF of rank bounded by k defined as

νF : K(X)∗ → Rk

f 7→ (ordF1(f1), ordF2(f2), . . . , ordFk
(fk))

(1)

where f1 = f and fℓ+1 ∈ K(Fℓ) is the restriction of fℓ · t
−ordFℓ+1

(fℓ)

ℓ+1 to Fℓ+1 for tℓ+1 a
uniformizer for the valuation ordFℓ+1

, see for example [LM09b; KK12] for more details and
for the link to the theory of Newton-Okounkov bodies.

– (Quasi-monomial valuations) We can generalize the first example above by replacing
A2 by any normal irreducible variety X and taking a simple normal crossing (SNC) divisor
D = D1 ∪ · · · ∪Dr on X. This leads to the concept of quasi-monomial valuations, which
generalizes monomial, divisorial, and flag valuations, as we will see later in Theorem 2.3.12.

Consider the dual cone complex of the divisor D. This is a simplicial cone complex
Σ(D) in which there is a ray ρi corresponding to each component Di of D, and for each
subset I ⊆ [r], each connected component (if any) of the intersection DI :=

⋂
i∈I Di gives

rise to a face σ with generating rays {ρi}i∈I . More details can be found in Construction
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2.1.6. Each face σ of Σ(D) thus corresponds to a connected component of DI , for I ⊂ [r],
that we denote by Dσ. In this case, we set Iσ = I identified as the set of elements i ∈ [r]

such that Di contains Dσ. The divisor D being SNC, Dσ is normal irreducible and has
a generic point ησ. Moreover, we can choose local equations {zi}i∈I for the components
{Di}i∈I around ησ.

Just as we did for the case of monomial valuations, for the totally ordered abelian group
(Γ,⪯), we can pick a vector α = (αi)i∈I with αi ∈ Γ⪰0, and define a unique valuation να

on K = K(X) by requiring
να(
∏
i∈I

zγii ) :=
∑
i∈I

αiγi

for any γ = (γi) ∈ ZI+. We can then naturally extend this, first, to the local ring OX,ησ by
taking the minimum over terms of a power series expansion, and then to the full function
field. This is the quasi-monomial valuation associated to D and the weights α. For more
details we refer to Section 2.3.

We denote by M k(D) = M k(X,D) the set of all quasi-monimial valuations of rank
bounded by k with (Γ,⪯) = (Rk,⪯lex). For k = 1, we further simplify the notation to
M (D). From the above description, it follows that elements of M (D) are in bijection with
the pair (σ, α) with α = (αi)i∈Iσ ∈ RIσ

+ . This means M (D) can be naturally identified
with Σ(D). The above sets come with a natural tower of projection maps

M (D)←M 2(D)← · · · ←M k−1(D)←M k(D)← . . .

induced by the projection map to the first k − 1 coordinates Rk → Rk−1.

Tropicalization

Let X be a normal irreducible variety and let D be an SNC divisor on X. The elements
of the dual cone complex Σ(D) correspond to quasi-monomial valuations of rank bounded
by one on the function field K(X) of X. For each rational function f ∈ K = K(X), we
thus get by evaluation a function

trop(f) : Σ(D)→ R, α ∈ σ → να(f),

called the tropicalization of f . This is a piece-wise integral linear function on each cone σ
of Σ(D).
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In this chapter we provide an extension of this picture to the case of higher rank quasi-
monomial valuations. This will be based on a duality theorem we state in the next section
which will allow to give a geometric meaning to the space M k(D) and the tropicalization
map

trop(f) : M k(D)→ Rk, α ∈ σ → να(f),

for α ∈ (Rk
⪰lex0

)Iσ

Tangent cone bundles and duality theorem

The first contribution of this paper is the duality theorem below which provides a geometric
realization of the set M k(Σ(D)) of quasi-monomial valuations of rank bounded by k as a
tangent cone bundle on Σ(D).

Notations as above, recall that for k > 1 there is a natural projection map M k(D)→
M (D) which allows to view M k(D) as a bundle over M (D) = Σ(D). We give a geometric
characterization of this bundle in terms of Σ(D).

Theorem A2 (Duality Theorem). Notations as above, there is an isomorphism of bundles
over M (D) ≃ Σ(D)

M k(D) TCk−1Σ(D)

M (D) Σ(D)

≃

≃

(2)

where TCk−1Σ(D) is the (k − 1)-tangent cone of Σ(D) defined as the set of all elements
of the form (x;w1, . . . , wk−1) where

- the base point x is a point of Σ(D), and

- w1, . . . , wk−1 is an ordered set of tangent vectors to Σ(D) at x such that we have

x+ εw1 + ε2w2 + · · ·+ εrwr ∈ Σ(D),

for any r ∈ [k − 1] and any small enough ε > 0.

For a more precise meaning to the above taken sum, we refer to Section 2.3. We call
TCk−1Σ(D) the tangent cone bundle of Σ(D) of order k − 1.

Using the above correspondence, we give an explicit realization of higher rank quasi-
monomial valuations as directional derivative operators defined in terms of the correspond-
ing tangent vectors. In order to do this, we equip the cone complex Σ(D) with its structure
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sheaf OΣ(D) which is the sheaf of tropical functions. These are continuous functions whose
restrictions on each cone σ of Σ coincides with a piecewise integral linear function defined
on that cone.

A rational function f ∈ K = K(X) induces a global section trop(f) of the structure
sheaf.

Theorem B2 (Duality Theorem, second form). Let (x;w) be an element of the tangent
cone TCk−1Σ(D) with w = (w1, . . . , wk−1). The valuation νx;w given by the duality theorem
above is described as

vx;w : K(X) −→ Rk

f 7−→
(
trop(f)(x), Dw1 trop(f)(x), . . . , Dw1,...,wk

trop(f)(x)
)

where

• Dw1 trop(f)(x) is the directional derivative of the function trop(f) at x in the direc-
tion w1, and

• recursively, Dw1,...,wr+1 trop(f)(x) is the directional derivative of Dw1,...,wr trop(f)(x)

seen as a function on the variable wr in the direction wr+1.

Topologies on the tangent cone of dual complexes

Notations as before, let D = D1∪ · · ·∪Dr be an SNC divisor on a smooth quasi-projective
variety X, and let Σ(D) be the corresponding dual cone complex. Let k be an integer and
consider the tangent cone bundle TCk−1Σ(D). There are four natural topology one can
define on the tangent cone of a dual complex. They all coincide in the case k = 1, but
differ fundamentally for larger values of k. We now discuss these topologies.

First note that by the definition of the monomial valuations, we have a surjection
(Rk)r⪰0 →M k(D). Via the duality theorem, the two first topologies on the tangent cone
TCk−1Σ(D) are induced by this surjection. Namely,

• (Ordered topology) This is the topology on TCk−1Σ(D) ≃M k(D) induced by the ordered
topology of (Rk)⪰0.

• (Euclidean topology) This is the topology on TCk−1Σ(D) induced by the Euclidean
topology of (Rk)⪰0 ⊆ Rk. Equivalently, this is the topology induced by the Euclidean
topology of Σ(D).



Chapter 2: Geometry of Higher Rank Valuations 25

• (Hahn-Berkovich topology) This is the natural topology which appears usually in the con-
text of non-Archimedean geometry, that is the coarsest topology which makes continuous
all the tropicalization maps

Trop(f) : TCk−1Σ(D)→ Rk
lex, f ∈ K(X)

where Rk
lex refers to Rk equipped with its lexicographically ordered topology. Note that it

makes sense for any ordered abelian group Γ as the value group for the space of valuations.

• (Tropical topology) This is arguably the most interesting topology one can define on
the tangent cone, as it happens to mix the properties of the Euclidean topology on Rk

with those coming from the lexicographic order used in order to define the valuations. By
definition, this is the coarsest topology which makes continuous all the tropicalization maps

Trop(f) : TCk−1Σ(D)→ Rk, f ∈ K(X)

in which Rk is equipped with its Euclidean topology. This topology might be called as well
the Hahn-Euclidean topology.

In this chapter we provide an explicit description of the tropical topology. This is
obtained as a consequence of the tropical weak approximation theorem proved below, as
we describe next.

Refined tropicalization and tropical weak approximation

Let D be an SNC divisor on X. For each cone σ ∈ Σ(D) and for each i ∈ Iσ, consider a
local equation zi for Di around ησ. Then, the family {zi}i∈Iσ provides a system of local
parameters for the local ring ÔX,ησ obtained as the completion of OX,ησ at its maximal idea.
Each element of the local ring ÔX,ησ admits an admissible expansion in the terminology
of [JM12], that is an expansion of the form

f =
∑
β∈Zr

+

cβz
β, cβ ∈ ÔX,ησ , (3)

in which the right hand side is a convergent series with each coefficient cβ either zero or a
unit element in ÔX,ησ . Here and in what follows, the notation zβ stands for the product
zβ11 . . . zβrr where β1, . . . , βr denote the coordinates of β ∈ Zr.

The support of the admissible expansion is the set given by all β ∈ Zr+ such that cβ is
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not zero.

Although an element f has generally infinitely many admissible expansions, we will
show later that the set of initial terms of f is invariant under the choice of the expansion
and the local parameters. Here an initial term is an element of the support which is
minimal for the partial order ≤cw in which a vector x = (x1, . . . , xr) is less than or equal
to y = (y1, . . . , yr) if coordinate-wise we have xj ≤ yj, j ∈ [r]. We denote the initial terms
of f by Aσf . Note that the terms in Aσf form an antichain for the partial order ≤cw , that
is any pair of distinct elements in Aσf is incomparable relative to ≤cw . The antichain Aσf
determines the restriction of Trop(f)|σ.

Trop(f)(x) = min
β∈Aσ

f

⟨x, β⟩

For a rational function f ∈ K(X) which belongs to all the local rings ÔX,ησ , σ ∈
Σ, we thus get the refined tropicalization of f given by the collection Af :=

{
Aσf
∣∣σ ∈

Σ(D) with f ∈ OX,ησ
}
, the family of antichains attached to f . Such a family verifies the

following compatibility property:

• (Coherence property) For any inclusion of faces τ ⊆ σ, we have the relation

Aτf = min
≤cw

pr
σ≻τ

(Aσf ).

Here pr
σ≻τ

is the projection map RIσ → RIτ .

Theorem C2 (Tropical weak approximation theorem). Let X be a smooth quasi-projective
variety over a field k and let D be an SNC divisor on X. Let A = {Aσ |σ ∈ Σ(X,D)} be
a family consisting of finite sets Aσ ⊂ ZIσ+ such that

• each Aσ is antichain for the partial order ≤cw , for σ ∈ Σ(X,D)

• the family A verifies the coherence property, that is for inclusion of faces τ ⊆ σ, we
have Aτ = min≤cw

pr
σ≻τ

(Aσ).

Then there exists a rational function f ∈ K(X) such that for each cone σ of Σ(X,D), we
have f ∈ OX,ησ and Aσ = Aσf .

The above theorem might be regarded as a tropical analogue of the weak approximation
theorem in number theory.
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From the above theorem we deduce the following result 2.

Corollary. Let X be a smooth quasi-projective variety over a field κ and let D be a
simple normal crossing divisor on X. Any tropical function F on the support of the dual
cone complex Σ(D) is the tropicalization of a rational function f ∈ K(X).

As a consequence of the above result and our analytic description of higher rank val-
uations as multidirectional derivatives of tropical functions, we infer that both the Hahn-
Berkovich and tropical topology are intrinsic to the cone complex Σ(D), that is they can
be defined more generally for any rational cone complex Σ. (The intrinsic nature of the
two other topologies, the ordered and the Euclidean, is obvious from the definition.)

The following theorem provides a description of the tropical topology. Let Σ be a
rational cone complex and suppose Σ̃ is a rational subdivision of it. Let k be a positive
integer. A set U ⊂ TCk−1Σ is called a Σ̃-open if U ∩ TCk−1 σ is open in TCk−1 σ with
respect to the Euclidean topology for every cone σ of Σ̃.

Theorem D2 (Characterization of the tropical topology). Notations as above, we have

1. For each rational subdivision Σ̃ of Σ, the Σ̃-open sets of TCk−1Σ are open with respect
to the tropical topology.

2. The union of all Σ̃-open sets, Σ̃ a rational subdivision of Σ, form a basis of opens
sets for the tropical topology.

Spaces of higher rank valuations

Given a variety X over κ, the birational analytification of X of bounded rank k is the set

Xbir,k :=
{
ν : K(X)∗ → Rk | ν is a valuation

}
that we endow with the coarsest topology which makes continuous all the evaluation maps,
for any f ∈ K(X)∗,

evf : X
bir,k −→ Rk

ν 7−→ ν(f).

2 As it was pointed to us independently by Sébastien Boucksom and by Mirko Mauri and Enrica Mazzon,
this corollary can be alternatively obtained by more direct methods.
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Here, we equip Rk with its Euclidean topology. Moreover, we define the following subspaces
of Xbir,k

Xℶ· ,k :=
{
ν ∈ Xbir,k | ν has a center in X

}
Xℸ· ,k :=

{
ν ∈ Xbir,k | ν does not have any center inX

}
that we endow with the topology induced by that of Xbir,k. Recall that for a variety X

and a valuation ν : K(X)→ Γ, the center of ν, if it exists, is the unique point x ∈ X such
that ν is non-negative over OX,x and strictly positive over its maximal ideal.

Notice that Xbir,k = Xℶ· ,k ⊔Xℸ· ,k and Xbir,k = Xℶ· ,k if X is proper. In the terminology
of Foster and Ranganathan [FR16b], the space Xbir,k coincides with the subspace of all
valuations defined over the generic point in the Hahn analytification of X endowed with
the extended Euclidean topology. Moreover, the notation Xℶ· ,k is used in analogy to the
analytic space Xℶ of Berkovich [Ber96] and Thuillier [Thu07], where the dot is a reminder
that we are considering only tehe birational parts.

We can actually go further and introduce a flag of subspaces of Xbir,k called the the
centroidal flag, which interpolates between Xℶ· ,k and Xbir,k. This is done as follow. For
0 ≤ r ≤ k, we consider the set

F rXbir,k :=
{
ν ∈ Xbir,k | projr(ν) has a center in X

}

where projr(v) is the composition of v with the projection Rk → Rr to the first k coordi-
nates. In other words,

F rXbir,k := proj−1r Xℶ· ,k.

This give us a decreasing filtration

Xbir,k = F 0Xbir,k ⊇ F 1Xbir,k ⊇ · · · ⊇ F kXbir,k = Xℶ· ,k.

For an SNC divisor D on the variety X, the space TCk−1Σ(D) endowed with its tropical
topology naturally fits inside Xℶ· ,k. As we will next explain, the tangent cone bundles
provide a higher rank notion of skeleton for the above space of valuations.
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Tangent cone bundles as higher rank skeleta

We now discuss the relevance of the tangent cone bundles to higher rank non-Archimedean
geometry.

We start by recalling some basic definitions in birational geometry. Let X be a smooth
variety over κ. A log-smooth compactification of X is a proper variety Y containing X as
an open subvariety such that Y \X is a simple normal crossing divisor on Y . A morphism
between log-smooth compactifications Y ′ and Y is a morphism f : Y ′ → Y between the
underlying varieties such that f−1(X) = X and f |X is an isomorphism. The category of
log-smooth compactifications of X will be denoted by LSCX .

A compactified log-smooth pair is the data of a pair Y = (Y,D) consisting of a proper
variety Y and a simple normal crossing divisor D ⊂ Y together with a birational map
φ : Y 99K X such that the divisor D can be decomposed as D = D◦ +D∞ where D◦ and
D∞ does not have any component in common, and such that

(i) the domain of definition of φ is Y \D∞, that is,

φ : Y \D∞ −→ X

is well-defined and Y \D∞ is the maximum open set with this property.

(ii) the pair (Y \ D∞, D◦|Y \D∞) is a log-smooth pair for X, i.e., φ|Y \D∞ is a proper
morphism from Y \D∞ to X and the restriction

Y \ (D◦ ∪D∞) −→ X \ φ(D◦)

is an isomorphism.

Morphisms between compactified log-smooth pairs can be defined in a natural way. The
category of compactified log smooth pairs will be denoted by CLSPX .

For a compactified log-smooth pair Y = (Y,D), we denote by Σ(Y) = Σ(Y,D) the
dual cone complex associated to the divisor D on Y . We denote by TCk−1Σ(Y) the
corresponding tangent cone bundle that we endow with the tropical topology.

Given a compactified log-smooth pair Y = (Y,D) over X, as above, the decomposition
D = D◦ ∪D∞ gives the subcomplex Σ(D◦) inside Σ(Y) which we denote by Σ(Y

◦
). The
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centroidal filtration of TCk−1Σ(Y) is by definition the filtration

F 0 TCk−1Σ(Y) ⊇ F 1 TCk−1Σ(Y) ⊇ · · · ⊇ F k TCk−1Σ(Y)

given for 0 ≤ r ≤ k by

F r TCk−1Σ(Y) :=
{(
x; (w1, . . . , wk−1)

)
∈ TCk−1Σ(Y) |

(
x; (w1, . . . , wr−1)

)
∈ TCr−1Σ(Y◦)

}
.

We prove the following theorem.

Theorem E2 (Characterization of the tropical topology). Notations as above, for each
compactified log-smooth pair Y = (Y,D) over X, there is a continuous retraction

r
Y
: Xbir,k −→ TCk−1Σ(Y).

Moreover, the deduced continuous map

r: Xbir,k −→ lim←−
Y∈CLSPX

TCk−1Σ(Y)

is a homeomorphism. In addition, the limit are compatible with the centroidal filtration on
the analytic spaces and on tangent cone bundles. That is, for each 0 ≤ r ≤ k, we get to a
homeomorphism

F rXbir,k −→ lim←−
Y∈CLSPX

F r TCk−1Σ(Y).

We note that the above theorem shows that tangent cones with their tropical topology
should be regarded as the higher rank analogue of skeletons in non-Archimedean geometry.

We remark that the statements of the above theorem hold as well in the case where the
spaces in consideration are equipped with the Hahn-Berkovich topology. However, due to
mixed nature of the tropical topology, the arguments in the proof in the case of the tropical
topology become more subtle. In particular, on the way for getting the result, we need to
establish a somehow surprising Topology-Mixing Lemma 2.6.9.

Variations of Newton-Okounkov bodies

The tropical topology and the above spaces of valuations seem to be the right topological
spaces for the problem of understanding the variations of Okounkov bodies, as we explain



Chapter 2: Geometry of Higher Rank Valuations 31

now.

Let X be a smooth projective variety of dimension d and let L = O(E) be a big line
bundle over X. Consider the graded algebra

H• =
⊕
n≥0

Hn

where Hn := H0(X,O(nE)) is a finite dimensional κ-vector subspace of K(X).
Each valuation ν ∈ Xbir,d gives rise to the corresponding Newton-Okounkov body in

Rd denoted by ∆ν and defined by

∆v :=
⋃
n≥0

{
ν(f)

n
| f ∈ Hn

}
.

Let now D be a simple normal crossing divisor on X and consider the tangent cone
TCd−1Σ(D). Consider the space BC(Rk) of compact subsets of Rk endowed with the
Hausdorff distance. We get a map

∆: TCd−1Σ(D) −→ BC(Rn)

(x;w) 7−→ ∆νx,w .
(4)

The study undertaken in this chapter has as objective to ultimately prove that the
above map ∆ is continuous when TCd−1Σ(D) is endowed with the tropical topology. This
topology is actually the only natural one on TCd−1Σ(D) for which one can expect this
statement to be both true and non-trivial, as can be verified through basic examples.

Conjecture. Let L be a big line bundle on a projective variety X of dimension d. Let D
be a simple normal crossing divisor on X with dual cone complex Σ(D) of pure dimension
d. The variation of Newton-Okounkov bodies on TCd−1(Σ(D)) is continuous.

We later provide a heuristic argument for the validity of this conjecture. In particular,
on those cones whose augmented semigroups are finitely generated, the conjecture holds.

Related work

In this final section, we make a comparison of our results with the existing ones in the
literature.

The contributions of this chapter should be regarded as part of the recent attempts
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to generalize the framework of tropical and non-Archimedean geometry to higher rank
valuations.

Analytification of varieties based on valuations has been developed in the pioneer-
ing works of Berkovich [Ber12] and Huber [Hub94]. Both spaces are intimately linked
with tropical geometry, in the former by means of usual tropicalization and in the latter
by means of adic tropicalization [Fos16]. More recently, Kedlaya [Ked15] and Foster-
Ranganathan [FR16b; FR16a] introduced an alternative analytification directly linked to
the one of Berkovich based on higher rank valuations. This last point of view is similar to
the one we have adapted as the setting for formulating our results in this chapter.

Higher rank tropicalization has been studied by Aroca [Aro10b; Aro10a], Aroca-Garay-
Toghani [AGT16], Banerjee [Ban15], Foster-Ranganathan [FR16b; FR16a], Kaveh-Manon
[KM19a; KM19c], Escobar-Harada [EH19], and Joswig-Smith [JS18]. Our work can be
regarded as the geometric version of higher rank tropicalization. A framework for higher
rank polyhedral and tropical geometry related to the set-up introduced in this paper will
appear in the forthcoming paper [Iri21]. Tangent cone bundles we introduce in this paper
and their refinements play a central role in that work.

Geometric tropicalization in rank one has been studied by Hacking-Keel-Tevelev [HKT09],
Thuillier [Thu07], Abramovich-Caporaso-Payne [ACP15], and more recently by Ulirsch
[Uli17] and Gross [Gro18], among others.

A more general framework for tropicalization has been developed in the work of Lorscheid
on blueprints [Lor15], and in the works of Giansiracusa-Giansiracusa [GG16; GG14] and
Maclaghan-Rincón [MR20]. Because of the level of generality in those works, higher rank
tropicalization can be treated using any of the former two frameworks. Tropicalization with
values in hyperfields is studied by Viro [Vir10], Jun [Jun17] and Jell-Scheiderer-Yu [JSY18].

The link between skeletons and tropicalizations in rank one has been throughly stud-
ied in the works of Gubler-Rabinoff-Werner [GRW17; GRW16], Macpherson [Mac20], and
Baker-Payne-Rabinoff [BPR16]. Since skeletons play a central role in connecting complex
and non-Archimedean geometry, in the study of one-parameter families of complex mani-
folds, we expect that higher rank analogues of skeleta introduced in this paper, and their
polyhedral counterparts further developed in [Iri21], will play a central role in the study
of multiparameter families of complex manifolds. A systematic study of multiparameter
families of Riemann surfaces is undertaken in the series of works [AN20; AN21].

The link between dual cone complexes and higher rank valuations we provide in this
paper should be compared with the work of Kaveh and Manon [KM19a] on Khovanskii
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bases. In that work, the authors show how to associate to prime cones appearing in the
tropicalization of subvarieties of affine spaces a higher rank valuation on the coordinate ring
of the variety with a finitely generated semigroup. The construction we consider directly
associates higher rank valuations to cone complexes of normal crossing divisors. These
cone complexes live in the Berkovich analytification of the variety X. By the work of
Gubler-Rabinoff-Werner [GRW17; GRW16], a prime cone appearing in the tropicalization
of a variety can be viewed naturally in the Berkovich analytification of the variety. In
this regard, it seems possible to retrieve the valuations in the work of Kaveh and Manon
as those in the framework of our paper which come from faithful tropicalizations of the
variety. We refer to [RW19; Bos21; Bos+17; Bos+18; IW20; EH19] for further results on
the connection between tropical geometry, toric degenerations and Khovanskii bases.

The origin of limit theorems goes back to the work of Zariski [Zar39; Zar44] on resolution
of singularities in dimension two and three using Riemann-Zariski spaces. For tropicaliza-
tions, this has been shown in rank one by Kontsevich and Soibelman [KS06] (unpublished),
Payne [Pay09], Foster-Gross-Payne [FGP14], Jonsson-Mustaţă [JM12], Boucksom-Favre-
Jonsson [BFJ16], and Boucksom-Jonsson [BJ18]. We have been particularly inspired by
the work of [JM12] in establishing our limit theorems. A higher rank version of [FGP14]
has been obtained by Foster-Ranganathan [FR16b]. Relative Riemann-Zariski spaces are
studied by Temkin [Tem11; Tem10]. We refer to the book of Fujiwara-Kato [FK13] for a
detailed discussion of Riemann-Zariski spaces and their applications in rigid geometry.

A version of the duality theorem for the valuative tree was proved by Favre and Jonsson
in [FJ04]. For curves over non-trivially valued fields this theorem should be compared with
the description of tangent directions at points of type 2 in the Berkovich analytification as
valuations of rank two on the function field of the curve, a result which can be traced back
to Bosch-Lütkebohmert [BL85] and Berkovich [Ber12]. This is also the main ingredient in
Thuillier’s non-Archimedean version of Poincaré-Lelong formula for curves [Thu05] and its
reformulation as a slope-formula by Baker-Payne-Rabinoff [BPR13].

Finally, let us mention that a version of the approximation theorem for curves for
non-trivially valued base fields is proved by Baker-Rabinoff [BR15]. We expect that our
theorem should be true in the non-trivially valued case in any dimension and plan to come
back to this setting in a future work.
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Organization of the chapter

Here is the plan of this chapter. In Section 2.1 we introduce dual cone complexes endowed
with the sheaf of tropical functions and their tangent cones. We attach to a simple normal
crossing divisor on a variety X its corresponding dual cone complex and its tangent cone.
In Section 2.2 we recall the definition of tropicalization of rational functions, and explain
how to attach a system of antichains to a rational function, leading to a refinement of the
definition of tropicalization.

Section 2.3 introduces quasi-monomial valuations of a given rank and study their ba-
sic properties. This section contains the proof of the duality theorem and an analytic
description of the monomial valuations in terms of directional derivatives along elements
in the tangent cones. Section 2.4 contains the proof of our approximation theorem. In
Section 2.5, we study the tropical topology on the tangent cone, and provide an explicit
basis of this topology. Section 2.6 introduces several spaces of higher rank valuations on
the function field of a smooth variety over κ. The results are used in Sections 2.6.3, 2.7
and 2.8 to prove the continuity of the retraction map and the limit formulae.



Chapter1
Polyhedral Geometry Over the Generalized
Dual Numbers

The aim of this chapter is to provide the foundations of a polyhedral geometry in the higher
rank setting, and to give the first applications to a (to-be-developed) theory of higher rank
tropical geometry.

1.1 Basic Concepts in Higher Rank Polyhedral Geome-

try

In the following we will work with the ring of generalized dual numbers of rank k defined
by D := R[ε]/(εk). For k = 2 it recovers the usual ring of dual numbers. Elements of D
have the form

x = x(0) + x(1)ε+ · · ·+ x(k−1)εk−1 (1.1)

with x(0), . . . , x(k−1) ∈ R. They are manipulated as usual power series with coefficients in
R imposing that εk = 0, in the same way as one works with Taylor expansions of the form
a0+a1z+ · · ·+ak−1zk−1+o(zk−1). If the rank of D has to be made explicit, we use a lower
index Dk.

For an element x ∈ D as in (1.1) and for 0 ≤ i ≤ k− 1, we denote by x[i] the truncated
element

x[i] = x(0) + x(1)ε+ · · ·+ x(i)εi.

Moreover, we introduce the order of x by ord(x) = min{j ∈ {0, . . . , k − 1} | x(j) ̸= 0} if

35
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x ̸= 0 and ord(0) = k.

Notice that D is isomorphic to Rk as an additive group. We endow D with the lexico-
graphic order

a(0) + εa(1) + · · ·+ εk−1a(k−1) < b(0) + εb(1) + · · ·+ εk−1b(k−1) (1.2)

⇐⇒ a(i) < b(i) for the first i such that a(i) ̸= b(i). (1.3)

In this way, we obtain an order on D that we simply denote by ≤. This order turns
out to be compatible with the additive and multiplicative structure of D turning it into an
ordered ring.

Remark 1.1.1. The following observation is useful and will be used sometimes in the
arguments. Given a, b ∈ D, we have a ≤ b with the lexicographic order introduced in (1.2)
iff we have

a(0) + δa(1) + · · ·+ δk−1a(k−1) ≤ b(0) + δb(1) + · · ·+ δk−1b(k−1)

for every δ ∈ R>0 small enough.

Given a lattice N ∼= Zn with dual lattice M = Hom(N,Z) we consider the base changes
ND = N ⊗ D and MD = M ⊗ D. The pairing M ⊗N → Z naturally extends to a pairing
MD ⊗ND → D which we denote by ⟨· , ·⟩.

Remark 1.1.2. Under the pairing ⟨· , ·⟩, the linear functions from ND to D correspond
exactly to the elements of MD. For this reason, we decide to write y instead of ⟨y , ·⟩ when
there is no risk of confusion. More generally, the affine functions from ND to D are all of
the form ⟨y , ·⟩+ a for some y ∈MD and a ∈ D.

Using the ordered ring structure on D we can introduce several geometric concepts over
the module ND.

Definition 1.1.3.

1. A set P ⊆ ND is convex if for any x, y ∈ P and any t ∈ D such that 0 ≤ t ≤ 1, we
have

tx+ (1− t)y ∈ P.

2. A set σ ⊆ ND is a cone if for any x, y ∈ σ and any t ∈ D≥0, we have

tx ∈ σ and x+ y ∈ σ.
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(Sometimes in the literature, a cone refers to a weaker notion in which one merely asks
the sets to be closed under positive scalar multiplication. Along this document every cone
is convex.)

As an example of how to work with this ring, we will show that for subsets of the
ordered ring D, the notion of convexity agrees with its counterpart from order theory.

Proposition 1.1.4. A set C ⊆ D is convex iff it has the following property:

For each x, y, z ∈ D such that x ≤ y ≤ z and x, z ∈ C, we have y ∈ C. (∗)

Proof. If x ≤ y then x ≤ tx + (1 − t)y ≤ y for every 0 ≤ t ≤ 1. Hence, if C satisfies
property (∗), then, for every x, y ∈ C we have tx+ (1− t)y ∈ C. Therefore C is convex.

On the other hand, suppose that x ≤ y ≤ z and x, z ∈ C. If z − x is invertible we can
consider the expression

y =
y − x
z − x

z +

(
1− y − x

z − x

)
x.

More generally, we have 0 ≤ y− x ≤ z− x. Hence ord(z− x) ≤ ord(y− x), so we can take
elements a, b ∈ D with b invertible such that

z − x = bεord(z−x) and y − x = aεord(z−x).

If we define t = a/b we have 0 ≤ t ≤ 1 and tb = a, hence

tz + (1− t)x = t(z − x) + x = tbεord(z−k) + x = aεord(z−k) + x = (y − x) + x = y.

Therefore, y ∈ C.

Some elementary examples of convex sets and cones in any dimension are given by the
half-spaces which we introduce as follows.

Definition 1.1.5. A half-space is a subset of ND of the form

H := {x ∈ ND | ⟨y , x⟩ ≥ a}

for some y ∈ MD and a ∈ D. To simplify notations, we frequently write this as H = {y ≥
a}. For a given subring R ⊆ D, if we can take y ∈ MR we say that H is R-rational. If
moreover we can take a ∈ R we say that H is strongly R-rational. If a = 0, then H is a
half-space going through the origin.
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Of special interest for us are the convex sets and cones which are defined in terms
of finitely many data. One approach to this is to represent them from outside as an
intersection of half-spaces. This leads to the following definition.

Definition 1.1.6.

1. A polyhedron is a non-empty finite intersection of half-spaces. We say that a poly-
hedron is R-rational (resp. strongly R-rational) for a subring R ⊆ D if we can take
each half-space in the intersection to be R-rational (resp. strongly R-rational).

2. A polyhedral cone is a finite intersection of half-spaces going through the origin. A
polyhedral cone is R-rational for a subring R ⊆ D if we can take each half-space in
the definition to be R-rational itself.

In order to manage the data defining a polyhedron we consider the following.

Definition 1.1.7. Given a polyhedron P ⊆ ND, a representation of P is an equality of
the form

P = {y1 ≥ a1, . . . , yr ≥ ar}. (1.4)

for some y1, . . . , yr ∈ MD and a1, . . . , ar ∈ D. This representation is non-redundant if it
is not possible to obtain a different representation by removing an inequality of the form
{yi ≥ ai} from the intersection.

If we allow ourselves to use affine functions instead of linear functions, Equation (1.4)
can be written as

P = {f1 ≥ 0, . . . , fr ≥ 0} for fi = ⟨yi , ·⟩ − ai.

Proposition 1.1.8. Given a non-redundant representation as in (1.4), then for any 1 ≤
i ≤ r, the function yi attains its minimum on P and this minimum is ai.

Proof. Of course ai is a lower bound for the values of yi over P . We will show that this
lower bound is attained. For this consider the set⋂

1≤j≤r
j ̸=i

{x ∈ ND | ⟨yj , x⟩ ≥ aj} .

This is a convex set and hence its image under ⟨yi , ·⟩ is a convex set as well that we denote
by C ⊆ D. As P is non-empty we have C ∩ [ai,∞) ̸= ∅, and as the representation is
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non-redundant we have C ∩ (−∞, ai) ̸= ∅. So, by Proposition 1.1.4 we have ai ∈ C. This
shows that min

P
⟨yi , ·⟩ = ai.

One can alternatively construct cones and convex sets from inside by means of gener-
ators as follows.

Definition 1.1.9. For a non-empty subset X ⊆ ND,

1. The convex hull of X, denoted by convD(X), is the smallest convex set containing
X. Alternatively, this set equals{

r∑
i=1

tixi ∈ ND

∣∣∣∣∣r ≥ 1, x1, . . . , xr ∈ X and t1 . . . , tr ∈ D≥0 s.t
r∑
i=1

ti = 1

}
.

A convex set P is said to be a polytope if there is a finite set X ⊆ ND such that
convD(X) = P .

2. The cone generated by X, also known as the cone hull of X, denoted by coneD(X),
is the smallest cone containing X. Alternatively,

coneD(X) =

{
r∑
i=1

tixi ∈ ND

∣∣∣∣∣ r ≥ 1, x1, . . . , xr ∈ X and t1 . . . , tr ∈ D≥0

}
.

A cone σ is said to be finitely generated if there is a finite setX ⊆ ND such that coneD(X) =

σ.

Definition 1.1.10 (Face). Let P be a polyhedron in ND and consider an element y ∈MD

such that
min
x∈P
⟨y , x⟩

exists. Then, the face of P determined by y is the subset consisting of all elements in P

for which y attains its minimum, that is,

facey P :=

{
x ∈ P

∣∣∣∣⟨y , x⟩ = min
x′∈P
⟨y , x′⟩

}
.

A face of P is a set of the form facey P for some y ∈ MD.1 We write F ⪯ P if F is a face
of P .

1Notice that with our definition, the empty-set is not considered to be a face. This differ with the
definitions of some authors.
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Remark 1.1.11. sec:structure-faces

1. A linear function can be bounded below and still does not achieve its minimum. For
example, consider

P = {x ∈ D | εx ≥ 0}.

and the linear function x 7→ x. This function is bounded bellow in P but does
not attain its minimum. This phenomenon has to be kept in mind as minimizing
functions plays an important role along the theory.

2. If σ is a polyhedral cone, then y ∈MD attains its minimum over σ iff y is non-negative
over σ, and in this case, the minimum has to be zero.

3. A face of P is given by adding one equality, hence two inequalities, to the expression
defining P . Therefore, it is a polyhedron itself.

4. If P has a representation of the form

P = {y1 ≥ a1, . . . , yr ≥ ar},

then it is not true in general that all faces are obtained by adding equalities in this
expression of the form yi = ai. To obtain some faces we may have to add equalities
of the form εαyi = εαai. In other words, we not only need to consider the locus of
points x ∈ P in which ⟨yi , x⟩ is a minimum, but also the locus of points x ∈ P in
which the first α−k coordinates of ⟨yi , x⟩ coincide with the minimum. This is a core
reason why the combinatorics of faces in this theory is more subtle and capture more
information about the minimization of functions. See Proposition 1.6.1 for a precise
statement and a proof of this.

In order to use results about polyhedral cones over polytopes, one can go from the
perfect pairing MD ×ND → D to the extended perfect pairing defined as follows.

Definition 1.1.12. The extended perfect pairing is given by

(MD × D)× (ND × D) −→ D

((y, a), (x, b)) 7−→ ⟨(y, a) , (x, b)⟩ := ⟨y , x⟩+ ab.
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In this context, a lower face (resp. upper face) of a polyhedron P ⊆ ND × D, is a face of
the form face(y,1)(P ) (resp. face(y,−1)(P )) for some y ∈MD.

Definition 1.1.13 (Face Poset). The face poset of P is the partially ordered set

F(P ) := {F ⊆ P | F is a face of P} ∪ {∅}

where the order is given by the inclusion of sets. Moreover, we denote by F(P )∗ the reduced
face poset of P given by F(P ) \ {∅}.

Remark 1.1.14.

1. If we consider F,G ∈ F(P )∗ such that G ⊆ F , then G is a face of F . Indeed, if
G = facey P for some y ∈MD then, G = facey F for the same y. This shows that we
can replace ⊆ by ⪯ as the order relation in the definition of F(P )∗.

2. In Corollary 1.6.3 we will see that if F is a face of P and G is a face of F , then G is
a face of P . Therefore, F(F ) ⊆ F(P ) for any face F of P .

