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1.1 Context

1.1.1 The world is changing

"Code red for humanity" is the statement made by United Nations (UN) Secretary-General António
Guterres for the latest report of The Intergovernmental Panel on Climat Change (IPCC [1]). According
to the IPCC report, the internationally-agreed 1.5 degrees Celsius threshold of global temperature above
the pre-industrial levels could be breached in near term (cf. Figure 1.1) at the current rate of human
activities. The global warming level is actually in the range of 0.8◦C to 1.2◦C since the Industrial
Revolution and keeps increasing at 0.2◦C rate per decade [1].

"What happened if the global temperature exceeds the 1.5◦C threshold?" is a crucial question. An
inconsequential fraction of difference in global temperature could lead to a huge difference of the life on
Earth. Indeed, at the 0.8◦C to 1.2◦C threshold nowadays, the extreme weather and climate disasters are
accelerating, in both frequency and intensity, around the world (cf. Figure 1.2 and 1.3).
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Figure 1.1: Observed and estimated global temperature change from 1960 to 2100 from IPCC report [1].
Global warming (estimated by orange line) will reach the global warming target 1.5◦C between 2030
and 2052 at current rate instead of 2100.

Figure 1.2: Number of disasters by continent and top 10 countries in 2020 [2].

In 2020, the United Nations Office for Disaster Risk Reduction (UNDRR) reported 389 disasters
worldwide which caused 15 080 fatalities, impacted 98.4 millions people and created at least US$171.3
billion of economic losses [2].

127 major storms and 201 severe floods occurred in 2020. These disasters surpassed 20% of the
annual average between 2000 and 2019 (cf. Figure 1.3), caused 6 171 human deaths. Vietnam, one of
the most weather-related hazard-prone countries, was struck by 9 destructive typhoons following ruinous
floods, which led to 291 deaths, 66 missing and 7.7 million people affected in only 7 weeks of 2020 [3]
(cf. figure 1.4).

In the same year, the heatwaves hit seriously Europe and became the deadliest event causing 42% of
total deaths. France witnessed the hottest September since 1949, the temperature nearly reached 40◦C
in the South of France (cf. Figure 1.5).
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Figure 1.3: Disasters by type in 2020 compared with the annual average of period 2000-2019 [2].

Figure 1.4: Vietnam central coast during seven-week strike of typhoons and floods at October-November
2020 [4].

On the other side of the globe, at the end of 2019 and the beginning of 2020, Australia threatened by
one of the hottest years in its history and suffered then a devastating 6-months wildfire which killed 33
people, burnt 19 millions hectares and destroyed over 3000 houses [6]. The data collected by Australian
government shows the extreme temperature throughout the territory at Dececmber 2019 (from 40◦C to
48◦C) [7, 8] (cf. Figure 1.6(a) and 1.6(b)). In addition, over the years, the mean temperature anomaly is
continuing to escalate (cf. Figure 1.6(c)). The worst scenario is about to come.
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Figure 1.5: Hottest temperature record in France at 14 September 2020 during the heatwaves. Source:
Scott Duncan [5].

(a) (b)

s
(c)

Figure 1.6: (a) Maximum temperature map in Australia at December 2019. (b) Mean temperature decile
range in Australia at December 2019. (c) Australian mean temperature anomaly from 1910 to 2020.
Black line represents 11-year moving average that grows constantly over the years. In 2020, the mean
temperature anomaly is recorded at 1.15◦C [7, 8].
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1.1.2 Paris Agreement

The world needs to strive decisively and pursue the most ambitious path to prevent exceeding of global
warming by the end of the century. The root cause is undoubtly the human-induced greenhouse gas
(GHG) consisting essentially of carbone dioxide, methane, nitrous oxide and F-gases released by differ-
ent sectors, from domestic consumption, agricultural activities to industrial demande (cf. Figure 1.7).
Since the Industrial Revolution, the world observed a massive GHG emissions. Today, the level of
emitted GHG reaches 50 billions tonnes per year (measured in Carbone dioxide equivalents [9]) and
exponentially grows (cf. Figure 1.8 for CO2 emissions).

Responding to such situation, the 21st Conference of the Parties (COP 21), held by the United Na-
tions Framework Convention on Climate Change (UNFCCC) in Paris from 30 November to 12 Decem-
ber 2015, marked a historic turning point. 196 nations adopted an international mutual commitment to
combat the climate change and forged the Paris Agreement [10]. Never before, many Heads of State
and Government gathered together to a common aim: restrain global warming to well below 2◦C and
preferably 1.5◦C by eliminating the harmful emitted GHG by 2050 [1, 10].

Figure 1.7: Global greenhouses gas emissions by sector (2016). Source: OurWorldInData.org - Climate
Watch, the World Resources Institute [9].
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Figure 1.8: Annual CO2 emissions from the fossil fuel burning. The global emitted CO2 has increased
more than seven times since 1950. Source: OurWorldInData.org - Global Carbon Project [9].

1.1.3 ArcelorMittal’s strategies

Achieving the Paris Agreement’s 1.5◦C target requires the tremendous efforts and strengthened cooper-
ations from countries and corporations in all sectors. The steel industry represents globally about 7% of
the total GHG generated by humanity (cf. Figure 1.7). As a leader in the sector, ArcelorMittal commits
to significantly reduce carbon footprint by 2050 in line with the commitment to the Paris Agreement.
The Group targets are: 25% reduction in CO2e emissions intensity at the global level by 2030 while the
target in Europe is increased to 35% reduction in CO2e emissions by 2030, and becoming carbon neutral
by 2050. As important intermediate milestones, the Group is transforming two steel plants in Europe to
become the world’s first full-scale zero carbon-emissions steel plants by 2025.

The decarbonization strategy is mainly based on DRI (Direct Reduced Iron) and smart carbon routes
(cf. Figure 1.9). While the electrification with green energy will play important role in some moderate
temperature process, high temperature process still relies heavily on combustion released energy but
with a shift to alternative reductants and fuels, optimized industrial auto-produced gases utilization such
as Coke Oven Gas (COG) and Blast Furnace Gas (BFG), sustainable bio-energy, green hydrogen,...
Designing new or upgrading existing combustion systems have to fulfil the requirements in terms of high
energy efficiency, low pollutant emissions of soot and NOx, and fuel flexibility, i.e. being able to run
multiple fuels and/or oxidizers in a single furnace with stable combustion conditions.
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Figure 1.9: Steelmaking process from raw materials to liquid steel integrating new decarbonization routes
(Climate Action Report 2019 of ArcelorMittal).

1.1.4 Flameless combustion

In the 80’s, in the interest of reducing the energy losses and improving the industrial furnace thermal
efficiency, the waste heat recovery system has been extensively developed in order to extract heat from
the furnace flue-gases to preheat the incoming combustion air. The developed systems, such as the
recuperative and regenerative burners, have capacity to recover up to 90% of the waste heat in the flue
gases and allow to save an enormous amount of energy. Nevertheless, such systems lead to an inevitable
negative effect of increasing the temperature peak during combustion which magnifies the production of
the nitrogen oxides NOx.

The nitrogen oxides NOx generally indicates the nitrogen oxide NO, the nitrogen dioxide NO2 and
the nitrous oxide N2O which lead to the deterioration of human health by causing the breathing prob-
lems, forming the harmful smog, acid rain and affecting the tropospheric ozone. The combustion pre-
dominantly emits the NOx in the form of NO through different sources, such as thermal NO, fuel NO,
prompt NO and NO formed via N2O route:

• Thermal NO is formed from the nitrogen N2 and oxygene O2 contained in air during the com-
bustion. The chemical path of this formation is proposed by Zel’dovich and well known as the
Zel’dovich mechanism.

N2 + O −−⇀↽−− NO + N (1.1)

N + O2 −−⇀↽−− NO + O (1.2)
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N + OH −−⇀↽−− NO + H (1.3)

The thermal NO depends on the oxygen concentration and significantly on the temperature level
(c.f. Figure 1.10). According to Wünning and Wünning [11], the NO is produced considerably if
the oxygen is exposed to temperatures higher than 1600◦C for only seconds. It will be reduced to
milliseconds if the temperature is much higher than 2000◦C. The thermal NO is the main source
in combustion system.

• Fuel NO is formed by the reaction between the nitrogen in the fuel and the excess oxygen in the
air. This formation is often occurred during the combustion of coal, heavy fuel or some sort of
biomass which contains nitrogen.

• Prompt NO is revealed by Fenimore [12] by measuring the NO concentration near the low-
nitrogen hydrocarbon flame front at low temperature. The NO in this case is formed in the fuel-rich
zone where the radical species CHi locate. The formation has a greater speed than the thermal
NO, therefore it is called "prompt".

• NO formation via N2O route is occurred under lean-fuel, low temperature and high pressure
condition. Malte and Pratt [13] have proposed a 3-steps mechanism for this formation.

N2 + O + (M) −−⇀↽−− N2O + (M) (1.4)

N2O + O −−⇀↽−− 2 NO (1.5)

N2O + O −−⇀↽−− N2 + O2 (1.6)

Figure 1.10: Temperature influence on NOx formation [14].

Since then, in order to preserve the benefit of the heat recovery system, many NOx reduction tech-
niques have been investigated and classified into 2 categories. The downstream techniques treat NOx in
the flue gases only after the combustion process by adding a reducing agent, such as ammonia or urea.
Conversely, the upstream techniques take place during the combustion [11] and some of these techniques
are listed below:

• Staged combustion: The combustion proceeds in several stages, normally two. In the first stage,
the fuel is burnt at under-stoichimetric conditions with low concentration of oxygen. The extra air
is then fed in the second stage to complete the combustion.
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• Reburning: The combustion product containing NO is supplied by injecting fuel for an additional
burning stage which transforms the NO to N2.

• Flame cooling: The flame temperature is cooled down by means of forced convection, radiation,
water or steam jet injections.

• Flue gas recirculation: The flue gas are mixed externally, or internally, with the reactants before,
or during, the combustion process. The internal mixing could require the particular design of the
combustion chamber and the burners in order to achieve the dynamic recirculated flow inside the
chamber.

In the 90’s, researchers who conducted studies with the flue gas recirculation techniques discovered
the high diluted combustion regime. This combustion mode was first mentioned in the works conducted
by Wünning and Wünning [11] and Hasegawa and Tanaka [15] (by measuring experimentally the tem-
perature distribution in high temperature diluted air condition) which opened up a promising perspective
for combustion technologies. This state-of-the-art combustion mode is also known as Flameless Oxi-
dation [11], MILD Combustion (Moderate or Intense Low Oxygen Dilution) [16], High Temperature
Air Combustion (HiTAC) [17, 18] or Diluted Combustion [19] acronyms which refer to slightly dif-
ferent concepts and operating conditions [20]. The term "flameless" indicates the absence of a visible
flame front during the combustion. The flameless combustion will be retained for the rest of the present
manuscript.

The principle of flameless combustion is based on high dilution by recirculating the internal exhaust
gas at the temperature above the self-ignition level. The highly diluted stream reduces significantly the
local concentration of oxygen in the reaction zone. As a consequence, the combustion reaction rate
decreases extensively so leading to the augmentation of the reaction zone volume, then contributing
to the uniformity of the temperature field and to the reduction of peak flame temperature. Milani and
Saponaro [19] have proven this property by testing a 1.5MW natural gas furnace in both conventional
and flameless combustion regimes (c.f. Figure 1.11). This reduction of peak flame temperature reduces
substantially the thermal NOx formation which augments drastically at high temperature (c.f. Figure
1.10) while benefits from higher thermal efficiency with higher preheated air temperature thanks to heat
recovery systems.

The internal recirculated burnt gas inside the combustion chamber is attained dynamically by using
a special burner design in order to secure the combustion stability. According to Wünning and Wünning
[11], the recirculation rate can be quantified by the ratio between the mass flow rate of recirculated burnt
gases (ṁrec) and the mass flow rate of reactants (fuel ṁfuel and air ṁair) before the reaction (cf. equation
1.7).

Kv =
ṁrec

ṁair + ṁfuel
(1.7)

Several combustion modes can be identified with two parameters: furnace temperature and recir-
culation rate Kv, as shown in figure 1.12 [11]. The stable classical flame (zone A) is observed at low
recirculation rate for a wide range of furnace temperature. While increasing the recirculation rate at high
furnace temperature, the flame becomes unstable, lifts off and blows out (zone B). If the recirculation rate
keeps growing and the furnace temperature is maintained sufficiently high (above the self-ignition level),
a steady form of flameless combustion will occur. For this reason, a preheating of furnace is required
for the operation under flameless combustion mode. Flameless is often a first choice as it is an advanced
combustion technology which gives positive impact on the energy saving (high combustion efficiency)
and the environment (low emissions of soot and NOx), and can ensure the fuel flexibility.
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Figure 1.11: Flame images (left) and temperature distribution (right) of the conventional (top) and flame-
less combustion (bottom) in a 1.5MW furnace test [19]. The temperature peak is drastically decreased
under flameless combustion regime, so thermal NOx.

Figure 1.12: Stability limits of different combustion modes [11, 21, 22]

1.1.5 Combustion modelling and the role of chemistry

The numerical modelling of turbulent combustion has made significant progress to help in the design
of systems operating with a single fuel stream, liquid or gaseous, and, a single oxidizer stream [23]. In
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particular, the description of the complexity of combustion chemistry and molecular transport benefitted
from the tabulation of detailed chemistry based on the hypothesis of two-inlet burners [24, 25, 26, 27, 28].
With these approaches, the control of chemistry is reduced to two variables, one describing the overall
progress of the reaction and the other capturing the mixing between fuel and oxidizer streams. These
methods are very efficient in terms of computing CPU cost and therefore largely used in the academic
environment and also now popularised by commercial software.

As mentioned above, ArcelorMittal is operating and upgrading combustion systems featuring mul-
tiple injections of fuel and oxidizers and multiple combustion regimes (premixed, non-premixed, etc.).
In these furnaces, both the enthalpy (temperature) and the chemical composition are specific to every
single injection, thus covering a large range of thermochemical conditions. The objective of this project
is to develop a framework/tool to address the numerical modelling of such multiple inlet combustion
problems such as non-adiabatic regime (convective and radiative transfer); flameless combustion (di-
lution by burnt gases); multiple compositions and low calorific fuels (for energy recovery, mitigating
environmental impact, and managing fuel flexibility).

Modelling the flameless combustion regime is challenging compared to the conventional combustion
cases for which the approximation "mixed is burnt" [29] (for non-premixed combustion) is frequently
applied. The chemistry in this approach is assumed infinitely fast and irreversible. Hence, the burnt field
can be calculated through the mixture fraction by tracking the local equivalence ratio (fuel/air ratio) of
the mixture (no reaction rate or chemical equilibrium information required). In furnaces, the recirculated
gas dilutes strongly the reaction zone and delays the reaction speed, as a consequence, the chemistry
cannot be considered infinitely fast. Several efforts from Orsino et al [30], Christo et al. [31] and Lupant
et al [32] have been attempted using "mixed is burnt" approximation associated with Probability density
function (PDF) in the flameless combustion cases. With this modelling approach, they reported the
over-estimation of the temperature field, thus of the NOx prediction (calculated in post-processing).

Another approach has been proposed by Magnussen and al [33, 34, 35] and are well known as "Gen-
eralized Finite Rate" (GFR). Variant models such as Eddy-Dissipation (ED), Eddy-Dissipation/Finite
Rate (EDFR), Eddy-Dissipation Concept (EDC) can be mentioned. These models resolve all transport
equations for each species whereas only one transport equation of mixture fraction is solved in the tabu-
lated chemistry models. This transport equation system allows to provide the production rate of species
while considering the interaction between turbulence and chemical kinetics (or reaction kinetics). The
GFR models can theoretically allow to use the skeletal/detailed chemical kinetic schemes describing the
reaction paths in combustion process such as GRI-3.0 [36] (53 species and 325 elementary reactions),
POLOMI version 1412 [37] (107 species and 2642 reactions), AramcoMech2.0 [38] (502 species and
2716), Glarborg [39, 40, 41] (97 species and 779 elementary reactions). The number of species involved
is very large and it cannot be easily introduced in the simulations of complex industrial large-scale com-
bustion systems. There exists a large variety of highly-reduced kinetic schemes (global scheme) in the
literature [42, 43, 44, 45, 46] or the semi-reduced scheme such as KEE58 [47] (18 species and 58 elemen-
tary reactions), Smooke [48] (17 species and 35 elementary reactions). However, the existing detailed
mechanisms were developed and validated in conventional combustion regime with conventional fuel,
while their performance for MILD combustion fed by various future fuel (bio-gas, mixture of by-product
gases, etc.) is still in question. Therefore, reduced schemes that are able to imitate the detailed scheme
in such conditions is highly demanded for these latter simulations.

Recently, Lu and Law developed chemistry reduction method for oxy-fuel combustion, which is
based on the combination of Directed Relation Graph (DRG) [49, 50], DRG-aided sensitivity analysis
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(DRGASA) [51, 52] , Unimportant Reaction Elimination [53] and Quasi-Steady State Approximation
(QSSA) [54]. A. Stagni et al. (2016) [55] developed an extension of the species-targeted sensitivity-
analysis of DRGASA and DRGEPSA [56] reduction by shifting its focus from the ignition delay time
(a single point) to the whole dynamics of formation of the considered species (a curve). However,
the effect of heat loss (by radiation especially in the industrial furnaces) on the reduced scheme was
not included in these works. This information is vital in systems encountered by ArcelorMittal. A
strategy, called ORCh, has been recently developed at CORIA to answer these questions by automatically
reducing detailed chemical schemes and optimizing their rates (reaction constant parameters) under given
operating conditions [57, 58, 59]. ORCh is presented in the section 3.1.

The choice of the detailed mechanism referenced flameless combustion as the input of ORCh is
quite critical. One of the important criteria to accurately predict the behaviour of flameless regimes is
the ignition delay time [60]. N.A.K. Doan (2019) [61] reported the accurate estimation of the ignition
delay time of GRI3.0 against the experimental data of Hu et al. [62] for CH4-air mixture at atmospheric
pressure. Nevertheless, M. Fürst et al. (2018) [60] shown that the detailed mechanism scheme POLIMI
(version 1412) has the smallest average error with reference to the experimental target in their case
against GRI3.0, GRI2.11, AramcoMech1.3, AramcoMech2.0 and some others detailed schemes. M.
Ferraroti, M. Fürst et al. (2018) [63] also claimed via an URANS simulation for a near-industrial case that
GRI2.11 over-predict the temperature and is only suited for the high temperature case (above 1300K).
Two schemes POLIMI-25 (25 species & 154 reactions) and POLIMI-31 (31 species & 205 reactions)
reduced from the detailed scheme POLIMI (version1412) using the procedure of Stagni et al. [55] are
also tested and provide a good agreement with the experimental data. The literature review indicates that
POLIMI (version 1412) is suitable for this work, nonetheless the GRI3.0 is also a strong candidate.

1.1.6 Cross-domain technologies - Artificial Intelligence

In the recent decade, the world is seeing the massive evolution of artificial intelligence based on the
training of neural networks from the academic to the industry. Though, the history started in 1943 when
Walter Pitts and Warren McCulloch [64] published a mathematical model for the biological neuron using
electrical circuits (cf. Figure 1.13). Yet, this first ever concept of neural network had limited capability
and was not able to "learn".

Until 1957, Frank Rosenblatt [65] built a modified model based on the concept of Walter Pitts and
Warren McCulloch in order to discover how the humain brain works. The neural net is implemented on
an IBM machine at the Cornell Aeronautical Laboratory and named it Perceptron (cf. Figure 1.14) which
has a learning mechanism and is able to do a binary classification (the output is 0 or 1).

Then, in 1965, Alexey Grigoryevich Ivakhnenko and Valentin Grigor‘evich Lapa constructed the first
ever multi-layer neural network by combining multiple perceptrons into a single network which can be
called "Artificial Neural Network" (ANN). This is often considered as the begin of deep learning.

Through years of development, the neural networks have achieved remarkable milestones. Since
2015, the trained convolutional neural networks bypass the human performance on the popular ImageNet
dataset [67]. Another significant breakthrough is AlphaFold, developed by Google’s DeepMind AI,
which could determine the 3D shape of proteins and provide a solution for a 50-year-old challenge in
biology history.

Recent progress in the domain of artificial intelligence represent great opportunities for combustion
modelling and simulation. Indeed, the neural networks were used to develop data driven turbulent com-
bustion modeling [68, 69, 70, 71, 72, 73, 74], or to analyse experimental measurements [75] and to
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Figure 1.13: Different types of neuron modelled using electrical circuit by Walter Pitts and Warren
McCulloch [64]

Figure 1.14: Perceptron model comparing to the biological neuron [66]

develop digital twins for process control [76]. Chemistry reduction and its time integration acceleration
[77, 78, 79, 80, 81] which can be developed using machine learning techniques have special interest
for CFD simulations as it allows for significant CPU times reduction and performing the multiple sim-
ulations needed for the search of optimal design for a combustion system, furthermore, create a solid
database for furnace digital twins. This is one of the focus of the present thesis work.
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1.2 Thesis objectives

1.2.1 Novel strategy to include heat loss effects in chemistry reduction

The first objective of this PhD work is to develop and provide ArcelorMittal access to a chemistry re-
duction tool, ready to generate reduced chemical schemes specifically devoted to the modelling of steel
gases turbulent combustion encountered in multi-inlet conditions for future fuels (bio-gas, mixture of
by-product gases, etc.) affected by heat loss and also avoiding the use of two-inlet detailed chemistry
tabulation. In the first stage, an effort to implement the heat loss effect into the reduction tool ORCh, is
executed. The reduction and optimisation procedure of the detailed chemical mechanism on the specific
conditions of a flameless combustion system (named UMONS cases) including the proposed heat loss
concept has been carried out. Four reduced chemical schemes generated, with and without heat loss,
from the reference detailed scheme GRI3.0 and POLIMI1412, were implemented into Fluent to perform
RANS simulations of the flameless UMONS furnace.

1.2.2 Acceleration of chemistry integration using machine learning techniques and neu-
ral networks

A novel method for chemistry integration acceleration based on machine learning techniques and neu-
ral networks is also proposed. The turbulent non-premixed database for machine learning training is
constructed from the thermochemical responses of the stochastic turbulent micro-mixing. The K-means
unsupervised learning algorithm is used to partition the data of similar characteristics into different clus-
ters. The Principal Component Analysis (PCA) algorithm is then applied locally on each cluster in order
to transform the correlated data in the composition space into the PCA space in which the data becomes
uncorrelated to secure the performance of the artificial neural network (ANN) training. The method
was tested a posteriori on the ORCh simulations of a canonical configuration with promising results and
drastic reduction of CPU times. The method is also applied for the coupling with CFD simulations.

1.3 Manuscript content

Chapter 2: Turbulent reacting flows
The manuscript introduces in the first place the fundamentals of the turbulent reacting flows. The RANS-
LES formalism is then presented. The radiation model used in this thesis is also mentioned.

Chapter 3: Chemical schemes reduction for industrial applications under flameless combustion
condition
In this chapter, the automatic Optmised and Reduced Chemistry tool (ORCh) is first presented. In order
to generate a reduced and optimised scheme for numerical simulation of furnaces operating at specific
condition, an improvement by adding the capability of considering the heat loss, under flameless com-
bustion regime, is provided. This strategy is then validated on the UMONS pilot furnace 3D RANS
simulations.

