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Abstract v

POLYHEDRAL, TROPICAL AND ANALYTIC GEOMETRY OF HIGHER RANK

Abstract

With the aim of starting a systematic development of higher rank tropical geometry, we develop
a theory of higher rank polyhedral geometry over the ordered ring of generalized dual numbers
D := R[e]/(¢¥). We generalize several classical results to this context, including, but not limited
to, Fourier-Motzkin Elimination, Farkas’ Lemma, the Minkowski-Weyl decomposition and the
basic results on the duality theory of cones and the theory of normal fans of polyhedra.

We use this theory to endow tropical hypersurfaces of higher rank with the structure of a poly-
hedral complex over ID. As a first application, we show how the polyhedral structure on tropical
hypersurfaces of higher rank is dual to a layered regular subdivision of their Newton polytope.

Later on, we introduce a certain number of tools and results suitable for the study of valuations
of higher rank on function fields of algebraic varieties. This is be based on a study of higher rank
quasi-monomial valuations taking values in the lexicographically ordered group R¥.

We prove a duality theorem that gives a geometric realization of higher rank quasi-monomial
valuations as tangent cones of dual cone complexes acting as multi-directional derivative operators
on tropical functions.

Tangent cones of dual cone complexes provide an analogue of skeleton in higher rank non-
archimedean geometry. Generalizing the picture in rank one, we construct retraction maps to
tangent cones of dual cone complexes, and use them to obtain limit formulae in which we recon-
struct higher rank non-archimedian spaces with their tropical topology as the projective limit of
their higher rank skeleta.

Keywords: tropical geometry, polyhedral geometry, analytic geometry, valuations, higher rank,
okounkov bodies
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vi Abstract

Résumé

Dans le but de commencer un développement systématique de la géométrie tropicale de rang
supérieur, nous développons une théorie de la géométrie polyédrale de rang supérieur sur I’anneau
ordonné des nombres duaur généralisés D = R[e]/(c¥). Nous généralisons plusieurs résultats
classiques dans ce contexte, y compris, mais sans s’y limiter, I’élimination de Fourier-Motzkin, le
lemme de Farkas, la décomposition de Minkowski-Weyl et les résultats de base sur la théorie de
la dualité des cones et la théorie des ventilateurs normaux des polyédres.

Nous utilisons cette théorie pour doter les hypersurfaces tropicales de rang supérieur de la structure
d’un complexe polyédral sur D). En guise de premiére application, nous montrons comment la
structure polyédrale sur les hypersurfaces tropicales de rang supérieur est duale a une subdivision
réguliere en couches de leur polytope de Newton.

Plus tard, nous introduisons un certain nombre d’outils et de résultats adaptés a 1’étude des
valuations de rang supérieur sur les corps de fonctions des variétés algébriques. Ceci est basé sur
une étude des valuations quasi-monomiales de rang supérieur prenant des valeurs dans le groupe
ordonné lexicographiquement R¥.

Nous démontrons un théoréme de dualité qui donne une réalisation géométrique des valuations
quasi-monomiales de rang supérieur sous forme de cones tangents des complexes de cones duaux
agissant comme des opérateurs de dérivées multi-directionnelles sur les fonctions tropicales.

Les cones tangents des complexes de cones duaux fournissent une analogue de squelette dans
la géométrie non archimédienne de rang supérieur. En généralisant I'image en rang un, nous
construisons des cartes de rétraction vers les cones tangents des complexes de cones duaux, et
les utilisons pour obtenir des formules limites dans lesquelles nous reconstruisons des espaces non
archimédiens de rang supérieur avec leur topologie tropicale comme la limite projective de leurs
squelettes de rang supérieur.

Mots clés : géométrie tropicale, géométrie polyédrale, géométrie analytique, valuations, rang
supérieur, corps d’okounkov
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Introduction

The research covered in this manuscript lays between two branches of mathematics: tropical

geometry and non-Archimedean geometry.

The main objective of tropical geometry is to provide tools to translate questions from
algebraic geometry into questions about polyhedral geometry and its combinatorics. There
have been applications of this line of work in many areas of algebraic geometry such as
enumerative geometry [Mik05; Mik06|, the study of linear series [Boul4; LMO09al, the
theory of singularities [Thu07; Ste06], the theory of degenerations [AB15], the theory of
moduli spaces [CGP18; ACP15|, and many others. Recently, tropical geometry has also
allowed going in the opposite direction dealing with combinatorial problems using algebro-
geometric ideas. A notable example of this is the combinatorial Hodge theory initiated
in [AHK18] that has had striking results in the theory of matroids.

Tropical geometry can be introduced in different ways. One of them is the synthetic
approach in which one works with the tropical semifield or min-plus algebra, denoted by T,
whose underlying set is RU{oo} and whose addition and multiplication is given by the usual
minimum and addition respectively. One can use this to define tropical varieties. These
are the set of common zeros of certain families of tropical polynomials, where tropical
polynomials are those polynomials whose coefficients lie in T and the notion of zero is

defined in a clever way to make it compatible with its algebraic counterpart.

A different way of looking at tropical geometry is given by the valuative approach. From
this point of view, one has to consider a field x endowed with a valuation val: k — R with
a dense image. Then, given a subvariety X of the algebraic torus G} one can consider its

tropicalization as the euclidean closure of the set of all images
trop(z) = (val(xy), ..., val(x,))

as ¢ = (x1,...,x,) goes over the elements of X. A tropical variety is then defined as the

1



2 Introduction

tropicalization of an algebraic subvariety of a torus.

The fact that these two points of view agree is an important result of the area that
earned the name of the fundamental theorem of tropical geometry [EKLO06; SS04]. We
refer to [Mik07; MS15; MR09; IMS09; Gub13; Bru+15] and the references therein for an

introduction to tropical geometry.

Having these different points of view has made the theory evolve in many directions.
From one part, the synthetic approach gives us a setting to study tropical geometry entirely
in combinatorial terms, without reference to algebraic geometry. On the other hand, the
valuative approach remains more in touch with its algebraic side and allows to generalize
the theory to other settings such as the theory of toric varieties or non-Archimedean analytic

geometry.

Non-Archimedean analytic geometry is the branch of algebraic geometry dealing with
algebraic varieties defined over valued fields, that is, fields endowed with valuations val: k —
R. Tt allows us to consider “analytic version” of our varieties, called analytifications, mim-
icking the construction of the complex manifold associated to an algebraic variety defined
over C. It was introduced by Tate in his seminal work [Tat71] and developed in different

forms by other authors. We refer to [Con08| for an overview of these ideas.

The approach to non-Archimedean analytic geometry which relates arguably more nat-
urally to tropical geometry is the one introduced by Berkovich [Ber12]. On it, given a
variety X defined on a valued field val: Kk — R we can construct its Berkovich analytifi-
cation, denoted by XA". The underlying set' of X" corresponds to the family of all the
valuations v: k(n) — R whose domain is the residue field of a schematic point n € X

and such that it extends the base field valuation, in the sense that the following diagram

) — R
A

Any closed point = € X has & as residue field and hence induces a unique point v, in X**

commutes:

k(n
]

K.

given by v,(f) = val(f(z)). Moreover, for each element v € X" with domain (), each

regular function f defined on a neighborhood of n can be evaluated

fr—=v(f).

! Although the usual construction of the Berkovich analytification uses multiplicative seminorms, here
we use the point of view of valuations as it fits better the content of the manuscript.
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These evaluation maps allow us to turn X" into a topological space by considering the
coarsest topology making the projection X4" — X sending a valuation k(n) X R ton
continuous, together with all the evaluation maps at regular functions over affine open

subsets.

Now, if we suppose that X has some global non-vanishing coordinates, that is, X
is a subvariety of G, the considerations above allow us to extend the map trop(z) =
(val(xy),...,val(z,)) to a map defined on its analytification XA". We do this by evaluation

on the coordinates

trop(v) = (v(x1),...,v(x,)).

In this way, we have extended the valuative approach of tropical geometry to those analytic

spaces obtained as the Berkovich analytification of an algebraic subvariety of a torus.

There is, on the other hand, an intrinsic approach to tropical geometry on Berkovich
spaces provided by the notion of skeleton. These are polyhedral complexes living inside
the Berkovich space which are constructed in terms of local coordinates of the original
variety. The idea is that, by putting weights on these local coordinates, one can construct

quasi-monomial valuations which will naturally be parametrized in terms of polyhedra.

These skeleta provide an approximation of the analytic space in terms of finitely many
data and, surprisingly, it gives us a considerable amount of information of it. This is
exemplified in the fact that there is a way to connect these different polyhedral complexes
in such a way that the entire space is the inverse limit of all these. Moreover, under suitable

assumptions, the entire space is a deformation retraction of these skeleta.

This thesis is in the context of generalizing these ideas to the case in which the valuations
have a higher rank, that is, they have values in R* rather than R. This theory is therefore

called higher rank tropical geometry.

Organization of the thesis

This thesis is composed of two chapters and an introduction which presents in a succinct
way the results obtained during the thesis period. The content of Chapter 1 is based on
our paper [Iri21], and Chapter 2 comes from the joint work [AI21] with Omid Amini.

In Chapter 1 we construct a theory of higher rank polyhedral geometry that we expect
will play in higher rank tropical geometry the same role as the one that plays the usual

theory of polyhedral geometry in tropical geometry. We show how this theory helps us to
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understand higher rank tropical hypersurfaces from the synthetic point of view. In Chapter
2 we extend the intrinsic approach to tropical geometry on Berkovich analytifications to the

case in which we are working with higher rank analytifications with constant coefficients.

In the rest of the introduction, we will go more deeply into the contents of Chapter 1
and Chapter 2.

Chapter 1: Polyhedral Geometry Over the Generalized

Dual Numbers

This chapter is concerned with the polyhedral geometry behind a higher rank tropical

geometry.

Higher rank tropical geometry is a generalization of tropical geometry adapted to work
with a valued field K in which the valuation val is not necessarily of rank 1. It was initiated
by Aroca in [Arol0a] with a generalization to this setting of Kapranov’s theorem [Kap00],

that is, the hypersurface case of the fundamental theorem of tropical geometry.

Since then, higher rank tropical geometry has made appearance in the literature at
several occasions, mostly in the case in which I' is contained in R¥ with its lexicographic
order. This is however not a big restriction as, by the Hahn’s embedding theorem [Hah95],
every abelian group of finite rank k can be embedded into R* with its lexicographic order.

In particular,

1. Banerjee proves in [Banl5| that the Euclidean closure of the tropicalization of a
dimension n subvariety of an algebraic torus over a local field of rank k£ can be
endowed with a polyhedral complex structure, in the usual sense, of non-necessarily

pure dimension kn.

2. In [FR16b], Foster and Ranganathan prove, by using non-Archimedean geometry in
the higher rank setting, that the higher rank tropicalization of a connected variety is a
path connected space when endowed with its Euclidean topology. Later, in [FR16a],

they use these ideas to construct multi-stage degeneration of toric varieties.

3. Kaveh and Manon outline, in an appendix to their work on Khovanskii bases [KM19a],
a theory of higher rank Grébner fans for ideals for use in a possible higher rank

version of tropical geometry. They moreover introduce in [KM19b] a framework
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for tropicalization where the valuation takes value in semimodule of piecewise affine

functions, and use this in order to describe toric vector bundles.

4. Joswigh and Smith [JS18] use higher rank tropical geometry in the study of stable
intersection of tropical hypersurfaces, and discuss connection with potential applica-
tions of such a theory in generalizing the works of Allamigeon-Benchimol-Gaubert-
Joswig [All+14; All4+15; All+18] and that of Develin and Yu [DY07].

5. A higher rank version of geometric tropicalization with connection to higher rank
non-Archimedean geometry was established in our work with Amini [AI21| where
tangent cone complexes were introduced as an analog notion of skeleton in higher
rank non-Archimedean geometry over trivially valued fields. This will be covered in

Chapter 2 of this manuscript.

6. In their recent works on hybrid geometry of curves and their moduli spaces [AN20;
AN21], Amini and Nicolussi introduce hybrid curves and higher rank versions of
tropical curves, as well as a moduli space of these higher rank geometric objects, and

develop a function theory in this higher rank setting.

7. In addition to the above results, we should mention recent model theoretic works of
Hrushovski and Loeser [HL16] and of Haskell, Hrushovski, and Macpherson [HHMO6]
with possible connection to higher rank tropical geometry. (Note however that in
these works, the topology in the value group is the ordered topology, in contrast with
the Euclidean topology considered here over R*.) We refer to the Bourbaki seminar

by Ducros [Ducl2] for the discussion of this point of view and further references.

All these works can be viewed as indicators for the utility of establishing a higher rank
version of tropical geometry in which the structure and geometry of these higher rank

tropical objects can be described and used in applications.

The content of the first chapter of this manuscript is about the polyhedral geometry
underlying such a theory. We develop a polyhedral geometry over the ring of generalized
dual numbers D = Rle]/(e*) which we expect will play in higher rank tropical geometry
the role the usual polyhedral geometry over R has in tropical geometry. As an application,
we provide a description of the polyhedral structure on higher rank tropical hypersurfaces,

answering questions asked by Joswig and Smith [JS18].
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In addition to building the basis of higher rank tropical geometry, the higher rank poly-
hedral geometry developed here is expected to have further connections and applications

in other places. For example, it should appear in connection with:

1. A general theory of skeleta for higher rank non-Archimedean geometry. This already
happens in the trivially valued case developed in Chapter 2 of this manuscript, in
which skeleta is given by higher rank polyhedral cone complexes, corresponding to
(iterated-)tangent cones over usual polyhedral cone complexes. An extension of the
results of [AI21] to the non-trivially valued situation is of particular interest in the

study of families of algebraic varieties.

2. Understanding the geometry in the theory of affine A-buildings developed by Bennett
and Heébert-Izquierdo-Loisel in [Ben90; HIL20).

3. Understanding the current theory of perturbed polyhedra as a deformation theory of

polyhedra, in the sense of algebraic geometry.

4. Developing linear programming methods for problems in which the variable to op-
timize has a lexicographic nature. One could study, for example, how to generalize

the duality theory of linear programming to this setting.

In the following, we provide an overview of the main elements of this chapter.

The Ring of Generalized Dual Numbers

Along this work we work with the ring D = R[e]/(¢*) which we call the ring of generalized
dual numbers of rank k. An important fact about this ring is that it naturally captures the
lexicographic order in R* by considering € to be an infinitesimally small but positive quan-
tity. In this way, D becomes an ordered ring whose underlying abelian group corresponds
to R* with its lexicographic order.

Given a lattice N = Z" with dual lattice M, we proceed to study the module Np from
a geometric standpoint. Using the ordered ring structure of D, we can say that a subset
X C Np is convex if, for x,y € X and A € D such that 0 < A < 1 we have

A4+ (1-NyeX
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or a cone if, for z,y € X and A\, u € D> we have

Ax+py € X.
Then, given elements xy,...,2, € Np one can define their convex hull convp(zy,...,x,)
and cone hull conep(zy,...,z,) as the minimal convex set, respectively cone, containing

these elements. Sets of these forms are called polytopes and finitely generated cones re-

spectively.

In the same way, one can define half-spaces in D as sets of the form
{1’ € Np | <y>$> > CL}

for some y € Mp and a € D. Intersection of sets of these forms are called polyhedra.
Moreover, a face of a polyhedra is a set of the form PNH where H = {x € Mp | (y,z) = a}
is a hyperplane such that the half-space {x € Mp | (y,z) > a} contains P.

The proof of basic properties of these objects, such as the fact that any polytope or
any finitely generated cone is a polyhedra, are more involved than in the classical setting.
Notice that I is not an integral domain, so we cannot reduce the problem to its fraction
field. Reduction to the integral domain R][¢]] works neither as the inclusion D < R[[e]] is
not a ring map. For these reasons, we need to develop the technical apparatus directly on

D to work around this.

Also, we remark that the structure of faces of a polyhedron is more complicated in this

context than in the usual case. For example, if the polyhedron is given as
P={z € Np|(y1,z) > ar,...,{y-,7) > a,},
then not every face is of the form
Pn{xeNp|(y1,2) =a; i €1}
for some I C {1,...,n}. Similarly, if the polyhedron is given as

P = convD(xl, ce axn)’
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then not every face is of the form
convyp ({z; | i € I})

for some I C {1,...,n}. See Remark 1.1.11 for more comments on this and Section 1.6

for some results in the structure of faces on this context.

The Fourier-Motzkin Elimination

One core technical result is the Fourier-Motzkin Elimination. Over the real numbers, given

a system of linear inequalities in R™ of the form
L={ax1 4+ +a,x, > a}

with solution set S C R", this algorithms produces explicitly a system of linear inequalities
in R"! of the form

ﬁl = {b1I1 + -+ bn_lxn_l Z b}

whose solution set is 7(S) for 7: R® — R™"!. This algorithm is based on the two observa-

tions:

1. Any system of one variable inequalities can be written in the form

r>a;, x<bj, ¢, >0 forsomesi,j,k.

2. The system of inequalities above has a solution if and only if ¢, > 0 for each k£ and

b; > a; for any 1, j.

Then, the algorithm consists in looking at £ as a system of inequalities only in the variable
T

Over the ring D, the first observation above does not remain true as, for example, a
linear inequality of the form £z > a cannot be reduced to one of the form z > a’. However,
any one variable linear inequality can be reduced to one of the form 'z > a or ¢; > 0.
With this modification in mind, we can obtain an analog of the second observation. This
leads to a generalization of the Fourier-Motzkin Elimination to the ring I in Theorem
1.2.3.
Theorem A1 (Fourier-Motskin Elimination over D). Given an integer n > 1 and a system

of linear inequalities £ in D", there is another system of linear inequalities L' in D™ such
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that (z1,...,xn11) 1S a solution of L for some x,.1 € D if and only if (x1,...,2,) is a

solution of L.

Although the final algorithm to produce the new system of linear inequalities turns out
to be more involved (see Lemma 1.2.2), it will be of fundamental theoretical importance

for use in what follows.

Farkas’ Lemma

Arguably, one of the most important results in giving shape to a theory of polyhedral

geometry is Farkas’” Lemma. Over the real numbers, one way to state it is as follows.

Theorem (Farkas’ Lemma over R). If f, f1,..., f. are affine functions over Ng, then we

have the equivalence

{f(z) 20} 2 {fi(z) 2 0,..., fr(z) = O}
<:>3/\1,...,/\T,C GRZO such thatf:)\lf1++/\TfT—|—c

Remark. The exact statement over D turns out to be false. To obtain a counterexample,

notice that it is possible to have {f(z) > 0} = Np in a nontrivial way as in
D={ze€D|er+1>0}D{recD|r >0}
However, there are no A, ¢ € D> such that
ex 4+ 1= \e*2) +c

Similarly, it is possible to find a counterexample by having {fi(z) > 0,..., f.(z) >

0} = @ in a nontrivial way as in
{zeD|z>0}2{zeD|-14ex>0,14+ex>0}=2.
But there are no A\, Ay, ¢ € D> such that

r=XM(—1+ex)+ X (l+ex)+c

With these considerations in mind, the correct statement of Farkas’ lemma over D goes
as follows (See Theorem 1.3.1).
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Theorem B1 (Farkas’ Lemma over D). Let fi,...,f.: Np — D be a family of affine

functions such that the set

P={fi>0,....f >0}

1s non-empty. Then, any affine function f: Np — D achieving its minimum over P can

be written in the form
fominf = Afit A,

for some Ay, ..., \. € Dxy.

The novel part of the hypothesis is that f should achieve its minimum over P. The
proof is based on an induction argument relying on the Fourier-Motzkin Elimination over
D.

Although there are several generalizations of Farkas’ Lemma in the literature, the gen-
eralization given here, in a context with nilpotent elements, appears to be novel. We refer
to [DJ14] for an overview on generalizations of Farkas’ Lemma and to [Bar2l1] for other

results in this direction.

General Strucstural Results

With Fourier-Motzkin Elimination and Farkas’ Lemma under our belt, we have enough
core results to come back to our basic questions about the structure of polyhedra over D.

Here is a statement collecting some of the results we obtain.

Theorem C1 (Some Structure Results on Polyhedra over D).

1. Finitely generated cones are exactly the same as polyhedral cones (See Proposition
1.2.4 and Proposition 1.5.2).

2. Polytopes are polyhedra and moreover, a polyhedron is a polytope if and only if any
linear function attains its minimum over it (see Proposition 1.2.4 and Corollary
1.9.9)

3. The poset of faces of a polyhedron forms an order lattice (see Corollary 1.6.53).

4. There are explicit ways to compute the faces of a polyhedron in terms of its generators

or, dually, in terms of an intersection of half-spaces (see the content of Section 1.6)

5. There is a notion of relative interior defined by algebraic (rather than topological)

means (see Definition 1.4.1). This notion preserves the usual properties of the relative
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interior over R. For example, the relative interior of a non-empty polyhedron is non-
empty and any polyhedron can be written as the disjoint union of the relatives interiors
of its faces (see Proposition 1.4.2).

6. It is not always true that a polyhedron accepts a Minkowski-Weyl decompostion, that
18, that it can be written as the Minkowski sum of a polytope and a polyhedral cone
(see Remark 1.9.10). However, we have the following characterization: A polyhedron
P can be written as the Minkowski sum of a polytope and a polyhedral cone, if and
only if, each time two linear functions achieve their minimum over P, their sum also

achieves its minimum over P (see Corollary 1.9.9).

Duality Theory of Polyhedra

We generalize to D some duality results for polyhedra. In particular, we generalize the
duality theorem for cones, which gives an order reversing bijection between the faces of a

cone and the faces of its dual (see Theorem 1.5.3).

Theorem D1 (Higher Rank Cone Duality). Given a polyhedral cone o C Ny and its dual
o' ={y€Mp|(y,x) >0,Vx €},

there is an order reversing bijection between the poset of faces of o and the poset of faces

of its dual oV given by
T— T =1tNnoY,
where
ti={yec Mp|{y,z)=0, Vo c1}
Given a polyhedron P, each face of P is of the form
face,(P) = arg.minp(y, -)

for some y € Mp achiving its minimum over D. The Normal Fan Duality says that this
function is locally constant over the faces of a fan lying on Mp. More concretely, in Theorem

1.8.5 we prove the following.
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Theorem E1 (Higher Rank Normal Fan Duality). Given a polyhedron P C Np, let us

consider the set
INF(P)| ={y € Mp | (y,-) achieves its minimum over P}.
Moreover, for each face F' of P, consider its normal cone as the set
C(F) = {y € INF(P)| | face, P O F'}.
Then, each C(F) is a polyhedral cone and the family
NF(P) = {C(F) | F < P}

is a fan whose support is | NF(P)| and such that the map y — face,(P) is locally constant
over the faces of |NF(P)|. In particular, there is an order reversing bijection between the

faces of P and the faces of NF(P).

Remark. One new aspect of this setting is that, unlike over R, the support of the normal
fan of a polyhedron is not always convex. Nevertheless, its convex hull is a polyhedral cone
whose dual is the recession cone of the polyhedron. Moreover, a polyhedron has a convex

normal fan if and only if it is the Minkowski sum of a polytope and a polyhedron.

Finally, in Theorem 1.9.6 we generalize a result of Minkowski to higher rank: There
is a correspondence between polyhedral cones endowed with piecewise concave functions
and polyhedra. In particular, there is a bijection between polytopes and piecewise linear

concave functions.

Theorem F1 (Higher Rank Minkowki Theorem). There is a bijection between polyhe-
dra with convexr normal fan and polyhedral cones endowed with concave linear functions.
Ezplicitly, this bijection sends a polyhedron P to the pair (|[NF(P)|, hp), where hp is its

support function defined as

hp : |NF(P)| — D

y = miny, z).
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Iterated Fibrations

Fori=1,...,klet D; := R[e]/(¢'). Then, we have a sequence of projections
D=Dp,—Dp_1—---—D; =R.
Applying the tensor product with N yields a sequence of projections
Np = Np, =+ Np,_, =+ - — Np, = Ng.

In this way, the subsets X C Np can be regarded as iterated fibrations.

Definition. For a given lattice N, an iterated fibration of subsets of Ng or simply, an

iterated fibration, is a diagram of sets of the form
X = xi Tl xlr—1] T2 M (0]

where each map is surjective, X[ C Ng, and for each z € X!, the fiber 7TZ-_1(ZL‘) can be
identified with a subset of Ng, denoted by X,

To obtain an iterated fibration from X C Np we just need to define X! as the projection
of X to Npi. This gives a new geometrical perspective to polyhedra over ID: These are
certain iterated fibrations in which the base and each fiber are polyhedra over R.

One particular kind of iterated fibration is the tangent cone bundle of a set X C Ng.
In order to define it, consider the set TC*™* X whose elements are vectors of the form
(x,wq,...,w,_1) where z € X, w; is an element pointing inside of X, that is, such that

x + dw; € X for every 6 € R.o small enough, and more generally, wy, ..., w; satisfy
T+ 0w+ + 8w, € X
for every 6 € R.g. Then, the sequence
TCH'X — TC"?X — - — TCX — X.

is an iterated fibration.

More generally, for a flag of sets

A: Ay CA C---C Ay
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we can consider the tangent cone of A, which we denote by TC A, as the set of all elements
(z,w1,...,wx_1) € NE such that

r€Ay, x+ow €Ay, ... xHow +---+6Ftw_ € A

Theorem G1 (Tangent Cone of Polyhedra).

1. If P C Ng is a usual real polyhedron, then TC*™' P is a polyhedron over D. Con-
versely, any polyhedron over D which is defined completely in terms of real numbers
is of the form TC*™' P for some real polyhedron P.

2. If P: PBp C P, C--- C P, 1s a flag of real polyhedra, then TCP is a polyhedron
over D. Conversely, any polyhedron which is defined completely in terms of elements
of the form c'a with a € R is of the form TC P for some flag of polyhedra.

In the manuscript, this is developed in Theorem 1.11.2 and Corollary 1.11.3.
The first part of the theorem above should be regarded as a polyhedral version of the
equality

from algebraic geometry. That is, if one does a base change of a real polyhedron P to the
ring ID, one obtains the tangent cone bundle TC*~! P which we understand as the correct
analog of its tangent space. The second part of the theorem has to be regarded as a first
instance between the correspondence between layered objects and fibered objects on this

theory.

Tangent cone bundles will appear again in our work in [AI21] which will be covered in
Chapter 2.

R-Rational Polyhedra and Regular Subdivisions

We use all this information to study R-rational polyhedra, that is, polyhedra obtained as

intersection of half-spaces of the form
a1xry+ -+ apx, > a

with a1,...,a, € R and a € D. These are the kind of polyhedra appearing in higher rank

tropical geometry. In order to do this study, we introduce layered normal fans over the real
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numbers and show how the normal fan duality already obtained gives us a combinatorial
correspondence between R-rational polyhedra and this layered normal fan. We call this

result the Local Duality Theorem.

Theorem H1 (Layered normal fans). To each R-rational polyhedron P we can construct

a sequence of fans

é(P) = AojAl"'jAkfl. (‘k)

in which each term is a subdivision of the previous one by considering for each i1 €
{0,...,k — 1} and each 6 € R.q the normal fan of the polyhedron

P;(§) = {xENR ‘ (y,x) Za§0)+5a§1)+...+5ia§?)7 V1< ST},

which is independent of & it is small enough. Moreover, any sequence of fans as in (x)
in which each fan is a subdivision of the previous one is the layered normal fan of some

R-rational polyhedron.

To see this and other two different definitions of the layered normal fan of an R-rational
polyhedron we refer to Proposition 1.12.2.

The theorem below (Theorem 1.12.4 in the manuscript) allow us relates the layered
normal fan of an R-rational polyhedron with its usual normal fan over . In particular, it

allow us to understand combinatorially the iterated fibration of an R-rational polyhedron.

Theorem I1 (Local Duality). Given an R-rational polyhedron P, we can recover the

normal fan of P from the layered normal fan as
NF(P) =TCA(P).

In the sense that, NF(P) is the fan consisting of all the polyhedral cones of the form TC &
where

0: 0x—1 C o2+ C oy

is a layered face of A.

Regular Subdivisions

In a similar way as we work with normal fan of R-rational polyhedra we can work with

regular subivisions of real polyhedra by height functions with coefficients in ID.
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We extend the notion of regular subdivision of a polytope to the ring D in two different

ways. Given a finite set A C Mg and a height function of the form

h: A—D

a— h(a).

we define the layered reqular subdivision of convg(A) with respect to h as the sequence of
regular subdivision

A(convg(A)): Ag A =< - <Ay,

in which A; is defined as the usual regular subdivision of A by the height function
ha)® + 5h(a)M + - -+ §'h(a)?

which is independent of § € Ry if it is small enough. To see other two equivalent definitions
for the layered regular subdivision we refer to Proposition 1.13.3.
On the other hand, we can define a regular subdivision over D of the polytope convp(A) C

My by considering its lifting
convp ({(a,h(a)) |a € A}) C Mp x D

and projecting the lower faces of this lifted polytope back to convp(A). We denote this
regular subdivision by A"(convp(A)).
In this way we have the following result (See Theorem 1.13.4 and Proposition 1.13.3)

Theorem J1 (Layered Regular subdivisions).

1. Any sequence

A Ag =A< =2 A,

of reqular subdivisions of a real polyhedron P in which each term subdivides the pre-

vious one is the layered reqular subdivision of P with respect to a height function
h:A—D for a finite set A C Mg such that convg(A) = P.

2. Consider a finite set of real points A C Mg and a height function h: A — . Then,

we have an equality of the form

A"(convp(A)) = TC A" (convg(A)).
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In the sense that, the elements of A"(convp(A)) are exactly the polyhedra of the form
TC(F) for
F:F, 1 CF,_yC---Clhky

where F; is a face of A; for each i.

Higher Rank Tropical Hypersurfaces

In this section we give some applications of tropical geometry to higher rank tropical geom-
etry. For this we work with the tropical semifield of rank k, given by Tj, = (DU{occ}, min, +)
in which the addition is the minimum between two elements and the multiplication is given
by the usual addition in ). Expressions in this semifield are written between quotation

marks and with the usual symbols + and -. For example,
“T4y+ery” =min{x,y, e+ +y}.

Given a lattice M, a Laurent tropical polynomial with coefficients in M is an expression

f — « Z ame”

meM

of the form

such that a,, = oo for all but finitely many m in M. Laurent tropical polynomials are
manipulated as usual polynomials following the rules of the ring T;. An element x € Np

is a zero of f if the minimum in
f(z) = min{(m,z) +a,, | m € M}

is achieved at least twice. Moreover, the tropical hypersurface induced by f, denoted by
V(f), is the set of all zeros of f.

Theorem K1 (Hypersurface Duality). Given a Laurent tropical polymonial f. The tropical
hypersurface V(f) has naturally the structure of an iterated fibration. Explicitly, it is given
by

V() =V — v — - — V(1)

where fU is the tropical polynomial with coefficients in T;1, whose coefficients has been
obtained as the image of the coefficients of f under the projection Ty — T;y 1. Moreover,

the base of this iterated fibration and each fiber are tropical hypersurfaces of rank one. If
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one consider the Newton polytope of f
New(f) := convg (m € Mg | an, # 00)

Then, one can read the combinatorics of all these rank one tropical hypersurfaces from the

layered regular subdivision of New(f) induced by the coefficients of f.

See Proposition 1.14.5 and Theorem 1.14.12 for the complete statements.

In particular, these show us that there is a combinatorial correspondence between lay-
ered regular subdivisions of polytopes and higher rank tropical hypersurfaces, as was con-
jectured by Joswigh and Smith in [JS18].

Finally, we show that higher rank tropical hypersurfaces can be endowed with a poly-
hedral structure compatible with the fibration point of view above. To state the result,
given a Laurent tropical polynomial f, an element z € Np and an integer 0 < i < k — 1,

let us consider its i-initial part by

L (f) =% > alfVT"” e T[M].
meM
(m @) +apl =1 (2)

where a® correspond to the coefficient of €’ in a,, and a!l. The i-initial parts are the rank

one tropical polynomials encoding the fibers of the iterated fibration appearing in V'(f).

Theorem L1 (Polyhedral Structures on Hypersurfaces). The tropical hypersurface V (f)

has a natural polyhedral complex structure over D on which the vector

(ing(f), ing(f),.., " (f))

remains constant as x vary over the interiors of the cells. In this way, it is compatible with
the description of the fibration described in the duality theorem. See Theorem 1.14.17 for

the complete statement.

Organization of the Chapter

In Section 1.1, we introduce the ring of generalized dual numbers and the basic polyhedral
objects over it. After that, we start developing the technical apparatus by generalizing
Fourier-Motzkin Elimination in Section 1.2 and Farkas’ Lemma in Section 1.3. This allow

us to develop results in the structure of polyhedra and their faces in Sections 1.4 and 1.6
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along with some other results in Sections 1.5, 1.7, 1.8 and 1.9, both in the structure of

polyhedra and the duality theory of cones and normal fans at different levels.

Starting this point we change the perspective and move to study higher rank polyhedra
as fibered objects. In Section 1.10 we introduce iterated fibration and the example of the
tangent cone bundle. In Section 1.11 we see how tangent cone bundle of real polyhedra
and, more generally, tangent cone bundle of flags of real polyhedra, produce polyhedra
over D. We use all this information to study R-rational polyhedra in Section 1.12, where
we introduce layered normal fans and show how to understand the combinatorics of faces

of an R-rational polyhedron from its layered normal fan.

In Section 1.13 we introduce reqular subdivisions for polytopes over D and layered
regular subdivision for polytopes over R. We show how they correspond to each other
in the real case by means of the tangent cone operator. In section Section 1.14 we use
all these ideas to understand tropical hypersurfaces. In particular, using layered regular
subdivisions, we understand the combinatorics coming from the fibration point of view and

how to put a polyhedral structure over D compatible with this fibration point of view.

Chapter 2: Geometry of Higher Rank Valuations

Within this chapter, we introduce a certain number of tools and results suitable for the
study of valuations of higher rank on function fields of algebraic varieties. This will be
based on finite type approximations of the valuation spaces under consideration via a
theory of higher rank skeleta that we develop in this chapter, by providing a geometric
interpretation of higher rank quasi-monomial valuations in terms of tangent cones of cone

complexes.

The motivations behind the undertaken study is multifold:

e On one side, the theory of Newton-Okounkov bodies and their variations [Oko96;
KK12; LM09b; Boul2; BC11; Amil4; Cam+18; Cil+17; KM19a; RW19; EH19;
CMM21; Bos21; HKW20]. One desires to understand continuity and wall-crossing
behavior of convex bodies associated to big line bundles when the corresponding
defining valuations vary. We propose a possible answer to a folklore open question
in the field by providing a suitable base space for the study of families of Newton-
Okoukov bodies.
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e On the other, the recent works of Amini-Nicolussi on hybrid geometry of curves
and their moduli spaces, concerning the constructions of higher rank hybrid and
tropical compactifications [AN20; AN21] and the development of a function theory
in higher rank non-Archimedean analysis [AN21]. This highlights the importance of
higher rank non-Archimedean and tropical geometry in the study of the asymptotic

geometry of multiparameter dependent families of complex varieties.

In the rest of this introduction, we provide an overview of our results and comment on
the links to the related works.

All through this chapter we fix a field k that we can assume to be algebraically closed.
For a positive integer k € N, we set [k] .= {1,...,k}.

Valuations

We start by fixing ideas and notations on the valuations that will be used through this
chapter.

Let (I', <) be a totally ordered abelian group and let K/k be a field extension. A
valuation v on K over k with values in I' is a map v: K — I' U {oo} which verifies the

following properties for any pair of elements a,b € K.
1. v(a) =00 <= a=0.
2. v(a+b) > min{v(a),v(b)} and  v(ab) = v(a) + v(b).
3. v(a) = 0 provided that a is in &.