3. Also in Corollary 1.6.3 we will show that a non-empty intersection of faces of P is a
face of P . This shows that F(P ) is an order lattice. That is, every pair {F,G} ⊆ F(P )

has an infimum given by F ∧G := F ∩G and a supremum given by

F ∨G :=
⋂

H∈F(P )
H⊇F∪G

H.

We will work with more general families of polyhedra besides the set of faces of a given
polyhedron. The properties of these families are captured in the following definition.

Definition 1.1.15. A polyhedral complex in ND is a collection of polyhedra Σ in ND with
the following two properties:

1. Given F,G ∈ Σ, the intersection F ∩G is either empty or a face of both F and G.

2. If F is a face of G, and G ∈ Σ, then F ∈ Σ.

The elements of Σ are called the cells or faces of Σ. Given a polyhedral complex Σ in ND,
its support is the set

|Σ| :=
⋃
F∈Σ

F ⊆ ND.
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If P = |Σ| is itself a polyhedron, we say that Σ is a subdivision of P . More generally,
if Σ1 and Σ2 are polyhedral complexes such that, |Σ1| = |Σ2| and for every F ∈ Σ2 there
is a G ∈ Σ1 such that F ⊆ G. Then, Σ2 is said to be a refinement of Σ1 and we write
Σ1 ⪯ Σ2. If every face of Σ is a polyhedral cone, we say that Σ is a fan in ND.

Remark 1.1.16. Some basic results concerning the definitions will come naturally after
developing the theory.

1. In Corollary 1.7.9 we will prove that a polyhedron that is a cone in the sense of
Definition 1.1.3 is a polyhedral cone.

2. In Proposition 1.2.4 we prove that polytopes are polyhedra and finitely generated
cones are polyhedral cones.

3. Conversely, in Proposition 1.5.2 we show that polyhedral cones are finitely generated
cones. Hence, the concept of finitely generated cones and polyhedral cones coincide.

4. In Proposition 1.9.9 we obtain a criterion to determine which polyhedra are polytopes:
A polyhedron P is a polytope iff every linear function achieve its minimum in P .

1.2 The Fourier-Motzkin Elimination

In the following, we will provide a generalization of the Fourier-Motzkin elimination (The-
orem 1.2.3) which allows us to reduce the number of variables in a system of linear in-
equalities. As an immediate consequence, we get that the projection of a polyhedron is a
polyhedron. This result has many applications, the most interesting for us being the fact
that polytopes are polyhedra and finitely generated cones are polyhedral cones. A more
subtle application is Farkas’ Lemma, which will be discussed in the next section.

Let us start with a result about the intersection of convex sets in linear orders which,
although very simple, we could not find a reference for it in the literature. Given a linear
order L, a subset C ⊆ L is called order-convex if for every x, z ∈ C and every y ∈ L such
that x ≤ y ≤ z we have y ∈ C. In the style of Helly’s theorem, we have the next lemma.

Lemma 1.2.1. Consider a linear order L and a finite family of non-empty order-convex
sets {Ci}i∈I in L. If we have Ci ∩ Cj ̸= ∅ for every i, j ∈ I, then

⋂
i∈I Ci ̸= ∅.
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Proof. For each unordered pair {i, j} ⊆ I take an element xij ∈ Ci ∩ Cj and consider
ai = minj∈I xij and bi = maxi∈I xij. In this way, we have [ai, bi] ⊆ Ci for each i ∈ I and
ai ≤ xij ≤ bj for each i, j ∈ I. Therefore maxi∈I ai ≤ mini∈I bi from where⋂

i∈I

Ci ⊇
⋂
i∈I

[ai, bi] = [max
i∈I

ai,min
i∈I

bi] ̸= ∅

In Proposition 1.1.4 we proved that the order-convex subsets of D coincide with its
convex subsets. Hence, the convex subsets of D satisfy the Helly property above. This tells
us that, to understand if an arbitrary intersection of convex sets in D is non-empty, we can
restrict us to study that each convex set is independently non-empty and each intersection
of a pair of convex sets is non-empty. The convex sets of D in which we will be interested
are the solutions to linear inequalities like

c+ dx ≥ 0 or c+ dx > 0.

After multiplying by an invertible element, we can suppose that these inequalities are of
one of the forms

−a+ εαx ≥ 0, −a+ εαx > 0, b− εβx ≥ 0, b− εβx > 0.

The next lemma gives us conditions in terms of the coefficients a and b for which, a single
inequality has a solution or a pair of inequalities have a common solution.

Lemma 1.2.2 (Fourier-Motzkin reduction). Let a, b ∈ D and consider the inequalities

−a+ εαx ≥ 0 (i)

−a+ εαx > 0 (i*)

b− εβx ≥ 0 (ii)

b− εβx > 0 (ii*)

Then,

1. The inequality (i) has a solution iff the inequality (i*) has a solution iff

−εk−αa ≥ 0.
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Analogously, the inequality (ii) has a solution iff the inequality (ii*) has a solution iff

εk−βb ≥ 0.

2. The inequalities (i) and (ii) have a common solution iff each of them has a solution
in their own and

b− εβ−αa ≥ 0 if β ≥ α or,

εα−βb− a ≥ 0 if α ≥ β.

Similarly, (i*) and (ii) have a common solution iff each of them has a solution in
their own and

b− εβ−αa ≥ 0 if β > α or,

εα−βb− a > 0 if α ≥ β.

The inequalities (i) and (ii*) have a common solution iff each of them has a solution
in their own and

b− εβ−αa > 0 if β ≥ α or,

εα−βb− a ≥ 0 if α > β.

Finally, (i*) and (ii*) have a common solution iff each of them has a solution in their
own and

b− εβ−αa > 0 if β ≥ α or,

εα−βb− a > 0 if α ≥ β.

Proof.

1. If there is an x satisfying (i) or (i*) then by multiplying the inequality on both sides
by εk−α we get −εk−αa ≥ 0. Conversely, If −εk−αa ≥ 0 then either −εk−αa > 0 or
−εk−αa = 0. In the first case −a+ εαx > 0 for any x and we are done. In the second
case a is of the form εαa′ and we have −εαa′ + εαx ≥ 0 (resp. −εαa′ + εαx > 0) iff
−a′ + x ≥ 0 (resp. −a′ + x > 0) which always have a solution. The statement about
(ii) and (ii*) follows from the previous one by replacing x with −x and a with −b.
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2. Suppose that both inequalities (i) and (ii) have a solution and moreover β ≥ α. By
multiplying (i) by εβ−α and adding (ii) we get b − εβ−αa ≥ 0. Conversely, suppose
that both (i) and (ii) have a solution independently and b − εβ−αa ≥ 0. Then, by
the first part we have −εk−αa ≥ 0 and εk−b ≥ 0. Moreover, if −εk−αa > 0 then (i) is
satisfied for every x and any solution for (ii) works for both inequalities. Hence, we
can assume −εk−αa = 0, and for a similar reason, we can assume εk−αb = 0. Then,
a = εαa′ and b = εβb′ for some a′, b′ ∈ D, which we can replace in the inequality
b− εβ−αa ≥ 0 to obtain εβb′ − εβa′ ≥ 0. Then, there is an x such that

b = εβb′ ≥ εβx ≥ εβa′ = εβ−αa. (1.5)

If β = α we are done. If β > α then, notice that for every x′ ∈ D we have εβx =

εβ(x + εk−βx′). Hence, we can modify the last β coordinates of x and (1.5) remains
true. By making them big enough we have εαx > a, that is, x satisfy (ii*). In
particular, x satisfy both (i) and (ii) simultaneously and we are done. The case in
which β ≥ α is done similarly.

Notice that in the argument above we proved that if β > α then (i*) and (ii) are
satisfied together iff they are satisfied individually and b − εβ−αa ≥ 0. This is the
next part of the proposition. For the other part, if α ≥ β then, if both (i*) and (ii)
are satisfied we can multiply the first equation by εα−β and add it to the second one
to obtain εα−βb− a > 0. Conversely, working in the same way as to obtain (1.5) we
get a′, b′, x ∈ D such that

b = εβb′ > εβx > εβa′ = εβ−αa.

Again, if β = α we are done and if β > α we can modify the last β coordinates of x
as to get εαx > a, and such an x satisfy both (i*) and (ii*) (in particular (i*) and
(ii)). The remaining cases can be done in the same way.

For the following result, it will be necessary to use coordinates, hence we will work with
spaces of the form Dn for n ≥ 0, instead of ND for a general lattice N . A linear inequality
in Dn is an inequality of one of the forms

a1x1 + · · ·+ anxn ≥ a a1x1 + · · ·+ anxn > a (1.6)
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with a, a1, . . . , an ∈ D. If it is of the first form we say it is closed, if it is of the second
form, we say it is open, and if a = 0, we say it is homogeneous. A finite family of linear
inequalities is called a system of linear inequalities. Such a system is said to be closed,
open or homogeneous if each inequality is of this form.

Theorem 1.2.3 (Fourier-Motzkin over D). Given an integer n ≥ 1 and a system of linear
inequalities L in Dn+1, there is another system of linear inequalities L′ in Dn such that an
element (x1, . . . , xn+1) is a solution of L for some xn+1 ∈ D, if and only if, (x1, . . . , xn) is
a solution of L′. Moreover, if L is closed or homogeneous then L′ can also be taken to be
closed or homogeneous, respectively. If L is open, it may not be possible to take L′ open.

Proof. Let x̃ = (x̃1, . . . , x̃n) ∈ Dn. There is an element xn+1 ∈ D such that (x̃, xn+1) is a
solution to L iff the system of inequalities Lx̃ has a non-empty set of solutions, where Lx̃
consists of the inequalities

a1x̃1 + · · ·+ anx̃n + an+1x ≥ a or a1x̃1 + · · ·+ anx̃n + an+1x > a (1.7)

where a1x1 + · · · + anxn + an+1xn+1 ≥ a and a1x1 + · · · + anxn + an+1xn+1 > a go over
all the inequalities of L. After multiplying by a positive invertible element of D we can
suppose that each inequality in Lx̃ is of one of the forms

−a(x̃) + εαx ≥ 0 (i)

−a(x̃) + εαx > 0 (i*)

b(x̃)− εβx ≥ 0 (ii)

b(x̃)− εβx > 0 (ii*)

c(x̃) ≥ 0 (iii)

c(x̃) > 0 (iii*)

Notice that the set of solutions of each of these inequalities is a convex set in D. Hence,
by Lemma 1.2.1, Lx̃ has a non-empty set of solutions iff each individual inequality on it
has a solution and each pair of inequalities on it has a simultaneous solution. By Lemma
1.2.2 we know that each of these conditions can be translated into a linear inequality in
the variable x̃, giving rise to a system of linear inequalities L′ in the variable x̃. Hence,
there is an xn+1 such that (x̃, xn+1) is a solution to L iff Lx̃ has at least one solution iff x̃ is
a solution to L′, as we wanted. Moreover, the explicit linear equations obtained in Lemma
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1.2.2 give us that if each inequality in L is closed or homogeneous, then each inequality in
L′ is also closed or homogeneous as well. Finally, in the case in which L consists in the
single equation x1 + εx2 ≥ 0, then L′ should have as solution set εx1 ≥ 0, so L′ cannot
consist in a finite set of open inequalities in D.

As an immediate consequence of this, we get that the projection of a polyhedron in
Dk to some of its coordinates is still a polyhedron, and if it is a polyhedral cone then the
projection is also a polyhedral cone. Less immediate consequences are summarized in the
following proposition.

Proposition 1.2.4.

1. The image of a polyhedron P under a linear map is a polyhedron. If P is a polyhedral
cone, then the image is also a polyhedral cone.

2. The sum of two polyhedra is a polyhedron. The sum of two polyhedral cones is a
polyhedral cone.

3. Every polytope is a polyhedron.

4. Every finitely generated cone is a polyhedral cone.

Proof.

1. Without loss of generality we can suppose that P is a polyhedron inside Dn and the
linear map f goes from Dn to Dk. Now consider

Γ(f |P ) =
{
(x, y) ∈ Dn × Dk | x ∈ P, y = f(x)

}
.

This is a polyhedron in Dn×Dk and f(P ) is the projection to the second component.
Hence, by Fourier-Motzkin this is a polyhedron. In the same way, if P is a polyhedral
cone, then so is Γ(f |P ) and then its projection f(P ).

2. Given P,Q ⊆ Dn, consider

R = {(x, y, z) ∈ Dn × Dn × Dn | x ∈ P, y ∈ Q, z = x+ y} .

By (1), this is a polyhedron and P + Q is the projection to the last component.
Hence, it is a polyhedron as well. As R is a polyhedral cone if each of P and Q are,
then so is P +Q in this case.
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3. The polytope P is equal to convD(a1, . . . , ar) for some a1, . . . , ar ∈ Dn. Then, P =

f(Q) where Q is the polyhedron

Q = {(x1, . . . , xr) ∈ Dr | x1, . . . , xr ≥ 0, x1 + · · ·+ xr = 1}

and f is the linear map defined by

f : Dr −→ Dn

xi 7−→ ai

By part (2) we get that P is a polyhedron as well.

4. As above, if σ = coneD(a1, . . . , ar) for some a1, . . . , ar ∈ Dn. Then, σ = f(τ) for the
same function f and

τ = {(x1, . . . , xr) ∈ Dr | x1, . . . , xr ≥ 0} .

1.3 Farkas’ Lemma over the Generalized Dual Numbers

In this section we will prove the analogous statement to Farkas’ Lemma which works over
the ring D. This result is at the heart of the theory from a technical standpoint. Its proof
is based on the Fourier-Motzkin elimination developed the previous section.

Theorem 1.3.1 (Farkas’ Lemma over D). Let f1, . . . , fr : ND → D be a family of affine
functions such that

P = {f1 ≥ 0, . . . , fr ≥ 0}

is non-empty. Then, any affine function f : ND → D that achieves its minimum in P can
be written in the form

f −min
P
f = λ1f1 + · · ·+ λrfr

for some λ1, . . . , λr ∈ D≥0.

Remark 1.3.2. One can state Farkas’ lemma over R as follows. If f, f1, . . . , fr : NR → R
is a family of affine functions such that

{f ≥ 0} ⊇ {f1 ≥ 0, . . . , fr ≥ 0}.
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Then, there are c, λ1, . . . , λr ∈ R≥0 such that

f = λ1f1 + · · ·+ λrfr + c.

The exact translation of this statement to D is false. For example, we can take N = Z,
f(x) = x, f1(x) = ⟨ε , x⟩+ 1 and f2(x) = ⟨−ε , x⟩ − 1. Then,

{f ≥ 0} ⊇ {f1 ≥ 0, f2 ≥ 0} = ∅,

but there are no c, λ1, λ2 ∈ D≥0 such that

x = λ1(⟨ε , x⟩+ 1) + λ2(⟨−ε , x⟩+ 1) + c, ∀x ∈ D.

In this way, we see that the hypothesis that P is not empty is unavoidable. Similarly,
the hypothesis that f achieves its minimum over P is unavoidable as, we can take f(x) =
⟨ε , x⟩+ 1 and f1(x) = ⟨ε2 , x⟩. Then

{⟨ε , x⟩+ 1 ≥ 0} = NR ⊇ {⟨ε2 , x⟩ ≥ 0}.

But, there are no c, λ1 ∈ D>0 such that

⟨ε , x⟩ = λ1⟨ε2 , x⟩+ c, ∀x ∈ D.

We will deduce the theorem above from the following more general technical lemma.

Lemma 1.3.3. Consider affine functions f1, . . . , fs, fs+1, ..., ft in ND such that

{f1 ≥ 0, . . . , fs ≥ 0, fs+1 ≥ 0, . . . , ft ≥ 0} ≠ ∅ (A)

{f1 ≥ 0, . . . , fs ≥ 0, fs+1 > 0, . . . , ft > 0} = ∅. (B)

Then, there are λ1, . . . , λt ∈ D≥0 such that

λ1f1(x) + · · ·+ λtft(x) = 0, ∀x ∈ ND

and at least one element between λs+1, . . . , λt is invertible.
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Proof of Theorem 1.3.1. We have

{f1 ≥ 0, . . . , fr ≥ 0,−f +min
P
f ≥ 0} ≠ ∅ and,

{f1 ≥ 0, . . . , fr ≥ 0,−f +min
P
f > 0} = ∅.

So, by Lemma 1.3.3, there are λ1, . . . , λr, λ ∈ D≥0 with λ invertible such that

λ1f1 + · · ·+ λrfr + λ
(
−f +min

P
f
)
= 0.

That is,

f −min
P
f =

λ1
λ
f1 + · · ·+

λr
λ
fr

as we wanted.

Proof of Lemma 1.3.3. After composing with an isomorphism we can suppose N = Zn.
The proof is by induction on n.

Base case n = 1:

After multiplying by a positive invertible element in Dk if necessary, we can suppose that
each fi is of one of the forms

εαix− ai, bi − εβix, ci for some 0 ≤ αi, βi ≤ k − 1.

Then, by Lemma 1.2.2 the system of inequalities in (B) has no solutions iff at least one of
the following conditions fail

1. For every i we have

(1.1) −εk−αia ≥ 0 if fi = εαix− ai
(1.1) εk−βib ≥ 0 if fi = bi − εβix.

(1.2) Either

ci ≥ 0 if i ≤ s or,

ci > 0 if i > s

if fi = ci.

2. Whenever fi = εαix− ai and fj = bj − εβjx we have
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(2.1) If i, j ≤ s:

bj − εβj−αiai ≥ 0 if βj ≥ αi or,

εαi−βjbj − ai ≥ 0 if αi ≥ βj

(2.2) If i > s and j ≤ s:

bj − εβj−αiai ≥ 0 if βj > αi or,

εαi−βjbj − ai > 0 if αi ≥ βj

(2.3) If i ≤ s and j > s:

bj − εβj−αiai > 0 if βj ≥ αi or,

εαi−βjbj − ai ≥ 0 if αi > βj

(2.4) If i, j > s:

bj − εβj−αiai > 0 if βj ≥ αi or,

εαi−βjbj − ai > 0 if αi ≥ βj

As the system (A) does have a solution, the only conditions that can fail are the ones
with strict inequalities. Moreover, this can fail only by getting an equality.

• If condition (1.2) fail then for some i > s we have fi = ci = 0 so in this case we can
take λi = 1 and λj = 0 for all j ̸= i.

• If condition (2.2), (2.3), or (2.4) fail then we have either

fi + εαi−βjfj = εαi−βjbj − ai = 0

with i > s or
εβj−αifi + fj = bj − εβj−αiai = 0

with j > s. In the former case we can take λi = 1, λj = εαi−βj and everything else
0. In the later case we can take λj = 1, λi = εβj−αi and everything else 0.

Induction step:



52 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

Assuming the result for Dn we will prove it for Dn+1. For this let x′ = (x1, . . . , xn). As in
the base case, after multiplying by a positive invertible scalar we can assume that each fi
is of one of the forms

xn+1 − ai(x′), bi(x
′)− xn+1, ci(x

′).

Now, for a given x′ ∈ Dn fixed, there is an xn+1 ∈ D such that (x′, xn+1) belongs to the
set (A) iff the same conditions that we use in the base case are satisfied. As the set (A) is
empty, this cannot happen for any x′. Hence, the system of inequalities on the variable x′

which is formed by all these conditions has an empty set of solutions. On the other hand,
the same system but in which all the inequalities are closed does have a solution, because
the set (B) is not empty. This allows us to use the induction hypothesis on this new system
of inequalities.

Applying the induction hypothesis we get a positive linear combination of the new affine
functions involved which is equal to zero. Now, by doing the following replacements

• −εk−αiai(x
′) = εk−αifi(x)

• εk−αjbj(x
′) = εk−αjfj(x)

• cl(x
′) = fl(x)

• bj(x
′)− εβj−αiai(x

′) = fj(x) + εβj−αifi(x)

• εαi−βjbj(x
′)− ai(x′) = εβj−αifj(x) + fi(x),

we turn the linear combination into one involving the original affine functions. By the
induction hypothesis we get that at least one of the coefficients of the linear combination
in either ci(x′) with i > s, bj(x′) − εβj−αiai(x

′) with j > s or εαi−βjbj(x
′) − ai(x

′) with
i > s is invertible. Hence, at least one of the coefficients in fi for i > s is invertible. This
finishes the induction step.

1.4 The Relative Interior

In this section we introduce the relative interior of a polyhedron. We cannot introduce
this concept as a topological interior, as we do not have appropriate topological tools over
the ring D. For this reason, we introduce it combinatorially by means of the structure of
faces, and we show that, in the case of polyhedral cones, this coincides with an algebraic
construction in terms of generators.
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Definition 1.4.1. Let P be a polyhedron. The relative interior of P is the set

int(P ) := P \
⋃
F⪯P
F ̸=P

F

where the union goes over all the proper faces F of P .

The next proposition summarize some basic proprieties of this concept

Proposition 1.4.2. For a given polyhedron P ⊆ ND:

1. There is a decomposition
P =

⊔
F≤P

int(F ),

where the disjoint union goes over all the different faces of P .

2. For a face F of P and an element x ∈ int(F ). A face G of P contains x iff F ⊆ G.

3. We have int(P ) ̸= ∅.

Proof.

1. Given x ∈ P . Let F be the smallest face of P containing x, this exists because of
Corollary 1.6.3(2)2 and the fact that there are only finitely many faces, a consequence
of Proposition 1.6.1 part 1. Given this face, we have

x ∈ F \
⋃
G⪯F
G ̸=F

F

therefore x ∈ int(F ). This shows that σ =
⋃
τ≤σ int(τ).

Now, to see that the union is disjoint, notice that if x ∈ int(F ) ∩ int(G), then
x ∈ F ∩G, which is a face by Corollary 1.6.3. But as x ∈ int(F ), this is only possible
if F ∩G = F , that is F ⊇ G. Similarly G ⊇ F so F = G.

2. If F ̸⊆ G, then x ∈ F ∩G and F ∩G is a face of P contained in F , hence it is a proper
face of F . Then, x /∈ F \ F ∩G but as int(F ) ⊆ F \ F ∩G we get a contradiction.

2This result is proved in Section 1.6 and it is based on Proposition 1.6.1, parts (1) and (3). It might
be worth mentioning that this does not produce any loop in the logic.
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3. For each polyhedron P consider

length(P ) = max
{
s ∈ N | ∃F1, . . . , Fs ∈ F(P )∗ s.t ∅ ⊊ F1 ⊊ · · · ⊊ Fs = P

}
.

We show that int(P ) ̸= ∅ by induction on length(P ).

If length(P ) = 1, then P does not have any proper face, hence int(P ) = P ̸= ∅.
Now, suppose that length(P ) = s + 1 and the result is true whenever the length is
smaller or equal to s. Consider a maximal chain of faces of P of the form

∅ ⊊ F1 ⊊ · · · ⊊ Fs ⊊ Fs+1 = P.

Then, length(Fs) = s, and so, by the induction hypothesis, we have int(Fs) ̸= ∅.
Take x ∈ int(Fs) and x′ ∈ P \ Fs. Then, we claim that 1

2
(x+ x′) ∈ int(P ).

Indeed, if 1
2
(x+ x′) /∈ int(P ), then there is a y ∈MD such that

1

2
(x+ x′) ∈ facey(P ) ⊊ P.

In particular, y achieves its minimum in 1
2
(x+ x′). Moreover, as we have

⟨y , 1
2
(x+ x′)⟩ = 1

2
(⟨y , x⟩+ ⟨y , x′⟩)

≥ min{⟨y , x⟩, ⟨y , x′⟩}

with equality iff ⟨y , 1
2
(x + x′)⟩ = ⟨y , x⟩ = ⟨y , x′⟩. Therefore, we have that y also

achieves its minimum in x and x′, that is x, x′ ∈ facey(P ). As x ∈ int(Fs), by
part (2) of this proposition we have Fs ⊆ facey(P ), and as x′ /∈ Fs we also have
Fs ̸= facey(P ). Hence, by the maximality of s, we get facey(P ) = P which is a
contradiction. Therefore, 1

2
(x+ x′) ∈ int(P ), so int(P ) ̸= ∅ as we wanted.

In the context of finitely generated cones, the relative interior can be computed alter-
natively in terms of generators.

Proposition 1.4.3. Given a finitely generated cone σ = coneD(x1, . . . , xr), the relative
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interior can be computed as

intσ =

{
r∑
i=1

λixi

∣∣∣∣∣ λ1, . . . , λr ∈ D×>0

}
. (1.8)

Proof. We will prove the equality by a double inclusion.

First, take an x in the right-hand side of (1.8). For every face τ ⊆ σ there is y ∈ MD

attaining its minimum in σ such that τ = facey σ. As σ is a polyhedral cone, y must be
non-negative over σ to achieve its minimum. Now, suppose that x =

∑r
i=1 λixi ∈ τ . Then,

we must have

⟨y , x⟩ =
r∑
i=1

λi⟨y , xi⟩ = 0.

As each term of the sum is non-negative, this happens iff λi⟨y , xi⟩ = 0 for each i, and as
all λi are invertible, this is the same as ⟨y , xi⟩ = 0 for each i. Then, we have x1, . . . , xr ∈ τ
so σ = coneD(x1, . . . , xr) ⊆ τ , and hence τ = σ. This shows that

x ∈ σ \
⋃
τ⪯σ
τ ̸=σ

τ = int(σ).

On the other hand, take x ∈ int(σ) and fix some 1 ≤ i ≤ r. We claim that there is a
λ ∈ D×>0 such that

x− λxi ∈ σ.

If this is not the case, as σ is a polyhedral cone by Proposition 1.2.4 part 4, there are
y1, . . . , ys ∈MD such that

σ = {y1 ≥ 0, . . . , ys ≥ 0}.

Then, there must be a yj such that for every λ ∈ D×>0 small enough we have

⟨yj , x− λxi⟩ < 0.

That is, 0 ≤ ⟨yj , x⟩ < λ⟨yj , xi⟩ for every λ ∈ D×>0 small enough, which implies that ⟨yj , x⟩
is infinitesimally smaller than ⟨yj , xi⟩, that is, ⟨yj , x⟩ = εµ⟨yj , xi⟩ for some µ ∈ D≥0.
Then, for some l ≥ 0 we have εl⟨yj , x⟩ = 0 but εl⟨yj , xi⟩ ≠ 0. Therefore, yjεl ∈MD defines
a face faceyjεl σ containing x but not xi which contradicts the fact that x is in the relative
interior. This finishes the proof of the claim. Therefore, for each 1 ≤ i ≤ r there is a λ
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such that
x = λxi + x′

for some x′ ∈ σ. By writting x′ in terms of x1, . . . , xr we get a representation of x in the
form

x =
r∑
i=1

λixi

with λi ∈ D×>0 and λj ≥ 0 for j ̸= i. By taking an average of all this representations for all
i, we get a representation with all λi ∈ D×>0. This finishes the proof.

1.5 Cone Duality

In this section we will study polyhedral cones and their duals. After introducing the dual
we show how to find generators for it from a representation of the original cone, or how to
find a representation for it from generators of the original cone. In particular, this implies
that finitely generated cones are the same as polyhedral cones. The main result of this
section is the duality theorem, which gives an explicit order reversing bijection between
the faces of a cone and the faces of its dual.

Definition 1.5.1. Let σ ⊆ ND be a cone. Its dual cone is the set of all linear functionals
non-negative over it, that is,

σ∨ := {y ∈MD | ⟨y , x⟩ ≥ 0, ∀x ∈ σ} .

Proposition 1.5.2.

1. Given y1, . . . , yr ∈MD we have(
r⋂
i=1

{x ∈ ND | ⟨yi , x⟩ ≥ 0}

)∨
= convD(y1, . . . , yr).

2. Given a1, . . . , ar ∈ ND, we have

convD(a1, . . . , ar)
∨ =

r⋂
i=1

{y ∈MD | ⟨y , ai⟩ ≥ 0} .

3. For any polyhedral cone σ, we have
(
σ∨
)∨

= σ.
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4. Polyhedral cones are the same as finitely generated cones.

Proof.

1. Let σ =
⋂r
i=1 {x ∈ ND | ⟨yi , x⟩ ≥ 0}. We have that ⟨λ1y1 + · · · + λryr , ·⟩ is positive

over σ, hence λ1y1+ · · ·+λryr ∈ σ∨ for every λ1, . . . , λr ≥ 0, then coneD(y1, . . . , yr) ⊆
σ∨. On the other hand, given y ∈ σ∨, we have that ⟨y, ·⟩ is positive over σ and its
minimum is 0 on it. Hence, by Farkas’ Lemma, there are λ1, . . . , λr ∈ D≥0 such that

λ1y1 + · · ·+ λryr = y.

Therefore, y ∈ convD(y1, . . . , yr), so σ∨ ⊆ convD(y1, . . . , yr).

2. We have

y ∈ coneD(a1, . . . , ar)
∨ ⇐⇒ ⟨y , x⟩ ≥ 0 ∀x ∈ coneD(a1, . . . , ar)

⇐⇒ ⟨y , ai⟩ ≥ 0 ∀ 1 ≤ i ≤ r

⇐⇒ y ∈
r⋂
i=1

{y ∈MD | ⟨y , ai⟩ ≥ 0}.

3. By part (1) and (2), given a polyhedral cone as
⋂r
i=1 {x ∈ ND | ⟨yi , x⟩ ≥ 0} we have

((
r⋂
i=1

{x ∈ ND | ⟨yi , x⟩ ≥ 0}

)∨)∨
= convD(y1, . . . , yr)

∨

=
r⋂
i=1

{x ∈ ND | ⟨yi , x⟩ ≥ 0} .

4. In Proposition 1.2.4, we saw that that finitely generated cones are polyhedral. On
the other hand, let us suppose that a cone σ ⊆ ND is polyhedral. By part (1) then
σ∨ is finitely generated and hence polyhedral by Proposition 1.2.4. So by part (1)
again (σ∨)∨ = σ is finitely generated.

Now, we will prove a duality result for cones, which states that the faces of a cone are
in an order reversing correspondence with the faces of its dual cone.
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Theorem 1.5.3 (Higher Rank Cone Duality). Given a polyhedral cone σ and its dual σ∨,
there is an order reversing bijection between the reduced face poset of σ and the reduced
face poset of its dual σ∨ given by

F(σ)∗ −→ F(σ∨)∗

τ 7−→ τ ∗ := τ⊥ ∩ σ∨,

where
τ⊥ := {y ∈MD | ⟨y , x⟩ = 0, ∀x ∈ τ}.

Proof. First, notice that, as τ is a polyhedral cone, it is finitely generated. Hence, τ =

coneD(x1, . . . , xr) for some x1, . . . , xr ∈ σ. Then, we have

τ ∗ = {y ∈ σ∨ | ⟨y , xi⟩ = 0, for i = 1, . . . , r} = facex1+···+xr(σ
∨)

Therefore, τ ∗ is a face of σ∨ and the map is well defined.

Now, let us see that the map is surjective: An arbitrary face of σ∨ is of the form
facex0(σ

∨) for some x0 ∈ σ. By Proposition 1.4.2, there is a face τ of σ such that x′ ∈
int(τ). If we consider generators τ = coneD(x1, . . . , xr) then, by Proposition 1.4.3, we have
x0 =

∑
i λixi with λi ∈ D×>0. Hence, for y ∈ σ∨ we have

y ∈ facex0 σ
∨ ⇔ ⟨y , x0⟩ = 0⇔ ⟨y , xi⟩ = 0 ∀ 0 ≤ i ≤ r ⇔ ⟨y, x⟩ = 0 ∀x ∈ τ.

Therefore, facex0 σ∨ = τ ∗.

Finally, we will prove that the map is its own inverse: As the map is surjective it is
enough to prove that ((τ ∗)∗)∗ = τ ∗. For this, we will prove that (τ ∗)∗ ⊆ τ . Suppose
τ = facey′ σ for some y′ ∈ σ∨. Then,

(τ ∗)∗ = {x ∈ σ | ⟨y, x⟩ = 0 ∀y ∈ τ ∗}

⊆ {x ∈ σ | ⟨y′, x⟩ = 0}

= τ.

This finishes the proof.
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1.6 The Structure of Faces

In this section we develop tools to explicitly describe a given face of a polyhedron. These
descriptions depend on the data used to present the polyhedron. In Proposition 1.6.1
we study the case in which the polyhedron is defined in terms of a representation by
inequalities. After this, we introduce the concept of weighted convex hull which allows us
to introduce any polyhedron in terms of generators. In Propositions 1.6.4 and Proposition
1.6.9 we describe faces in terms of these generators.

Proposition 1.6.1. Let P ⊆ ND be a polyhedron with a representation

P = {y1 ≥ a1, . . . , yr ≥ ar}.

1. For each y ∈MD achieving its minimum in P there are λi ∈ D≥0 for 1 ≤ i ≤ r such
that

y = λ1y1 + · · ·+ λryr and

min
x∈P
⟨y , x⟩ = λ1a1 + · · ·+ λrar.

Moreover, given such elements {λi}i, we can write the face F = facey(P ) as

F =
r⋂
i=1

{
x ∈ P

∣∣εαi⟨yi , x⟩ = εαiai
}

(1.9)

where αi = ord(λi) for each i.

2. Similarly, if F is a face of P , given x0 ∈ int(F ) we have an equality of the form

F =
r⋂
i=1

{
x ∈ P

∣∣ εβi⟨yi , x⟩ = εβiai
}

(1.10)

for βi = k − ord(⟨yi , x0⟩ − ai).

3. Conversely, any choice of 0 ≤ αi ≤ k determines a set of the form (1.9) which is
either empty or a face of P .
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Remark 1.6.2. Given a linear function y ∈MD with minx∈P ⟨y , x⟩ = a. The set

{
x ∈ P

∣∣ εk−α⟨y , x⟩ = εk−αa
}
=
{
x ∈ P

∣∣ ord{⟨y , x⟩ − a} ≥ α
}

should be interpreted as the set of all elements x ∈ P such that y achieves the minimum
at least in the first α coordinates.

As an example, if we take y ∈MR to be real and

x = x(0) + x(1)ε+ · · ·+ x(k−1)εk−1 ∈ ND,

a = a(0) + a(1)ε+ · · ·+ a(k−1)εk−1 ∈ D.

Then, ⟨y , x⟩ =
∑k−1

i=0 ⟨y , x(i)⟩εi. So, we have that ⟨y , x⟩εk−α = aεk−α iff ⟨y , x(i)⟩ =

a(i) for each 0 ≤ i < α, and this happens iff x minimize the vector

(⟨y , x(0)⟩, . . . , ⟨y , x(α)⟩)

among all x ∈ P with respect to the lexicographic order.

In this way, the equality in (1.9) can be read as: facey P is the set of all x ∈ P for
which yi achieves its minimum at least in the first k − αi coordinates for each 1 ≤ i ≤ r.

Proof of Proposition 1.6.1.

1. If y achieves its minimum in P . By Farkas’ Lemma, there are λ1, . . . , λr ∈ D≥0 such
that

⟨y , ·⟩ −min
x∈P
⟨y , x⟩ = λ1(⟨y1 , ·⟩ − a1) + · · ·+ λr(⟨yr , ·⟩ − ar) (1.11)

By evaluating this at x = 0 we get minx∈P ⟨y , x⟩ = λ1a1 + · · · + λrar and, if we add
this equation to the previous one, we get y = λ1y + · · · + λryr. This shows the first
part.

Now, if we evaluate (1.11) in an element x ∈ F , the left hand side vanishes and, as
each term of the right hand side is positive, we get

λi⟨yi , x⟩ = λiai (1.12)

for each 1 ≤ i ≤ r. After multiplication by an invertible element, this becomes
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εαi⟨yi , x⟩ = εαiai. Which shows that

F ⊆
r⋂
i=1

{
x ∈ P

∣∣ εαi⟨yi , x⟩ = εαiai
}
.

Conversely, if x is in the right hand side of (1.9) for every 1 ≤ i ≤ r then, the right
hand side of (1.11) vanishes at x. Hence, so does the left hand side which implies
x ∈ F . This shows the equality we wanted.

2. Notice that εord(⟨yi ,x0⟩−ai)(⟨yi , x0⟩ − ai) = 0. Hence, by Proposition 1.4.2, as x0 ∈
int(F ) we have

F ⊆
{
x ∈ P

∣∣ εβi⟨yi , x⟩ = εβiai
}
,

and therefore

F ⊆
r⋂
i=1

{
x ∈ P

∣∣ εβi⟨yi , x⟩ = εβiai
}
.

On the other hand, by (1.9) and as x0 ∈ F we have

εαi⟨yi , x0⟩ = εαiai.

Hence, εαi(⟨yi , x0⟩ − ai) = 0 from where αi ≥ ord(⟨yi , x0⟩ − ai) = βi. This implies

r⋂
i=1

{
x ∈ P

∣∣ εβi⟨yi , x⟩ = εβiai
}
⊆

r⋂
i=1

{
x ∈ P

∣∣ εαi⟨yi , x⟩ = εαiai
}
= F.

3. Suppose now that F is a non-empty set of the form (1.9) and consider y =
∑r

i=1 ε
αiyi.

