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En mémoire de William.

“Voir en l’autre un bonheur
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Abstract

In recent years, single-cell RNA-seq (scRNA-seq) has fostered the under-
standing of complex processes (e.g. cell differentiation, tumorigenesis) and
their underlying cell heterogeneity at a remarkable high resolution. This ap-
proach constitutes powerful means to characterise new cell subtypes and to
define their corresponding gene signatures. Although these novel technolo-
gies have become widely democratised over the past three years, the analysis
of scRNA-seq data remains a challenge due to data sparsity, particularly for
organisms whose genomic annotations are partial.

During my PhD, I observed that the chick Gallus gallus (galGal6) ge-
nomic annotations are often incomplete, thus resulting in a loss of a large
number of sequencing reads for the sole reason that they cannot be assigned
to any gene. This phenomenon can lead to a substantial loss of information
and strongly affect the biological analysis and interpretation of the scRNA-
seq data. I investigated how an enriched annotation affects the biological
results and conclusions from these analyses. In this respect, we developed
a novel approach based on the re-annotation of the genome with scRNA-
seq data (10x Genomics short reads) and long reads bulk RNA-seq (Oxford
Nanopore Technologies) from the same cell types in the chicken embryo. I de-
veloped an open-source pipeline written in Nextflow, scAnnotatiONT, which
supports this approach.

This computational biology project capitalises on a tight collaboration
with the experimental team of Xavier Morin (IBENS). The main biological fo-
cus is the search for signatures of symmetric versus asymmetric division mode
in neural progenitors. In order to identify the key transcriptional switches
that occur during the neurogenic transition of vertebrate neural progenitors,
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scRNA-seq data from chicken embryos (generated by our collaborators) and
mice (public data) were analyzed. To this end, I have implemented bioanal-
ysis approaches dedicated to the search for gene signatures.

Finally, I set up an analysis pipeline to automate the processing of scRNA-
seq data. This has allowed us to guarantee stable and reproducible analyses,
based on an open-source tool with an optimal computing environment.



Résumé

Ces dernières années, l’émergence des approches transcriptomiques en cel-
lules uniques (ou scRNA-seq) a favorisé la caractérisation de l’hétérogénéité
tissulaire et la compréhension de processus complexes (e.g. différenciation
cellulaire, tumorigenèse) avec une précision inégalée. Ces approches ont ainsi
permis la découverte de nouveaux sous-types cellulaires jusque-là indiscern-
ables, pour lesquels une signature d’expression génique a pu être établie. Bien
que ces nouvelles technologies se soient largement démocratisées au cours de
ces trois dernières années, le caractère sporadique des données scRNA-seq
rend leur analyse complexe, en particulier pour les organismes dont les an-
notations sont lacunaires.

Au cours ma thèse, j’ai observé que les annotations génomiques du poulet
Gallus gallus (galGal6) sont lacunaires, ce qui engendre la perte d’un grand
nombre de lectures de séquençage qui ne peuvent être assignées à aucun
gène. Cet effet peut mener à une perte d’information conséquente et affecter
fortement l’analyse et l’interprétation biologique des données scRNA-seq.
J’ai cherché à étudier et évaluer à quel point une annotation améliorée affecte
les résultats biologiques et les conclusions issues de ces analyses. Dans ce but,
nous proposons une nouvelle approche basée sur la ré-annotation du génome
à partir de données scRNA-seq (lectures courtes de 10x Genomics) et de
RNA-seq bulk en lectures longues (Oxford Nanopore Technologies), issues
des mêmes types cellulaires. J’ai développé un pipeline open-source écrit en
Nextflow, scAnnotatiONT, qui accompagne cette approche.

Ce projet de biologie computationnelle s’appuie sur une étroite collabora-
tion avec l’équipe expérimentale de Xavier Morin (IBENS). Le principal ob-
jectif biologique est la recherche de signatures de mode de division symétrique
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et asymétrique au sein de progéniteurs neuronaux. Afin d’identifier les princi-
paux changements transcriptionnels qui se produisent pendant la transition
neurogénique des progéniteurs neuronaux chez les vertébrés, des données
scRNA-seq issues d’embryons de poulet (générées par nos collaborateurs) et
de souris (données publiques) ont été analysées. Dans ce but, j’ai mis en place
des approches de bioanalyse dédiées à la recherche de signatures géniques.

Enfin, j’ai mis en place un pipeline d’analyse afin d’automatiser le traite-
ment des données scRNA-seq. Cela nous a permis de garantir des analyses
stables dans le temps et reproductibles, basées sur un outil open-source et
doté d’un environnement de calcul optimal.
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Chapter 1

Introduction

If there is one particular achievement that constitutes a turning point in Bi-
ology, this is the completion of the human genome sequence in 2003. Two
years ahead of schedule, the International Human Genome Sequencing Con-
sortium announced to the world they fulfilled their goal assembling millions of
sequencing reads into a readable version of the human genome after 13 years
of relentless efforts [1]. That’s more than 3 billion base pairs (bp) to decipher
and analyse. At that time, this single consensus reference genome required
both a demanding collaborative work of thousands of researchers and an
enormous amount of money (almost 1$ per bp) [2]. In this context, needless
to say that personal genomics would not even be an option. However, thanks
to intense technological enhancements, the sequencing technologies cost is on
an ever decreasing cost curve [3] while their throughput continuously grows
[4]. As a result, nowadays, sequencing projects have become the Swiss army
knife of today’s research in Biology. For each project, a growing quantity
of data needs to be stored and analysed. It has even been estimated that
genomics would gather more data than Youtube and Twitter altogether by
2025 [5].

Yet, how do we extract meaningful biological knowledge from all these
data in a reasonable amount of time ? That’s where computational ap-
proaches come in. The history of bioinformatics began early, much before
every lab was equipped with desktop computers. The term itself appeared

19
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in the early 1970s and it would describe the “study of informatic processes
in biotic systems”, whereby informatic processes were described as the study
of the capacity to gather, process, store, and use information [6]. With the
advent of computer science, it naturally evolved into what we now know as
the development and application of computational tools dedicated to bio-
logical data. It is also striking to see how computational and technological
development both widens the possibilities and defines the limits of our under-
standing of biological data [7]. With the advent of novel sequencing protocols
these recent years, biological data have become even more massive, complex
and noisier than before. On one side, this growth is the promise of a deeper
understanding of biological systems, but on the other side it has its share of
challenges. We will go over a few examples in this manuscript.

This thesis focuses on the development and implementation of bioinfor-
matics tools for single-cell transcriptomics (a.k.a. scRNA-seq), with a high-
light on genomics annotation issues when analysing scRNA-seq data from
poorly-annotated species. All the analyses are applied to the search of tran-
scriptomics signatures of symmetric and asymmetric divisions in neural pro-
genitors.

The present introductory chapter is structured as follows :

• I will first provide a brief overview of sequencing. Its historical devel-
opment, aims and standard processing will be presented. I will also
describe differences, advantages and limits of short-reads RNA-seq and
long-reads RNA-seq since these are essential concepts to understand
our work on genome annotation in Chapter 4.

• Next, I will outline some important work in single-cell transcriptomics
that laid down the foundations for the ongoing single-cell revolution. I
will also explain the basics on how to process and analyse scRNA-seq
data with state-of-the-art approaches.

• Finally, I will illustrate some key concepts on genome annotation, in-
cluding the way public references are built and their impact on RNA-seq
analyses results.
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1.1 An overview of transcriptomics and se-
quencing technologies

These recent years, sequencing technologies facilitated full-scale approaches
such as genomics, proteomics or transcriptomics. In this thesis, we will only
focus on the latter one. Transcriptomics comes from the association of the
terms transcripts and the suffix -omics that refers to the broad collection
and characterization of biological molecules [8]. Thus, transcriptomics is de-
fined as the study of an organism’s transcriptome, the sum of all its RNA
molecules.

Most of the sequencing methods were first designed for genomic DNA
sequencing. They were adapted for RNA sequencing in a second phase by
adding a reverse transcription step, where RNA is transcribed into comple-
mentary DNA (cDNA) [9]. Very few sequencing methods actually sequence
RNA fragments [10, 11]. Thus, the history of transcriptomics is closely linked
to the history of DNA sequencing technologies.

In order to consider transcriptomics in its technological and historical
context, I will present here a brief overview of sequencing evolution over
time and outline some technological considerations for transcriptomics ap-
proaches. Sequencing technologies are commonly separated into three gen-
erations: the first generation refers to the capacity of sequencing DNA frag-
ments, the second generation to the capability to massively sequence small
DNA fragments, and the third generation the possibility to generate much
longer pieces of DNA, without the need for fragmentation. Next genera-
tion sequencing (NGS) refers to the latter two. The three generations of
sequencing technologies are summarized in Figure 1.1.

1.1.1 Before NGS

1.1.1.1 First-generation sequencing

At the time of the Human Genome Project (HGP), sequencing approaches
heavily relied on Sanger technology, the first sequencing technology ever im-
plemented [12]. It was developed by the two time Nobel Laureate Frederick
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First 
Generation 

1977

Second 
Generation 

2005

Third 
Generation 

2009

Sanger sequencing 

• Read length: 500-1000 bp

• Throughput: low (101)

• Accuracy: high (99.9%)

• Cost: very high

• Isoform detection: limited

• Comp. methods: limited

• Key RNA seq. applications:  

- highly targeted applications  
- clinical research


Illumina, 454, Solexa, 
Ion Torrent 

• Read length: 50-500 bp

• Throughput: high (108)

• Accuracy: high (99.9%)

• Cost: low

• Isoform detection: limited

• Comp. methods: plethora

• Key RNA seq. applications:  

- differential expression analysis 
- massive sequencing 


Oxford Nanopore Technologies, 
PacBio 

• Read length: 1-50 kb

• Throughput: medium (106)

• Accuracy: medium (< 99%)

• Cost: medium

• Isoform detection: facilitated

• Comp. methods: in progress

• Key RNA seq. applications:  

- de novo transcriptome analysis 
- isoform discovery


Short-read sequencing Long-read sequencing

Figure 1.1 The evolution of sequencing technologies. This scheme high-
lights the main characteristics of the three generations of sequencing. The years
in italics refer to the starting point of each generation. The second generation
is best represented by Illumina sequencers, but 454, Solexa and Ion Torrent are
historical sequencers. The read lengths are averages over all the sequencing reads
for each generation. Ranges of absolute read lengths, specially for third-generation
sequencing, are actually wider (see 1.1.3). Throughput refers to the mean order
of magnitude of sequencing reads per experiment. Accuracy refers to the read
accuracy, or the probability that the identified sequence is correct. One can notice
that the accuracy per read and the throughput of 3rd generation is lower than 2nd

generation. These values are the current standard, but they evolve rapidly.

Sanger and his colleagues in 1977. The concept behind Sanger sequencing is
to generate every possible DNA fragments that differ in length by one base,
up to the full length of the target DNA. Subsequently, each fragment can be
separated by molecular weight (via electrophoresis), which will further allow
the identification of each base (by locating the last base of each fragment
through the addition of radioactive or fluorescent markers). While being the
most popular sequencing method over thirty years, its application is limited
to low-throughput experiments due to high cost and low efficiency [13].
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Initial efforts to sequence RNA transcripts on a large scale started in the
early 1990’s with the advent of expressed sequence tags (ESTs) [14, 15]. ESTs
are collections of short sequence reads (200–800 bp) originated from cDNA
molecules that are individually cloned and Sanger-sequenced. Although this
approach is low-throughput, it has been widely used to discover novel genes
and enhance genome annotations for twenty years [16].

1.1.1.2 Other transcriptomics approaches before NGS

In 1995, besides sequencing approaches, the arrival of hybridization-based
approaches with microarrays [17] radically changed the prospects of transcrip-
tomics projects [18]. Microarrays’ approach is based on the hybridization of
DNA fragments with millions of microscopic DNA spots attached to a solid
surface (e.g. microchips). One crucial difference between sequencing ap-
proaches available at that time and microarrays is the volume of transcripts
that can be handled. When Sanger allowed the detection of a few genes, in
the same time microarrays enabled the identification of thousands of genes.
Above all, both the identification and quantification of RNA transcripts be-
came possible in a single experiment. This is the beginning of gene expression
profiling approaches, whereby the expression levels of thousands of genes are
simultaneously assessed. However, the major drawback of microarrays is that
they are based on a set of predefined known genes, preventing the discovery
of novel or rare genes [19].

This restriction has been automatically lifted with the advent of next-
generation sequencing approaches (or NGS) in the mid 2000s [20]. NGS
specifically refers to untargeted massively parallel sequencing. It is best
represented by the RNA-seq technology, whose outstanding success led tran-
scriptomics to be mostly defined by RNA-seq. It opened the way to unbiased
transcriptome-wide approaches, that quickly became a standard in research
laboratories since it could offer unprecedented discovery power to detect novel
or rare transcripts. These recent years, RNA-seq have evolved into two dis-
tinct categories: second-generation (short-reads) and third-generation (long-
reads) sequencing technologies. I will detail both in the next paragraphs.
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1.1.2 Second-generation sequencing

As mentioned above, second-generation sequencing most commonly refers to
short-read (SR) RNA-seq. If the technology emerged more than a decade
after the first microarrays, its applications and large endorsement did not
take long. The first studies which mention high throughput sequencing were
released in 2006 [21], although the term RNA-seq appeared a little bit later
[22, 23].

In a typical RNA-seq protocol, a population of RNA is first reversed tran-
scribed into cDNA. Each cDNA molecule is then fragmented into smaller
pieces, typically fragments of 50-500 bp. Then, to make sequencing priming
possible, sequencing adaptors are attached to one (single-end) or both ends
(paired-end) of each molecule. To ensure sufficient amount of cDNA to be
sequenced, all molecules are then copied into multiple pieces through poly-
merase chain reaction (PCR) [24]. Then, in case of Illumina sequencing (about
90% of the overall sequencing data in the world1), the library is sequenced
via sequencing by synthesis (SBS) [25]. This technique relies on fluorescently
labeled dNTPs that are progressively integrated into a DNA template strand,
which allows to detect each of the bases of the original sequence. Finally, the
resulting sequence “reads” can be analysed with bioinformatics approaches.

In terms of transcriptomics, the main advantage of RNA-seq over mi-
croarrays is that it removes the need to have previous knowledge of the RNA
transcripts to detect. This opened the way to the discovery of numerous
previously unknown genes in a wide range of fields of Biology from oncology
[26] to evolution [27]. Compared to previous methods, it is also much more
cost-effective [28]. As RNA-seq became broadly adopted, a wide range of
analysis tools and pipelines have been developed for RNA-seq analyses [29].

Despite its undeniable success in transcriptome analysis, standard RNA-
seq suffers from limitations due to its restricted read length [30]. With the
short-read approach (based on fragmented cDNA), isoforms must be recon-
structed with computational methods thanks to the identification of reads

1https://www.illumina.com/content/dam/illumina-marketing/documents/products/
illumina_sequencing_introduction.pdf

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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that overlap two exons, as shown in Figure 1.2-c. Tools for transcriptome
reconstruction have been extensively developed and used by the community,
but still show limitations in a large number of cases [31]. For example, it
fails at identifying complex or rare isoforms, and reconstructing particularly
long transcripts is impossible: a single RNA-seq short-read will not allow to
associate exons that are more than 1 kb apart [9]. It is also a major source of
concern when there is no reference genome or when its quality is insufficient.

1.1.3 Third-generation sequencing

The NGS third-generation refers to long-read approaches. Unlike short-read,
long-read (LR) sequencing technology provides the ability to identify and
quantify RNA transcripts from end to end (i.e. from the 3’ polyA tail to
the 5’ cap). While standard RNA-seq generates reads of up to 500 bp, long-
read sequencing technologies routinely generate reads of 10 kb [33]. By its
unprecedented capacity in deciphering complex and highly accurate isoform-
level transcriptomes, recent studies estimate long-read will eventually become
the new standard for transcriptome analysis, as short-read RNA-seq did a
decade ago [9].

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)
are the two market leaders of long-read sequencing technologies. While they
rely on very distinct principles, their technologies have proved equally suc-
cessful and are applied to an increasing number of studies [34]. PacBio se-
quencers, the first ones to introduce long-read approaches in 2008, are based
on the single molecule real time technology (SMRT) [35, 36]. The addition of
each single nucleotide, by a polymerase, emits fluorescence that is recorded
and associated to a specific base. With this approach, the longevity of the
polymerase defines read length limits (from 250 bases to 50 kb). More re-
cently, in 2014, ONT introduced a technology where read length is mostly
constrained by the molecular weight of cDNA fragments [37]. Longest read
lengths are provided by ONT sequencing, from 500 bp to the all-time record
of 2.3 Mb [38]. Each fragment goes through a biological nanopore enabling the
quantification of ionic current fluctuations. These variations differ according
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Figure 1.2 Short-read and long-read RNA-seq technologies a) Overview
of the shared steps between the three main RNA-seq library preparation proto-
cols. Short-read sequencing is represented in black, long-read cDNA in green and
long-read direct RNA in blue. All methods involves an adaptor ligation step. b)
Each protocol is represented by its emblematic machine (e.g. Illumina’s NextSeq,
PacBio’s RSII and ONT’s MinION), followed by a schematic representation of its
corresponding sequencing approach. Illumina technology is based on sequencing
by synthesis (left panel), PacBio workflow depends on fluorescently labelled nu-
cleotides (middle panel), and ONT approach relies on current variation whenever
a base passes through a biological nanopore (right panel). c) Computational anal-
ysis differ depending on each protocol. A gene n is represented by two isoforms:
transcripts x and y. With short-read, isoform detection can be compromised by
reads that map ambiguously. Long-read cDNA methods can generate full-length
isoform reads, thus unveil complex isoforms. Direct RNA-seq enables a thorough
analysis of isoforms, including full-length isoforms characterization, epitranscrip-
tomic modification (e.g. N6-methyladenosine or m6A) and polyA tail detection.
Figure from Stark et al., 2019 [32]
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to which base is going through the pore. It results in a unique pattern of
electrical fluctuations which is used to establish the corresponding sequence
of bases.

LR technologies mostly suffer from lower sequencing quality (thus low
accuracy), that intense development have managed to tackle these last years
[39]. As a result, 3rd generation read accuracy is evolving extremely fast. Lat-
est studies have estimated accuracy of PacBio and ONT to be around 99%
[40] and 95% respectively [41]. To improve data quality, LR are frequently
used in combination with SR in what is called hybrid approaches [42]. It
refers to a fine combination of short-read (for their high accuracy and high
throughput) and long-read (high isoform precision) approaches, and was pre-
cisely the object of first LR major studies [43, 44]. Early studies also applied
LR technologies to a small selected set of highly complex transcripts impossi-
ble to decipher with short-read approaches [45]. LR also undergoes a reduced
throughput compared to SR approaches but this has never prevented LR
to be used to perform whole transcriptomes with long-read alone since 2013
[46, 47]. More recently, the possibility to sequence RNA directly with ONT
sequencers (without the cDNA reverse transcription step) opened up new op-
portunities and challenges [11, 48, 49]. It has been shown that the systematic
use of reverse transcription in traditional RNA-seq approaches introduces
biases [50] and entails loss of information such as polyA tail length and RNA
base modifications (Figure 1.2-c) [32]. These recent developments are a great
opportunity to bypass these limitations [51].

While third-generation sequencing costs decrease, long-read RNA-seq is
quickly becoming the state-of-the-art to:

• Improve genome reference annotations;
• Perform RNA-seq on organisms whose genome is left unannotated;
• Facilitate transcript isoform identification and quantification.

Together with read accuracy and throughput that are continuously improv-
ing, LR sequencing is thought to eventually replace standard RNA-seq for
bulk approaches in a near future [52]. However, there is a considerable need
to develop tailored analysis tools, since LR approaches differ substantially
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from SR approaches. Initiatives such as https://long-read-tools.org/ [53] ref-
erence emerging LR dedicated tools. As of 17 September 2021, the database
catalogues 555 tools across 32 categories. The most represented category is
precisely “error correction and polishing” (over 20% of all the tools).

https://long-read-tools.org/
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1.2 The single-cell transcriptomics breakthrough

Human bodies are estimated to contain around 38 trillions cells [54], that are
often claimed to be divided into 210 cell types [55]. What makes the specificity
of each of these cells stands in the unique set of genes that they express,
now routinely detected through transcriptomics. When RNA-seq started to
establish itself as the cutting-edge approach to study cells transcriptome, it
was restricted to the analysis of mixture of cells [56–58]. RNA-seq projects
were population-based studies, what is commonly called bulk analyses. The
prospect of unravelling the transcriptome of individual cells quickly emerged,
but was put on hold due to technical limitations [20]. Tang et al., 2009 broke
down some barriers in 2009 when applying RNA-seq to a unique cell for the
first time [59]. Single-cell RNA-seq (or scRNA-seq) was soon to become the
novel forefront strategy to do transcriptomics.

In this section, we will first go through a quick overview of a scRNA-seq
experiment steps, then highlight some of the elements of single-cell protocols
that were key to drive these approaches to an increasing adoption in the sci-
entific community, and finish with some examples of significant achievements
and remaining challenges in single-cell transcriptomics studies.

1.2.1 General overview of a single-cell experiment

As described in the previous section (see 1.1), bulk RNA-seq studies enabled
major discoveries in numerous sub-domains of biology. However, the main
drawback of bulk analyses stands in the fact that genes expressions are av-
eraged across the cells of a sample. Although this is not necessarily an issue
to compare different tissues or conditions (e.g. treatment VS control), it is a
restricting factor when a finer resolution is needed (e.g. understanding cells
differences in a developing embryo or identifying rare cell populations). Even
if similar cells are selected with meticulous care, tissues are rarely homoge-
neous [60, 61]. Unlike with bulk approaches, single-cell RNA-seq provides a
unique expression profile for each single cell within a sample. Therefore,
scRNA-seq appears as the most appropriate approach to answer questions
that require cellular resolution.
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The following two sections will present in details scRNA-seq analyses, but
I will first provide an overview of the main steps involved in all scRNA-seq
experiments (also summarized in Figure 1.3).

Figure 1.3 The single-cell RNA sequencing experiment steps. Image
from Lafzi et al., 2018 [62]

Broadly speaking, a scRNA-seq experiment can be divided into five parts
(steps 1 to 3 are experimental, while steps 4 and 5 are computational):

1. Sample preparation: this part is intended to prepare cell samples
before going into partitioning. It is a critical step to i) ensure cells
will be of sufficient quality and ii) there will be enough viable cells
for the analyses that will follow. The design of its protocol depends
almost exclusively on the wet-lab knowledge we have on the cell type
of interest, which is out of the scope of this thesis. I can however
recommend Lafzi et al., 2018 [62] that is a recent and excellent review
that covers essential guidelines for this step.

2. Single-cell dissociation: physically partitioning the cells into indi-
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vidual reaction containers is the core task of scRNA-seq protocols. It
consists mainly into cell capture and lysis. Cells may be separated in-
side wells (e.g. Smart-Seq2 [63]) or oil droplets (e.g. Drop-seq [64]). We
detail some of the key elements to take into considerations for this step
in the following section (see 1.2.2).

3. Library preparation and sequencing: this step covers successively
RNA capture, reverse transcription, cDNA amplification, library prepa-
ration and finally sequencing strictly speaking (see previous section
1.1.2 for more details on sequencing technologies). It outputs biolog-
ical cDNA fragments as sequencing reads in a machine-readable text
format, enabling the quantification of gene products in the following
step.

4. Primary analyses: this part covers all the steps to generate, starting
from the raw sequencing reads, a count matrix in which each row is a
gene and each column is a cell. It can also be referred to as data pre-
processing. The key phases are: reads quality checking and filtering,
genome mapping and expression quantification. The detailed process
is described in section 1.3.1.

5. Secondary analyses: they define the data analyses per se, from which
biological conclusions can be extracted and novel hypotheses formu-
lated. Data analyses are tailored to the biological question, which al-
lows an infinite combination of tools and approaches to apply to. Gen-
erally, these analyses are separated into i) data cleaning (e.g. quality
control, normalisation), ii) cell assignment (e.g. clustering, pseudotime
reconstruction) and iii) gene identification (e.g. differential expression)
[65]. It is detailed in section 1.3.2.

1.2.2 Single-cell transcriptomics protocols

When Tang et al. performed the first RNA-seq experiment on a single-cell,
it was in fact not the first time a team attempted to identify and quantify
gene expression within a cell. In 1992, Eberwine et al. also measured gene
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expression at the cellular scale with an innovative protocol based on in vivo
reverse transcription and in vitro transcription [66]. At the time, this study
shed light on the novel idea that cells morphologically similar might have
different patterns of expression. As innovative this approach might have
been, it only applied to a handful of pre-selected genes and was cumbersome
to implement. Several other similar studies emerged in the following decade,
with simpler protocols (e.g. PCR-based amplification [67]) and broader scale
of application (e.g. microarrays allowed transcriptome-wide studies [68, 69]).
What changed with Tang et al. approach is the ability to recover a cell’s
RNA transcripts in an untargeted and unbiased way (unlike microarrays),
and submit them to massively parallel sequencing.

Once the possibility to study transcriptome-wide single cells have been
demonstrated, came the time of the question of the amount of cells to process.
Until then, cells were meticulously selected and limited to a low number. Guo
et al., 2010 pointed out the interest and feasibility of sequencing several
hundreds of cells [70]. To this end, they demonstrated that various cell types
could be identified and compared on the basis of their transcripts, without the
need for an upstream cell selection step (even though their analysis focused
only on 48 genes). The following year, Islam et al., 2011 took a lead in the
field by combining both approaches (transcriptome-wide analysis applied to
a large number of cells simultaneously) and developed the first method to
access the entire transcriptomes of a multitude of single cells, reaching 85
cells with an overall of 13,879 detected genes [60].

Since then, over fifty [72] highly multiplexed protocols for single-cell RNA-
seq have flourished with a few standing out, such as Smart-seq2 [63], Drop-seq
[64] or 10x Genomics Chromium [73]. The choice of the strategy used for cell
isolation underlies the throughput of the experiment (i.e. the number of
cells to isolate). Each protocol has its own strengths, weaknesses and biases,
which will require specific adjustments at the steps of data analyses.

With more sensitive and accurate methods, both the gene detection rate
[74–76] and the number of processed cells [71] have significantly increased in
recent years. Routine studies now include thousands of genes within 1k to
10k of single cells. Massive studies yield 100k cells (see section 1.2.3). On
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Figure 1.4 Time evolution of scRNA-seq experiments. A) Main tech-
nologies that enabled the quick growth of scRNA-seq. B) Throughput observed in
major scRNA-seq publications, ordered by publication date. Image from Svensson
et al., 2018 [71]

top of that, two papers from Cao et al., (2019 and 2020) even went up to
respectively 2 and 4 millions of cells [77, 78]. Figure 1.4 highlights the expo-
nential growth of single-cell experiments protocols from 2009 to 2017.

Single-cell approaches would certainly not have been such a breakthrough
without innovative protocols that allowed the exponential scaling of scRNA-
seq. We focus here on two key elements: i) the ability to separate cells
in a non-destructive and efficient manner and ii) the capacity to massively
capture and sequence RNA in an unbiased way.

1.2.2.1 Automatic cell isolation

Pioneer single-cell protocols relied on manual separation of cells in individ-
ual tubes [71]. This approach is necessarily limiting as soon as one wishes to
process hundreds of cells simultaneously. In order to increase the throughput
of the experiment, an automated cell isolation technique is mandatory. Par-
ticular attention must also be brought to cells integrity: reaching a higher
throughput should not be obtained at the cost of cells quality.
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Depending on how the cells are captured and isolated, prevailing pro-
tocols for single-cell partitioning are usually separated into three distinct
approaches: microwell plates, microfluidics chips and microfluidics droplet
methods. Key features of each of these approaches are summarized in Figure
1.5.

A

BFigure 1.5 Comparison of scRNA-seq protocols with their key features.
Comparison of the key features of the four main approaches to isolate cells. Doublet
refers to the tendency of the technology to poorly isolate cells (some cells are thus
mixed together, which is generally referred to as doublets). Image adapted from
Nguyen et al., 2018 [79]

Microwell plates This approach is the lowest throughput. It is the method
used in original studies such as Tang et al.. It is now best represented by
Smart-seq2 [63] and the more recent Smart-seq3 [80] protocols. With this
setting, cell separation is mostly based on fluorescence-activated cell sorting
(FACS), though manual pipetting or microdissection are still possible [62].
The main drawback of well-based methods is that they require considerable
time, effort and money per processed cell. This is the method of choice for
precious samples of rare cells [71]. Its appreciable advantages include the
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possibility to add an extra layer of information on each cell, such as macro
details (size, morphology, etc.), or visually discard doublets or damaged cells.

Microfluidics chips This technology comes from an original idea of the
Fluidigm company when they introduced the C1 system in 2013, the first au-
tomatised commercial protocol dedicated to single cell isolation [71]. What is
innovative with this approach is the use of microfluidics to deliver precise tiny
volumes (e.g. cells) into nano-reaction chambers. In terms of throughput,
it is a better alternative than plate-based protocols. However, it performs
poorly in terms of cell capture as only around 10% of the cells from the orig-
inal sample are processed, a major disadvantage for populations of rare or
delicate cells.