In this chapter we consider the additive group (R¥, <), for a fixed k € N, endowed with
the lexicographic order <. This is the order defined by saying z <x ¥, * = (21, ..., zk)
and y = (y1,...,Y), if either © = y or there is ¢ € [k] such that z; = y; for j < ¢ and
x; < y;. Moreover, we will suppose that K has finite transcendence degree over x, that
is we suppose the existence of a smooth connected variety X over k such that K is the
function field K(X) of X. The integer number k£ will be regarded as a bounding rank for
the valuations considered in this chapter. The idea to consider valuations of different rank
simultaneously comes from practical situations in the study of degenerations of families of

algebraic varieties over higher dimensional bases, see e.g. [AN20; AN21|.

Basic examples of valuations in this setting are the followings:
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— (Monomial valuations). Let X = A? = Spec (k[X,Y]) and K = x(X,Y). For (a,b) €

R, , there is a unique valuation
Vap: K —RU {OO}
called monomial valuation with respect to (a,b) and given by

Vap(f) = min{az’ + by ‘ a;; # O}, f= Z aija:iyj € K[z, yl.

(4,4)€z?

Here and all through the chapter, R, is the set of non-negative real numbers.

— (Divisorial and flag valuations). Suppose X/k is a normal irreducible variety and
let F' C X be a closed irreducible subvariety of codimension one. The order of vanishing
along F denoted by ordp is a rank one valuation on K = K(X), and any positive scalar
multiple of ordy is called a divisorial valuation. More generally, we can consider a flag of
normal irreducible subvarieties

Fi E2FD2---2F

=

where Fy = X and codimx(Fy) = ¢, ¢ € [k]. Each F, thus defines a discrete valuation
ordg, over K(Fy_1). This gives rise to a flag valuation vr of rank bounded by k defined as

vr: K(X)* = RF

(1)
f = (OrdFl (fl)’ Orsz(fQ)v s ’OrdFk(fk»

—ord
where f; = f and f,.; € K(F)) is the restriction of f; - tf-fl a0 4 Fyyq for tpyq a

uniformizer for the valuation ordp,, ,, see for example [LMO09b; KK12| for more details and
for the link to the theory of Newton-Okounkov bodies.

— (Quasi-monomial valuations) We can generalize the first example above by replacing
A? by any normal irreducible variety X and taking a simple normal crossing (SNC) divisor
D =D;U---UD, on X. This leads to the concept of quasi-monomial valuations, which
generalizes monomial, divisorial, and flag valuations, as we will see later in Theorem 2.3.12.

Consider the dual cone complex of the divisor D. This is a simplicial cone complex
Y(D) in which there is a ray p; corresponding to each component D; of D, and for each
subset I C [r|, each connected component (if any) of the intersection D; := [

e1 Di gives

rise to a face o with generating rays {p;}ic;. More details can be found in Construction
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2.1.6. Each face ¢ of ¥(D) thus corresponds to a connected component of Dy, for I C [r],
that we denote by D,. In this case, we set I, = I identified as the set of elements i € [r]
such that D, contains D,. The divisor D being SNC, D, is normal irreducible and has
a generic point 7,. Moreover, we can choose local equations {z;};c; for the components
{D;}icr around n,.

Just as we did for the case of monomial valuations, for the totally ordered abelian group

(I', %), we can pick a vector a = (a;)ier Wwith oy € I'w, and define a unique valuation v,

on K = K(X) by requiring
(15 =3 e
iel icl
for any v = (v;) € Z. We can then naturally extend this, first, to the local ring Oy, by
taking the minimum over terms of a power series expansion, and then to the full function
field. This is the quasi-monomial valuation associated to D and the weights . For more

details we refer to Section 2.3.

We denote by .#*(D) = .#*(X, D) the set of all quasi-monimial valuations of rank
bounded by k with (T, <) = (R* <i). For k = 1, we further simplify the notation to
A (D). From the above description, it follows that elements of .# (D) are in bijection with
the pair (0,a) with a = (a;)ic;, € Rl7. This means .# (D) can be naturally identified

with ¥(D). The above sets come with a natural tower of projection maps
M(D) — M*(D) - — A" (D)« #*(D) ...

induced by the projection map to the first k& — 1 coordinates R¥ — R¥~1.

Tropicalization

Let X be a normal irreducible variety and let D be an SNC divisor on X. The elements
of the dual cone complex ¥(D) correspond to quasi-monomial valuations of rank bounded
by one on the function field K(X) of X. For each rational function f € K = K(X), we

thus get by evaluation a function
trop(f): X(D) — R, a€o—v(f),

called the tropicalization of f. This is a piece-wise integral linear function on each cone o
of X(D).
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In this chapter we provide an extension of this picture to the case of higher rank quasi-
monomial valuations. This will be based on a duality theorem we state in the next section
which will allow to give a geometric meaning to the space .#*(D) and the tropicalization
map

trop(f): #*(D) = R*,  a€o—wva(f),

for o € (RF )P

Zlex

Tangent cone bundles and duality theorem

The first contribution of this paper is the duality theorem below which provides a geometric
realization of the set .#*(3(D)) of quasi-monomial valuations of rank bounded by k as a
tangent cone bundle on (D).

Notations as above, recall that for & > 1 there is a natural projection map .#*(D) —
A (D) which allows to view .Z*(D) as a bundle over .# (D) = X(D). We give a geometric

characterization of this bundle in terms of (D).

Theorem A2 (Duality Theorem). Notations as above, there is an isomorphism of bundles
over M (D) ~ ¥(D)
M*(D) —=— TCF'%(D)

1 | ®

M (D) —=—— X(D)
where TC*1 (D) is the (k — 1)-tangent cone of ¥(D) defined as the set of all elements
of the form (xz;w,,...,w,_,) where

- the base point z is a point of X(D), and

- Wy, ..., w,_y 1S an ordered set of tangent vectors to (D) at x such that we have
T+ ew; + 2w, + -+ e"w, € X(D),

for any r € [k — 1] and any small enough € > 0.

For a more precise meaning to the above taken sum, we refer to Section 2.3. We call
TC* ' 3(D) the tangent cone bundle of ©(D) of order k — 1.

Using the above correspondence, we give an explicit realization of higher rank quasi-
monomial valuations as directional derivative operators defined in terms of the correspond-

ing tangent vectors. In order to do this, we equip the cone complex (D) with its structure
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sheaf Oy py which is the sheaf of tropical functions. These are continuous functions whose
restrictions on each cone o of ¥ coincides with a piecewise integral linear function defined

on that cone.

A rational function f € K = K(X) induces a global section trop(f) of the structure
sheaf.

Theorem B2 (Duality Theorem, second form). Let (z;w) be an element of the tangent
cone TC* ' 2(D) withw = (wy, ..., w,_1). The valuation v,.,, given by the duality theorem

above is described as

Vg ? K(X) — RE
f = (trop(f)(2), Du, trop(f) (@), ., Dy, .. trop(f)(z))

where

e D, trop(f)(z) is the directional derivative of the function trop(f) at x in the direc-

tion wy, and

o recurswely, D,

..... w, trop(f)(x)

.....

seen as a function on the variable w, in the direction w,,1.

Topologies on the tangent cone of dual complexes

Notations as before, let D = D;U---U D, be an SNC divisor on a smooth quasi-projective
variety X, and let X(D) be the corresponding dual cone complex. Let k be an integer and
consider the tangent cone bundle TC*! £(D). There are four natural topology one can
define on the tangent cone of a dual complex. They all coincide in the case k£ = 1, but

differ fundamentally for larger values of k. We now discuss these topologies.

First note that by the definition of the monomial valuations, we have a surjection
(R¥)Ly — .#*(D). Via the duality theorem, the two first topologies on the tangent cone
TC* ' (D) are induced by this surjection. Namely,

o (Ordered topology) This is the topology on TC*! (D) ~ .#*(D) induced by the ordered
topology of (R¥)..

o (Euclidean topology) This is the topology on TC* ! £(D) induced by the Euclidean
topology of (RF)»q C R*. Equivalently, this is the topology induced by the Euclidean
topology of ¥(D).
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e (Hahn-Berkovich topology) This is the natural topology which appears usually in the con-
text of non-Archimedean geometry, that is the coarsest topology which makes continuous

all the tropicalization maps
Trop(f): TC*'2(D) =R,  fe K(X)

where Rf refers to R* equipped with its lexicographically ordered topology. Note that it

makes sense for any ordered abelian group I' as the value group for the space of valuations.

e (Tropical topology) This is arguably the most interesting topology one can define on
the tangent cone, as it happens to mix the properties of the Euclidean topology on R¥
with those coming from the lexicographic order used in order to define the valuations. By

definition, this is the coarsest topology which makes continuous all the tropicalization maps
Trop(f): TC*'%(D) — R*, feK(X)

in which R¥ is equipped with its Euclidean topology. This topology might be called as well
the Hahn-Euclidean topology.

In this chapter we provide an explicit description of the tropical topology. This is
obtained as a consequence of the tropical weak approximation theorem proved below, as

we describe next.

Refined tropicalization and tropical weak approximation

Let D be an SNC divisor on X. For each cone ¢ € ¥(D) and for each i € I,, consider a
local equation z; for D; around 7,. Then, the family {z;};c;, provides a system of local
parameters for the local ring @) X, Obtained as the completion of Oy, at its maximal idea.
Each element of the local ring O X, admits an admissible ezpansion in the terminology

of [JM12], that is an expansion of the form

F=Y" 32" 5 € Oxy,. (3)

Bezr,

in which the right hand side is a convergent series with each coefficient cg either zero or a
unit element in 6){,%- Here and in what follows, the notation z° stands for the product
21’81 ...2P" where 3i,. .., 3, denote the coordinates of 3 € Z".

The support of the admissible expansion is the set given by all 8 € Z_ such that cg is
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not zero.

Although an element f has generally infinitely many admissible expansions, we will
show later that the set of initial terms of f is invariant under the choice of the expansion
and the local parameters. Here an initial term is an element of the support which is
minimal for the partial order <_, in which a vector z = (z1,...,x,) is less than or equal
toy = (y1,...,y,) if coordinate-wise we have z; < y;,j € [r]. We denote the initial terms
of f by A%. Note that the terms in A} form an antichain for the partial order <_, that
is any pair of distinct elements in A7 is incomparable relative to <_,. The antichain A%

determines the restriction of Trop(f)|,-

Trop(f)(z) = 522% (z,8)

For a rational function f € K(X) which belongs to all the local rings (/’)\X,%, o€
Y, we thus get the refined tropicalization of f given by the collection A, = {A‘]{ ’ o €
Y(D) with f € OX%}, the family of antichains attached to f. Such a family verifies the
following compatibility property:

e (Coherence property) For any inclusion of faces 7 C o, we have the relation

b= Iilin pr__(A%).

Here pr __is the projection map R'> — R~

Theorem C2 (Tropical weak approximation theorem). Let X be a smooth quasi-projective
variety over a field k and let D be an SNC divisor on X. Let A ={A%|c € ¥(X,D)} be
a family consisting of finite sets A7 C Zf;’ such that

e cach A7 is antichain for the partial order <_,, for o € ¥(X, D)

o the family A verifies the coherence property, that is for inclusion of faces T C o, we

have A” = minc_ pr__(A7).

Then there ezists a rational function f € K(X) such that for each cone o of 3(X, D), we
have f € Ox,, and A7 = AF.

The above theorem might be regarded as a tropical analogue of the weak approximation

theorem in number theory.
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From the above theorem we deduce the following result 2.

Corollary. Let X be a smooth quasi-projective variety over a field k and let D be a
simple normal crossing divisor on X. Any tropical function F' on the support of the dual

cone complex (D) is the tropicalization of a rational function f € K(X).

As a consequence of the above result and our analytic description of higher rank val-
uations as multidirectional derivatives of tropical functions, we infer that both the Hahn-
Berkovich and tropical topology are intrinsic to the cone complex ¥(D), that is they can
be defined more generally for any rational cone complex ¥. (The intrinsic nature of the
two other topologies, the ordered and the Euclidean, is obvious from the definition.)

The following theorem provides a description of the tropical topology. Let > be a
rational cone complex and suppose Y is a rational subdivision of it. Let k be a positive
integer. A set U C TCF 1Y is called a i-open if UNTC*'o is open in TC* 1o with

respect to the Euclidean topology for every cone o of 5.

Theorem D2 (Characterization of the tropical topology). Notations as above, we have

1. For each rational subdivision . of X2, the i—open sets of TC*1 S are open with respect

to the tropical topology.

2. The union of all f]—open sets, S a rational subdivision of X, form a basis of opens

sets for the tropical topology.

Spaces of higher rank valuations

Given a variety X over k, the birational analytification of X of bounded rank k is the set
XPF = {v: K(X)* = R" | v is a valuation }

that we endow with the coarsest topology which makes continuous all the evaluation maps,
for any f € K(X)*,

evy: XPink s RF

v— v(f).

2 As it was pointed to us independently by Sébastien Boucksom and by Mirko Mauri and Enrica Mazzon,
this corollary can be alternatively obtained by more direct methods.
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Here, we equip R* with its Euclidean topology. Moreover, we define the following subspaces
of Xbirk

X** = {v € X"™* | v has a center in X}

Xk = {1/ € X"k | 1 does not have any center inX}

that we endow with the topology induced by that of XP"* Recall that for a variety X
and a valuation v: K(X) — I, the center of v, if it exists, is the unique point z € X such

that v is non-negative over Ox , and strictly positive over its maximal ideal.

Notice that XPF = X3k || Xk and XPk = X3* if X is proper. In the terminology
of Foster and Ranganathan [FR16b|, the space XP™* coincides with the subspace of all
valuations defined over the generic point in the Hahn analytification of X endowed with
the extended Fuclidean topology. Moreover, the notation X=* is used in analogy to the
analytic space X~ of Berkovich [Ber96] and Thuillier [Thu07], where the dot is a reminder

that we are considering only tehe birational parts.

We can actually go further and introduce a flag of subspaces of XP"* called the the
centroidal flag, which interpolates between X=* and XP"* This is done as follow. For
0 <r <k, we consider the set

FrXPF = {v € X""F | proj,(v) has a center in X }

where proj,(v) is the composition of v with the projection R¥ — R” to the first k coordi-
nates. In other words,
erbir,k — proj—lXZl,k:
; . .

This give us a decreasing filtration
Xbir,k _ ﬁOXbir,k > }Tleir,k; DD ﬁkXbir,k _ Xlk.
For an SNC divisor D on the variety X, the space TC*! Y (D) endowed with its tropical

topology naturally fits inside X=*. As we will next explain, the tangent cone bundles

provide a higher rank notion of skeleton for the above space of valuations.



Chapter 2: Geometry of Higher Rank Valuations 29

Tangent cone bundles as higher rank skeleta

We now discuss the relevance of the tangent cone bundles to higher rank non-Archimedean

geometry.

We start by recalling some basic definitions in birational geometry. Let X be a smooth
variety over k. A log-smooth compactification of X is a proper variety Y containing X as
an open subvariety such that Y\ X is a simple normal crossing divisor on Y. A morphism
between log-smooth compactifications Y’ and Y is a morphism f: Y’ — Y between the
underlying varieties such that f~'(X) = X and f| is an isomorphism. The category of
log-smooth compactifications of X will be denoted by LSCyx.

A compactified log-smooth pair is the data of a pair Y = (Y, D) consisting of a proper
variety Y and a simple normal crossing divisor D C Y together with a birational map
@:Y --» X such that the divisor D can be decomposed as D = D° + D> where D° and

D does not have any component in common, and such that
(1) the domain of definition of ¢ is Y\ D>, that is,
e: Y\ D* — X
is well-defined and Y\ D> is the maximum open set with this property.

(73) the pair (Y \ DOO7DO|Y\DOO)

morphism from Y\ D> to X and the restriction

is a log-smooth pair for X, i.e., @\Y\Dm is a proper

Y\ (D°UD®) — X\ ¢p(D°)
is an isomorphism.

Morphisms between compactified log-smooth pairs can be defined in a natural way. The

category of compactified log smooth pairs will be denoted by CLSP .

For a compactified log-smooth pair Y = (Y, D), we denote by %(Y) = X(Y, D) the
dual cone complex associated to the divisor D on Y. We denote by TC**%(Y) the

corresponding tangent cone bundle that we endow with the tropical topology.

Given a compactified log-smooth pair Y = (Y, D) over X, as above, the decomposition
D = D° U D™ gives the subcomplex $(D°) inside $(Y) which we denote by 2(Y"). The
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centroidal filtration of TC*™' ¥(Y) is by definition the filtration
FOTCH'S(Y) D #1TCF'2(Y) D --- D ZF1C* ! 2(Y)
given for 0 < r < k by
FTTCH (YY) = {(ac; (wy,... wi1)) € TCIN(Y) | (2 (wr, ... w,_y)) € TC™! 2(?")}.

We prove the following theorem.

Theorem E2 (Characterization of the tropical topology). Notations as above, for each

compactified log-smooth pair Y = (Y, D) over X, there is a continuous retraction
r: XPrk e (Y.
Y

Moreover, the deduced continuous map

r XPOE o lim TCFIR(Y)
—
YEeCLSP x
1s a homeomorphism. In addition, the limit are compatible with the centroidal filtration on
the analytic spaces and on tangent cone bundles. That is, for each 0 < r < k, we get to a
homeomorphism
FrXPE s dim FTTCEHR(Y).
I
YeCLSPx
We note that the above theorem shows that tangent cones with their tropical topology

should be regarded as the higher rank analogue of skeletons in non-Archimedean geometry.

We remark that the statements of the above theorem hold as well in the case where the
spaces in consideration are equipped with the Hahn-Berkovich topology. However, due to
mized nature of the tropical topology, the arguments in the proof in the case of the tropical
topology become more subtle. In particular, on the way for getting the result, we need to

establish a somehow surprising Topology-Mixing Lemma 2.6.9.

Variations of Newton-Okounkov bodies

The tropical topology and the above spaces of valuations seem to be the right topological

spaces for the problem of understanding the variations of Okounkov bodies, as we explain



Chapter 2: Geometry of Higher Rank Valuations 31

now.

Let X be a smooth projective variety of dimension d and let L = O(E) be a big line
bundle over X. Consider the graded algebra

H.:@Hn

n>0

where H,, = H°(X,O(nkFE)) is a finite dimensional k-vector subspace of K(X).
Each valuation v € XP"? gives rise to the corresponding Newton-Okounkov body in
R? denoted by A, and defined by

AU::U{@MGH,Z}.

n>0

Let now D be a simple normal crossing divisor on X and consider the tangent cone
TC'¥(D). Consider the space BC(R¥) of compact subsets of R* endowed with the
Hausdorff distance. We get a map

A: TC*™'¥(D) — BC(R™)

(r;w) — A

(4)

Ve,w*

The study undertaken in this chapter has as objective to ultimately prove that the
above map A is continuous when TC*~! ¥(D) is endowed with the tropical topology. This
topology is actually the only natural one on TC% ! ¥ (D) for which one can expect this

statement to be both true and non-trivial, as can be verified through basic examples.

Conjecture. Let L be a big line bundle on a projective variety X of dimension d. Let D
be a simple normal crossing divisor on X with dual cone complex (D) of pure dimension

d. The variation of Newton-Okounkov bodies on TC%*(%(D)) is continuous.

We later provide a heuristic argument for the validity of this conjecture. In particular,

on those cones whose augmented semigroups are finitely generated, the conjecture holds.

Related work

In this final section, we make a comparison of our results with the existing ones in the

literature.

The contributions of this chapter should be regarded as part of the recent attempts
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to generalize the framework of tropical and non-Archimedean geometry to higher rank

valuations.

Analytification of varieties based on valuations has been developed in the pioneer-
ing works of Berkovich [Ber12] and Huber [Hub94|. Both spaces are intimately linked
with tropical geometry, in the former by means of usual tropicalization and in the latter
by means of adic tropicalization [Fosl6|. More recently, Kedlaya [Ked15] and Foster-
Ranganathan [FR16b; FR16a| introduced an alternative analytification directly linked to
the one of Berkovich based on higher rank valuations. This last point of view is similar to

the one we have adapted as the setting for formulating our results in this chapter.

Higher rank tropicalization has been studied by Aroca [Arol0b; Arol0al, Aroca-Garay-
Toghani [AGT16], Banerjee [Ban15|, Foster-Ranganathan [FR16b; FR16a], Kaveh-Manon
[KM19a; KM19¢|, Escobar-Harada [EH19], and Joswig-Smith [JS18]. Our work can be
regarded as the geometric version of higher rank tropicalization. A framework for higher
rank polyhedral and tropical geometry related to the set-up introduced in this paper will
appear in the forthcoming paper |Iri21|. Tangent cone bundles we introduce in this paper
and their refinements play a central role in that work.

Geometric tropicalization in rank one has been studied by Hacking-Keel-Tevelev [HKT09|,
Thuillier [Thu07], Abramovich-Caporaso-Payne |[ACP15|, and more recently by Ulirsch
[Uli17] and Gross |Grol8|, among others.

A more general framework for tropicalization has been developed in the work of Lorscheid
on blueprints |[Lorl5], and in the works of Giansiracusa-Giansiracusa |[GG16; GG14| and
Maclaghan-Rincon [MR20]. Because of the level of generality in those works, higher rank
tropicalization can be treated using any of the former two frameworks. Tropicalization with
values in hyperfields is studied by Viro [Virl0], Jun [Junl7] and Jell-Scheiderer-Yu [JSY18|.

The link between skeletons and tropicalizations in rank one has been throughly stud-
ied in the works of Gubler-Rabinoff-Werner [GRW17; GRW16|, Macpherson [Mac20], and
Baker-Payne-Rabinoff [BPR16]. Since skeletons play a central role in connecting complex
and non-Archimedean geometry, in the study of one-parameter families of complex mani-
folds, we expect that higher rank analogues of skeleta introduced in this paper, and their
polyhedral counterparts further developed in [Iri21], will play a central role in the study
of multiparameter families of complex manifolds. A systematic study of multiparameter

families of Riemann surfaces is undertaken in the series of works [AN20; AN21].

The link between dual cone complexes and higher rank valuations we provide in this

paper should be compared with the work of Kaveh and Manon [KM19a| on Khovanskii
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bases. In that work, the authors show how to associate to prime cones appearing in the
tropicalization of subvarieties of affine spaces a higher rank valuation on the coordinate ring
of the variety with a finitely generated semigroup. The construction we consider directly
associates higher rank valuations to cone complexes of normal crossing divisors. These
cone complexes live in the Berkovich analytification of the variety X. By the work of
Gubler-Rabinoff-Werner [GRW17; GRW 16|, a prime cone appearing in the tropicalization
of a variety can be viewed naturally in the Berkovich analytification of the variety. In
this regard, it seems possible to retrieve the valuations in the work of Kaveh and Manon
as those in the framework of our paper which come from faithful tropicalizations of the
variety. We refer to [RW19; Bos21; Bos+17; Bos+18; IW20; EH19| for further results on

the connection between tropical geometry, toric degenerations and Khovanskii bases.

The origin of limit theorems goes back to the work of Zariski [Zar39; Zar44| on resolution
of singularities in dimension two and three using Riemann-Zariski spaces. For tropicaliza-
tions, this has been shown in rank one by Kontsevich and Soibelman [KS06] (unpublished),
Payne [Pay09|, Foster-Gross-Payne [FGP14], Jonsson-Mustata [JM12], Boucksom-Favre-
Jonsson [BFJ16], and Boucksom-Jonsson [BJ18]. We have been particularly inspired by
the work of [JM12] in establishing our limit theorems. A higher rank version of [FGP14]
has been obtained by Foster-Ranganathan [FR16b]. Relative Riemann-Zariski spaces are
studied by Temkin [Tem11; Tem10]. We refer to the book of Fujiwara-Kato [FK13] for a

detailed discussion of Riemann-Zariski spaces and their applications in rigid geometry.

A version of the duality theorem for the valuative tree was proved by Favre and Jonsson
in [F'J04]. For curves over non-trivially valued fields this theorem should be compared with
the description of tangent directions at points of type 2 in the Berkovich analytification as
valuations of rank two on the function field of the curve, a result which can be traced back
to Bosch-Liitkebohmert [BL85] and Berkovich [Ber12|. This is also the main ingredient in
Thuillier’s non-Archimedean version of Poincaré-Lelong formula for curves [Thu05] and its

reformulation as a slope-formula by Baker-Payne-Rabinoff [BPR13].

Finally, let us mention that a version of the approximation theorem for curves for
non-trivially valued base fields is proved by Baker-Rabinoff [BR15]. We expect that our
theorem should be true in the non-trivially valued case in any dimension and plan to come

back to this setting in a future work.
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Organization of the chapter

Here is the plan of this chapter. In Section 2.1 we introduce dual cone complexes endowed
with the sheaf of tropical functions and their tangent cones. We attach to a simple normal
crossing divisor on a variety X its corresponding dual cone complex and its tangent cone.
In Section 2.2 we recall the definition of tropicalization of rational functions, and explain
how to attach a system of antichains to a rational function, leading to a refinement of the
definition of tropicalization.

Section 2.3 introduces quasi-monomial valuations of a given rank and study their ba-
sic properties. This section contains the proof of the duality theorem and an analytic
description of the monomial valuations in terms of directional derivatives along elements
in the tangent cones. Section 2.4 contains the proof of our approximation theorem. In
Section 2.5, we study the tropical topology on the tangent cone, and provide an explicit
basis of this topology. Section 2.6 introduces several spaces of higher rank valuations on
the function field of a smooth variety over k. The results are used in Sections 2.6.3, 2.7

and 2.8 to prove the continuity of the retraction map and the limit formulae.



Chapter 1

Polyhedral Geometry Over the Generalized

Dual Numbers

The aim of this chapter is to provide the foundations of a polyhedral geometry in the higher
rank setting, and to give the first applications to a (to-be-developed) theory of higher rank

tropical geometry.

1.1 Basic Concepts in Higher Rank Polyhedral Geome-
try

In the following we will work with the ring of generalized dual numbers of rank k defined
by D := R[e]/(¢*). For k = 2 it recovers the usual ring of dual numbers. Elements of D
have the form

z =120 4 W 404 gk k-1 (1.1)

(k=1) ¢ R. They are manipulated as usual power series with coefficients in

with 2, ...
R imposing that e¥ = 0, in the same way as one works with Taylor expansions of the form
ap+arz+---+ap_12571+o(2*71). If the rank of D has to be made explicit, we use a lower
index Dy,.

For an element x € D asin (1.1) and for 0 <4 < k — 1, we denote by z!! the truncated
element

Moreover, we introduce the order of x by ord(z) = min{j € {0,...,k — 1} | ) # 0} if

35
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x # 0 and ord(0) = k.
Notice that D is isomorphic to R* as an additive group. We endow D with the lexico-

graphic order

0O 4 eq® 4o R0 ) (D) L k1) (1.2)
— a9 < b for the first i such that a@ # b, (1.3)

In this way, we obtain an order on D that we simply denote by <. This order turns
out to be compatible with the additive and multiplicative structure of ID turning it into an

ordered ring.

Remark 1.1.1. The following observation is useful and will be used sometimes in the
arguments. Given a,b € D, we have a < b with the lexicographic order introduced in (1.2)

iff we have
a® 4+ g 4. gL < @ 4 5pM) .. g lpk-D)

for every § € Ry small enough.

Given a lattice N = Z" with dual lattice M = Hom(N, Z) we consider the base changes
Np =N®D and Mp = M ® D. The pairing M ® N — Z naturally extends to a pairing
Mp ® Np — D which we denote by (-, ).

Remark 1.1.2. Under the pairing (-,-), the linear functions from Np to D correspond
exactly to the elements of Mp. For this reason, we decide to write y instead of (y,-) when
there is no risk of confusion. More generally, the affine functions from Np to D are all of

the form (y,-) + a for some y € Mp and a € D.

Using the ordered ring structure on D we can introduce several geometric concepts over
the module Np.

Definition 1.1.3.

1. A set P C Np is conver if for any z,y € P and any t € D such that 0 <t < 1, we
have
tr+ (1—t)y e P.

2. Aset 0 C Np is a cone if for any =,y € 0 and any ¢t € D>, we have

tr € o and x4y € 0.
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(Sometimes in the literature, a cone refers to a weaker notion in which one merely asks
the sets to be closed under positive scalar multiplication. Along this document every cone

is convex.)

As an example of how to work with this ring, we will show that for subsets of the

ordered ring D, the notion of convexity agrees with its counterpart from order theory.

Proposition 1.1.4. A set C' C D is convex iff it has the following property:
For each x,y,z € D such that v <y < z and x,z € C, we have y € C. (%)

Proof. It x < y then z < tx + (1 — t)y < y for every 0 < ¢t < 1. Hence, if C satisfies
property (%), then, for every x,y € C' we have tx + (1 — t)y € C. Therefore C' is convex.
On the other hand, suppose that * <y < z and z,z € C. If z — z is invertible we can

y:y_xz—i-(l—y_x)x.

zZ—XT zZ—XT

consider the expression

More generally, we have 0 <y —x < z —x. Hence ord(z — z) < ord(y — x), so we can take
elements a,b € D with b invertible such that

ord(z—x) ord(z—x) )

z—x=1be and y—x =ae

If we define t = a/b we have 0 <t < 1 and tb = a, hence
tzt(1—tr =tz —2) + o=t 4 3 = qeCM L g = (y —2) + o =y.

Therefore, y € C. ]

Some elementary examples of convex sets and cones in any dimension are given by the

half-spaces which we introduce as follows.

Definition 1.1.5. A half-space is a subset of Np of the form
H:={z e Np|(y,z)>a}

for some y € Mp and a € D. To simplify notations, we frequently write this as H = {y >
a}. For a given subring R C D, if we can take y € My we say that H is R-rational. If
moreover we can take a € R we say that H is strongly R-rational. If a = 0, then H is a

half-space going through the origin.
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Of special interest for us are the convex sets and cones which are defined in terms
of finitely many data. Omne approach to this is to represent them from outside as an

intersection of half-spaces. This leads to the following definition.

Definition 1.1.6.

1. A polyhedron is a non-empty finite intersection of half-spaces. We say that a poly-
hedron is R-rational (resp. strongly R-rational) for a subring R C D if we can take

each half-space in the intersection to be R-rational (resp. strongly R-rational).

2. A polyhedral cone is a finite intersection of half-spaces going through the origin. A
polyhedral cone is R-rational for a subring R C D if we can take each half-space in
the definition to be R-rational itself.

In order to manage the data defining a polyhedron we consider the following.

Definition 1.1.7. Given a polyhedron P C Np, a representation of P is an equality of
the form
P:{yl Zalv"-)yrzar}' (14)

for some y1,...,y. € Mp and aq,...,a, € D. This representation is non-redundant if it
is not possible to obtain a different representation by removing an inequality of the form

{y; > a;} from the intersection.

If we allow ourselves to use affine functions instead of linear functions, Equation (1.4)

can be written as

P={fi>0,....f, >0} for fi=(yi,) — a

Proposition 1.1.8. Given a non-redundant representation as in (1.4), then for any 1 <

1 <, the function y; attains its minimum on P and this minimum is a;.

Proof. Of course a; is a lower bound for the values of y; over P. We will show that this

lower bound is attained. For this consider the set

() {zeNo|(y z)>a}.
I<j<r
JFi
This is a convex set and hence its image under (y; ,-) is a convex set as well that we denote

by C' C D. As P is non-empty we have C N [a;,00) # &, and as the representation is
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non-redundant we have C'N (—o0, a;) # @. So, by Proposition 1.1.4 we have a; € C. This
shows that mgn(yi ) = a. O

One can alternatively construct cones and convex sets from inside by means of gener-

ators as follows.
Definition 1.1.9. For a non-empty subset X C Np,

1. The convex hull of X, denoted by convp(X), is the smallest convex set containing

X. Alternatively, this set equals

{i tle < N]D)

i=1 =1

r>1,z,...,2, € X and t;...,t € Dxg s.t Zti:l}'

A convex set P is said to be a polytope if there is a finite set X C Np such that
convp(X) = P.

2. The cone generated by X, also known as the cone hull of X, denoted by conep(X),

is the smallest cone containing X. Alternatively,

conep(X) = {thxz € Np

=1

7’2]_,[Eh...,l'rEXaHdtl...,tTEDZ()}.

A cone o is said to be finitely generated if there is a finite set X C Np such that conep(X) =

g.

Definition 1.1.10 (Face). Let P be a polyhedron in Np and consider an element y € My,
such that

miny , )

exists. Then, the face of P determined by y is the subset consisting of all elements in P

for which y attains its minimum, that is,

face, P == {x eP ‘(y,x} = mig(y,x'>} .
z'e
A face of P is a set of the form face, P for some y € Mp.! We write FF < P if F is a face
of P.

!'Notice that with our definition, the empty-set is not considered to be a face. This differ with the
definitions of some authors.
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Remark 1.1.11. sec:structure-faces

1. A linear function can be bounded below and still does not achieve its minimum. For
example, consider
P={zeD|ex >0}

and the linear function z — z. This function is bounded bellow in P but does
not attain its minimum. This phenomenon has to be kept in mind as minimizing

functions plays an important role along the theory.

2. If 0 is a polyhedral cone, then y € Mp attains its minimum over o iff y is non-negative

over o, and in this case, the minimum has to be zero.

3. A face of P is given by adding one equality, hence two inequalities, to the expression

defining P. Therefore, it is a polyhedron itself.

4. If P has a representation of the form

P:{ylzala'”)yrzar}7

then it is not true in general that all faces are obtained by adding equalities in this
expression of the form y; = a;. To obtain some faces we may have to add equalities
of the form £%y; = £%a;. In other words, we not only need to consider the locus of
points © € P in which (y;,x) is a minimum, but also the locus of points z € P in
which the first a — k coordinates of (y; , z) coincide with the minimum. This is a core
reason why the combinatorics of faces in this theory is more subtle and capture more
information about the minimization of functions. See Proposition 1.6.1 for a precise

statement and a proof of this.

In order to use results about polyhedral cones over polytopes, one can go from the

perfect pairing Mp x Np — D to the extended perfect pairing defined as follows.

Definition 1.1.12. The extended perfect pairing is given by

(Mp x D) x (Np x D) — D
((y,a), (x,0)) — ((y,a) , (x,b)) = (y,x) + ab.
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In this context, a lower face (resp. upper face) of a polyhedron P C Np x D, is a face of

the form face(y,1y(p) (resp. face(y,_1)(py) for some y € Mp.

Definition 1.1.13 (Face Poset). The face poset of P is the partially ordered set
S(P)={F C P| F is a face of P} U {2}

where the order is given by the inclusion of sets. Moreover, we denote by §(P)* the reduced
face poset of P given by §(P) \ {@}.

Remark 1.1.14.

1. If we consider F,G € F(P)* such that G C F, then G is a face of F. Indeed, if
G = face, P for some y € Mp then, G' = face, F' for the same y. This shows that we
can replace C by =< as the order relation in the definition of §(P)*.

2. In Corollary 1.6.3 we will see that if F' is a face of P and G is a face of F', then G is
a face of P. Therefore, F(F') C §(P) for any face F of P.

3. Also in Corollary 1.6.3 we will show that a non-empty intersection of faces of P is a
face of P. This shows that §(P) is an order lattice. That is, every pair {F, G} C F(P)
has an infimum given by F A G := F N G and a supremum given by

FvG:.= ﬂ H.

HeF(P)
HDFUG

We will work with more general families of polyhedra besides the set of faces of a given

polyhedron. The properties of these families are captured in the following definition.

Definition 1.1.15. A polyhedral complex in Np is a collection of polyhedra ¥ in Np with

the following two properties:
1. Given F,G € X, the intersection F' N G is either empty or a face of both F' and G.
2. If F is a face of G, and G € X, then F € X.

