F Alauzet 
  
M Tenkes 
  
Keywords: Mesh adaptation, CFD, Quad-and hex-dominant, Finite Element and Finite Volume schemes, Aeronautics and turbomachinery Gradation gradation threshold multiplicator. Solver

Je suis émue d'écrire enfin ces remerciements, car à bien des égards cette thèse n'a pas été facile. J'aurai finalement consacré plus de temps et d'énergie à ces travaux qu'à n'importe quelle autre partie de mes études, et c'est avec nostalgie, un peu d'appréhension et beaucoup de soulagement que je me rends compte que tout cela touche à sa fin. Avant d'achever ce manuscrit, je souhaite remercier tous ceux qui m'ont guidée et soutenue pendant ces quatre années de thèse, et plus largement durant mes études.

Le contexte de pandémie n'a pas simplifié les choses, et ce jusqu'au bout ! Après y avoir échappé depuis le début, je suis finalement tombée malade du Covid-19 la veille de ma soutenance. Mes premiers mots de remerciement vont donc à Frédéric, Cosimo, Agustina et aux personnes des services généraux qui ont aidé à mettre en place une semi-visio à la dernière minute, et grâce à qui elle s'est déroulée dans les meilleures conditions possibles.

Je remercie chaleureusement les membres de mon jury, et en particulier ceux qui se sont déplacés pour la soutenance malgré mon absence. Je leur suis également reconnaissante d'avoir fait preuve de compréhension envers les problèmes techniques rencontrés. Merci donc à mes rapporteurs Franck Ledoux et Marco Picasso, et à mes examinateurs Anca Belme, Patrick Ciarlet et Alain Dervieux. J'ai été très honorée de votre présence dans mon jury, et vous remercie une nouvelle fois pour vos questions et commentaires, ainsi que pour vos compliments en fin de soutenance, qui signifient beaucoup pour moi.

Je poursuis en remerciant mes proches, auprès de qui j'ai toujours pu trouver les mots pour m'encourager ou une oreille attentive à laquelle me plaindre.

Léa, qui a du se reconnaître particulièrement dans la dernière partie de ma phrase précédente ! Merci donc, pour ces discussions essentielles sur nos problèmes et rêves de doctorantes artistes. Aurélie, amie rayonnante de bonne humeur, une excellente compagnie pour aller courir ou simplement rire, entre les codes et rédactions. Ranjiny, qui malgré les années me fait toujours le cadeau de son amitié. Antonin, qui connaîtra peut-être un jour la joie d'être doctorant. Julien, Alexis, et les quelques autres heureux usagers du 91.06 avec qui j'ai toujours apprécié échanger quelques mots ou un sourire à bord de ce merveilleux bus. Diane, Elise, Induja et encore Léa, pour nos moments de partage artistiques et ludiques. Florian, Basile et Lucas, pour leur aide précieuse lors du déménagement qu'on a eu la bonne idée de faire en pleine rédaction de ce manuscrit. Et toutes les personnes brillantes, talentueuses et singulières que j'ai eu la chance de rencontrer ces dernières années entre Lyon et Palaiseau. À Quentin, qui est la plus belle de ces rencontres. Malgré tes tentatives de me faire rater ma thèse aux moyens d'un mariage et d'un déménagement, j'ai tout de même terminé ! Plus sérieusement, merci de m'avoir permis de compter sur toi dans les moments difficiles, et d'avoir constellé ces années de tendresse et de rires indispensables.

Résumé

Les simulations numériques en mécanique des fluides visent à capturer avec précision des phénomènes de diverses natures. La qualité de la simulation dépend grandement de la représentation discrète du domaine de calcul, appelée maillage, qui lui sert de support. En particulier, certains phénomènes sont mieux détectés si le maillage présente des caractéristiques spécifiques. Par exemple, il est généralement attendu d'un maillage de couche limite qu'il soit structuré et aligné avec la frontière du domaine, et idéalement constitué de quadrilatères ou d'hexaèdres. L'alignement des éléments du maillage avec l'écoulement est aussi un facteur d'amélioration des simulations.

La génération de maillages structurés purement quadrilatéraux ou hexaédriques se heurte à des obstacles divers : il est plus difficile, avec ce type d'éléments, de concilier alignement et structure, d'approcher avec précision tout type de géométries, et de capturer des phénomènes anisotropes. La méthode développée dans ces travaux opte donc pour une génération de maillages multi-éléments, présentant des zones structurées formées de quadrilatères, et des zones non-structurés lorsque cette contrainte n'est pas nécessaire.

Pour construire automatiquement de tels maillages quad-dominants, la méthode proposée dans cette thèse s'appuie sur les outils et techniques de l'adaptation de maillage, qui repose sur le calcul d'un champ de métrique.

En exploitant les directions intrinsèques du champ de métrique, à travers les méthodes métrique-aligné ou métrique-orthogonal , des maillages présentant localement une certaine structure et orthogonalité peuvent être générés. Dans cette thèse, on développe cette idée pour mettre en place une boucle d'adaptation étendue à des maillages quaddominants.

Des travaux ont été menés en premier lieu sur la génération de maillage. Deux stratégies exploitant la méthode métrique-orthogonale ont été développées. L'approche "a posteriori", semblable aux méthodes indirectes classiques pour la génération de maillages quadrilatéraux, forme le maillage quad-dominant par appariement à partir du maillage orthogonal adapté. La méthode "a priori" optimise la connectivité et le placement des points en amont de la formation du maillage orthogonal. Dans un second-temps, on a démontré l'impact majeur du champ de métrique sur la qualité des maillages quadrilatéraux et alignés, et amélioré les méthodes de lissage du champ de métrique existantes pour obtenir des maillages quad-dominants de meilleure qualité. Ensuite, le solveur Volumes Finis a été modifié pour permettre des calculs sur maillages multi-éléments. Les modifications concernent en particulier la discrétisation des termes convectifs et visqueux, et notamment le calcul des gradients. En application de ces méthodes, des calculs adaptatifs sur maillages multi-éléments ont été réalisés pour des écoulements Euler, laminaires et turbulents.

Mots Clefs : Mécanique des fluides numérique, Maillages quad-et hex-dominant, Adaptation de maillage, Schémas éléments finis, Aéronautique et turbomachine

Notations and conventions

If not indicated otherwise, we use the following conventions and notations in this manuscript.

Conventions

The work presented in this thesis is mostly limited to two-dimensional meshes. The following conventions are applied.

Elements orientation

The elements are oriented counter-clockwise. In a triangle, the local numbering of the edges correspond to the local numbering of the facing vertex. For quadrilaterals, various notations are used in this thesis, depending on the context.

If p i p j is a well-oriented edge of the element, the outward normal to the edge is

n ij = y j -y i x i -x j .

General

• R d : d ∈ 2, 3 is used to denote the dimension.

• Ω: domain.

• x: vector.

• I d : identity matrix of dimension d.

• δ ij : Kronecker's delta:

δ ij = 0 i = j 1 i = j .

Mesh

• H: mesh.

• N V : number of vertices.

• N T : number of triangles.

• N Q : number of quadrilaterals.

• K: element, most likely a triangle or tetrahedron.

• Q: quadrilateral.

• Q: reference quadrilateral. In this work,

Q = [-1, 1] × [-1, 1].
• F: iso-parametric transformation from the reference element Q to any convex quadrilateral. • J : Jacobian matrix.

• |K|: area or volume of element K.

• M(•): metric tensor or metric field.

• M: metric field if there is an ambiguity with the notation for metric tensors.

• r ani : anisotropy ratio.

• p i : vertex, or, depending on the context, the corresponding vector. • V(p i ): topological ball of vertices, set of vertices linked to p i by an edge.

Function spaces

• P 1 : space of linear polynomials.

P 1 =    p(x, y) = 0≤i+j≤1 α ij x i y j , α ij ∈ R    .
• Q 1 ( Q) polynomial space for the reference square:

Q 1 ( Q) =    p : (ξ, η) ∈ Q → p(ξ, η) = 0≤i,j≤1 α ij ξ i η j , α ij ∈ R    . • Q 1 (Q) is defined from Q 1 ( Q) and the iso-parametric transformation F mapping Q to Q as Q 1 (Q) = p = p • F -1 , p ∈ Q 1 ( Q) .
It is not a polynomial space in the general case.

Introduction

Il est courant d'étudier les problèmes de mécanique des fluides à travers des simulations numériques. En effet, on ne dispose pas de solution régulière des équations de Navier-Stokes, modèle privilégié pour décrire la plupart des écoulements. Du fait de la complexité des modèles physiques étudiés de nos jours, et de la grande disponibilité de ressources de calcul, entre autres, les simulations sont devenues un moyen privilégié pour fournir une solution à de nombreuses problématiques industrielles dans des secteurs tels que l'aéronautique, l'automobile, le spatial, l'énergie... Les objets et l'espace étudiés sont représentés numériquement par un maillage, qui est un recouvrement du domaine de calcul fait généralement de polygones ou de polyèdres. La qualité d'une simulation dépend grandement du maillage qui lui sert de support. Pour générer des maillages présentant des caractéristiques voulues, la stratégie encore répandue est de compter sur l'expérience des ingénieurs et les connaissances tirées d'expérimentations pour créer un maillage a priori convenable pour une simulation spécifique. Le processus est alors semi-automatique, non optimal, et encore très coûteux en temps. Cela s'ajoute au coût global des calculs.

Les techniques d'adaptation de maillage permettent de limiter à la fois le coût de génération du maillage, mais aussi du calcul, en proposant une meilleure répartition des degrés de liberté. Ainsi, à taille égale, un maillage adapté automatiquement présentera une solution numérique plus fidèle qu'un maillage uniforme ou généré à partir de connaissances a priori. Parmi les différentes méthodes existantes, on se concentre sur les méthodes d'adaptation utilisant un champ de métrique. Développées depuis une trentaine d'années, elles ont prouvé leur robustesse et leur efficacité sur des calculs à grande échelle sur des géométries complexes [George et al. 1991b, Castro-Díaz et al. 1997, Frey and Alauzet 2005, Gruau and Coupez 2005, Li et al. 2005, Alauzet and Loseille 2010, Alauzet and Frazza 2021].

La répartition des degrés de liberté n'est pas le seul facteur qui influence le résultat d'une simulation. En effet, les écoulements étudiés en mécanique des fluides présentent des phénomènes de diverses natures, qui seront plus ou moins bien capturés si le maillage respecte des contraintes spécifiques, notamment de structure et d'alignement. Prenons pour exemple l'écoulement autour d'un projectile dont l'image par strioscopie est représentée sur la Figure 2 ci-dessous. On peut observer la présence d'une couche limite, de phénomènes tourbillonnaires et de chocs, qui sont, visuellement comme physiquement, bien distincts. De fait, pour résoudre au mieux ces différents phénomènes, des méthodes numériques spécifiques sont mises en place, ayant également leurs propres exigences en terme de maillage.

Les maillages constitués de quadrilatères ou d'hexaèdres semblent être les plus aptes à respecter de telles contrainte de structure ou d'alignement. Ils sont d'ailleurs favorisés par de nombreuses méthodes numériques pour le calcul en couche limite, afin de mieux capter la physique non linéaire et les forts gradients mis en jeu. Cependant, la génération de ces maillages se heurte à des obstacles divers : il est plus difficile, avec ce type d'éléments, d'approcher avec précision tout type de géométries, ou de générer automatiquement un maillage volumique aligné et cohérent avec un maillage de surface. La méthode développée dans ces travaux opte donc pour une génération de maillages multi-éléments, présentant 

Méthode de maillage multi-éléments

La génération de maillage basée sur un champ de métrique utilise le concept de maillage unité, à travers une définition Riemanienne de la distance.

On rappelle brièvement qu'un champ de métrique définit en chaque point de l'espace un tenseur symétrique, défini positif, qui a donc une décomposition spectrale de la forme

M = t RΛR, (1) 
où M désigne un tenseur symétrique défini positif, R est la matrice dont les colonnes sont les vecteurs propres orthonormaux de M, et Λ est la matrice diagonale contenant ses valeurs propres strictement positives. La sphère unité associée à une métrique est une ellipse dont la longueur et l'orientation des axes sont déterminés par les valeurs et vecteurs propres. On illustre ainsi un champ de métrique sur un domaine en représentant les ellipses en certains points, créant une carte de tailles comme représenté à gauche sur la Figure 4.

Mathématiquement, le maillage est associé à un espace métrique Riemannien qui introduit une notion de distance directionnelle. Ainsi, la notion de longueur unité change selon la position dans l'espace et la direction considérée. Pour une métrique donnée, il existe un ensemble infini de maillages dont les arêtes ont une longueur unité dans cette métrique. Un maillage de ce type est "unité" dans l'espace métrique Riemannien, et devient un maillage adapté, anisotrope dans l'espace physique.

Un maillage métrique-orthogonal est un type de maillage unité qui favorise des éléments orthogonaux. Pour cela, les éléments générés sont alignés sur les vecteurs propres de la métrique selon la configuration présentée en Figure 3. Un maillage adapté standard et un maillage métrique-orthogonal sont visibles respectivement au milieu et à droite sur la Figure 4. La méthode utilisée dans cette thèse reprend les travaux présentés par [Loseille 2014], qui propose une approche pour générer des maillages orthogonaux en utilisant d'abord un placement de point métrique-orthogonal, pour générer un ensemble de points respectant la structure de la métrique. Ces points sont ensuite insérés par un opérateur de cavité. Les éléments obtenus sont orthogonaux, imposant une structure dans les zones où les directions du champ de métrique sont bien définies. Par exemple, un motif structuré est observable dans la partie circulaire du maillage présenté à droite sur la Figure 4. Pour générer un maillage quad-dominant à partir d'un tel maillage, une solution intuitive est de combiner des paires de triangles orthogonaux en quadrilatères. De nombreux travaux présentent une solution à cette problématique [Borouchaki andFrey 1998, Remacle et al. 2012]. On propose pour cette partie un algorithme supposé limiter les éléments isolés. En effet, en vue de réaliser des simulations sur ces maillages, il est important de réduire les interfaces entre éléments de nature différente [Diskin and Thomas 2007]. Les résultats issus de cette méthode sont suffisants pour réaliser des calculs, cependant des défauts d'alignement ou de qualité des éléments persistent. Pour améliorer les maillages, une possibilité est de développer des opérateurs d'optimisation. Cependant, il semble que les principaux défauts observés peuvent être corrigés à l'étape du placement de point. D'autre part, les méthodes d'optimisation envisagées nécessitent de retrouver des informations directionnelles qui sont également disponibles à l'étape de placement de point.

On élabore donc une deuxième option pour générer des maillages multi-éléments : une approche dite a priori, qui opère à l'étape de proposition de point. La mise en place de cette méthode n'a pas été complètement achevée. Néanmoins, une structure a été introduite pour rassembler les informations de connectivité entre les points créés. Des opérateurs élémentaires ont été développés pour modifier dynamiquement cette structure, et réaliser des optimisations géométriques et topologiques. Des développements sont encore nécessaires pour aboutir à un processus automatique et efficace.

De fait, les simulations adaptatives présentées dans ces travaux utilisent l'approche a priori, par combinaison, pour fournir des maillages multi-éléments.

Correction de la métrique

Une métrique calculée à partir d'une solution numérique présente souvent des irrégularités. Dans un processus adaptatif, on applique alors au champ de métrique brut une correction de gradation, aussi appelée lissage. Concrètement, ce procédé impose un contrôle d'une quantité nommée gradation (ou h-choc), définie pour tout sommet p du maillage par, c M (p) = max q =p max h p h q , h q h p 1/ M (pq)

.

où M désigne la métrique, h p et h q respectivement des tailles prescrites aux points p et q. On souhaite imposer que cette quantité soit en tout point inférieure à une valeur β > 1, ce qui a pour conséquence de lisser les écarts de taille.

Pour une métrique anisotrope (cas général), l'algorithme de gradation contient deux principales opérations 1. grandissement : le calcul à partir de p de la métrique maximale qui peut être prescrite à un autre point q pour respecter la majoration de gradation, 2. réduction : la prise en compte, pour un point q, de toutes les contraintes maximales provenant des autres points du maillage.

L'algorithme naïf de lissage de métrique utilisant ces deux opérations est un processus quadratique. Une approche multi-linéaire, sous la forme d'une boucle sur les arêtes, a été proposée dans [Borouchaki et al. 1998], et un procédé similaire, plus détaillé, traitant en particulier le cas anisotrope, est présenté dans [Alauzet 2010b]. Ces derniers travaux établissent différentes options pour traiter l'étape de grandissement. En effet, dans le cas anisotrope, une taille différente est prescrite dans toutes les directions d'espace, il existe donc différentes manières de calculer la contrainte maximale d'un point à un autre.

Dans le cas isotrope, la contrainte maximale est calculée selon M p (pq) = η 2 (pq, β)M p .

(2)

où on note M p = h -2 p I d et M q = h -2 q I d les métriques (dans ce cas : les tailles) imposées aux points p et q, et η 2 (pq, β) un facteur calculé pour respecter la contrainte c M (p, q) = max h p h q , h q h p 1/ M (pq)

≤ β.

(3)

Dans le cas anisotrope, on peut avoir une formule similaire à (2) avec un coefficient de grandissement scalaire :

M p (q) = η 2 (pq, β)M p . (4) 
Ce choix implique que la métrique agrandie ait la même forme que la métrique initiale. On dit qu'elle est homogène dans l'espace métrique. Elle est donc appelée grandissement dans l'espace métrique. Une autre manière de calculer la correction maximale est d'utiliser un tenseur de grandissement, M p (q) = R T N (pq, β)ΛR,

(5) où les tenseurs R et Λ proviennent de la décomposition spectrale de la métrique (1), N est un tenseur diagonal dont coefficients η 2 i font respecter la contrainte précédente uniquement dans les directions principales.

Cette formule de grandissement diminue l'anisotropie de la métrique avec la distance à laquelle la contrainte est appliquée. À partir d'une distance assez grande, la métrique devient presque isotrope, et donc homogène dans l'espace physique, d'où son nom de grandissement dans l'espace physique. Le grandissement utilisé par défaut dans l'algorithme de correction est une combinaison de ces deux options, appelé grandissement mixte. Il s'écrit M p (q) = R T (η 2 M ) 1-s N P (pq) s ΛR, ( 6) où η M est le coefficient utilisé pour le grandissement dans l'espace métrique, N P est la tenseur du grandissement dans l'espace physique, et s est une pondération qui est fixée à 0.125 par défaut. Cette option est préférée dans le cas standard.

Pour illustrer ce concept, on représente sur la Figure 5 le grandissement d'une métrique au centre du domaine pour les trois cas.

Les travaux sur le contrôle de gradation répondent à deux problématiques distinctes. Premièrement, on présente une méthode de gradation optimisée pour le maillage métriqueorthogonal ou multi-éléments. En effet, pour étendre la boucle d'adaptation à des maillages multi-éléments, il faut également appliquer un lissage de champ de métrique. Cette étape est particulièrement essentielle dans ce contexte, puisque la méthode métrique-orthogonale est très dépendante de la qualité du champ de métrique. Deuxièmement, on s'intéresse à l'algorithme de correction en général. L'approche utilisée actuellement, sous la forme d'une boucle sur les arêtes, rend la méthode dépendante de la connectivité du maillage, ce qui peut amener à des résultats faussés, notamment en présence d'éléments anisotropes, d'un maillage multi-éléments, ou d'un motif quasi-structuré dont la connectivité est asymétrique. On propose donc des solutions pour résoudre cette dépendance.

Gradation pour maillages multi-éléments

Dans [Alauzet 2010b], il est observé que pour des simulations adaptatives standard, le grandissement dans l'espace métrique donne de meilleurs résultats, en permettant de capturer plus finement des phénomènes anisotropes. Cependant, en comparant ces options de grandissement pour des maillages alignés et orthogonaux, on remarque que le grandissement dans l'espace physique a tendance à lisser davantage les écarts de taille, ce qui donne de meilleurs maillages multi-éléments de meilleure qualité, et limite les éléments isolés.

Pour exploiter davantage cette propriété, une nouvelle méthode de grandissement est définie. Celle-ci impose une loi de grandissement différente selon la direction considérée. On nomme ce processus grandissement contraint directionnellement. Il s'écrit

M p (q) = R T Λ t DC Λ 1-t mix R, (7) 
où le paramètre t quantifie l'alignement avec le vecteur propre associé à la petite taille de -t = 0 : on est aligné avec la direction de la plus grande taille h 0 . Un grandissement mixte, traduit par les valeurs propres Λ mix , est appliqué. On fait ce choix pour propager l'anisotropie dans cette direction. -t = 1 : on est aligné avec la direction de la plus petite taille. Un grandissement est appliqué uniquement pour cette petite taille h 1 , tant que celle-ci est inférieure à ρ -1 min h 0 , en notant ρ min un rapport d'anisotropie limite. Lorsque ce rapport est atteint, le grandissement est appliqué dans toutes les direction. Le résultat obtenu est illustré sur la Figure 6, où l'on compare cette nouvelle stratégie au grandissement dans l'espace physique.

Problèmes de connectivité

Dans l'algorithme actuel, la correction est réalisée par arête, ce qui rend l'algorithme dépendant de la topologie. L'étude de maillages métrique-orthogonaux a notamment soulevé ce défaut de l'algorithme, car les motifs cartésiens de ce type de maillage génèrent une asymmétrie dans la correction, comme illustré sur la Figure 7. Le résultat devrait être le même pour les deux maillages, mais on observe bien que ce n'est pas le cas.

Afin de limiter cette sensibilité à la connectivité, les solutions envisagées sont, d'une part, un nouvel algorithme de gradation, d'autre part, une modification de l'algorithme actuel.

Le nouvel algorithme utilise une structure de tas (heap list) contenant les sommets triés par taille initiale. Tant que le tas n'est pas vide, le point du dessus applique une correction de gradation à tous les points possibles, de proche en proche, avec un grandissement calculé sur la distance, et une réduction par intersection. Pour différencier ces deux algorithmes, le premier est appelé gradation discrète et le second gradation continue. Un traitement particulier est appliqué aux domaines non convexes. La correction obtenue est ainsi beaucoup plus lisse, et moins dépendante du maillage. Un exemple pour une correction de métrique isotrope est présenté sur la Figure 8. Ce cas illustre clairement l'impact du maillage sur le résultat de la gradation discrète : les isolignes sont bruitées et étirées dans le sens des éléments, tandis que la gradation continue produit un champ beaucoup plus lisse. Figure 8 -Correction de gradation d'un champ de tailles isotrope, sur un maillage présentant des éléments étirés. Les petites tailles aux coins gauches sont propagées dans le maillage. En haut : résultat pour l'algorithme par arête ; en bas : résultat pour la gradation continue. Les images de gauche font apparaître le maillage et les iso-lignes de la métrique sont visibles sur celles de gauche.

Pour améliorer également l'algorithme de gradation discrète, notamment pour résoudre l'asymétrie de correction des maillages quasi-structurés, on propose une modification qui ajoute des arêtes virtuelles à la boucle de correction. Pour un maillage triangulaire, ce sont en quelque sorte des arêtes duales, reliant deux sommets opposés par la même arête. Pour des maillages contenant des quadrilatères, on ajoute les diagonales. Dans le cas asymétrique, ces arêtes virtuelles viennent ré-équilibrer la correction.

Solveur multi-élément

Le solveur Wolf, développé par l'équipe Gamma, résout des écoulements compressibles sur des maillages simpliciaux pouvant être très anisotropes. L'objectif du travail réalisé sur le solveur est de permettre des calculs sur des maillages multi-éléments.

On considère le système obtenu par moyenne temporelle (approche RANS) des équations de Navier-Stokes compressibles, complété par le modèle de turbulence de Spalart-Allmaras [Spalart and Allmaras 1992]. Il peut s'écrire sous forme simplifiée comme suit

W t + ∇ • F E = ∇ • F V + F S , (8) 
où W est le vecteur des variables conservatives W = (ρ, ρu, ρv, ρw, ρE, ρν) T .

avec ρ la densité de l'écoulement, (u, v, w) sa vitesse, E l'énergie et ν la viscosité turbulente. W t désigne la dérivée temporelle du vecteur W . Le système fait intervenir trois termes correspondant aux flux convectifs (Euler) F E , visqueux F V et aux termes source provenant du modèle de turbulence F S .

La discrétisation de ces différents flux dans Wolf est opérée par une formulation mixte Volumes Finis / Éléments Finis. L'évaluation des gradients est notamment réalisée par une approximation de Galerkin P 1 . Pour étendre cette méthode aux quadrilatères, on propose d'utiliser une approximation Q 1 . Dans le premier cas, les gradients calulés dans les triangles sont équivalents et constants, ce qui n'est pas le cas pour les quadrilatères. La problématique principale est donc de déterminer, pour chaque flux, une évaluation adéquate du gradient. Les choix pour chaque partie sont brièvement présentés dans ce qui suit.

Afin de valider ces méthodes, des simulations de validation ont été réalisées pour des écoulements non-visqueux, et turbulents.

Discretisation des flux convectifs

Les flux convectifs sont calculés dans Wolf par une approche Volumes Finis. La première modification liée au multi-élément est la re-définition des cellules Volumes Finis, aussi appelées cellules duales. On étend donc la définition des cellules médianes aux quadrilatères. Il est intéressant d'observer que ces cellules sont structurées pour un motif de maillage structuré, ce qui n'est pas le cas pour des motifs triangulaires quasi-structurés, comme on peut le voir sur la Figure 9. Ensuite, la principale modification est effectuée au niveau du calcul des flux. Ceux-ci sont calculés au niveau des interfaces entre les cellules duales, ce qui définit un problème de Riemann unidimensionnel, que l'on résout par un solveur HLLC [Batten et al. 1997a]. On fournit au solveur HLLC des états extrapolés, construits à partir des états aux deux sommets dont on étudie l'interface, et de gradients. Ces gradients sont une combinaison d'un gradient centré et d'un gradient calculé dans un élément, appelé élément amont (ou aval ). Pour calculer ce gradient dans un quadrilatère, on choisit d'utiliser le gradient de l' Élément Fini défini par ce quadrilatère. Comme celui-ci n'est pas constant, contrairement au gradient Élément Fini d'un triangle, différentes possibilités ont été considérés pour évaluer le gradient dans un quadrilatère : au barycentre, au point d'intersection entre l'arête et la diagonale, ou au sommet. Après discussion, le gradient est évalué au sommet. Ce choix a été validé par les simulations.

Discrétisation des flux visqueux

La discrétisation de l'opérateur diffusif fait intervenir des termes de la forme

∂C i α∇T • n dγ.
où T et α sont des champs scalaires pouvant désigner d'une part, le champ de température ou des composantes de la vitesse d'écoulement ; d'autre part, la viscosité dynamique. C i est la cellule duale associée à un sommet p i .

La méthode choisie pour traiter ces termes est l'approche "EF ex ap" d'après les travaux de [Auffray 2007, Puigt et al. 2010]. Elle implique une combinaison des approximations Éléments Finis des champs et de leur gradients calculés aux sommets, aux milieux des arêtes et au barycentre des quadrilatères. Le schéma résultant est conservatif et exact sur des maillages composés de parallélogrammes.

Gradients nodaux

Enfin, les gradients nodaux interviennent pour le calcul des coefficients aérodynamiques, des flux convectifs lorsqu'il n'y a pas d'élément amont ou aval, des termes sources du modèle de turbulence, ou de la métrique. Pour reconstruire ces gradients, on utilise une l'opérateur local d'interpolation de Clément ainsi que l'opérateur de projection L 2 [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]]. On démontre que, d'après les expressions des gradients Éléments Finis P 1 et Q 1 , l'opérateur de projection L 2 s'écrit, pour un champ T au point P i ,

Π L 2 (∇T )(P i ) = K P i |K|∇T K G K P i |K| , (9) 
où K désigne un triangle ou quadrilatère, |K| son aire et ∇T K G le gradient évalué au barycentre de l'élément.

Simulations adaptatives multi-éléments

Rappelons d'abord le principe et la mise en place d'une simulation adaptative dans le cas standard [Alauzet and Frazza 2021]. On souhaite obtenir à la fois une convergence du maillage et de la solution calculée. Ce processus est réalisé par une boucle d'adaptation, qui prend en entrée un maillage initial et éventuellement, une solution initiale, ainsi qu'une complexité cible pour le maillage final. La complexité est l'équivalent continu de la taille du maillage (nombre de points ou nombre d'éléments), suivant la dualité entre maillage et espace métrique Riemannien [Loseille andAlauzet 2011a, Loseille andAlauzet 2011b]. Une métrique est calculée ensuite selon l'estimateur d'erreur choisi. Elle permet de générer un nouveau maillage adapté, respectant la complexité fixée, sur lequel est calculée une nouvelle solution. Le processus est réitéré jusqu'à satisfaire une condition d'arrêt (convergence ou nombre maximal d'itérations atteint). Un schéma de l'algorithme est représenté sur la Figure 10.

Pour réaliser simultanément une analyse de convergence et certifier la simulation, la boucle est imbriquée dans une seconde boucle sur un ensemble de complexités croissantes, reprenant comme données initiales à chaque nouvelle complexité le résultat de la précédente.

Dans le cas d'une adaptation multi-éléments, la boucle est modifiée en intégrant les méthodes décrites précédemment, comme représenté en gris sur la Figure 11. Notamment, le maillage adapté est généré par une approche métrique-orthogonale, et le maillage triangulaire est conservé pour certaines étapes qui ne sont pas encore réalisables sur maillage métrique-orthogonal.

Le résultat final de ces travaux de thèse et donc la mise en place d'une boucle d'adaptation complète pour réaliser des simulations d'écoulements non visqueux, laminaires et turbulents, sur des maillages multi-éléments en deux dimensions. En application, des calculs adaptatifs sur des maillages multi-éléments ont été réalisés pour des écoulements Euler, laminaires, et turbulents.

Calcul de la solution

W i (H 0 , W 0 0 ) Génération d'un nouveau maillage adapté H i+1 Gradation M i Calcul de la métrique M 0 i Interpolation de la Solution W 0 i+1 (H i , W 0 i ) (H i , W i ) (H i , M 0 i ) (H i , M i ) (H i , W i , H i+1 ) Figure 10 -Boucle d'adaptation standard. Calcul de la solution W i (H 0 , W 0 0 ) Génération du maillage orthogonal H tri i+1 Gradation M i Calcul de la métrique M 0 i Appariement en quadrilatères H i+1 Interpolation de la solution W 0 i+1 (H i , W 0 i ) (H i , W i ) (H i , M 0 i ) (H i , M i ) (H tri i+1 , M i ) (H i , W i , H tri i+1 ) Figure 11 -Boucle d'adaptation multi-éléments.
The goal of Computational Fluid Dynamics (CFD) simulations is to give an accurate description of a considered flow, by providing a numerical solution to the Navier-Stokes equations. Nowadays, computational resources are relatively affordable and efficient. Consequently, simulations are widely used in various industrial domains, for instance in aerodynamics and aerospace applications, weather prediction or biological engineering. As a result, simulation and modeling, and especially CFD, is an engaging field of research.

Numerical methods developed for this purpose generally rely on a discretization of the computational domain, called a mesh, composed of polygons or polyhedra. The quality of the numerical solution is quite sensitive to this discrete representation, especially for flow simulations, which involve various phenomena of different nature. To illustrate this statement, the Schlieren picture shown in Figure 12 points out distinct flow features around a bullet at supersonic speed: a near-body boundary layer (a), shock-waves (b) and vortices in the wake (b). To capture accurately these phenomena, different mesh requirements may be specified. For instance, numerous numerical methods favor the presence of structured elements (hexahedra, prisms, quadrilaterals) in the boundary layer region to capture the non-linear physics, and the strong gradients involved. The automated generation of pure hexahedral, structured meshes, respecting alignment constraints for arbitrary geometries is a challenging problem, and a fully satisfying solution was not determined to this day. The suitability of a quadrilateral or hexahedra meshing process strongly depends on the context [Johnen 2016]. On the contrary, automated tetrahedral mesh generation is considered as a mature field of research. Substantial advances on this topic have been presented in the 90s, with for instance Delaunay type methods [George et al. 1991a, Rebay 1993] or advancing-front methods [Löhner and Parikh 1988]. They demonstrate a good ability to mesh complex configurations. In particular, metricbased mesh generation provides an elegant framework to prescribe sizes in a mesh, using the notion of Riemannian metric space to specify a directional definition of distance. This approach was established by George, Hecht and Vallet [George et al. 1991b]. They provided a method to generate an adapted mesh to a given solution, pointed out that the absolute value of the Hessian defines a metric, and proposed a Delaunay-based generator in Introduction which edge lengths are computed in the Riemannian metric space. Since then, many meshing softwares based on this framework have been developed [START_REF] Loseille | Anisotropic adaptive simulations in aerodynamics[END_REF], Coupez 2000, Li et al. 2005, Dobrzynski 2005, Michal and Krakos 2012]. In the meantime, more sophisticated anisotropic error estimates have been investigated: featurebased estimates [Tam et al. 2000[START_REF] Pain | Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations[END_REF], Picasso 2003, Formaggia et al. 2004[START_REF] Bottasso | Anisotropic mesh adaption by metric-driven optimization[END_REF], Li et al. 2005, Frey and Alauzet 2005, Alauzet and Loseille 2010] and goaloriented estimates [Venditti and Darmofal 2003, Jones et al. 2006, Power et al. 2006, Yano and Darmofal 2012, Alauzet and Frazza 2021]. Overall, tetrahedral mesh adaptation methods can supply meshes for complex geometries, with an optimal repartition of the degrees of freedom for a given solution. Using well-chosen error estimates, they have the ability to align with the main flow features.

To take advantage of the progress on tetrahedral mesh generation, and address the requirement for structured parts in the mesh, we propose a method to generate mixedelement meshes, where structured elements are favored in regions where they are needed, and unstructured elements are accepted otherwise. Our strategy uses the tools of metricbased mesh adaptation, by means of the metric-orthogonal approach, introduced in [Marcum and [START_REF] Marcum | [END_REF]] and [Loseille 2014]. The main idea is to use the directional information contained in the metric field to generate right-angled elements. The difference with standard adaptation is illustrated in Figure 13. In two-dimensions, these right-angled elements can easily be combined into quadrilaterals. Therefore, the metric-orthogonal strategy is a promising pathway to hex-dominant and quad-dominant mesh adaptation.

Figure 13 -Input metric field (left) and corresponding adapted meshes, generated by a standard approach (middle) and a metric-orthogonal approach (right).

It is quite common to use a directional field to guide structured or quasistructured mesh generation, although it generally provides a preferred orientation according to the geometry of the domain, e.g. frame fields [START_REF] Kowalski | [END_REF], Huang et al. 2012, Li et al. 2012, Ray et al. 2018].

In this work, we focus on aligning the structured pattern with the flow features rather than the geometry. Then, numerous approaches already deal with structured boundary layer generation [Aubry and Löhner 2009, Löhner 2000, Garimella and Shephard 2000[START_REF] Marcum | Generation of unstructured grids for viscous flow applications[END_REF], Pirzadeh 1994, Sharov and Nakahashi 1998, Alauzet and Marcum 2015]. This method not only favors structured patterns in the boundary layer, but also in the wake and in shock regions. Some approaches rely on a solution-based metric field to move the vertices in the mesh [START_REF] Sharbatdar | Anisotropic mesh adaptation: recovering quasi-structured meshes[END_REF]Ollivier Gooch 2013, Lévy and[START_REF] Lévy | [END_REF]. The proposed metric-orthogonal strategy operates at the point-creation step, which gives more control over the connectivity and the geometry than modifying an existing mesh. Besides, to evaluate the meshing process in the context of adaptive simulations, other parts of the process, and especially the solver, have been investigated carefully at the same time.

The aim of this PhD thesis is to explore these options for mixed-element meshing and simulations, and assemble the developments into a well-functioning adaptive process.

Numerical context

This PhD work was conducted in the Gamma research group at Inria (Saclay Research Center). The results presented in this thesis are obtained using the softwares developed by the research group. We mostly refer to:

-Wolf: Finite Volume flow solver [Alauzet and Frazza 2021], -Feflo.a: re-meshing software [START_REF] Loseille | Adrien Loseille and Victorien Menier. Serial and parallel mesh modification through a unique cavity-based primitive[END_REF], -Metrix: operations on metrics, -Spyder2: mesh optimization software.

Part of this research work contributed to some of these softwares. The meshes and solution fields shown in this manuscript are provided by the visualization software Vizir [Feuillet et al. 2021].

Objectives and contributions

The main objective of this work is to develop a quad-dominant adaptive process. To this end, three main aspects must be considered: the meshing process, the treatment of the metric, and the development of the solver to perform mixed-element simulations. We defined specific objectives for each topic. This section gives a summary of the contributions related to each subject.

Mixed-element and quasi-structured mesh generation. Based on the metricorthogonal approach, some strategies were investigated to obtain a mixed-element mesh. The first option is a combination process from a preliminary quasi-structured triangular mesh. Different algorithms were considered. A method was designed to take advantage of the specificities of metric-orthogonal meshes and reduce the number of isolated elements. The resulting meshes showed some alignment and connectivity defects. A second approach was proposed to optimize the connectivity and the position of the vertices at the point creation step, before the formation of the triangular orthogonal mesh. The first approach is called a posteriori strategy and the second one a priori in the remainder.

The corresponding developments were implemented in the softwares Spyder2 and Feflo.a.

Improvement of metric gradation correction methods. We demonstrated the strong impact of the metric field on the resulting quadrilateral mesh, and concluded that size transitions should be really smooth to generate good mixed-element meshes. Standard adaptive simulations rely on a process called gradation correction to regularize the metric field computed from numerical solutions. We elaborated a new method of metric gradation control, better suited to the generation of aligned and quadrilateral meshes. The analysis of the current gradation correction algorithm pointed out the sensitivity of the process to the connectivity of the mesh. Solutions were proposed to overcome this issue. The methods described in this paragraph were developed in the software Metrix.

Mixed-element flow solver. The development of the mixed-element solver provides a direct way to evaluate the work on quadrilateral meshing. It is a necessary step to establish a mixed-element adaptive process. It also gives the opportunity to verify if the simulations really benefit from the presence of quadrilaterals.

At the beginning of the PhD thesis, only a first-order version of the flow solver was available. A substantial work has been conducted about the discretization of the gradients in quadrilaterals. The extension of the mixed Finite Element / Finite Volume formulation was discussed for each flux involved in the model. As a result, Wolf is now able to perform simulations on two dimensional mixed-element meshes for inviscid, laminar and turbulent flows, and the adaptive simulation framework could be modified to handle mixed-element meshes as well.
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Chapter 1

Metric-based mesh generation 1.1 Introduction and motivations

Metric-based mesh generation, introduced in [George et al. 1991b], relies on the concept of Riemannian metric space, which defines a distance that depends on the considered direction thanks to a provided metric field. This is an efficient way to model size prescription and naturally favors the generation of anisotropic meshes. Many metric-based mesh generators have been developed [START_REF] Loseille | Anisotropic adaptive simulations in aerodynamics[END_REF], Coupez 2000, Li et al. 2005, Dobrzynski 2005, Michal and Krakos 2012].