Microfluidics droplets This method is the highest throughput and also
the most recent as it appeared in 2017. Due to commercialisation efforts of
the 10x Genomics Chromium, an all-in-one solution for automatic single-cell
isolation, this approach has become extremely popular. It is based on nano-
liter droplet emulsions. Within the microfluidics channels of a chip, each
cell is captured inside a nanoliter-sized oil droplet. Reverse transcription
reagents and beads containing barcoded oligonucleotides (necessary for li-
brary preparation) are also encapsulated in the droplet. Because each bead
contains a unique identifier, all the transcripts of a cell can be identified with
the same cell barcode. This is key to allow for multiplexing: when droplets
are lysed, RNA transcripts can be mixed and sequenced together without
losing the information of the cell they originated from. It allows to process
tens of thousands of single cells in parallel within a 1-day workflow [81]. The
cell capture rates vary highly depending on the chosen platform. For 10x
Genomics, it usually lies between 50% to 65% [73, 82].

1.2.2.2 Broad and unbiased transcript quantification

The capacity to capture any given RNA from the cell, and process it up to
the quantification step is called the sensitivity. To ensure high sensitivity,
one needs to take two key factors into consideration: i) amplification biases
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and ii) transcript quantification methods. The sensitivity differs significantly
for each scRNA-seq protocol.

Amplification biases With standard RNA-seq protocols, about 0.1 to 1
µg is needed to properly detect RNA [71]. In terms of RNA quantity, this rep-
resents millions of cells since the amount of RNA in a single cell ranges from
1 to 50 pg (depending on the cell type, size and state) [83], especially since
less than 5% of it is mRNA. This first challenge can be overcome with PCR
amplification, which exponentially creates copies of each transcript. Yet,
PCR amplification is known to cause amplification biases: due to differences
between the length of RNA transcripts, the amplification rate is not identi-
cal for all the transcripts [84]. It thus causes disparities between real RNA
quantification and estimated quantification post-amplification, some might
be over-estimated. With droplet-based protocols, it is possible to tackle this
issue by associating a Unique Molecular Identifiers (UMI) to each transcript.
UMIs are random nucleotide sequences which are usually 10-12 bases long.
It is generally considered long enough to ensure their uniqueness (410 - 412

possibilities). Each polyT primer (which binds to mature mRNA molecules)
is associated to a UMI together with a unique cell barcode. During hy-
bridization step, each transcript gets its own unique combination of UMI
and cell barcode. It then enables the unbiased counting of transcripts [85], as
PCR duplicates can be removed during the computational analyses steps. It
is worth mentioning that UMI processing requires specific processing steps
that handles UMI and the possibility that they contain sequencing errors
(see section 2.2) [86].

Transcript quantification method In the above paragraph, we men-
tioned that UMIs are available only for droplet-based protocols. The reason
for this stems from the type of RNA capture method, that has a direct
impact on transcript coverage and quantification. In fact, two types of tran-
script quantification exist: full-length and tag-based (a.k.a. 3’-end-biased /
5’-end-biased). The former aims at spanning the whole transcript, while the
latter preferentially captures just one end of the transcript (5’ or 3’ end).
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Full-length protocols are specific to plate-based protocols (such as Smart-
seq2) and are similar to bulk RNA quantification methods. RNA transcripts
are fragmented into multiple short reads, and the full original transcript can
be reconstructed with computational methods (see 1.1). This approach thus
benefits from a detailed picture (isoform resolution) for the quantification.
They are also known to be more sensitive than tag-based protocols: the mean
number of genes detected in cells can be two-fold higher [75].

On the contrary, tag-based protocols are limited to gene quantification,
as only one end is sequenced. In this respect, isoform identification is jeop-
ardized, making it difficult to differentiate reads that come from a transcript
or another. This quantification approach is nonetheless the most popular
among scRNA-seq protocols for the reasons outlined above. Note also that
it is restricted to droplet-based protocols.

Thus, low amounts of starting material in single-cell protocols is a promise
for a deeper understanding of cellular tissues, but this comes at the cost of
more uncertainty and variability in the estimates of transcriptional states
than bulk (see 5.2.1) [87]. Moreover, the transcriptomes analysed from the
single-cells are just a sample of all RNA transcripts physically present in
the cell: i) the majority of protocols use primers that bind to polyA tails,
thereby capturing mostly mRNA and some non-coding RNAs, while miss-
ing some mRNAs that would not have a polyA tail and ii) there are high
discrepancies in RNA capture depending on the chosen protocol. With plate-
based protocols, we estimate than 30% to 40% of transcripts are captured
[80]. This number drops to 5% to 20% (i.e. for the most recent approaches)
with droplet-based protocols [76]. While first single-cell studies focused on
atypically large cells (10 to 100 fold larger than an average cell) [60], the most
recent high-throughput protocols can deal with most of cell sizes and shapes
[76].

The choice of the protocol for a given study mostly depends on:

• Cost: lower-throughput methods being between 100 to 1000 times
more expensive than high-throughput methods (in price per cell) [75,

88].
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• The biological question: is it more critical to get a deep understand-
ing of a few selected cells (low-throughput / high sensitivity) or to grasp
a more general picture of cell diversity in a sample (high-throughput /
low sensitivity) ? It is a matter of finding the right balance between
sensitivity and the amount of cells to process.

All the analyses in this thesis rely only on high-throughput, droplet-based,
data (produced with the 10x Genomics Chromium technology).

1.2.3 Recent achievements in biology

Single-cell technologies have been widely used in all fields of biology such as
immunology [89], embryology [90, 91] or oncology [92]. Great achievements in
the single-cell field are plentiful [93], and far be it from me to enumerate them
all. However, I wish to mention a few key applications that already had an
impact on both fundamental research and medicine.

• Developmental biology: Because embracing how individual cells dif-
ferentiate into complex and exquisitely organized tissues is a fundamen-
tal question in Biology, developmental biology is undoubtedly one of
the fields that most benefited from scRNA-seq since its beginning [94,

95]. Most recent studies rely on an astonishing amount of data (which
would not have been possible just a few years ago) to build compre-
hensive models of mouse gastrulation from whole-embryos [96], study
developmental cell fate decisions in zebrafish [97], or profile the human
developing spinal cord transcriptome [98], to name just a few. Beyond
simply providing novel or improved cell catalogues, these studies ques-
tion some basic notions, such as the very definition of cell types [55], or
the traditional models associated with cell differentiation [96]. Ton et
al., 2020 provides a comprehensive review of the significant contribu-
tion of scRNA-seq to the developmental biology field [99].

• Cell atlases: A great amount of studies aim at providing exhaus-
tive catalogues of cells. The most popular ones are probably the Hu-
man Cell Atlas (HCA) [100], the Fly Cell Atlas [101] and Tabula Muris
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(mouse atlas) [102]. The drosophila was the first organism that bene-
fited a cell atlas initiative [103]. The HCA, which started in 2016 and is
led by Sarah Teichmann (Wellcome Sanger Institute) and Aviv Regev
(Broad Institute), is a massive collaborative project, gathering over
2000 members over the world. It aims at annotating and referencing
every cell types in the healthy body, across time from development to
adulthood. It has been thought as a real “Google map" of the human
body [104]. Throughout this type of effort, high-resolution single-cell
transcriptomics data adds ground-breaking and highly valuable infor-
mation into fundamental knowledge of human tissues.

• Health and disease: Before single-cell analyses, cell type identifica-
tion in immunology was mostly based on a limited set of surface markers
and morphological characteristics. Single-cell enabled the field to move
beyond this discrete classification and tempered cell type definition by
joining a unique transcriptomics signature to each cell type [105]. It also
allowed the discovery of major (but rare) cell types (e.g. in blood [106]).
In cancer, single-cell analyses provide a deeper understanding of tumor
heterogeneity, evolution in time and how cells transient from a state
to another [107]. Finally, in the context of the global pandemic, single-
cell analyses have been harnessed to quickly comprehend and tackle
COVID-19 infections [104, 108, 109] and its key role is widely recognized
[110]. The COVID-19 single-cell atlases have been quickly implemented
thanks to the HCA community [111]. As a matter of fact, more than
25% of the COVID-19 related scientific papers mention single-cell anal-
yses as well2.

2Results of the research on Google Scholar “(“single-cell RNA-seq" OR “scRNA-seq"
OR “single-cell analyses") AND intitle:(“COVID-19" OR “SARS-COV-2")" gave 4520 re-
sults. Results for intitle:(“COVID-19" OR “SARS-COV-2") outputs 16800 papers. Results
retrieved the 25th August 2021.
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1.3 Analysing single-cell RNA-seq data

Single-cell RNA-seq data analyses involve a multitude of interdependent steps
that constitutes the overall in silico pipeline. Due to data complexity, its
heterogeneity, the bewildering evolution of technologies and the vast diversity
of questions that can be address with scRNA-seq, a great variety of tools and
options are available. As of 12 August 2021, 1027 tools have been catalogued
in the highly comprehensive website scrna-tools.org [65], 765 of which were
added within the last 3 years3 (Figure 1.7).

This continuously growing number both reflects the significant demand
for scRNA-seq analysis and dedicated tools, but also emerging issues that
come with novel technological developments. Considering the colossal task to
reference and compare all the possibilities is out of scope of this PhD thesis,
I will here give the keys to globally understand scRNA-seq data analyses
process, and introduce how to select tools and approaches depending on the
biological questions.

Tissue dissection Single-cell partitioning Library and sequencing Primary analyses Secondary analyses

Reads quality 
filtering

Reads mapping 
on assembly

Expression 
quantification

Clustering

Differential 
expression

Trajectory 
reconstruction

Cell type 1 
Cell type 2 
Cell type 3

Cell 1 
Cell 2 
Cell 3 

Cell 4

Figure 1.6 Schematic representation of scRNA-seq analyses. Primary
analyses (in blue) include all the steps from the raw sequencing reads up to the
generation of the count matrix. Secondary analyses (in green) encompass all the
steps more directly aiming at revealing biological insights. My thesis focuses on
both types of analyses.

3As of 10 August 2018, 262 tools were referenced in scrna-tools.org.

scrna-tools.org
scrna-tools.org
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These analyses are generally separated into two main parts: primary
analyses (a.k.a. pre-processing) and secondary analyses (Figure 1.6). Even
though secondary analyses often overshadow pre-processing parts because
they reveal biological insights, a major part of this thesis tackles primary
analyses issues, and highlight how the pre-processing can have a major im-
pact on the secondary analyses. In this respect, I will introduce here each step
of scRNA-seq analysis and will give more explanations in their correspond-
ing chapters: Chapter 2 for primary analyses and Chapter 3 for secondary
analyses.

1.3.1 Primary analyses: from reads to count matrix

The purpose of primary analyses is to construct a scRNA-seq count (or ex-
pression) matrix from the sequencing reads. In a count matrix, genes are
commonly defined as rows, cells as columns, and the values are the estimated
gene expression levels. Primary analysis process broadly includes:

1. Demultiplexing and barcode processing: this step mostly consists
of handling and processing raw sequencing files (FASTQ files);

2. Alignment : mapping each sequence read to a reference genome (or,
in some cases, transcriptome);

3. Feature assignment: assigning reads to identified features (which are
commonly genes or transcripts) according to a reference annotation;

4. Quantification: quantifying gene (or transcripts) expression levels
within each cell.

A general overview of a pre-processing pipeline is shown in Figure 1.8.
The accuracy and successful completion of each of these steps is of the utmost
importance to ensure good-quality and reliable biological results since all
the downstream analyses will depend on the resulting count matrix [113].
In addition, scRNA-seq pre-processing requires high-performance computing
capabilities in order to process the millions (or even billions) of sequencing
reads generated by scRNA-seq protocols. Many of the steps described below
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Figure 1.7 Overview of tools catalogued in the scRNA-tools database.
A) Time evolution of the number of tools catalogued in the scRNA-tools database.
We can observe here that the dotted line follows a quadratic fit. B) Distribution
by publication status of each of the tools included in the database. Over two
thirds of these tools are published (713 tools, representing 69.4% of all tools). C)
Distribution of platforms, software repositories and software licenses among the
tools of the database. The colours represent the programming languages of these
tools (a vast majority being R or Python). D) Bar plots showing the distribution
of tools among the main scRNA-seq analyses categories. Image from Zappia et al.,
2021 [112]
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are shared with standard bulk RNA-seq pipelines, but it will be explicitly
mentioned wherever changes are notable.

Figure 1.8 A standard scRNA-seq pre-processing pipeline. The different
steps are identified with small letters. Typical file formats are written within
colored boxes. (a) The first step of the pre-processing pipeline usually consists
of FASTQ files demultiplexing. (b) The resulting FASTQ files are used as input
for genome mapping. (c) Reads are then assigned to a feature (usually genes)
thanks to a gene annotation file. Unassigned or inappropriately assigned reads
are filtered out. (d) Then, correctly assigned reads are quantified. It thus enables
to determine the number of genes associated to each cell barcode. The result is
stored in a count matrix. Genes are commonly defined as rows, cells as columns,
and the values are the estimated expression levels. Image adapted from Nayak et
al., 2021 [114]
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1.3.1.1 Demultiplexing and barcode processing

The starting point of the scRNA-seq in silico pipeline is the conversion of raw
sequencing data to human readable files, known as FASTQ files. Illumina
RNA-seq sequencers traditionally output files in the binary base call (BCL)
format. The first step is thus to convert BCL to FASTQ format. This is
usually done in parallel with FASTQ demultiplexing, which consists of split-
ting the reads into distinct files (depending on the sample index). Both the
conversion to FASTQ files and demultiplexing is carried out by the Illumina
proprietary tool bcl2fastq4. A FASTQ file is a text-based file format that
stores the raw sequence and its corresponding quality scores. For a single
scRNA-seq experiment there are often several dozens of FASTQ files (see
Chapter 2).

The next step is to assign all sequencing reads to the cells they originally
belonged to. This is called cell barcode demultiplexing. Each scRNA-seq
protocol requires a specific cell barcode demultiplexing method due to the
differences in barcodes structure, processing and FASTQ files organization.

Finally, the overall quality of each FASTQ file can be estimated with
standard bulk RNA-seq tools like FASTQC [115]. If some reads quality is too
poor (e.g. the probability that a given sequence is erroneous is too high),
they may be filtered out at this stage.

1.3.1.2 Alignment

After FASTQ processing and quality checking, the sequences need to be
located on a reference assembly (which could be either a genome or a tran-
scriptome), assuming reads are similar enough to some part of this reference
to be associated with. To this aim, the alignment step consists in scoring
reads sequence similarity at multiple positions on the genome or transcrip-
tome. RNA-seq mapping is admittedly one of the most challenging tasks
for it requires to handle millions of reads in a time-efficient manner, despite
taking into account sequencing errors, repetitive elements and biological dif-

4https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html

https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
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ferences between the reference assembly and the genome of the studied cells
[116]. Moreover, the choice of an alignment tool rather than another might
critically change the output of bulk RNA-seq data analyses [117, 118], which
is even more true with scRNA-seq analyses [119].

As shown in Figure 1.8-b, this step outputs SAM files or its binary ver-
sion, BAM files. In SAM/BAM format, each line defines a read. It contains
information such as the complete nucleotide sequence, mapping position on
the genome and strand to which the alignment was estimated [120]. At this
stage, reads are either tagged mapped or unmapped, depending on their align-
ment status. Some reads may map to multiple locations, which are defined
as multi-mapped.

In scRNA-seq, genome alignment is usually the method of choice, since
it is more accurate than transcriptome mapping [121]. Aligners originally
designed for bulk RNA-seq are commonly-used for scRNA-seq, with STAR
[122] (or its recent single-cell version STARsolo [113]) among the most popular.
These aligners are both fast and able to handle splice junctions.

1.3.1.3 Feature assignment and quantification

The next goal is to assign reads to known genomic features, and estimate the
expression levels of each of them. Read alignment results alone are mean-
ingless as long as they have not been associated to some known genomic
features (which are genes for most scRNA-seq analyses). Feature assignment
(a.k.a. feature annotation) precisely refers to connecting each read to a fea-
ture depending on its mapping location, as schematized in Figure 1.9. Reads
that map in a region where multiple genes are annotated are defined as am-
biguously assigned reads. Quantification refers to counting the total number
of reads that fall in a given region, which is also called the read coverage.
Popular quantification tools are featureCounts [123] and htseq-count [124].

Feature assignment is carried out using a reference annotation file. The
regular file formats for any reference annotation are GTF and GFF3. They
are also referred to as gene models. These files gather the coordinates of all
the regions of interest of a genome (e.g. exon, CDS, transcript, 3’UTR, etc.).
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Figure 1.9 Scheme of read processing during scRNA-seq primary anal-
yses. Raw reads (in orange) are first aligned to a reference genome (in blue). Their
position is defined by the genome region with which they share the highest sim-
ilarity. Some reads can be left unmapped if no such region could be identified
(not shown). It is followed by the feature annotation step (a.k.a. feature assign-
ment). The mapped reads are thus classified into assigned reads (in green) if they
could map to some known feature (e.g. a gene) or unassigned reads (in red) if not
(e.g. intergenic region). Unassigned reads are usually filtered out at this stage.
Assigned reads are clustered depending on the feature (e.g. gene) they are as-
sociated to. All clusters are then quantified, and a total read count number is
attributed to each feature. These results are stored in the expression matrix. In
this illustration, we see that no reads could be assigned to Gene 1, thus leading
to a zero-count in the expression matrix. Gene 2 and Gene 3 have been counted
7 and 10 times respectively (bulk counts). For single-cell analyses, the reads then
need to be splitted depending on the cell they belong to (not shown). This results
in a single-cell expression matrix.

The choice of a gene model can have tremendous impact on the quantification
step, thus on the resulting count matrix. Details on gene models and their
role in RNA-seq analyses is covered in more details in section 1.4.

For bulk data analysis, feature assignment and quantification are per-
formed simultaneously. However, most scRNA-seq protocols (e.g. droplet-
based protocols) require a supplementary step which consists of separating
the count of each gene within each cell, as shown in Figure 1.9, and handling
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UMI counts potential errors. Standard quantification estimates the overall
number of gene within all the dataset, thus missing the cell information.
Tools such as UMI-tools [86], zUMIs [125] or umis [74] are designed to handle
this additional task.

1.3.1.4 All-in-one scRNA-seq pipelines

To fulfill the requirements of scRNA-seq data primary analyses, a dozen of
pre-processing pipelines have been developed these last three years. While
well-based protocols can accommodate most bulk RNA-seq pipelines, droplet-
based protocols impose extra processing to handle UMIs and assign cell bar-
codes, as mentioned above. The choice of the pipeline depends on multiple
criteria, such as:

• The experimental protocol used to generate the data;
• Mean read throughput;
• Total number of cells;
• Computational resources available;
• The quality of the references (e.g. when there is a possibility between

aligning the reads on the genome or on the transcriptome - see Chapter
2);

Some pipelines are designed for one particular protocol, such as Drop-seq-
tools [64] (dedicated to the eponymous data) or CellRanger which is a fully
automated tool and proprietary solution specifically designed for 10x Ge-
nomics datasets. Other end-to-end pipelines, such as dropEst [126], scPipe
[127], zUMIs [125] or Alevin [128] tend to simplify and harmonize this process.
Pipelines based on tools such as umis [74] or UMI-tools [86] offer more flexible
options as they can be included into a user-defined pipeline.

A comprehensive comparison of multiple scRNA-seq pre-processing pipelines
have been performed only this year by Gao et al., 2021 [129]. As shown in
Figure 1.10, their performances in terms of run time and computing resources
differ significantly. Gao et al. also demonstrates that these pipelines produce
important variability in the count matrix content and data analysis quality,
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Figure 1.10 Computational performance comparison of 7 scRNA-seq
pre-processing pipelines. These performances have been calculated with a
standard 10x Genomics dataset of 10K cells (which comprise 640 million reads).
All pre-processing steps but the alignment have been performed. A) Total run
time. We can observe that the run time increases with the number of reads for
all pipelines. In terms of run time, some tools might be recommended for smaller
datasets (e.g dropEst, Drop-seq-tools, UMI-tools) while others would be more
efficient for bigger datasets (e.g CellRanger, zUMIs). B) Maximum CPU usage.
CellRanger demonstrates very high level of CPU usage beyond 10 million reads.
Except for this latter, CPU usage is rather stable, with UMI-tools and zUMIs
showing a slight increase and Drop-seq-tools decreasing with the number of reads
to process. Image adapted from Gao et al., 2021 [129]

thus potentially affecting the biological conclusions.

As mentioned above, all the scRNA-seq datasets we used for this the-
sis are produced with the 10xGenomics single-cell technology, which can be
pre-processed with the proprietary tool CellRanger. However, at the begin-
ning of my PhD thesis, we struggled at identifying the inner steps of this
software as it was, and still is, a “black box”, and the number of parame-
ters we could adjust was unsatisfactory (specially in case of doubts regarding
the data quality). Nevertheless, CellRanger have benefited from major de-
velopments within these last years (e.g. cell barcode and UMI correction),
thereby becoming a standard in the single-cell community, despite its heavy
computational requirements and lack of access to source code.
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1.3.2 Secondary analyses: retrieving biological signal

Secondary analyses start once scRNA-seq raw data have been processed and
summarized in the expression matrix. It describes all the steps that aim
at ensuring that the data quality is sufficient (data cleaning) and answer-
ing biological questions (downstream analyses). While all preceding steps
required dedicated computing infrastructures (high performance computing,
or HPC) and followed each other in a linear manner, secondary analyses, on
the contrary, are neither necessarily linear, nor they impose the use of HPC.
The computing requirements are highly dependent on the chosen tools and
steps to process, and may differ from one dataset to another. One of the
most challenging tasks here is undoubtedly to select the right tools and ap-
proaches that best tackle the biological questions, while accounting for all the
biases inherent to scRNA-seq (see section 5.2.1). Secondary analysis process
broadly includes:

• Data cleaning: In order to exclude low-quality cells and potential
outliers, the expression matrix first undergoes diverse quality control
and filtering steps (this step may also be called data processing). It
also includes normalization, data correction, feature selection and di-
mensionality reduction to prepare the data for downstream analysis in
the best possible way.

• Cell assignment: It aims at aggregating cells into groups that share a
similar expression profile. This is commonly achieved through cluster-
ing (unsupervised), classification (supervised) or trajectory reconstruc-
tion (time ordering of the cells).

• Gene identification: Its purpose is to identify the genes that best
describe and differentiate the previously defined groups. It mainly in-
cludes differential expression and signature extraction.

In this section, I will briefly outline all the above-mentioned steps. A
couple of them will be further described in more details in Chapter 3 (such
as data correction).
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1.3.2.1 Cleaning the expression matrix

Quality control Quality control (or QC) is critical to identify and fil-
ter out individual cells that might be of insufficient quality for downstream
analyses. It is often performed gradually, since determining a cell’s quality a
priori is challenging and highly depends on downstream analysis assessment
(e.g. clustering and differential analysis performance). Thus, permissive QC
thresholds allow first to investigate data quality in a comprehensive manner,
and more stringent thresholds are beneficial to specifically isolate high-quality
populations [130]. Low-quality cells, if not removed, can lead to misleading
results (e.g. some may form a cluster of their own which could be mistaken
with an unknown cell type) or could contribute to add non-negligible noise
to the data (which is already noisy by definition, see 5.2.1) [131]. Poor-quality
cells include:

• Dying or damaged cells;
• Multiple cells that have been processed together, resulting in doublets

or multiplets (instead of singlets) [132];
• Empty droplets or empty wells, which describe a mix of ambient mRNAs

that have been sequenced but do not originate from a single cell [133,

134].

Cell quality is defined by a combination of multiple criteria, the most
widely used being the number of reads or UMI counts per cell, the number
of individual genes per cell, the percentage of mitochondrial genes within
each cell and the probability of a cell to define a doublet or an empty drop
[130]. Assessment of these criteria allows to define adequate cutoff values to
isolate good-quality from poor-quality cells (Figure 1.11). However, these
thresholds require rather arbitrary settings and do not necessarily reflect the
entire landscape of low quality cells [131]. For example, the higher the per-
centage of mitochondrial genes, the larger is the probability that the cell is
dying or damaged. Yet, this threshold varies depending on the cell types and
species [135], and as we shall see below, on annotation quality and assignment
strategy. Some packages attempt to remedy these deficiencies by automat-
ing the quality filtering process by relying on machine learning data-driven



1.3. Analysing single-cell RNA-seq data 51

Number of genes 
per cell

Number of total 
counts per cell

Number of total 
counts per cell

Frequency Fraction of mitochondrial genesFrequency

Figure 1.11 Illustration of standard scRNA-seq QC metrics plots. From
left to right, the plots show respectively the distribution of the number of genes
detected per cell, the distribution of the total counts (UMI or reads) per cell,
and the fraction of mitochondrial genes versus the total counts per cell. The
cells that fall into the red zones are filtered out, once a threshold (red line) has
been set. The thresholds are usually chosen based on a combination of i) the
expected distributions, ii) the knowledge of the biological data (e.g. mitochondrial
genes proportion may vary widely between two datasets) and iii) other levels of
QC metrics that complement these plots and steer decision making. The two
histograms are extracted from Luecken et al., 2019 [130].

approaches, such as the cellity package [131] or miQC [136]. Other packages
offer a more exploratory approach, mostly based on visual inspection of the
data, such as Seurat [137] or scater [138].

Doublets are commonly separated into two categories: homotypic (formed
by transcriptionally similar cells) and heterotypic (formed by transcription-
ally distinct cells) [139]. Heterotypic doublets are usually easier to detect due
to their distinct gene expression profile. Moreover, some of the doublets can
be reliably detected by depicting cells with an unexpectedly high number of
counts or unique genes. Nevertheless, these criteria may also be representa-
tive of rare cell types or states, and other doublets may have a particular ex-
pression profile that will go unnoticed. Thus, more sophisticated approaches
to detect doublets have been developed, such as DoubletDecon [140], Doublet
Finder [141] or Scrublet [142]. These approaches rely on algorithms that mix
the expression profiles of two randomly selected cells, in order to artificially
create doublets. They then compute a score to assess the similarity between
any given cell and the artificial doublets. Nine of these methods have been
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reviewed recently in Xi and Li, 2021 [132].

Feature selection Among the (ten of) thousands of genes that are rou-
tinely retrieved in a scRNA-seq experiment, many are uninformative (e.g.
housekeeping genes) or too lowly expressed to be meaningful (e.g. genes de-
tected just once within a couple of cells among the thousands available in the
dataset). Moreover, the more genes there are in a dataset, the more there
are dimensions to be handled. Reducing the number of dimensions, which is
otherwise called dimensionality, highly contributes to improving computing
speed. Thus, feature selection is key to reduce noise and ease the computa-
tional burden on downstream analysis [130].
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Figure 1.12 Feature selection of highly variable genes. Example of a
feature selection approach, by determining the relationship between the squared
coefficient of variation and the mean expression of each gene (left-most plot).
Black dots represent the non-variable genes that will be filtered out of downstream
analyses (example gene in blue). Pink dots are the selected HVGs (examples in
green). A) The gene represented here is highly and evenly expressed in every cell.
It is thus little informative, unless to be used as a positive control. B) A specific
cell population is described by the medium-to-high expression of this gene. It
is thus differentially expressed, and should be kept for downstream analyses. C)
This gene does not seem to be representative of a clear biological pattern, but
its variability among all cells enforce its preservation for downstream analyses.
It might be representative of a hidden effect, and more investigation is needed.
Left-most plot is extracted from M3Drop vignette https://www.bioconductor.org/
packages/release/bioc/vignettes/M3Drop/inst/doc/M3Drop_Vignette.pdf.

https://www.bioconductor.org/packages/release/bioc/vignettes/M3Drop/inst/doc/M3Drop_Vignette.pdf
https://www.bioconductor.org/packages/release/bioc/vignettes/M3Drop/inst/doc/M3Drop_Vignette.pdf
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Feature selection aims at reducing the initial gene set to a subset of repre-
sentative genes (typically between 1000 and 5000) [130]. It has been demon-
strated that the way they are selected and the number of selected genes can
have a significant effect on downstream analyses [143, 144]. One of the most
popular approaches is to select Highly Variable Genes (HVG), that reflect
the variability within a given dataset [145] (Figure 1.12). Diverse methods
have been developed to select HVGs. A popular one is based on the esti-
mation of the ratio between variance and mean, as implemented in Scanpy
[146] or Seurat [137]. Seven HVG approaches are reviewed in Yip et al., 2019
[147]. Alternative feature selection approaches, such as M3Drop [148], rely on
identifying genes with an unexpectedly high number of zeros (a.k.a. high
dropout-rate), since it has been shown that dropout-rates are interrelated
with gene expression level [149, 150]. Sheng and Li, 2021 recently reviewed in
a comprehensive manner 17 feature selection approaches [151].