The elements of ¥ are called the cells or faces of 3. Given a polyhedral complex ¥ in Np,

its support is the set
= |J F <M.

Fe¥
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If P = |¥] is itself a polyhedron, we say that 3 is a subdivision of P. More generally,
if 37 and Y, are polyhedral complexes such that, |3 = |Xs| and for every F' € 3, there
is a G € ¥; such that FF C G. Then, 3, is said to be a refinement of >, and we write
Y1 =X X, If every face of ¥ is a polyhedral cone, we say that X is a fan in Np.

Remark 1.1.16. Some basic results concerning the definitions will come naturally after

developing the theory.

1. In Corollary 1.7.9 we will prove that a polyhedron that is a cone in the sense of

Definition 1.1.3 is a polyhedral cone.

2. In Proposition 1.2.4 we prove that polytopes are polyhedra and finitely generated

cones are polyhedral cones.

3. Conversely, in Proposition 1.5.2 we show that polyhedral cones are finitely generated

cones. Hence, the concept of finitely generated cones and polyhedral cones coincide.

4. In Proposition 1.9.9 we obtain a criterion to determine which polyhedra are polytopes:

A polyhedron P is a polytope iff every linear function achieve its minimum in P.

1.2 The Fourier-Motzkin Elimination

In the following, we will provide a generalization of the Fourier-Motzkin elimination (The-
orem 1.2.3) which allows us to reduce the number of variables in a system of linear in-
equalities. As an immediate consequence, we get that the projection of a polyhedron is a
polyhedron. This result has many applications, the most interesting for us being the fact
that polytopes are polyhedra and finitely generated cones are polyhedral cones. A more
subtle application is Farkas’ Lemma, which will be discussed in the next section.

Let us start with a result about the intersection of convex sets in linear orders which,
although very simple, we could not find a reference for it in the literature. Given a linear
order L, a subset C' C L is called order-convex if for every x,z € C and every y € L such

that © <y < z we have y € C'. In the style of Helly’s theorem, we have the next lemma.

Lemma 1.2.1. Consider a linear order L and a finite family of non-empty order-convex
sets {Ci}ier in L. If we have C; N Cy # @ for every i,j € I, then (\,c; Ci # @.
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Proof. For each unordered pair {i,j} C I take an element z;; € C; N C; and consider
a; = minjey x;; and b; = max;es x;;. In this way, we have [a;, b;] C C; for each i € I and

a; < x;; < b; for each ¢, 7 € I. Therefore max;cr a; < min;er b; from where
ﬂC Dﬂal, maxal,mmb]#g
el el

]

In Proposition 1.1.4 we proved that the order-convex subsets of D coincide with its
convex subsets. Hence, the convex subsets of D satisfy the Helly property above. This tells
us that, to understand if an arbitrary intersection of convex sets in D is non-empty, we can
restrict us to study that each convex set is independently non-empty and each intersection
of a pair of convex sets is non-empty. The convex sets of D in which we will be interested

are the solutions to linear inequalities like
c+dex>0 or c+dr>0.

After multiplying by an invertible element, we can suppose that these inequalities are of

one of the forms
—a+ez >0, —a+er>0, b—e’z>0, b—elz>o0.

The next lemma gives us conditions in terms of the coefficients a and b for which, a single

inequality has a solution or a pair of inequalities have a common solution.

Lemma 1.2.2 (Fourier-Motzkin reduction). Let a,b € D and consider the inequalities

—a—+e% >0 (i)
—a+¢e%r >0 (i*)
b—e’r >0 (ii)
)

b—e’r >0 (ii*
Then,

1. The inequality (i) has a solution iff the inequality (i*) has a solution iff

—ek=aq > 0.
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Analogously, the inequality (ii) has a solution iff the inequality (ii*) has a solution iff

"By > 0.

2. The inequalities (1) and (ii) have a common solution iff each of them has a solution

in their own and

b—E’B_O‘aZOifﬁzaon

eo"ﬁb—aEOifazﬁ.

Similarly, (i*) and (ii) have a common solution iff each of them has a solution in

their own and

b—e’2a>0if B> a or
e Ph—a>0ifa>p.

The inequalities (1) and (ii*) have a common solution iff each of them has a solution

i their own and

b—e"%a>0if > a or
e Po—a>0ifa> 0.

Finally, (i*) and (ii*) have a common solution iff each of them has a solution in their

own and

b—e’2a>0if B> a or
e Ph—a>0ifa>p.

Proof.

1. If there is an z satisfying (i) or (i*) then by multiplying the inequality on both sides

k—a

by e we get —e"~%q > 0. Conversely, If —e¥=%a > 0 then either —*%a > 0 or

—ek=2q = 0. In the first case —a+ &%z > 0 for any = and we are done. In the second
case a is of the form e*a’ and we have —e%a’ 4+ ¢®x > 0 (resp. —e%a’ + &%z > 0) iff
—a' +x >0 (resp. —a’ +x > 0) which always have a solution. The statement about

(ii) and (ii*) follows from the previous one by replacing = with —z and a with —b.
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2. Suppose that both inequalities (i) and (ii) have a solution and moreover § > «. By
multiplying (i) by £°~® and adding (ii) we get b — °~%a > 0. Conversely, suppose
that both (i) and (ii) have a solution independently and b — e*~®a > 0. Then, by
the first part we have —f~®a > 0 and £~ > 0. Moreover, if —¢*~%a > 0 then (i) is
satisfied for every z and any solution for (ii) works for both inequalities. Hence, we
can assume —e*~%q = 0, and for a similar reason, we can assume £*~b = 0. Then,
a = %’ and b = 8V for some o', € D, which we can replace in the inequality
b—eP~*a > 0 to obtain €%V — e%a’ > 0. Then, there is an = such that

b=V > e >efd =P (1.5)

If 3 = a we are done. If 3 > « then, notice that for every 2’ € D we have e’z =
eP(x + e*Pa’). Hence, we can modify the last 3 coordinates of z and (1.5) remains
true. By making them big enough we have £*z > a, that is, = satisfy (ii*). In
particular, x satisfy both (i) and (ii) simultaneously and we are done. The case in

which 8 > « is done similarly.

Notice that in the argument above we proved that if > « then (i*) and (ii) are
satisfied together iff they are satisfied individually and b — e’~“a > 0. This is the
next part of the proposition. For the other part, if & > § then, if both (i*) and (ii)
are satisfied we can multiply the first equation by €*~# and add it to the second one
to obtain e*~#b — a > 0. Conversely, working in the same way as to obtain (1.5) we
get a’, b,z € D such that

b==eY > el > ePad =P .

Again, if f = o we are done and if § > a we can modify the last § coordinates of x
as to get e*x > a, and such an x satisfy both (i*) and (ii*) (in particular (i*) and
(ii)). The remaining cases can be done in the same way.

[

For the following result, it will be necessary to use coordinates, hence we will work with
spaces of the form D" for n > 0, instead of Np for a general lattice N. A linear inequality

in D™ is an inequality of one of the forms

QT + -+ apy 2 a a1 Ty + -+ apT, > a (1.6)
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with a,aq,...,a, € D. If it is of the first form we say it is closed, if it is of the second
form, we say it is open, and if a = 0, we say it is homogeneous. A finite family of linear
inequalities is called a system of linear inequalities. Such a system is said to be closed,

open or homogeneous if each inequality is of this form.

Theorem 1.2.3 (Fourier-Motzkin over D). Given an integer n > 1 and a system of linear
inequalities £ in D", there is another system of linear inequalities L' in D™ such that an
element (x1,...,Tpy1) 18 a solution of L for some x,1 € D, if and only if, (x1,...,2,) is
a solution of L'. Moreover, if L is closed or homogeneous then L' can also be taken to be

closed or homogeneous, respectively. If L is open, it may not be possible to take L' open.

Proof. Let & = (21,...,%,) € D" There is an element z,,,; € D such that (Z,z,.1) is a
solution to L iff the system of inequalities £z has a non-empty set of solutions, where L;

consists of the inequalities
T+ + aplp + AT > a Or a1+ + ATy + Ap1 T > a (1.7)

where a;xy + -+ 4+ apTp + Gpi1Tpe1 > a and a1y + - -+ + ATy F App1Tpe1 > A O OVEr
all the inequalities of £. After multiplying by a positive invertible element of D we can

suppose that each inequality in £; is of one of the forms

—a(Z) +e2 >0 (i)
—a(Z)+e% >0 (i*)
b(z) — x>0 (ii)
b(i) — e’ >0 (ii*)
c(z) >0 (iii)

c(@) >0 (iii*)

Notice that the set of solutions of each of these inequalities is a convex set in [D. Hence,
by Lemma 1.2.1, £; has a non-empty set of solutions iff each individual inequality on it
has a solution and each pair of inequalities on it has a simultaneous solution. By Lemma
1.2.2 we know that each of these conditions can be translated into a linear inequality in
the variable Z, giving rise to a system of linear inequalities £’ in the variable Z. Hence,
there is an x,, 41 such that (Z, z,.41) is a solution to L iff £; has at least one solution iff 7 is

a solution to £’, as we wanted. Moreover, the explicit linear equations obtained in Lemma
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1.2.2 give us that if each inequality in £ is closed or homogeneous, then each inequality in
L' is also closed or homogeneous as well. Finally, in the case in which £ consists in the
single equation x; + exo > 0, then £’ should have as solution set exy > 0, so £’ cannot

consist in a finite set of open inequalities in . ]

As an immediate consequence of this, we get that the projection of a polyhedron in
D* to some of its coordinates is still a polyhedron, and if it is a polyhedral cone then the
projection is also a polyhedral cone. Less immediate consequences are summarized in the

following proposition.
Proposition 1.2.4.

1. The tmage of a polyhedron P under a linear map is a polyhedron. If P is a polyhedral

cone, then the image is also a polyhedral cone.

2. The sum of two polyhedra is a polyhedron. The sum of two polyhedral cones is a

polyhedral cone.
3. Every polytope is a polyhedron.
4. Fvery finitely generated cone is a polyhedral cone.
Proof.

1. Without loss of generality we can suppose that P is a polyhedron inside D™ and the

linear map f goes from D" to D*. Now consider
L(flp) = {(z,y) € D" xD* |w € P,y = f(x)}.

This is a polyhedron in D" x D* and f(P) is the projection to the second component.
Hence, by Fourier-Motzkin this is a polyhedron. In the same way, if P is a polyhedral
cone, then so is I'(f|p) and then its projection f(P).

2. Given P, () € D", consider

R={(z,y,z) e D"xD"xD" |z € Pye Q,z=x+y}.

By (1), this is a polyhedron and P + @ is the projection to the last component.
Hence, it is a polyhedron as well. As R is a polyhedral cone if each of P and @) are,
then so is P + () in this case.
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3. The polytope P is equal to convp(ay,...,a,) for some ay,...,a, € D*. Then, P =
f(Q) where @ is the polyhedron

Q=A{(xy,...,z,) €D |xq,...,2, > 0,21+ -+ - + 2, =1}
and f is the linear map defined by

f:D" — D"

T;—> Q;

By part (2) we get that P is a polyhedron as well.

4. As above, if o = conep(ay,...,a,) for some aq,...,a, € D". Then, o = f(7) for the

same function f and
r={(z1,...,2,) €D | z1,...,2, > 0}.

]

1.3 Farkas’ Lemma over the Generalized Dual Numbers

In this section we will prove the analogous statement to Farkas’ Lemma which works over
the ring ID. This result is at the heart of the theory from a technical standpoint. Its proof

is based on the Fourier-Motzkin elimination developed the previous section.

Theorem 1.3.1 (Farkas’ Lemma over D). Let fi,..., f. : Np — D be a family of affine
functions such that

P={fi20,....f 20}

is non-empty. Then, any affine function f : Np — D that achieves its minimum in P can

be written in the form
fominf=Mfit+-+Af

for some Ay, ..., A\ € Dxyg.

Remark 1.3.2. One can state Farkas’ lemma over R as follows. If f, fi,..., f, : Ng = R

is a family of affine functions such that

{(f>0}2{fi >0,....f >0}
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Then, there are ¢, A1, ..., A\, € R5( such that
=M+ -+ N[ t+e

The exact translation of this statement to D is false. For example, we can take N = Z,
f(z) ==z, fi(r) =(e,2) + 1 and fy(x) = (—e,x) — 1. Then,

{(f>2012{fi >0, f, >0} =g,
but there are no ¢, A\;, Ay € D> such that
r=MA({e,x)+ 1)+ ((—e,z) + 1)+ ¢, Yz €D.

In this way, we see that the hypothesis that P is not empty is unavoidable. Similarly,
the hypothesis that f achieves its minimum over P is unavoidable as, we can take f(z) =
(e,z) + 1 and fi(x) = (¢?,2). Then

{{e,z) +1 >0} = Ng D {{e?,z) > 0}.
But, there are no ¢, A\; € D+ such that

(e,2) = M (e, x) + ¢, Yz €D.

We will deduce the theorem above from the following more general technical lemma.

Lemma 1.3.3. Consider affine functions fi,..., fs, fsx1, .-, Jt in Np such that

{fi20,...,fs>20,fs120,...,, >0} #2 (A)
{fi>20,...,fs>0,fs1>0,....,f; >0} = 2. (B)

Then, there are Ay, ..., A\ € D>o such that
/\1f1(l‘)—|—+)\tft(.7)) :0, V.TGN]D)

and at least one element between Asi1, ..., N\ is invertible.
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Proof of Theorem 1.5.1. We have

{fl207"'7fT207_f+mgnf20}7é®a‘nda

{fl 2077f7"207_f+m1;nf>0}:®
So, by Lemma 1.3.3, there are Ay, ..., A\, A € D> with A invertible such that
it A+ A (= f +min f) =0,

That is,

. A Ar
f—m];nf—xf1+"'+xfr

as we wanted. O]

Proof of Lemma 1.5.5. After composing with an isomorphism we can suppose N = Z".

The proof is by induction on n.
Base case n = 1:

After multiplying by a positive invertible element in D if necessary, we can suppose that

each f; is of one of the forms
e¥r —a;, b — gﬁix, ¢; forsome 0 < qy, B; < k—1.

Then, by Lemma 1.2.2 the system of inequalities in (B) has no solutions iff at least one of

the following conditions fail

1. For every i we have

(1.1) —ek~%a > 0if f; = e%x — a;
(1.1) eF=Bib > 0 if f; = b; — P
(1.2) Either

¢ > 0if i < s or,

¢ >0ifi>s

2. Whenever f; = &%z — a; and f; = b; — €%z we have
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(2.1) Ifi,j < s:

b; —ePim%a; > 0 if B
e Pib; —a; > 0if oy > B

a; or,

(2.2) If i > sand j <s:

bj — 553'_‘”@ > 0if Bj > oy Or,

Eai—ﬁjbj —a; >01if oy > /6j
(2.3) Ifi < sand j > s:

bj — €ﬂj_aiCLZ’ > 0 if Bj >« or,

gai—ﬁjbj —a; Z 0 lf (67 > 6]
(2.4) It i,j > s:

b; — e %a; > 0 if B

garﬂjbj —a; >01if oy > Bj

«; or,

As the system (A) does have a solution, the only conditions that can fail are the ones

with strict inequalities. Moreover, this can fail only by getting an equality.

e If condition (1.2) fail then for some i > s we have f; = ¢; = 0 so in this case we can
take \; =1 and \; = 0 for all j # 1.

e If condition (2.2), (2.3), or (2.4) fail then we have either
fi + Eai_ﬂjfj = €ai_’8jbj — Q; = 0

with ¢ > s or
ehimeifi 4 fi=bj — P, =0

with j > s. In the former case we can take \; = 1, \; = ¢* % and everything else

0. In the later case we can take \; = 1, \; = %% and everything else 0.

Induction step:
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Assuming the result for D" we will prove it for D"™!. For this let 2/ = (xy,...,7,). Asin
the base case, after multiplying by a positive invertible scalar we can assume that each f;

is of one of the forms

Tp1 — ai(2'),  bi(2") = Tnyr,  c(a).

Now, for a given 2’ € D" fixed, there is an z,,41 € D such that (2, z,41) belongs to the
set (A) iff the same conditions that we use in the base case are satisfied. As the set (A) is
empty, this cannot happen for any 2’. Hence, the system of inequalities on the variable 2’
which is formed by all these conditions has an empty set of solutions. On the other hand,
the same system but in which all the inequalities are closed does have a solution, because
the set (B) is not empty. This allows us to use the induction hypothesis on this new system
of inequalities.

Applying the induction hypothesis we get a positive linear combination of the new affine

functions involved which is equal to zero. Now, by doing the following replacements
o —chaig (') = b fy(x)
o cFmoip,(a) = e f;(z)
o a(a') = filx)
o by(&!) — P anla!) = fi(2) + P fif)
o SBh() — aale!) = P fy(a) + ie),

we turn the linear combination into one involving the original affine functions. By the
induction hypothesis we get that at least one of the coefficients of the linear combination
in either ¢;(2') with i > s, bj(2’) — e%i~%q,;(2') with j > s or €% Pib;(2') — a;(2') with
1 > s is invertible. Hence, at least one of the coefficients in f; for ¢« > s is invertible. This

finishes the induction step. O

1.4 The Relative Interior

In this section we introduce the relative interior of a polyhedron. We cannot introduce
this concept as a topological interior, as we do not have appropriate topological tools over
the ring ID. For this reason, we introduce it combinatorially by means of the structure of
faces, and we show that, in the case of polyhedral cones, this coincides with an algebraic

construction in terms of generators.
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Definition 1.4.1. Let P be a polyhedron. The relative interior of P is the set

int(P):=P\ |J F
F<Pp
F#ZP

where the union goes over all the proper faces I’ of P.
The next proposition summarize some basic proprieties of this concept
Proposition 1.4.2. For a given polyhedron P C Np:

1. There is a decomposition

P=| | int(F),

F<P

where the disjoint union goes over all the different faces of P.
2. For a face F of P and an element x € int(F). A face G of P contains x iff F C G.
3. We have int(P) # @.
Proof.

1. Given x € P. Let I be the smallest face of P containing x, this exists because of
Corollary 1.6.3(2)? and the fact that there are only finitely many faces, a consequence

of Proposition 1.6.1 part 1. Given this face, we have

reF\|JF
G=<F
GZF

therefore = € int(F). This shows that o = J___ int(7).

<o
Now, to see that the union is disjoint, notice that if x € int(F) N int(G), then
x € FNG, which is a face by Corollary 1.6.3. But as x € int(F'), this is only possible
if FNG = F, that is F O G. Similarly G O F so F =G.

2. f F € G, then x € FNG and FNG is a face of P contained in F', hence it is a proper
face of F'. Then, x ¢ F'\ FFNG but as int(F) C F'\ F'NG we get a contradiction.

2This result is proved in Section 1.6 and it is based on Proposition 1.6.1, parts (1) and (3). It might
be worth mentioning that this does not produce any loop in the logic.
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3. For each polyhedron P consider

length(P) =max {s e N|3F,...,F,eF(P)'st o CF C---CF,=P}.

We show that int(P) # @ by induction on length(P).

If length(P) = 1, then P does not have any proper face, hence int(P) = P # @.
Now, suppose that length(P) = s + 1 and the result is true whenever the length is

smaller or equal to s. Consider a maximal chain of faces of P of the form

GCHRC---CF CF, =P

=

Then, length(Fy) = s, and so, by the induction hypothesis, we have int(F;) # &.
Take € int(F) and 2’ € P\ F,. Then, we claim that 1(z + 2’) € int(P).

Indeed, if §(z 4 2’) ¢ int(P), then there is a y € Mp such that
1 /
§(x +2') € face,(P) C P.

In particular, y achieves its minimum in %(m + z’). Moreover, as we have

(v, + ) = 5y o)+ (y,27)

2
> min{(y, ), (y, )}

with equality iff (y,3(z +2')) = (y,z) = (y,2’). Therefore, we have that y also
achieves its minimum in z and 2/, that is z,2’ € face,(P). As x € int(Fy), by
part (2) of this proposition we have F, C face,(P), and as 2’ ¢ Fy we also have
F, # face,(P). Hence, by the maximality of s, we get face,(P) = P which is a
contradiction. Therefore, 1(z + z’) € int(P), so int(P) # @ as we wanted.

]

In the context of finitely generated cones, the relative interior can be computed alter-

natively in terms of generators.

Proposition 1.4.3. Given a finitely generated cone o = conep(xy,...,z,), the relative
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interior can be computed as

,
into = { Z Ai;
i=1

Ao, eD;O}. (1.8)

Proof. We will prove the equality by a double inclusion.

First, take an x in the right-hand side of (1.8). For every face 7 C o there is y € Mp
attaining its minimum in o such that 7 = face, 0. As o is a polyhedral cone, y must be
non-negative over o to achieve its minimum. Now, suppose that z = > | \;; € 7. Then,

we must have

(y, ) ZZM@/,@-) —0.

As each term of the sum is non-negative, this happens iff \;(y,z;) = 0 for each i, and as
all \; are invertible, this is the same as (y, x;) = 0 for each i. Then, we have z1,...,z, € T

so 0 = conep(xy,...,x,.) C 7, and hence 7 = ¢. This shows that

JJGJ\UT:int(J).

T#0

On the other hand, take = € int(¢) and fix some 1 < i < r. We claim that there is a
A € DZ, such that

T — A\v; € 0.

If this is not the case, as ¢ is a polyhedral cone by Proposition 1.2.4 part 4, there are
Y1,---,Ys € Mp such that
Uz{yl 207,9320}

Then, there must be a y; such that for every A € D%, small enough we have
(yj,x — Az;) <O0.

That is, 0 < (y; ,z) < My, ,x;) for every A € DZ, small enough, which implies that (y; , z)
is infinitesimally smaller than (y;,x;), that is, (y;,x) = eu(y;,x;) for some p € Dso.
Then, for some [ > 0 we have £'(y; , x) = 0 but €'(y; , z;) # 0. Therefore, y;e' € My defines
a face face, . o containing x but not z; which contradicts the fact that x is in the relative

interior. This finishes the proof of the claim. Therefore, for each 1 < ¢ < r there is a A
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such that

x=\t; + 2
for some z’ € 0. By writting 2’ in terms of xy,...,z, we get a representation of x in the
form

r
i=1

with \; € D, and \; > 0 for j # i. By taking an average of all this representations for all
i, we get a representation with all \; € DZ,. This finishes the proof. O

1.5 Cone Duality

In this section we will study polyhedral cones and their duals. After introducing the dual
we show how to find generators for it from a representation of the original cone, or how to
find a representation for it from generators of the original cone. In particular, this implies
that finitely generated cones are the same as polyhedral cones. The main result of this
section is the duality theorem, which gives an explicit order reversing bijection between

the faces of a cone and the faces of its dual.

Definition 1.5.1. Let ¢ C Np be a cone. Its dual cone is the set of all linear functionals

non-negative over it, that is,
o' ={yeMp|{y,z) >0, Ve eo}.

Proposition 1.5.2.

1. Gwen yy,...,y, € Mp we have
- v
(ﬂ {zr € Np| (yi,x) > 0}) = convp (Y1, .-, Yr)-
i=1

2. Gwen ay,...,a, € Np, we have

convp(ar, ... a,)" =({y € My | (y,a;) > 0}.
i=1
v)V

3. For any polyhedral cone o, we have (0 =o0.
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4. Polyhedral cones are the same as finitely generated cones.
Proof.

1. Let 0 = ;_; {z € Np | (yi,x) > 0}. We have that (\jy; + -+ + Ay, ,-) is positive
over o, hence A\jy; +-- -+ Ay, € 0¥ for every Ay,..., A\, > 0, then conep(yi,...,y.) C
0”. On the other hand, given y € 0", we have that (y,-) is positive over ¢ and its

minimum is 0 on it. Hence, by Farkas’ Lemma, there are A;,..., A, € D>( such that
Myr+ - ANy =y
Therefore, y € convp(yi,...,y,), so ¥ C convp(yi,. .., Yr)-
2. We have

y € conep(ay,...,a,)" < (y,r) >0 V€ conep(ay,...,a,)
— (y,a;) >0 V1<i<r

= ye(ye M|y, a) >0}

i=1

3. By part (1) and (2), given a polyhedral cone as (),_, {x € Np | (y;,x) > 0} we have

Zﬂ{wGNDHym@ZO}'

4. In Proposition 1.2.4, we saw that that finitely generated cones are polyhedral. On
the other hand, let us suppose that a cone o C Ny is polyhedral. By part (1) then
0" is finitely generated and hence polyhedral by Proposition 1.2.4. So by part (1)
again (¢0V)¥ = o is finitely generated.

O]

Now, we will prove a duality result for cones, which states that the faces of a cone are

in an order reversing correspondence with the faces of its dual cone.
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Theorem 1.5.3 (Higher Rank Cone Duality). Given a polyhedral cone o and its dual oV,
there 1s an order reversing bijection between the reduced face poset of o and the reduced

face poset of its dual o given by

§(0)" — (")

T— 7T =71tNoY,

where
= {ye Mp | (y,z) =0, Vo € 7}.

Proof. First, notice that, as 7 is a polyhedral cone, it is finitely generated. Hence, 7 =

conep(zy, ... ,x,) for some xq,...,x, € 0. Then, we have
={yeo’ | (y,z;) =0, fori=1,...,r} = faces, r...1a, (")

Therefore, 7* is a face of ¥ and the map is well defined.

Now, let us see that the map is surjective: An arbitrary face of ¢" is of the form
face,,(c¥) for some xy € o. By Proposition 1.4.2, there is a face 7 of ¢ such that 2’ €
int(7). If we consider generators 7 = conep(xy,...,z,) then, by Proposition 1.4.3, we have
xo =y, hix; with A; € DZ,. Hence, for y € 0" we have

y € face,, 0’ & (y,10) =0 (y,2,) =0V0<i<r& (y,r)=0Vr e

Therefore, face,, 0¥ = 7*.

Finally, we will prove that the map is its own inverse: As the map is surjective it is

*

enough to prove that ((7*)*)* = 7*. For this, we will prove that (7*)* C 7. Suppose

T = face, o for some y' € ¢V. Then,

(T ={z€o|{y,z) =0Vy € 7°}
Clreo|(y,r)=0}

=T.

This finishes the proof. ]
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1.6 The Structure of Faces

In this section we develop tools to explicitly describe a given face of a polyhedron. These
descriptions depend on the data used to present the polyhedron. In Proposition 1.6.1
we study the case in which the polyhedron is defined in terms of a representation by
inequalities. After this, we introduce the concept of weighted convexr hull which allows us
to introduce any polyhedron in terms of generators. In Propositions 1.6.4 and Proposition

1.6.9 we describe faces in terms of these generators.
Proposition 1.6.1. Let P C Ny be a polyhedron with a representation

P={yy >a,...,y- > a.}.

1. For each y € Mp achieving its minimum in P there are \; € Ds¢ for 1 <i <r such
that

y= My + -+ Ay, and

ggg(y,x) = \a; + -+ \a,.

Moreover, given such elements {\;};, we can write the face F' = face,(P) as

F = ﬂ {zeP }6‘“(% ,x) =e%a; } (1.9)

1=1

where o; = ord(\;) for each i.

2. Similarly, if F is a face of P, given xy € int(F') we have an equality of the form

F:h{xeP | €% (y; ,x) = Piay } (1.10)
i=1
for B; = k —ord({y; , zo) — a;).

3. Conversely, any choice of 0 < «; < k determines a set of the form (1.9) which is
either empty or a face of P.
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Remark 1.6.2. Given a linear function y € Mp with min,cp(y,x) = a. The set

{zeP | y,z)="%}={zeP |ord{{y,z) —a} > a}

should be interpreted as the set of all elements x € P such that y achieves the minimum

at least in the first a coordinates.

As an example, if we take y € Mg to be real and

T = x(O) + :L‘(l)cf 4+ l'(k_l)gk_l c N]D),

Then, (y,z) = SV {y,z)e’. So, we have that (y,z)e"* = ac* iff (y,2®) =

a'® for each 0 < i < o, and this happens iff  minimize the vector

(2 ), (y,2'))

among all x € P with respect to the lexicographic order.

In this way, the equality in (1.9) can be read as: face, P is the set of all z € P for

which y; achieves its minimum at least in the first £ — «; coordinates for each 1 <7 <.

Proof of Proposition 1.6.1.

1. If y achieves its minimum in P. By Farkas’ Lemma, there are Ay,..., A\, € D> such
that
(y,) —minfy, ) = M((yr,) —a)) +- + A ({yr ) —ar) (1.11)

By evaluating this at = 0 we get mingep(y,x) = Ajag + - - - + \pa, and, if we add
this equation to the previous one, we get y = A\jy + - - - + Ay, This shows the first
part.

Now, if we evaluate (1.11) in an element x € F, the left hand side vanishes and, as

each term of the right hand side is positive, we get

for each 1 < ¢ < r. After multiplication by an invertible element, this becomes
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e (y; ,x) = €*a;. Which shows that

F C ﬂ{x €P |y, x) =e"a;}.
i=1
Conversely, if x is in the right hand side of (1.9) for every 1 < i < r then, the right
hand side of (1.11) vanishes at z. Hence, so does the left hand side which implies

x € F. This shows the equality we wanted.

2. Notice that gord(wi-m)=ai)((y, z0) — a;) = 0. Hence, by Proposition 1.4.2, as x, €
int(F") we have
FC{zeP |y, z)=c},

and therefore

F C ﬂ{xeP | e%(y; ) = e”a; } .

i=1

On the other hand, by (1.9) and as zq € F' we have

Qg

g <’y1 ,l’o) = £ a;.

Hence, e ({y; ,x0) — a;) = 0 from where «; > ord((y; ,xo) — a;) = ;. This implies

s T

ﬂ{xeP | &% (y;,x) = e¥a; } C ﬂ{xeP | e (yi,v) =e™ai} = F.

=1 =1

3. Suppose now that F is a non-empty set of the form (1.9) and consider y = Y _;_, e%y;.
We will prove that face,(P) = F. For this, notice that as F is not empty, the function
(y,-) has as minimum over P the value ); , %*a;. Hence, we can consider face, P,

and given x € P, we have
T
z € face, P <= (y,x) = Zeaiai
i=1

= Zsai ((yi,x) —a;) =0

—— g™ <y2 ,.7)@) =e%a; Vi

< r€F,
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as we wanted.

]

In particular, the proposition above implies that any polyhedron has finitely many

faces. Another important consequence is the following.
Corollary 1.6.3. Let P be a polyhedron.
1. If F' is a face of P and G is a face of F, then G is a face of P.

2. If F and G are faces of P and F'N G is non-empty, then it is a face of P.

Proof.

1. Take a representation P = {y; > ay,...,y, > a,} of P. If F'is a face of P by
Proposition 1.6.1 part 1, there are «; such that

F:ﬂ{x €P |y, x) =e"a;}
=1

Qp

={y1 >a1,...,yr > a,} N{e"y = e%ay,...,e%y. =e%a,}.

Notice that this is expression gives a representation for F' in terms of inequalities.
Hence, if G is a face of ' we can apply Proposition 1.6.1 part 1 again using this

representation for F'. In this way G can be written as
G= m {z e F |y, z) = lia;}
i=1
_ ﬂ {SC cP | 5max{a¢,6¢}<yi 71;> _ gmax{ai,ﬁi}ai}
i=1
for some integers 3;. Which, by Proposition 1.6.1 part 3, is a face of P.

2. By Proposition 1.6.1 part 1 we have F = (\._; {z € P | *(y; ,z) = ¢%q;} and G =
Niey {z € P|e%(y;,x) = ea;} for some a, B;. Therefore,

FNG = m {I cP | 6max{5i,ai}<yi 7 $> — gmaX{ﬂi,az‘}ai}

i=1

which is a face of P by Proposition 1.6.1 part 3.
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We will now proceed to study the case in which the polyhedron is given in terms of
finitely many generators. We start with the case of polyhedral cones which, by Proposition

1.5.2, are all given by the cone hull of finitely many elements.

Proposition 1.6.4. For a polyhedral cone o = conep(xy,...,xz,) and an element y € o,

the face of o induced by y is given by

face, o = conep ({xiek_ﬁi}lgigr>
where f; = ord(y , x;).
Proof. Given x =), \iz; € 0 we have

x € face, 0 <= (y,7) =0 <= Z)\i(y,xz):o.

As N\(y,z;) > 0 for each i, this last thing happens iff A\;(y,x;) = 0 for each i. Now, for
B; = ord{y , z;), this is equivalent to \;e” = 0 for each i, which correspond to the existence
of elements X\, € Dsq such that \; = Ne*%. That is, x € conep(z;e¥~%). O

To work out the general case, we need a new notion of finitely generatedness which allow
us to understand every polyhedral cone as a finitely generated object. For this reason, we

introduce the weighted convex hull of a family of vectors.

Definition 1.6.5. Consider elements z1, ..., z, € Np and integers oy, ..., . € {0,...,k}.
The weighted convex hull of the elements z1, ..., x, with respect to the weights aq, ..., a,
is the set

weonvp([z1;aq], ... [T ap]) = {Z i
i=1

Al,...,ArZO,XT:&‘aiAi:l}.

=1

Remark 1.6.6.
1. If no «; is equal to zero then the weighted convex hull is empty.
2. The weighted convex hull generalize the usual convex hull as we have

weonvp ([z1;0], ..., [z, 0]) = convp(zy, ..., 2,).
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3. If a; = k for some 7, then there is no restriction for the corresponding coefficient \;

other that being non-negative. This implies the equality

weonvp([z1; aq], . . ., [z o)) = weonvp ({[zs; o] | oy # k}) 4 conep({z; | a; = k}).
In particular, for xy,...,x, € Np we have the equality
weonvp{[0; 0], [z1; k], ..., [z, k]} = conep(xy, ..., ).

Proposition 1.6.7. For any polyhedron P C Np, there are x1,...,z, € Np and 0 <
ai, ..., < k such that

P = wconvp([z1;04], .. ., [2; 04]).

Conwversely, any set of this form is a polyhedron.

Proof. Using the extended perfect pairing from Definition 1.1.12, if we have a representa-
tion
P:{yl zal,...,yrzar}gND

we can consider the polyhedral cone
P={(y1,~a1) 20,..., (y,,—a,) > 0} C Np x D.
Then, we have
PN Np x {1} = P x {1}. (1.13)
AsPisa polyhedral cone, it is finitely generated, hence there are generators (xy,by), ..., (., b.) €

Np x DD such that

~

P = conep ((xl, bi),. .., (z, b,«)).

After multiplying by an invertible element, we can suppose that b; = % for each i =

1,...,7r. Hence, using (1.13) we get that
P x {1} = conep ((z1,e™),..., D(z,, ")) N Np x {1}

= {Z)\ll'ZEN]D) Al,...,ATEO,Z)\iSQizl} X {1}
=1

i=1

= weonvp([z1; ], .. ., [20; i ]) x {1}.
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as we wanted. On the other hand, to see that weonvp([x1; o], ..., [2,; a,]) is a polyhedron,

xle,...,xTEO,Z)\ﬁaizl}
=1

is a polyhedron in D" and wconvp([z1;a4],...,[z,;a,]) is the image of this polyhedron

notice that

(x1,...,2,) €D’

under the map

]DT—>N]D)
ei— g, Vie{l, ... r}

Where {e1, ..., e.} denotes the standard basis in D". Hence, it is a polyhedron by Propo-
sition 1.2.4. O]

Remark 1.6.8. In the usual polyhedral geometry over R, every polyhedron can be written
as the sum of a polytope and a polyhedral cone, this is called a Minkowski- Weil decomposi-
tion for the polyhedron. The proposition above is the closest we can get to that statement
for general polyhedra over ID. For a detailed study of when one can actually write a

polyhedron over D as a sum of a polytope and a polyhedral cone we refer to Section 1.9.