Chapter 4: Machine learning for integrating combustion chemistry in numerical simulations
The chapter 5 provides a novel strategy focusing on the introduction in flow simulations of complex
chemistry through the training of neural networks. This strategy is then coupled with the 3D LES simu-
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lations.

Chapter 5: General conclusions and perspectives
The last chapter resumes the general conclusions and the perspectives of this thesis.

1.4 Publications

1.4.1 Peer-reviewed international journals

• Huu-Tri Nguyen, Pascale Domingo, Luc Vervisch, Phuc-Danh Nguyen, Machine learning for
integrating combustion chemistry in numerical simulations, Energy and AI 5 (2021): 100082.

• Phuc-Danh Nguyen, Huu-Tri Nguyen, Pascale Domingo, Luc Vervisch, Flameless combustion
of low calorific value gases, experiments and simulations with advanced radiative heat transfer
modeling, Physics of Fluids 34 (2022): 045123, special topic: Development and validation of
models for turbulent reacting flows.

• Huu-Tri Nguyen, Camille Barnaud, Pascale Domingo, Luc Vervisch, Phuc-Danh Nguyen, Large-
Eddy Simulation of flameless combustion with neural-network driven chemistry, Preprint submitted
to Applications in Energy and Combustion Science (2022).

1.4.2 International conferences

• Huu-Tri Nguyen, Pascale Domingo, Luc Vervisch, Phuc-Danh Nguyen, Chemistry reduction and
optimisation for multi-physics flow simulations: Combining data clustering and principal compo-
nent analysis with deep learning, in 10th ECM, Naples, Italy, 2021.
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Chapter 2

Turbulent reacting flows
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2.1 Turbulent reacting flows equations

The turbulent reacting flows are described by a set of first principle conservation equations which are
linked with the composition and thermodynamic properties of the mixture.

2.1.1 Mixture composition

A mixture consists of Nsp number of chemical species, with k denoted species. The density of the
k-species mixture is determinated from ρk the partial density of each species k.



Turbulent reacting flows 31

ρ =

Nsp∑

k=1

ρk . (2.1)

The mass contribution of each species in the mixture is represented by the mass fraction Yk, defined
by the ratio between the species and the overall mixture density. The mass fraction Yk is thus bounded
between zero and unity, and its sum equals unity.

Yk =
ρk
ρ
, (2.2)

Nsp∑

k=1

Yk = 1 . (2.3)

The species mole fraction Xk is also used. The relation between mole fraction Xk and mass fraction
Yk is described in equation 2.4. Its sum on all species also equals unity.

Xk =
W

Wk
Yk , (2.4)

Nsp∑

k=1

Xk = 1 . (2.5)

The mixture molecular weight W is computed based on the species molecular weight Wk and the
mass fraction Yk (eq. 2.6) or mole fraction Xk (eq. 2.7).

1

W
=

Nsp∑

k=1

Yk
Wk

. (2.6)

W =

Nsp∑

k=1

XkWk . (2.7)

2.1.2 Thermodynamic

At constant pressure, the species molar heat capacity Cmp,k(T, P
◦) depends on the temperature T . The

empirical relation between the species molar heat capacity Cmp,k(T, P
◦) and the temperature T is given

by the NASA polynomials.

Cmp,k(T, P
◦)

R = a1,k + a2,kT + a3,kT
2 + a4,kT

3 + a5,kT
4 , (2.8)

whereR = 8.314 J ·mol−1 · K−1 is the ideal gas constant and ai,k are known coefficients.
The species molar enthalpy and entropy is represented as a function of the species molar heat capacity

Cmp,k(T, P
◦) (equation 2.9 and 2.10).

Hm
k (T, P ◦) =

∫ T

θ=T ◦
Cmp,k(θ, P

◦)dθ + ∆H◦,mf,k , (2.9)

Smk (T, P ◦) =

∫ T

θ=T ◦

Cmp,k(θ, P
◦)

θ
dθ , (2.10)
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where ∆h◦,mf,k denotes the molar standard enthalpy of formation of species k at reference pressure P ◦

and reference temperature T ◦ (commonly set at 298.15 K).
Therefore, the molar enthalpy and entropy of species k could also be expressed from the NASA

polynomials approximation.

Hm
k (T, P ◦)
RT = a1,k + a2,kT + a3,kT

2 + a4,kT
3 + a5,kT

4 +
a6,k

T
, (2.11)

Smk (T, P ◦)
R = a1,k log(T ) + a2,kT +

a3,k

2
T 2 +

a4,k

3
T 3 +

a5,k

4
T 4 + a7,k . (2.12)

The coefficients a is commonly documented in the thermodynamic file accompanied with the chem-
ical kinetic schemes. There are 2 sets of coefficients for each species, at low and high temperature.

The molar heat capacity, molar enthalpy and entropy of mixture are calculated as follows.

Cmp (T, P ◦) =

Nsp∑

k=1

XkC
m
p,k(T, P

◦) , (2.13)

Hm(T, P ◦) =

Nsp∑

k=1

XkH
m
k (T, P ◦) , (2.14)

Sm(T, P ◦) =

Nsp∑

k=1

Xk

(
Smk (T, P ◦)−R log

(
P

P ◦

)
−R log (Xk)

)
. (2.15)

The mass specific heat capacity, enthalpy and entropy of mixture (per unity of mass) could be char-
acterised by divided the mixture molecular weight W (cf. equation 2.6 and 2.7).

Cp =
Cmp
W

, (2.16)

H =
Hm

W
, (2.17)

S =
Sm

W
. (2.18)

2.1.2.1 Equation of state

The ideal gas law (so called the equation of state) is frequently used in combustion to approximate the
behaviour of many gases under a wide range of conditions. The law could be presented in multiple forms.
In the numerical simulation for combustion, the ideal gas law is often stated as a function of pressure P ,
density ρ, mixture molecular weight W and ideal gas constantR = 8.314 J ·mol−1 · K−1.

P = ρ
R
W
T = ρ




Nsp∑

k=1

Yk
Wk


RT . (2.19)

2.1.3 Equations

Combustion is occurred in the fluid flows in which species are transported by velocity and diffusion
effect coupled with the mixture characterised by chemical kinetic and thermodynamic. These effects
are described by the balanced equations expressing mass, momentum and energy conservations. The
equation derivation could be found in [82, 83].
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2.1.3.1 Mass conservation

The mass conservation is described by the continuity equation.

∂ρ

∂t
+
∂ρui
∂xi

= 0 . (2.20)

with the velocity ui along the ith direction.

2.1.3.2 Momentum conservation

The momentum conservation without the volume force is represented as follows.

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂P
∂xj

+
∂τij
∂xi

, (2.21)

where τij stands for the viscous tensor and is determinated for Newtonian fluid as below.

τij = −2

3
µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.22)

where µ refers to the mixture dynamic viscosity and δij is the Kronecker symbol.

2.1.3.3 Species conservation

The chemical species conservation is characterised by the transport equation parameterised by the diffu-
sion velocity Vk,i of species k along the direction i and the species k chemical source term ω̇k.

∂ρYk
∂t

+
∂

∂xi
(ρ (ui + Vk,i)Yk) = ω̇k , (2.23)

The Vk diffusion velocities is calculated by solving a linear system with Nsp equations.

Nsp∑

j=1

XkXj

Dkj
(Vj − Vk) = ∇Xk + (Xk − Yk)

∇P
P

+
ρ

P

Nsp∑

j=1

YkYj(Fext,j − Fext,k)

+

Nsp∑

j=1

XkXj

ρDkj

(
Dth,k

Yk
− Dth,j

Yj

) ∇T
T

,

Solving Nsp equations requires a considerable cost. Hirschfelder and Curtiss thus proposed a "mix-
ture averaged” simplified estimation [84].

Dk =
1− Yk∑

j 6=kXj/Dkj
, (2.24)

in which Dkj stands for the binary diffusion coefficient between species k and j.
The diffusion velocity Vk,i could then be expressed as equation 2.25 with the introduction of the

correction velocity Vc,i in order to ensure mass conservation.

Vk,i = −Dk

Xk

∂Xk

∂xi
+ Vc,i , (2.25)
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Vc,i =

Nsp∑

k=1

Dk
Wk

W

∂Xk

∂xi
. (2.26)

In the turbulent reactive flow simulation, the transport parameters, such as the mixture dynamic
viscosity µ and mixture thermal conductivity λ, are possibly approximated by empirical temperature-
dependent law in order to reduce the computational time. The most popular is the Sutherland’s law (cf.
equation 2.27, 2.28).

µ

µ0
=

(
T

T0

)3/2 T0 + Sµ
T + Sµ

, (2.27)

λ

λ0
=

(
T

T0

)3/2 T0 + Sλ
T + Sλ

. (2.28)

where Sµ, Sλ are the Sutherland constants. T0, µ0 and λ0 are respectively the reference of temperature,
dynamic viscosity and thermal conductivity for the considered mixture. The references and constants of
air are commonly used: µ0 = 1.716 × 10−5kg ·m−1 · s−1, Sµ = 111, λ0 = 0.0241W ·m−1 · K−1,
Sλ = 194 and T0 = 273K.

For the flameless combustion, Göktolga and al. [85] proposed a simplified relation as a function of
the heat capacity Cp and the temperature T with the Prandtl number Pr (characterised the ratio between
momentum diffusivity and thermal diffusivity).

λ = Cp × 2.55× 10−5

(
T

298

)0.71

, (2.29)

µ = Pr
λ

Cp
, (2.30)

Pr = 0.434 + 1.72× 10−4T . (2.31)

Besides, the species molecular diffusivity Dk could be also approximated by the mixture dynamic vis-
cosity µ, the density ρ and the species Schmidt number Sck. This approximation results in the relation
between the species molecular diffusivity Dk and the thermal diffusivity λ through the species Lewis
number Lek which is commonly considered equal to unity.

Dk =
µ

ρSck
, (2.32)

Lek =
Dk

λ
=
Scl
Pr

. (2.33)

2.1.3.4 Energy conservation

The conservation equation for the energy could be described as a function of the sensible enthalpy hs(T ).

hs(T ) =

∫ T

θ=T ◦
Cp(θ)dθ , (2.34)

∂ρhs
∂t

+
∂

∂xi
(ρuihs) =

DP

Dt
+
∂Qi
∂xi

+ τij
∂ui
∂xj

+ Q̇+ ω̇T . (2.35)



Turbulent reacting flows 35

where Qi stands for the heat flux (equation 2.36), λth is the mixture thermal conductivity, ω̇T represents
the chemical heat source term (equation 2.37) as a function of the species formation enthalpy ∆h0

f,k and
species chemical source term ω̇k.

Qi = λth
∂T

∂xi
−

Nsp∑

k=1

ρhs,kYkVk,i , (2.36)

ω̇T = −
Nsp∑

k=1

∆h0
f,kω̇k . (2.37)

2.2 Chemical kinetics

2.2.1 Species source terms

The species source term ω̇k from equation 2.37 is modelled from chemistry through the detailed mecha-
nisms which aggregate the Nsp species and its chemical paths with Nr reactions in large range of condi-
tion. The jth reaction is described as below where ν

′
kj and ν

′′
kj are respectively the reactants and products

stoichiometric coefficients of species k with molecular formulaMk.

Nsp∑

k=1

ν
′
kjMk 


Nsp∑

k=1

ν
′′
kjMk, with j = 1, Nr . (2.38)

The species mass variation per unit of time in this reaction is quantified by the reaction rate Q̇j (cf.
section 2.2.2) with νkj = ν

′′
kj − ν

′
kj .

Q̇j =
ω̇kj
Wkνkj

, (2.39)

Using the equation 2.39, the species variation rates of each reaction ω̇kj is then determined. The total
reaction rate of species k is calculated by sum ω̇kj overall the Nr reaction.

ω̇k =

Nr∑

j=1

ω̇kj = Wk

Nr∑

j=1

νkjQ̇j . (2.40)

2.2.2 Reaction rates

The reaction rate Q̇j of jth reaction consists of the forward and reverse rates (respectively Q̇fj and Q̇rj)
through the relation 4.7.

Q̇j = Q̇fj − Q̇rj . (2.41)

The forward rate Q̇fj (respectively reverse rate Q̇rj) is quantified by the molar concentration [Xk]

of species k, the forward constant Kfj and the reactant stoichiometric coefficients ν
′
kj (respectively the

reverse constant Krj and the product stoichiometric coefficients ν
′′
kj).

Q̇fj = Kfj

Nsp∏

k=1

[Xk]
ν
′
kj , (2.42)

Q̇rj = Krj

Nsp∏

k=1

[Xk]
ν
′′
kj . (2.43)

in which [Xk] = ρYk/Wk.
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2.2.2.1 Arrhenius law

In combustion, the forward reaction rate Kfj is commonly described by the empirical Arrhenius laws as
a function of the temperature T , the activation energy Ej , the exponent βj , the pre-exponential collision
frequency factor Aj and the ideal gas constant R. The activation energy Ej corresponds to the energy
quantity that sufficiently dissociates the reactants to intermediate and radical species which then establish
the final products while releasing energy through heat (cf. Figure 2.1).

Kfj = AjT βj exp

(
− Ej
RT

)
. (2.44)

Figure 2.1: Activation energy and energy released diagram

2.2.2.2 Reverse reaction rate constant and equilibrium

The reverse rate Krj is calculated indirectly through the forward rate Kfj and the equilibrium constant
Keq,j . The equilibrium state is occurred while the forward rate Q̇fj and reverse rate Q̇rj are equal, it
leads to the relation 2.45 (cf. equation 2.43 and 2.43).

Kfj

Nsp∏

k=1

[Xk]
ν
′
kj = Krj

Nsp∏

k=1

[Xk]
ν
′′
kj , (2.45)

The equilibrium constant Keq,j is written as the ratio between the reactants concentrations and the prod-
ucts concentrations, hence deduced as follows.

Keq,j =

Nsp∏

k=1

[Xk]
νkj =

Kfj

Krj
. (2.46)

The reverse reaction rate is thus calculated once the equilibrium constant Keq,j has been determinated
from the thermodynamic properties (cf. section 2.2.2.3).
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2.2.2.3 Gibbs free energy

In order to quantify the chemical equilibrium constant Keq,j , the variation of the standard Gibbs free
energy is defined as the difference in potential between the reactants and its products in the jth reaction.
This variation is expressed as a function of the temperature T , the ideal gas constant R and the partial
pressure equilibrium constant Kp,j .

∆G◦j = −RT lnKp,j , (2.47)

The relation between the chemical equilibrium constant Keq,j and the partial pressure equilibrium
constant Kp,j is given in equation 2.48 associated with the reference pressure P ◦.

Kp,j = Keq,j

(RT
P ◦

)∑Nsp
k=1 νkj

, (2.48)

By joining the equation 2.47 and 2.48, the chemical equilibrium constant Keq,j can be expressed as
a function of the variation of entropy ∆S◦j and enthalpy ∆H◦j which could be approximated by NASA
polynominals (cf. equation 2.11 and 2.12).

Keq,j = exp

(
∆S◦j
R −

∆H◦j
RT

)(
P ◦

RT

)∑Nsp
k=1 νkj

. (2.49)

2.3 Combustion regimes

There exist two main combustion configurations: premixed and diffusion regimes. The premixed regime
is represented by a preliminary mixing of the fuel and the oxidiser before the combustion occurs in
the combustion chamber. The premixed configuration facilitates the flame control through the mixture
equivalence ratio (or mixing proportion) resulted in the burning temperature level which is the key of
pollutant emissions. Therefore, this configuration has a high thermal efficiency and eases the pollutants
control. However, in the industrial applications, this flame configuration increases the accidental risk due
to the premixing process which can promote flash-back.

Conversely, in the diffusion regime, the fuel and oxidiser are injected separately into the combustion
chamber, it leads to the combustion at the meeting interface between the fuel and oxidiser. The separated
injections help in securing the safety problem of fuel storage. Nevertheless, in view of the fact that the
mixing in this configuration is not as effective as the premixing process, the combustion efficiency is
decreased and it is more challenging to control the flame temperature level.

2.3.1 Premixed flame

The premixed flame structure is illustrated by the flame front separating the fresh reactants and burnt
gases where the reactions take place (cf. Figure 2.2). The flame front propagates in the direction of
consuming the fresh reactants with the flame velocity S0

L. The flame structure is possibly defined into 3
different zones: preheat zone, reaction zone and the post-flame zone.

• The preheat zone in the fresh reactants are heated by the thermal diffusion fluxes near the flame
front,

• The reaction zone is characterised by the reaction rate and defined the region where the reactants
are transformed to the intermediate and radical species,
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• The post-flame zone is located behind the flame front, where the major products are formed at
high temperature.

Figure 2.2: Laminar premixed flame structure [86].

Assuming a 1D steady premixed flames propagating along x direction, the mass conservation at each
position x leads to the relation between the gases density ρ, the fluid velocity u, the fresh gases density
ρ0 and the laminar flame speed S0

L (cf. relation 2.50). Thus, the momentum equation is presumably
unnecessary.

∂ρu

∂x
= 0 −→ ρu = ρ0S

0
L , (2.50)

The steady-form of species conservation along the x direction could be written as follows.

∂

∂x
(ρ(u+ Vk)Yk) = ω̇k , (2.51)

Likewise the enthalpy conservation at steady state is simplified:

∂

∂x
(ρuhs) =

∂

∂x

(
λth

∂T

∂x

)
− ∂

∂x


ρ

Nsp∑

k=1

hs,kYkVk


+ ω̇T , (2.52)

For the purpose of describing the chemical process in the premixed configuration, a progress variable,
named c, is proposed. This variable c is defined in various forms and bounded between 0 (in the fresh
gases) and 1 (in the burnt gases). Based on the temperature variation, the definition is:

c =
T − T0

Teq − T0
, (2.53)

where Teq is the equilibrium temperature of the burning process and T0 refers to the fresh gases temper-
ature.

An assumption of unity Schmidt and Lewis numbers could be made to state the progress variable c
as a function of mass fraction.

c =
Yc − Yc,0
Yc,eq − Yc,0

, (2.54)
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in which Yc is commonly defined as Yc = YCO + YCO2 + YH2O and Yceq is Yc at equilibrium state.
The definitions of progress variable c allow to determine the reaction zone and analyse the flame

structure. Hence, the normal of flame front n is expressed:

n =
−∇c
|∇c| , (2.55)

The equivalent ratio φ is another governing variable indicating the amount of fuel mixed with air.
This variable is described by the stoichiometric ratios, the mass fraction of fuel and oxidiser in the fresh
gases (YF,0 and YO,0 respectively).

φ = s
YF,0
YO,0

, (2.56)

The stoichiometric ratio s is expressed as a function of the molecular weights and the stoichiometric
coefficients of fuel and oxidiser (WF , WO, νF and νO) in global reaction in which F, O, P denote the
species formula of fuel, oxidiser and product.

s =
νOWO

νFWF
, (2.57)

νFF + νOO → νPP , (2.58)

The value of equivalent ratio φ allows to classify the mixture at stoichiometric (φ = 1), lean fuel (φ < 1)
or rich fuel condition (φ > 1) .

The laminar flame speed S0
L defined by the integral of fuel burning rate ω̇F as follows refers to the

fuel consumption speed along x direction.

S0
L = − 1

ρ0(YF,0 − YF,∞)

∫ +∞

−∞
ω̇Fdx , (2.59)

where ρ0 stands for the fresh gases density, YF,0 and YF,∞ correspond respectively to the fuel mass
fraction of fresh and burnt gases.

The premixed flame is also characterised by the thermal thickness δthL [87] described by the gradient
of temperature between fresh (T0) and burnt gases (Teq) or by the gradient of the progress variable c.

δthL =
Teq − T0∣∣∣∣
∂T

∂x

∣∣∣∣
max

, (2.60)

δcL =
1∣∣∣∣
∂c

∂x

∣∣∣∣
max

. (2.61)

2.3.2 Diffusion flame

Contrary to the premixed configuration, the diffusion flame is essentially governed by the mixing the
separated fuel and oxidiser injection. The combustion takes place at the stoichiometric line, then the heat
diffuses toward both fuel and oxidiser side (cf. Figure 2.3).

In the diffusion configuration, the mixing process is characterised by the mixture fraction Z based
on the mass fraction of atom C, H and O. There exist several definitions of the mixture fraction. In the
present work, the Bilger’s definition [88] is retained.

Z =
2(YC − YCOxidiser

)/WC + (YH − YHOxidiser
)/2WH + (YO − YOOxidiser

)/WO

2(YCFuel
− YCOxidiser

)/WC + (YHFuel
− YHOxidiser

)/2WH + (YOFuel
− YOOxidiser

)/WO
,

(2.62)
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Figure 2.3: Structure of a laminar diffusion flame [86].

where YC , YH and YO refer to the atom mass fraction of the considered mixture; YCOxidiser
, YHOxidiser

and YOOxidiser
(respectively YCFuel

, YHFuel
and YOFuel

) stand for the atom mass fraction of oxidiser
(respectively fuel) injection.

The mass fraction of atom jth (C, H or O), denoted Yj , is determinated from all species k and
characterised by the number of jth atom in species k (αjk), the atom molecular weight (Wj) and the
species molecular weight (Wk) through the following relation.

Yj =

Nsp∑

k=1

αjkWj

Wk
Yk . (2.63)

It should be noted that the mixture fraction Z is a passive scalar and bounded between 0 (at oxidiser
injection) and 1 (at fuel injection).

2.3.3 Partially premixed combustion

In the real world, the complex industrial systems could also operate in the partially-premixed combustion
[89] which possesses properties of both premixed and diffusion configurations. This regime is often ob-
served with separated injection of fuel and oxidiser enhanced mixing process leading to partial premixing
of the reactants before combustion. From the turbulent combustion modelling point of view, the partially
premixed could be modelled using the tool from the two above configurations. In order to distinguish
the nature of combustion regime, H. Yamashita et al. [90] proposed the Takeno index TI based on the
gradient of fuel and oxidiser mass fraction. The index is bounded between 0 (premixed flame) and 1
(diffusion flame).

TI =
∇YFuel · ∇YOxidiser
|∇YFuel · ∇YOxidiser|

. (2.64)
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2.4 RANS-LES formalism

2.4.1 Turbulence introduction

In the nature, the flow exists in different states: laminar or turbulent [91]. At small velocities, the
perturbations is immediately absorbed by the molecular viscosity, hence, the fluid flows in parallel layers
with only slow mixing in the transverse direction. This phenomena is so called the laminar regime. On
the contrary, while increasing the fluid velocity, the perturbations grow due to the non-linear convective
effects and are unable to be dissipated by the molecular viscosity. The perturbations are furthermore
amplified by different instability mechanisms (such as Kelvin-Helmholtz, Rayleigh-Taylor, etc.), thus,
the fluid becomes turbulent.

For the purpose of quantifying the turbulent characteristic, O. Reynolds [91] proposed a non-dimensional
number Re expressing the ratio between the fluid movement (velocity u and characteristic dimension L)
and its kinematic viscosity ν. It is noteworthy that the kinetic viscosity ν is possibly represented as the
function of the dynamic viscosity µ and density ρ. The laminar flow is represented by a small value of
the Reynolds number Re while the large Re refers to the turbulent state.

Re =
uL

ν
. (2.65)

ν =
µ

ρ
. (2.66)

The turbulence is characterised in different scales, based on its energy state [92].