A formal analogy between the possible meshes of a domain and the possible prescribed metric fields is established through the notion of unit mesh. For a given metric field, this notion defines an equivalence class that contains all the unit meshes with respect to this metric. The correspondence between discrete entities related to the meshes, and continuous concepts related to the metric, constitutes the continuous mesh framework described in [Loseille and Alauzet 2011a] and [Loseille and Alauzet 2011b]. In this context, the meshing software generates a unit mesh according to a prescribed metric field. For the mesher, the elements are regular and isotropic, while they are anisotropic in the output mesh.

This formulation does not a priori give control over the shape of the elements in the adapted mesh. For example, from this perspective, the two elements shown in Fig. 1.1 are equivalent. The method is therefore likely to produce obtuse angles and it has been observed that these elements can have a negative impact on simulations [START_REF] Babuška | On the angle condition in the finite element method[END_REF]. This issue is generally solved through a mesh optimization process. However, since there is an equivalence between the unit meshes, it seems profitable to pursue a strategy that favors better elements for some chosen criteria. This research work takes advantage of the metric-aligned and metric-orthogonal methods, which rely on this equivalence to generate meshes that follow the intrinsic directional information contained in the metric field. Using this method as a point-placement stategy coupled with either advancing-front meshing [START_REF] Marcum | [END_REF] or a local remeshing strategy [Loseille 2014], these processes generate unit meshes that present good alignment and angle repartition. Furthermore, the metric-orthogonal approach favors right-angled elements, as illustrated in Figure 1.2, so this method constitutes a good preliminary step for an indirect quad-dominant or hex-dominant method, as detailed in Chapter 2.

This chapter defines the framework of metric-based mesh adaptation, along with some useful notions involved in this work. After briefly recalling some lexical elements, we present Riemannian metric spaces and how they are used in the context of mesh adaptation. We introduce the metric-aligned and metric-orthogonal methods and detail the process implemented in the local remesher Feflo.a. The development of the metricorthogonal approach in the context of this thesis is presented in Chapter 2.

General definitions 1.2.1 Mesh, geometry, connectivity

Let Ω ⊂ R d , d ∈ {2, 3} be a continuous domain and denote ∂Ω its boundary. A mesh of this domain is a discrete representation as a finite set of geometrical shapes. In two dimensions, ∂Ω is discretized using segments, while it is discretized with polygons in three dimensions. This discretized boundary is denoted by ∂Ω h . The discretized domain Ω h is defined as the subset of R d having ∂Ω h as boundary.

A mesh of Ω h is described by its elements: polygonals in two-dimensions, polyhedra in three-dimensions. The set of elements determines the vertices, edges, faces (for threedimensional elements) of the mesh. Denote H a mesh of the domain. In this work, we consider a mesh is valid iff it satisfies the four following properties:

1. Non-degenerescence: each element K of H is non-degenerated i.e. there are no flat elements, ∀K ∈ H, |K| > 0.

1.2. General definitions 27 2. Covering: the mesh is a cover of the discretized domain, i.e.

Ω h = • ∪ K∈H K,

Non-overlapping:

The intersection of the interior of two distinct elements of H is empty.

• K i ∩ • K j = ∅, ∀K i , K j ∈ H, i = j.

Conformity:

The intersection of two elements is either a vertex, an edge or a face (in three dimensions) or the empty set.

The conformity property is not strictly necessary depending on the application. However, in this work, it is required by the Finite Volume solver.

Depending on the type of geometrical shapes and connectivity, meshes can be classified in different categories. We first define some terms that are frequently used in this work.

Definition 1.2.1 (Simplicial mesh). A simplicial mesh is a mesh made of simplices: triangles in two-dimensions, tetrahedra in three-dimensions.

Definition 1.2.2 (Structured mesh). A structured mesh (or cartesian mesh) is a mesh that presents a grid-like connectivity and orientation as illustrated on the left in Fig. 1.3. This kind of mesh is typically made of quadrilaterals (two-dimensional or surface meshes), hexahedra or prisms (three-dimensional meshes). By extension, this kind of elements are refered to as structured elements.

Definition 1.2.3 (Unstructured mesh). Conversely, an unstructured mesh designates a mesh that has no particular connectivity pattern, and unstructured elements refer to triangles, tetrahedra or pyramids. Quasi-structured meshes refer to meshes having an almost grid-like connectivity, as represented in the middle frame of Fig. 1.3.

Remark 1.2.1. A full-hexahedral or full-quadrilateral mesh is not necessarily structured. Definition 1.2.4 (Mixed-element mesh). A mixed-element mesh (or hybrid) is a mesh made of multiple types of elements, as shown on the right frame in Fig. 1.3 for example. A quad-dominant (resp. hex-dominant) mesh is a mesh presenting a majority of quadrilaterals (resp. hexahedra).

Local connectivity definitions

Let H be a mesh. We define some topological entities that are involved in the methods and algorithms presented in this research.

Definition 1.2.5 (Topological ball). The ball of a point p, denoted by V(P i ), refers either to the set of vertices linked to p by an edge, or the set of elements surrounding p. Definition 1.2.6 (Neighbors). For a given element K, the neighbors are the elements sharing an edge (2D) or a face (3D) with K.

Definition 1.2.7 (Shell). The set of elements sharing a common edge is call the shell of the edge. In a two-dimensional triangular mesh, the shell of an internal edge has the shape of a quadrilateral. 

Metric tensor and metric space

In this section, we give some useful definitions related to metric tensors and metric fields. More complete information about metrics and operations in metric spaces can be found in [George et al. 2019, Chapter 1] for instance. The concept of Riemannian metric space is introduced, along with some common operations. The link between metric spaces and meshes is established in the next section.

Metric tensor and Euclidean metric space

A metric tensor in R d , d ∈ {2, 3}, is a symmetric, positive-definite tensor of size d. We generally use the notation M for metric tensors. A vectorial space E ⊂ R d supplied with a metric is called a Euclidean metric space. The terms physical space or canonical Euclidean space refer to the particular metric space where the supplied metric is the identity tensor I d . In a Euclidean metric space (E, M), the metric tensor defines a scalar product •, • M as ∀x, y ∈ E, x, y M = t xMy.

(1.1) By extension, it provides a norm • M and its associated distance d M , along with the notions of angles and volumes. The volume of a bounded subset K ∈ E is expressed from the metric and its volume in the physical space |K| I d as

|K| M = |K| I d √ det M. (1.2)
The angle between two nonzero vectors u and v is the only real number θ M in the interval [0, π] that verifies

cos θ M = u, v M u M v M . (1.3)
Since the metric tensor is symmetric and positive-definite, it is diagonalizable and its spectral decomposition is

M = RΛ t R,

where

-R is an orthogonal matrix composed of the eigenvectors of M. It satisfies

R t R = I d 1.
3. Metric tensor and metric space
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-Λ is a diagonal tensor gathering the eigenvalues of M, denoted (λ

i ) i∈ 0,d-1 . Since M is positive definite, λ i > 0, ∀i ∈ 0, d -1 .
To give a visual representation of a metric, we consider its unit sphere defined as

S M = {x ∈ E | x M = 1} .
This set describes, in the physical space, an ellipse (or an ellipsoid in 3D), as pictured on the left part of Fig. 1.4. The orientation and size of the unit sphere are determined by the eigenvectors and eigenvalues. In other words, the unit length in direction v, in the physical space, corresponds to the length of the ellipse's ray in this direction. The semi axis are generally denoted by h i and they are obtained from the eigenvalues as

∀i ∈ 1, d , h i = 1 √ λ i .
The anisotropy of a metric is quantified by the anisotropy ratio, denoted by r ani ,

r ani = λ max λ min .
(1.4)

Figure 1.4 -Left: unit sphere associated with a metric tensor M. Right: mapping between the unit sphere of a metric tensor M in the metric space (R n , M) and the physical space (R 2 , I 2 ). The vectors v i depicted at the center of the ellipses represent the unit vectors in the direction of the eigenvectors, i.e. λ

-1/2 i e i .
There is a natural metric mapping between the physical space and the metric space (E, M), as illustrated on the right part of Fig. 1.4. From the spectral decomposition of M, we construct the operator

φ M = RΛ -1 2 where Λ -1 2 =     λ -1 2 0 0 0 0 λ -1 2 1 0 0 0 λ -1 2 2     .
The mapping is defined as

φ M : R d → R d x → RΛ -1 2
x. Another definition of the unit sphere using this mapping is therefore

S M = RΛ -1 2 x | x 2 = 1 .
Conversely, the operator t φ M maps the ellipse in the physical space to a canonical unit sphere in the metric space.
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Riemannian metric space

In a Euclidean metric space, the unit sphere is the same at each point of the domain. Now, consider a varying continuous metric field, applied to R d . It defines a Riemannian metric space, where the computation of the distance from a given point depends on the considered direction. To illustrate this notion, Figure 1.5 shows iso-values of the distance from a given vertex, for three configurations: physical space, Euclidean metric space and Riemannian metric space with a varying metric field. While the iso-values in the Euclidean spaces keep the same shape as the circular or elliptic unit sphere, the shape changes significantly from the unit sphere in the Riemannian case, showing the anisotropic behavior of the distance function.

A Riemannian metric space can be assimilated to a function that represents a set of cartesian surfaces, as shown on the left in Figure 1.6. Evaluating geometrical quantities in a Riemannian metric space is equivalent to evaluate these quantities on the underlying cartesian surfaces. In this work, to give a visual representation of the metric field on a given domain, we draw a map of the unit spheres in the domain, as pictured on the right in Figure 1.6.

In this kind of space, the metric field does not provide a global definition of scalar product or norm. However, the length between two vertices p and q can be computed using a straight line parametrization

M (pq) = 1 0 t pqM(p + tpq)pqdt.
(1.5)

Similarly, the notion of volume for a bounded subset K is extended to the Riemannian metric space as the quantity

|K| M = K det M(x)dx,
and the angle between two vectors

v 1 = P Q 1 and v 2 = P Q 2 is the real number θ M ∈ [0, π] that verifies cos θ M = v 1 , v 2 M(P ) v 1 M(P ) v 2 M(P )
.

(1.6)

Operations on metrics

We give some definitions and geometric interpretations of two useful operations on metrics: metric intersection and metric interpolation.

Metric intersection

Given a set of metric tensors, the intersection is the tensor that keeps the most restrictive size constraint in each direction. To give a geometric interpretation, it corresponds to the largest ellipsoid contained in the set of ellipsoids representing the metric tensors.

Metric intersection is a useful operation to gather multiple constraints applied to one point. For example, in Chapter 3, it is used in the context of gradation correction. We first consider the intersection of two metrics. In this work, we use the process described in [Barral 2015], which is based on simultaneous reduction. An example is depicted in Fig 1 .7. Let M 1 and M 2 be two metric tensors. Since they are symmetric and positive definite, there exists a common basis where one of the metric is orthonormal and the other is orthogonal. From the spectral decomposition

M 1 = RΛ t R, we construct M -1/2 1 = RΛ -1/2 t R. Then, M 1 = t M -1/2 1 M 1 M -1/2 1 = I d ,
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M 2 = t M -1/2 1 M 2 M -1/2 1 . The spectral decomposition of M 2 reads M 2 = P     µ 0 0 0 0 µ 1 0 0 0 µ 2     t P
where P denotes the matrix whose columns are the eigenvectors of M 2 . We can also write

M 1 = P I d t P.
The intersection of the two metrics in this basis is therefore

M 1∩2 = P     max(µ 0 , 1) 0 0 0 max(µ 1 , 1) 0 0 0 max(µ 2 , 1)     t P
Finally, the intersection of the two metrics in the canonical basis is

M 1∩2 = t M 1/2 M 1∩2 M 1/2 .
In our implementation, the intersection of more than two metrics is performed through successive two-by-two operations using the above method. Such process is not commutative. Consequently, the result depends on the order of intersection. The exact intersection of multiple metrics can be modeled as the John ellipsoid, which is obtained by solving an optimization problem, see [Loseille 2008, John 1948].

Metric interpolation

In the context of mesh adaptation, the metric field is only known at the mesh vertices. Consequently, an interpolation operator is necessary to evaluate the metric field at any point of the domain. An example of metric interpolation along a segment is presented in Fig. 1.8.

The interpolation process used in this work is based on the Log-Euclidean framework introduced by [Arsigny et al. 2006]. First, we define the exponential and logarithm for metrics. Let M be a metric tensor, let R denote the matrix of eigenvectors and Λ = diag (λ i ) i∈ 1,d the eigenvalues. The exponential and logarithm of M are ln(M) := R ln(Λ) t R, where ln(λ) = diag (ln λ i ) i∈ 1,d ,

and exp(M) := R exp(Λ) t R, where exp(λ) = diag (exp λ i ) i∈ 1,d .
From these operations, we define the logarithmic addition ⊕. Given two metric tensors M 1 and M 2 , This operation is commutative and coincides with matrix multiplication if M 1 and M 2 commute. We can also define the logarithmic scalar multiplication . Let M be a metric tensor and α a scalar,

M 1 ⊕ M 2 := exp (ln(M 1 ) + ln(M 2 )) .
α M := exp (α ln(M)) = M α .
The space of metrics supplied with the logarithmic addition ⊕ and the logarithmic scalar multiplication is a vector space. Now, consider a set of vertices (x i ) i∈ 1,k and their associated metrics (M i ) i∈ 1,k . Let x be a point of the domain such that

x = k i=1 α i x i with k i=1 α i = 1,
then, the interpolated metric at x is defined as

M(x) = k i=1 α i M(x i ) = exp (α i ln(M(x i ))) .
This interpolation is commutative and respects the maximum principle.

Proposition 1.3.1 (Maximum principle). Let pq be an edge and M(p), M(q) the prescribed metrics at its endpoints.

det M(p) < det M(q) ⇒ ∀t ∈ [0, 1], det M(p) < det M(p + tpq) < det M(q)

Numerical computation of lengths in a Riemannian metric space

The purpose of Riemannian metric spaces is to change the notion of length computation. It is therefore a common operation throughout the process of mesh adaptation. We introduce the notion of size prescription according to a metric field, and present a simplified method to compute the length of an edge in this context.

Size prescription in a given direction

A Riemannian metric space constitutes an elegant tool to prescribe a size in a given direction from a point of the domain. We give some preliminary results about size prescription. Let e be a vector. To prescribe a unit size in direction e in the metric space, a size h M (e) should be prescribed in the physical space, according to the following relation:

Chapter 1. Metric-based mesh generation h M (e) = e 2 M (e)
.

In the case of a Euclidean metric space, it comes to h M (e) = e 2 t eMe .

(1.7)

Computation of edge length

The length of any segment in the considered domain should be computed according to the integral from Eq. (1.5). The most accurate method to evaluate this integral through a Gauss quadrature rule. However, the evaluation of edges length is performed multiple times in a mesh adaptation process, so we prefer a less time-consuming process. The idea is to use a variation law along the edge and compute analytically the edge length in the metric.

Let e = p 1 p 2 be an edge of the mesh, denote its Euclidean norm e 2 , and the prescribed metrics at the endpoints M 1 and M 2 . Consider the length of the edge in the metric at each endpoint:

∀i ∈ 1, 2 i (e) = t eM i e
Assuming 1 (e) > 2 (e) > 0, we set a = 1 (e) 2 (e) . Several variation laws can be adopted, and determine an analytical expression for the length of e.

• geometric interpolation h(t) = h (1-t) 1 h t 2 :
M (e) = 1 (e) a -1 a ln(a) ,

• linear variation on h, h(t) = (1t)h 1 + th 2 :

M (e) = 1 (e) ln(a) a -1 ,

• linear variation on λ, h

(t) = (1 -t)h -2 1 + th -2 2 -1 2 : M (e) = 1 (e) 2 3
a 2 + a + 1 a(a + 1) ,

• linear variation on

h -1 , h(t) = (1 -t)h -1 1 + th -1 2 -1 : M (e) = 1 (e) 1 2
a + 1 a .

We detail the calculus for the first variation law.

Proof. Equation 1.7 gives

1 (e) = e 2 h 1 (e) , 2 (e) = e 2 h 2 (e) , a = h 2 (e) h 1 (e) ,
and

M (e) = 1 0 t eM(p 1 + tp 1 p 2 )dt = e 2 1 0 1 h M(t) (e) dt.
Here, the variation law is h M(t) (e) = h

(1-t) 1 h t 2 . Therefore, M (e) = e 2 1 0 1 h (1-t) 1 h t 2 dt = e 2 1 0 1 h 1 a t dt = 1 (e) 1 0 a -t dt = 1 (e) - a -t ln(a) 1 0 = 1 (e) a -1 a ln(a)
In the implementation, the geometric law is favored since it is consistent with the Log-Euclidean metric interpolation operator. Besides, it is equivalent to a geometric interpolation on λ.

Continuous mesh framework

Consider a Riemannian metric space, we introduce the concept of unit element, to derive the idea of unit mesh, and establish an analogy between a mesh and a Riemannian metric space.

Definition 1.4.1 (Unit element). A polyhedron K is said unit with respect to a metric tensor M iff all of its edges are unit in this metric field:

∀i ∈ 1, n e M (e i ) = 1,
where n e denotes the number of edges of the element and e i , i ∈ 1, n e the edges.

Remark 1.4.1. Consider K a tetrahedron such that |K| = 0, then there exists a unique metric tensor M such that the element is unit in this metric. Conversely, from a given metric tensor, a non-empty, infinite set of tetrahedra can be constructed, as illustrated in Fig. 1.9. In other words, it constitutes an equivalence relation between discrete elements. The definition of unit mesh issues from the definition of unit element: similarly, a Riemannian metric space can be associated with a mesh whose elements are unit in the metric. Yet, the existence of such mesh is not guaranteed. For instance, it is not possible to fill R 3 with regular tetrahedra. To address this issue, we extend the definition by relaxing the length constraint and considering quasi-unit elements, i.e. elements that satisfy the property

∀i ∈ 1, n e , M (e i ) ∈ [ 1 √ 2 , √ 2].
An additional constraint on the quality of the tetrahedron is necessary to avoid flat elements in the mesh, as exposed in [Loseille and Alauzet 2011a].

Definition 1.4.2 (Unit mesh). A mesh is a unit mesh in the metric field M(•) iff all of its elements are quasi-unit with respect to M(•).

The notion of unit mesh therefore creates an analogy between the mesh, which is a discrete object, and a Riemannian metric space as its continuous counterpart. Therefore, the metric field is assimilated to a continuous mesh. Table 1.1 exhibits the correspondences between discrete and continuous entities, as established in [Loseille and Alauzet 2011a].

DISCRETE CONTINUOUS Element K Metric tensor M Mesh H of Ω h Riemannian metric space M(x) = (M(x)) x∈Ω Number of elements N e Complexity C(M) = Ω det(M(x))dΩ Linear interpolate Π h u Continuous linear interpolate Π M u
Table 1.1 -The continuous mesh model draws a duality between the discrete domain and the continuous domain.

This framework simplifies the problem of mesh generation. The meshing software generates an isotropic and uniform mesh in the Riemannian metric space in any case, which is actually an adapted, possibly anisotropic mesh, in the Euclidian canonical space.

However, the practical implementation of these methods, especially for threedimensional cases, raises some issues. Due to large variations of sizes and orientations, it is indeed complicated to guarantee a valid mesh throughout the process. To improve the robustness of the methods, many meshers and re-meshers rely on local mesh modifications [START_REF] Jones | [END_REF]], [START_REF][END_REF], [Dobrzynski and Frey 2008], [START_REF] Loseille | Anisotropic adaptive simulations in aerodynamics[END_REF].

Mesh modification operators and mesh optimization

The purpose of local mesh modification operators is to increase robustness in the meshing process. Indeed, these operators contribute to ensure a valid mesh throughout the process.

Moreover, in a metric-based adaptive meshing process, a complementary optimization step is often necessary, for example to avoid obtuse elements. Indeed, such elements are perfectly regular in the metric space, but they may bring stiffness to the simulations performed on this adapted mesh. We define mesh optimization as a set of topological and geometric operations meant to improve some criteria, e.g. angles, edges lengths, or more complex quality functions. Mesh optimization is therefore an autonomous process that can be used independently, taking a valid mesh as input, and a target metric field if necessary.

This section gives a brief overview on common local mesh modification operators and mesh optimization. It introduces the notion of mesh quality and describes a few quality criteria. This topic is treated with regards to simplicial meshes. An extension to mixedelement meshes is developed in Chapter 2, Section 2.3.

Quality

The definition of mesh quality relies on the quality of the elements. To evaluate the global quality of a mesh, we analyze statistics on elements quality, e.g. average quality, worst quality, histograms. Optimization processes generally target the worst elements. The definitions of the quality criteria depend on the desired type of mesh, the presence or the absence of a provided metric field.

Quality definition in the absence of a metric

If no metric field is provided, a good quality criterion is the aspect ratio of the element, or geometric quality. Let K be an element of the mesh, its geometric quality is computed as

Q K = α h max ρ K ,
where h max is the length of the largest edge, ρ K is the radius of the inscribed circle of K, and α is a normalization factor that depends on the target element. If K is a triangle, the radius is given by ρ K = S K p , where p is the half perimeter of K and S K its area. The previous formula can be rewritten as

Q K = α h max p S K . (1.8) with α = √ 3
6 to ensure the target element, i.e. the equilateral triangle, has a quality equal to 1. This quality function varies in range [1, ∞], the worst elements having the highest quality. To evaluate the quality of a mesh, the average quality can be considered

Q H = 1 N T K∈H Q K ,
although a histogram is more relevant to compare meshes.

Another quality function is derived from the notion of metric, which can also be interpreted in terms of geometric quantities as detailed in [George et al. 2019, p.47], and therefore be applied in the absence of provided metric. In this case, we evaluate the quality, denoted by q(K) as the ratio between the geometric mean and arithmetic mean of the squared prescribed sizes

q(K) = Π i h 2 i 1 d 1 d i h 2 i , (1.9)
where d denotes the dimension of the considered element. Using the geometric interpretation of these quantities, it yields to a criteria that depends on the volume V K or area S K and the quantity h = l 2 i . The quotient presented in Eq. (1.9) is then inverted to have a quality varying in [1, +∞], which, for a triangle, yields to

Q K = α h 2 S K , with α = √ 3 12 .
Quality definition using the provided metric

In this case, the notion of target element is more specific. We present two criteria, based either on the length of the edges or the shape of the elements.

The quality criterion based on the edges quantifies the proximity of the mesh to a unit mesh in the provided metric M. Consider an edge e = pq. The quality of this edge is

Q length (e) = M (pq) if M (pq) ≤ 1, M (pq) -1 if M (pq) > 1.
(1.10)

From this measurement, we define a global quantity that evaluates how size prescription is respected in the mesh. Denote by E the set of edges of the mesh, and |E| its size. Using the notation e = 1 -Q length (e), the efficiency index of the mesh is defined as

τ = 1 - 1 |E| e∈E 2 e .
(1.11)

The shape-based criterion is computed for an element K as

Q shape (K) = min p i ∈K Q p i K
where Q p i K denotes the quality in the Euclidean metric space associated with vertex p i ,

Q p i K = 1 α |K| M(p i ) e i ∈K 2 
M(p i ) (e i ) d/2 = 1 α det (M(p i ))|K| I d e i ∈K 2 
M(p i ) (e i ) d/2 ,
with |K| M(p i ) the volume in the metric according to Relation (1.2).

Other criterion can be used to describe the mesh, like angle repartition. However, they are not enough to detect invalid elements. Volume or area must be involved to define a robust criterion for optimization purposes.

Local mesh modification operators

We present some common local mesh modification operators, that can be used through a mesh generation process or in mesh optimization.

Actually, mesh optimization can be performed through global or local methods. Global methods generally provide a well-defined framework but lack flexibility and may be timeconsuming. For example, it can be modeled as the minimization of a given function computed from the vertices positions. Generally, mesh optimization is only part of a preprocessing step before the simulation, so less time-consuming methods are preferable. On the other hand, local processes do not generally lead to a global optimum but provide satisfactory results, and they are easily parallelized. Therefore, our work favors optimization based on local operators. Vertex smoothing. This operation consists in moving a vertex according to an optimal position, for instance at the barycenter of the topological ball or at a weighted barycenter. Once the optimal position is computed, the new topological ball is checked to make sure the new position does not create invalid elements or degrades the quality of the surrounding elements. A relaxation is performed in this case, since the initial position is valid. Finally, a slight degradation of the quality of some elements is tolerated to balance the improvement of the worst ones. This is a geometrical operator, i.e. it modifies the mesh (positions of the vertices) but keeps the same connectivity. A simplified diagram illustrating this operation is presented in Fig. 1.10 (a).

Edge swap, face swap, general swap. Let e be an internal edge of a two-dimensional mesh. The edge swap, denoted by T 2→2 , replaces this edge in the corresponding (quadrilateral) shell with the other diagonal of the quadrilateral, see Fig. 1.10 (b). In a threedimensional mesh, this operator is extended to a face swap and general swap. First, consider the similar case of a face shared by two tetrahedra. This face can be replaced in the shell by the three faces delimited by the edge linking the two opposite vertices to the initial face in the shell, as shown in Fig. 1.10 (c). The two-tetrahedra configuration is therefore replaced by a three-tetrahedra configuration. This face-swap operator is denoted T 2→3 . The inverse operation T 3→2 is possible if the considered shell is convex. A more general operator, denoted by T n→2(n-2) was presented in [Brière de L'isle and [START_REF] Brière De | Optimization of Tetrahedral Meshes[END_REF]. These operators are said topological since they change the connectivity of the mesh.

Edge collapse. The edge collapse, pictured in Fig. 1.10 (d) can be interpreted as a point removal. A classical approach to this operation is to move the connectivity from the removed endpoint to the other, and delete the flat elements.

Cavity-based operators. In [START_REF] Loseille | Adrien Loseille and Victorien Menier. Serial and parallel mesh modification through a unique cavity-based primitive[END_REF], the authors propose to use a single operator meant to perform all local operations. This cavity-based operator is inherited from incremental methods [Bowyer 1981, Watson 1981], which refers to a triangulation method where points are inserted iteratively in the mesh. It can be modeled as

H i+1 = H i -C(p) + B(p),
where H i denotes a valid mesh at iteration i, p the point to be inserted, H i+1 the resulting mesh at iteration i+1. The cavity C(p) is defined, in the context of Delaunay triangulation [Dobrzynski 2005, George andBorouchaki 1998], as the set of elements such that p is contained in their circumcircle. B(p) is the ball of p, i.e. the set of new elements having p as a vertex. Fig. 1.10 (e) illustrates how the initial cavity (top part) is emptied to insert the vertex.

Other local operators presented earlier can be rewritten as cavity operators. It requires the definition, for each case, of a suitable cavity, and the reconnection that gives the best quality.

Metric-aligned and metric-orthogonal meshes

As stated in Section 1.4, from a given metric tensor, an infinite set of unit elements can be constructed. The idea of metric-aligned and metric-orthogonal approaches is to generate unit elements that are aligned with the eigenvectors of the metric. The metric field therefore acts as a directional field as well as a size field. Such methods can be performed through a frontal approach with local reconnection, as proposed in [Marcum and[START_REF] Marcum | [END_REF][START_REF] Marcum | [END_REF] or a frontal point-placement coupled with a cavity-based insertion, as described in [Loseille 2014]. [START_REF] Sharbatdar | Anisotropic mesh adaptation: recovering quasi-structured meshes[END_REF]] also present a method that aligns the element of a uniform mesh with the eigenvectors of a prescribed metric field using a vertex moving process, targeting right-angled elements, similarly as the metric-orthogonal process.

Metric-aligned and metric-orthogonal processes favor respectively isosceles (in the physical space) and right-angled elements. In this work, we focus on the metric-orthogonal strategy, since the goal is to favor a quasi-structured pattern for the generation of quaddominant meshes. Still, both approaches are presented in this section.

Aligned and orthogonal elements

We describe two ways to generate aligned elements, either from a frontal edge or a frontal vertex. [Marcum and[START_REF] Marcum | [END_REF][START_REF] Marcum | [END_REF] propose a point-creation method based on an advancing front process. New vertices are proposed from edges following the size prescription in the direction of the eigenvectors. Two patterns are represented in Fig. 1.11. The advancing-front type placement or metric-aligned approach creates the point from the middle of the frontal edge, while the advancing point type placement creates two new points from the endpoints of the frontal edge. If the metrics at the endpoints are aligned with the edge, it leads to the configurations represented in Fig. 1.12. Otherwise, it corresponds to the situation represented in Figure 1.13. The advancing front point creation methods from an edge pq reads

p new = 1 2 (p + q) + λ -1/2 i e i ,
where e i is the considered eigenvector and λ i the associated eigenvalue. The advancingpoint method reads 1.6. Metric-aligned and metric-orthogonal meshes 

p new = p + λ -1/2 i e i q new = q + λ -1/2 i e i
The method presented in [Loseille 2014] is similar and uses a pseudo-frontal pointplacement. However, instead of using the frontal edges to propose new points, they are proposed from the existing vertices. Metric-aligned point-placement produces the best unit elements in terms of angles. Starting from the alignement with the direction of the smallest size (largest eigenvalue), six points are proposed to construct the six equilateral triangles around the central vertex, as shown on the left in Fig. 1.14. Note that the alignment with the other eigenvector, as pictured in the middle of Fig. 1.14, gives a very bad configuration in terms of angles. Lastly, metric-orthogonal point-placement, represented on the right in Figure 1.13 -Advancing front (left) and advancing point (right) point-placements, if the edge is not aligned with the metric. Figure extracted from [START_REF] Marcum | [END_REF], modified with permission.

Figure 1.14 -From a given metric (red line), three point-placements following the eigenvectors of the metric, from left to right: metric-aligned following the smallest size, metric-aligned following the largest size and metric-orthogonal. The blue lines represent the produced elements. Let p be a frontal vertex. We denote by R the matrix whose columns are the eigenvectors of M and Λ = diag(λ 1 , λ 2 ) the diagonal matrix of eigenvalues. The proposed points from p according to the metric-aligned point-placement are

q k = p + RΛ -1/2 cos( kπ 3 ) sin( kπ 3 ) , k ∈ 1, 6 .
(1.12)

And the four proposed points following the metric-orthogonal point-placement are

           q 1 = p -λ -1/2 1 e 1 q 2 = p + λ -1/2 1 e 1 q 3 = p -λ -1/2 2 e 2 q 4 = p + λ -1/2 2 e 2
(1.13) Remark 1.6.1. These point-placements do not take into account the variation of the metric. The edge of the metric-aligned elements formed from vertex p satisfies M(p) (e) = 1 but not M (e) = 1. To correct the point proposition, we seek for the position p i on edge

[pp i ] that satisfies M (pp i ) = 1.
Remark 1.6.2. In any case, metric-orthogonal point-placement is not optimal in terms of edge length: the largest edge equals √ 2 in the metric of p.

Metric-aligned and metric-orthogonal mesh generation algorithm

This section briefly presents the procedure implemented in Feflo.a, based on the method described in [Loseille 2014], to generate metric-aligned and metric-orthogonal meshes. It relies on the point-placement described in the previous section, and a cavitybased insertion as defined in Section 1.5.2. The global process is described in Algorithm 1. Triplets composed of a point, a prescribed size, and a prescribed direction (p i , h i , u i ) are sorted in a heap list.

To illustrate this algorithm, we show the example of a circular anisotropic metric field in Figure 1.15. The input metric field is shown on the left part. The metric-orthogonal point-creation step is represented in the middle part of Figure 1.15. We can observe the alignment of the points along the rays of the circle. The output metric-orthogonal mesh is displayed on the right of Figure 1.15 and is compared with the standard adapted mesh in Figure 1.16. A close-up view on the anisotropic feature shows the apparent quasistructured pattern, which seems quite favorable to the formation of quadrilaterals.

Algorithm 1: Metric-align and metric-orthogonal mesh generation.

Input: Boundary, background mesh, metric field. end Insert the created points in the mesh using a cavity-based insertion.

Output: Adapted mesh

The pairing of the metric-orthogonal mesh into a quadrilateral mesh is displayed in Figure 1.17. The close-up view shows that the anisotropic part seems to be well-captured in an almost full-quadrilateral area. The quality and alignment of the quadrilaterals formed in this area are quite satisfying. However, a few isolated triangles remain. It mainly occurs at size transitions. Besides, the close-up view located where the metric field is less anisotropic shows that the quality and the alignment of the quadrilaterals decrease as the anisotropy decreases. Despite these noticeable flaws, that need to be adressed, metricorthogonal meshing seems to be a suitable preliminary step to form a quad-dominant mesh.

Conclusion

This section presented the tools and techniques of metric-based mesh generation. The notions of metric tensor and Riemannian metric space were defined, along with some useful operators and properties. We introduced the concepts of continuous mesh, which sets an elegant and well-posed framework to handle the problem of mesh adaptation. Besides, we pointed out that there is an infinite set of discrete mesh that can be associated with a continuous mesh. We can take advantage of this variability to favor certain properties in the mesh, for example a good angle repartition, or orthogonality.

In fact, through metric-aligned and metric-orthogonal approaches, we show how the metric field, which is generally used for size prescription, is also suitable to create aligned and orthogonal elements in the mesh. Such methods enable the generation of aligned, adapted meshes, and most importantly, locally quasi-structured meshes. In the next chapter, we develop how this method can be applied and enhanced to generate quaddominant meshes. Figure 1.16 -Comparison between a standard adapted mesh (left) and a metric-orthogonal adapted mesh (right) from an anisotropic metric field showing a circular feature. A close-up view corresponding to the above red rectangle is shown for each mesh.

Figure 1.17 -Quad-dominant mesh formed from the metric-orthogonal mesh shown on the left in Figure 1.16. The left frame shows a large-scale view, the top-right frame is a close-up view on the anisotropic feature (same location as Figure 1.16), and the bottom-right frame is a detail of the mesh farther from the anisotropic feature.

Chapter 2

Quasi-structured and mixed-element meshes

Motivations

The early numerical simulations were performed on simple rectangular or parallelepipedic domains, which are naturally discretized as grids of regular quadrilaterals or hexahedra. The common numerical methods were Finite Difference schemes, which are generally defined for grids. However, the physical problems and considered geometries in nowadays simulations are substantially more sophisticated. The increasing complexity of the geometries motivated the development of simplicial meshes, and simultaneously numerical methods emerged that were better suited to this kind of elements, such as Finite Element or Finite Volume methods. Efficient advances for tetrahedral meshing have been presented in the 90s [George et al. 1991a, Löhner and Parikh 1988, Rebay 1993]. It is now a mature field of research: various softwares have been developed to automatically handle arbitrary geometries , and the advances in this field now mostly focus on reducing the time and memory cost of the process. Yet, there is still a strong demand for hexahedral meshes, for various reasons. For instance, to retrieve the good properties of Finite Difference schemes on arbitrary geometries, hexahedral meshes seem like a good option since these methods were originally developed on grids. Then, theoretically, hexahedra and quadrilaterals have a reduced memory cost compared to tetrahedra and triangles. We can also point out that certain applications in solid mechanics require hexahedral meshes, due to the non-linearity of the considered phenomena. And, to give a CFD-related example, some numerical solvers favor fully-structured boundary layers.

However, the automated generation of pure hexahedral, conformal meshes on arbitrary geometries is a challenging problem, and it is not as developed and robust as simplicial mesh generation. To take advantage of the progress on simplicial meshing techniques, mixed-element meshes seem like a good alternative. We therefore focus on quad-dominant meshes.

Our approach relies on the techniques of metric-based mesh generation introduced in Chapter 1, the transition to quasi-structured meshes is based on the metric-orthogonal approach described in Section 1.6. From the provided metric field, this method favors structured patterns around anisotropic features. For example, for a flow simulation, it would impose structured elements where they are relevant (shocks, boundary layer) and unstructured elements elsewhere. Using this approach, the mixed element mesh generation is also fully automated. From this framework, two methods were investigated to construct a quad-dominant procedure.

The first method is referred to as a posteriori. From a preliminary quasi-structured mesh obtained through the metric-orthogonal process, a mixed-element mesh can be formed. To recover quadrilaterals from the triangular mesh, the chosen strategy focuses on the formation of quadrilaterals with the strongest anisotropy ratio and the best alignment with the metric field. It takes advantage from the specific pattern of metric-orthogonal adapted meshes, which favors right-angled triangles with high aspect ratio in some areas. The main drawback of this a posteriori approach is that the directional information has to be recovered while it is available during the metric-orthogonal point-placement step, in the local re-mesher.

Therefore, another approach is to use straightforwardly this information during the mesh generation process. This method is said a priori, since the aim is to detect the quadrilaterals before the insertion step. The point-placement step is still a metric-orthogonal approach, except a graph is built on the fly based on the point propositions and filtering. Using this structure, some topological and geometrical operations can be performed before the insertion step, to maximize the number and the quality of the quadrilaterals already formed in the graph. This graph is not the final mesh, it is meant to preliminary detect the points and edges forming quadrilaterals and enforce these edges at the insertion step, that is modified for this purpose.

After a brief overview on existing methods for hexahedral and quadrilateral mesh generation, we present the strategies developed in this research work to address this problem.

Hexahedral and quadrilateral mesh generation methods

Numerous approaches focus on hexahedral and quadrilateral meshing, although no general method really emerges. The suitability of a method generally depends on the application and the considered type of geometry. For our purpose, i.e. to establish a mixed-element adaptive process, the meshing method should meet the following requirements -robustness to the geometry, -be fully automated, since it is part of a fully automated process, -the ability to follow an anisotropic size map, -provide a result in a reasonable amount of time. To balance these requirements and relax the constraints of the problem, the final mesh does not need to be fully hexahedral or quadrilateral (the solver handles mixed-element meshes).

In this section, several strategies for the generation of pure quadrilateral or hexahedral, or mixed-element meshes are presented. We point out the interesting aspects of these approaches and their drawbacks, regarding the criteria mentioned earlier, and introduce the relevance of our method.

Multi-blocks methods

Multiblock methods [START_REF] Shaw | Automatic topology generation for multiblock grids[END_REF] are commonly used in CFD to generate locally-structured meshes. It consists in (i) dividing the domain in regions having a favorable topology, e.g. four-sided regions for quadrilateral meshes, and (ii) mapping grid patterns on these regions. The quality of the elements mainly depend on the subdivison of the domain (first step).

Several strategies have addressed the problem, for instance, some are based on the medial axis or surface [Price et al. 1995], some are topology-based [White et al. 1995, Blacker 1996], or cross-field methods, see Section 2.2.4. However, no automated subdivision method is completely reliable for arbitrary, complex, three-dimensional geometries. Therefore, in practice, multi-block methods often involve a manual partition and are semiautomated.

Besides, the notion of anisotropy and size maps are not relevant here, these methods are therefore not really suited for our purpose.

Quadtree or octree-based methods

Octree-based approaches [Schneiders et al. 1996, Ito et al. 2009, Maréchal 2001] are automated and provide fully hexahedral meshes with a good connectivity and a good capacity to handle arbitrary geometries. However, the quality is degraded close to the boundaries and the generated hexahedra cannot be oriented flexibly. Like the multi-block approach, there is no notion of anisotropy, although an isotropic size map can be followed by the octree.

Paving and plastering methods

Paving [Blacker and Stephenson 1991] and plastering [Canann 1992] methods generate a structured pattern using an advancing front strategy from the provided boundary. The main difficulty of the method is to handle the collisions of the fronts, which can be challenging, especially for fully-hexahedral meshes. Therefore, these methods generally lead to hex-dominant meshes. The metric-orthogonal point-placement is similar to this process, although paving is guided by geometric information and not a metric field. Besides, the use of a cavity-based insertion in our approach reduces the problems due to front collisions.