We will proceed to study the faces of a polyhedron from this new description in terms

of generators.

Proposition 1.6.9. Let P = wconvp ([a:l, agl, .. [T ar]) be a polyhedron and y € My a

linear function achieving its minimum in P. Then, if a = mingep(y,x), we have
face, (P) = weonv ([z:e* "k + a1 — Bil, ..., [2,e" 7k + . — B,])
where [3; = ord (<y ,Ti) — eo‘ia).

Proof. As in the proof of Proposition 1.6.7, if we consider

~

P = conep ((z1,e™),..., (z,,e°7)) C Np x D

then we have

P=PnNpx {1}. (1.14)

Now, we claim that if y achieves its minimum «a in P, then (y,—a) € PV. Indeed, as
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(y,z) > a for any x € P we get
((y,—a),(z,1)) >0 for any x € P.

Then, given (z,b) € P, with b € DZ, invertible, by the equality in (1.14), we have x/b € P.
Hence,

<(y7 _a) ) ([L’, b)> - b<<y7 _a> ) (I/b7 1)> > 0.

Finally, let 2’ be an element in P achieving the minimum of y, that is ((y, —a), (2/,1)) =
0. Then, for an clement of the form (z,b) € P with b no invertible we can consider
(2',1) + (x,b) = (2’ + 2,14+ b). Now 1+ b is invertible, so from the previous step

0< <(y7 —CL) ) ((I, +x,1+ b))> = <(y7 _a’) ) (J}/, 1)> + <(y7 _a) ) (Z‘, b)> = <<y7 —CL) ) <I7 b)>

Hence, (y, —a) is positive in (z,b) for any (x,b) € P. Therefore, (y,—a) € ]3V, which

proves the claim.

After this, we can consider face(y, _q) p and, by Proposition 1.6.4 above, if 5; = ord({(y, —a) , (x;,*))
ord({y, z;) — €“a), then we have that

face(y, —q) (ﬁ) = conep <{($w 8%)5#&}1&9) :
Moreover, we have the equality
face(y,—q) (ﬁ) N Np x {1} = face,(P) x {1}. (1.15)
This gives
face,(P) = {x € Np ‘ (x,1) € conep ({(mi,eai)ak’ﬁi}lgig)}

= {im’f%i Ay A >0, iakﬂiﬁui =1, }
=1

i=1
= weonv ([z1" Pk +ay — B, ..., 1" Pk + o — B])

as we wanted. O]

Corollary 1.6.10. For a polytope P = convp(xy,...,x,) and any element y € My, the
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face of P induced by y is given by
face, (P) = weonvp ([z1e" 7k — Bi], ..., [z,.e" Pk — B,])

where f; = ord((y , ;) — a) with a = mingep(y, ).

Proof. 1t follows from the previous proposition by considering the equation
weonvy([z1,0], ..., [z, 0]) = convp(z1, ..., z,).

[

Remark 1.6.11. In general, a face of a polytope is not necesarily a polytope. For example,
consider the polytope P = convp{0,1} = [0,1] C D and the face

face.r—1(P) = conep(e).

This is not a polytope as, on a polytope, any linear function always attains its minimum in
at least one of its vertices, in fact, this characterize a polytope as we will see in Corollary

1.9.9. However, in conep(e) the linear function y = —e does not achieve a minimum at all.

1.7 The Support of the Normal Fan

In this section we introduce the support of the normal fan of a polyhedron P. This is the set
of all elements y € Mp for which face,(P) is well defined. We regard it as a generalization
of the dual cone of a polyhedral cone introduced in Section 1.5. The support of the normal
fan for polyhedra over D happens to be a more subtle concept than its counterpart over
R, for instance, see Example 1.7.3 below. Moreover, for a polyhedron P we introduce its
recession cone as the set of all directions for which, any point in the polyhedron that moves
along this direction remain in the polyhedron. In Proposition 1.7.8 we show how the dual

of the support of the normal cone coincides with its recession cone.

Definition 1.7.1. Let P C Np be a non-empty polyhedron. The support of the normal fan
of P, denoted by | NF(P)|, is the set of all y € Mp such that (y,-) achieves its minimum
over P. That is,

INF(P)| = {w e My } min(y exists}.

Remark 1.7.2. If ¢ C Ny is a polyhedral cone, then | NF(o)| recovers the dual cone o".
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Example 1.7.3. Given a polyhedron P, the set | NF(P)| is always closed under positive
scalar multiplications, but is not convex in general. Indeed, consider N = M = Z3 together

with the polyhedron
P={(z,y,2)€D?|2>0,y>0,2>0,0+y+ez=1}

Then, we have (1,0,0),(0,1,0) € NF(P) as both of these elements achieve 0 as their
minimum over P. Nonetheless, their sum (1, 1,0) does not achieve its minimum over P, as

for (z,y,z) € P, we have
((1,1,0), (z,y,2)) =z +y=1—ez,

and the set {1 —ez € D | 2 > 0} does not have a minimum. Therefore, | NF(P)| is not a

convex cone in this case.

Question 1.7.4. Is there a simple characterization for the sets of the form | NF(P)| C Mp
for some polyhedron P C Np?

Although we do not know the answer to the question above, in the following proposition
we provide an understanding of conep | NF(P)| in terms of a representation of P. Moreover,

in Section 1.9 we give a characterization for the polyhedra P for which | NF(P)| is convex.

Proposition 1.7.5. Let P be a non-empty polyhedron and suppose that

P={pn>a,....,yr > a}
1s a non-redundant representation of P. Then,
conep | NF(P)| = conep(y1, .-, Yr).

Remark 1.7.6.

1. As|NF(P)]is closed under positive scalar multiplications, we can replace conep | NF(P)|
by convp |(NF(P))| in the statement above.

2. The assumption that the representation is not-redundant is unavoidable in the hy-

pothesis. For example, for N = M = Z consider

P={zreD|(e,z) >0,(1,2) > —1}.
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Then, 1 ¢ conep | NF(P)| = conep(e) and this does not contradict the statement of

the result as the inequality (1,z) > —1 is redundant in the representation.

Proof of Proposition 1.7.5. As the representation is non-redundant, by Proposition 1.1.8,
each y; attains its minimum in P. Hence, y; € | NF(P)| for each i. This shows conep(y1,...,y.) C
conep | NF(P)|. On the other hand, given y € | NF(P)|, as y achieves its minimum in P,

by Proposition 1.6.1 there are A; ..., A\, € D>( such that

y=Myr+ -+ A\yr

Hence, y € conep(yi, - .., y.). This shows conep | NF(P)| C conep(y1, ..., yr)- O

Definition 1.7.7. The recession cone of P is the set
recc(P) ={x € Np | P+ 2 C P}.

Proposition 1.7.8. Let P C Ny be a non-empty polyhedron. Then,

1. given a non-redundant representation of P
P:{yl Za’lw"ayrzar}

we have
recc(P) ={y1 >0,...,y, >0}

2. The dual of the cone hull of the support of the normal fan of P is the recession cone
of P, that 1s,
conep (| NF(P)|)¥ = recc(P).

In particular, recc(P) is a polyhedral cone. Moreover, by duality recc(P)Y = conep | NF(P)].

Proof. Notice that, by Proposition 1.7.5 together with Proposition 1.5.2 we have
conep(|NF(P))Y ={y1 >0,...,y. > 0}.

Hence, it is enough to prove that recc(P) is equal to any of these sets. If 2’ € Ny satisfies

(y; , ') > 0 for every 1 < i <r, then for any x € P, we have

(yi, o+ 2y =y, z) +(y,2') >a; V1<i<r,
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Thus, P + 2’ C P. This shows conep(|NF(P)|)¥ C recc(P). On the other hand, by
Proposition 1.1.8, for any 1 < ¢ < r, there is an x € P such that (y;,z) = a;. Then, given
x’ € recc(P), we must have z+ 2’ € P. In particular, (y; , x +2’) > a;, from which we infer
that (y;,2’) > 0. As this happens for each 1 < i < r, we must have 2/ € conep (| NF(P)|)Y,
and so recc(P) C conep(| NF(P)|)Y. O

Corollary 1.7.9. If P is simultaneously a polyhedron and a convezr cone (in the sense of
Definition 1.1.3), then P is a polyhedral cone.

Proof. By the previous proposition, recc(P) is a polyhedral cone, so it is enough to prove
that P = recc(P). As 0 € P we have 0 + recc(P) = recc(P) C P. On the other hand, as
P is a convex cone, we have P + P C P, hence P C recc(P). O

1.8 Normal Fan Duality

In this section we introduce the normal fan of a polyhedron P. This is an arrangement of
polyhedral cones in Mp encoding the behavior of the function y — face, P. Its construction
provides a generalization of the cone duality in Theorem 1.5.3, and it gives us an important
tool to study the combinatorial type of a polyhedron, as we do in Section 1.12 for R-rational

polyhedra.

Definition 1.8.1. Let P C Np be a polyhedron. For each face I’ of P, its normal cone is
the set
C(F) = {y € Mp | face, P DO F}.

That is, the set of all y € My such that face,(P) exists and contains F.

Proposition 1.8.2. Given a face F of a polyhedron P. The normal cone C(F) is a

polyhedral cone. More precisely, given a non-redundant representation
P={yy>a,...,yr > a,}
and an element x € int F', we have
C(F') = conep (5k_a1y1, . ,ek_a”yr)

where a; = ord({y; ,x) — a;).
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Proof. Giveny € C(F), if mingep(y,x) = a, then, by Farkas’ Lemma, there are A\,..., A, €
D such that
<y7> —a= )‘1(<y17'> —(1,1) ++>\T‘(<y7‘7> _aT)'

By evaluating this equality in = € int(F’), the left hand side is 0 and the right hand side is

a sum of non-negative terms. Hence, each term of the sum must be zero and we get
ANi{yi,x) —a;) =0 VI<i<r.

So, if o = ord((y; , *) — a;) then there are N, € Dsq such that \; = e¥~%\.. Therefore,
y =" Ny + -+ Ny, (1.16)

On the other hand, if y is of the form (1.16) above, then (y, z) = a. Therefore, z € face,(P).
But as = € int(F), by Proposition 1.4.2, we must have F' C face,(P). That is, y € C(F).

With this we conclude that

as we wanted. O

The normal cone C(F) encodes the local shape of P around F. To make this concrete

we introduce the following notion.

Definition 1.8.3. Let P C Np be a polyhedron and let F' be a face of P. The star of F'
with respect to P is the set

Starp(F) = {Ax —2') € Np |z € P,a’ € F,\ € DZ,}.
Lemma 1.8.4. Let P be a polyhedron and F' a face of P, then
C(F)Y = Starp(F).
Proof. Fix elements € P, 2’ € F and A € DZ,. For any y € C(F), as y achieves its

minimum at 2/, we have (y,z) > (y,2'). Hence, (y,\(x —2')) >0, so AM(x — ') € C(F)".
This shows that Starp(F) C C(F)".
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We will now prove the other direction, for this fix a representation

P={yy>a,...,yr > a,}.

Then, by Proposition 1.6.1, there are 0 < «; < k such that

F= ﬂ{:c € P|e(y,x) =e%a;}. (1.17)

i=1
Hence, an element 2’ € F satisfies

a;

e (y; 'y =¢e%a; V1<i<r, (1.18)

Moreover, we can take x’ in such a way that
e Ny o'y >e*ta; V1 <i<rwithao; >1 (1.19)
Indeed, if for a certain 7, we have

e Wy a2y =e*ta;, Va' €F.
Then, we can replace «; with a; — 1 in (1.17) without altering the set F.. We can proceed

in this way and eventually there will be an z; € F' such that

1

,> > gMiT a;.

a;—1
e <yl y Lg

After doing this for every i we can take 2/ = L 37 .

We will now prove that for every w € C(F')" there is a A € D%, such that A\w +2' € P.
This will finish the proof because then w = A\™!(z — 2’) € Starp(F), so C(F)Y C Starp(F)
as we needed. To prove this, notice that there is a A € DZ, such that Aw + 2’ € P iff for

each 1 < i <r thereisa \; € D;O such that

(yi, hw + 2') > a;

as then we can take A = min;{\;}. We will work now with a fixed ¢ and show that such

a A; exist in all the possible cases in which the element (y; ,w) can be. Notice that as
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w € C(F)Y and e%y; € NC(F) (as it attains its minimum £%a; on F') we have
% (y; ,w) > 0.

o Ife%(y,,w) > 0 we are done, as this together with (1.18) give us e (y; , w+a') > ea;

which implies (y; , w + x’) > a; so we can take \; = 1.

o If e%(y;,w) =0 and o; = 0 we have (y;, hw + 2’) = (y;,2') > a; so any \; € D%,

works.

o If e%(y; ,w) = 0 and «; > 0 then, it is enough to find \; small enough such that

¥ (y; , hw + 2') > e%a; = /\iso"'_1<yz- ,w) > g% lg, — 50”_1(%- '),

In this last inequality, both e~ !(y; ,w) and e 'a; — >}y, ,2') are of the form

e*~ 1A with A € R. As the right hand side is negative by (1.19), by taking \; € Ry

small enough we can always make the left hand side bigger.

Theorem 1.8.5 (Normal Fan Duality). Given a polyhedron P C Np, the family

NF(P) = {C(F) € Myp | F € §(P)"}

*

is a fan whose support is | NF(P)|. Moreover, for a polyhedral cone o we have C(1) =7

for each face T of .

Proof. By Proposition 1.8.2 each set C(F) is a polyhedral cone. Also, for F,G € §(P)*

we have
y € C(F)NC(G) < face,(P) 2D FUG <= face,(P) D FVG <= ye C(FVG).

Hence, C(F) N C(G) = C(F V G). Also, a face 7 < C(F) is defined by an element
xo € C(F)Y. By Lemma 1.8.4 we have C(F)" = Starp(F), hence xy = A a — 2’) for
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A€ DXy, z € Pand 2’ € F. Therefore,

T =face,, (C(F))

={y € C(F) [ (y,z) = 0}
={y € C(F) | {y, =) = (y,2")}
={y € C(F) [ min(y, w) = (y, 2)}
={y € P | face,(P) D FU{x}}
=C(FVGQ)

where G is the only face of P such that z € int G. With this we have shown that NF(P)

is a fan. Finally, for a polyhedral cone ¢ and a face 7 of ¢ we have that

C(r) ={y € |NF(0)| | face, D 7}
={yed’|(y,z)=0Vr e}
=o' N7t

=7

Remark 1.8.6.

1. The name of the theorem comes from the fact that the normal fan gives us an order

reversing bijection

§(P)" = NF(P)
in which each face F' < P is orthogonal to its corresponding face C(F') € NF(P).
2. If o is a polyhedral cone then, the bijection above is given by

(o))" — NF(0)

T T
Therefore, this maps correspond to the one from the cone duality in Theorem 1.5.3. In

this way, we see that the normal fan duality in Theorem 1.8.5 is a strict generalization

of the dual cone duality in Theorem 1.5.3.

We finalize with the following concept.
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Definition 1.8.7. A fan ¥ in Mp is said to be regular if there is a polyhedron P such that
¥ = NF(P).

1.9 The Support Function

In this section we go one step further in our dual understanding of a polyhedron and
consider the map y +— mingep(y,z). This is a piecewise linear concave function called
the support function of the polyhedron P. Under mild hypothesis, in Theorem 1.9.4 we
use the support function to obtain an alternative description of the normal fan, and in
Theorem 1.9.6 we show how the support function gives us a bijection between polyhedra
and piecewise linear concave functions. We use this in Corollary 1.9.9 to understand when
a given polyhedron has a Minkowski-Weyl decomposition. That is, an equation of the
form P = ) + o, where @ is a polytope and ¢ is a polyhedral cone. In particular, this
characterization allow us to show that polytopes are exactly the polyhedra in which any

linear function achieves its minimum

Definition 1.9.1. Given a polyhedron P, we define its support function as the map

hp: |[NF(P)| — D

y = minfy, z).
Remark 1.9.2.

1. The function hp is positive homogeneous in the sense that, for any A € D, if

2. For each face F' < P, if we take a point zp € int(F'), then

he(y) = min(y, z) = (y, xr)

for each y € C'(F'). In particular, hp is linear along C(F).

3. The minimum in the definition of Ap can be taken to be finite because, as above, if
we take for each face F' < P a point xp € int(P) then,

hp(y) = mi .
P(y) Fggl%g)*@,xﬁ
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4. If P ={y > a1,...,y» > a,} is a non-redundant representation of P, then by
Proposition 1.1.8 we have hp(y;) = a;.

5. From the support of the normal fan and the support function, we can recover the

polyhedron as
p— ﬂ {r e Np|(y,z) >hp(y)}.

ye|NF(P)|

We can use the support function to give new characterizations of the normal fan. For

this, we will use the concepts from Definition 1.1.12 together with the following one.

Definition 1.9.3. Given a polyhedron P, the lifted normal fan is the set
|NF(P)|" := conep {(y, hp(y)) € Mp x D | y € [NF(P)|}.

Theorem 1.9.4. Let P be a polyhedron with a non-redundant representation P = {y; >

ai, ...,y > a.y. The lifted normal fan can be computed as

|NF(P)|" = conep ((y1,a1), .-, (yr, ar)).

Moreover, NF(P) can be obtained as the family of all projections of the upper faces of
|NF(P)|" from Mp x D to Myp.

Proof. The proof goes in three steps.

1. [NF(P)|" = conep((y1,a1), ..., (yr,a,)):

As y; € [NF(P)| for each i = 1,...,r, we have (y;, h(y;)) = (yi,a;) € |NF(P)J",
hence
INF(P)|" D conep((y1,a1), .., (yr, ar))

For the other inclusion, by Proposition 1.8.2, for any face F' of P we have
C(F) = conep (5k’”1y1, . ,gk’ary,,)

where a; = ord({y;,z) — a;). Hence, for y € C(F') there are Aq,...,\. € D>0 such
that
y=Ne TNy 4 Ny,
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Moreover, as hp is positive homogeneous and linear over C'(F') we have

he(y) = Mhp(E1y) + - + Ahp(e0y,)
=M M hp(yr) + -+ ANe T hp(y,)

k—a k—a
= \e tag + -+ Ne "Qp.

Hence, (5. hp(y)) € conen((yn,ar)..... (yr.a,)) for any y € C(F). As |NF(P)| =
Uy C(F) we conclude that | NF(P)|" = conep((y1,a1), ..., (yr, ar)).

2. face(;,—1)(Q) can be considered iff x € P:
We have that face(, _1)(Q) exists iff (z,1) € Q". Moreover, for z € Np

(5,1) € Q¥ = {(y,hp(y)), (z,—1)) > 0 for every y € | NF(P)|
< (y,z) > h(y) for every y € NF(P)

& zvc P
3. For x € P, if v € int(F') then face, _1)(Q) = F':
By Proposition 1.6.4, using the generators from part (1) we get

k—a1 ( k—as (

face(;,—1)(Q) = conep (8 Y1,01) .- E Y, ar)) ,

where
a; = ord((yi, hp(yi)) , (z, 1)) = ord((w; , ) — hp(y:)) = ord((w; , z) — a;).
Hence, if 7 denotes the projection from Mp to D we have
7 (facez,—1)(Q)) = conep (" *1yy, ..., e %y,),
which is exactly equal to C'(F') by Proposition 1.8.2.

O

Definition 1.9.5. Given a polyhedral cone ¢ C Mp, a function [ : ¢ — D is called
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piecewise linear concave if there is a finite subset A C Np such that
I(y) = mi .
(y) = minfy,z), Vyco

Theorem 1.9.6 (Higher Rank Minkowki Theorem). There is a bijection between polyhe-
dra with convexr normal fan and polyhedral cones endowed with concave linear functions.

Explicitly:

1. We associate to a polyhedron P with convex normal fan the pair

U(P) = (INF(P)], hp).

2. We associate to a pair (o, h) the polyhedron
(0, h) = convp(A) + o

where A C Np is a finite subset such that h = mingea(-, x).

Proof. The map in VU is well define because, as | NF(P)| is convex, it is a polyhedral cone
by Proposition 1.7.5. Moreover, the support function is pieciewise linear and concave as
mentioned in part (3) of Remark 1.9.2.

Let us see now that the map ® is well defined as well. For this, notice that an element
y € Mp achieves the minimum in convp(A)+o" iff it achieves the minimum independently
in convp(A) and in ¢¥. Moreover, y always achieves the minimum in convp(A) in one
element of A, and it achieves the minimum in ¢V iff y € (¢¥)¥ = 0. Hence, the support of
the normal fan of ®(o, h) = convp(A) + 0¥ is o, which is convex. Moreover, the support

function of this polyhedron is

c— D
— 1 — mi
y xer}}}(lgh)@,@ min(y , )
which is exactly h. As, mentioned in Remark 1.9.2 part (5), the support function of a
polyhedron determines the polyhedron. Hence, convp(A) + oV does not depend on A and
then the map is well defined.

Moreover, the maps ¥ and ® are mutually inverse: If we start with a pair (o, h), we

get a polyhedron ®(o,h) = convp(A) + ¢ which, as we saw above, has ¢ as normal fan
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and h as support function. Hence,
Vo d(o,h) = (o,h).

This shows that W is surjective. Moreover, the map W is already injective by Remark 1.9.2

part (5). Hence, it is bijective and then ¥ and ¢ are mutually inverse. [

Definition 1.9.7. A Minkowski-Weyl decomposition for a polyhedron, is an equality of
the form P = ) 4+ o with ) a polytope and ¢ a polyhedral cone.

Remark 1.9.8. If P = convp(A) + o is a Minkowski-Weyl decomposition we get

(0¥, min(-,z)) = ¥o &(¢", min(-, x)) = ¥(convp(A) + o) = U(P) = (|NF(P)|, hp).

€A €A

Hence, 0¥ = | NF(P)| and then, by Proposition 1.7.8, we get 0 = | NF(P)|" = recc(P). In
particular, the polyhedral cone in the decomposition is uniquely determined. On the other

hand, the polytope on the decomposition is not uniquely determine. For example,
{0} + 0 = convp(A) + o

for any polyhedron ¢ and any finite set A C o, but {0} # convp(A) in general.

Corollary 1.9.9.

1. A polyhedron admits a Minkowski-Weyl decomposition iff the support of its normal

fan is convex.
2. A polyhedron is a polytope iff any linear function attains its minimum over it.
Proof.

1. If a polyhedron admits a Minkowski-Weyl decomposition P = ) + o, then as in
Remark 1.9.8 we get | NF(P)| = 0¥ which is a convex set. On the other hand, if the

support of the normal fan is convex then we can apply Theorem 1.9.6 and we get
P =®o0U(P)=®(|NF(P)|,hp) = convp(A) + | NF(P)[Y

which is a Minkowski-Weyl decomposition for P.
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2. If P = convp(A) is a polytope then, any linear function achieves its minimum in one

its generators from A. In particular the minimum exists.

On the other hand, if | NF(P)| = Mp, then | NF(P)| is convex. By the previous part
then P admits a Minkowski-Weyl decomposition P = ) + ¢. As in Remark 1.9.8 we

have
o = recc(P) = |NF(P)|¥Y = My = {0}.

Hence, P = Q + {0} = @ is a polytope.

Remark 1.9.10.

1. In Example 1.7.3 we saw a polyhedron whose normal fan is not convex. Hence, by
Corollary 1.9.9 this also gives an example of a polyhedron which does not accept a

Minkowski-Weyl decomposition.

2. Using part (2) of Corollary 1.9.9 together with Theorem 1.9.6 we get a bijection

between piecewise linear concave functions h : Mp — D and polytopes in Np.

1.10 The Fibration Point of View

Notice that for positive integers ¢ < j, there is an order preserving surjective ring morphism
D; = R[e]/(7) — Di = Rle] /(")

given by modding out by the ideal (¢*). For a given rank k, we can fit all the projections

to the lower rank rings together in the sequence

We propose to study this sequence, and many different sequences that can be deduced

from it, geometrically. To do this we introduce the following concept.

Definition 1.10.1. For a given lattice N, an iterated fibration of subsets of Ng or simply,

an iterated fibration, is a diagram of sets of the form

Xt xr=Tse I x 0o
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where each map is surjective, X% C Ny and for each z € X the fiber 7, '(x) can be
identified with a subset of Nk, denoted by X,

In this sense, the sequence in (1.20) is an iterated fibration of subsets of R in which

each fiber is equal to R itself.

More generally, by extension of scalars, the diagram in (1.20) induce the sequence of
projections

Given a subset X C Np and an integer 0 < r < k, we define the set X "1 as the image

of X under the projection to Np,. In this way, there is a sequence of projections
X = xWk-1 o xk=2] o ..y xl0]

which allows us to regard X as an iterated fibration of subsets of Ng. Given z € X its
fiber at x is the set
X =y e Ng | 2+ &'y e XU,

In order to get an idea of the objects involved, let us start with a small example.

Example 1.10.2. Consider k = 2, N = Z? and the polyhedral cone
g = {(271,1’2) € ID)Q | Ty, T2 Z 0}

Notice that in order for z = 2 + 2™ to be positive we should have either z(® > 0 or

2 =0 and 2™ > 0. Therefore, if we regard o as a fibration, its base is
ol = {(x1,25) € R? | 21,25 > 0}
and the possible fibers are

R?, {(z1,29) € R? | 1 > 0}, {(x1,29) € R? | 29 > 0}, {(z1,22) € R? | z1, 29 > 0}



82 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

depending on the position of the base-point as the following picture represents.

Another way to describe this fibration is as follows: The point (xgo) + 5m§1),xé0) + 5:1351))

belongs to o iff (xgo),xgo)) belongs to ¢ and (xgl),xgl)) is a tangent point at (xgo),xgo))

pointing inside to 9.

The example above is a special case of the notion of tangent cone bundle which we now
introduce. This object has been already defined for polyhedral cone complexes in [AI21]

where it plays a major role.

Definition 1.10.3. Given a set A C N and a point x € A we define the tangent cone of
A at x as the set TC, A of all vectors y in Nr such that x + dy € A for each 6 € Ry small

enough. The tangent cone bundle of A is then the disjoint union

TCA = | [{z} xTC, A

T€EA

together with the projection TC A — A given by (xq,x1) — (o).

We can extend this definition inductively to an iterated fibration
TCTA—TC'A— ... 5 TC'A— A,

by fixing TC' A :== TC A, and for r > 1 and (z,...,z,) € TC"A

r+1 — r
TC(IOHWT) A=TC,, (TC(JCO _____ 1) A).
Then, we have
et A= || Ao, w)} xTCH A

(z0,....xr)ETCT A
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together with the map TC™t* A — TC" A given by (21,...,2ps1) — (T1,...,2,).

Proposition 1.10.4. If A C Ny is a convez set then a point (z, ..., x,) € (Ng)" belongs
to TC" A iff

1. For every 1 <14 <1 and for every 6 > 0 small enough we have

x0+51‘1+~--—|—5ixi€A.

2. For every 1 <1 < r and for every sequence of positive numbers {5]~}§-:1 small enough

we have
ZL‘0+(51{E1++515@ZL’Z€A

Proof. If (xg,...,2,_1) € TC"~' A then we have

(xoy..., ) €ETC"A <= 2, € TC,, ,(TCy, ,(...(TCy A)...))
— 21+ 6x, €TC,, (... (TCyy A)...) for §, > 0 small

<~ 19+ 0111+ + 6 0.x, € Afor dy,...,9, >0 small.

We can transform (zg,...,2z,_1) € TC"" A in a similar statement, and in this way we can
show that (xg,...,z,) € TC" A is equivalent to condition (2) above. Moreover, it is clear
than (2) implies (1) by taking §; = min{d;} for all j. To see that (1) implies (2) take

d = max{dq,...,0;}, by the convexity assumption for ¢;,...,¢; > 0 small we have

(1=t — - —ti)wo + ti(wo + 6x1) + - - +ti(20 + 021 + ... 8'x;)

Then, by taklng tl =+ .- —f—tz = 51/57 tQ + .- —f—tz = (5152/(52,...7751' = (5151/51 we are

done. -

We will identify TC*™' A with a subset of Np using the map

TCH1 A — Np
k—1

(Io,...,l’k_l)|—>$0+€I1+"'+6 Th—1-
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In this map, ¢ is a formal variable which we regard as an infinitesimal, nonetheless by

Proposition 1.10.4 above we can think of xg + ez + - - - + ¥ "12;_; as morally lying on A.

Remark 1.10.5. In Example 1.10.2 we can consider o = {(z1, %) € D? | 21,29 > 0} as
the extension of scalars of o) = {(z,25) € R? | 21,25 > 0} from R to the dual numbers D.
In this regard the equation ¢ = TC 0% should be considered as a polyhedral version of the
equality X (k[e]/(e?)) = TX (k), for a variety X over a field k, from algebraic geometry. In
Corollary 1.11.3 below we extend this statement to a general real polyhedron. Moreover,
in Section 14 we give another manifestation on the extension of scalars and we discuss how

the elements of TC" A can be seen dually as tangent derivative operators.
Using Proposition 1.10.4 we can generalize the notion of tangent cone to flag of subsets.

Definition 1.10.6. Let us consider a flag of convex subsets in Np of the form

A:AogAlg'”CAr.

We define the tangent cone of A as the set TC A of all tuples (xg,z1,...,2,) € (Ng)
such that xg € Ay and for each 1 <i <,

l’g+5l’1++5l$z€Al

for each ¢ > 0 small enough. If for 0 < i < r we denote by A|; the restriction flag given
by Ag € A; C --- C A;. Then, we have an iterated fibration

TCA=TCA|, - TCA|,_4 — - = TCA|; — Ay.
Again, for a flag of length k& we identify T'C A with a subset of Np with the map

TCA — Np
k—1

(l’o,...,$k_1)l—>[E0—|—EZL‘1—|—"'—|—€ Th—1

Remark 1.10.7.

1. For the constant flag A equals to A we recover the iterated fibration of TC" A as
TC A.

2. The tangent cone behaves well with intersections: If A = (A;)I_, and B = (B;)l_, are

7=
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flags of the same length, then TC ANTC B = TC(ANDB), where ANB = (A;NB;)i_,.
In particular, TC" ANTC"B=TC" AN B.

3. The tangent cone behaves well with subdivisions: Given a flag of polyhedra

P:Pogplg'--CPT

consider polyhedral complexes ¥, 3, ..., %, with supports Py, Py, ..., P, respec-

tively, and such that each cell of ¥; is also a cell of ¥;, ;. Then

TCP = UTCQ
Q

where the union goes over all flags

Q:QCQiC--CQ
where @); € ¥; and @Q); is a face of Q);11 for each 7.

1.11 Tangent Cones of real Polyhedra and Flags of real
Polyhedra

As we have seen, polyhedra over the generalized dual numbers D give rise to iterated
fibrations. In general, these fibrations may be difficult to understand, but in some particular
cases, it may be possible to give a complete description of them. We will study two
situations in which this happens, the one given by strongly R-rational polyhedra and the
one given by Strongly eR-rational polyhedra.

Let us recall that, from Definition 1.1.6, a polyhedron P is called strongly R-rational

if it admits a representation of the form

P={yy>a,...,y > a,}

with y; € Mg and a; € R for each 1 < i < r. For the other concept we have the following

definition.

Definition 1.11.1. A polyhedron is called strongly eR-rational if it is an intersection of
semispaces of the form
H={xe Np|cy,z) > %}
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for some y € Mg, a € Rand 0 < o < k—1. That is, it admits a representation of the form
P={c""y; > e%ay,...,e"y, > % a,}

with y; € Mg, a; € R and 0 < a; < k — 1. If we can take a; = 0 for each ¢ we say that P

is an strongly eR-rational polyhedral cone.

We will start with the following results. Which in particular shows that the tangent
cone of polyhedra produces strongly R-rational polyhedra and, more generally, the tangent

cone of a flag of polyhedra produces strongly eR-rational polyhedra.
Theorem 1.11.2.
1. Given a flag of polyhedra in N of the form
P:PBCPC-CP_y,

the tangent cone TCP is a polyhedra in Np.

In concrete terms,
(a) if for each 0 < i <r we have P; = convg({z;;};). Then
TC P = wconvp <{[5ixij; Z”w)
(b) if for each 0 < i < r we have

Pi=({x € Nal{x,yy) > ay}
J
Then
TCP = ﬂ{az € Np | 5k_i<$,yij> > sk_iaij}.
%)
2. Let
S:00C01C---Copy

be a flag of polyhedral cones in Ng. Then TC S is a finitely generated polyhedral cone
i Np. In concrete terms,
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(a) if for each 0 < i <r we have o; = coneg({x;;};). Then

TCS = conep ({&‘ZI’”}ZJ) .

(b) If for each 0 < i <r we have o; = (;{z € Nr | (x,yi;) > 0}. Then

TCS =z € Np | "z, i) > 0}.

1,J
Proof. Let us start with the proof of (1) part (b). For this pick x € Np and y € Mg. If we
write 2 = £(© + 2™ 4 ... 4 F~12(=D then we have

e, y) = @O y) + W y) - (2D y).

Hence, for a € R, *"¥(x,y) > *~'a happens in D iff for each § € Ry small enough we

have

6k—i<l,(0) 7y> + 5k—i+1 <ZL’(1) 7y> T 5k<x(z’) 7y> > 5k—ia
= @Oy + 6"V )+ + 52D )

v

a
which is equivalent to z € TC A*¥¢, where A%Y® is the flag

AV Ag C A C-- C Ay
given by A; = {x € Ng | (x,y) > a} for j <iand A; = Ng for j > i+ 1 This shows that

{z € Np | €k_i<:13,y> > gk_ia} — TC Abve.

Then, by Remark 1.10.7 part (2) we have that
TCP = ﬂTC AbYiatis — ﬂ{:v € Np | 6k_i(x L Yig) > sk_iaij}.
1,J Y]
This finishes the proof. By taking a;; = 0 for each pair ¢, j we obtain (2) part (b).

Let us now prove (2) part (a). First, we can write each o; in the form

0 = m{x € Ng | (z,yi;) = 0}.

J
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Then, if i < ¢ we have 0; C 0 and hence x;; € o for each j, so we get (z;; ,yi;7) > 0 for

each j', and we conclude that

€k7i <Eil'ij 7yi’j’> Z 0 V’L, il,j,j/.

So, applying (2) part (b) we have

g'zij € m{x € Np | " Nz, yy) >0} =TCS

ihj

which implies conep ({e'z;;}i;) € TCS. We prove now the other inclusion. For this take

x € TCS. We have to construct \;; = )\Z(?) +--- 4+ a(k_l))\g?*l)

Tr = E )\Z'jé‘zl’ij.
1,J

€ D+q such that

Without loss of generality we can assume

{xi;}; C {xy;}; for i <7

(1.22)

otherwise we add the generators of o; to oy. Write z = 2 + ez 4 ... 4 b1 For

6 > 0 small we have

29 ecoy, 29462 eoy, 2O 4. g 520D gy

Denote by 7,71, ..., Ts_1 the faces of og,01,...,06_1 respectively containing (), z(©) +

Sz, 2O 4. 4 k1= ¢ 5. | in their relative interior. As each vertex of 7; is a vertex

of o; we have

7; = coneg ({z4;}; N1).