We will prove that facey(P ) = F . For this, notice that as F is not empty, the function
⟨y, ·⟩ has as minimum over P the value

∑r
i=1 ε

αiai. Hence, we can consider facey P ,
and given x ∈ P , we have

x ∈ facey P ⇐⇒ ⟨y , x⟩ =
r∑
i=1

εαiai

⇐⇒
r∑
i=1

εαi (⟨yi , x⟩ − ai) = 0

⇐⇒ εαi⟨yi , xi⟩ = εαiai ∀ i

⇐⇒ x ∈ F,
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as we wanted.

In particular, the proposition above implies that any polyhedron has finitely many
faces. Another important consequence is the following.

Corollary 1.6.3. Let P be a polyhedron.

1. If F is a face of P and G is a face of F , then G is a face of P .

2. If F and G are faces of P and F ∩G is non-empty, then it is a face of P .

Proof.

1. Take a representation P = {y1 ≥ a1, . . . , yr ≥ ar} of P . If F is a face of P by
Proposition 1.6.1 part 1, there are αi such that

F =
r⋂
i=1

{
x ∈ P

∣∣ εαi⟨yi , x⟩ = εαiai
}

= {y1 ≥ a1, . . . , yr ≥ ar} ∩ {εα1y1 = εα1a1, . . . , ε
αryr = εαrar} .

Notice that this is expression gives a representation for F in terms of inequalities.
Hence, if G is a face of F we can apply Proposition 1.6.1 part 1 again using this
representation for F . In this way G can be written as

G =
r⋂
i=1

{
x ∈ F | εβi⟨yi , x⟩ = εβiai

}
=

r⋂
i=1

{
x ∈ P | εmax{αi,βi}⟨yi , x⟩ = εmax{αi,βi}ai

}
for some integers βi. Which, by Proposition 1.6.1 part 3, is a face of P .

2. By Proposition 1.6.1 part 1 we have F =
⋂r
i=1 {x ∈ P | εαi⟨yi , x⟩ = εαiai} and G =⋂r

i=1

{
x ∈ P | εβi⟨yi , x⟩ = εβiai

}
for some αi, βi. Therefore,

F ∩G =
r⋂
i=1

{
x ∈ P | εmax{βi,αi}⟨yi , x⟩ = εmax{βi,αi}ai

}
which is a face of P by Proposition 1.6.1 part 3.
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We will now proceed to study the case in which the polyhedron is given in terms of
finitely many generators. We start with the case of polyhedral cones which, by Proposition
1.5.2, are all given by the cone hull of finitely many elements.

Proposition 1.6.4. For a polyhedral cone σ = coneD(x1, . . . , xr) and an element y ∈ σ∨,
the face of σ induced by y is given by

facey σ = coneD

({
xiε

k−βi
}
1≤i≤r

)
where βi = ord⟨y , xi⟩.

Proof. Given x =
∑

i λixi ∈ σ we have

x ∈ facey σ ⇐⇒ ⟨y, x⟩ = 0 ⇐⇒
∑
i

λi⟨y, xi⟩ = 0.

As λi⟨y , xi⟩ ≥ 0 for each i, this last thing happens iff λi⟨y , xi⟩ = 0 for each i. Now, for
βi = ord⟨y , xi⟩, this is equivalent to λiεβi = 0 for each i, which correspond to the existence
of elements λ′i ∈ D≥0 such that λi = λ′iε

k−βi . That is, x ∈ coneD(xiε
k−βi).

To work out the general case, we need a new notion of finitely generatedness which allow
us to understand every polyhedral cone as a finitely generated object. For this reason, we
introduce the weighted convex hull of a family of vectors.

Definition 1.6.5. Consider elements x1, . . . , xr ∈ ND and integers α1, . . . , αr ∈ {0, . . . , k}.
The weighted convex hull of the elements x1, . . . , xr with respect to the weights α1, . . . , αr

is the set

wconvD([x1;α1], . . . , [xr;αr]) =

{
r∑
i=1

λixi

∣∣∣∣∣λ1, . . . , λr ≥ 0,
r∑
i=1

εαiλi = 1

}
.

Remark 1.6.6.

1. If no αi is equal to zero then the weighted convex hull is empty.

2. The weighted convex hull generalize the usual convex hull as we have

wconvD([x1; 0], . . . , [xr; 0]) = convD(x1, . . . , xr).
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3. If αi = k for some i, then there is no restriction for the corresponding coefficient λi
other that being non-negative. This implies the equality

wconvD([x1;α1], . . . , [xr;αr]) = wconvD({[xi;αi] | αi ̸= k}) + coneD({xi | αi = k}).

In particular, for x1, . . . , xr ∈ ND we have the equality

wconvD{[0; 0], [x1; k], . . . , [xr; k]} = coneD(x1, . . . , xr).

Proposition 1.6.7. For any polyhedron P ⊆ ND, there are x1, . . . , xr ∈ ND and 0 ≤
α1, . . . , αr ≤ k such that

P = wconvD([x1;α1], . . . , [xr;αr]).

Conversely, any set of this form is a polyhedron.

Proof. Using the extended perfect pairing from Definition 1.1.12, if we have a representa-
tion

P = {y1 ≥ a1, . . . , yr ≥ ar} ⊆ ND

we can consider the polyhedral cone

P̂ = {(y1,−a1) ≥ 0, . . . , (yr,−ar) ≥ 0} ⊆ ND × D.

Then, we have
P̂ ∩ND × {1} = P × {1}. (1.13)

As P̂ is a polyhedral cone, it is finitely generated, hence there are generators (x1, b1), . . . , (xr, br) ∈
ND × D such that

P̂ = coneD
(
(x1, b1), . . . , (xr, br)

)
.

After multiplying by an invertible element, we can suppose that bi = εαi for each i =

1, . . . , r. Hence, using (1.13) we get that

P × {1} = coneD
(
(x1, ε

α1), . . . , D(xr, ε
αr)
)
∩ND × {1}

=

{
r∑
i=1

λixi ∈ ND

∣∣∣∣∣λ1, . . . , λr ≥ 0,
r∑
i=1

λiε
αi = 1

}
× {1}

= wconvD([x1;α1], . . . , [xr;αr])× {1}.
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as we wanted. On the other hand, to see that wconvD([x1;α1], . . . , [xr;αr]) is a polyhedron,
notice that {

(x1, . . . , xr) ∈ Dr

∣∣∣∣∣ x1 ≥ 0, . . . , xr ≥ 0,
r∑
i=1

λiε
αi = 1

}
is a polyhedron in Dr and wconvD([x1;α1], . . . , [xr;αr]) is the image of this polyhedron
under the map

Dr −→ ND

ei 7−→ xi, ∀ i ∈ {1, . . . , r}.

Where {e1, . . . , er} denotes the standard basis in Dr. Hence, it is a polyhedron by Propo-
sition 1.2.4.

Remark 1.6.8. In the usual polyhedral geometry over R, every polyhedron can be written
as the sum of a polytope and a polyhedral cone, this is called a Minkowski-Weil decomposi-
tion for the polyhedron. The proposition above is the closest we can get to that statement
for general polyhedra over D. For a detailed study of when one can actually write a
polyhedron over D as a sum of a polytope and a polyhedral cone we refer to Section 1.9.

We will proceed to study the faces of a polyhedron from this new description in terms
of generators.

Proposition 1.6.9. Let P = wconvD
(
[x1, α1], . . . , [xr;αr]

)
be a polyhedron and y ∈MD a

linear function achieving its minimum in P . Then, if a = minx∈P ⟨y , x⟩, we have

facey(P ) = wconv
(
[x1ε

k−β1 ; k + α1 − β1], . . . , [xrεk−βr ; k + αr − βr]
)

where βi = ord
(
⟨y , xi⟩ − εαia

)
.

Proof. As in the proof of Proposition 1.6.7, if we consider

P̂ = coneD
(
(x1, ε

α1), . . . , (xr, ε
αr)
)
⊆ ND × D

then we have
P = P̂ ∩ND × {1}. (1.14)

Now, we claim that if y achieves its minimum a in P , then (y,−a) ∈ P̂∨. Indeed, as
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⟨y , x⟩ ≥ a for any x ∈ P we get

⟨(y,−a) , (x, 1)⟩ ≥ 0 for any x ∈ P.

Then, given (x, b) ∈ P̂ , with b ∈ D×>0 invertible, by the equality in (1.14), we have x/b ∈ P .
Hence,

⟨(y,−a) , (x, b)⟩ = b⟨(y,−a) , (x/b, 1)⟩ ≥ 0.

Finally, let x′ be an element in P achieving the minimum of y, that is ⟨(y,−a) , (x′, 1)⟩ =
0. Then, for an element of the form (x, b) ∈ P̂ with b no invertible we can consider
(x′, 1) + (x, b) = (x′ + x, 1 + b). Now 1 + b is invertible, so from the previous step

0 ≤ ⟨(y,−a) , ((x′ + x, 1 + b))⟩ = ⟨(y,−a) , (x′, 1)⟩+ ⟨(y,−a) , (x, b)⟩ = ⟨(y,−a) , (x, b)⟩.

Hence, (y,−a) is positive in (x, b) for any (x, b) ∈ P̂ . Therefore, (y,−a) ∈ P̂∨, which
proves the claim.

After this, we can consider face(y,−a) P̂ and, by Proposition 1.6.4 above, if βi = ord(⟨(y,−a) , (xi, εαi)⟩) =
ord(⟨y , xi⟩ − εαia), then we have that

face(y,−a)
(
P̂
)
= coneD

({
(xi, ε

αi)εk−βi
}
1≤i≤r

)
.

Moreover, we have the equality

face(y,−a)
(
P̂
)
∩ND × {1} = facey(P )× {1}. (1.15)

This gives

facey(P ) =
{
x ∈ ND

∣∣∣ (x, 1) ∈ coneD

({
(xi, ε

αi)εk−βi
}
1≤i≤r

)}
=

{
r∑
i=1

λiε
k−βixi

∣∣∣∣∣λ1, . . . , λr ≥ 0,
r∑
i=1

εk+αi−βiλi = 1,

}
= wconv

(
[x1ε

k−β1 ; k + α1 − β1], . . . , [xrεk−βr ; k + αr − βr]
)
,

as we wanted.

Corollary 1.6.10. For a polytope P = convD(x1, . . . , xr) and any element y ∈ MD, the
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face of P induced by y is given by

facey(P ) = wconvD
(
[x1ε

k−β1 ; k − β1], . . . , [xrεk−βr ; k − βr]
)

where βi = ord(⟨y , xi⟩ − a) with a = minx∈P ⟨y , x⟩.

Proof. It follows from the previous proposition by considering the equation

wconvD([x1, 0], . . . , [xr, 0]) = convD(x1, . . . , xr).

Remark 1.6.11. In general, a face of a polytope is not necesarily a polytope. For example,
consider the polytope P = convD{0, 1} = [0, 1] ⊆ D and the face

faceεk−1(P ) = coneD(ε).

This is not a polytope as, on a polytope, any linear function always attains its minimum in
at least one of its vertices, in fact, this characterize a polytope as we will see in Corollary
1.9.9. However, in coneD(ε) the linear function y = −ε does not achieve a minimum at all.

1.7 The Support of the Normal Fan

In this section we introduce the support of the normal fan of a polyhedron P . This is the set
of all elements y ∈MD for which facey(P ) is well defined. We regard it as a generalization
of the dual cone of a polyhedral cone introduced in Section 1.5. The support of the normal
fan for polyhedra over D happens to be a more subtle concept than its counterpart over
R, for instance, see Example 1.7.3 below. Moreover, for a polyhedron P we introduce its
recession cone as the set of all directions for which, any point in the polyhedron that moves
along this direction remain in the polyhedron. In Proposition 1.7.8 we show how the dual
of the support of the normal cone coincides with its recession cone.

Definition 1.7.1. Let P ⊆ ND be a non-empty polyhedron. The support of the normal fan
of P , denoted by |NF(P )|, is the set of all y ∈ MD such that ⟨y , ·⟩ achieves its minimum
over P . That is,

|NF(P )| :=
{
w ∈MD

∣∣∣ min
P
⟨y , ·⟩ exists

}
.

Remark 1.7.2. If σ ⊆ ND is a polyhedral cone, then |NF(σ)| recovers the dual cone σ∨.
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Example 1.7.3. Given a polyhedron P , the set |NF(P )| is always closed under positive
scalar multiplications, but is not convex in general. Indeed, consider N =M = Z3 together
with the polyhedron

P = {(x, y, z) ∈ D3 | x ≥ 0, y ≥ 0, z ≥ 0, x+ y + εz = 1}.

Then, we have (1, 0, 0), (0, 1, 0) ∈ NF(P ) as both of these elements achieve 0 as their
minimum over P . Nonetheless, their sum (1, 1, 0) does not achieve its minimum over P , as
for (x, y, z) ∈ P , we have

⟨(1, 1, 0) , (x, y, z)⟩ = x+ y = 1− εz,

and the set {1 − εz ∈ D | z ≥ 0} does not have a minimum. Therefore, |NF(P )| is not a
convex cone in this case.

Question 1.7.4. Is there a simple characterization for the sets of the form |NF(P )| ⊆MD

for some polyhedron P ⊆ ND?

Although we do not know the answer to the question above, in the following proposition
we provide an understanding of coneD |NF(P )| in terms of a representation of P . Moreover,
in Section 1.9 we give a characterization for the polyhedra P for which |NF(P )| is convex.

Proposition 1.7.5. Let P be a non-empty polyhedron and suppose that

P = {y1 ≥ a1, . . . , yr ≥ ar}

is a non-redundant representation of P . Then,

coneD |NF(P )| = coneD(y1, . . . , yr).

Remark 1.7.6.

1. As |NF(P )| is closed under positive scalar multiplications, we can replace coneD |NF(P )|
by convD |(NF(P ))| in the statement above.

2. The assumption that the representation is not-redundant is unavoidable in the hy-
pothesis. For example, for N =M = Z consider

P = {x ∈ D | ⟨ε , x⟩ ≥ 0, ⟨1 , x⟩ ≥ −1}.
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Then, 1 /∈ coneD |NF(P )| = coneD(ε) and this does not contradict the statement of
the result as the inequality ⟨1 , x⟩ ≥ −1 is redundant in the representation.

Proof of Proposition 1.7.5. As the representation is non-redundant, by Proposition 1.1.8,
each yi attains its minimum in P . Hence, yi ∈ |NF(P )| for each i. This shows coneD(y1, . . . , yr) ⊆
coneD |NF(P )|. On the other hand, given y ∈ |NF(P )|, as y achieves its minimum in P ,
by Proposition 1.6.1 there are λ1 . . . , λr ∈ D≥0 such that

y = λ1y1 + · · ·+ λryr

Hence, y ∈ coneD(y1, . . . , yr). This shows coneD |NF(P )| ⊆ coneD(y1, . . . , yr).

Definition 1.7.7. The recession cone of P is the set

recc(P ) := {x ∈ ND | P + x ⊆ P}.

Proposition 1.7.8. Let P ⊆ ND be a non-empty polyhedron. Then,

1. given a non-redundant representation of P

P = {y1 ≥ a1, . . . , yr ≥ ar}

we have
recc(P ) = {y1 ≥ 0, . . . , yr ≥ 0}

2. The dual of the cone hull of the support of the normal fan of P is the recession cone
of P , that is,

coneD(|NF(P )|)∨ = recc(P ).

In particular, recc(P ) is a polyhedral cone. Moreover, by duality recc(P )∨ = coneD |NF(P )|.

Proof. Notice that, by Proposition 1.7.5 together with Proposition 1.5.2 we have

coneD(|NF(P )|)∨ = {y1 ≥ 0, . . . , yr ≥ 0} .

Hence, it is enough to prove that recc(P ) is equal to any of these sets. If x′ ∈ ND satisfies
⟨yi , x′⟩ ≥ 0 for every 1 ≤ i ≤ r, then for any x ∈ P , we have

⟨yi , x+ x′⟩ = ⟨yi , x⟩+ ⟨y , x′⟩ ≥ ai ∀ 1 ≤ i ≤ r.
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Thus, P + x′ ⊆ P . This shows coneD(|NF(P )|)∨ ⊆ recc(P ). On the other hand, by
Proposition 1.1.8, for any 1 ≤ i ≤ r, there is an x ∈ P such that ⟨yi , x⟩ = ai. Then, given
x′ ∈ recc(P ), we must have x+x′ ∈ P . In particular, ⟨yi , x+x′⟩ ≥ ai, from which we infer
that ⟨yi , x′⟩ ≥ 0. As this happens for each 1 ≤ i ≤ r, we must have x′ ∈ coneD(|NF(P )|)∨,
and so recc(P ) ⊆ coneD(|NF(P )|)∨.

Corollary 1.7.9. If P is simultaneously a polyhedron and a convex cone (in the sense of
Definition 1.1.3), then P is a polyhedral cone.

Proof. By the previous proposition, recc(P ) is a polyhedral cone, so it is enough to prove
that P = recc(P ). As 0 ∈ P we have 0 + recc(P ) = recc(P ) ⊆ P . On the other hand, as
P is a convex cone, we have P + P ⊆ P , hence P ⊆ recc(P ).

1.8 Normal Fan Duality

In this section we introduce the normal fan of a polyhedron P . This is an arrangement of
polyhedral cones in MD encoding the behavior of the function y 7→ facey P . Its construction
provides a generalization of the cone duality in Theorem 1.5.3, and it gives us an important
tool to study the combinatorial type of a polyhedron, as we do in Section 1.12 for R-rational
polyhedra.

Definition 1.8.1. Let P ⊆ ND be a polyhedron. For each face F of P , its normal cone is
the set

C(F ) := {y ∈MD | facey P ⊇ F}.

That is, the set of all y ∈MD such that facey(P ) exists and contains F .

Proposition 1.8.2. Given a face F of a polyhedron P . The normal cone C(F ) is a
polyhedral cone. More precisely, given a non-redundant representation

P = {y1 ≥ a1, . . . , yr ≥ ar}

and an element x ∈ intF , we have

C(F ) = coneD
(
εk−α1y1, . . . , ε

k−αryr
)

where αi = ord(⟨yi , x⟩ − ai).
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Proof. Given y ∈ C(F ), if minx∈P ⟨y , x⟩ = a, then, by Farkas’ Lemma, there are λ1, . . . , λr ∈
D≥0 such that

⟨y , ·⟩ − a = λ1(⟨y1 , ·⟩ − a1) + · · ·+ λr(⟨yr , ·⟩ − ar).

By evaluating this equality in x ∈ int(F ), the left hand side is 0 and the right hand side is
a sum of non-negative terms. Hence, each term of the sum must be zero and we get

λi(⟨yi , x⟩ − ai) = 0 ∀1 ≤ i ≤ r.

So, if αi = ord(⟨yi , x⟩ − ai) then there are λ′i ∈ D≥0 such that λi = εk−αiλ′i. Therefore,

y = εk−α1λ′1y1 + · · ·+ εk−αrλ′ryr. (1.16)

On the other hand, if y is of the form (1.16) above, then ⟨y , x⟩ = a. Therefore, x ∈ facey(P ).
But as x ∈ int(F ), by Proposition 1.4.2, we must have F ⊆ facey(P ). That is, y ∈ C(F ).

With this we conclude that

C(F ) = coneD
(
εk−α1y1, . . . , ε

k−αryr
)

as we wanted.

The normal cone C(F ) encodes the local shape of P around F . To make this concrete
we introduce the following notion.

Definition 1.8.3. Let P ⊆ ND be a polyhedron and let F be a face of P . The star of F
with respect to P is the set

StarP (F ) := {λ(x− x′) ∈ ND | x ∈ P, x′ ∈ F, λ ∈ D×>0}.

Lemma 1.8.4. Let P be a polyhedron and F a face of P , then

C(F )∨ = StarP (F ).

Proof. Fix elements x ∈ P , x′ ∈ F and λ ∈ D×>0. For any y ∈ C(F ), as y achieves its
minimum at x′, we have ⟨y , x⟩ ≥ ⟨y , x′⟩. Hence, ⟨y , λ(x− x′)⟩ ≥ 0, so λ(x− x′) ∈ C(F )∨.
This shows that StarP (F ) ⊆ C(F )∨.
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We will now prove the other direction, for this fix a representation

P = {y1 ≥ a1, . . . , yr ≥ ar}.

Then, by Proposition 1.6.1, there are 0 ≤ αi ≤ k such that

F =
r⋂
i=1

{x ∈ P | εαi⟨yi , x⟩ = εαiai}. (1.17)

Hence, an element x′ ∈ F satisfies

εαi⟨yi , x′⟩ = εαiai ∀ 1 ≤ i ≤ r. (1.18)

Moreover, we can take x′ in such a way that

εαi−1⟨yi , x′⟩ > εαi−1ai ∀ 1 ≤ i ≤ r with αi ≥ 1 (1.19)

Indeed, if for a certain i, we have

εαi−1⟨yi , x′⟩ = εαi−1ai, ∀ x′ ∈ F.

Then, we can replace αi with αi − 1 in (1.17) without altering the set F . We can proceed
in this way and eventually there will be an x′i ∈ F such that

εαi−1⟨yi , x′i⟩ > εαi−1ai.

After doing this for every i we can take x′ = 1
n

∑r
i=1 x

′
i.

We will now prove that for every w ∈ C(F )∨ there is a λ ∈ D×>0 such that λw+x′ ∈ P .
This will finish the proof because then w = λ−1(x− x′) ∈ StarP (F ), so C(F )∨ ⊆ StarP (F )

as we needed. To prove this, notice that there is a λ ∈ D×>0 such that λw + x′ ∈ P iff for
each 1 ≤ i ≤ r there is a λi ∈ D×>0 such that

⟨yi , λiw + x′⟩ ≥ ai

as then we can take λ = mini{λi}. We will work now with a fixed i and show that such
a λi exist in all the possible cases in which the element ⟨yi , w⟩ can be. Notice that as
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w ∈ C(F )∨ and εαiyi ∈ NC(F ) (as it attains its minimum εαiai on F ) we have

εαi⟨yi , w⟩ ≥ 0.

• If εαi⟨yi , w⟩ > 0 we are done, as this together with (1.18) give us εαi⟨yi , w+x′⟩ > εαiai

which implies ⟨yi , w + x′⟩ > ai so we can take λi = 1.

• If εαi⟨yi , w⟩ = 0 and αi = 0 we have ⟨yi , λiw + x′⟩ = ⟨yi , x′⟩ ≥ ai so any λi ∈ D×>0

works.

• If εαi⟨yi , w⟩ = 0 and αi > 0 then, it is enough to find λi small enough such that

εαi⟨yi , λiw + x′⟩ > εαiai ⇐⇒ λiε
αi−1⟨yi , w⟩ > εαi−1ai − εαi−1⟨yi , x′⟩.

In this last inequality, both εαi−1⟨yi , w⟩ and εαi−1ai − εαi−1⟨yi , x′⟩ are of the form
εk−1A with A ∈ R. As the right hand side is negative by (1.19), by taking λi ∈ R>0

small enough we can always make the left hand side bigger.

Theorem 1.8.5 (Normal Fan Duality). Given a polyhedron P ⊆ ND, the family

NF(P ) = {C(F ) ⊆MD | F ∈ F(P )∗}

is a fan whose support is |NF(P )|. Moreover, for a polyhedral cone σ we have C(τ) = τ ∗

for each face τ of σ.

Proof. By Proposition 1.8.2 each set C(F ) is a polyhedral cone. Also, for F,G ∈ F(P )∗

we have

y ∈ C(F ) ∩ C(G) ⇐⇒ facey(P ) ⊇ F ∪G ⇐⇒ facey(P ) ⊇ F ∨G ⇐⇒ y ∈ C(F ∨G).

Hence, C(F ) ∩ C(G) = C(F ∨ G). Also, a face τ ⪯ C(F ) is defined by an element
x0 ∈ C(F )∨. By Lemma 1.8.4 we have C(F )∨ = StarP (F ), hence x0 = λ(x − x′) for



74 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

λ ∈ D×>0, x ∈ P and x′ ∈ F . Therefore,

τ = facex0(C(F ))

={y ∈ C(F ) | ⟨y , x0⟩ = 0}

={y ∈ C(F ) | ⟨y , x⟩ = ⟨y , x′⟩}

={y ∈ C(F ) | min
w∈P
⟨y , w⟩ = ⟨y , x⟩}

={y ∈ P | facey(P ) ⊇ F ∪ {x}}

=C(F ∨G)

where G is the only face of P such that x ∈ intG. With this we have shown that NF(P )

is a fan. Finally, for a polyhedral cone σ and a face τ of σ we have that

C(τ) ={y ∈ |NF(σ)| | facey ⊇ τ}

={y ∈ σ∨ | ⟨y , x⟩ = 0 ∀x ∈ τ}

=σ∨ ∩ τ⊥

=τ ∗.

Remark 1.8.6.

1. The name of the theorem comes from the fact that the normal fan gives us an order
reversing bijection

F(P )∗
∼→ NF(P )

in which each face F ⪯ P is orthogonal to its corresponding face C(F ) ∈ NF(P ).

2. If σ is a polyhedral cone then, the bijection above is given by

F(σ)∗
∼−→ NF(σ)

τ 7−→ τ ∗.

Therefore, this maps correspond to the one from the cone duality in Theorem 1.5.3. In
this way, we see that the normal fan duality in Theorem 1.8.5 is a strict generalization
of the dual cone duality in Theorem 1.5.3.

We finalize with the following concept.
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Definition 1.8.7. A fan Σ in MD is said to be regular if there is a polyhedron P such that
Σ = NF(P ).

1.9 The Support Function

In this section we go one step further in our dual understanding of a polyhedron and
consider the map y 7→ minx∈P ⟨y , x⟩. This is a piecewise linear concave function called
the support function of the polyhedron P . Under mild hypothesis, in Theorem 1.9.4 we
use the support function to obtain an alternative description of the normal fan, and in
Theorem 1.9.6 we show how the support function gives us a bijection between polyhedra
and piecewise linear concave functions. We use this in Corollary 1.9.9 to understand when
a given polyhedron has a Minkowski-Weyl decomposition. That is, an equation of the
form P = Q + σ, where Q is a polytope and σ is a polyhedral cone. In particular, this
characterization allow us to show that polytopes are exactly the polyhedra in which any
linear function achieves its minimum

Definition 1.9.1. Given a polyhedron P , we define its support function as the map

hP : |NF(P )| −→ D

y 7−→ min
x∈P
⟨y , x⟩.

Remark 1.9.2.

1. The function hP is positive homogeneous in the sense that, for any λ ∈ D≥0, if
y ∈ |NF(P )| then hP (λy) = λhP (y).

2. For each face F ⪯ P , if we take a point xF ∈ int(F ), then

hP (y) = min
x∈P
⟨y , x⟩ = ⟨y , xF ⟩

for each y ∈ C(F ). In particular, hP is linear along C(F ).

3. The minimum in the definition of hP can be taken to be finite because, as above, if
we take for each face F ⪯ P a point xF ∈ int(P ) then,

hP (y) = min
F∈F(P )∗

⟨y , xF ⟩.



76 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

4. If P = {y1 ≥ a1, . . . , yr ≥ ar} is a non-redundant representation of P , then by
Proposition 1.1.8 we have hP (yi) = ai.

5. From the support of the normal fan and the support function, we can recover the
polyhedron as

P =
⋂

y∈|NF(P )|

{x ∈ ND | ⟨y , x⟩ ≥ hP (y)}.

We can use the support function to give new characterizations of the normal fan. For
this, we will use the concepts from Definition 1.1.12 together with the following one.

Definition 1.9.3. Given a polyhedron P , the lifted normal fan is the set

|NF(P )|h := coneD
{
(y, hP (y)) ∈MD × D

∣∣ y ∈ |NF(P )|}.
Theorem 1.9.4. Let P be a polyhedron with a non-redundant representation P = {y1 ≥
a1, . . . , yr ≥ ar}. The lifted normal fan can be computed as

|NF(P )|h = coneD
(
(y1, a1), . . . , (yr, ar)

)
.

Moreover, NF(P ) can be obtained as the family of all projections of the upper faces of
|NF(P )|h from MD × D to MD.

Proof. The proof goes in three steps.

1. |NF(P )|h = coneD((y1, a1), . . . , (yr, ar)) :

As yi ∈ |NF(P )| for each i = 1, . . . , r, we have (yi, h(yi)) = (yi, ai) ∈ |NF(P )|h,
hence

|NF(P )|h ⊇ coneD((y1, a1), . . . , (yr, ar))

For the other inclusion, by Proposition 1.8.2, for any face F of P we have

C(F ) = coneD
(
εk−α1y1, . . . , ε

k−αryr
)

where αi = ord(⟨yi , x⟩ − ai). Hence, for y ∈ C(F ) there are λ1, . . . , λr ∈ D≥0 such
that

y = λ1ε
k−α1y1 + · · ·+ λrε

k−αryr.
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Moreover, as hP is positive homogeneous and linear over C(F ) we have

hP (y) = λ1hP (ε
k−α1y1) + · · ·+ λrhP (ε

k−αryr)

= λ1ε
k−α1hP (y1) + · · ·+ λrε

k−αrhP (yr)

= λ1ε
k−α1a1 + · · ·+ λrε

k−αrar.

Hence, (y, hP (y)) ∈ coneD((y1, a1), . . . , (yr, ar)) for any y ∈ C(F ). As |NF(P )| =⋃
F C(F ) we conclude that |NF(P )|h = coneD((y1, a1), . . . , (yr, ar)).

2. face(x,−1)(Q) can be considered iff x ∈ P :

We have that face(x,−1)(Q) exists iff (x, 1) ∈ Q∨. Moreover, for x ∈ ND

(x, 1) ∈ Q∨ ⇐⇒ ⟨(y, hP (y)) , (x,−1)⟩ ≥ 0 for every y ∈ |NF(P )|

⇐⇒ ⟨y , x⟩ ≥ h(y) for every y ∈ NF(P )

⇐⇒ x ∈ P.

3. For x ∈ P , if x ∈ int(F ) then face(x,−1)(Q) = F :

By Proposition 1.6.4, using the generators from part (1) we get

face(x,−1)(Q) = coneD
(
εk−α1 (y1, a1) , . . . , ε

k−αs (yr, ar)
)
,

where

αi = ord⟨(yi, hP (yi)) , (x,−1)⟩ = ord(⟨wi , x⟩ − hP (yi)) = ord(⟨wi , x⟩ − ai).

Hence, if π denotes the projection from MD to D we have

π
(
face(x,−1)(Q)

)
= coneD

(
εk−α1y1, . . . , ε

k−αsyr
)
,

which is exactly equal to C(F ) by Proposition 1.8.2.

Definition 1.9.5. Given a polyhedral cone σ ⊆ MD, a function l : σ → D is called
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piecewise linear concave if there is a finite subset A ⊆ ND such that

l(y) = min
x∈A
⟨y , x⟩, ∀ y ∈ σ.

Theorem 1.9.6 (Higher Rank Minkowki Theorem). There is a bijection between polyhe-
dra with convex normal fan and polyhedral cones endowed with concave linear functions.
Explicitly:

1. We associate to a polyhedron P with convex normal fan the pair

Ψ(P ) = (|NF(P )|, hP ).

2. We associate to a pair (σ, h) the polyhedron

Φ(σ, h) = convD(A) + σ∨

where A ⊆ ND is a finite subset such that h = minx∈A⟨· , x⟩.

Proof. The map in Ψ is well define because, as |NF(P )| is convex, it is a polyhedral cone
by Proposition 1.7.5. Moreover, the support function is pieciewise linear and concave as
mentioned in part (3) of Remark 1.9.2.

Let us see now that the map Φ is well defined as well. For this, notice that an element
y ∈MD achieves the minimum in convD(A)+σ

∨ iff it achieves the minimum independently
in convD(A) and in σ∨. Moreover, y always achieves the minimum in convD(A) in one
element of A, and it achieves the minimum in σ∨ iff y ∈ (σ∨)∨ = σ. Hence, the support of
the normal fan of Φ(σ, h) = convD(A) + σ∨ is σ, which is convex. Moreover, the support
function of this polyhedron is

σ −→ D

y 7−→ min
x∈Φ(σ,h)

⟨y , x⟩ = min
x∈A
⟨y , x⟩

which is exactly h. As, mentioned in Remark 1.9.2 part (5), the support function of a
polyhedron determines the polyhedron. Hence, convD(A) + σ∨ does not depend on A and
then the map is well defined.

Moreover, the maps Ψ and Φ are mutually inverse: If we start with a pair (σ, h), we
get a polyhedron Φ(σ, h) = convD(A) + σ∨ which, as we saw above, has σ as normal fan
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and h as support function. Hence,

Ψ ◦ Φ(σ, h) = (σ, h).

This shows that Ψ is surjective. Moreover, the map Ψ is already injective by Remark 1.9.2
part (5). Hence, it is bijective and then Ψ and Φ are mutually inverse.

Definition 1.9.7. A Minkowski-Weyl decomposition for a polyhedron, is an equality of
the form P = Q+ σ with Q a polytope and σ a polyhedral cone.

Remark 1.9.8. If P = convD(A) + σ is a Minkowski-Weyl decomposition we get

(σ∨,min
x∈A
⟨· , x⟩) = Ψ ◦ Φ(σ∨,min

x∈A
⟨· , x⟩) = Ψ(convD(A) + σ) = Ψ(P ) = (|NF(P )|, hP ).

Hence, σ∨ = |NF(P )| and then, by Proposition 1.7.8, we get σ = |NF(P )|∨ = recc(P ). In
particular, the polyhedral cone in the decomposition is uniquely determined. On the other
hand, the polytope on the decomposition is not uniquely determine. For example,

{0}+ σ = convD(A) + σ

for any polyhedron σ and any finite set A ⊆ σ, but {0} ≠ convD(A) in general.

Corollary 1.9.9.

1. A polyhedron admits a Minkowski-Weyl decomposition iff the support of its normal
fan is convex.

2. A polyhedron is a polytope iff any linear function attains its minimum over it.

Proof.

1. If a polyhedron admits a Minkowski-Weyl decomposition P = Q + σ, then as in
Remark 1.9.8 we get |NF(P )| = σ∨ which is a convex set. On the other hand, if the
support of the normal fan is convex then we can apply Theorem 1.9.6 and we get

P = Φ ◦Ψ(P ) = Φ(|NF(P )|, hP ) = convD(A) + |NF(P )|∨

which is a Minkowski-Weyl decomposition for P .
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2. If P = convD(A) is a polytope then, any linear function achieves its minimum in one
its generators from A. In particular the minimum exists.

On the other hand, if |NF(P )| =MD, then |NF(P )| is convex. By the previous part
then P admits a Minkowski-Weyl decomposition P = Q+ σ. As in Remark 1.9.8 we
have

σ = recc(P ) = |NF(P )|∨ =M∨
D = {0}.

Hence, P = Q+ {0} = Q is a polytope.

Remark 1.9.10.

1. In Example 1.7.3 we saw a polyhedron whose normal fan is not convex. Hence, by
Corollary 1.9.9 this also gives an example of a polyhedron which does not accept a
Minkowski-Weyl decomposition.

2. Using part (2) of Corollary 1.9.9 together with Theorem 1.9.6 we get a bijection
between piecewise linear concave functions h :MD → D and polytopes in ND.

1.10 The Fibration Point of View

Notice that for positive integers i < j, there is an order preserving surjective ring morphism

Dj = R[ε]/(εj)→ Di = R[ε]/(εi)

given by modding out by the ideal (εi). For a given rank k, we can fit all the projections
to the lower rank rings together in the sequence

D := Dk → Dk−1 → · · · → D1 = R. (1.20)

We propose to study this sequence, and many different sequences that can be deduced
from it, geometrically. To do this we introduce the following concept.

Definition 1.10.1. For a given lattice N , an iterated fibration of subsets of NR or simply,
an iterated fibration, is a diagram of sets of the form

X [r] πr−1→ X [r−1] πr−2→ . . .
π1→ X [0]
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where each map is surjective, X [0] ⊆ NR and for each x ∈ X [i] the fiber π−1i (x) can be
identified with a subset of NR, denoted by X [i+1]

x .

In this sense, the sequence in (1.20) is an iterated fibration of subsets of R in which
each fiber is equal to R itself.

More generally, by extension of scalars, the diagram in (1.20) induce the sequence of
projections

ND = NDk
→ NDk−1

→ · · · → ND1 = NR (1.21)

Given a subset X ⊆ ND and an integer 0 ≤ r ≤ k, we define the set X [r−1] as the image
of X under the projection to NDr . In this way, there is a sequence of projections

X = X [k−1] → X [k−2] → · · · → X [0]

which allows us to regard X as an iterated fibration of subsets of NR. Given x ∈ X [i] its
fiber at x is the set

X [i+1]
x = {y ∈ NR | x+ εiy ∈ X [i+1]}.

In order to get an idea of the objects involved, let us start with a small example.

Example 1.10.2. Consider k = 2, N = Z2 and the polyhedral cone

σ = {(x1, x2) ∈ D2 | x1, x2 ≥ 0}.