• The most energetic and the largest scale is named the macroscopic scale. The kinetic energy kt
of turbulent structure in macroscopic scale is defined by the velocity fluctuations from different
direction i depending on the studied geometry.

kt =
3∑

i=1

1

2
u
′2
i . (2.67)

Thus, under the local isotropy hypothesis, the velocity fluctuation can be deduced as follows.

u
′

=

√
2

3
kt . (2.68)

In the macroscopic point of view, the turbulence structure is also described by the energetic length
Le and the integral length lt which are represented as a function of the turbulent kinetic energy kt,
the turbulent dissipation ε and the velocity fluctuation u

′
.

Le =
k

3/2
t

ε
, (2.69)

lt =
u
′3

ε
. (2.70)

These definitions lead to the relation between the energetic length Le and the integral length lt.

lt
Le

=

(
2

3

)3/2

. (2.71)
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From the definition of O. Reynolds (cf. equation 2.65), in the macroscopic scale, the turbulent
Reynolds number Ret is expressed by the integral length lt, the velocity fluctuation u

′
and the

fluid kinematic viscosity ν.

Ret =
u′lt
ν

. (2.72)

• The intermediate scale refers to the Taylor scale, denoted λ. In this scale, the large turbulent
structure is dissipated into the smaller ones. The energy is also transferred and followed the kt

−5
3

rule.

• The viscous dissipation scale, or the Kolmogorov scale [93] - denoted lK , corresponds to the
smallest scale where the turbulence structure is completely dissipated into heat. The Kolmogorov
length lK and velocity uK are able to be expressed as a function of the turbulent dissipation ε and
the fluid kinematic viscosity ν.

lK =
(ν
ε

)1/4
. (2.73)

uK = (νε)1/4 . (2.74)

By these definitions, the Reynolds number in this scale is assumed equal to unity.

ReK =
u
′
K lK
ν
≈ 1 . (2.75)

2.4.2 Computational Fluid Dynamics (CFD) strategies

In CFD, the brute force approach is Direct Numerical Simulation, denoted DNS, where the Navier-
Stokes equations are fully resolved. In order to capture all scales of turbulence mentioned above, the
simulations requires a sufficient fined mesh. Assuming the mesh resolution ∆, the smallest mesh size can
be estimated by the Kolmogorov length scale lK [94]. Using definition in section 2.4.1, this estimation
can be approximated as a function of the macroscopic length scale lt and the turbulent Reynolds number
Ret.

∆ = 2lK ≈
lt

Re
3/4
t

. (2.76)

This relation shows that the mesh resolution ∆ is negatively proportional to the turbulent Reynolds
number Ret with the power of 3

4 . In the industrial applications, the turbulent Reynolds number Ret
is frequently high, thus, the necessary mesh resolution becomes extremely small. Furthermore, the
industrial geometries (such as furnaces) are commonly large, that means that the enormous number of
mesh cells is required and also a considerable computational cost.

To cope with the mesh size requirement associated to Reynolds number, two other approaches are
introduced with different levels of modelling (cf. Figure 2.4)

• Reynolds Averaged Numerical Simulation, denoted RANS, modelled the Navier-Stokes equations
by Reynolds time-averaging. The flow velocity u(x, t) is decomposed into the mean component
ū(x) and the fluctuation component u′(x, t) whose temporal mean is equal to zeros (ū′ = 0).

u(x, t) = ū(x) + u′(x, t) . (2.77)

In RANS, only the averaged variables are calculated, so the unsteady dynamics of the fluid flow
cannot be represented. Nevertheless, the mesh resolution is conceivably larger leading to a sig-
nificant reduction of computational effort. For this reason, this approach is suitable for industrial
applications.
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2. GOVERNING EQUATIONS FOR LARGE EDDY SIMULATION

Computed in LES

Computed in DNS

Modeled in 
LES

Modeled in RANS

Large Eddies

Small dissipative 
eddies

Inertial Range

Figure 2.1: Sketch of energy density E vs wavelength k in an homogeneous

isotropic turbulence (log-log scale).

scale lt and the computational size are of the same order, the number of grid points

needed to correctly resolve all the turbulent scales scales as

Npoints −
(

lt
��

)3

= Re
9�4
t (2.23)

Therefore for high Reynolds number practical applications, this number rapidly be-

comes out of reach of today�s and tomorrow�s computational power. To circumvent

these limitations, two approaches have been extensively used in the last decades in

CFD.

The fundamental idea of the Reynolds-Averaged Navier Stokes (RANS) ap-

proach is to decompose the turbulent flow into two contributions, a mean flow and its

fluctuations. Formally, an averaging operator is applied to each quantity Q leading to

the Reynolds decomposition

Q =< Q > +Q′ with < Q′ >= 0 , (2.24)

where < Q > is the mean of the quantity and Q′ is the deviation from the mean. The

RANS equations are obtained by applying this averaging operator to the whole set of

Navier-Stokes equations. Thus only the mean quantities are solved. Because of the

non-linear terms of the Navier-Stokes equations, unclosed higher order terms appear

in the transport equations of the mean quantities. They can be modelled or resolved

through additional transport equations in which even higher order unclosed terms will

appear. First or second order closures are generally employed in practice. Closure mod-

els were designed to be suitable for specific configurations (e.g. isotropic turbulence,

flow on a flat plate) but the largest scales of turbulence are largely dependent on the

configuration geometry. Since the whole turbulent spectrum is modelled in RANS, it

might limit the prediction capability of this approach, especially in turbulent combus-

tion applications where interactions between the flow and the flame lead to complex
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Figure 2.4: Different levels of resolution and modelling - Comparison between DNS, LES and RANS
[95].

• In 1963, Smagorinsky [96] proposed Large Eddy Simulation (denoted LES), an intermediate ap-
proach in between DNS and RANS. In LES, the smallest turbulent structures are modelled while
only the largest eddies are resolved. The separation between resolved and modelled scales is re-
alised using the spatial filters depending on the mesh size ∆. By modelling the smallest structure,
the required mesh resolution could be increased compared to DNS.

2.4.3 RANS modelling

As mentioned above, in RANS approach, time-averaging is applied to the Navier-Stokes equations. The
conventional time-averaging is called Reynolds averaging which is defined as follows (average f̄(x, t)

of a physical variable f(x, t)).

f̄(x, t0) = lim
∆t→∞

1

∆t

∫ t0+∆t

t0

f(x, t)dt . (2.78)

The physical variable f(x, t) could be represented by its average f̄(x, t) and its fluctuation f ′(x, t).

f(x, t) = f̄(x, t) + f ′(x, t) . (2.79)

It is worth noting several properties of Reynolds averaging.

f ′ = 0 , (2.80)

f + g = f̄ + ḡ , (2.81)

αf = αf̄ with α = constant , (2.82)

∂f

∂x
=
∂f̄

∂x
, (2.83)

fg = f̄ ḡ + f ′g′ . (2.84)
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For the variable density flows (such as compressible state or combustion), the RANS averaging
shows its inconvenient by introducing many unclosed correlations [97]. Therefore, the mass-weighted
Favre averaging are proposed.

f̃ =
ρf

ρ
. (2.85)

f = f̃ + f ′′ . (2.86)

Several important properties are shown as follows.

f̃ ′′ = 0 , (2.87)

f̃ + g = f̃ + g̃ , (2.88)

α̃f = αf̃ with α = constant , (2.89)

∂̃f

∂x
=
∂f̃

∂x
, (2.90)

f̃g = f̃ g̃ + f̃ ′′g′′ . (2.91)

The Favre mass conservation and momentum conservation equations (cf . equations 2.20 and 2.21)
of the fluid flow could be rewritten as follows.

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0 . (2.92)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂P̄
∂xi

+
∂

∂xj

(
τ̄ji − ρu′′ju′′i

)
. (2.93)

where τ̄ji stands for the viscosity tensor calculated from the averaged velocities.

τ̄ji = −2

3
µ
∂ũk
∂xk

δji + µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.94)

The rewritten equations with Reynolds average have the general form of the instantaneous Navier-Stokes
equations with an additional term −ρu′′ju′′i signified the Reynolds stresses. This term is not resolved
and needed to be modelled to close the above equations. Following the Boussinesq hypothesis, the
Reynolds stresses are stated as the function of the averaged velocity gradients, the turbulent viscosity µt
and the turbulent kinetic energy k = 1

2

∑3
k=1 ũ

′′
ku′′k. In this hypothesis, the turbulent viscosity µt is

assumed isotropic.

− ρu′′ju′′i = −2

3

(
ρ̄k + µt

∂ũk
∂xk

)
δji + µt

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.95)

It is necessary to calculate the turbulent viscosity µt using models. In literature, several models
have been proposed: one-equation Spalart-Allmaras model [98], two-equations k-ε model [99], two-
equations k-ω model [100], etc. A discussion on the model selection for the studied configuration under
flameless combustion regime in this present thesis may be found in the thesis of D. Lupant [32]. This
work concluded that the two-equations RNG k-ε model, is the most suitable.



Turbulent reacting flows 45

2.4.3.1 Standard k-ε

It is useful at first to represent the standard k-ε. Proposed by Launder and Spalding in 1972 [99], k-ε
becomes one of the most popular models for the industrial applications. The turbulent viscosity µt is
modelled as a function of the density ρ̄, the turbulence kinetic energy k, the dissipation rate ε and a
model constant Cµ.

µt = ρ̄Cµ
k2

ε
. (2.96)

The turbulence kinetic energy k and the dissipation rate ε are acquired by solving its transport equations.

∂

∂t
(ρ̄k) +

∂

∂xi
(ρ̄ũik) =

∂

∂xi

[(
µ+

µt
σk

)
∂k

∂xi

]
− ρ̄ũ′′iu′′j

∂ũi
∂xj
− ρ̄ε , (2.97)

∂

∂t
(ρ̄ε) +

∂

∂xi
(ρ̄ũiε) =

∂

∂xi

[(
µ+

µt
σε

)
∂ε

∂xi

]
− C1ε

ε

k
ρ̄ũ′′iu′′j

∂ũi
∂xj
− C2ερ̄

ε2

k
. (2.98)

The model constants could be cited as default values (from Launder et Spalding’s article [99]).

C1ε = 1.44 , C2ε = 1.92 , Cµ = 0.09 , σk = 1.0 , σε = 1.3 . (2.99)

2.4.3.2 RNG k-ε

In the standard k-ε model, the transport equation of k is derived from the exact equation while the
transport equation of ε is written based on the physical reasoning. By this reason, Yakhot et al. [101]
proposed the RNG k-ε model, using the renormalisation group theory (RNG), in order to improve the
accuracy of the standard k-ε model. In RNG k-ε model, the coefficient C2ε is modified, denoted C∗2ε.

∂

∂t
(ρ̄ε) +

∂

∂xi
(ρ̄ũiε) =

∂

∂xi

[(
µ+

µt
σε

)
∂ε

∂xi

]
− C1ε

ε

k
ρ̄ũ′′iu′′j

∂ūi
∂xj
− C∗2ερ

ε2

k
. (2.100)

The C∗2ε coefficient could be calculated from the constant C2ε, the constant Cµ, the density ρ, the turbu-
lent kinetic energy k and the dissipation rate ε with additional constants η0 = 4.38 and β = 0.012.

C∗2ε = C2ε +
Cµη

3(1− η/η0)

1 + βη3
. (2.101)

in which η is described as the function of turbulent kinetic energy k, dissipation rate ε and modulus S of
mean rate-of-strain tensor Sij .

η =
Sk

ε
, (2.102)

S = (2SijSij)
1
2 , (2.103)

Sij =
1

2

(
∂ũj
∂xi

+
∂ũi
∂xj

)
. (2.104)

Besides, the model constants are explicitly acquired in the RNG procedure [102, 103].

C1ε = 1.42 , C2ε = 1.68 , Cµ = 0.0045 , σk = 0.7194 , σε = 0.7194 . (2.105)
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2.4.4 LES modelling

2.4.4.1 Formalism

As previously mentioned, in LES, the small scales are modelled while the large scales are solved. The
scale partioning is accomplished through a spatial filter G∆ which depends on the resolution ∆. A filtered
scalar φ(x, t) could be stated as follows.

φ(x, t) =

∫

R3

φ(y, t)G∆(y− x)dy . (2.106)

∫

R3

G∆(x)dx = 1 . (2.107)

It is worth mentioning that the filtering verifies the commutativity in spatial and temporal derivation
operators.

∂φ

∂t
=
∂φ

∂t
. (2.108)

∂φ

∂xi
=

∂φ

∂xi
. (2.109)

The scalar φ(x, t) is decomposed as the function of the filtered part φ(x, t) and the fluctuation part
φ′(x, t).

φ(x, t) = φ(x, t) + φ′(x, t) . (2.110)

In the variable density cases (such as combustion), the filtered scalar φ could also be weighted by density
ρ by introducing Favre averaging (denoted φ̃).

φ̃ =
ρφ

ρ
. (2.111)

With the Favre averaging, the scalar φ(x, t) could also be partioned into the Favre filtered part φ̃(x, t)
and the Favre fluctuating part φ′′(x, t)

φ(x, t) = φ̃(x, t) + φ′′(x, t) . (2.112)

Opposed to RANS, it is important to note that the φ′ filtered and φ̃′′ Favre-averaged fluctuation are not
equal to zeros.

φ′ 6= 0 , (2.113)

φ̃′′ 6= 0 . (2.114)

The Favre averaged form of conservation equations are deduced from the instantaneous equations
described in section 2.1.3.

• Filtered mass conservation
∂ρ

∂t
+
∂ρũi
∂xi

= 0 . (2.115)

• Filtered momentum conservation

∂ρũj
∂t

+
∂ρũiũj
∂xi

= − ∂

∂xi
[ρ(ũiuj − ũiũj)]︸ ︷︷ ︸

(1)

− ∂P
∂xj

+
∂τ ij
∂xi

. (2.116)
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• Filtered species conservation

∂ρỸk
∂t

+
∂ρũiỸk
∂xi

= − ∂

∂xi

[
ρ(ũiYk − ũiỸk)

]

︸ ︷︷ ︸
(2)

− ∂

∂xi

(
−ρVk,iYk

)
︸ ︷︷ ︸

(3)

+ ω̇k︸︷︷︸
(4)

. (2.117)

• Filtered energy conservation

∂ρh̃s
∂t

+
∂ρũih̃s
∂xi

= − ∂

∂xi

[
ρ(ũihs − ũih̃s)

]

︸ ︷︷ ︸
(5)

+
DP

Dt
+

∂

∂xi

(
λth

∂T

∂xi

)

︸ ︷︷ ︸
(6)

(2.118)

− ∂

∂xi


ρ

Nsp∑

k=1

hs,kYkVk,i




︸ ︷︷ ︸
(7)

+ ω̇T︸︷︷︸
(8)

. (2.119)

The terms noted from (1) to (8) are the unresolved terms appeared after Favre averaging procedure
and should be modelled. The models are introduced as below.

• The first term (1) ρ(ũiuj − ũiũj) stands for the sub grid Reynolds stress tensor, denoted τ
′
ij ,

which corresponds to the transport of momentum by unresolved velocity fluctuation and the energy
transfer between the solved and modelled scales. Using the Boussinesq hypothesis [104], the
sub grid Reynolds stress tensor τ

′
ij is rewritten.

τ
′
ij = µt

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µt
∂ũk
∂xk

δij , (2.120)

in which the turbulent dynamic viscosity µt = ρνt is later modelled by several turbulent sub grid
scale models, such as the Smagorinsky model, the dynamic Smagorinsky model or the WALE
model which are aggregated in section 2.4.4.2 below.

• The second (2) and fifth (5) terms are respectively the sub grid species F ′k,i and the enthalpies
flux Q′i. These terms are modelled by introducing the turbulent Schmidt number Sct and the
turbulent Prandtl number Prt. The two numbers could be constant or adjustable through other
variables (for example, equation 2.31).

F ′k,i = ρ(ũiYk − ũiỸk) = − µt
Sct

∂Ỹk
∂xi

. (2.121)

Q′i = ρ(ũihs − ũih̃s) = − µt
Prt

∂h̃s
∂xi

. (2.122)

• The third (3) term is the filtered laminar diffusive fluxes of species. And the sixth (6) and sev-
enth (7) terms are the filtered laminar diffusive fluxes of enthalpy. These terms are commonly
described by the resolved variables while neglecting the sub grid scale part.

ρVk,iYk = −ρ̄Dk
Wk

W

∂X̃k

∂xi
, (2.123)

λ
∂T

∂xi
= λ

∂T̃

∂xi
, (2.124)

ρ

Nsp∑

k=1

hs,kYkVk,i = −ρ
Nsp∑

k=1

Dk
Wk

W

∂X̃k

∂xi
h̃s,k . (2.125)
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• The fourth (4) and the eighth (8) terms are respectively the filtered species chemical rate and the
filtered enthalpy source term. These terms could be modelled by the tabulation methods (PDF)
or the transported methods coupling with the detailed or skeletal chemical mechanism. In this
present thesis, another approach applying the machine learning and neural networks is proposed.
Further details are shown in chapter 4.

2.4.4.2 Turbulent sub grid scale models

The effect of the unresolved small turbulent structure is deciphered into the variation of the turbulent
dynamic viscosity µt in the first (1) term mentioned above.

• The first model is proposed by Smagorinsky [96], named the Smagorinsky model which relies
on the equilibrium of the energy production and dissipation of the small scale structure. In this
model, the turbulent dynamic viscosity µt is described by the density ρ, the characterised mixing
length Ls = CS∆ and the modulus S̃ of the filtered mean rate-of-strain tensor S̃ij

µt = ρ̄L2
s|S̃| = ρ̄ (CS∆)2 |S̃| = ρ̄ (CS∆)2

√
2S̃ijS̃ij , (2.126)

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, (2.127)

in which Cs is the Smagorinsky constant (commonly Cs = 0.77) and ∆ is the characteristic filter
width. In practice, the characteristic filter width ∆ is taken as the local grid scale which can be
determined by the mesh cell volume V .

∆ = V
1
3 (2.128)

• The constant Cs is not universal and is the shortcoming on the Smagorinsky model. Germano
[105] and Lilly [106] developed a procedure that allows to calculated dynamically and locally Cs
based on the informations of resolved scales. By this reasoning, the model named the dynamic
Smagorinsky model. The model employs a second filter, denoted (̂·), with the second filter width
∆̂ which is commonly equal to twice the first grid filter ∆ (∆̂ = 2∆). Both filters provide the
filtered sub grid tensor τij and Tij .

τij = 2ρ (Cs∆)2 |S̃|(S̃ij −
1

3
S̃kkδij) , (2.129)

Tij = 2ρ̂
(
CS∆̂

)2
|̂̃S|(̂̃Sij −

1

3
ˆ̃Skkδij) . (2.130)

The Germano identity is retained to attach two filtered tensors.

Lij = Tij − τ̂ij = ρ̄
(
̂̃uiũj − ̂̃ui ̂̃uj

)
. (2.131)

The locally-varied coefficient Cs is then expressed as follows.

Cs =
(Lij − Lkkδij/3)

MijMij
. (2.132)

in which
Mij = −2(∆̂2 ˆ̄ρ| ˆ̃S| ˆ̃Sij −∆2ρ̄|̂S̃|S̃ij) . (2.133)
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• As indicated previously, the turbulent viscosities (µt or νt) represent the energy transfer from the
resolved scale to the modelled sub grid scale through the sub grid dissipation. The Smagorinsky
models considered the sub grid dissipation as the local strain rate of the smallest resolved scales.
In 1989, Wray and Hunt [107] demonstrated through DNS simulations that the turbulence con-
centrated not only around the zones with the strain rate but also with the vorticity (ie. rotational
rate). This study showed the shortcoming of the Smagorinsky models. In addition, the Smagorin-
sky model gives the non-zeros values of the turbulent viscosities near wall while they should be
(the turbulence are damped at walls). The dynamic procedure solved the problem but created
conceivably the large negative coefficients Cs resulting in the numerical instability.

Therefore, Nicoud et al [108] conceived Wall-Adapting Eddy-Viscosity model or WALE adapt-
ing both the strain rate and vorticity, leading to a better prediction around the near-wall zones. In
this model, the turbulent dynamic viscosity µt is expressed as a function of the model constant Cω
(0.5 by default [108], 0.325 in Fluent and Code-Saturne), the tensor sdij and S̃ij .

µt = ρC2
ω∆2

(sdijs
d
ij)

3/2

(S̃ijS̃ij)5/2 + (sdijs
d
ij)

5/4
, (2.134)

The tensor sdij is determined as follows.

sdij =
1

2

(
h̃ij + h̃ji

)
− 1

3
h̃kkδij , (2.135)

h̃ij = g̃ikg̃kj , (2.136)

g̃ij =
∂ũi
∂xj

. (2.137)

2.5 Radiation

The effect of heat transfer is considerable in the industrial furnaces. The heat transfer in the configuration
under flameless combustion regime studied in the present work is dominated by the radiation (80% on
overall the heat released by combustion). Hence, the effect of radiative transfer is essential for the
numerical simulations. Nevertheless, this thesis focuses on the combustion modelling, thus, the classical
radiative models are chosen and briefly described in this section. The radiative impacts are in the scope
of the subsequent project.

The radiation is represented by the spectral radiation intensity Iν determined by solving the radiative
transfer equations (RTE) [109]. There are several methods to solve the RTE equations, such as P-1 model,
Discrete Transfer Radiation model (DTRM), Discrete Ordinates model (DOM), etc. The DOM method
gives a fair accuracy with the reasonable computational cost, hence, it is widely used in the industrial
applications. The RTE of this model is written as below [109].

dIν
ds

(r, s) + (a+ σs) Iν(r, s) = an2σT
4

π
+
σs
4π

∫

4π
Iν
(
r, s′

)
φν
(
s, s′

)
dΩ′ . (2.138)

in which r is the considered position, s and s′ refers respectively to the propagation and scattering
direction, a represents the absorption coefficient, σs stands for the scattering coefficient , n characterises
the refractive index, the Stefan-Bolzmann constant σ equals to 5.669 · 10−8 W

m2·K4 , T describes the local
temperature, φν is defined as the phase function and Ω′ depicts the solid angle.
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At each position r, the DOM solves a system ofM transport equations of the radiation intensity Iν in
M corresponding directions s (that also means theM corresponding solid angles in 4π steradians around
the mesh node r). The number of directions M is selected by the DOM numerical quadratures SN (or
numerical integration) where N is the quadrature order. The relation between the direction number M
and the quadrature order N is M = N(N + 2). Therefore, the quadrature S4 (N = 4) has M = 24

directions. The DOM-S4 is retained in this work.
The combustion occurred in the furnace modifies the radiative properties of the fluid flow through

the absorption coefficient characterised by the radiant gaseous species, typically in the flue gases, such as
H2O, CO2 and CO. The modelling of this radiative properties is complex since the absorption coefficient
is frequently described by millions of spectral lines. Modest et al [109] showed that the water vapor has
9.5 millions of spectral lines in only 6.3µm band at P = 1bar and T = 1000K (cf. figure 2.5).

Figure 2.5: Absorption coefficient spectral lines of water vapor in 6.3µm band at P = 1 bar and T =

1000K [109].