Normalization Similarly to bulk approaches, data normalization is essen-
tial to ensure samples (or cells) and genes are comparable with each other.
However, due to counts variability and instability between cells (see 5.2.1),
scRNA-seq normalization is much more challenging. Thus, single-cell nor-
malization first and foremost needs to take into account that two identical
cells might exhibit different sequencing depths. The purpose of library size
normalization is precisely to scale count data to correct for differences in gene
expression counts in between cells [152]. Historically, the first normalization
methods applied to scRNA-seq were mere adaptations of bulk techniques
[153], such as Trimmed Mean of M-values (TMM) [154] or DESeq/DESeq2
[155, 156]. Moreover, these techniques are based on the assumption that most
of the genes are not differentially expressed (DE) between samples, which
might compromise single-cell analyses in which the variability and sparsity
are substantial. Thus, in order to account for the many biases inherent to
single-cell, the need for specific normalization techniques quickly emerged
[157]. These effects are summarized in Figure 1.13).

Depending on the scRNA-seq protocol used to generate the data, single-
cell normalization needs distinct adjustments. For plate-based protocols



54 Chapter 1. Introduction
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Figure 1.13 Illustration of cell and gene specific effects in scRNA-seq.
A) and B) show two cells that each express two genes at equivalent levels. A)
Schematic illustration of cell-specific effects. B) Schematic illustration of gene-
specific effects. C) Summary of the main gene or cell specific effects. Last column
indicates if they are removed by UMIs or not. Image adapted from Vallejos et al.,
2017 [153].

(full-length mRNA sequencing), correcting for gene length is critical, as is
the case with bulk RNA-seq. Early full-length normalization methods also
included external synthetic RNA sequences, or spike-ins [145, 158, 159]. Know-
ing in advance their precise amount allows to infer changes in expression
of endogenous genes that would be solely due to technical variability [160].
More recently, approaches such as ISnorm [161], suggest to use internal spike-
ins (e.g. small fraction of constantly expressed genes) as a more accessible
and straightforward way to quantify variability and normalize scRNA-seq
datasets accordingly.

For UMI-based protocols, it is meaningless to account for gene-length,
since reads originate specifically from the transcripts extremities [162]. How-
ever, due to higher sparsity and instability, many specific approaches have
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been developed, scran [157] being one of the most popular. The scran ap-
proach relies on pooling transcriptionally-alike cells in order to generate
pseudo-bulk scaling factors among these small sets of cells. This approach
allows to overcome the great number of dropouts when considering cells as
a unique unit. It has been shown that the scaling factors estimates are
more accurate when applying this strategy [153, 157]. Several comprehensive
benchmarks and reviews compare the performances of single-cell dedicated
normalization techniques [153, 163, 164]. Correcting for biological effects (e.g.
cell-cycle, gender) or other technical biases (e.g. batch effect) is further de-
tailed in Chapter 3.

Dimensionality reduction and visualization In order to properly vi-
sualize a scRNA-seq dataset on a 2D representation, the dimensions of the
count matrix need to be reduced and optimized through dimensionality re-
duction (DR) approaches. It aims at finding the best possible representation
of the dataset, by capturing the underlying structure within the minimum
number of dimensions [165]. It is particularly suited for scRNA-seq data anal-
yses, since it has been shown that scRNA-seq is inherently low-dimensional
(e.g. most of the relevant information is contained in the first dimensions of
the dataset) [166].

Ten DR approaches have recently been reviewed and applied to scRNA-
seq in Xiang et al., 2021 [168]. They can be divided into three categories:
linear (e.g. PCA [169], ICA [170]), nonlinear (e.g. t-SNE [171], UMAP [172],
diffusion maps [173]) and machine learning-based methods (e.g. SIMLR [174],
ZIFA [150], SPRING [175]). The most popular are t-SNE and UMAP, since
nonlinear techniques are best suited to avoid populations overlapping [167].
They both efficiently reveal local data structure, however, contrary to t-
SNE, UMAP is able to preserve inter-cluster relationships (a.k.a. global
data structure), as shown in Figure 1.14. Moreover, UMAP can easily scale
to large datasets, making it the current most convenient tool for exploratory
data visualization [130, 168].
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Figure 1.14 Dimensionality reduction and visualization with t-SNE
versus UMAP. Cells are colored according to A) cell type and B) tissue of origin.
In this specific example, we can observe that UMAP is more efficient to separate
cell populations by cell type, while t-SNE is more likely to split cells depending on
their tissue of origin. Image adapted from Becht et al., 2019 [167].

1.3.2.2 Cell assignment

Clustering Grouping cells into clusters of similar expression is one of the
key steps of scRNA-seq data analyses. It often stands as a first intermedi-
ary result [130]. Clustering mostly aims at assigning an identity to each cell.
While clustering in itself is a vast research field in statistics [176], over a hun-
dred approaches have been specifically developed for scRNA-seq data in order
to account for the technical and biological challenges inherent to single-cell
approaches [112]. Similarity between cells is determined with distance-based
metrics (such as Euclidean distances) or correlation-based metrics (such as
Pearson’s correlation) [177].

Clustering techniques can be divided into three broad approaches:
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Figure 1.15 Summarized performances of twelve scRNA-seq cluster-
ing techniques. Several performance metrics have been specifically established
to compare clustering approaches (see Freytag et al., 2018 for details on these
metrics). Overall, Seurat demonstrates the best results, while RaceID2 is the one
that performs the worst. Image adapted from Freytag et al., 2018 [178].

• Partitional methods;
• Hierarchical methods;
• Graph partitioning methods (a.k.a. community detection methods).

Under this definition, partitional and hierarchical methods mainly focus
on a unique modality (e.g. distance matrix), while community detection
also relies on a network structure (e.g. cells are the nodes of the graph and
their relationships are the edges) [179]. Several popular approaches have been
reviewed and benchmarked by Freytag et al., 2018 (Figure 1.15) [178].

Partitional approaches, among which the popular k-means algorithm,
have been first applied to scRNA-seq datasets. However, results greatly
vary depending on the similarity metrics used [130]. Since correlation-based
distances are invariant to data scaling (contrary to distance-based metrics),
it has recently been shown that correlation-based metrics might improve
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clustering, especially for droplet-based data [177].
Hierarchical clustering allows to establish a hierarchy among clusters. It

can be performed with a top-down approach (a single cluster is sequentially
divided into smaller groups) or a bottom-up approach (each individual cell
identifies as a cluster, and these clusters are then sequentially merged as
larger groups). Even though hierarchical clustering has largely been applied
to scRNA-seq data, it is limited to small datasets or requires a specific se-
lection of the cells, since it computationally scales poorly with large datasets
[180].

Community detection methods rely on a graph obtained with a k-Nearest
Neighbours approach (KNN graph). Each cell is thus connected to its k most
alike neighbours. Since the search space is greatly reduced (only neighbouring
cells are compared), this approach is often more computationally-efficient
than partitional and hierarchical methods [180]. Graph-based approaches are
best represented by the Louvain algorithm [181] as implemented in the Seurat
[137] and Scanpy [146] workflows. Several benchmarks have demonstrated that
this approach is the best suited for scRNA-seq datasets [182, 183].

Classification When comprehensive references (such as cell atlases) are
available, automatic cell classification offers a powerful alternative to clus-
tering. Cell classification takes advantage of previous knowledge and prevents
manual annotation or user-defined cell types. Tools such as CaSTLe [184],
scmap [185] and scPred [186] are among the most popular ones. Although clas-
sification tools emerged later than the other scRNA-seq analyses categories,
many methods have since been developed. Some of them have recently been
reviewed in Abdelaal et al., 2019 and Zhao et al., 2020 [187, 188].

The two major drawbacks of such approaches lies in the fact that it to-
tally prevents novel cell type discovery, and the cell type identification is as
good as its annotated reference. These approaches are thus predominantly
recommended for well-studied cell types and species. Lin et al., 2021 (scAL)
[189] and Ranjan et al., 2021 (scConsensus) [190] suggest combining both
classification and unsupervised clustering to improve cell type identification.
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Trajectory inference Considering that scRNA-seq offers an unprecedented
view on an infinite rainbow of cellular states, grouping cells into discrete
states might appear as too restrictive in some cases. Specifically, trajectory
inference (a.k.a. pseudo-temporal ordering) allows to study continuous pro-
cesses such as cell differentiation and progression along lineages, which is
particularly relevant in developmental biology [191]. Introduced by Trapnell
et al., 2014 with their tool Monocle [192], this approach aims at inferring
optimal paths by minimizing transcriptional changes between cells. Starting
from a root cell, neighbouring cells are ordered on a fictional temporal axis
(a.k.a. pseudo-time) that serves as a proxy for developmental time (Figure
1.16) [193].

Figure 1.16 Pseudo-temporal ordering is a proxy for developmental
time. A) Once the transcriptional changes between successive cell pairs are iden-
tified and ordered, a seemingly homogeneous group of cells can be turned into
a continuum along a pseudo-temporal axis. B) Significant changes in expression
along the pseudo-temporal axis can be imputed to some specific genes. Image from
Griffiths et al., 2018 [194].

Much like clustering approaches, trajectory inference (T.I.) benefited these
last years from a noticeable rise in methodological developments. Over a hun-
dred tools specifically dedicated to T.I. have been catalogued in scrna-tools.
org as of 15 September 2021. Some 45 of them have been benchmarked in
the highly comprehensive study of Saelens et al., 2019 [195] (Figure 1.17).
They mostly differ by the trajectory topologies they infer (e.g. linear, tree-
like, cyclic...), and there is no single approach that fit all topologies. Authors
advise to test multiple approaches, with at least one with free topology in
order to take informed decisions before assigning a topology to a dataset.

Trajectory inference algorithms can be divided into two broad strate-
gies: DR-based methods (such as Monocle [192], Wishbone [196] or Slinghsot

scrna-tools.org
scrna-tools.org
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Figure 1.17 Decision graph and performance comparison of single-cell
trajectory inference methods. Here are practical guidelines to choose the
adequate T.I. approach, proposed by Saelens et al., 2019. The choice of a T.I.
method depends above all on the user’s previous knowledge of the system topology
(e.g. disconnected, graph, tree, etc. - see colored boxes). Image adapted from
Saelens et al., 2019 [195].

[197]) and clustering-based methods (such as PAGA [198], Palantir [199] or
TSCAN [200]). The former ones primarily rely on a reduced-dimensionality
space before inferring connection between cells (such as the construction of
a minimum spanning tree, as is the case for Monocle and Slinghsot). The
latter ones first cluster the cells in a low-dimensional space before building a
network which aims at connecting clusters centers [201].

The major challenges in inferring cells trajectories are to handle sparsity
and the lack of synchronization among cells. Indeed, cellular processes are
rarely totally synchronized at the cellular level. On top of that, the need to
rely on previous knowledge to choose a topology makes the choice between
all T.I. approaches a difficult task. The dynverse toolkit5 offers a unique
set of guidelines and embedded tools to perform and compare T.I. on any
dataset with multiple methods [195]. More recently, a promising and innova-

5https://dynverse.org/

https://dynverse.org/
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tive methodological development suggests to add directionality to single-cell
trajectories thanks to RNA velocities (estimated by disentangling unspliced
and spliced mRNAs) [202, 203]. This approach aims at facilitating the study
of developmental lineages and cellular dynamics.

1.3.2.3 Gene identification

While the previous section covers a set of analyses that are specific to single-
cell, gene identification is a common task to both bulk and single-cell ap-
proaches. It thus benefits from an already well-documented and largely in-
vestigated field [204]. It aims at identifying distinct expression profiles and
the corresponding genes that are the key drivers of cellular heterogeneity.
There are many ways to investigate gene-level diversity. They are usually
divided into differential expression (DE) analyses, gene set and pathways
analyses, and gene regulatory networks. Since it is the most widely used in
scRNA-seq, only the former one will be addressed in this section.

The most popular approach in scRNA-seq is to compare cell clusters
between themselves (a.k.a. pseudo-bulk approach). Although applied to
scRNA-seq in the first instance, bulk differential expression approaches are
not designed to handle the high technical noise specific to single-cell. Yet,
a couple of robust bulk-dedicated methods are still applied to scRNA-seq
datasets since they outperform (or perform at least as well) as single-cell
dedicated approaches [205, 206]. This is particularly the case for DESeq2 [156]

and edgeR [154]. Their performance can be further improved when accounting
for gene-weights to better model single-cell data (tools such as ZINB-WaVE
[207] are particularly recommended for this aim). A plethora of methods
have been specifically developed for scRNA-seq DE analyses (thus taking
into account single-cell biases), with a few standing out such as MAST [208],
scDD [209] and SCDE [149]. A significant number has been comprehensively
reviewed in Soneson et al., 2018 (Figure 1.18) [205].

Aside from cluster-based DE analyses, T.I. analyses paved the way to
deciphering the key drivers of changes in gene expression. The goal of
trajectory-based DE methods is to identify the genes whose expression evolve
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Figure 1.18 Performance comparison of 36 differential expression ap-
proaches. These DE approaches are ordered (from top to bottom) by their aver-
age performance according to multiple criteria. See online methods for details on
evaluation criteria and cutoff. Image from Soneson et al., 2018 [205].

according to the pseudo-time axis, instead of testing the differences between
two groups. Monocle’s BEAM [192] and tradeSeq [211] are among the most
popular.

DE approaches mostly suffer from large discrepancies between the re-
sulting gene lists, which consequently lead to many false-positive DE genes
(Figure 1.19) [212]. Extracting meaningful information out of these gene lists
is often a complex and time-consuming task, and must be carried out in close
collaboration with experts of the considered biological domain.

Among all this profusion, a handful of tools stood out and became in-
escapable in the single-cell community. This is particularly true for "all-in-
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Figure 1.19 Pairwise comparison of the top 1000 DE genes identified
by 11 popular DE approaches. The numbers reflects the amount of DE genes
shared between various DE approaches. For each method, the top 1000 DE genes
have been selected after being ranked by their adjusted p-values or FDRs. Common
DE genes between pairs of tools oscillate between 142 (scDD versus SCDE) and
856 (D3E versus SINCERA). This comparison highlights a lack of consensus and
agreement between all these approaches. Image from Wang et al., 2019 [210].

one" toolkits such as Seurat, Monocle or scanpy. However these tools are
rarely self-sufficient due to the necessity to adapt the analysis and tools to
each single-cell analysis. On the one hand, this abundance led to an in-
creased accuracy in the interpretation and deeper understanding of single-
cell datasets. On the other hand, it also complicated the tasks of selecting
and combining tools to answer specific questions. A main challenge is thus
to select a range of adequate tools to apply in custom analyses. Although
these last years have benefited from a certain harmonization in scRNA-seq
data processing, there are still developments required to adapt our analysis
pipelines to each data type (scRNA-seq protocol, organism, cell types...) and
biological aims. Hence, no plug and play solution exists, and a good knowl-
edge of the pros and cons of each tool coupled to a solid understanding of
the constraints of the biological system under study are required to design
the best ad hoc pipeline.
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1.4 Reference genome assembly and annota-
tion in RNA-seq analyses

As mentioned in 1.3.1, RNA-seq analyses heavily rely on what I will refer to
as “biological references”. These biological references encompass the reference
genome assembly and the reference annotation. These references are decisive
parameters in the generation of the count matrix. Any read that could not
be mapped to the reference genome or assigned to a gene catalogued in the
reference annotation is simply not taken into account, and thus constitutes a
source of data loss. But how are these biological references produced ? What
biases may they bring into the analyses ? Actually, these points are rarely
questioned.

This section is intended to make readers aware of the inherent biases re-
lated to these biological references and the potential effects it can have on
RNA-seq studies, with an emphasis on reference annotations. I will first
describe the main characteristics of these biological references, and then de-
scribe the impact of the choice of the annotation on RNA-seq analyses.

1.4.1 Biological references

1.4.1.1 Reference genomes assemblies

Although this is not a major focus in this thesis, reference genomes usually
go hand in hand with annotations, therefore I chose to take advantage of
this section to say a few words about them. A reference genome (a.k.a.
genome assembly) defines a representative example of the DNA sequence of
a given species. Not all species have a reference genome, but whenever it is
available, it plays a key role in RNA-seq projects by conferring coordinates
to each sequencing read (e.g. location start and end on the genome).

Even though technological progress have been made since the first human
genome sequence, the construction of an assembly remains a tedious and
continuous process for higher eukaryotes. Due to the presence of sequence
patterns that are tough to assemble (such as repeated elements), most as-
semblies are filled with gaps. With this respect, long-read approaches are
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more and more used in order to improve assemblies completion [213, 214]. For
example, the human genome was still incomplete until very recently. In May
2021, Nurk et al. announced they succeeded in achieving a gapless assembly
(reference T2T-CHM13), which is thus the first complete sequence of a hu-
man genome, 20 years after the first draft [215]. This means that all previous
analyses relied on an evolving and incomplete version of the genome [216].

1.4.1.2 Reference annotations

The process of delineating genes along the genome arose simultaneously
with the first complete bacterial genome: in 1995, the DNA sequence of
Haemophilus influenzae was provided with an annotation of 1742 protein-
coding genes [217]. Since then, the definition of genome annotations has not
changed: it is described as the process of identifying and placing all known
landmarks into the genome [218]. To some extent, it also describes the process
of coupling a gene with its functions (or potential functions), which rather
refers to functional annotations. This thesis mainly focuses on genomic an-
notations, but functional annotations will be briefly mentioned further in
Chapter 3.

As Stein, 2001 stated, “the value of the genome is only as good its an-
notation; it is the annotation that bridges the gap from the sequence to the
biology of the organism.” [218]. Therefore, the quality and accuracy of ref-
erence annotations have brought particular attention over the years. Just
like assemblies, annotations evolve rapidly and are regularly completed with
novel data. There are two main approaches to annotate a genome: man-
ually or automatically (from sequencing data). There are huge collective
efforts to provide high-quality annotations. Most reference annotations thus
originate from consortia of researchers, which rely on specific and often dis-
tinct pipelines, such as Ensembl [219, 220], NCBI/RefSeq [221] or GENCODE
[222]. This latter is part of the ENCODE (ENCyclopedia Of DNA Elements)
project, which aims at developing a comprehensive map of functional ele-
ments in the human genome [223]. While manual annotation (HAVANA) is
the cornerstone of GENCODE annotation process, automated gene predic-
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tion is also used to complement manual curation [222]. The diverse ways to
annotate a genome will be presented in more details in Chapter 4.

1.4.2 Impact of the annotation in RNA-seq analyses

1.4.2.1 In bulk

The choice of an annotation might have a dramatic impact on RNA-seq anal-
yses [224]. However, this topic remains very little explored. To my knowledge,
there are only two published studies that directly question this impact, that
dates back from 2013 (Wu et al., 2013 ) [225] and 2015 (Zhao et al., 2015 ) [226].
More recently, two preprints target this impact with a focus on quantification
(Chisanga et al., 2021 ) [227] and differential expression (Hamaguchi et al.,
2021 ) [228]. Furthermore, all of these four papers solely focus on human bulk
data. Other studies explore the impact of each step of the RNA-seq work-
flow, including the comparison of different annotations, such as Simoneau et
al., 2020 [229] in bulk (human). As an illustration of how reference annota-
tions might differ, I compared the overlaps between the three main human
annotations (Figure 1.20).

The difficulty about choosing a gene model lies in the very complexity
of defining quality standards. No gene model is perfect and there is no
ground truth available to be compared to. For example, in order to compare
three reference annotations, Hamaguchi et al., 2021 define the “mappability”
criteria, a metric of the complexity of gene annotation, as the fraction of reads
that originate from a transcript (in the dataset) that truly ends up mapping
to the original transcript (annotated in the reference) [228]. Wu et al., 2013,
in turn, define the complexity of a genome annotation in terms of the number
of features (e.g. genes, isoforms, exons) it contains [225].

All of the above-mentioned papers reached two identical conclusions:

• The selection of a gene annotation over another results in discrepan-
cies in gene expression quantification, which therefore propagates in
downstream analyses such as differential expression;

• The more an annotation is rich and complex, the more it negatively
impacts RNA-seq analyses. Hamaguchi et al. thus suggest to exclude
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Figure 1.20 Venn diagram of the overlap between three human refer-
ence annotations. Comparison of the overlaps and intersections among three
reference annotations from Ensembl (in green), NCBI/RefSeq (in orange) and
UCSC (in blue) from the latest human reference hg38 (downloaded from https:
//hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/ the 15th September
2021.). An overlap is defined as follows: if a gene in reference A spans at least
50% of a gene in reference B, and vice versa. It only reports overlaps if the genes
are on the same strand. It shows that 22771 genes are shared between all three
annotations. Ensembl represents the largest annotation, with 27230 unique genes,
while NCBI and UCSC gather respectively 15906 and 2468 unique genes. It must
be noted that I have deliberately chosen to take unfiltered annotations for this
comparison. They may therefore include both coding and non coding genes, and
pseudogenes, which explains the high figures (specially for Ensembl).

unnecessary gene models from reference annotations [228]. In the same
vein, Zhao et al., 2015 and Wu et al., 2013 recommend to use a low-
complexity annotation if the aim is to provide a robust and reproducible
analysis, while a higher-complexity should be preferred if the emphasis
is put on characterizing novel transcriptional or regulatory mechanisms
[225, 226].

This latter point is mainly attributable to the increase of multi-mapped
reads in the presence of a high-complexity annotation. The vast majority
of RNA-seq analysis pipelines discard the multi-mapped reads in the early

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/
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steps. However, there is a rising debate on whether or not the multi-mapped
reads should be kept, and on the multiple ways to handle them [230].

1.4.2.2 In single-cells

In single-cell analysis, a preprint from Brüning et al., 2021 questioned the
impact of using various popular pre-processing workflows on downstream
analyses, with a small section on the differences between two annotations:
one unfiltered (which includes the complete Ensembl GTF), and the other
one filtered (as recommended by 10x Genomics, which exclusively includes
protein coding genes and lncRNA) [119]. To my knowledge, there is no other
paper that directly addresses this issue within a benchmark. However, it
solely focuses on already well-annotated species (mouse and human).

Among all the scRNA-seq workflows available, only Alevin keeps the
multi-mapped reads [128]. It processes them by equally dividing the counts
to all potential mapping positions. Brüning et al., 2021 precisely showed
that multi-mapped reads have a major impact on scRNA-seq analysis [119].
Interestingly, they are the first to demonstrate that using a high-complexity
annotation reduces the fraction of mitochondrial (MT) genes estimated in
each cell, a key feature to evaluate cell quality in scRNA-seq. They assume
that the reduced MT-genes content could be explained by the reads increased
tendency to map to several locations in the context of high-complexity anno-
tations. On the contrary, a lower-complexity annotation would thus overes-
timate MT-gene expression. They suggest that future mapping tools should
prevent multi-mapping by considering the likelihood of a gene to be expressed
in a given cell type (which would lead to a kind of cell-type specific gene an-
notation).

Nevertheless, it is not clear how reference annotations differences affect
RNA-seq when applied to poorly-annotated species (e.g. more or less any
species other than human or mouse). For example, a study on Zebrafish
from last year (Lawson et al., 2020 ) stands out as an exception, as it com-
pares the output of bulk RNA-seq with two reference annotations (Ensembl
and RefSeq) on one side, and estimates the gain of an improved annotation
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Figure 1.21 Illustration of a genome data viewer with diverging gene
models. The RNA-seq coverage track, in red, represent the sum of all the se-
quencing reads that fall into a given window. This track is extracted from Zhao et
al., 2015, Figure 6 (bulk signal) [226]. The gene model from Reference 1 (in yellow)
has a much shorter 3’UTR than the gene model from Reference 2 (in green). All
the rightmost RNA-seq signal will be lost if the quantification is carried out with
Reference 1.

on scRNA-seq analysis on the other side [231]. Unlike previously-mentioned
papers, Lawson et al. conclude that the discrepancies observed in RNA-seq
analyses are mostly due to both the length variations of the 3’UTRs, and the
absence of thousands of genes in each annotation. To illustrate the impact of
different gene models to quantify RNA-seq reads, I made a schematic repre-
sentation of a genome browser with diverging gene models in Figure 1.21. If
incomplete 3’UTR gene models have been shown to have an impact in bulk
RNA-seq analysis, it has barely been a subject of investigation in scRNA-
seq. What is more, the widely-used 10x Genomics scRNA-seq technology
specifically targets 3’UTR; we can thus already hypothesise that incomplete
3’UTR may impact the quantification of scRNA-seq signal.

Therefore, similarly to bulk data, an accurate and appropriate reference
annotation is paramount to rigorously quantifying scRNA-seq data. It is thus
essential to appreciate how and to what extent a given annotation impacts
scRNA-seq analyses, specially when working with poorly-annotated species.
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1.5 PhD overview and aims

This computational biology project capitalizes on a tight collaboration with
the experimental team of Xavier Morin (IBENS), in the context of the ANR
project “SYMASYM”. This project aims at identifying molecular mechanisms
that control whether a neural progenitor cell will enter a symmetric or asym-
metric mode of division (see Chapter 3 for more details). In the context of
this project, scRNA-seq datasets were produced with the 10x Genomics plat-
form, from chicken cervical spinal progenitors at 66 hours of embryonic de-
velopment. However, due to issues we encountered with the chicken genome
annotation that greatly impeded our scRNA-seq analyses (see Chapter 4), we
decided to set up a re-annotation analysis pipeline dedicated to scRNA-seq
data. Actually, the chicken genome annotation is poorly annotated compared
to the annotation of other model organisms like human, mouse or drosophila,
that have benefited from large collaborative efforts such as ENCODE [223].

In this regard, I aimed to address the following general questions:

• How much an incomplete reference annotation affects scRNA-seq data
analysis in a poorly-annotated species, and how much information can
be recovered with a project-specific annotation ?

• How to ensure scalability, reproducibility and traceability of scRNA-seq
10x Genomics analyses ?

Once the scRNA-seq data are reliably processed, it becomes possible to
proceed to the downstream analyses, that aim at answering biological ques-
tions. In the context of the ANR SYMASYM project, we are interested in
the mechanisms controlling the neurons production rate from neuroepithelial
progenitors, within the vertebrate central nervous system. The progenitor
pool is first amplified via proliferative symmetrical divisions (which produce
two progenitors, thereafter called SYM divisions), progressively switches to
neurogenic asymmetric divisions producing a progenitor and a committed
progeny (ASYM), and finally to symmetrical terminal divisions producing
two differentiating neurons (TERM). Much remains to be discovered about
the molecular and cellular mechanisms underlying the decision to enter an
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asymmetric division, and its execution. The main biological focus is thus the
search for transcriptomics signatures of SYM versus ASYM division mode in
neuronal progenitors, using scRNA-seq datasets from chicken and mouse.

For this part, my aim is to address these questions:

• Can we identify changes in expression that reflect the progressive tran-
sition from the SYM to the ASYM state out of scRNA-seq data ?

• If so, what are most differentially-expressed genes between SYM and
ASYM populations ?

Altogether, my thesis aims at evaluating, developing and applying bioin-
formatics approaches for scRNA-seq to study the neurogenic transition in
vertebrate neural progenitors. My results are organised as follows:

• Chapter 2: Development of an automated pipeline dedicated to the
pre-processing of 10x Genomics scRNA-seq data, in a scalable and re-
producible manner.

• Chapter 3: Application of scRNA-seq analysis approaches to various
neural progenitors datasets (mouse and chicken), in order to isolate
and uncover differences in gene expression between SYM and ASYM
populations.

• Chapter 4: Design of an hybrid approach to process scRNA-seq
from poorly-annotated species, by building a project-specific annota-
tion based on long-read transcripts, the scRNA-seq signal and the ref-
erence annotation.





Chapter 2

Eoulsan 2: automated
scRNA-seq pre-processing
pipeline

In this chapter, I present a manuscript introducing the workflow manager
Eoulsan 2. It has been specifically designed to process huge amounts of
sequencing data and support their analyses in an efficient and reproducible
manner. First developed by the IBENS genomic platform and introduced in
2012 [232], it has since benefited from numerous improvements, in particular
to handle more recent data types such as scRNA-seq and bulk long-read
RNA-seq. During my PhD thesis, I developed the pipeline dedicated to 10x
Genomics scRNA-seq analyses.

Following a few words on our motivations to build such a pipeline, I will in-
troduce some additional concepts on 10x Genomics data pre-processing, nec-
essary to understand my work. This chapter will end with results of the pre-
processing of the chicken scRNA-seq dataset produced for the SYMASYM
project.

73
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2.1 Motivation

As mentioned in 1.3.1, at the beginning of my PhD thesis we noticed that
using CellRanger was limiting, especially in case of low-quality data. This
is explained by the fact i) that the number of parameters was, and still is,
limited to the strict minimum (e.g. no choice on the parameters of either
mapping or assignment options, or on the way to identify the “true” cells),
ii) there was no access to the code at the time, and the documentation
provided only very brief description of the tools and parameters used (now
the code is on GitHub https://github.com/10XGenomics/cellranger), iii) it is
impossible to re-run just a part of the pre-processing workflow (often needed,
especially in case of errors or doubts on the data), and iv) it lacks of detailed
intermediary and regular quality checks. In addition, it is computationally
heavy and time-consuming.