Hence, as (9 € 7, and

To = Z XojToj | Aoj € Reg

Toj €70

there are )\82-) € Ry such that 0 = > )\(()3)350]-. Now as 1y € 71 we can consider

05 €T0

71/70 = (11 + span )/ span Ty as a cone in Ng/spanty. Then, as 20 + 6z() € 7| we get
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[£© + 620] € (r/m)° s0 [¢0)] € (/) and as

(1/70)° = Y Aijleas] | Aoj € Reg

T1;E€T1

there are )\g(;-) € R. such that [z(M] = D esen )\g(;) [x1;]. Lifting this equation to 7y there

are )\éy € R such that

T1;E€ETL 05 €70

In a similar way, 71 C 7, so we can consider 7,/7. As (@ + 6z + §22?) ¢ 7
and 2 + 6z € 7, we get [1?)] € (71/7m)° from where there are /\;2) € R such that
[2?)] = D asems )\g) [z9;]. Lifting this equation to 7, we get )\S) € R and )\(()? € R such that

z? = Z /\g;)ngr Z Ag;)ajlj_" Z )‘g‘)%j-

J,‘QjETQ $1j€7‘1 Z‘ojET()

Continuing in this way we have constructed \;; = )\Z(?) T P V= D+ such that

ij
xr = E )\ijgz.ilfij
Z’Lj

as we wanted. This finishes the proof of (2) part (a).

Now, (1) part (a) follows from (2) part (a). For this, given the polytope P, = convg ({;;}:) C
Nk consider the cone
P, = conep ({(i;,1)}:) € Ng X R.

In this way, we obtain a flag of polyhedral cones
7/)\3ﬁ0gﬁ1g"'gﬁk—l-

By (2) part (a) we have TC P = conep ({e"(xi;,1)}4;), hence
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TCP x {1} =TCP N Np x {1}
= conep ({&'(zi;,1)}ij) N Np x {1}
= {x € Np ‘ (x,1) € conep ({si(mij, 1)}ij) } x {1}
= {ZAijxijgi € Np

— weonvp ({ [e"2;; 1] }U)

Aij > 0 for all 4, j and, Z)\ijsi = 1} x {1}

i?j

Two immediate corollaries are the following.

Corollary 1.11.3 (Base change principle). The real polyhedra (resp. real polyhedral cones)
in Np correspond ezxactly to the tangent cone of polyhedra (resp. polyheral cones) in Ng.

In explicit terms.

1. Given a finite subset X C Ng we have

conep X = TC* ! coneg X.

2. Gwen yi,...,y € Mg and aq,...a, € R we have

{xEND‘<y17x>2a17"'7<y7"7x>2a7’}
:Tckil{xeNR|<yl7x> Zalu-"7<yr7x>2a7"}'

Which in particular if a; = 0 for all i, gives us an equality between polyhedral cones.
Proof. This is simply the case in which we take a constant flag in Theorem 1.11.2 above. [
Corollary 1.11.4. Given a polyhedral P in Ny, the following are equivalent.

1. P 1is strongly eR-rational.
2. P=TC'p for P: P, C---C P, a sequence of real polyhedra in Ng.

Moreover, if P is a polyhedral cone then, this are also also equivalent to the fact that P is

finitely generated by elements of the form 'z with x € Ng.
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Proof. This is a restatement of Theorem 1.11.2 above. ]

Semi-real polyhedra appear naturally as faces of real polyhedra as the next proposition

shows.

Proposition 1.11.5. Let P be a polyhedron in Ng. Then, the faces of TC*™* P in Ny are
giwen exactly by the sets of the form TC F for a flag

F R CFH C---Cly
where each F; is a face of P in Ng.

Proof. We start proving that each set of the form TC F is a face of TC*~! P. For this let
NFg P be the normal fan of P. The flag of faces F correspond to a flag of cones

0p D012 20k

in NFg P, in which o, is a face of o; for each i. Now, take y@, yM ... ¢y* =1 € My such

that for each § > 0 small enough we have
v eor, YO +oyM oy, .. y O 4 g5y e gy (1.23)

and consider y = y© + ... 4 c*=Ny k=1 ¢ Ny We claim that y defines TC F as a face.
For this given z = 2(® + ... + =Dz~ ¢ Ny consider

() = 4 20) 42 (00 a0 4+ 0 a0 4o ( YIRS ,x<f'>>> .

i+j=k—1

In order to minimize this expression for € TC*' P we need to first find the z(*) which
minimize (y(© ,2®), then between those z(*) we need to minimize (y©  2(M) 4 (y) @),

and so on.
To minimize (y© , 2(9), as we have y©) € 0;,_; we have to take 2(® € Fj_;.

To minimize (y© M) + (yM  2©)) we will minimize simultaneously (y® ,z™) and
(yM 2. Notice that we already minimized (y©  2®) so (y© 21} attach its minimum
ift

(5<y(0) , My + <y(0) ,x(0)> — <y(0) 20 4 5:15(1))
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achieves its minimum, which happens iff 29 + 52 € ¢;_;. In the same way (y), z(®) is

minimized exactly when

achieves its minimum, which happens iff z(®) € o4_,. Therefore, (3@ () 4 (yM 2O is

minimized when (9 + 6zM € g4, and 2 € o), simultaneously.

In general, we want to minimize » (y®  20)) given that we have minimized

i+j=r itj=s

for every s < r, and even more, we know that the minimum in ) (y@) 209} is achieved

i+j=s
exactly when each term has been independently minimized. Let us prove that, under this
conditions, ), +jzr<y(i) ,2)) is also minimized when each tearm is independently mini-

mized, and the minimum in the term (y® 20} is achieved exactly when
2O 4620 ... 46U e B, for every small enough 6 > 0
For this, notice that (y® ,z()) is minimized iff
O 4 5y 4 g gy ® 20 a0y 4L i)

is minimized, because if one expand this, then each term is constant except the term
5 (y@ 20 As y(© + 6y ...+ 590 € ;1 _;, we have that the minimum is achieved
when 2@ + 62 4 ... 4 §720) € F,_,_; as we wanted.

In conclusion, (y,z) is minimized iff we have z(® + sz + ... + §720) € F_,_; for

every 4, j with ¢ + 7 < k — 1 and ¢ > 0 small enough, which happens iff
2O +ex® 4. g F D e TC F

Hence, T'C F is the face defined by y as we wanted.

Conversely, take an element y = 3@ + ey + ... 4 k=1y*=1 ¢ My Then, it needs to
defined a flag of cones in the normal fan of P as in equation (1.23). Then, the argument
above shows that y defines the face TC F. Hence, every face of TC* ' P is of the form
TC F for some flag of faces F. This finishes the proof. ]

This gives us an understanding of the combinatorial type of a real polyhedron: Its
lattice of faces is the chain poset of length k (see [Joh18| for the definition) of the lattice
of face of the underlying rank 1 polyhedron.

(), 20
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1.12 R-Rational Polyhedra

Recall that an R-Rational polyhedron P is a polyhedron for which there are 31, ..., y,. € Mg
and aq,...,a, € D such that

P=A{yy >a,...,y. > a.}.

The objective of this section is to give a new description for the normal fan of an R-
rational polyhedron, and use it to understand the combinatorial behavior of the iterated
fibration determined by the polyhedron.

First, we will start by introducing the concept of a layered polyhedral complex, these are
sequences of real polyhedral complexes in which each term subdivide the previous one. The
first example of such a layered polyhedral complex we will present is the layered normal fan
of an R-rational polyhedron, which we introduce in Proposition 1.12.2. Later, in Theorem
1.12.4 we show how it is possible to recover the usuan normal fan of the polyhedron from

its layered normal fan by a tangent cone construction.

Definition 1.12.1. A layered polyhedral complex is a sequence of real polyhedral complex
of the form
DI N e N e e O ) M

where all 3J; are polyhedral complexes in N of the same support and >;, is a subdivision
of 3; for each 0 < ¢ < k — 2. A layered face of ¥ is a flag of faces

Fil,1.CF,9C---Cky

with F; € 3; for each i. The support of ¥, denote by |X|, is defined as the support of |¥;]

for any 7. A layered polyhedral complex in which each term is a flag is called a layered fan.

Proposition 1.12.2 (Layered Normal Fan). Let P be an R-rational polyhedron with a

fixed non-redundant representation
P={zeNp|lyi>a,....y > a}.

We can construct a sequence of fans in Mg, which we call the layered normal fan of P and
denote by
A(P):=Ag 2 A X 2 Ay, (1.24)
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in the following equivalent ways:
1. e Ay is the normal fan of the real polyhedron P

o A is constructed by the following process. Given a cell o € Ay, there is a face
F of P such that o is the normal cone C(F). Given a point xo € int(F), the
fiber Pl is a real polyhedron such that |NF(PE)])| = C(F). Then, NF(PE)}) is
independent of the xy chosen and Ay is obtained by replacing C(F') by NF(PQL?)])
for every face C(F) € Ay.

o Similarly, Ay is constructed as follows. Given a cell o € Ay, there is a point
zo € P such that o is the normal cone C(F) of a face F of PJE,]. Given a point
xr1 € int(F), the fiber Pag]%m is a real polyhedron such that |NF(PI[E]+EII)| =
C(F). Then, NF(PM ) is independent of the x1 chosen and A; is obtained

Totery
by replacing C(F) by NF(PM ) for every face C(F') € A;.

xro+eET

Continuing in this way we construct A; for every integer 0 <1 < k — 1.
2. For § € Ry, the normal fan of the polyhedron
Pi(0) = {x € Ny ‘ (y,z) > al” 450+ 466l vi<j< 7’}
v ’ =7 J 70 —J =
is independent of § if it is small enough. Then, we let A; to be this fan.

3. A; is the fan in Ng whose faces are the sets of the form coner(S;(z')) as &’ moves

along P, where
Si(z') = {yj € Mg ‘ 1<j<rand(y, ') = ag.i]}.

In particular, from (1) we see that A; is independent of the representation of P and that

A1 1s a subdivision of A;.

Moreover, given a sequence of normal fans in Ng of the form

AAV e R VA VI

all of them with the same support, there is an R-rational polyhedron P C Np such that
A=A(P).
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Remark 1.12.3. Notice that, by the first definition that we present for the layered normal
fan, we have an explicit algorithm to understand the combinatorial structure of the fibers

P from the layered normal fan of P.

Proof of Proposition 1.12.2. Let us denote by Agl), AP and A§3) the fans constructed in

7

(1), (2) and (3) respectively. We need to prove that all of them are equal. Let us start by
showing that Al@) equals AE?’). For this, given § € Ry we consider the map

U5 D — R
xr— 2O 4 52® 4o gD,

As this is an R-linear map, by extension of scalars and composition, this map naturally

extends to a map Np, — Ng which we still denote by 5. We can now write

Py(0) ={x € Nu | (y,2) > s(d), Y1 <j <1},

and we have
r e Pl — (yj,:vm> >all, V1 <j<r
— ¢5(<y,m[i]>) > 1/15(6Lm), V1<j<r V>0 small enough (By Remark 1.1.1)

— (y,vs (x[i])> > s (am), V1<j<r Vo >0 small enough (By R-linearity)
< Ys(x) € Pi(9), V4 >0 small enough.

Thus, for all § € Ry small enough we have 15 (p[ﬂ) C P;(6). Now, given a point z € Pl
as ¥s(z) € P;() we can consider the cell of Agz) of the form C(F'), where F' is the face of
P;(9) such that 1s(z) € int(F'). By Proposition 1.8.2, if we consider

Sis(x) = {y € A | (y,x) = s (h(y)) }

then C(F) = convg (S;5(1s(z))). Moreover, by Remark 1.1.1, for 6 € R., small enough

we have

SisWs(x)) ={ye A |y z) =vs(h(y)) } ={y € A | (y,z) = h(y)} = Si(x).

This shows that each cell of AE?’) belongs to AZ@), as both fans have the same support we

conclude that they are equal. In particular, Az@) does not depend on ¢ when it is small
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enough.
Now, let us see that AZ(-S) is also equal to Agl) and AZ(-Q).
1. If i = 0 then A(()l) equals A(()2) by definition.

2. If 7 = 1 then, to construct A§3) we need to take for each cell C(F) € A(()g) a point

xo € int(F') and consider

Pl ={z € Ny |z +ex e PV}
={z € Ng | {y;,20) +(y;,2) > aP +ea® V1<j<r}

= {z e Nal(y;,2) >

5 V1 < j <rsuch that (y;,zo) = a(o)}
- {:z: € Ng | (y;,x) > ;1 Vj such that y; € So(xo)}
Then, by Prop051t10n 1.7.5 we have |NF( )| = coneg(So(z)) = C(F). Moreover,
for #, € PR, if 2y € int(G) for a face G then the normal cone C(G) with respect to
PE} is a cell of NF(PE)]). By Proposition 1.8.2 using the representation for PE} we

have found above we have

C(G) = coneg {yj € Mg | (y;,21) = aV with yj € So(ajo)}

= coneg(S;(zo + £11)).

Hence, each face of Af’) is a face of Af) and as they have the same support they

must be equal.

3. The general case is similar. Suppose the result is true for ¢ and let us check it is true
for 7+ + 1. By the induction hypothesis, a cell of A§3) is of the form conegr(S;(zg +
exy + - +¢e'x;)) for some g, ..., x; € Ng such that g + - - 4 'x; € Pl Then,

Py;f]%lx ={zeNp|(y,z)> aé-“ Vj such that y; € Si(zo + -+ +'z;)} .

Hence, | 1\11?(117@[:1(}4r yeig,)| = coner(Si(zo+- - +e'w;)) and for a point ;4 in the fiber,

if z;11 € int(G) for a face G of the normal cone C(G) with respect to PHJr iz

then by Proposition 1.8.2 we have

C(G) = coner {y; € Mg | (y;,xi11) = a"V with y; € Si(wo + - + e'z;)}

= coneg (S (zo + -+ + &'z + £ wipq)).
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Which is a face of A,@l. Hence, every face of Az(i)l is a face of Aﬁl and as they have

the same support they are equal.

Finally, given a sequence of normal fans in Ny of the form

A Ay = A,

for each 0 <i < k — 1 we can consider a polyhedron P, in Ng such that NF(P,) = A;. If

PZ.:{xGNR|yj2a§i), V1<j<r}
()
J
is independent of i. Then, we can consider

for some y; € Mg, a;’ € Mr. Without loss of generality, we can suppose that {y,...,y,}

P:{xEND

Then, we have that A; = A;(P) for each i. Indeed, it is enough to prove that if
é:(sogélg"'gék_l

is a sequence of faces with §; € A;, and 6; = convg(Sp,(x;)) for some x; € P;. Then, for

r=x9+exy+ -+ lri_; € P we have
d; = convg (S@p(.’]ﬂ'[i})) (1.25)

for each 0 < i < k — 1. Because, if we prove this, then each face of A; is a face of A;(P)

and as they have the same support we are done.

We will prove the equality in (1.25) by induction on 4. If ¢ = 0 this is trivial. For i > 0,

as

S (0ol 1)) = {y; € S (ala)) (05, v(al1)) = a0}



98 CHAPTER 1. Polyhedral Geometry Over the Generalized Dual Numbers

for 6 € Ry small enough, we have

Si+1,p(T) = {yj €My |1<j<rand (y;,z)= a?-&-l]}
= {yj EMp |1<j<r y; €S p and (y; ’x>(i+1) _ a§i+1)}
— {yj EMp |1<j<r y; € Spi(w(S(xm)) and (y; ’x>(z’+1) _ aéiﬂ)}
= {yj € Mg |1<j<r y€Sps(a™) and (y;,vs(@l*1) = a§i+1)}

= SPi+1 (1/}5(1,[1'—&—1]))

]

Theorem 1.12.4 (Local Duality). Given an R-rational polyhedron P, we can recover the

normal fan of P from the layered normal fan as
NF(P) =TCA(P).

In the sense that, NF(P) is the fan consisting of all the polyhedral cones of the form TC &
where

0: 01 C oz C o
1s a layered face of A.

Proof. Fix a point € P and a non-reduced representation P = {y; > a1,...,y, > a,}.
Using z, we can construct a face of NF(P) by considering the normal cone C(F") of the
face F' of P such that x € int(F).
On the other hand, using the same x, by the definition in part (3) of Proposition 1.12.2
we can construct a layered face d(z) of A(P) by

d(x): coneg (Sk_l(x)) C ... C coneg (So(x)).
To prove the theorem, it will be enough to show that
C(F)=TC4(x).
In order to do this, notice that by Proposition 1.8.2 we can write C(F') as

C(F) = conep (" 1, ..., y,)
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where a; = ord ((yl ,T) — ai), i.e, oy is the biggest integer in {0, ..., k} such that
eh oy x) = Vg = (y;, )l = aﬁa"_l} < y; € So,_1(x).

Hence, we can write this normal cone as

C(F) = conep (U {7y |y, € Si(@})

1
= coneyp (U {€iyj } Y; € Sk:—l—i(x)}>

i=0
which is exactly equal to T'C §(x) by Theorem 1.11.2 part (2). This finishes the proof. O
Remark 1.12.5. In particular, we see that the normal type of an R-rational polyhedron,

that is, the information encoded in its normal fan, is equivalent to the data of a sequence

of length k normal types of real polyhedra each of them refining the previous one.

1.13 Regular Subdivisions

In this section we will extend the notion of regular subdivision of a polytope to the polyhe-
dral geometry over D. Moreover, in a similar way as we did in the previous section, we will
study how this concept relates to layered reqular subdivisions, which are defined in analogy

to the layered normal fans of the previous section.

Using the extended perfect pairing of Definition 1.1.12 we can introduce the following

concept.

Definition 1.13.1 (Regular subdivisions over D). Consider a finite subset A C Mp, a
function h : A — D, which we refer to as a height function on A, and the polytope
P = convp(A).

1. The lifted convex hull of A is the set

convh (A) := convp{(a, h(a)) € Mp xD | a € A} C Mp x D.
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2. The regular subdivision of P with respect to h, denoted by A"(P), is the family

={r (face o 1(conv(P))) | @ € Np}
= {n(F) | F is a lower face of convfy(A) },

where 7 : Mp x D — Mp denotes the projection to the second coordinate. That is,

A"(P) is the projection of all the lower faces of convli(A) to Mp.

Proposition 1.13.2. The reqular subdivision A"(P) is a polyhedral complex and the re-
striction of Mp x D — My to the set of lower faces of A™(P) is injective and has P as
1mage.

Proof. We start by proving that the set of lower faces of convf(A) is a polyhedral complex.

For this, consider two lower faces F' and G of convi(A). They are of the form
F = face(, 1y (conv]y(A)) and G = face(,1)(conv],(A))

for some x,2" € Np. If FNG # @ then every element (y,yo) € F N G minimize simulta-
neously ((y, o), (x,1)) and ((y,v0), (2',1)). Hence, the minimum of (-, (z,1) 4+ (2/,1)) is
achieved if and only if both (-, (z,1)) and (-, (z’, 1)) achieve their minimum simultaneously.
This shows that

F NG = face( 1)+ 1)(conviy(4)) = face(%ﬂ’l)(conv]%(A))

which is a lower face.

Similarly, if F' is a lower face of conv’(A) and G is a face of F, then

F = face(,,1)(conviy(A)) and G = face(y 4,)(conviy(A))

for some 2,z € Mp and zy € D. If z¢ is invertible then G = face(y/4,.1)(convjy(A)), so it

is a lower face. If xg is not invertible then 1 + xg is invertible and then

G =GN F = face(s,1)4(x uo) (cOnVy(A)) = face, oo 1)(COI1V]%)(A)).

( 1+zq?

Hence, G is a lower face as well in this case. This finishes the proof that the set of lower

faces defines a polyhedral complex.
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Now, notice that the restriction of

WiMDXDHMD

(x,a) — x

to the set of lower faces gives a bijection onto convi(A). Indeed, if we have a lower face

F = face(y,1)(convis(A)) containing an element (y,yo) € F', then

<<yay0> ’ (‘T7 1)> = <y,$> + Yo

should be minimized among all (y, y0) € convi(A), in particular we should have

yo=min{y €D | (y,4) € convyy(A)},

hence yq is uniquely determined in terms of y and the map is injective.

This shows that A"(convp(A)) is a polyhedral complex, as it is the injective image
of another polyhedral complex and by Proposition 1.2.4 the image of a polyhedron is a
polyhedron. O]

In this way, we have introduced the concept of regular subdivisions for a polytope over
D. In the next proposition, we introduce the concept of a layered regular subdivision in

several equivalent ways.

Proposition 1.13.3 (Layered Regular Subdivisions). Let A C Mg be a finite subset of

real vectors and consider a height function

h:A—D
ar— h(y) = hOy) + -+ A D(y).

We can construct a sequence of subdivisions of convg(A)
Ah(coan(A)): Ng <A < <A, (1.26)

in the following equivalent ways:

1. Ag is the regular subdivision of convg(A) induced by h\®) and, for 0 < i < k — 1,
A; is the subdivision of A;_1 obtained by subdividing each cell 6 € A; by the reqular
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subdivision induced by the height function

A |5:0NA—R
y — h9(y)

2. A; is the regular subdivision defined by the height function
RO+ 5pM 4. 450D A — R
for & € Ryy small enough.
3. Given an element x € Np, for each 0 <1 < k — 1 consider the set
S(x) = argmin,c o {y, 21) + h(y)} C A,
That is, St(x) is the set of all y € A for which the expression

(y, ) + h(y)

is minimal among all y € A. The subdivision A; is the one whose cells are the real

polyhedra of the form convg(S™(x)) for some x € Ny.

Notice that, by item (3) above, A;11 is a refinement of A; and, by item (2) above, A; is
a reqular subdivision for each i. Conversely, any sequence of reqular subdivisions in which
each term 1s a refinement of the previous one is a layered reqular subdivision for some

height function.

Proof. Let us call A}, A? and A3 the subdivisions defined by (1), (2) and (3) respectively.

(2

First, let us see that A? and A? coincide. For this, given § € R. consider the map

vs:D— R

z— 2 4 o2 ® 4o g gF Y

This map is R-linear and extend to a map s : Np — Ng. Moreover, for a given x € Np it

satisfies

Si(w) = 57" (ts(2)) (1.27)



1.13. Regular Subdivisions 103

for 0 € R.g small enough. As we need only finitely many x to cover all the sets of the
form SP'(z), we can take 6 > 0 small enough so (1.27) holds for every set in A?. As A? is
exactly the regular subdivision induced by the height function 15 o h we get A} = A2

We will now see that A} = A?. By definition A} = A2 so we are done. This is true by

definition if 7 = 0. Now, if ¢ = 1 we have that

(y, a) + h(y)"

is minimal with the lexicographic order among all y € A iff we have that
(. 2) +hO(y)

is minimal and, among the ones which are minimal, that is, among S ,(ZO)(m(O)), we have that
(. o) +hO(y)

is also minimal. Hence, we get that

(1] Y]
St ) =5 oo, (@)
0

which shows A} = A3. In a similar way, we have

i+ i (i+1) ;
Sﬁ:l (1) = s¢ - |shm<m“]> (1)

7

so Al = A? follows by induction.

Finally, take a sequence A"(convg(A)) of regular subdivisions of convg A in which each
term is a refinement of the previous one. By Theorem 2.4 in [GKZ08|, if we consider
A = {0}, to be the normal fan of the secondary polytope of A, then, the sequence of

subdivision A"(convg(A)) in (1.26) correspond to a flag of cones
g=09gr= 0z - 20— 1

where each 0,7 is a face of ¢;, and a height function R defines A, iff it is in the relative

interior of ;. Hence, by taking h() in the relative interior of o; for each i, we get that
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defines the layered regular subdivision A" (convg(A)). ]

Now, given a set A C My of real vectors and a height function h : A — D we can
construct two different objects: A regular subdivision for convp(A) and a layered regular
subdivision for convg(A). The exact connection between these two objects is given in the

following theorem.

Theorem 1.13.4. Consider a finite set of real points A C Mg and a height function
h:A—D. Then, we have an equality of the form

A"(convp(A)) = TC A" (convg(A)).

In the sense that, the elements of A"(convyp(A)) are exactly the polyhedra of the form
TC(F) for
F:F, 1 CF,_,C--- CF

where F; is a face of A; for each 1.

Lemma 1.13.5. Given an element x € Ny and a € A. The integer
B = ord ({a, ) + hla) = min ((b,2) + k(b)) )
is the mazimal integer in {0,1... k} for which a € S§_,(x).

Proof. 1f B = ord ((a ,x) 4+ h(a) — minpea ((b,z) + h(b))) then (3 is the maximal element
in {0,1,...,k} such that
=8 ({a, ) + h(a)) = 5'6—/3(%1 ((b,z) + h(b)))
= (o) + (@) = (min ((b,2) + h(b)))”” = min (((6,2) + h(v)) ")

> (a, )"V + n(a)”~Y is minimal among all a € A

—ac S (z)

Proof of Theorem 1.15.4. Given x € Np, we can define a face of A"(convp(A)) by

T (face(x,l)(conV%(A))) ,
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on the other hand, the same 2 defines a layered face in A" (coneg(A) by
F(z) : convg(Sp_,(z)) C -+ C convg(S§(x)).
In this way, it is enough to prove that
7 (face(s,1)(convy(A))) = TC F(z) (1.28)
For this, from Proposition 1.6.10 we have

face(s,1)(convfy(A)) = weonvp ([ek_ﬁa (a,h(a)); k — B

aEA)

— 7 (face(, 1)(convjy(A))) = weonvp <[5k_5“a; k—p.]|ac A>

where
B, = ord({(a,h(a)), (x,1)) —c) = ord({a,z) + h(a) — ¢)

with ¢ the minimum of (-, (z,1)) on convi(A). As this minimum must be achieved in one
of the generators of convf}(A), we have ¢ = minye4 ((b,z)+h(b)). Then, by Lemma 1.13.5,

B is equal to the maximum integer such that a € Sgafl(x).

On the other hand, by Theorem 1.11.2 we can write explicitly 7C F'(z) in term of the

generators of F(z) and we get

TC F(x) = weconv ([5ia; q ‘ i€{0,...,k},a€ S,]j,l,i(:c))

— k—1
= Z Z Aaiac™ 7| Ny > 0Va Vi, and Z Z Aageh 17 = 1

i=0 aesh(x) 1=0 aeSh(z)
- { Z a(Aaaﬁaek_Ba + Aavﬂa_lgk_(ﬂa_l) + st )\ayogk_l)
a€A

Aai = 0VaVi, and Y Ao, e+ N g, P 4N oF T = 1}

a€A
(S

acA

te > 0 Va, and Zuaek’ﬁ“ = 1}

acA

= wconvp ([ak_ﬂ“a; k — 5]

aEA)

Where, for the third equality we factorized by a and for the fourth equality we did the
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change of variable
Mg = /\a,ﬁa + /\flﬁa—le + ... /\ajoﬁk_l‘

In this way, we have shown the equality in (1.28) as we wrote both sets in the same way.

]

1.14 Higher Rank Tropical Hypersurfaces.

This section gives a first set of applications of the theory of polyhedral geometry of higher
rank to tropical geometry of higher rank. After introducing the basics objects of the
theory, in Proposition 1.14.5 we show that higher rank tropical hypersurfaces can naturally
be regarded as iterated fibrations. This fibration is studied in the Hypersurface Duality
(Theorem 1.14.12). Where we show that the base and each fiber of a higher rank tropical
hypersurface consist of tropical hypersurfaces of rank one, moreover, the normal type of
these tropical hypersurfaces is encoded in a layered regular subdivision of the Newton
polytope. Finally, in Theorem 1.14.17 we put a polyhedral structure over D on higher
rank tropical hypersurfaces which is compatible with the Hypersurface Duality previously

presented.

Definition 1.14.1. The tropical semifield of rank k or min-plus algebra of rank k, is the
semifield

Ty = (DU {oo}, min, +),
were we consider by addition the map (a,b) — min{a, b} and by multiplication the map

(a,b) — a+b.

An expression in T}, will be written between quotation marks and with the usual symbols

+ and -, for example,
“ inyi” =min{z; +y; |i=1,...,n}
i=1

Remark 1.14.2.

1. In general, for any ordered abelian group (I', 4+) one can consider its associated trop-
ical semifield
Tr = (' U {co}, min, +).
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In this way, T}y corresponds to the case in which the ordered group is (D, +) or,

equivalently, (R* +) with its lexicographic order.

2. In T}, the element oo becomes the additive identity as we have min{oo,a} = a for
every a € Tj. Similarly, 0 becomes the multiplicative identity in Ty. For these

reasons we have equalities of the form
“x—i_y”:“Ox—i_Oy—i_w”.

In particular, the coefficient of x in “x 4+ y” is 0 and not 1.

Definition 1.14.3. Given a lattice M, the ring of Laurent tropical polynomials on M is
the set Ty[M] of all formal sums of the form

F=5 Y antm

meM

whose support
Supp(f) ={m € M | an, # oo}

is a finite set. We endow Tx[M]| with the semiring structure induced by Ty.

Let N be the dual lattice of M. A non-zero tropical polynomial f = “ >
defines a map from Np, the tropical torus of rank k, to D by

m
meM amT

fZN]D)—>]D

r+— f(z) =min{(m,z) +a, | me M}.

Definition 1.14.4. Consider a tropical polynomial f = “ 3", a,T™" € Ty[M].

1. A point x € Ny is said to be a zero of f if the minimum in
f(z) =min{(m,z) + a,, | m € M}

is achieved at least twice. The set of all zeros of f is denoted by V' (f) and is called
the vanishing set of f.
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2. A tropical hypersurface of rank k is a set of the form V(f) C Ngx for a nonzero
tropical polynomial f € T.[M].

Uy

Notice that the projections D = D, & D, = ... = Dy induce, by applying them in

each coefficient, the projections
Te[M] 5 T [M]S ... 5 Ty [M]
f=frt 2y 10

Using these projection we can get a natural fibered structure on the tropical hypersur-
face V(f).

Proposition 1.14.5. For each tropical polynomial f = “
image of V(fm) under Np
fibration

mem @amT™” € T[M], the
— Np, goes inside V(f["*”). In this way, we get an iterated

i1

V(f) = V(f[k—l]) N V(f[k—ﬁ) SN V(f[”).
Given a point x € V (f1) we denote by V,(fi*Y) the fiber of V(f) at x in this fibration.
Proof. Notice that for a given « € Np,,,, if x € V(f1) then fll(z) achieves its minimum

i+1)
in two elements (m ,z) + a,, and (n,z) + a,. That is,

() = (m,z) +dl = (n,2) + all

from which
FEI @) = G 2 i) = G, ) Gl

Hence, fI=U(zl"=1) also achieves its minimum at least two times, so 201 € V( f [i*”). ]
In order to understand this fibration we introduce the following elements.

Definition 1.14.6. Consider a tropical polynomial f = “ %", a,T™"" € Ty[M].

1. The R-Newton polytope of f is the real polytope defined by

Newg(f) == convg(Supp(f)) € Mg

Similarly, we introduce the D-Newton polytope of f by

Newp(f) == convp(Supp(f)) € Mp
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2. Given an integer 0 <7 < k — 1 and an element x € Nyp,, the i-initial part of f with

respect to x is the tropical polynomial

il (f) =% Y altVT"" € T[M].
meM
(m ) tapl=f1 )

Where, for i +1 = k we will use the convention

oo if a,, = 0.

{O if a,, # oo

3. The height function

h: Supp(f) — D

mr—

naturally induce a layered regular subdivision on Newg(f) which we denote by A(f)

and a regular subdivision on Newp(f) which we denote by A(f).

Remark 1.14.7.

1. By definition (3) on Proposition 1.13.3, the layered regular subdivision A(f) is defined

to be the one whose layered faces are of the form

F(x) = convg(Supp(in®*~(f))) C --- C conve(Supp(in’(f))).

where x moves over all elements € Np. Hence, A(f) encodes all the possible values

for the vector
(i3 (f),ing (f), ..., i (f))

as £ moves around Np.
2. By Corollary 1.11.3 we have

Newp(f) = TC* ! Newg/(f).
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Moreover, by Theorem 1.13.4 this equality can be lifted to an equality of subdivisions

of the form

A(f) = TCA()).

The first important result of this section is the Higher Rank Hypersurface Duality
Theorem below, which states that the layered regular subdivision A(f) obtained by using
as height function the coefficients of f, allow us to obtain the normal type of both the base
and the fibers in the iterated fibration of Proposition 1.14.5.

In order to introduce this, let us recall the following concept.

Definition 1.14.8. Given polyhedral complexes ¥ in Mp and ¥/ in Np. A duality between
Y and Y is a map A : ¥ — ¥’ such that

1. The map A is a bijection.

2. Given faces F,G € 3, whenever F'V G exists we have that A(F) A A(G) exists and

A(FV G) = A(F) AA(G).

3. Similarly, given faces F,G € X, whenever F' A G exists we have that A(F) V A(G)

exists and

A(FANG)=AF)VAG).
4. For each F' € ¥, A(F') is orthogonal to F' in the sense that
(x,y)=0,Voz e Fye F'
Because of properties (2) and (3) we say that A preserves incidences.

Remark 1.14.9.

1. Given F,G € ¥ we have F' < G iff A(G) < A(F). Indeed,

F<G e FAG=G < AG)VAF)=AG) = AG) < A(F).

2. In the case in which ¥ and ¥’ are real polyhedral complex, i.e, in rank 1. We have
that
dim(F') = codim(A(F)).
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Indeed, a maximal flag
Fo = 2 Foir) = F

gives rise to a maximal flag

Let us recall the following fact from the usual theory of tropical geometry. For a proof
of this result, we refer to [MS15| Theorem .

Theorem 1.14.10 (Hypersurface Duality). Given f € T[M], if we denote by A(f) the
reqular subdivision of New(f) induced by the coefficients of f. Then, there is a polyhe-
dral complex GC(f), called its Grébner complex, whose support is N and whose cells are

parametrized by the faces F' € A(f). Explicitly they are given by
GC(F) = {z € Ng | conv(Supp(in,(f))) 2 F'}.
Moreover, the map

A A(f) — GC(f)
F+— GC(F)

is a duality in the sense of Definition 1.1/.8. Furthermore, if we restrict A to the elements
of A(f) that are not points we obtain a subcomplex X(f) of GC(f) whose support is V (f).

In a explicit way, to obtain the shape of the tropical hypersurface we have to
1. Do a point reflection of A(f).

2. Consider one point zp for each facet I of the reflected A(f).

3. Join the different points according to the incidence of A(f).

4. Draw a cone pointed at zp perpendicular to each face of F' laying in the boundary

of the Newton polytope.

Example 1.14.11. If f = “72%y? + 522y + 5xy? +4xy + 22 +2y+ 07 then, the subdivision
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A(f) of New(f) looks like

If we do a point reflection of it we get

Hence, the shape of the tropical hypersurface in this case is

Theorem 1.14.12 (Higher Rank Hypersurface Duality). Let f € Tx[M] be a non-zero

polynomial and consider
A(f) =D 2 A =2 2 A

the layered regqular subdivision induce by f over New f. Then, we have that:

1. The base V( f [0]) s a rank one tropical hypersurface with the structure of a polyhedral

complex dual to the first subdivision 4.

2. For each x € V(f[o}), the fiber V, (f[l]) 1s also a rank one tropical hypersurface.
Moreover, V,(fW) remains constant as x varies over the interior of a cell GC(F) C
V(f[o]) for some F € Ay and the normal type ofVm(fm) s dual to the subdivision
A restricted to F.

3. More generally, for each x € V(f1), the fiber V,(f) is also a rank one tropical
hypersurface. It remains constant as x varies over the interior of a cell GC(F) C
Vo (f7) for some F € A,y and the normal type of Vi (fUV) is dual to the

subdivision A;yq restricted to F.
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Example 1.14.13. Consider k = 3, M = Z? and the polynomial
fla,y) = (0,1,2) + (0,1, 1)z + (0,1, 1)y + (0, 1, 2)zy + (0,0,0)z” + (0,0,0)y

The Newton polytope of f is New f = convg((0,0),(2,0), (0,2)) and its associated layered

subdivision is the following:
=N B B
——— ——— ———
Ay Ag As

After a point reflection it becomes

NN X

Therefore, the base of the fibration V' (f1) has the shape

o

And over each point of the base, there are 4 possible shapes for the fibers of V (f1?),

represented in the following diagram:

Moreover, each of these fibers is the base for a fibration determined by V (fl). All the

fibers of this fibrations will have the shape of the corresponding tangent cone, with the
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exception of one fiber, the one corresponding to the subdivision of the square, which we

sketch as follows:

/

Proof of Theorem 1.1/.12. The subdivision Aq corresponds to the regular subdivision in-

i

duced by the coordinates of f%. Hence, part (1) of the theorem follows directly from the
hypersurface duality of rank one (Theorem 1.14.10).
In order to prove (2), let 2(® € V() then Vo (fM) is the set of all (") € Ng such
that
@ 4 ez € Np,.