Notice that in order for x = x(0) + εx(1) to be positive we should have either x(0) > 0 or
x(0) = 0 and x(1) ≥ 0. Therefore, if we regard σ as a fibration, its base is

σ[0] = {(x1, x2) ∈ R2 | x1, x2 ≥ 0}

and the possible fibers are

R2, {(x1, x2) ∈ R2 | x1 ≥ 0}, {(x1, x2) ∈ R2 | x2 ≥ 0}, {(x1, x2) ∈ R2 | x1, x2 ≥ 0}
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depending on the position of the base-point as the following picture represents.

Another way to describe this fibration is as follows: The point (x
(0)
1 + εx

(1)
1 , x

(0)
2 + εx

(1)
2 )

belongs to σ iff (x
(0)
1 , x

(0)
2 ) belongs to σ[0] and (x

(1)
1 , x

(1)
2 ) is a tangent point at (x

(0)
1 , x

(0)
2 )

pointing inside to σ[0].

The example above is a special case of the notion of tangent cone bundle which we now
introduce. This object has been already defined for polyhedral cone complexes in [AI21]
where it plays a major role.

Definition 1.10.3. Given a set A ⊆ NR and a point x ∈ A we define the tangent cone of
A at x as the set TCxA of all vectors y in NR such that x+ δy ∈ A for each δ ∈ R>0 small
enough. The tangent cone bundle of A is then the disjoint union

TC A :=
⊔
x∈A

{x} × TCxA

together with the projection TC A→ A given by (x0, x1) 7→ (x0).

We can extend this definition inductively to an iterated fibration

TCr A→ TCr−1A→ · · · → TC1A→ A,

by fixing TC1A := TC A, and for r ≥ 1 and (x0, . . . , xr) ∈ TCrA

TCr+1
(x0...,xr)

A := TCxr(TCr(x0,...,xr−1)
A).

Then, we have

TCr+1A :=
⊔

(x0,...,xr)∈TCrA

{(x0, . . . , xr)} × TCr+1
(x0,...,xr)

A
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together with the map TCr+1A→ TCr A given by (x1, . . . , xr+1) 7→ (x1, . . . , xr).

Proposition 1.10.4. If A ⊆ NR is a convex set then a point (x0, . . . , xr) ∈ (NR)
r+1 belongs

to TCr A iff

1. For every 1 ≤ i ≤ r and for every δ > 0 small enough we have

x0 + δx1 + · · ·+ δixi ∈ A.

2. For every 1 ≤ i ≤ r and for every sequence of positive numbers {δj}ij=1 small enough
we have

x0 + δ1x1 + · · ·+ δ1 · · · δixi ∈ A.

Proof. If (x0, . . . , xr−1) ∈ TCr−1A then we have

(x0, . . . , xr) ∈ TCr A ⇐⇒ xr ∈ TCxr−1(TCxr−2(. . . (TCx0 A) . . . ))

⇐⇒ xr−1 + δrxr ∈ TCxr−2(. . . (TCx0 A) . . . ) for δr > 0 small
...

⇐⇒ x0 + δ1x1 + · · ·+ δ1 · · · δrxr ∈ A for δ1, . . . , δr > 0 small.

We can transform (x0, . . . , xr−1) ∈ TCr−1A in a similar statement, and in this way we can
show that (x0, . . . , xr) ∈ TCr A is equivalent to condition (2) above. Moreover, it is clear
than (2) implies (1) by taking δj = min{δi} for all j. To see that (1) implies (2) take
δ = max{δ1, . . . , δi}, by the convexity assumption for t1, . . . , ti > 0 small we have

(1− t1 − · · · − ti)x0 + t1(x0 + δx1) + · · ·+ ti(x0 + δx1 + . . . δixi)

= x0 + (t1 + · · ·+ ti)δx1 + · · ·+ tiδ
ixi.

Then, by taking t1 + · · · + ti = δ1/δ, t2 + · · · + ti = δ1δ2/δ
2,. . . ,ti = δ1 · · · δi/δi we are

done.

We will identify TCk−1A with a subset of ND using the map

TCk−1A −→ ND

(x0, . . . , xk−1) 7−→ x0 + εx1 + · · ·+ εk−1xk−1.
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In this map, ε is a formal variable which we regard as an infinitesimal, nonetheless by
Proposition 1.10.4 above we can think of x0 + εx1 + · · ·+ εk−1xk−1 as morally lying on A.

Remark 1.10.5. In Example 1.10.2 we can consider σ = {(x1, x2) ∈ D2 | x1, x2 ≥ 0} as
the extension of scalars of σ[0] = {(x1, x2) ∈ R2 | x1, x2 ≥ 0} from R to the dual numbers D.
In this regard the equation σ = TC σ[0] should be considered as a polyhedral version of the
equality X(k[ε]/(ε2)) = TX(k), for a variety X over a field k, from algebraic geometry. In
Corollary 1.11.3 below we extend this statement to a general real polyhedron. Moreover,
in Section 14 we give another manifestation on the extension of scalars and we discuss how
the elements of TCr A can be seen dually as tangent derivative operators.

Using Proposition 1.10.4 we can generalize the notion of tangent cone to flag of subsets.

Definition 1.10.6. Let us consider a flag of convex subsets in ND of the form

A : A0 ⊆ A1 ⊆ · · · ⊆ Ar.

We define the tangent cone of A as the set TC A of all tuples (x0, x1, . . . , xr) ∈ (NR)
r+1

such that x0 ∈ A0 and for each 1 ≤ i ≤ r,

x0 + δx1 + · · ·+ δixi ∈ Ai

for each δ > 0 small enough. If for 0 ≤ i ≤ r we denote by A|i the restriction flag given
by A0 ⊆ A1 ⊆ · · · ⊆ Ai. Then, we have an iterated fibration

TC A = TC A|r → TC A|r−1 → · · · → TC A|1 → A0.

Again, for a flag of length k we identify TC A with a subset of ND with the map

TC A −→ ND

(x0, . . . , xk−1) 7−→ x0 + εx1 + · · ·+ εk−1xk−1

Remark 1.10.7.

1. For the constant flag A equals to A we recover the iterated fibration of TCr A as
TC A.

2. The tangent cone behaves well with intersections: If A = (Ai)
r
i=0 and B = (Bi)

r
i=0 are



1.11. Tangent Cones of real Polyhedra and Flags of real Polyhedra 85

flags of the same length, then TC A∩TC B = TC(A∩B), where A∩B = (Ai∩Bi)
r
i=0.

In particular, TCr A ∩ TCr B = TCr A ∩B.

3. The tangent cone behaves well with subdivisions: Given a flag of polyhedra

P : P0 ⊆ P1 ⊆ · · · ⊆ Pr

consider polyhedral complexes Σ0,Σ1, . . . ,Σr with supports P0, P1, . . . , Pr respec-
tively, and such that each cell of Σi is also a cell of Σi+1. Then

TC P =
⋃
Q

TC Q

where the union goes over all flags

Q : Q0 ⊆ Q1 ⊆ · · · ⊆ Qr

where Qi ∈ Σi and Qi is a face of Qi+1 for each i.

1.11 Tangent Cones of real Polyhedra and Flags of real

Polyhedra

As we have seen, polyhedra over the generalized dual numbers D give rise to iterated
fibrations. In general, these fibrations may be difficult to understand, but in some particular
cases, it may be possible to give a complete description of them. We will study two
situations in which this happens, the one given by strongly R-rational polyhedra and the
one given by Strongly εR-rational polyhedra.

Let us recall that, from Definition 1.1.6, a polyhedron P is called strongly R-rational
if it admits a representation of the form

P = {y1 ≥ a1, . . . , yr ≥ ar}

with yi ∈ MR and ai ∈ R for each 1 ≤ i ≤ r. For the other concept we have the following
definition.

Definition 1.11.1. A polyhedron is called strongly εR-rational if it is an intersection of
semispaces of the form

H = {x ∈ ND | εα⟨y , x⟩ ≥ εαa}
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for some y ∈MR, a ∈ R and 0 ≤ α ≤ k−1. That is, it admits a representation of the form

P = {εα1y1 ≥ εα1a1, . . . , ε
αryr ≥ εαrar}

with yi ∈ MR, ai ∈ R and 0 ≤ αi ≤ k − 1. If we can take ai = 0 for each i we say that P
is an strongly εR-rational polyhedral cone.

We will start with the following results. Which in particular shows that the tangent
cone of polyhedra produces strongly R-rational polyhedra and, more generally, the tangent
cone of a flag of polyhedra produces strongly εR-rational polyhedra.

Theorem 1.11.2.

1. Given a flag of polyhedra in NR of the form

P : P0 ⊆ P1 ⊆ · · · ⊆ Pk−1,

the tangent cone TC P is a polyhedra in ND.

In concrete terms,

(a) if for each 0 ≤ i ≤ r we have Pi = convR({xij}j). Then

TC P = wconvD

({
[εixij; i]

}
ij

)
(b) if for each 0 ≤ i ≤ r we have

Pi =
⋂
j

{x ∈ NR | ⟨x , yij⟩ ≥ aij}.

Then
TC P =

⋂
i,j

{x ∈ ND | εk−i⟨x , yij⟩ ≥ εk−iaij}.

2. Let
S : σ0 ⊆ σ1 ⊆ · · · ⊆ σk−1

be a flag of polyhedral cones in NR. Then TC S is a finitely generated polyhedral cone
in ND. In concrete terms,
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(a) if for each 0 ≤ i ≤ r we have σi = coneR({xij}j). Then

TC S = coneD
(
{εixij}ij

)
.

(b) If for each 0 ≤ i ≤ r we have σi =
⋂
j{x ∈ NR | ⟨x , yij⟩ ≥ 0}. Then

TC S =
⋂
i,j

{x ∈ ND | εk−i⟨x , yij⟩ ≥ 0}.

Proof. Let us start with the proof of (1) part (b). For this pick x ∈ ND and y ∈MR. If we
write x = x(0) + εx(1) + · · ·+ εk−1x(k−1), then we have

εk−i⟨x , y⟩ = εk−i⟨x(0) , y⟩+ εk−i+1⟨x(1) , y⟩+ · · ·+ εk⟨x(i) , y⟩.

Hence, for a ∈ R, εk−i⟨x , y⟩ ≥ εk−ia happens in D iff for each δ ∈ R>0 small enough we
have

δk−i⟨x(0) , y⟩+ δk−i+1⟨x(1) , y⟩+ · · ·+ δk⟨x(i) , y⟩ ≥ δk−ia

⇐⇒ ⟨x(0) , y⟩+ δ1⟨x(1) , y⟩+ · · ·+ δi⟨x(i) , y⟩ ≥ a

which is equivalent to x ∈ TC Ai,y,a, where Ai,y,a is the flag

Ai,y,a : A0 ⊆ A1 ⊆ · · · ⊆ Ak−1

given by Aj = {x ∈ NR | ⟨x , y⟩ ≥ a} for j ≤ i and Aj = NR for j ≥ i+ 1 This shows that

{x ∈ ND | εk−i⟨x , y⟩ ≥ εk−ia} = TC Ai,y,a.

Then, by Remark 1.10.7 part (2) we have that

TC P =
⋂
i,j

TC Ai,yij ,aij =
⋂
i,j

{x ∈ ND | εk−i⟨x , yij⟩ ≥ εk−iaij}.

This finishes the proof. By taking aij = 0 for each pair i, j we obtain (2) part (b).

Let us now prove (2) part (a). First, we can write each σi in the form

σi =
⋂
j

{x ∈ NR | ⟨x , yij⟩ ≥ 0}.
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Then, if i ≤ i′ we have σi ⊆ σi′ and hence xij ∈ σi′ for each j, so we get ⟨xij , yi′j′⟩ ≥ 0 for
each j′, and we conclude that

εk−i
′⟨εixij , yi′j′⟩ ≥ 0 ∀ i, i′, j, j′.

So, applying (2) part (b) we have

εixij ∈
⋂
i,j

{x ∈ ND | εk−i⟨x , yij⟩ ≥ 0} = TC S

which implies coneD ({εixij}ij) ⊆ TC S. We prove now the other inclusion. For this take
x ∈ TC S. We have to construct λij = λ

(0)
ij + · · ·+ ε(k−1)λ

(k−1)
ij ∈ D>0 such that

x =
∑
i,j

λijε
ixij.

Without loss of generality we can assume

{xij}j ⊆ {xi′j}j for i ≤ i′ (1.22)

otherwise we add the generators of σi to σi′ . Write x = x(0) + εx(1) + · · ·+ εk−1x(k−1). For
δ > 0 small we have

x(0) ∈ σ0, x(0) + δx(1) ∈ σ1, x(0) + · · ·+ δk−1x(k−1) ∈ σk−1.

Denote by τ0, τ1, . . . , τk−1 the faces of σ0, σ1, . . . , σk−1 respectively containing x(0), x(0) +

δx(1), x(0)+ · · ·+ δk−1x(k−1) ∈ σk−1 in their relative interior. As each vertex of τi is a vertex
of σi we have

τi = coneR ({xij}j ∩ τi) .

Hence, as x(0) ∈ ◦
τ0 and

◦
τ0 =

 ∑
x0j∈τ0

λ0jx0j | λ0j ∈ R>0


there are λ(0)0j ∈ R>0 such that x(0) =

∑
x0j∈τ0 λ

(0)
0j x0j. Now as τ0 ⊆ τ1 we can consider

τ1/τ0 := (τ1 + span τ0)/ span τ0 as a cone in NR/ span τ0. Then, as x(0) + δx(1) ∈ ◦
τ1 we get
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[x(0) + δx(1)] ∈ (τ1/τ0)
◦ so [x(1)] ∈ (τ1/τ0)

◦ and as

(τ1/τ0)
◦ =

 ∑
x1j∈τ1

λ1j[x1j] | λ0j ∈ R>0


there are λ(0)1j ∈ R>0 such that [x(1)] =

∑
x1j∈τ1 λ

(0)
1j [x1j]. Lifting this equation to τ1 there

are λ(1)0j ∈ R such that
x(1) =

∑
x1j∈τ1

λ
(0)
1j x1j +

∑
x0j∈τ0

λ
(1)
0j x0j.

In a similar way, τ1 ⊆ τ2 so we can consider τ1/τ2. As x(0) + δx(1) + δ2x(2) ∈ ◦
τ2

and x(0) + δx(1) ∈ τ1 we get [x(2)] ∈ (τ1/τ2)
◦ from where there are λ(0)2j ∈ R>0 such that

[x(2)] =
∑

x2j∈τ2 λ
(2)
2j [x2j]. Lifting this equation to τ2 we get λ(1)1j ∈ R and λ(2)0j ∈ R such that

x(2) =
∑
x2j∈τ2

λ
(0)
2j x2j +

∑
x1j∈τ1

λ
(1)
1j x1j +

∑
x0j∈τ0

λ
(2)
0j x0j.

Continuing in this way we have constructed λij = λ
(0)
ij + · · ·+ ε(k−1)λ

(k−1)
ij ∈ D>0 such that

x =
∑
i,j

λijε
ixij

as we wanted. This finishes the proof of (2) part (a).

Now, (1) part (a) follows from (2) part (a). For this, given the polytope Pi = convR ({xij}i) ⊆
NR consider the cone

P̂i = coneD ({(xij, 1)}i) ⊆ NR × R.

In this way, we obtain a flag of polyhedral cones

P̂ : P̂0 ⊆ P̂1 ⊆ · · · ⊆ P̂k−1.

By (2) part (a) we have TC P̂ = coneD ({εi(xij, 1)}ij), hence
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TC P × {1} = TC P̂ ∩ND × {1}

= coneD
(
{εi(xij, 1)}ij

)
∩ND × {1}

=
{
x ∈ ND

∣∣ (x, 1) ∈ coneD
(
{εi(xij, 1)}ij

)}
× {1}

=

{∑
ij

λijxijε
i ∈ ND

∣∣∣∣∣λij ≥ 0 for all i, j and,
∑
i,j

λijε
i = 1

}
× {1}

= wconvD

({
[εixij; i]

}
ij

)

Two immediate corollaries are the following.

Corollary 1.11.3 (Base change principle). The real polyhedra (resp. real polyhedral cones)
in ND correspond exactly to the tangent cone of polyhedra (resp. polyheral cones) in NR.
In explicit terms.

1. Given a finite subset X ⊆ NR we have

coneDX = TCk−1 coneRX.

2. Given y1, . . . , yr ∈MR and a1, . . . ar ∈ R we have

{x ∈ ND | ⟨y1 , x⟩ ≥ a1, . . . , ⟨yr , x⟩ ≥ ar}

= TCk−1 {x ∈ NR | ⟨y1 , x⟩ ≥ a1, . . . , ⟨yr , x⟩ ≥ ar} .

Which in particular if ai = 0 for all i, gives us an equality between polyhedral cones.

Proof. This is simply the case in which we take a constant flag in Theorem 1.11.2 above.

Corollary 1.11.4. Given a polyhedral P in ND, the following are equivalent.

1. P is strongly εR-rational.

2. P = TCk−1P for P : P1 ⊆ · · · ⊆ Pk a sequence of real polyhedra in NR.

Moreover, if P is a polyhedral cone then, this are also also equivalent to the fact that P is
finitely generated by elements of the form εix with x ∈ NR.
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Proof. This is a restatement of Theorem 1.11.2 above.

Semi-real polyhedra appear naturally as faces of real polyhedra as the next proposition
shows.

Proposition 1.11.5. Let P be a polyhedron in NR. Then, the faces of TCk−1 P in ND are
given exactly by the sets of the form TC F for a flag

F : F0 ⊆ F1 ⊆ · · · ⊆ Fk−1

where each Fi is a face of P in NR.

Proof. We start proving that each set of the form TC F is a face of TCk−1 P . For this let
NFR P be the normal fan of P . The flag of faces F correspond to a flag of cones

σ0 ⊇ σ1 ⊇ · · · ⊇ σk−1

in NFR P , in which σi+1 is a face of σi for each i. Now, take y(0), y(1), . . . , y(k−1) ∈MR such
that for each δ > 0 small enough we have

y(0) ∈ σk−1, y(0) + δy(1) ∈ σk−2, . . . y(0) + · · ·+ δk−1y(k−1) ∈ σ0 (1.23)

and consider y = y(0) + · · · + ε(k−1)y(k−1) ∈ ND. We claim that y defines TC F as a face.
For this given x = x(0) + · · ·+ ε(k−1)x(k−1) ∈ ND consider

⟨y , x⟩ = ⟨y(0) , x(0)⟩+ ε
(
⟨y(0) , x(1)⟩+ ⟨y(1) , x(0)⟩

)
+ · · ·+ εk−1

( ∑
i+j=k−1

⟨y(i) , x(j)⟩

)
.

In order to minimize this expression for x ∈ TCk−1 P we need to first find the x(0) which
minimize ⟨y(0) , x(0)⟩, then between those x(0) we need to minimize ⟨y(0) , x(1)⟩+ ⟨y(1) , x(0)⟩,
and so on.

To minimize ⟨y(0) , x(0)⟩, as we have y(0) ∈ σk−1 we have to take x(0) ∈ Fk−1.

To minimize ⟨y(0) , x(1)⟩ + ⟨y(1) , x(0)⟩, we will minimize simultaneously ⟨y(0) , x(1)⟩ and
⟨y(1) , x(0)⟩. Notice that we already minimized ⟨y(0) , x(0)⟩, so ⟨y(0) , x(1)⟩ attach its minimum
iff

δ⟨y(0) , x(1)⟩+ ⟨y(0) , x(0)⟩ = ⟨y(0) , x(0) + δx(1)⟩
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achieves its minimum, which happens iff x(0) + δx(1) ∈ σk−1. In the same way ⟨y(1) , x(0)⟩ is
minimized exactly when

δ⟨y(1) , x(0)⟩+ ⟨y(0) , x(0)⟩ = ⟨y(0) + δy(1) , x(0)⟩

achieves its minimum, which happens iff x(0) ∈ σk−2. Therefore, ⟨y(0) , x(1)⟩+ ⟨y(1) , x(0)⟩ is
minimized when x(0) + δx(1) ∈ σk−1 and x(0) ∈ σk−2 simultaneously.

In general, we want to minimize
∑

i+j=r⟨y(i) , x(j)⟩ given that we have minimized
∑

i+j=s⟨y(i) , x(j)⟩
for every s < r, and even more, we know that the minimum in

∑
i+j=s⟨y(i) , x(j)⟩ is achieved

exactly when each term has been independently minimized. Let us prove that, under this
conditions,

∑
i+j=r⟨y(i) , x(j)⟩ is also minimized when each tearm is independently mini-

mized, and the minimum in the term ⟨y(i) , x(j)⟩ is achieved exactly when

x(0) + δx(1) + · · ·+ δ(j) ∈ Fk−1−i for every small enough δ > 0

For this, notice that ⟨y(i) , x(j)⟩ is minimized iff

⟨y(0) + δy(0) + · · ·+ δiy(i) , x(0) + δx(1)⟩+ · · ·+ δjx(j)

is minimized, because if one expand this, then each term is constant except the term
δi+j⟨y(i) , x(j)⟩. As y(0)+ δy(0)+ · · ·+ δiy(i) ∈ σk−1−i, we have that the minimum is achieved
when x(0) + δx(1) + · · ·+ δjx(j) ∈ Fk−1−i as we wanted.

In conclusion, ⟨y , x⟩ is minimized iff we have x(0) + δx(1) + · · · + δjx(j) ∈ Fk−1−i for
every i, j with i+ j ≤ k − 1 and δ > 0 small enough, which happens iff

x(0) + εx(1) + · · ·+ εk−1x(k−1) ∈ TC F .

Hence, TC F is the face defined by y as we wanted.

Conversely, take an element y = y(0) + εy(1) + · · ·+ εk−1y(k−1) ∈MD. Then, it needs to
defined a flag of cones in the normal fan of P as in equation (1.23). Then, the argument
above shows that y defines the face TC F . Hence, every face of TCk−1 P is of the form
TC F for some flag of faces F . This finishes the proof.

This gives us an understanding of the combinatorial type of a real polyhedron: Its
lattice of faces is the chain poset of length k (see [Joh18] for the definition) of the lattice
of face of the underlying rank 1 polyhedron.
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1.12 R-Rational Polyhedra

Recall that an R-Rational polyhedron P is a polyhedron for which there are y1, . . . , yr ∈MR

and a1, . . . , ar ∈ D such that

P = {y1 ≥ a1, . . . , yr ≥ ar}.

The objective of this section is to give a new description for the normal fan of an R-
rational polyhedron, and use it to understand the combinatorial behavior of the iterated
fibration determined by the polyhedron.

First, we will start by introducing the concept of a layered polyhedral complex, these are
sequences of real polyhedral complexes in which each term subdivide the previous one. The
first example of such a layered polyhedral complex we will present is the layered normal fan
of an R-rational polyhedron, which we introduce in Proposition 1.12.2. Later, in Theorem
1.12.4 we show how it is possible to recover the usuan normal fan of the polyhedron from
its layered normal fan by a tangent cone construction.

Definition 1.12.1. A layered polyhedral complex is a sequence of real polyhedral complex
of the form

Σ : Σ0 ⪯ Σ1 ⪯ · · · ⪯ Σk−1

where all Σi are polyhedral complexes in NR of the same support and Σi+1 is a subdivision
of Σi for each 0 ≤ i ≤ k − 2. A layered face of Σ is a flag of faces

F : Fk−1 ⊆ Fk−2 ⊆ · · · ⊆ F0

with Fi ∈ Σi for each i. The support of Σ, denote by |Σ|, is defined as the support of |Σi|
for any i. A layered polyhedral complex in which each term is a flag is called a layered fan.

Proposition 1.12.2 (Layered Normal Fan). Let P be an R-rational polyhedron with a
fixed non-redundant representation

P = {x ∈ ND | y1 ≥ a1, . . . , yr ≥ ar}.

We can construct a sequence of fans in MR, which we call the layered normal fan of P and
denote by

∆(P ) := ∆0 ⪯ ∆1 ⪯ · · · ⪯ ∆k−1, (1.24)
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in the following equivalent ways:

1. • ∆0 is the normal fan of the real polyhedron P [0].

• ∆1 is constructed by the following process. Given a cell σ ∈ ∆0, there is a face
F of P [0] such that σ is the normal cone C(F ). Given a point x0 ∈ int(F ), the
fiber P [1]

x0 is a real polyhedron such that |NF(P [1]
x0 )| = C(F ). Then, NF(P [1]

x0 ) is
independent of the x0 chosen and ∆1 is obtained by replacing C(F ) by NF(P

[0]
x0 )

for every face C(F ) ∈ ∆0.

• Similarly, ∆2 is constructed as follows. Given a cell σ ∈ ∆1, there is a point
x0 ∈ P [0] such that σ is the normal cone C(F ) of a face F of P [1]

x0 . Given a point
x1 ∈ int(F ), the fiber P [1]

x0+εx1 is a real polyhedron such that |NF(P [1]
x0+εx1)| =

C(F ). Then, NF(P [1]
x0+εx1) is independent of the x1 chosen and ∆1 is obtained

by replacing C(F ) by NF(P
[1]
x0+εx1) for every face C(F ) ∈ ∆1.

Continuing in this way we construct ∆i for every integer 0 ≤ i ≤ k − 1.

2. For δ ∈ R>0, the normal fan of the polyhedron

Pi(δ) :=
{
x ∈ NR

∣∣∣ ⟨y , x⟩ ≥ a
(0)
j + δa

(1)
j + · · ·+ δia

(i)
j , ∀ 1 ≤ j ≤ r

}
is independent of δ if it is small enough. Then, we let ∆i to be this fan.

3. ∆i is the fan in NR whose faces are the sets of the form coneR(Si(x
′)) as x′ moves

along P [i], where

Si(x
′) =

{
yj ∈MR

∣∣∣ 1 ≤ j ≤ r and ⟨yj , x′⟩ = a
[i]
j

}
.

In particular, from (1) we see that ∆i is independent of the representation of P and that
∆i+1 is a subdivision of ∆i.

Moreover, given a sequence of normal fans in NR of the form

∆ : ∆0 ⪯ · · · ⪯ ∆k−1,

all of them with the same support, there is an R-rational polyhedron P ⊆ ND such that
∆ = ∆(P ).
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Remark 1.12.3. Notice that, by the first definition that we present for the layered normal
fan, we have an explicit algorithm to understand the combinatorial structure of the fibers
P

[i]
x from the layered normal fan of P .

Proof of Proposition 1.12.2. Let us denote by ∆
(1)
i , ∆(2)

i and ∆
(3)
i the fans constructed in

(1), (2) and (3) respectively. We need to prove that all of them are equal. Let us start by
showing that ∆

(2)
i equals ∆

(3)
i . For this, given δ ∈ R>0 we consider the map

ψδ : D −→ R

x 7−→ x(0) + δx(1) + · · ·+ δk−1x(k−1).

As this is an R-linear map, by extension of scalars and composition, this map naturally
extends to a map NDi

→ NR which we still denote by ψδ. We can now write

Pi(δ) = {x ∈ NR | ⟨yj , x⟩ ≥ ψδ
(
a
[i]
j

)
, ∀ 1 ≤ j ≤ r},

and we have

x ∈ P [i] ⇐⇒ ⟨yj , x[i]⟩ ≥ a[i], ∀ 1 ≤ j ≤ r

⇐⇒ ψδ
(
⟨y , x[i]⟩

)
≥ ψδ

(
a[i]
)
, ∀ 1 ≤ j ≤ r, ∀ δ > 0 small enough (By Remark 1.1.1)

⇐⇒ ⟨y , ψδ
(
x[i]
)
⟩ ≥ ψδ

(
a[i]
)
, ∀ 1 ≤ j ≤ r, ∀ δ > 0 small enough (By R-linearity)

⇐⇒ ψδ(x) ∈ Pi(δ), ∀ δ > 0 small enough.

Thus, for all δ ∈ R>0 small enough we have ψδ
(
P [i]
)
⊆ Pi(δ). Now, given a point x ∈ P [i],

as ψδ(x) ∈ Pi(δ) we can consider the cell of ∆(2)
i of the form C(F ), where F is the face of

Pi(δ) such that ψδ(x) ∈ int(F ). By Proposition 1.8.2, if we consider

Si,δ(x) =
{
y ∈ A

∣∣ ⟨y , x⟩ = ψδ
(
h(y)[i]

)}
then C(F ) = convR

(
Si,δ(ψδ(x))

)
. Moreover, by Remark 1.1.1, for δ ∈ R>0 small enough

we have

Si,δ(ψδ(x)) =
{
y ∈ A

∣∣ ⟨y , x⟩ = ψδ
(
h(y)[i]

)}
=
{
y ∈ A

∣∣ ⟨y , x⟩ = h(y)[i]
}
= Si(x).

This shows that each cell of ∆(3)
i belongs to ∆

(2)
i , as both fans have the same support we

conclude that they are equal. In particular, ∆(2)
i does not depend on δ when it is small



96 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

enough.

Now, let us see that ∆
(3)
i is also equal to ∆

(1)
i and ∆

(2)
i .

1. If i = 0 then ∆
(1)
0 equals ∆

(2)
0 by definition.

2. If i = 1 then, to construct ∆
(3)
1 we need to take for each cell C(F ) ∈ ∆

(3)
0 a point

x0 ∈ int(F ) and consider

P [1]
x0

=
{
x ∈ NR | x0 + εx ∈ P [1]

}
=
{
x ∈ NR | ⟨yj , x0⟩+ ε⟨yj , x⟩ ≥ a(1) + εa(1) ∀ 1 ≤ j ≤ r

}
=
{
x ∈ NR | ⟨yj , x⟩ ≥ a

(1)
j ∀ 1 ≤ j ≤ r such that ⟨yj , x0⟩ = a

(0)
j

}
=
{
x ∈ NR | ⟨yj , x⟩ ≥ a

(1)
j ∀j such that yj ∈ S0(x0)

}
.

Then, by Proposition 1.7.5 we have |NF(P [1]
x0 )| = coneR(S0(x0)) = C(F ). Moreover,

for x1 ∈ P [1]
x0 , if x1 ∈ int(G) for a face G then the normal cone C(G) with respect to

P
[1]
x0 is a cell of NF(P [1]

x0 ). By Proposition 1.8.2 using the representation for P [1]
x0 we

have found above we have

C(G) = coneR
{
yj ∈MR | ⟨yj , x1⟩ = a(1) with yj ∈ S0(x0)

}
= coneR(S1(x0 + εx1)).

Hence, each face of ∆(3)
1 is a face of ∆(2)

1 and as they have the same support they
must be equal.

3. The general case is similar. Suppose the result is true for i and let us check it is true
for i + 1. By the induction hypothesis, a cell of ∆(3)

i is of the form coneR(Si(x0 +

εx1 + · · ·+ εixi)) for some x0, . . . , xi ∈ NR such that x0 + · · ·+ εixi ∈ P [i]. Then,

P
[i+1]

x0+···+εixi =
{
x ∈ NR | ⟨yj , x⟩ ≥ ai+1

j ∀ j such that yj ∈ Si(x0 + · · ·+ εixi)
}
.

Hence, |NF(P [i]

x0+···+εixi)| = coneR(Si(x0+ · · ·+εixi)) and for a point xi+1 in the fiber,
if xi+1 ∈ int(G) for a face G of the normal cone C(G) with respect to P

[i]

x0+···+εixi ,
then by Proposition 1.8.2 we have

C(G) = coneR
{
yj ∈MR | ⟨yj , xi+1⟩ = a(i+1) with yj ∈ Si(x0 + · · ·+ εixi)

}
= coneR(S1(x0 + · · ·+ εixi + εi+1xi+1)).
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Which is a face of ∆(3)
i+1. Hence, every face of ∆(1)

i+1 is a face of ∆(3)
i+1 and as they have

the same support they are equal.

Finally, given a sequence of normal fans in NR of the form

∆ : ∆0 ⪯ · · · ⪯ ∆k−1,

for each 0 ≤ i ≤ k − 1 we can consider a polyhedron Pi in NR such that NF(Pi) = ∆i. If

Pi = {x ∈ NR | yj ≥ a
(i)
j , ∀ 1 ≤ j ≤ r},

for some yj ∈MR, a(i)j ∈MR. Without loss of generality, we can suppose that {y1, . . . , yr}
is independent of i. Then, we can consider

P =
{
x ∈ ND

∣∣∣ yj ≥ a
(0)
j + εa

(1)
j + · · ·+ ε(k−1)a

(k−1)
j , ∀ 1 ≤ j ≤ r

}
.

Then, we have that ∆i = ∆i(P ) for each i. Indeed, it is enough to prove that if

δ : δ0 ⊆ δ1 ⊆ · · · ⊆ δk−1

is a sequence of faces with δi ∈ ∆i, and δi = convR(SPi
(xi)) for some xi ∈ Pi. Then, for

x := x0 + εx1 + · · ·+ εk−1xk−1 ∈ P we have

δi = convR
(
Si,P (x

[i])
)

(1.25)

for each 0 ≤ i ≤ k − 1. Because, if we prove this, then each face of ∆i is a face of ∆i(P )

and as they have the same support we are done.

We will prove the equality in (1.25) by induction on i. If i = 0 this is trivial. For i > 0,
as

SPi+1
(ψδ(x

[i+1])) =
{
yj ∈ SPi

(ψδ(x
[i]))

∣∣∣⟨yj , ψδ(x[i+1])⟩ = a
(i+1)
j

}
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for δ ∈ R>0 small enough, we have

Si+1,P (x) =
{
yj ∈MR

∣∣∣ 1 ≤ j ≤ r and ⟨yj , x⟩ = a
[i+1]
j

}
=
{
yj ∈MR

∣∣∣ 1 ≤ j ≤ r, yj ∈ Si,P and ⟨yj , x⟩(i+1) = a
(i+1)
j

}
=
{
yj ∈MR

∣∣∣ 1 ≤ j ≤ r, yj ∈ SPi
(ψδ(x

[i])) and ⟨yj , x⟩(i+1) = a
(i+1)
j

}
=
{
yj ∈MR

∣∣∣ 1 ≤ j ≤ r, yj ∈ SPi
(ψδ(x

[i])) and ⟨yj , ψδ(x[i+1])⟩ = a
(i+1)
j

}
= SPi+1

(ψδ(x
[i+1]))

Theorem 1.12.4 (Local Duality). Given an R-rational polyhedron P , we can recover the
normal fan of P from the layered normal fan as

NF(P ) = TC∆(P ).

In the sense that, NF(P ) is the fan consisting of all the polyhedral cones of the form TC δ
where

δ : σk−1 ⊆ σk−2 · · · ⊆ σ0

is a layered face of ∆.

Proof. Fix a point x ∈ P and a non-reduced representation P = {y1 ≥ a1, . . . , yr ≥ ar}.
Using x, we can construct a face of NF(P ) by considering the normal cone C(F ) of the

face F of P such that x ∈ int(F ).
On the other hand, using the same x, by the definition in part (3) of Proposition 1.12.2

we can construct a layered face δ(x) of ∆(P ) by

δ(x) : coneR
(
Sk−1(x)

)
⊆ · · · ⊆ coneR

(
S0(x)

)
.

To prove the theorem, it will be enough to show that

C(F ) = TC δ(x).

In order to do this, notice that by Proposition 1.8.2 we can write C(F ) as

C(F ) = coneD
(
εk−α1y1, . . . , ε

k−αryr
)
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where αi = ord
(
⟨yi , x⟩ − ai

)
, i.e, αi is the biggest integer in {0, . . . , k} such that

εk−αi⟨yi , x⟩ = εk−αiai ⇐⇒ ⟨yj , x⟩[αi−1] = a
[αi−1]
j ⇐⇒ yi ∈ Sαi−1(x).

Hence, we can write this normal cone as

C(F ) = coneD

(
k−1⋃
i=0

{
εk−1−iyj

∣∣ yj ∈ Si(x)})

= coneD

(
k−1⋃
i=0

{
εiyj

∣∣ yj ∈ Sk−1−i(x)})

which is exactly equal to TC δ(x) by Theorem 1.11.2 part (2). This finishes the proof.

Remark 1.12.5. In particular, we see that the normal type of an R-rational polyhedron,
that is, the information encoded in its normal fan, is equivalent to the data of a sequence
of length k normal types of real polyhedra each of them refining the previous one.

1.13 Regular Subdivisions

In this section we will extend the notion of regular subdivision of a polytope to the polyhe-
dral geometry over D. Moreover, in a similar way as we did in the previous section, we will
study how this concept relates to layered regular subdivisions, which are defined in analogy
to the layered normal fans of the previous section.

Using the extended perfect pairing of Definition 1.1.12 we can introduce the following
concept.

Definition 1.13.1 (Regular subdivisions over D). Consider a finite subset A ⊆ MD, a
function h : A → D, which we refer to as a height function on A, and the polytope
P = convD(A).

1. The lifted convex hull of A is the set

convhD(A) := convD{(a, h(a)) ∈MD × D | a ∈ A} ⊆MD × D.
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2. The regular subdivision of P with respect to h, denoted by ∆h(P ), is the family

∆h(P ) :=
{
π
(
face(x,1)(conv

h
D(P ))

) ∣∣ x ∈ ND
}

=
{
π(F )

∣∣ F is a lower face of convhD(A)
}
,

where π : MD × D → MD denotes the projection to the second coordinate. That is,
∆h(P ) is the projection of all the lower faces of convhD(A) to MD.

Proposition 1.13.2. The regular subdivision ∆h(P ) is a polyhedral complex and the re-
striction of MD × D → MD to the set of lower faces of ∆h(P ) is injective and has P as
image.