The absorption coefficient calculation through all spectral lines is possible by using the line-by-
line method [110], however, the computational cost is undoubtedly tremendous. In order to cope with
this bottleneck, the Weighted-Sum-of-Gray-Gases (WSGG) is proposed and becomes popular for indus-
trial applications. This model assumed that the spectral lines are characterised by I gray gases which
contribute to the fluid radiative properties calculation (the fluid absorption coefficient a and the fluid
emissivity ε). The formulas are represented as follows.

a = − ln(1− ε)
s

(2.139)

ε =

I∑

i=0

aε,i(T )
(
1− e−κips

)
(2.140)
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aε,i =
J∑

j=1

bε,i,jT
j−1 (2.141)

in which the κi and bε,i,j refers respectively to the absorption coefficient and the temperature-dependent
emissivity polynomial coefficient of ith gray gases which could be found in [111], p stands for the sum
partial pressure of the radiant gases (such as H2O, CO2 and CO) and s corresponds to the path length.

In practice, the sum partial pressure p and the path length s could be determined as follows.

p = P (XH2O +XCO2 +XCO) (2.142)

s =
3.6V

A
(2.143)

where P is the total pressure; XH2O, XCO2 and XCO correspond respectively the mole fraction of H2O,
CO2 and CO; V and A stand respectively for the volume and area of the considered configuration.
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Chemical schemes reduction for
applications under flameless combustion
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ArcelorMittal is operating, designing and upgrading large scale and high-power combustion systems
for applications ranging from upstream primary to finishing steelmaking processes, including coke bat-
tery, blast, reheating, treatment and annealing furnaces. The energy released by combustion serves to
transform the materials and to reheat the products for rolling or treatment.

In the context of decarbonization, CO2 emissions mitigation, increasing energy costs and more strin-
gent regulation on environment (NOx emissions), it is mandatory to revisit these industrial combustion
systems. Actions must be taken at every single opportunity we have regarding the valorization of any
type of Low Carbon Fuel (LCF) gases produced by our plants or by external parties for our steelmaking
processes or for other industries. Multi-fuel injection is an efficient way to valorize LCF gases. LCF
includes auto-produced by-product steel gases (Coke Oven Gas (COG), Blast Furnace Gas (BFG), Basic
Oxygen Furnace Gas (BOFG)), biogases, green hydrogen, ... Figure 3.1 shows a very large-scale steel
slab reheating furnace (60m x 12m x 5m) featuring multi-fuel LCF injection systems. The use of auto-
produced steel gases can significantly reduce the environmental impact and contribute to energy saving
[112, 113, 114]. The use of biogases and green hydrogen issued from renewable energy sources leads
to the decarbonization. In practice, these situations often lead to systems featuring multiple injections
of fuel and oxidizers, and flameless oxidation technology appears to be the best choice to stabilize such
combustion.
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Computational Fluid Dynamics (CFD) is a well-adapted tool to help in the design phase. It is impor-
tant to note that 3D simulation with detailed chemical schemes such as GRI3.0 [36] (53 species and 325
elementary reactions) or POLIMI version 1412 [37] (107 species and 2642 reactions) is not practicable
for industrial applications. This is due to the very high number of species involved and their stiff compli-
cated chemical paths. Along this line, the numerical tool ORCh (http://orch.coria-cfd.fr)
for chemistry reduction was extended to account for specific application conditions. To this end, heat
loss effect due to radiative heat transfer and dilution by burnt gases will be introduced into ORCh, to
which accurate control of the reduced scheme stiffness will be added. Then, reduced chemistries will
be produced for conditions of interest and applied to the numerical simulation of lab-scale furnace for
validation against experimental measurements.

(a)

(b)

Figure 3.1: ArcelorMittal Gent’s steel slab reheating furnace (a) and its schematic showing multi-fuel
injection (b)

http://orch.coria-cfd.fr
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3.1 Optimised and reduced chemistry (ORCh)

ORCh (Optimised and Reduced Chemistry) is an automated method to reduce and optimize detailed
chemical scheme (http://orch.coria-cfd.fr) [115, 59]. ORCh simulates the time evolution
of thermochemical variables (such as the temperature, the mass fraction of species, etc.) without solving
the flow, by applying a stochastic turbulent micro-mixing closure with chemistry and other relevant
phenomena (evaporation, dilution, etc.) representing the mixture evolution inside the real system.

In ORCh, the inlet are modelled into a set of stochastic particles which carry the thermochemical
informations of the inlet which they belong to. The thermochemical variables φpk(t) of pth particle
evolves temporally by solving the stochastic equations.

∂φpk(t)

∂t
= MIXp(τT) + ω̇pφk , (3.1)

in which ω̇pφk is the stochastic chemical source term and MIXp(τT) corresponds to the Curl [116] or
Euclidean Minimum Spanning Tree (EMST) [117] micro-mixing closure characterised by the mixing
time τT. It is noteworthy that the number of particles from each inlet are set proportionally with the
injection mass flow rate.

The procedure of ORCh generally consists of three major stages (cf. Figure 3.2). In the first stage,
the trajectories simulated from the fully detailed scheme are calculated and serve as the references for
conducting the reduction and optimisation procedure. Secondly, the species and the reactions are re-
moved from the detailed scheme by the Direct Relation Graph with Error Propagation method (DRGEP)
[118, 119] depending on its level of importance against the target species which have been selected.
After this stage, a reduced scheme is available but the reaction rates from the Arrhenius equation (pre-
exponential constant A, temperature exponent b and activation energy B) still remain the original values
of the detailed scheme, thus, this main limitation of this technique leads to the incorrect fuel/air reactiv-
ity (estimate through ignition delay time). By this reasoning, the optimisation process is applied in the
last stage using a genetic algorithm to correct the rate parameters to match the response of the reduced
scheme over the reference trajectories.

Figure 3.2: ORCh methodology

The optimization process is unable to adapt directly on the stochastic trajectories due to the large
number of particles presented. Hence, the stochastic informations are compressed into Ni deterministic
trajectories where Ni corresponds to the number of inlets modelled. The deterministic thermochemical
variables φD

k (t) are computed by solving the Linear Mean-Square Estimation (LMSE) [120] or Interac-
tion by Exchange with the Mean (IEM) [121] equations coupling with the relaxation by the average of N
stochastic particles.

∂φD
k (t)

∂t
=

1

τT

(∑N
p=1 φ

p
k(t)

N
− φDk (t)

)
+ ω̇Dφk . (3.2)

http://orch.coria-cfd.fr
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in which ω̇Dφk refers to the deterministic chemical source term.
ORCh has been validated first for the methane combustion [58, 59, 57]. Its applications spread

from aircraft engines [57] to the large-scale furnaces with urea DeNOx [28] and the perfluorocarbon
CxFy decomposition process. Reduced chemistry produced by ORCh has also been employed for the
simulation of the micro- and meso-scale combustion systems [122, 123, 124].

3.2 Strategy for chemical schemes reduction including heat loss

This PhD work contributes to ORCh by adding the capability of considering the heat loss due to con-
vection and radiation, in order to generate a reduced and optimised scheme for numerical simulation
of furnaces operating at specific condition under flameless combustion regime. This concept has been
attempted on a lab-scale furnace (called UMONS furnace - cf. section 3.3 below). This concept, inspired
from [125], intends to calibrate the variation of enthalpy (or heat loss) in the ORCh calculation process
by using the data collected from 3D CFD simulation as a resource. The procedure is decomposed into
the following steps:

• The 3D Fluent [126] RANS simulation of UMONS furnace is performed by using the verified
scheme KEE58 [47] (containing 18 species & 58 reactions) with validation against experiments
[32]. The simulation data allows to map the variation of enthalpy across the z-position axis
hCFD(z) (ie. stream-wise direction) by using the cross-section average (Area Weighted Average)
on multiple plans.

• ORCh provides the variable trajectories in time (i.e. T (tORCh), Y (tORCh)). Hence, a transforma-
tion from the physical space quantities of 3D Fluent simulation hCFD(z) into the time fields of
0D ORCh calculation hCFD(tORCh) is required and obtained through the formula below.

tCFD(z) =

∫ z

0

1

u(z)
dz . (3.3)

where tCFD(z) is the average time needed for the fluid particles entering the system to reach the
stream wise position z and u(z) is the averaged space velocity (Area Weighted Average) across
the z-position axis collected from 3D simulation.

• Once the residence time distribution tCFD(z) is known, the time evolution of enthalpy hCFD(tCFD)

is imposed to the stochastic particles evolution in ORCh. In other words, each particle loses a spe-
cific amount of heat calculated from hCFD at the residence time tCFD.

• The heat loss capture procedure from CFD and the particle heat loss calculation inside ORCh are
shown in the figure 3.3 (respectively left and right side). In the calculation process, the coefficient
weightp represents the different amount of heat loss depending on the characteristic of each par-
ticle (subscript p for particle). Many hypotheses were attempted to establish this coefficient under
the constraint that the sum of particles enthalpy after loss should be equal to the enthalpy of CFD
simulation. The decisive formula which is determined with the idea of "Cold particles loses less"
is given below (Tp is the particle temperature).

weightp =
Tp∑N
p=1 Tp

. (3.4)
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At this stage, ORCh can then handle the actual heat loss in the furnace to generate the reduced and
optimised scheme for UMONS furnace case accordingly. The procedure of this strategy is summarized
in the figure 3.3.

Figure 3.3: Novel strategy to introduce the heat loss from CFD into ORCh. Heat loss capture procedure
on the left. Particle heat loss calculation procedure inside ORCh on the right.

From the equation 3.1, the enthalpy stochastic equations (φpk(t) = hps(t)) are modified to include the
heat loss ∆p calculated for each particle p.

∂hps(t)

∂t
= MIXp(τT) + ω̇phs + ∆p , (3.5)

3.3 UMONS case configuration

Lab-scale UMONS case is the test rig of the University of Mons, it will serve as a database for refined
validations [127, 128, 129]. This 30kW pilot furnace operates under the flameless mode, hence with high
dilution by burnt gases and strong heat transfer to the thermal charge and the radiation stands for about
80% of the total heat transfer. This lab-scale furnace was designed to mimic some of the main features
of industrial furnaces (injection system, geometry, air preheating, variable thermal charge).

The combustion chamber is made of stainless steel and is equipped with a fibrous ceramic heat
insulation layer. It has a square inner section of 0.35m x 0.35m with 1.0m high. One air injection with
24.8 mm exit diameter is located in the center. Two gas injectors with 11◦ tilt angle are symmetrically
located around the air injector. The exit diameter of the gas injector was designed to stabilize flameless
combustion. The overview of this pilot furnace is showed at Figure 3.4 and 3.5. More information can
be found in the PhD thesis of G. Mosca [128].

The combustion chamber is fed with the preheated air (up to 800◦C by an electrical preheater) and
the LHV fuel, named B50, which is composed of 50%vol of blast-furnace gases (BFG) and 50%vol of
coke-oven gases (COG) while both are the auto-produced by-product fuel gases. The blast-furnace gases
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Figure 3.4: UMONS flameless combustion furnace. Front real picture (left) and 3D model (right) [128].

have a very low heating value, hence, it could not be used individually. The fuel gas compositions are
realized using a mixing unit equipped with mass flow meters and controllers fed through pure gas bottles.
The thermal charge and the furnace temperature are controlled through four water cooling tubes (heat
sink) the immersion of which can be regulated from 0 to 90 cm and a reduced water circuit along the
outer walls. Each vertical wall of the combustion chamber has a removable part. A wall (on the rear side)
is equipped with a quartz window to allow for optical access and image recording. A LaVision intensified
camera with UV filter centered at 329nm is used to take images of chemiluminescent self-emission of
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Figure 3.5: Schematic representation of UMONS furnace (left) and the dimensions in mm (right) [128].

OH* radicals at 308nm wave-length [130]. OH* imaging allowed for determining the position of main
reaction zones. A side wall (on the right) is equipped with eight S-type thermocouples, 0.09m separated
each other and mounted flush with the insulation layer, in order to get a wall temperature profile along the
furnace height in the vertical symmetry plane containing the air and gas injectors. The measurements of
temperature and species concentration at the furnace exit and inside the furnace were realized by the two
home-made probes which are inserted inside the furnace through fourteen holes on the wall opposite to
the thermocouples wall. The suction pyrometer probe is equipped with a S-type thermocouple and works
with a Venturi’s tube connected to an air compressed circuit. The gas sampling probe is equipped with
a vacuum pump to extract burnt gases with a flowrate equal to 210Nl/h. Water is removed and the dry
sample is sent in parallel to the chromatograph and gas analysers. The concentrations of O2, CH4, CO2

and CO (on dry basis) were measured by the paramagnetic and infrared gas analysers. Measurement of
H2 and N2 and another measurement of O2, CH4 and CO were realized by the gas chromatograph. More
details regarding the experimental procedure and measurements can be found in our previous works
[32, 128, 131, 132]. The composition and mass flow rate of the B50 and air inlets are taken from the
experimental conditions (cf. Table 3.1).

For the purpose of modelling the recirculation gas into the 0D ORCh calculation, a virtual inlet
is added (named recirculation inlet). This inlet represents the fumes recirculated from the top of the
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furnace. The mass flow rate of this inlet is calculated from the dilution rate. It should be noted that the
dilution rate is varied depending on the type of fuel to achieve the MILD combustion regime. According
to our studies [128, 129], the dilution rate (cf. equation 1.7) for B50 fuel is around 5 (Kv = 5) . The
composition and temperature of the recirculation inlet should be determined under the constraints that
the global equivalence ratio remains the same as the operating conditions of the UMONS 2-inlets case
(as a result of the atomic mass conservation of each element such as C, H, O, N). From a practical point
of view, the outlet condition can be chosen as the third virtual recirculation inlet. Therefore, the outlet
temperature and composition, as shown in Table 3.1, are considered as the recirculation inlet condition
taken from the 3D Fluent simulation result (averaged values from outlet).

Inlet B50 Air Recirculation
XCH4 0.1425 - -
XH2 0.325 - 0.0000311
XN2 0.28 0.79 0.6962957
XO2 - 0.21 0.0171846
XCO2 0.12 - 0.1124177
XCO 0.1325 - 0.0000858
XH2O - - 0.1738373
XOH - - 0.0001407
T(K) 290.65 1075.66 1376.1825
Mass flow rate (kg/s) 0.002572941 0.010293228 0.064330844
Pressure (Pa) 101325 101325 101325

Table 3.1: UMONS inlet conditions.

3.4 Results and discussions

3.4.1 0D time evolution simulation of ORCh

3.4.1.1 Heat loss implementation

In the first place, the heat loss has been implemented into ORCh by applying the procedure presented in
the section 3.1 and 3.2 on the two detailed chemical schemes GRI3.0 [36] (53 species and 325 elementary
reactions), POLOMI version 1412 [37] (107 species and 2642 reactions) (cf. section 1.1.5). Figure
3.6 shows the averaged enthalpy calculated from Fluent and from ORCh (with or without heat loss
implementation). The results confirm that ORCh is able to reconstruct the enthalpy in the heat loss case
with only a small variation.

Scheme Number of species Number of reactions
GRI3.0 53 325
POLIMI1412 107 2642
KEE58 18 58

Table 3.2: Two detailed chemical schemes GRI3.0 and POLIMI1412, and one reduced scheme KEE58.
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Figure 3.6: Averaged enthalpy collected in the case tested with GRI3.0 (red) and POLIMI1412 (green)
from Fluent (blue star markers), ORCh with heat loss implementation (red and green solid line) and
without heat loss implementation (red and green dashed line).

The deterministic trajectories from each inlet are also computed for three different schemes (cf. Table
3.2) in two cases with and without the heat loss for further analysis (cf. Figure 3.7 and Figure 3.8). The
trajectories indicate that in the case without the heat loss (dashed lines), the three detailed chemical
schemes return similar trajectories of the temperature and the major species (CH4, H2, O2, CO, CO2,
H2O, N2 - Figure 3.7). However, the minor species (CH3, CH2O, HO2, OH, O, H, HCO - Figure 3.8) in
this case (i.e. without heat loss) achieve different peaks. The heat loss (solid lines) affects the evolution of
both major and minor species and also the ignition delay time. The final state of temperature is different
between the cases with and without heat loss. The final equilibrium state of all major and minor species
is not profoundly modified by heat loss because of the weak impact on intermediate species dissociation
of the heat loss levels considered. However, this is not exactly the case for OH. The equilibrium state
of OH in the case with heat loss is slightly lower (in the order of 10−5) as compared to the case without
heat loss because of the lower temperature caused by the thermal loss. The final state in the case with
heat loss is also compared with the outlet result obtained with the CFD simulation (cf. Table 3.3). A
good agreement is obtained for the temperature, the mass fractions of the combustion products (CO2,
H2O, N2) and the excess O2 while the mass fractions of reactants (CH4, H2, CO) present discrepancies
but their values are extremely low as they are supposed to be fully oxidated.

It should be reminded that G. Mosca [128] simulated this UMONS furnace using KEE58 mechanism
(which is a reduced scheme derived from GRI) and reported the good overall trends of species mole
fraction but the important differences in proximity of the air jet and the significant over-prediction of the
temperature peak. It is also important to note that the full CFD simulation using the detailed scheme
such as GRI3.0 and POLIMI1412 is remarkably rare, even has not been performed, especially in MILD
combustion regime for the industrial furnaces. The interesting aim of this work is to carry out these simu-
lations on the reduced schemes but highly optimised to mimic the behaviour of the detailed scheme. The
simulation results will be observed and compared with the experiment data and the difference between
the schemes will be analysed in the next section 3.4.2.
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Final state ORCh CFD UMONS outlet
T(K) 1396.2 1376.1825
YH2 5.29898e-08 2.21004e-06
YCH4 1.33949e-14 1.19033e-14
YCO 1.11311e-06 8.53729e-05
YCO2 0.175468 0.175860
YN2 0.693336 0.693160
YO2 0.0201569 0.019551
YH2O 0.111023 0.111249

Table 3.3: Comparison between the final equilibrium state from ORCh and the outlet conditions of
UMONS CFD case.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Deterministic trajectories of temperature and major species at B50 inlet for 2 cases: with
(solid line) and without (dashed line) heat loss. Schemes used: GRI3.0 (red), POLIMI1412 (green),
KEE58 (black).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.8: Deterministic trajectories of minor species at B50 inlet for 2 cases: with (solid line) and
without (dashed line) heat loss. Schemes used: GRI3.0 (red), POLIMI1412 (green), KEE58 (black).
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3.4.1.2 Reduction and optimisation

For the reduction and optimisation including heat loss effect, the species CH4, O2, CO2, CO, H2O and
H2 were chosen as targets. As a result, two 14 species and 15 reactions schemes (cf. Table 3.4 and 3.5)
are generated, named respectively GRI30-14S15R (Table 3.6) and POLIMI1412-14S15R (Table 3.7).
The 14 species are identical within 2 schemes but the reactions are different. It is worth noting that their
scheme reaction rates were also optimised to procure the well fitted trajectories.

Scheme Number of species Number of reactions
GRI30-14S15R 14 15
POLIMI1412-14S15R 14 15

Table 3.4: Two reduced chemical schemes generated.

Species
H2 H O O2 OH H2O HO2 CH3 CH4 CO CO2 HCO CH2O N2

Table 3.5: Remained important species after ORCh reduction.

GRI30-14S15R A β Ea
1 O + CH3� H + CH2O 1.64e+13 0 0
2 H + O2 + M� HO2 + M 5.58e+17 -0.86 0
3 H+O2+H2O� HO2+H2O 8.28e+18 -0.68 0
4 H+O2� O+OH 9.92e+16 -0.63 16230
5 H+HO2� 2OH 9.19e+13 0 673
6 H+CH2O� HCO+H2 1.52e+07 1.97 2987
7 OH+H2� H+H2O 1.5e+08 1.47 3765
8 2OH� O+H2O 47300 2.43 0
9 OH+HO2� O2+H2O 9.57e+13 0 0

10 OH+HO2� O2+H2O 6.1e+14 0 15916
11 OH+CH4� CH3+H2O 1.02e+08 1.55 2925
12 OH+CO� H+CO2 5.49e+07 1.19 71
13 OH+CH2O� HCO+H2O 2.91e+09 1.34 0
14 HCO+M� H+CO+M 1.76e+17 -0.86 15591
15 HCO+O2� HO2+CO 7.61e+13 0 459

Table 3.6: Reduced & optimised GRI30-14S15R scheme (14 species & 15 reactions). Units are
cal/mole, mole, cm−3, s, K.

The results are regrouped in Figure 3.9 (B50 inlet) and Figure 3.10 (Air inlet). The results reveal
that the reduced scheme (dotted line) is able to mimic the progress of the variables (temperature and
mass fraction) of the detailed scheme (solid line) with a fewer number of species and reactions (39
species & 310 reactions for GRI30 case and 92 species & 2627 reactions for POLIMI1412 case have
been removed). This confers a considerable advantage in computational cost in 3D CFD simulation,
even compared to the reduced scheme KEE58 from literature (consisting of 18 species and 58 reactions).
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POLIMI1412-14S15R A β Ea
1 H+O2� OH+O 7.88e+15 -0.16 18910
2 H+ O2 (+ M)� HO2 (+ M ) 3.4e+13 0.39 0
3 OH+HO2� H2O+O2 1.07e+15 0 820
4 H+HO2� OH+OH 3.06e+14 0 2037
5 OH+OH� O+H2O 35800 2.37 0
6 O2+HCO� HO2+CO 3.54e+13 0 0
7 CO+OH� CO2+H 6.55e+11 0.14 7839
8 CO+OH� CO2+H 1.08e+11 0.03 0
9 HCO+M�CO+H+M 4.02e+18 -1.01 17023
10 OH+CH3� CH2O+H2 3.14e+13 0 0
11 OH+CH3� O+CH4 1.61e+12 0 8298
12 H+H2O� H2+OH 5.61e+09 0.93 15504
13 OH+CH4→ H2O+CH3 1.72e+06 1.95 1581
14 CH3+H2O→ CH4+OH 478000 2.13 15832
15 OH+CH2O→ H2O+HCO 1.09e+07 2.13 0

Table 3.7: Reduced & optimised POLIMI1412-14S15R scheme (14 species & 15 reactions). Units are
cal/mole, mole, cm−3, s, K.

In the Figure 3.10, a slight difference of CH4, H2, CO mole fraction in both GRI30 and POLIMI1412
case are reported. The difference is caused by the lack of reactions describing further the chemical paths
of these species, which were deleted by the reduction procedure.
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(g) (h)

Figure 3.9: Deterministic trajectories of temperature and major species at B50 inlet after ORCh reduction
and optimisation. Detailed scheme: solid line, Reduced scheme: dotted line. GRI3.0: red, POLIMI1412:
green, KEE58: black.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: Deterministic trajectories of temperature and major species at Air inlet after ORCh reduction
and optimisation. Detailed scheme: solid line, Reduced scheme: dotted line. GRI3.0: red, POLIMI1412:
green, KEE58: black.
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3.4.2 3D CFD RANS simulation

3.4.2.1 Numerical simulation setup

The two reduced and optimised schemes described in the previous section and the KEE58 scheme [47]
were implemented into the Ansys Fluent c© [126] flow solver and the simulations were carried out for
the flameless combustion of the UMONS furnace (cf. section 3.3). The KEE58 scheme was validated
for MILD combustion for various mixtures of H2 and CH4 [133, 134, 135]. In Galletti et al. [134], the
KEE58 mechanism gave very similar results as compared to GRI-3.0 detailed mechanism [36] in term
of mean temperature prediction and the error is less than 5% in comparison with experiment. Also in
Aminian et al. [133], KEE58 showed more reliable predictions than other schemes such as DRM-19 and
DRM-22 [136] in terms of temperature and species concentrations for MILD combustion of CH4 and H2

mixtures. In the recent studies of Silei et al. [137] and Ferrarotti et al. [138] for the MILD and flameless
combustion systems which are similar to that in the present study, i.e., MILD or flameless conditions are
obtained by burner designs to create internal flow recirculation, the KEE58 scheme provided satisfied
predictions. It is also to notice that MILD combustion was studied in the framework of RANS modeling,
using EDC [139, 133, 140, 141, 134, 135] or FGM (Flamelet Generated Manifold) [142] to account for
turbulence chemistry interaction.

