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In recent years, advances in digital photography and computer vision have played a major role in the documentation of surface appearance, particularly with the introduction of image-based rendering algorithms. Reflectance transformation Imaging (RTI) is one of these approaches. The RTI is a multi-light imaging technique that involves taking a series of images of an object surface using a stationary camera, while the location of the incident light varies in each shot. Thanks to the information gathered from this type of acquisition, also defined as Multi-light Image Collections (MLICs), it is possible to model the angular reflectance of a surface. The RTI is frequently employed in the documentation and study of architectural and cultural heritage objects, owing to its flexibility and convenience of usage, as it does not need the employment of specialized and/or expensive equipment. However, this flexibility can occasionally have a negative impact on the quality of the visual representation achieved with this approach. Taking this into account, the primary goals of this research are to improve the RTI technique from both a methodological and an instrumental viewpoint, with a particular emphasis on the documentation and characterization of large works of art, as well as the study of multi-modal approaches. Thus, this work presents the study, development and implementation of two methodologies focused on the correction of artifacts related to the light source. In the first one, we investigate how the angular distribution of light source positions affects the RTI's reconstruction of surface reflectance. The proposed solution relies on estimating the local density of the light source positions distribution in order to assign a weight to each position and thus calibrate non-homogeneous distributions. The second focuses on the non-homogeneous illumination that is commonly present in RTI images, which is linked with the non-collimated lighting sources that are typically employed in the technique's application. As a solution to this problem, we present an approach that exploits the model of a near punctual light to obtain illumination correction at a pixel level. Finally, in the last two chapters, we delve into two understudied areas within the RTI framework, namely the acquisition of large scale objects as well as the integration of multispectral imaging and the RTI technique. In these two final chapters, we offer adaptation and improvement from both an instrumental and a methodological standpoint.

Résumé

Ces dernières années, le progrès de la photographie numérique, ainsi que la vision par ordinateur ont joué un rôle majeur dans l'étude de l'apparence de surfaces, en particulier avec l'introduction d'algorithmes de rendu basés sur l'image (image-based rendering algorithms). L'imagerie par transformation de la réflectance (RTI) est l'une de ces approches. Cette technique d'imagerie multi-lumière consiste à prendre une série d'images d'un objet à l'aide d'une caméra fixe, tandis que l'emplacement de la lumière incidente varie. Grâce aux informations recueillies à partir de ce type d'acquisition, qui se définit également comme une collection d'images multi-lumière (MLICs), il est possible de modéliser la réflectance angulaire d'une surface. La technique RTI est fréquemment utilisée dans la documentation et l'étude d'objets du patrimoine architectural et culturel en raison de sa flexibilité et de sa relative commodité d'utilisation, ne nécessitant pas forcément l'utilisation d'équipements spécialisés et/ou coûteux. Cependant, cette flexibilité peut parfois avoir un impact négatif sur la qualité de la numérisation de l'information visuelle obtenue avec cette approche. Ainsi, les principaux objectifs de cette recherche sont d'améliorer et l'optimisation la technique RTI tant d'un point de vue méthodologique qu'instrumental, dans un contexte applicatif lie aux besoins de documentation et caractérisation de l'apparence visuelle des grandes oeuvres d'art, et l'étude des approches multimodales pour l'acquisition RTI. Ainsi, ce travail présente l'étude, le développement et la mise en oeuvre de deux méthodologies axées sur la correction des artefacts liés à la source lumineuse. Dans le premier chapitre, nous étudions comment la distribution angulaire des positions de la source lumineuse affecte la reconstruction de RTI de la réflectance de surface. La solution proposée repose sur l'estimation de la densité locale de la distribution des positions de la source lumineuse afin de la ponderer et ainsi calibrer les distributions non homogènes d'acquisition. La seconde se concentre sur l'éclairage non homogène couramment présent dans les images RTI, qui est lié aux sources d'éclairage noncollimatées et généralement employées dans l'application de cette technique. Nous proposons ainsi une approche qui exploite le modèle d'une lumière ponctuelle afin d'obtenir une correction d'éclairage au niveau du pixel. Enfin, nous approfondissons deux domaines sous-étudiés dans le cadre RTI, à savoir l'acquisition de grands objets et l'expansion des acquisitions au domaine multispectral, en proposant l'adaptation et l'amélioration de la méthodologie tant d'un point de vue instrumental que méthodologique.
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Introduction