Therefore, if we consider the polynomial

i (f) = * Z ap, T

meM
£ (@)=(m &) +aly)

we see that 2(%) + ex(M) is a zero of fI! if and only if 29 is a zero of f% and 2™ is a zero

of inl ) (f). Hence, we obtain

Vx(f[”) = V(inﬁm (f))-

As New(in’, f) = F, again by the original hypersurface duality, we get that V(in, f)
is dual to the regular subdivision induced by the height function m — a%), which, by
Proposition 1.13.3, is exactly A;.

The general case follows similarly as one can show that
Voo (f1Y) = V (infg f).

]

The objective now is to put a polyhedral structure on V(f) which is dual to the layered

regular subdivision of its Newton polytope in a natural way. Generalizing to higher rank
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the polyhedral part of Theorem 1.14.10. For this, we will introduce the analog of the

Grobner complex in higher rank.

Definition 1.14.14. Given a layered face £ € A(f) of the form

FIFogFlc-“CFk,1

where F; is a face of A; for each 7. We consider its corresponding Grébner cell as

GC(F) = {:1: € Np | convg(in’ (f)) D F;, V1 <i < k} .

We will prove that the family of all Gréner cells is a polyhedral complex. For this, the
idea is to consider the lifted Newton polytope

Newp (f)" == conv] (Supp(f)) € Mp x D

used to define the regular subdivision as in Definition 1.13.1. We will show that the normal
fan of this polytope intersected with Np x {1} is again a polyhedral complex and its cells

are the Grobner cells.
We start with the following lemmas.

Lemma 1.14.15. Given a layered face F € A(f), we have that
€ GO(F) < (z,1) € C((TCE)").

Where (TC F)" represents the only lower face of Newp(f)" which projects to TC F under
Mp xD— D, and C ((TC E)h) C Np x D is the normal cone of this face. In other words,

we have the equality
GC(F) x {1} = C((TCF)") N Np x {1}.
Proof. A point x € Np belongs to GC(F) if and only if the flag
F(x): Fo(z) C Fy(z) C ... Fp_q(x)
where Fj(z) = convg (Supp (in}(f))) satisfies F(z) D F; for all i = 0,...,k — 1, and this

happens iff
TCF(x) DTCF.
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Moreover, if we consider the projection 7 : Mp x D — Mp then we have that
TCF =r ((TCF)")
and, by Theorem 1.13.4,
TC F(z) = 7 (face(, 1) Newp(f)") .

Hence, as by Proposition 1.13.2 the map 7 restricted to the set of lower faces of New(f)"
is injective, we conclude that T'C F(xz) 2 TC F happens iff

face(,.1) Newp(f)" 2 (TC F)".
Which by definition means (z,1) € C ((T'C £)"). In this way we have seen that
rv € GC(F) < (z,1) € C((TCF)")

as we wanted. O

Lemma 1.14.16. Let o be a polyhedral cone in Np XD and consider P to be the projection
of o N Np x {1} to Np. Then, the map

8’0’ —>3P

T— 7w (TN Np x {1})

15 surjective where w: Np x D — Np is the usual projection.

Proof. A face of P is of the form face, P for some y € Mp. Let us consider a =
mingep(y , x). If we show that (y, —a) € 0" we are done, as then we can consider face(y,_q) 0
and this satisfies

face(,,_q) 0 N Np x {1} = face, P x {1}.

Let us see now that (y, —a) € o". For this, notice that
oNNpx {1} =P x {1}. (1.29)
Moreover, as (y,z) > a for any z € P we get

((y,—a),(x,1)) >0 for any x € P x {1}.
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Now, if we take (z,b) € o with b € DZ, invertible, by the equality in (1.29), we have
x/b € P. Hence,

<(y7 _a) ’ (Iv b)> = b<<y7 _a> ) (I/b7 1)> > 0.

On the other hand, take an element of the form (x,b) € o with b not invertible and consider
an element 2’ in P achieving the minimum of y, that is ((y,—a),(2’,1)) = 0. Then, we
can consider (z/,1) + (z,b) = (' + x,1 + b). Now 1 + b is invertible, so from the previous

step

0<((y,—a), ((z"+2,1+0))) = ((y, —a), (2", 1)) + {(y, —a) , (, b)) = ((y, —a) , (,])).

Hence, (y, —a) is positive in (z,b) for any (x,b) € o. Therefore, (y, —a) € . O

Theorem 1.14.17 (Polyhedral Structure). The family
GC(f) ={GC(E) | E € A(f)}

1s a polyhedral complex with support Ny called the Grobner complex of f.

Moreover, if we consider only the layered faces of A(f) in which Fy_y is not a point,
that is,
YX(f) ={GC(E) | F € A(f) and Fy_, is not a point},

we obtain a polyhedral complex with support V(f).

Remark 1.14.18. The Grébner complex GC(f) is exactly the subdivision of Np under
which the map

T (ing(f), . ,in’;’l(f))

is constant over the interior of each cell.

Proof of Theorem 1.14.17. We will start by showing that GC(f) is a polyhedral complex.
First notice that, by Lemma 1.14.15, we have GC(F) = 7 (C ((T'C$)") N Np x {1}), which
in particular implies that GC(F) is a polyhedron for each F' € A. Moreover, given F, F' €
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A(f), we can consider 'V F' the layered face given by F; V F/. Then,

GC(F) N GC(F') = (C <TC (F) )) = (C (TC(E)"))
:w(c (F ))ﬂC(TC(F/)h)>
:w(c (FY" v TC(F h)
w(c C(F )wcw'))h))
C(TC(

—r(c(re Evg’)h)>

N——

TC
TC
(T

<
<
(
<
=GC(EV E).

Therefore GC(F)NGC(F') = GC(FV F') € GC(f) and it is a face of both GC(F') and
GC(F") because C (TC (E\/E’)h> is a face of both C <TC (E)h> and C (TC (E')h>.

Finally, if H is a face of GC(F) we will show that H = GC(F") for some F' € A(f). For
this, notice that by Lemma 1.14.16 there is a face 7 of C(T'C(F)") such that TN Np x {1} =
H x {1}. Now, given z € int(H) we have that (z,1) € int(7). Then, face(, 1) New(f)" is a
lower face of New(f)" with

C (face(, 1) New(f)") = 7.

By Theorem 1.13.4, the projection of face(, 1) New(f)" to New(f) is of the form T'C (F)
for some F' € A(f). This F” satisfies GC(F') = H.

With this we have prove that GC(f) is a polyhedral complex with support
7 (INF (New(f)")| N Np x {1}) =

In order to see that X(f) is a polyhedral complex, it is enough to notice that if GC(F), GC(F) €
GC(f) then Fj_; and F_; are not points, hence Fj_; V F}_; is not a point, so

GC(E) N GC(E) = GC(EV E) € GC(f).

Similarly, if GC(F) € GC(f) and GC(F") is a face it, then F}_; O Fj_;. Hence, F}_, is
also not a point, that is, GC(£") € X(f). This shows that X(f) is a polyhedral complex.

Moreover, let us see that the support of X(f) is V(f). If z € V(f) then we can consider

F() : conv(Supp(iny~*(f)) C -+ C conv(Supp(inj(f))
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and, as the minimum in f(x) is attained at least twice, we have that conv(Supp(in®~'(f))

is not a point. Hence,

z € GC(E(z)) C|Z(f)I.

and we conclude that V(f) C |2(f)|. On the other hand, if x € |X(f)| then there is a face
F € A(f) such that z € GC(F). Hence,

Supp (ink'(f)) 2 Fi,

and as Fy_1 is not a point, the minimum in f(z) is attained at least twice, so z € V(f). O
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Chapter

Geometry of Higher Rank Valuations

In this chapter, we study geometric aspects of higher rank valuations and the geometry of

analytified spaces in this setting. In particular, we provide a higher rank notion of skeleton.

Basic notations

Along the text we work with varieties over an algebraically closed field k, that is, integral
schemes of finite type over k. Points on varieties are not necessarily closed. Moreover, we
use the notations Ry ={a € R |a >0} and Zy ={a € Z | a > 0}.

In the following, we will denote by <_, the coordinate-wise partial order on Z!, that
is, given elements 3,3 € Z!, we have 8 <, 3 if and only if 8; <, B! for each i € I.

—cw

Sometimes, we only use < if the partial order is understood from the context.
We write the symbol a > b to indicate that a is large enough compared to b.

For a ring R, we denote by R* the set of invertible elements of R.

2.1 Cone complexes and tangent cones

In this section, we introduce the polyhedral geometry notions used along the document.
This includes the notion of cone complexes and their tangent cones, as well as dual cone
complexes associated to simple normal crossing divisors. We endow cone complexes with

the sheaf of tropical functions.

121
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2.1.1 Cone complexes

All through this section, the letter N is used for a free Z-module of finite rank and M
denotes the dual of N, that is M = NY := Hom(N,Z). We denote by Ng and Mg the
corresponding real vector spaces which are dual to each other. Note that N and M form
full rank lattices in Ng and Mg, respectively. The duality pairing between M and N is
denoted by (). Recall that a saturated sublattice of N is a subgroup N’ with the property
that N "N = N'.

Definition 2.1.1 (Cones and cone complexes).

1. A rational polyhedral cone in Ny is a set of the form
o={x € Ng | (xr,u1) >0,...,{x,ux) >0}

for some uy,...,u, € M = NV. We say that o is strictly conver if it does not contain

any line in Ng.

2. A rational polyhedral cone complex with (weak) integral structure is a pair (%, [3])

where |X]| is a topological space and ¥ is a family of closed subsets of |X| such that:

(a) Each o € ¥ is enriched with a lattice N, and an identification of o with a full

dimensional rational strictly convex polyhedral cone in N, .

(b) These identifications are compatible in the sense that for each element o € ¥,
faces of o seen as a cone in N, correspond to elements 7 of . Under this
identification, the lattice N, is identified with a saturated sublattice of N,.

(c) As a set we have a disjoint union |X| = | | .y, ¢ where ¢ is the relative interior

of o (which make sense by (a)).

(d) The intersection of two elements in ¥ can be written as a union of elements in
3.

We call || the support of the cone complex, and the elements of 3 are called the cones
or faces of the cone complex. By an abuse of the notation, we will only use ¥ to refer to
the pair (3, |X]). For each cone o, the lattice N, is called its underlying integral structure

and we identify o with its image in N, .

(3) A cone of dimension one in ¥ is called a ray and a cone of maximal dimension is

called a facet. The set of all rays of X (resp. of a cone ¢ in ) is denoted by 3 (resp.
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01). More generally, for any integer k, we denote by ¥ (resp. oy) the set of all faces

of ¥ (resp. of o) of dimension k.

Convention

In what follows, a rational strictly convex polyhedral cone will be simply called a cone
as these are the only kind of cones we will deal with in this paper. Similarly, a rational
polyhedral cone complex with a (weak) integral structure will be called simply a cone

complex.

Remark 2.1.2. Definition 2.1.1 resembles the notion of a fan used in toric geometry but
it differs from it in several ways. First, the lattices IV, may not come simultaneously from
a global ambient lattice N. Also, condition (b) allows an intersection of two cones to be a
union of multiple faces instead of a single face as in the case of fans. In such a situation,
the cone complex will have parallel faces, that is, two different faces 7 and o in 3 with the

same set of rays 71 = o7.

Definition 2.1.3 (Subdivision). A rational subdivision of a cone complex ¥ is a rational
cone complex ¥ such that || = || and for each cone & € ¥, there is a cone o € ¥ such
that ¢ C o and N; is a saturated sublattice of N,.

It follows from the definition that ¢ is a rational cone in N,g. Again, rational subdi-
visions are the only ones appearing in this paper, so we drop sometimes the word rational

and simply talk about subdivisions.

2.1.2 Dual complexes

We recall the concept of a simple normal crossing divisor (SNC) on a variety and its

associated dual cone complex.

Definition 2.1.4 (SNC divisor and stratum). Let X be a smooth variety and D a divisor

on 1it.

1. The divisor D on X is called simple normal crossing, SNC' in short, if

e D is reduced, and

e for each point © € X, there is a Zariski neighborhood U, of x and a regular
system of parameters 2q,...,2, € Ox, with r = codimm such that the zero
set of the product z; ... z; over U, coincides with D N U, for some non-negative

integer j = 7, <.
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2. Given an SNC divisor D on X, we can write D as a sum ZieI D; where D; are the

irreducible components of D. A connected component of an intersection of the form

D; = ﬂDi

iel
for some I C T is called a stratum of D.

Remark 2.1.5. Notice that each SNC divisor is a Cartier divisor. Moreover, the SNC
condition implies that each D; appearing above is smooth, and in particular, has disjoint

irreducible components, coinciding with its connected components.

Construction 2.1.6 (Dual complex). Given a divisor D = Y . . D; on a variety X we

i€T
construct its dual cone complex ¥ (D) as follows. To each stratum S of D which is an
irreducible component of D; for a subset I C 7, one associates a cone og which is a copy
of R C R? with its natural integral structure given by the lattice Z! C Z*. If a stratum
S is included in another stratum 7', then the subset I C Z which corresponds to S should
contain the subset J C 7 which corresponds to T'. In particular, one can naturally identify
the cone o7 as a face of og via the identification Rfr - Ri, as the set of all points with zero
coordinates corresponding to elements of J \ I. The topological space |3(D)| is defined as
the gluing of all o along these identifications and the set (D) is given as the image of the
family {og} in the space |X(D)|. Sometimes we use the notation X (X, D) to emphasize

that D is a divisor in X. o

Proposition 2.1.7. The pair (3(D),|X(D)]) constructed above is a cone complex in the
terminology of Definition 2.1.1.

Proof. Part (a) in the definition follows from the definition of each og and the fact they
map injectively into the gluing |X|. For part (b) notice that given a cone og = RZ | a face of
s is then of the form R for some J C I. Therefor, the unique irreducible component 7' of
D, which contains S will give the unique o € $(D) such that o7 = RJ. Part (c) follows
from the corresponding fact on R! by looking at the maximal elements in . Finally, for
part (d), notice that og, N og, is equal the union of all or where 7" is a minimal strata
containing both S; and Sj. H

Notation 2.1.8. Notations as above, given a cone o € ¥(D), we denote by S, the as-
sociated stratum. The generic point of S, is denoted by 7,. If the divisor is given by
D = % ..; D;, we denote by I, the subset I C T such that the stratum S, is open in a

connected component of D; = ﬂie 1 D;.
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2.1.3 Tropical functions

We endow a cone complex ¥ with its structure sheaf Oyx, which is the sheaf of tropical

functions.

Definition 2.1.9 (Tropical functions and the structure sheaf). Let ¥ be a cone complex

with an integral structure and let U be an open subset of ‘Z‘ A function

F:U—=R

is called tropical if there is a rational subdivision > of ¥ such that for each o € X,
the restriction F| . is integral linear, i.e., viewing o in Ny g, F| _, coincides with the
restriction to o NU of an element in M, C N j r- The structure sheaf Oy is defined as the
one whose sections on an open set U are given by the set of tropical functions on U. A

tropical function on X is a global section of Os.

Remark 2.1.10. Let X be a smooth variety and D an SNC divisor on X. As we will see
in the next section, when talking about tropicalization, the tropicalization of a rational
function on X is a tropical function on (D). Later on we will prove that any tropical

function is of this form.

2.1.4 Tangent cones

Now we see how to deal with tangent vectors in cone complexes. We are specially interested
in those that point inward the cone complex. We first start by introducing a notion of

tangent spaces adapted to our purposes.

Definition 2.1.11 (Tangent spaces). Given a cone complex 3 and x € |X|, the tangent

space at x is the set
TS = | | Nox

ooT

where the union goes over all faces of 3 containing x.

Remark 2.1.12. In general 7,3 is not a vector space, nonetheless given w € T, and
A € R we can produce by addition the point z + Aw € |, 5, Nor-

Definition 2.1.13 (Tangent cones). Let X be a cone complex and z € |X].

1. The tangent cone at x denoted by TC, X is the set of all w € T % for which x +ew €
|| provided that € > 0 is small enough.
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2. More generally, for an integer & > 1, the k-tangent cone at x denoted by TC];E
consists of the set of all tuples w = (wy, ..., wy) of vectors in (7,3)* for which we

have the following property:

For any r € [k] and for ¢; > 0, i € [r], we have
r+ew + - tew, € ’Z’

provided that £, is sufficiently small and ¢; is sufficiently small with respect to €;_;

for 1 < j < r. Equivalently, if for any small enough £ > 0, we have

T+ ew; + 2wy + -+ "w, € |3

3. The k-tangent cone bundle is the set TC* Y = Umem\ TC® 3. Tt comes with a natural
projection map 7C* ¥ — ¥ and its elements are denoted by (z; w1, ..., wy) or (z;w),

to make reference to the base point explicit.

We make two remarks. First, we note that the definition of the tangent cones given
above guarantees, proceeding inductively on r, that for each (x;w) and for {g;}%_; small

enough, with € > --- > ¢, > 0, we have
r+eaw +---+ew €8], relk]

In particular, the second point makes sense.
Moreover, it happens that we can actually ensure a stronger property, namely that for
all {g;}¥_, small enough and ¢; > --- > ¢; > 0, all the above vectors fall in the same face

of . This is the content of the following proposition.

Proposition 2.1.14. Given a cone complex 3, we have

TCk Y = U TC* 6.

D>

Proof. We will proceed by induction on k and show that for (z;w) € TC* ¥ there are

€1,...,6r € Ry and a face o of ¥ containing x such that for each 1 < r < k we have

r+ew+ -+ gw, €0.
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This will finish the proof as by convexity of o, if dg,d1,...,0, are positive reals with
Yor o0 =1, we get

Z@(m—l—elwl—i—---—kerwr) =z + 0w+ + 0w, €0.

i=0
Making now ¢y large enough and choosing 6; > --- > 4,, > 0 in an appropriate manner, we
can ensure to get any 07 > 95 > --- > ¢/ > 0 as long as they are small enough. Therefor,
we get (z;w) € TC* 0.

For k£ = 0 there is nothing to prove as we can take any face of ¥ containing x. Suppose
now k£ > 0 and assume the result for £ — 1. For each natural number n, we use the

assumption of the induction with (z,,w’) where z,, = = 4+ wy/n and w, = w;;;. In this
(n) (n

way, we find positive numbers €57, ..., €, ) and a face o, of 3 such that
Ty Ty + €2(N)Wa, ..., 2, + Eo(N)we + - -+ + e (N)wy, € 0.

The number of faces of ¥ being finite, there is some o € ¥ such that ¢, = o for infinitely
many n. Tending n to infinity through those n, we get =, = r+w;/n — z and hence = € 0.

So o together with 1/n,es(n), ..., ex(n) for large enough n satisfy what we want. O

Remark 2.1.15. For a subdivision % of Y, we have TC*Y = TCF Y. Hence, by the
< TCF o of the

proposition above, the subdivision 3 induces a subdivision TC*% = U, es

tangent cone.

2.2 Tropicalization of rational functions

We now recall how to tropicalize rational functions on a variety into tropical functions on
cone complexes. This is based on the idea that, given a point z in a variety X and a fix
set of local parameters in Ox, at the point, the completion @X@ of the local ring at x
becomes isomorphic to a power series ring in the local parameters. This isomorphism allows
to see each rational function regular at x as a power series. We can then use the usual
tropicalization procecdure with respect to the trivial valuation on the base field. Following
this procedure, given an SNC divisor D, we can use the local equations of its components

as local parameters to obtain for each rational function a tropical function over ¥ (D).
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2.2.1 Admissible expansions

The following notion is useful to understand power series expansions directly in the ring
@XJ. It is borrowed from [JM12].

Definition 2.2.1 (Admissible expansion). Let R be a complete regular local x-algebra
and 21, ..., 2, with r = dim(R) a system of parameters for it. Given f € R, an admissible

expansion for f is an expression of the form

f= Z 0525, cs € R, (2.1)

A

in which the right hand side is a convergent series in which each coefficient cg is either

zero or a unit on R. The support of the admissible expansion is the set of all 8 € Z with

057&0.

Here and in what follows, the notation 2” stands for the product z]*...z% where
B, ..., B, denote the coordinates of § € Z".

Remark 2.2.2. We will be essentially interested in the case in which R is equal to the
completion O x,z Of the local ring of a point = in a smooth variety X. For technical reasons

however we have defined it in this generality (see the proof of Proposition 2.7.5).

Remark 2.2.3. An element f € R has several admissible expansions and the support of
these admissible expansions may vary. As an example, the identity 1 = (1 — 2%) 4 2# shows
two different admissible expansions with different supports for the constant function 1.
Although admissible expansions are not unique, they always exist and as we will see next,

the minimal terms of their supports form a uniquely determined set.

Proposition 2.2.4 (Existence of admissible expansions and uniqueness of the minimal

elements of the support). Notations as in Definition 2.2.1, consider an element f € R
1. There is an admissible expansion for f.

2. In the notation of (2.1), the set
Ap = rgin{ﬁ €L | cg#0}

depends only on f and not in the choice of the admissible expansion.
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3. The set Ay does not change if we change the local parameters z, ...,z for some
local parameters z,, ...,z such that we have z, = zu; for some unit u; € R* for
each 1 <i<r.

Remark 2.2.5. A slightly weaker version of this proposition is stated in [JM12], where it is
shown that the piecewise linear function defined by the admissible expansion is well-defined.
Note that it might happen that two power series with different sets of minimal elements
give the same piecewise linear function. The above proposition claims the uniqueness of

minimal elements in different admissible expansions of a given rational function.

Proof of Proposition 2.2./. (1) Denote by k(R) the residue field of R. By Cohen structure
theorem [Coh46, Theorem 9|, the ring O x. contains a coefficient field, that is, a field K C
@X,z such that the projection map @X@q — k(R) restricts to an isomorphism & = x(R).

Moreover, this coefficient field induces a continuous isomorphism
o K(R)[[X1,- .., %] = Ox. (2.2)

which extends the isomorphism between x(R) and & by sending X; to z;. Writing o ~!(f) =

> sez, csxP, we get an admissible expansion for f of the form

F=> ol

Bezr.

(2) Notations as in (1), let f = Zﬁezg agz’ be a second admissible expansion for f.
Using the isomorphism (2.2) above, we can see each ag for 3 € Z_ as a power series with

coefficients in k(R), that is as

e Mag) = Y as,x € (R [fxis. . %]l

7621

We infer that

d e =07 () =) ¢ ap)x”

BELY, BEL,

= Z Z ag X’ xP = Z Z Ay,3—y X7

BEZL \veZl BEZ \0<cwV<cwB
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which implies that ¢z = ZOSCW <o QB Now if 3 is a minimal element with cz # 0,
then a, g is nonzero for some v < _ 3, and therefor a, is nonzero. Conversely, if 3 is
minimal among those #’ such that ag # 0, then we have on one side ag = ag, and on the
side, we have ago # 0 because as is a unit. Combined together, we have shown that any
minimal element in the support of one admissible expansion dominates a minimal element

in the support of the second. This proves the statement in the proposition.

(3) The last point is straightforward. O
Remark 2.2.6.

1. Recall that a subset A of a partially ordered set is called an antichain if any pair
of distinct elements in A are not comparable in the partial order. It is not hard to
prove that an antichain in (Z7, <_,) is necessarily finite. Since the sets A; considered

above are all antichains, we conclude that they must be finite.

2. For f,g € R, by manipulating admissible expansions, we can see that

rgin(Aerg UA;U Ag) = min(4; U 4,)

—cw cw

min (Af.g U I;lci‘il(Af + Ag)> = Iéllvfl(Af + Ay).

—cw

Corollary 2.2.7. Any function f € R admits an admissible expansion with finite support.

Proof. Let f € R be an admissible expansion. By Proposition 2.2.4, f admits an admissible
expansion [ = Zﬁezg cpz?. Rearranging terms, we can rewrite this in the form f =

o €, o
c., either 0 or equal to c,, and is still invertible. By Remark 2.2.6, the set Ay is finite. [

> se A ¢pz” where each coefficient ¢5 can be written in form ¢z = c5 + >

2.2.2 Conewise antichains associated to rational functions

Let D be an SNC divisor on X. For each cone o € ¥(D) and for each i € I,, consider a
local equation z; for D; around 7,. Then, the family {z;};c;, provides a system of local
parameters for the local ring 6){,%- For a function f € K(X) with f € Ox,,, 0 € ¥(D),
we define the set

A} =min{f € Z' | 5 # 0}

for a given (and so for any )admissible expansion f = )" sez, cg2P.
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Definition 2.2.8 (Antichains attached to a rational function). Notations as above, for a
rational function f on X, we call the family Ay = {A; |0 € $(D) with f € Ox,, } the
family of antichains attached to f.

Remark 2.2.9. In practice, we reduce to rational functions f which belong to all local
rings Ox,, for o € X(D). In this case, the family of antichains has an element A% for
any o € X(D). Any more general rational function h on X can be written as the ratio
h = fi/ fo of two such rational functions, i.e., with f;, fo belonging both to any local ring
Ox,, for o € ¥(D).

Proposition 2.2.10 (Compatibility of the antichains). Let D be an SNC divisor on X.

Fiz a cone o € (D) and a face T of 0. Consider the projection

pr._ : Rl —s RI*
o-T

(zi)ier, = (Ti)ier, -

For each f € Ox,, , we then have f € Ox,. and an equality of the form

} = min (prgH (A;)) )

—=cw

Proof. Consider the diagram

OXJIU
-
Oxae <6X’%) pr
OX,nT

Here p, is the prime ideal in O X, generated by {z; | i ¢ I} and each completion is taken
with respect to the maximal ideal. Moreover ¢; is the inclusion in the completion, ¢t and ¢3
are the composition of a localization with an inclusion into the corresponding completion,
and 14 is obtained by functoriality by localizing ¢; at p, and completing with respect to
the maximal ideal. This is a commutative diagram of k-algebras.

Given an element f € Ox,, , by Corollary 2.2.7 we can find finite admissible expansions

u(f) =Y ag?’ u(f)=) b2

BEZlo ~eZlr
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in Ox,, and Ox,_, respectively. We then get

s =3 wa) = S [ 3 w7 | 2

pels yezir \pr __(B)=v

ta(a(f)) = Y wa(by)2”,

~eZIT

As Y, (8)=~ agz’~7 ¢ p,, its image by ¢3 is invertible. Therefore, we obtain two ad-
o>T

—

missible expansions for ¢3(¢1(f)) = ta(e2(f)) inside (@X%) . By Proposition 2.2.4, we
P

T

get
win{ €27 1) #0) = windy € 27 |6(Sy,, 10557 £0)
Since t3 and ¢4 are both injective, we infer A} = min<__ (prgH(A‘})), as required. ]

2.2.3 Tropicalization
We now define the tropicalization of rational functions.

Construction 2.2.11 (Tropicalization). Let X be a variety and let D C X be an SNC
divisor. Let 0 € ¥(D) and let = € 0.
o or f € Ox,,, we define

trop(f)(x) = min{(z, 8) | € AF}.
e For two elements f1, fo € Ox,,, , we have

trop(fuf2)(x) = trop(f1) () + trop(f2) (x).

This allows to extend the above definition to an arbitrary g € K(X). In this case, we write
g = fi/fz for fi, fo € Ox,, and define for each x € o

trop(g)(x) == trop(f1)(z) — trop(f2) (x).

e Finally, by Proposition 2.2.10 above, this function is independent of the choice of the

face of ¥(D) which contains z. Hence, we obtain a well defined map

trop(f) : [S(D)| — R
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which we call the tropicalization of f with respect to D. o

Remark 2.2.12. In order to prove the second property, namely, that

trop(f.f2)(x) = trop(f1)(x) + trop(f2)(x)

for f1, f2 € Oxy,, let in,(AF) be the subset of A consisting of all 3 with trop(f;)(r) =
(z,8). Then, we get in,(AF,;,) N (inm( %)+ ing( 322)> # (). Combined with the second
part of Remark 2.2.6, this gives the result.

Proposition 2.2.13. The tropicalization of a rational function is a tropical function.

Proof. For o € ¥(D) and f € Ox,, the tropicalization trop(f)|_ is the minimum of finitely
many linear functions with integral coefficients. Therefore, this is an integral piecewise
linear function on . More generally, for any element f € K (X), the tropicalization trop(f)
can be written as the difference of two integral piecewise linear functions over each cone
o, and so it is itself integral piecewise linear on each cone. It follows that tropicalization

of f is a tropical function. ]

2.3 Quasi-monomial valuations of higher rank

In this section, we define quasi-monomial valuations as certain Krull valuations attached
to a given SNC divisor. We study their basic properties and then relate their combinatorial
structure with the one of the dual complex in the case the values are taken in R* with its

lexicographic order.

2.3.1 Definition

We start by giving the definition in the more general setting of totally ordered abelian
group. The one important for us in this paper will be the additive group R¥ endowed
with the lexicographic order <., that we sometime simply denote by <. This is the order
defined by x <ix y iff 2 = y or there is an 1 < ¢ < k such that z; = y; for 7 < i and
x; < ;. This ordered group has specific properties, depicted in the presence of its two

different natural topologies, which are exploited in this work.

Let (I', <) be a totally ordered abelian group and consider I'vrg = {a € I" | a = 0}.
Let D be an SNC divisor in a smooth variety X. To a given cone o € (D) and a tuple
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a € Fé’o, we associate the valuation v, , by defining its value first at an element f € Ox,,,
by
Vo,g(f) = m<in {Zie[a By €T | RS A?} . (23)

By Remark 2.2.6 and the argument used in 2.2.12, it is straightforward to see that

V‘LQ(fQ) = Vmg(f) + Vg,g(g), and
I/U’g(f + g> = min{yﬂ,ﬂ(f)? Va,g(g)}'

This shows that v, , verifies the properties of a valuation on Ox ,  and so uniquely extends
to a valuation on K (X), the fraction field of Oy, .

Definition 2.3.1 (Quasi-monomial valuations). Notations as above, the valuation v, , is
called the I'-quasi-monomial valuation with respect to o and «. The set of all I'-quasi-
monomial valuations for a given cone o € X(D) is denoted by .Z!(D). The set of all
I'-quasi-monomial valuations coming from any cone of ¥(D) is denoted by .#" (D).

In the case the ordered group if the additive group R*¥ endowed with the lexicographic
order, for a natural number k, we call the valuation v,, a quasi-monomial valuation of
rank bounded by k. We denote simply by .#*(D) and .#*(D) the corresponding sets of
quasi-monomial valuations .ZX" (D) and .#®"(D), respectively. For k = 1, we further
simplify .#} (D) and .#*(D) to .#,(D) and .# (D), respectively.

In the rest of this paper, we will only consider quasi-monomial valuations of rank

bounded by k for some positive integer k.

Remark 2.3.2. The integer k used in the definition of the quasi-monomial valuation makes
reference to the rank of the codomain of the valuation. This should not be confused with the
Krull dimension of the valuation ring of v, ,, neither with the rank of the value group of the
valuation, as we allow the value group v, (K (X)) to be of rank strictly smaller than k. The
idea of studying valuations of different ranks all together, simultaneously, is motivated from
practical situations appearing in the study of multi-parameter degenerations of complex
varieties, see for example [AN20; AN21|.

2.3.2 The duality theorem

In this section, we provide a dual description of the set of quasi-monomial valuations of
rank bounded by k.
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Recall that for a variety X and a valuation v : K(X) — I, the center of v, if it exists,
is the unique point of X denoted by c, such that v is non-negative over O, and strictly

positive over its maximal ideal. The center of quasi-monomial valuations always exists.

Proposition 2.3.3. Let D be an SNC divisor on a variety X and let I" be a totally ordered
abelian group. For o € (D) and « € Fi", consider the unique face T of o given by the
rays I, = {i € I, | oy = 0}. Let a, = pr___(a) be the element Il whose coordinates are
given by those of a.

Then, we have Vs = Vro . Moreover, the center of vy, exists and is equal to 1.

Proof. The first assertion follows directly from Proposition 2.2.10. To prove the second,
notice that v, (f) = 0 for each f € Ox,,. Moreover, v;, (f) = 0 if and only if 0 € A7,

i.e., in the case f is invertible. This shows that the center of v, ,_is n;. O

Consider now the case I' = R. In this case, the elements of Rﬁi’ can be naturally
identified with the points of . From the compatibility in the above proposition, we get a

natural bijection
[2(D)| — .#(D) (2.4)

obtained by sending a point z € |X(D)| to the quasi-monomial valuation v,, € (D)
where o is any cone of ¥ (D) which contains the point z and « denotes the coordinates of

z in that cone.

We now generalize this bijection to higher rank quasi-monomial valuations. First ob-
serve that there is a natural projection map m: .#*(D) — .# (D) defined as follows. Take

a point @ = (a;)ics, € (R¥)%. Each q; is an element of (RF), = (R¥)., and we denote its
1

coordinates by a; = (af,...,a¥). Consider the projection to the first coordinate denoted

by an abuse of the notation by 7 and given by
e ®YF S RE, w(a) = (b,
The projection map 7 is then defined by
T(Vo,a) = Von(a) (2.5)

over each cone o in (D). By Proposition 2.3.3, this map is well defined. It allows to view

A*(D) fibered over . (D).
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Theorem 2.3.4 (Duality theorem). Notations as above, there is an isomorphism of bundles
over M (D) ~ ’E(D)’
M*(D) —2— TCH1¥(D)
l | (2.6)

M (D) —— [Z(D)|

where:

o the map A (D) — ‘Z(D)‘ on the base is the inverse of the isomorphism (2.4), and

e the map ¢ is defined by a compatible family of maps
¢y : My(D) — TC* 1o, o€ X(D).

For o € ¥(D), the map ¢, is defined as follows. Take a point a = (a)ier, in (RF),
let v = m(a) = (a})icr, € R, and for each j =2,...,k, define

wi—1 = ()i, € R™.
Then, the point (x;ws, ..., wx_1) belongs to TC* o, and we set

¢U(Va,a) = (533 Wi, .- 7wk71>'

Remark 2.3.5. The proof of the duality theorem reduces to the following statement in
coordinates. A real matrix A € Maty,,(R) has columns in (R¥),, with respect to the
lexicographic order on R, if and only if the family (A 15 ALgs -, AL g), given by the
columns of the transpose A* of A, belongs to the tangent cone TC*~* ((RQ”) . This justifies

the name given to the theorem.

Proof of Theorem 2.3.4. We verify that each ¢, is a bijection. Let o be a cone in (D). By
definition, an element («;);c;, € (R¥)% gives a valuation v, , in the domain of ¢, provided
for each i € I, the vector a; belongs to (R¥),, that is, it is non-negative with respect to

the lexicographic order. Denoting by (ai,...,a¥) the coordinates of oy, this means that
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for each ¢ € I,, we must have

either, o > 0

or, (aj =0 and o? > 0)
or, (af =a? =0 and o} > 0) (2.7)
or, (af =---=af' =0and of >0).
On the other hand, for a collection of vectors z, wi,..., w1 in Rfe, the family
(z;w1, ..., wg_1) by definition belongs to TC*~! ¢ if and only if we have

r € o and
x + 1wy € o for 1 > 0 small enough, and

T + e1wy + eawq € o for €1 > g9 > 0 small enough and (2.8)

T+ewy+ -+ ep w1 € o for €_o > e > 0 small enough.