Frame fields

Frame fields (or cross fields) are directional fields that are computed on a preliminary simplicial mesh. They are generally obtained by solving a PDE [START_REF] Blanchi | [END_REF], Kowalski et al. 2013] and represent the ideal orientation of the quadrilaterals at each point of the considered domain. These fields are generally coupled with parametrization methods: frames singularities are used to separate the domain into shapes that can be filled with quadrilaterals, using a parametrization that maximizes the alignment of the generated structured elements with the frame field. It seems to be a privileged lead towards an efficient hexahedral meshing process, see [Huang et al. 2012, Li et al. 2012, Ray et al. 2018]. They demonstrate a good alignment with the considered geometries, although threedimensional complex geometries are still challenging. Thanks to the parametrization, the quality of the elements is also quite good, although little control is given over the shape of the elements so it is not very suitable for an adaptive process.

Combination methods

Combination strategies generate quadrilaterals or hexahedra from a simplicial mesh. There are many methods, especially in two dimensions, to perform such operation. This is more rare in three dimensions and generally produces mixed-element meshes.

In the algorithm presented in [START_REF] Borouchaki | [END_REF]] or [Rank et al. 1993], the mesh edges are sorted according to the quality of the quadrilateral formed by the two surroundings triangles, then the best quadrilaterals are formed. These algorithms give satisfying results for unstructured meshes. The remaining isolated triangles can be divided into three quadrilaterals and a mesh refinement is applied to ensure conformity. To obtain a fully quadrilateral mesh, this process is repeated until no isolated triangle remains. This increases the size of the mesh. Besides, the mesh may potentially be generated according to a metric field and the final refinement leads to a non-unit mesh.

The combination method presented in [Remacle et al. 2012] is based on a perfect matching algorithm called Blossom [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1-vertices[END_REF]]. The triangles and edges of the meshes are considered as a graph, a cost function is assigned to the edges, e.g. the quality of the formed quads. A matching is a subset of edges, such that each edge of the matching is the diagonal of a formed quad, i.e. the two adjacent triangles have been combined. The use of a perfect matching algorithm increases the proportion of recovered quadrilaterals and reduces the use of a final refinement compared to the previous method.

Such methods are more efficient, i.e. the quality of the resulting mesh is better, if the preliminary mesh presents some orthogonality. The next and last part of this section presents some methods for this purpose.

Quasi-structured meshes

We expose some strategies to prescribe a specific orientation in a tetrahedral or triangular mesh.

The L p Centroidal Voronoi Tesselation (L p -CVT) [START_REF] Du | [END_REF], Lévy and Liu 2010, Liu et al. 2009] applies a vertex moving that minimizes an energy-like objective function computed on the Voronoi diagram. It drives the cells to an ideal shape, which is, thanks to the L p norm, a sort of rectangle, generating some structure and orthogonality in the mesh. [START_REF] Sharbatdar | Anisotropic mesh adaptation: recovering quasi-structured meshes[END_REF] present a similar strategy, where an aligned adapted mesh is obtained from an isotropic mesh using an extension of the Target-Matrix optimization Paradigm (TMOP) [START_REF] Knupp | Introducing the target-matrix paradigm for mesh optimization via node-movement[END_REF]]. Each element is represented by its Jacobian, and a target Jacobian corresponding to the ideal element in the metric is computed. A global objective function is derived from the current Jacobian and target Jacobians, the minimization of this objective function drives the vertex moving process.

In [START_REF] Sharbatdar | Anisotropic mesh adaptation: recovering quasi-structured meshes[END_REF], the target elements are right-angled triangles, aligned with the eigenvectors of the metric at this location, and respecting the prescribed lengths. The target element is the same as the unit elements favored by a metric-orthogonal approach, although this process describes a mesh optimization operation, not a pointplacement.

We gave an overview on some existing methods for the generation of quadrilateral and hexahedral, mixed-element and orthogonal meshes. Before presenting our methods, we give and discuss the definitions of quality on such meshes.

Notion of quality for non-simplicial meshes

Some definitions of mesh quality and elements quality were introduced for simplicial meshes in Section 1.5.1. The present section discusses the definition of mesh quality for non-simplicial meshes, and especially for quadrilaterals. The chosen quality formula are involved in the combination processes, and allow to compare them as shown in the next section.

Extension of the quality measurements for simplicial meshes. A primary approach to measure the quality of a given non-simplicial element is to consider the simplices composing this element. The formula from Section 1.5.1 can be applied to each simplex, then, a global quality is obtained as the minimum of these measurements. This method is convenient for an arbitrary non-simplicial mesh where the validity of the elements is the most important criterion. It provides a single quality formula for the whole mesh. However, to evaluate the quality of a quad-dominant mesh, it seems more relevant to measure the proximity of each element with a target element. Moreover, the ideal sub-triangles composing a quadrilateral are right triangles, while the ideal triangle for the generic quality formula is equilateral. A similar issue arises for metric-orthogonal meshes: the ideal triangles are right-angled where the metric is anisotropic, and equilateral elsewhere. The idea of a single quality criterion in these two cases does not seem suitable.

The edge-based quality formula given by Eq. (1.10) still holds in this case and, similarly, it doesn't give information on the validity of the elements. Besides, in an orthogonal mesh, this quality function is not representative, since the metric-orthogonal generation method produces non-unit edges.

Example 2.3.1. In the metric-orthogonal element shown in Fig. 2.1: we have

M(p) (pq 1 ) = M(p) (pq 2 ) = 1, but M(p) (q 1 q 2 ) = √ 2.
The Jacobian of the element is sometimes used as a quality indicator for non-simplicial elements, although it doesn't ensure either the validity of the element. Shape-based quality. Similarly as the simplicial case, a shape-based quality function can be established as a function of the volume of the element and average edge length.

To ensure the validity of non-simplicial elements, it remains necessary to consider the volumes of the sub-simplices. In the octree-based hexahedral meshing software Hexotic, the following quality formula is used for a hexahedra H [Maréchal 2009]:

Q hexotic (H) = 24 √ 3 V min 1≤i≤12 l 2 i 3/2
where V min is the minimum volume of the two sets of five tetrahedra cut from a hexahedra and l i are the lengths of the 12 edges. A normalization factor ensures the regular cube has a quality of 1. The equivalent formula in two dimensions is

Q hexotic (Q) = 4 A min 1≤i≤4 l 2 i
with A min the minimum area of the set of two triangles cut from the quadrilateral Q and l i the edge lengths.

Angle-based quality. The quality criterion used in [START_REF] Borouchaki | [END_REF]] is a function of the angles computed in the metric. First the angle quality is defined as

Φ([θ] M(p) ) =        2 π [θ] M(p) if 0 ≤ [θ] M(p) < π 2 2 -2 π [θ] M(p) if π 2 ≤ [θ] M(p) < π 0 if π ≤ [θ] M(p) , (2.1) 
where [θ] M(p) is the measure of the angle θ defined by Eq. (1.6). Then, the quality of the element is

Q BF (Q) = min p,q∈Q Φ([θ q ] M(p) ) (2.2)
where Φ([θ q ] M(p) ) is the measure of the angle at vertex p in the metric prescribed at q.

In the Euclidean case, this is the same formula as the quality criterion given by [Remacle et al. 2012].

Q Blossom (Q) = max 1 - 2 π max k π 2 -α k , 0 . (2.3)
where (α k ) k∈ 1,4 are the angles of the quadrilateral.
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Proof. In a Euclidean space, the canonical definition of the angle applies, so (2.2) becomes

Q BF (Q) = min q∈Q Φ([θ q ]).
We show that it is equivalent to (2.3). First, let us prove that

1 - 2 π max k π 2 -α k = min k 1 - 2 π π 2 -α k (2.4) Consider α = Argmax k π 2 -α k , then α satisfies ∀ k ∈ 1, 4 π 2 -α k ≤ π 2 -α ⇔∀ k ∈ 1, 4 1 - π 2 -α k ≥ 1 - π 2 -α .
According to the definition of α, it implies

α = Argmin k 1 - π 2 -α k , yielding the following equality, 1 - 2 π max k π 2 -α k = min k 1 - 2 π π 2 -α k .
Next, let us prove that there exists a function ψ such that the quality function Q Blossom can be written as

Q Blossom = min k ψ(α k ).
Using (2.4), the quality function becomes

Q Blossom (Q) = max min k 1 - 2 π π 2 -α k , 0 . Let us define ψ ψ : α ∈ [0, 2π] → ψ(α) = 1 - 2 π π 2 -α k .
This is equivalent to write which is exactly the angle quality Φ defined by Relation (2.1) used in the quality formula Q BF . We obtain straightforwardly

ψ(α) =        1 -2 π π 2 -α = 2 π α if α ∈ [0, π 2 [, 1 + 2 π π 2 -α = 2 -2 π α ≥ 0 if α ∈ [ π 2 , π[, 1 + 2 π π 2 -α = 2 -2 π α ≤ 0 if α ∈ [π, 2π[. Therefore, max(ψ(α), 0) =        2 π α if α ∈ [0, π 2 [, 2 -2 π α if α ∈ [ π 2 , π[, 0 if α ∈ [π, 2π[,
Q Blossom = min k Φ(α k ),
which is the same expression as Q BF .

If a metric field is provided, it is interesting to compute the angles in the metric, as in Eq. (2.2). Example 2.3.2 illustrates this point.

Example 2.3.2. The rectangle Q 1 in dotted blue lines in Fig. 2.2 is generated using a metric-orthogonal point-placement following a metric tensor M represented by the red ellipsoid. For the quadrilateral Q 2 in plain blue lines, the short edges are aligned with the metric while long edges correspond to the diagonal of the rectangle. According to Eq. (2.3), Q 2 has a quality Q iso = 0.9199 using the Euclidean definition of the angles and Q aniso = 0.5 in the metric space (R 2 , M). This example illustrates that, when a metric field is provided, using the metric to compute the angles gives a more discerning criterion.

This formula is coupled with an evaluation of the sub-triangles surfaces to check the validity.

A posteriori strategy

The a posteriori approach has two main steps: the generation of a metric-orthogonal mesh and the combination of the right-angled triangles into quadrilaterals. The first step is detailed in the previous chapter, Section 1.6. Therefore, we mainly present the combination algorithm in this Section.

Combination algorithm

Our algorithm is somehow similar to the edge-based algorithm described in [START_REF] Borouchaki | [END_REF]]. Their algorithm gives satisfying results for arbitrary triangular meshes. In this case, we want to take advantage of the specific pattern of the metric-orthogonal point placement. The chosen quadrilateral combination procedure:

-forms in priority the quadrilaterals with the strongest aspect ratio or anisotropic ratio: it corresponds to the regions where the directions of the metric are welldefined, -reduces isolated triangles in quadrilateral regions: the direction of the smallest size is followed to form a block of quadrilaterals as long as possible, -avoids low-quality quadrilaterals: a quality threshold is set to prevent the formation elements below the threshold, -reduces isolated quadrilaterals: an anisotropy ratio threshold is set to limit the formation of quadrilaterals in isotropic areas, where isolated quadrilaterals are likely to form.

In the case of a mesh with a provided metric field, we perform the combination reported in Algorithm 2. It involves a sorted heap structure labeled AniHeap in the Algorithm.

Algorithm 2: Quadrilateral combination algorithm with a provided metric field.

Input: Initial mesh H tri , quality threshold q min , anisotropy threshold r min ani , metric field M tri Output: Mixed-element mesh H mix Sort triangles into a heap-list: for T ∈ H do Compute anisotropy ratio r ani = λ max /λ min ; Insert T in AniHeap (sorted heap structure from the highest to the lowest ratio); end while AniHeap is not empty (n heap > 0) do Remove the first triangle T from AniHeap (highest anisotropy ratio); if r ani (T ) < r min ani then n heap ← 0; else Find the direction of the smallest prescribed size d; Combine all possible valid quadrilaterals from T in direction ±d; end end

The anisotropy ratio of a triangle corresponds to the anisotropy ratio of the metric interpolated in this element. The validity criterion is determined by the quality of the quadrilateral according to relation Eq. ( 2.3) that must be larger than the provided threshold q min . We add a positivity check for the sub-triangles of the quadrilateral.

Remark 2.4.1. In the absence of a metric field, we can adjust the algorithm by using the aspect ratio instead of the anisotropic ratio. However, since we intend to use this algorithm in an adaptive process (see Chapter 5), it is assumed that the metric is provided.

Remark 2.4.2. In Algorithm 2, the boundary triangles can be treated first in a separate heap list to form in priority the quadrilaterals from the boundary.

To illustrate this process, Figure 2.4 shows the result of the combination for a boundary layer mesh from a RANS simulation. Figure 2.3 shows the outcome of the combination process from [START_REF] Borouchaki | [END_REF]] for comparison. It is observable that, if the topology is favorable, our strategy can completely recover the structured elements in regions where there are mostly orthogonal triangles. The other approach mostly relies on a geometrical criterion so it is likely to leave some isolated triangles. Due to the threshold, our algorithm didn't form quadrilaterals far from the boundary layer in this example. To get a quad-dominant mesh, we could lower the threshold or couple it with another combining strategy for the remaining triangles.

Figure 2.3 -Quadrilateral combination using the approach of [START_REF] Borouchaki | [END_REF]] on a metric-orthogonal adapted mesh from a RANS simulation, close-up view on the boundary layer.

Figure 2.4 -Quadrilateral combination using our approach on a metric-orthogonal adapted mesh from a RANS simulation, close-up view on the boundary layer.

However, experience has shown that the accuracy of our simulations was more affected by isolated triangles in the structured parts than by the overall proportion of quadrilaterals. This was also pointed out in [Diskin and Thomas 2007]. To get rid of these isolated triangles, [START_REF] Borouchaki | [END_REF]], [Rank et al. 1993] or [Remacle et al. 2012] propose to divide these triangles into three quadrilaterals and apply a refinement to maintain conformity. We chose not to apply such process since (i) it would break the alignement in the metric-orthogonal pattern and (ii) it would reduce the global anisotropy of the mesh and increase its size. Our isolated triangles are mostly a consequence of size transitions, which we reduced using a specific gradation correction as described in Chapter 3. They are also due to unfavorable connectivity, that could for instance be improved using specific swaps, although this option has not been explored in this work.

A few more examples are presented in the next section to analyze the positive aspects and weaknesses of the method.

Examples

We illustrate the method described in the previous Section on a few analytical test cases.

Cross

This example is extracted from [START_REF] Marcum | [END_REF]. A metric-orthogonal mesh is generated from a metric-field showing a cross-shaped anisotropic feature:

∀(x, y) ∈ Ω M cross (x, y) = h -2 x 0 0 h -2 y where h x = min(2 αx × h min , h max ) h y = min(2 αy × h min , h max )
with h min = 0.005, h max = 0.1, α x = 20 × |x -0.5|, and α y = 20 × |y -0.5|.

Figure 2.5 compares the pairing from [START_REF] Borouchaki | [END_REF]], called Method 1 in the remainder, with the approach presented in the previous section, called Method 2. On the upside, fewer isolated triangles or isolated quadrilaterals appear using Method 2, which is an important criterion for numerical simulations [Diskin and Thomas 2007]. On the downside, it recovers less quadrilaterals, which was expected since the anisotropy threshold prevents the formation of some quadrilaterals. The global alignment seems to be better using Method 1 too, especially in the less anisotropic region. The effect of the threshold is observable in Figure 2.6: lower thresholds permit the formation of additional quadrilaterals but their quality is likely to be degraded. It is also noticeable that changing the thresholds affects the location of isolated elements, since it changes the order in which the triangles are processed.

To be more precise, consider the configuration represented on the left in Figure 2.7. Depending on the order of the process, this configuration can be combined into a fully quadrilateral region (picture on the right) or generate an isolated triangle (middle). This case illustrates the importance of process order, and partially explains why changing the thresholds leads to different outcomes in anisotropic regions.

Circle

This analytical metric is described more precisely in section 3.4.2. It has an anisotropic circular feature. The mixed-element meshes obtained from Methods 1 and 2, using the labels introduced for the previous example, can be observed in Figure 2.8. Again, Method 2 recovers less quadrilaterals but it favors larger full-quadrilateral regions. The curved feature of the analytical metric field brings an additional difficulty for the point-placement. Indeed, since it favors a placement following the direction of the smallest size first, it doesn't ensure that the connectivity will be favorable between two "rays". To solve this connectivity issue, topological optimization has been considered, but it seems more efficient and straightforward to correct the point-placement. This is one of the motivations for the a priori approach. The wavy pattern close to the anisotropic region is more visible using Method 2. In the mixed-element mesh from Method 1, this effect is reduced: this approach favors better quality quadrilaterals, which in this case gives a better global alignment. 

Conclusion on the a posteriori approach

These examples point out some noticeable aspects of the method. First, fewer quadrilaterals are formed compared to other methods, mainly because the anisotropy threshold prevents the formation of quadrilaterals in the isotropic regions. The presence of obtuse angles at size transitions also blocks their formation.

The mixed-element mesh generated using this method can be improved in various ways, for instance through geometric optimizations to correct the "wavy pattern" that appear in the quadrilateral area, or through swaps to re-equilibrate the connectivity where needed. However, these optimization steps seem redundant with some operations of the generation step. Besides, some information on orthogonality is given by the point-placement step and is lost in the output quasi-structured triangular mesh. In the next section, we describe the a priori method, which could also provide some optimization tools to correct the orthogonal mesh for the a posteriori method.

A priori strategy

The idea of the a priori approach is to take advantage of the information available at the point-placement step to detect the quadrilaterals in the mesh. Ideally, the method would provide a mixed-element mesh right after the insertion step. The development of the process has not reached this point yet. Therefore, this section doesn't present a well-designed procedure but a set of operations that can be applied to modify the pointplacement step.

This method mainly relies on a connectivity graph, created from the placement and filtering information. We call this tool the edge graph in the remainder. This is not a mesh but it can be used, in this approach, to -detect quadrilaterals beforehand, -ensure the corresponding edges are in the final mesh, -perform preliminary topological and geometrical optimization, -improve the quality of the quadrilaterals.

We first detail the creation of the connectivity edge graph, then present some options for mesh optimization and quadrilateral detection.

Edge graph construction algorithm

The edge graph is created on the fly at the point-placement step. The edges are formed:

-between a proposing point and a valid proposed point.

-between a proposing point and vertex that filters its proposition.

The edge graph is only a list of endpoints during the point creation. At the end of this step, the connectivity is recovered, such that the entries of the list edgList have the following form :

edgList[ie] = [ip iq iep ieq]
where ie is the index of the considered edge and ip, iq the indices of its endpoints, iep (resp ieq) is the index of the next edge in the linked list of edges having ip (resp.

iq) as an endpoint. This is useful to handle topological operations dynamically.

The process is reported in Algorithm 3. Part of this algorithm is a rewrite of the metric-orthogonal point-placement, the parts related to the edge-graph are colored in blue.

Algorithm 3: Metric-orthogonal point-placement and edge graph construction.

Input: Boundary, background mesh, metric field. Update the topology of the edge list. Edge graph optimization.

Insert the created points in the mesh using a cavity-based insertion.

Output: Adapted mesh An example of edge graph for the circular metric from Section 2.4.2 is displayed in Figure 2.9. It is obviously not a mesh, the resulting mesh is shown on the bottom part of the figure. We notice that it gives a sort of structure of the metric field. The aim of the method is to recover and optimize some quadrilaterals from this graph. To do so, we develop some operators to modify the connectivity of the graph and optimize the position of the vertices. 

Point creation order

The construction of the edge graph first pointed out the influence of the point creation order in the outcome. Different order strategies have been tested. To this end, the sorting criterion of the heap list has been modified to have more flexibility over the order.

We present an example to illustrate this phenomenon. Figure 2.10 shows a close-up view on a metric-orthogonal adapted mesh of a boundary layer, for three different pointplacement orders. From top to bottom:

-Initial order: using a sorted heap-list based on the prescribed sizes.

-Smallest direction only: points are proposed following the smallest direction of the metric only. -Adjustable order: depending on the aspect ratio of the metric, the order follows either the smallest direction, both orthogonal directions, or a metric-aligned pointplacement.

Initial order. The initial order creates the new points from the existing vertex currently prescribing the smallest size, by means of a sorted heap structure updated at each point insertion. This method may break the structured pattern, as observable in the mesh shown on the top part of Figure 2.10.

Smallest direction only. The strategy used for the mesh in the middle only propose points in the smallest direction of the metric. It gives better alignement but as the prescribed metric becomes less anisotropic away from the support, the directions become random. Another drawback of the method is that the edges are not aligned in the other direction. This aspect still gives a nice looking triangular mesh, but the resulting quadrilateral mesh has poor quality elements.

Adjustable order. The third option, illustrated by the mesh on the bottom part of Figure 2.10, is a compromise that allows point creation in the larger direction, but limits it to lower anisotropy ratio. It seems to re-equilibrate the alignment in the other direction, although the normal alignment is still better using the previous method.

To give another illustration of this aspect regarding the edge graph, a comparison between the initial order and the smallest direction order for the circular metric is depicted in Figure 2.11.

Connectivity and geometric optimization in the edge graph

Connectivity optimization

Some primary connectivity operators were developed from the edge structure. They use both the directional information provided by the metric and the connectivity information from the linked list.

Most operations rely on a function that recovers the ball of edges (and therefore the ball of points) from the edge structure. Provided with a direction d, for instance the direction of the smallest size for the local metric tensor, it computes on the fly the local orientation of the edges. To define the orientation of an edge, we consider the frame (d, d ⊥ ), where d ⊥ = n × d, denote by n the normal to the surface. For a two dimensional domain where n = t (0, 0, 1), if d = t (x, y, 0) then d ⊥ = t (-y, x, 0). A label is assigned depending on the alignment of the considered edge with d ⊥ , -d ⊥ , d, or -d, as pictured in Figure 2.12.

The process is detailed in Algorithm 4.

Using the edge balls of the created points, some operations to improve the connectivity have been tested. Figure 2.12 -Labels in the frame defined by a local direction d, used in Algorithm 4. Next edge is the edge linked to p, its index is the updated value of iep. end end Topological correction through edge removal or edge creation. Ideally, interior vertices in a structured part should be connected to four other vertices. We attempted to find the four ideal connections according to the point-placement, using the edge graph. The idea is to favor this pattern and enforce the corresponding edges at the insertion step. To this end, two graph modification operations were implemented: an edge deletion that removes the extra edges and an edge creation operator that completes a missing pattern.

The first one is presented in Algorithm 5. It doesn't detail the special case where a vertex is only related to the deleted edge. We chose to delete the point in this case. Using this process, a primary connectivity correction is presented in Algorithm 7, by removing extra-edges in each direction.

The second one relies on an elementary operation detailed in Algorithm 6. An initial edge attached to each vertex is required as an input. Normally, such edge exists since each point is at list linked by a creation edge or a boundary edge. However, this special case is easy to handle: if ip is the vertex linked to no other edge, the created entry of the edge list is

[ip * 0 * ].
An attempt to eliminate the extra edges for the circular edge graph, using the process described in Algorithm 7, is depicted in Figure 2.13. It shows that the ideal connectivity is retrieved in some parts, but the process still needs adjustment. Assuming

e prev = [ip * ie * ]: ieprev ← ledge(nedge); ienext ← ledge(2); edgList(ieprev) ← [ip * ienext * ] ; end Quadrilateral detection.
Once the topology is corrected, we can extract the quadrilaterals from the graph. The idea is to detect these quadrilaterals before the insertion, to save this information and ensure the vertices and edges that belong to quadrilaterals will appear in the final mesh. This is performed by finding cycles from one edge, as represented in Fig. 2.14. The process is detailed in Algorithm 8.

An example for the circular metric is shown in Fig. 2.15. It seems like this method misses a lot of quadrilaterals, and needs to be improved to be more relevant in the process. For instance, an iterative method has been considered to form quadrilaterals with a decreasing quality threshold. We could also explore methods from graph theory to detect cycles in the structure.

Algorithm 6: Elementary operation to add an edge between two vertices.

Input: Edge structure edgList, Vertex p (ip), Vertex q (iq), Initial edge linked to p (iep), Initial edge linked to q (ieq), Chapter 2. Quasi-structured and mixed-element meshes Remark 2.5.1. The validity and quality check is identical to one performed in the a posteriori combination.

Index
Remark 2.5.2. The existence of the quadrilaterals is checked using a hash table.

Geometric optimization

Once the connectivity is favorable, a geometric optimization process can be applied to improve the alignement or the orthogonality of the edge graph. This aspect has not been explored thoroughly. We exclusively considered local processes so far.

Firstly, we propose to apply a directional smoothing coupled with topological optimization. Using the point-placement following the smallest size only, the resulting edge graph only has edges in one direction and a few filtering edges, as observable in Figure 2.10 (middle part). We particularly observe this pattern in boundary layers. Based on this observation, we apply a process to link the proposed points in the other direction, using a support in the case of a boundary layer, or some filtered edges for internal anisotropic features. An example is shown in Figure 2.16 where the empty column shown on the left is completed. Once the connectivity is recovered, we apply a topological operator that moves the vertices along the direction of the smallest size, to match the neighboring column. This method needs a support or a front to give satisfying results, and most importantly a favorable connectivity. Another process has been tested that relies on the filtering points. Consider a point p proposing a point p new . If this new point is filtered by another vertex q, we suggest to replace the coordinates of q by a combination of p new and the current position. It seems to smooth the mesh but disrupts the alignment. This operation is inspired by the strategies used in the frontal approaches to handle collisions.

Conclusion on the a priori approach

As mentioned earlier, the a priori approach is still a work in progress. In this section, we exposed some ground work to give more flexibility over the point-placement step of the metric-orthogonal process. We presented how we gather the connectivity information in an edge graph, and developed some operators to modify the structure dynamically. These operators are generic but have been applied as ad hoc procedures so far. The remaining work is to design an overall automated process including these tools.

Conclusion and perspectives

Various quadrilateral and hexahedral meshing techniques were presented to introduce this section. We mainly focused on the ones that rely on directional or size prescription. Then, the methods set up during this thesis to generate quad-dominant meshes were described. Both methods are based on the metric-orthogonal approach which favors adapted meshes composed of right-angled elements.

The first method presented in this Chapter is called a posteriori. It is an intuitive approach which uses a preliminary metric-orthogonal mesh, to form a mixed-element mesh by combining the quadrilaterals. We described our combination algorithm, which favors the formation of anisotropic elements first, and does not combine isotropic triangles on purpose. The resulting meshes are adequate and allow to perform mixed-element simulations, as shown in Chapters 4 and 5. Yet, they could use some optimization. The considered optimization processes seemed redundant with some corrections of the preliminary metric-orthogonal point-placement, so we decided to develop this new approach first.

Therefore, a second approach, called a priori, was established. This is still a work in progress but some primary tools have been developed to establish a framework that gives more flexibility over the point-placement step. Namely, we set up a structure that gathers potential connectivity and geometrical information and defined some operators to modify it. It permitted to analyze some aspects of the point-placement, for example the order of point creation, which has a significant impact on the global alignment in the final mesh. Due to the lack of maturity of the a priori method, all mixed-element meshes shown in the remainder of this thesis are obtained using the a posteriori the method.

There are many possibilities to continue the work on this subject. Firstly, the development of the a priori approach needs to be completed, to provide a hybrid mesh straightforwardly. Secondly, to improve the directions where the metric is isotropic, the strategy could be modified to favor alignment with the geometry at these locations. It can be done using a geometric frontal approach, or some information from a different directional field that takes into account the geometry, e.g. frame fields. Then, other processes for the combination could be considered. Finally, the extension of the methods to three dimensions should be designed, as soon as the results in two dimensions are acceptable.

In any case, this meshing process highly relies on the prescribed metric field. Consequently, it is crucial to ensure that it has favorable properties to form orthogonal or quadrilateral meshes. This aspect is handled by the gradation control process, presented in the next Chapter.

Chapter 3

Metric Gradation

Motivations

Metric-based mesh adaptation highly depends on the quality and smoothness of the metric-field. Indeed, metric fields from simulations can sometimes show strong size variations, leading to the formation of poor quality elements. To illustrate this phenomenon, let's consider a simulation of a flow inside a scramjet, which is strongly anisotropic and shows numerous shocks. As depicted in Figure 3.1, the metric field computed from the solution shows very abrupt size variations (top left) which results in flaws in the adapted mesh (top right). These elements could be handled in a mesh optimization process, after generating the adapted mesh. However, since it is clearly a consequence from the provided metric field, it seems reasonable to apply some corrections to the metric field beforehand. An accurate correction process improves the quality of the final mesh and saves time in the final optimization process.

Several methods have been proposed to solve this issue. For example, an elementary solution is to compute a local average of the size prescription or metric tensor, as described in [START_REF] Löhner | Adaptive remeshing for transient problems[END_REF]]. Yet, such process only smoothes the metric field and does not give control over the size variation. More sophisticated methods were elaborated to smooth the size prescription field while being able to adjust the correction. For example, to smooth their automatically generated size function, [START_REF] Persson | Mesh size functions for implicit geometries and PDE-based gradient limiting[END_REF]] proposed to solve a gradient limiting equation, involving a threshold that is given by the user. However, this method only applies to isotropic size fields. [Borouchaki et al. 1998] elaborated an efficient mesh gradation control that can be applied to isotropic and anisotropic metric field. This process, named h-correction, is based on a local control of the gradient of the size prescription field (H-variation) and the ratio between the size of each element and its neighbors (H-shock). These algorithms can be applied to anisotropic two or threedimensional metric fields. Several variations of this process have been developed. For example, the methods presented in [Alauzet 2010b] and [George et al. 2019, Chapter 1] are based on the same framework and similar algorithms. Through a loop on the edges of the mesh, the constraints on the considered quantity (H-variation, H-shock or both) are first computed, then the tensors defined at the endpoints of the edge are modified to make sure these constraints are respected. These methods differ in the way the correction is applied. In the method described in [George et al. 2019, Chapter 1], the initial main directions of the initial tensor are preserved while in the algorithm from [Alauzet 2010b], the correction is applied through metric intersection, which changes the orientation of the corrected tensor, propagating anisotropy in the final metric field. The question of the propagation of directions has been investigated in [Li et al. 2004] and is performed through specifically designed operators. The strategy presented there spreads anisotropy and preserves the smallest sizes. Another approach, that does not rely on metric intersection, was exposed in [Xiao and Ollivier-Gooch 2020], re-defining metric gradation control as an optimization problem, based on the Log-Euclidean framework.

The diversity of approaches illustrates the complexity of the problem when considering an anisotropic metric field, therefore the suitability of the process depends on the context and type of adapted mesh needed. So far, these methods were analyzed regarding standard unstructured meshes. The purpose of this work on gradation control is to enhance the existing processes for quasi-structured and quad-dominant meshes.

Specificities of metric-orthogonal and quadrilateral meshes

In metric-orthogonal meshing, it is even more important to ensure the smoothness of the provided metric. Abrupt size variations may result in the formation of obtuse triangles instead of right triangles, breaking the structure in the transition. The formation of quadrilaterals may be impossible or not reach the expected level of quality. To illustrate this issue, we consider an analytical metric field showing a circular feature. The method from [Alauzet 2010b] is applied to this initial metric field, then a mixed element adapted mesh is generated, along with a standard adapted mesh for comparison. The resulting quad-dominant adapted mesh has numerous size transitions, as shown in Figure 3.2 (left), breaking the alignment and leading to the formation of obtuse triangles in areas that could be filled with quadrilaterals only. These size variations have less impact on the quality of the standard adapted mesh Figure 3.2 (right): since there is no constraint on the element shape or alignment, the size transition seems smoother in this case. Besides from the size variation, the directions of the anisotropic metric field also have a considerable impact on metric-orthogonal meshes. The point-placement method is based on the eigenvectors of the metric tensors, which are not well-defined if these tensors are isotropic. Consequently, propagating anisotropy throughout the domain should improve the alignment, which is a side effect from intersection-based gradation processes. To illustrate this phenomenon, we consider the example presented in Figure 3.3, showing two adapted meshes from an analytical metric field with a straight anisotropic feature, without (left) and with (right) metric gradation control. Using the untreated metric field, we observe an anisotropic area having well-defined directions, surrounded with isotropic triangles. The corrected metric field shows a larger area with orthogonal triangles, demonstrating the propagation of directions from the gradation control process. An accurate size gradation process to quasi-structured meshes should therefore enforce smooth transitions, while preserving anisotropy. The main purpose of this chapter is to analyze the current gradation process regarding the stakes raised by metric-orthogonal meshing, and to design an enhanced strategy to improve orthogonality and alignment in metric-orthogonal and mixed-element meshes.

Connectivity issues

Regarding the gradation algorithm itself, the strategies from [Borouchaki et al. 1998], [Alauzet 2010b] and [George et al. 2019], implemented in Metrix, are strongly dependent from the connectivity of the mesh bearing the initial metric field.

To illustrate this issue, we consider a discontinuous initial metric field on a square domain, prescribing a small anisotropic metric at the bottom line and a larger isotropic metric elsewhere. A gradation control using the connectivity-dependent algorithm is performed, then the corresponding adapted mesh is generated. The expected outcome is the mesh on the left in Figure 3.4. However, since the initial back mesh has a small size irregularity, the corrected metric is not accurate, which deteriorates the resulting adapted mesh, shown on the right in Figure 3.4. Figure 3.4 -Resulting metric-orthogonal meshes from an adaptation loop, from the same initial metric field: on the left, using a topology-independent algorithm and on the right, using a topology-dependent algorithm.

Moreover, solving these connectivity dependency is essential to design a quaddominant-aware gradation correction, since some issues arise from quasi-structured or mixed-element mesh connectivity. From a given metric field, using the same gradation process, the outcome is different on a uniform mesh and a quasi-structured mesh, as illustrated on Figure 3.5. The initial metric field for this test case is a small anisotropic metric at the center of the domain and a large isotropic metric elsewhere. The gradation correction propagates the small sizes and the anisotropy. The asymmetrical connectivity of the quasi-structured mesh leads to an asymmetrical corrected metric (right mesh on Figure 3.5), whereas the expected results is symmetric (left mesh on Figure 3.5). This problem of connectivity dependency was pointed out in [Alauzet 2010b] and this paper provides some solutions to reduce this effect, such as randomize the order in which the metrics are processed. The third part of this chapter presents two additional leads to solve this issue. First, we propose a novel gradation correction algorithm that does not rely on the mesh edges, which makes it less sensitive to the mesh connectivity. This procedure gives satisfactory results. The main weakness of this algorithm is that it cannot handle straightforwardly non-convex domains, and the current solution to this issue might not be suitable to tri-dimensional cases. The second solution is tailored to the specific topology of quasi-structured meshes. To counterbalance the asymmetry in the topology, we consider virtual edges joining two vertices from two neighboring elements.

Chapter organization

Our work is based on the framework of metric gradation elaborated in [Borouchaki et al. 1998] and expanded in [Alauzet 2010b]. To define the framework, we first consider the gradation control of size fields (isotropic case) in Section 3.2 and discuss the extension of the methods to anisotropic metric fields in Section 3.3. We have pointed out that, regarding adaptive mixed-element and aligned meshes, the requirements for the metric field are different from the requirements for standard mesh adaptation. In Section 3.4, we quantify our new criteria, and use them to compare the existing methods. We eventually elaborate a novel gradation process better suited for this application. Section 3.5 is dedicated to connectivity dependency issues in the current algorithms. Some solutions are presented, evaluated and compared on various test cases involving several kind of connectivity schemes.

The methods detailed in this chapter are implemented in the in-house software Metrix (metric generation and operations on metric fields).

Metric-gradation framework for isotropic sizing fields

This section sets up the framework for size gradation control. The definitions and processes are introduced in the context of isotropic metric fields, the extension to anisotropic metric fields being described in the next section. We chose to be consistent with the framework established in [Alauzet 2010b], derived from [Borouchaki et al. 1998].

An isotropic metric field is a scalar field prescribing a size at each vertex of the mesh. For any point x, it can be written as

M(x) = h -2 (x)I,
where I is the identity matrix and h -2 (x) is the scalar size prescription field. To evaluate the smoothness of the size prescription function, we examine the H-shock, designating the ratio between the sizes of two neighboring elements.

H-shock

We consider an isotropic metric field M(•) = h(•)I defined on a domain Ω ⊂ R d and H a unit mesh in the Riemannian space (Ω, M). Our size variation control is based on the control of the H-shock or gradation. Definition 3.2.1 (H-shock or size gradation of an edge). Let p and q be two vertices of a mesh H, with respective provided sizes h p and h q . Let M The H-shock or size gradation is defined as

c M (pq) = max h p h q , h q h p 1/ M (pq) , (3.1)
where M (pq) is the length of edge pq in the metric field M.

The H-shock can also be defined for a vertex.

Definition 3.2.2 (H-shock or size gradation of a vertex). Let p be a vertex of a mesh H. The H-shock or size gradation is defined as

c M (p) = max q =p max h p h q , h q h p 1/ M (pq)
.

The aim of size gradation control is to compute a reduction of the metric field, denoted by M, such that the H-shock is bounded by a

threshold β ∈ [1, +∞[, i.e. ∀ p, q ∈ H, c M (pq) < β. (3.2)
To give a geometrical interpretation of this corrected metric field, let's consider the element size progression on a unidimensional mesh, using the maximal size prescription respecting the constraint (3.2). If the closest element to the boundary vertex p has size 1, the prescribed size for the next element should be equal to β. Then the prescribed size of the n th element is set to β n-1 , as shown in Figure 3.6. Figure 3.6 -Illustration of the size progression in a 1D mesh.
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Isotropic size gradation control between two vertices

This paragraph details how to compute the maximal correction from vertex p to the size prescription at vertex q. First of all, we assume that h p < h q . The correction is applied from the smallest to the largest size. The H-shock writes

c M (pq) = h q h p 1/ M (pq)
.

The growth process introduced above is the computation of a maximal size h p (q) such that the H-shock is bounded by the gradation coefficient β. Therefore, this maximal correction verifies pq) .

h p (q) h p 1/ M (pq) = β, yielding h p (q) = h p β M (
We introduce the coefficient r = β M (pq) = hp(q)

hp . The computation of this coefficient relies on the evaluation of the length M (pq). The expression of lengths in the Riemannian metric space depends on the chosen interpolation law. Indeed, we recall that the metric field is actually discrete, since it is only defined at the vertices. Several interpolation laws can be considered for the line parametrization between these two vertices.

Edge length computation. We recall how to compute the length of edge e = [pq] in a global discrete metric field M, considering the prescribed metric tensors at endpoints, denoted by M p and M q . The length of the edge in metric M r , i ∈ {p, q} is i (e) and reads i (e) = t eM i e.

Assume p (e) > q (e), we set a = p(e)

q (e) . The length of e in the metric field, depending on the chosen variation law, can be written as a function of a and p (e):

• linear variation on h

M (e) = p (e) ln(a) a -1 ,

• linear variation on λ

M (e) = p (e) 2 3 
a 2 + a + 1 a(a + 1) , • linear variation on h -1 M (e) = p (e) 1 2
a + 1 a

• geometric interpolation on h or λ M (e) = p (e) a -1 a ln(a) .

A proof of these formula is given in Chapter 1, Section 1.3.
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Application to metric gradation control. Since we have r = hp(q) hp , we can substitute a with r in the previous expressions of M (pq), which we inject into the relation r = h p β M (pq) .