Proof. We start by proving that the set of lower faces of convhD(A) is a polyhedral complex.
For this, consider two lower faces F and G of convhD(A). They are of the form

F = face(x,1)(conv
h
D(A)) and G = face(x′,1)(conv

h
D(A))

for some x, x′ ∈ ND. If F ∩ G ̸= ∅ then every element (y, y0) ∈ F ∩ G minimize simulta-
neously ⟨(y, y0) , (x, 1)⟩ and ⟨(y, y0) , (x′, 1)⟩. Hence, the minimum of ⟨· , (x, 1) + (x′, 1)⟩ is
achieved if and only if both ⟨· , (x, 1)⟩ and ⟨· , (x′, 1)⟩ achieve their minimum simultaneously.
This shows that

F ∩G = face(x,1)+(x′,1)(conv
h
D(A)) = face(x+x′

2
,1)(conv

h
D(A))

which is a lower face.

Similarly, if F is a lower face of convhD(A) and G is a face of F , then

F = face(x,1)(conv
h
D(A)) and G = face(x′,x0)(conv

h
D(A))

for some x′, x ∈ MD and x0 ∈ D. If x0 is invertible then G = face(x′/x0,1)(conv
h
D(A)), so it

is a lower face. If x0 is not invertible then 1 + x0 is invertible and then

G = G ∩ F = face(x,1)+(x′,x0)(conv
h
D(A)) = face

( x+x′
1+x0

,1)
(convhD(A)).

Hence, G is a lower face as well in this case. This finishes the proof that the set of lower
faces defines a polyhedral complex.
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Now, notice that the restriction of

π :MD × D −→MD

(x, a) 7−→ x

to the set of lower faces gives a bijection onto convhD(A). Indeed, if we have a lower face
F = face(x,1)(conv

h
D(A)) containing an element (y, y0) ∈ F , then

⟨(y, y0) , (x, 1)⟩ = ⟨y , x⟩+ y0

should be minimized among all (y, y0) ∈ convhD(A), in particular we should have

y0 = min
{
y′ ∈ D

∣∣ (y, y′) ∈ convhD(A)
}
,

hence y0 is uniquely determined in terms of y and the map is injective.
This shows that ∆h(convD(A)) is a polyhedral complex, as it is the injective image

of another polyhedral complex and by Proposition 1.2.4 the image of a polyhedron is a
polyhedron.

In this way, we have introduced the concept of regular subdivisions for a polytope over
D. In the next proposition, we introduce the concept of a layered regular subdivision in
several equivalent ways.

Proposition 1.13.3 (Layered Regular Subdivisions). Let A ⊆ MR be a finite subset of
real vectors and consider a height function

h : A −→ D

a 7−→ h(y) = h(0)(y) + · · ·+ εk−1h(k−1)(y).

We can construct a sequence of subdivisions of convR(A)

∆h(convR(A)) : ∆0 ⪯ ∆1 ⪯ · · · ⪯ ∆k−1 (1.26)

in the following equivalent ways:

1. ∆0 is the regular subdivision of convR(A) induced by h(0) and, for 0 < i ≤ k − 1,
∆i is the subdivision of ∆i−1 obtained by subdividing each cell δ ∈ ∆i by the regular
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subdivision induced by the height function

h(i) |δ: δ ∩ A −→ R

y 7−→ h(i)(y)

2. ∆i is the regular subdivision defined by the height function

h(0) + δh(1) + · · ·+ δih(i) : A −→ R

for δ ∈ R>0 small enough.

3. Given an element x ∈ ND, for each 0 ≤ i ≤ k − 1 consider the set

Shi (x) := arg.mina∈A{⟨y , x[i]⟩+ h[i](y)} ⊆ A.

That is, Shi (x) is the set of all y ∈ A for which the expression

⟨y , x[i]⟩+ h[i](y)

is minimal among all y ∈ A. The subdivision ∆i is the one whose cells are the real
polyhedra of the form convR(S

h
i (x)) for some x ∈ ND.

Notice that, by item (3) above, ∆i+1 is a refinement of ∆i and, by item (2) above, ∆i is
a regular subdivision for each i. Conversely, any sequence of regular subdivisions in which
each term is a refinement of the previous one is a layered regular subdivision for some
height function.

Proof. Let us call ∆1
i ,∆

2
i and ∆3

i the subdivisions defined by (1), (2) and (3) respectively.
First, let us see that ∆2

i and ∆3
i coincide. For this, given δ ∈ R>0 consider the map

ψδ : D −→ R

x 7−→ x(0) + δx(1) + · · ·+ δk−1x(k−1)

This map is R-linear and extend to a map ψδ : ND → NR. Moreover, for a given x ∈ ND it
satisfies

Shi (x) = Sψε◦h
1 (ψδ(x)) (1.27)
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for δ ∈ R>0 small enough. As we need only finitely many x to cover all the sets of the
form Shi (x), we can take δ > 0 small enough so (1.27) holds for every set in ∆2

i . As ∆2
i is

exactly the regular subdivision induced by the height function ψδ ◦ h we get ∆1
i = ∆2

i .

We will now see that ∆1
i = ∆3

i . By definition ∆1
0 = ∆2

0 so we are done. This is true by
definition if i = 0. Now, if i = 1 we have that

⟨y , x[1]⟩+ h(y)[1]

is minimal with the lexicographic order among all y ∈ A iff we have that

⟨y , x⟩(0) + h(0)(y)

is minimal and, among the ones which are minimal, that is, among S(0)
h (x(0)), we have that

⟨y , x⟩(1) + h(1)(y)

is also minimal. Hence, we get that

Sh
[1]

1 (x[1]) = Sh
(1)

0 |
S
h(0)(x(0))
0

(x(1))

which shows ∆1
2 = ∆3

2. In a similar way, we have

Sh
[i+1]

i+1 (x[i+1]) = Sh
(i+1)

1 |
S
h[i](x[i])
i

(x(i+1))

so ∆1
i = ∆3

i follows by induction.

Finally, take a sequence ∆h(convR(A)) of regular subdivisions of convRA in which each
term is a refinement of the previous one. By Theorem 2.4 in [GKZ08], if we consider
Λ = {σ}σ to be the normal fan of the secondary polytope of A, then, the sequence of
subdivision ∆h(convR(A)) in (1.26) correspond to a flag of cones

σ = σ0 ⪰ σ2 ⪰ · · · ≥ σk − 1

where each σi+1 is a face of σi, and a height function h(i) defines ∆i iff it is in the relative
interior of σi. Hence, by taking h(i) in the relative interior of σi for each i, we get that

h := h(0) + εh(1) + · · ·+ εk−1h(k−1)



104 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

defines the layered regular subdivision ∆h(convR(A)).

Now, given a set A ⊆ MR of real vectors and a height function h : A → D we can
construct two different objects: A regular subdivision for convD(A) and a layered regular
subdivision for convR(A). The exact connection between these two objects is given in the
following theorem.

Theorem 1.13.4. Consider a finite set of real points A ⊆ MR and a height function
h : A→ D. Then, we have an equality of the form

∆h(convD(A)) = TC∆h(convR(A)).

In the sense that, the elements of ∆h(convD(A)) are exactly the polyhedra of the form
TC(F ) for

F : Fk−1 ⊆ Fk−2 ⊆ · · · ⊆ F0

where Fi is a face of ∆i for each i.

Lemma 1.13.5. Given an element x ∈ ND and a ∈ A. The integer

β = ord
(
⟨a , x⟩+ h(a)−min

b∈A

(
⟨b , x⟩+ h(b)

))
is the maximal integer in {0, 1 . . . , k} for which a ∈ Shβ−1(x).

Proof. If β = ord
(
⟨a , x⟩+ h(a)−minb∈A

(
⟨b , x⟩+ h(b)

))
then β is the maximal element

in {0, 1, . . . , k} such that

εk−β (⟨a , x⟩+ h(a)) = εk−β
(
min
b∈A

(
⟨b , x⟩+ h(b)

))
⇐⇒ (⟨a , x⟩+ h(a))[β−1] =

(
min
b∈A

(
⟨b , x⟩+ h(b)

))[β−1]
= min

b∈A

((
⟨b , x⟩+ h(b)

)[β−1])
⇐⇒ ⟨a , x⟩[β−1] + h(a)[β−1] is minimal among all a ∈ A

⇐⇒ a ∈ Shβ−1(x)

Proof of Theorem 1.13.4. Given x ∈ ND, we can define a face of ∆h(convD(A)) by

π
(
face(x,1)(conv

h
D(A))

)
,
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on the other hand, the same x defines a layered face in ∆h(coneR(A) by

F (x) : convR(S
h
k−1(x)) ⊆ · · · ⊆ convR(S

h
0 (x)).

In this way, it is enough to prove that

π
(
face(x,1)(conv

h
D(A))

)
= TC F (x) (1.28)

For this, from Proposition 1.6.10 we have

face(x,1)(conv
h
D(A)) = wconvD

(
[εk−βa(a, h(a)); k − βa]

∣∣∣ a ∈ A)
=⇒ π

(
face(x,1)(conv

h
D(A))

)
= wconvD

(
[εk−βaa; k − βa]

∣∣∣ a ∈ A)
where

βa = ord(⟨(a, h(a)) , (x, 1)⟩ − c) = ord(⟨a , x⟩+ h(a)− c)

with c the minimum of ⟨· , (x, 1)⟩ on convhD(A). As this minimum must be achieved in one
of the generators of convhD(A), we have c = minb∈A

(
⟨b , x⟩+h(b)

)
. Then, by Lemma 1.13.5,

βa is equal to the maximum integer such that a ∈ Shβa−1(x).

On the other hand, by Theorem 1.11.2 we can write explicitly TC F (x) in term of the
generators of F (x) and we get

TC F (x) = wconv
(
[εia ; i]

∣∣∣ i ∈ {0, . . . , k}, a ∈ Shk−1−i(x))
=


k−1∑
i=0

∑
a∈Sh

i (x)

λa,iaε
k−1−i

∣∣∣∣∣∣ λa,i ≥ 0 ∀a∀i, and
k−1∑
i=0

∑
a∈Sh

i (x)

λa,iε
k−1−i = 1


=

{∑
a∈A

a(λa,βaε
k−βa + λa,βa−1ε

k−(βa−1) + . . . λa,0ε
k−1)∣∣∣∣∣ λa,i ≥ 0 ∀a∀i, and

∑
a∈A

λa,βaε
k−βa + λa,βa−1ε

k−(βa−1) + . . . λa,0ε
k−1 = 1

}

=

{∑
a∈A

µaaε
k−βa

∣∣∣∣∣ µa ≥ 0 ∀a, and
∑
a∈A

µaε
k−βa = 1

}
= wconvD

(
[εk−βaa; k − βa]

∣∣∣ a ∈ A)
Where, for the third equality we factorized by a and for the fourth equality we did the
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change of variable
µa = λa,βa + λa,βa−1ε+ . . . λa,0ε

k−1.

In this way, we have shown the equality in (1.28) as we wrote both sets in the same way.

1.14 Higher Rank Tropical Hypersurfaces.

This section gives a first set of applications of the theory of polyhedral geometry of higher
rank to tropical geometry of higher rank. After introducing the basics objects of the
theory, in Proposition 1.14.5 we show that higher rank tropical hypersurfaces can naturally
be regarded as iterated fibrations. This fibration is studied in the Hypersurface Duality
(Theorem 1.14.12). Where we show that the base and each fiber of a higher rank tropical
hypersurface consist of tropical hypersurfaces of rank one, moreover, the normal type of
these tropical hypersurfaces is encoded in a layered regular subdivision of the Newton
polytope. Finally, in Theorem 1.14.17 we put a polyhedral structure over D on higher
rank tropical hypersurfaces which is compatible with the Hypersurface Duality previously
presented.

Definition 1.14.1. The tropical semifield of rank k or min-plus algebra of rank k, is the
semifield

Tk =
(
D ∪ {∞}, min, +

)
,

were we consider by addition the map (a, b) 7→ min{a, b} and by multiplication the map
(a, b) 7→ a+ b.

An expression in Tk will be written between quotation marks and with the usual symbols
+ and ·, for example,

“
n∑
i=1

xiyi ” = min{xi + yi | i = 1, . . . , n}.

Remark 1.14.2.

1. In general, for any ordered abelian group (Γ,+) one can consider its associated trop-
ical semifield

TΓ =
(
Γ ∪ {∞}, min, +

)
.
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In this way, Tk corresponds to the case in which the ordered group is (D,+) or,
equivalently, (Rk,+) with its lexicographic order.

2. In Tk the element ∞ becomes the additive identity as we have min{∞, a} = a for
every a ∈ Tk. Similarly, 0 becomes the multiplicative identity in Tk. For these
reasons we have equalities of the form

“x+ y ” = “ 0x+ 0y +∞ ”.

In particular, the coefficient of x in “x+ y ” is 0 and not 1.

Definition 1.14.3. Given a lattice M , the ring of Laurent tropical polynomials on M is
the set Tk[M ] of all formal sums of the form

f = “
∑
m∈M

amT
m ”

whose support
Supp(f) := {m ∈M | am ̸=∞}

is a finite set. We endow Tk[M ] with the semiring structure induced by Tk.

Let N be the dual lattice of M . A non-zero tropical polynomial f = “
∑

m∈M amT
m ”

defines a map from ND, the tropical torus of rank k, to D by

f : ND −→ D

x 7−→ f(x) = min {⟨m,x⟩+ am | m ∈M} .

Definition 1.14.4. Consider a tropical polynomial f = “
∑

m∈M amT
m ” ∈ Tk[M ].

1. A point x ∈ ND is said to be a zero of f if the minimum in

f(x) = min {⟨m,x⟩+ am | m ∈M}

is achieved at least twice. The set of all zeros of f is denoted by V (f) and is called
the vanishing set of f .
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2. A tropical hypersurface of rank k is a set of the form V (f) ⊆ NRk for a nonzero
tropical polynomial f ∈ Tk[M ].

Notice that the projections D = Dk
π→ Dk

π→ . . .
π→ D1 induce, by applying them in

each coefficient, the projections

Tk[M ]
π→ Tk−1[M ]

π→ . . .
π→ T1[M ]

f =: f [k−1] 7→ f [k−2] 7→ . . . 7→ f [0].

Using these projection we can get a natural fibered structure on the tropical hypersur-
face V (f).

Proposition 1.14.5. For each tropical polynomial f = “
∑

m∈M amT
m ” ∈ T[M ], the

image of V
(
f [i]
)

under NDi+1
→ NDi

goes inside V
(
f [i−1]). In this way, we get an iterated

fibration
V (f) = V

(
f [k−1])→ V

(
f [k−2])→ · · · → V

(
f [1]
)
.

Given a point x ∈ V
(
f [i]
)

we denote by Vx
(
f [i+1]

)
the fiber of V (f) at x in this fibration.

Proof. Notice that for a given x ∈ NDi+1
, if x ∈ V

(
f [i]
)

then f [i](x) achieves its minimum
in two elements ⟨m,x⟩+ am and ⟨n , x⟩+ an. That is,

f [i](x) = ⟨m,x⟩+ a[i]m = ⟨n , x⟩+ a[i]n

from which
f [i−1](x[i−1]) = ⟨m,x[i−1]⟩+ a[i−1]m = ⟨n , x[i−1]⟩+ a[i−1]n .

Hence, f [i−1](x[i−1]) also achieves its minimum at least two times, so x[i−1] ∈ V
(
f [i−1]).

In order to understand this fibration we introduce the following elements.

Definition 1.14.6. Consider a tropical polynomial f = “
∑

m∈M amT
m ” ∈ Tk[M ].

1. The R-Newton polytope of f is the real polytope defined by

NewR(f) := convR(Supp(f)) ⊆MR

Similarly, we introduce the D-Newton polytope of f by

NewD(f) := convD(Supp(f)) ⊆MD
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2. Given an integer 0 ≤ i ≤ k − 1 and an element x ∈ NDi
, the i-initial part of f with

respect to x is the tropical polynomial

inix(f) = “
∑
m∈M

⟨m,x⟩+a[i]m=f [i](x)

a(i+1)
m Tm ” ∈ T[M ].

Where, for i+ 1 = k we will use the convention

a(k)n :=

{
0 if am ̸=∞

∞ if am =∞.

3. The height function

h : Supp(f) −→ D

m 7−→ am

naturally induce a layered regular subdivision on NewR(f) which we denote by ∆(f)

and a regular subdivision on NewD(f) which we denote by ∆(f).

Remark 1.14.7.

1. By definition (3) on Proposition 1.13.3, the layered regular subdivision ∆(f) is defined
to be the one whose layered faces are of the form

F (x) := convR(Supp(in
k−1
x (f))) ⊆ · · · ⊆ convR(Supp(in

0
x(f))).

where x moves over all elements x ∈ ND. Hence, ∆(f) encodes all the possible values
for the vector

(in0
x(f), in

1
x(f), . . . , in

k−1
x (f))

as x moves around ND.

2. By Corollary 1.11.3 we have

NewD(f) = TCk−1NewR(f).
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Moreover, by Theorem 1.13.4 this equality can be lifted to an equality of subdivisions
of the form

∆(f) = TC∆(f).

The first important result of this section is the Higher Rank Hypersurface Duality
Theorem below, which states that the layered regular subdivision ∆(f) obtained by using
as height function the coefficients of f , allow us to obtain the normal type of both the base
and the fibers in the iterated fibration of Proposition 1.14.5.

In order to introduce this, let us recall the following concept.

Definition 1.14.8. Given polyhedral complexes Σ in MD and Σ′ in ND. A duality between
Σ and Σ′ is a map Λ : Σ→ Σ′ such that

1. The map Λ is a bijection.

2. Given faces F,G ∈ Σ, whenever F ∨G exists we have that Λ(F ) ∧ Λ(G) exists and

Λ(F ∨G) = Λ(F ) ∧ Λ(G).

3. Similarly, given faces F,G ∈ Σ, whenever F ∧ G exists we have that Λ(F ) ∨ Λ(G)

exists and
Λ(F ∧G) = Λ(F ) ∨ Λ(G).

4. For each F ∈ Σ, Λ(F ) is orthogonal to F in the sense that

⟨x , y⟩ = 0, ∀x ∈ F, y ∈ F ′

Because of properties (2) and (3) we say that Λ preserves incidences.

Remark 1.14.9.

1. Given F,G ∈ Σ we have F ⪯ G iff Λ(G) ⪯ Λ(F ). Indeed,

F ⪯ G ⇐⇒ F ∧G = G ⇐⇒ Λ(G) ∨ Λ(F ) = Λ(G) ⇐⇒ Λ(G) ⪯ Λ(F ).

2. In the case in which Σ and Σ′ are real polyhedral complex, i.e, in rank 1. We have
that

dim(F ) = codim(Λ(F )).
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Indeed, a maximal flag
F0 ⪯ · · · ⪯ Fdim(F ) := F

gives rise to a maximal flag

Λ(F ) = Λ(Fdim(F )) ⪯ · · · ⪯ Λ(F0).

Let us recall the following fact from the usual theory of tropical geometry. For a proof
of this result, we refer to [MS15] Theorem .

Theorem 1.14.10 (Hypersurface Duality). Given f ∈ T[M ], if we denote by ∆(f) the
regular subdivision of New(f) induced by the coefficients of f . Then, there is a polyhe-
dral complex GC(f), called its Gröbner complex, whose support is ND and whose cells are
parametrized by the faces F ∈ ∆(f). Explicitly they are given by

GC(F ) = {x ∈ NR | conv(Supp(inx(f))) ⊇ F}.

Moreover, the map

Λ : ∆(f) −→ GC(f)

F 7−→ GC(F )

is a duality in the sense of Definition 1.14.8. Furthermore, if we restrict Λ to the elements
of ∆(f) that are not points we obtain a subcomplex Σ(f) of GC(f) whose support is V (f).

In a explicit way, to obtain the shape of the tropical hypersurface we have to

1. Do a point reflection of ∆(f).

2. Consider one point xF for each facet F of the reflected ∆(f).

3. Join the different points according to the incidence of ∆(f).

4. Draw a cone pointed at xF perpendicular to each face of F laying in the boundary
of the Newton polytope.

Example 1.14.11. If f = “7x2y2+5x2y+5xy2+4xy+2x+2y+0” then, the subdivision
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∆(f) of New(f) looks like

∆(f) =

If we do a point reflection of it we get

180◦

.

Hence, the shape of the tropical hypersurface in this case is

.

Theorem 1.14.12 (Higher Rank Hypersurface Duality). Let f ∈ Tk[M ] be a non-zero
polynomial and consider

∆(f) = ∆0 ⪯ ∆1 ⪯ · · · ⪯ ∆k−1

the layered regular subdivision induce by f over New f . Then, we have that:

1. The base V
(
f [0]
)

is a rank one tropical hypersurface with the structure of a polyhedral
complex dual to the first subdivision ∆0.

2. For each x ∈ V
(
f [0]
)
, the fiber Vx

(
f [1]
)

is also a rank one tropical hypersurface.
Moreover, Vx

(
f [1]
)

remains constant as x varies over the interior of a cell GC(F ) ⊆
V
(
f [0]
)

for some F ∈ ∆1 and the normal type of Vx
(
f [1]
)

is dual to the subdivision
∆1 restricted to F .

3. More generally, for each x ∈ V
(
f [i]
)
, the fiber Vx

(
f [i+1]

)
is also a rank one tropical

hypersurface. It remains constant as x varies over the interior of a cell GC(F ) ⊆
Vx[i−1]

(
f [i]
)

for some F ∈ ∆i−1 and the normal type of Vx
(
f [i+1]

)
is dual to the

subdivision ∆i+1 restricted to F .
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Example 1.14.13. Consider k = 3, M = Z2 and the polynomial

f(x, y) = (0, 1, 2) + (0, 1, 1)x+ (0, 1, 1)y + (0, 1, 2)xy + (0, 0, 0)x2 + (0, 0, 0)y2

The Newton polytope of f is New f = convR((0, 0), (2, 0), (0, 2)) and its associated layered
subdivision is the following:

∆ =

︸ ︷︷ ︸
∆1

︸ ︷︷ ︸
∆2

︸ ︷︷ ︸
∆3

After a point reflection it becomes

Therefore, the base of the fibration V (f [1]) has the shape

And over each point of the base, there are 4 possible shapes for the fibers of V (f [2]),
represented in the following diagram:

Moreover, each of these fibers is the base for a fibration determined by V (f [3]). All the
fibers of this fibrations will have the shape of the corresponding tangent cone, with the



114 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

exception of one fiber, the one corresponding to the subdivision of the square, which we
sketch as follows:

Proof of Theorem 1.14.12. The subdivision ∆0 corresponds to the regular subdivision in-
duced by the coordinates of f [0]. Hence, part (1) of the theorem follows directly from the
hypersurface duality of rank one (Theorem 1.14.10).

In order to prove (2), let x(0) ∈ V (f [0]), then Vx(0)(f
[1]) is the set of all x(1) ∈ NR such

that
x(0) + εx(1) ∈ ND2 .

Therefore, if we consider the polynomial

in0
x(0)(f) = “

∑
m∈M

f [0](x)=⟨m,x(0)⟩+a[0]m

a(1)m Tm ”

we see that x(0) + εx(1) is a zero of f [1] if and only if x(0) is a zero of f [0] and x(1) is a zero
of in1

x(0)(f). Hence, we obtain

Vx(f
[1]) = V (in0

x(0)(f)).

As New(in0
x(0)f) = F , again by the original hypersurface duality, we get that V (in0

x(0)f)

is dual to the regular subdivision induced by the height function m 7→ a
(1)
m , which, by

Proposition 1.13.3, is exactly ∆1.
The general case follows similarly as one can show that

Vx[i](f
[i+1]) = V (inix[i]f).

The objective now is to put a polyhedral structure on V (f) which is dual to the layered
regular subdivision of its Newton polytope in a natural way. Generalizing to higher rank
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the polyhedral part of Theorem 1.14.10. For this, we will introduce the analog of the
Gröbner complex in higher rank.

Definition 1.14.14. Given a layered face F ∈ ∆(f) of the form

F : F0 ⊆ F1 ⊆ · · · ⊆ Fk−1

where Fi is a face of ∆i for each i. We consider its corresponding Gröbner cell as

GC(F ) :=
{
x ∈ ND

∣∣ convR(inix(f)) ⊇ Fi, ∀1 ≤ i ≤ k
}
.

We will prove that the family of all Gröner cells is a polyhedral complex. For this, the
idea is to consider the lifted Newton polytope

NewD(f)
h := convhD(Supp(f)) ⊆MD × D

used to define the regular subdivision as in Definition 1.13.1. We will show that the normal
fan of this polytope intersected with ND × {1} is again a polyhedral complex and its cells
are the Gröbner cells.

We start with the following lemmas.

Lemma 1.14.15. Given a layered face F ∈ ∆(f), we have that

x ∈ GC(F ) ⇐⇒ (x, 1) ∈ C
(
(TC F )h

)
.

Where (TC F )h represents the only lower face of NewD(f)
h which projects to TC F under

MD ×D→ D, and C
(
(TC F )h

)
⊆ ND ×D is the normal cone of this face. In other words,

we have the equality

GC(F )× {1} = C
(
(TC F )h

)
∩ND × {1}.

Proof. A point x ∈ ND belongs to GC(F ) if and only if the flag

F (x) : F0(x) ⊆ F2(x) ⊆ . . . Fk−1(x)

where Fi(x) = convR
(
Supp

(
inix(f)

))
satisfies Fi(x) ⊇ Fi for all i = 0, . . . , k − 1, and this

happens iff
TC F (x) ⊇ TC F .
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Moreover, if we consider the projection π :MD × D→MD then we have that

TC F = π
(
(TC F )h

)
and, by Theorem 1.13.4,

TC F (x) = π
(
face(x,1) NewD(f)

h
)
.

Hence, as by Proposition 1.13.2 the map π restricted to the set of lower faces of New(f)h

is injective, we conclude that TC F (x) ⊇ TC F happens iff

face(x,1)NewD(f)
h ⊇ (TC F )h.

Which by definition means (x, 1) ∈ C
(
(TC F )h

)
. In this way we have seen that

x ∈ GC(F ) ⇐⇒ (x, 1) ∈ C
(
(TC F )h

)
as we wanted.

Lemma 1.14.16. Let σ be a polyhedral cone in ND×D and consider P to be the projection
of σ ∩ND × {1} to ND. Then, the map

Fσ −→ FP

τ 7−→ π (τ ∩ND × {1})

is surjective where π : ND × D→ ND is the usual projection.

Proof. A face of P is of the form facey P for some y ∈ MD. Let us consider a =

minx∈P ⟨y , x⟩. If we show that (y,−a) ∈ σ∨ we are done, as then we can consider face(y,−a) σ
and this satisfies

face(y,−a) σ ∩ND × {1} = facey P × {1}.

Let us see now that (y,−a) ∈ σ∨. For this, notice that

σ ∩ND × {1} = P × {1}. (1.29)

Moreover, as ⟨y , x⟩ ≥ a for any x ∈ P we get

⟨(y,−a) , (x, 1)⟩ ≥ 0 for any x ∈ P × {1}.
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Now, if we take (x, b) ∈ σ with b ∈ D×>0 invertible, by the equality in (1.29), we have
x/b ∈ P . Hence,

⟨(y,−a) , (x, b)⟩ = b⟨(y,−a) , (x/b, 1)⟩ ≥ 0.

On the other hand, take an element of the form (x, b) ∈ σ with b not invertible and consider
an element x′ in P achieving the minimum of y, that is ⟨(y,−a) , (x′, 1)⟩ = 0. Then, we
can consider (x′, 1) + (x, b) = (x′ + x, 1 + b). Now 1 + b is invertible, so from the previous
step

0 ≤ ⟨(y,−a) , ((x′ + x, 1 + b))⟩ = ⟨(y,−a) , (x′, 1)⟩+ ⟨(y,−a) , (x, b)⟩ = ⟨(y,−a) , (x, b)⟩.

Hence, (y,−a) is positive in (x, b) for any (x, b) ∈ σ. Therefore, (y,−a) ∈ σ∨.

Theorem 1.14.17 (Polyhedral Structure). The family

GC(f) = {GC(F ) | F ∈ ∆(f)}

is a polyhedral complex with support ND called the Gröbner complex of f .

Moreover, if we consider only the layered faces of ∆(f) in which Fk−1 is not a point,
that is,

Σ(f) = {GC(F ) | F ∈ ∆(f) and Fk−1 is not a point},

we obtain a polyhedral complex with support V (f).

Remark 1.14.18. The Gröbner complex GC(f) is exactly the subdivision of ND under
which the map

x 7→
(
in0
x(f), . . . , in

k−1
x (f)

)
is constant over the interior of each cell.

Proof of Theorem 1.14.17. We will start by showing that GC(f) is a polyhedral complex.
First notice that, by Lemma 1.14.15, we have GC(F ) = π

(
C
(
(TC δ)h

)
∩ND × {1}

)
, which

in particular implies that GC(F ) is a polyhedron for each F ∈ ∆. Moreover, given F , F ′ ∈
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∆(f), we can consider F ∨ F ′ the layered face given by Fi ∨ F ′i . Then,

GC(F ) ∩GC(F ′) = π
(
C
(
TC (F )h

))
∩ π

(
C
(
TC(F ′)h

))
= π

(
C
(
TC (F )h

)
∩ C

(
TC(F ′)h

))
= π

(
C
(
TC (F )h ∨ TC(F ′)h

))
= π

(
C
(
(TC (F ) ∨ TC(F ′))h

))
= π

(
C
(
TC (F ∨ F ′)h

))
= GC(F ∨ F ′).

Therefore GC(F )∩GC(F ′) = GC(F ∨F ′) ∈ GC(f) and it is a face of both GC(F ) and
GC(F ′) because C

(
TC (F ∨ F ′)h

)
is a face of both C

(
TC (F )h

)
and C

(
TC (F ′)h

)
.

Finally, if H is a face of GC(F ) we will show that H = GC(F ′) for some F ′ ∈ ∆(f). For
this, notice that by Lemma 1.14.16 there is a face τ of C(TC(F )h) such that τ ∩ND×{1} =
H × {1}. Now, given x ∈ int(H) we have that (x, 1) ∈ int(τ). Then, face(x,1)New(f)h is a
lower face of New(f)h with

C
(
face(x,1)New(f)

h
)
= τ.

By Theorem 1.13.4, the projection of face(x,1) New(f)h to New(f) is of the form TC (F ′)
for some F ′ ∈ ∆(f). This F ′ satisfies GC(F ′) = H.

With this we have prove that GC(f) is a polyhedral complex with support

π
(∣∣NF (New(f)h)∣∣ ∩ND × {1}

)
= ND.

In order to see that Σ(f) is a polyhedral complex, it is enough to notice that if GC(F ),GC(F ) ∈
GC(f) then Fk−1 and F ′k−1 are not points, hence Fk−1 ∨ F ′k−1 is not a point, so

GC(F ) ∩GC(F ) = GC(F ∨ F ) ∈ GC(f).

Similarly, if GC(F ) ∈ GC(f) and GC(F ′) is a face it, then F ′k−1 ⊇ Fk−1. Hence, F ′k−1 is
also not a point, that is, GC(F ′) ∈ Σ(f). This shows that Σ(f) is a polyhedral complex.

Moreover, let us see that the support of Σ(f) is V (f). If x ∈ V (f) then we can consider

F (x) : conv(Supp(ink−1x (f)) ⊆ · · · ⊆ conv(Supp(in0
x(f))
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and, as the minimum in f(x) is attained at least twice, we have that conv(Supp(ink−1x (f))

is not a point. Hence,
x ∈ GC(F (x)) ⊆ |Σ(f)|,

and we conclude that V (f) ⊆ |Σ(f)|. On the other hand, if x ∈ |Σ(f)| then there is a face
F ∈ ∆(f) such that x ∈ GC(F ). Hence,

Supp
(
ink−1x (f)

)
⊇ Fk−1,

and as Fk−1 is not a point, the minimum in f(x) is attained at least twice, so x ∈ V (f).
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Chapter2
Geometry of Higher Rank Valuations

In this chapter, we study geometric aspects of higher rank valuations and the geometry of
analytified spaces in this setting. In particular, we provide a higher rank notion of skeleton.

Basic notations

Along the text we work with varieties over an algebraically closed field κ, that is, integral
schemes of finite type over κ. Points on varieties are not necessarily closed. Moreover, we
use the notations R+ = {a ∈ R | a ≥ 0} and Z+ = {a ∈ Z | a ≥ 0}.

In the following, we will denote by ≤cw the coordinate-wise partial order on ZI , that
is, given elements β, β′ ∈ ZI , we have β ≤cw β′ if and only if βi ≤cw β′i for each i ∈ I.
Sometimes, we only use ≤ if the partial order is understood from the context.

We write the symbol a≫ b to indicate that a is large enough compared to b.

For a ring R, we denote by R× the set of invertible elements of R.

2.1 Cone complexes and tangent cones

In this section, we introduce the polyhedral geometry notions used along the document.
This includes the notion of cone complexes and their tangent cones, as well as dual cone
complexes associated to simple normal crossing divisors. We endow cone complexes with
the sheaf of tropical functions.

121
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2.1.1 Cone complexes

All through this section, the letter N is used for a free Z-module of finite rank and M

denotes the dual of N , that is M = N∨ := Hom(N,Z). We denote by NR and MR the
corresponding real vector spaces which are dual to each other. Note that N and M form
full rank lattices in NR and MR, respectively. The duality pairing between M and N is
denoted by ⟨ , ⟩. Recall that a saturated sublattice of N is a subgroup N ′ with the property
that N ′R ∩N = N ′.

Definition 2.1.1 (Cones and cone complexes).

1. A rational polyhedral cone in NR is a set of the form

σ = {x ∈ NR | ⟨x, u1⟩ ≥ 0, . . . , ⟨x, uk⟩ ≥ 0}

for some u1, . . . , uk ∈M = N∨. We say that σ is strictly convex if it does not contain
any line in NR.

2. A rational polyhedral cone complex with (weak) integral structure is a pair (Σ, |Σ|)
where |Σ| is a topological space and Σ is a family of closed subsets of |Σ| such that:

(a) Each σ ∈ Σ is enriched with a lattice Nσ and an identification of σ with a full
dimensional rational strictly convex polyhedral cone in Nσ,R.

(b) These identifications are compatible in the sense that for each element σ ∈ Σ,
faces of σ seen as a cone in Nσ,R correspond to elements τ of Σ. Under this
identification, the lattice Nτ is identified with a saturated sublattice of Nσ.

(c) As a set we have a disjoint union |Σ| =
⊔
σ∈Σ

◦
σ where ◦

σ is the relative interior
of σ (which make sense by (a)).

(d) The intersection of two elements in Σ can be written as a union of elements in
Σ.

We call |Σ| the support of the cone complex, and the elements of Σ are called the cones
or faces of the cone complex. By an abuse of the notation, we will only use Σ to refer to
the pair (Σ, |Σ|). For each cone σ, the lattice Nσ is called its underlying integral structure
and we identify σ with its image in Nσ,R.

(3) A cone of dimension one in Σ is called a ray and a cone of maximal dimension is
called a facet. The set of all rays of Σ (resp. of a cone σ in Σ) is denoted by Σ1 (resp.
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σ1). More generally, for any integer k, we denote by Σk (resp. σk) the set of all faces
of Σ (resp. of σ) of dimension k.

Convention

In what follows, a rational strictly convex polyhedral cone will be simply called a cone
as these are the only kind of cones we will deal with in this paper. Similarly, a rational
polyhedral cone complex with a (weak) integral structure will be called simply a cone
complex.

Remark 2.1.2. Definition 2.1.1 resembles the notion of a fan used in toric geometry but
it differs from it in several ways. First, the lattices Nσ may not come simultaneously from
a global ambient lattice N . Also, condition (b) allows an intersection of two cones to be a
union of multiple faces instead of a single face as in the case of fans. In such a situation,
the cone complex will have parallel faces, that is, two different faces τ and σ in Σ with the
same set of rays τ1 = σ1.

Definition 2.1.3 (Subdivision). A rational subdivision of a cone complex Σ is a rational
cone complex Σ̃ such that |Σ| = |Σ̃| and for each cone σ̃ ∈ Σ̃, there is a cone σ ∈ Σ such
that σ̃ ⊆ σ and Nσ̃ is a saturated sublattice of Nσ.

It follows from the definition that σ̃ is a rational cone in Nσ,R. Again, rational subdi-
visions are the only ones appearing in this paper, so we drop sometimes the word rational
and simply talk about subdivisions.

2.1.2 Dual complexes

We recall the concept of a simple normal crossing divisor (SNC) on a variety and its
associated dual cone complex.

Definition 2.1.4 (SNC divisor and stratum). Let X be a smooth variety and D a divisor
on it.

1. The divisor D on X is called simple normal crossing, SNC in short, if

• D is reduced, and

• for each point x ∈ X, there is a Zariski neighborhood Ux of x and a regular
system of parameters z1, . . . , zr ∈ OX,x with r = codim {x} such that the zero
set of the product z1 . . . zj over Ux coincides with D ∩Ux for some non-negative
integer j = jx ≤ r.
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2. Given an SNC divisor D on X, we can write D as a sum
∑

i∈I Di where Di are the
irreducible components of D. A connected component of an intersection of the form

DI :=
⋂
i∈I

Di

for some I ⊆ I is called a stratum of D.