Specifying the collection of vectors x,ws, ..., wgr_1 to the ones given in the statement

of the theorem, the conditions in 2.8 above can be rephrased as follows. For each ¢ € I,

a% > (0 and
a) +e10? >0 for ; > 0 small enough, and

(xil + elaf + 8204? > 0 for 1 > €9 > 0 small enough, and (2.9)

ail + slozf + -+ Ek,laf > 0 for ex_o > &1 > 0 small enough.
Clearly, Conditions (2.7) and (2.9) are equivalent, and we infer that ¢, is a bijection.

Now to conclude, note that the family of maps {¢,}, is compatible with the descrip-
tions of .#*(D) and TC*!(D) as the unions .#*(D) = |J, .#*(D) and TC* ' %(D) =
U, TC*' o, and so they can be glued together to define a map ¢ : .#*(D) — TC"' £(D).

Since each ¢, is a bijection, so is ¢. ]
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2.3.3 An analytic description of quasi-monomial valuations

We now explain how to understand higher quasi-monomial valuations from an analytic
point of view, directly from tangent vectors, by taking directional derivatives. This leads

to a description of the inverse ¢! of the map ¢ appearing in the Duality Theorem.

We need to introduce the notion of derivative of a function with respect to a tuple of

inward tangent vectors in the tangent cone.

Definition 2.3.6 (Directional derivatives). Given a polyhedral complex 3 and a function
F: ’Z’ — R, the derivative of F' at a point = € ‘Z‘ along an inward vector w € TC, Y is

the limit P P
D,F(z) = lim (x4 ew) = (x),

e—0t 15

whenever this limit exists. More generally, we inductively define the derivative of F' at a
point 2 € || and with respect to the tuple w = (w; ..., w;) € TC¥ Y as the limit

Dw W wa_Dw...w F(x
)F(x) — lim (w1, swp—1+EWE) (z) (w1 swp—1) ( ), (2.1())

e—0t £

D(wl,...,w

k

whenever the directional derivatives Dy, ... w, ;+ewy)F (), for € > 0 small enough, and the
above limit exist.

In the case these limits exist for all points z € |£| and w € TC" %, we denote by ZFF
the corresponding derivative function from TC* Y — RFt'. This is the function which to

a point z € |¥| and w = (wy, ..., w) € TCYY associates the point
P*F(z;w) = (F(2), Duy F(2), Dwy o) F(@), - . ., Dy, F (@) € RF
Remark 2.3.7. We make a few remarks.

1. When (wy,...,wg) € TC* ¥, the points (Wi, ..., Wg_2, Wk_o + €wg_1), for £ > 0 small
enough, all belong to TC* ' £. So the limit in 2.10 is well-posed.

, when z lies in the relative interior of a facet of X, and

2. At a smooth point x € ’Z
for a function F : ‘E‘ — R which is smooth on a neighborhood of z, the definition
of D F(x) for w = (wy,...,w) € TC*Y coincides with the evaluation at the k-
tuple of tangent vectors w of the k-th derivative of F' at . The definition is thus a
natural extension to the case where F' is not necessarily a smooth function and x is

an arbitrary point of ’Z‘
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The following proposition provides an alternative way of computing D, F'(x) when it

exists.

Proposition 2.3.8. Consider a point x € ¥ and a tuple w € TC’; . Let F:X — R bea
function for which D, F(z) exits. Then we have

D,F(z)= lim ... lim

o ep—07t e1—0t €1+ - - Ek

(F(ZE+€1UJ1 + - t+E1 €kwk)

—F($+€1wl+"'+€1"'Ek_1’wk_1)>.

Proof. For k = 1, this is the definition of D, F(x). The general case can be obtained by

induction. ]

In this paper we are mainly interested in directional derivatives of tropical functions.

In this case the derivatives always exist as the following proposition shows.

Proposition 2.3.9. For any piecewise linear function F : |X| — R and any k > 0 the

derivative D*F ezxists.

Proof. Let 3. be a subdivision of ¥ such that F is linear on each cone o € X. By Remark
2.1.15, we have that TC* ¥ = |J, 5 TC" 0, so given (z;w) € TC*$(D), there is a cone
o € % such that (z;w) € TC* . Denote by F, the linear function which is equal to the

restriction of F' to o. A direct calculation shows that 2% F(x;w) exists and is given by
DEE(z5wy, .. wy) = (Fo(x), Fy(w:), ..., Fy(wy)).

]

We now come back to the tropicalization of rational functions and its link to quasi-
monomial valuations. From the very definition, it is clear that we can retrieve rank one
quasi-monomial valuations by evaluating tropical functions at their corresponding point,
that is, given f € K(X)* and = € |X(D)]|, if v, denotes the valuation corresponding to x
under the map in (2.4), then

va(f) = trop(f)(x).

The following result extends this relation to higher rank quasi-monomial valuations.
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Theorem 2.3.10 (Quasi-monomial valuations using derivatives). Let k € N be a natural

number. Given (z;w) € TC* "' S(D), consider the evaluation map

Vi) : K(X)" — R*
f — D" trop(f)(z; w).

Then Vg is a well-defined function and it coincides with the valuation ¢~ (z;w) given by
the Duality Theorem 2.5.4.

Proof. Fix a point (z;w) € TC* 'Y and let o be a face of ¥(D) containing z such that
(z;w) € TC* ' o. Then, by definition, for any f € Ox,, , we have

trop(f)(z) = min{(x,ﬁ> |8 € A?} (2.11)

As trop(f) is piecewise linear, there is a subdivision X, of ¥(D) such that trop(f) is linear
on each face of ¥;. By Remark 2.1.15, there is a cone 7 in ¥ such that (z;w) € TCF ' 7.
Let 3, € A% be the exponent such that trop(f)(y) = (y, 3;) for any y € 7. By Proposition
2.3.9, we get

Vx;y(f) = ((ZE, 57’>’ <w17 /BT>’ SO <wkz—1a /87>) (2'12)

We now show that v,.,, = ¢ '(z;w), that is, V4 = Vs Where a = (@;)icr, and o; =
(2% wh, .. wh ).
Note that here for i € I,,, 2 and wé are the i-th coordinate of x and wj, respectively. So

with our previous notation, we have a] = x; for j = 1 and of = w}_, for j =2,... k.

To show the above claim, note that for any f € O,,_, we have

Voa(f) :Illin {Z aifi | B € A;}

2l
* iel,

— Z Qifgi = Z (:vi, wh, .. ,w};_l) Bai = ((x,ﬁg% (Wi, Ba)y -y (Wi—1, 6@)

i€l i€l

(2.13)

where (3, is an exponent in A? which gives the minimum in the first equation above, and
Ba,i 1s the i-th coordinate of 3, for i € I,. We thus need to prove that the two expressions
in (2.12) and (2.13) are equal.
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We will prove this by induction. The first entry in both expressions (2.12) and (2.13)
coincide as they are both equal to trop(f)(x). Assuming the two expressions have the same
j-entries for all 1 < 7 < ¢ — 1, we will prove that the f-entries are also equal. The first

¢ — 1 entries being equal,

<J], 67’> = <J}, Bg>7 <w17 67'> = <w17 5g>’ SRR <w€—17 BT> = <w5—17 Bg% (2'14)

we infer that

(x+eqwy + -+ &1 pwe, Br)
:trop(f)(x+51w1—|—---—|—51---53w5)

:mm{<x+€1w1+---+€1"'52we,5>|5€A(}}

I+

mm{(x—ir&?lwl—|—'--+61"'<€zwé,5>|5€A?

mmhmm<L5y:@¢m4wﬁm::@%@»mr1§j§£—1}

= (z+eywy +---+er- gy, fa).

Here, in = we used the fact that to minimize (z + eyw; + -+ 4+ &1 -+ - gowy, B) for € Ag
and for 1 > 5> ...y > 0 small enough, we need to first minimize (z, #), then minimize
(wq, 8) and so on. By the hypothesis of our induction, 5, does exactly this as it behaves
like /3, in those entries. From this equality, using Equation (2.14), we infer the equality
(we, Br) = (wy, Ba), as required.

This proves that v,.,(f) = vso(f) for all f € Ox,, . Using the relation trop(f/g) =
trop(f) — trop(g) for two elements f, g € Ox,, , we finally conclude that v,.,(f) = Vauw(f)
for all f € K(X)* and the theorem follows. O

2.3.4 Flag valuations

In this section, we discuss an alternative way for getting valuations of higher rank on X
based on flags of subvarieties, and explain the relation to our constructions above. More
details on valuations associated to flags of subvarieties can be found in [LM09b; KK12],
where they are used to define Newton-Okounkov bodies.

Consider a flag of subvarieties

F.FRDF 2 2F,

=
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where Fy = X, and for each 1 < ¢ < k, F; is a smooth irreducible subvariety of F,_; with
codimy (Fy) = ¢.

Under these hypothesis, each Fy defines a discrete valuation ordp, over the function
field of Fy_;. We choose a uniformizer ¢, for ordg,. Using these orders of vanishing, we can

construct a higher rank valuation on K (X) as follows.

Proposition 2.3.11. Notations as above, consider the map

vr: K(X)" — RF

(2.15)
f = (OrdFl (fl)v OrdF2(f2)> s 70rdFk(fk))

where f1 = f and foq is the restriction of fg~te_ordFé(fZ) to Fyyq viewed in the function field

K(Fyy1). This is a rank k valuation which is independent of the choice of coordinates t;.

Given a nonempty SNC divisor D = ., D;, we can define a flag of subvarieties if we
fix an ordered sequence of components D;,, ..., D;, of D, for ¢y, ..., € Z with non-empty
intersection, and an irreducible component S of the intersection D; N---ND;,. In this case,
we set Fyp = X and for each 1 < j <k, we define F}; as the unique irreducible component
of D;; N---N D;; which contains S. Then we have automatically F; C Fj_;.

Since D is SNC, each F} is a smooth connected subvariety of codimension one inside

F;_y, and we get a flag of subvarieties

which verify the hypothesis of Proposition 2.3.11.

We now prove that vz corresponds to a quasi-monomial valuation defined in terms of
D. For this let ¢ be the cone corresponding to the stratum Fj, of D, this cone has rays
indexed by I, = {i1,...,ix} C Z. Consider the standard basis e;,, ..., e; of N, which is

contained in o where ¢;; is the primitive vector of the ray corresponding to i;.

Theorem 2.3.12. Let F the flag on (2.16) and vz the valuation defined by Proposition
2.3.11. Then vr = v, for (z;w) = (€5 €y, . .., €, ) € TCF (D).

Proof. Without loss of generality, we can assume that D; N---N D, = {p} is a closed
point of X. Indeed, if this is not the case, we can extend the flag in 2.16 to a complete

flag, by adding, if needed, more components to the divisor D, and then work with this
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complete flag. The result then follows by taking the projection to the first k& components

of the valuation.

Now take 21,. .., 2 equations for D; ,..., D, around p. Using these elements, for each

1 <r <k, we get a restriction map (called as well reduction map in the literature)

res; : K(ijl) — K(F}),

—ordg. (f)
f L fZ] ! ‘Fj’

which satisfies res;(Or,_, ») € OF, 4.

The elements zj, ..., 2 give us a local system of parameters for the local ring OF,_, .

and hence they induce an isomorphism @ijw ~ kl[z, .., 2]

In this way, we obtain an extension to the power series ring for res; as follows

res;

OFj717x ” OFj,x
(/D\Fj717x @Fj,az
2 R
k‘HZ], 7ZkH — ]{?HZ]_H, ,Zk]]

Now, given f € Ox, if we write f =}, agz’ € @X@, then by Theorem 2.3.10, we
have

V:v,y(f) - (<ei176a>, <€i27 Ba>a ceey <€ik7 ﬁa>)

where 3, € Af is the exponent which minimizes the right hand side with respect to the
lexicographic order in R given in the proof of that theorem. On the other hand, we have
by definition

vr(f) = (ord., (f1),ord.,(f2), ..., ord., (fi))

where f; = f and f, = res.(fr—1).
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Now notice that

ord., (f) =min{(eq, ) | B € supp(f)}
=min{(e1, 8) | B € A}}
:<6175g>'

This shows that the first coordinates of vz (f) and v, ,(f) are equal. Proceeding by induc-
tion, suppose the first j coordinates of vx(f) and v, ,(f) are equal. We get

OI‘de_H (fj+1> = Ord2j+1 (resj (f]))

—ord.;
=ord,,,, | % ordz; () Z aﬁzﬂ
Besupp(f;) =0

=min{(ej11, ) | B € supp(f;) and (e;, B) = (e, Ba) }
=(ej11, fa) (by the definition of 3,)

and so the j + l-coordinates of vz(f) and v, ,(f) coincide as well. This proves that the

valuations are equal on Ox ., and so they coincide on K(X). The theorem follows. O

2.4 Tropical weak approximation theorem

The aim of this section is to prove the weak approximation theorem in the tropical setting

stated in the introduction.

2.4.1 Statement of the theorem

Recall that a subset A C Z. is called an antichain for the partial order <=<__ if any pair
of distinct elements 3,7 € A are not comparable, i.e., § £ v and v £ . (This implies

that A is necessarily finite.)

Definition 2.4.1 (Coherent family of antichains associated to cones). Suppose for any
cone ¢, we have an antichain A° C Z’7. We call the collection A = {A7 |0 € (X, D)}
coherent if for any inclusion of faces 7 C o, we have the relation

AT = m<in pr. (A%).

o-T
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Here pr___is the projection map R'> — R'7.

Theorem 2.4.2 (Tropical weak approximation theorem). Let X be a smooth quasi-projective
variety over a field k and let D be an SNC divisor on X. Let A= {A% |0 € ¥(X,D)} be
a coherent family of antichains. There exists then a rational function f € K(X) such that
for each cone o of ¥(X, D), we have f € Ox,, and A7 = AS.

Remark 2.4.3. The theorem should be regarded as a tropical analogue of the weak ap-
proximation theorem in number theory. Stronger versions of this theorem might be true.
Namely, given admissible expansions f, € Ox,, for each o € X(X, D) such that each f,
has only finitely many non-zero terms, and such that for inclusion of faces 7 C o, we have
to~r(fs) = fr, one might wonder whether there exists a rational function f € K(X) such
that f — f, has an admissible expansion in O X,n, i Which every monomial is divisible by

a monomial in f,.
A corollary of the theorem is the following.

Corollary 2.4.4 (Approximation theorem for tropical functions). Let X be a smooth
quasi-projective variety over a field k and let D be an SNC' divisor on X. For any tropical
function F : (X, D) — R, there is a rational function f € K(X) such that trop(f) = F.

The rest of this section is devoted to the proof of the above theorems. We first prove

Theorem 2.4.2 and then later explain how to deduce the above corollary from this result.

2.4.2 Proof of Theorem 2.4.2 in the toric case

It would be more instructive to first treat the case of a toric variety with the arrangement
of the corresponding toric divisors. In this situation, we can drop the quasi-projectivity
condition.

Let ¥ be a unimodular fan of dimension d in the real vector space Nr of the same
dimension, and let Py be the corresponding toric variety. Each ray o in X gives the
corresponding divisor D, in Py. By unimodularity assumption on X, the divisor D =
Uges, D, 1s SNC.

Let o be a cone in X, and denote by p1,..., 04 the rays of o. Denote the rays of
the dual cone o" by (i,...,{s. Let nq,...,ng be the primitive vectors of g1,..., 04 and
denote by my, ..., myg the primitive vectors of the rays (1, ..., (4, respectively. Note that

(mj,n;) = 0; j, where (.,.) denotes the duality pairing between N and M.
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For each point a = (ay,...,aq) € A7, consider the rational function

(Xm1)a1 . (de)ad
(x™ + -+ x™Ma + 1)¢

fa,7g =

for a large enough integer ¢ to be determined later.

Let o be a ray of ¥ with primitive vector n € N. The order of vanishing of f,, along
the component D, of D can be obtained as follows. First note that the order of vanishing
of x™ along D, is equal to (m;,n). Moreover, the order of vanishing of x™* +---4+x"¢+1

along D, is equal to min{0, (my,n), (ma,n), ..., (mg,n)}. Therefor, we get
ordp,(foa) = (@1mi + - - + agmg,n) — £ - min{0, (m1,n), ..., (mg,n)}.

In particular, for each j =1,...,d, we get ordp o (fo.u) = aj. Moreover, if p is different
from gy, ..., g4, then there exists an integer j among 1,...,d such that (m;,n) < 0. This
implies that if ¢ is chosen to be large enough, the rational function f,, will have a huge

order of vanishing along D,.

Consider now the rational function f, in K(Py) defined as

fo = Z fra = Z (™) - (M)

m - m L
= (e )eA? (™ + -+ x4+ 1)

In the completed local ring @pzj% we have the equality

l
(Xm1)a1 to (de)ad _ (ym1\a1 . . (1 Md)\Cd | . m1 . my
(x™ + - 4 xma 4+ 1)¢ = (x") (x™) (1 + ;( 1)k(X + +X )k> ;

which gives an admissible expansion of f, with respect to the local parameters xy™, ..., x™
around 7),, the point of intersection of D,,,...,D,,.

From this, we see that A7 = {a}, and since A” is an antichain, it follows A} = A°.

Now let 7 be another facet and denote by {,0]-}?:1 its rays. They correspond to the
components D, ,..., D, of D with the torus-invariant point 7. as the point of intersection.
From the preceding discussion, we infer that if p; is not a ray of o, then, choosing ¢ large
enough, we can ensure that f, has a large order of vanishing along D, .

Since the order of vanishing of f, along such a component D, is equal to the minimum

J-th coordinate of any element of A7 , we see that all the elements of A} have large j-th
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coordinates. On the other hand, on the intersection face 6 = 7 N o, we have

prT>§<A}g) - pra>—6(A?0)

where pr._ . denote the corresponding projection maps, as in the previous sections.
In particular, by the coherence of the collection A%, this shows that if ¢ is chosen to be

large enough, then any element in A% dominates an element of A7, that is,
A7 = min(A7U A7),
S o

Now we choose /¢ large enough, and for each facet o of ¥, we define the rational function

fo as above. Let

F= Xt (2.17)

for generic choices of A\, in the base field.
Observe that for any facet 7, for any pair of rational functions h, g, and generic choice

of scalars A, i in the base field, we have
Mg = rgin(A,Tl U A;).

We thus infer that for any facet 7 of ¥ and for the function f defined in (2.17), we have

T __ : T _ T T
f_m<m<UAfa>_ fr T A

B g€y

To conclude, we note that the coherence condition implies that more generally, for each

face § of ¥, we have A% = A% and the result follows.

2.4.3 Proof of Theorem 2.4.2

We now treat the theorem in its full generality. In the following, we will use the following
terminology borrowed from lattice theory concerning the combinatorial structure of faces

in a cone complex.

Definition 2.4.5 (The (multivalued) meet and join operations A and V). Given two faces
7 and ¢ in a cone complex ¥, we denote by 7 A ¢ the set of all maximal common faces

between 7 and o. If 7 and o are faces of a cone ¢, we denote by 7V, o the unique minimal
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face of ¢ that contains both 7 and o. Notice that if ¥ does not have parallel faces, then
7 A o is a single cone and 7 V¢ o is independent of ¢, so in this case, we denote this cone

by 7V o.

In the rest of this section we assume given an SNC divisor D = . _; D; in X, and we

consider the dual cone complex (X, D).

Adapted family of rational functions

Proceeding somehow similarly as in the proof of the toric case, we will prove the existence

of a family of rational functions with nice properties depicted in the following theorem.

Theorem 2.4.6. Let o be a face of ©(X, D). There exists a rational function u, € K(X)
with the following properties:

(P1) u, belongs to all local rings O,,,, for § € £(X, D), and is invertible in Ox,,, .
(P2) It has a zero along the divisor D; for each j ¢ I,.

(P3) For any face T of X(X, D) the following holds. If ( € T A o is a mazimal common
face of T and o, then the restriction uqss. of us, on the stratum S¢ has a zero along
all the strata Sey.,, €S- for any j € I\ I;.

Definition 2.4.7 (Adapted family of rational functions). Given a dual cone complex
(X, D), the collection of rational functions u,, o € (X, D), verifying the properties
(P1), (P2), and (P3) in the above theorem is called an adapted family of rational functions

for the dual cone complex.

In order to prepare for the proof of the above theorem, we start by stating two lemmas
concerning the existence of rational functions with prescribed regularity on a given finite

set of points.

Lemma 2.4.8. Let Y C X be a closed irreducible set and let x be a (non-necessarily
closed) point in X \'Y. Then there exists an irreducible divisor E C X which contains Y

but not x.

Proof. Denote by 1y the generic point of Y. As X is separated we have Ox, \ Ox,,, # @.
Take f € Ox. \ Ox,, then 7y is contained in the indeterminacy set of f. As X is
smooth the indeterminacy set is the support of the negative part of div(f), hence there is

a component F of this negative part containing Y but not z. O
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Lemma 2.4.9. Suppose X is quasi-projective. Given a hypersurface E C X, points
Ti,...,x, € E and a point x ¢ E, there is a rational function uw which vanishes on
each component of E with order of vanishing one, belongs to each local ring Ox ,, for any

1=1,...,n, and which is invertible at x.

Proof. Taking a projective compactification, we can assume without loss of generality that
X is projective. Consider an ample divisor H not containing any of the points x, x1, ..., z,
and not sharing any component with £. Then, for some large integer number n, the divisor
nH — F is very ample, and so base point free. Therefor, there is a section v of O(nH — E)
which does not vanish on x. The corresponding rational function satisfies all the required

properties. O]
We are now ready to proof the existence of adapted families of rational functions.

Proof of Theorem 2./.6. In order to show this, we first apply Lemma 2.4.8 to each stratum

S, not contained in S, to get an irreducible divisor £, C X which contains S, but not .S,.

Let
E= Y E.
T: S+ DSo

We now apply Lemma 2.4.9 to E, the points ns for § € X(X, D), and the point 7,, which
clearly does not belong to E. We infer the existence of a rational function u, in K(X) that
vanishes on each component E, of E, which belongs to Ox,, for any point § € X(X, %),

and which is invertible in Oy, . We claim u, verifies all the claimed properties (P1), (P2),
and (P3).

The first claim (P1) is clearly satisfied by the construction of wu,.

Also, notice that if j ¢ I, then S, = D;. Since both D; and E,, are irreducible, we
must have E,, = D;. Since j ¢ I, we have 1, ¢ D;, and so by the choice of u,, it should
vanish on E, . This shows that u, verifies Property (P2).

Finally, let ¢ be a maximal common face of 7 and o, and let j € I, \ I.. Note that
by the maximality of ¢, the cone ¢ V, g; is not a face of ¢. This means that 7, does
not belong to Sey,,;, and so u, vanishes on E¢y ... Notice as well that u, € Ox,. and
Seveo; © Eev,o; NSe. It follows that the restriction ug Se of u, to S¢ vanishes on S¢y_,; -
This proves that u, verifies also Property (P3). O
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Proof of the weak approximation theorem

Now, we come back to the proof of the approximation theorem. Let o be a face of ¥(X, D).
Applying again Lemma 2.4.9, we find a local equation z; for D; around 7, for each i € I,
with the additional property that z; € Ox ; for each cone 7 that is not a face of 0. With

this choice of local parameters, we define

fo=ul > T 2 (2.18)

a€A% i€l,

for a large enough number ¢ which will be precised in a moment. Notice that f, is defined

in each local ring Ox . for any cone 7 € X(X, D). We prove the following.
Proposition 2.4.10. Provided ¢ is large enough, f, verifies the following two properties.
1. The set A7 s equal to A%, and

2. For each face T of ¥(X, D) different from o, we have

ngln(AfUUA):A .

Using this proposition, we can finish the proof of our approximation theorem.

Proof of Theorem 2./.2. Let

F=> Xt

where A, is a generic choice of coefficients for each face of ¥ (X, D). Then, applying the

above proposition, we get for each face T of X(X, D),
Af = mginUA}a = A",

In other words, f is the rational function we have been looking for. ]
At this point, we are only left with the proof of Proposition 2.4.10.

Proof of Proposition 2.4.10. We use the notations preceding the proposition. By invert-
ibility of u, in Oy, , the expression (2.18) gives an admissible expansion of f,, and so we

clearly have A7 = A”. This shows the assertion (1) in the proposition.



2.4. Tropical weak approximation theorem 151

Now, in order to prove Claim (2), let 7 # o be a face of (X, D), and take local
parameters w; for each D; around 7,, for i € I.. The element u, lives in Ox,, and so in

(’SXJ,T. Consider an admissible expansion in 6X,nf for u,
Uy = Z cpw”. (2.19)
B

Property (P2) above implies that for each j € I, \ I, and for each a@ = (a;)ies, in the
support of (2.19), we should have

a; > ordp, (ug) > 1.

More generally, we claim the following.

Claim 2.4.11. For each « in the support of the admissible expansion (2.19), there is a

mazimal common face ¢ of T and o such that for each j € I\ I, we have aj > 1.

Proof. Let a be an element in the support of the admissible expansion (2.19), and consider
J = {z el |a; = O}. Let 75 be the face of 7 corresponding to J C I.. It will be enough
to show that 7; C o. Indeed, in this case, 7; will be a common face of 7 and o, and so
there exists a face ¢ € 7 A ¢ which contains 7;. For any j € I, \ I, we have a; > 1, and
so the claim follows.

For the sake of a contradiction, suppose 7; is not a face of o, and let ( be a maximal
common face of o and 7;. In particular, ¢ C 7, which implies that /. C J.

We have a projection

. OX777T — OSC,HT

h— h‘SC

that extends by continuity to a projection 7 : (/9\)(,777 — @Sg,m- Using this, we obtain an
admissible expansion for uq g, in (550777 in terms of local parameters wjg, for Sey,,,, for
i € I\ I;. This is obtained by applying the projection 7 to both sides of (2.19). Indeed,

for each 3, the restriction Ca)s, is still a unit in (/Q\SMT, and so we get
_ B
Uo|s, = Zcﬁw\sg’
B

which is an admissible expansion in @Sg,nr' Note in particular that since I C J, and since
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a; = 0 for all i € J, we get that 7 \; () is in the support of the admissible expansion for
UU|S< .

Now take j € J\ I¢. As U, g . vanishes along the divisor S¢y, o, and a local equation for
this is given by Wj g, We should have that Wj s, divides u,|g, inside Og, 5, . In particular,
this implies that for any § in the admissible expansion uy|s,, we must have 5; > 0. In

particular, this gives o; > 0 which contradicts the definition of J, so the claim follows. [
Let ho =3 ca0 [Licr, z;. We have f, = ulhe, from which we get the inclusion
Aj, © Ay + A

Moreover, we have
T T T
i QA%—F"'—FA%.

l t?;les
Let now /3 be an element of A% . It follows that we can write 8 as the sum of £ elements

in A} and an element v € A7, .

By what preceded, we have for each j € I\ I, and each element o in A7, that a; > 1.
It follows that we have 5; > ¢ for all j € I\ I,. For ¢ large enough, this is certainly larger
than the j-coordinate of any element in A”.

We now show how to control the j-coordinates of 8 for 7 € I, N I,. For this we write
B=a'"+-+a'+7y

for a',...,af € A7 and y € A] .
Applying Claim 2.4.11, for each o, which is in the support of the admissible expansion
(2.19) of u,, we infer the existence of a maximal common face ¢; of 7 and o such that for

each j € I \ I,, we have o, > 1. Here o} is the j-coordinate of o.

Let r be the number of elements of 7 A o. By the pigeonhole principle, there is a
maximal common face ¢ of both ¢ and 7 such that we have (; = { for at least ¢/r indices

i € [{]. We thus get for each j € I, \ I, the inequality
Bi=a}+-+ak+v = r+7;

We infer again that if £ is large enough, the j-coordinate of [ is larger than the j-coordinate

of any element in A™ provided that j is in I, \ I,.
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Now to finish the proof of Property (2), note that since ¢ is a common face for 7 and

o, we have by the coherence property that
mgin pr, (A})= mgin pr_ (A7) and mgin pr_ (A7) = mgin pr_ (A7).
Since A = A7, this shows that
mgin pr. (A7) = mgin pr (A7)

Hence, since § € A7 , there is an element 3 € A7 such that prﬁ((ﬁ) > prTH(ﬂ’).
Moreover, by what we discussed above, all the j-coordinates of 3 for j outside /. are also
larger than the corresponding j-coordinates of 3’ (if we choose £ large enough). This shows

that we actually have 5 > ' and the claim in (2) follows, namely that

méim(Af(r UAT) = A",

2.4.4 Proof of Corollary 2.4.4

The proof of this result is based on the following proposition

Proposition 2.4.12. Any tropical function F' on the cone complex ¥(X, D) can be written
as the difference of two tropical functions Iy and Fy such that the restriction of F; to each

cone o € X(X, D) is conver and non-negative.
Proof. In order to prove the existence of I}, F5, it will be enough to prove

(7) there exists a non-negative tropical function G that is convex on each cone of the

original dual complex (X, D), and

(77) if G is such a function, then for any large enough integer ¢, the function F' + (G is a

non-negative convex tropical function.

In fact, given this, we can write F' = (F' +/{G) — (G and take F} = F 4+ /(G and F, = (G
which verify the convexity condition.

Assuming (i), we now prove (ii). Let G be a convex tropical function on (X, D), and
let 3X(G) be the corresponding subdivision of ¥(X, D). For each cone ¢ in 3(X, D), we
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get a quasi-projective subdivision A, of o, which can be completed to a projective rational
fan in N,r. Let X, be the projective toric variety associated to this complete fan, and let
E, be the corresponding toric divisor, which is thus an ample divisor. The restriction Fi,
gives a divisor L, in X. Since FE, is very ample, the divisor /F, + L, remains very ample
for a large enough integer number /.

Given the bijection between order functions on A, and rational ideal sheafs on X,
this bijection makes a correspondence between ample divisors and order functions that are
convex on A, hence the fact that Fj, + /G| remains convex for some large enough number
n follows from the fact that ¢E, + L, is very ample in X. ]

Proof of Corollary 2.4.4. By the proposition above, there are tropical functions Fi, F5 such
that each F; is non-negative and convex on each facet of (X, D) and F; — F;, = F. Each
F;, for ©« = 1,2, is given by a coherent family of antichains A{ in the sense that for each

cone o we have

Fy(x) = min{(x, B) | 8 € A7}.

By approximation theorem, there are rational functions fi, f2 such that A = A7 for
i = 1,2 and fo each cone o on X (X, D). We therefor get ' = trop(fi/f2) and the theorem
follows. ]

2.5 'Tropical topology on tangent cone bundles

In this section we study the tropical topology on the spaces of quasi-monomial valuations.
By our duality and approximation theorems proved in the previous sections, this coincides
with the coarsest topology on the tangent cone which makes the directional derivatives of
tropical functions all continuous. Therefore, we define the tropical topology in the general

framework of cone complexes and their tangent cones.

2.5.1 Definition of the topology

In order to motivate what follows, we first observe that tangent cone bundles inherit a

natural Euclidean topology defined as follows.

Definition 2.5.1 (Euclidean Topology). Let ¥ be a cone complex and k a non-negative
integer number. The Euclidean topology on the tangent cone TC* ¥ is the topology defined
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by the inclusion of
TC* S < | NEg
cEY
where the space on the right hand side is obtained by gluing the vector spaces N j’R with
the quotient topology, and the topology on each N f}R is the topology of a finite dimensional

real vector space.

This topology however turns out to be not properly adapted to the study of valuation
theory and tropical geometry in the higher rank context. This is suggested by the following
example of a tropical function whose derivative is not continuous with respect to the

Euclidean topology.

Example 2.5.2. Let 0 = R, x R, and consider the tropical function

F:0—R

(1, x9) — min{zy, z2}.
For the first directional derivative of F', we have

9QF - TCo — R?

1 2)s 1, Y2 > yz 1

This map is not continuous with respect to the Euclidean topology. To see this, consider
the map
t— 2F((t,1—1t); (y1,52))

for y; # yo. This function has a discontinuity at ¢t = %

In order to use topological tools in the context of higher rank valuation theory, and in
view of the analytic description of higher rank quasi-monomial valuations, we are naturally

led to introduce the following topology.

Definition 2.5.3 (Tropical topology). Let ¥ be a cone complex and TCFY its tangent
cone. We consider R¥*! with its Euclidean topology and define the tropical topology on
TCF ¥ as the coarsest topology which makes all the maps

9FF - TCF Y, —s RFF!
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continuous for any tropical function F : ‘Z‘ — R.

Remark 2.5.4. In the case ¥ = 3(X, D) for a smooth quasi-projective variety X and an
SNC divisor D on X, the tropical topology on TC¥ ¥ is the coarsest topology such that
for any rational function f € K(X)*, the directional derivative 2* trop(f) is a continuous

function from 7C* ¥ — R¥*!. This is a direct consequence of the approximation theorem.

2.5.2 Description of the topology

The aim of this section is to give a description of this topology by introducing a basis of

open sets. This will be based on the following definition.

Definition 2.5.5 (i—open sets). Let 3 be a cone complex and 3 be a rational subdivision
of it. A set U C TC* X is called a f]—open set if UNTC* o is open in TC* o with respect
to the Euclidean topology for every cone o € 3.

Here is the main theorem of this section.

Theorem 2.5.6. Let ¥ be a cone complex and consider its tangent cone TCFY for k a

non-negative integer number. Then

1. For each subdivision ¥ of X, the i—open sets of TCF'S are open with respect to the
tropical topology.

2. The union of all i-open sets for S a rational subdivision of ¥ form a basis of opens

sets for the tropical topology.
The proof of this theorem is given in the next section. We state the following corollary.

Corollary 2.5.7. Let ¥ be a cone complex and TC*¥Y its tangent cone endowed with the
tropical topology. Then

1. The tropical topology is finer than the Fuclidean topology, in particular it is both

Hausdorff and normal.

2. A set is dense in TC* X with respect to the tropical topology if and only if it is dense
with respect to the Euclidean topology.

3. TC* % is not locally compact in general (in fact, as soon as k > 0 and the dimension
of ¥ is at least two).
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Proof. As any Euclidean open set is i—open for any subdivision S of ¥ we get that the
Euclidean topology is finer than the tropical topology. Hence it is Hausdorff and normal.

For point (2), it is enough to notice that for any subdivision S of ¥ and any i—open set
U, there is an Euclidean open set V' contained in U. For example, we can take a non-empty
set consisting of of all the points whose first coordinate is in the relative interior of some

given cone in X.

For point (3), notice that if U is open and U is compact, then as we saw in the proof
of (2), we could find an open set V' C U such that V' is open in the Euclidean topology
and moreover, the closure V with respect to the tropical topology is compact. Denoting by
VTrop and Vi, the set V endowed with its tropical and Euclidean topology, respectively,
we see first that the identity map

id : V’I‘rop — VEuc

is continuous. Moreover, as VTrop is compact and Vi, is Hausdorff, the identify would be
a homeomorphism. This implies that the tropical and the Euclidean topologies agree on
V. However this is not possible if we have both £ > 0 and dim¥ > 1 as otherwise, we
could choose a subdivision ¥ of X subdividing V. Then for some W C V and some o € 5
we would have that W NTC o is i—open but not an FEuclidean open set. ]

2.5.3 Proof of Theorem 2.5.6

We adapt the following terminology in the sequel. For a cone o of a cone complex 3, and
a point (x;w) € TC"X, by saying o supports the point (z;w) we mean the point (z;w)
belongs to TC* 0.

We first prove the second point assuming the first.

Proof of (2). Let F: ’E’ — R be a tropical function and consider a rational subdivision
3 of ¥ such that F is linear on each cone of . Let V C R*¥+! be an open set for the
Euclidean topology. We show that (.@kF )_1(V) is EN]—open. This proves the result.