It yields, for the different interpolation laws:

• linear interpolation on h: r = 1 + p (pq) ln(β),

• linear interpolation on λ: r(r + 1) ln(r)

r 2 + r + 1 = 2 3 p (pq) ln(β),
• linear interpolation on h -1 :

r ln(r) r + 1 = 1 2 p (pq) ln(β),
• geometric interpolation on h or λ r ln 2 (r) r -1 = p (pq) ln(β).

The linear interpolation law on h gives an explicit expression of r. Regarding the other interpolation laws, the coefficient r verifies a relation having the form

f (r) = b,
where f is a strictly increasing function of r. Consequently, the coefficient r can be retrieved as the solution of

g(r) = (f (r) -b) 2 = 0
which can be computed thanks to a Newton algorithm. In the remainder, we use the linear interpolation law on h to give some examples and analytical results, since it gives an direct expression for r. However, in practice and in our implementations, the geometric interpolation law is preferred since it is consistent with the interpolation applied for more than two metrics, derived from the Log-Euclidean framework.

To be consistent with the notations in the next section, we can write the maximal correction in terms of metric tensors, introducing the coefficient η(pq) as the inverse of r(pq). Let M p be the metric tensor at vertex p and M p (q) the maximal correction at vertex q. The relation between these two tensors is

M p (pq) = η 2 (pq)M p .
In a mesh, every vertex can prescribe a maximal correction for every other vertex, which constitutes a quadratic process. To avoid quadratic complexity, most gradation correction strategies adopt an iterative edge-based process as done in [Borouchaki et al. 1998], [Alauzet 2010b], [Li et al. 2004]. We detail this aspect in Section 3.3.3, after setting the groundwork for gradation correction of anisotropic metric fields.

Metric gradation correction for anisotropic metric fields

Gradation control is rather intuitive regarding isotropic metric fields. However, anisotropy adds some difficulties: a specific size is prescribed for every direction. The approaches to this problem are plural. [Borouchaki et al. 1998] and [Li et al. 2004] have a similar procedure that consist of two main steps: the computation of a maximal correction and the application of these corrections. Conversely, [Xiao and Ollivier-Gooch 2020] propose a different approach, reformulating gradation control as an optimization problem. The method that we describe in this section, based on [Alauzet 2010b] follows the twosteps scheme mentioned first. The computation of the maximal correction from a given vertex is called a growth process. The second step is named reduction and performed here through metric intersection. As an illustration, a simplified representation of this algorithm is shown in Figure 3.7. From [Alauzet 2010b], modified with permission.

In the first part of this Section, we describe several possibilities for the growth process. The second part details the reduction step. The algorithm is discussed in the third section.

Growth processes

We consider two vertices p and q of a mesh H bearing the initial metric field. The prescribed metric tensors at p and q are denoted M p and M q .

To control the h-shock along the edge pq, we first compute the maximal tensors respecting the constraints from each vertex, that is M p (q) and M q (p). There are several ways to interpret this growth process, contrary to the isotropic case. Indeed, it depends on the interpretation of the constraint from Eq. (3.2). [Alauzet 2010b] gives two interpretations of the constraint, leading to three growth process: a metric-space homogeneous growth, a physical space homogeneous growth, and a combination of these two.

Metric-space growth. This first strategy is a direct extension from the isotropic case, using a growth scalar factor η(pq). This corresponds to respecting the constraint from Eq. (3.2) in the direction pq, i.e.

h M (p) h M (q) 1/ M (pq) ≤ β, (3.3) 
where h M (q) (resp. h M (q) ) denotes the prescribed size for p (resp. q) in direction pq (resp. qp). The growth metric is modeled as

M p (q) = η 2 (pq)M p , (3.4)
where η 2 (pq) is computed similarly to the isotropic case, following the relation η(pq) = r(pq) -1 where r is the solution of the equation

f (r) = p (pq) ln(β), (3.5)
where f is determined by the choice of interpolation law, see Section 3.2. Consequently, the growth is homogeneous in the metric space. To give a visual interpretation, the ellipses representing the unit ball of these maximal correction tensors keep the same shape in the whole domain. This is illustrated in Figure 3.8, in which we have represented, on the left part, the maximal correction computed from the metric at the center of the squared domain, at each vertex of a uniform mesh. On the right part, the maximal tensors have been computed uniformly around the vertex at the center. The situation on the right illustrates the exponential growth of the metric. Physical-space growth. In this case, the growth is homogeneous in the physical space, as observable on the right part of Figure 3.9: all the ellipses situated at the same distance of the considered vertex have the same shape. This process is modeled by a growth tensor, as follows

M p (q) = R T N (pq)ΛR, (3.6)
where N is a diagonal tensor with coefficients η 2 i = r -2 i , were r i is the solution of

f (r) = λ i pq , (3.7)
similarly to Eq. (3.5). The coefficients only depend on the Euclidean distance, causing the homogeneous growth in the physical (Euclidean) space. The second notable aspect of this growth process is that the metrics become more isotropic as they span throughout the domain, as illustrated on the left part of Figure 3.9. The metric at the center is the same as in Figure 3.8, yet the metric far from the source of the correction look very different. The constraint for the H-shock is respected in the main directions of the initial metric.

Proof. Let e i , i ∈ 1, ..d be the eigenvectors of the metric M p at vertex p. From Eq. (3.7), since f is a growing function of r, in any direction of eigenvalue e i , the solution r λ i of Eq.

(3.7) in this direction verifies

r λ min ≤ r λ i ≤ r λmax .
Besides, in this direction, we have p (pq) = λ i pq , so in the corresponding direction, Eq. (3.7) is equivalent to Eq. (3.5). We can establish the following relation for the H-shock in the direction e i c λ min (pq) ≤ β ≤ c λmax (pq)

c λ i (pq) = β. (3.8)
From Eq. (3.8), we retrieve the observation that the growth is more slow in the direction of the largest size (associated with λ min ), since the H-shock is always larger than the gradation coefficient β. Conversely, the growth is faster in the direction of the smallest size (associated with λ max ), explaining why the maximal correction tensor M p (pq) tends to become isotropic as the distance pq increases.

Mixed-space growth. A third growth strategy is introduced in [Alauzet 2010b]. It has been observed that metric-space growth gives better results in simulations, because it helps propagating anisotropy. However, since we use an approached edge-based gradation algorithm, the anisotropy propagation sometimes gives unexpected outcomes. To counterbalance this effect and adjust the level of anisotropy, a weighted growth tensor is used for the maximal correction, as modeled below

M p (q) = R T (η 2 M ) 1-t N P (pq) t ΛR, (3.9)
where N P (pq) is the tensor corresponding to physical-space growth, and (η 2 M ) is the coefficient for metric-space growth. The parameter t ∈ [0, 1] is set by the user. This process is illustrated in Figure 3.10, on the left part, and compared with the physicalspace growth. Here, the parameter t is set to 0.125. As expected, anisotropy is preserved using mixed-space growth.

Figure 3.10 -Illustration of the mixed growth process. Propagation of the maximal correction from the vertex at the center to the whole domain using a mixed-space growth (left) and a physical space growth for comparison (right).

Reduction

The second step of the procedure is to apply the corrections at each vertex of the edge. [Alauzet 2010b] use metric intersection for this purpose.

Definition 3.3.1 (Metric intersection). Given a set of metric tensors, the intersection is the tensor respecting the most restrictive size constraint from this set of metrics in each direction. Geometrically, the representation of the intersection is the largest ellipsoid contained in the area defined by the geometric intersection of the ellipsoids representing the metrics of the considered set.

An example of intersection of two tridimensional metrics is depicted in Figure 3.11. The intersection of two metrics is performed using simultaneous reduction. We use the process described in [Barral 2015] and reported in this manuscript in Section 1.3.3. Theoretically, the reduced metric at vertex q, denoted by M q is the intersection of all the maximal correction metrics from other vertices of the mesh

M q =   p∈H,p =q M p (q)   ∩ M q .
(3.10)

Using the edge-based algorithm for gradation correction, we perform successive twoby-two intersections which is non commutative. Consequently, the outcome of this method depends on the order of vertex processing.

Note that, in the general case, the intersection of more than two metrics can be modeled as the search of the John ellipsoid, which is the solution of an optimization problem, see [John 1948] and [Loseille 2008].

Global algorithm, implementation and discussion

The two-steps gradation control is quadratic: each vertex should take in account all maximal corrections from other vertices. In our implementation, this is approached with an iterative linear process. The correction is performed edge-wise, as described in Algorithm 9. It is referred to as discrete gradation or edge-based gradation in the remainder. This process has been tested in [Alauzet 2010b] on several analytical metrics and realcase simulations. To improve the results, some modifications of the algorithm were proposed. First, to reduce connectivity dependency issues, the order of edge processing is randomized. Then, to simulate an exponential growth, the gradation threshold β is multiplied at each iteration by a factor γ to relax the constraint progressively, as specified in Algorithm 10. 

β (n+1) ← β (n) × γ ; end end
This strategy has proven quite robust and gives satisfactory results on highly anisotropic meshes. In particular, the propagation of anisotropy using a metric-space growth process (or mixed-space) turned out very helpful for simulations. The next sections of this Chapter focus on the original work conducted during this thesis about gradation correction. In Section 3.4, the efficiency of the existing methods regarding metricorthogonal and mixed-element meshes is discussed. Section 3.5 gathers some solutions to the connectivity issues due to this edge-based algorithm.
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Enhancing gradation correction for mixed-element mesh generation

Metric gradation control has been evaluated in [Alauzet 2010b] to analyze the impact of this process on several analytical case and simulations. The most important criteria, then, were the ability to regularize the metric field, and favor the generation of strongly anisotropic meshes. Metric-space and physical-space growth processes were compared, and the first method appeared to give better results for standard adaptation.

In the case of aligned and mixed-element meshes, the criteria are mostly geometric and regard the structure of the final mesh or the quality of the quadrilaterals. Consequently, to determine which gradation process is best suited to this purpose, we renew the comparison using different criteria and quantifying tools, defined in Section 3.4.1.

Quantifying tools

The important aspects of metric-orthogonal meshes or mixed-element meshes are the structure and the orthogonality. To quantify these aspects, we consider:

• Size jumps, for the vertices of the quasi-structured mesh. These are the features that we need to avoid in the adapted meshes. It is computed at each vertex as the ratio between the largest and the smallest area of the surrounding triangles. • Angle repartition. For each triangle, the maximum angle of each triangle of the metric-orthogonal mesh is taken into account. We want to avoid obtuse triangles, since they are responsible for size jumps. • Quadrilateral quality (angle-based), in the mixed-element mesh. There are many ways to evaluate the quality of quadrilaterals. We chose the expression from [Remacle et al. 2012], which is an angle-based quality. Let Q be a quadrilateral.

We define the quality κ(Q) as

κ(Q) = max 1 - 2 π max k π 2 -α k , 0 ,
where α k , k ∈ 1, 4 denote the angles of the quadrilateral.

Analytical test cases

To compare the existing methods, simple analytical test cases are first examined. These test cases have specific features that the gradation process coupled with a metricorthogonal point-placement should handle correctly. The line case shows a discontinuous size prescription and highlights the difference between the growth processes. The circle analytical metric is taken from [START_REF] Marcum | [END_REF], and illustrates the ability of the several gradation correction strategy to deal with curvature. We compare the metricspace and physical-space growth processes by generating an adapted metric-orthogonal mesh to the metric fields from these analytical test cases, after undergoing a gradation correction using one or the other strategy.

Line analytical metric

The first case is an analytical straight line metric field on a square domain Ω = [0, 1] × [0, 1]. We set a discontinuous initial metric field on purpose

M line = h 1 -2 0 0 h 2 -2
if y = 0, and

h 0 -2 0 0 h 0 -2 elsewhere,
where the prescribed sizes are h 1 = 0.1, h 2 = 0.001 and h 0 = 0.5. A gradation correction is applied with a coefficient β set to 1.1. The resulting metricorthogonal meshes are displayed in Figure 3.12, along with histograms for the angles and size jumps repartition. Figure 3.12 -Metric-orthogonal adapted meshes from the line metric. On the left side, a large scale view of each mesh is displayed, respectively top and bottom result from a metric-space and physical-space growth. On the right side, the top part shows close-up views corresponding to the red rectangles, and the bottom part displays the angles and size jumps histograms.

The difference between the two methods is clearly observable on these resulting meshes. Physical-space growth seems to be more favorable for the formation of quadrilaterals, according to the angles repartition and size-jumps histograms: the mesh from metricspace growth has a higher ratio of obtuse angles, leading to a higher proportion of size jumps, which leads to a rupture in the alignment. Although the orthogonality in the metric-space growth mesh remains quite good, these size jumps spell out that this process is unlikely to generate meshes with areas completely filled with quadrilaterals, especially when large aspect ratios are involved. On the contrary, physical-space growth seems to maintain the sizes prescribed at the boundary y = 0 by the initial metric for a larger distance, and there are very few size jumps and obtuse triangles. The main drawbacks of this strategy emphasized in this example are the loss of anisotropy, and the fact that the adapted mesh has more elements, so the number and repartition of the degrees of freedom is overestimated.
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Circular analytical metric

This test case is an analytical metric with a circular anisotropic feature

M circle (x, y) = h -2 1 cos 2 θ + h -2 2 sin 2 θ (h -2 1 -h -2 2 ) cos θ sin θ (h -2 1 -h -2 2 ) cos θ sin θ h -2 1 sin 2 θ + h -2 2 cos 2 θ
, with θ = arctan(x, y), h 1 = min(0.002 × 5 α , h max ), h 2 = min(0.05 × 2 α , h max ), h max = 0.1 and α = 10 × |0.75 -

x 2 + y 2 |.
Here, we set β = 1.2, and, as mentioned in Section 3.3.3, the growth is multiplied at each iteration by a factor γ = 1.2 . In this particular case, it improves the adapted mesh from the metric corrected using metric-space growth, since this method tends to create defects (tangent rays) due to the propagation of anisotropic metric around the curvature. The adapted meshes obtained from each corrected metric and the corresponding histograms are displayed in Figure 3.13. For this example, since the initial metric is very smooth, a metric-orthogonal mesh from this initial field has been considered for comparison, labelled "No gradation" in the histograms. The quad-dominant meshes have also been analyzed. A comparison is depicted in Figure 3.14, showing close-scale views and histograms for both methods.

Both growth strategies give satisfactory results, and the quad-dominant meshes show a high ratio of quadrilaterals: 90.9 % using metric-space growth and 92.3 % using physicalspace growth. However, the metric's curvature is handled differently and physical-space growth shows less size jumps in the radial direction. Consequently, quadrilateral-only regions are more easily formed and well-defined, as observable on the close-ups in Figure 3.14. 

Directionally-Constrained growth

Distance from initial metric only the smallest size grows both sizes grow homogeneously In the previous section, the existing processes were compared on two simple test cases, and observed that physical-space gradation is more suitable for aligned and mixed-element meshes. Indeed, this process favors smoother size transition by limiting the progression in the direction of the largest size. From these observations, a new growth process was designed that emphasizes this behavior.

The aim of this growth strategy is to block the growth in the direction of the largest size while the other size increases, until the ratio between these sizes reaches a certain threshold ρ min , close to 1. A simplified representation of the expected growth in the smallest direction is represented in Figure 3.15.

Let M p be the metric at vertex p and λ 0 , λ 1 its eigenvalues. We assume λ 0 ≤ λ 1 , i.e. h 1 ≤ h 0 . M p (q) is the grown metric tensor at vertex q and λ0 = h-2 0 , λ1 = h-2 1 its eigenvalues. The metric M p (q) has to satisfy that its aspect ratio is smaller than a coefficient ρ min , i.e. h0 h1

≤ ρ min ⇔ λ1 λ0 ≤ ρ 2 min .
Thus, directionally-constrained growth is modeled by

M p (q) = R T ΛR, Λ = diag( λi ) (3.11)
with the smallest size (largest eigenvalue) having a physical-space growth with a coefficient η 1 given by Eq. (3.7) The propagation of the maximal correction using this strategy is depicted in Figure 3.16. This figure compares physical-space and directionally-constrained growth. Both methods lead to isotropic tensors far from the center of the domain, and the evolution of the correction looks a lot alike. The difference is more observable at the center of the domain, where the metric is growing isotropic very quickly using the directionallyconstrained growth. The main drawback of this approach is the quick loss of anisotropy, which ultimately increases the size of the mesh. Moreover, the behavior depicted in Figure 3.15 is expected in this direction but also reduces the anisotropy in the other direction, which is undesirable. To limit this effect the following model has been considered, in which an additional directional constraint is considered.

λ1 = η 2 1 (pq)λ 1 , ( 3 
M p (q) = R T Λ t DC Λ 1-t mix R (3.14)
where

• Λ DC denotes the tensor gathering the eigenvalues of the directionally-constrained correction as modeled in Eq. (3.11) to (3.13), • Λ mix denotes the tensor gathering the eigenvalues of the mixed-space correction, which preserves anisotropy better, and • t quantifies the alignment between the edge or direction pq and the direction of the smallest size, denoted e 1

t = |pq • e 1 | pq 2 e 1 2 .
A simplified diagram of the expected behaviour is presented in Figure 3.17. In the direction of the smallest size (t = 1), the first version of the process is applied. In the orthogonal direction (t = 0), a mixed-space gradation is applied which limits some of the issues mentioned previously. Figure 3.18 compares the new version (left) to the first version of directionally-constrained gradation. The propagation of anisotropy is improved in the direction of the largest size. represented by the red ellipsoid, prescribes a correction according to the Eq (3.14), depending on the direction quantified by the parameter t. Only the limit cases t = 0 and t = 1 are depicted here.

Figure 3.18 -Comparison between the modified directionally-constrained growth process (left) and the initial directionally-constrained growth process (right). The maximal correction from the vertex at the center to the whole domain, with a threshold β = 1.1, is represented.

Validation of directionally-constrained gradation

To illustrate the performance of directionally-constrained gradation, we compare three gradation processes: physical-space growth, metric-space growth and directionallyconstrained growth, on analytical test cases and some from simulations. To quantify the efficiency of each process, we use the criteria defined in Section 3.4.1. We also inspect the ability of each strategy to favor all-quadrilaterals structured areas.

The considered test cases are the two analytical examples presented in Section 3.4.2, and two examples from CFD simulations around a NACA airfoil: a supersonic inviscid flow and a subsonic turbulent flow. The results for directionally-constrained growth are similar to physical-space growth in this example, the horizontal size prescribed at the bottom boundary y = 0 is propagated vertically through the whole domain. The elements close to the top boundary y = 1 look more isotropic but they remain structured. The angle repartition presented in Figure 3.21 confirms that these processes generate less obtuse angles, favoring the formation of allquadrilateral areas. However, the quadrilateral quality histogram indicates better results using metric space growth. This observation emphasizes the importance of preserving anisotropy in metric-orthogonal meshes. The corresponding quad-dominant meshes have respectively 86%, 72% and 79 % quadrilaterals for directionally-constrained, physical-space and metric-space growth. The good results for this process are not very representative here, since the largest size in direction e x is reached very quickly. In a boundary layer, there would be many more size transitions since the ratio between the largest size far from the airfoil and the size on the airfoil is considerably larger than the ratio here between h 0 and h 2 . Consequently, there are actually numerous abrupt size transitions using metricspace growth in boundary layer test cases, as observable in the turbulent case presented in Section 3.4.4. for the metric-orthogonal meshes adapted from three metric fields obtained through three gradation processes from the same initial metric.
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Circular analytical metric

This case is described more precisely in Section 3.4.2. The aim is, again, to evaluate the growth strategies on a curved anisotropic feature in the mesh. The results are presented in Figure 3.22 for the resulting quad-dominant meshes and in Figure 3.23 for the histograms. Here, the gradation process is set to β = 1.2 for metric-space process and it is set to β = 1.1 for the two other processes, since the former tends to produce more precise meshes than the other and we want to compare meshes with a similar number of vertices. Figure 3.23 -Histograms for the 'circular' metric example, comparing the quadrilateral quality of the resulting mixed-element meshes, and the angle and size jump repartition for the metric-orthogonal meshes adapted from three metric fields obtained through three gradation processes from the same initial metric.

The proportion of quadrilaterals is about the same in the three cases: 86.3% using directionally-constrained growth, 89.6% using physical-space growth and 87.9% using metric-space growth. However, the curvature is handled differently and physical-space and directionally-constrained growth shows less size jumps in the radial direction. Consequently, quadrilateral-only areas are more easily formed using these two growth strategies, as observed in Figure 3.22, which is more suitable for numerical simulations. The quality histograms are better for metric-space growth, as observed in previous example, which is due to higher anisotropy ratios in the corrected metric field. Here, the initial metric is quite smooth and bounded, so the improvement due to size gradation correction is limited.
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Inviscid flow simulation

This example is an inviscid flow simulation on a NACA 0012, modeled by the compressible Euler equations. A supersonic flow is considered with a Mach number M = 1.6 and an angle of attack α = 8. Three adaptation loops have been performed, to compare the three gradation strategies -metric-space, physical-space and directionally-constrained growth, with a coefficient set to β = 1.5. A multiplicative coefficient γ = 1.5 was applied for metric-space growth to model an exponential metric gradation, and limit the ray artifacts mentioned earlier. The resulting adapted mixed-element meshes are presented in Figure 3.24 and histograms in Figure 3.25. The proportion of quadrilaterals in each mixed-element mesh is 63.6% for physical-space growth, 47.5% and 69.2% for directionally-constrained growth.

The interesting features of this flow are the shocks, a very anisotropic phenomenon. In standard mesh adaptation, it is better handled using metric-space growth. In metricorthogonal and quad-dominant adaptation, it still captures the shock better, but physicalspace and directionally-constrained gradation seem more efficient regarding angles and size-jumps repartition. We note that the proportion of high quality quadrilaterals is better using a metric-space growth, which is due to the lager aspect ratio of the elements in this resulting mesh compared to the others. It is counterbalanced by a low proportion of quadrilaterals for metric-space growth compared to the other meshes.

Turbulent flow simulations

The last example is a turbulent flow simulation on a NACA0012 modeled by the Reynolds-Averaged Navier-Stokes equations, where we consider the Spalart-Allmaras one equation turbulence model. The simulated flow is subsonic with a Mach number M = 0.5, a Reynolds Number Re = 10 5 and an incidence angle α = 0. Again, three adaptation processes were performed involving each gradation strategy (metric-space, physical-space and directionally-constrained). The final adapted mixed-element meshes are shown in Figure 3.26 (large scale view) and 3.27 (close-up). The angles and size jumps histograms are presented in Figure 3.28 . This case is again better handled by the correction using physical-space growth and directionally-constrained growth. The improvement is particularly observable in the boundary layer region, where the smoothness of the transitions is essential. In both physical-space and directionally-constrained cases, the small tangential size prescribed at the boundary is propagated throughout almost the entire layer, whereas numerous transitions break the alignment using the metric-space growth gradation, as depicted on the close-up view in Figure 3.27, and observable on the angles and size-jumps histograms in Figure 3.28. The proportion of size-jumps with a ratio larger than 2.5 is larger than 30% for metric-space growth, while it is about 20% for physical-space growth and smaller than 10% for directionally-constrained growth. Accordingly, the number of angles that are larger than 120 degrees is twice bigger in the metric-space case than the physicalspace case, and about ten times bigger than the directionally-constrained case. Visually, the boundary layer seems almost only filled with quadrilaterals using physical-space and directionally-constrained strategies. However, these quadrilaterals are less anisotropic (as-pect ratio are mostly about 10 to 50 for the directionally-constrained case), which seems to favor some wavy patterns outside the boundary layer. Note that the proportion of quadrilaterals with quality over 0.80 is larger than 80% in every case. The results for angles and size jumps are therefore more significant.

A similar simulation with Re set to 5.10 6 has been performed to compare the behavior of the gradation processes dealing with higher aspect ratios (at the boundary it is around 500). Histograms for this case are shown in Figure 3.29. The transitions and angles remain better after a directionally-constrained gradation, and the quality of the generated quadrilaterals is on average lower using this strategy. Indeed, the anisotropy of the elements can only decrease from the boundary in this case, while the other growth processes propagate the anisotropy further. Therefore, a physical-space growth seems to be the best option here.

Figure 3.28 -Subsonic turbulent flow around a NACA airfoil with Re = 10 5 . Histograms comparing the metric-orthogonal meshes from directionally-constrained, metric-space and physical-space growth.
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Figure 3.29 -Subsonic turbulent flow around a NACA airfoil with Re = 5.10 6 . Histograms comparing the metric-orthogonal meshes from directionally-constrained, metric-space and physical-space growth.

Strategies to overcome connectivity dependency in gradation correction processes

The exact gradation control process is a quadratic algorithm. In practice, an approached edge-based process was preferred for the implementation in Metrix. This process is multi-linear. Its main drawback is its connectivity dependency, which causes some defects in the mesh. For example, corrected metric fields are likely to produce tangent "rays" along the curved anisotropic features, resulting in tangent anisotropic elements in the mesh that have no physical meaning. An exemple of this phenomenon is shown in Figure 3.24, top frame: some tangent elements to the frontal shock appear. This sensitivity to the connectivity is particularly noticeable for metric-orthogonal meshes, since the quasi-structured pattern is asymmetric, causing asymmetry in the corrected metric field as observable in Figure 3.4. Finally, in the context of mesh adaptation, since the metric field is successively computed on different meshes, it is relevant to explore strategies that are less dependent on the mesh features.

To limit the connectivity dependency, several solutions have been tested in [Alauzet 2010b], such as randomization or fastening the metric growth using a multiplicative coefficient. These solutions have some limits. For example, the multiplicative coefficient is not always suitable: in the case of a directionally-constrained growth, it accelerates the loss of anisotropy.

A supplementary amelioration of the edge-based algorithm has been explored during this thesis. It consists in adding virtual edges for the gradation correction to counterbalance the asymmetry. This idea is detailed and discussed in Section 3.5.1.

Besides, we propose in Section 3.5.2 a novel algorithm that doesn't rely on the mesh connectivity. This strategy is based on a heap-list containing the vertices sorted by prescribed size, or smallest prescribed size for anisotropic tensor. Correction from the vertex on top of the heap-list is propagated progressively to other vertices, based on their distance. This process is named continuous gradation correction, and in opposition, the edge-based process is called discrete gradation correction.

Reducing connectivity dependency inside the discrete algorithm

The discrete algorithm relies on the mesh edges, so the connectivity has a considerable impact on the outcome. It is particularly observable in quasi-structured meshes, as illustrated in Figure 3.5. This figure shows the constraints spanning from the small metric at the center of the domain, to each vertex of the mesh, using the edge-based algorithm, for a threshold β set to 1.3, following a physical-space growth. We compare the outcomes for a quasi-structured mesh and a uniform mesh. Due to the asymmetric connectivity of the quasi-structured mesh, the maximal correction field is asymmetric when computed on this mesh, while it is symmetric when computed on the uniform mesh. This issue is also accentuated in mixed-element meshes: since the average degree of vertices is 4 in a quadrilateral mesh and 6 in a triangular mesh, there are on average more edges to cross to get from one vertex to another in a triangular mesh than in a quadrilateral mesh. Consequently, the growth of a metric is faster on a quadrilateral mesh. This observation is illustrated in Figure 3.30, showing the propagation of the constraint from the initial tensor at the center to the other vertices for three types of mesh: a uniform triangular mesh, a quadrilateral mesh and a mixed-element mesh. As expected, the maximal constraint tensors grow larger as they propagate through quadrilaterals than triangles.
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Figure 3.30 -Constraints propagation from the metric tensor at the center for three types of meshes: a uniform triangular mesh (top left), a uniform quadrilateral mesh (top right) and a mixed-element mesh (bottom). In each case, we take β = 1.3 and apply a physical-space growth.

The modification proposed in this section aims at balancing the connectivity by considering additional edges. By including more information to compute the maximal correction, we expect to reduce the bias due to the mesh connectivity.

Proposed modification for the standard algorithm

Instead of looping over the edges of the mesh alone, some additional virtual edges are involved, which ensure the same connectivity for a quadrilateral mesh and a randomly split mixed-element mesh. Practically, the supplementary edges are

• the diagonals of the quadrilaterals,

• if an edge is common to two triangles, the supplementary edge links the opposite vertices from both of these triangles. A diagram illustrating the contribution to the correction of one vertex, for both standard and modified edge-based algorithms, in a quasi-structured configuration, is displayed in Figure 3.31. The new connectivity is still asymmetric, but the bias should be less effective: the edges causing asymmetry are longer and should bear a more relaxed correction than shorter edges. Moreover, increasing the quantity of information involved in the correction should improve its accuracy.
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Two more diagrams in Figure 3.32 depict these contributions on a triangular ball and a mixed-element one. These two diagrams illustrate that the modified algorithm would perform the gradation correction along the same edges for a mixed-element mesh and a randomly splited equivalent mesh.

Figure 3.31 -Representation of the contribution from the other vertices to the gradation correction of one metric (colored in red, at the center of the figure), for a cartesian triangular mesh. The vertices involved are colored in blue for the standard algorithm, and the additional contributions for the modified algorithm are colored in purple. The edges of the mesh are represented in plain lines and the dashed ones are the additional edges. For clarity, only the additional edges issued from the vertex at the center have been represented.

Figure 3.32 -Representation of the contribution from the other vertices to the gradation correction of one metric (colored in red, at the center of the figure), for a triangular and a mixed-element mesh. The vertices involved are colored in blue for the standard algorithm, and in purple for the modified algorithm. The edges of the mesh are drawn in plain line, and the dashed ones are the additional edges.
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Illustration of the modification for several connectivity configurations

The outcome metric fields of the standard and modified edge-based processes are compared in Figure 3.33. It represents the correction from the small metric tensor at the center to the rest of the mesh for three types of meshes (cartesian triangular, quadrilateral and mixed-element) using either method, with a gradation threshold β = 1.3 and adopting a physical-space growth. The correction has proven successful in these three cases: the resulting corrected fields are very similar in the three meshes using the modified edge-based method, which shows that it reduces the effect of connectivity. Besides, the difference due to the asymmetric connectivity of the cartesian triangular mesh seems fixed, likewise the mixed-element mesh shows the same growth on both elements. Involving the supplementary edges seems to fix the impact of connectivity on edgebased gradation correction for simple configurations. We tried this new method on a case where rays typically appear: an analytical metric field representing a circular anisotropic feature at the center of the domain, modeled by Eq. (3.15). The results are presented This enhanced edge-based algorithm helps to reduce the connectivity sensitivity of the edge-based algorithm, at the cost of doubling the number of edges in the mesh. In the next section, we propose a novel algorithm that does not rely on the mesh connectivity.

Continuous gradation algorithm

As opposed to the discrete gradation referring to the edge-based strategy, this algorithm is labelled continuous gradation. After exposing the basic idea of this strategy, we present some ameliorations to handle non-convex domains.

First version of the continuous algorithm

It relies on a heap-list containing the vertices of the mesh, sorted by the smallest size of their prescribed metric tensor. While the heap-list is not empty, the vertex on top of the heap-list is removed from it, and applies a correction on surrounding vertices and their neighbors until they are not modified. Indeed, the maximal correction grows with the distance to the considered vertex, meaning the constraints are relaxed as we get far from the active vertex. We assume that if the correction from a vertex p does not modify the metric at another vertex q, the vertices beyond q are to be corrected by q.

Sorting the vertices and stopping the correction prevent from a global quadratic complexity. This remains a locally quadratic process. Algorithm 11 lays out this procedure. The notation B(p) is used to refer to the topological ball of vertex p, meaning all vertices linked to this vertex by an edge. The correction counts two steps: growth and reduction, similarly to the discrete process. The maximal correction tensor is computed according to Equations (3.4), (3.6), (3.9) or (3.14) depending on the chosen growth strategy.

Algorithm 11: Continuous gradation correction algorithm

Data: Mesh, Initial metric field, Gradation control threshold Result: Corrected metric field Sort vertices in a heap-list according to the smallest prescribed size; while Heap-list is not empty do Remove vertex p on top of the heap-list; Add the vertices of B(p) to a correction queue and mark them; while Correction queue is not empty do Remove the first vertex q from the queue; Compute the correction from p to q; if The metric of q is modified then Add the non-marked vertices of B(q) to the correction queue and mark them; end end end

Dealing with non-convex domains

Continuous gradation as performed in Algorithm 11 cannot handle straightforwardly non-convex domains. In comparison, the discrete algorithm does not meet this issue since this property is intrinsically contained in the mesh connectivity. To maintain the exact same algorithm, the distance computed between two vertices should be the shortest path (geodesic) taking in account the potential holes in the mesh. The problem of finding the Euclidean geodesic between two points in a non-convex domain is a complex problem that is not studied exhaustively in this work. Instead, we proposed to apply the correction from one vertex, referred to as active vertex or source, to another vertex, labeled corrected vertex or target, only if this vertex is visible from the source. This approach is close to the method described in [Coeurjolly et al. 2004], in which the author present a mathematical definition of visibility in discrete geometry, and as an application, introduces a method to compute a discrete geodesic. For our purpose, we state that two vertices are visible if the straight line between them does not cross a boundary. A so-called visibility cone is built on-the-fly during the correction process from the active vertex, to determine if a target 3.5. Strategies to overcome connectivity dependency in gradation correction processes 117 vertex is visible or not. This method takes advantage of the mesh data structure, and the on-the-fly construction reduces the practical cost of the algorithm. The remainder of this section details the construction of the visibility area, called visibility cone, from a source vertex p.

The main idea of the visibility cone is to tag or, in a more pictural way, color the vertices depending on their visibility from a specific vertex.

Notations. The notations and labels used to describe the construction of the visibility cone are the following:

-Source or active vertex: the vertex currently performing the correction; -Target or current vertex: the vertex that is being examined; -Color or tag: determines if a vertex is visible or not. There are three possibilities:

Visible; Non-visible; Ambiguous or uncertain; -Ray: segment between the source and the target vertex; -Visibility cone: set of visible vertices from the source vertex.

The following explanations are depicted on several diagrams. The legend for the diagrams is reported in Figure 3 Initialization. Given a source vertex p, the vertices of its topological ball are set as visible. For each one of these vertices, the untreated vertices of their own ball are added to a queue.

Process. The correction unfolds progressively. The next target point is the first vertex of the queue. To determine if a target is visible or not, the intersection between the ray and the edges facing the source in its topological ball are examined. A tag is assigned to the target vertex according to the following rules, as depicted in the diagram in Figure 3.36. Figure 3.38 -Examples of visibility cones on the same domain (the background mesh is hidden). The active vertex is represented as a cross. The medium grey area is visible, the black vertices are detected as non-visible. The white area contains vertices that were not considered since they are beyond the non-visible vertices.
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Comparison of gradation processes on the same mesh. This first test case shows the gradation correction of a discontinuous metric in the same domain as represented in Figure 3.38. The initial metric has two vertices with a prescribed size of h = 1.5.10 -4 and a size h = 1.0 is prescribed elsewhere. The correction threshold β is set to 1.1. The corrected size fields and their isolines are shown in Figure 3.39. The results look similar, especially it is notable that the continuous correction handled the non-convex parts of the domain similarly to discrete gradation. The processing time is about the same: 0.021 ms for the discrete gradation and 0.026 ms for the continuous gradation, which is not very significant though, since the mesh counts only 3938 vertices. As expected, the continuous process seems less sensitive to the mesh connectivity: the isolines look quite smooth compared to the discrete process outcome.

Figure 3.39 -Comparison between discrete and continuous gradation correction for a size field in a non-convex domain: corrected size fields with a gradation threshold of β = 1.1, from an initial discontinuous size field with a small prescribed size at two vertices, and a large size elsewhere. The top part displays the outcome from the discrete correction, and the bottom part shows the continuous correction. The mesh is hidden in both cases.
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Comparison of gradation processes when changing the mesh connectivity. To evaluate how each process depends on the background mesh, a similar isotropic gradation correction is performed on two meshes of the same rectangular domain, but with different features. The first considered mesh, labelled Mesh A, is a uniform mesh, and the second one, labelled Mesh B, is an anisotropic mesh with stretched elements in the horizontal direction, with aspect an ratio of 10. The initial metric prescribes a size h = 0.015 at the two left corners of the domain and a size h = 1.0 elsewhere. We set the gradation coefficient to β = 2.0. We denote:

• h A d the outcome of the discrete gradation on mesh A, • h B d the outcome of the discrete gradation on mesh B, • h A c the outcome of the continuous gradation on mesh A, • h B c the outcome of the continuous gradation on mesh B. These corrected size fields are displayed in Figure 3.40 (field and mesh) and 3.41 (isolines).

At a glance, the result is quite different for the discrete gradation between Mesh A and Mesh B, while it looks very similar for the continuous gradation on both background meshes. This is particularly visible in Figure 3.41: the isolines are pretty smooth for the corrected field from continuous gradation in both cases, and look identical, while they are particularly noisy for the discrete gradation: the effect of the backgound mesh is clearly observable. We computed the difference between the outcomes of the same correction on the different meshes in norms L 1 , L 2 and L ∞ , the results are reported in Table 3.1. It occurs that the difference is considerably smaller for continuous gradation. For example, the L 2 difference between h A d and h B d is 28 times larger than the difference between h A c and h B c . On this example, continuous gradation proves to be more robust than discrete gradation.

Norm L 1 L 2 L ∞ h A d -h B d 5.8981 × 10 -2 6.7018 × 10 -2 1.3503 × 10 -1 h A c -h B c
2.0872 × 10 -3 3.7428 × 10 -3 2.0808 × 10 -2

Table 3.1 -Difference between two gradation corrections performed on different meshes (uniform and stretched), using either the discrete or the continuous strategy, computed in L 1 , L 2 and L ∞ norms.

Comparison of gradation processes when introducing an anisotropic feature in the mesh. The previous example demonstrates how discrete and continuous gradation correction distinguish on two meshes showing different elements shapes. However, the tested meshes are both uniform. Adapted meshes usually show localized variations in sizes and orientation of the elements, for example shocks in CFD simulations. In this example, we illustrate how the presence of a local anisotropic feature impacts gradation correction for a discontinuous size field.

Similarly to the previous case, we evaluate both strategies on two meshes: a uniform one and a mesh showing an anisotropic circular feature. Both are meshing the same non-convex domain with two rectangular holes. The initial size field prescribes a size h = 1.5 × 10 -4 at one vertex close to the circular feature and h = 1.0 elsewhere. Each gradation process applies a correction for a threshold set to β = 1.1. The corrected fields are denoted h circle The differences between two outcomes of the same method have been computed in norms L 1 , L 2 and L ∞ , the results are gathered in Table 3.2. These differences are respectively 20.9, 16.6 and 10.8 times larger using the discrete algorithm than using the continuous algorithm.

Norm L 1 L 2 L ∞ h circle d -h unif d 2.0859 × 10 -1 7.2659 × 10 -2 5.9731 × 10 -2 h circle c -h unif c
9.9996 × 10 -3 4.3653 × 10 -3 5.5137 × 10 -3

Table 3.2 -Difference between two gradation corrections performed on different meshes (uniform and a circular feature), using either the discrete or the continuous strategy, computed in L 1 , L 2 and L ∞ norms.

Adaptation loop: chi function. This example shows a quantitative difference between the two gradation correction methods involved in an adaptation loop from an analytical function. We consider an anisotropic two-dimensional function having the shape of a chi.