Remark 2.1.5. Notice that each SNC divisor is a Cartier divisor. Moreover, the SNC
condition implies that each DI appearing above is smooth, and in particular, has disjoint
irreducible components, coinciding with its connected components.

Construction 2.1.6 (Dual complex). Given a divisor D =
∑

i∈I Di on a variety X we
construct its dual cone complex Σ(D) as follows. To each stratum S of D which is an
irreducible component of DI for a subset I ⊆ I, one associates a cone σS which is a copy
of RI

+ ⊆ RI with its natural integral structure given by the lattice ZI ⊂ ZI . If a stratum
S is included in another stratum T , then the subset I ⊆ I which corresponds to S should
contain the subset J ⊆ I which corresponds to T . In particular, one can naturally identify
the cone σT as a face of σS via the identification RI

+ ⊆ RJ
+, as the set of all points with zero

coordinates corresponding to elements of J \ I. The topological space |Σ(D)| is defined as
the gluing of all σS along these identifications and the set Σ(D) is given as the image of the
family {σS} in the space |Σ(D)|. Sometimes we use the notation Σ(X,D) to emphasize
that D is a divisor in X. ⋄

Proposition 2.1.7. The pair (Σ(D), |Σ(D)|) constructed above is a cone complex in the
terminology of Definition 2.1.1.

Proof. Part (a) in the definition follows from the definition of each σS and the fact they
map injectively into the gluing |Σ|. For part (b) notice that given a cone σS = RI

+, a face of
σS is then of the form RJ

+ for some J ⊆ I. Therefor, the unique irreducible component T of
DJ which contains S will give the unique σT ∈ Σ(D) such that σT = RJ

+. Part (c) follows
from the corresponding fact on RI by looking at the maximal elements in Σ. Finally, for
part (d), notice that σS1 ∩ σS2 is equal the union of all σT where T is a minimal strata
containing both S1 and S2.

Notation 2.1.8. Notations as above, given a cone σ ∈ Σ(D), we denote by Sσ the as-
sociated stratum. The generic point of Sσ is denoted by ησ. If the divisor is given by
D =

∑
i∈I Di, we denote by Iσ the subset I ⊆ I such that the stratum Sσ is open in a

connected component of DI =
⋂
i∈I Di.
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2.1.3 Tropical functions

We endow a cone complex Σ with its structure sheaf OΣ which is the sheaf of tropical
functions.

Definition 2.1.9 (Tropical functions and the structure sheaf). Let Σ be a cone complex
with an integral structure and let U be an open subset of |Σ|. A function

F : U → R

is called tropical if there is a rational subdivision Σ̃ of Σ such that for each σ ∈ Σ̃,
the restriction F |σ∩U is integral linear, i.e., viewing σ in Nσ,R, F |σ∩U coincides with the
restriction to σ ∩U of an element in Mσ ⊆ N∨σ,R. The structure sheaf OΣ is defined as the
one whose sections on an open set U are given by the set of tropical functions on U . A
tropical function on Σ is a global section of OΣ.

Remark 2.1.10. Let X be a smooth variety and D an SNC divisor on X. As we will see
in the next section, when talking about tropicalization, the tropicalization of a rational
function on X is a tropical function on Σ(D). Later on we will prove that any tropical
function is of this form.

2.1.4 Tangent cones

Now we see how to deal with tangent vectors in cone complexes. We are specially interested
in those that point inward the cone complex. We first start by introducing a notion of
tangent spaces adapted to our purposes.

Definition 2.1.11 (Tangent spaces). Given a cone complex Σ and x ∈ |Σ|, the tangent
space at x is the set

TxΣ :=
⊔
σ∋x

Nσ,R

where the union goes over all faces of Σ containing x.

Remark 2.1.12. In general TxΣ is not a vector space, nonetheless given w ∈ TxΣ and
λ ∈ R we can produce by addition the point x+ λw ∈

⋃
σ∈ΣNσ,R.

Definition 2.1.13 (Tangent cones). Let Σ be a cone complex and x ∈ |Σ|.

1. The tangent cone at x denoted by TCxΣ is the set of all w ∈ TxΣ for which x+ εw ∈
|Σ| provided that ε > 0 is small enough.
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2. More generally, for an integer k ≥ 1, the k-tangent cone at x denoted by TCkxΣ
consists of the set of all tuples w = (w1, . . . , wk) of vectors in (TxΣ)

k for which we
have the following property:

For any r ∈ [k] and for εi > 0, i ∈ [r], we have

x+ ε1w1 + · · ·+ εrwr ∈ |Σ|

provided that ε1 is sufficiently small and εj is sufficiently small with respect to εj−1
for 1 < j ≤ r. Equivalently, if for any small enough ε > 0, we have

x+ εw1 + ε2w2 + · · ·+ εrwr ∈ |Σ|.

3. The k-tangent cone bundle is the set TCk Σ :=
⊔
x∈|Σ| TC

k
xΣ. It comes with a natural

projection map TCk Σ→ Σ and its elements are denoted by (x;w1, . . . , wk) or (x;w),
to make reference to the base point explicit.

We make two remarks. First, we note that the definition of the tangent cones given
above guarantees, proceeding inductively on r, that for each (x;w) and for {εi}ki=1 small
enough, with ϵ1 ≫ · · · ≫ ϵk > 0, we have

x+ ε1w1 + · · ·+ εrwr ∈ |Σ|, r ∈ [k].

In particular, the second point makes sense.

Moreover, it happens that we can actually ensure a stronger property, namely that for
all {εi}ki=1 small enough and ϵ1 ≫ · · · ≫ ϵk > 0, all the above vectors fall in the same face
of Σ. This is the content of the following proposition.

Proposition 2.1.14. Given a cone complex Σ, we have

TCk Σ =
⋃
σ∈Σ

TCk σ.

Proof. We will proceed by induction on k and show that for (x;w) ∈ TCk Σ there are
ε1, . . . , εk ∈ R>0 and a face σ of Σ containing x such that for each 1 ≤ r ≤ k we have

x+ ε1w1 + · · ·+ εrwr ∈ σ.
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This will finish the proof as by convexity of σ, if δ0, δ1, . . . , δr are positive reals with∑r
i=0 δi = 1, we get

r∑
i=0

δi(x+ ε1w1 + · · ·+ εrwr) = x+ δ′1w1 + · · ·+ δ′rwr ∈ σ.

Making now δ0 large enough and choosing δ1 ≫ · · · ≫ δr > 0 in an appropriate manner, we
can ensure to get any δ′1 ≫ δ′2 ≫ · · · ≫ δ′r > 0 as long as they are small enough. Therefor,
we get (x;w) ∈ TCk σ.

For k = 0 there is nothing to prove as we can take any face of Σ containing x. Suppose
now k > 0 and assume the result for k − 1. For each natural number n, we use the
assumption of the induction with (xn, w

′) where xn = x + w1/n and w′i = wi+1. In this
way, we find positive numbers ε(n)2 , . . . , ε

(n)
k and a face σn of Σ such that

xn, xn + ϵ2(n)w2, . . . , xn + ε2(n)w2 + · · ·+ εk(n)wk ∈ σn.

The number of faces of Σ being finite, there is some σ ∈ Σ such that σn = σ for infinitely
many n. Tending n to infinity through those n, we get xn = x+w1/n→ x and hence x ∈ σ.
So σ together with 1/n, ε2(n), . . . , εk(n) for large enough n satisfy what we want.

Remark 2.1.15. For a subdivision Σ̃ of Σ, we have TCk Σ = TCk Σ̃. Hence, by the
proposition above, the subdivision Σ̃ induces a subdivision TCk Σ =

⋃
σ∈Σ̃ TC

k σ of the
tangent cone.

2.2 Tropicalization of rational functions

We now recall how to tropicalize rational functions on a variety into tropical functions on
cone complexes. This is based on the idea that, given a point x in a variety X and a fix
set of local parameters in OX,x at the point, the completion ÔX,x of the local ring at x
becomes isomorphic to a power series ring in the local parameters. This isomorphism allows
to see each rational function regular at x as a power series. We can then use the usual
tropicalization procecdure with respect to the trivial valuation on the base field. Following
this procedure, given an SNC divisor D, we can use the local equations of its components
as local parameters to obtain for each rational function a tropical function over Σ(D).
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2.2.1 Admissible expansions

The following notion is useful to understand power series expansions directly in the ring
ÔX,x. It is borrowed from [JM12].

Definition 2.2.1 (Admissible expansion). Let R be a complete regular local κ-algebra
and z1, . . . , zr with r = dim(R) a system of parameters for it. Given f ∈ R, an admissible
expansion for f is an expression of the form

f =
∑
β∈Zr

+

cβz
β, cβ ∈ R, (2.1)

in which the right hand side is a convergent series in which each coefficient cβ is either
zero or a unit on R. The support of the admissible expansion is the set of all β ∈ Zr+ with
cβ ̸= 0.

Here and in what follows, the notation zβ stands for the product zβ11 . . . zβrr where
β1, . . . , βr denote the coordinates of β ∈ Zr.

Remark 2.2.2. We will be essentially interested in the case in which R is equal to the
completion ÔX,x of the local ring of a point x in a smooth variety X. For technical reasons
however we have defined it in this generality (see the proof of Proposition 2.7.5).

Remark 2.2.3. An element f ∈ R has several admissible expansions and the support of
these admissible expansions may vary. As an example, the identity 1 = (1−zβ)+zβ shows
two different admissible expansions with different supports for the constant function 1.
Although admissible expansions are not unique, they always exist and as we will see next,
the minimal terms of their supports form a uniquely determined set.

Proposition 2.2.4 (Existence of admissible expansions and uniqueness of the minimal
elements of the support). Notations as in Definition 2.2.1, consider an element f ∈ R

1. There is an admissible expansion for f .

2. In the notation of (2.1), the set

Af := min
≤cw

{β ∈ Zr | cβ ̸= 0}

depends only on f and not in the choice of the admissible expansion.
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3. The set Af does not change if we change the local parameters z1, . . . , zr for some
local parameters z′1, . . . , z′r such that we have z′i = ziui for some unit ui ∈ R× for
each 1 ≤ i ≤ r.

Remark 2.2.5. A slightly weaker version of this proposition is stated in [JM12], where it is
shown that the piecewise linear function defined by the admissible expansion is well-defined.
Note that it might happen that two power series with different sets of minimal elements
give the same piecewise linear function. The above proposition claims the uniqueness of
minimal elements in different admissible expansions of a given rational function.

Proof of Proposition 2.2.4. (1) Denote by κ(R) the residue field of R. By Cohen structure
theorem [Coh46, Theorem 9], the ring ÔX,x contains a coefficient field, that is, a field κ̃ ⊆
ÔX,x such that the projection map ÔX,x → κ(R) restricts to an isomorphism κ̃

∼→ κ(R).
Moreover, this coefficient field induces a continuous isomorphism

φ : κ(R)[[X1, . . . , Xr]]
∼−→ ÔX,x (2.2)

which extends the isomorphism between κ(R) and κ̃ by sending Xi to zi. Writing φ−1(f) =∑
β∈Zr

+
cβX

β, we get an admissible expansion for f of the form

f =
∑
β∈Zr

+

φ(cβ)z
β.

(2) Notations as in (1), let f =
∑

β∈Zr
+
aβz

β be a second admissible expansion for f .
Using the isomorphism (2.2) above, we can see each aβ for β ∈ Zr+ as a power series with
coefficients in κ(R), that is as

φ−1(aβ) =
∑
γ∈Zr

+

aβ,γX
γ ∈ κ(R)[[X1, . . . , Xr]].

We infer that∑
β∈Zr

+

cβX
β = φ−1(f) =

∑
β∈Zr

+

φ−1(aβ)X
β

=
∑
β∈Zr

+

∑
γ∈Zr

+

aβ,γX
γ

 X
β =

∑
β∈Zr

+

 ∑
0≤cwγ≤cwβ

aγ,β−γ

 X
β
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which implies that cβ =
∑

0≤cwγ≤cwβ
aγ,β−γ. Now if β is a minimal element with cβ ̸= 0,

then aγ,β−γ is nonzero for some γ ≤cw β, and therefor aγ is nonzero. Conversely, if β is
minimal among those β′ such that aβ′ ̸= 0, then we have on one side aβ = aβ,0, and on the
side, we have aβ,0 ̸= 0 because aβ is a unit. Combined together, we have shown that any
minimal element in the support of one admissible expansion dominates a minimal element
in the support of the second. This proves the statement in the proposition.

(3) The last point is straightforward.

Remark 2.2.6.

1. Recall that a subset A of a partially ordered set is called an antichain if any pair
of distinct elements in A are not comparable in the partial order. It is not hard to
prove that an antichain in (Zr+,≤cw) is necessarily finite. Since the sets Af considered
above are all antichains, we conclude that they must be finite.

2. For f, g ∈ R, by manipulating admissible expansions, we can see that

min
≤cw

(
Af+g ∪ Af ∪ Ag

)
= min
≤cw

(
Af ∪ Ag

)
min
≤cw

(
Af ·g ∪min

≤cw

(Af + Ag)
)
= min
≤cw

(
Af + Ag

)
.

Corollary 2.2.7. Any function f ∈ R admits an admissible expansion with finite support.

Proof. Let f ∈ R be an admissible expansion. By Proposition 2.2.4, f admits an admissible
expansion f =

∑
β∈Zr

+
cβz

β. Rearranging terms, we can rewrite this in the form f =∑
β∈Af

c̃βz
β where each coefficient c̃β can be written in form c̃β = cβ +

∑
γ>cwβ

c′γz
γ−β, for

c′γ either 0 or equal to cγ, and is still invertible. By Remark 2.2.6, the set Af is finite.

2.2.2 Conewise antichains associated to rational functions

Let D be an SNC divisor on X. For each cone σ ∈ Σ(D) and for each i ∈ Iσ, consider a
local equation zi for Di around ησ. Then, the family {zi}i∈Iσ provides a system of local
parameters for the local ring ÔX,ησ . For a function f ∈ K(X) with f ∈ OX,ησ , σ ∈ Σ(D),
we define the set

Aσf := min
≤cw

{β ∈ ZIσ | cβ ̸= 0}

for a given (and so for any )admissible expansion f =
∑

β∈Zr
+
cβz

β.
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Definition 2.2.8 (Antichains attached to a rational function). Notations as above, for a
rational function f on X, we call the family Af :=

{
Aσf
∣∣σ ∈ Σ(D) with f ∈ OX,ησ

}
the

family of antichains attached to f .

Remark 2.2.9. In practice, we reduce to rational functions f which belong to all local
rings OX,ησ for σ ∈ Σ(D). In this case, the family of antichains has an element Aσf for
any σ ∈ Σ(D). Any more general rational function h on X can be written as the ratio
h = f1/f2 of two such rational functions, i.e., with f1, f2 belonging both to any local ring
OX,ησ for σ ∈ Σ(D).

Proposition 2.2.10 (Compatibility of the antichains). Let D be an SNC divisor on X.
Fix a cone σ ∈ Σ(D) and a face τ of σ. Consider the projection

pr
σ≻τ

: RIσ −→ RIτ

(xi)i∈Iσ 7−→ (xi)i∈Iτ .

For each f ∈ OX,ησ , we then have f ∈ OX,ητ and an equality of the form

Aτf = min
≤cw

(
pr

σ≻τ
(Aσf )

)
.

Proof. Consider the diagram

ÔX,ησ

OX,ησ
̂(
ÔX,ησ

)
pτ

ÔX,ητ

ι3ι1

ι2 ι4

Here pτ is the prime ideal in ÔX,ησ generated by {zi | i /∈ Iτ} and each completion is taken
with respect to the maximal ideal. Moreover ι1 is the inclusion in the completion, ι2 and ι3
are the composition of a localization with an inclusion into the corresponding completion,
and ι4 is obtained by functoriality by localizing ι1 at pτ and completing with respect to
the maximal ideal. This is a commutative diagram of κ-algebras.

Given an element f ∈ OX,ησ , by Corollary 2.2.7 we can find finite admissible expansions

ι1(f) =
∑
β∈ZIσ

aβz
β ι2(f) =

∑
γ∈ZIτ

bγz
γ
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in OX,ησ and OX,ητ , respectively. We then get

ι3(ι1(f)) =
∑
β∈ZIσ

ι3(aβz
β) =

∑
γ∈ZIτ

 ∑
pr

σ≻τ
(β)=γ

ι3(aβz
β−γ)

 zγ

ι4(ι2(f)) =
∑
γ∈ZIτ

ι4(bγ)z
γ.

As
∑

pr
σ≻τ

(β)=γ aβz
β−γ /∈ pτ , its image by ι3 is invertible. Therefore, we obtain two ad-

missible expansions for ι3(ι1(f)) = ι4(ι2(f)) inside
̂(
ÔX,ησ

)
pτ

. By Proposition 2.2.4, we
get

min
≤cw

{
γ ∈ ZIτ

∣∣ ι4(bγ) ̸= 0
}
= min
≤cw

{
γ ∈ ZIτ

∣∣ ι3(∑pr
σ≻τ

(β)=γ aβz
β−γ) ̸= 0

}
.

Since ι3 and ι4 are both injective, we infer Aτf = min≤cw

(
pr

σ≻τ
(Aσf )

)
, as required.

2.2.3 Tropicalization

We now define the tropicalization of rational functions.

Construction 2.2.11 (Tropicalization). Let X be a variety and let D ⊆ X be an SNC
divisor. Let σ ∈ Σ(D) and let x ∈ σ.
• For f ∈ OX,ησ , we define

trop(f)(x) := min
{
⟨x, β⟩ | β ∈ Aσf

}
.

• For two elements f1, f2 ∈ OX,ησ , we have

trop(f1f2)(x) = trop(f1)(x) + trop(f2)(x).

This allows to extend the above definition to an arbitrary g ∈ K(X). In this case, we write
g = f1/f2 for f1, f2 ∈ OX,ησ and define for each x ∈ σ

trop(g)(x) := trop(f1)(x)− trop(f2)(x).

• Finally, by Proposition 2.2.10 above, this function is independent of the choice of the
face of Σ(D) which contains x. Hence, we obtain a well defined map

trop(f) : |Σ(D)| → R
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which we call the tropicalization of f with respect to D. ⋄

Remark 2.2.12. In order to prove the second property, namely, that

trop(f1f2)(x) = trop(f1)(x) + trop(f2)(x)

for f1, f2 ∈ OX,ησ , let inx(A
σ
fi
) be the subset of Aσfi consisting of all β with trop(fi)(x) =

⟨x, β⟩. Then, we get inx(A
σ
f1f2

) ∩
(
inx(A

σ
f1
) + inx(A

σ
f2
)
)
̸= ∅. Combined with the second

part of Remark 2.2.6, this gives the result.

Proposition 2.2.13. The tropicalization of a rational function is a tropical function.

Proof. For σ ∈ Σ(D) and f ∈ OX,ησ the tropicalization trop(f)|σ is the minimum of finitely
many linear functions with integral coefficients. Therefore, this is an integral piecewise
linear function on σ. More generally, for any element f ∈ K(X), the tropicalization trop(f)

can be written as the difference of two integral piecewise linear functions over each cone
σ, and so it is itself integral piecewise linear on each cone. It follows that tropicalization
of f is a tropical function.

2.3 Quasi-monomial valuations of higher rank

In this section, we define quasi-monomial valuations as certain Krull valuations attached
to a given SNC divisor. We study their basic properties and then relate their combinatorial
structure with the one of the dual complex in the case the values are taken in Rk with its
lexicographic order.

2.3.1 Definition

We start by giving the definition in the more general setting of totally ordered abelian
group. The one important for us in this paper will be the additive group Rk endowed
with the lexicographic order ⪯lex that we sometime simply denote by ⪯. This is the order
defined by x ⪯lex y iff x = y or there is an 1 ≤ i ≤ k such that xj = yj for j < i and
xi < yi. This ordered group has specific properties, depicted in the presence of its two
different natural topologies, which are exploited in this work.

Let (Γ,⪯) be a totally ordered abelian group and consider Γ⪰0 = {α ∈ Γ | α ⪰ 0}.
Let D be an SNC divisor in a smooth variety X. To a given cone σ ∈ Σ(D) and a tuple
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α ∈ ΓIσ⪰0, we associate the valuation νσ,α by defining its value first at an element f ∈ OX,ησ
by

νσ,α(f) := min
⪯

{∑
i∈Iσ βiαi ∈ Γ | β ∈ Aσf

}
. (2.3)

By Remark 2.2.6 and the argument used in 2.2.12, it is straightforward to see that

νσ,α(fg) = νσ,α(f) + νσ,α(g), and

νσ,α(f + g) ⪰ min{νσ,α(f), νσ,α(g)}.

This shows that νσ,α verifies the properties of a valuation on OX,ησ and so uniquely extends
to a valuation on K(X), the fraction field of OX,ησ .

Definition 2.3.1 (Quasi-monomial valuations). Notations as above, the valuation νσ,α is
called the Γ-quasi-monomial valuation with respect to σ and α. The set of all Γ-quasi-
monomial valuations for a given cone σ ∈ Σ(D) is denoted by M Γ

σ (D). The set of all
Γ-quasi-monomial valuations coming from any cone of Σ(D) is denoted by M Γ(D).

In the case the ordered group if the additive group Rk endowed with the lexicographic
order, for a natural number k, we call the valuation νσ,α a quasi-monomial valuation of
rank bounded by k. We denote simply by M k

σ (D) and M k(D) the corresponding sets of
quasi-monomial valuations M Rk

σ (D) and M Rk
(D), respectively. For k = 1, we further

simplify M 1
σ (D) and M 1(D) to Mσ(D) and M (D), respectively.

In the rest of this paper, we will only consider quasi-monomial valuations of rank
bounded by k for some positive integer k.

Remark 2.3.2. The integer k used in the definition of the quasi-monomial valuation makes
reference to the rank of the codomain of the valuation. This should not be confused with the
Krull dimension of the valuation ring of νσ,α, neither with the rank of the value group of the
valuation, as we allow the value group νσ,α(K(X)) to be of rank strictly smaller than k. The
idea of studying valuations of different ranks all together, simultaneously, is motivated from
practical situations appearing in the study of multi-parameter degenerations of complex
varieties, see for example [AN20; AN21].

2.3.2 The duality theorem

In this section, we provide a dual description of the set of quasi-monomial valuations of
rank bounded by k.
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Recall that for a variety X and a valuation ν : K(X)→ Γ, the center of ν, if it exists,
is the unique point of X denoted by cν such that ν is non-negative over OX,x and strictly
positive over its maximal ideal. The center of quasi-monomial valuations always exists.

Proposition 2.3.3. Let D be an SNC divisor on a variety X and let Γ be a totally ordered
abelian group. For σ ∈ Σ(D) and α ∈ ΓIσ+ , consider the unique face τ of σ given by the
rays Iτ = {i ∈ Iσ | αi ≻ 0}. Let ατ = pr

σ≻τ
(α) be the element ΓIτ+ whose coordinates are

given by those of α.
Then, we have νσ,α = ντ,ατ

. Moreover, the center of νσ,α exists and is equal to ητ .

Proof. The first assertion follows directly from Proposition 2.2.10. To prove the second,
notice that ντ,ατ

(f) ⪰ 0 for each f ∈ OX,ητ . Moreover, ντ,ατ
(f) = 0 if and only if 0 ∈ Aτf ,

i.e., in the case f is invertible. This shows that the center of ντ,ατ
is ητ .

Consider now the case Γ = R. In this case, the elements of RIσ
+ can be naturally

identified with the points of σ. From the compatibility in the above proposition, we get a
natural bijection

|Σ(D)| −→M (D) (2.4)

obtained by sending a point x ∈ |Σ(D)| to the quasi-monomial valuation νσ,α ∈ M (D)

where σ is any cone of Σ(D) which contains the point x and α denotes the coordinates of
x in that cone.

We now generalize this bijection to higher rank quasi-monomial valuations. First ob-
serve that there is a natural projection map π : M k(D) −→M (D) defined as follows. Take
a point α = (αi)i∈Iσ ∈ (Rk)Iσ+ . Each αi is an element of (Rk)+ = (Rk)⪰0 and we denote its
coordinates by αi = (α1

i , . . . , α
k
i ). Consider the projection to the first coordinate denoted

by an abuse of the notation by π and given by

π : (Rk)Iσ+ → RIσ
+ , π(α) = (α1

i )i∈Iσ .

The projection map π is then defined by

π(νσ,α) := νσ,π(α) (2.5)

over each cone σ in Σ(D). By Proposition 2.3.3, this map is well defined. It allows to view
M k(D) fibered over M (D).
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Theorem 2.3.4 (Duality theorem). Notations as above, there is an isomorphism of bundles
over M (D) ≃ |Σ(D)|

M k(D) TCk−1Σ(D)

M (D) |Σ(D)|

ϕ

π (2.6)

where:

• the map M (D)→ |Σ(D)| on the base is the inverse of the isomorphism (2.4), and

• the map ϕ is defined by a compatible family of maps

ϕσ : Mσ(D) −→ TCk−1 σ, σ ∈ Σ(D).

For σ ∈ Σ(D), the map ϕσ is defined as follows. Take a point α = (αi)i∈Iσ in (Rk)Iσ+ ,
let x = π(α) = (α1

i )i∈Iσ ∈ RIσ
+ , and for each j = 2, . . . , k, define

wj−1 := (αji )i∈Iσ ∈ RIσ .

Then, the point (x;w1, . . . , wk−1) belongs to TCk−1 σ, and we set

ϕσ(νσ,α) := (x;w1, . . . , wk−1).

Remark 2.3.5. The proof of the duality theorem reduces to the following statement in
coordinates. A real matrix A ∈ Matk,r(R) has columns in (Rk)+, with respect to the
lexicographic order on Rk, if and only if the family (At

•,1;A
t
•,2, . . . , A

t
•,k), given by the

columns of the transpose At of A, belongs to the tangent cone TCk−1
(
(R+)

r
)
. This justifies

the name given to the theorem.

Proof of Theorem 2.3.4. We verify that each ϕσ is a bijection. Let σ be a cone in Σ(D). By
definition, an element (αi)i∈Iσ ∈ (Rk)Iσ gives a valuation νσ,α in the domain of ϕσ provided
for each i ∈ Iσ, the vector αi belongs to (Rk)+, that is, it is non-negative with respect to
the lexicographic order. Denoting by (α1

i , . . . , α
k
i ) the coordinates of αi, this means that
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for each i ∈ Iσ, we must have

either, α1
i > 0

or, (α1
i = 0 and α2

i > 0)

or, (α1
i = α2

i = 0 and α3
i > 0)

...

or, (α1
i = · · · = αk−1i = 0 and αki ≥ 0).

(2.7)

On the other hand, for a collection of vectors x, w1, . . . , wk−1 in RIσ , the family
(x;w1, . . . , wk−1) by definition belongs to TCk−1 σ if and only if we have

x ∈ σ and

x+ ε1w1 ∈ σ for ε1 > 0 small enough, and

x+ ε1w1 + ε2w2 ∈ σ for ε1 ≫ ε2 > 0 small enough and
...

x+ ε1w1 + · · ·+ εk−1wk−1 ∈ σ for ϵk−2 ≫ εk−1 > 0 small enough.

(2.8)

Specifying the collection of vectors x,w1, . . . , wk−1 to the ones given in the statement
of the theorem, the conditions in 2.8 above can be rephrased as follows. For each i ∈ Iσ,

α1
i ≥ 0 and

α1
i + ε1α

2
i ≥ 0 for ε1 > 0 small enough, and

α1
i + ε1α

2
i + ε2α

3
i ≥ 0 for ε1 ≫ ε2 > 0 small enough, and

...

α1
i + ε1α

2
i + · · ·+ εk−1α

k
i ≥ 0 for εk−2 ≫ εk−1 > 0 small enough.

(2.9)

Clearly, Conditions (2.7) and (2.9) are equivalent, and we infer that φσ is a bijection.

Now to conclude, note that the family of maps {ϕσ}σ is compatible with the descrip-
tions of M k(D) and TCk−1(D) as the unions M k(D) =

⋃
σ M k

σ (D) and TCk−1Σ(D) =⋃
σ TC

k−1 σ, and so they can be glued together to define a map ϕ : M k(D)→ TCk−1Σ(D).
Since each ϕσ is a bijection, so is ϕ.
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2.3.3 An analytic description of quasi-monomial valuations

We now explain how to understand higher quasi-monomial valuations from an analytic
point of view, directly from tangent vectors, by taking directional derivatives. This leads
to a description of the inverse ϕ−1 of the map ϕ appearing in the Duality Theorem.

We need to introduce the notion of derivative of a function with respect to a tuple of
inward tangent vectors in the tangent cone.

Definition 2.3.6 (Directional derivatives). Given a polyhedral complex Σ and a function
F : |Σ| → R, the derivative of F at a point x ∈ |Σ| along an inward vector w ∈ TCxΣ is
the limit

DwF (x) := lim
ε→0+

F (x+ εw)− F (x)
ε

,

whenever this limit exists. More generally, we inductively define the derivative of F at a
point x ∈ |Σ| and with respect to the tuple w = (w1 . . . , wk) ∈ TCkxΣ as the limit

D(w1,...,wk)F (x) := lim
ε→0+

D(w1,...,wk−1+εwk)F (x)−D(w1,...,wk−1)F (x)

ε
, (2.10)

whenever the directional derivatives D(w1,...,wk−1+εwk)F (x), for ε ≥ 0 small enough, and the
above limit exist.

In the case these limits exist for all points x ∈ |Σ| and w ∈ TCk Σ, we denote by DkF

the corresponding derivative function from TCk Σ → Rk+1. This is the function which to
a point x ∈ |Σ| and w = (w1, . . . , wk) ∈ TCkxΣ associates the point

DkF (x;w) :=
(
F (x), Dw1F (x), D(w1,w2)F (x), . . . , D(w1,...,wk)F (x)

)
∈ Rk+1.

Remark 2.3.7. We make a few remarks.

1. When (w1, . . . , wk) ∈ TCk Σ, the points (w1, . . . , wk−2, wk−2 + ϵwk−1), for ε ≥ 0 small
enough, all belong to TCk−1Σ. So the limit in 2.10 is well-posed.

2. At a smooth point x ∈ |Σ|, when x lies in the relative interior of a facet of Σ, and
for a function F : |Σ| → R which is smooth on a neighborhood of x, the definition
of DwF (x) for w = (w1, . . . , wk) ∈ TCk Σ coincides with the evaluation at the k-
tuple of tangent vectors w of the k-th derivative of F at x. The definition is thus a
natural extension to the case where F is not necessarily a smooth function and x is
an arbitrary point of |Σ|.
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The following proposition provides an alternative way of computing DwF (x) when it
exists.

Proposition 2.3.8. Consider a point x ∈ Σ and a tuple w ∈ TCkxΣ. Let F : Σ→ R be a
function for which DwF (x) exits. Then we have

DwF (x) = lim
εk→0+

. . . lim
ε1→0+

1

ε1 · · · εk

(
F (x+ε1w1 + · · ·+ ε1 · · · εkwk)

− F (x+ ε1w1 + · · ·+ ε1 · · · εk−1wk−1)
)
.

Proof. For k = 1, this is the definition of DwF (x). The general case can be obtained by
induction.

In this paper we are mainly interested in directional derivatives of tropical functions.
In this case the derivatives always exist as the following proposition shows.

Proposition 2.3.9. For any piecewise linear function F : |Σ| → R and any k ≥ 0 the
derivative DkF exists.

Proof. Let Σ̃ be a subdivision of Σ such that F is linear on each cone σ ∈ Σ̃. By Remark
2.1.15, we have that TCk Σ =

⋃
σ∈Σ̃ TC

k σ, so given (x;w) ∈ TCk Σ(D), there is a cone
σ ∈ Σ̃ such that (x;w) ∈ TCk σ. Denote by Fσ the linear function which is equal to the
restriction of F to σ. A direct calculation shows that DkF (x;w) exists and is given by

DkF (x;w1, . . . , wk) = (Fσ(x), Fσ(w1), . . . , Fσ(wk)).

We now come back to the tropicalization of rational functions and its link to quasi-
monomial valuations. From the very definition, it is clear that we can retrieve rank one
quasi-monomial valuations by evaluating tropical functions at their corresponding point,
that is, given f ∈ K(X)∗ and x ∈ |Σ(D)|, if νx denotes the valuation corresponding to x
under the map in (2.4), then

νx(f) = trop(f)(x).

The following result extends this relation to higher rank quasi-monomial valuations.
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Theorem 2.3.10 (Quasi-monomial valuations using derivatives). Let k ∈ N be a natural
number. Given (x;w) ∈ TCk−1Σ(D), consider the evaluation map

ν(x;w) : K(X)∗ −→ Rk

f 7−→ Dk trop(f)(x;w).

Then νx;w is a well-defined function and it coincides with the valuation ϕ−1(x;w) given by
the Duality Theorem 2.3.4.

Proof. Fix a point (x;w) ∈ TCk−1Σ and let σ be a face of Σ(D) containing x such that
(x;w) ∈ TCk−1 σ. Then, by definition, for any f ∈ OX,ησ , we have

trop(f)(x) = min
{
⟨x, β⟩

∣∣ β ∈ Aσf}. (2.11)

As trop(f) is piecewise linear, there is a subdivision Σf of Σ(D) such that trop(f) is linear
on each face of Σf . By Remark 2.1.15, there is a cone τ in Σf such that (x;w) ∈ TCk−1x τ .
Let βτ ∈ Aσf be the exponent such that trop(f)(y) = ⟨y, βτ ⟩ for any y ∈ τ . By Proposition
2.3.9, we get

νx;w(f) =
(
⟨x, βτ ⟩, ⟨w1, βτ ⟩, . . . , ⟨wk−1, βτ ⟩

)
. (2.12)

We now show that νx;w = ϕ−1(x;w), that is, νx;w = νσ,α where α = (αi)i∈Iσ and αi =

(xi, wi1, . . . , w
i
k−1).

Note that here for i ∈ Iσ, xi and wij are the i-th coordinate of x and wj, respectively. So
with our previous notation, we have αji = xi for j = 1 and αji = wij−1 for j = 2, . . . , k.

To show the above claim, note that for any f ∈ Oησ , we have

vσ,α(f) =min
⪯lex

{∑
i∈Iσ

αiβi | β ∈ Aσf

}
=
∑
i∈Iσ

αiβα,i =
∑
i∈Iσ

(
xi, wi1, . . . , w

i
k−1
)
βα,i =

(
⟨x, βα⟩, ⟨w1, βα⟩, . . . , ⟨wk−1, βα⟩

)
(2.13)

where βα is an exponent in Aσf which gives the minimum in the first equation above, and
βα,i is the i-th coordinate of βα for i ∈ Iσ. We thus need to prove that the two expressions
in (2.12) and (2.13) are equal.
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We will prove this by induction. The first entry in both expressions (2.12) and (2.13)

coincide as they are both equal to trop(f)(x). Assuming the two expressions have the same
j-entries for all 1 ≤ j ≤ ℓ − 1, we will prove that the ℓ-entries are also equal. The first
ℓ− 1 entries being equal,

⟨x, βτ ⟩ = ⟨x, βα⟩, ⟨w1, βτ ⟩ = ⟨w1, βα⟩, . . . , ⟨wℓ−1, βτ ⟩ = ⟨wℓ−1, βα⟩, (2.14)

we infer that

⟨x+ ε1w1 + · · ·+ ε1 · · · εℓwℓ, βτ ⟩

= trop(f)
(
x+ ε1w1 + · · ·+ ε1 · · · εℓwℓ

)
= min
⪯lex

{
⟨x+ ε1w1 + · · ·+ ε1 · · · εℓwℓ, β⟩

∣∣ β ∈ Aσf}
⋆
= min
⪯lex

{
⟨x+ ε1w1 + · · ·+ ε1 · · · εℓwℓ, β⟩

∣∣ β ∈ Aσf
such that ⟨x, β⟩ = ⟨x, βτ ⟩, ⟨wj, β⟩ = ⟨wj, βτ ⟩ for 1 ≤ j ≤ ℓ− 1

}
= ⟨x+ ε1w1 + · · ·+ ε1 · · · εℓwℓ, βα⟩.

Here, in ⋆
= we used the fact that to minimize ⟨x + ε1w1 + · · · + ε1 · · · εℓwℓ, β⟩ for β ∈ Aσf

and for ε1 ≫ ε2 ≫ . . . εℓ > 0 small enough, we need to first minimize ⟨x, β⟩, then minimize
⟨w1, β⟩ and so on. By the hypothesis of our induction, βτ does exactly this as it behaves
like βα in those entries. From this equality, using Equation (2.14), we infer the equality
⟨wℓ, βτ ⟩ = ⟨wℓ, βα⟩, as required.

This proves that νx;w(f) = νσ,α(f) for all f ∈ OX,ησ . Using the relation trop(f/g) =

trop(f)− trop(g) for two elements f, g ∈ OX,ησ , we finally conclude that νx;w(f) = νx;w(f)

for all f ∈ K(X)∗ and the theorem follows.