The CFD solution is obtained numerically by solving RANS equations in steady state. The choice of
k − ε RNG turbulence model [143] for this study is recommended from the study on the same furnace
of Lupant [32, 132] who carried out a deep analysis of the effect of different turbulence models (of the
two families k − ε and k − ω) considering the species distribution in a non-reacting mixture, to validate
the turbulence model independently from the combustion model. The k − ε RNG model developed
for strained flows is found appropriate to predict the turbulent flow field in the flameless combustion
characterized by intense recirculation.

The turbulence-chemistry interaction was modeled using Eddy- Dissipation Concept (EDC) [34, 144]
to consider finite rate chemistry effects. A transport equation for each of these chemical species is solved
except for nitrogen. The in-situ adaptive tabulation (ISAT) [145] was used to accelerate the chemistry
integration. EDC model was used in its standard form even though some improvement for temperature
prediction can be obtained by modifying or calculating directly volume fraction and residence time con-
stants of species in fine structures based on local flow characteristics [139, 133, 140, 141]. However,
in the recent study of Silei et al. [137] for the MILD combustion system which is similar to that in the
present study in the sense that MILD condition is obtained by burner design to promote internal flue
gas recirculation, the standard EDC model (with KEE58 chemical scheme) provided satisfied predic-
tion while the EDC models with modified or locally calculated model constants did not show effective
improvement. The flameless condition in the current study is different from that of Jet-in-Hot-Coflow
flames for which EDC constants modifications were proposed [139, 133, 140].

The gaseous radiative properties are modelled using the weighted-sum-of-gray-gases (WSGG) ap-
proach [146]. In the WSGG approach, the non-gray gas is replaced by an equivalent number of gray
gases with different absorption coefficients and emissivity, for which the heat transfer rates are calcu-
lated independently. The total heat flux is then calculated by adding the heat fluxes of each gray gas.
In the present work, the gaseous radiative properties (emissivity weighting factor and absorption coeffi-
cient) of combustion products (H2O and CO4) are calculated using the widely used correlation proposed
by Smith et al. [111]. Three gray gases were considered in the study to keep CPU time and memory
requirements acceptable [147, 148, 129]. The discrete ordinate method (DOM) [149] was used for angu-
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lar discretization of the radiative transfer equation (RTE) with nine solid angles per octant (3x3). DOM
was chosen, because it is sufficiently accurate, acceptable in terms of computational cost [150], and ap-
plicable across a wide range of optical thicknesses, which is not well known in flameless combustion
[31].

The computational domain corresponds to the whole gas volume inside the furnace. The grid was
made unstructured with nearly six million hexahedral cells considering the grid independence study
carried out in the same furnace operating on natural gas for a quarter of domain thanks to symmetry
[32, 132]. The results showed that when the grid size increased from 640 thousand hexahedral cells to
1.3 million hexahedral cells (equivalently 2.56 million hexahedral cells to 5.2 million hexahedral cells
for the full domain in the present study), no more sensibility to grid size was observed for temperature
and chemical species. y+ = 1 on the walls of the air and gas injections while on the furnace walls y+ is
mainly around 15 and does not exceed 30. The resolution in the shear layer is h = 7µm. The boundary
conditions were calibrated using the experimental measurements. Temperature, gas composition and
mass flow rates are fixed at inlets. For the other walls, the total heat loss (ploss) from experimental heat
balance is considered uniformly distributed on the walls with total surface (swall), and used to deduce a
global heat transfer coefficient (k) between the inner wall temperature (Tinn) (average measured value)
and the external environment temperature (Text). The expression for k is:

k =
ploss

swall(Tinn − Text)
, (3.6)

3.4.2.2 Energy balance and measurements at the furnace exit

Table 3.8 compares the energy terms between the experiment and the simulation. It is noticed that the
air preheating power was subtracted from the flue gas loss in order to consider the fuel power as a single
input (this would be the case if the air was preheated by the flue gases as in an industrial recuperative
or regenerative burner). The numerical simulation is able to reproduce the different terms measured
experimentally, confirming the closure of the energy balance. 57% of the power input is transferred to
the thermal charge and 80% of which is transferred by radiation and 20% by convection. This result
confirms a consistency between the simulations and the experiment.

Experiment KEE58 GRI30-14S15R POLIMI1412-14S15R
Fuel power 30.0 ± 0.01 31.202 29.788 29.452

Thermal charge 17.16 ± 0.58 17.107 17.003 16.983
Flue gas loss 8.96 ± 0.11 8.703 8.649 8.653

Wall loss 3.86 ± 0.61 4.223 4.212 4.209

Table 3.8: Comparison of energy terms (in kW ) between simulation and experiment.

Table 3.9 shows the comparison of the temperature, CO2 and O2 content between the numerical
predictions and the experimental measurements, obtained at the furnace exit. The species concentration
is expressed on dry basis using the following expression:

Xdry =
100Xwet

(1−XH2O)
, (3.7)

In general, a good agreement is obtained between the numerical predictions and measurements, val-
idating the mass balance. This result also confirms that the modeling using the new reduced chemical
schemes is able to predict correctly the measurements at the furnace exit.
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Experiment KEE58 GRI30-14S15R POLIMI1412-14S15R
Temperature (K) 1386.45 1376.45 1372.76 1374.14
XO2 (% vol. dry) 2.12 2.08 2.11 2.10
XCO2 (% vol. dry) 13.98 13.61 13.59 13.41

Table 3.9: Temperature and species content at the furnace exit.

3.4.2.3 Comparison of numerical results with in-furnace measurements

The streamwise (Z direction) profiles of temperature and chemical species in the symmetrical plan (Y=0)
at several X lateral positions are considered for the comparison between the numerical prediction and the
experimental measurements.

Figure 3.11 shows the comparison for the temperature between the measurement and the simulation
results. Both the experimental and numerical results show rather flat temperature profiles; this is a char-
acteristic of flameless combustion in which the temperature field is quasi-homogeneous and distributed
largely in the whole volume, local hot spots related to flames were not observed. The simulation over-
predicts the experimental profiles by about 9% to 14%. It is observed, at the locations of x= ±0.12m

and ±0.15m, that the measured temperature decreases in the vicinity of the fuel jet and this trend is well
recovered by the simulation. The over-prediction of the temperature in highly diluted zones, where local
extinctions and high fluctuations occur at x= ±0.06m, may be attributed to the EDC turbulence chem-
istry interaction modeling. Christo and Dally [31] also found the same trend for the simulation of the
most diluted case, the lowest 3% oxygen level in a hot co-flow, using EDC with the detailed chemistry
GRI-3.0 [36]. Discussions to improve temperature prediction by modifying or calculating directly vol-
ume fraction and residence time constants of species in fine structures based on local flow characteristics
can be found in [139, 133, 140, 141]. This is beyond the scope of this work which focuses on the imple-
mentation of the chemical schemes reduced including heat loss effect during the reduction step. Overall,
the results obtained confirm that the integration of heat loss into the chemistry reduction can provide a
reasonable prediction of temperature level and trend in the context of flameless combustion simulation.

Figures 3.12, 3.13 and 3.14 show the comparison between the measurement and the simulation re-
sults for three reactive species present in the fuel, namely H2, CH4, and CO. The peak in each profile
corresponds to the fuel jet and these peaks are decreasing due to the mixing with the recirculated burnt
gases and the air when moving farther from the fuel injector located at x= ±0.155m. The measured
species profiles at the location of x= ±0.15m indicate a significant asymmetry of the fuel jet while the
numerical results show rather symmetrical profiles for all locations. The computed species profiles at
x= ±0.15m agree only with the measured species profile at x= −0.15m. As indicated by the experi-
mental profiles at x= +0.15m, the content of three reactive species (H2, CH4, CO) is very low in the
vicinity of the fuel jet on the side of positive abscissa (the right side in the left figure of Figure 3.5) where
the sampling probe was introduced into the furnace. It could be possible that the interaction between the
sampling probe and the fuel jet plays a role in such phenomenon; the upstream of the sampling point in
the fuel jet is perturbed by the probe while it is not the case for the side of negative abscissa.

Figure 3.15 shows the comparison between the measurement and the simulation results for the oxi-
dizer O2 and the combustion product CO2. It is noted that the distribution of oxygen is not symmetrical
between the two measured O2 profiles at x= +0.09m and x= −0.09m while it is not the case for the
predicted O2 profiles. The experimental trend of the measured O2 profiles at x= ±0.12m is not fully
recovered by the simulation. As far as the profiles of CO2 are concerned, the distribution is quite homo-
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Figure 3.11: Comparison between the experimental and computed profiles of temperature obtained at
different (negative and positive) x positions and along the furnace height z. (a) x= ±0.06, (b) x= ±0.09,
(c) x= ±0.12, (d) x= ±0.15. Left and right mean negative and positive x, respectively. Maximum
measurement uncertainty is 7.6K.

geneous and the level is always higher than 13% (by volume) confirming that the combustion is highly
diluted by the combustion products. The prediction of CO2 can be seen acceptable as compared to the
measurement.
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Figure 3.12: Comparison between the experimental and computed profiles of H2 in volume percentage
on dry basis, obtained at different (negative and positive) x positions and along the furnace height z. (a)
x= ±0.06, (b) x= ±0.09, (c) x= ±0.12,(d) x= ±0.15. Left and right mean negative and positive x,
respectively. Maximum measurement uncertainty is 0.72%.



74 Chemical schemes reduction for applications under flameless combustion condition

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Furnace height(m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Dr
y 

m
ol

e 
fra

ct
io

n 
of

 C
H4

 in
 %

Dry mole fraction of CH4 in % at x = -0.09m and 0.09m

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Furnace height(m)

0

1

2

3

4

5

Dr
y 

m
ol

e 
fra

ct
io

n 
of

 C
H4

 in
 %

Dry mole fraction of CH4 in % at x = -0.12m and 0.12m

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Furnace height(m)

0

2

4

6

8

10

12

14

Dr
y 

m
ol

e 
fra

ct
io

n 
of

 C
H4

 in
 %

Dry mole fraction of CH4 in % at x = -0.15m and 0.15m

(d)

Figure 3.13: Comparison between the experimental and computed profiles of CH4 in volume percentage
on dry basis, obtained at different (negative and positive) x positions and along the furnace height z. (a)
x= ±0.06, (b) x= ±0.09, (c) x= ±0.12, (d) x= ±0.15. Left and right mean negative and positive x,
respectively. Maximum measurement uncertainty is 0.27%.
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Figure 3.14: Comparison between the experimental and computed profiles of CO in volume percentage
on dry basis, obtained at different (negative and positive) x positions and along the furnace height z. (a)
x= ±0.06, (b) x= ±0.09, (c) x= ±0.12, (d) x= ±0.15. Left and right mean negative and positive x,
respectively. Maximum measurement uncertainty is 0.28%.
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Figure 3.15: Comparison between the experimental and computed profiles of O2 and CO2 in volume
percentage on dry basis, obtained at two (negative and positive) x positions and along the furnace height
z. (a) x= ±0.09 and (b) x= ±0.12 for O2, (c) x= ±0.09 and (d) x= ±0.12 for CO2. Left and right
mean negative and positive x, respectively. Maximum measurement uncertainty is 0.35% and 0.85% for
O2 and CO2, respectively.
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3.5 Conclusion

In this chapter, a novel strategy to include heat loss effects into the chemistry reduction tool ORCh
was developed and implemented. The results have proven that it is possible to reconstruct precisely
the heat loss from a 3D CFD simulation into a 0D ORCh calculation. The trajectories of the detailed
schemes in the case with or without heat loss demonstrates the effect of the heat loss on reaction path.
The detailed schemes have the identical major species evolution in the case without heat loss, but each
detailed scheme responds differently while imposing the heat loss. Two reduced schemes from GRI30
and POLIMI1412 are highly optimised in order to imitate the behaviour of the detailed schemes. The two
reduced schemes were implemented into Fluent to perform RANS simulations of a lab-scale flameless
combustion furnace UMONS. The comparison between the simulation and the experiment confirms the
validity of the method; heat transfer, energy balance, temperature and chemical species fields were fairly
predicted by the simulation. This promising approach provides an interesting framework for combustion
modeling in which case-specific chemistry reduction can be considered for practical applications.
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Despite of the continuous progress in supercomputing methodologies, all the degrees of freedom
required to fully describe the detail of combustion chemistry cannot be introduced in the numerical
simulations of large-scale combustion systems such as the furnace shown in Figure 3.1. Several methods
have been proposed to reduce and optimize large chemical kinetic schemes such as the one developed
in the chapter 3. The development of reduced chemical schemes allowed for CFD simulations of real
applications with a reasonable CPU cost.

However after reducing the number of differential equations solved, because of the very stiff charac-
ter of differential systems associated to combustion chemistry, the CPU time devoted to their integration
remains still high as compared to fluid flow solving. The objective is to reduce even more CPU cost
to allow simultaneous multiple simulations needed for the search of optimal design of a combustion
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system or for the training of reduced order model with application in digital twins. This motivates the
introduction of machine learning (ML) and artificial neural networks (ANN) to accelerate chemistry in-
tegration in numerical simulation. Indeed, ANNs were employed to deal with chemistry reduction and its
time integration [77] and also to develop data driven turbulent combustion modeling [151], or to analyse
experimental measurements [75] and to setup digital-twins for process control [76].

Amongst these works, ANN and convolutional neural networks (CNN) were trained on a represen-
tative dataset to replace chemistry integration [69, 152] and the method was applied to perform direct
numerical simulation (DNS) of a syngas oxy-flame. Nevertheless, the training of the full dataset using a
single or two ANNs required specific treatments, such as data augmentation through manufactured inter-
mediate solution points for dealing with some fast reacting species [69]. These operations requiring fine
tuning by the user were found necessary to secure good accuracy over the whole domain covering from
chemically frozen-flow mixing up to the equilibrium state and pollutant emissions, with fast ignition and
fuel oxidation in between.

To avoid relying on these additional more or less ad-hoc operations, thus allowing for having a
computerised and fully automatic procedure, an effort has been made in this present thesis to propose a
novel methods in which techniques such as data clustering with K-means [153] and dimension reduction
using LPCA [154, 155], are combined with the deep learning ANN to secure, by construction, accuracy
over the entire composition space domain (mixing, ignition, combustion and equilibrium state).

4.1 Database generation

The methodology for combustion chemistry integration will be tested under conditions representative
of a non-premixed syngas oxy-flame with a chemical composition representative of those found in the
steel industry in recycled exhaust gases [69, 152]. This non-premixed syngas oxy-flame operates under
a pressure of 341.3kPa, with the two inlets: (i) syngas fuel injected at 1223K for a mass flow rate of
0.74kg/s and the composition in mass fraction H2: 0.0085, CO: 0.7852, CO2: 0.0514, N2: 0.1549; (ii)
pure oxygen at 298K with a mass flow rate of 0.69kg/s.

The ORCh database of chemical evolutions is first generated by solving for the mass fractions and
the enthalpy of a set stochastic particles featuring at initial condition the concentration in the fuel or in
the oxidizer inlet. Then, the species mass fraction Y p

i (t) and sensible enthalpy hps(t) of each stochastic
particle evolve according to the following equations:

dY p
i (t)

dt
= MIXp

i (τT ) + ω̇pi , (4.1)

dhps(t)

dt
= MIXp

hs
(τT ) + ω̇phs , (4.2)

where ‘MIX’ denotes the stochastic turbulent micro-mixing closure for the diffusive budget. τT denotes
the micro-mixing time and ω̇pi and ω̇phs are the species and enthalpy chemical sources, respectively. In
the present study, the Euclidean minimum spanning tree (EMST) micro-mixing model developed by
Subramaniam and Pope [117, 156] is used to model the turbulent micro-mixing.

This approach to generate thermochemical conditions representative of those observed in a real sys-
tem for studying its chemical response, without explicitly solving for the flow, has been shown effective
for partial oxidation of natural gas [157, 158], aircraft engines combustion chambers [159, 160], large-
scale furnaces with urea DeNOx automated control [161], micro- and meso-scale combustion systems
[162, 163, 164] and also to build the database for machine learning application to sooting flames [165].
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Here a total number of 1429 stochastic particles is employed with 740 particles (corresponding to the
mass flow rate of 0.74kg/s) assigned to Fuel inlet and 689 particles (corresponding to the mass flow rate
of 0.69kg/s) to O2 inlet.

Figure 4.1: Clustering with K-means.

From the evolution of these particles, the first step consists of identifying, from a detailed chemical
scheme, the important species to be retained and whose evolutions shall be learned by the ANNs. This
is done using the direct relation graph with error propagation method (DRGEP) [166]. For the present
operating conditions, this step was previously performed and reported in [69]. Starting from the detailed
scheme GRI3.0 [167], 11 species were identified as essential to follow the dynamics of the syngas chem-
ical evolutions: O, O2, H, H2, OH, HO2, H2O, H2O2, CO, CO2 and N2. A companion reduced chemistry
involving 23 reactions was then optimised (see Table 2 of [152]).

To save CPU time during training and to demonstrate the integration of chemistry with ANN, this
11-species and 23 elementary reactions scheme is used to build the time evolution dataset of all stochastic
particles, over 4999 time-steps of 0.3µs with a mixing time τT = 0.3ms (a representative value for a
characteristic turbulent mixing-time as observed in shear layers for Reynolds numbers typical of burners).
N2 was removed from the database for the pre-treatment and ANN learning steps. The full database
thus consists of the 11 feature columns (10 species and temperature) of the 1429 stochastic particles
collected over 4999 time-steps, therefore the raw data is composed of 1429×4999=7143571 vectors of
10 components.
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Figure 4.2: Data clustering for parentCluster1. Temperature [K] (a) and species mass fraction [-] (b)-(j)
vs H2 mass fraction. Red: childCluster1_0. Black: childCluster1_1. Blue: childCluster1_2.

4.2 Data pre-treatment

To secure an appropriate analysis of the multivariate nature of the problem, the thermochemical vari-
ables obtained from the solving of Eqs. 4.1 and 4.2 are going through pre-treatments, such as centering
and rescaling and unsupervised machine learning, like clustering with K-means [153], and dimension
reduction with LPCA [155], before the ANN training is to be applied. This strategy is expected to close
the gap between the previous works [69], in which artificial data augmentation was required to secure
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accuracy, and the introduction of complex chemistry in the numerical simulation of large scale furnaces.
Following the recent study by D’Alessio et al. [168] in the context of adaptive chemistry for reacting

flow simulation, the original dataset is first pre-processed with centering and auto-scaling (standardizing)
to insure reliable and robust results.

4.2.1 Data clustering

K-means [153] is a widely used and well-established unsupervised machine learning algorithm, which
consists in grouping similar data into different clusters. K-means is particularly suited for the classi-
fication of the micro-mixing stochastic particles, which evolve through a large variety of stages from
chemically-frozen flow mixing, rapid ignition, fuel oxidation and combustion up to the chemical equilib-
rium state. Moreover, the particles from Fuel and O2 inlets feature different time histories, which benefit
from being classified in separate clusters for chemistry ANN integration. After clustering into separate
groups, every individual subset of data has similar and regular distribution to ensure effectiveness of the
subsequent operations.

Figure 4.3: Repartition of data points in childCluster1_0, childCluster1_1 and childCluster1_2. Abscissa
is cluster numbering, ordinate is number of data points.Orange: particles from O2 inlet. Blue: particles
from Fuel inlet.

The different steps in K-means used for the thermochemical quantities (species mass fractions and
temperature) are illustrated in Figure 4.1 and summarized as follows:

• Definition of the number of clusters.

• Selecting randomly an initial cluster centroid: To ensure the quality of clustering and improve
the convergence speed, the K-means++ initialization algorithm [169] is applied. The algorithm
assigns randomly a first centroid, a second centroid is then chosen as farthest as possible to the
first centroid, a third centroid is as farthest as possible to the first two centroids, and so on.

• Assigning data point to cluster with shortest Euclidean distance.
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• Updating centroid locations by averaging all data points in each cluster.

• Repeat the process until the centroid locations are converged by evaluating the shifting tolerance,
which is chosen at 1e-20.

Defining an adequate number of clusters is crucial. The usual K-means++ initialization algorithm
may lead to poor clustering in our case, where the majority of clusters concentrate in the ignition
and combustion stages. To overcome this difficulty, an additional hierarchical clustering strategy was
adopted; the first clustering leads to only 2 clusters (named parentCluster0 and parentCluster1), which
separates the low and high temperature zones. The first parent containing the data of mixing, ignition
and combustion stages is then clustered into 14 child clusters (childCluster0_0 to childCluster0_13).
The subset of data in the second parent, representing the end of combustion followed by the equilibrium
state, requires a special treatment to guarantee the accuracy of ANN training and prediction. For this
reason, the second parent is classified into only 3 child clusters (childCluster1_0, childCluster1_1 and
childCluster1_2), and then these 3 child clusters will have, respectively, 20, 10, 10 grandchildren (grand-
Child1_0_0 to grandChild1_0_19, grandChild1_1_0 to grandChild1_1_9, grandChild1_2_0 to grand-
Child1_2_9). Each child cluster of the first parent and each grandchild cluster of the second parent
benefits from its own ANN training.

The effectiveness of K-means algorithm applied to the flame turbulence/chemistry interaction (Eqs. 4.1
and 4.2) is illustrated in figures 4.2 and 4.3. Figure 4.2 shows how K-means automatically classifies data
in parentCluster1 (representing the end of combustion and the equilibrium state) into 3 distinct subsets,
i.e. childCluster1_0, childCluster1_1 and childCluster1_2. The childCluster1_1 contains the particles
from O2 inlet, while the childCluster1_2 gathers the particles from Fuel inlet (Figure 4.3); both child-
Clusters represent the end of combustion. The particles from O2 and Fuel inlets finally approach the
equilibrium state and their data points are classified in a single common cluster childCluster1_0.

4.2.2 Local principal component analysis (LPCA)

Principal component analysis (PCA), also known as a dimensional reduction technique, is used to reduce
a large number of correlated variables (species mass fractions and temperature, in our case) to a smaller
number of uncorrelated variables (principal components) [170]. Because of the strongly non-linear char-
acter of combustion chemistry, it is usually recommended to adopt a locally linear approach called ‘local
PCA’ (LPCA) [155], to properly describe such dynamical system.