∀(x, y) ∈ R 2 , χ(x, y) = tanh (-100 (y -0.5 -0.25 × sin (2πx))) + tanh (100 × (y -x))
An adaptation loop is performed for this function, on the domain [0, 1] × [0, 1]. The solution is computed on a starting mesh, then a metric field is computed for a given complexity. This metric goes through a gradation process with a threshold β = 1.1, using either discrete or continuous gradation. We chose to apply a directionally-constrained growth, since we perform a re-meshing based on metric-orthogonal point-placement, and also to prevent the rays due to curvature. The L 2 interpolation error for the function χ is then computed on the new mesh, and the process goes on for a given number of iterations. Several target values of complexity were set progressively: 4000, 8000, 16000, 32000. Note that the actual complexities of the adapted meshes are established by the gradation processes.

The evolution of the interpolation error for each loop is shown for the four complexities in Figure 3.49. We observe that the final adapted mesh using the continuous gradation process reaches the same interpolation error than the one using discrete gradation, for a lower number of vertices. This indicates that the mesh generated from continuous gradation is closer to the optimal mesh for the considered function.

To illustrate the difference between the outcomes of both gradation processes, Figures 3.44 to 3.48 show, respectively, a large scale view of the converged meshes for a prescribed initial complexity of 4000, a detail of the same meshes, and two details of the largest meshes with a prescribed complexity of 32000. The difference between the large scale views in Fig. 3.44 is not obvious, the purpose of this figure is to indicate the location of the details depicted in the next figures. Fig. 3.45 shows that the elements on this curved featured are more anisotropic using the continuous gradation correction, and look more structured. This is also observable in Fig. 3.47 and 3.48 which are situated at the same location. It seems that continuous gradation captures the feature better. Fig. 3.46 shows detail located in the straight part of the χ. Contrary to the previous observation, the elements are more anisotropic using the discrete gradation, but in this case the continuous gradation outcome is still preferable because it shows a pleasant structure.

Regarding the CPU time, we observed that the continuous gradation is remarkably quicker than discrete gradation. The last mesh for the complexity c = 32000 is processed in 3.5s (for 92643 vertices) using the continuous gradation and in 3m24s (for 161261 vertices) using the discrete gradation. Both methods have been completed in serial mode.

We must also point out that directionally-constrained growth tends to slow the gradation process, and we are not using a gradation threshold factor, that could accelerate discrete gradation as well and is usually adopted for real-case simulations.

Circular analytical metric. We take the example used in [Alauzet 2010b] to illustrate the 'ray' effect, particularly observable for metric-space growth. It is interesting to evaluate how the continuous algorithm handles this case. The metric is defined in the domain

[-2, 2] × [-2, 2] as ∀(x, y) ∈ [-2, 2] × [-2, 2], M(x, y) = t R(x, y) h -2 1 (x, y) 0 0 h -2 2 (x, y) R(x, y) (3.15)
where R is a rotation matrix R = cos (θ (x, y))sin (θ (x, y))
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h 1 (x, y) = 0.0005 + 1.5|1 -x 2 + y 2 |, h 2 (x, y) = 0.1 x 2 + y 2 + 1.5|1 -x 2 + y 2 |.
This metric field is designed as a circular anisotropic feature. Considering the circle centered in zero and with a radius equal to 1, a size 0.1 is prescribed along the tangents and 5 × 10 -4 in the radial direction. The prescribed metric tensor becomes more isotropic away from the circle. We compare several gradation processes, using the continuous or the discrete algorithm, and we analyze the outcome for the three growth processes (physicalspace, metric-space and directionally-constrained). A metric-orthogonal adapted mesh is generated based on each corrected metric, some large-scale view are shown in Figure 3.50.

These pictures show which configurations accentuate the rays phenomenon. Regarding the discrete process, it only occurs when choosing a metric-space growth, as expected. Both metric-space and directionally-constrained growth show the presence of rays using the continuous correction. As stated in [Alauzet 2010b], the rays in metric-space growth are due to the strong propagation of the anisotropy and the dependency on the mesh connectivity, especially on aligned meshes. For continuous gradation, the rays can be interpreted as consequences of the continuous algorithm's design. Indeed, the first vertices applying the corrections are the most anisotropic ones in this test case, and moving away from the circle prescribed tensors are quickly large and isotropic, i.e. they are likely to be corrected. Considering a metric tensor prescribed on the circle, it is likely to impose its orientation to the surrounding isotropic tensors, and in the same time, it makes the surrounding anisotropic metrics more isotropic, preventing the readjustment of the orientation of the others. A few options have been examined to correct this problem, but we did not find a satisfactory alternative that kept the method generic. The more robust solution seems to be the physical-space growth option. This example emphasizes how the gradation correction process based on growth and intersection depends on the order of the correction.

Discussion and conclusion

In this section we defined a new algorithm for size gradation correction, labeled continuous gradation correction and compared it to the edge-based process adopted so far, referred to as discrete gradation correction.

This new strategies shows considerable improvement in many cases. First, it has proven more robust, since it is more likely to give the same outcome on varying meshes, while discrete gradation is quite dependent on the mesh connectivity. Despite being locally quadratic, continuous gradation also happens to be quicker than discrete gradation processes for certain cases. Regarding mesh adaptation, the continuous process gives similar results to the discrete method. The main drawback is that it seems to favor the apparition of rays when correcting curved metric fields, especially using a metric-space or a directionally-constrained growth. There are to this point no efficient alternatives to this problem. We can also note that we cannot easily parallelize the continuous algorithm since it is based on a heap-list structure.

Figure 3.50 -Analytical circular metric field: comparison between the resulting adapted meshes from discrete (top frames) and continuous (bottom frames) gradation corrections, for three growth processes: physical-space growth (left), metric-space growth (bottom) and directionally-constrained growth (right).

Conclusion and perspectives

In this chapter, we have studied several aspects of metric gradation control, which is an essential process to regularize metric fields, and improve the quality of the adapted meshes generated afterwards.

Above all, the purpose of the presented modifications and developments are the enhancement of the existing methods for metric-orthogonal and quad-dominant meshes. Indeed, they raise different issues from standard adapted meshes: alignment, good angle repartition, quality of the resulting quadrilaterals are the most important criteria. In the first place, a gradation control operation was designed to improve the resulting metricorthogonal and quad-dominant meshes regarding these specific requirements. The results have shown considerable progress when using this enhanced process, however it reduces the anisotropy in the mesh, and therefore increases its size. It seems that a compromise has to be reached between the orthogonality of the mesh and the level of anisotropy.

Such modifications have also lead to reconsider the current edge-based algorithm implemented in Metrix. Indeed, since it relies on the edges, it is quite sensitive to connectivity and outcomes may vary substantially depending on the background mesh, for the same initial metric field. This problem has already been considered in previous work. We have pointed out some additional issues due to this connectivity dependency, in particular the asymmetry of quasi-structured patterns may lead to an artificially asymmetrical correction of the metric field, which is a concern regarding metric-orthogonal meshes. We provided some improvement to the edge-based algorithm, and conceived a novel process that doesn't rely on the mesh edges, but on a heap-list structure. This strategy has proven to be efficient on numerous examples.

The methods developed in this chapter have given satisfactory results. Therefore, their extension to three-dimension should be considered in future work. Directionally-constrained gradation should be extended by allowing the growth along the largest eigenvalue, and constraining the two smallest. At first glance, a three-dimensional version of continuous gradation is trivial, but the computation of the visibility cone could be more complicated.

Chapter 4

Mixed-element solver

Introduction

The main motivation for aligned, quasi-structured or quad-dominant mesh generation is the likelihood that such meshes improve the accuracy of the simulations. For example, many numerical schemes favor the presence of structured elements in the boundary layer, and alignment with the flow features is expected to improve the accuracy of the simulation [Mavriplis 2008].

To establish the relevance of our mixed-element meshing techniques, it is necessary to perform numerical simulations on these meshes. Eventually, our goal is to complete adaptive mixed-element simulations, but first, we need to make sure that the computation of a solution on such meshes is possible and reliable. Therefore, to be consistent with our mesh-adaptation framework and allow future improvement of the methods developed during this thesis, the in-house solver Wolf has been modified to handle mixed-element simulations.

The first section of this Chapter defines the flow dynamics model governing the physical phenomena that we want to solve. Then, we detail technical aspects of the solver Wolf. Next, the necessary modifications for mixed-element meshes are described. Finally, examples are provided to validate these modifications. We consider several kind of simulations: inviscid, laminar and turbulent flows.

Modeling equations

The targeted aerodynamics and aerospace applications require to model the flow dynamics using the compressible Navier-Stokes equations, established in the first part of this section.

Next, to numerically resolve turbulent flows, the chosen approach is the Reynolds Averaged Navier-Stokes (RANS) system, supplied with the one-equation Spalart-Allmaras turbulent model.

Compressible Navier-Stokes equations

For the considered applications of the simulations performed by Wolf, high velocities are involved so we have to consider compressible fluids. The flow is governed by the Navier-Stokes equations, which mathematically express the conservation of the mass, momentum and energy for Newtonian fluids.

First, fluids are described by the following quantities of interest, -u: flow velocity (m.s -1 ) -ρ: density (kg.m -3 ) -p: pressure (N.m -2 ) -T : temperature (K)

Assuming the ideal gas law applies, the pressure and temperature can be expressed with respect to the total energy per mass E (m 2 .s -2 ) as

p = (γ -1)(ρE - 1 2 ρ u 2 )
and

T = 1 c v E - 1 2 u 2 ,
where c v is the heat capacity at constant volume, and γ is the heat capacity ratio.

The compressible Navier-Stokes equations then read

-Mass conservation ∂ρ ∂t + ∇ • (ρu) = 0.
-Momentum conservation

∂(ρu) ∂t + ∇ • (ρu ⊗ u) + ∇p = ∇ • T .
-Energy conservation

∂(ρE) ∂t + ∇ • ((ρE + p)u) = ∇ • (T • u) + ∇ • (λ∇T ).
These equations involve two scalar Lamé parameters -µ: laminar dynamic viscosity, -λ: laminar conductivity. The dynamic viscosity µ is present in the expression of the stress tensor

T = µ (∇ ⊗ u + t ∇ ⊗ u) - 2 3 ∇ • uI = µτ. (4.1)
The variation of the nondimensionalized laminar dynamic viscosity and conductivity coefficient µ as a function of the dimensional temperature is defined by Sutherland's law:

µ = µ ∞ T T ∞ 3 2 T + Su T ∞ + Su and λ = λ ∞ T T ∞ 3 2 T + Su T ∞ + Su ,
where Su = 110 denotes the Sutherland temperature and the subscript ∞ denotes reference quantities. The relation linking µ and λ is expressed from the Prandtl laminar number: Pr = µC p λ with Pr = 0.72 for dry air, where C p represents the specific heat at constant pressure.

Turbulence model

Turbulent phenomena appear in a wide range of scales, and their exact resolution is expensive in terms of time and numerical ressources. Consequently, several strategies have been developed to solve turbulent flows. The Reynolds-averaged Navier Stokes (RANS) system is a statistical approach to turbulence modeling. We consider time-averaged equations (mean flow), completed by a turbulence model. Using this method, the smallest scales of turbulence are not solved. The ability to provide a solution in a reasonable amount of time allows RANS simulations to analyze complex CFD problems, and encourages their practical use for industrial applications. This section briefly defines the role of the turbulence model and describes the Spalart-Allmaras turbulence model.

The time-average of the Navier-Stokes equations involves an additional term, called the Reynolds stress, which represents the effect of the turbulence on the mean flow. To close the RANS system, a turbulence model is required to express this tensor as a function of the mean flow. According to the standard approach to turbulence modelling based on the Boussinesq hypothesis, the turbulence is modelled using an eddy viscosity µ t , expressing the Reynolds stress as µ t T . It comes to adding this eddy viscosity to the laminar viscosity µ in the previous equations.

In our work, the eddy viscosity µ t is computed from the Spalart-Allmaras one-equation turbulence model [Spalart and Allmaras 1992]

∂ ν ∂t +u•∇ν = c b1 [1-f t2 ] S ν-c w1 f w - c b1 κ 2 f t2 ν d 2 + 1 σ ∇ • ((ν + ν)∇ν) + c b2 ∇ν 2 +f t1 ∆u 2 , (4.
2) where ν is the turbulent viscosity and the other constants, defined below, are established according to experimental results. In our implementation, we consider a simplified version of this model with no trip, meaning f t1 = 0 and f t2 = 0. Equation (4.2) can therefore be decomposed into the following terms:

∂ρν ∂t + u • ∇ρν convection = c b1 Sρν production -c w1 f w ρ ν d 2 destruction + ρ σ ∇ • ((ν + ν)∇ν) dissipation + c b2 ρ σ ∇ν 2 diffusion . (4.3)
Then, the turbulent eddy viscosity is computed from:

µ t = ρνf v1 , (4.4)
where

f v1 = χ 3 χ 3 + c 3 v1 and χ = ν ν with ν = µ ρ .
The laminar dynamic viscosity µ and the laminar conductivity λ are replaced by the turbulent values µ + µ t and λ + λ t . The turbulent dynamic viscosity is given by Equation (4.4) and the turbulent conductivity is expressed from the Prandtl turbulent number:

Pr t = µ t C p λ t
with Pr t = 0.9 for dry air.

Additional definitions are given by the following equations

f v2 = 1 - χ 1 + χf v1 and S = ∇ × u + ν κ 2 d 2 f v2 .
d is the distance to the nearest wall which is computed for each vertex at the beginning of the simulation. The set of closure constants for the model is given by

σ = 2 3 , c b1 = 0.1355, c b2 = 0.622, κ = 0.41, c w1 = c b1 κ + 1 + c b2 σ , c w2 = 0.3, c w3 = 2, c v1 = 7.1.
Finally, the function f w is computed as

f w = g 1 + c 6 w3 g 6 + c 6 w3 1/6
with g = r + c w2 (r 6r) and r = min ñu Sκ 2 d 2 , 10 .

In three-dimensional cases, we consider the QCR version of the Spalart-Allmaras turbulence model, described in [Spalart 2000].

Vector form of the Reynolds-averaged Navier-Stokes system

The considered Reynolds-Averaged Navier-Stokes (RANS) system is rewritten in the following vectorial formulation:

W t + ∇ • F E = ∇ • F V + F S , (4.5)
were W is the nondimensionalized conservative variables vector:

W = (ρ, ρu, ρv, ρw, ρE, ρν) T . F E (W ) = (F E 1 (W ), F E 2 (W ), F E 3 (W )
) is the convective (Euler) flux vector:

F E 1 (W ) = ρu, ρu 2 + p, ρuv, ρuw, u(ρE + p), ρuν T , F E 2 (W ) = ρv, ρuv, ρv 2 + p, ρvw, v(ρE + p), ρvν T , (4.6) F E 3 (W ) = ρw, ρuw, ρvw, ρw 2 + p, w(ρE + p), ρwν T . F V (W ) = (F V 1 (W ), F V 2 (W ), F V 3 (W )
) represents the viscous flux vector:

F V 1 (W ) = 0, T xx , T xy , T xz , uT xx + vT xy + wT xz + λT x , ρ σ (ν + ν)ν x T , F V 2 (W ) = 0, T xy , T yy , T yz , uT xy + vT yy + wT yz + λT y , ρ σ (ν + ν)ν y T , (4.7) F V 3 (W ) = 0, T xz , T yz , T zz , uT xz + vT yz + wT zz + λT z , ρ σ (ν + ν)ν z T ,
where T is the stress tensor defined as

T = (µ + µ t ) (∇ ⊗ u + t ∇ ⊗ u) - 2 3 ∇ • uI = (µ + µ t )τ.
Its components read

T ij = (µ + µ t ) ∂v i ∂x j + ∂v j ∂x i - 2 3 ∂v k ∂x k δ ij .
where (v i , v j , v k ) represent the three components of the velocity and δ ij the Kroneker delta.

F S (W ) represents the source terms fluxes, i.e. the diffusion, production and destruction terms from the Spalart-Allmaras turbulence model:

F S (W ) = 0, 0, 0, 0, 0, c b2 ρ σ ∇ν 2 + ρc b1 S ν -c w1 f w ρ ν d 2 T (4.8)

Aerodynamic cost functionals

In this work, we will analyze the draft, lift and moment cost functions to evaluate the accuracy and the mesh convergence of the mesh adaptation process. These coefficients will also be used as functional of interest for the goal-oriented mesh-adaptation. The computation of these coefficients require three geometric parameters: S ref , the reference area, L ref , the reference surface length, and G ref , the reference surface barycenter. It also needs a reference state W ∞ at the far-field boundary.

We first define the pressure and the skin friction coefficient vectors defined locally on the wetted-surface. The pressure coefficient is given by

C p (x) = p(x) -p ∞ 1 2 ρ ∞ u ∞ 2 n(x), where 1 2 ρ ∞ u ∞ 2
is the far-field dynamic pressure and n is the outward normal to the surface. The skin friction coefficient vector is

C f (x) = τ w (x) 1 2 ρ ∞ u ∞ 2 where τ w (x) = (µ + µ t )(τ (x) • n(x)) = µ(τ (x) • n(x))
. with τ w is the local wall shear stress, τ is defined according to Equation (4.1) and µ t = 0 at walls. These local coefficient vectors are used to plot C p and C f profiles on wings.

Then, we can evaluate the aerodynamic coefficient vector by integration over the considered body S:

    C x C y C z     = 1 S ref S (C p (x) + C f (x)) dx.
To take in account the angle of attack of the flow, we consider the orientation of the body in space to compute the vector

    Drag Slip Lift     = Rot(θ, α, σ)     C x C y C z    
where Rot(θ, α, σ) is the rotation matrix defined by the angle of attack α, the angle of side slip σ and the angle of roll θ.

Similarly, the moment coefficient vector is given by

    C l C m C n     = 1 S ref L ref S (gx × (C p (x) + C f (x))) dx,
where g are the coordinates of the body gravity center G ref . The aerodynamic moment coefficient vector is derived, taking in account the orientation of the body, as

    Roll Pitch Yaw     = Rot(θ, α, σ)     C l C m C n     .

RANS flow solver

Wolf is a vertex-centered mixed Finite Volume/Finite Element solver, originally tailored for unstructured meshes composed of triangles in 2D and tetrahedra in 3D. The non-linearity of the RANS system is handled through a pseudo-transient continuation, using a pseudo time marching, with an implicit time integration. At each time step, the linearized system is solved by means of a Symmetric Gauss-Seidel (SGS) implicit solver, local time-stepping and local CFL to accelerate the convergence to the steady state. This section details the discretization choices for triangular/tetrahedral meshes, along with the numerical methods implemented in Wolf. This description emphasizes the features that depend on the nature of the elements forming the mesh. A more complete description is given in [Alauzet and Frazza 2021].

Spatial discretization

The spatial discretization of the Navier-Stokes Equations is a mixed Finite Volume/ Finite Element formulation: the convective terms are solved by the Finite Volume method on a dual mesh while the viscous fluxes are evaluated using the Galerkin centered method.

Dual mesh construction and integration of the RANS equation

Let H be a mesh of the domain Ω. Its vertices are denoted P i , i = 1, N V , and its elements (triangles or tetrahedron) K j , j = 1, N K . The vertex-centered Finite Volume formulation associates each vertex P i of the mesh, with a control volume or Finite Volume cell, denoted C i . The discretized domain Ω h can be written as the union of the dual mesh cells

Ω h = N K i=1 K i = N V i=1 C i .
This dual mesh is built in a preprocessing step. Consequently, only the primal mesh is needed as an input. There are several ways to define the Finite Volume cells. This work focuses on median cells, but containment cells have been examined as well, since the containment cells for a quasi-structured pattern match the median cells of the corresponding quadrilaterals. Examples of dual meshes for both types of cells are shown in Figures 4.2 (two-dimensional meshes) and 4.3 (three-dimensional meshes). It illustrates that containment cells ensure a structured dual mesh if a quasi-structured primal mesh is provided.

Median cells. In 2D, the construction of these cells consists in subdividing each triangle into three quadrilateral cells around each vertex. The vertices of the quadrilateral partial cell associated with vertex P i are (i) the middle of the two edges issued from P i , (ii) the gravity center of the element and (iii) the considered vertex P i . The median cell of vertex P i is the union of all its quadrilateral sub-cells. In 3D, each tetrahedron is split into four hexahedra. The eight vertices of the hexahedra associated with vertex P i are: (i) M i , M j , M k the middle points of the edges incident to P i , (ii) G f i , Gf j , G f k , the gravity center of the three faces containing P i , (iii) G, the gravity center of the tetrahedra, and (iv) the vertex P i . The median cell C i associated with P i is the union of these hexahedra in the tetrahedra surrounding P i . The construction of median cells is illustrated in Figure 4.1.

Containment cells. This approach is expected to discretize more accurately the flow equations on highly anisotropic quasi-structured meshes [Barth 1994, Gourvitch et al. 2004]. In 2D, each triangle is split in three quadrilaterals, each one joining a vertex, the middle of each edge containing this vertex, and the center of the containment circle of the triangle. The center of the containment circle is the circumcenter if located inside the triangle, otherwise it is the center of the smallest circle containing the triangle. The global RANS system expressed in Equation (4.5) is integrated on each cell. Using the Green formula, it yields, for each vertex P i 

|C i | dW i dt + ∂C i F E (W i ) • n i dγ = ∂C i F V (W i ) • n i dγ , + C i F S (W i ) dx + B.T. (4.9)
where W i is the mean value of the solution W on cell C i , n i is the outer normal to the Finite Volume cell surface ∂C i , and F E , F V and F S are respectively the convective, viscous and source terms flux functions as defined previously, and B.T. stands for "boundary terms".

To write Equation (4.9) in a more compact form, the following notations are introduced for, respectively, the numerical convective, viscous, source fluxes and boundary terms

F i = ∂C i F E (W i ) • n i dγ , S i = ∂C i F V (W i ) • n i dγ , Q i = C i F S (W i ) dΩ , Γ i = C i ∩∂Ω h G(W i ) dx ,
where G is a boundary flux that depends on the type of considered boundary conditions.

Equation (4.9) becomes

|C i | dW i dt + F i = S i + Q i + Γ i . (4.10)

Discretization of the convective terms

The integration of convective fluxes F i of Equation (4.10) is done by decomposing the cell boundary into several facets ∂C ij that correspond to the interface with the cell of other vertices P j surrounding P i

F i = ∂C i F E (W i ) • n i dγ ≈ P j ∈V(P i ) F| ∂C ij • ∂C ij n i dγ ,
where V(P i ) denotes the set of vertices linked by an edge to P i . F| ∂C ij represents the constant value of F(W ) at interface ∂C ij . The flow is calculated as a numerical flux function, denoted Φ ij :

Φ ij = Φ ij (W i , W j , n ij ) = F| ∂C ij • ∂C ij n i dγ , where n ij = ∫ ∂C ij n i dγ.
The numerical flux function approximates the hyperbolic terms on the joint boundary ∂C ij between the cells C i and C j . We notice that the computation of the convective fluxes is performed mono-dimensionally in the normal direction to the boundary of the Finite Volume cell. Therefore, the numerical calculation of the flux function Φ ij at the interface ∂C ij reduces to a one-dimensional Riemann problem in the direction of the normal n ij , solved by means of an approximate Riemann solver. In this work, the HLLC approximate Riemann solver is used for the mean flow, as proposed in [Batten et al. 1997a].

The convective terms of Equation ( 4.3) is discretized using a non-linear approach for the turbulent variable ρν as proposed in [START_REF] Larrouturou | How to preserve the mass fractions positivity when computing compressible multi-component flows[END_REF]].

φ convective ρν (W ij , W ji , n ij ) = φ convective ρ (W ij , W ji , n ij ) νi if φ convective ρ (W ij , W ji , n ij ) > 0 νj otherwise.
The flux φ convective ρ of the density variable is computed with the HLLC approximate Riemann solver as well. It has been proven that this scheme preserves the maximum principle for the convected turbulent variable.

A second order accuracy is obtained using a MUSCL type reconstruction method [Van Leer 1979]. The idea is to use extrapolated values W ij and W ji instead of W i and W j at the interface ∂C ij to evaluate the flux. Note that, in the implementation, the primitive variables are extrapolated to guarantee the positivity of the density and the pressure, then the conservative variables are reconstructed from these values. Thus, the gradients of the primitive variables are evaluated. The numerical flux becomes:

Φ ij = Φ ij (W ij , W ji , n ij ) ,
where W ij and W ji are linearly extrapolated as:

W ij = W i + 1 2 (∇W ) i • --→ P i P j and W ji = W j + 1 2 (∇W ) j • --→ P j P i .
In contrast to the original MUSCL approach, the approximate "slopes" (∇W ) ij and (∇W ) ji are defined for any edge and obtained using a combination of centered and upwind gradients.

The centered gradient, which is related to edge P i P j , is implicitly defined along edge P i P j by the relation:

(∇W ) C ij • --→ P i P j = W j -W i and (∇W ) C ji • --→ P j P i = W i -W j .
Upwind and downwind gradients, which are also related to edge P i P j , are computed according to the definition of upwind and downwind element. These elements are respectively denoted K ij and K ji . Regarding a two-dimensional triangular mesh, K ij (resp. K ji ) is the triangle of the ball of P i (resp. P j ) the opposite edge of which is crossed by the line defined by the edge P i P j .

P j P i M i M j downwind triangle K j upwind triangle K i n 1 ij n ij ( t) n 2 ij P i P j W ij W ji Figure 4
.4 -Representation of the interface between two vertices P i and P j in a triangular mesh (black lines), illustrating the notations involved in the MUSCL scheme. The green lines correspond to the dual mesh. Extracted from [Alauzet and Frazza 2021].

Remark 4.3.1. If more than one element verify this condition, the upwind element is chosen arbitrarily among them.

The corresponding gradients are then defined for vertices P i and P j as:

(∇W ) U ij = (∇W )| K ij and (∇W ) D ij = (∇W )| K ji .
where (∇W )| K = P ∈K W P ∇φ P | K is the P 1 -Galerkin gradient on triangle K, denote by φ P the local shape function of vertex P .

A second-order accuracy scheme, with low numerical dissipation, is obtained using parametrized gradients. We introduce the β-scheme [Koren 1993]:

(∇W ) i • --→ P i P j = (1 -β)(∇W ) C ij • --→ P i P j + β (∇W ) U ij • --→ P i P j (∇W ) j • --→ P j P i = (1 -β)(∇W ) C ji • --→ P j P i + β (∇W ) D ji • --→ P j P i ,
where β ∈ [0, 1] is a parameter controlling the amount of upwinding. For instance, the scheme is centered for β = 0 and fully upwind for β = 1. The notations are reported in Figure 4.4. The most accurate β-scheme is obtained for β = 1/3 . Indeed, it can be demonstrated that it ensures third-order accuracy and fourth-order numerical dissipation, for the twodimensional linear advection, on structured triangular (Friedrichs-Keller) type meshes, see [Koren 1993] and [Debiez and Dervieux 2000a]. We refer to this scheme as V4-scheme. On unstructured meshes, it shows second-order accuracy and fourth-order numerical dissipation. The V4-gradients are given by:

(∇W ) V 4 i • --→ P i P j = 2 3 (∇W ) C ij • --→ P i P j + 1 3 (∇W ) U ij • --→ P i P j (∇W ) V 4 j • --→ P j P i = 2 3 (∇W ) C ji • --→ P j P i + 1 3 (∇W ) D ji • --→ P j P i .
Absence of upwind/ downwind element. Some edges have one or two boundary vertices as endpoints: in certain cases there is no upwind/downwind element. An approximate upwind gradient should be provided. In this work, we chose the centered gradient and the nodal gradient of the considered vertex to replace the upwind gradient. The nodal gradient is computed using the L 2 -projection operator derived by Clément [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]]. We briefly describe the method in this paragraph, and give a more detailed analysis in Section 4.4.6. For a vertex P i , we denote by S i the stencil of a basis shape function φ i , i.e. S i = supp φ i , which is geometrically the ball of elements surrounding vertex P i . The main idea is to find, in a L 2 norm, the best constant gradient on S i approximating the element-wise constant gradient. Following [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]], we obtain the following gradient reconstruction for vertex P i (∇W )

P i = K j P i |K j |(∇W )| K j K j P i |K j | = K j P i |K j |(∇W )| K j |S i | = K j P i |K j | (d + 1)|C i | ((∇W )| K j ) (4.11) where ((∇W )| K j ) is the P 1 -Galerkin gradient at element K j , |K j |, |S i | and |C i | denote
the area or volume of element K j , stencil S i , and cell C i respectively. For a Finite Volume median cell in a full tetrahedra (3D) or triangular (2D) mesh, we have

|S i | = (d + 1)|C i |.
We observe that the best nodal gradient in a L 2 -norm sense is the area-weighted (volume weighted) average of the elements gradients of the vertex ball. The approximate upwind gradient is then defined by

(∇W ) U ij ≈ 2(∇W ) P i -(∇W ) C ij .
Limiters functions. MUSCL schemes are not monotone and can be a source of spurious oscillations especially in the vicinity of discontinuities [Koobus et al. 2006]. These oscillations can affect the accuracy of the final solution or simply end the computation, for instance because of negative pressures. A widely used technique to address this issue is to guarantee the Total Variation Diminishing (TVD) property in 1D, or Local Extremum Diminishing (LED) for 2D, 3D problems, which ensure that the extrapolated values W ij and W ji are not invalid. To guarantee the TVD or LED properties, limiting functions are coupled with the previous high-order gradient evaluation. The gradient is substituted by a limited gradient denoted (∇W ) lim ij . The choice of the limiting function is crucial as it directly affects the numerical dissipation of the scheme and the convergence of the simulation. In this case, we have three different gradients: the high-order (V4), the centered and the upwind / downwind. Therefore, classical limiters cannot be used. Piperno et al. have extended the Van Albada limiter to β-schemes [Piperno and Depeyre 1998]. The superbee limiter has been extended by Koren andDervieux in [Koren 1993, Koobus et al. 2006]. In the current usage of Wolf, a new limiter has been chosen, which combines the smoothness of the Piperno limiter and the low dissipation of the Koren-Dervieux limiter. It is expressed in a factorized form as

(∇W ) Lim = ∇W V 4 ψ γ (R), where R = ∇W C ∇W U , with ψ γ (R) =              3 1 R 2 -6 1 R + 19 1 R 3 -3 1 R 2 + 6 1 R + 11 if R < 1 2 1 if 1 2 ≤ R ≤ 2 1 + ( 3 2 1 R -1 + 1)( 1 R -1 -1) 3 if R ≥ 2 144 
Chapter 4. Mixed-element solver

Discretization of the viscous terms

In Wolf, the viscous terms are discretized with the Finite Element method (FEM). We evaluate viscous terms S i of the form:

S i = ∂C i F V (W i ) • n dγ = P j ∈V(P i ) ∂C ij F V (W i ) • n dγ + BT
where ∂C ij is the joint interface between cells C i and C j , and BT represent the boundary terms.

Let φ i the P 1 Finite Element basis function associated with vertex P i in a P 1 element K. We have

K ∇φ i dx = - ∂C i ∩K n dγ.
Assuming F V (W i ) is constant on each element K, since it comes from a gradient, we obtain:

P j ∈V(P i ) ∂C ij F V (W i ) • n dγ = - K P i K F V (W i )| K • ∇φ i dx ,
This result ensures an equivalence between the Finite Element and Finite Volume discretizations. The effective calculation of the previous integral involves the computation of integrals of the following form:

K ∇φ i ∇φ j dx = |K| ∇φ i | K ∇φ j | K .
In this expression, ∇φ i | K is the constant gradient of basis function φ i associated with vertex P i in element K. This discretization is justified since the characteristic times associated with the diffusive terms are large compared to the characteristic times associated with the hyperbolic (convective) terms.

In practice, as the nodal viscous term is decomposed as the sum of the contributions from the elements surrounding the node, we cycle on the elements instead of the vertices to assemble the flux. Given a tetrahedron K = P i P j P k P l (three-dimensional case), we have the partial flux associated with each vertex

φ viscous i | K (W i , W j , W k , W l ) = ∂C i ∩K F V (W i )| K • ndγ = - K F V (W i )| K • ∇φ i dΩ.
We now apply the FEM formulation to all convected variables that are averaged on the element, and we easily verify that the components of the viscous flux vector are elementwise constant. For instance, the term u T xy , where T is the (Cauchy) stress tensor, reads:

(u T xy )| K = u| K µ| K p i ∈K u i ∂φ i | K ∂y + v i ∂φ i | K ∂x .
The other terms are computed analogously.

The Spalart-Allmaras dissipation term is also discretized with the FEM:

Φ SA visc | K (W i , W j , W k , W l ) = |K| 1 σ ρ i (ν| K + ν| K ) ∇ν| K • ∇φ i | K .

Discretization of the source terms

The Spalart-Allmaras source terms (diffusion, production and destruction) are discretized by simple integration over each vertex cell:

Φ SA source (W i ) = |C i | ρ i c b1 Si νi -ρ i c w1 f w νi d i 2 + c b2 σ ρ i ∇ν i ,
where |C i | is the volume of the vertex cell and all variables are point-wise:

Si = Ω i + νi κ 2 d 2 i f v2 .

Discretization of the boundary conditions

Boundary conditions are imposed element-wise, e.g. a boundary flux is computed for each boundary edge/face and assembled to each of its vertices. Consequently, even if a vertex-centered scheme is considered, consistent boundary conditions are obtained because the type of condition can be multiple around a vertex . For aeronautic computations, three different boundary conditions are involved: no-slip boundary condition for walls, symmetry plane (or slip) boundary conditions and far-field boundary conditions. More details about boundary conditions modeling and implementation can be found in [Alauzet and Frazza 2021].

Implicit time integration

To approach the solution of the considered non-linear system, the strategy adopted in Wolf is the pseudo-transient continuation method, using a pseudo time marching. It has proven to be more robust than the Newton method [Pandya et al. 2016], especially regarding the types of simulations performed by the solver: complex 3D geometries and highly anisotropic adapted meshes make the problem stiff and ill-conditioned. The convergence to steady-state is achieved through the pseudo-transient method using implicit time integration. The implicit temporal integration is based on the backward Euler timeintegration scheme. At each time step, the linear system of equations is solved using a Symmetric Gauss-Seidel (SGS) implicit solver and local time-stepping to accelerate the convergence to steady state.

Implicit system

Once the equations have been discretized in space, a set of ordinary differential equations is obtained. For an implicit time integration, the semi-discretized RANS equations become

|C i | δt n i δW i = -F n+1 i + S n+1 i + Q n+1 i + Γ n+1 i , (4.12) 
where

δW i = W n+1 i -W n i , |C i |
is the area or volume of the Finite Volume cell associated with vertex P i , and δt n i is the local time step at iteration n for vertex P i given by

δt = CFL h 2 h(c + u ) + 2 Cp ρ µ Pr + µt Prt = CFL h 2 h(c + u ) + 2 λ+λt ρ ,
where C p denotes the specific heat at constant pressure, Pr and Pr t are the laminar and turbulent Prandtl numbers, µ and µ t are the laminar and turbulent dynamic viscosities, λ and λ t are the laminar and turbulent dynamic conductivity. h denotes the representative mesh size for vertex P i which is taken as the smallest height of the elements surrounding P i .

The implicit system is obtained by linearizing the semi-discretized RANS system with respect to the conservative variables W . However, the computation of the Jacobian of the second-order convective fluxes ∂F n i ∂Wj introduces an extra difficulty, as it involves the secondorder ball of P i , while the linearization of the other terms only involve the first-order ball. We consider an approximate Jacobian to maintain the edge-based structure of the matrix, using only the first order convective flux ∂ F n i ∂Wj . After discretization of the RHS of (4.12), it becomes

|C i | δt n i I d + ∂ F n i ∂W i - ∂S n i ∂W i - ∂Q n i ∂W i - ∂Γ n i ∂W i δW i + j∈V(i) ∂ F n i ∂W j - ∂S n i ∂W j - ∂Q n i ∂W j - ∂Γ n i ∂W j δW j = -F n i + S n i + Q n i + Γ n i . (4.13)
In Equation (4.13), V(i) denotes the set of vertices connected to vertex P i by an edge, i.e. the first-order ball. As the RHS still involves the second-order convective flux, the approximation of the Jacobian does not affect the spatial order of the scheme. The first term of the LHS contributes to the diagonal of the matrix and the second term corresponds to the extra-diagonal contributions for the i th line of the matrix. The linearized system can be written in vector form

A n δW n = R n with A n = |C| δt n I - ∂ R n ∂W and δW n = W n+1 -W n , (4.14) 
with the notations

R n = -F n + S n + Q n + Γ n and R n = -F n + S n + Q n + Γ n .
We decompose the matrix A into three parts: the diagonal D, the lower part L and the upper part U such that A = L + D + U.

The next sections describe the computation of the Jacobians to explicit the dependency on the P 1 -Galerkin gradients and element connectivity, which need to be modified to extend the solver to mixed-elements simulations. Jacobian computation is not detailed for boundary conditions but it relies on an exact differentiation, similarly to convective, viscous and source terms.

Convective terms Jacobians

We recall that

F n+1 i = P j ∈V(i) φ HLLC ij (W n+1 ij , W n+1 ji , n ij ).
The linearization of the convective fluxes reads:

φ HLLC ij (W n+1 ij , W n+1 ji , n ij ) = φ HLLC ij (W n i , W n j , n ij ) + ∂φ HLLC ij (W n i , W n j , n ij ) ∂W i δW i + ∂φ HLLC ij (W n i , W n j , n ij ) ∂W j δW j . (4.15) 
Assuming i < j, the first derivative term contributes to the matrix diagonal D(i, i) and the second derivative term contributes to the matrix upper part U(i, j). As φ HLLC ji = 4.3. RANS flow solver 147 -φ HLLC ij , minus the second derivative term contributes to the matrix diagonal D(j, j) and minus the first derivative term contributes to the matrix lower part L(j, i). More details about the differentiation of the HLLC approximate Riemannian solver are given in [Batten et al. 1997b]. The linearization of the convective terms in the turbulent equations is

∂φ convective ρν ∂ νi (W n i , W n j , n ij ) = φ convective ρ (W n i , W n j , n ij ) if φ convective ρ (W n i , W n j , n ij ) > 0 0 otherwise.

Viscous terms Jacobians

Let K = (P i , P j , P k , P l ) be a tetrahedron, we now linearize the viscous flux terms S n i :

S n+1 i = - K P i φ visc i,K (W n+1 i , W n+1 j , W n+1 k , W n+1 l ) = - K P i φ visc,n+1 i,K
.

To simplify the notations, we omit the four entries of φ visc i,K . The linearization comes to

φ visc,n+1 i,K = φ visc,n i,K + ∂φ visc,n i,K ∂W i δW i + ∂φ visc,n i,K ∂W j δW j + ∂φ visc,n i,K ∂W k δW k + ∂φ visc,n i,K ∂W l δW l ,
where the derivative terms contribute respectively to the diagonal and extra-diagonal terms. These terms are obtained by differentiating the terms of Relation (4.7) that are discretized using the P 1 Finite Element basis functions φ i as described in Section 4.3.1.

For the Spalart-Allmaras dissipation term, we have:

∂φ viscous ν,i | K ∂ νi = |K| ρ i σ 1 4 ∇ν| K • ∇φ i | K + (ν| K + ν| K )∇φ i | K • ∇φ i | K and ∂φ viscous ν,i | K ∂ νj = |K| ρ i σ 1 4 ∇ν| K • ∇φ i | K + (ν| K + ν| K )∇φ i | K • ∇φ j | K .