For all these reasons, we decided to develop an open-source and flex-
ible approach to process scRNA-seq datasets based on the Eoulsan work-
flow manager (available to the community on GitHub: https://github.com/
GenomicParisCentre/eoulsan). This software has been built according to
state-of-the-art requirements.

We now routinely use both solutions, since Eoulsan provides many more
quality checks to detect potential problems from the library preparation up to
the count matrix generation. Furthermore, it is much more flexible in terms of
parameter settings. It is also appropriate to include novel developments. On
the other hand, CellRanger outputs allow a more straightforward comparison
with data from other labs, and provides a proprietary application Loupe
Browser1 that enables biologist collaborators to visualize and start exploring
their data immediately at the end of the workflow (without any data checking
or cleaning though).

1https://www.10xgenomics.com/products/loupe-browser

https://github.com/10XGenomics/cellranger
https://github.com/GenomicParisCentre/eoulsan
https://github.com/GenomicParisCentre/eoulsan
https://www.10xgenomics.com/products/loupe-browser
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2.2 Methodological background

2.2.1 Identifying true cells

One strength of droplet-based scRNA-seq approaches is their ability to pro-
cess a great number of cells in an automated manner. In order to recover and
identify these cells during the pre-processing steps, each droplet has a unique
cell barcode that will be added to the transcripts (see 1.2.2). The amount of
droplets for a given experiment, and thus cell barcodes, is several orders of
magnitude higher than the actual amount of input cells. This results in an
excess in cell barcodes that do not refer to real cells. Therefore, one essential
step of the droplet-based scRNA-seq workflow is i) to depict how many cells
have effectively been processed and ii) isolate the reads that originate from
these cells to pursue with the analyses.

A popular approach to identify if a barcode might refer to a “true” cell
is called the knee method (Figure 2.1). Over the years, several flavors of
the knee method have been developed. It was initially described in the
very first study based on Drop-seq data by Macosko et al., 2015 [64]. They
suggested relying on the cumulative frequency plot, which is expected to
exhibit an inflection point that matches the boundary between real cells and
background barcodes (Fig. 2.1-B). This was the method implemented in
CellRanger up to the 3.0 version2 (which was released in 2019). However,
this approach does not handle the case where some “false” barcodes would be
due to sequencing errors. UMI-tools provides an error-proof, network-based
approach, initially developed to handle UMI errors, that has been adapted
to identify cells whitelist [86]. Figure 2.1 shows the output plots of UMI-tools
whitelist, that are used to visually assess if a threshold has been properly
estimated.

2https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/
latest/algorithms/overview

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview
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Possible 
thresholds Action

99 Selected
109 Rejected
123 Rejected

A B

C D

Figure 2.1 Summary plots of UMI-tools whitelist output. The dotted
lines represent the possible thresholds tested (values are specified in D). A) Bar-
code rank plot. It shows the total number of UMI counts detected in each “cell”
(or barcode). X axis represents a ranked list of cell barcodes, ordered by the
number of counts (from high to low). The part in blue highlights the barcodes
identified as “true” cells, while the part in black represent the barcodes identified
as background. B) Cumulative frequency plot. C) Density plot according to the
total number of counts per cell (in log10). D) Possible thresholds tested by UMI-
counts whitelist. It selected 99 as the best possible threshold. These plots were
produced during the analysis of a toy dataset of 100 cells (public dataset down-
loaded from 10x Genomics website http://cf.10xgenomics.com/samples/cell-exp/
1.3.0/hgmm_100/hgmm_100_fastqs.tar).

It should be noted that, since its 3.0 version, CellRanger cell whitelist
identification relies on an algorithm introduced by Lun et al., 2019 with
their dedicated tool EmptyDrops [133]. It mainly relies on the comparison of
expression profiles between top cells (the ones with the higher UMI counts)
and lower cells (the ones that most probably belong to the background).

http://cf.10xgenomics.com/samples/cell-exp/1.3.0/hgmm_100/hgmm_100_fastqs.tar
http://cf.10xgenomics.com/samples/cell-exp/1.3.0/hgmm_100/hgmm_100_fastqs.tar
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2.2.2 Cell barcodes and UMI processing

2.2.2.1 Barcodes assignment to each single read

The number of FASTQ files for an experiment differs depending on the se-
quencing settings. For a 10x Genomics run, read details are spread within
three files:

• Illumina barcodes: used only during the FASTQ demultiplexing
step;

• Reads 1 (R1): contains the cell barcodes and the UMIs;
• Reads 2 (R2): contains the sequencing reads per se.

Figure 2.2 illustrates this 10x Genomics-specific setting.

Cell 
Barcode

UMI Sequence

Read 1

Read 2

A

B

C

Figure 2.2 Illustrations of 10x Genomics cell barcode and UMI set-
tings. A) Illustration of a 10x Genomics library fragment. 10x Genomics used
paired-end sequencing. R1 is on the forward strand while R2 is on the reverse
strand (Illumina index not shown). B) Schematic representation of the distri-
bution of the R2 along the transcripts. C) Schematic representation of the reads
sequences. Each color represents a unique cell. Images adapted fromMacosko et al.
[64] and http://data-science-sequencing.github.io/Win2018/lectures/lecture16/.

Moreover, each flow cell is attributed with 4 different Illumina indexes.
This results in at least 12 FASTQ files (4 ∗ 3) for each 10x Genomics ex-
periment. In order to simplify file processing, all R1/R2 reads are usually
merged together, resulting in just 2 files to handle. A standard practice is

http://data-science-sequencing.github.io/Win2018/lectures/lecture16/


78 Chapter 2. Eoulsan 2: automated scRNA-seq pre-processing pipeline

then to add the R1 details (barcode and UMI) to the read name in R2 files.
These steps can be handled with UMI-tools extract [86].

2.2.2.2 Handling sequencing errors

The emergence of UMIs have largely resolved PCR-amplification biases and
they are now extensively used in scRNA-seq. However UMIs, as much as
cell barcodes, still require correction for potential errors, and low-quality
filtering. UMI errors handling is still an active research field [233]. A simple
and straightforward method to account for PCR or sequencing errors (as
implemented in CellRanger) is to rely on the Hamming distance between
similar UMIs belonging to the same cell (threshold set to 1)3. Nevertheless,
other types of errors can occur, such as mapping errors (a single read / UMI is
assigned to multiple transcripts or to the wrong transcript) or collision errors
(different mRNAs sharing the same UMI). More sophisticated approaches
that would correct for all these types of errors are thus recommended for
UMI-based datasets. The network-based approach implemented in UMI-
tools precisely allows to account for both the relative frequency of similar
UMIs and the number of mismatches to depict potential errors [86].

3https://kb.10xgenomics.com/hc/en-us/articles/115003133812-How-does-cellranger-count-process-and-filter-UMIs-

https://kb.10xgenomics.com/hc/en-us/articles/115003133812-How-does-cellranger -count-process-and-filter-UMIs-
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2.3 Eoulsan 2: an efficient workflow manager
for reproducible single-cell and long-read
transcriptomics analyses

2.3.1 Personal contribution

In the following work, I started by designing the 10x Genomics pipeline
which I then developed and integrated into Eoulsan. I wrote and tested
the Docker images corresponding to each newly integrated tool. I have also
documented the 10x Genomics workflow and compared its performance with
CellRanger. Lastly, I participated in the revisions of the manuscript, as well
as in the design and generation of the figures. The following manuscript have
been deposited in BioRxiv: https://www.biorxiv.org/content/10.1101/2021.
10.13.464219v1.

2.3.2 Manuscript

https://www.biorxiv.org/content/10.1101/2021.10.13.464219v1
https://www.biorxiv.org/content/10.1101/2021.10.13.464219v1
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ABSTRACT

Motivation: Core sequencing facilities produce huge amounts of sequencing data that need to

be analysed with automated workflows to ensure reproducibility and traceability. Eoulsan is a

versatile open-source workflow engine meeting the needs of core facilities, by automating the

analysis of a large number of samples. Its core design separates the description of the workflow

from the actual commands to be run. This originality simplifies its usage as the user does not

need to handle code, while ensuring reproducibility. Eoulsan was initially developed for bulk

RNA-seq data, but the transcriptomics applications have recently widened with the advent of

long-read sequencing and single-cell technologies, calling for the development of  new workflows.

Result: We present Eoulsan 2, a major update that (i) enhances the workflow manager itself, (ii)

facilitates the development of new modules, and (iii) expands its applications to long reads

RNA-seq (Oxford Nanopore Technologies) and scRNA-seq (Smart-seq2 and 10x Genomics).
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The workflow manager has been rewritten, with support for execution on a larger choice of

computational infrastructure (workstations, Hadoop clusters, and various job schedulers for

cluster usage). Eoulsan now facilitates the development of new modules, by reusing wrappers

developed for the Galaxy platform, with support for container images (Docker or Singularity)

packaging tools to execute. Finally, Eoulsan natively integrates novel modules for bulk RNA-seq,

as well as others specifically designed for processing long read RNA-seq and scRNA-seq.

Eoulsan 2 is distributed with ready-to-use workflows and companion tutorials.

Availability and implementation: Eoulsan is implemented in Java, supported on Linux systems

and distributed under the LGPL and CeCILL-C licenses at:

http://outils.genomique.biologie.ens.fr/eoulsan/. The source code and sample workflows are

available on GitHub: https://github.com/GenomicParisCentre/eoulsan. A GitHub repository

for modules using the Galaxy tool XML syntax is further provided at:

https://github.com/GenomicParisCentre/eoulsan-tools

Contact: eoulsan@bio.ens.psl.eu

BACKGROUND

For the last fifteen years, technological advances in sequencing devices have resulted in a

dramatic increase in read throughput. Furthermore, the rise of long-read sequencing with the

third generation sequencers from Pacific Biosciences (PacBio) and Oxford Nanopore

Technologies (ONT) enables the sequencing of much longer fragments. Altogether, the panel of

High Throughput Sequencing (HTS) applications is very large, with a current democratization of

single-cell approaches.

A common issue with HTS data, is to ensure reproducibility and traceability of the

bioinformatics analyses performed on sequencing results, regardless of the application (research,

medical diagnostics or forensics). Analysis pipelines encapsulate a series of sequential steps, for

which a variety of individual tools must be connected. Such pipelines can be written as simple

scripts, or with more elaborate workflow management systems. Sequencing core facilities are

particularly in need of reliable automated pipelines that do not require manual intervention, while

ensuring proper traceability.

Since its inception, the aim of Eoulsan (Jourdren et al. 2012) is to provide an efficient,

stable and reliable workflow engine supporting HTS analyses, targeting bioinformatician

end-users, and especially core facilities that analyze several dozens of projects each year. To do

so, Eoulsan’s core design encodes the analysis workflow within an XML flat file, rather than

embedding it within the code of a program. Another core feature is the proper separation
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between the experimental design (samples and associated metadata) and the analysis workflow

itself. This model allows to reuse and standardize workflows across many experiments.

Moreover, Eoulsan avoids file manipulation issues, by using file aliases linked to external

repositories (e.g., for genomes, features annotations or mapper genome indexes). It automatically

checks the input data on startup, and prevents output files overriding. Eoulsan is distributed with

state-of-the-art individual tools (e.g., FASTQC, MultiQC, DESeq2) embedded in reusable

modules, and offers alternative choices for many of the steps (e.g., mapping can be performed

with either BWA, Bowtie1, Bowtie2, STAR, GMAP, GSNAP or MiniMap2).

Eoulsan supports diverse computing infrastructures to parallelize and distribute

computation - from workstations to large clusters - thereby ensuring its efficiency and versatility.

Our software was one of the very first bioinformatic tools able to run on an Hadoop cluster.

The aim of Hadoop is to apply algorithms where data is physically stored, rather than sending

data to computing nodes hosting the algorithms. In genomics, sequencing data are often stored

in quite huge files. On a typical scientific cluster, transferring data to the computing nodes is

thus problematic, with a risk of staturating access to network file systems, resulting in using a

lower number of nodes. A Hadoop cluster solves this input/output (I/O) issue, enabling the use

of the maximum available number of nodes. Hadoop thus remains particularly suited for

genomics applications.

Several workflow engines have been developed specifically for genomics (recently

reviewed in (Wratten, Wilm, and Göke 2021)). Among them, the most widely used are Galaxy

(Afgan et al. 2018), Snakemake (Mölder et al. 2021) and Nextflow (Di Tommaso et al. 2017).

Eoulsan’s main principle is its low-code approach, which is closer to Galaxy’s design. Its strength

also lies in its installation ease, the stability of the code, and continuous maintenance and

evolution for the last 10 years.

Here, we present Eoulsan 2, a major update of our workflow engine software with many

new features and enhancements. This new version facilitates the development of new modules,

includes module containerization, and extends its execution environments with support for

several job schedulers. Novel modules have also been added to use state-of-the-art third-party

tools. Eoulsan 2 supports transcriptomics applications, including both short and long reads bulk

differential analyses, and single-cell RNA-seq workflows for Smart-seq2 and 10x Genomics.

Moreover, we provide several ready-to-use workflows and tutorials for common analyses to help

users to start with our workflow engine, accessible from the GitHub page of the project

[https://github.com/GenomicParisCentre/eoulsan].
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IMPLEMENTATION

Eoulsan is a free software published under the GNU LGPL and CeCCIL-C licenses. A

Java Runtime Environment under Linux is the only requirement of this tool. Its unique user

interface is the command line. Eoulsan can be run under three modes: local (workstation),

Hadoop cluster or “standard” cluster (SLURM, TORQUE, HT-Condor and PBSPro job

schedulers are supported). In cluster mode, users can define memory and processor count

requirements for each task. Moreover, merger and splitter steps can be added to the workflow to

better scale data processing all over the cluster and speedup computation.

Only two text files describing the pipeline need to be provided by the user to the input of

the workflow engine: (i) the experimental design and (ii) the workflow definition (Figure 1). The

experimental design of an Eoulsan analysis is stored in a text file (see example in Figure 2). For

Eoulsan 2, the design file format has been enhanced to handle complex designs for DESeq2

differential gene analysis (Love, Huber, and Anders 2014), such as multiple comparisons and

DESeq2 design formulas. The workflow steps and theirs parameters are listed in a companion

XML file, separated from the code, ensuring flexibility and traceability (see example on the

GitHub project page :

https://raw.githubusercontent.com/wiki/GenomicParisCentre/eoulsan/files/workflow-rnaseq.x

ml). Altogether, these two files allow to quickly resume large analyses upon trouble-shooting, and

guarantees reproducibility.

In the first Eoulsan release, the bundled RNA-seq workflow was hardcoded in the

software, thus not allowing to easily add new steps. In Eoulsan2, we have rewritten the workflow

engine, making it versatile for any bioinformatics workflow to be implemented.

In Eoulsan, each step of the workflow is a module, corresponding to encapsulated

third-party tools (Figure 1). In addition to previous modules, Eoulsan2 is shipped with

established tools such as DESeq2 (Love, Huber, and Anders 2014), HTSeq-count (Anders, Pyl,

and Huber 2015), sam2bam [https://github.com/samtools/htsjdk], FastQC

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc/], MultiQC (Ewels et al. 2016),

Trimmomatic (Bolger, Lohse, and Usadel 2014)...). External modules can be added through Java

plugins. In an effort to simplify the development of a new module, Eoulsan 2 is now able to

handle modules defined with the Galaxy tool XML syntax. Numerous modules have been

adapted using this syntax (e.g., Cutadapt (Martin 2011), featureCounts (Liao, Smyth, and Shi

2014), UMI-Tools (Smith, Heger, and Sudbery 2017), …), and are easily accessible on a

dedicated GitHub repository [https://github.com/GenomicParisCentre/eoulsan-tools]. It is

thus easy to adapt an existing program from Galaxy to Eoulsan.
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To ensure reproducibility of results over multiple computers, Docker

[https://www.docker.com/] has streamlined container management. Eoulsan can rely on Docker

or Singularity [https://sylabs.io/singularity/] containers for both Galaxy Tool XML and Java

modules (e.g., DESeq2). Each module thus runs separately in its own container. This approach

simplifies the deployment of the modules and avoids dependency management and complex

installation procedures.

Since the first version of our tool, the number of available modules has dramatically

increased (10 modules initially vs 33 modules, among which 14 are built with the Galaxy tool

syntax and available on our specific GitHub repository). To ensure consistency of the code over

versions, we have deployed a functional test system based on Jenkins [https://www.jenkins.io/]

continuous integration software. This system checks every week whether changes in Eoulsan

source code has led to result changes in more than 190 reference analyses (2 days of analyses).

The tests cover all modules and Galaxy tools, mapping programs, as well as local and Hadoop

execution modes.

With unit tests for Java source code, functional tests and container management, Eoulsan

2 ensures a very strong confidence in reproducibility of  user results.

RESULTS

While the first version of Eoulsan was designed only for bulk RNA-seq differential

analysis workflows, Eoulsan 2 is shipped with ready-to-use workflows for various types of

transcriptomics analyses:

- bulk RNA-seq Illumina differential analysis

- Oxford Nanopore long reads RNA-seq

- scRNA-seq with Smart-seq2 protocol

- scRNA-seq with 10x Genomics protocol

Ready-to-use workflows, along with tutorials detailing their usage, are accessible on the GitHub

page of  Eoulsan [https://github.com/GenomicParisCentre/eoulsan].

Bulk RNA-seq Illumina differential analysis

In its first version, Eoulsan supported four read mappers (BWA, Bowtie, SOAP2,

GSNAP). In Eoulsan 2, the RNA-seq workflow has been greatly improved with new integrated

mappers (STAR, Bowtie2, GMAP/GSNAP), while SOAP2 is no longer supported. We have

developed a fast implementation of the HTSeq-count algorithm in Java, which is included in

Eoulsan 2. It also supports complex designs with DESeq2.
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Bulk Oxford Nanopore long reads RNA-seq differential analysis

The Oxford Nanopore long-reads RNA-seq workflow uses Minimap2 (Li 2018) to align

sequences over the reference genome. The workflow is otherwise very similar to the Illumina

workflow, with the differential analysis performed with DESeq2. In all the steps (except for

mapping), the workflow uses the same modules as the Illumina workflow, with a tuning of the

parameters to adapt to the long-reads. The steps with tuned parameters are : filter raw FASTQ

files (filterreads module), remove unmap and multimatches SAM entries (filtersam module) and

count alignments with HTSeq-count (expression module). Even though the workflow currently

relies on the same tools as used for the Illumina workflow, we are expecting to update the

workflow once the LRGASP challenge reaches its conclusions

[https://www.gencodegenes.org/pages/LRGASP/]. This systematic evaluation of different

methods for transcript computational identification and quantification will constitute a reference

to help us identify the most relevant tools, and integrate them as new modules in Eoulsan.

Single-cell RNA-seq pre-processing analyses

To answer user growing interest for single-cell transcriptomics data, we developed

scRNA-seq workflows for both Smart-seq2 and 10x Genomics technologies. These workflows

focus on the pre-processing steps, from the raw reads up to the generation of the count matrix.

These workflows are detailed in Figure 3. These first steps are crucial to ensure the quality of the

pre-processed data before the downstream analyses.

The Smart-seq2 workflow is derived from the bulk RNA-seq Illumina workflow, as the

steps are quite similar, with the mapping performed by STAR. The main difference is that data

for each cell is stored in a separate FASTQ file. A typical experiment thus produces hundreds of

FASTQ files. The fact that Eoulsan uses Hadoop calculation clusters makes this tool well-suited

for parallelized processes, hence handling this issue.

The 10x Genomics workflow reuses some existing modules of Eoulsan (e.g., mapping

with STAR), but has required the development of novel modules to take into account the cellular

barcodes and Unique Molecular Identifiers (UMIs), intrinsic to this technology. The 10x

Genomics protocol uses cell barcodes (16bp) to identify each cell. Many barcodes do not

correspond to real cells, which means “valid” barcodes corresponding to real cells must be

inferred. For these steps, we rely on the third-party tool UMI-Tools (Smith, Heger, and Sudbery

2017). By default, UMI-tools whitelist detects these valid barcodes with the knee method, by

retaining the top most abundant barcodes (umiwhitelist module).
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Following the identification of these « valid » barcodes, the next step is to filter out the

reads that do not match with these barcodes (umiextract module). Once the mapping has been

performed, reads must be assigned to the genes they most probably originated from. This step is

handled with the featureCounts module (Liao, Smyth, and Shi 2014), which outputs a bulk count

matrix. Finally, the single-cells counts are isolated with the umicount module, thus producing a

single-cell expression matrix. It should be noted that only the reads mapping to the same strand

as the annotated genes are taken into account, since the 10x Genomics protocol is stranded.

Downstream analyses are generally directly performed in R. Eoulsan facilitates this

transition to post-processing steps with R, by generating a RDS file containing a

SingleCellExperiment Bioconductor object. It encapsulates the count matrix, along with cells and

gene annotations, as a ready-to-use object for downstream analyses. Another possibility is to

output a CellRanger formatted count matrix with the MatrixToCellRangerMatrix module. This

option allows users to perform downstream analyses in R with functions that take as input a

CellRanger matrix. Altogether, Eoulsan 2 ensures users don’t have to change their downstream

analyses pipeline without further changes, by directly providing the count matrix in the correct

format.

Comparison with similar tools

In terms of Workflow Management Systems, Nextflow and Snakemake are currently the

most common engines for a usage at the command line, and Galaxy for a usage through a web

browser interface. Eoulsan’s originality lies in its internal design as a low-code workflow manager.

Indeed, the workflows use XML files without any code. The modules are actually an abstraction

layer over the actual tools, thereby hiding the complete syntax of all their parameters. This

organisation enables to maintain the code of the modules separately from the workflow itself.

This choice is particularly suited in the context of a core facility platform that analyses dozens of

projects each year. Each project is thus associated with a reproducible workflow file, independent

of the command lines that are actually run. Portability of the code is comparable to the

above-mentioned workflow engines, as many modules are containerized with Docker or

Singularity, and we take advantage of systems developed by Galaxy (Galaxy Tools XML syntax).

In addition, the code consistency in Eoulsan is tested with functional tests using a Jenkins server

on a weekly basis.

Our 10x Genomics scRNA-seq workflow can be compared to the CellRanger program,

developed by the same company.  CellRanger performs the pre-processing steps, and provides a

user-ended HTML report already including some downstream analyses (clustering, t-SNE
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visualisation). The Quality Check (QC) values are limited in CellRanger, while Eoulsan provides

FASTQC and MultiQC reports that enables a deeper interpretation of  the quality of  the data.

Eoulsan relies on state-of-the-art tools such as UMI-Tools, which enables more versatility than

CellRanger. CellRanger’s lack of  time efficiency and high requirement for memory usage has

previously been underlined (Gao et al. 2021). Our workflow is 2-3 times faster with limited

resource usage for similar results (R2=0.998 for UMI count per cell) (Figure 4).

CONCLUSIONS

Our workflow engine Eoulsan 2 aims at facilitating high throughput sequencing analysis

for bioinformaticians, in particular for transcriptomics applications. Eoulsan handles the most

resource-expensive parts of analyses, and it can conveniently be deployed on any cluster, as well

as on workstations. Result reproducibility has always been one of our major concerns in Eoulsan

development. This is why Eoulsan source code is extensively tested through unit tests, as well as

a huge number of functional tests. In addition, since Docker and Singularity container systems

have emerged, they have been utilized for Eoulsan modules external dependencies. To ease

module creation, we introduced in Eoulsan 2 the support for the Galaxy Tool XML files, and a

comprehensive documentation for developers. Moreover, several ready-to-use workflows for

both short and long reads RNA-seq, Smart-seq2 and 10x Genomics scRNA-seq are available,

along with tutorials. With all these enhancements since its first version ten years ago, and a

strong foundation for reproducibility and scalability, Eoulsan is particularly suited for core

facilities wishing to implement a long-term stable solution for managing their transcriptomics

workflows.

AVAILABILITY AND REQUIREMENTS

Project name: Eoulsan

Project home page:

https://www.outils.genomique.biologie.ens.fr/eoulsan/: Binary downloads and reference
documentation

https://github.com/GenomicParisCentre/eoulsan: Source code and workflow wiki

https://github.com/GenomicParisCentre/eoulsan-tools: Additionnal modules

Operating system(s): Unix

Programming language: Java
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FIGURES

Figure 1 : Overview of  Eoulsan 2 workflow management system

Eoulsan is a workflow engine designed for high-throughput genomics analyses, with a focus on

transcriptomics. The workflow is described as an XML file, rather than code, and each step

corresponds to a reusable independent module. Each module may internally run several tasks

with third-party programs. Installation of these dependencies is facilitated by containerization

with Docker or Singularity. Implementation of a new module is facilitated by the use of Galaxy

Tools XML (not shown). The experimental design file specifies the metadata of the samples, as

well as their status (controls), and links to larger files that may be stored elsewhere in the

filesystem, such as the genome assembly and annotation. The workflow can be executed either

on a local workstation or on a cluster, which enables parallelization of the tasks when possible.

Ready-to-use workflows are available for four applications.
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Figure 2 : Example of  a design file for Eoulsan

The header section contains general information about the design and the project. This includes

the genome file that will serve for the mapping, and the annotation. The “Experiments” section

specifies details on the experimental design. It can include multiple experiments and comparisons

that should be made for the differential analyses. The “Columns” section provides details on

each sample, including the information about technical and biological replicates. The file can be

found on the GitHub project for Eoulsan at this URL:

https://raw.githubusercontent.com/wiki/GenomicParisCentre/eoulsan/files/design-rnaseq.txt
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Figure 3 : Single-cell RNA-seq workflows in Eoulsan 2

Eoulsan 2 supports two workflows for scRNA-seq data processing: Smart-seq2 and 10x

Genomics. Some modules were specifically developed to support this type of data. While the

Smart-seq2 workflow is quite similar to a bulk RNA-seq workflow, the 10x Genomics workflow

has several specific modules to treat cell barcodes and Unique Molecular Identifiers (UMIs).
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Figure 4 : Comparison of  computing efficiency between Eoulsan and CellRanger

The comparison was performed using Eoulsan v2.3 and CellRanger v3, on a dataset of 5000

PBMC cells generated with the 10x Genomics technology (v3 Chemistry) downloaded from 10x

Genomics website:

[https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pb

m-cs-from-a-healthy-donor-v-3-chemistry-3-1-standard-3-0-2]. A. Barplot of each of the 4

individual runs. For comparison purposes with CellRanger that uses a pre-computed index, we

ran Eoulsan with a pre-computed STAR index, except for run 2. Note that for run 2, Eoulsan is

faster than CellRanger, even when adding the step of building the STAR index. B. Boxplot

showing the execution time (Y axis) for each program, summarizing the three runs using a

pre-computed index.
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2.4 Pre-processing of the SYMASYM dataset

The overall 10x Genomics scRNA-seq workflow steps are schematized in Fig-
ure 3 of the above manuscript and detailed in the results section Single-cell
RNA-seq pre-processing analyses. I describe below the results obtained with
the SYMASYM dataset, produced by Xavier Morin’s team. The full workflow
used for its analysis is shown in Annexes A.2 (it provides a full description
of the steps and parameters settings). I also compare these results with the
output of CellRanger.

The SYMASYM dataset has been produced from chicken cervical spinal
progenitors at 66 hours of embryonic development. For this dataset, 5000
cells were originally loaded into the 10x Genomics cell partitioning system
(Chromium). Due to low cell capture rates (as mentioned in 1.2.2), we ex-
pected around 50%4 of the cells to be captured.

We used the NCBI reference genome GCF_000002315.5_GRCg6a_genomic.fna
and a corrected annotation ref_GRCg6a_top_level.corrected.gtf to process
this dataset. By corrected I mean that I designated the mitochondrial genes
as “exons” in the GTF file. In the original file, they are described as “CDS”
features, which precludes them from being used in the gene assignment step,
and results in misclassification and errors in identifying and filtering cells
(since the percentage of mitochondrial genes associated with a cellular bar-
code is used as a key parameter to keep or exclude “healthy” and “unhealthy”
cells).

2.4.1 With Eoulsan

Executing commands The full workflow has been executed with the fol-
lowing two commands:

1 # Automatically create design file
2 eoulsan createdesign -p data/fastq /*
3 data/ genome / GCF_000002315 .5 _GRCg6a_genomic .fna
4 data/ annotation / ref_GRCg6a_top_level . corrected .gtf

4https://www.10xgenomics.com/wp-content/uploads/2016/04/10x_Single_Cell_
App_Note.pdf

https://www.10xgenomics.com/wp-content/uploads/2016/04/10x_Single_Cell_App_Note.pdf
https://www.10xgenomics.com/wp-content/uploads/2016/04/10x_Single_Cell_App_Note.pdf
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5 # Execute full workflow
6 eoulsan -conf conf exec workflow_10xGenomics .xml design .txt

Listing 2.1 Commands to execute Eoulsan workflow

The first command outputs the design file (see Annexes A.1). I chose here
to process each lane separately, in order to facilitate computing parallelization
and depict if a lane appears as of deficient quality. It thus results in 4 ∗ 2
FASTQ files to handle (4 R2 and their corresponding 4 R1, see below). The
outputs are merged in a latter phase, at the end of the workflow.