In our case, each cluster represents a piece-wise variation of species mass fractions and temperature
during a specific combustion stage. The application of LPCA in each cluster transforms correlated vari-
ables of high variance into the most important uncorrelated principal components (PCs), which will be
carefully addressed during the ANN training process. The choice of the number of PCs is essential to
secure a good quality of ANN prediction, and a quite high number of PCs is usually required dealing
with chemistry in reacting flows [168]. In practice, it was observed that reducing from 11 PCs to 6-8 PCs
would still allow for keeping more than 98% of the relevant information. However, here the full set of
control variable is transformed into PC (i.e., 10 chemical species and temperature). Therefore, this does
not reduce the size of the problem to be learned, but the parametrisation of the data from the PCs con-
siderably eases the ANN learning process. Indeed, species and temperature are usually well-correlated,
the PCA analysis transposes these variables to non-correlated PCs and the performances of ANNs then
become much greater with these non-correlated inputs.

Two heat maps are presented in Figure 4.4 to show the correlation of original variables in composition
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Figure 4.4: Heat map showing correlation coefficients of data in grandChildCluster1_1_5. (a) Original
variables in composition space. (b) PCs in PCA space.
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Figure 4.5: Chemistry reduction with trained ANN.

space and of PCs in PCA space. These heat maps display the Pearson correlation coefficients, negative
(respectively positive) value means that two variables vary in opposite (respectively same) directions,
zero shows the absence of correlation. It is confirmed that the original variables in composition space are
strongly correlated (Figure 4.4.a) and that PCs in PCA space are clearly uncorrelated, with practically
zero correlation coefficients (Figure 4.4.b).

Layer Activation function Output shape

Input - (None,11)
Dense ReLU (None,512)
Dense ReLU (None,256)
Dense ReLU (None,128)
Dense ReLU (None,64)

Dense (Output) - (None,11)

Table 4.1: Structure of ANNs [69, 152]
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4.3 Neural network

The ANN regression structure (Table 4.3) used in this study is adopted from our previous works [69].
The ANN consists of 1 input layer, 4 dense hidden layers with the rectified linear activation function
(ReLU) and 1 output layer. The total number of parameters (weights and biases) is 179851.

Figure 4.6: Flowchart of the a posteriori test. (‘ORCh’: Optimised and Reduced Chemistry.)

The ANN input is fed by the data in PCA space, composed of 11 PCs which are obtained by the
projection of the 11 original variables from composition space into PCA space. The target is the incre-
ment of species composition and temperature (i.e., the ANN learns how to integrate the time evolution
of chemistry). The database is split into training set (81%), validation set (9%) and test set (10%) for
model performance evaluation.

The training process is performed using Tensorflow 2 with GPU support (NVIDIA GeForce GTX
1080 Ti) and the Adam optimizer in default setting. To prevent the overfitting, the early stopping callback
is adopted and set as 200 epochs, which means that the training will be halted after 200 epochs without
improvement. Additionally, the check point callback saves the best model with the lowest mean squared
error (MSE) during the training process. The total training time for all ANNs is about 11 hours.

4.4 Results of 0D time evolution simulation of ORCh

The methodology adopted in the study is summarised in Figure 4.5. To perform a posteriori tests of the
model, the evolutions of the stochastic particles are recomputed replacing the integration of chemistry
by the ANN, as summarised in Figure 4.6.

The time evolutions of temperature and species mass fractions averaged over the stochastic particles
issued from one of the inlets and computed with and without ANNs, are shown in figures 4.7-4.9.

The case without any pre-treatment of the data (dashed-line) and a single ANN rapidly deviates from
the reference solution (symbols). Without pre-treatment, the ANN captures the very first part of ignition,
but fails to reach the equilibrium condition, see for instance the temperature response in figure 4.7.
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(Notice that one does not make use here of the introduction of manufactured intermediate solutions for
H2O2, as discussed in [69].)

The solution with data pre-treatment (solid lines in figures 4.7-4.9) is in good agreement with the
reference solution obtained using a CPU consuming stiff-solver for chemistry (symbols). This is the case
for temperature and all species considered, even radicals and intermediate ones such as O, H, OH, HO2

and H2O2. All the evolution stages (mixing, ignition, combustion and equilibrium) are well predicted.
Figure 4.7 shows that the ignition delay of 0.08 ms is correctly predicted by the ANN model. After

the ignition, the temperature profiles feature a sharp increase to attain high values due to oxy-combustion
(the highest value is 3081K for the particles from the fuel side). Then, the temperature proceed towards
its equilibrium state at 3037K. The trajectories of reactants (H2, CO, O2), and main combustion products
(CO2, H2O) are also perfectly captured by the ANNs-based model during their evolution in all specific
stages, i.e.mixing, ignition, combustion and equilibrium (Figure 4.8).
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Figure 4.7: Time evolution of temperature [K] averaged over stochastic particles. Symbols: reference
reduced scheme (Table 2 of [152]). Continuous line: Kmeans-PCA-ANN. Dashed-line: ANN without
data pre-treament. Green: O2 inlet. Red: Fuel inlet.

Regarding minor and radicals species (Figure 4.9), the shape and peak of the trajectories are also
correctly predicted except a very slight discrepancy for H2O2 species departing from the oxygen inlet.

The computation time is drastically reduced by using the ANN model as given in Table 4.2. The
simulation with ANNs (single processor calculation) is 8 times faster than the simulation for the reduced
scheme, and 80 times faster than the simulation with the detailed GRI3.0 scheme. The CPU time reduc-
tion is measured here solving for micro-mixing and chemistry (Eq. (4.2)). This relative CPU reduction
thus differs from our previous works [69], also relying on ANN for chemistry, in which the speed-up was
measured solving for the aerothermochemical equations in three-dimensional flows.

This quantification of the speed-up does not account for the preprocessing time needed to train the
neural networks. However, the CPU effort required for training stays much smaller than the time spent
performing the numerous operations required to generate a reduced chemical scheme (analysis of the
most important chemical species and reaction paths and optimisation of the rate constants). What could
slightly increase the CPU cost with ANN is the introduction of more degrees of freedom which may
become mandatory to reproduce very specific combustion characteristics (cool flame effects, etc.).
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Figure 4.8: Time evolution of major species mass fractions averaged over stochastic particles. Symbols:
Reference chemical scheme (Table 2 of [152]). Continuous line: Kmeans-PCA-ANN. Dashed-line:
ANN without data pre-treament. Green: O2 inlet. Red: Fuel inlet.

Chemistry Speed-up

GRI3.0 detailed scheme 1
Reduced scheme 10

ANNs (present work) 80

Table 4.2: Speed-up between chemistry descriptions.
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Figure 4.9: Time evolution of radicals and intermediate species mass fractions averaged over stochastic
particles. Symbols: Reference chemical scheme (Table 2 of [152]). Continuous line: Kmeans-PCA-
ANN. Dashed-line: ANN without data pre-treament.Green: O2 inlet. Red: Fuel inlet.
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4.5 ANN reduced chemistry for flameless combustion

The following section stems from the article submitted to the journal Applications in Energy and Com-
bustion Science in 2022.

4.5.1 Training database

The strategy for building the neural networks training database relies on previous works [171, 79].
Stochastic micromixing modeling is combined with complex chemistry to generate, prior to any flow
simulation, the variety of thermochemical conditions expected in the combustion system. In this ap-
proach, the fraction of flow rate injected through a given inlet defines the number of stochastic particles
taking the thermochemical properties of that inlet at initial time. Each particle carries information on
the species mass fraction vector and enthalpy. From this non-premixed initial condition, the stochastic
particles evolve in time according to1.

∂Y p
k (t)

∂t
= MIXp(τT) + ω̇pYk , (4.3)

∂hps(t)

∂t
= MIXp(τT) + ω̇phs + αloss(Tp − Twall) . (4.4)

Y p
k (t) is the mass fraction of the p-th particule, MIXp(τT) denotes the Euclidian Minimum Spanning

Tree micromixing model [117] and ω̇pYk is the chemical source. The characteristic value of the mi-
cromixing time, τT = 0.3ms, was determined from previous simulations of the furnace [129]. Varying
τT in Eqs. (4.3)-(4.4) around its nominal value was found to have a relatively weak impact for the pur-
pose of database generation in view of chemistry reduction, at least as long as ignition occurs [58]. To
account for the non-adiabatic character of the flow, a linear heat loss term is added and calibrated with the
variable coefficient αloss, the temperature of the particle Tp and the average wall temperature measured
in the experiments Twall = 1259.4K. The parameter αloss is chosen so that the mean chemical equilib-
rium temperature of the ensemble of stochastic particles ranges between 1200 and 1500K, as reported
experimentally in the recirculating burnt gases. The first training database is then composed of three set
of stochastic particles evolving from their initial condition up to equilibrium, for αloss taking the values
3 · 105, 5 · 105 and 7 · 105 W·kg−1·K−1. Equations (4.3) and (4.4) are solved with routines from the
Cantera package [173].

Three inlets are imposed to build every set of time evolving stochastic particles. These inlets carry
respectively the B50 gas, air and a given amount of recirculating equilibrium burnt products (Table 3.1).
This third inlet is necessary because with separated jet injection, the reactants are mixed with recirculat-
ing burnt gases before they meet and this specific behavior must be included in the training thermochem-
ical dataset. The estimated mass flow rate of recirculating burnt gases, as provided experimentally, is
given in Table 3.1. In practice, the system of equations (4.3)-(4.4) is then solved with, at initial time, 25
stochastic particles of B50, 102 particles of air and 643 particles of recirculating burnt gases. A composi-
tion space (CO-mixture fraction) distribution of the particles representative of these conditions is shown
in Fig. 4.10.

The time evolution of the relevant species mean mass fractions and temperature computed over
the stochastic particles are shown in symbol with the GRI-3.0 detailed chemistry mechanism [36] for

1Other applications of this class of model problem for chemistry reduction and process control may be found in the littera-
ture [58, 172]
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Figure 4.10: CO stochastic particles mass fraction versus mixture fraction (grey dots). BG0: Burnt gases
inlet. Fuel: B50 gas inlet (Table 3.1).

αloss = 3 · 105 and a time-step of 5 · 10−7s in Fig. 4.11 for major species and in Fig. 4.12 for minor
species. The identification of the species relevant to capture the thermochemistry, and whose increment
in time shall be learned by the neural networks, is achieved applying the direct relation graph with error
propagation analysis (DRGEP) [119] to the trajectories seen in these figures. Starting from the detailed
scheme GRI3.0, 14 species were identified as essential to follow the dynamics of the chemical system
evolution: H2, H, O, O2, OH, H2O, HO2, CH3, CH4, CO, CO2, HCO, CH2O and N2. These species mass
fractions and the temperature will serve as input to the neural networks, which are trained to return their
increments, or source terms, for a given time step. Meaning that 14 scalars will be solved in LES.

4.5.2 Clustering thermochemical data and ANN structure

A single neural network cannot handle the large variety of chemical conditions seen by the gases during
their evolution from injection up to chemical equilibrium. Following a previously develop approach [79],
the dataset is first decomposed in clusters and a dedicated neural network will be affected to every cluster.
Multiplying the numbers of ANN to secure precision does not increase significantly the CPU time of the
flow simulation, as all the ANNs are implemented as subroutines in the computational fluid dynamics
(CFD) solver and called according to the thermochemical composition space location of the mesh cell to
be advanced in time. However, this considerably impacts on the CPU devoted to training, as discussed
in the next subsection.

The decomposition of the dataset into subdomains implies the application of pre-treatments, such
as centering, rescaling and clustering with K-means [153]. More precisely, we use the K-means++
algorithm [169], which stands as a well-established unsupervised machine learning algorithm to group
similar data into different clusters. The algorithm assigns randomly a first centroid, a second centroid is
then chosen as farthest as possible to the first centroid, a third centroid is as farthest as possible to the first
two centroids, and so on. Then, every data point is assigned to the cluster with the shortest Euclidean
distance in the multi-dimensional composition space. The centroid locations are updated by averaging
all data points in each cluster and the process is repeated until the centroid locations are converged by
evaluating the shifting tolerance which is chosen at 10−20.

There is a general trend of combustion data to cluster simply in two groups according to fresh and
burnt gases. Also to refine the analysis, a hierarchical clustering strategy is adopted [79]. The first clus-



Machine learning for integrating combustion chemistry in numerical simulations 93

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.11: Time evolution of major species mass fraction and temperature averaged over stochastic
particles with αloss = 3 · 105 and time step of 5 · 10−7s. Symbols: detailed chemistry. Line: ANN.

tering separates fresh and burnt gases (Parent 0 and Parent 1 in Fig. 4.13). The Parent 0 cumulates the
data from mixing, ignition and combustion stages, it is further decomposed into into 20 child clusters.
The data subset in the second parent, representing the final stage of combustion up to the ultimate equi-
librium state, was found to require a special treatment in the case of flameless combustion in order to
guarantee the success of ANN training. This second parent is decomposed into only 3 child clusters,
which will have respectively, 40, 15 and 15 grandchildren. Each child cluster of the first parent and each
grandchild cluster of the second parent benefits from its own ANN training.

The ANN regression structure (Table 4.3) is similar to previous works [171] (Table 4.3). Every ANN
consists of 1 input layer, 4 dense hidden layers with the rectified linear activation function (ReLU) and 1
output layer. The total number of parameters (weights and biases) is 181438. The database is split into
training set (81%), validation set (9%) and test set (10%) for model verification.

The training process is performed using Tensorflow 2 with GPU support (NVIDIA GeForce GTX
1080 Ti) and the Adam optimizer in default setting. To avoid overfitting, the early stopping callback is
used and set as 200 epochs. The check point callback saves the best model with the lowest mean squared
error (MSE) during the training process.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.12: Time evolution of minor species mass fraction averaged over stochastic particles with
αloss = 3 · 105 and time step of 5 · 10−7s. Symbols: detailed chemistry. Line: ANN.

Figure 4.13: Schematic of the decomposition in clusters for ANN training.

4.5.3 ANNs verification and database blurring

The ANNs are trained to return the increments, or source terms, for the species mass fractions and
temperature, knowing the vector of species mass fractions and temperature (ANN input). To verify the
quality of the training, the evolution of the stochastic particles is simulated again from Eqs. (4.3) and
(4.4), but replacing the computation of the chemical sources from the detailed mechanisms by the ANNs
output.

The strategy reported in previous works [171] is applied to fully insure mass conservation after the
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Layer Output shape Activation function

Input (None,11) -
Dense (None,512) ReLU
Dense (None,256) ReLU
Dense (None,128) ReLU
Dense (None,64) ReLU

Dense (Output) (None,11) -

Table 4.3: Structure of ANNs [171]

removal of the less influential species. The mass imbalance in the source of atom A is measured for
reduced set of species

∆ω̇A =

Nr
s∑

i=1

βA,iWA

Wi
ω̇i , (4.5)

where WA and Wi are molar weights and βA,i the number of atom ‘A’ in the i-th species. Sources of
carbon containing species and of hydrogen containing species are corrected adding

∆ẇi = − Yi
YA

∆ω̇A , (4.6)

with the atom mass fraction YA =
∑Nr

s
i=1 βA,i(WA/Wi)Yi. For oxygen, Eq. (4.6) is applied only to O2

and with the already corrected sources of C and H containing species.
Comparing in Figs. (4.11) and (4.12) the time evolution of the major and minor species, results are

quite convincing. Some departure exists for the minor species, but it is acceptable considering the strong
reduction of the number of species transported, here from 53 to 14. Once the overall procedure setup has
been verified for the micromixing canonical problem, it is extended to address the UMONS furnace test
case.

(a) Temperature (b) CO2 mass fraction

Figure 4.14: State diagram of stochastic particles in mixture fraction space for a noised case.

As a matter of fact, within the UMONS furnace, the diversity of the thermochemical conditions are
more pronounced than those generated by the canonical problem reported above. One of the major issue
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lies in the huge variability in the amount of burnt gases locally mixed with the reactants, mainly because
the recirculation rate of burnt products is far from being uniform in space. The fuel may for instance be
mixed only with burnt gases without air within coherent flow structures, which are then convected quite
far downstream before meeting air.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.15: Time evolution of major species mass fraction and temperature averaged over stochastic
particles with αloss = 1.5 · 105 and time step of 5 · 10−6s for 3 ratios of burnt gases recirculation rate.
Left: 3. Middle: 4. Right: 5.

A successful attempt was made to extend the above database by considering additional levels of
burnt gases recirculation, i.e., varying the amount of stochastic particles within the third inlet of the
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model problem (Eqs. (4.3)-(4.4)). However, these additional levels coupled together with the different
heat-loss levels lead to a computing effort for training which rapidly became prohibitive.

Following previous works in which the control of database augmentation combined with improve-
ment in training efficiency was achieved from a systematic blurring [68, 171, 165], 5% of Gaussian noise
is added to all variables in all cases of the above dataset, still conserving mass thanks to Eqs. (4.5)-
(4.6). The final database contains 25,238,581 rows. The training is performed in parallel using 8 GPUs
(NVIDIA Tesla K80) and it is completed in about 7 hours runtime.

Figure 4.14 shows the temperature and CO2 responses in mixture fraction space for the noised
database. Following the same procedure as above, the ANNs obtained with this noised database are
verified by solving Eqs. (4.3) and (4.4) with detailed and ANN-based chemistry. For this test, three dilu-
tions ratios are considered (ratio between burnt gases mass flow rate and sum of fuel and air mass flow
rates) and with a lower level of heat-loss αloss = 1.5 · 105, in order to mimic different conditions. The
trained ANNs capture quite well the thermochemical response.

4.5.4 Flow solver and modeling

The Navier-Stokes equations (momentum, energy and species mass fractions) are solved using the open
source software Code_Saturne [174]. It relies on a co-located second order accurate cell-centred finite
volume approach operating over unstructured grids. The full volume of the furnace is meshed, including
the 12 exhaust cylinders, with a non-uniform mesh of 12 million cells, featuring tetrahedrons and hexa-
hedrons (Fig. 4.16). On the bottom wall where gases are injected, the mesh is so that y+ is just below
unity, while 7 < y+ < 15 on the lateral walls. The mesh is strongly refined in the shear layers developing
downstream of jet injection with a resolution down to 0.2mm. Figure 4.17 shows the vortical structures
which develop from the three jets, to then be combined and merge further downstream, they are coloured
by the temperature. At the bottom close to injections, the reactants are mixed with recirculating burnt
products trapped between the jets, while the temperature is indeed almost uniform as expected in the
flameless combustion regime.
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Figure 4.19: Geometries used for RANS and LES with focus on the outlet modelling.

Figure 4.20: Types of meshes at the outlet.

acteristic of flameless combustion in which the temperature field is quasi-homogeneous and distributed
largely in the whole volume, local hot spots related to flames were not observed. Figure 4.22 shows the
vortical structures using Q criterion [185] colored by time-averaged temperature; it is seen that the tem-
perature is also homogeneous in all vortical structures in the whole 3D domain. A net improvement is
observed with the LES prediction; the level of temperature is correctly predicted by the LES simulation
while RANS exhibits an over-prediction of 9% to 14% as compared to the experimental profiles. It is
observed, at the locations of x= ±0.12m and ±0.15m, that the measured temperature decreases in the
vicinity of the fuel jet and this trend is well recovered by the simulations. Overall, the results obtained
confirm that the ANN model can provide an accurate prediction of temperature level and trend in the
context of flameless combustion simulation.

Figures 4.23, 4.24 and 4.25 show the comparison between the measurement and the numerical sim-
ulation results for three reactive species present in the fuel, namely H2, CH4, and CO. It is interesting to
recall here some main features already presented in the chapter 3. The peak in each profile corresponds
to the fuel jet and these peaks are decreasing due to the mixing with the recirculated burnt gases and the

Figure 4.16: UMONS furnace configuration and mesh.
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Figure 4.17: Instantaneous iso-surface of Q criterion [175] Q = 6 · 105s−2, colored by time-averaged
temperature.

4.5.4.1 Turbulence-chemistry interaction modelling

Combustion in separated jet injection systems, thus operating in the non-premixed mode, is overall con-
trolled by a partial mixing of the reactants occurring at large and medium flow length scales, followed by
micro-mixing and molecular diffusion at smaller scales, where reactant are put in contact and chemical
reactions occur [176]. To mimic this overall two-stage mechanism, each computational cell is divided
into a non-reacting part and a reacting part. The latter is pictured as a perfectly stirred reactor (PSR).
Thereby, the turbulence-chemistry interaction is modeled from a description of the sub-grid scales relying
on partially stirred reactors (PaSR) [177], as in previous works on burnt gases highly diluted combustion
[178, 179, 180, 140, 138, 181, 182, 63, 183, 184, 185].

ω̇k denotes the LES filtered burning rate (or volume averaged over the mesh cell), which enters the
balance equation for the k-th thermochemical quantity. ω̇k(Ỹ , T̃ ) is the burning rate computed from
quantities resolved by the mesh, where Ỹ and T̃ are the LES filtered vector of mass fractions and tem-
perature respectively. ω̇k(Ỹ , T̃ ) is weighted by the reacting fraction κ, so that the filtered burning rate
reads

ω̇k = κω̇k(Ỹ , T̃ ) . (4.7)
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The faster the chemistry (i.e. the smaller the chemical time tc), the larger ω̇k(Ỹ , T̃ ). However, in each
computational cell, the reacting fraction κ must decrease if tm,∆, the mechanical mixing time in the cell
of characteristic size ∆, becomes larger than the chemical time, since mixing is then not fast enough
to fully feed the reactions occurring at the smallest turbulent flow scales. Hence, κ = ω̇k/ω̇k(Ỹ , T̃ ) is
assumed to be proportional to the ratio of the characteristic times [177]:

κ =
tc

tc + tm,∆
, (4.8)

with tc = 5 · 10−6 s, the shortest representative ignition delay of the mixture for the present operating
conditions, as observed in the detailed chemistry simulation reported thereafter. The mechanical mixing
time tm,∆ is approximated from the Smagorinksy SGS model [96, 186], used in the simulations to
represent transport by unresolved velocity fluctuations:

tm,∆ =
(Cs∆)2

ν + νsgs
. (4.9)

Cs is the parameter of the dynamic procedure [105] applied to approximate the SGS viscosity in the
simulation, νT = (Cs∆)2|S|, where |S| = (2SijSij)

1/2, with Sij = (∇u +∇uT )/2. u is the velocity
vector, ν is the molecular viscosity and ∆ = V

1
3 , with V the volume of the cell.

Within this framework, the neural networks are trained to return δYk = ω̇k(Ỹ , T̃ ) × δt, where δt
denotes the time-step. During time iterations in the flow solver, convection and diffusion are first solved,
then the increment due to chemistry is directly read from the networks. Sub-iterations may be required
in the cases where the time-step is larger in the flow solver than during the training phase of the network.

4.5.4.2 Radiative heat transfer modelling

The weighted-sum-of-gray-gases (WSGG) approach is applied to model radiative heat transfer [146].
The emissivity weighting factors and absorption coefficients of combustion products (H2O and CO2) are
calculated using correlations [111]. Three gray gases are considered to minimise CPU time and memory
requirements [147, 129]. The discrete ordinate method (DOM-S4, 24 directions) [150, 31] is used to
discretise the radiative transfer equation (RTE) over the three-dimensional mesh.

4.6 Results and comparison against measurements

Figure 4.18(d) shows the comparison between measured and computed averaged temperature. The rather
flat temperature profiles expected in a flameless combustion regime are observed. The temperature field
is quasi-homogeneous in the simulation, without hot spots representative of thin flame reaction zones.
Both locations on the left side (x < 0) and on the right side (x > 0) of the furnace are displayed. At the
locations of x= ±0.12m and ±0.15m, the measured temperature decreases in the vicinity of the fuel jet,
a trend that is well recovered by the simulations.