Source terms Jacobians

For the Spalart-Almaras equation, the source term is the sum of production (Q prod ), destruction (Q dest ) and diffusion (Q diff ) terms. For convergence efficiency, it is crucial to fully differentiate all terms and to avoid alterations of the differentiation like clippings to ensure the positivity of diagonal terms [Mavriplis 2019]. The production and the destruction terms only contribute to the diagonal. Since the diffusion term involves gradients, it contributes to the diagonal and extra-diagonal matrices.

Full linearization of the production and destruction terms gives respectively

∂Q prod ∂ νi = c b1 ρ i S + νi ∂ S ∂ νi ,
and

∂Q dest ∂ νi = c w1 ρ i νi d 2 i 2f w + νi ∂f v1 ∂ νi .
Full linearization of the diffusion terms involves gradients, the Jacobian contributions are therefore obtained through neighboring elements. Assuming the nodal gradient is obtained by L 2 projection, this source term reads in 2D

Q diff i (W ) = c b2 σ ρ i ∇ν i 2 = c b2 σ ρ i K j P i |K j | 3|C i |   P k ∈K j νk ∇φ k | K j   2 ,
and is differentiated as

∂Q diff i ∂ νi (W ) = c b2 σ ρ i 2 ∂∇ν i ∂ νi • ∇ν i and ∂Q diff i ∂ νj (W ) = c b2 σ ρ i 2 ∂∇ν i ∂ νj • ∇ν i ,
leading to the following diagonal and extra-diagonal contributions on each element

∂Q diff K,i ∂ νi (W ) = 2 c b2 σ ρ i |K| 3|C i | ∇φ i | K • ∇ν i and ∂Q diff K,i ∂ νj (W ) = 2 c b2 σ ρ i |K| 3|C i | ∇φ j | K • ∇ν i .
Solving the linear system: SGS relaxation

The linearized system given by Equation (4.14) is solved at each iteration. The process iterates until the residual has decreased to a target residual, generally 0.01 × Res ini , denote Res ini an initial value of the residual. It corresponds, in an adaptation loop, to the value of the residual from the previous adaptive simulation to ensure the convergence of the global process: Res ini = R N , i.e. the converged value of the RHS in Eq. (4.14). A maximal number of iterations is also set by the user in case the target residual is not reached.

To solve the linear system, the chosen method is the Symmetric Gauss-Seidel (SGS) relaxation based on the Lower-Upper Symmetric Gauss-Seidel (LU-SGS) implicit solver initially introduced by Jameson [Jameson and [START_REF] Jameson | Lower-upper implicit schemes with multiple grids for the Euler equations[END_REF] and fully developed by Sharov et al. [Sharov et al. 2000]. The SGS relaxation is very practical because it uses an edge-based data structure that can efficiently be parallelized [Alauzet andLoseille 2009, Sharov et al. 2000].

Modifications for the mixed-element solver

In the previous section, we have presented the main features of the solver Wolf, established for triangular or tetrahedral meshes. In this section, the modifications to enable mixed-element simulations are detailed. Based on the previous description, the changes principally regard the computation of the flux functions, and in particular, the evaluation of gradients. Therefore, we focus on the extension of Finite Volume and Finite Element discretizations to mixed-element meshes. The definition of gradients in Wolf is mainly based on the P 1 -Galerkin approximation, so a direct extension is the use of Q 1 -Galerkin gradients. However, while P 1 gradients are constant element-wise, it is not the case for Q 1 gradients. The evaluation of the gradient in quadrilaterals is therefore non-trivial and several approaches were investigated to find the accurate choice for each flux function.

The first part of this section recalls some useful definitions and properties about the Q 1 -Finite-Element reconstruction. Then, we discuss the modifications brought to the flow solver: the definition of the Finite Volume cells in Section 4.4.2, the convective fluxes in Section 4.4.3, the viscous fluxes in Section 4.4.4, and the nodal gradients in Section 4.4.6. We exclusively focus on the two-dimensional case in this section.

Finally, since several quantities are computed by cycling on the elements, numerous connectivity-related changes have been made in the code, that are not entirely reported here.

Approximated Finite Element reconstruction approach

Definitions

The approximation presented here is based on some primary concepts of the Finite Element method, see [Ciarlet 1978] for instance. A Finite Element is defined as a triplet {K, Σ K , V K }, where K denotes a geometric element, Σ K the degrees of freedom, and V K the shape functions space, also called Galerkin approximation space. For example, the Galerkin approximation space associated with the Finite Element formulation for triangles in Wolf is the P 1 Lagrange polynomials space.

For quadrilaterals, the considered shape functions space is obtained from the Fi-

nite Element { Q, Σ Q, V Q}, where Q is a square reference element, Σ Q its vertices { P0 , P1 , P2 , P3 }, and V Q the polynomials space Q 1 ( Q), Q 1 ( Q) =    p(ξ, η) = 0≤i,j≤1 α ij ξ i η j , α ij ∈ R    .
(4.16)

Several options are possible to define the reference square. Depending on this choice, local shape functions, denoted ( Ni (ξ, η)), are defined such that ∀i ∈ 0, 3 Ni ( Pj ) = δ ij and

3 i=0 Ni = 1,
where δ ij denotes the Kronecker delta. These local shape functions are a basis of the shape functions space Q 1 ( Q).

In this work, we choose the square

Q = [-1, 1] × [-1, 1]
with vertices P0 (-1, -1), P1 (1, -1), P2 (1, 1), P3 (-1, 1), anticipating the use for a Gauss-Legendre quadrature rule, which is commonly defined on [-1, 1], see Section 4.4.6, and to be consistent with the Finite Element reconstruction methods described in [Puigt et al. 2010] [Auffray 2007] for the discretization of the diffusive operator. A representation of this reference element is shown on the left in Figure 4.5. The local shape functions read

N0 (ξ, η) = 1 4 (ξ -1)(η -1), N1 (ξ, η) = -1 4 (ξ + 1)(η -1), N2 (ξ, η) = 1 4 (ξ + 1)(η + 1), N3 (ξ, η) = -1 4 (ξ -1)(η + 1).
To extend the definition of the Finite Element from the reference square to any convex quadrilateral, we introduce the mapping that transforms the reference element into this quadrilateral, also called physical element. The mapping, denoted F and called isoparametric transformation, can be expressed using the local shape functions of the reference element, as

F : ξ η → x y = x 0 y 0 N0 (ξ, η) + x 1 y 1 N1 (ξ, η) + x 2 y 2 N2 (ξ, η) + x 3 y 3 N3 (ξ, η)
where t (x i , y i ) i∈ 0,3 are the coordinates of the vertices P i of the physical element. Notations are reported in Figure 4.5.

Figure 4.5 -Illustration of the mapping from the reference element to a physical element.

The Jacobian matrix of the mapping, denoted by J , can be expressed similarly using the partial derivatives of the shape functions

J =    ∂x ∂ξ ∂x ∂η ∂y ∂ξ ∂y ∂η    =        i ∂ Ni ∂ξ x i i ∂ Ni ∂η x i i ∂ Ni ∂ξ y i i ∂ Ni ∂η y i        , (4.17) 
where

∂ N0 ∂ξ = - 1 4 (1 -η) ∂ N0 ∂η = - 1 4 (1 -ξ) , (4.18) 
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∂ N1 ∂ξ = + 1 4 (1 -η) ∂ N1 ∂η = - 1 4 (1 + ξ) , ∂ N2 ∂ξ = + 1 4 (1 + η) ∂ N2 ∂η = + 1 4 (1 + ξ) , ∂ N3 ∂ξ = - 1 4 (1 + η) ∂ N3 ∂η = + 1 4 (1 -ξ) . (4.19)
Physical shape functions and gradients from the reference element

In general, the local shape functions N i of the physical element are not polynomials. They are defined from the reference shape functions ( Ni ) i∈ 0,3 as

∀i ∈ 0, 3 , N i (x, y) = Ni F -1 (x, y) .
(4.20)

The functional space Q 1 (Q) for any quadrilateral Q is therefore defined from Q 1 ( Q) (see (4.16)) and the isoparametric transformation F as [Ciarlet Jr and Lunéville 2009]

Q 1 (Q) = p = p • F -1 , p ∈ Q 1 ( Q) . (4.21)
Consequently, the gradients of the shape functions in the physical element are computed using the following relation

∇ x,y N i (x, y) = J -T (ξ, η)∇ ξ,η Ni (ξ, η), i ∈ 0, 3 , (4.22) 
where J -T = ( t J ) -1 denotes the inversed transpose of the Jacobian matrix of the transformation, expanded in Eq. (4.17).

Proof. Let (x, y) ∈ Q and (ξ, η) ∈ Q such that (x, y) = F(ξ, η). According to Relation (4.20), we can write

N i (x, y) = N i (F(ξ, η)) = Ni (ξ, η) , i ∈ 0, 3 .
As a composition, the partial derivative of

N i • F with respect to ξ is ∂ ∂ξ N i (F(ξ, η)) = ∂x ∂ξ ∂ ∂x N i (F(ξ, η)) + ∂y ∂ξ ∂ ∂y N i (F(ξ, η)).
Likewise, the partial derivative with respect to η is

∂ ∂η N i (F(ξ, η)) = ∂x ∂η ∂ ∂x N i (F(ξ, η)) + ∂y ∂η ∂ ∂y N i (F(ξ, η)).
Writing these two relations in a matrix shape, we get

  ∂ ∂ξ Ni (ξ, η) ∂ ∂η Ni (ξ, η)   ∇ ξ,η N (ξ,η) =   ∂x ∂ξ ∂y ∂ξ ∂x ∂η ∂y ∂η   t J ∂ ∂x N i (x, y) ∂ ∂y N i (x, y) ∇x,yN i (x,y) .
We finally invert this expression to retrieve Relation (4.22). 

Q 1 approximation
Using the notations and definitions introduced in the previous part, we exhibit some useful results about the Q 1 -Galerkin approximation of functions and gradients in a convex quadrilateral Q. Consider a quadrilateral mesh, and let V h the function space defined as

V h := {v h ∈ C 0 ( Ω), v h | Q l ∈ Q 1 (Q l ), ∀l ∈ 1, N Q }. Let T ∈ V h . The Q 1 Galerkin approximation of T in any element Q of the mesh reads ∀(x, y) ∈ Q, T (x, y) = 3 i=0 T i N i (x, y), (4.23) 
where T i is the value of T at vertex P i . Accordingly, the gradient approximation is

∀(x, y) ∈ Q, ∇ x,y T (x, y) = 3 i=0 T i ∇ x,y N i (x, y) = 3 i=0 T i J -T (ξ, η)∇ ξ,η Ni (ξ, η). (4.24)
where J is the Jacobian matrix of the iso-parametric transformation given by Eq. (4.17).

We must remark that, contrary to the triangular case, the gradient is not constant element-wise. Therefore, the discretization of the flux functions involves some specific values of the Q 1 -approximated gradient, and some specific values of the field evaluated using the iso-parametric transformation. We report some evaluations of the field and gradient expressed at the quadrilateral's vertices, midpoints and barycenter.

Evaluation of the field at midpoints and at the barycenter. Let M i denotes the midpoint of the edge P i P j , G the barycenter, and respectively T M i and T G the values at these points, Relation (4.23) gives

T G = 1 4 3 i=0 T i and T M i = T i + T j 2 . (4.25)
Evaluation of the gradient at the quadrilateral's vertices. The Q 1 gradient at each vertex simplifies as

∇T 0 = T 0 n 13 + T 1 n 30 + T 3 n 01 2 • A 301 (4.26) ∇T 1 = T 1 n 20 + T 2 n 01 + T 0 n 12 2 • A 012 (4.27) ∇T 2 = T 2 n 31 + T 3 n 12 + T 1 n 23 2 • A 123 (4.28) ∇T 3 = T 3 n 02 + T 0 n 23 + T 2 n 30 2 • A 032 . (4.29)
where n ij denote the inward normal to edge [P i P j ], as depicted in Figure 4.6, and A ijk is the area of sub-triangle P i P j P k .

Proof. We demonstrate the previous result for the first nodal gradient. Replacing the coordinates of P0 = (-1, -1) in the expression of the Jacobian and reference shape functions gradients, we obtain

∇ ξη N0 ( P0 ) = -1 /2 -1 /2 ∇ ξη N1 ( P0 ) = 1 /2 0 ∇ ξη N2 ( P0 ) = 0 0 ∇ ξη N3 ( P0 ) = 0 1 /2 and J -T ( P0 ) = 1 2|J 0 | -(y 0 -y 3 ) -(y 1 -y 0 ) x 0 -x 3 x 1 -x 0
where |J 0 | denotes the determinant of the Jacobian matrix computed at vertex P0 . Besides, observing that |J 0 | = 1 2 A 301 , and replacing these expressions into Relation (4.24), we obtain

∇T 0 = 1 A 301 -(y 0 -y 3 ) -(y 1 -y 0 ) x 0 -x 3 x 1 -x 0 1 2 T 1 -T 0 T 3 -T 0 Developing this expression leads to ∇T 0 = 1 2 A 301       T 1 -(y 0 -y 3 ) x 0 -x 3 n 30 +T 3 -(y 1 -y 0 ) x 1 -x 0 n 01 +T 0 -(y 3 -y 1 ) x 3 -x 1 n 13      
, where we recall that n ij is the inward normal to edge P i P j . The proof is similar for the other vertices.

Remark 4.4.1. The nodal gradients recovered here correspond to the nodal gradients in a P 1 approximation for the sub-triangle composed of the vertices that are directly linked by an edge to the considered vertex. Evaluation of the gradient at the barycenter. Finally, the gradient at the barycenter, denoted by G, is also involved in some developments. It is convenient since it is similar to the gradient in the P 1 approximation. Each shape function gradient evaluated in G can be written as

∀i ∈ 0, 3 , ∇N i (G) = 1 2|Q| n i , (4.30) 
where |Q| is the area of the quadrilateral, and n i denotes the inward normal of the diagonal facing the corresponding vertex, as pictured in Figure 4.7. Therefore, the gradient of a function T in a Q 1 approximation can be evaluated at G as

∇T G = 1 2|Q| 3 i=0 T i n i .
(4.31)

Proof. First, we note that (0, 0) in the reference space maps to the iso-barycenter of the physical quadrilateral. Therefore, we apply Relation (4.24) to this point. It yields

∇T G = 3 i=0 T i J -T (0, 0) J -T G ∇ ξ,η Ni (0, 0) = 3 i=0 T i ∇N i (G).
The Jacobian matrix computed at (0, 0), denoted by J G , is

1 4 x 1 -x 0 + x 2 -x 3 x 3 -x 0 + x 2 -x 1 y 1 -y 0 + y 2 -y 3 y 3 -y 0 + y 2 -y 1 ,
and therefore its determinant is

|J G | = 1 4 |Q|.
The inverted transposed Jacobian reads

J -T G = 1 |Q| y 3 -y 0 + y 2 -y 1 y 0 -y 1 + y 3 -y 2 x 0 -x 3 + x 1 -x 2 x 1 -x 0 + x 2 -x 3 .
We detail the calculus for the first shape function: (4.36) where n 13 denote the inward normal to edge [P 3 P 1 ] in triangle P 0 P 1 P 3 , which corresponds to n 0 , the inward normal to the diagonal of Q facing P 0 . An analogous development for each vertex leads to Equation (4.30).

∇N 0 (G) = J -T G ∇ ξ,η N0 (0, 0) (4.32) = 1 |Q| y 3 -y 0 + y 2 -y 1 y 0 -y 1 + y 3 -y 2 x 0 -x 3 + x 1 -x 2 x 1 -x 0 + x 2 -x 3 -1/4 -1/4 (4.33) = 1 4|Q| -y 3 + y 0 -y 2 + y 1 -y 0 + y 1 + y 2 -y 3 x 3 -x 0 + x 2 -x 1 -x 1 + x 0 -x 2 + x 3 (4.34) = 1 4|Q| -2y 3 + 2y 1 2x 3 -2x 1 (4.35) = 1 2|Q| n 13 = 1 2|Q| n 0 ,

Spatial discretization

We extend the definition of the dual mesh introduced in Section 4.3.1. The construction of the median cells for mixed-element meshes is similar to triangular meshes: for each vertex P i , the cell is formed by cycling over the surrounding elements. If the considered element is a quadrilateral, the partial cell is defined by (i) the vertex P i , (ii) the middle of the two incident edges and (iii) the barycenter of the element. Figure 4.8 compares the median cells for a triangular and a mixed-element ball. Note that, as depicted in Figure 4.9, the dual-mesh of a quadrilateral cartesian pattern is evenly structured, contrary to the triangular case. In both meshes, we represent the Finite Volume median cell for the vertex at the center (red line). Some vertices are labeled to illustrate the demonstration. For the quadrilateral mesh, the upwind / downwind elements are colored in orange in direction e x and blue in direction e y .

expression is similar to the formula for gradients in triangles, see Eq. (4.31). However, we observed that the simulations based on this choice did not converge.

A second option is to evaluate the gradient at the intersection between the edge direction and the facing diagonal in the upwind quadrilateral, represented by point M j in Fig. 4.10. This choice is used in the sixth-order numerical dissipation scheme in [Debiez andDervieux 2000b, Alauzet and[START_REF] Alauzet | [END_REF]. The computation of the gradient at this point relies on Eq. (4.24), which implies the inversion of the iso-parametric mapping to find the associated coordinates in the reference space.

We made the decision to use the value at the vertex / endpoint of the considered edge, using Equations (4.26) to (4.29) to express the local nodal gradient. This is equivalent to consider the sub-triangle of the quadrilateral containing P j and the facing diagonal as the upwind element. This strategy is prefered since it is more straightforward than the evaluation at M j and provides satisfying results.

Our choice for the modified MUSCL-V4 scheme leads to a fourth order dissipation, for a linear advection on a triangular or quadrilateral cartesian mesh. The triangular case is established in [Debiez and Dervieux 2000a]. We detail the calculus for a quadrilateral mesh in the next section, and discuss the extension to mixed-element meshes.

Accuracy

We discuss the accuracy of the scheme in a cartesian quadrilateral mesh and in a mixed-element mesh. We provide truncation error analysis in both configurations, and show that in the first case, the fourth-order dissipation is recovered, while the second case leads to accuracy deterioration to first order. Some solutions are proposed to adress this issue.

Truncation error analysis for a quadrilateral cartesian pattern. In this paragraph, lower-case subscript i, j correspond to the spatial location in the grid while upercase subscript I or J correspond to the global numbering of the vertices in the mesh.

First, let us recall the results for a triangular Friedrichs-Keller type mesh, pictured in Figure 4.11 (left). The spatial discretization steps are ∆x and ∆y, and we assume that ∆x/∆y and ∆y/∆x are bounded.

Denote by W a conserved quantity modeled by a scalar field, W t its time derivative, and t (a, b) the velocity for the following advection model

W t + ∇ • W a b = 0. (4.39)
We integrate the left-hand side over the control volume C I of a vertex P I , using Green's formula to retrieve an expression that involves the interface fluxes. In the considered triangular Friedrichs-Keller mesh, the area of the Finite-Volume cell is |C I | = ∆x∆y.

C I W t + ∇ • W a b dx = |C I |W t + C I ∇ • W a b dx = ∆x∆yW t + P J ∈V(I) ∂C IJ W a b • ndl = ∆x∆yW t + P J ∈V(I) Φ IJ (4.40)
At the interface between two vertices P I and P J , the upwind advection flux reads

Φ IJ = 1 2 (W IJ + W JI ) a b • n IJ - 1 2 (W JI -W IJ ) a b • n IJ .
where W IJ and W JI represent the extrapolated states and n IJ the normal at the interface between P I and P J . We assume the time discretization is exact. Using a β-scheme with β = 1 3 , the spatial truncation analysis for the triangular cartesian mesh, according to [Debiez and Dervieux 2000a], gives For a quadrilateral cartesian mesh, the Finite Volume cell is a rectangle as represented in Figure 4.11, on the right. Denote (i, j) the location of the considered vertex in the cartesian grid. The area of the rectangular cell C (i,j) is ∆x∆y. The sum in Equation (4.40) has four terms. It expands as follows

|C (i,j) |W t + C (i,j) ∇ • W a b dx = ∆x∆yW t + Φ 1 + Φ 2 + Φ 3 + Φ 4
using the followings notations : -Φ 1 is the flux at the interface between vertices at (i, j) and (i + 1, j), -Φ 2 is the flux at the interface between vertices at (i, j) and (i, j + 1), -Φ 3 is the flux at the interface between vertices at (i, j) and (i -1, j), -Φ 4 is the flux at the interface between vertices at (i, j) and (i, j -1).

The expressions of the fluxes involve the extrapolated states at each interface. We choose a notation for the extrapolated states that exhibits the grid indices, similarly to the usual Finite Difference schemes. Notations are reported in Figure 4.12. For instance, the flux Φ 1 involves -W - i+ 1 2 ,j , the extrapolated state from vertex (i + 1, j), -W + i+ 1 2 ,j , the extrapolated state from vertex (i, j).

In direction e x and -e x , we obtain

Φ 1 = 1 2 a b • η x (W - i+ 1 2 ,j + W + i+ 1 2 ,j ) - 1 2 a b • η x (W - i+ 1 2 ,j -W + i+ 1 2 ,j ) (4.41) Φ 3 = - 1 2 a b • η x (W - i-1 2 ,j + W + i-1 2 ,j ) - 1 2 a b • η x (W + i-1 2 ,j -W - i-1 2 ,j ) (4.42)
where η x = t (∆y, 0) is the normal at the interface in the direction + e x .

We only detail the evaluation of the fluxes in the direction e x , the method being analogous in the other direction. The extrapolated states are computed according to the β-scheme given by Equations (4.37)-(4.38),

W - i-1 2 ,j = W i-1,j + 1 2 (1 -β)(W i,j -W i-1,j ) + 1 2 β(∇W ) Q - i-1 2 ,j • ------→ P i-1,j P i,j , W + i-1 2 ,j = W i,j + 1 2 (1 -β)(W i-1,j -W i,j ) + 1 2 β(∇W ) Q + i-1 2 ,j • ------→ P i,j P i-1,j , W - i+ 1 2 ,j = W i,j + 1 2 (1 -β)(W i+1,j -W i,j ) + 1 2 β(∇W ) Q - i+ 1 2 ,j • ------→ P i,j P i+1,j , W + i+ 1 2 ,j = W i+1,j + 1 2 (1 -β)(W i,j -W i+1,j ) + 1 2 β(∇W ) Q + i+ 1 2 ,j • ------→ P i+1,j P i,j ,
where (∇W )

Q ± i± 1
2 ,j denotes the upwind or downwind gradient involved in each extrapolated state.

We use Equations (4.26)-(4.29) to express the Q 1 gradients at the common point between the edge crossing the interface and the upwind element, as announced.

For example, the upwind gradient for the extrapolated state W - i-1 2 ,j is computed at vertex P i-1,j of the quadrilateral Q = P i-1,j P i-2,j P i-2,j-1 P i-1,j-1 . The projection of the local nodal gradient at P i-1,j on edge P i-1,j P i,j is

∇W Q (P i-1,j ) • ------→ P i-1,j P i,j = 1 2 1 2 ∆x∆y ∆y ∆x W i-1,j + -∆y ∆x W i-2,j + 0 -∆x W i-1,j-1 • ∆x 0 = W i-1,j -W i-2,j
Similarly, the projections of each gradient on the respective direction give

W - i-1 2 ,j = W i-1,j + 1 2 (1 -β)(W i,j -W i-1,j ) + 1 2 β(W i-1,j -W i-2,j
), (4.43)

W + i-1 2 ,j = W i,j + 1 2 (1 -β)(W i-1,j -W i,j ) + 1 2 β(W i,j -W i+1,j ), (4.44) W - i+ 1 2 ,j = W i,j + 1 2 (1 -β)(W i+1,j -W i,j ) + 1 2 β(W i,j -W i-1,j ), (4.45) W + i+ 1 2 ,j = W i+1,j + 1 2 (1 -β)(W i,j -W i+1,j ) + 1 2 (W i+1,j -W i+2,j ). (4.46)
We substitute η x by t (∆y, 0) in Eq. (4.41) and (4.42). The sum of these two fluxes is

Φ 1 + Φ 3 = 1 2 a b • ∆y 0 (W + i+ 1 2 ,j + W - i+ 1 2 ,j -W + i-1 2 ,j + W - i-1 2 ,j ) A 1 + 1 2 a b • ∆y 0 (W + i+ 1 2 ,j -W - i+ 1 2 ,j + W - i-1 2 ,j -W + i-1 2 ,j ) B 1
.

The combination of extrapolated values A 1 and B 1 are expressed as functions of the values of W , using Equations (4.43)-(4.46)

A 1 = (1 + β)(W i+1,j -W i-1,j ) + β 2 (W i-2,j -W i+2,j ), B 1 = -3βW i,j + 2β(W i+1,j + W i-1,j ) - β 2 (W i+2,j + W i-2,j ).
Finally, a Taylor expansion for W i+1,j , W i-1,j , W i-2,j , W i+2j , and setting β = 1 3 , reduce the sum Φ 1 + Φ 3 to

Φ 1 + Φ 3 = a∆x∆yW x - 1 12 |a|∆y∆x 4 W xxxx + O(4).
An analogous demonstration gives the following expression for the sum Φ 2 + Φ 4 in direction e y Φ 2 + Φ 4 = b∆x∆yW y -1 12 |b|∆x∆y 4 W yyyy + O(4).

Therefore,

C I (W t + aW x + bW y )dx = - 1 12 ∆x∆y |a|∆x 3 W xxxx + |b|∆y 3 W yyyy + O(4) .
As expected, we recover a fourth order dissipation, similarly to the Friedrichs-Keller triangular case.

Extension to mixed-element meshes. The proposed strategy to discretize the convective fluxes belongs to the family of edge-reconstruction schemes. As mentioned in [Diskin and Thomas 2007], this kind of scheme ensures exact flux integration for fullytriangular of fully-quadrilateral meshes, but suffers from deterioration of integration accuracy for mixed-element meshes. A proof of this statement is provided for a mixed-element cartesian configuration, as pictured in Figure 4.13. It is observable that the presence of the quadrilateral changes the flux balance. We report the flux evaluation for each primal edge, using the points of the corresponding dual facet as subscripts, according to the labels indicated in Fig. 4.13. 

Φ 1-2 = 1 6 (a∆y + b∆x) 7W i,j + 7W i+1,j+1 -W i-1,j-1 -W i+2,j+2 6 + - 1 6 |a∆y + b∆x| 3W i+1,j+1 -3W i,j + W i-1,j-1 -W i+2,j+2 6 
, (4.47)

Φ 2-3 = - 1 6 (a∆y -2b∆x) 7W i,j + 7W i,j+1 -W i,j-1 -W i,j+2 6 + + 1 6 |a∆y -2b∆x| 3W i,j+1 -3W i,j + W i,j-1 -W i,j+2 6 
, (4.48)

Φ 3-4 = 1 6 (b∆x -2a∆y) 7W i,j + 7W i-1,j -W i+1,j -W i-2,j 6 + - 1 6 |b∆x -2a∆y| 3W i-1,j -3W i,j + W i+1,j -W i-2,j 6 , (4.49) Φ 4-5 = - 1 6 (a∆y + b∆x) 7W i,j + 7W i-1,j-1 -W i+1,j+1 -W i-2,j-2 6 + + 1 6 |a∆y + b∆x| 3W i-1,j-1 -3W i,j + W i+1,j+1 -W i-2,j-2 6 (4.50) Φ 5-6-7 = 1 12 (a∆y -5b∆x) 7W i,j-1 + 7W i,j -W i,j+1 -W i,j-2 6 + - 1 12 |a∆y -5b∆x| 3W i,j-1 -3W i,j + W i,j+1 -W i,j-2 6 , (4.51) Φ 7-8-1 = 1 12 (5a∆y -b∆x) 7W i+1,j + 7W i,j -W i-1,j -W i+2,j 6 + - 1 12 |5a∆y -b∆x| 3W i+1,j -3W i,j + W i-1,j -W i+2,j 6 . (4.52)
The resulting truncation error analysis returns, as anticipated, a 1st order precision scheme as follows

C i ∂W ∂t + a ∂W ∂x + b ∂W ∂y dΩ + |C i | 78 a ∂ 2 W ∂x 2 ∆x -b ∂ 2 W ∂y 2 ∆y + O ∆x 2 , ∆y 2 = 0 (4.53)
with

|C i | = C i dΩ = 13 12 ∆x∆y. (4.54)
Discussion. To address the issue of order reduction, [Diskin and Thomas 2007] propose to constrain the mesh to guarantee a smooth separation between quadrilateral and triangular regions. It results in clusters of quadrilaterals and clusters of triangles, separated by a smooth interface. An example of stencil is displayed in Figure 4.14.

The interface is considered to be smooth if the unit normal changes smoothly with the distance along the line separating triangular and quadrilateral regions. An example of hybrid mesh obtained with such strategy is shown in Figure 4.15. This criterion was not thoroughly implemented in the meshing process, although we attempt to reduce interfaces between different element types regions. 

Viscous terms discretization

In order to discuss the possible approaches for the evaluation of the viscous fluxes, we first consider the heat equation where the right-hand side is a diffusive term, similarly to the terms involved in the viscous fluxes.

To solve the above equation using a Finite Volume method, we integrate Eq. (4.55) over a control volume C i associated with a vertex p i . It yields

∂ ∂t C i T dx = α ∂C i ∇T • n dγ. (4.56)
The investigated strategies to evaluate this diffusive term are: an edge-based approach, a cell-vertex approach and a Finite Element reconstruction. A more exhaustive analysis for various discretization methods for the diffusive operator can be found in [Auffray 2007] and [Puigt et al. 2010].

Edge-based approach

This method is based on Galle's formulation [Galle 1995]. First, the nodal gradient ∇T i is evaluated as the mean value of the gradient on the dual cell around the vertex p i , assuming a linear variation of T along each dual edge: (4.57) where V(p i ) denotes the ball of vertices of p i . Then, the interface gradient ∇T ij is computed as the mean value on the corresponding edge p i p j :

∇T i = 1 |C i | C i ∇T dx = 1 |C i | ∂C i T n dγ = 1 |C i | p j ∈V(p i ) T i + T j 2 ∂C ij ndγ,
∇T ij = ∇T i + ∇T j 2 . (4.58)
To improve the stability of the scheme, Crumpton's correction [Crumpton et al. 1997] is applied

∇T corr ij = ∇T ij + T j -T i |p j -p i | -∇T ij • e ij e ij (4.59) with e ij = p j -p i |p j -p i | .
This spatial scheme is consistent, monotonic and second-order accurate only on rectangular meshes, while, on arbitrary quadrilaterals, its precision falls down to the first-order and neither consistency nor monotonicity is preserved [Crumpton et al. 1997].

Cell-vertex approach [Diskin and Thomas 2007] propose to reconstruct the gradient separately at each dual face. Let us consider the mixed-element configuration represented in Figure 4.16. This configuration exhibits the interface P A P B P C between two vertices P 0 and P 4 . The edge P 0 P 4 is the joint edge between a quadrilateral P 0 P 2 P 3 P 4 and a triangle P 0 P 4 P 1 . The diffusive fluxes along the interface P A P B P C are computed as the sum

∂(ABC) ∇T n dγ = ∇T R n R + ∇T L n L
where ∇T L is the contribution from the triangle P 0 P 4 P 1 and ∇T R is the contribution from the quadrilateral P 0 P 2 P 3 P 4 . To evaluate these contributions, we first compute the mean value of the gradient on the corresponding elements using the Green-Gauss formula:

∇T K = 1 |K| K ∇T dx = 1 |K| ∂K T n dγ = 1 |K| P i P j ∈E(K)
T i + T j 2

P j P i ndγ. (4.60)
where K refers to the considered element, |K| denotes its area, ∂K its boundary, and E(K) its set of edges. In the case of triangular elements, this formulation is equivalent to a P 1 -Galerkin Finite Element formulation.

Proof. We recall that the P 1 gradient of T in a triangle K is constant and its value is

∇T P 1 K = 1 2|K| P i ∈K T i n i ,
where n i is the inward normal facing vertex P i . The explicit expression for the triangle P 0 P 4 P 1 is

∇T P 1 041 = 1 2A 041 T 0 y 4 -y 1 x 1 -x 4 + T 4 y 1 -y 0 x 0 -x 1 + T 1 y 0 -y 4 x 4 -x 0 ,
where A 041 is the area of the triangle.

Likewise, the explicit expression of Eq. (4.60) for the triangle P 0 P 4 P 1 is

∇T 041 = 1 A 041 1 2 (T 1 + T 4 ) y 1 -y 4 x 4 -x 1 + 1 2 (T 0 + T 1 ) y 0 -y 1 x 1 -x 0 + 1 2 (T 4 + T 0 ) y 4 -y 0 x 0 -x 4 = 1 2A 041 T 0 y 0 -y 1 + y 4 -y 0 x 1 -x 0 + x 0 -x 4 + T 4 y 1 -y 4 + y 4 -y 0 x 4 -x 1 + x 0 -x 4 + T 1 y 1 -y 4 + y 0 -y 1 x 4 -x 1 + x 1 -x 0 = 1 2A 041 T 0 y 4 -y 1 x 1 -x 4 + T 4 y 1 -y 0 x 0 -x 1 + T 1 y 0 -y 4 x 4 -x 0 = ∇T P 1 041 .
For triangular elements, no corrections are required. The contribution is ∇T L = ∇T 104 = ∇T P 1 041 , On the contrary, for quadrilaterals, Crumpton's correction needs to be applied

∇T R = ∇T 0234 + T 4 -T 0 |p 4 -p 0 | -∇T 0234 • e 04 e 04
Unfortunately, the truncation error of this scheme is O (1) on irregular quadrilateral or mixed-element meshes [Diskin andThomas 2007, Puigt et al. 2010]. It is therefore not suitable for our purpose.

Finite Element reconstruction approach

The chosen discretization for the viscous fluxes is based on the Approximated Finite Element (APFE) reconstruction described in [Auffray 2007, Puigt et al. 2010]. To present this method, we introduce the Exact Finite Element reconstruction (EXFE) which relies on the Q 1 approximation.

First, let us recall the components of the two-dimensional viscous (Cauchy) stress tensor

T xx = 2 3 µ 2 ∂u ∂x - ∂v ∂y T xy = µ ∂u ∂y + ∂v ∂x
Figure 4.17 -Notations and vertices involved in the discretization of the viscous fluxes for a vertex P i in a quadrilateral. M G and GM are facets of the Finite Volume cell in this element. The gradient for each facet is computed with the APFE approach using the edge of the same color.

Then, we assume that the facet gradients are approximated as the average of the two nodal gradients at the vertices forming the edge attached to this facet. 

(∇T j + ∇T i ) (resp. 1 2 (∇T i + ∇T k )).
We derive the APFE reconstruction from Equation (4.62) as

∂C i ∩K (α∇T ) n dγ = α 1 2 [(∇T j + ∇T i ) n M G + (∇T i + ∇T k ) n GM ] . (4.64)
Contrary to the EXFE discretization, APFE reconstruction is monotonic on rectangles whatever their aspect ratio, and maintains a second order accuracy.

In RANS equations, the diffusion coefficient is not constant. However, an analogous scheme can be obtained using a trapezoidal rule to solve the integrals in Eq.(4.62) as follows

α M + α G 2 ∇T i + ∇T j 2 n M G + α G + α M 2 ∇T i + ∇T k 2 n GM . (4.65)
Therefore, a generic contribution from an element K to the viscous flux for vertex P i can be expressed in a symbolic way as

∂C i ∩K (α∇T )dγ = α * 1 1 2 1 2 (α i + α j ) + 1 4 l α l ∇T * 1 1 2 (∇T i + ∇T j ) n M G + α * 2 1 2 1 2 (α i + α k ) + 1 4 l α l ∇T * 2 1 2 (∇T i + ∇T k ) n GM , (4.66)
replacing α M , α M and α G by their approximation according to Relation (4.25).

For example, at vertex P i , the first component of the viscous flux S i , via Eq.(4.61) and Eq.(4.66), results in where µ is assimilated to α, u and v are assimilated to T . Using the local numbering of quadrilateral Q, and assuming P i is the first node, we have the following explicit expressions of the discretizations:

S i,0 = T xx n x P i + T xy n y P i with T xx n x P i = 2 3 µ * 1 2 ∂u ∂x * 1 - ∂v ∂y * 1 n x M G + 2 3 µ *
µ * 1 = 1 2   1 2 (µ 0 + µ 3 ) + 1 4 j µ j   µ * 2 = 1 2   1 2 (µ 0 + µ 1 ) + 1 4 j µ j   (4.69) ∇u * 1 = 1 2 (∇u 0 + ∇u 3 ) ∇u * 2 = 1 2 (∇u 0 + ∇u 1 ) (4.70) ∇v * 1 = 1 2 (∇v 0 + ∇v 3 ) ∇v * 2 = 1 2 (∇v 0 + ∇v 1 ) (4.71)

Modifications for the implicit matrix

The presence of quadrilaterals in the mesh involves some changes in the implicit system solved for the pseudo-transient continuation method, described in Section 4.3.2. We show that the contributions from quadrilaterals mainly rely on some inward normals and subtriangles areas. From this observation, we show how to compute these contributions in an efficient way through a loop on the quadrilateral's vertices.

Expression of the implicit matrix contributions

Let us consider a quadrilateral and its vertices P 0 , P 1 , P 2 , P 3 , listed in the counterclockwise order in the local numbering, as represented in Figure 4.18. From now on, we denote by n i,j the inward edge normal defined on the sub-triangle around P i , facing P j , as illustrated in Figure 4.19. The linearization of the viscous fluxes for this set of vertices reads, in a vector form 

                      S 0 S 1 S 2 S 3                       n+1 =                       S 0 S 1 S 2 S 3                       n +                   ∂S 0 ∂W 0 ∂S 0 ∂W 1 ∂S 0 ∂W 2 ∂S 0 ∂W 3 ∂S 1 ∂W 0 ∂S 1 ∂W 1 ∂S 1 ∂W 2 ∂S 1 ∂W 3 ∂S 2 ∂W 0 ∂S 2 ∂W 1 ∂S 2 ∂W 2 ∂S 2 ∂W 3 ∂S 3 ∂W 0 ∂S 3 ∂W 1 ∂S 3 ∂W 2 ∂S 3 ∂W 3                   n                       δW 0 δW 1 δW 2 δW 3                       (4.72)
where each block of the implicit matrix is the Jacobian matrix of the corresponding nodal viscous flux.

For example, the Jacobian of the viscous flux S 0 for the 0-th node w.r.t. 0-th state vector W 0 can be expressed as follows, with the shear stresses T discretized according to Eq.(4.66).