Reads quality checking and filtering To evaluate the reads quality,
we rely on the FASTQC [115] module (integrated within Eoulsan). Then,
we filter out low-quality reads with the Eoulsan built-in module, thanks to
mean Phred scores (see Annexes A.2 for details on Phred scores). We set
the mean read quality to a minimum threshold of 30. Figure 2.3 shows
the reads quality summarized by MultiQC [234], and Figure 2.4 highlights a
sample of the output produced by MultiQC on top of the results of FASTQC
(other FASTQC results are less relevant for scRNA-seq data), before filtering.
Finally, Figure 2.5 reveals reads quality summary after quality filtering.

Figure 2.3 SYMASYM reads quality summary statistics before filter-
ing. Key characteristics of each FASTQ file. There are 2 files per lane (each lane
is identified with S1, S2, S3 or S4). Duplicated reads are automatically removed
later on with UMIs.

We can see here that all the FASTQ files turn up to be of good quality.
Before the filtering there were 533 millions of reads. Afterwards, we can
observe that the number of reads dropped down to 470 million, that is to say
88% of the reads are identified as good quality.
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A B

Figure 2.4 SYMASYM results of reads quality checking. A) Mean qual-
ity scores of all reads according to base position. Each green line represents a single
FASTQ file. They are difficult to distinguish as they all overlap. B) Number of
reads for each mean quality score in each of the FASTQ files. Colors represent low
(red), medium (yellow) and high Phred scores (green).

Figure 2.5 SYMASYM reads quality summary statistics after filtering.
Same plot as 2.3, after quality checking and filtering.

Cell whitelist Cell barcodes corresponding to “true” cells are identified
with umiwhitelist Eoulsan module, which is based on UMI-tools whitelist [86].
Figure 2.6 shows the summary plots produced by this module on SYMASYM
data. From the tested threshold values, we can see that the first one (thresh-
old value of 1) is due to an outlier which has twice as many counts as its
closest cells in terms of total counts (Figure 2.6-A). The corrected threshold
of 2479 seems appropriate according to both the knee position in both bar-
code rank plot (Figure 2.6-A) and the cumulative frequency plot, and the
expected number of cells that was around 2500 (input of 5000 cells, with
an approximated capture rate of 50%). On the contrary, the 4073 threshold
seems too far from the knee, so we can assume it was correct to reject it.
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C
Possible 
thresholds Action

1 Rejected
2479 Selected
4073 Rejected

A B

D

Figure 2.6 Eoulsan cells whitelist summary plots. See 2.1 for a description
of these plots. UMI-tools whitelist here selected 2479 as the best possible threshold,
out of 2500 expected cells.

Mapping and gene assignment For the mapping and gene assignment
steps, we used STAR [122] and featureCounts [123] Eoulsan modules. Figure
2.7 highlights the outputs of both steps, summarized by MultiQC.

The very low number of unmapped reads (0.1% in each lane) shows that
the chicken galGal6 genome assembly quality is enough not to impact on read
loss. However, we can observe that nearly 8% of the reads are multi-mapped
(7.7% multiple loci, 0.2% too many loci - all lanes have the same values).
A multi-mapping inclusive approach would thus allow to recover about 17
millions of reads. For the rest of the analyses, we retained only the uniquely
aligned reads (92% of all reads).

As for the gene assignment values, we observe that 68.2% of the reads
that passed previous filters (e.g. uniquely mapped) are assigned to a gene
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A

B

Figure 2.7 SYMASYM mapping and gene assignment outputs sum-
mary plots. A) Alignment scores of the reads (separated by lane), represented in
terms of total counts (left plot) and percentage (right plot). The uniquely mapped
reads are represented in dark blue, and the multi-mapped reads are in light blue
(< 10 loci) or orange (>= 10 loci). B) Gene assignment values of the reads (sep-
arated by lane), represented in terms of total counts (left plot) and percentage
(right plot). The uniquely assigned reads are shown in blue. The unassigned reads
are splitted into unassigned due to the absence of known feature (in black) and
unassigned due to an ambiguity (read overlapping 2 known features on the same
strand, in green). Notice here the large proportion of unassigned reads (in black).

annotated in the reference. Depending on the considered lane, that makes a
total of 32.4 (S2) to 38.1 (S4) millions of assigned reads. Most of the reads
lost at this stage are due to the lack of feature in the reference annotation
(26.7% of all reads). The rest of the reads, 5.1%, are lost because of an
ambiguity.

We can see here that despite small differences in reads lane repartition,
there is no differences in terms of percentage, neither for the mapping nor
for the gene assignment.
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2.4.2 Comparison with CellRanger v3.0.1

At the end of the workflow, CellRanger provides a summary report of some
key quality values. Figure 2.8 shows a screenshot of the SYMASYM Cell-
Ranger report. Among others features, we can notice from this report that
CellRanger detected 7285 cells.

Regarding computing times, CellRanger successfully ran the analyses in
15H51min, while Eoulsan reported a runtime of 5H34min. This significant
difference could be explained by the fact that CellRanger processed 7285 cells
whereas Eoulsan processed three times less cells (which means as much less
reads to be processed).

Because Eoulsan and CellRanger both rely on STAR for the mapping
step, the lower number of reads that map confidently to the genome with
CellRanger (70.7%, or 375 millions of reads) may be:

• Indicative of too stringent parameters for the mapping steps (which
are hard coded in the pipeline for all versions < 4.0, thus cannot be
changed by the user5) - moreover, it is key to note that the mapping
with CellRanger relies on both the genome and transcriptome ;

• Inflated by the low-quality reads (that does not seem to be filtered by
CellRanger);

• The reads belonging to the next to 5000 background “cells”.

We checked this last assumption by forcing the number of cells to be pro-
cessed by CellRanger to 2700 (e.g. the top 2700 in terms of total counts). In
this configuration, the percentage of reads confidently mapped to the genome
remained the same (70.5%, data not shown). Considering that Eoulsan could
still map 432 millions of reads that passed the quality filtering (92% of 470
million), we could assume that CellRanger poorer results in terms of map-
ping are due to unsuitable mapping settings and inflated by low-quality reads.

5https://kb.10xgenomics.com/hc/en-us/articles/360003877352-How-can-I-modify-
the-STAR-alignment-parameters-in-Cell-Ranger-

https://kb.10xgenomics.com/hc/en-us/articles/360003877352-How-can-I-modify
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Figure 2.8 Screenshot of SYMASYM CellRanger report. The plot on
the right is equivalent to the Barcode rank plot produced by Eoulsan. The main
difference with Eoulsan is the number of barcodes detected as “true” cells.

Moreover, transcriptome mapping is not recommended unless a high-quality
annotation is available (see 5.2.3).

Regarding the gene assignment, it is a bit more complex to compare
directly the proportion of reads that are assigned to a feature, since the gene
assignment step in CellRanger is carried out simultaneously to the mapping.
The indicated 55.6% reads mapping confidently to the transcriptome are the
reads that are taken into account for UMI counting.

We can also observe that the number of median genes per cell is very
low, certainly due to the nearly 5000 cells that were incorrectly assigned as
cells. Eoulsan does not output these types of values (mean reads per cell, me-
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dian genes per cell), since these values are highly sensitive to data cleaning.
We thus prefer to compute them in a second time, during secondary analyses.

In conclusion, SYMASYM raw data are of sufficient quality to be used for
secondary analyses. The only concerning value is the 68,2% of reads assigned
to genes, which seems quite low considering the protocol targets transcripts,
and made us hypothesise a possible lack in the gene annotation. If the data
were processed with CellRanger, we should have filtered out manually the
nearly 5000 incorrectly assigned cells, or re-run the whole pipeline with a
parameter forcing the number of cells to be kept. Both CellRanger and
Eoulsan provide in depth summary reports, however the modular design of
Eoulsan allows for a much more flexible and responsive pipeline.





Chapter 3

Analyses of neural progenitors

In this chapter, I will present the results of the analyses I performed on a
mouse dataset, obtained from neural progenitors. Due to genome annotation
issues we encountered with the chick data, we decided to also investigate a
publicly-available mouse embryo spinal cord scRNA-seq dataset from Delile
et al., 2019 [235]. The biological questions are expected to be valid in both
model organisms.

I will first introduce some key concepts on the biological background,
following with a few words on how to handle noise and confounding effects
in scRNA-seq (methodological background). I will then present a selection
of results we obtained out of my reanalysis of Delile et al. dataset. I will
emphasize the approaches I selected in order to extract the most meaningful
signal possible to tackle the biological questions.
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3.1 Biological background

The vertebrate central nervous system (CNS) is a complex assembly of thou-
sands of cell types organized in an exquisite manner to form functional neural
circuits [236]. This amazing diversity of neuronal and glial cell types origi-
nates from a limited pool of neuroepithelial progenitors. Precise coordination
between proliferation and differentiation is paramount to produce the correct
amount of cells “at the right place at the right time” [237]. The progenitor
pool is first amplified via proliferative symmetrical divisions (which produce
two progenitors, thereafter called SYM divisions), progressively switches to
neurogenic asymmetric divisions producing a progenitor and a committed
progeny (ASYM), and finalise the differentiation with symmetrical terminal
divisions producing two differentiating neurons (TERM) [238].

Asymmetric cell division is a fundamental mechanism to generate cell
diversity. Much remains to be discovered about the molecular and cellular
mechanisms underlying the decision to enter an asymmetric division, and
its execution. In the context of the SYMASYM project, our objective is to
characterize the key regulatory circuits inducing this transition by exploring
transcriptomic changes that occur before and during this switch (Figure 3.1).
The main biological focus is thus the search for transcriptomic signatures of
SYM versus ASYM division modes in neuronal progenitors. It must be noted
that the definition of both population signatures is not straightforward due
to their coexistence in space and time.

Depending on the stage and regions in the developing CNS, the produc-
tion of differentiating neurons may rely on either direct neurogenesis, whereby
ASYM divisions from progenitors will produce a self-renewing progenitor and
a post-mitotic differentiating neuron, or indirect neurogenesis, in which the
“more committed” daughter cell is a progenitor which differs from the mother
cell at the morphological and molecular levels and harbors a reduced prolif-
eration potential. These intermediate progenitors are particularly abundant
in the neocortex of mammals, where they accumulate basally and increase
the neuronal output per surface unit. Several different subtypes have been
described; their emergence and diversification during evolution is thought to
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Figure 3.1 Biological context summary. In the context of neurogenesis, di-
viding neural progenitors may undergo either a symmetric division (a.k.a prolifer-
ative phase - SYM), or an asymmetric division (a.k.a. neurogenic phase - ASYM).
As the neurogenesis progresses, the population of ASYM progenitors rises while
the population of SYM progenitors declines. We aim at deciphering the transcrip-
tional changes that drive the switch between SYM and ASYM populations. Key
markers for this study are illustrated: in blue, the pan-progenitor marker Sox2 is
expected to be detected in all progenitor cells, and the neuronal marker Tubb3
is expected to match early neuron emergence. In yellow, the transcription factor
Btg2 is expected to specifically highlight ASYM progenitors (see below).
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be a major driver of the extraordinary expansion and diversification of the
mammalian neocortex, and in particular of primates.

While the evolutionary history and the biology of intermediate progeni-
tors constitute fascinating biological questions, from a practical standpoint
their diversity adds complexity in analysing the SYM/ASYM question. It is
however expected that the fundamental mechanisms that control SYM versus
ASYM modes of division in the CNS predate the appearance of intermediate
progenitors and will be to some extent conserved at the molecular and cellu-
lar levels between structures that rely solely on direct neurogenesis, such as
the spinal cord, and more complex brain regions that have acquired indirect
modes of neurogenesis. For this reason, the Morin group decided to tackle
the question of asymmetric division in the early embryonic spinal cord, where
“only” two types of cells, apical progenitors in the ventricular zone, and post-
mitotic cells in the mantle zone, are found at early neurogenic stages, thereby
reducing the number of confounding factors (this dichotomy is of course a
simplification, since complex patterning mechanisms of the progenitor and
neuron populations are also present in the spinal cord, as detailed below in
3.1.2)

In order to identify the key transcriptional switches that occur during
the neurogenic transition of vertebrate neural progenitors, we had initially
planned to analyse the chick dataset mentioned in the previous chapters.
Faced with the difficulties of the poor annotation of the chicken genome,
we decided to reanalyze a public scRNA-seq dataset of mouse embryo at
comparable developmental stages from Delile et al., 2019 [235]. In the fol-
lowing sections, I will introduce some fundamental concepts on asymmetric
cell division in the vertebrate CNS and highlight neural progenitors diversity.

3.1.1 Asymmetric cell divisions in the vertebrate CNS

Asymmetric cell division refers to the process by which a parent cell divides
into two dissimilar daughter cells that differ both in types and functions [239].
Asymmetric divisions may be induced by either extrinsic signals (distinct en-
vironmental signals received by the sister cells) or intrinsic signals (Figure
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3.2). In the latter case, the mother cell originally contains unique fate de-
terminants (which may be a protein, an RNA, or even an organelle) that
are geared towards each of the daughter cells, before cell division [240]. Since
the following sections deal exclusively with this mode of division, it will be
simply referred to as asymmetric division for simplicity.

Figure 3.2 Basic concepts of asymmetry and biased segregation. A)
Asymmetric cell division can be induced by cell extrinsic cues that are provided
by the local niche. B) Asymmetric cell division can also be induced by cell intrinsic
mechanisms. Asymmetric distribution of fate determinants (e.g. RNA, proteins)
relies on i) cell polarity or ii) intrinsic asymmetry of the mitotic spindle. Other
modalities exist, see Sunchu and Cabernard, 2020 [241] from which this figure is
adapted.

Asymmetric division is a key source of cell diversity, starting from prokary-
otes up to highly complex multi-cellular organisms [239]. Historically, the first
molecular characterizations of asymmetric division mechanisms were per-
formed in invertebrate models, relying on “obligate” modes of cell division for
the development of specific structures with invariant lineages (e.g. the first
division of the C. elegans zygote, or the sensory organs of D. melanogaster).
In addition to being amenable to large scale genetic screens, the invariant
nature of these lineages allowed for the unambiguous characterization of phe-
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notypes that could be explained by defects in asymmetric fate choices. These
studies established the conceptual framework defining an intrinsic mode of
asymmetric division: the polarization of the mother cell before division (e.g.
fate determinants are unequally localized in the mother cell) lead to the
unequal transmission to the daughter cells at the time of mitosis.

After mitosis, it will be differentially active between the sister cells and
therefore dictate a different fate. In order to achieve asymmetry, some form
of polarity must also be present in the mother cell to drive the unequal
distribution of the fate determinants. Depending on the cell types and de-
velopmental contexts, the polarity element differs: examples of asymmetries
fate determinant localization depending on canonical apico-basal or planar
polarity abound, in which cases a key factor is coordination of the mitotic
spindle with these axes of polarity to ensure asymmetric partitioning during
mitosis. More recently, it has been shown that the built-in asymmetry in
the mitotic spindle can be used to recruit fate determinants asymmetrically
to its poles. While the fundamental concepts and mechanisms initially de-
ciphered in invertebrate models have since been translated to more complex
systems, it also emerged that the conservation is not complete, and that sub-
stantial diversity exists between species (extensively reviewed in Sunchu and
Cabernard, 2020 [241]).

Contrary to historical models, where invariant lineages and short develop-
mental times allowed to link molecular and cellular asymmetries in dividing
cells to fate decisions in the progeny, the study of asymmetric divisions in
higher eukaryotes (and particularly in vertebrates) faces two key challenges:
first, due to more complex tissue organization, longer cell cycles, and gen-
erally longer developmental and differentiation processes, it is difficult to
monitor both cell division and daughter cells outcome with a cellular resolu-
tion.

In addition, in the developing vertebrate CNS, neural progenitors are
usually divided into proliferative (self-renewal, a.k.a symmetrically dividing)
and neurogenic progenitors (see Figure 3.1). They coexist in a highly reg-
ulated manner in space and time during development, as maintenance of
proliferative progenitors is essential for prolonged growth, while neurogenic
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progenitors producing differentiating neurons ensure that a functional ner-
vous system emerges. Hence, at any given time point, the proportion of
SYM/ASYM divisions differs between the developing CNS region. Further-
more, within the same region, these proportions also vary over time (Figure
3.3). This complex regulation lays the foundations for CNS organization in
vertebrates, and in particular, is considered as a major player in the evolution
of the neocortex [242].

TERM

ASYM 
SYM

A

Figure 3.3 Differences between SYM and ASYM populations at vari-
ous stages of development. Proportion of the diverse progenitor types at 5 dif-
ferent stages of development, as revealed by the differential expression of Sox2 and
Btg2 transcription factors in dividing (PH3+) motoneuron progenitors (Olig2+) in
the chick spinal cord. We can observe that the ratio of SYM to ASYM populations
decreases over time. Image adapted from Saade et al., 2013 [243].

It has been shown that this heterogeneity is driven by varying degrees
of extrinsic (tissue level) and intrinsic (molecular level) signals [244]. At the
tissue level, signalling molecules such as BMP4 and SHH play a key role to
maintain a balanced ratio between proliferation and differentiation in the
vertebrate spinal cord [243, 245]. At the molecular level, the mechanisms that
control whether a progenitor cell will enter a symmetric or asymmetric mode
of division are assumed to rely on modifications of the cells transcriptional
profiles. Some studies suggest that the transition of a cell from a symmet-
ric to an asymmetric mode of division is irreversible and occur at successive
stages of the neural developmental program. For all these reasons, it re-
mains difficult to assign an identity (SYM or ASYM) to a progenitor at any
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given time during development. Based on its dynamics of expression dur-
ing the neurogenic transition, Iacopetti et al., 1999 proposed that the Btg2
(a.k.a. Tis21) transcription factor is specifically expressed in ASYM pro-
genitors [246], as illustrated in Figure 3.1 (in yellow). Consistent with this,
functional studies that modify the switch from proliferation to neurogenesis
specifically also modulate Btg2 expression (as shown in both mouse [247] and
chick [243]).

Yet, In the absence of clonal analyses exploring the fate of daughter cells
born from the division of Btg2+ or Btg2- progenitors, the question remains
open whether Btg2 is a bona fide marker of ASYM and TERM divisions,
or simply a general marker of progression in the neurogenic process, whose
expression dynamics broadly correlates with an increasing probability that
any progenitor will undergo a neurogenic division. In addition, while Btg2
is described as an anti-proliferative factor, modulating its expression in em-
bryonic and postnatal stages only marginally affects neurogenesis, suggesting
Btg2 itself is not a key regulator of the mode of division. In any case, it can
be expected that genes that are instrumental for deciding the mode of divi-
sion are likely to harbor an expression dynamics that correlates with that of
Btg2 in bulk or scRNASeq datasets. Along this line, Arai et al., 2011 have
shown in a pilot differential screen that a number of genes are differentially
expressed between Btg2-GFP+ and Btg2-GFP- progenitors, although these
candidates were not tested functionally for a role in the mode of division
[248].

Besides the expression of specific genes, another parameter that has been
associated with neurogenesis is the regulation of cell cycle dynamics. There is
a general consensus that the duration of the cell cycle increases as the neural
tube develops [249], despite a great heterogeneity of the cell cycle length of
neural progenitors at a given time point. For example, early studies using
time lapse imaging of chicken neural tube slice culture showed that progenitor
cell cycle length ranges from 9h to 28h [250]. A recent study using reporters of
the different phases of the cycle established that this variability is distributed
over all cell cycle phases, with heterogeneity in the G1 phase representing
the main contributor of this phenomenon. Remarkably, G1 duration appears
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to increase from one cell generation to the next, in parallel to the neurogenic
potential [251]. Functional studies using drugs or genetic means to modulate
the duration of specific phases of the cell cycle also modulate the neurogenic
rate (reviewed in [252]). Based on these observations, it has been suggested
that the duration of its different phases may directly impact the mode of
division (SYM vs ASYM vs TERM), although few studies have actually
investigated the phenotypes with a cellular resolution to analyse the fate of
pairs of sister cells [253]. Interestingly, several studies have demonstrated
that cell cycle regulators may act as transcriptional regulators of cell fate,
independently of their role in cell cycle progression, but whether they act at
the level of the mode of division remains to be elucidated.

3.1.2 Neural progenitors are highly diversified

Besides their division mode, neural progenitors also widely differ in terms of
morphology and neurogenic potential. In the neural tube, progenitors are
precisely organized by domains along the dorso-ventral (DV) axis (Figure
3.4). According to their localization, progenitors will thus acquire distinct
characteristics (Figure 3.4-B shows the combinatorial expression of known
markers for each domain). This phenomenon defines patterning. Each do-
main will give rise to different neuron subtypes, and has its own temporality.
Ventral domains (p0, p1, p2, pMN, p3) tend to initiate neurogenesis earlier
than dorsal domains (dp1-6). This ensures the progressive formation of all
neuron subtypes. When neurogenesis is over, the progenitors remaining in
the neural tube will then switch to producing glial cells [254]. Therefore,
the immense heterogeneity in cell types within the CNS is also driven by
dorso-ventral patterning.

The simultaneous presence of these intrinsically different progenitors which
evolve at different paces towards neurogenesis, in addition to the strong effect
of the cell cycle, lead to take into account multiple layers of complexity when
analyzing scRNA-seq data. Each of these factors need to be considered in
order to lessen their impact on scRNA-seq analyzes.
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Figure 3.4 Illustration of progenitors diversity in the developing spinal
cord. A) Spatial organization of progenitor domains in the neural tube (see B
for domain names). Each neuron subtype originates from a distinct progenitor
domain. Only neurons derived from ventral progenitors are shown. RP: roof
plate. V0-V3: interneurons. MN: motor neuron. FP: floor plate. Image adapted
from Ribes and Briscoe, 2009 [255]. B) Bubble chart showing the combinatorial
expression of known markers within neural progenitors, along the DV axis. Delile
et al., 2019 relied on these markers to identify each of the DV domains in their
scRNA-seq analyses. The markers are organized from the most dorsal markers
(left) to the most ventral (right), except for Sox2 which is a pan-progenitor marker.
Image adapted from Delile et al., 2019 [235].

3.1.3 Neural progenitors in scRNA-seq studies

Regarding single-cell approaches, several groups recently produced and an-
alyzed neural progenitors scRNA-seq dataset. Indeed, Delile et al., 2019
(Briscoe lab) took the lead by publishing an atlas of spinal cord gene expres-
sion [235]. This massive study, conducted as a cell atlas (33754 cells spread
over 5 time-points) focuses on both progenitors and neurons diversity. Earlier
this year (April 2021), the same laboratory published a preprint describing
the human developing spinal cord (just as massive as the mouse study, with
a total of 71219 cells over 4 time-points) [98]. This same month, Scott et al.,
2021 released a preprint focused on zebrafish spinal cord pMN progenitors
(6489 cells, 3 time-points) [256]. Beyond studies targeting the neural tube,
we can cite Moreau et al., 2021 who analyzed the progenitors diversity and
induced neuronal fate acquisition in the mouse cerebral cortex (4225 cells at
a single time-point) [257]. It must be noted that all these studies rely on 10x
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Genomics technology.
It should be noted that for the most part, these studies aimed at de-

scribing the diversity of progenitor and neuronal subtypes in specific regions
of the developing CNS (cortex, striatum, spinal cord) or focused on gene
changes that accompany the neural differentiation process. Although some
of these datasets span several time points and should contain progenitors in
both amplification and neurogenic phases, the specific question of the mode
of division of progenitors (SYM vs ASYM) was not the focus of the analyses
and has not been directly addressed.

3.2 Methodological background

3.2.1 Data correction

In the section 1.3.2, we emphasized on the importance of cleaning scRNA-seq
data in order to properly pursue with the analyses. Even after normalization,
the count matrix often contains unwanted sources of variation (a.k.a. con-
founding factors), such as cell cycle or batch effects. They may be technical or
biological effects. Data correction precisely aims at taking into account these
factors. In this regard, two main approaches can be considered: completely
removing these effects or, alternatively, correcting for these effects to lessen
their impact on downstream analyses. The decision of which approach should
be adopted depends on the biological questions and the intended downstream
analyses [130]. Accounting for technical effects such as batch effects is not a
major issue in this thesis so we will not cover this topic here. I can however
recommend Chazarra-Gil et al., 2021 and Tran et al., 2020 who recently
reviewed dozens of batch-effect correction methods for scRNA-seq [258, 259].

As for biological effects, the most ubiquitous and popular data correction
relates to the cell cycle effects. A simple linear regression against the cell
cycle is often sufficient to remove these effects. For example, this is the ap-
proach chosen by Seurat [260] and Scanpy [137] developers. With this method,
a cell cycle score for each phase (G1, G2/M and S - G0 cannot be clearly dis-
tinguishable) is computed for each cell, and the cell is then assigned a phase
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depending on its highest score. The same approach can be used to remove
any other biological effect (e.g. mitochondrial gene expression) provided that
a list of marker genes is available. More advanced approaches may constitute
interesting alternatives, such as scLVM [261], f-scLVM [262] or ccRemover [263]

which rely on complex mixture models.
However, the lack of benchmark testing these approaches, and their dif-

ferent underlying assumptions (e.g. scLVM assumes that the cell cycle genes
expression is similar among all cell types) complicate the task to compare and
chose an appropriate approach. Moreover, removing a given biological signal
may impact or hide other meaningful signals due to their interdependence.
For example, for proliferative cell populations it is advised not to remove the
whole cell cycle effect, but to specifically differentiate cycling cells (G2/M,
S) and non-cycling cells (G1/G0). On the contrary, totally removing the cell
cycle effect may improve trajectory inference [264]. Lastly, most recent ap-
proaches (such as Peco, Revelio or Tricycle) suggest to go beyond discretized
cell cycle phases by rather modelling cell cycle as a continuous process by
relying on periodic functions [265–267]. These approaches allow to precisely
situate cells on the cell cycle continuum. Tricycle (available as a preprint
since April 2021) even go further by being the first tool proposing an uni-
versal approach to infer cell cycle that is able to accurately infer cell cycle,
independently of cell types or scRNA-seq protocols [267].

3.3 Analyses of mouse neural progenitors

3.3.1 Data preparation

The Delile et al., 2019 single-cell atlas dataset gathers 12 cervicothoracic
samples from mouse embryos at 5 successive time-points (from E9.5 to E13.5)
[235]. The count matrix provided by the authors is not filtered. We down-
loaded it from https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-7320/E-MTAB-7320.
processed.1.zip. We thus decided to process to our own data cleaning, start-
ing from the count matrix.

https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-7320/E-MTAB-7320.processed.1.zip
https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-7320/E-MTAB-7320.processed.1.zip
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Data quality checking and filtering The dataset contains in total 12
replicates: 2 replicates for each of the E9.5, E10.5, E11.5 embryos, and 3
replicates for E12.3 and E13.5 (since embryos grow in size and cell number).
Among them, 7 are females and 5 are males (we have been able to recover this
information based on the female specific Xist expression). In total, 41025 cells
were detected. The overall number of cells vary from 6672 (E11.5) to 10450
(E13.5). Figure 3.5-A shows the distribution of the total number of genes
per cell, within each of the time-points (TP). Depending on the observed
distributions, we then applied filtering with the following thresholds (see
Notebooks1 for more details):

• Filtering by mitochondrial (MT) genes: we excluded cells with a MT
proportion larger than 8% (339 cells);

• Filtering by hemoglobin (Hb) genes (to exclude blood cells): we ex-
cluded cells with a Hb proportion larger than 0.3% (961 cells);

• Filtering by total number of UMI: in order to remove outliers, we re-
moved the cells below the 0.5th percentile and the ones above the 99.9th

percentile, for each TP independently. We repeated this operation with
the total number of genes.

In the end, we recovered 39343 cells. With regard to gene filtering, we kept
genes that are expressed at least once in at least 3 cells. The number of
unique genes in the dataset thus dropped down from 21889 to 20082.

Normalization and dimension reduction We then log-normalized the
data with Seurat function NormalizeData. Due to confounding factors that
we observed in the dataset (see Figure 3.5-D), we then regressed out the
confounding factors due to cell cycle and gender with Seurat function Scale-
Data. Regarding cell cycle, we isolated cells into “cycling” (G2/M and S)
and “non-cycling” (G1), in order to preserve differences in cell cycle between
proliferating and non-proliferating cells. We then performed dimensional re-
duction on the scaled data, and obtained a 2D representation of the dataset

1https://github.com/LehmannN/Mouse-progenitors-reanalysis

https://github.com/LehmannN/Mouse-progenitors-reanalysis
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Figure 3.5 First exploration of Delile et al., 2019 dataset. A) Distribu-
tion of the number of unique genes detected per cell, for each time-point. Each
dot is a cell. B) UMAP of quality filtered dataset. There are 39343 cells overall.
Colors represent the various time-points. C) UMAP of the dataset after selection
of progenitors and neurons. There are 25574 cells overall. Same colors as in B. D)
Same UMAP as in C. Colors here represent the cell cycle phase: S (red), G2/M
(green), G1 (blue).

with PCA (not shown) and UMAP plots (Figure 3.5-B to D). We kept the
first 30 components (or dimensionalities) of the datasets, after consulting the
percentage of variance explained by each component.