The distributions of the three species, CO, H2 and CH4, initially present in the fuel and produced
/consumed by combustion, are compared against measurements in Figs 4.19-4.21. Results are also con-
vincing. The peak values in the profiles correspond to the fuel jet. The measured species profiles at the
location of x= ±0.15m (Figs. 4.19(d), 4.20(d) and 4.21(d)) feature a significant asymmetry between the
right and left sides, while the numerical results show rather similar profiles on both sides. Thereby, the
computed species profiles agree with the measured species profile at x= −0.15m, but not at x= +0.15m.
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According to these experimental profiles at x= +0.15m, the molar fractions of CO, H2 and CH4 stays
very low in the vicinity of the fuel jet on the side of positive abscissa (the right side of the furnace),
where the sampling probe was introduced. It is therefore likely that the discrepancy in the measurements
between the two sides results from spurious perturbation by the probe.
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Figure 4.18: Experimental (symbol) and simulated (line) vertical profiles of mean temperature. Dashed
line and empty symbols: x < 0 (left side of furnace). Line and symbols: x > 0 (right side). Maximum
measurement uncertainty is 7.6K[131, 132].

Overall the CPU cost of the simulation with the ANN chemistry solver is only 1.6 times the CPU
cost of the simulation of the variable density flow within the furnace without chemistry, thus opening
many perspectives for the application of LES to such industrial combustion systems.
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Figure 4.19: Experimental (symbol) and simulated vertical profiles of mean CO in volume percentage
on dry basis. Dashed line and empty symbols: x < 0 (left side of furnace). Line and symbols: x > 0

(right side). Maximum measurement uncertainty is 0.28%.
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Figure 4.20: Experimental (symbol) and simulated vertical profiles of mean H2 in volume percentage on
dry basis. Dashed line and empty symbols: x < 0 (left side of furnace). Line and symbols: x > 0 (right
side). Maximum measurement uncertainty is 0.72%.
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Figure 4.21: Experimental (symbol) and simulated vertical profiles of mean CH4 in volume percentage
on dry basis. Dashed line and empty symbols: x < 0 (left side of furnace). Line and symbols: x > 0

(right side). Maximum measurement uncertainty is 0.27%.
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4.7 Conclusion

The introduction of machine learning in turbulent reacting flow simulations is a rapidly growing field
[187]. Neural networks are becoming a standard ingredient of turbulent reactive flow simulations, to
construct data oriented modeling of phenomena which are unresolved by meshes and also to speed up
simulations by replacing specific time consuming tasks.

This application of neural networks has been addressed for introducing complex combustion chem-
istry in 0D calculations and then Large Eddy Simulation of flameless combustion. Storing the species
mass fraction increments, the neural networks both reduce and pre-integrate stiff chemical systems. In
a low-Mach number flow solver, with time-splitting for chemistry, the neural networks directly return
the updated state of the thermochemical parameters, allowing for performing the complex chemistry
simulations at a very moderate CPU cost.

This neural network approach for chemistry is applied to Large Eddy Simulation of the UMONS
[131, 132] flameless combustion experiment. This furnace features a fully separated jet injection of a
fuel representative of recycled gases burning with air, as found in the steel industry. To achieve the train-
ing prior to the flow simulation, a stochastic micro-mixing model problem with heat-loss and dilution
by burnt gases is introduced and simulated with a detailed chemical scheme. Through their time evolu-
tion, these particles cover the range of thermochemical conditions expected in the flameless combustion
chamber. A database is thus obtained which is then used to train a set of neural networks. It is shown
that an acceptable level of accuracy can be achieved after clustering the data in the thermochemical com-
position space applying standard machine learning tools. A family of neural networks, each dedicated to
a given cluster, are finally trained to be applied in the simulations.

The numerical results compare well with experiments, which is very encouraging considering the
low computing cost of these simulations. However, to fully conclude on the validity and the robustness
of this approach, additional test cases need to be considered, also including measurements of emissions
such as NOx or particulate to further develop and consolidate the modeling.
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Chapter 5

General conclusions and perspectives

5.1 Conclusions

5.1.1 Chemical scheme reduction for applications under flameless combustion condition

A novel strategy to include heat loss effects into the chemistry reduction tool ORCh was developed and
implemented. The results have proven that it is possible to reconstruct precisely the heat loss from a
3D CFD simulation into a 0D ORCh calculation. The trajectories of the detailed schemes in the case
with or without heat loss demonstrates the effect of the heat loss on reaction path. The detailed schemes
have the identical major species evolution in the case without heat loss, but each detailed scheme re-
sponds differently while imposing the heat loss. Two reduced schemes from GRI30 and POLIMI1412
are highly optimised in order to imitate the behaviour of the detailed schemes. The two reduced schemes
were implemented into Fluent to perform RANS simulations of a lab-scale flameless combustion fur-
nace UMONS. The comparison between the simulation and the experiment confirms the validity of the
method; heat transfer, energy balance, temperature and chemical species fields were fairly predicted by
the simulation.

This promising approach provides an interesting framework for combustion modeling in which case-
specific chemistry reduction can be considered for practical applications. Indeed, this methodology has
been successfully applied to generate reduced chemical schemes under specific conditions of furnaces
at ArcelorMittal. The reduced schemes were implemented into the CFD simulations which help in the
design of gas injectors for low-carbon-fuels to mitigate CO2 emissions.

5.1.2 Machine learning for integrating combustion chemistry in numerical simulation

A novel methodology based on the training of neural networks was proposed to reduce combustion
chemistry and applied to a non-premixed syngas oxy-flame canonical configuration. The unsupervised
learning technique K-means was used to cluster the entire dataset, obtained from the solution of stochas-
tic particles in a turbulent micro-mixing system, into multiple subsets. In the case of a two-inlet problem,
with one of the streams bringing the energy necessary for ignition, the proposed decomposition in clus-
ters is likely to be robust and generic. Indeed, after some turbulent mixing, the mixture will always ignite
to then evolve towards equilibrium. Some level of finite rate chemistry may appear, but full quenching
is very unlikely, especially in the case of oxy-combustion studied here. However, the addition of heat
losses and of non-adiabatic recirculating burnt gases may require further examination to determine the
best compromise in terms of clustering, still following a similar approach.
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Local Principal Component Analysis (LPCA) was then applied on each subset to reduce the di-
mension of the problem and most important principal components were retained for the ANN training
process. Neural networks were finally trained with the aim to replace expensive chemistry integration.
The simulation results showed that the proposed method is able to predict the evolution of the ther-
mochemical variables (temperature and species concentration) with excellent accuracy over the whole
domain covering from mixing to ignition, combustion and finally chemical equilibrium. All of those
with a drastically reduced simulation time.

This method of chemistry reduction based on ANN training was coupled with the LES technique and
applied to the simulation of flameless combustion with condition representative of industrial condition.
A multi-physics numerical framework was proposed. The turbulence-chemistry interaction is modelled
by the PaSR model which may be considered as the state-of-the-art model for flameless combustion
simulation. The radiation is described by the three gray gases weighted-sum-of-gray-gases (WSGG)
approach incorporated in the angular discretization discrete ordinate method (DOM). The comparison
of the LES results with the experimental in-furnace measurements showed the validity of the entire
proposed methodology. The CPU cost relating to the chemistry part is simply comparable to the fluid
flow solving as the chemical source terms are just read from the ANN model; no chemistry integration
is needed. This approach is opening an interesting perspective; with CPU cost being even more reduced,
simultaneous multiple simulations can be carried out for the search of optimal design of a combustion
system or for the training of reduced order model with application in digital twins.

5.2 Perspectives

Chemical scheme reduction including heat loss

The novel chemistry reduction methodology including heat loss is further applied into the Hydrogen
ArcelorMittal project and will be exploited in futur projects aiming to the 2050 carbon neutralization tar-
get of ArcelorMittal. In practice, the methodology could be improved by estimating heat loss (enthalpy)
levels using energy balance to avoid prior CFD simulations.

Neural network potential

The neural network methodology proposed in this thesis use the fully-connected ANN structure. Dif-
ferent neural network structure, such as Convolutional neural network (CNN), Long short time memory
(LSTM), Generative adversarial network (GAN) are also the promising candidates.

Decreasing ORCh time step could improve the prediction quality of neural networks by well describ-
ing the evolution of minor species. Including time step as an additional features of neural network is an
encouraging method [188].

Another method to improve the prediction of minor species with large time step is to force the fo-
cus of the ANN on the minor species by customising the loss function during training process [189].
Along this line, the physic-informed neural network (PINN) [190, 191, 192] could also be exploited and
included in the loss functions to strengthen the neural networks prediction quality.

Last but not least, the ANN chemical integration methodology allows the simulation process accel-
eration which is the key of the development of the reduced-order model toward the digital twin [193].
Along with the prompt revolution in the AI domain and the emerging of novel and more-accessible so-
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lutions for data management and model deployment (such as Microsoft Azure, Amazon Web Services,
etc.), the potential of digital twin in industry will undoutedly become boundless in the next few years to
come.
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ABSTRACT

Thermal radiation is the dominant mode of heat transfer in many combustion systems, and in typical flameless furnaces, it can represent up
to 80% of the total heat transfer. Accurate modeling of radiative heat transfer is, thus, crucial in the design of these large-scale combustion
systems. Thermal radiation impacts the thermochemistry, thereby the energy efficiency and the temperature sensitive species prediction,
such as NOx and soot. The requirement to accurately describe the spectral dependence of gaseous radiative properties of combustion prod-
ucts interacts with the modeling of finite rate chemistry effects and conjugates heat transfer and turbulence. Additionally, because of the mul-
tiple injection of fuels and/or oxidizers of various compositions, case-specific radiative properties’ expressions are required. Along these lines,
a comprehensive modeling to couple radiation and combustion in reacting flows is attempted and applied to the simulation of flameless com-
bustion. Radiation is modeled using the spectral line-based weighted-sum-of-gray-gases approach to calculate gaseous radiative properties of
combustion products using the correlation of the line-by-line spectra of H2O and CO2. The emissivity weights and absorption coefficients
were optimized for a range of optical thicknesses and temperatures encountered in the considered furnace. Efforts were also made on the
development of a reliable and detailed experimental dataset for validation. Measurements are performed in a low calorific value syngas fur-
nace operating under flameless combustion. This test rig features a thermal charge which can extract about 60% of combustion heat release
via 80% of radiative heat transfer, making it of special interest for modeling validation. The comparison between the simulation and the
experiment demonstrated a fair prediction of heat transfer, energy balance, temperature, and chemical species fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087077

I. INTRODUCTION

With increasing energy cost, natural resources limitation of fossil
fuels, and more stringent regulation on CO2 and pollutant emissions,
it is mandatory to look for alternative low-carbon fuels and to develop
more energy efficient and cleaner combustion systems. Industrial
auto-produced low calorific value (LCV) fuel gases constitute a prom-
ising alternative energy source combined with advanced combustion
technologies. Diluted, flameless, or “MILD” combustion1–3 is one of
the best candidates that fulfill the requirements in terms of improved
combustion efficiency, low emissions of soot and NOx, and fuel

flexibility. Such a flameless or MILD combustion mode is obtained by
the dilution of reactants with combustion products before the reac-
tants are mixed so that the reaction rates are slow, and the reaction
occurs in a larger volume compared to a classical flame combustion.
The success in the design of such advanced combustion applications
relies heavily on accurate and efficient coupled combustion and radia-
tion modeling, which also requires a reliable and detailed experimental
database for validation. Today, multiple injection of fuels and/or oxi-
dizers can feature in a single furnace to allow for flexible energy source
utilization and for CO2 mitigation, and this requires the development

Phys. Fluids 34, 045123 (2022); doi: 10.1063/5.0087077 34, 045123-1
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of case-specific radiative properties modeling. Along this line, radiation
modeling based on the spectral line-based weighted-sum-of-gray-gases
(SLWSGG) approach4–8 was proposed to build a comprehensive multi-
physics CFD model, which is applied to simulate a flameless combus-
tion furnace. All of these are in the framework of RANS simulation.

The gaseous radiative properties of combustion products are cal-
culated using the correlation of the line-by-line spectra of H2O and
CO2.

9–15 The emissivity weights and absorption coefficients were eval-
uated and optimized for a range of optical thicknesses and tempera-
tures encountered in the furnace under consideration. An
experimental database of flameless combustion of a LCV syngas on a
lab-scale furnace was built specifically for the validation of the pro-
posed comprehensive modeling methodology.

Experimental study of flameless combustion for high calorific
value (HCV) gases, such as methane or hydrogen, can be found in the
literature; jet-in-hot-coflow burners,16 Delft lab-scale furnace,17 or
MILD combustion of methane/hydrogen mixtures18 can be cited as a
few. There was often the absence of a strong heat sink to reproduce
important radiative heat transfer as observed in large-scale combustion
systems. It is also noticed that there was lack of discussion on experi-
mental databases regarding LCV gases in the literature. Along these
lines, a lab-scale furnace designed to stabilize flameless combustion of
a LCV syngas is proposed in the present study, and the experimental
database serves to validate the developed modeling. Main relevant fea-
tures of flameless combustion as observed in the industrial context are
mimicked: strong entrainment of burnt gases by the aerodynamics of
high velocity reactant jets to promote highly diluted combustion, air
preheated to very high temperature up to 1000 �C to reproduce air
preheating with regenerative burner technology, and the presence of
the strong heat sink (cooling tubes) to simulate important radiative
heat transfer from combustion to thermal charge. Combustion of nat-
ural gas with air was first studied19–21 in the same test rig, and then the
gas injector was redesigned to stabilize flameless combustion of a LCV
syngas, a co-product gas produced in the steel industry.22,23 Flameless
combustion was then characterized with detailed in-furnace measure-
ments of temperatures and chemical species.

In the test rig of the present study, the thermal charge extracts
about 60% of combustion heat release, 80% of which by radiative heat
transfer, and 20% by convection. Radiative heat transfer is clearly the
dominant mode of heat transfer as observed in large-scale combustion
systems. This makes the test rig a special interest with detailed in-
furnace measurements for validation of radiation and/or combustion
models.

Many difficulties arise when dealing with radiation modeling:
Highly spectral dependence of gaseous radiative properties, large CPU
cost going with the solving of the radiative transfer equation (RTE),
and consideration of finite rate chemistry for highly diluted combus-
tion can be cited among others.24,25 In a recent review paper, Liu
et al.25 outlined the challenges associated with radiative transfer pre-
dictions in combustion applications and the different approaches that
may be used with tradeoffs. The SLWSGG model has the advantages
and the capability to extend to modeling large-scale industrial furna-
ces, featuring multi-injection of low-carbon fuels and/or oxidizers in
different zones for decarbonization. Because of various compositions
and conditions, case-specific radiative properties’ expressions are
required. The SLWSGGmodel appears to be the best choice, and most
adapted for that purpose while keeping a compromise between

accuracy and CPU cost. If we focus on the radiation aspect, it is noted
that efforts were spent mainly on the modeling of gaseous radiative
properties for HCV gases such as natural gas, and there is a lack of dis-
cussion on radiation modeling of LCV gases.

Radiation modeling based on the spectral line-based weighted-
sum-of-gray-gases (SLWSGG) approach4,5,8 is proposed to calculate
radiative properties of combustion products of different fuel gases
with application to the combustion of a LCV syngas. The parameters
in the SLWSGG model are obtained from the correlation of the line-
by-line spectra of H2O and CO2.

9–15 In fact, together with the absorp-
tion distribution function (ADF)26 and statistical narrow band full
spectrum correlated K (SNB-FSCK)27 models, the SLWSGG model
belongs to the non-gray global model family, which has a special inter-
est for complex combustion system simulations for two reasons: First,
it is more accurate than the simple gray gas model, and second, it is
more computationally efficient than the statistical narrow band corre-
lated K (SNB-CK) model.28 The SLWSGG approach is also straight-
forward to incorporate into the widely used discrete ordinate method
(DOM)29 to discretize the radiative transfer equation (RTE), thus
ensuring a good compromise between solution accuracy over a wide
range of optical thicknesses and computational cost.30 Three gray
gases were considered in the study to mitigate the CPU time.31,32 The
emissivity weights and absorption coefficients of the syngas combus-
tion products were evaluated and optimized over a range of optical
thicknesses and temperatures encountered in the considered test rig.
The radiative properties were integrated into the Ansys FluentVR flow
solver33 using user defined functions for a full coupling of combustion
and radiation.

Section II describes briefly the experimental setup and numerical
modeling approach. The results will be presented in Sec. III. Finally,
some concluding remarks will be formulated in the conclusion.

II. EXPERIMENTATION AND NUMERICAL MODELING
A. Experimental setup and measurement

Figure 1 shows a picture of the flameless combustion furnace19–23

with its schematic and dimensions of the burner section. The combus-
tion chamber is made of stainless steel and equipped with a fibrous
ceramic heat insulation layer. It has a square inner section of 0.35
� 0.35m2 with 1.0m high. One air injection with 24.8mm exit diame-
ter is located in the center. Two gas injectors with 11� tilt angle are
symmetrically located around the air injector. The diameter of the fuel
gas injector was designed to stabilize flameless combustion. The air
was preheated up to 800 �C by an electrical preheater. The fuel gas
compositions are realized using a mixing unit equipped with mass
flow meters and controllers fed through pure gas bottles. The thermal
charge and the furnace temperature are controlled through four water
cooling tubes (heat sink), and the immersion of which can be regulated
from 0 to 90 cm and a reduced water circuit along the outer walls.
Each vertical wall of the combustion chamber has a removable part. A
wall [on the rear side of Fig. 1(a)] is equipped with a quartz window to
allow for optical access and image recording. A LaVision intensified
camera with an UV filter centered at 329nm is used to take images of
chemiluminescent self-emission of OH� radicals at 308 nm wave-
length.34 OH� imaging allowed for determining the position of main
reaction zones. A sidewall [on the right of Fig. 1(a)] is equipped with
eight S-type thermocouples, 0.09m separated each other and mounted
flush with the insulation layer in order to get a wall temperature profile
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along the furnace height in the vertical symmetry plane containing the
air and gas injectors. The measurements of the temperature and spe-
cies concentration at the furnace exit and inside the furnace were real-
ized by the two home-made probes, which are inserted inside the
furnace through 14 holes on the wall opposite to the thermocouples
wall. The suction pyrometer probe is equipped with a S-type thermo-
couple and works with a Venturi’s tube connected to an air com-
pressed circuit. The gas sampling probe is equipped with a vacuum
pump to extract burnt gases with a flow rate equal to 210Nl/h. Water
is removed, and the dry sample is sent in parallel to the chromato-
graph and gas analyzers. The concentrations of O2, CH4, CO2, and CO
(on dry basis) were measured by the paramagnetic and infrared gas
analyzers. Measurement of H2 and N2 and another measurement of
O2, CH4, and CO were realized by the gas chromatograph. More
details regarding the experimental procedure and measurements can
be found in our previous works.19–23 The studied syngas composition
is (by volume): 32.5%H2, 14.25%CH4, 13.25%CO, 12%CO2, and
28%N2. A flameless combustion regime was established at 30 kW of
fuel power.

B. Numerical modeling and simulation

In the concept of the weighted-sum-of-gray-gases (WSGG)
model, the non-gray gas is replaced by an equivalent number of gray
gases with different absorption coefficients and emissivity,35 for which
the heat transfer rates are calculated independently. The total heat flux
is then calculated by adding the heat fluxes of each gray gas. The
WSGG concept was extended to consider spectral lines information
called the spectral line-based weighted-sum-of-gray-gases (SLWSGG)
model.4,5,8 The SLWSGG model is applied in its very fine integration
form. However, it should be noted that Webb et al.36 and Badger
et al.24 proposed the most recent implementation of the model named
the rank correlated SLW model, which can produce accurate results

with as few as three gray gases requiring no optimization. The detailed
theoretical background of such models can be found in the book of
Modest.27 Only a brief description of the concept is given. The radia-
tive transfer equation (RTE) to be solved is

dIi
ds
¼ kipa aiIb � Iið Þ; (1)

where Ii(W/m) is the radiation intensity along the direction s of the ith
gray gas, Ib (W/m) is the blackbody radiation intensity, ki(m

�1 atm�1)
is the pressure-based absorption coefficient of the ith gray gas, pa
(atm) is the sum of the partial pressures of the absorbing species, and
ai is the emissivity weighting factor of the ith gray gas with tempera-
ture dependence. The RTE is solved for each gray gas i ¼ 1; 2;…;N
(N is the total number of gray gas) with the boundary condition given
by

s ¼ 0 : Ii ¼ ewaiIb Twð Þ þ
1� ew
2p

ð
sn<0

Iidx (2)

(ew and Tw are the wall emissivity and wall temperature, respectively)
using the discrete ordinate method (DOM).29 The emissivity weight-
ing factors and absorption coefficients are evaluated and optimized
over a range of optical thicknesses and temperatures encountered in
the considered domain. Total emissivity is calculated from the contri-
bution of all gray gas emissivities as such

e T; L; pað Þ ¼
XN
i¼0

ai 1� e�kipaLð Þ; (3)

where T(K) is the gas temperature and L(m) is the optical thickness.
Each gray gas is characterized by an emissivity weighting factor and an
absorption coefficient, which can be described by temperature depen-
dent polynomials of J � 1 degree written in the form of

FIG. 1. (a) Picture of the flameless combustion furnace, (b) its schematic representation, and (c) the dimensions in mm of the burner section.
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ai ¼
XJ
j¼1

ai;jT
j�1; (4)

ki ¼
XJ
j¼1

bi;jT
j�1; (5)

where ai;j and bi;j denote the polynomial coefficients for the emissivity
weighting factor and the absorption coefficient, respectively. For trans-
parent regions of the spectrum (clear gas i ¼ 0), the absorption coeffi-
cient is set to zero (k0 ¼ 0) in order to account for windows in the
spectrum between spectral regions of high absorptions, and the clear
gas emissivity weighting factor is a0 ¼ 1�

PN
i¼1 ai.

The polynomial coefficients ai;j and bi;j of Eqs. (4) and (5) are
determined and optimized following the steps:

(i) For a given molar fraction of H2O and CO2, a range of optical
thicknesses encountered in the considered domain and a
fixed temperature T, the SLWSGG model with 30 gray gases
is used to calculate the “true” emissivity curves e T; paLð Þ. In
the SLWSGG model, the absorption distribution function is
computed using the correlations proposed by Modest and
Mehta14 and Modest and Singh15 for the cumulative full-
spectrum k-distribution functions of H2O and CO2. The true
emissivity weighting factor ai is calculated by the difference
of the absorption line blackbody distribution function F eval-
uated at the two bounds (i; i� 1) of the gray gas interval

ai ¼ F Cabs;i;Tg ;Tb;Xs;Pð Þ � F Cabs;i�1;Tg ;Tb;Xs; Pð Þ; (6)

F Cabs;i;Tg ;Tb;Xs;Pð Þ

¼ p
rT4

X1
m¼0

ðgmþ1¼gmþDg

gm

gm Cabs;i; g;Tg ;Xs;Pð Þ Ib;g Tb; gð Þ dg;

(7)

where Cabs;i;Tg ;Tb;Xs, P, and g are the absorption cross-
sectional area m2=mole

� �
, the gas temperature Kð Þ, the

black body temperature Kð Þ, the species mole fraction, the
absolute pression barð Þ, and the wave number m�1ð Þ,
respectively. The absorption coefficient ki is related with the
absorption cross-sectional area by ki ¼ Cabs;i Nmole with
Nmole being the mole density. The cumulative full-spectrum
k-distribution functions gm for H2O and CO2 using spectral
correlations proposed by Modest and Mehta14 and Modest
and Singh15 are given by

gm ¼
1
2
tanh Pm Tg ;Tb;Xs; P; k

� �� �
þ 1
2
; (8)

where

Pm ¼
X3
l¼0

X3
m¼0

X3
n¼0

almn
Tg

1000

� �n
Tb

1000

� �m
log10k
� �l

: (9)

The correlation forms are similar for H2O and CO2, but the
coefficients for the full-spectrum k-distribution almn of H2O
and CO2 are different and given in the studies of Modest
and Mehta14 and Modest and Singh.15

(ii) A least square method is used to calculate the absorption ai
and weight ki coefficients for a fixed gray gas number N
(N¼ 3 in our case), which best fit the “true” emissivity curve.