∂S 0 ∂W 0 = ∂ ∂W 0          T xx n x +
For the sake of simplicity, let us detail only the contribution from the facet MG, as defined in the previous section (see Figure 4.17) to the term ∂S0 ∂W0 , denoted by ∂S0 ∂W0 | M G . The discretization of the first component of S 0 reads

S 0,0 = τ xx n x (0) + τ xy n y (0) = 2 3 µ * 1 2 ∂u ∂x * 1 - ∂v ∂y * 1 n x M G + µ * 1 ∂u ∂y * 1 + ∂v ∂x * 1 n y M G
where

µ * 1 = 1 2   1 2 (µ 0 + µ 3 ) + 1 4 j µ j   ,
and the partial derivatives are components of the gradients

∇u * 1 = 1 2 (∇u 0 + ∇u 3 ) = 1 2 u 0 n 0,0 + u 1 n 0,1 + u 3 n 0,3 2 • A 301 + u 3 n 3,3 + u 0 n 3,0 + u 2 n 3,2 2 • A 023 , ∇v * 1 = 1 2 (∇v 0 + ∇v 3 ) = 1 2 v 0 n 0,0 + v 1 n 0,1 + v 3 n 0,3 2 • A 301 + v 3 n 3,3 + v 0 n 3,0 + v 2 n 3,2 2 • A 023 .
We recall the conservative state vector 

∇u * 1 = 1 4A 301 ρ 0 u 0 ρ 0 n 0,0 + ρ 1 u 1 ρ 1 n 0,1 + ρ 3 u 3 ρ 3 n 0,3 + 1 4A 023 ρ 3 u 3 ρ 3 n 3,3 + ρ 0 u 0 ρ 0 n 3,0 + ρ 2 u 2 ρ 2 n 3,2 ∇u * 1 = 1 4A 301 (ρu) 0 ρ 0 n 0,0 + (ρu) 1 ρ 1 n 0,1 + (ρu) 3 ρ 3 n 0,3 + 1 4A 023 (ρu) 3 ρ 3 n 3,3 + (ρu) 0 ρ 0 n 3,0 + (ρu) 2 ρ 2 n 3,2 .
Likewise,

∇v * 1 = 1 4A 301 (ρv) 0 ρ 0 n 0,0 + (ρv) 1 ρ 1 n 0,1 + (ρv) 3 ρ 3 n 0,3 + 1 4A 023 (ρv) 3 ρ 3 n 3,3 + (ρv) 0 ρ 0 n 3,0 + (ρv) 2 ρ 2 n 3,2 .
We differentiate the expression of ∇u * 1 with respect to W 0 = t (ρ 0 , (ρu) 0 , (ρv) 0 , (ρE) 0 ) and obtain

∂ ∂W 0 ∇u * 1 = 1 2            - 1 2A 301 (ρu) 0 (ρ 0 ) 2 n 0,0 - 1 2A 023 (ρu) 0 (ρ 0 ) 2 n 3,0 1 2A 301 1 ρ 0 n 0,0 - 1 2A 023 1 ρ 0 n 3,0 0 0            = 1 2             - u 0 ρ 0 n 0,0 2A 301 - n 3,0 2A 023 1 ρ 0 n 0,0 2A 301 - n 3,0 2A 023 0 0             Analogously, ∂ ∂W 0 ∇v * 1 = 1 2             - v 0 ρ 0 n 0,0 2A 301 - n 3,0 2A 023 0 1 ρ 0 n 0,0 2A 301 - n 3,0 2A 023 0            
In this work, we assume the viscosity µ does not depend on the conservative variables.Therefore,

∂S 0,0 ∂W 0 | M G results in ∂S 0,0 ∂W 0 | M G = ∂ ∂W 0 2 3 µ * 1 2 ∂u ∂x * 1 - ∂v ∂y * 1 n x M G + µ * 1 ∂u ∂y * 1 + ∂v ∂x * 1 n y M G = 2 3 µ * 1 2 ∂ ∂W 0 ∂u ∂x * 1 - ∂ ∂W 0 ∂v ∂y * 1 n x M G + = µ * 1 ∂ ∂W 0 ∂u ∂y * 1 + ∂ ∂W 0 ∂v ∂x * 1 n y M G
An analogous demonstration can be obtained for the contribution from the facet GM'.

Therefore, each term of the Jacobian ∂S i /W j involves the inward edge normals facing P j , if they exist, in each one of the three sub-triangles containing P i . For example, ∂S 0 /W 2 only involves n 3,2 from P 0 P 2 P 3 , and n 1,2 from P 0 P 1 P 2 , because the triangle P 3 P 0 P 1 does not contain P 2 , so n 0,2 doesn't exist.

Data structure for matrix implicit storage

The global matrix of the implicit system is filled through a loop over the quadrilaterals. For each quadrilateral, we compute the contribution from each vertex to all affected global coefficients. That is, if I denotes the current vertex of the current quadrilateral Q, and (J, K, L) the other vertices in the counter-clockwise order, the contributions from I in Q are ∂S I ∂w• | Q and affect the blocks (I, I), (I, J), (I, K) and (I, L) of the matrix. We develop how this loop is performed efficiently in the implicit solver.

To begin with, we consider a quadrilateral Q and its vertices P 0 , P 1 , P 2 , P 3 and compute the contributions from each vertex P • w.r.t. W 0 , that is, ∂S• ∂W 0 | Q . As stated earlier, the computation of these coefficients involve normals and areas of some sub-triangles of Q. We call A i the area of the triangle surrounding vertex P i . Considering the contributions from the facet M G, according to Equations (4.66 to 4.71), and using the expression of the nodal gradients from Eq. (4.26) to (4.29), the inward edge normals dependencies can be summarized as Chapter 4. Mixed-element solver This notation permits to fill the matrix column-wise, factorizing the computation of normals and areas.

An analogous result, involving conversely the right neighbor vertices, can be obtained for the contribution concerning the right facet GM'.

Nodal gradients

Nodal gradients are involved in different parts of the discretization, namely in the convective fluxes when the upwind element is undefined, for the computation of aerodynamics coefficients, and for the source terms of the turbulence model, see Section 4.3.1, The computation of nodal gradients for simplicial meshes is based on the L 2 projection operator and Clément's local interpolation operator [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]]. To extend this procedure to mixed-element meshes, we recall the definition of the L 2 projection operator, similarly to [Alauzet 2003], and we analyze how the presence of quadrilaterals affects this definition.

First, let us introduce the function spaces

V 0 h = v ∈ L 2 (Ω)| v| K ∈ P 0 , ∀K ∈ Elements(H) , and 
V 1 h = v ∈ C 0 (Ω)| v| K ∈ P 1 , ∀K ∈ Triangles(H), and v| Q ∈ Q 1 , ∀Q ∈ Quadrilaterals(H) .
Let P i be a vertex of the mesh. Denote the associated shape function N i . Its stencil is the ball of elements around P i , denoted by V(P i ).

For v ∈ L 2 (Ω), the L 2 projection operator Π L 2 v ∈ V 0 h , defined as follows, projects v in V 0 h :

∀P i ∈ H, (Π L 2 v) | V(P i ) ∈ P 0 V(P i ) (Π L 2 v -v) w = 0, ∀w ∈ P 0 Clément's operator Π c : V 0 h → V 1 h is defined as Π c v = Nv i=0 Π L 2 v(P i )N i .
Let T h ∈ V 1 h a function whose gradient needs to be recovered. The general gradient reconstruction operator is therefore, in the two-dimensional case,

∇ R T h = Π c (∇T h ) := Π c ( ∂T h ∂x ), Π c ( ∂T h ∂y ) .
We now detail the construction of the L 2 projection operator of T h in the mixedelement case. Considering an element K, which can be either a triangle or a quadrilateral,

T h reads ∀x ∈ K, T h (x) = nv-1 j=0 T h (P j )N j (x)| K ,
where n v is the number of vertices of the element, and for j ∈ 0, n v , N j denotes the shape function at vertex P j . The terms by terms differentiation of this expression gives

∀x ∈ K, ∇T h (x)| K = nv-1 j=0 T h (P j )∇ x,y N j (x)| K .
For each vertex P i ∈ H, taking w = 1 as a test function, the definition of the L 2 -projection operator yields

V(P i ) (Π L 2 (∇T h ) -∇T h ) = 0 ⇐⇒ V(P i ) Π L 2 (∇T h ) = V(P i ) ∇T h ⇐⇒ |V(P i )| Π L 2 (∇T h )| V(P i ) = K∈V(P i ) K ∇T h ⇐⇒ Π L 2 (∇T h ) = K∈V(P i ) K ∇T h K∈V(P i ) |K| . (4.73)
where |K| is the area of the element K.

In triangular meshes, the area of the surrounding elements is three times the area of the Finite Volume cell |C i |, hence Relation (4.11) given earlier. Since gradients are constant for P 1 shape functions, the L 2 local projection operator in triangular meshes finally comes to

Π L 2 (∇T h )(P i ) = K P i |K| 1 2|K| P l ∈K T l n K,l 3|C i | = K P i P l ∈K T l n K,l 6|C i | .
involving only the area of the cell |C i | and the inward normals in each triangle: n K,l denotes the inward normal facing vertex P l in triangle K.

Such simplifications are not allowed for Q 1 gradients, so in mixed-element or quadrilateral meshes, nodal gradients are actually computed from Equation (4.73). We detail the computation of the integral at the numerator.

Integral evaluation

As stated in Section 4.4.1, the shape functions for quadrilaterals are defined from a reference element. Consequently, computing an integral that involves shape functions (or their gradient) first involve a change of variables. We name I the considered integral on a quadrilateral Q, and write T rather than T h for clarity:

I = Q ∇ x,y T (x)dxdy.
Using a change of variables to express the shape function gradients in the reference element, it becomes

I = Q | det J (ξ, η)| ∇ [T • F(ξ, η)
] dξdη, which involves the Jacobian of the iso-parametric transformation J (ξ, η). Now, we apply the Q 1 gradient approximation (4.24) to evaluate ∇ [T • F(ξ, η)]. The integral I becomes

I = Q | det J (ξ, η)| J -T (ξ, η)   3 j=0 T j ∇ ξ,η Nj (ξ, η)   dξdη.
The integrand turns out to be a Q 1 polynomial so the integral can be computed exactly.

Proof. Denote g(ξ, η) the integrand. First, we show that g(ξ, η) can be reduced to the product of a matrix A(ξ, η) = (a ij (ξ, η)) i,j∈ 0,1 and a vector B = (b i (ξ, η)) i∈ 0,1 :

g(ξ, η) = | det J (ξ, η)| J -T (ξ, η)   3 j=0 T j ∇ ξ,η Nj (ξ, η)   = | det J (ξ, η)| det J (ξ, η)) -1   y i ∂ Ni ∂η -y i ∂ Ni ∂ξ -x i ∂ Ni ∂η x i ∂ Ni ∂ξ   A(ξ,η)   3 j=0 T j   ∂ Nj ∂ξ ∂ Nj ∂η     . B(ξ,η)
Then, from the expression of the shape function gradients given by Relations (4.18) to (4.19 ), we can verify that the coefficients of A and B are linear polynomials of ξ or η.

The integrand is a function of the form

g(ξ, η) = a 00 (ξ) a 01 (η) a 10 (ξ) a 11 (η) b 0 (η) b 1 (ξ) = a 00 (ξ)b 0 (η) + a 01 (ξ)b 1 (η) a 10 (ξ)b 0 (η) + a 11 (ξ)b 1 (η) ,
which shows explicitly the separation of variables, and therefore that the coefficients of g are Q 1 polynomials.

To compute the integral I, we could therefore use the analytical solution. However, it can also be evaluated exactly as

I = |Q| × ∇T G = 1 2 3 i=0 T i n i .
Indeed, it is equivalent to a first-order quadrature in [-1, 1] × [-1, 1], which is exact for a polynomial of degree 1. This quadrature evaluates the integrand at (ξ, η) = (0, 0) which maps to the quadrilateral's barycenter.

Consequently, the L 2 local projection operator for mixed-element meshes results in

Π L 2 (∇T h )(P i ) = K P i |K|∇T G K P i |K| , (4.74)
where K may denote either a quadrilateral or a triangle. 

Solver validation

A validation of the solver on a few test cases is presented in the remainder. First, the study of an isentropic vortex advection allows to verify the fourth-order dissipation. Then, we perform flow simulations on well-known validation test cases to compare the convergence with other solvers.

Convective fluxes validation: advection of an isentropic vortex (COVO)

To validate the modifications of the convective terms, we first consider an analytical solution of the unsteady Euler equations, and compare the error analysis on different types of meshes. The chosen test case is the convection of a compressible and isentropic vortex within a mean and constant speed flow. The expression of the initial vortex at t = 0, centered at (x c , y c ) with a characteristic radius R c and a vortex intensity β, is the following:

u = U 0 - βU 0 R c (y -y c ) exp - r 2 2 , v = βU 0 R c (x -x c ) exp - r 2 2 , T = T 0 - β 2 U 2 0 2C p exp -r 2 , where C p = γRgas γ-1 and r 2 = (x-xc) 2 +(y-yc) 2 R 2 c
. The parameters used in our simulations are

T 0 = 300.0 [K], p 0 = 100000.0 [Pa], M 0 = γR gas T 0 = 0.5 [-], x c = 0.5 [m], y c = 0.5 [m], β = 0.2 [-], R c = 0.1 [m].
The expected final solution at time t = t f is the initial vortex convected without deformation, centered at (x c , y c ) + U 0 t f e x . The components of the flow at the initial and final state are represented in Fig. 4.20. The simulations has been performed on different types of meshes: a quadrilateral cartesian mesh, the respective triangular meshes with the same topology and a mixed-element mesh where half the domain is quads and the other half is triangles. Four meshes of each type and increasing number of vertices on the same domain were generated to study the convergence and check if the third-order of the MUSCL-V4 scheme is retrieved, as stated in Section 4.4.3. The considered error is a root mean square of the difference between the analytic final solution and the numerical solution at each vertex.

The results are shown in Fig. 4.21, where the error is displayed against √ N , N being the number of vertices, which is proportional to the element size for cartesian meshes. A logarithmic scaling is adopted to provide a linear representation of the error. The slopes, which correspond to the order of the error, are respectively -2.88, -2.84, -2.60 for the quadrilateral, triangular and mixed-element meshes, which is consistent with the expected result. Mixed-element meshes show a slightly lower order. This observation can be explained analytically: the analysis from Section 4.4.3 has shown that the third order relies on the symmetry of the median cell. At the interface between the quadrilateral part and the triangular part, such compensation from symmetry cannot occur. This result emphasizes the necessity of reducing the interfaces between unstructured and structured parts in mixed-element meshes, i.e. avoiding isolated triangles and favoring all-quadrilateral blocks. We evaluated the solution on five quadrilateral meshes of increasing number of vertices: 875, 3381, 13289, 52689, 209825. The coarsest mesh is displayed in Figure 4.22, showing the references of the boundary edges. The flat plate is modeled as a "Body No Slip" condition on the boundary edges bearing reference 1, a symmetry plane boundary condition is applied to reference 2, a "Far Field" condition to reference 3, a subsonic inlet to reference 4, and an outflow to reference 5. The next meshes are refined horizontally and vertically, keeping the same structure, and the same type of boundary conditions. The convergence of the aerodynamics coefficients is shown in Fig. 4.23, for Wolf and two other solvers (CFL3D and FUN3D). We observe the convergence of the total drag and viscous drag towards the expected values. Cartesian mixed-element mesh The description of the test case and the series of structured meshes used in the simulations are provided by NASA on the Langley Research Center website2 . These five meshes, denoted by L i , i ∈ {1, ...5}, count respectively 4278, 16844, 66840, 266288 and 1063008 vertices. We observe the evolution of the total drag and total lift coefficients, and compare the results with the values obtained by the solvers CFL3D and FUN3D, as presented in Figure 4.25. The aerodynamics coefficients appear to converge towards the same value as the other solvers. 

Turbulent flow simulation: flat plate

Conclusion and perspectives

The solver Wolf is designed to perform efficiently various CFD simulations on complex geometries, and handles highly anisotropic unstructured meshes. This chapter gave an overview of the main features of the solver, and provided an extension of these methods for two-dimensional mixed-element meshes. The main focus was the computation of gradients for quadrilaterals. The adopted approach is based on the Finite Element Q 1 approximation. Contrary to the P 1 gradients, which are constant in each triangle, there are multiple possibilities to evaluate the Q 1 gradients, so the essential difficulty was to decide which option was the most accurate for each flux functions.

The methods have proven reliable on a set of validation test cases, although we noticed a loss of performances when degrading the quality of the quadrilaterals, or at the interface between triangular blocks and quadrilateral blocks in mixed-element meshes.

The next step should be the extension of these developments to three-dimensional meshes based on the same Finite Element discretization choices. The work presented in this section provides a good groundwork for this purpose. Indeed, the choices made among the various possibilities for the computation of the gradients should stand for three-dimensional elements as well.

Chapter 5 evaluates the performances of the solver in a mesh adaptation process.

Chapter 5

Mixed-element adaptation

Motivations

Mesh adaptation consists in finding the optimal mesh for the considered application. For a fixed mesh size, it means finding the repartition of the degrees of freedom that gives the best representation of the solution, or in other words, that minimizes the error. Chapter 1 defined metric-based mesh generation: through the concept of unit mesh, the metric field is used as a directional size map to generate an anisotropic adapted mesh. In the first place, the present Chapter shows how to derive a metric field that minimizes the chosen error model, from a given analytical or numerical solution.

In the second place, this idea is applied to adaptive simulations. The goal is to converge the mesh and the solution simultaneously, starting from an initial mesh and solution. This is performed through the adaptation loop, which is a well-established process for simplicial meshes [Alauzet and Frazza 2021]. After a brief presentation of the standard adaptation loop, we describe the necessary modifications for mixed-element simulations, involving the notions developed in the previous chapters: the quad-dominant meshing process from Chapter 2, the extension of the flow solver to mixed-element simulations in Chapter 4, a specific metric gradation control to maximize the number and quality of the quadrilaterals from Chapter 3. We show how these notions are integrated in the process to ensure a working quad-dominant adaptation loop.

Finally, we demonstrate the results through a panel of adaptive simulations for different flow conditions.

Feature-based mesh adaptation

This section presents how the metric field is obtained from the flow solver outcomes. The method relies on the concept of error estimates, introduced in Section 5.2.1. We detail the process for the feature-based error estimates, which generate discrete adapted meshes that minimize the global interpolation error of a chosen sensor field. First, Section 5.2.2 sets the framework for an analytical function. Then, Section 5.2.3 shows how to apply this approach to numerical solutions.

Notion of error estimates

In the mesh adaptation process, the metric field used to prescribe sizes for the mesh generation step is automatically deduced from the outcomes of the flow solver, depending on the chosen error estimates. The initial problem is to find the optimal mesh H Opt which minimizes the given error model E for a fixed number of elements C(H Opt ) = N :

H Opt = argmin C(H)=N E(H).
This discrete formulation is NP-complete. Using the duality established by the continuous mesh framework introduced in Chapter 1, Section 1.4, the continuous counterpart of this problem is the search for an optimal metric field M Opt at a fixed complexity C(M Opt ) = N , that minimizes the chosen continuous error model E:

M Opt = argmin C(M)=N E(M).
where C is an indicator of the mesh size, generally the number of vertices or the number of elements.

The computation of the metric field is determined by the chosen error estimate. In Wolf, the considered error estimates are either feature-based or goal-oriented. The first type, as detailed further, derives the best mesh to observe the characteristics of a given sensor. Many works have been conducted on this topic, for instance [Tam et al. 2000[START_REF] Pain | Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations[END_REF], Picasso 2003, Formaggia et al. 2004[START_REF] Bottasso | Anisotropic mesh adaption by metric-driven optimization[END_REF], Li et al. 2005 [Venditti and Darmofal 2003, Jones et al. 2006, Power et al. 2006, Yano and Darmofal 2012, Alauzet and Frazza 2021]. It is currently the preferred approach for standard (unstructured) mesh adaptation in

Wolf. Yet, it has not been extended to mixed-element meshes, so this section exclusively focuses on feature-based mesh adaptation.

Optimal control of the interpolation error

This section details the method to generate the best continuous mesh to control the interpolation error of an analytical function. Let u be a twice-differentiable function on a domain Ω, and H a mesh of this domain. We introduce the linear interpolate of u on H, denoted by Π h u.

Π h u : Π h u(p i ) = u(p i ) ∀p i ∈ H Π h u ∈ P 1 (K) ∀K ∈ H
Then, consider the linear interpolation error controlled in the L p norm

E L p (H) = u -Π h u L p .
The a priori formulation of the mesh adaptation problem is

Find H opt having N vertices such that E L p (H opt ) = min H u -Π h u L p (Ω h ) .
As stated previously, we consider instead the continuous problem Find M opt having a complexity N such that

E L p (M opt ) = min M u -Π M u L p (Ω h ) ,
where Π M u is the continuous interpolate [Loseille and Alauzet 2011a] defined (in 3D) by

∀a ∈ Ω Π M u(a) = u(a) + ∇u(a) + 1 20 trace(M(a -1 2 )|H u (a)|M(a -1 2 )),
where H u (a) is the Hessian metrix of u evaluated at point a. The continuous problem can be rewritten in the following form 5.3. Standard adaptation algorithm 187

Find M L p = min M E L p (M) = Ω (u(x) -Π M u(x)) p dx 1 p = Ω trace(M(x -1 2 )|H u (x)|M(x -1 2 )) p dx 1 p , under the constraint C(M) = Ω det(M(x))dΩ = N .
Using a calculus of variations, a unique solution exists in the space of continuous meshes, as proven in [Loseille and Alauzet 2011b]. The solution is given by

M L p = N 2 3 Ω det(|H u (x|) p 2p+3 dx -2 3 det(|H u (x|) -1 2p+3 H u (x).
(5.1)

In the remainder, we show how to apply this approach to a numerical solution, introducing the feature-based error estimate for a chosen sensor u.

Multiscale error estimate

The idea of feature-based mesh adaptation is to control in the L p norm the interpolation error of a given sensor u = f (W ), denote by W the solution field provided by the flow solver. It may seem close to the interpolation error control presented in the previous section, except we only have access to a discrete representation of the sensor, denoted by u h . Under certain assumptions, it can be proven that this approach still controls the approximation error uu h [Loseille and Alauzet 2011b].

Feature-based mesh adaptation generates discrete adapted meshes that minimize the global interpolation error of this sensor field u. The analytical expression of the optimal continuous mesh is given by Eq. (5.1). In this case, the sensor is not known analytically, so the Hessian needs to be reconstructed from the nodal values provided by the solver. Similarly to the gradient reconstruction, as shown in Section 4.4.6, this is performed through a double L 2 -projection method coupled with Clément's operator. For a mixedelement mesh, the modified L 2 -projection presented in Section 4.4.6 is applied.

In practice, the chosen sensor is the Mach field, and the interpolation error is controlled in the L 4 norm since this choice of control norm adapts quicker the boundary layer region [Park et al. 2019, Alauzet andFrazza 2021].

Standard adaptation algorithm

We describe the standard adaptation process, namely the adaptation process applied to simplicial meshes, considering a feature-based error estimate. This is an iterative algorithm, called the adaptation loop, that achieves the simultaneous convergence of the mesh and the solution.

Adaptation loop at fixed complexity

The input for the adaptation loop are: an initial mesh H 0 , most likely coarse compared to the target complexity, an initial solution W 0 , and a target mesh complexity C, which is the continuous equivalent of the mesh size, as presented in Table 1.1. For instance, in the case of a simplicial unit mesh H = i K i , the link between the complexity and the mesh size is the following. Consider the prescribed metric field (M(x) x∈Ω ). Then, in 3D:

C(M) ≈ K det M K |K| ≈ K √ 2 12 = √ 2 12 × N T ≈ √ 2 12 × 6 N V = √ 2 2 × N V ,
where |K| denotes the volume of the tetrahedron K, M K is the average metric at element K and N T is the number of elements of the mesh.

The loop proceeds as follows. At each iteration, a metric tensor M i is computed from the couple (H i , W i ) according to the mesh complexity C. The metric tensor M i , defined in Section 1.3, contains the size prescription for each direction. This information is then used by the remesher to generate a new adapted mesh H i+1 . Then, W i is interpolated on H i+1 to obtain (W 0 ) i+1 which is then used as a restart solution for the next flow solver iteration of the adaptation loop. This process is represented as a diagram in Fig. 5.1 below.

Compute Solution

W i (H 0 , W 0 0 ) Generate a new adapted mesh H i+1 Gradation M i Compute metric M 0 i Interpolate Solution W 0 i+1 (H i , W 0 i ) (H i , W i ) (H i , M 0 i ) (H i , M i ) (H i , W i , H i+1 )
Figure 5.1 -Standard mesh adaptation.

Convergence analysis

To perform a convergence analysis, which is crucial to certify the simulation, this convergence loop at fixed complexity is imbricated into a loop over a set of increasing complexity values C j . The global process is presented in Algorithm 13. The index i corresponds to the inner loop and the index j to the loop over complexities. To progressively increase the complexity, the current complexity is multiplied by a factor α. We generally take α = 2 and C 0 = 4000 for two-dimensional cases.

The convergence of the low-complexity loops ensures the efficiency of the process. Indeed, these simulations have a reduced computational cost compared to the highcomplexity ones. Starting from the previous converged simulation increases the accuracy of the process while saving time.

Algorithm 13: General mesh adaptation loop with mesh-convergence analysis Input: Initial mesh H 0 0 , solution W 0 0 , and complexity C 0 while C j <= C max do Inner loop to converge the mesh adaptation at fixed complexity: 1. while i ≤ n adap do (a) Compute the optimal metric for the considered error estimate and complexity → M 

= i + 1; end end 2. H j+1 0 = H j n adap ; W j+1 0 = W j n adap ; C j+1 = α • C j ; end
The convergence criteria for step 1.(f) is established by the user. In this work, for aeronautics applications, we consider that the solution is converged at the given complexity if the lift coefficient, the pressure component of the drag, and viscous component of the drag are not varying by a given percentage for three consecutive iterations. Usually, is chosen between 0.001 (0.1%) and 0.01 (1%).

Extension of the adaptation loop to mixed-element meshes

To extend the adaptation loop to a mixed-element adaptation process, considering the current development, a few steps of the loop need to be modified. Since every step of the loop does not completely handle mixed-element meshes, some operations need to be performed on the associated metric-orthogonal mesh. We give a description of the modifications for each step.

Modified adaptation loop at fixed complexity

The adaptation loop at fixed complexity is represented as a diagram in Figure 5.2. The steps bearing the main modifications are colored in grey, the unchanged steps are colored in white.

Compute Solution
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Figure 5.2 -Modified algorithm for mixed-element mesh adaptation

Description of the modifications for each step

A short description is given for each step. We mention the associated software, and the references to the part of this thesis detailing the corresponding developments.

Metric computation. The metric is computed according to the chosen feature-based error-estimate, through a double L 2 -projection using the modified projection for mixedelement meshes, as presented in Section 4.4.6. This step is completed in the flow solver Wolf.

Gradation. As established in Chapter 3, the directionally-constrained gradation is applied to favor a smooth size transition taking in account the orientation of the metrics. This step is performed in the software Metrix.

Quasi-structured mesh generation. A quasi-structured triangular mesh is generated by means of a metric-orthogonal approach as described in Chapter 1. The software used for this step is the re-mesher Feflo.a.

Combination. A mixed-element mesh is generated by combining the right-angled elements of the metric-orthogonal mesh. The combining process is detailed in Chapter 2. The combination has been implemented in Spyder2.

Interpolation. This step does not handle mixed-element meshes so far, so the triangular metric-orthogonal mesh is used to interpolate the solution field on the new mesh, knowing that the quad-dominant mesh and the triangular metric-orthogonal mesh have the same vertices. This is executed by the software Interpol.

Solution computation. The flow solver Wolf is able to complete various flow simulations on mixed-element meshes thanks to the developments presented in Chapter 4.

Results

To illustrate the techniques developed during this thesis, various adaptive flow simulations were conducted.

-an inviscid supersonic flow simulation on a Scramjet, -a turbulent flow simulation around a flat plate, -a turbulent flow simulation around a DSMA661 MODEL A airfoil, -a turbulent flow simulation around a RAE2822 airfoil.

For each example presented in this section, we detail the settings of the simulation, evaluate the performance of the method, describe the characteristics of the final meshes and draw some conclusions regarding the global mixed-element adaptation process.

Inviscid supersonic Scramjet

This first example is an internal steady flow representing a scramjet engine configuration. We consider a supersonic flow at Mach number M = 3. This test case demonstrates the ability of the method to capture shocks. Two gradation processes are compared to evaluate their impact on a complete adaptive process: the directionally-constrained gradation, which is supposed to favor quadrilaterals, and the mixed-space gradation, which is generally used in the standard adaptation process.

The considered set of complexities is {4000, 8000, 16000, 32000}.

The initial mesh is a uniform mesh of 3903 vertices. The final meshes at C = 32000 are labeled FinalDC and FinalMix, respectively for the adaptation process involving directionally-constrained gradation and mixed-space gradation. Statistics are presented in Table 5.1, where N V , N T and N Q are the number of vertices, triangles and quadrilaterals, respectively. The proportion of quadrilaterals is denoted by p Q . Large-scale view and details of the mesh and solution field are presented in Figures 5.3 Table 5.1 -Scramjet: composition of the two final meshes.

To begin with, we point out that both methods were able to capture the numerous shocks of this test case. As expected, the proportion of quadrilaterals is higher in FinalDC than FinalMix. Conversely, FinalDC also has a bigger size than FinalMix, due to the loss of anisotropy induced by this choice of gradation. This aspect is clearly observable on the mesh. In particular, Figure 5.4 shows a close-up view on a shock that illustrates the difference between the two outcomes. The shock region in FinalMix is clearly more anisotropic and consequently, the isoline is more precise, which demonstrates a better capture of the shock. On the downside, the presence of transition triangles brings noise onto the isolines. This issue is reduced in FinalDC: the shock region is almost entirely filled with quadrilaterals and accordingly, the isolines appear more distinct and clear, though less precise. This example is a good illustration of the compromise caused by mixed-element meshes. 

Turbulent flow simulation around a DSMA661 MODEL A airfoil

The validation test case of the turbulent subsonic flow around a DSMA661 MODEL A airfoil introduced in Section 4.5.3 was run as an adaptive simulation for comparison. This test case is presented to validate the Q 1 gradient evaluation choice for the reconstruction of the nodal gradients, involved in the source terms discretization, the computation of the aerodynamics coefficients or the construction of the metric field. The mixed-element and triangular adaptive simulations are performed using a featurebased error estimate (L 4 control on the Mach field), and to study the convergence, we loop over the following complexities: {4000, 8000, 16000, 32000, 64000, 128000, 256000}.

We compare three adaptive simulations and the validation on structured meshes and observe the convergence of several aerodynamics coefficients (total drag, total lift and viscous component of the drag), displayed in Figure 5.7. The labels used to refer to each case are:

-Wolf STRUCT (blue line): validation on structured meshes, -Wolf AdapTri (black line): adaptive simulation on fully triangular meshes, -Wolf HYBRID-BAR (red line): mixed-element mesh adaptation, nodal gradients are computed at the barycenter, the hessian is computed accordingly using a double L 2 -projection, -Wolf HYBRID-VER (green line): mixed-element mesh adaptation, nodal gradients are computed in the sub-triangle containing the vertex and the incident edges, similarly to the viscous fluxes and the convective fluxes. the hessian is computed accordingly using a double L 2 -projection.

The evolution of the aerodynamics coefficient confirms that HYBRID-BAR is the right method to evaluate the nodal gradients, it shows a similar convergence to AdapTri. On the contrary, HYBRID-VER does not seem to converge: it looks either quite slow for the drag and viscous drag component, or very far from the solution considering the lift convergence. These numerical results illustrate the necessity choose cautiously the method for evaluating the gradients in a mixed-element mesh.

The initial mesh corresponds, in each case, to the first one of the validation case. An intermediate mesh at complexity C = 8000 for the simulation HYBRID-BAR is shown in Figure 5.8. The final mixed-element mesh at C = 256000 has 777511 vertices, 184922 triangles and 682178 quadrilaterals, i.e. 78.7% quadrilaterals. A general view and a closeup view on the boundary layer are depicted in Figure 5.9. We observe that the method captures the boundary layer and the wake. The close-up views confirms the presence of quadrilaterals in the boundary layer. The quadrilaterals in the boundary layer region seem to have a good alignment and quality, although as we look far from this region, the quadrilaterals form a sort of wavy pattern and more isolated triangles appear. 

Turbulent flow simulation: Rae2822

We consider the 2D transonic RAE2822 airfoil, which is presented as a drag prediction application in [Alauzet and Frazza 2021]. This case has interesting dominant flow features: a strong adverse pressure gradient, a shock/ boundary layer interaction, and separation downstream of the shock. The CAD geometry was reconstructed from the geometric data given in [Cook et al. 1979]. We apply the following flow conditions, proposed by NASA 1 .

Mach number Angle of Attack Reynolds Number Temperature 0.729 2.31 6.5 × 10 6 300

We compare three adaptive simulations, and use the following labels:

-Wolf AdapTri-GO: adaptive simulation on fully triangular meshes, using a goaloriented approach, -Wolf AdapTri-FB: adaptive simulation on fully triangular meshes, using a featurebased approach, -Wolf AdapHybrid-BAR-FB: adaptive simulation on mixed-element meshes, using a feature-based approach. The nodal gradient reconstruction and metric field derivation are obtained using the gradient evaluation at the barycenter for the quadrilaterals.

The feature-based approach controls the local Mach number in L 4 norm, while the goaloriented approach considers the drag coefficient as output functional. The convergence analysis loops over the following set of complexities: {4000, 8000, 16000, 32000, 64000, 128000}. The convergence of the aerodynamics coefficients is displayed in Figure 5.10. We observe the convergence of the mixed-element simulation (red line) towards the same value as the standard feature-based (black line) and goal-oriented simulations (green line), although at each complexity, the final mixed-element mesh has a lager size than the triangular mesh. This is a side-effect of the directionally-constrained gradation, which is supposed to reduce the size variations, at the cost of reducing the anisotropy and therefore, increasing the size of the mesh.

The final mixed-element mesh at complexity C = 128000 has 370903 vertices, 318453 triangles and 209929 quadrilaterals (39.7%). The majority of quadrilaterals is located in the near-body boundary layer, in the wake and in the shock. The mesh is presented in Figures 5.11, 5.12 and 5.13. The large-scale view displayed in Fig. 5.11 exhibits some quadrilaterals in the far-field, which should be avoided since structured elements are not relevant there. The close-up views show that the quadrilateral regions in the boundary layer and in the wake are quite different: the first region demonstrates a good alignment and orthogonality due to the more anisotropic prescribed metric, and the proximity to the wall provides a convenient starting front to generate a structured pattern. On the contrary, in the shocks and in the wake, the lack of support leads to a "wavy pattern". The main features of the flow are still captured.

Conclusion

This section presented the mixed-element adaptive process using a feature-based error estimate.

A set of flow simulations were run in order to evaluate the performance of the method. The anisotropic flow features present in the test cases were: near-body boundary layers, shock waves and wake.

These test cases emphasized various defects of the meshing method. Firstly, they clearly demonstrate the importance of well-defined directions to generate high-quality quadrilaterals through the metric-orthogonal and recombination process. This point is difficult to ensure in numerical simulations. In this case, the lack of anisotropy in the corrected metric field, which is a side-effect of the modified gradation control, accentuates this effect. Consequently, a wavy pattern is observable in regions where we expect some structure. Secondly, we observed the presence of isolated triangles and isolated quadrilaterals, which should be avoided to improve the simulations. Lastly, we observe that the final meshes are not necessarily quad-dominant. Therefore, the meshing process still needs some improvement.

On the positive side, these adaptive simulations have demonstrated the ability of the solver to perform quite accurate simulations on this kind of meshes. 

Conclusion and Perspectives

In this thesis, we proposed a method to adress the need for structured regions in the mesh, especially to capture anisotropic physical phenomena in flow simulations. The ideal meshes should favor a structured quad-dominant pattern in these regions, while the presence of triangles in the mesh ensure the robustness and the validity of the method. The ambition was to set up a working mixed-element adaptation loop. To this end, some work has been conducted on three main topics: the generation of mixed-element meshes, the regularization of the metric field used for the generation step, and the extension of our RANS solver simulations on such meshes.

The established meshing strategy relies on the metric-orthogonal point-placement, which takes advantage of the directional information contained in the metric. It provides a list of points following a cartesian pattern if the directions are well-defined and if the metric field is smooth enough.

To regularize the metric-field, a gradation correction process is applied beforehand. For the purpose of quasi-structured or quad-dominant meshing, the gradation correction process was upgraded to favor smooth transitions and reduce obtuse angles. The improvement was illustrated on a few examples. This work on metric gradation also permitted to re-think the edge-based correction algorithm, in particular to overcome its dependency to the mesh connectivity. For instance, we showed that structured triangular regions, favored in metric-orthogonal meshes, are likely to create an asymmetrical irregularity in the correction. To adress this issue, a correction to the existing algorithm was proposed, and a new algorithm, based on a different strategy was designed. Both options seem to reduce the sensitivity to the connectivity. The new algorithm, called continuous gradation appeared to give better results than the classical edge-based gradation in the general case, although it has a higher theoretical computational cost and is not parallelizable.

To recover the quadrilaterals, the most intuitive strategy is the combination of the orthogonal triangles favored by the point-placement, into quadrilaterals. To achieve this step, we need to retrieve directional and geometrical information, which can be redundant with the point-placement step. Moreover, the final mesh needs optimization to improve the alignment, and the tested methods have not proven to be satisfactory. For example, the efficiency of geometric optimization operators is likely to be limited if the mesh connectivity is not optimal. As a complementary approach, we have set up an edge-graph structure at the point-placement step, to help optimize the orthogonality and the alignment as a pre-processing step. At this point, we can access and modify the mesh connectivity and geometry easily, it seems more practical than modifying the final mesh. This method still needs development but it could enable flexible a posteriori optimizations for structured meshes.

Another important aspect of this thesis is the extension of the existing Finite Volume solver to mixed-element meshes. The discretization startegy in the solver Wolf is based on a Finite Element / Finite Volume formulation, which should naturally apply to quadrilaterals considering the appropriate Finite Element. However, contrary to the linear polynomial shape functions for simplicial elements, quadrilaterals provide rational shape functions, and in particular, the gradients are no longer constant element-wise. The presence of quadrilaterals in the mesh therefore raises an additional question regarding the computation of gradients. Several evaluation strategies were tested to determine the most appropriate choice for each flux. Various additional changes were needed to handle quadrilaterals. As a result, Wolf is now able to provide a solution on a mixed-element mesh, for inviscid, laminar and turbulent flows. The modified solver was tested on several validation cases. Some simulations of inviscid and turbulent flows were performed to evaluate the efficiency of the method. Results from mixed-element simulations were compared to similar simulations on standard triangular meshes, with the expectation that alignment and structure would improve the results. It appears that mixed-element meshes do not show improvement compared to simplicial meshes. Two main reasons explain this lack of performance. Firstly, transitions between elements of different nature tend to deteriorate the simulation. Secondly, to ameliorate the quality of the mixed-element meshes, the implemented methods decrease the anisotropy of the meshes, which makes the process rather less efficient.

To summarize, this thesis establishes a ground work to explore mixed-element mesh adaptation. It exhibits the different steps involved in the process, and provides a specific treatment for each part.

Perspectives

The research work conducted during this thesis has set a first attempt to design a fully automated mixed-element adaptive process. Yet, there are numerous outlooks to improve and continue this work.

The mesh generation method has a large scope for progress. The a priori method has some potential to become an efficient framework, and provide more control over the point-placement step. A combination of a priori optimization of the point-placement, and a posteriori optimization of the resulting mesh should overcome the defects that are currently observed in our mixed-element meshes.

Once these issues have been adressed, an important aspect is to extend the method to three dimensions.