Identifying cell types We then performed graph-based clustering with
Louvain algorithm, as implemented in Seurat. Based on the expression of
some known markers (described in Delile et al.), we removed all cells that
were neither progenitors nor neurons, such as mesoderm or neural crest (Fig-
ure 3.5-C). At this stage, there were 25574 remaining cells.
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All of the above mentioned steps were performed using R packages dedi-
cated to single-cell analyses : Seurat v3 [137] and scater [138]. To ensure repro-
ducibility, all code and resulting figures are stored in a bookdown (Rmark-
down) documents, shared with the experimental team in the form of HTML
pages. These notebooks are also shared on GitHub, under the following
link: https://github.com/LehmannN/Mouse-progenitors-reanalysis. To en-
able the experimental team to further explore manually the dataset, I also
:

• designed a dedicated shiny application: https://symasym.shinyapps.
io/app_web_v3;

• set up a SPRING server (SPRING is a tool dedicated to visualize
scRNA-seq data, which is more interactive than shiny): https://kleintools.
hms.harvard.edu/tools/springViewer_1_6_dev.html?client_datasets/
NeuralProgenitors2/ [175].

3.3.2 Identifying the population of interest

During this first exploration, we realized that the clusters were driven by
multiple factors: patterning (axis formation), time, cell cycle and embryo
gender. Even when selecting just one of all the time point, all of these effects
were still strong, hiding other signals. Thus, in order to extract meaningful
information to answer our biological questions, we had to define a specific
filtering and denoising strategy.

With this aim, our first objective was to specifically extract the progenitor
populations (SYM and ASYM) and thus filter out neurons. Even though
Delile et al. provide metadata with already computed cell classification, we
chose to set up a different kind of cell classification. In fact, Delile et al.
classification system is designed with the aim to build a comprehensive cell
atlas. They impute cell types based on a two-level classification system: first
cells are isolated into main types (e.g. progenitor or neuron), and then a
second round of classification allow to assign each cell to a subtype (e.g.
pMN, p0, p1). The main drawback of the first step of this classification (cell
types) is that it is based on a very limited number of markers: progenitors are

https://github.com/LehmannN/Mouse-progenitors-reanalysis
https://symasym.shinyapps.io/app_web_v3
https://symasym.shinyapps.io/app_web_v3
https://kleintools.hms.harvard.edu/tools/springViewer_1_6_dev.html?client_datasets/NeuralProgenitors2/
https://kleintools.hms.harvard.edu/tools/springViewer_1_6_dev.html?client_datasets/NeuralProgenitors2/
https://kleintools.hms.harvard.edu/tools/springViewer_1_6_dev.html?client_datasets/NeuralProgenitors2/
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defined by Sox2 expression and neurons by Tubb3 expression only. Undefined
cells are assigned to the cell type they are the most similar with. On the
contrary, the second-time classification (cell subtypes) are defined based on
a combination of markers, as shown in Figure 3.4.

Progenitor score Neuron score

High

Low

High

Low

Tubb3Sox2

Figure 3.6 Scoring system to define progenitor and neuron popula-
tions. The two top UMAPs show the expression of Sox2 (progenitor marker) and
Tubb3 (neuron marker). Delile et al. progenitor / neuron classification is based
solely on these two markers. We defined a progenitor score and a neuron score
based on a combination of about twenty markers (bottom UMAPs). Progenitor
score markers: Sox2, Notch1, Rrm2, Hmgb2, Cenpa, Ube2c, Hes5, Fabp7. Neuron
score markers: Tubb3, Stmn2, Nova1, Snrpn, Pcsk1n, Meg3, Rtn1, Stmn3, Mllt11,
Mapt, Ina

Then, in order to specifically select the progenitors and separate them
from the earliest neurons, we would rather rely on a scoring system, al-
lowing us to be more permissive than a strict classification. We thus defined
progenitor (P) and neuron (N) signatures scores with the Seurat AddModule-
Score function. We set these scores based on both known and novel markers
(originating from differential analysis we performed in the first dataset explo-
ration), adding up to twenty markers (see Figure 3.6). These markers were
defined in close collaboration with the experimental team.

We finally applied a k-mean clustering and defined thresholds to extract
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the populations of interest. Ultimately, we ended up with 7441 cells of inter-
est (see Figure 3.7). We kept the cells with the highest P / lowest N scores
(clusters: 2, 3 and 4).
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Figure 3.7 Clustering based on our scoring system. A) Scatter plot and
its corresponding marginal histograms of neuron score versus progenitor score.
Each dot is a cell. Each color correspond to a cluster. In the following analyses,
we kept the clusters with the highest ratio of P/N : cluster 2 (orange), cluster
4 (pink), cluster 3 (green). B) Same UMAP as in 3.6. The colors represent the
clusters as defined in A.

Up to this point, we have refined the data with the idea of getting a cleaner
and clearer output to identify the SYM and ASYM progenitors. The cluster-
ing results (with Louvain method for community detection) and differential
expression (with a negative binomial test, as recommended for UMI-based
datasets) showed us that this was not enough to directly differentiate the two
SYM/ASYM populations, since the populations were still mainly separated
by the patterning signal on the DV axis, even though we could now identify
a Btg2+ cluster. Resulting UMAPs are shown in Figure 3.8.
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Figure 3.8 UMAP of the filtered dataset. We show here the resulting
UMAP after filtering out the clusters with highest N scores (see Figure 3.7). There
are 7441 remaining cells. Neurogenesis direction and DV axis are shown in the top
left UMAP.

We thus decided to set a “denoising strategy” to find other sources of
variation in the data. For this aim, we defined two different approaches:

• Pseudotime analysis ran separately on each of the subpopulations ;
• Analysis based on the binarized expression of Btg2, thus distributed

into 2 groups: no expression and expression detected. This analysis
was also run separately on each of the subpopulations. The overall
results were then reassembled as described below.

3.3.3 Marker gene detection with pseudotime analysis

In order to identify the transcriptional changes in the transcriptome of the
subpopulations of interest, we here relied on the pre-computed pseudotime
scores of Delile et al. since they took the same approach we were interested
in (pseudotime performed separately on each of the subpopulation, and then
reassembled). To this aim, we will show here the results only on the pMN
population for the sake of simplicity (247 cells). In all the following analyses,
we thus relied on the pMN classification as described in Delile et al..
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Figure 3.9 Top 20 genes identified in the Btg2+ pMN population (pseu-
dotime approach). This table shows the top 20 differentially expressed genes of
cluster 2 (see Figure 3.10), ordered by lowest p-values. We filtered out the genes
detected in less than 10 cells.

Up to this point we performed differential expression between clusters of
cells. With the aim of identifying genes whose expression varies over time,
we applied here a different strategy. We relied on the trajectory inference
dedicated tool, Monocle 2 [192], which provides a differentialGeneTest func-
tion especially designed to find differentially expressed genes as a function of
time. These genes were then clustered with hierarchical clustering with the
aim of ordering them all along the pseudotime axis. Then, we clustered the
cells by similar expression profiles on the pseudotime axis with the partition-
ing around medoids algorithm (a.k.a. PAM). We chose the PAM algorithm
in this situation, since it is more robust to outliers than a simple k-mean
clustering. Figure 3.10 shows the resulting heatmap. From this heatmap, we
can observe that Btg2 is detected in cluster 2. Thus, we also highlight here
the top 20 most differentially expressed genes detected in cluster 2 in Figure
3.9.
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Figure 3.10 Gene expression along the pseudotime axis. Heatmap of the
1088 genes whose expression have been identified as variable along the pseudotime
axis. Vertical legend (Gene_clusters) represent the genes with similar patterns.
The expression of some marker genes is highlighted. Horizontal legends represent:
i) the cell cycle phase, ii) timepoint, iii) embryo gender, iv) cell subtype (only
pMN here), v) clustering on the cells (Cell_clusters). The blue/red color gradient
represent the value of the Z-scores.
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3.3.4 Signature extraction through isolation of DV do-
mains

As a last approach, we tested an analysis based on the discretized expression
of Btg2. We first isolated each of the 13 subpopulations of progenitors as
described in Delile et al. (see Figure 3.4). For each of these populations, cells
are classified depending on their expression of Btg2: no expression (group
0), expression detected (group 1). We then performed DE analysis with a
negative binomial test, between each of these groups. Finally, we gathered
all the subpopulations analyses and looked for the genes that are the most
shared between the corresponding groups. Figure 3.11 highlights the DE
genes found in the Btg2+ populations, identified with this strategy.
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Figure 3.11 Heatmap of the most shared genes between Btg2+ popu-
lations. Colors represent the p-values. A) We found 1294 differentially expressed
genes in Btg2+ populations, after extracting genes that are shared in a least 2
subpopulations. This massive heatmap is interactive and allows to zoom in and
out to select a given population (made with plotly). B) Top 20 genes, extracted
from zooming in A.

Finally, we compared the genes identified through the two strategies.
Among the top 100 genes for each approach, we found 15 shared genes (apart
from Btg2 and Tubb3): Btg1, Tmsb4x, Cdc25b, Hes6, Cdk2ap1, Dpysl4,
Nfia, Ypel3, Afap1, Ascl1, Cd24a, Eif3f, Nfib, Ogt, Selenow. The function
and biological relevance of these genes (and more from the complete lists)
are currently under examination by Xavier Morin’s team.
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3.4 Conclusion

In conclusion, we performed a custom analysis based on a public atlas dataset,
and selected the appropriate tools based on both the data requirements (at-
las data might need more preprocessing than custom data) and the biological
question. Specifically, we aimed at deciphering the transcriptional changes
that drive the switch between SYM and ASYM populations. I adopted two
complementary approaches: the first one based on pseudotime analysis, the
second one based on the discretized expression of Btg2 among each of the
DV domains. These approaches enabled to identify potential genes of inter-
est: a first list of genes extracted from the population of cells suspected to
contain ASYM divisions, analysed by grouping their expression profiles along
a pseudotime; a second list of genes based on the Btg2 marker, considering
that the ASYM division process is similar in all 13 subpopulations (thereby
searching for a common signal among the different subpopulations). Alto-
gether the genes in common are: Btg1, Tmsb4x, Cdc25b, Hes6, Cdk2ap1,
Dpysl4, Nfia, Ypel3, Afap1, Ascl1, Cd24a, Eif3f, Nfib, Ogt, Selenow. These
genes constitute a list of candidates to be further analyzed for their func-
tions. Getting biological insights from this gene list is beyond the scope of
my work, and is being handled by the team of Xavier Morin. The first steps
are a literature search on each of these genes to get more insights on their
function and possible involvement in the neurogenesis. The second step is to
study the Gene Ontology annotation of these genes, and see if the associated
terms are related to the neurogenesis or embryo development. The team will
then decide if some genes are good candidates for experimental validation.
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Chapter 4

An improved genome
annotation workflow for
scRNA-seq

In this chapter, I will highlight the issues we encountered when analyzing
the chicken scRNA-seq data and the re-annotation strategy we developed to
address this issue. I will first introduce some key concepts on genome re-
annotation approaches. I will then present a selection of results we obtained
on i) comparing the impact of using different reference annotations, ii) the
pipeline we developed, iii) the results we obtained with this novel approach
when reanalyzing the scRNA-seq dataset.
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4.1 Methodological background

4.1.1 Chicken annotation

The chicken Gallus gallus has long been a model organism, particularly for
developmental biology research, as well as an important organism in the agri-
cultural industry. It was thus natural that sequencing this genome became
a key project in the early 2000s [268], with the first assembly being released
in 2004 by the International Chicken Genome Sequencing Consortium [ref
chicken consortium]. Ensembl was directly involved in this consortium, to
contribute to building the reference annotation. From this draft assembly,
authors predicted between 20000 and 23000 protein-coding genes, with up
to 10% of genes substantially truncated or missing. In parallel, efforts to
identify genes from experimental data were conducted by transcriptomics
sequencing of 20000 cDNAs, describing 12,000 genes [269]. Even including
previous cDNA datasets, only 4560 cDNAs corresponded to full-length genes.

Since then, the genome assembly has been improved by collaborative ef-
forts [270], with a last publication in 2017 (assembly version 5) [271]. This
assembly benefited from long-read sequencing (PacBio) to refine the assem-
bly of short reads into chromosomes, and attain a higher coverage. The cur-
rent genome assembly named GRCg6a was released in 2018 by the Genome
Reference Consortium, now in charge of improving the chicken assembly
https://www.ncbi.nlm.nih.gov/grc/chicken.

Regarding the annotation, three main references are currently available,
built independently from each other. The Ensembl annotation pipeline builds
gene models by aligning publicly available cDNAs, protein sequences and
RNA-seq data on the genome [272]. For this release, seven RNA-seq datasets
generated with long reads were also included (see annotation report on En-
sembl website : https://www.ensembl.org/info/genome/genebuild/2018_12_
chicken_gene_annotation.pdf). The NCBI RefSeq annotation is built with
the Eukaryotic Genome Annotation Pipeline https://www.ncbi.nlm.nih.gov/
genome/annotation_euk/process/. The annotation report for release 104
of the chicken annotation specifies that chicken long reads from the SRA

https://www.ncbi.nlm.nih.gov/grc/chicken
https://www.ensembl.org/info/genome/genebuild/2018_12_chicken_gene_annotation.pdf
https://www.ensembl.org/info/genome/genebuild/2018_12_chicken_gene_annotation.pdf
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
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database have been included to build this annotation (without further de-
tails) https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/
104/. The long reads RNA-seq datasets were included to facilitate the anno-
tation with full-length transcript sequences ; in chicken, these were generated
with the PacBio sequencer (Iso-seq approach) (reviewed in Burt et al., 2018
[270]). The UCSC genome browser distributes a third reference annotation
named refGene. This annotation is based on the realignment of RefSeq genes
on the genome assembly, with different programs as used by the NCBI (see
UCSC FAQ: http://genome.ucsc.edu/FAQ/FAQgenes.html#ens), and using
exclusively NM and NR accessions, ignoring the XM and XR unvalidated
gene prediction category of annotations (http://genome.ucsc.edu/cgi-bin/
hgTrackUi?db=galGal6&g=refSeqComposite). It is thus expected to be very
similar to the NCBI RefSeq annotation for high-quality annotated genes.

In Ensembl v101, 24356 genes are annotated, comprising 16878 protein-
coding genes, 7166 non-coding genes and 312 pseudogenes https://www.
ensembl.org/Gallus_gallus/Info/Annotation. NCBI RefSeq and UCSC Re-
fGenes comprise 23726 and 6938 genes, respectively. Currently, the chicken
annotation is not considered as high-quality as the human or mouse genomes,
for which extensive functional genomics datasets have been generated in
many tissues and developmental stages, through the ENCODE consortium
[223].

4.1.2 Some considerations on annotation files

As mentioned in section 1.3.1, genomic annotations are stored either in GFF3
(General Feature Format) or GTF (Gene Transfer Format). Both formats
contain the same information, which is organized differently though. GTF
and GFF3 are tab-delimited plain text files with 9 fields per line, where each
line is a feature. Features are organised in a hierarchical manner. Each gene
has one or more transcripts, each of which has one or more exons. A tran-
script may also be coupled with a single CDS. The main difference stands in
the way data is organised within each format: GTF is a gene-centric format,
that can only handle an implicit hierarchy between features (linear relation-

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/104/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/104/
http://genome.ucsc.edu/FAQ/FAQgenes.html#ens
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=galGal6&g=refSeqComposite
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=galGal6&g=refSeqComposite
https://www.ensembl.org/Gallus_gallus/Info/Annotation
https://www.ensembl.org/Gallus_gallus/Info/Annotation
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ships), while GFF3 is a general annotation format, which can support more
explicit, multi-level hierarchies, that may be thought of as a directed acyclic
graph. In this respect, GFF3 provides directional relationships between fea-
tures (“parent”) and their subfeatures (“child”) [273].

Figure 4.1 The evolution over time of the different annotation for-
mats. Genomic annotation files have changed substantially over the years.
Their evolution have resulted in the presence of multiple flavors and versions,
but not all the programs stick to the latest versions. The dashed line shows
that GTF2 are sometimes described as similar to GFF2.5. Image from https:
//agat.readthedocs.io/en/latest/gxf.html

Since 1997, where it was first introduced at a Conference on computa-
tional gene finding (Isaac Newton Institute, Cambridge, UK), the formats
regularly evolved (Figure 4.1). However, while allowing a great flexibility,
these formats are often criticized for their lack of standardization. In fact,
most programs use annotation that do not comply exactly with the format
criteria and incorporate subtle differences1. This sometimes complicate the
task to share and use annotation formats within different pipelines, since
each expect different specifications. Due to these limitations, we can expect
these formats to keep evolving in the coming years.

1https://agat.readthedocs.io/en/latest/gxf.html

https://agat.readthedocs.io/en/latest/gxf.html
https://agat.readthedocs.io/en/latest/gxf.html
https://agat.readthedocs.io/en/latest/gxf.html
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4.2 Contribution

In the following work, I designed and developed the whole re-annotation
pipeline. I also performed all the analysis (pre-processing and downstream
analysis) of both scRNA-seq and long-read datasets.

4.3 Improving scRNA-seq analysis in poorly-
annotated genomes with matching long-
read transcriptome

4.3.1 Introduction

A crucial step in the analysis of scRNA-seq data is the generation of a count
matrix summarizing the signal detected for all the genes and all the cells.
The content of the count matrix is directly dependent on the annotation of
the genome, as only signals covering the annotated genes or transcripts are
taken into account. Single-cell signal obtained with 10x Genomics technology
is limited to the 3’ region of the transcripts, which may lead to signal loss,
particularly in poorly-annotated genomes. For example, the annotation of
the chicken Gallus gallus is not yet as complete as human or mouse [274]. In
order to assess to which extent such incomplete annotation affects scRNA-seq
data analysis, we propose a novel approach to improve scRNA-seq analyses
using long-read bulk transcriptome sequencing in matching cell samples.

We produced scRNA-seq data (10x Genomics / Illumina) from chicken
cervical spinal progenitors at 66 hours of embryonic development. After
quality filtering and alignment to the reference genome assembly (galGal6),
up to 40% of the reads were not included in the count matrix. Visualizing
the aligned reads in a genome browser revealed that significant signals fell
outside of several known genes, and were thus not considered in the count
matrix (as in the case of Sox2, a key marker for this study). Yet, the signal
was often located in the vicinity of annotated genes. We thus concluded that
loss of scRNA-seq signal was due to incomplete gene delineation, in particular
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at their 3’ extremities.
To address this issue, we generated bulk long-read RNA-seq (ONT tech-

nology) from samples matching our scRNA-seq data, in order to delineate
the transcripts specific to these cells. ONT was chosen as it enables a se-
quencing of cDNAs from the 3’ end, as for 10x Genomics / Illumina data.
We exploited the long-reads data to expand the reference annotations col-
lected from NCBI and Ensembl. We have evaluated various tools enabling
the generation of gene annotations from aligned reads, such as StringTie2
[275] or Scallop [276], and selected the most appropriate ones to build our
project-specific annotation. The resulting annotation combines the long-
read bulk data, the scRNA-seq reads, and the reference annotation. Using
this novel annotation, we were able to assign up to 87% of the reads at the
genome scale, compared to 60% using only the reference annotation. We
are currently evaluating the impact of this hybrid approach on the results of
downstream scRNA-seq analyses. This approach could be used to improve
scRNA-seq analyses of other poorly-annotated genomes, i.e. the majority of
available eukaryotic genomes, at a reasonable cost.

All the results presented here are shared on GitHub, under the follow-
ing links : https://github.com/LehmannN/scAnnotatiONT-paper (analyses)
and https://github.com/LehmannN/scAnnotatiONT (pipeline).

4.3.2 Differences between the reference annotations lead
to discrepancies in scRNA-seq analyses

When starting with the analysis of the scRNA-seq chick dataset, we first
observed with the Ensembl annotation (v101) that only 60% of the mapped
reads were assigned to a feature. We thus wondered to which extent the
use of the NCBI/RefSeq annotation would improve the gene assignment.
In this case, assignment performed even worse (42% of assigned reads). We
realized that this was due to an improper naming of some of the genes (mostly
mitochondrial genes) in the NCBI GTF file. Manually changing these names
lead to a recovery of 68% of assigned reads (as shown in Chapter 2 - Figure

https://github.com/LehmannN/scAnnotatiONT-paper
https://github.com/LehmannN/scAnnotatiONT
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2.7). Faced with these discrepancies, we wondered to which extent the use
of a reference annotation over another would impact scRNA-seq analyses.
We also wondered if it would be possible to recover more than 68% of the
scRNA-seq signal.

For the chicken, three main gene annotations are available from major
genome databases (Ensembl, NCBI Refseq, UCSC refGene). To determine if
these differences in reference annotations influence the subsequent analysis of
scRNA-seq dataset, we processed the assignment step three times, with each
one of these annotations. For the sake of simplicity, we downloaded the three
corresponding GTF files from UCSC database: https://hgdownload.soe.ucsc.
edu/goldenPath/galGal6/bigZips/genes/. The main advantage here is that
these annotations share the same system of coordinates and the same anno-
tation files standards, which facilitate their comparison2. The Gallus gallus
genome assembly GRCg6a/galGal6 was also downloaded from UCSC: https:
//hgdownload.soe.ucsc.edu/goldenPath/galGal6/bigZips/galGal6.fa.gz.

Figure 4.2 General statistics between the three reference annotations.

We first calculated raw statistics, obtained with Mikado [277], and com-
pared these values for the three annotations. Each annotation contains 24356,
23726 and 6938 genes (Ensembl, NCBI and UCSC respectively). We can ob-
serve that although Ensembl contains only 630 more genes than NCBI, these
two references differ widely in terms of transcript number (over 1.5 as more in
NCBI than Ensembl) and in transcript mean length (twice as long in NCBI

2Downloading the annotation files on each of their corresponding website imposes 1)
the use of a conversion system and 2) multiple files manipulations in order to make each
file obey the same standards. At the beginning of the project, I chose this approach,
I thus participated in completing this GitHub repository, which contains many chro-
mosome/contig name mappings between various databases (UCSC, Ensembl, Gencode):
https://github.com/LehmannN/ChromosomeMappings.

https://hgdownload.soe.ucsc.edu/goldenPath/galGal6/bigZips/genes/
https://hgdownload.soe.ucsc.edu/goldenPath/galGal6/bigZips/genes/
https://hgdownload.soe.ucsc.edu/goldenPath/galGal6/bigZips/galGal6.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/galGal6/bigZips/galGal6.fa.gz
https://github.com/LehmannN/ChromosomeMappings
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annotation). UCSC annotation shows a very low number of genes compared
to the other two, as it was expected (see 4.1).
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Figure 4.3 Comparison of the 3 reference annotations. In the top panel,
we compared the overlaps between the 3 reference annotations. A) Venn diagram of
the overlaps between the three chick reference annotations. Overlaps are defined
the same way as in Figure 1.20 (see 1.4). B) Comparison of NCBI and UCSC
annotations with Ensembl taken as reference (in terms of overlap, not based on
the gene ID). These figures were obtained with GffCompare [278]. C) Gene length
distribution of each annotation (as histograms). Y axis shows the total number
of genes. X axis shows the gene lengths (in log10). It was cut at 10Mb for
visualization purposes. Since we observed a bimodal distribution, the black dotted
line separates the smallest genes (< 500 nucleotides) from all the other genes (≥
500 nucleotides). D) Pairwise comparisons of the longest genes (≥ 500 nucleotides)
from the three annotations, with paired t-tests. E) Pairwise comparisons of the
shortest genes (≤ 500 nucleotides) from the three annotations, with paired t-tests.
Coloring scheme is the same for all plots: Ensembl (green), NCBI (orange) and
UCSC (blue).

Following these observations, we then investigated i) the overlap between
the three references, and ii) their differences in gene lengths. Figure 4.3-A
and B show the overlaps in terms of coverage (not based on the gene ID)
between the three references. In this case, we can observe that only 6049
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genes are in common between all three annotations, covering almost the
entire UCSC dataset (Figure 4.3-A). When comparing NCBI to Ensembl, we
observe that both sensitivity and precision are equal to 50%, consistent with
the overlaps observed between both annotations in the Venn diagram (Figure
4.3-B). Moreover, about 25% of the genes are specific either to Ensembl or
NCBI (missed loci and novel loci in 4.3-B).

In terms of gene lengths, we can observe a bimodal distribution in all
three cases: a first group of small genes around 100 bp, and a second group
of genes (the majority) between 1kb to 100kb (Figures 4.3-C, D and E). We
isolated the smallest genes from the rest of the distribution, leading to two
distinct normally distributed groups of genes. For both groups, the differ-
ences in mean have been evaluated with paired t-tests. We observe that for
the smallest genes (Figure 4.3-D), there is no difference between Ensembl and
NCBI annotations. On the contrary, the differences are statistically signifi-
cant between UCSC/NCBI and UCSC/Ensembl annotations. Regarding the
longest genes (Figure 4.3-E), there is little (Ensembl/NCBI) or no difference
(UCSC/Ensembl and UCSC/NCBI) between the annotations. Moreover,
when we take all the values together, the median values are very similar,
concordant with the distributions observed in Figure 4.3-C: 9414, 9616 and
9268 (Ensembl, NCBI and UCSC respectively).

In order to estimate the impact of all three annotations on scRNA-seq
analysis, we processed the scRNA-seq data following these steps:

1. Pre-processing with Eoulsan (see Chapter 2), with each one of the
annotations;

2. Data cleaning and preparation performed globally the same way as the
mouse dataset (see Chapter 3);

3. Secondary analyses performed with Seurat Louvain clustering (resolu-
tion of 0.5) and differential expression (DE) analysis performed with a
negative binomial test, as recommended for UMI-based datasets. To
ease comparison, DE genes represent the set of all genes identified as
DE (independently of which cluster) within each of the analyses.
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All three analyses have been performed the same way (e.g. same threshold
values) to ease comparison. Regarding the cell filtering, we kept cells in which
we detected at least 1000 genes, and removed the cells where the proportion of
mitochondrial genes were higher than 20%, due to the observed distribution
in this dataset. It must be noted that, in order to stay as objective as
possible, we did not alter the GTF files downloaded from UCSC, which means
that NCBI (and UCSC) dataset do not include the mitochondrial genes (as
mentioned above). Regarding gene filtering, we filtered out the genes that are
detected in less than 5 cells. Figure 4.4 highlights the main statistics obtained
after processing the scRNA-seq dataset with the three references. We can
note that the numbers of genes (mean genes per cell, total number of genes
and number of DE genes) are significantly higher with NCBI annotation,
despite the loss of all mitochondrial gene counts in the pre-processing steps.

Tableau 1

Original number 
of cells

Number of cells 
after filtering

Mean number 
of genes per cell

Number of genes 
after filtering

Number of 
DE genes

Ensembl 2481 2353 4176 15680 4233

NCBI 2481 2416 4994 17192 5473

UCSC 2481 2117 2164 5485 2248

1

Figure 4.4 Summary table of the statistics obtained after scRNA-seq
processing with the 3 annotations.

The dataset corresponds to a population of different cell types, including
neurons, progenitors, neural crest and mesoderm (more details in Chapter
4). In order to identify the cell populations of interest, we set four cell type
scores based on the combination of markers as described in Delile et al., 2019
(see also Chapter 3) [235]:

• Progenitor score: SOX2, LMX1, MSX1, MSX2, PAX3, WNT1,
OLIG3, IRX3, IRX5, PAX6, PAX7, ASCL1, GBX2, GSX1, DBX2,
DBX1, SP8, NKX6-2, PRDM12, NKX6-1, FOXN4, OLIG2, NKX2-2,
FOXA2, FERD3L.

• Neuron score: TUBB3, ARX, SHH, LMX1B, POU4F1, LHX2, BARHL1,
BARHL2, ATOH1, FOXD3, LHX1, LHX5, ISL1, TLX3, OTP, LBX1,
PAX2, GBX1, BHLHE22, PTF1A, DMRT3, WT1, EVX1, EVX2, PITX2,
EN1.
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• Neural crest score: SOX10, TPM1, LM04, NPR3.
• Mesoderm score: FOXC1, FOXC2, TWIST1, TWIST2, MEOX1.

We then performed cell subtypes identification (RP, dp, p, pMN, p3,
FP - p referring to the populations p0, p1 and p2), based also on the mouse
markers described in Delile et al., 2019. For complete details on the analyses,
one can refer to the following notebooks: https://github.com/LehmannN/
scAnnotatiONT/tree/paper/pipeline_output_references (one notebook for
each annotation).
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Figure 4.5 Use of different annotations impacts estimation of cell pro-
portions. A) Proportion of cells types for each annotation. B) Proportion of cells
subtypes for each annotation. C) Proportion of cells in each phase of the cell cycle.
D) Proportion of cells in each cluster.