2.3.4 Flag valuations

In this section, we discuss an alternative way for getting valuations of higher rank on X

based on flags of subvarieties, and explain the relation to our constructions above. More
details on valuations associated to flags of subvarieties can be found in [LM09b; KK12],
where they are used to define Newton-Okounkov bodies.

Consider a flag of subvarieties

F : F0 ⊋ F1 ⊋ · · · ⊋ Fk
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where F0 = X, and for each 1 ≤ ℓ ≤ k, Fi is a smooth irreducible subvariety of Fℓ−1 with
codimX(Fℓ) = ℓ.

Under these hypothesis, each Fℓ defines a discrete valuation ordFℓ
over the function

field of Fℓ−1. We choose a uniformizer tℓ for ordFℓ
. Using these orders of vanishing, we can

construct a higher rank valuation on K(X) as follows.

Proposition 2.3.11. Notations as above, consider the map

νF : K(X)∗ → Rk

f 7→ (ordF1(f1), ordF2(f2), . . . , ordFk
(fk))

(2.15)

where f1 = f and fℓ+1 is the restriction of fℓ · t
−ordFℓ

(fℓ)

ℓ to Fℓ+1 viewed in the function field
K(Fℓ+1). This is a rank k valuation which is independent of the choice of coordinates tℓ.

Given a nonempty SNC divisor D =
∑

i∈I Di, we can define a flag of subvarieties if we
fix an ordered sequence of components Di1 , . . . , Dik of D, for i1, . . . , ik ∈ I with non-empty
intersection, and an irreducible component S of the intersection Di1∩· · ·∩Dik . In this case,
we set F0 = X and for each 1 ≤ j ≤ k, we define Fj as the unique irreducible component
of Di1 ∩ · · · ∩Dij which contains S. Then we have automatically Fj ⊊ Fj−1.

Since D is SNC, each Fj is a smooth connected subvariety of codimension one inside
Fj−1, and we get a flag of subvarieties

F : X = F0 ⊋ F1 ⊋ · · · ⊋ Fk = S (2.16)

which verify the hypothesis of Proposition 2.3.11.

We now prove that νF corresponds to a quasi-monomial valuation defined in terms of
D. For this let σ be the cone corresponding to the stratum Fk of D, this cone has rays
indexed by Iσ = {i1, . . . , ik} ⊆ I. Consider the standard basis ei1 , . . . , eir of Nσ which is
contained in σ where eij is the primitive vector of the ray corresponding to ij.

Theorem 2.3.12. Let F the flag on (2.16) and νF the valuation defined by Proposition
2.3.11. Then νF = νx,w for (x;w) = (ei1 ; ei2 , . . . , eik) ∈ TC

k−1Σ(D).

Proof. Without loss of generality, we can assume that Di1 ∩ · · · ∩ Dik = {p} is a closed
point of X. Indeed, if this is not the case, we can extend the flag in 2.16 to a complete
flag, by adding, if needed, more components to the divisor D, and then work with this
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complete flag. The result then follows by taking the projection to the first k components
of the valuation.

Now take z1, . . . , zk equations for Di1 , . . . , Dik around p. Using these elements, for each
1 ≤ r ≤ k, we get a restriction map (called as well reduction map in the literature)

resj : K(Fj−1) −→ K(Fj),

f 7−→ fz
−ordFj

(f)

j

∣∣
Fj
,

which satisfies resj(OFj−1,x) ⊆ OFj ,x.

The elements zj, . . . , zk give us a local system of parameters for the local ring OFj−1,x

and hence they induce an isomorphism ÔFj−1,x ≃ k[[zj, . . . , zk]].

In this way, we obtain an extension to the power series ring for resj as follows

OFj−1,x OFj ,x

ÔFj−1,x ÔFj ,x

k[[zj, . . . , zk]] k[[zj+1, . . . , zk]]

f =
∑

β aβz
β

(
z
−ordzj (f)
j

∑
β aβz

β
)
|zj=0

resj

≃ ≃

resj

Now, given f ∈ OX,x, if we write f =
∑

β aβz
β ∈ ÔX,x, then by Theorem 2.3.10, we

have
νx,w(f) =

(
⟨ei1 , βα⟩, ⟨ei2 , βα⟩, . . . , ⟨eik , βα⟩

)
where βα ∈ Aσf is the exponent which minimizes the right hand side with respect to the
lexicographic order in Rk given in the proof of that theorem. On the other hand, we have
by definition

νF(f) =
(
ordz1(f1), ordz2(f2), . . . , ordzk(fk)

)
where f1 = f and fr = resr(fr−1).
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Now notice that

ordz1(f) =min{⟨e1, β⟩ | β ∈ supp(f)}

=min{⟨e1, β⟩ | β ∈ Aσf}

=⟨e1, βα⟩.

This shows that the first coordinates of νF(f) and νx,w(f) are equal. Proceeding by induc-
tion, suppose the first j coordinates of νF(f) and νx,w(f) are equal. We get

ordzj+1
(fj+1) = ordzj+1

(resj(fj))

= ordzj+1

z−ordzj (f)j

∑
β∈supp(fj)

aβz
β

∣∣∣∣∣∣
zj=0

=min
{
⟨ej+1, β⟩ | β ∈ supp(fj) and ⟨ej, β⟩ = ⟨ej, βα⟩}

=⟨ej+1, βα⟩ (by the definition of βα)

and so the j + 1-coordinates of νF(f) and νx,w(f) coincide as well. This proves that the
valuations are equal on OX,x and so they coincide on K(X). The theorem follows.

2.4 Tropical weak approximation theorem

The aim of this section is to prove the weak approximation theorem in the tropical setting
stated in the introduction.

2.4.1 Statement of the theorem

Recall that a subset A ⊆ ZI+ is called an antichain for the partial order ≤=≤cw if any pair
of distinct elements β, γ ∈ A are not comparable, i.e., β ̸≤ γ and γ ̸≤ β. (This implies
that A is necessarily finite.)

Definition 2.4.1 (Coherent family of antichains associated to cones). Suppose for any
cone σ, we have an antichain Aσ ⊆ ZIσ+ . We call the collection A = {Aσ |σ ∈ Σ(X,D)}
coherent if for any inclusion of faces τ ⊆ σ, we have the relation

Aτ = min
≤

pr
σ≻τ

(Aσ).
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Here pr
σ≻τ

is the projection map RIσ → RIτ .

Theorem 2.4.2 (Tropical weak approximation theorem). Let X be a smooth quasi-projective
variety over a field k and let D be an SNC divisor on X. Let A = {Aσ |σ ∈ Σ(X,D)} be
a coherent family of antichains. There exists then a rational function f ∈ K(X) such that
for each cone σ of Σ(X,D), we have f ∈ OX,ησ and Aσ = Aσf .

Remark 2.4.3. The theorem should be regarded as a tropical analogue of the weak ap-
proximation theorem in number theory. Stronger versions of this theorem might be true.
Namely, given admissible expansions fσ ∈ OX,ησ for each σ ∈ Σ(X,D) such that each fσ

has only finitely many non-zero terms, and such that for inclusion of faces τ ⊆ σ, we have
ισ⊃τ (fσ) = fτ , one might wonder whether there exists a rational function f ∈ K(X) such
that f − fσ has an admissible expansion in ÔX,ησ in which every monomial is divisible by
a monomial in fσ.

A corollary of the theorem is the following.

Corollary 2.4.4 (Approximation theorem for tropical functions). Let X be a smooth
quasi-projective variety over a field k and let D be an SNC divisor on X. For any tropical
function F : Σ(X,D)→ R, there is a rational function f ∈ K(X) such that trop(f) = F .

The rest of this section is devoted to the proof of the above theorems. We first prove
Theorem 2.4.2 and then later explain how to deduce the above corollary from this result.

2.4.2 Proof of Theorem 2.4.2 in the toric case

It would be more instructive to first treat the case of a toric variety with the arrangement
of the corresponding toric divisors. In this situation, we can drop the quasi-projectivity
condition.

Let Σ be a unimodular fan of dimension d in the real vector space NR of the same
dimension, and let PΣ be the corresponding toric variety. Each ray ϱ in Σ gives the
corresponding divisor Dϱ in PΣ. By unimodularity assumption on Σ, the divisor D =

∪ϱ∈Σ1Dϱ is SNC.

Let σ be a cone in Σ, and denote by ϱ1, . . . , ϱd the rays of σ. Denote the rays of
the dual cone σ∨ by ζ1, . . . , ζd. Let n1, . . . , nd be the primitive vectors of ϱ1, . . . , ϱd and
denote by m1, . . . ,md the primitive vectors of the rays ζ1, . . . , ζd, respectively. Note that
⟨mj, ni⟩ = δi,j, where ⟨. , .⟩ denotes the duality pairing between N and M .
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For each point a = (a1, . . . , ad) ∈ Aσ, consider the rational function

fσ,a :=
(χm1)a1 · · · (χmd)ad

(χm1 + · · ·+ χmd + 1)ℓ

for a large enough integer ℓ to be determined later.
Let ϱ be a ray of Σ with primitive vector n ∈ N . The order of vanishing of fσ,a along

the component Dϱ of D can be obtained as follows. First note that the order of vanishing
of χmj along Dϱ is equal to ⟨mj, n⟩. Moreover, the order of vanishing of χm1 + · · ·+χmd +1

along Dϱ is equal to min{0, ⟨m1, n⟩, ⟨m2, n⟩, . . . , ⟨md, n⟩}. Therefor, we get

ordDϱ(fσ,a) = ⟨a1m1 + · · ·+ admd, n⟩ − ℓ ·min{0, ⟨m1, n⟩, . . . , ⟨md, n⟩}.

In particular, for each j = 1, . . . , d, we get ordDϱj
(fσ,a) = aj. Moreover, if ϱ is different

from ϱ1, . . . , ϱd, then there exists an integer j among 1, . . . , d such that ⟨mj, n⟩ < 0. This
implies that if ℓ is chosen to be large enough, the rational function fσ,a will have a huge
order of vanishing along Dϱ.

Consider now the rational function fσ in K(PΣ) defined as

fσ :=
∑
a∈Aσ

fσ,a =
∑

a=(a1,...,ad)∈Aσ

(χm1)a1 · · · (χmd)ad

(χm1 + · · ·+ χmd + 1)ℓ
.

In the completed local ring ÔPΣ,xσ we have the equality

(χm1)a1 · · · (χmd)ad

(χm1 + · · ·+ χmd + 1)ℓ
= (χm1)a1 · · · (χmd)ad ·

(
1 +

∑
k≥1

(−1)k(χm1 + · · ·+ χmd)k

)ℓ

,

which gives an admissible expansion of fσ with respect to the local parameters χm1 , . . . , χmd

around ησ, the point of intersection of Dϱ1 , . . . , Dϱd .
From this, we see that Aσfσ,a = {a}, and since Aσ is an antichain, it follows Aσfσ = Aσ.

Now let τ be another facet and denote by {ρj}dj=1 its rays. They correspond to the
components Dρ1 , . . . , Dρd of D with the torus-invariant point ητ as the point of intersection.
From the preceding discussion, we infer that if ρj is not a ray of σ, then, choosing ℓ large
enough, we can ensure that fσ has a large order of vanishing along Dρj .

Since the order of vanishing of fσ along such a component Dρj is equal to the minimum
j-th coordinate of any element of Aτfσ , we see that all the elements of Aτfσ have large j-th
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coordinates. On the other hand, on the intersection face δ = τ ∩ σ, we have

prτ≻δ(A
τ
fσ) = prσ≻δ(A

σ
fσ)

where pr·≻· denote the corresponding projection maps, as in the previous sections.
In particular, by the coherence of the collection Aσ, this shows that if ℓ is chosen to be

large enough, then any element in Aτfσ dominates an element of Aτ , that is,

Aτ = min
≤

(
Aτ ∪ Aτfσ

)
.

Now we choose ℓ large enough, and for each facet σ of Σ, we define the rational function
fσ as above. Let

f :=
∑
σ∈Σd

λσfσ, (2.17)

for generic choices of λσ in the base field.
Observe that for any facet τ , for any pair of rational functions h, g, and generic choice

of scalars λ, µ in the base field, we have

Aτλh+µg = min
≤cw

(
Aτh ∪ Aτg

)
.

We thus infer that for any facet τ of Σ and for the function f defined in (2.17), we have

Aτf = min
≤

( ⋃
σ∈Σd

Aτfσ

)
= Aτfτ = Aτ .

To conclude, we note that the coherence condition implies that more generally, for each
face δ of Σ, we have Aδf = Aδ and the result follows.

2.4.3 Proof of Theorem 2.4.2

We now treat the theorem in its full generality. In the following, we will use the following
terminology borrowed from lattice theory concerning the combinatorial structure of faces
in a cone complex.

Definition 2.4.5 (The (multivalued) meet and join operations ∧ and ∨). Given two faces
τ and σ in a cone complex Σ, we denote by τ ∧ σ the set of all maximal common faces
between τ and σ. If τ and σ are faces of a cone ζ, we denote by τ ∨ζ σ the unique minimal
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face of ζ that contains both τ and σ. Notice that if Σ does not have parallel faces, then
τ ∧ σ is a single cone and τ ∨ζ σ is independent of ζ, so in this case, we denote this cone
by τ ∨ σ.

In the rest of this section we assume given an SNC divisor D =
∑

i∈I Di in X, and we
consider the dual cone complex Σ(X,D).

Adapted family of rational functions

Proceeding somehow similarly as in the proof of the toric case, we will prove the existence
of a family of rational functions with nice properties depicted in the following theorem.

Theorem 2.4.6. Let σ be a face of Σ(X,D). There exists a rational function uσ ∈ K(X)

with the following properties:

(P1) uσ belongs to all local rings Ox,ηδ , for δ ∈ Σ(X,D), and is invertible in OX,ησ .

(P2) It has a zero along the divisor Dj for each j /∈ Iσ.

(P3) For any face τ of Σ(X,D) the following holds. If ζ ∈ τ ∧ σ is a maximal common
face of τ and σ, then the restriction uσ |Sζ

of uσ on the stratum Sζ has a zero along
all the strata Sζ∨τϱj ⊆ Sτ for any j ∈ Iτ \ Iζ.

Definition 2.4.7 (Adapted family of rational functions). Given a dual cone complex
Σ(X,D), the collection of rational functions uσ, σ ∈ Σ(X,D), verifying the properties
(P1), (P2), and (P3) in the above theorem is called an adapted family of rational functions
for the dual cone complex.

In order to prepare for the proof of the above theorem, we start by stating two lemmas
concerning the existence of rational functions with prescribed regularity on a given finite
set of points.

Lemma 2.4.8. Let Y ⊆ X be a closed irreducible set and let x be a (non-necessarily
closed) point in X \ Y . Then there exists an irreducible divisor E ⊂ X which contains Y
but not x.

Proof. Denote by ηY the generic point of Y . As X is separated we have OX,x \OX,ηY ̸= ∅.
Take f ∈ OX,x \ OX,η, then ηY is contained in the indeterminacy set of f . As X is
smooth the indeterminacy set is the support of the negative part of div(f), hence there is
a component E of this negative part containing Y but not x.
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Lemma 2.4.9. Suppose X is quasi-projective. Given a hypersurface E ⊂ X, points
x1, . . . , xn ∈ E and a point x /∈ E, there is a rational function u which vanishes on
each component of E with order of vanishing one, belongs to each local ring OX,xi for any
i = 1, . . . , n, and which is invertible at x.

Proof. Taking a projective compactification, we can assume without loss of generality that
X is projective. Consider an ample divisor H not containing any of the points x, x1, . . . , xn
and not sharing any component with E. Then, for some large integer number n, the divisor
nH −E is very ample, and so base point free. Therefor, there is a section u of O(nH −E)
which does not vanish on x. The corresponding rational function satisfies all the required
properties.

We are now ready to proof the existence of adapted families of rational functions.

Proof of Theorem 2.4.6. In order to show this, we first apply Lemma 2.4.8 to each stratum
Sτ not contained in Sσ to get an irreducible divisor Eτ ⊂ X which contains Sτ but not Sσ.
Let

E :=
∑

τ : Sτ ̸⊃Sσ

Eτ .

We now apply Lemma 2.4.9 to E, the points ηδ for δ ∈ Σ(X,D), and the point ησ, which
clearly does not belong to E. We infer the existence of a rational function uσ in K(X) that
vanishes on each component Eτ of E, which belongs to OX,ηδ for any point δ ∈ Σ(X,Σ),
and which is invertible in OX,ησ . We claim uσ verifies all the claimed properties (P1), (P2),
and (P3).

The first claim (P1) is clearly satisfied by the construction of uσ.

Also, notice that if j /∈ Iσ, then Sϱj = Dj. Since both Dj and Eϱj are irreducible, we
must have Eϱj = Dj. Since j /∈ Iσ, we have ησ /∈ Dj, and so by the choice of uσ, it should
vanish on Eϱj . This shows that uσ verifies Property (P2).

Finally, let ζ be a maximal common face of τ and σ, and let j ∈ Iτ \ Iζ . Note that
by the maximality of ζ, the cone ζ ∨τ ϱj is not a face of σ. This means that ησ does
not belong to Sζ∨τϱj , and so uσ vanishes on Eζ∨τϱj . Notice as well that uσ ∈ OX,ηζ and
Sζ∨τϱj ⊆ Eζ∨τϱj ∩ Sζ . It follows that the restriction uσ |Sζ

of uσ to Sζ vanishes on Sζ∨τϱj .
This proves that uσ verifies also Property (P3).
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Proof of the weak approximation theorem

Now, we come back to the proof of the approximation theorem. Let σ be a face of Σ(X,D).
Applying again Lemma 2.4.9, we find a local equation zi for Di around ησ for each i ∈ Iσ
with the additional property that zi ∈ OX,τ for each cone τ that is not a face of σ. With
this choice of local parameters, we define

fσ := uℓσ
∑
a∈Aσ

∏
i∈Iσ

zaii , (2.18)

for a large enough number ℓ which will be precised in a moment. Notice that fσ is defined
in each local ring OX,τ for any cone τ ∈ Σ(X,D). We prove the following.

Proposition 2.4.10. Provided ℓ is large enough, fσ verifies the following two properties.

1. The set Aσfσ is equal to Aσ, and

2. For each face τ of Σ(X,D) different from σ, we have

min
≤

(Aτfσ ∪ A
τ ) = Aτ .

Using this proposition, we can finish the proof of our approximation theorem.

Proof of Theorem 2.4.2. Let
f :=

∑
σ

λσfσ

where λσ is a generic choice of coefficients for each face of Σ(X,D). Then, applying the
above proposition, we get for each face τ of Σ(X,D),

Aτf = min
≤

⋃
τ

Aτfσ = Aτ .

In other words, f is the rational function we have been looking for.

At this point, we are only left with the proof of Proposition 2.4.10.

Proof of Proposition 2.4.10. We use the notations preceding the proposition. By invert-
ibility of uσ in OX,ησ , the expression (2.18) gives an admissible expansion of fσ, and so we
clearly have Aσfσ = Aσ. This shows the assertion (1) in the proposition.
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Now, in order to prove Claim (2), let τ ̸= σ be a face of Σ(X,D), and take local
parameters wi for each Di around ητ , for i ∈ Iτ . The element uσ lives in OX,ητ and so in
ÔX,ητ . Consider an admissible expansion in ÔX,ητ for uσ

uσ =
∑
β

cβw
β. (2.19)

Property (P2) above implies that for each j ∈ Iτ \ Iσ and for each α = (αi)i∈Iτ in the
support of (2.19), we should have

αj ≥ ordDj
(uσ) ≥ 1.

More generally, we claim the following.

Claim 2.4.11. For each α in the support of the admissible expansion (2.19), there is a
maximal common face ζ of τ and σ such that for each j ∈ Iτ \ Iζ, we have αj ≥ 1.

Proof. Let α be an element in the support of the admissible expansion (2.19), and consider
J =

{
i ∈ Iτ | αi = 0

}
. Let τJ be the face of τ corresponding to J ⊆ Iτ . It will be enough

to show that τJ ⊆ σ. Indeed, in this case, τJ will be a common face of τ and σ, and so
there exists a face ζ ∈ τ ∧ σ which contains τJ . For any j ∈ Iτ \ Iζ , we have αj ≥ 1, and
so the claim follows.

For the sake of a contradiction, suppose τJ is not a face of σ, and let ζ be a maximal
common face of σ and τJ . In particular, ζ ⊊ τJ , which implies that Iζ ⊊ J .

We have a projection

π : OX,ητ → OSζ ,ητ

h 7→ h|Sζ

that extends by continuity to a projection π : ÔX,ητ → ÔSζ ,ητ . Using this, we obtain an
admissible expansion for uσ |Sζ

in ÔSζ ,ητ in terms of local parameters wi|Sζ
for Sζ∨τϱi , for

i ∈ Iτ \ Iζ . This is obtained by applying the projection π to both sides of (2.19). Indeed,
for each β, the restriction cβ |Sζ

is still a unit in ÔSζ ,ητ , and so we get

uσ |Sζ
=
∑
β

cβw
β
|Sζ
,

which is an admissible expansion in ÔSζ ,ητ . Note in particular that since Iζ ⊆ J , and since
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αi = 0 for all i ∈ J , we get that πIτ\Iζ(δ) is in the support of the admissible expansion for
uσ |Sζ

.
Now take j ∈ J \ Iζ . As uσ |Sζ

vanishes along the divisor Sζ∨τϱj and a local equation for
this is given by wj |Sζ

, we should have that wj |Sζ
divides uσ |Sζ

inside OSζ ,ητ . In particular,
this implies that for any β in the admissible expansion uσ |Sζ

, we must have βj > 0. In
particular, this gives αj > 0 which contradicts the definition of J , so the claim follows.

Let hσ =
∑

a∈Aσ

∏
j∈Iσ z

aj
j . We have fσ = uℓσhσ, from which we get the inclusion

Aτfσ ⊆ Aτuℓσ + Aτhσ .

Moreover, we have
Aτuℓσ ⊆ Aτuσ + · · ·+ Aτuσ︸ ︷︷ ︸

ℓ times

.

Let now β be an element of Aτfσ . It follows that we can write β as the sum of ℓ elements
in Aτuσ and an element γ ∈ Aτhσ .

By what preceded, we have for each j ∈ Iτ \ Iσ and each element α in Aτuσ that αj ≥ 1.
It follows that we have βj ≥ ℓ for all j ∈ Iτ \ Iσ. For ℓ large enough, this is certainly larger
than the j-coordinate of any element in Aτ .

We now show how to control the j-coordinates of β for j ∈ Iτ ∩ Iσ. For this we write

β = α1 + · · ·+ αℓ + γ

for α1, . . . , αℓ ∈ Aτuσ and γ ∈ Aτhσ .
Applying Claim 2.4.11, for each αi, which is in the support of the admissible expansion

(2.19) of uσ, we infer the existence of a maximal common face ζi of τ and σ such that for
each j ∈ Iτ \ Iζi , we have αij ≥ 1. Here αij is the j-coordinate of αi.

Let r be the number of elements of τ ∧ σ. By the pigeonhole principle, there is a
maximal common face ζ of both σ and τ such that we have ζi = ζ for at least ℓ/r indices
i ∈ [ℓ]. We thus get for each j ∈ Iτ \ Iζ , the inequality

βj = α1
j + · · ·+ αℓj + γj ≥ ℓ/r + γj.

We infer again that if ℓ is large enough, the j-coordinate of β is larger than the j-coordinate
of any element in Aτ provided that j is in Iτ \ Iζ .
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Now to finish the proof of Property (2), note that since ζ is a common face for τ and
σ, we have by the coherence property that

min
≤

pr
τ≻ζ

(Aτfσ) = min
≤

pr
σ≻ζ

(Aσfσ) and min
≤

pr
τ≻ζ

(Aτ ) = min
≤

pr
σ≻ζ

(Aσ).

Since Aσfσ = Aσ, this shows that

min
≤

pr
τ≻ζ

(Aτfσ) = min
≤

pr
τ≻ζ

(Aτ ).

Hence, since β ∈ Aτfσ , there is an element β′ ∈ Aτ such that pr
τ≻ζ

(β) ≥ pr
τ≻ζ

(β′).
Moreover, by what we discussed above, all the j-coordinates of β for j outside Iζ are also
larger than the corresponding j-coordinates of β′ (if we choose ℓ large enough). This shows
that we actually have β ≥ β′ and the claim in (2) follows, namely that

min
≤

(Aτfσ ∪ A
τ ) = Aτ .

2.4.4 Proof of Corollary 2.4.4

The proof of this result is based on the following proposition

Proposition 2.4.12. Any tropical function F on the cone complex Σ(X,D) can be written
as the difference of two tropical functions F1 and F2 such that the restriction of Fi to each
cone σ ∈ Σ(X,D) is convex and non-negative.

Proof. In order to prove the existence of F1, F2, it will be enough to prove

(i) there exists a non-negative tropical function G that is convex on each cone of the
original dual complex Σ(X,D), and

(ii) if G is such a function, then for any large enough integer ℓ, the function F + ℓG is a
non-negative convex tropical function.

In fact, given this, we can write F = (F + ℓG)− ℓG and take F1 = F + ℓG and F2 = ℓG

which verify the convexity condition.
Assuming (i), we now prove (ii). Let G be a convex tropical function on Σ(X,D), and

let Σ(G) be the corresponding subdivision of Σ(X,D). For each cone σ in Σ(X,D), we
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get a quasi-projective subdivision ∆σ of σ, which can be completed to a projective rational
fan in Nσ,R. Let Xσ be the projective toric variety associated to this complete fan, and let
Eσ be the corresponding toric divisor, which is thus an ample divisor. The restriction F|σ
gives a divisor Lσ in X. Since Eσ is very ample, the divisor ℓEσ + Lσ remains very ample
for a large enough integer number ℓ.

Given the bijection between order functions on ∆σ and rational ideal sheafs on X,
this bijection makes a correspondence between ample divisors and order functions that are
convex on ∆σ, hence the fact that F|σ+ℓG|G remains convex for some large enough number
n follows from the fact that ℓEσ + Lσ is very ample in X.

Proof of Corollary 2.4.4. By the proposition above, there are tropical functions F1, F2 such
that each Fi is non-negative and convex on each facet of Σ(X,D) and F1 − F2 = F . Each
Fi, for i = 1, 2, is given by a coherent family of antichains Aσi in the sense that for each
cone σ we have

Fi(x) = min{⟨x, β⟩ | β ∈ Aσi }.

By approximation theorem, there are rational functions f1, f2 such that Aσfi = Aσi for
i = 1, 2 and fo each cone σ on Σ(X,D). We therefor get F = trop(f1/f2) and the theorem
follows.

2.5 Tropical topology on tangent cone bundles

In this section we study the tropical topology on the spaces of quasi-monomial valuations.
By our duality and approximation theorems proved in the previous sections, this coincides
with the coarsest topology on the tangent cone which makes the directional derivatives of
tropical functions all continuous. Therefore, we define the tropical topology in the general
framework of cone complexes and their tangent cones.

2.5.1 Definition of the topology

In order to motivate what follows, we first observe that tangent cone bundles inherit a
natural Euclidean topology defined as follows.

Definition 2.5.1 (Euclidean Topology). Let Σ be a cone complex and k a non-negative
integer number. The Euclidean topology on the tangent cone TCk Σ is the topology defined
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by the inclusion of
TCk Σ ↪→

⋃
σ∈Σ

Nk
σ,R

where the space on the right hand side is obtained by gluing the vector spaces Nk
σ,R with

the quotient topology, and the topology on each Nk
σ,R is the topology of a finite dimensional

real vector space.

This topology however turns out to be not properly adapted to the study of valuation
theory and tropical geometry in the higher rank context. This is suggested by the following
example of a tropical function whose derivative is not continuous with respect to the
Euclidean topology.

Example 2.5.2. Let σ = R+ × R+ and consider the tropical function

F : σ −→ R

(x1, x2) 7−→ min{x1, x2}.

For the first directional derivative of F , we have

DF : TC σ −→ R2

((x1, x2); (y1, y2)) 7−→

(x1, y1) if x1 < x2 or (x1 = x2 and y2 < y1)

(x2, y2) if x1 > x2 or (x1 = x2 and y2 < y1).

This map is not continuous with respect to the Euclidean topology. To see this, consider
the map

t 7→ DF ((t, 1− t); (y1, y2))

for y1 ̸= y2. This function has a discontinuity at t = 1
2
.

In order to use topological tools in the context of higher rank valuation theory, and in
view of the analytic description of higher rank quasi-monomial valuations, we are naturally
led to introduce the following topology.

Definition 2.5.3 (Tropical topology). Let Σ be a cone complex and TCk Σ its tangent
cone. We consider Rk+1 with its Euclidean topology and define the tropical topology on
TCk Σ as the coarsest topology which makes all the maps

DkF : TCk Σ −→ Rk+1
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continuous for any tropical function F : |Σ| → R.

Remark 2.5.4. In the case Σ = Σ(X,D) for a smooth quasi-projective variety X and an
SNC divisor D on X, the tropical topology on TCk Σ is the coarsest topology such that
for any rational function f ∈ K(X)×, the directional derivative Dk trop(f) is a continuous
function from TCk Σ→ Rk+1. This is a direct consequence of the approximation theorem.

2.5.2 Description of the topology

The aim of this section is to give a description of this topology by introducing a basis of
open sets. This will be based on the following definition.

Definition 2.5.5 (Σ̃-open sets). Let Σ be a cone complex and Σ̃ be a rational subdivision
of it. A set U ⊂ TCk Σ is called a Σ̃-open set if U ∩ TCk σ is open in TCk σ with respect
to the Euclidean topology for every cone σ ∈ Σ̃.

Here is the main theorem of this section.

Theorem 2.5.6. Let Σ be a cone complex and consider its tangent cone TCk Σ for k a
non-negative integer number. Then

1. For each subdivision Σ̃ of Σ, the Σ̃-open sets of TCk Σ are open with respect to the
tropical topology.

2. The union of all Σ̃-open sets for Σ̃ a rational subdivision of Σ form a basis of opens
sets for the tropical topology.

The proof of this theorem is given in the next section. We state the following corollary.

Corollary 2.5.7. Let Σ be a cone complex and TCk Σ its tangent cone endowed with the
tropical topology. Then

1. The tropical topology is finer than the Euclidean topology, in particular it is both
Hausdorff and normal.

2. A set is dense in TCk Σ with respect to the tropical topology if and only if it is dense
with respect to the Euclidean topology.

3. TCk Σ is not locally compact in general (in fact, as soon as k > 0 and the dimension
of Σ is at least two).
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Proof. As any Euclidean open set is Σ̃-open for any subdivision Σ̃ of Σ we get that the
Euclidean topology is finer than the tropical topology. Hence it is Hausdorff and normal.

For point (2), it is enough to notice that for any subdivision Σ̃ of Σ and any Σ̃-open set
U , there is an Euclidean open set V contained in U . For example, we can take a non-empty
set consisting of of all the points whose first coordinate is in the relative interior of some
given cone in Σ̃.

For point (3), notice that if U is open and U is compact, then as we saw in the proof
of (2), we could find an open set V ⊆ U such that V is open in the Euclidean topology
and moreover, the closure V with respect to the tropical topology is compact. Denoting by
V Trop and V Euc the set V endowed with its tropical and Euclidean topology, respectively,
we see first that the identity map

id : V Trop → V Euc

is continuous. Moreover, as V Trop is compact and V Euc is Hausdorff, the identify would be
a homeomorphism. This implies that the tropical and the Euclidean topologies agree on
V . However this is not possible if we have both k > 0 and dimΣ > 1 as otherwise, we
could choose a subdivision Σ̃ of Σ subdividing V . Then for some W ⊆ V and some σ ∈ Σ̃

we would have that W ∩ TC σ is Σ̃-open but not an Euclidean open set.

2.5.3 Proof of Theorem 2.5.6

We adapt the following terminology in the sequel. For a cone σ of a cone complex Σ, and
a point (x;w) ∈ TCk Σ, by saying σ supports the point (x;w) we mean the point (x;w)

belongs to TCk σ.

We first prove the second point assuming the first.

Proof of (2). Let F : |Σ| → R be a tropical function and consider a rational subdivision
Σ̃ of Σ such that F is linear on each cone of Σ̃. Let V ⊂ Rk+1 be an open set for the
Euclidean topology. We show that

(
DkF

)−1
(V ) is Σ̃-open. This proves the result.

Let δ be a cone of Σ̃. By the choice of Σ̃, there is a linear function Fδ on Nδ,R such that
for any point (x;w) ∈ TCk δ, with w = (w1, . . . , wk), we have

DkF (x;w) = (Fδ(x), Fδ(w1), . . . , Fδ(wk)).
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The intersection

(
DkF

)−1
(V ) ∩ TCk δ =

(
Fδ × · · · × Fδ︸ ︷︷ ︸

(k+1) times

)−1
(V ) ∩ TCk δ

is clearly an open set in TCk δ for the Euclidean topology, and the claim follows.

Proof of (1). Let Σ̃ be a rational subdivision of Σ and let U be a Σ̃-open set. We have to
show that U is open for the tropical topology of TCk Σ.

We first observe that if Σ̃′ is a subdivision of Σ̃, any Σ̃-open set is also Σ̃′-open. There-
fore, in order to prove the above claim, we can assume that Σ̃ is simplicial.

Take (x;w) ∈ U . We will prove that (x;w) is an interior point of U for the tropical
topology, which clearly implies the result. For this, we will explicitly construct a neighbor-
hood of (x;w) for the tropical topology included in U .

Let ζ be the minimal face of Σ̃ which supports (x;w). For each facet δ of Σ̃ we find a
rational subdivision Σ̃δ of Σ̃ with the following properties.

(a) Σ̃δ is simplicial.

(b) There is a unique facet in Σ̃ denoted by γ = γζ,δ which contains ζ and which is
contained in δ.

(c) For each pair (δ, ϱ) consisting of δ and a ray ϱ of δ, we can find a tropical function
F δ,ϱ on |Σ| such that the following properties hold:

(1) F (δ,ϱ) is linear on each cone of Σ̃δ.

(2) over the facet γ of Σ̃δ, we have F δ,ϱ|γ = χm|γ where m is the primitive element
in the ray dual to ϱ in δ∨ and χm is the linear function induced by this vector.
In other words, F δ,ϱ takes value one on the primitive vector of ϱ and value zero
on all the rays of δ.

For such a fixed facet δ of Σ̃ which contains ζ, consider the function Φδ defined by the
collection of functions F δ,ϱ for ϱ a ray of δ, so

Φδ := (F δ,ϱ)ϱ ray of δ : Σ→ Rdim(δ).
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Let γ = γζ,δ be the facet of Σ̃(ζ) which contains ζ and which is contained in δ. By
Property (c), the linear functions F δ,ϱ for ϱ a ray of δ are linearly independent on γ, and
so Φδ restricted to γ is a homeomorphism with its image in Rdim(δ).

We remark now that the directional derivative map

Ψδ = (DkF δ,ϱ)ϱ ray of δ : TCk Σ→ (Rdim(δ))k+1 (2.20)

is a homeomorphism with its image when restricted to TCk γ, when we put on TCk γ its
Euclidean topology. Indeed, restricted to TCk γ, Ψδ can be identified with the restriction
to TCk γ of the invertible linear map

(Φδ × Φδ × · · · × Φδ︸ ︷︷ ︸
(k+1) times

) : Rdim(δ)×(k+1) → Rdim(δ)×(k+1).

Hence, there is an open set Uδ ⊆ (Rk+1)dim δ such that its preimage under the map
(2.20) satisfies

Ψ−1δ (Uδ) ∩ TCk γ = U ∩ TCk γ.

Note that
Ψ−1δ (Uδ) =

⋂
δ,ϱ ray in δ

(
DkF (δ,ϱ)

)−1
(Uδ),

and so Ψ−1δ (Uδ) is an open set in the tropical topology and therefore a neighbourhood of
(x;w) ∈ U . This proves that (x;w) is an interior point of the intersection

⋂
δ Ψ
−1
δ (Uδ) for

δ running over all facets which contain ζ, which is an open set for the tropical topology.
Denote by W this intersection. Note that we have W ∩ TCk γζ,δ ⊂ U ∩ TCk γζ,δ for each
facet δ which contains δ.

Let now Σ̃′ be a rational subdivision of Σ with the following properties:

• Σ̃′ is finer than Σ̃δ for all facets δ which contain ζ.

• there exists a tropical function G which is linear on each cone of Σ̃′, and which is
strictly positive on the relative interior of each cone τ of Σ̃′ which supports (x;w)

and which is non-positive everywhere else.

Then, (DkG)−1(R>0 × Rk) is an open set in the tropical topology, and moreover, it is
contained in the union

⋃
τ TC

k τ where the union goes over all cones τ of Σ̃′ which support
(x;w).
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It follows finally with these constructions that

(x;w) ∈ (DkG)−1(R>0 × Rk) ∩
⋂
δ

Ψ−1δ (Uδ) ⊆
⋃
δ

U ∩ TCk δ

where δ runs over facets of Σ̃ which contain (x;w).
We finally infer that U is a neighborhood of (x;w) in the tropical topology, and the

theorem follows.