Indeed, a certain amount of approaches already adress the subject of quad-dominant meshing, but the real demand concerns threedimensional structured meshes. Some work has already been presented in [Loseille 2014, Marcum and[START_REF] Marcum | [END_REF] for quasi-structured tetrahedral meshes using a metricorthogonal point-placement. Extending the method to obtain, first, prismatic elements, then, hexahedra is a challenging but necessary task.

The directional information contained in the metric field successfuly detects anisotropic phenomena in the considered flow, although it doesn't provide a prefered orientation in regions where the eigenvectors of the metric are not well-defined. As a result, our meshes are not quad-dominant in the general case. To improve this aspect, it would be interesting to involve some directional fields, or some methods, that take into account the geometry of the domain. The extension of the meshing approach to surface meshes raises a similar question, since these meshes also involve, for instance, curvature metrics. It is therefore relevant to investigate solutions to take in account multiple directional fields, and how they can be applied in this context.

As stated previously, the resulting simulations on mixed-element meshes did not show the expected improvement. In our case, this is mainly due to the quality of the mesh and the presence of multiple, non-smooth interfaces between regions of different elements. Therefore, it is important to take into account and enforce this kind of requirements from the solver when improving the meshing method. Besides, the solver Wolf is tailored
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to simulations on very anisotropic unstructured meshes. Therefore, it might not be the most suitable solver to evaluate the performance of the process. A comparison using other solvers, that favor structured elements, could be considered.

Despite the lack of performance obtained with Wolf on mixed-element meshes compared to triangular meshes, it is still important to extend the methods implemented in the solver to three-dimensional adaptive simulations. Indeed, the simultaneous advancement on the meshing and solver parts provides an easy way to evaluate new developments in both cases. We have set a good basis to handle three-dimensional mixed-element meshes. Using the corresponding Finite Element gradients to each additional element type (pyramids, prisms, hexahedra) seems to be a good option. The discussion on the evaluation of gradients should lead to similar conclusions. The precision and reliability of CFD simulations highly depend on the discrete representation of the computational domain, called a mesh. In particular, some phenomena have specific mesh requirements. For instance, a boundary layer mesh is generally expected to be structured and aligned with the boundary of the domain, and many numerical methods favor quadrilateral or hexaedral elements. However, the methods adressing the generation of pure hexahedral and quadrilateral meshes are not as reliable and flexible as unstructured mesh generation methods. Therefore, in this thesis, we preferred to focus on mixed-element meshes, to favor structured elements in some areas when necessary, and leave some unstructured elements otherwise. An automated process to generate such meshes is proposed, using the techniques and tools of metric-based mesh adaptation. The "metric-orthogonal" approach takes advantage of the intrinsic directional information of the metric field to generate locally structured meshes and favor align-ment. In this thesis, we develop this concept to extend the adaptive process to quad-dominant meshes. First, some work has been conducted on quad-dominant mesh generation. Two strategies relying on the metricorthogonal approach have been investigated. The "a posteriori" strategy combines the right-angled elements of the orthogonal adapted mesh to form the quadrilaterals. The "a priori" approach optimizes the connectivity and the position of the vertices during the metric-orthogonal meshing process. Secondly, we demonstrated the strong impact of the metric field on the resulting quadrilateral mesh, and we elaborated a new method of metric gradation control, better suited to the generation of aligned and quadrilateral meshes. Then, a Finite Volume solver has been modified to handle mixed-element meshes. In particular, we dealt with the discretization of convective and viscous terms, and especially the evaluation of gradients in quadrilaterals. Adaptive CFD simulations of inviscid, laminar and turbulent flows were performed to demonstrate the methods.
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Figure 1 -

 1 Figure 1 -Orientation and local numbering of the edges and vertices.

Figure 2 -

 2 Figure 2 -Image par strioscopie de l'écoulement autour d'un projectile. Les lignes en pointillés indiquent les principaux phénomènes observables : une couche limite proche de l'objet, des phénomènes tourbillonnaires dans le sillage et des ondes de choc, notamment partant du bord d'attaque.

Figure 3 -

 3 Figure 3 -Placement de point métrique-orthogonal, à partir du point central, en considérant la métrique représentée par l'ellipse rouge. Les éléments formés dans cette configuration sont représentés en bleu.

Figure 4 -

 4 Figure 4 -Champ de métrique (à gauche) et deux maillages unité : un maillage standard (au centre) et orthogonal (à droite).

Figure 5 -

 5 Figure 5 -Grandissements de métrique. De gauche à droite : espace métrique, espace physique, espace mixte.

Figure 6 -

 6 Figure 6 -Grandissements de métrique dans l'espace physique (gauche) et contraint directionnellement (droite).

Figure 7 -

 7 Figure 7 -Propagation de la correction de la métrique au centre dans un maillage triangulaire. À gauche : résultat pour un maillage uniforme. À droite : résultat pour un maillage cartésien.

Figure 9 -

 9 Figure 9 -Cellules duales médianes (en rouge) correspondant au maillage en noir.

Figure 12 -

 12 Figure 12 -Schlieren picture showing the flow pattern around a bullet at supersonic speed. Dotted white lines indicate different flow features: boundary layer near body (a), shock waves (b), vortices in the wake (c).

Figure 1

 1 Figure 1.1 -Two examples of unit elements for a given metric. The ellipse represents the metric, i.e. the size prescription from the center in all directions of the two-dimensional space. Both triangles (blue line) are equilateral triangles in the metric.

Figure 1

 1 Figure 1.2 -Left: a metric field showing a circular anisotropic feature. Middle: a standard adapted mesh. Right: a metric-orthogonal adapted mesh.

Figure 1

 1 Figure 1.3 -Three types of meshes with different connectivity patterns. From left to right: quadrilateral structured mesh, triangular quasi-structured mesh, and mixed-element mesh with an unstructured triangular top part and a structured quadrilateral bottom part.

Figure 1

 1 Figure 1.5 -Iso-values of the function f (x) = ox M , for different types of metric spaces, from left to right: physical space ([-1, 1] 2 , I 2 ), Euclidean metric space ([-1, 1] 2 , M) and Riemannian metric space ([-1, 1] 2 , M(•)). Extracted from [Alauzet 2010a] and modified with permission.

Figure 1

 1 Figure 1.6 -Left: cartesian surface, right: map of unit spheres representing the corresponding metric field. Figure extracted from [Alauzet 2010a].

Figure 1

 1 Figure 1.7 -Two examples of metric intersections. The green and blue ellipsoids represent the initial metrics, while the red ellipsoid represents the intersection.

1. 3 .

 3 Figure 1.8 -Illustration of metric interpolation along an edge. The initial and final metrics are represented by the blue and purple ellipses, the intermediate metrics obtained through interpolation are represented by the ellipses in-between. Extracted from [Alauzet 2010a].

Figure 1 . 9 -

 19 Figure 1.9 -Examples of unit tetrahedra (resp. triangles) for a given metric, represented by the ellipsoid (resp. ellipse).

  Figure 1.10 -Local mesh modification operators. The top part represents an initial configuration and the bottom part illustrates the result from the corresponding operator.

Figure 1 .

 1 Figure 1.11 -Two metric-based point-placements. On the left, the advancing-front type placement is represented, which corresponds to the metric-aligned approach. On the right, the right-angle advancing-point type placement is represented, which corresponds to the metric-orthogonal strategy. Figure extracted from [Marcum and Alauzet 2014], modified with permission.

Figure 1 .

 1 Figure 1.12 -Advancing front (left) and advancing point (right) point-placements, if the edge is perfectly aligned with the metric. Figure extracted from [Marcum and Alauzet 2014], modified with permission.

Fig. 1 .

 1 Fig. 1.14, follows both eigenvectors and produces four right-angled triangles.Let p be a frontal vertex. We denote by R the matrix whose columns are the eigenvectors of M and Λ = diag(λ 1 , λ 2 ) the diagonal matrix of eigenvalues. The proposed points from p according to the metric-aligned point-placement are

Figure 1 .

 1 Figure 1.15 -Left: a metric field showing a circular anisotropic feature. Middle: the metric-orthogonal point-placement (green lines). Right: a metric-orthogonal adapted mesh.

Figure 2 . 1 -

 21 Figure 2.1 -Four elements generated from a metric-orthogonal point-placement from a vertex p. Emphasis is put on triangle pq 1 q 2

Figure 2

 2 Figure 2.2 -A metric (red line) and two quadrilaterals. Dotted blue lines: a rectangle following a metric-orthogonal point-placement, aligned with the metric. Plain blue lines: a parallelogram whose short edges are aligned with the metric.

Figure 2

 2 Figure2.5 -Cross metric: Mixed-element meshes from the metric-orthogonal mesh. Left: pairing with the method from[START_REF] Borouchaki | [END_REF]]. Right: pairing with Algorithm 2. Quadrilaterals are colored according to a quality criterion.

Figure 2

 2 Figure 2.6 -Cross metric: Mixed-element meshes from the metric-orthogonal mesh obtained from Algorithm 2. Left: r min = 2, right: r min = 1 and lower quality threshold.

Figure 2

 2 Figure 2.7 -Common connectivity defect in metric-orthogonal meshes (left) and two possible combinations.

Figure 2 . 8 -

 28 Figure 2.8 -Circular metric field: Mixed-element meshes from the metric-orthogonal mesh. Left: pairing with the method from [Borouchaki and Frey 1998]. Right: pairing with Algorithm 2. Quadrilaterals are colored according to a quality criterion.

Figure 2

 2 Figure 2.9 -Circle: untreated edge graph (top) and resulting metric-orthogonal mesh (bottom). The grey edges correspond to the point filtering and the green edges to the proposed points.

Figure 2

 2 Figure 2.10 -Three adapted metric-orthogonal meshes, showing the same close-up view on a boundary layer region. A different point creation order was applied for each mesh.

Figure 2 .

 2 Figure 2.11 -Two edge graphs using two order strategies. Left: initial order, right: smallest direction order.

Algorithm 5 :

 5 Elementary edge removal algorithm. Input: Edge structure edgList, edge to remove e = [pq] (index ie) foreach endpoint ip of e do ledge ← ball of edges for ip from initial edge ie computed using Algorithm 4; nedge ← number of edges of ledge; Update link: By construction, the edge preceding e, e prev (index ieprev) is at position nedge of the linked list and the next edge e next (index ienext) is at position 2.

Figure 2 .

 2 Figure 2.15 -Recovered quadrilaterals (right) from the edge graph (left) with a quality threshold set to 0.5.

Figure 2 .

 2 Figure 2.16 -Iterative a priori optimization illustrated on a simple case (metric from the line example).

Figure 3

 3 Figure 3.1 -Metric field and adapted mesh from a flow simulation on a scramjet without gradation control (top) and with gradation control (bottom). From [Alauzet 2010b], modified with permission.

Figure 3

 3 Figure 3.2 -Left: detail of a mixed-element mesh showing numerous large size transitions. Right: same detail of a standard triangular adapted mesh based on the same metric field.

Figure 3

 3 Figure 3.3 -Adapted meshes from an analytical metric field showing a straight anisotropic feature, without (left) and with (right) gradation control.

Figure 3

 3 Figure 3.5 -Same gradation process from the same initial metric field on a uniform mesh (left) and a quasi-structured mesh (right).

Figure 3

 3 Figure 3.7 -Simplified representation of the metric gradation correction algorithm.From[Alauzet 2010b], modified with permission.

Figure 3 . 8 -

 38 Figure 3.8 -Illustration of the metric growth process. Left: propagation of the maximal correction from the vertex at the center to the whole domain. Right: propagation along unit edges.

Figure 3

 3 Figure 3.9 -Illustration of the physical growth process. Left: propagation of the maximal correction from the vertex at the center to the whole domain. Right: propagation along unit edges.

Figure 3 .

 3 Figure 3.11 -Geometrical representation of the intersection of two metrics. Corresponding ellipsoids to the initial metrics are colored in green and blue, the intersection ellipsoid is colored in red.

Algorithm 9 :

 9 Edge-based gradation correction algorithm Data: Mesh, Initial metric field, Gradation control threshold Result: Corrected metric field correction = 1; while correction = 1 do correction ← 0; foreach edge pq in H do Compute growth at each endpoint ; Apply reduction; If one metric is modified, correction ← 1; end end

Algorithm 10 :

 10 Edge-based gradation correction algorithm Data: Mesh, Initial metric field, Gradation control threshold β, Multiplicative coefficient γ Result: Corrected metric field correction = 1; β (0) ← β ; while correction = 1 do correction ← 0; foreach edge pq in H do Compute growth at each endpoint respecting threshold β (n) ; Apply reduction; If one metric is modified, correction ← 1;

Figure 3 .

 3 Figure3.13 -Metric-orthogonal adapted meshes from the circular metric. On the left side, a large scale view of each mesh is displayed, respectively top and bottom result from a metric-space and physical-space growth. On the right side, the top part shows close-up views corresponding to the red rectangles, and the bottom part displays the angles and size jumps histograms.

Figure 3 .

 3 Figure 3.15 -Simplified representation of the directionally-constrained growth in the direction of the smallest size.

  )λ 0 if ρ min h1 > h0 min λ 0 , Enhancing gradation correction for mixed-element mesh generation 95

Figure 3 .

 3 Figure 3.16 -Illustration of the directionally-constrained growth process (left) in comparison with the physical growth process (right). The maximal correction from the vertex at the center to the whole domain is represented.

Figure 3

 3 Figure3.17 -Modification of the directionally-constrained process. The initial metric, represented by the red ellipsoid, prescribes a correction according to the Eq (3.14), depending on the direction quantified by the parameter t. Only the limit cases t = 0 and t = 1 are depicted here.

3. 4 .

 4 Enhancing gradation correction for mixed-element mesh generation 97Line analytical metricAs stated in Section 3.4.2, this simple test case demonstrates the difference between the three strategies and their ability to handle discontinuities in the initial metric field. The gradation coefficient β is set to 1.1. The corresponding metric-orthogonal meshes to each corrected metric-field are represented in Figure3.19 and close-ups are shown in Figure3.20. Histograms are displayed in Figure3.21.

Figure 3 .

 3 Figure 3.19 -Large-scale view of the metric-orthogonal meshes from the 'line' metric example, after gradation correction using three growth processes: physical-space (top left), directionally-constrained (top right), and metric-space (bottom). The red rectangles indicate the location of the close-up views.

Figure 3 .

 3 Figure 3.20 -Large-scale view of the metric-orthogonal meshes from the 'line' metric example, after gradation correction using three growth processes: physical-space (top left), directionally-constrained (top right), and metric-space (bottom). The red rectangles indicate the location of the close-up views.

3. 4 .

 4 Figure 3.21 -Histograms for the 'line' metric example, comparing the quadrilateral quality of the resulting mixed-element meshes, and the angle and size jump repartitionfor the metric-orthogonal meshes adapted from three metric fields obtained through three gradation processes from the same initial metric.

3. 4 .

 4 Figure 3.22 -Quad-dominant adapted meshes from the 'circular' metric field, after gradation process, using a directionally-constrained growth (top part), physical-space growth (middle part), metric-space growth (bottom part). Red rectangles indicate the location of the zoom-ins displayed right next to the corresponding large-scale views.

Figure 3 .

 3 Figure 3.24 -Mixed-element adapted meshes for a simulation of a supersonic inviscid flow around a NACA airfoil, using three gradation processes: metric-space growth (top), physical-space growth (middle), directionally-constrained growth (bottom). A large-scale view is shown for each case on the left, the red rectangle indicating the location of the close-up view displayed on the right.

Figure 3 .

 3 Figure 3.26 -Subsonic turbulent flow around a NACA airfoil, with Re = 10 5 .Comparison of the adapted meshes resulting from three growth processes, large scale views, from top to bottom: physical-space growth, metric-space growth and directionally-constrained growth.

Figure 3 .

 3 Figure 3.33 -Comparison between the results from standard (left) and modified (right) edge-based gradation correction, on three types of meshes, from top to bottom: cartesian triangular, cartesian quadrilateral, mixed-element.

3. 5 .

 5 Strategies to overcome connectivity dependency in gradation correction processes 115in Figure3.34, comparing the resulting adapted meshes following corrected metric fields obtained through standard or modified edge-based method (top figures). It demonstrates that this modification does not solve the ray problem.

Figure 3 .

 3 Figure 3.34 -Adapted meshes from a circular metric field, after applying an edge-based gradation correction. Comparison between the standard (left) and modified (right) process. All figures correspond to a gradation threshold of β = 1.3, and an auxiliary multiplicative coefficient γ = 1.3 is applied to obtain the meshes displayed at the bottom.

Figure 3 .

 3 Figure 3.35 -Legend for the visibility cone algorithm diagrams.

c

  , h circled , h unif c , and h unif d , the indices c and d standing respectively for continuous and discrete. These size fields are shown in Figure 3.43. The background meshes are displayed in Figure 3.42.

3. 5 .

 5 Figure 3.40 -Corrected size fields with a gradation threshold of β = 1.1, from an initial discontinuous size field with two small prescribed sizes at the left corners and a large size elsewhere. Top part: uniform mesh, bottom part: stretched mesh. Left pictures show the discrete process outcomes and right pictures show the continuous process outcomes.

Figure 3 .

 3 Figure 3.41 -Isolines of the corrected size fields with a gradation threshold of β = 1.1, from an initial discontinuous size field with two small prescribed sizes at the left corners and a large size elsewhere. The corrections are performed on two meshes: Mesh A (top part) is a uniform mesh with equilateral triangles and Mesh B (bottom part) has stretched elements. On the left, we show the result of the correction process using discrete gradation, and continuous gradation results are displayed on the right.

Figure 3 .

 3 Figure 3.42 -Considered background meshes to illustrate the impact of an anisotropic feature on the gradation correction process. Left part shows a quasi-uniform mesh, right part shows a mesh with the circular anisotropic feature.

3. 5 .

 5 Figure 3.43 -Corrected size fields with a gradation threshold of β = 1.1, from an initialdiscontinuous size field with one small prescribed size at one vertex and a large size elsewhere. The corrections are performed on two meshes: a uniform mesh (top part) and a mesh showing a circular anisotropic feature (bottom part). On the left, we show the result of the correction process using discrete gradation, and continuous gradation results are displayed on the right.

Figure 3 .

 3 Figure 3.44 -Large-scale view of the final adapted meshes from the chi function, for an initial complexity set to 4000, discrete (left) and continuous (right) gradation. The red rectangles indicate the location of the close-up views presented in Figs. 3.45, 3.47 and 3.48, while the blue rectangles indicates the location of Fig. 3.46.

Figure 3 .

 3 Figure 3.45 -Close-up view of the final adapted meshes from the chi function, for an initial complexity set to 4000, discrete (left) and continuous (right) gradation. The location of this detail is represented by a red rectangle in Figure 3.44.

3. 5 .

 5 Figure 3.46 -Close-up view of the final adapted meshes from the chi function, for an initial complexity set to 32000, discrete (left) and continuous (right) gradation. The location of this detail is represented by a blue rectangle in Figure 3.44.

Figure 3 .

 3 Figure 3.47 -Close-up view of the final adapted meshes from the chi function, for an initial complexity set to 32000, discrete (left) and continuous (right) gradation. The location of this detail is represented by a red rectangle in Figure 3.44.

Figure 3 .

 3 Figure 3.48 -Close-up view of the final adapted meshes from the chi function, for an initial complexity set to 32000, discrete (left) and continuous (right) gradation. Detail of Figure 3.47.

Figure 3 .

 3 Figure 3.49 -Evolution of the L 2 error during the adaptation loop. Plotted points represent the state at each iteration.

Figure 4

 4 Figure 4.1 -Construction of a median cell C i associated with a vertex P i in a triangular mesh (left) and a tetrahedral mesh (right). Figure extracted from [Alauzet and Frazza 2021].

Figure 4 . 2 -

 42 Figure 4.2 -Representation of the dual mesh (red lines) on a 2D mesh exhibiting a both unstructured and quasi-structured elements. Median cells have been used for the mesh on the left and containment cells on the right. Figure extracted from [Alauzet and Frazza 2021].

Figure 4

 4 Figure 4.3 -Representation of the dual mesh (cut-planes) on two 3D meshes, unstructured (top part) and structured (bottom part). From left to right: surface mesh, cut-plane of the dual mesh made of median cells, cut-plane of the dual mesh made of containment cells. Extracted from [Alauzet and Frazza 2021].
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 46 Figure 4.6 -Illustration of the normals involved in the computation of the Q 1 local nodal gradients. Norms are not respected for clarity.

Figure 4 . 7 -

 47 Figure 4.7 -Normals and sub-triangles involved in the computation of the Q 1 gradient at the barycenter of a quadrilateral.

Figure 4

 4 Figure 4.8 -Definition of the vertex-centered median cells for a vertex surrounded by triangular (left) and mixed elements (right). Figure extracted from [Alauzet and Frazza 2021] and modified with permission.

Figure 4 .

 4 Figure 4.11 -Two cartesian meshes (triangular on the left, quadrilateral on the right).In both meshes, we represent the Finite Volume median cell for the vertex at the center (red line). Some vertices are labeled to illustrate the demonstration. For the quadrilateral mesh, the upwind / downwind elements are colored in orange in direction e x and blue in direction e y .

Figure 4 .

 4 Figure 4.12 -Notations involved in the truncation error analysis of the MUSCL-V4 scheme. The vertex at the center is considered, the thick red line represents the Finite Volume cell, the extrapolated states are indicated at each interface. The circled numbers indicate the interface numbering, used to denote the fluxes.

Figure 4

 4 Figure 4.13 -Pseudo-cartesian mesh showing the notations involved in the paragraph "Extension to mixed-element meshes". The Finite Volume median cell for the vertex at the center is represented as a red line. Some points are labeled.

Figure 4 .

 4 Figure 4.14 -Example of stencil in the mixed-element configuration that recovers second-order accuracy. Figure extracted from [Diskin and Thomas 2007].

Figure 4 .

 4 Figure 4.15 -Example of mesh showing a smooth interface between quadrilateral and triangular regions. Figure extracted from [Diskin and Thomas 2007].

Figure 4 .

 4 Figure 4.16 -Mixed-element configuration. Figure extracted from [Diskin and Thomas 2007].

  Example 4.4.2. The gradient on facet M G (resp. M G) therefore comes down to 1 2

Figure 4 .

 4 Figure4.18 -Notations and vertices involved in the evaluation of the contribution to the implicit matrix for a quadrilateral with local numbering P 0 P 1 P 2 P 3 . M G and GM are facets of the Finite Volume cell. The gradient for each facet is computed in the APFE approach using the edge of the same color.

Figure 4 .

 4 Figure 4.19 -Notations used in Section 4.4.5 for the normals in the sub-triangles of a quadrilateral.

  gradients as functions of the conservative variables

Figure 4 .

 4 Figure 4.20 -Flow components of the isentropic vortex. Left: initial state. Right: final state. From top to bottom: ρ, ρ t (u, v) , ρE.

  To validate the simulation of turbulent flows performed by Wolf on quadrilateral meshes, we first analyze the Flat Plate validation case, provided by the NASA Langley Research center 1 . Consider a subsonic turbulent flow, modeled by the RANS equations and the Spalart-Allmaras turbulence model, with some specific boundary conditions described further, and the following flow conditions Mach number Angle of Attack Reynolds Number Temperature 0

Figure 4 .

 4 Figure 4.21 -Convergence of the L 2 error with respect to the size of the mesh, for the three types of connectivity.

Figure 4 .Wolf

 4 Figure 4.22 -First coarse flat plate mesh (875 vertices) highlighting the boundary conditions.

Figure 4 .

 4 Figure 4.24 -Airfoil Near-Wake: example of quadrilateral mesh used for the simulations, showing the dimensions for the considered domain. Figure extracted from NASA Langley Research Center's website 2 .

Figure 4

 4 Figure 4.25 -Airfoil Near-Wake: evolution of the aerodynamics coefficients: total drag C D (left) and total lift C L (right) against mesh size. Comparison between Wolf, CFL3D and FUN3D.

Figure 5

 5 Figure 5.3 -Supersonic scramjet: large scale. From top to bottom: FinalMix mesh, FinalDC mesh, density field for FinalMix and density field for FinalDC. The red rectangles indicate the location of the close-up views in Fig. 5.4.

Figure 5

 5 Figure 5.4 -Supersonic scramjet: close-up view on a shock. The mesh and isolines are shown in the two top frames for FinalMix and in the two bottom frames for FinalDC.

Figure 5 WolfFigure 5 . 6 -

 556 Figure 5.5 -Turbulent flat-plate adaptation, final mixed-element mesh. A large-scale view is represented in the top frame, while a close-up on the boundary layer is shown in the bottom frame. The approximate location of the close-up is indicated by the red rectangle.

  Figure 5.7 -Airfoil near-wake adaptation: convergence of the aerodynamics coefficients, from top to bottom: total drag, total lift and viscous component of the drag. Each figure compares four simulations: the validation on structured grids (blue line, Wolf STRUCT), a standard adaptation on triangular meshes (black line, Wolf AdapTri), and two mixed-element adaptive simulations, Wolf AdapHybrid-VER (green line) and Wolf AdapHybrid-BAR (red line).

Figure 5

 5 Figure 5.8 -Airfoil near-wake adaptation: Large-scale view of the adapted mesh showing the whole domain.

  Figure 5.9 -Airfoil near-wake adaptation: final mixed-element mesh. Top part: large-scale view showing the airfoil and the wake. Bottom part: close-up view of the boundary layer.

WolfWolf

  Figure 5.10 -2D RAE2822 airfoil: convergence of the aerodynamic coefficients. From top to bottom: total drag, total lift, viscous component of the drag.

Figure 5 .

 5 Figure 5.11 -2D RAE2822 airfoil. Adapted mixed-element mesh (top) and solution density field (bottom).

Figure 5 .

 5 Figure 5.12 -2D RAE2822 airfoil. Close-up view on the boundary layer (top) and the wake (bottom).

Figure 5 .

 5 Figure 5.13 -2D RAE2822 airfoil. Shock: close-up view on the mesh (top) and solution density field (bottom).
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  Initialization: 1. Initialize a list of points (front) {p i } i from the boundary (line or surface); 2. From {p i } i , create a heap list of triplets (point, size, direction) = (p i , h i , u i ) i sorted by size; Update the heap list with (p new , h new,k , u new,k ) k the subscript k denotes all the possible directions for the point-placement.;

	Point creation:
	while the heap-list is not empty do
	1. Remove the first heap list entry (p i , h i , u i ) i ,
	create new points p new according to (1.12) or (1.13);
	2. Update the length, and the position of p new
	according to the Riemannian metric field;
	3. Metric-based length filtering: check if the proposed point is not too close to an
	existing point;
	4.

  Construction of the edge ball for a vertex p index using the edge graph.Input: Edge structure edgList, vertex p of index ip, initial edge e = [p q] of index ie, direction d, normal n to the considered surface.Output: Ball of edges ledge linked to p and their orientation w.r.t d.

	2.5. A priori strategy	67
	Algorithm 4: label =	     	1 if e
		    	

The corresponding entry to e is edgList(ie) = [ip iq iep0 ieq0] Initialization: iep ← iep0; continue ← 1; Edge ball construction: while continue do if iep == iep0 or iep == 0 then stop browsing the edge structure continue ← 0; else add the new edge and its orientation label to ledge currentedge ← edgList(iep); Compute e cur the corresponding vector to currentedge; assign a local orientation label to e cur depending on its alignment in the frame (d, d ⊥ ): cur has the best alignment with with d 2 if e cur has the best alignment with with d ⊥ 3 if e cur has the best alignment with withd 4 if e cur has the best alignment with withd ⊥ Add (iep, label) to ledge; Update iep;

  of the new edge ienew Compute the ball of edges ledge of ip from iep using Algorithm 4; nedge ← number of edges in ledge; Insert the new edge in the linked list before jep:

	iq2	iq	
			iq4
	Add a new entry to edgList:		
	ip2 edgList(ienew) ← [ip iq jep jeq] ; Update the connectivity:	ip	ip4
	Figure 2.14 -Quadrilateral detection: two quadrilaterals recovered from an internal
	edge, illustrating the notations used in Algorithm 8
	.		
	First quadrilateral: Skip this vertex; quad1 = [ie ie2 ie1 ie4] (edge notation), or end quad1 = [ip ip2 iq2 iq] (point notation); Compute the ball of edges ledge of ip from ie and a chosen direction Second quadrilateral: using Algorithm 4; quad2 = [ie je4 je1 je2] (edge notation), or if several edges share the same direction label then quad2 = [ip ip4 iq4 iq] (point notation); Keep the best aligned edge in this direction; foreach recovered quadrilateral from edge ie do end Validity and quality check; end Check if the quadrilateral is in the final list and if not: Form the end quadrilateral;
	Mark the corresponding edges;		
	end		
	end		

ieprev ← ledgep(nedgep) ; edgList(ieprev) ← [ip * ienew * ] ; Repeat the same operation for iq; Algorithm 7: Primary connectivity correction to ensure a maximal valence of four at each point. Input: Edge structure edgList, Directional field Output: Edge structure where each point has a maximal valence of four.

forall Edge ie of the graph do for ip endpoint of ie do if ip has already been processed then Figure 2.13 -Optimization of the edge graph. Left: initial graph, right: corrected graph to have at most four connections for each point. Algorithm 8: Quadrilateral detection. Input: Edge structure edgList Output: List of potential quadrilaterals forall edge ie of the graph do d ← direction of the edge; Using Algorithm 4, compute ball of ip and iq from (ie, d) ; Recover two quadrilaterals from edge ie (see Figure 2.14): Note in both quads the first edge [ip iq] (ie) ;

• From vertex ip find edge in direction 2: [ip ip2] (ie2);

• From vertex ip find edge in direction 4: [ip ip4] (ie4);

• From vertex iq find edge in direction 2: [iq iq2] (je2);

• From vertex iq find edge in direction 4: [iq iq4] (je4);

• Check that edge [ip2 iq2] (ie1) is recovered from ip2 in direction 1;

• Check that edge [ip4 iq4] (je1) is recovered from jp2 in direction 1;

  .35.

	Source
	Currently examined
	Visible vertex
	Non visible vertex
	Uncertain
	Added to queue
	Boundary edge
	Internal edge
	Ray

  where the partial derivatives of W are represented byW x k y l = ∂ k+l ∂x k ∂y l W | P i . O(4) is O(∆x 4), recalling ∆x/∆y and ∆y/∆x are assumed to be bounded.

	C I	(W t + aW x + bW y ) = -	1 36	(|b∆x + a∆y| + | -b∆x + 2a∆y|)	∆x 3 ∆y	W xxxx
		-	1 9	|b∆x + a∆y| ∆x 2 W xxxy	
		-	1 6	|b∆x + a∆y| ∆x∆y W xxyy	
		-	1 9	|b∆x + a∆y| ∆y 2 W xyyy	
		-	1 36	(|b∆x + a∆y| + |2b∆x -a∆y|)	∆y 3 ∆x	W yyyy
		+ O(4),	

  T xy n y T xy n x + T yy n y uT xx + vT xy + λ ∂T ∂x n x + uT xy + vT yy + λ ∂T ∂y n y

	 0
	      
	

  , Frey and Alauzet 2005, Alauzet and Loseille 2010]... The second type, goaloriented error estimates, derive the best mesh to observe a given scalar function, namely one of the main aerodynamics coefficients (see Section 4.2.3) in this context. It requires the computation of the adjoint state. Fewer examples are available in the litterature as it is harder to prescribe anisotropy in such framework
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Chapter 3. Metric Gradation

The visibility cone algorithm give visibility tags {+ = -} according to the following rules. The ray refers to the segment [source -examined vertex ]. represents any tag in {+ = -}.

Figure 3.36 -Rules for assigning tags depending on the intersection between the ray and the ball of the target vertex.

1 2 Initialization Mark topological ball as visible.

Add the marked vertices balls to a queue ( ). Examine the closest : look for intersection between the ray and the mesh edges. Alignment with a tagged vertex: assign to the target the same tag as this vertex.

Intersection with an edge having visible endpoints: target is visible.

Intersection with an edge having one visible endpoint and one non-visible endpoint: target is set as uncertain.

Intersection with an edge having one visible and one uncertain endpoint: target is visible.

Intersection with a boundary edge: target is non-visible.

Intersection with an edge having two non-visible endpoints, one uncertain and one non-visible endpoint, or two uncertain endpoints: target is non-visible. A few steps have been represented in a simplified diagram in Figure 3.37.

Remark 3.5.1. If the ray intersects a non colored edge, the search for a colored edge is 3.5. Strategies to overcome connectivity dependency in gradation correction processes 119 pursued in the neighboring triangle sharing this edge. Similarly, if the ray aligns the target and the source with a non colored vertex, the ball of this new vertex is examined to find either a colored intersected edge or a colored aligned vertex. This procedure terminates, since eventually a boundary or the ball of the source must be reached by the ray.

Illustration of the process. Two example of visibility cones are shown in Figure 3.38, for the same non-convex domain but with two source locations. The domain boundaries are represented by thick grey edges. In both cases, the numerical visibility cone seems to represent accurately the visible area. Note that, in practice, the visibility cone is rarely computed entirely since it is performed along with gradation correction, so it stops when the correction stops.

Coupling of visibility cone with continuous gradation algorithm

The visibility cone is a numerical artifact that helps to correct the continuous gradation from Algorithm 11. The corrected process is reported in Algorithm 12.

Algorithm 12: Corrected continuous gradation correction algorithm Data: Mesh, Initial metric field, Gradation control threshold Result: Corrected metric field Sort vertices in a heap-list according to the smallest prescribed size; while Heap-list is not empty do Remove vertex p on top of the heap-list; Add the vertices of B(p) to a correction queue and mark them; while Correction queue is not empty do Remove the first vertex q of the queue; Evaluate if q is visible: while q is not colored do Intersect pq with the edges between q and p until either • a colored edge is crossed;

• a boundary edge is crossed;

• an aligned colored vertex is crossed; end if p is visible then Compute the correction from p to q; if The metric of q is modified then Add the non-marked vertices of B(q) to the correction queue; Mark these vertices; end end end end

Comparison between discrete and continuous gradation

This section compares both continuous and discrete gradation corrections on several test cases. First, the gradation correction of isotropic metric fields is considered, since it is easier to compare isotropic metric fields as they are scalar fields. Then, we evaluate the impact of each process on mesh adaptation. 

Convective fluxes reconstruction

The convective fluxes computation relies on a Finite Volume discretization, as described in Section 4.3.1. The flux is reconstructed at the interfaces between dual cells, and it involves extrapolated states computed using MUSCL-V4 gradients, which are a combination of a centered and upwind/downwind gradient. Consider the interface between two vertices P i and P j , we recall the expression of the MUSCL-V4 gradients:

The expression of the centered gradient remains identical to the triangular case. The modification for mixed-element meshes regards the definition of the upwind gradient, which depends on the upwind element, denoted K ij and K ji . Cycling over the elements surrounding P i (resp. P j ), K ij (resp. K ji ) is

• either the triangle where the edge facing P i (resp. P j ) is intersected by the line P i P j ; • or the quadrilateral where the diagonal facing P i (resp. P j ) is intersected by the line P i P j .

Remark 4.4.2. If more than one element verify this condition, the upwind element is chosen arbitrarily among them.

Two configurations for an edge P i P j are pictured in Figure 4.10.

Upwind gradient computation

If the upwind element is a triangle, the upwind gradient is the P 1 gradient, which is constant over the triangle. However, if the upwind element is a quadrilateral, a direct extension is to use the Q 1 gradient, which is not constant element-wise. Several possibilities were considered to compute the upwind/downwind gradient.

A first option is to use the value at the barycenter of the element, to be consistent with the discretization choice for the nodal gradients reconstruction (Section 4.4.6). The Chapter 4. Mixed-element solver

and the expression of the viscous flux vector in two dimensions

where u and v denote the components of the velocity field, T the temperature, µ the dynamic viscosity and λ the conductivity.

Considering a vertex P i , the viscous fluxes S i obtained from integration over the control volume C i , see Equation (4.9), expand as the sum of integrals on each element K surrounding P i

Due to the expression of the stress tensor, the evaluation of the viscous fluxes are based on the computation of integrals of the form

where T represents a differentiable field, and α a continuous scalar field. The contribution to the viscous flux in the median cell C i from element K can be split into two facet contributions

where G denotes the barycenter of the quadrilateral and M , M respectively the midpoints of the edges P j P i and P i P k , considering P j , P i , P k in the counter-clockwise order as represented in Figure 4.17. If α is constant, the EXFE (EXact Finite Element) approach [Puigt et al. 2010] gives the following discretization

which maintains a second order truncation error. The scheme is monotonic if the elements are not too sheared and have low aspect ratio, which is not the case of boundary layers.

Therefore, in [Puigt et al. 2010], the authors propose the Approximated Finite Element (APFE) approach. First, this approach is based on the evaluation of the gradients at the quadrilateral's vertices presented in Equations (4.26) to (4.29). We recall that it comes to the evaluation of a P 1 gradient in the triangle containing the considered vertex and the opposite diagonal (in the two-dimensional case).

Example 4.4.1. In the configuration presented in Figure 4.17, the evaluation of the gradient at vertex P i is equivalent to the P 1 gradient in

where A k is the area of the sub-triangle around the vertex P k and {•} stands for the set of normals involved in the Q 1 gradients. Using column-wise the local numbering of the loop {I, J, K, L}, it becomes

The index K is absent from the matrix, so we set n K,• = 0 at each column. The dependency coefficients can be completed so they all read

A i }, with i ∈ {I, J, K, L}. Therefore, the matrix becomes

Turbulent flow simulation: flatplate

The validation test case of the 2D turbulent subsonic flow around a flatplate, introduced in Section 4.5.2, was run as an adaptive simulation for comparison. We recall the flow conditions:

Mach number Angle of Attack Reynolds Number Temperature 0.2 0 5.0 × 10 6 300

We performed a mixed-element adaptive simulation along with a standard adaptive simulation. In both cases a feature-based error estimate was used (L 4 control on the Mach field), and the following complexities were considered: {4000, 8000, 16000, 32000}.

The initial mesh is topologically the same as the first one used for the validation case (it was changed into a triangular mesh for the initialization) and has 825 vertices. The final mixed-element mesh has 72626 vertices and is composed of 67866 triangles for 37881 (35, 8%) quadrilaterals, which are located for the most part in the boundary layer. Indeed, the metric-orthogonal method mainly generates orthogonal elements in the anisotropic areas, which corresponds to the boundary layer in this case. A large-scale view of the final mesh and a detail of the boundary layer are shown in Figure 5.5. On the large-scale view, we can observe a concentration of elements in the top left corner, which is due to the boundary condition. The visible quadrilaterals in this view do not look so aligned with the flow and present a sort of wavy pattern, which shows the importance of well-defined directions for the metric-orthogonal point-placement. On the contrary, quadrilaterals in the boundary layer show good alignment and orthogonality. The isolated triangles in the boundary layer correspond to the size transitions.

The evolution of the main aerodynamics coefficients has been considered for validation: similarly as the validation presented in Section 4.5.2, the total drag C D and the viscous drag C f at x = 0.97 . They are presented in Figure 5.6 with the following labels and legend:

-Wolf AdapHybrid-BAR (red line): mixed-element adaptation.

-Wolf Struct (blue line): validation data on structured grids.

-Wolf AdapTri (black line): adaptive simulation on fully triangular meshes.

The adaptive cases are significantly closer to the final solution for the smallest size meshes, demonstrating as expected a better repartition of the degrees of freedom.