The acquisition, modeling and accurate description of appearance, as well as the temporal monitoring of the condition of complex surfaces, require further investigation. As a result of this necessity, several methodologies that focus on the research and accurate digital representation of surface visual attributes have arisen in recent years. This is how the socalled multilight approaches have grown in popularity over the previous two decades. Among these technologies, we find two main approaches, Photometric Stereo and Reflectance Transformation Imaging. Photometric Stereo first emerges with the primary goal of producing three-dimensional representation of objects. On the other hand, Reflectance Transformation Imaging, which is simplified in terms of acquisition and which is one of the most often used modern techniques in the documentation and analysis of artifacts in the field of cultural heritage. The RTI technique can reveal valuable information that can be utilized to analyze an object from a series of photographs. Even though this approach has wide and different applications to date, owing partly to the ease of implementing a dedicated acquisition system, there are deficiencies and limitations in the method. Indeed, we can notice that the lack of strict protocols in the free-form methods typically employed in RTI, making the acquired data challenging to quantify. As a result of its flexibility, certain RTI acquisitions lack repeatability and accuracy. As a consequence, further investigation and development in RTI are required to better assess important aspects of an object in addition to visual analysis. For example, to quantify the degradation or aging due to time or environmental conditions, interventions or retouches performed on the object for its preservation, among others. We assume that these characteristics could be recorded and quantified more precisely if a more stringent data gathering and/or processing strategy is applied. Thus, in this work, we explore various methods that help to overcome undesirable effects associated with the application of the RTI approach, as well as the extension of the RTI method for large object documentation and the contribution of multispectral imaging in RTI.

Context of research program

The results of the research presented here fall within the framework of the ANR SU-MUM project. Projet SUMUM: A Multi-scale and Multi-modal Strategy of documentation of Tangible CH objects: acquisition, processing, study and diffusion. Project SUMUM is financed by the French national research agency (ANR) and the participation of four research laboratories (GREYC, CICRP/MAP, MIS and ImViA). Figure 1 summarizes the key goals of this project. This thesis is involved in task T3, which is focuses on the collection and modeling of multi-scale and multi-modal data. The main objectives addressed in this thesis are detailed below. 

Objectives of research

The primary scientific goal of the work is to provide a methodology (instruments and methods) for acquiring and modeling the visual appearance of complex and diverse surfaces such as those found on cultural artifacts. This requires a multi-scale and multi-modal approach to data collection and processing, as well as standardization and unification of processing protocols. Many sub-objectives are thus pursued, which include instrument development on the basis of an RTI-spectral system, creation of a full framework on the basis of a spectral-RTI system considering, acquisition, registration and joint reconstruction of spectral and angular components of reflectance. Research of characteristics describing changes in the appearance of historical object surfaces, and so on. We particularly focused on the four axes listed below:

• Data modeling to deal with in-homogeneous acquisitions.

• Per-pixel correction approach for light direction estimation accuracy.

• Multi-scale acquisition and associated image processing techniques.

• Multispectral acquisition for a more complete description of the surface attributes.

Document structure

This document is organized into five chapters. The first chapter begins with a broad examination of principles connected to the appearance of a surface, which is based on the relationship of three elements: light, object, and observer. We start from the properties of light-matter interaction, which ultimately leads to the visual properties that an observer recognizes as the appearance attributes of a surface. Then we review the state of the art regarding measuring the appearance of an object from image-based techniques. We concentrate on so-called multi-light approaches, notably in the RTI methodology, which is examined and used in this thesis. Finally, we will look at the most recent advances in multi-light approaches. We review its use and recall its relevance in many fields, especially in the domain of cultural heritage, as this is the backdrop of this research.

The influence of the spatial distribution of light positions adopted in the RTI approach is studied in the second chapter. According to the theory and state of the art of this approach, the spatial distribution is typically associated with a hemispheric form. The mathematical models that are used to model the data collected through RTI technique have been built on the basis of a uniform distribution in a hemispheric space. However it is often not possible to achieve such a uniform distribution of lighting positions. This is particularly frequent in Free-form RTI. Thus, we present an approach to palliate the negative effects induced by applying mathematical models built for uniform distribution to diverse configurations that lack homogeneity.

In the third chapter, from the state of the art of the RTI approach, it is shown that it is typical to employ the illumination model of a distant light. Based on this concept, the same lighting position is assumed for each point of a surface (corresponding to each pixel of an image), implying that a global value of the lighting angle is established, which is commonly calculated in respect to the center of the surface. In this contribution, we show that the model of distant illumination is incompatible with common acquisition conditions as well as the type of lamps usually employed in the application of the RTI approach, which are noncollimated. Because the analysis assumes that the light rays fall parallel on the surface, a constant distance and an equal angle of incidence are indicated for each point on the surface. In practice, such a hypothesis is far from reality as the light sources used in RTI applications are not collimated, resulting in non-uniform illumination. The rays that impact the surface are not parallel, resulting in a variation of distance and angle at each point. We propose a contribution to deal with this issue based on the illumination laws and a model of a punctual light source.