(iii) Steps (i) and (ii) are repeated for a set of M temperature
points ranging from 300 to 1700K as encountered in the
considered domain.

(iv) The profiles of absorption and weight coefficients vs tem-
perature obtained are used to calculate the polynomial
coefficients.

Equations (4) and (5) were integrated into the Ansys Fluent flow
solver33 using user defined functions. The absorption coefficient and
the emissivity weighting factor are updated before each solving of the
RTE. The parameters of the model are obtained from the correlation
of the line-by-line spectra of H2O and CO2.

9–15 The extension of the
model to situations featuring multiple injection of fuels and/or oxidiz-
ers is straightforward. The number of gray gases N¼ 3 or 4 was found
to be adequate for good quality of emissivity fittings, and further
increase in the gray gases number did not lead to consistent improve-
ment in accuracy.31,32 Three gray gases were then considered in the
study to keep CPU time and memory requirements acceptable. The
DOM method29 was used for angular discretization of RTE with nine
solid angles per octant (3� 3). DOM was chosen, because it is suffi-
ciently accurate and applicable across a wide range of optical thick-
nesses, which is not well known in flameless combustion.37

The CFD solution is obtained numerically by solving RANS
equations in steady state. The choice of the k� e RNG turbulence
model38 for this study is recommended from the study on the same
furnace of Lupant,20,21 who carried out a deep analysis of the effect of
different turbulence models (of the two families k� e and k�x) con-
sidering the species distribution in a non-reacting mixture, to validate
the turbulence model independently from the combustion model. The
k� e RNG model developed for strained flows is found appropriate to
predict the turbulent flowfield in the flameless combustion character-
ized by intense recirculation. The turbulence-chemistry interaction
was modeled using the eddy-dissipation concept (EDC)39,40 to con-
sider finite chemistry effects. The chemical kinetics scheme KEE5841

including 18 species and 58 elementary reversible reactions was used.
A transport equation for each of these chemical species is solved
except for nitrogen. The EDC model was used in its standard form
even though some improvement for temperature prediction can be
obtained by modifying or calculating directly volume fraction and resi-
dence time constants of species in fine structures based on local flow
characteristics.42–45 However, in the recent study of Silei et al.46 for the
MILD combustion system, which is similar to that in the present study
in the sense that the MILD condition is obtained by burner design to
promote internal flue gas recirculation, the standard EDC model (with
the KEE58 chemical scheme) provided satisfied prediction while the
EDC models with modified or locally calculated model constants did
not show effective improvement. The flameless condition in the cur-
rent study is different from that of jet-in-hot-coflow flames for which
EDC constant modifications were proposed.42–44

The in situ adaptive tabulation (ISAT)47 was used to accelerate
the chemistry integration. The KEE58 scheme was validated for MILD
combustion for various mixtures of H2 and CH4.

43,48,49 In Ref. 48, the
KEE58 mechanism gave very similar results as compared to the GRI-
3.0 detailed mechanism50 in terms of mean temperature prediction,
and the error is less than 5% in comparison with experiment.
Prediction of NO formation in MILD combustion of CH4–H2 mix-
tures reasonably matched experimental values when post-processed
from thermo-chemical field obtained with KEE58.49 Also in Ref. 43,
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KEE58 showed more reliable predictions than other schemes such as
DRM-19 and DRM-2251 in terms of temperature and species concen-
trations for MILD combustion of CH4–H2 mixtures. In the recent
studies of Silei et al.46 and Ferrarotti et al.52 for the MILD and flame-
less combustion systems, which are similar to that in the present study,
i.e., MILD or flameless conditions are obtained by burner designs to
create internal flow recirculation, the KEE58 scheme provided satisfied
predictions. It is also to notice that MILD combustion was studied in
the framework of RANS modeling using EDC42–45,48,49 or FGM
(flamelet generated manifold)53 to account for turbulence chemistry
interaction.

The computational domain corresponds to the whole gas volume
inside the furnace. The grid was made unstructured with nearly 6� 106

hexahedral cells considering the grid independence study carried out
in the same furnace operating on natural gas for a quarter of the
domain thanks to symmetry.20,21 The results showed that when the
grid size increased from 640 thousand hexahedral cells to 1.3 � 106

hexahedral cells (equivalently 2.56 � 106 hexahedral cells to 5.2 � 106

hexahedral cells for the full domain in the present study), no more sen-
sibility to grid size was observed for temperature and chemical species.
yþ ¼ 1 on the walls of the air and gas injections while on the furnace
walls yþ is mainly around 15 and does not exceed 30. The resolution
in the shear layer is h¼ 7lm. The boundary conditions were cali-
brated using the experimental measurements. Temperature, gas com-
position, and mass flow rates are fixed at inlets. For the other walls, the

total heat loss (ploss) from experimental heat balance is considered uni-
formly distributed on the walls with total surface (swall) and used to
deduce a global heat transfer coefficient (k) between the inner wall
temperature (Tinn) (average measured value) and the external environ-
ment temperature (Text). The expression for k is

k ¼ Ploss
swall Tinn � Textð Þ : (10)

III. RESULTS OF NUMERICAL MODELING
AND COMPARISON AGAINST THE MEASUREMENTS
A. Radiative properties SLWSGG modeling

The total emissivity was calculated and compared to the Hottel
and Sarofim’s database35 as well as with the results obtained with
Soufiani and Djavdan54 and Smith et al.55 methods for the available
nearest configurations in terms of water vapor and carbon dioxide par-
tial pressures. The SLWSGG used the correlation of the line-by-line
spectra of H2O and CO2,

9–15 and the emissivity was evaluated and
optimized over a range of optical thicknesses and temperatures
encountered in the furnace. Figure 2 shows the emissivity of burnt
gases issued from the stoichiometric combustion between the air and
the studied syngas as well as the two other gases named COG
(28.5%CH4, 62%H2, 6%CO, 1.5%CO2, and 2%N2 by volume), a HCV
gas, and BFG (3%H2, 20.5%CO, 22.5%CO2, and 54%N2 by volume), a

FIG. 2. Comparison of total emissivity calculated from different models for HCV COG (a), LCV BFG (b), and syngas (c). Pw and Pc are partial pressures of water vapor and
carbon dioxide, respectively.
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LCV gas. The studied syngas is indeed composed of 50% of COG and
50% of BFG by volume.

The results shown in Fig. 2 were obtained using the averaged
optical length of the studied geometry for all models and Hottel and
Sarofim’s database. The SLWSGG model results were obtained using
three gray gases, and the same number of gray gases was used in the
CFD simulations. Regarding the HCV case, as shown in Fig. 2(a), the
SLWSGG model is closer to Hottel and Sarofim’s database than
the method of Soufiani and Djavdan54 and Smith et al.;55 the configu-
ration Pc!0 atm of Smith et al.55 showed an important departure
from the Hottel and Sarofim’s database. For the LCV case [Fig. 2(b)],
the SLWSGG model agrees with Hottel and Sarofim’s database while
the total emissivity obtained with the Pw!0 atm configuration of

Smith et al.55 shows a departure from the Hottel and Sarofim’s data-
base. Finally concerning the syngas case [Fig. 2(c)], the SLWSGG also
showed better performance. This confirms that the development of
case-specific radiative properties’ modeling is required to secure accu-
rate prediction of radiative heat transfer particularly in combustion
systems featuring multiple injection of HCV and LCV fuels for opti-
mized energy sources utilization.

B. Characterization of flameless combustion

Flameless or MILD combustion is characterized by dilution of
reactants with low enthalpy combustion products before the mixing
between the reactants themselves so that the reaction rates are slow,
and the reaction zone spreads over a much larger volume compared to
a classical flame combustion. The dilution is obtained by a high flow
recirculation induced by the aerodynamics of the high velocity reac-
tants jets as shown by the pathlines of the reactants jets in Fig. 3(a).
Figure 3(b) shows the temperature distribution obtained by simulation
in the symmetrical plane. It is observed that the temperature distribu-
tion is quite homogeneous in the combustion zone with no local hot
spots, confirming the flameless mode. The two lateral syngas jets
emerge into the combustion chamber with a high velocity of nearly
100m/s entraining the burnt gases and creating two important recir-
culation zones. In this condition, the air and fuel gas are highly diluted
by the burnt gases.

Figure 4(a) presents the theoretical trajectory of the fuel jet, which
is calculated based on the strong jet/weak jet (SJWJ) interaction theory
developed by Grandmaison et al.56 (only the left part of the furnace is
presented for the sake of brevity). The line representing the air jet
opening was also plotted in the same figure. The ordinate z of the
SJWJ theory fuel trajectory is given by

z ¼ nd12; (11)

n ¼ �
ðg

1
f �1cos hdg; (12)

FIG. 3. (a) Pathlines of reactants jets colored by temperature. (b) Temperature con-
tour obtained by CFD in the symmetrical plane.

FIG. 4. (a) Trajectories of reactants jets: strong jet/weak jet (SJWJ) theory, experiment and CFD results. (b) Evolution of the recirculation rate along the furnace height z
obtained from numerical simulation (black line), Kv ¼ 5.3 calculated from the SJWJ theory (red symbol).
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f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

C2
e ln gð Þ

16
ffiffiffiffi
w

p
2
4

3
5
4

� cos2h

vuuut ; (13)

where n and g are the relative coordinates such as n ¼ z=d12 and
g ¼ x=d12, respectively, d12 is the distance between the jets, Ce is the
constant equal to 0.32, h is the angle created by the injection axis of
two jets, w is the ratio of impulse between two jets (impulse is the

FIG. 5. (a) Experimental OH� radical chemiluminescence imaging. (b) OH mole fraction from CFD in the symmetrical plane. (c) Normalized maximum OH profiles; Exp.: con-
sidering the maximum of the averaged image of OH� photons count at each Z (black line). CFD: The maximum of (wet basis) OH mole fraction of each horizontal line (blue
line) and each horizontal plane (red line) at each Z.

TABLE I. Energy balance and measurements at the furnace exit.

Input (kW)
Output (kW) Measurements at the furnace exit

Fuel power Charge Flue gas loss Wall loss Temperature (K) CO2 (vol. %-dry basis) O2 (vol. %-dry basis)

Experiment 30 17.16 8.96 3.88 1386 13.98 2.12
Simulation 30 16.97 8.98 4.05 1393 13.57 2.17
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product of mass flow rate and bulk velocity), and x and z are the
abscissa and ordinate as indicated in Fig. 1(c), respectively.

The evolution of maximum concentration of the three reactive
species CH4, H2, and CO along the height in the symmetrical plane is
displayed to visualize the fuel jet trajectories obtained experimentally
and numerically. It is seen that, in experiment or in the simulation, the

trajectories of max CH4, H2, and CO nearly collapse into each other,
and the experimental and CFD fuel trajectories fairly follow the theo-
retical fuel trajectory until z¼ 0.25 m, after which they are bended
toward the furnace axis. The intersection between the air jet opening
and the fuel trajectories is called the confluence point, which is evalu-
ated at z¼ 0.35 m for the SJWJ theory, which is considered as an
upper limit, at z¼ 0.3 m for the experiment and between 0.25 and
0.3m in the simulation.

The recirculated burnt gases flow rate is calculated from the sim-
ulation by determining, at each location z, the area portion for which
the vertical velocity is negative. The recirculation rate, Kv, is then
defined as the ratio between the recirculated burnt gases flow rate and
the total inlet flow rate. The result of Kv is presented in Fig. 4(b). It is
observed that Kv reaches the maximum value of 4.6 at z¼ 0.32 m
slightly after the confluence point estimated at between z¼ 0.25 and
0.3m. The value of Kv above four together with the furnace tempera-
ture above 1100K (as be shown in the next section) fully satisfies the
flameless combustion condition as expressed by W€unning and
W€unning.1 The recirculation rate can also be estimated using the
Grandmaison’s SJWJ theory56

KSJWJ
v ¼

tair;n qair þ tfuel;n qfuel
qair þ qfuel

; (14)

FIG. 6. Profiles of wall temperature along the furnace height obtained from experi-
ment and simulation (CFD).

FIG. 7. Comparison between the experimental and computed profiles of temperature obtained at different (negative and positive) x positions and along the furnace height z.
(a) x¼60.06 m, (b) x¼60.09 m, (c) x¼60.12 m, and (d) x¼60.15m. Maximum measurement uncertainty is 7.6 K.
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where q is the mass flow rate, tair;n and tfuel;n are the rates of entrain-
ment of burnt gases by the air and fuel jets, respectively, which are cal-
culated as follows:

tair;n ¼ Ce
d12
dair;s

n� 1; (15)

tfuel;n ¼
Ce

cos h
d12
dfuel;s

ðn

0
1�

C2
e ln gð Þ
16

ffiffiffiffi
w

p
 !3

dn� 1; (16)

where dair;s and dfuel;s are the effective diameters of the air and fuel jets
in the exit section, respectively, which are given by d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=q1

p
(q0, q1

are the densities of the jet in the exit section and of the surrounding
fluid, respectively). The result of KSJWJ

v ¼ 5.3 at z¼ 0.35 m is also
reported in Fig. 4(b). The interest of the SJWJ theory is to obtain a
quick estimation of the recirculation rate at the confluence point by
considering only flowrates of reactants and burner geometry. This can
be used to give first burner sizing for new design or modification of
existing design.

The reaction zone is experimentally visualized by OH� chemilu-
minescence imaging. OH� represents a good indicator of the reaction
zone, and its emission is at 308 nm in UV,34 a spectral region where
the contribution of wall emission is negligible. Fifty instantaneous
OH� images were recorded by the intensified camera (OH� images
integrated over the depth of the furnace) and processed to get an aver-
age. Figure 5 shows the experimental result of OH� imaging, the con-
tour of OH mole fraction obtained from the simulation, and the

normalized maximum OH profiles obtained from both experiment
and simulation. The contour of OH� [expressed in photons count, Fig.
5(a)] is the averaged image, the solid red profile was extracted from
the maximum photons count on each horizontal line of the averaged
image, and the maximum location is marked by the dashed red line.
The black profiles were extracted from the maximum photons count
on each horizontal line of the instantaneous image, and the blue
crosses represent maximum photons count and its location with the
corresponding standard deviations. The main reaction zones fluctuate
with their peak locations varying from 0.40 to 0.49m.

The frame in Fig. 5(b) corresponds to the optical window dimen-
sion, i.e., the frame of the contour of OH� photons count in Fig. 5(a).
It is observed that the shape of the reaction zone is well captured by
the simulation with one reaction zone stabilized on each side of the
furnace axis. Figure 5(c) shows the experimental OH� peak at the loca-
tion of z¼ 0.42 m. The simulation predicted the location of the maxi-
mum OHmole fraction at z¼ 0.46 m considering the OH distribution
in the vertical symmetrical plane (CFD plane) and at z¼ 0.43 m when
the distribution of OH in the whole volume is considered (CFD vol-
ume). It can be said that, by considering whole volume as it is the case
with experimental OH� chemiluminescence, the simulation shows a
good prediction of the location of the OH peak; the form and the loca-
tion of the reaction zone are well recovered.

Table I compares the energy terms and the measurements at the
furnace exit between the experiment and the simulation. It is noticed
that the air preheating power was subtracted from the flue gas loss in

FIG. 8. Comparison between the experimental and computed profiles of H2 in volume percentage on dry basis, obtained at different (negative and positive) x positions and
along the furnace height z. (a) x¼60.06m, (b) x¼60.09m, (c) x¼60.12m, and (d) x¼60.15 m. Maximum measurement uncertainty is 0.72%.
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order to consider the fuel power as a single input. (This would be the
case if the air were preheated by the flue gases as in an industrial
regenerative burner.) The numerical simulation is able to reproduce
the different terms measured experimentally, confirming the closure
of the energy balance. 57% of the power input is transferred to the
thermal charge and 80% of which is transferred by radiation and 20%
by convection. This result confirms that the modeling of radiative
properties based on the SLWSGG approach is able to predict correctly
the heat transfer dominated by the radiation. Table I also shows the
comparison for temperature and CO2 and O2 contents at the furnace
exit between the experiment and the simulation with good agreement,
validating the mass balance.

C. Comparison of numerical results with in-furnace
measurements

Figure 6 compares the evolution of the vertical furnace wall tem-
perature obtained from the experimental measurement and the simu-
lation at the level of the symmetrical plane. The simulation provides
an acceptable prediction; in average, the numerical result overpredicts
only by 25K the experimental value. It is also noted that the furnace
wall temperature is always higher than 1250K, a temperature value
above which flameless combustion occurs. The variation of the wall
temperature does not exceed 60K in the experiment and in the

simulation, confirming relatively good homogenization of temperature
observed in the combustion chamber.

Figure 7 shows the comparison for the temperature between the
measurement and the simulation results. Both the experimental and
numerical results show rather flat temperature profiles; this is a char-
acteristic of flameless combustion in which the temperature field is
quasi-homogeneous and distributed largely in the whole volume, and
local hot spots related to flames were not observed. The simulation
overpredicts the experimental profiles by about 9%–14%. It is
observed, at the locations of x¼60.12 and 60.15m, that the mea-
sured temperature decreases in the vicinity of the fuel jet, and this
trend is well recovered by the simulation. The over-prediction of the
temperature in highly diluted zones, where local extinctions and high
fluctuations occur at x¼60.06m, may be attributed to the EDC tur-
bulence chemistry interaction modeling. Christo and Dally37 also
found the same trend for the simulation of the most diluted case, the
lowest 3% oxygen level in a hot co-flow, using EDC with the detailed
chemistry GRI-3.0.50 Discussions to improve temperature prediction
by modifying or calculating directly volume fraction and residence
time constants of species in fine structures based on local flow charac-
teristics can be found in Refs. 42–45. This is beyond the scope of this
work, which focuses on the implementation of the radiative properties
model. Overall, the results obtained confirm that the integration of the
radiative properties’ SLWSGG model into the simulation provides a

FIG. 9. Comparison between the experimental and computed profiles of CH4 in volume percentage on dry basis, obtained at different (negative and positive) x positions and
along the furnace height z. (a) x¼60.06m, (b) x¼60.09m, (c) x¼60.12m, and (d) x¼60.15 m. Maximum measurement uncertainty is 0.27%.
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reasonable prediction of the temperature level and trend in the context
of flameless combustion simulation.

Figures 8–10 show the comparison between the measurement
and the simulation results for three reactive species present in the fuel,
namely, H2, CH4, and CO. The peak in each profile corresponds to the
fuel jet, and these peaks are decreasing due to the mixing with the
recirculated burnt gases and the air when moving farther from the fuel
injector located at x¼60.155m. The measured species profiles at the
location of x¼60.15m indicate a significant asymmetry of the fuel
jet while the numerical results show rather symmetrical profiles for all
locations. The computed species profiles at x¼60.15m agree only
with the measured species profile at x¼�0.15m. As indicated by the
experimental profiles at x¼þ0.15m, the content of three reactive spe-
cies (H2, CH4, and CO) is very low in the vicinity of the fuel jet on the
side of positive abscissa [the right side in Fig. 1(c)] where the sampling
probe was introduced into the furnace. It could be possible that the
interaction between the sampling probe and the fuel jet plays a role in
such a phenomenon; the upstream of the sampling point in the fuel jet
is perturbed by the probe while it is not the case for the side of negative
abscissa.

The measurements show a farther penetration of the fuel jets in
the flow field as compared to the results obtained from the simulation;

higher peaks in the experimental species profiles are observed for all
locations except x¼60.15m. The shapes of the profiles of the two
reactive species H2 and CH4 are quite similar while the CO profiles
appear to be wider particularly at x¼60.06m, because CO is not
only the fuel species but also the intermediate minor species formed
from oxidation of CH4. The latest point is quite clear from the simula-
tion profiles, as shown in Fig. 10; at x¼60.06m, the CO profiles are
rather flat between z¼ 0.2 and 0.5m where oxidation occurs, and
there is contribution of CO intermediately produced. Overall, most of
the expected levels, shapes, and trends observed in experiment are cap-
tured by the numerical results.

Figure 11 shows the comparison between the measurement and
the simulation results for the oxidizer O2 and the combustion product
CO2. It is noted that the distribution of oxygen is not symmetrical
between the twomeasuredO2 profiles at x¼þ0.09m and x¼�0.09m
while it is not the case for the predicted O2 profiles. The experimental
trend of the measured O2 profiles at x¼60.12m is not fully recovered
by the simulation. As far as the profiles of CO2 are concerned, the dis-
tribution is quite homogeneous, and the level is always higher than
13% (by volume), confirming that the combustion is highly diluted by
the combustion products. The prediction of CO2 can be seen acceptable
as compared to themeasurement.

FIG. 10. Comparison between the experimental and computed profiles of CO in volume percentage on dry basis, obtained at different (negative and positive) x positions and
along the furnace height z. (a) x¼60.06m, (b) x¼60.09m, (c) x¼60.12m, and (d) x¼60.15 m. Maximum measurement uncertainty is 0.28%.
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IV. CONCLUSIONS AND PERSPECTIVES

A comprehensive modeling approach was proposed to model
flameless combustion of low calorific value gases in which gaseous
radiative properties were modeled with the spectral line-based
weighted-sum-of-gray-gases (SLWSGG) approach. The emissivity
weights and absorption coefficients were evaluated using the corre-
lation of the line-by-line spectra of H2O and CO2 and optimized
for a range of optical thicknesses and temperatures encountered in
the considered furnace. The development of an experimental data-
set of the combustion of a low calorific value syngas in a pilot fur-
nace was used for the validation of the modeling approach. The
furnace operates under flameless combustion, and the radiation is
the dominant mode of heat transfer. The comparison between the
simulation and the experiment confirms the need for such compre-
hensive modeling in the combustion system; heat transfer, energy
balance, temperature, and chemical species fields were fairly pre-
dicted by the simulation.

This promising approach provides an interesting framework
for comprehensive combustion modeling, which can include soot
and NOx formation featuring strong interactions with radiative
heat transfers. The discussed methodology can be easily extended
to multiple fuel injection systems and to the combustion of green

hydrogen or ammonia, which has gained much interest in research
and industry decarbonization. The gas radiative properties can be
calculated using spectroscopic databases presented under a lookup
table, which may yield more accuracy than correlations.57,58

Another perspective is also opening regarding the development of
the reduced order model or digital twins using machine learning
techniques. Each physical phenomenon should then be described
in the framework of comprehensive multi-physics modeling to
secure the production of large reliable databases for training of
these machine learning based models.
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