Let § be a cone of 3. By the choice of i, there is a linear function F5 on Nsgr such that

for any point (z;w) € TC*§, with w = (wy, ..., wy), we have

DVF (z;w) = (F5(x), Fs(ws), ..., Fs(wy)).
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The intersection

(2"F) ' (V)NTC* s = (Fy x -+ x F3) (V)N TC*s
—_—— —

(k+1) times

is clearly an open set in TC* § for the Euclidean topology, and the claim follows.
]

Proof of (1). Let 3 be a rational subdivision of ¥ and let U be a i—open set. We have to
show that U is open for the tropical topology of TC* X.
We first observe that if ¥’ is a subdivision of i], any EN]—open set is also ¥ -open. There-

fore, in order to prove the above claim, we can assume that ¥ is simplicial.

Take (z;w) € U. We will prove that (z;w) is an interior point of U for the tropical
topology, which clearly implies the result. For this, we will explicitly construct a neighbor-
hood of (x;w) for the tropical topology included in U.

Let ¢ be the minimal face of 3. which supports (x;w). For each facet 0 of 3 we find a

rational subdivision EN](; of 3 with the following properties.
(a) s is simplicial.

(b) There is a unique facet in 3. denoted by v = ~¢s which contains ¢ and which is

contained in 4.

(c) For each pair (9, 9) consisting of ¢ and a ray ¢ of §, we can find a tropical function

F%¢ on ‘E‘ such that the following properties hold:

(1) F©0 s linear on each cone of 3.

(2) over the facet v of 55, we have F‘S’9|7 = X", where m is the primitive element
in the ray dual to ¢ in § and x™ is the linear function induced by this vector.
In other words, F%¢ takes value one on the primitive vector of p and value zero

on all the rays of 4.

For such a fixed facet § of ¥ which contains (¢, consider the function ®5 defined by the

collection of functions F%¢ for ¢ a ray of 6, so

D5 = (F), ray of 5 © L — RIMO),
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Let v = 7¢s be the facet of i(() which contains ¢ and which is contained in §. By
Property (c), the linear functions F¢ for ¢ a ray of § are linearly independent on ~, and
so ®s restricted to 7 is a homeomorphism with its image in R4™®),

We remark now that the directional derivative map
s = (DPF*), oy of 5 : TCFY — (RUIMO))AH (2.20)

is a homeomorphism with its image when restricted to TC*~, when we put on TC* its
Euclidean topology. Indeed, restricted to TC*~, U5 can be identified with the restriction
to TC" ~ of the invertible linear map

(q)6 x Os X - X (I)g) : Rdim(é)x(k+l) N Rdim(&)x(k+l).

(k+1) times

Hence, there is an open set Us C (RF1)dm9 gyuch that its preimage under the map
(2.20) satisfies
U (Us) NTCFy =UNTCF .

Note that
Ut U = () (2°FC0) (W),
5,0 ray in 6
and so \I/gl(U(;) is an open set in the tropical topology and therefore a neighbourhood of
(z;w) € U. This proves that (z;w) is an interior point of the intersection (s W5 ' (Us) for
0 running over all facets which contain {, which is an open set for the tropical topology.
Denote by W this intersection. Note that we have W NTC"~. 5 C UNTC"~;; for each

facet 4 which contains §.

Let now 3 be a rational subdivision of ¥ with the following properties:
e Y is finer than i; for all facets 0 which contain (.

e there exists a tropical function G which is linear on each cone of 5 , and which is
strictly positive on the relative interior of each cone 7 of Y which supports (z; w)

and which is non-positive everywhere else.

Then, (2*G)~}(Rso x R¥) is an open set in the tropical topology, and moreover, it is
contained in the union J_ TC* 1 where the union goes over all cones 7 of > which support

(z;w).
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It follows finally with these constructions that

(z3w) € (Z4G) ™ (Rog x R¥) N (W' (Us) C | JUNTCHo
1 1

where & runs over facets of ¥ which contain (z;w).
We finally infer that U is a neighborhood of (x;w) in the tropical topology, and the

theorem follows. W

2.6 Spaces of valuations and the retraction map

For a given variety X, we introduce some spaces of valuations and show how for an SNC
divisor D, the tangent cone TC* (D) endowed with its tropical topology naturally fits

inside them.

2.6.1 Higher rank analytification and its centroidal filtration

Definition 2.6.1. Given a variety X, we define the birational analytification of X of rank
bounded by k as the set

XPrF={v: K(X)* = R"| vis a valuation }
endowed with the coarsest topology which makes continuous all the evaluation maps

evy : XPink o RE

vi—v(f),

for any f € K(X)*, where R* is given its Euclidean topology. We define moreover the

following subspaces of X Pk

X3k = {v € X"™* | v has center in X}
Xk = {v e X"™* | v does not have center inX }
and endow them with the topology induced by that of XPir*,

Remark 2.6.2. Notice that X% = X2k || X% and Xk = X3+ if X is proper. In

the terminology of [FR16b], the space X ™* coincides with the subspace of all valuations
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defined over the generic point in the Hahn analytification of X endowed with the extended
Euclidean topology. Moreover, the notation X=* is used in analogy with the analytic space
X7 of Berkovich [Ber96] and Thuillier [Thu07|, where we have used a dot as a remainder

that we are considering only the birational parts.

We now introduce a flag of subspaces on XP** which interpolate between X2* and
Xbir,k'

Definition 2.6.3 (The centroidal filtration). For 0 < r < k we consider the set

FTXPF = {1y € X"F | proj, (v) has center in X}

where proj,(v) is the composition of v with the projection R¥ — R” to the first r coordi-
nates. In other words,
Joz-rXbir,k _ pI‘Oj;ler.

This give a decreasing filtration
Xbink — g0 xbink 5 gl xbink 5 5 gk ybink — 3k,

Many of the constructions we will do in the following will be compatible or can be

extended to this centroidal filtration, and we will do so.

2.6.2 Inclusion of tangent cones in the analytification

Proposition 2.6.4 (The inclusion map). Given an SNC divisor D on the variety X, by

Theorem 2.53.10 we get an inclusion map

L TCF15(D) — X2F

(W) — Vyy-

Then, the map ¢ induces a homeomorphism between TCF Y(D) endowed with the tropical
topology and its image with the topology induced by X=*. In the case in which X is proper

we can restrict the codomain to an inclusion

L TCF 1 (D) — (X \ D)™,
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Proof. By Proposition 2.3.3 the center of a quasi-monomial valuation defined by D is
always on D, so we can restrict to the codomain above in each case. Moreover, the fact
that the map induces a homeomorphism with its image is a direct consequence of the
approximation theorem. In fact, any tropical function is of the form trop(f) for a rational
function f € K(X)*. Since evy ot = trop(f), the tropical topology coincides with the

induced topology by ¢, and so ¢ will be a homeomorphism to its image. ]

Regarding the center, the following result will be useful later. For a valuation v in X=*,

we denote by c, the center of v in X.

Proposition 2.6.5. Let X be a variety, then the map

ex t X — X

Vi—sc,

that assigns to each valuation its center in X is anticontinuous.

Proof. Let U = Spec (A) € X be an affine open set. Then for a valuation v € X=F, we

have

c, €U <— 1/‘ >0 < ve ﬂevf_l[O,oo).
A
feA

Hence, ¢ (U) = N fea ev}l[(), o0) is closed. Now if V' is an arbitrary open set, then,
as X is Noetherian, we have a finite cover V' = [J,U; by open affine subsets and so

' (V) = U, e (U;) is closed. O

2.6.3 The retraction map

Let X be a smooth variety and D an SNC divisor on X. Endowing the tangent cone with
the tropical topology, Proposition 2.6.4 gives an inclusion of TC*~! ¥(D) as a topological
subspace of XZ*. In this section we will construct a retraction of X2* onto TC* ¥(D)
for this inclusion and study its basic properties. This generalizes the picture from rank one

to higher rank.

Definition of the retraction map

We start by recalling how to apply a valuation to a divisor when the valuation has a center

in the variety.
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Definition 2.6.6. Let E be a cartier divisor in a variety X. Given a valuation v € X=*
with center ¢, in X, we define v(E) = v(z) where z € Ox,, is a local equation for £

around the point c,,.

As two local equations differ by a unit, this is independent of the choice of local equation.
Using this we can introduce the retraction map. We identify .#*(D) with TC*¥(D)
using the duality Theorem.

Definition 2.6.7 (Retraction). Let D be an SNC divisor on a variety X. The retraction
to TC*' ¥(D) is the map
r, o X2F - TCF1 (D) (2.21)

given by sending any valuation v € X>* to the unique pair (z;w) € TC* ' %(D), with
corresponding quasi-monomial valuation v, ., which verifies for any component D; of D,
the equality

Vew(Di) = v(D;). (2.22)

Proposition 2.6.8. The map r,, verifies the following properties:
1. It is well-defined.
2. It is continuous.
3. It is a retraction for the inclusion v from Proposition 2.6.4, that is, v, o v = Id.

Proof. (1) We need to prove that for any valuation v there is a quasi-monomial valuation
which satisfies 2.22. For this, let S, be the smallest stratum in D which contains ¢, the
center of v. We note that a component D; contains ¢, if and only if ¢ € I,. Moreover,
if a component D; does not contain c,, then its local equation around c, is invertible so
v(D;) = 0. Hence, we can associate to v the pair (z;w) such that v, , corresponds to the

quasi-monomial valuation in .#, (D) which takes the value v(D;) for any i € I,.

(2) The proof will be based on the Topology-Mixing Lemma 2.6.9 below, and is given in

Section 2.6.5.

(3) To show that 7, is a retraction, we note that if v,, € .#%(D) is a quasi-monomial
valuation defined by vectors «; € Rgexm then for each component D; of D, we have by
definition v, (D;) = «a; and so 1, (v) = r, (¢(z;w)) = (x;w). This shows that the map r,
is a retraction.

]
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2.6.4 Topology-Mixing Lemma
In this section we prove the following lemma.

Lemma 2.6.9 (Topology-Mixing Lemma). Let X be an algebraic variety and fix an element
f e K(X)*. Then the set

evf_l((—oo,OD ={ve X2 u(f) <iex 0}

is a closed set inside X>F.

Remark 2.6.10. Notice that the interval (—oo, 0] in R¥ constructed with the lexicographic
order is not closed with respect to the Euclidean topology. Therefore the lemma does not
follow directly from the definition of the tropical topology on X=* and it might appear to
be somehow unexpected as it happens to mix the Euclidean and ordered topologies (where
the name given to the result). The statement might be not true when the interval (—oo, 0]

is replaced by other half intervals.

Proof. The statement is equivalent to showing that
ev ! ((0,00)) = {v € X3 | v(f) =1ex 0}

is an open set inside X=*. For this we will show that any element v € evy 1(0,00) is an
interior point of evf_l(O, 00).

So let v be such an element. First, notice that since v(f) > 0, we must have v(f+1) = 0.
This shows v(f) # v(f + 1). Take now two disjoint open neighborhoods U and V' of v(f)
and v(f +1) in R¥, respectively, so that we have v € ev; L(U) Nevy Y(V). For any valuation
v eevy (U)Nevy ' (V), we have o(f) # o(f 4 1), which implies that

0=0(1) = gnn{ﬁ(f +1),5(f)}-

2lex

Since v(f) € U, and 0 ¢ U, we get v(f) # 0. This implies that o(f) >x 0 and so
ve eVJT1 ((0,00)). We infer that the open neighborhood evf’l(U) N evf’l(V) of v in X3* is

contained in evy '((0,00)), from which the result follows. O

2.6.5 Continuity of the retraction map

In this section, we prove part (2) of Proposition 2.6.8 by using the Topology-Mixing Lemma.
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By the definition of the tropical topology on TC*! £(D), in order to prove 7, is con-
tinuous, it will be enough to prove that for each tropical function F' : ¥(D) — R the
composition

F=9"'For, : X3k 5 RF

is continuous. Moreover, by our approximation theorem, we can find a rational function f
such that F' = trop(f) : ¥(D) — R and then F = 2" !trop(f) o r,. We will fix such a

function.

In order to prove the continuity of F, we will construct a sequence of covers X2 =
|U; G; by finitely many closed sets in which F behaves better in G, than in X3* Then
to show the continuity of the function F, it will be enough to prove the continuity of F
restricted to each of these sets G;. Indeed, for any Euclidean closed set C C R* we have
that

Flo= U 7o
cex(D) %

and so F~1(C) is closed provided that F~'(C) are all closed for each G,,.

G

Let us start by taking a finite affine open cover X = [ J ; U;j with the property that each

component D; of D is a principal divisor over each U;. Then we have X Ik — U, UZ-:l * where
UM = {ve X | ¢, €U}

is closed by Proposition 2.6.5, hence it is a finite closed cover. By the observation above
it will be enough to prove that JF is continuous restricted to each U? *that is, we can
assume that X is affine and each divisor D; is principal, that is, +(z;) = D; for some
regular function z;. Moreover, we can assume as well that the rational function f defining

F is a regular function on X.

Now, for each cone o € ¥(D), consider the set

G, ={veXx*|c, e X\ D}
J¢ls

That is, G, is the set of all valuations ¥ € X2* whose center ¢, does not belong to any
component D; with i ¢ I,. As we have ¢! (X \ Uj¢r, D;), by Proposition 2.6.5 this set is

a closed subset of XPirk,

Proposition 2.6.11 (The closed cover G,). The above family of closed sets G, o a face
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of ©(D), forms a closed cover of X>*, namely, X>* = U, G where the union goes over
all faces o of (D).

Proof. Given v € X?* two cases can occur. Either, ¢, ¢ D, in which case we get v € G,
for all facets o of X(D). Or, ¢, € D, in which case, there exists a component D; such that
¢, € D;. Let o be the face of ¥(D) whose associated stratum S, contains c,. We have

v € G4, and the proposition follows. ]

Hence, it is enough to prove the continuity over each G,. Without loss of generality,
assume that Dy, ..., D, are all the components of D which contain 7,.

As f is regular, we have f € O, . Consider now an admissible expansion

f= ZCﬁZﬁ € Ox,,
B

of f around the point 1, where +(z;) = D;. Then F(v) = mln{l/(zﬁ) | B € A%} for each
v € G,. In order to prove the continuity of F on G, we further decompose G, as a finite

union of closed sets as follows. For each 5 € A%, consider the set
Gop={reG, | Flv) = V(Z’B)}.

Proposition 2.6.12 (The closed cover G, g). Notations as above, the family G, 5, § € A%,

1s a closed cover of G,.
Proof. We need to show that G, is closed for any element § € A7. We have

Gop = {v € Gy | V(2") Ziex v(2° VB e AS 71
=G, N ﬂ {V € G, | V(Zﬁ_ﬁ ) Slex 0}

p'eA?

which is a closed set by the Topology-Mixing Lemma 2.6.9 applied to rational functions
B—p'
z . [

We are now ready to finish the proof of the continuity of the retraction map.

Proof of part (2) of Proposition 2.6.8. By the above discussion, we are reduced to show
that J is continuous over each G, for o € ¥(D). Moreover, we have Gy = (Jsc 40 Gos,
f

and G, p are all closed. Hence, again it is enough to prove that the restriction of F on
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each G, g is continuous. But this is clear because the restriction of F to G,z equals ev,s

which is continuous by definition. ]

2.7 Log-smooth pairs

In the previous section, given a variety X we constructed a retraction from X=* to the
tangent cone TC*' ¥ (D) associated to SNC divisor D on X. In this section, we will
introduce other instances for which we can construct dual complexes, tangent cones, and
corresponding retractions. The results will be of use in the subsequent section in order to

prove the limit formulae. We start by the following definition.
Definition 2.7.1. Let X be a smooth variety

1. A log-smooth pair over X is the data of a pair Y = (Y, D) consisting of a smooth
variety Y and an SNC divisor D on Y together with a proper morphism ¢ : Y — X

such that the restriction

elypt Y\ D — X\ £(D)

is an isomorphism. The morphism ¢ is called the structure morphism of the log-

smooth pair.
Given log-smooth pairs Y’ = (Y/,D’) and Y = (Y, D), a morphism Y’ — Y between
them is a proper morphism

f:Y —Y
that commutes with the structure map of ¥ and Y and such that Supp(f*(D)) C
Supp (D’ )

We denote by LSP x the category of log-smooth pairs over X.

2. A log-smooth compactification of X is a proper variety Y containing X as an open
subvariety such that ¥\ X is an SNC divisor on Y.

A morphism between log-smooth compactifications Y and Y is a morphism f : Y' —
Y between the underlying varieties such that f~1(X) = X and f | 1s an isomorphism.

The category of log-smooth compactifications of X will be denoted by LSCy.
Notice that for a morphism as above we have f~1(Y \ X) =Y’ \ X.
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3. A compactified log-smooth pair is the data of a pair Y = (Y, D) consisting of a proper
variety Y and an SNC divisor D C Y together with a birational map ¢ : Y --» X
such that the divisor D can be decomposed as D = D°+ D> where D° and D> does

not have any component in common, and such that
(1) the domain of definition of ¢ is Y\ D4, that is,
0:Y\D* — X

is well-defined and Y \ D> is the maximum open set with this property.

(74) the pair (Y \ D>, D3\ poo

morphism from Y \ D> to X and the restriction

) is a log-smooth pair for X i.e. is a proper

Y\ (D°UD®) — X\ p(D°)
is an isomorphism.

A morphism Y — Y between compactified log-smooth pairs Y = (Y’,D") and
Y = (Y, D) is a proper morphism f : Y’ — Y which commutes with the structure
map ¢ and such that f*(D) C D’. Notice that in this case we have f*(Y\X) = Y"\ X.
The category of compactified log smooth pairs will be denoted by CLSP x.

4. Given compactified log-smooth pairs Y and Y. We will say that Y’ dominates Y if
there is a morphism Y - Y, and we will denote this by Y > Y. Similar notations

are given for log-smooth pairs and log-smooth compactifications.

Proposition 2.7.2. The categories CLSP x, LSPx and LSCx are filtered. That is, for
any two objects Y1,Ys there is a third object Y3 together with morphisms Y3 — Y, and
Y; — Y5,

Proof. We will give a proof for CLSP x, for the other categories similar constructions work.
So consider two compactified log-smooth pairs Y; = (Y1, D) and Y, = (Y2, D) and the
diagonal birational map

X =Y xY,

induced by the inverse of the structure maps. If Z denotes the closure of the image of this
map, then we have projection maps pr;, : Z — Y; for « = 1,2. By taking an embedded

resolution of singularities with respect to prj(D;) U pri(Ds), we get a variety Y3 together
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with a simple normal crossing divisor £ on it. Let D3 = E,.q, and define D5° as the divisor
generated by the components of Dj lying over D or D5°, and D3 as the divisor defined by
the other components of D3. Then Y3\ D$° is the domain of definition of the rational map
@3:Y3-—» X and Y3\ D --» X \ (D°) is an isomorphism, hence the pair Y3 = (Y3, Ds)
is a compactified log-smooth pair which dominates both Y; and Y. [

Definition 2.7.3. Given a compactified log-smooth pair Y = (Y, D), we denote by
ME(Y) = #*(Y,D) the set consisting of all rank k quasi-monomial valuations on Y

relative to the divisor D, denote by 3(Y) = X(Y, D) the dual cone complex to the divisor
DonY and by TC*! $(Y) its tangent cone. Similar notations will be used for log-smooth

pairs and log-smooth compactifications.

2.7.1 The retraction map revisited

Proposition 2.7.4. Let X be a smooth variety.

1. For each log-smooth pair Y = (Y, D) over X, there is a continuous retraction

r, X2 — TCHR(Y).

2. For each log-smooth compactification Y of X, there is a continuous retraction

r,t X — TCFI R (Y) \ {0}

3. For each compactified log-smooth pair Y = (Y,D) over X there is a continuous

retraction
g XPF — TCHIR(Y).

Proof. (1) As the structure map ¢ : Y — X is birational, it induce by pullback an
isomorphism K (V) & K(X) from which we get Yk = XPk  Moreover, as o : Y — X
is a proper map, by the valuative criterion of properness, a valuation v has a center in Y
if and only if it has a center in X. Therefore Y2* 22 X3,

Now the retraction r, is given by the composition
X3k Ly Rk oy pekl (),

where 7, is given by Definition 2.6.7 applied to the pair (Y, D).



170 CHAPTER 2. Geometry of Higher Rank Valuations

(2) If Y is a log smooth compactification of X, then D =Y \ X is an SNC divisor on Y.
Applying Definition 2.6.7 to this SNC divisor and using that X% = YP"'F we get a map

XPirk s TCPER(Y).

Moreover, a valuation v goes to 0 € TC* 'S (Y) iff v is centered outside D, hence by

restriction we get a map
X Tk e () \ {0).

(3) Suppose the compactified log-smooth pair is Y = (Y, D). As in (1) we obtain the

retraction as the composition
X3k Ly Rk oy pekol (YY)

where 7, is Definition 2.6.7 applied to the divisor D inside Y and ¢* is the pullback along
the rational map ¢ : Y — X. [

Proposition 2.7.5. The retractions from Proposition 2.7.4 are compatible in the sense

that if we have a morphism Y' — Y of compactified log-smooth pairs, then we have

r_or_, =T1_.
Y Y Y
Similar statements hold for log-smooth pairs and log-smooth compactifications.

Proof. Let v € YP™F be a valuation. Consider a compactified log-smooth pair Y >Y
above Y and denote by Dj, ..., D} all the components of D’ in Y.

Let D; be a component of D in Y. There exists a subset J; C [I] such that 7*(D;) =
Z jed; b D ;

Let h; be local parameters for D} around the center ¢’, of v in Y”. The product [, ; h;

is a local equation for D; around the center ¢, of v in Y. We have
v(D)) = v([[ 1) = mw(hy) =Y ngr (v)(hy) = rp, (] [ 157) = 7, (0) (D).
J€J; J€J; J€J;

This implies that the two valuations v and 7’?,<V) are mapped to the same point by the
retraction map rg, ie., r (v) = ry(r_(v)). Since this holds for all valuations v, the

compatibility of the retraction maps r_ and T, follows. O
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2.7.2 The retraction inequality

We finish this section by recalling the following useful statement from [JM12] that we call

the retraction inequality which will be used in the next section.

Proposition 2.7.6 (Retraction inequality). Let Y = (Y, D) € CLSPx be a compactified
log-smooth pair and let v € XP™F be a valuation with center the point x of Y. Then for

each f € Oy, we have the inequality

v(f) = (e ()(f) (2.23)

with equality when the zero set V(f) of f is included in D locally around x.

Proof. Denote by Dy, ..., D,, the components of D which pass through x and take local
equations z; for each component D; around x. The family {z;}, can be extended to a

set of local parameters {z;}/_; for Y at x. By Corollary 2.2.7 there is a finite admissible

f= Z agug?”.

,BGAf

expansion of the form

Now we have
v(f) Ziee min {v(agusz”)} Ziec min{v(z")} = O (@))();

which is the stated inequality.

Suppose now that V(f) C D locally around z. Then we can write f in Oy, as
f=ull", z" for a unit u € Oy, and non-negative integers n,. We conclude by observing
that

W) = Do ma) = 3 min ()() = (5 )(F)

as required. H

2.8 Limit formulae

Let X be a smooth variety over an algebraically closed field k. In this section we will see
how it is possible to reconstruct the space X=* of valuations with center inside X in terms

of the spaces TC** Y(Y) for log-smooth pairs Y studied in the previous section (Theorem
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2.8.1 below). After that we will give a similar result for the set X ¥ of valuations whose
center is outside X in terms of a limit 7C*~* 3(Y") over the compactification of X (Theorem
2.8.7 below) and similarily we can recontruct the centroidal filtration .Z” X ™* in terms of

a centroidal filtration for T7C*~! ¥(Y) over compactified log-smooth pairs Y.

2.8.1 Limit formula for X=F

The compatibility shown in 2.7.5 for the retraction maps presented in Proposition 2.7.4

implies that there exist natural continuous maps

roX2F 5 lim TCFIR(Y) (2.24)
<
YcLSPx

re XM — lim TC*'R(Y)\ {0} (2.25)
YeLSCx

ro XPER s lim TCHMR(Y). (2.26)
—_ <‘
YeCLSPx

The objective of this section is to prove the following theorem.

Theorem 2.8.1 (Limit formula). The maps 2.24, 2.25 and 2.26 above are all homeomor-

phism.

In order to show this, it will be enough to construct an inverse for each of these maps.

We will do this for the case of 2.26 as the proof in the other cases are essentially the same.

The inverse for this map is the function

g: lim TCH'%N(Y) — X0
YcCLSPy (2.27)

s = [(z;w)ly — vs

where v, is the valuation defined by

vs(f) = sup v, (f), for every f € ﬂox,ns?
u B ,
Y

and v, _ = Uy, for the element (z;w) in the position indexed by Y on the sequence s and

Ns is the center of v _.

Proposition 2.8.2. The map 2.27 is well defined and it is an inverse for the map 2.26.
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Proof. Let us start by noticing that if Y > Y then rp(V, )

N, € 1n,v}. Hence, the sequence of points 7,3 is decreasing for the order given by

= v,y and therefore

specialization, and therefore it becomes eventually constant equal to some 7. We get the

equality (¢ Ox,v = Oxp-
Now, notice that by Proposition 2.7.6 the sequence

is increasing. Moreover, if we fix Y = (Y, D), a compactified log smooth pair, and we take
Y = (Y', D! ) where (Y’, D) is an embedded resolution of singularities for V(f)U D> C
Y, we get that

V() USupp(D>) C Supp(Dred)-

Now, for any Y' > Y we will get D" DO V(f). By the equality part of Proposition
2.7.6, we infer that

Vsx" (f) =v,5(f)

Hence the sequence is eventually constant. This shows that for each f € Ox, the supre-
mum is attained.
Moreover, Proposition 2.7.2 shows that given f,g € Ox,, there is a compactified log-

smooth pair Y in which the sequences [1/577(]“)]?, [usy(g)]?, [Vsy(f +9)lv [usy(fg)]? are
all constant at the same time from Y onwards. Hence for this Y we have

vs(fg) = v, (fg) = v, (f) +v.5(9) = vs(f) + vs(g)
and similarly vs(f 4+ ¢) > min{vs(f), vs(g)}, so vs is a valuation. This shows that ¢ is well
defined.

Now, let us see that that ¢ is the inverse of r. For this we should check that the

composition over each side gives the identity. This translate in the equalities

L [ry(vs)ly = s for any s = [(z;w)ly € lim TC*'3(Y), and
YcCLSPx

2. v, = v for any v € X"k where s = [r¢(v)]+-
For the first equality, we need to prove that for any Y € CLSPy we have rv(vs) =

(z;w) for (z;w) in the Y instance of the sequence s. In order to do this consider {z;};

local equations for the components D; of the divisor D defining Y around the center of v,



174 CHAPTER 2. Geometry of Higher Rank Valuations

in Y. There is a compactified log-smooth pair Y = (Y’ D’) in which we simultaneously
have the equalities v,(z;) = v (2;) for each i. In this case, we get r¢(vs) = rg(v, 3 ) and

by the compatibility of the retraction maps, we infer that r¢(v,3) = (2;w).

For the second equality, it is enough to prove that for each f € Ox, we have v4(f) =
v(f), but this follows directly by the equality part in Proposition 2.7.6. ]

Proposition 2.8.3. The map 2.27 is continuous.

Proof. For this, recall that the topology of XP"¥ is generated by open sets of the form
U={veX"™|uy(f) e A}

for A C R”* an euclidean open set and f € K(X)* a rational function. Hence, given a fixed
sequence s = [(x; w)]y such that ¢(s) € U, it is enough to find a neighborhood V' of s such
that ¢(V) C U. For this, take a compactified log-smooth pair Y and consider f = ¥ where
g,h € Oy,y(q(s))- Now take a compactified log-smooth pair Y by choosing an embedded
resolution of Vy(g) U Vi (h) U D. Consider then

Ve = {t € lim TC*'S(Y) | v,y has center inside Vi~ (g)}, and
YeCLSPx

Vi, = {t € lim TCH13(Y) | v, 5 has center inside Vy:(h)}.
YcCLSPx

By Proposition 2.6.5, for the center map TC*! $(Y) — Y”, we see that both V,, and V,
are open neighborhoods of s in the direct limit. By Proposition 2.7.6, for each t € V, NV},
we have v,(g) = v, ¥(g) and v,(h) = v,5(h). We thus get v4(f) = v, %(f). Now consider

V= {t € lim TC"'S(Y)|yx(f) € A}.
Y<cCLSP x

This is another open neighborhood of s in the direct limit. To conclude, note that for
V=V,NnV,NV"and t € V, we have

vy (f) =wu(f) e A

which shows that ¢(V') C U. This proves the continuity. ]
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Corollary 2.8.4. The family of all quasi-monomial valuations TC*! Y(Y) for some com-

pactified log-smooth pair Y is dense in XPF.

2.8.2 Refined limit formula

Definition 2.8.5 (Centroidal filtration). Given a compactified log-smooth pair Y = (Y, D)
over X we have a decomposition of D as D = D°UD>. This give us the subcomplex ¥(D°)
inside ¥(Y) which we denote by 2(Y"). We define the centroidal filtration of TC* Y to

be the filtration
FOTCH'2(Y) D #F°TCF'2(Y) D --- D FFTCH 1 2(Y)
given for 0 < r < k by
FrTC (YY) = {(zwy,,) € TCS(Y) | (w3w,,) € TC'S(Y)}

Remark 2.8.6. For i < j, we have that (z;w;) € TC? %(Y") implies (z;w;) € TC'X(Y").

Therefore, the sequence (ﬁ rcht E(?))r is indeed decreasing. Moreover, we have
FOTCH 1Y) = TC* ' 2(Y) and ZFTCH 1 2(Y) = TC* ' 2(Y).

This is similar to the centroidal filtration on X P+,

The limit formula for compactified log-smooth pairs in the previous subsection preserves

the centroidal filtrations. We thus obtain a limit description of each term of the filtration.

Theorem 2.8.7. For each 0 < r < k, the isomorphism of Theorem 2.8.1 restricts to a
homeomorphism
FIXPE — lim FTTCME(Y),
YeCLSPx

Proof. We first note that given (z;w) € " TC* $(Y), the center of the valuation proj, (v..)
is the point 7, where o is the smallest face such that (z,w,) € TC" o. Hence, if (z;w) €
FTTC*1%(Y"), then the center of v, is inside D° C X. This proves that the inclusion
TC* ' 3(Y) «— XP"F restricts to an inclusion .#7 TCF ' £(Y) « F7 XPink

Moreover, since for any compactified log-smooth pair, the center of v is a specialization
of the center of r4(v), we can see that for each pair Y > Y, the retraction map in 2.7.4

induces a map
Z'TCH'2(Y) — Z7TCH ' 2(Y)
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and these maps are still compatible. This implies that once we take the inverse limit, we

obtain a natural map

ro FIXUE—lim FTTCHIN(Y).
YeCLSP x

On the other hand, the inverse map ¢ defined in 2.27 also restricts to a map
q: FTTCM'S(Y) — FTXOTE,

Indeed, if s = [(z;w)]y is a sequence of elements in .#” TC*! £(Y), then the center of
the elements proj,(v,y) in X are points 7,3 with the property that N5 specialize 7y if
Y' dominates Y. As X is Noetherian, the sequence [(n,5)]¥ is eventually constant, and
hence 7, is in the projection of a strata of D° onto X, that is, the center of proj,(q(s))
is on X. Hence q(s) € .Z" X"k The two maps r and g are still inverses to each other and
this finishes the proof. O

Corollary 2.8.8. The limit above can be restricted to each stratum in the centroidal fil-

tration, that is, for each r, we have a homeomorphism

FrXPER\ FrHXPE s lim FTTCM S(Y) \ F TC S(Y).
pr— —
YeCLSPx

2.9 Variations of Okounkov bodies

Let X be a smooth algebraic variety of dimension d over the algebraically closed base field
x and with function field K(X). Consider a big line bundle L = O(FE) on X with the

corresponding graded algebra
H, =P H,

n>0

where each H,, = H°(X,O(nFE)) is a r-vector subspace of K(X) of finite dimension.
Consider the space BC(RF) of compact subsets of R* endowed with the Hausdorff

distance. We consider the map
A XPF— BC(R")

UHAUZU{@UEM} (2.28)

n>0
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which attaches to each valuation the corresponding Newton-Okounkov body.

Conjecture 2.9.1. The restriction of the map A in 2.28 on each higher rank skeleton is

continuous.

In the following we will give a heuristic argument for the validity of this conjecture.

We start by the following result.

Theorem 2.9.2. Let (C,,), € BC(R¥) be a sequence of full dimensional compact convex
subsets of R*¥. Then we have that

C, =% C € BC(R¥)

with the Hausdorff distance if and only if for each continuous function f : R¥ — R of

compact support we have

d n—oo d
RO /C f(x)da

Proof. (=) If we denote by B(C;¢) the e-neighbourhood of C', we have the inequality
Vol(C,,AC) < Vol(B(Ch; dy(C, C)) \ Cy) + Vol(B(C; du(Cy, C)) \ C).

The left hand size goes to 0 as n goes to infinity. We thus get Vol(C,AC) — 0. Hence
we have the almost everwhere convergence f - 1o, — f - 1o, and so by the dominated
convergence theorem the integrals converge.

(<) Recall that

41 (Co, €) = { sup {d(, O} sup{d(Cu, )} }
zeCl, yeC
If €, does not converge to (', passing to a subsequence if necessary, we get the existence
of € > 0 such that dy(C,,C) > ¢ for all n. We thus have either

sup{d(z,C)} > ¢ or sup{d(Cp,y)} > ¢
zeChp yeC
happen infinitely many times.
In the first case, as C,, is compact for each n, there is an z, € (), for which the
supremum is attained. Let 2’ be an accumulation point of (z,,).
Consider an open ball of the form B(y;e) contained in C. If for each continuous

function f the integrals above converge, by taking f as a bump function supported exactly
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on B(y;e), we get that Vol(B(y;¢) \ C,,) — 0. Therefore, since C,, and B(y, €) are convex,
for n big enough, we would get that C,, contains the ball B(y;e/2). This implies that for
each such n we have

Cn \ C D conv(B(y;e/2) U{z})\ C.

The set appearing in the right hand side is independent of n, and has nonempty interior.
Taking again a bump function supported in this set we see that the integrals could not
converge which would give a contradiction.

In the second case, for each n, there is a y,, € C' for which the supremum is attained. By
compactness, and passing to a subsequence if necessary, we can assume that y, converge
to a point in C' that we denote by 3. For n big enough, we have d(C,,y') > /2, as
d(Cp,y') > |d(Cryyn) — d(yn, y')|- It follows that B(y';e/2) N C is disjoint from C,, for
infinitely many n. By taking f as a bump function supported on B(y';¢/2) N C' we see

that C), would not converge to C' in a weak sense, which would be a contradiction. O

Heuristic argument for the validity of the conjecture. We will use the fact that the family

si={"D e}

n

of sets

is equidistributed on the set A,. That is, for each continuous function h of compact support

we have

i 1
T}grgom Z h(zx) :/A h(z)dx

TEAD v

where N, is the dimension of H,, over x, which is equal to the size of Al
If v; is a sequence of valuations converging to v, we would like to interchange the limits

in the following

. . . 1 7. ) 1
fiw [, bade = lim lim - D h(e) = lim i 5 ) A(o)

.
e Ay, " :BEAQJ_ " meAgj
) 1
= lim — E h(z) = h(x)dx
n—oo N,
TEAY v

and then use Theorem 2.9.2 to get A,, — A, with the Hausdorft distance. Hence, the
main issue in proving the conjecture would be to justify the possibility in changing the

orders in the limit. O]
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