In the fourth chapter, we present how the RTI approach may be used to document large objects. In this contribution, we investigate how a combination of appropriate hardware and image processing approaches might give an answer to this field in the context of RTI applications in cultural heritage. We explain the essential components that must be taken into account to adapt RTI to large-scale artworks (objects larger than 5 × 5 meters) from the Vasarely Foundation, a museum located in the south of France.

Finally, in the fifth and last chapter, we explore the association between RTI and multispectral imaging. First, we present the development and implementation of a multispectral-RTI acquisition system based on the design of a multispectral spotlight. Then, based on the analysis and exploitation of the data obtained through the proposed system, we validate the contribution of the combination of RTI technique and multispectral imaging.
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Surface appearance attributes analysis

Chapter overview

The purpose of this first chapter is to familiarize the reader with the ideas and background required to understand the work done and the corresponding contributions presented in subsequent chapters. We firstly present a quick discussion of the physical phenomena underlying the visual appearance. We then conclude with a brief overview on the state of the art in the study of the visual appearance of the surface of cultural heritage objects using the RTI technique.

Introduction

The visual appearance of an object is the product of the interaction among three elements. These elements are, the light, the object, and the observer. It is the combination of these elements that enables the process of vision to occur. This interaction is the base of the visual attributes or appearance attributes that can be perceived. The evaluation and accurate description of an object's visual appearance is required in many disciplines. Thus, the control and characterization of appearance is fundamental for various manufactured products, computer graphics rendering, and the study and documentation of items of artistic, cultural, and/or historical value. This chapter aims to present the fundamental notions that help understand which attributes characterize an object's visual appearance and how it can be evaluated and/or measured. 

Light-surface interaction properties

When light strikes an object, it alters its behavior depending mainly on the composition of the surface (material and microgeometry), as well as the inclination of the incident rays. This results in physical phenomena such as refraction that can occur when light rays pass from one medium to another of different density. In this case there is a change in its direction due to the speed of propagation of light, which varies according to the material in which it propagates. Depending on the material of the object with which it interacts, light can be absorbed and/or transmitted. The absorption occurs when a beam of light strikes an object and the object absorbs all or part of the spectrum and reflects, while reflecting and transmitting a range of wavelengths which constitutes its color. For example, when a ray of visible light hits a black, matte and opaque surface, it is absorbed almost entirely. As for the transmission, it could also be total or partial, occurring when light rays pass through an object. There are three types of transmission -direct, diffuse and selective. Certain materials allow the passage of certain wavelengths while absorbing others. Two other important phenomena in the light-surface interaction are diffraction and dispersion. Diffraction is the deflection of waves around the corners of an obstacle or through an opening such a narrow opening. On the other hand, dispersion occurs when a ray of white light is refracted and a separation occurs, revealing its constituent wavelengths. Light can thus be completely or partially absorbed, transmitted, and reflected. This last phenomenon, which is critical in the study of visual appearance, will be further discussed below.

Reflection types

When electromagnetic waves collide with a surface that does not absorb radiant energy, light is reflected. The wave, known as the "incident ray," is reflected, resulting in a light beam, the "reflected ray." There are three types of reflection:

• Direct reflection (Specular): When light waves propagate through a certain space and collide with a smooth and polished surface, these light rays will be bounced in a specific direction, resulting in specular reflection. In this type of reflection, a single incident ray produces a single reflected ray. Specular reflection follows Snell's laws. This law states that a the point of incidence, the incident ray, the reflected ray and the normal to the surface are in the same plane. The incident ray and the reflected ray, moreover, have equal angles relative to the perpendicular and lie on opposite sides. The specular reflection can be described in two ways, which correspond to the two methods of optics. The first one, geometric optics, models light via light rays. This technique is adequate for describing many optical phenomena related to the path of light. The second one, physical optics considers light's wave nature. Diffuse reflection: It occurs when light strikes rough-textured objects or surfaces, causing light rays to scatter in all directions instead of converging at a single point. The light is re-emitted homogeneously in all directions. Indeed the rays are reflected according to the orientation presented by the various facets that constitute the roughness of the surface (Figure 5.31). Diffuse reflection is of great importance in color theory, which states that when a beam of waves of different lengths strikes an object, it absorbs some and reflects others, the latter being closely linked to the perception of the color of the object. 