2.6 Spaces of valuations and the retraction map

For a given variety X, we introduce some spaces of valuations and show how for an SNC
divisor D, the tangent cone TCk Σ(D) endowed with its tropical topology naturally fits
inside them.

2.6.1 Higher rank analytification and its centroidal filtration

Definition 2.6.1. Given a variety X, we define the birational analytification of X of rank
bounded by k as the set

Xbir,k :=
{
ν : K(X)∗ → Rk | ν is a valuation

}
endowed with the coarsest topology which makes continuous all the evaluation maps

evf : X
bir,k −→ Rk

ν 7−→ ν(f),

for any f ∈ K(X)∗, where Rk is given its Euclidean topology. We define moreover the
following subspaces of Xbir,k

Xℶ· ,k :=
{
ν ∈ Xbir,k | ν has center in X

}
Xℸ· ,k :=

{
ν ∈ Xbir,k | ν does not have center inX

}
and endow them with the topology induced by that of Xbir,k.

Remark 2.6.2. Notice that Xbir,k = Xℶ· ,k ⊔ Xℸ· ,k and Xbir,k = Xℶ· ,k if X is proper. In
the terminology of [FR16b], the space Xbir,k coincides with the subspace of all valuations
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defined over the generic point in the Hahn analytification of X endowed with the extended
Euclidean topology. Moreover, the notation Xℶ· ,k is used in analogy with the analytic space
Xℶ of Berkovich [Ber96] and Thuillier [Thu07], where we have used a dot as a remainder
that we are considering only the birational parts.

We now introduce a flag of subspaces on Xbir,k which interpolate between Xℶ· ,k and
Xbir,k.

Definition 2.6.3 (The centroidal filtration). For 0 ≤ r ≤ k we consider the set

F rXbir,k =
{
ν ∈ Xbir,k | projr(ν) has center in X}

where projr(v) is the composition of v with the projection Rk → Rr to the first r coordi-
nates. In other words,

F rXbir,k = proj−1r Xℶ· ,r.

This give a decreasing filtration

Xbir,k = F 0Xbir,k ⊇ F 1Xbir,k ⊇ · · · ⊇ F kXbir,k = Xℶ· ,k.

Many of the constructions we will do in the following will be compatible or can be
extended to this centroidal filtration, and we will do so.

2.6.2 Inclusion of tangent cones in the analytification

Proposition 2.6.4 (The inclusion map). Given an SNC divisor D on the variety X, by
Theorem 2.3.10 we get an inclusion map

ι : TCk−1Σ(D) −→ Xℶ· ,k

(x;w) 7−→ νx;w.

Then, the map ι induces a homeomorphism between TCk Σ(D) endowed with the tropical
topology and its image with the topology induced by Xℶ· ,k. In the case in which X is proper
we can restrict the codomain to an inclusion

ι : TCk−1Σ(D) −→ (X \D)ℸ· ,k.
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Proof. By Proposition 2.3.3 the center of a quasi-monomial valuation defined by D is
always on D, so we can restrict to the codomain above in each case. Moreover, the fact
that the map induces a homeomorphism with its image is a direct consequence of the
approximation theorem. In fact, any tropical function is of the form trop(f) for a rational
function f ∈ K(X)∗. Since evf ◦ ι = trop(f), the tropical topology coincides with the
induced topology by ι, and so ι will be a homeomorphism to its image.

Regarding the center, the following result will be useful later. For a valuation ν in Xℶ· ,k,
we denote by cν the center of ν in X.

Proposition 2.6.5. Let X be a variety, then the map

cX : Xℶ· ,k −→ X

ν 7−→ cν

that assigns to each valuation its center in X is anticontinuous.

Proof. Let U = Spec (A) ⊆ X be an affine open set. Then for a valuation ν ∈ Xℶ· ,k, we
have

cν ∈ U ⇐⇒ ν|
A

≥ 0 ⇐⇒ ν ∈
⋂
f∈A

ev−1f [0,∞).

Hence, c−1X (U) =
⋂
f∈A ev

−1
f [0,∞) is closed. Now if V is an arbitrary open set, then,

as X is Noetherian, we have a finite cover V =
⋃
i Ui by open affine subsets and so

c−1X (V ) =
⋃
i c
−1
X (Ui) is closed.

2.6.3 The retraction map

Let X be a smooth variety and D an SNC divisor on X. Endowing the tangent cone with
the tropical topology, Proposition 2.6.4 gives an inclusion of TCk−1Σ(D) as a topological
subspace of Xℶ· ,k. In this section we will construct a retraction of Xℶ· ,k onto TCk−1Σ(D)

for this inclusion and study its basic properties. This generalizes the picture from rank one
to higher rank.

Definition of the retraction map

We start by recalling how to apply a valuation to a divisor when the valuation has a center
in the variety.
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Definition 2.6.6. Let E be a cartier divisor in a variety X. Given a valuation ν ∈ Xℶ· ,k

with center cν in X, we define ν(E) := ν(z) where z ∈ OX,cν is a local equation for E
around the point cν .

As two local equations differ by a unit, this is independent of the choice of local equation.
Using this we can introduce the retraction map. We identify M k(D) with TCk−1Σ(D)

using the duality Theorem.

Definition 2.6.7 (Retraction). Let D be an SNC divisor on a variety X. The retraction
to TCk−1Σ(D) is the map

r
D
: Xℶ· ,k → TCk−1Σ(D) (2.21)

given by sending any valuation ν ∈ Xℶ· ,k to the unique pair (x;w) ∈ TCk−1Σ(D), with
corresponding quasi-monomial valuation νx,w, which verifies for any component Di of D,
the equality

νx,w(Di) = ν(Di). (2.22)

Proposition 2.6.8. The map r
D

verifies the following properties:

1. It is well-defined.

2. It is continuous.

3. It is a retraction for the inclusion ι from Proposition 2.6.4, that is, r
D
◦ ι = Id.

Proof. (1) We need to prove that for any valuation ν there is a quasi-monomial valuation
which satisfies 2.22. For this, let Sσ be the smallest stratum in D which contains cν , the
center of ν. We note that a component Di contains cν if and only if i ∈ Iσ. Moreover,
if a component Dj does not contain cν , then its local equation around cν is invertible so
ν(Dj) = 0. Hence, we can associate to ν the pair (x;w) such that νx,w corresponds to the
quasi-monomial valuation in Mσ(D) which takes the value ν(Di) for any i ∈ Iσ.

(2) The proof will be based on the Topology-Mixing Lemma 2.6.9 below, and is given in
Section 2.6.5.

(3) To show that r
D

is a retraction, we note that if νx,w ∈ M k(D) is a quasi-monomial
valuation defined by vectors αi ∈ Rk

⪰lex0
, then for each component Di of D, we have by

definition νxw(Di) = αi and so r
D
(ν) = r

D
(ι(x;w)) = (x;w). This shows that the map r

D

is a retraction.
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2.6.4 Topology-Mixing Lemma

In this section we prove the following lemma.

Lemma 2.6.9 (Topology-Mixing Lemma). Let X be an algebraic variety and fix an element
f ∈ K(X)∗. Then the set

ev−1f

(
(−∞, 0]

)
=
{
ν ∈ Xℶ· ,k | ν(f) ⪯lex 0

}
is a closed set inside Xℶ· ,k.

Remark 2.6.10. Notice that the interval (−∞, 0] in Rk constructed with the lexicographic
order is not closed with respect to the Euclidean topology. Therefore the lemma does not
follow directly from the definition of the tropical topology on Xℶ· ,k, and it might appear to
be somehow unexpected as it happens to mix the Euclidean and ordered topologies (where
the name given to the result). The statement might be not true when the interval (−∞, 0]
is replaced by other half intervals.

Proof. The statement is equivalent to showing that

ev−1f

(
(0,∞)

)
= {ν ∈ Xℶ· ,k | ν(f) ≻lex 0}

is an open set inside Xℶ· ,k. For this we will show that any element ν ∈ ev−1f (0,∞) is an
interior point of ev−1f (0,∞).

So let ν be such an element. First, notice that since ν(f) ≻ 0, we must have ν(f+1) = 0.
This shows ν(f) ̸= ν(f + 1). Take now two disjoint open neighborhoods U and V of ν(f)
and ν(f +1) in Rk, respectively, so that we have ν ∈ ev−1f (U)∩ev−1f (V ). For any valuation
ν̃ ∈ ev−1f (U) ∩ ev−1f (V ), we have ν̃(f) ̸= ν̃(f + 1), which implies that

0 = ν̃(1) = min
⪯lex

{
ν̃(f + 1), ν̃(f)

}
.

Since ν̃(f) ∈ U , and 0 /∈ U , we get ν̃(f) ̸= 0. This implies that ν̃(f) ≻lex 0 and so
ν̃ ∈ ev−1f

(
(0,∞)

)
. We infer that the open neighborhood ev−1f (U)∩ ev−1f (V ) of ν in Xℶ· ,k is

contained in ev−1f

(
(0,∞)

)
, from which the result follows.

2.6.5 Continuity of the retraction map

In this section, we prove part (2) of Proposition 2.6.8 by using the Topology-Mixing Lemma.
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By the definition of the tropical topology on TCk−1Σ(D), in order to prove r
D

is con-
tinuous, it will be enough to prove that for each tropical function F : Σ(D) → R the
composition

F := Dk−1F ◦ r
D
: Xℶ· ,k → Rk

is continuous. Moreover, by our approximation theorem, we can find a rational function f
such that F = trop(f) : Σ(D) → R and then F = Dk−1 trop(f) ◦ r

D
. We will fix such a

function.

In order to prove the continuity of F , we will construct a sequence of covers Xℶ· ,k =⋃
iGi by finitely many closed sets in which F behaves better in Gi than in Xℶ· ,k. Then

to show the continuity of the function F , it will be enough to prove the continuity of F
restricted to each of these sets Gi. Indeed, for any Euclidean closed set C ⊆ Rk we have
that

F−1(C) =
⋃

σ∈Σ(D)

F−1|
Gi

(C)

and so F−1(C) is closed provided that F−1|
Gi

(C) are all closed for each Gσ.

Let us start by taking a finite affine open cover X =
⋃
j Uj with the property that each

component Di of D is a principal divisor over each Uj. Then we have Xℶ· ,k =
⋃
i U

ℶ· ,k
i where

Uℶ· ,k
i = {ν ∈ Xℶ· ,k | cν ∈ Ui}

is closed by Proposition 2.6.5, hence it is a finite closed cover. By the observation above
it will be enough to prove that F is continuous restricted to each Uℶ· ,k

i , that is, we can
assume that X is affine and each divisor Di is principal, that is, ÷(zi) = Di for some
regular function zi. Moreover, we can assume as well that the rational function f defining
F is a regular function on X.

Now, for each cone σ ∈ Σ(D), consider the set

Gσ :=
{
ν ∈ Xℶ· ,k | cν ∈ X \

⋃
j /∈Iσ

Dj

}
.

That is, Gσ is the set of all valuations ν ∈ Xℶ· ,k whose center cν does not belong to any
component Di with i /∈ Iσ. As we have c−1X (X \

⋃
j /∈Iσ Dj), by Proposition 2.6.5 this set is

a closed subset of Xbir,k.

Proposition 2.6.11 (The closed cover Gσ). The above family of closed sets Gσ, σ a face
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of Σ(D), forms a closed cover of Xℶ· ,k, namely, Xℶ· ,k =
⋃
σ Gσ where the union goes over

all faces σ of Σ(D).

Proof. Given ν ∈ Xℶ· ,k, two cases can occur. Either, cν /∈ D, in which case we get ν ∈ Gσ

for all facets σ of Σ(D). Or, cν ∈ D, in which case, there exists a component Di such that
cν ∈ Di. Let σ be the face of Σ(D) whose associated stratum Sσ contains cν . We have
ν ∈ Gσ, and the proposition follows.

Hence, it is enough to prove the continuity over each Gσ. Without loss of generality,
assume that D1, . . . , Dr are all the components of D which contain ησ.

As f is regular, we have f ∈ Oησ . Consider now an admissible expansion

f =
∑
β

cβz
β ∈ OX,ησ

of f around the point ησ where ÷(zi) = Di. Then F(ν) = min
{
ν(zβ) | β ∈ Aσf

}
for each

ν ∈ Gσ. In order to prove the continuity of F on Gσ, we further decompose Gσ as a finite
union of closed sets as follows. For each β ∈ Aσf , consider the set

Gσ,β :=
{
ν ∈ Gσ | F(ν) = ν(zβ)

}
.

Proposition 2.6.12 (The closed cover Gσ,β). Notations as above, the family Gσ,β, β ∈ Aσf ,
is a closed cover of Gσ.

Proof. We need to show that Gσ,β is closed for any element β ∈ Aσf . We have

Gσ,β =
{
ν ∈ Gσ | ν(zβ) ⪯lex ν(z

β′
) ∀β′ ∈ Aσf

}
= Gσ ∩

⋂
β′∈Aσ

f

{
ν ∈ Gσ | ν(zβ−β

′
) ⪯lex 0

}
which is a closed set by the Topology-Mixing Lemma 2.6.9 applied to rational functions
zβ−β

′ .

We are now ready to finish the proof of the continuity of the retraction map.

Proof of part (2) of Proposition 2.6.8. By the above discussion, we are reduced to show
that F is continuous over each Gσ for σ ∈ Σ(D). Moreover, we have Gσ =

⋃
β∈Aσ

f
Gσ,β,

and Gσ,β are all closed. Hence, again it is enough to prove that the restriction of F on
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each Gσ,β is continuous. But this is clear because the restriction of F to Gσ,β equals evzβ

which is continuous by definition.

2.7 Log-smooth pairs

In the previous section, given a variety X we constructed a retraction from Xℶ· ,k to the
tangent cone TCk−1Σ(D) associated to SNC divisor D on X. In this section, we will
introduce other instances for which we can construct dual complexes, tangent cones, and
corresponding retractions. The results will be of use in the subsequent section in order to
prove the limit formulae. We start by the following definition.

Definition 2.7.1. Let X be a smooth variety

1. A log-smooth pair over X is the data of a pair Y = (Y,D) consisting of a smooth
variety Y and an SNC divisor D on Y together with a proper morphism φ : Y → X

such that the restriction

φ|Y \D : Y \D −→ X \ f(D)

is an isomorphism. The morphism φ is called the structure morphism of the log-
smooth pair.

Given log-smooth pairs Y′ = (Y ′, D′) and Y = (Y,D), a morphism Y′ → Y between
them is a proper morphism

f : Y ′ −→ Y

that commutes with the structure map of Y and Y ′ and such that Supp
(
f ∗(D)

)
⊆

Supp
(
D′
)
.

We denote by LSPX the category of log-smooth pairs over X.

2. A log-smooth compactification of X is a proper variety Y containing X as an open
subvariety such that Y \X is an SNC divisor on Y .

A morphism between log-smooth compactifications Y ′ and Y is a morphism f : Y ′ →
Y between the underlying varieties such that f−1(X) = X and f |X is an isomorphism.
The category of log-smooth compactifications of X will be denoted by LSCX .

Notice that for a morphism as above we have f−1(Y \X) = Y ′ \X.
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3. A compactified log-smooth pair is the data of a pair Y = (Y,D) consisting of a proper
variety Y and an SNC divisor D ⊂ Y together with a birational map φ : Y 99K X

such that the divisor D can be decomposed as D = D◦+D∞ where D◦ and D∞ does
not have any component in common, and such that

(i) the domain of definition of φ is Y \D∞, that is,

φ : Y \D∞ −→ X

is well-defined and Y \D∞ is the maximum open set with this property.

(ii) the pair (Y \D∞, D◦|Y \D∞) is a log-smooth pair for X, i.e., φ|Y \D∞ is a proper
morphism from Y \D∞ to X and the restriction

Y \ (D◦ ∪D∞) −→ X \ φ(D◦)

is an isomorphism.

A morphism Y
′ → Y between compactified log-smooth pairs Y

′
= (Y ′, D′) and

Y = (Y,D) is a proper morphism f : Y ′ → Y which commutes with the structure
map φ and such that f ∗(D) ⊆ D′. Notice that in this case we have f ∗(Y \X) = Y ′\X.
The category of compactified log smooth pairs will be denoted by CLSPX .

4. Given compactified log-smooth pairs Y′ and Y. We will say that Y′ dominates Y if
there is a morphism Y

′ → Y, and we will denote this by Y
′ ≥ Y. Similar notations

are given for log-smooth pairs and log-smooth compactifications.

Proposition 2.7.2. The categories CLSPX , LSPX and LSCX are filtered. That is, for
any two objects Y1, Y2 there is a third object Y3 together with morphisms Y3 → Y1 and
Y3 → Y2.

Proof. We will give a proof for CLSPX , for the other categories similar constructions work.
So consider two compactified log-smooth pairs Y1 = (Y1, D1) and Y2 = (Y2, D2) and the
diagonal birational map

X → Y1 × Y2

induced by the inverse of the structure maps. If Z denotes the closure of the image of this
map, then we have projection maps pri : Z → Yi for i = 1, 2. By taking an embedded
resolution of singularities with respect to pr∗1(D1) ∪ pr∗2(D2), we get a variety Y3 together
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with a simple normal crossing divisor E on it. Let D3 = Ered, and define D∞3 as the divisor
generated by the components of D3 lying over D∞1 or D∞2 , and D◦3 as the divisor defined by
the other components of D3. Then Y3 \D∞3 is the domain of definition of the rational map
φ3 : Y3 99K X and Y3 \D 99K X \ φ(D◦) is an isomorphism, hence the pair Y3 = (Y3, D3)

is a compactified log-smooth pair which dominates both Y1 and Y2.

Definition 2.7.3. Given a compactified log-smooth pair Y = (Y,D), we denote by
M k(Y) = M k(Y,D) the set consisting of all rank k quasi-monomial valuations on Y

relative to the divisor D, denote by Σ(Y) = Σ(Y,D) the dual cone complex to the divisor
D on Y and by TCk−1Σ(Y) its tangent cone. Similar notations will be used for log-smooth
pairs and log-smooth compactifications.

2.7.1 The retraction map revisited

Proposition 2.7.4. Let X be a smooth variety.

1. For each log-smooth pair Y = (Y,D) over X, there is a continuous retraction

r
Y
: Xℶ· ,k −→ TCk−1Σ(Y).

2. For each log-smooth compactification Y of X, there is a continuous retraction

r
Y
: Xℸ· ,k −→ TCk−1Σ(Y ) \ {0}.

3. For each compactified log-smooth pair Y = (Y,D) over X there is a continuous
retraction

r
Y
: Xbir,k −→ TCk−1Σ(Y).

Proof. (1) As the structure map φ : Y → X is birational, it induce by pullback an
isomorphism K(Y ) ∼= K(X) from which we get Y bir,k ∼= Xbir,k. Moreover, as φ : Y → X

is a proper map, by the valuative criterion of properness, a valuation ν has a center in Y

if and only if it has a center in X. Therefore Y ℶ· ,k ∼= Xℶ· ,k.
Now the retraction r

Y
is given by the composition

Xℶ· ,k φ∗
−→ Y ℶ· ,k r

D−→ TCk−1Σ(Y),

where r
D

is given by Definition 2.6.7 applied to the pair (Y,D).
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(2) If Y is a log smooth compactification of X, then D = Y \X is an SNC divisor on Y .
Applying Definition 2.6.7 to this SNC divisor and using that Xbir,k = Y bir,k, we get a map

Xbir,k −→ TCk−1Σ(Y ).

Moreover, a valuation ν goes to 0 ∈ TCk−1Σ(Y ) iff ν is centered outside D, hence by
restriction we get a map

Xℸ· ,k −→ TCk−1Σ(Y ) \ {0}.

(3) Suppose the compactified log-smooth pair is Y = (Y,D). As in (1) we obtain the
retraction as the composition

Xℶ· ,k φ∗
−→ Y ℶ· ,k r

D−→ TCk−1Σ(Y)

where r
D

is Definition 2.6.7 applied to the divisor D inside Y and φ∗ is the pullback along
the rational map φ : Y → X.

Proposition 2.7.5. The retractions from Proposition 2.7.4 are compatible in the sense
that if we have a morphism Y′ → Y of compactified log-smooth pairs, then we have

r
Y
◦ r

Y
′ = r

Y
.

Similar statements hold for log-smooth pairs and log-smooth compactifications.

Proof. Let ν ∈ Y bir,k be a valuation. Consider a compactified log-smooth pair Y
′ ≥ Y

above Y and denote by D′1, . . . , D′l all the components of D′ in Y ′.
Let Di be a component of D in Y . There exists a subset Ji ⊆ [l] such that π∗(Di) =∑
j∈Ji njD

′
j.

Let hj be local parameters for D′j around the center c′ν of ν in Y ′. The product
∏

j∈Ji hj

is a local equation for Di around the center cν of ν in Y . We have

ν(Di) = ν(
∏
j∈Ji

h
nj

j ) =
∑
j∈Ji

njν(hj) =
∑
j∈Ji

njr
Y

′ (ν)(hj) = r
Y

′ (ν)(
∏

h
nj

j ) = r
Y

′ (v)(Di).

This implies that the two valuations ν and r
Y

′ (ν) are mapped to the same point by the
retraction map r

Y
, i.e., r

Y
(ν) = r

Y
(r

Y
′ (ν)). Since this holds for all valuations ν, the

compatibility of the retraction maps r
Y

and r
Y

′ follows.



2.8. Limit formulae 171

2.7.2 The retraction inequality

We finish this section by recalling the following useful statement from [JM12] that we call
the retraction inequality which will be used in the next section.

Proposition 2.7.6 (Retraction inequality). Let Y = (Y,D) ∈ CLSPX be a compactified
log-smooth pair and let ν ∈ Xbir,k be a valuation with center the point x of Y . Then for
each f ∈ OY,x we have the inequality

ν(f) ⪰ (r
Y
(ν))(f) (2.23)

with equality when the zero set V (f) of f is included in D locally around x.

Proof. Denote by D1, . . . , Dm the components of D which pass through x and take local
equations zi for each component Di around x. The family {zi}mi=1 can be extended to a
set of local parameters {zi}ri=1 for Y at x. By Corollary 2.2.7 there is a finite admissible
expansion of the form

f =
∑
β∈Af

aβuβz
β.

Now we have

ν(f) ⪰lex min
β∈Af

{
ν(aβuβz

β)
}
⪰lex min

β∈Af

{ν(zβ)} = (r
Y
(ν))(f),

which is the stated inequality.
Suppose now that V (f) ⊆ D locally around x. Then we can write f in OY,x as

f = u
∏m

i=1 z
ni
i for a unit u ∈ OY,x and non-negative integers ni. We conclude by observing

that

ν(f) =
m∑
i=1

niν(zi) =
∑
i

nirY(ν)(zi) = (r
Y
(ν))(f),

as required.

2.8 Limit formulae

Let X be a smooth variety over an algebraically closed field k. In this section we will see
how it is possible to reconstruct the space Xℶ· ,k of valuations with center inside X in terms
of the spaces TCk−1Σ(Y) for log-smooth pairs Y studied in the previous section (Theorem
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2.8.1 below). After that we will give a similar result for the set Xℸ· ,k of valuations whose
center is outside X in terms of a limit TCk−1Σ(Y ) over the compactification of X (Theorem
2.8.7 below) and similarily we can recontruct the centroidal filtration F rXbir,k in terms of
a centroidal filtration for TCk−1Σ(Y) over compactified log-smooth pairs Y.

2.8.1 Limit formula for Xℶ· ,k

The compatibility shown in 2.7.5 for the retraction maps presented in Proposition 2.7.4
implies that there exist natural continuous maps

r : Xℶ· ,k −→ lim←−
Y∈LSPX

TCk−1Σ(Y) (2.24)

r : Xℸ· ,k −→ lim←−
Y ∈LSCX

TCk−1Σ(Y ) \ {0} (2.25)

r : Xbir,k −→ lim←−
Y∈CLSPX

TCk−1Σ(Y). (2.26)

The objective of this section is to prove the following theorem.

Theorem 2.8.1 (Limit formula). The maps 2.24, 2.25 and 2.26 above are all homeomor-
phism.

In order to show this, it will be enough to construct an inverse for each of these maps.
We will do this for the case of 2.26 as the proof in the other cases are essentially the same.

The inverse for this map is the function

q : lim←−
Y∈CLSPX

TCk−1Σ(Y) −→ Xbir,k

s = [(x;w)]Y 7−→ νs

(2.27)

where νs is the valuation defined by

νs(f) = sup
Y

νs,Y(f), for every f ∈
⋂
Y

OX,ηs,Y

and νs,Y := νx,w for the element (x;w) in the position indexed by Y on the sequence s and
ηs,Y is the center of νs,Y .

Proposition 2.8.2. The map 2.27 is well defined and it is an inverse for the map 2.26.
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Proof. Let us start by noticing that if Y
′ ≥ Y then rD(νs,Y′) = νs,Y and therefore

η
s,Y

′ ∈ {η
s,Y

′}. Hence, the sequence of points ηs,Y is decreasing for the order given by
specialization, and therefore it becomes eventually constant equal to some η. We get the
equality

⋂
YOX,ηs,Y = OX,η.

Now, notice that by Proposition 2.7.6 the sequence

[νs,Y(f)]Y

is increasing. Moreover, if we fix Y = (Y,D), a compactified log smooth pair, and we take
Y
′
= (Y ′, D′red) where (Y ′, D′) is an embedded resolution of singularities for V (f)∪D∞ ⊆

Y , we get that
V (f) ∪ Supp(D∞) ⊆ Supp(Dred).

Now, for any Y
′′ ≥ Y

′ we will get D′′ ⊇ V (f). By the equality part of Proposition
2.7.6, we infer that

ν
s,Y

′′(f) = ν
s,Y

′(f).

Hence the sequence is eventually constant. This shows that for each f ∈ OX,η the supre-
mum is attained.

Moreover, Proposition 2.7.2 shows that given f, g ∈ OX,η, there is a compactified log-
smooth pair Y in which the sequences [νs,Y(f)]Y, [νs,Y(g)]Y, [νs,Y(f + g)]Y, [νs,Y(fg)]Y are
all constant at the same time from Y onwards. Hence for this Y we have

νs(fg) = νs,Y(fg) = νs,Y(f) + νs,Y(g) = νs(f) + νs(g)

and similarly νs(f + g) ≥ min{νs(f), νs(g)}, so νs is a valuation. This shows that q is well
defined.

Now, let us see that that q is the inverse of r. For this we should check that the
composition over each side gives the identity. This translate in the equalities

1. [rY(νs)]Y = s for any s = [(x;w)]Y ∈ lim←−
Y∈CLSPX

TCk−1Σ(Y), and

2. νs = ν for any ν ∈ Xbir,k where s = [rY(ν)]Y.

For the first equality, we need to prove that for any Y ∈ CLSPX we have rY(νs) =

(x;w) for (x;w) in the Y instance of the sequence s. In order to do this consider {zi}i
local equations for the components Di of the divisor D defining Y around the center of νs
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in Y . There is a compactified log-smooth pair Y
′
= (Y ′, D′) in which we simultaneously

have the equalities νs(zi) = ν
s,Y

′(zi) for each i. In this case, we get rY(νs) = rY(νs,Y′) and
by the compatibility of the retraction maps, we infer that rY(νs,Y′) = (x;w).

For the second equality, it is enough to prove that for each f ∈ OX,η we have νs(f) =
ν(f), but this follows directly by the equality part in Proposition 2.7.6.

Proposition 2.8.3. The map 2.27 is continuous.

Proof. For this, recall that the topology of Xbir,k is generated by open sets of the form

U = {ν ∈ Xbir,k | ν(f) ∈ A}

for A ⊆ Rk an euclidean open set and f ∈ K(X)∗ a rational function. Hence, given a fixed
sequence s = [(x;w)]Y such that q(s) ∈ U , it is enough to find a neighborhood V of s such
that q(V ) ⊆ U . For this, take a compactified log-smooth pair Y and consider f = g

h
where

g, h ∈ OY,cY (q(s)). Now take a compactified log-smooth pair Y
′ by choosing an embedded

resolution of VY (g) ∪ VY (h) ∪D. Consider then

Vg =

{
t ∈ lim←−

Y∈CLSPX

TCk−1Σ(Y) | νt,Y has center inside VY ′(g)

}
, and

Vh =

{
t ∈ lim←−

Y∈CLSPX

TCk−1Σ(Y) | νt,Y has center inside VY ′(h)

}
.

By Proposition 2.6.5, for the center map TCk−1Σ(Y)→ Y ′, we see that both Vg and Vh
are open neighborhoods of s in the direct limit. By Proposition 2.7.6, for each t ∈ Vg ∩ Vh
we have νt(g) = νt,Y(g) and νt(h) = νt,Y(h). We thus get νt(f) = νt,Y(f). Now consider

V ′ =

{
t ∈ lim←−

Y∈CLSPX

TCk−1Σ(Y) | νt,Y(f) ∈ A
}
.

This is another open neighborhood of s in the direct limit. To conclude, note that for
V = Vg ∩ Vh ∩ V ′ and t ∈ V , we have

νt,Y(f) = νt(f) ∈ A

which shows that q(V ) ⊆ U . This proves the continuity.
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Corollary 2.8.4. The family of all quasi-monomial valuations TCk−1Σ(Y) for some com-
pactified log-smooth pair Y is dense in Xbir,k.

2.8.2 Refined limit formula

Definition 2.8.5 (Centroidal filtration). Given a compactified log-smooth pair Y = (Y,D)

over X we have a decomposition of D as D = D◦∪D∞. This give us the subcomplex Σ(D◦)

inside Σ(Y) which we denote by Σ(Y
◦
). We define the centroidal filtration of TCk−1Y to

be the filtration

F 0 TCk−1Σ(Y) ⊇ F 0 TCk−1Σ(Y) ⊇ · · · ⊇ F k TCk−1Σ(Y)

given for 0 ≤ r ≤ k by

F r TCk−1Σ(Y) := {(x;wk−1) ∈ TCk−1Σ(Y) | (x;wr−1) ∈ TCr−1Σ(Y
◦
)}.

Remark 2.8.6. For i < j, we have that (x;wj) ∈ TCj Σ(Y
◦
) implies (x;wi) ∈ TCiΣ(Y

◦
).

Therefore, the sequence
(
F r TCk−1Σ(Y)

)
r

is indeed decreasing. Moreover, we have

F 0 TCk−1Σ(Y) = TCk−1Σ(Y) and F k TCk−1Σ(Y) = TCk−1Σ(Y◦).

This is similar to the centroidal filtration on Xbir,k.

The limit formula for compactified log-smooth pairs in the previous subsection preserves
the centroidal filtrations. We thus obtain a limit description of each term of the filtration.

Theorem 2.8.7. For each 0 ≤ r ≤ k, the isomorphism of Theorem 2.8.1 restricts to a
homeomorphism

F rXbir,k −→ lim←−
Y∈CLSPX

F r TCk−1Σ(Y).

Proof. We first note that given (x;w) ∈ F r TCk Σ(Y), the center of the valuation projr(νx,w)

is the point ησ where σ is the smallest face such that (x,wr) ∈ TCr σ. Hence, if (x;w) ∈
F r TCk−1Σ(Y◦), then the center of νx,w is inside D◦ ⊆ X. This proves that the inclusion
TCk−1Σ(Y) ↪→ Xbir,k restricts to an inclusion F r TCk−1Σ(Y) ↪→ F rXbir,k

Moreover, since for any compactified log-smooth pair, the center of ν is a specialization
of the center of rY(ν), we can see that for each pair Y

′ ≥ Y, the retraction map in 2.7.4
induces a map

F r TCk−1Σ(Y′) −→ F r TCk−1Σ(Y)
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and these maps are still compatible. This implies that once we take the inverse limit, we
obtain a natural map

r : F rXbir,k −→ lim←−
Y∈CLSPX

F r TCk−1Σ(Y).

On the other hand, the inverse map q defined in 2.27 also restricts to a map

q : F r TCk−1Σ(Y) −→ F rXbir,k.

Indeed, if s = [(x;w)]Y is a sequence of elements in F r TCk−1Σ(Y), then the center of
the elements projr(νs,Y) in X are points ηs,Y with the property that η

s,Y
′ specialize ηY if

Y
′ dominates Y. As X is Noetherian, the sequence [(ηs,Y)]Y is eventually constant, and

hence ηs,Y is in the projection of a strata of D◦ onto X, that is, the center of projr(q(s))
is on X. Hence q(s) ∈ F rXbir,k. The two maps r and q are still inverses to each other and
this finishes the proof.

Corollary 2.8.8. The limit above can be restricted to each stratum in the centroidal fil-
tration, that is, for each r, we have a homeomorphism

F rXbir,k \F r+1Xbir,k −→ lim←−
Y∈CLSPX

F r TCk−1Σ(Y) \F r+1 TCk−1Σ(Y).

2.9 Variations of Okounkov bodies

Let X be a smooth algebraic variety of dimension d over the algebraically closed base field
κ and with function field K(X). Consider a big line bundle L = O(E) on X with the
corresponding graded algebra

H• =
⊕
n≥0

Hn

where each Hn = H0(X,O(nE)) is a κ-vector subspace of K(X) of finite dimension.
Consider the space BC(Rk) of compact subsets of Rk endowed with the Hausdorff

distance. We consider the map

∆ : Xbir,k −→ BC(Rn)

v 7−→ ∆v =
⋃
n≥0

{
v(f)

n
| f ∈ Hn

} (2.28)
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which attaches to each valuation the corresponding Newton-Okounkov body.

Conjecture 2.9.1. The restriction of the map ∆ in 2.28 on each higher rank skeleton is
continuous.

In the following we will give a heuristic argument for the validity of this conjecture.
We start by the following result.

Theorem 2.9.2. Let (Cn)n ∈ BC(Rk) be a sequence of full dimensional compact convex
subsets of Rk. Then we have that

Cn
n→∞−→ C ∈ BC(Rk)

with the Hausdorff distance if and only if for each continuous function f : Rk −→ R of
compact support we have ∫

Cn

f(x)dx
n→∞−→

∫
C

f(x)dx

Proof. (⇒) If we denote by B(C; ε) the ε-neighbourhood of C, we have the inequality

Vol(Cn∆C) ≤ Vol(B(Cn; dH(Cn, C)) \ Cn) + Vol(B(C; dH(Cn, C)) \ C).

The left hand size goes to 0 as n goes to infinity. We thus get Vol(Cn∆C) −→ 0. Hence
we have the almost everwhere convergence f · 1Cn → f · 1C , and so by the dominated
convergence theorem the integrals converge.

(⇐) Recall that

dH(Cn, C) =
{
sup
x∈Cn

{d(x,C)}, sup
y∈C
{d(Cn, y)}

}
If Cn does not converge to C, passing to a subsequence if necessary, we get the existence
of ε > 0 such that dH(Cn, C) ≥ ε for all n. We thus have either

sup
x∈Cn

{d(x,C)} ≥ ε or sup
y∈C
{d(Cn, y)} ≥ ε

happen infinitely many times.
In the first case, as Cn is compact for each n, there is an xn ∈ Cn for which the

supremum is attained. Let x′ be an accumulation point of (xn).
Consider an open ball of the form B(y; ε) contained in C. If for each continuous

function f the integrals above converge, by taking f as a bump function supported exactly
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on B(y; ε), we get that Vol(B(y; ε) \Cn)→ 0. Therefore, since Cn and B(y, ε) are convex,
for n big enough, we would get that Cn contains the ball B(y; ε/2). This implies that for
each such n we have

Cn \ C ⊇ conv(B(y; ε/2) ∪ {x}) \ C.

The set appearing in the right hand side is independent of n, and has nonempty interior.
Taking again a bump function supported in this set we see that the integrals could not
converge which would give a contradiction.

In the second case, for each n, there is a yn ∈ C for which the supremum is attained. By
compactness, and passing to a subsequence if necessary, we can assume that yn converge
to a point in C that we denote by y′. For n big enough, we have d(Cn, y′) ≥ ε/2, as
d(Cn, y

′) ≥ |d(Cn, yn) − d(yn, y
′)|. It follows that B(y′; ε/2) ∩ C is disjoint from Cn for

infinitely many n. By taking f as a bump function supported on B(y′; ε/2) ∩ C we see
that Cn would not converge to C in a weak sense, which would be a contradiction.

Heuristic argument for the validity of the conjecture. We will use the fact that the family
of sets

∆n
v =

{
v(f)

n
| f ∈ Hn

}
is equidistributed on the set ∆v. That is, for each continuous function h of compact support
we have

lim
n→∞

1

Nn

∑
x∈∆n

v

h(x) =

∫
∆v

h(x)dx

where Nn is the dimension of Hn over κ, which is equal to the size of ∆n
v .

If vj is a sequence of valuations converging to v, we would like to interchange the limits
in the following

lim
j→∞

∫
∆vk

h(x)dx = lim
j→∞

lim
n→∞

1

Nn

∑
x∈∆n

vj

h(x)
?
= lim

n→∞
lim
j→∞

1

Nn

∑
x∈∆n

vj

h(x)

= lim
n→∞

1

Nn

∑
x∈∆n

v

h(x) =

∫
∆v

h(x)dx

and then use Theorem 2.9.2 to get ∆vk → ∆v with the Hausdorff distance. Hence, the
main issue in proving the conjecture would be to justify the possibility in changing the
orders in the limit.
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