The differences observed in terms of cell types and subtypes identification
between the three annotations are highlighted in Figures 4.5 and 4.6. We
can notice that these proportions vary widely between the three annotations.
Regarding cell types identification, over 54% of the cells are designated as
progenitors with UCSC annotation, while this proportion drops to 41% with
Ensembl and 20% with NCBI (Figure 4.5-A). Moreover, none of the markers
of the p3 population could be identified with UCSC, thus leading to the loss
of this population (Figure 4.5-B). On the contrary, p3 population forms the

https://github.com/LehmannN/scAnnotatiONT/tree/paper/pipeline_output_references
https://github.com/LehmannN/scAnnotatiONT/tree/paper/pipeline_output_references
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major subtype population with NCBI. We also observe that the proportions
in both cell cycle phase assignment and in the diverse clusters are consis-
tent between all three annotations 4.5-C and D. Regarding clustering, the
main difference is that 11 clusters were found with the UCSC annotation, in
contrast with the two others where 12 clusters were found. This probably
results from the lower complexity of the UCSC annotation. From these re-
sults, we can conclude that the use of different annotations alter both cell
type identification and clustering in scRNA-seq analyses.
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Figure 4.6 UMAPs showing discrepancies in scRNA-seq analyses with
the different annotations. The three panels refer to data processed respectively
(from top to bottom) with Ensembl, NCBI and UCSC. Apart from differences in
the general UMAP structure, we observe differences in cell type identification (e.g.
almost no neuron in UCSC, much more progenitors in Ensembl than in NCBI).

Finally, we compared the overall DE genes obtained with the three an-
notations. The number of DE genes are 4233, 5473 and 2248 for Ensembl,
NCBI and UCSC respectively (Figure 4.4). Here, we will only focus on the
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differences between Ensembl and NCBI annotations. We performed several
selections among all DE genes (see below). Figure 4.7 highlights the 1607 DE
genes that are mutually exclusive of each annotations (e.g. genes identified
as DE in NCBI, but not in Ensembl, and vice versa). We could identify genes
such as SNAI1 (DE only with Ensembl) and POU3F3 (DE only with NCBI)
that are both involved in neurogenesis. Moreover, expression levels from
each annotation for genes selectively identified only using NCBI or Ensembl
showed a poor correlation, with significantly higher expression in the anno-
tation in which the gene was identified as differential. Taken together, these
observations suggest underlying differences in chicken Ensembl and NCBI
annotations contribute to inconsistencies in differential gene analysis from
scRNA-seq data. The same observations was made with UCSC/Ensembl
and UCSC/NCBI comparisons (data not shown).
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Figure 4.7 Correlation of expression levels between mutually exclusive
DE genes. A) Correlation of expression levels between NCBI and Ensembl anno-
tations, on the selection of the mutually exclusive DE genes (log10 counts). Genes
that are only DE with NCBI are colored in blue-gray, and the ones specific to
Ensembl are in orange. R values indicate Spearman correlation for each annota-
tion. B) Same plot as A, with colors highlighting the genes with the highest count
differences between the two annotations (red dots).

4.3.3 3’UTRs poor annotations seem to be the major
source of scRNA-seq signal loss

Since we constructed the scRNA-seq libraries from 10x Genomics data, we
expected a biased 3’end gene detection. We thus decided to specifically in-
vestigate whether the above-mentioned discrepancies were due to differences
in the 3’UTR annotations between the three references. To this aim, we first
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extracted the 3’UTR annotations from each of the GTF files to calculate
general statistics. Surprisingly, we found that more than half of the genes
annotated in Ensembl lacked a 3’UTR (only 11768 have a 3’UTR). In com-
parison, this value drops to 30% (16559) in NCBI and 20% (5531) in UCSC.
Moreover, we observed that NCBI 3’UTRs are significantly longer than En-
sembl and UCSC’s (Figure 4.8). The mean lengths are 696, 1453 and 787
bases, while the medians values are 481, 795 and 457 (Ensembl, NCBI and
UCSC respectively).
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Figure 4.8 Comparison of the 3 annotation in terms of 3’UTR lengths.
A) 3’UTR length distribution of each annotation (as histograms - in log10). B)
3’UTR length distribution of each annotation (as boxplots - in log10). The signifi-
cance of gene distributions between the three annotations have been estimated by
a Kruskal-Wallis test (non-parametric test). Pairwise comparisons between anno-
tations have been performed with Wilcoxon paired tests. Coloring scheme is the
same for all plots: Ensembl (green), NCBI (orange) and UCSC (blue).

In order to estimate if the differences in 3’UTR amounts and lengths
contribute to the discrepancies in our scRNA-seq analyses, we investigated
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in the first instance some genes among the ones identified as differentially
expressed. Figure 4.9-A shows the correlation of expression levels between
genes that are identified as DE in both NCBI and Ensembl (3218 genes in
total). The highlighted genes (red dots) are the ones with the highest count
differences between the two annotations. We built a UCSC trackhub3 for
the purpose of identifying if this set of genes displayed differences in their
3’UTR annotations. Strikingly, we noticed that all 18 genes had no or shorter
3’UTR in the annotation where they show the lowest counts. In particular,
we investigated HES6, that has been identified as a potential gene candidate
in the mouse study (see Chapter 3). Figure 4.9-B is a snapshot of our UCSC
trackhub at HES6 location. We noticed that NCBI 3’UTR annotation (in
blue) is much longer and cover all of the scRNA-seq HES6 signal. In contrast,
the Ensembl HES6 annotation does not contain a 3’UTR, which leads to
the loss of almost all the HES6 signal. We show the resulting UMAPs of
HES6 expression, in the context of the Ensembl (Figure 4.9-C) and NCBI
annotations (Figure 4.9-D).

Similar results were found when investigating genes among all the genes
shared between the two annotations (10457 in common). Precisely, we con-
sidered COTL1 (a microglia-specific marker [279, 280]) and noticed that its
NCBI annotation is lacking a 3’UTR, as opposed to the Ensembl annotation
(Figure 4.10). Ensembl resulting UMAP of COTL1 expression displays a
wide range of levels of expression over all the populations of cells, although
lower in Mesoderm (Figure 4.10-C). Expression levels built on NCBI anno-
tation are almost all equal to zero (Figure 4.10-D).

These results thus support our hypothesis that the differences in 3’UTR
amounts and lengths play a key role in the discrepancies observed in our
scRNA-seq analyses. In order to address this issue, we set a strategy to im-
prove the reference annotations, based on both scRNA-seq data and matching
bulk long-reads (ONT). ONT was chosen as it enables a sequencing of cDNAs
from the 3’ end, as for 10x Genomics / Illumina data. We thus exploited the

3https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=galGal6&lastVirtModeType=
default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&
nonVirtPosition=&position=chr1%3A136260546%2D136266566&hgsid=276668722_
AACY0aH4H2dam8fdwESNlBfTR6an

https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=galGal6&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr1%3A136260546%2D136266566&hgsid=276668722_AACY0aH4H2dam8fdwESNlBfTR6an
https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=galGal6&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr1%3A136260546%2D136266566&hgsid=276668722_AACY0aH4H2dam8fdwESNlBfTR6an
https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=galGal6&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr1%3A136260546%2D136266566&hgsid=276668722_AACY0aH4H2dam8fdwESNlBfTR6an
https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=galGal6&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr1%3A136260546%2D136266566&hgsid=276668722_AACY0aH4H2dam8fdwESNlBfTR6an
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Figure 4.9 Incomplete 3’UTR annotation of HES6 leads to discrepan-
cies in scRNA-seq analysis. A) Correlation of expression levels between NCBI
and Ensembl annotations, on the selection of genes that are DE with both anno-
tations (log10 counts). Genes with the highest count differences between the two
annotations are indicated by red dots. R value indicates the Spearman correla-
tion. B) UCSC trackhub of HES6. The tracks represent: LR reads (green), SR
forward reads coverage (yellow), SR reverse reads coverage (purple), Ensembl v101
annotation (red), NCBI annotation (blue). The LR protocol is unstranded, we are
thus unable to isolate forwards from reverse reads. Orientation of the reference
transcripts and HES6 associated reads are indicated with the black arrows. C)
UMAP of the chick dataset generated with Ensembl annotation. The colors rep-
resent the level of expression of HES6. We notice that HES6 seems to be almost
completely absent from the dataset. D) UMAP of the chick dataset generated
with NCBI annotation. Color gradient is the same as in C. We notice here that
HES6 expression is spread among the progenitor population.

long-reads data to expand the reference annotations. These data have been
generated by the team of Xavier Morin, as part of the SYMASYM project,
on the same type of cell samples than the ones used for scRNA-seq analyses.
I performed the analysis of this data with Eoulsan ONT specific workflow. I
also assessed the raw data quality with the dedicated tool ToulligQC4, that is
also developed at IBENS. Results of these analysis are shown in the Annexes

4https://github.com/GenomicParisCentre/toulligQC

https://github.com/GenomicParisCentre/toulligQC
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Figure 4.10 Incomplete 3’UTR annotation of COTL1 leads to discrep-
ancies in scRNA-seq analysis. A) Same plot as Figure 4.9-A, except that we
represent here all the genes that are detected with both Ensembl and NCBI anno-
tations. B) UCSC trackhub at COTL1 location. See plot description in 4.9-B (the
only difference is that, here, LR track is shown as coverage - not raw reads - due
to too many reads in this position). C) Same plot as Figure 4.9-C, with COTL1
level of expression instead of HES6. C) Same plot as Figure 4.9-D, with COTL1
level of expression instead of HES6.

B.

4.3.4 A pipeline to improve annotation for 3’ biased
scRNA-seq data

In order to build a dedicated re-annotation pipeline, I have first evaluated
the two top reference-based tools dedicated to generate an annotation from
aligned reads: Stringtie2 [275] and Scallop [276]. Moreover, they are both
able to handle long-reads (LR) as well as short-reads (SR). I have also tested
the recent update of Scallop (Scallop-LR) more specific to long-reads, but it
performed poorly on ONT reads since it was first designed for PacBio data
(data not shown) [281]. I have integrated this approach into an open-source
and reusable bioinformatics pipeline built with Nextflow [282], that we called
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scAnnotatiONT. We chose Nextflow since it is best suitable to handle the
rapid integration of multiple software packages and conflicts that may occur
between them. To ensure reproducibility, all the following analyses have been
performed in a single Conda environment. Figure 4.11 shows an overview of
the scAnnotatiONT pipeline, and the tools implemented in the pipeline are
shown Figure 4.12.Genome re-annotation pipeline dedicated to scRNA-seq data

3

Figure 4.11 Dedicated scRNA-seq re-annotation pipeline. Our pipeline
relies on both bulk long-reads and short-reads from scRNA-seq to improve the
reference annotation. It also includes a step aiming at reducing the artefacts, such
as small artificial genes (based on the read coverage and gene length). However,
this step is still under testing. Thanks to the novel annotation, we can recover
scRNA-seq signals that were lost due to lack of feature in the original annotation.

Starting from mapped reads, the first step of the pipeline aims at gener-
ating de novo annotations, guided by the reference in order to improve the
assembly process. The output thus includes both expressed reference tran-
scripts, as well as any novel transcripts that could be reconstructed. With
Stringtie2, LR and SR can be assembled separately or simultaneously, al-
though our results show that the quality of the annotation is higher when
processing the reads separately (see below), due to inherent differences be-
tween 10x Genomics SR and ONT LR (when performed separately, the pa-
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rameters can be adapted to each of their specificities). The next step is to
merge the resulting annotation with the reference. For this step, we tested
two tools, Stringtie merge [275] and Cuffmerge [283]. However, Stringtie merge
performed poorly with Scallop re-annotation (45% of gene assigned - data
not shown), while Cuffmerge showed robust performances, independently of
the transcriptome reconstruction tool used. We thus decided to remain only
with Cuffmerge in the pipeline. Then, we aim at including a step to reduce
artefacts (such as artefactual gene fusions and small artifical genes). This
step is still under testing. For this purpose, we previously attempted to auto-
matically optimized the re-annotation tool parameters, with the Scallop and
Stringtie2 parameter advisor from Deblasio et al., 2020 [284]. However, this
tool would take weeks to run, so we discarded it (tested a few times between
February and May 2020, although at this time it was still a preprint).

Figure 4.12 Suite of tools integrated in the scAnnotatiONT pipeline.
This table shows the pipeline in its present condition. All tools are integrated into
the pipeline, except the steps 4 (statistics) and 5 (automatised UCSC trackhub
construction).

The next two steps consist in producing statistics summary reports out of
the novel annotation (steps 3 and 4 in Figure 4.12). We then build a UCSC



146 Chapter 4. An improved genome annotation workflow for scRNA-seq

trackhub in order to visualize the reads (from BAM or BigWig files) and
their location compared to the reference and novel annotations. These two
latter steps are not yet incorporated in the workflow, but will soon. Finally,
steps 6 to 9 are common to any other 10x Genomics scRNA-seq analysis
(as designed in Eoulsan for example, see Chapter 2). They include i) bulk
gene assignment with featureCounts [123], ii) sorting the resulting BAM files
with Samtools [120], iii) single-cell gene assignment with UMI-tools count [86],
and finally iv) MultiQC [234] allows to output some general statistics on the
assignment.

For the needs of the analyses, I also built a fully automated scRNA-
seq downstream analyses pipeline in Nextflow, that can take as entry any
scRNA-seq count matrix: https://github.com/LehmannN/scAnnotatiONT/
tree/paper. Furthermore, to build the UCSC trackhubs, I developed a small
utility to automatized this process (which aims at being integrated into the
pipeline): https://github.com/LehmannN/makeUcscTrackhub.

4.3.5 Genome re-annotation with both scRNA-seq and
bulk LR substantially improves read assignment

We have then compared this hybrid approach to using only the reference
annotation, to estimate and quantify the improvement on the scRNA-seq
analysis. Considering that the NCBI annotation is the most complete in
terms of 3’UTRs, we decided to rely on this annotation for the following
analyses. We performed two levels of comparison: at the genome level and at
the gene level. Since our pipeline is not totally finalized, I will just show here
a sample of some promising improvements we observed, but more analysis
are needed to precisely estimate the gain.

4.3.5.1 At the genome level

Overall, we tested four different approaches: re-annotation with LR only and
re-annotation with both LR and SR, for each of the two tools (Stringtie2
and Scallop). Figure 4.13 shows the results of the reads assignment after
re-annotation with each of these four approaches.

https://github.com/LehmannN/scAnnotatiONT/tree/paper
https://github.com/LehmannN/scAnnotatiONT/tree/paper
https://github.com/LehmannN/makeUcscTrackhub
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NCBI reference

Figure 4.13 Comparison of the percentage of assigned reads with the
4 tested approaches. Based on percentage of assigned reads, Scallop with both
LR and SR performs the best. The number of “unassigned ambiguity” (reads
that map to a region where reference genes overlap on both strands) is too low to
appear on the plots.

We can observe that the approaches enriched with SR (scRNA-seq reads)
allow to consistently recover more reads than the ones with LR only. This
may be due to more novel annotated genes or longer 3’extension with SR. In
case of novel genes, whether they are relevant in terms of biology and gene
length is still under evaluation (we may filter out the genes that are too short).
Precisely, Figure 4.14 highlights the number of genes in the four novel anno-
tations, and classify them in four categories: assembled, elongated, matching
reference, and novel. These results were obtained on top of GffCompare [278]

results, after comparison with the NCBI reference annotation.

Consistent with the observations on the Figure 4.13, we can observe that
the two annotations that include the SR display i) a higher number of as-
sembled genes, and ii) a higher number of elongated genes. However, all four
annotations bring a significant improvement in terms of gene assignment,
number of genes assembled and number of elongated genes. Further inves-
tigation are needed to assess which annotation performs best in light of the
scRNA-seq analyses.
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Figure 4.14 Comparison of the number of features recovered with the
4 approaches. Number of overall assembled genes (in red), elongated genes (in
green), gene or transcript matching the reference (in blue) and novel genes or
transcripts (in purple) within the four novel annotations.

4.3.5.2 At the gene level

Finally, we used one of the annotations (scallop LR and SR) to assess whether
we could recover more scRNA-seq signal. In particular, we investigated
SOX2, since it is a key marker in our study (pan-progenitor marker, see
Chapter 3). It is thus expected to be expressed in the great majority of
progenitors cells. Figure 4.15 highlights these differences. Before the re-
annotation, SOX2 was detected in 25% of the cells (at very low levels). With
the re-annotation, SOX2 is detected in 91% of the cells (3.5 times more
cells). There are 30 times more reads that are assigned to SOX2 with this
novel annotation. Our approach thus allows to recover a great quantity of
reads in scRNA-seq, that were lost due to poor reference annotation. We
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expect it will have a major impact on other genes. This analysis remains to
be completed.

A B

Figure 4.15 Recovery of SOX2 scRNA-seq signal with the novel an-
notation, extended in 3’. A) UCSC trackhub at SOX2 location. See plot
description in 4.9-B. We can notice that the novel annotation (in black) gets ex-
tended in its 3’end compared to the reference annotation (in red). B) UMAPs of
SOX2 expression before (left) and after (right) re-annotation.

4.4 Conclusion

We first studied the differences between three chicken reference annotations
and showed that the 3’UTR regions are particularly incomplete. We then
analysed our scRNA-seq dataset in parallel with the three reference anno-
tations, and found discrepancies in gene quantification. We observed that
for genes with an incomplete 3’UTR, the scRNA-seq signal is located just
downstream of the gene, and thus not properly quantified. This prompted
the hypothesis that improving these annotations at least on the 3’UTR could
improve the scRNA-seq gene quantification. Using complementary Nanopore
long-read sequencing transcriptome, we generated several novel annotations
and found that it improves the recovery of scRNA-seq signal by up to 87%.
We have evaluated two bioinformatics transcriptome reconstruction tools
to build this novel annotation combining scRNA-seq and long-read tran-
scripts, and propose a reusable open-source pipeline named scAnnotatiONT.
Moreover, although a few transcriptome reconstruction approaches targeting
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single-cell data came out since last year, they are dedicated to full-length
scRNA-seq [285, 286]. We thus also demonstrate that transcriptome recon-
struction tools developed for bulk datasets may be exploited to significantly
improve 3’ biased scRNA-seq analyses.
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Chapter 5

Discussion and prospects

5.1 Contributions

The aim of my thesis project was to evaluate, develop and apply bioinformat-
ics approaches for scRNA-seq to study the neurogenic transition in vertebrate
neural progenitors. In this context, my contributions can be summarized as
follows:

• I developed an automated pipeline dedicated to the pre-processing of
10x Genomics scRNA-seq data, in a scalable and reproducible manner
(Chapter 2). It provides extensive quality checks and is much more
flexible than the 10x Genomics proprietary pipeline. It relies on the
Eoulsan workflow manager. The corresponding manuscript has been
deposited in BioRxiv: https://www.biorxiv.org/content/10.1101/2021.
10.13.464219v1.

• I applied scRNA-seq analysis approaches to various neural progenitors
datasets (mouse and chicken), in order to isolate and uncover differences
in gene expression between SYM and ASYM populations (Chapter 3, as
well as Chapter 4 to a lesser extent). I have performed a custom analysis
based on a public atlas dataset, and selected dedicated approaches
based on both the data requirements and the biological question. I
could identify a list of 15 genes that the team of Xavier Morin can
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https://www.biorxiv.org/content/10.1101/2021.10.13.464219v1
https://www.biorxiv.org/content/10.1101/2021.10.13.464219v1


154 Chapter 5. Discussion and prospects

further investigate for their potential involved in the biological process,
and possibly select a candidate gene for experimental validation.

• I have shown that the reference annotation is a key parameter for
scRNA-seq analyses. I illustrated this point by showing that the choice
between Ensembl, NCBI or UCSC reference annotations impact the
downstream analyses and interpretation of the results.

• I have designed an hybrid approach to process scRNA-seq from chicken,
an organism for which the annotation is not as high-quality as human
or mouse. We propose to build a project-specific annotation based
on bulk long-read transcripts, the scRNA-seq signal and the reference
annotation (Chapter 4). Ultimately, this hybrid approach could be
used to improve the annotation of any poorly annotated organism (the
majority of available eukaryotic genomes) in a data-specific way and
would thus bring novel insights into single-cell transcriptomics analyses.

5.2 Methodological aspects

5.2.1 Handling challenges in single-cell transcriptomics

I performed single-cell analyses on two 10x Genomics datasets, from mouse
and chicken. Although the analysis of scRNA-seq data seems to reach more
or less a consensus within the community in terms of steps of the analysis, and
of the main tools to use, these datasets still represent some real challenges for
the analyses. Stupendous technological advances are often synonymous with
novel issues and challenges, and scRNA-seq is no exception. These challenges
encompass all the aspects of scRNA-seq analyses: they are biological, statis-
tical or computational in nature. Here, we will browse through some of the
most notable, such as i) quantifying uncertainty, ii) dealing with highly sparse
data and iii) managing different levels of resolution. I have summarized these
challenges in Figure 5.1. For a thorough report of all the challenges of single
cell data science, one can refer to the comprehensive study made recently by
Lähnemann et al., 2020 [287].
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Figure 5.1 Illustration of the challenges inherent with scRNA-seq anal-
yses. The first two challenges, in blue, are the most biology-oriented. A) Short-
comings in mRNA capture skews resulting analyses towards a random selection
of all the cell’s mRNA (from 10 to 30% depending on the protocol). B) Tran-
scriptional bursting greatly affects mRNA quantification in single-cells. In bulk,
this effect is imperceptible since RNA levels are averaged. Some mRNA could be
missed only because of the stochasticity of transcription. The challenges in green
are more specific to statistics. C) The very low amount of starting material in
single-cell induces highly sparse matrices (containing 80 to 95% of zeros, depend-
ing on the protocol and sequencing depth). Statistical approaches require therefore
to be adjusted accordingly. D) Identifying a suitable level of resolution is often
challenging. Between bulk and authentic fine-grained single-cell resolution, there
is a full range of possible cell types and subtypes definitions. The last challenges,
in pink, are the most computationally-oriented. E) The increase in the number
of cells within a single experiment results in a steep rise of data to handle. Tools
need to be able to manage big data in order to scale rapidly. F) Reproducibility
ensures a single analysis can be repeated several times and gives the same consis-
tent results, either by the same laboratory or by external laboratories. All of these
aspects have to be taken into account for accurate bioinformatics analyses.
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5.2.1.1 Quantifying variability

In single-cell approaches, the amount of starting material (e.g. RNAmolecules
that are to be quantified in each cell) is extremely low by definition. With
this respect, current protocols are poorly efficient in terms of RNA capture.
The average sensitivity have been estimated between 10 and 40% [73, 158, 288].
Thus, transcripts that end up being actually captured and counted may lead
to a significant sampling effect, which means that heterogeneity would arise
among otherwise identical cells (Figure 5.1-A). In addition, mRNA capture
is skewed towards the most abundant transcripts, lowly expressed genes thus
being further sidelined [289]. Both of these effects are referred to as technical
noise. Although recent development have proven to be more effective1, this
still poses a major challenge.

Moreover, biological variations such as transcriptional bursting and mRNA
degradation during cell lysis contribute to add even more randomness to the
single-cell RNA capture process. As shown in Figure 5.1-B, the regular bi-
ological variations of RNA transcription yield to random fluctuations that
are usually wiped out by bulk approaches [290]. Thus, single-cell approaches
come at the cost of a spectacular rise in uncertainty. This involves that data
analysis requires customized development and thorough methodological at-
tention [291]. Ideally, these uncertainties would need to all be quantified in
order to prevent them from propagating in the downstream analyses [287].

5.2.1.2 Dealing with extreme sparsity

As a direct consequence of these biological and technical noises, scRNA-seq
measurements typically suffer from a very large amount of zeros in the count
matrix. For example, in the chick dataset, 92% of the counts are equal
to zero. This is why scRNA-seq data is often described as highly sparse.
Depending on the experimental protocol, the degree of sparsity (e.g. number
of zeroes in the count matrix) ranges between 80 and 98%, with droplet-

1When I started my PhD, 10x Genomics protocol displayed a mRNA capture ef-
ficiency around 7%. With the latest chemistry, the single cell 3’ reagent chem-
istry V3, it is now over 30%. Source: https://kb.10xgenomics.com/hc/en-us/articles/
360001539051-What-fraction-of-mRNA-transcripts-are-captured-per-cell-

https://kb.10xgenomics.com/hc/en-us/articles/360001539051-What-fraction-of-mRNA-transcripts-are-captured-per-cell-
https://kb.10xgenomics.com/hc/en-us/articles/360001539051-What-fraction-of-mRNA-transcripts-are-captured-per-cell-
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based protocols producing the data the most sparse [292]. This situation led
to the definition of the term dropout, which denotes “an event in which a
transcript is not detected in the sequencing data owing to a failure to capture
or amplify it” [293]. However, the use of this ambiguous term has become
controversial as it may also describe the overall zero counts, which enclose
both the biologically-true absence of expression and the missed transcripts
due to methodological noise [287, 294]. Additionally, the difference between a
true zero or missing data is neither obvious nor clear-cut [289].

This extreme sparsity results in the data being zero-inflated, which is a
well-known phenomenon in statistics. There are two common remedies to
tackle this issue:

• Use a zero-inflated model: a specific distribution which describes a
distribution that contains an excessively high proportion of zero-valued
observations [295];

• Infer novel values thanks to imputation approaches: with the
hypotheses that the dataset is incomplete, and that the missing data
can be inferred either from the dataset itself or from an external source
(a cell atlas for example).

In single-cell, the first approach is often preferred whenever possible, and
multiple statistical models have already been successfully adapted and ap-
plied to single-cell data [150, 296, 297]. Imputation strategies have been applied
to single-cell more recently and it is still debated whether they compensate
for the missing data or add a supplementary noise [294].

Despite these advances, it is still challenging to appropriately handle spar-
sity in single-cell analyses and it is a major focus of discussion. An improper
processing of the zero-valued observations can jeopardize downstream analy-
ses quality and accuracy. Finally, a publication from Choi et al., 2020 from
last year raises questions about the very reality of zero-inflation in single-cell
data [298]. In their conclusions, they recommend to get rid of zero-inflated
models for single-cell data analysis, since biological signals are the primary
drivers of zero-inflation, and not technical artefacts. Also, a study from Qiu,
2020 [292] interestingly suggests to “embrace” dropouts as a useful signal
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instead of attempting to correct for it, which goes in the opposite direction
from all the other approaches. There is no doubt that future developments
in both experimental and computational workflows will provide substantial
answers towards single-cell data sparseness.

5.2.1.3 Dynamic levels of resolution

In the same way a map enables different levels of geographic areas (e.g. coun-
try, city, street, etc.), all scRNA-seq analyses encompass various levels of res-
olution (e.g. tissue, cell type, subtype, single cell). The key point is to define
which level of resolution is the most relevant for a given biological question.
Identifying a suitable level of resolution is often challenging, and depends
on various factors: the biological question, the aim of the study, previous
knowledge there is on the biological system and the protocol throughput. In
my work, the mouse dataset was a cell atlas from a given tissue (spinal cord),
and the chicken dataset was also from an heterogeneous tissue, with different
cell types (mostly progenitors, but also some neurons, mesoderm and neural
crest cells).

Since the beginning of the single-cell era, the very definition of cell types
have been undermined and debated [55]. Which exact criteria should be kept
to define a cell type ? How to define cell types when the cells evolve on a con-
tinuous spectrum ? These are the questions raised by single-cell approaches,
among others, which are particularly relevant for single-cell atlases. Thus,
when the study aims at providing a comprehensive cell reference, it is fun-
damental to investigate cellular heterogeneity at various levels of resolution.
Some studies choose for instance to define different levels of definition orga-
nized just like Russian dolls: cell types 1, cell types 2 (which are subtypes
of cell type 1) and cell subtypes (which are subtypes of cell type 2) [102, 299].
This provides a resolution flexibility that enables to “zoom” in and out a
cellular map. It thus helps to define the best level of granularity for each
specific case, and facilitates heterogeneity exploration.

Concerning the protocol throughput, it is important to emphasize that
each particular experimental setup imposes its own limits. The choice of a
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resolution might not be the same whether the data comes from a Smart-
seq2 (few cells, high throughput) or 10x Genomics protocol (many cells, low
throughput). Indeed, 10x Genomics approach is better suited to catalogue
cells and define clusters, whereas Smart-seq2 approach must be considered if
each cell needs to be precisely characterized with an extremely fine resolution.

5.2.2 The future of single-cell protocols

All of the single-cell protocols mentioned in this thesis rely on short-read
Illumina sequencing. However a few very recent protocols target single-cell
long-reads transcriptomics [300–304], a promising approach to get rid of tran-
scriptome reconstruction steps for poorly annotated species and to uncover
novel or lowly expressed isoforms.

Other recent protocols include spatial transcriptomics [305–307] and ultra-
high throughput protocols (reaching several million cells in a single experi-
ment). The former is increasingly being applied to scRNA-seq studies since
the technology is now mature enough [308–310]. With spatial information
added to scRNA-seq, this approach offers a unique view on tissues structure
and organisation at the cellular level. Spatial transcriptomics methods are
usually divided into i) FISH-based methods (i.e. In Fluorescence In Situ
Hybridization), such as osmFISH [311] or seqFISH+ [312], and ii) scRNA-seq-
based methods that rely on spatial barcodes (e.g. Slide-seq [313]) [310]. Most
of the spatial profiling approaches however require pre-selected markers or
have restricted spatial resolution (i.e. up to 100µm (3–30 cells)) [306]. Novel
approaches, such as HDST [306], succeeded in lowering the resolution down to
2µm, opening the way to high-resolution spatial transcriptomics. Mapping
the brain [314] or tumour cells [315] are just two of the remarkable applications
of spatial transcriptomics.

Ultra-high throughput protocols are still under active development and
fulfill its commitment in getting rid of physical cell isolation [81]. It is referred
to as split-pool barcoding or single-cell combinatorial indexing, where each
cell is labelled by a unique combination of several oligonucleotides (instead
of just one). It has already been successfully applied to a couple of large
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projects, such as cell atlases [316].
Another important point is that all the previously mentioned protocols

mainly apply on whole cells, but a growing number of studies use approaches
based on single-nucleus (i.e. snRNA-seq) [317–320]. It is key for some cell
types or tissues for which cell dissociation is challenging (e.g. solid tissues,
tumors). It also allows to remove stress-induced transcriptional response
to dissociation and to capture cells which particular morphology makes it
difficult to process in standard protocols (e.g. brain cells). Single-nucleus
isolation are compatible with most technologies which explains its increasing
interest in the single-cell community.

Although I focused only on transcriptomics, the SYMASYM project was
intended to use single-cell multi-omics, combining scRNA-seq with scATAC-
seq to study the epigenomic layer of information. These approaches enable
the simultaneous measurement of distinct data modalities from single-cells.
Some protocols ensure for example the joint profiling of transcriptome and
targeted proteome (e.g. CITE-seq) [321] or the simultaneous measurement
of gene expression and DNA methylation (e.g. scMT-seq) [322]. Several ap-
proaches even go further by combining three modalities, such as scTrio-seq2
which is able to measure transcriptome, genome and methylome simultane-
ously [323]. Most of these approaches are summarized and compared in the
excellent review of Lee et al., 2020 [324].

5.2.3 The pitfalls of genome mapping in scRNA-seq

Regarding mapping tools, unconventional alignment strategies recently ap-
peared: they are often referred to as pseudo-aligners (a.k.a alignment-free
tools), such as Kallisto [325] or Salmon [326]. Their specificity is their ability
not to rely on the exact match of individual bases from a reference genome,
but rather on the read assignment to known features (e.g. genes, transcripts)
of a high quality reference transcriptome [118]. Transcriptome mapping means
on one side that there was enough bulk RNA-seq data available to build an
isoform-level reference, and on the other side the variety of tissues sequenced
is broad enough. If not, most of the transcripts will be lost on the sole basis
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they were not characterized in the reference. It also precludes the discovery
of novel or unannotated transcripts [224]. However, since it is generally faster,
it may be preferred in some specific cases. This approach is reserved for well
annotated species though (e.g. human or mouse).

While all the above mentioned tools have been developed for bulk RNA-
seq, they have been extensively applied to scRNA-seq data. A recent study
by Vieth et al. [121] compared the impact of three popular bulk mapping tools
(STAR, BWA and Kallisto) on five different scRNA-seq protocols. STAR was
shown to perform better than Kallisto in terms of accuracy and mapping
rate. Yet, another study from Du et al. compares both tools on scRNA-seq
data and shows that Kallisto is up to four time faster and much less memory
intensive than STARsolo [113], the recent version of STAR adapted to scRNA-
seq [327]. The choice of the appropriate mapper then depends whether one
wants to favour gene detection accuracy or computing efficiency.

Single-cell specialized pre-processing tools have emerged these recent years.
They take into account scRNA-seq specificities such as high data sparsity,
the increasing number of reads to handle or UMI and cell barcodes pro-
cessing. The most popular ones are integrated into all-in-one pre-processing
pipelines that can handle all the steps up to the expression matrix produc-
tion. This include CellRanger and Alevin, the single-cell specific pipeline
based on Salmon package. In transcriptome-mapped approaches, mapping
and quantification can occur at the same time. Most of the tools discard
multi-mapped reads, however there is an emerging movement that supports
the idea of keeping multi-mapped reads. This is the strategy used in Alevin.
I have tested Alevin on another 10x Genomics dataset (that we did not show
here due to poor quality), but the results were very surprising, since it de-
tected 10 times more cells than both CellRanger and Eoulsan. We did not
investigated further these differences since this dataset was not suited for
further analyses (high level of mRNA contamination).
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5.2.4 Genome annotations are key parameters of the
scRNA-seq workflow

In my work, I have shown that the choice of a reference annotation is cru-
cial for the analysis of scRNA-seq datasets. Results obtained with different
chicken reference annotations (Ensembl, NCBI/RefSeq or UCSC) were dif-
ferent. For 10xGenomics scRNA-seq datasets, the 3’UTR annotation is par-
ticularly important. In Ensembl, the 3’UTRs were globally shorter than in
the NCBI/RefSeq annotation. We wonder whether the long-read RNA-seq
datasets were effectively incorporated within the annotation pipeline. An-
other possible explanation of the shorter 3’UTRs could also stem from the
UTR_Builder module of the Ensembl pipeline. Once a gene model is built,
the module searches for the start and end boundaries of the last intron, and if
these coordinates exactly match the same positions in a (longer) RNA-seq or
cDNA structure, then a 3’UTR is added to the gene model from this “donor”
structure (see https://www.ensembl.org/info/genome/genebuild/2018_12_
chicken_gene_annotation.pdf and [272]). It would be interesting to investi-
gate how this rule affects the UTRs in the chicken annotation.

Of note, I have been working on the current GRCg6a genome assembly. A
new assembly of the chicken genome coordinated by the Vertebrate Genomes
Project (VGP) seems to be soon released, with a NCBI annotation release 105
performed on these GRCg7b and GRCg7w genome assemblies: https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA660757/. New reference annotations are
thus expected to be generated by Ensembl and NCBI.

For this project, we propose a novel strategy to handle scRNA-seq datasets
from genomes that do not benefit from a high-quality annotation. We pro-
pose to generate a bulk long-read transcriptome in the same cell sample as
the scRNA-seq. In my work, I showed that this matching dataset can dras-
tically improve the annotation, and the final results. It would be interesting
to evaluate whether using a long-read dataset from the same organism, but
not matching the same cell types could also improve the annotation. This
would be a less costly approach if using publicly-available datasets (although
the cost of our ONT dataset was only about 2000 euros). Several long-read

https://www.ensembl.org/info/genome/genebuild/2018_12_chicken_gene_annotation.pdf
https://www.ensembl.org/info/genome/genebuild/2018_12_chicken_gene_annotation.pdf
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA660757/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA660757/
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RNA-seq datasets were previously generated in the developing chicken, with
the PacBio sequencer: 8 embryonic stages [328], 1 embryo [274], 3 stages of
embryonic chicken heart [329]. To our knowledge, our long-read RNA-seq is
the first one sequenced on a Nanopore sequencer. It should be stressed that
the Nanopore protocol used was starting from the 3’end of the transcript,
thereby particularly suited for our aim of better annotating the 3’UTRs. It
remains to be tested if the PacBio datasets would be also adapted for this
precise aim.

Finally, it must be noted that a few very promising approaches, related
to my work, came out these last 6 months:

• First, Wang et al., 2021 propose the very first tool dedicated to im-
proving scRNA-seq signal without the need for a reference annotation,
and that can be applied to any species and protocol (full-length and
droplet-based) [330]. It allows to uncover any region in the genome that
is transcriptionally active, based on scRNA-seq data only. According
to the authors, this approach “recovers biologically relevant transcrip-
tional activity beyond the scope of the best available genome annota-
tion”. Moreover, they raise the issue that the younger the embryos are,
the higher is the prevalence of unnatotated transcripts (that I have not
seen mentioned elsewhere before). They specifically demonstrate that
the current chicken reference annotations do not characterize the tran-
scriptional landscape of early embryonic tissues as well as they would
for later stages.

• Shields et al., 2021 are the first ones, to my knowledge, that exploit
long-reads (PacBio) in order to improve a genome annotation specifi-
cally to analyse 10x Genomics scRNA-seq data, applied on ants brain
[331]. Their work has a different purpose than ours, since they also
aimed at improving the ant reference annotation, and thus includes a
great amount of work on manual re-annotation (they are ant experts).
What is also interesting is that they claim that the extended 3’UTRs
in their novel annotation resulted in the recovery of the transcriptome
of 18% more cells and lead to major improvements in scRNA-seq data
analyses (e.g. deeper single-cell resolution, identification of novel mark-
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ers).
• Finally, Botvinnik et al., 2021 propose an alignment-free, reference-

independent pipeline for cross-species cell type identification for scRNA-
seq data [332]. This approach would allow the analysis of any species,
independently of whether a genome assembly or a reference annotation
is available (which is more than 99.9% of the 10 million animal species
predicted to exist).
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Appendix A

Eoulsan

A.1 Eoulsan design file

This is the design file produced by the eoulsan createdesign command, when
processing SYMASYM data.

1 [ Header ]
2 DesignFormatVersion =2
3 GenomeFile =data/ genome / GCF_000002315 .5 _GRCg6a_genomic .fna
4 GtfFile =data/ annotation / ref_GRCg6a_top_level . corrected .gtf
5

6 [ Experiments ]
7 Exp.exp1.name= SymasymB
8

9 [ Columns ]
10 SampleId SampleName Reads Date FastqFormat RepTechGroup

Exp.exp1. Condition Exp.exp1. Reference UUID
11 S1R1001 S1_R1_001 [ S1_R1_001 .fastq.gz , S1_R2_001 .fastq.gz]

2019 -05 -24 fastq - sanger S1_R1_001 S1_R1_001 false 4540
b2b5 -35d2 -493d-9d8f -0 cd59cabf439

12 S2R1001 S2_R1_001 [ S2_R1_001 .fastq.gz , S2_R2_001 .fastq.gz]
2019 -05 -24 fastq - sanger S2_R1_001 S2_R1_001 false 81
f7466f -4bb8 -4c86 -88f9 - bab59c9f1bae

13 S3R1001 S3_R1_001 [ S3_R1_001 .fastq.gz , S3_R2_001 .fastq.gz]
2019 -05 -24 fastq - sanger S3_R1_001 S3_R1_001 false 534773
f5 -8577 -434f-a8cd -4 b34f32c6244
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14 S4R1001 S4_R1_001 [ S4_R1_001 .fastq.gz , S4_R2_001 .fastq.gz]
2019 -05 -24 fastq - sanger S4_R1_001 S4_R1_001 false
dc06f6d4 -7509 -4 ddd -aa37 -8 f661ae5d940

Listing A.1 SYMASYM Eoulsan design file

A.2 Typical scRNA-seq workflow

The following pages contain the full 10x Genomics workflow that I used to
pre-process SYMASYM data. The commented parts are typical steps that
may be used to pre-process 10x Genomics data, which I did not needed in
this case.



<analysis> 
 <formatversion>1.0</formatversion> 
 <name>SYMASYM project - dataset B - 2019</name> 
 <description>10xGenomics mouse data - 5000 cells - 1TP</description> 
 <author>Lehmann</author> 

 <!-- The steps of the workflow --> 
 <steps>  
  <!-- Create STAR index --> 
  <!-- This step may be skipped if needed (long time running). In this case, the step 
"mapreads" will automatically generate an index. --> 
  <!--step id="step5createstarindex" skip="false" requiredprocs="`nproc`"> 
   <module>starindexgenerator</module> 
   <parameters--> 
    <!-- The overhang value must be greater than the reads length --> 
    <!--parameter> 
     <name>overhang</name> 
     <value>100</value> 
    </parameter> 
    <parameter> 
     <name>use.gtf.file</name> 
     <value>true</value> 
    </parameter> 
    <parameter> 
     <name>gtf.feature.exon</name> 
     <value>exon</value> 
    </parameter> 
    <parameter> 
     <name>gtf.tag.exon.parent.transcript</name> 
     <value>Parent</value> 
    </parameter> 
   </parameters> 
  </step--> 

   <!-- Merge technical replicates --> 
  <!--step id="step0mergereplicates" skip="true"> 
   <module>technicalreplicatemerger</module> 
   <inputs> 
    <input> 
     <port>input</port> 
     <fromstep>step0Fastqimport</fromstep> 
     <fromport>output</fromport> 
    </input> 
   </inputs> 
   <parameters> 
    <parameter> 
     <name>format</name> 
     <value>fastq</value> 
    </parameter> 
   </parameters> 
  </step--> 

  <!-- FastQC of non filtered reads --> 
  <step id="step1fastqc" skip="false"> 
   <module>fastqc</module> 
   <parameters/> 
  </step> 

  <!-- Filter reads: remove low quality reads --> 
  <step id="step2filterreads" skip="false"> 
   <module>filterreads</module> 
   <parameters> 
    <parameter> 
     <name>illuminaid</name> 
     <value></value> 
    </parameter> 
    <parameter> 
     <name>quality.threshold</name> 
     <value>30</value> 
    </parameter> 
   </parameters> 
  </step> 

  <!-- FastQC of filtered reads --> 
  <step id="step3fastqc" skip="false"> 
   <module>fastqc</module> 
   <parameters/> 
  </step> 

  <!-- Extract cell barcodes and identify the most likely true barcodes using the 
'knee' method. --> 



  <step id="step4whitelist" skip="false"> 
   <module>umiwhitelist</module> 
   <parameters/> 
  </step> 

  <!-- Extract UMI barcode from a read and add it to the read name, leaving any sample 
barcode in place.  --> 
  <step id="step5extract" dataproduct="match" skip="false"> 
   <module>umiextract</module> 
   <parameters/> 
  </step> 

  <!-- Map reads --> 
  <step id="step6mapreads" skip="false" requiredprocs="`nproc`"> 
   <module>mapreads</module> 
   <parameters> 
    <parameter> 
     <name>mapper</name> 
     <value>star</value> 
    </parameter> 
    <parameter> 
     <name>mapper.arguments</name> 
     <value>--outSAMunmapped Within</value> 
    </parameter> 
   </parameters> 
  </step> 

  <!-- Quality filter of SAM files --> 
  <step id="step8filtersam"  skip="false"> 
   <module>filtersam</module> 
   <parameters> 
    <parameter> 
     <name>removeunmapped</name> 
     <value>true</value> 
    </parameter> 
    <parameter> 
     <name>removemultimatches</name> 
     <value>true</value> 
    </parameter> 
   </parameters> 
  </step> 

  <!-- Assign reads to genes --> 
  <step id="step9featurecounts" requiredprocs="`nproc`" skip="false"> 
   <module>featurecounts</module> 
   <inputs> 
    <input> 
     <port>input</port> 
     <fromstep>step8filtersam</fromstep> 
     <fromport>output</fromport> 
    </input> 
   </inputs> 
   <parameters> 
    <parameter> 
     <name>strand_specificity</name> 
     <value>1</value> 
    </parameter> 
   </parameters> 
  </step> 

  <!-- MutliQC of filtered and mapped reads --> 
  <step id="step10multiqc" skip="false"> 
   <module>multiqc</module> 
   <parameters> 
    <parameter> 
     <name>reports</name> 
     <value>fastqc,mapreads,featurecounts</value> 
    </parameter> 
    <parameter> 
     <name>use.docker</name> 
     <value>false</value> 
    </parameter> 
   </parameters> 
  </step> 

  <!-- Convert SAM to BAM --> 
  <step id="step11samtobam" skip="false"> 
   <module>sam2bam</module> 
   <inputs> 
    <input> 
     <port>input</port> 



     <fromstep>step9featurecounts</fromstep> 
     <fromport>outputsam</fromport> 
    </input> 
   </inputs> 
   <parameters/> 
  </step> 

  <!-- Count UMIs per gene per cell --> 
  <step id="step12umicounts" skip="false"> 
   <module>umicount</module> 
   <parameters/> 
  </step> 

  <!-- Create a SingleCellExperiment Bioconductor Object in a RDS file --> 
  <step id="step13singlecellexperiment" skip="false"> 
   <module>rsinglecellexperimentcreator</module> 
   <parameters> 
    <parameter> 
     <name>input.matrices</name> 
     <value>true</value> 
    </parameter> 
    <parameter> 
     <name>design.prefix</name> 
     <value>Cell.</value> 
    </parameter> 
    <parameter> 
     <name>r.execution.mode</name> 
     <value>process</value> 
    </parameter> 
    </parameters> 
  </step--> 

  <!-- Create a Cell Ranger-like matrix file --> 
  <!--step id="step14cellrangermatrix" skip="false"> 
   <module>matrix2cellrangermatrix</module> 
   <parameters> 
    <parameter> 
     <name>input.matrices</name> 
     <value>true</value> 
    </parameter> 
    <parameter> 
     <name>use.gene.annotation</name> 
     <value>true</value> 
    </parameter> 
    <parameter> 
     <name>gene.annotation.field.name</name> 
     <value>Gene name</value> 
    </parameter> 
   </parameters> 
  </step--> 
 </steps> 

 <!-- Global configuration --> 
 <globals> 
  <!-- Define the location of the Docker connection -->  
  <!--parameter> 
   <name>main.docker.uri</name> 
   <value>unix:///var/run/docker.sock</value> 
  </parameter--> 
 </globals> 
</analysis>
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A.3 Reads demultiplexing and filtering

Initially developed in the 2000’s by the Wellcome Trust Sanger Institute
[333], the FASTQ format became de facto the standard to store sequencing
data. It is a text-based file format that stores both the raw sequence and its
corresponding quality scores. The quality score of each base is encoded by
a single ASCII character (one byte per quality value). This rule facilitates
reading, processing and filtering of FASTQ files. An example of a FASTQ
file is shown in Figure A.1.

Figure A.1 Example of a FASTQ file. In the FASTQ format, each group
of four lines describe a single sequencing read. Hence, a total of three reads are
represented here. The header (first line) always starts with a at (@) sign and
contains the sequence identifier. The second line is the read sequence itself. The
third line is a separator, which is mostly a plus (+) sign. The fourth line encodes
the per base quality score which is assumed to match the sequence written in the
second line. Image from https://biocorecrg.github.io/PhD_course/fastq.html

The quality of each base is calculated with Phred scores (or Q scores). It
reflects the probability that a given base is called incorrectly by the sequencer.
It is defined by the equation: Q = −10 ∗ log10 P , where P is the probability
that the base is erroneous. For example, a Phred score of Q30 means that the
base call accuracy is 99.9% (e.g. there is 1 in 1000 possibilities that the base
is wrong). This metrics thus helps to filter poor quality sequences out of the
FASTQ files. The FASTQ filtering step also implies to remove poor quality

https://biocorecrg.github.io/PhD_course/fastq.html
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reads extremities (also called trimming) and non biological sequences (e.g.
sample indexes or sequences primers) [334]. Once the filtering is completed,
quality control of the remaining reads can be performed by using usual bulk
RNA-seq tools such as FastQC [115].

A.4 Genome alignment or mapping

Although this might not be a major concern for most of scRNA-seq studies at
the moment, the key difference between genome and transcriptome mapping
is that the former one enables the identification of novel genes or transcripts.
The main challenge with genome alignment is to properly identify splice
junctions in order not to lose reads that may overlap two exons as shown in
Figure A.2. It thus imposes the use of specialised short-reads aligners that
can handle splicing (a.k.a. splice-aware aligners), some of the most popular
ones being STAR [122] and TopHat [335, 336]. Some aligners are specialized
in transcriptome alignment, such as BWA [337], but we do not recommend
them for scRNA-seq (see [121]).

(a) Read matching a single exon. (b) Read spanning a splice junction.
Figure A.2 Illustration of a typical genome alignment strategy. Splice-
aware aligners follow different strategies either they need to align unspliced or
spliced reads. (a) A read (in blue) is defined as unspliced if it can be mapped
with high confidence to a single exon (exons are here represented in gray lit-
tle boxes). (b) Remaining unmapped reads are then splitted into two halves
(here called read1 and read2) and aligned separately in order to identify splice
junctions. Images from https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/
lessons/03_alignment.html

https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03_alignment.html
https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03_alignment.html
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Appendix B

Re-annotation pipeline: LR
data

B.1 SYMASYM bulk long-reads raw data qual-
ity report

We assessed data quality with ToulligQC, a tool dedicated to the QC analy-
ses of raw Oxford Nanopore data: https://github.com/GenomicParisCentre/
toulligQC. It is also developed at IBENS. We show here only the first page
(the overall analysis is 8 pages).
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Software info

Measure Value

MinKNOW version 3.5.4

Basecaller name guppy-basecalling

Basecaller version 3.3.3+fa743a6

Basecaller analysis 1d_basecalling

ToulligQC version 1.2

Hostname MT-110298

Device minion

Device ID MN17734

Model file template_r9.4.1_450bps_hac.jsn

Basic Statistics
Run info

Measure Value

Run id LONGCHICK_A2019

Sample LONGCHICK_A2019

Report name 20191127_LONGCHICK_A2019

Run date 2019-11-27T14:29:53Z

Run duration 71:59:13

Flowcell id FAK97187

Flowcell version

Kit

Yield (Gbp) 13.85

Read count 5839232

FastQ_entries 1D Null sequence length 1D pass 1D pass barcoded 1D fail 1D fail barcoded

count 5839232 5839232 0 4556792 4327447 1282440 399123

frequency 100.00 100.00 0.00 78.04 74.11 21.96 6.84

ToulligQC report for LONGCHICK_A2019  Run id: LONGCHICK_A2019 
Report name: 20191127_LONGCHICK_A2019 

Run date: 2019-11-27T14:29:53Z 
Report date : 12/04/19 08:33:43 UTC Summary

1. Basic Statistics
2. Read count histogram
3. Read length histogram
4. Yield plot of 1D read type
5. Read type quality boxplot
6. Mean Phred score frequency of all 1D read type
7. Channel occupancy of the flowcell
8. Mean Phred score function of 1D read length
9. 1D pass reads percentage of different barcodes

10. 1D fail reads percentage of different barcodes
11. 1D reads size distribution for each barcode
12. 1D reads Mean Phred score distribution for each barcode

Read count histogram 
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B.2 Eoulsan workflow file for long-reads ONT

The following pages contain the full long-reads workflow (Oxford Nanopore
Technologies, ONT) that I used to pre-process SYMASYM bulk long-reads
data.



<analysis> 
    <formatversion>1.0</formatversion> 

    <!-- The steps of the workflow --> 
    <steps> 

        <!-- Create a custom Minimap2 index feature annotation --> 
        <step skip="false"> 
            <module>minimap2indexgenerator</module> 
            <parameters> 

                <!-- Create an index for splicing mode of Minimap2 --> 
                <parameter> 
                    <name>indexer.arguments</name> 
                    <value>-x splice</value>               <!-- cDNA       --> 
                    <!--value>-x splice -uf -k14</value--> <!-- Direct RNA --> 
                </parameter> 
            </parameters> 
        </step> 

        <!-- FastQC of raw reads --> 
        <step id="rawfastqc" skip="false"> 
            <module>fastqc</module> 
        </step> 

        <!-- Filter reads --> 
        <step skip="false" discardoutput="asap"> 
            <module>filterreads</module> 
            <parameters> 

                <!-- Remove polyN tails of the reads --> 
                <parameter> 
                    <name>trimpolynend</name> 
                    <value></value> 
                </parameter> 

            </parameters> 
        </step> 

        <!-- Mapping of the reads --> 
        <step skip="false" discardoutput="false"> 
            <module>mapreads</module> 
            <parameters> 

                <!-- Use use Minimap2 as mapper --> 
                <parameter> 
                    <name>mapper</name> 
                    <value>minimap2</value> 
                </parameter> 

                <!-- The version of Minimap2 to use is 2.12 --> 
                <parameter> 
                    <name>mapper.version</name> 
                    <value>2.12</value> 
                </parameter> 

                <!-- We use Minimap2 in splice mode --> 
                <parameter> 
                    <name>mapper.arguments</name> 
                    <value>-x splice</value>               <!-- cDNA       --> 
                    <!--value>-x splice -uf -k14</value--> <!-- Direct RNA --> 
                </parameter> 
            </parameters> 
        </step> 

        <!-- Filtering of the SAM alignments --> 
        <step skip="false" discardoutput="false" requiredmemory="100Gb"> 



            <module>filtersam</module> 
            <parameters> 

                <!-- Remove the unmap entries in the files --> 
                <parameter> 
                    <name>removeunmapped</name> 
                    <value>true</value> 
                </parameter> 

                <!-- Remove alignmments with poor quality --> 
                <parameter> 
                    <name>quality.threshold</name> 
                    <value>1</value> 
                </parameter> 

                <!-- Remove supplementary alignments --> 
                <parameter> 
                    <name>removesupplementary</name> 
                    <value>true</value> 
                </parameter> 

                <!-- Remove the multimaches alignments --> 
                <parameter> 
                    <name>removemultimatches</name> 
                    <value>true</value> 
                </parameter> 

            </parameters> 
        </step> 

        <!-- Convert SAM to BAM file and sort the BAM file by coordinate --> 
        <step skip="false" requiredmemory="100Gb"> 
            <module>sam2bam</module> 
            <parameters> 

                <!-- Compression level of the BAM file --> 
                <parameter> 
                    <name>compression.level</name> 
                    <value>5</value> 
                </parameter> 

            </parameters> 
        </step> 

        <!-- MultiQC --> 
        <step skip="false"> 
            <module>multiqc</module> 
            <parameters> 

                <!-- MultiQC will contain reports from FastQC, STAR and HTSeq-count --> 
                <parameter> 
                    <name>reports</name> 
                    <value>fastqc,mapreads</value> 
                </parameter> 

                <!-- Docker is required to launch this step --> 
                <parameter> 
                    <name>use.docker</name> 
                    <value>false</value> 
                </parameter> 

            </parameters> 
        </step> 
    </steps> 

</analysis>
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B.3 MultiQC summary statistics of SYMASYM
bulk long-reads

Figure B.1 MultiQC summary plot of SYMASYM bulk long-reads
data.





RÉSUMÉ

Ces dernières années, l’émergence des approches en cellules uniques (scRNA-seq) a favorisé la caractérisation de
l’hétérogénéité cellulaire avec une précision inégalée. Malgré leur démocratisation, l’analyse de ces données reste
complexe, en particulier pour les organismes dont les annotations sont incomplètes.
Au cours ma thèse, j’ai observé que les annotations génomiques du poulet sont lacunaires, ce qui engendre la perte
d’un grand nombre de lectures de séquençage. J’ai évalué à quel point une annotation améliorée affecte les résultats
biologiques et les conclusions issues de ces analyses. Nous proposons une nouvelle approche basée sur la ré-annotation
du génome à partir de données scRNA-seq et de RNA-seq bulk en lectures longues.

Ce projet de biologie computationnelle s’appuie sur une étroite collaboration avec l’équipe expérimentale de Xavier Morin

(IBENS). Le principal objectif biologique est la recherche de signatures de mode de division symétrique et asymétrique

au sein de progéniteurs neuronaux. Afin d’identifier les principaux changements transcriptionnels, j’ai mis en place des

approches dédiées à la recherche de signatures géniques à partir de données scRNA-seq.

MOTS CLÉS

Bioinformatique; Pipeline d’analyse; Transcriptomique en cellule unique; Séquençage en lectures longues;

Ré-annotation de génome; Progéniteurs neuronaux

ABSTRACT

In recent years, single-cell RNA-seq (scRNA-seq) has fostered the characterization of cell heterogeneity at a remarkable
high resolution. Despite their democratization, the analysis of scRNA-seq remains a challenge, particularly for organisms
whose genomic annotations are partial.
During my PhD, I observed that the chick genomic annotations are often incomplete, thus resulting in a loss of a large
number of sequencing reads. I investigated how an enriched annotation affects the biological results and conclusions
from these analyses. We developed a novel approach based on the re-annotation of the genome with scRNA-seq data
and long reads bulk RNA-seq.

This computational biology project capitalises on a tight collaboration with the experimental team of Xavier Morin (IBENS).

The main biological focus is the search for signatures of symmetric versus asymmetric division mode in neural progeni-

tors. In order to identify the key transcriptional switches that occur during the neurogenic transition, I have implemented

bioanalysis approaches dedicated to the search for gene signatures from scRNA-seq data.

KEYWORDS

Bioinformatics; Analysis pipeline; Single-cell RNA-seq; Long-read sequencing; Genome re-annotation; Neu-

ral progenitors
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