Laws and units of light

We generally refer to the visible portion of the electromagnetic spectrum as light, which may be characterized by its wavelength (λ). Electromagnetic radiation can be studied and measured in all of its wavelengths using radiometry, or solely in the visible spectrum using photometry. In the study of the appearance of a surface, we are thus interested in the later one, because photometry allows us to measure light in relation to the sensitivity of the human eye. Luminous efficiency function V (λ) describes the perception of light based on an average reference observer. This curve was first established in 1924 by the Commission Internationale d'Eclairage (CIE) following a series of measurements on a significant number of people, and it indicates the eye luminous sensitivity to various wavelengths in the visible spectrum. Thus, in this subsection, we focus on two important points: the laws of illumination and photometric units, with an emphasis on luminance, as these two concepts are critical for studying the visual appearance of a surface.

Laws of illumination

Inverse Square Law: This law states that the illumination of a surface is inversely proportional to the square of the distance between the source and the surface.

E = I d 2 (1.1)
Where E is the illuminance, I is the luminous intensity and d is the distance. 

E = I θ d 2 cosθ (1.2)
Where E is the illuminance, I is the luminous intensity, d is the distance and θ is the angle between the incident direction and normal of the illuminated surface. F = 683, 002

λ visible Φ(λ)V (λ)dλ (1.3)
where F is the luminous flux, Φ(λ) is the spectral radiant power of the light source, V (λ) is the light sensitivity function of the human eye and 683, 002 corresponds to the maximum response of the human eye.

Luminous intensity:

The luminous intensity is known as the luminous flux emitted per solid angle unit in a specific direction. Its symbol is I and its unit is the candela (cd).

I v = dF dΩ (1.4)
where dF is the luminous flux and dΩ is the solid angle.

Illuminance: This concept refers to the amount of light that falls on, or illuminates, a given surface and its unit in the international system is the lux.

E v = dF dS (1.5)
where F is the incident luminous flux in lumens (lm). dS is the differential element of incidence area considered in square meters (m 2 ).

Luminance: It can also be defined as the surface density of luminous intensity in a specific direction. Luminance describes the measurement between the amount of light emitted, passing through or reflected from a particular surface from a solid angle. It also indicates the amount of light energy that the human eye can perceive. This means that the luminance measures the brightness of light emitted or reflected from a surface. Luminance is expressed as:

L v = d 2 F dSdΩcosθ s (1.6)
where F is the luminous flux in lumens (lm). dS is the surface element considered in square meters (m 2 ). dΩ is the solid angle element in steradians (sr). θ s is the angle between the normal of the surface S and the considered direction.

Surface appearance attributes

Visual appearance can be described as a psychophysical phenomenon of physical processes resulting from the interaction of light with the surface of an object, as well as perception, which is the human visual system's response to the stimuli provided by such physical processes. Thus, we can understand visual appearance as a complex phenomenon influenced by the physical conditions of the observed scene as well as the observer's cognitive experience, which varies from one observer to another. The observer then refers to particular qualities of the objects in the scene that he notices while attempting to characterize their appearance. These characteristics are known as visual appearance attributes. Considering this, the CIE has defined four main appearance attributes: color, gloss, translucency, and surface texture ([Eugene 08]). Considering that our research focuses on the acquisition and representation of a surface's visual attributes, we present here a short definition of these attributes. Texture: This attribute is connected to the object's surface geometry. Textures may be separated into two types: tactile textures and visual textures. The instant physical sensation of a surface is referred to as tactile texture. Visual textures are the visual impressions that textures give to humans that are connected to local spatial changes.

Gloss: This attribute is a property of a surface that gives it a glossy or lustrous, metallic look and is usually connected with specular light reflection. Gloss is the mode of appearance in which reflected highlights of objects appear to be overlaid on a surface due to the surface's directionally selective qualities [ Leloup 07].

Translucency: Although there is still no clear definition of this term, it can be said that the idea of translucency is linked to surface scattering, as well as absorption, which prevents light transmission. [Eugene 08] explained through this example: When it is possible to see through a material, that material is said to be transparent. If only a "blurred" picture can be seen through the material (due to some diffusion phenomenon), it has a certain degree of transparency and at this point we can describe the object as translucent.

Color: This attribute is the result of the selective absorption of light by matter as well as the scattering of unabsorbed light (further information can be found in section 3.1). In order to study this appearance property, colorimetry which studies color based on measurement of spectral reflectance, has been established.

The attributes of appearance, then, play an important part in our daily lives since they are closely related to our selection criteria, whether functional or aesthetic [ Obein 18]. Visual appearance attributes have historically been very important in the industrial field since they are directly related to quality and aesthetics. Thus, a customer would be more attracted to an article that is more appealing, in other words,, an object that produces a more pleasant visual cognitive experience. It is therefore due to the importance of studying the attributes of visual appearance in different fields, that the need to quantify them arises.

Evaluation of surface appearance attributes

Appearance metrology is the terminology used when it is intended to quantify appearance [ Obein 18]. It is a challenging task since appearance is a subjective property. According to CIE ([Pointer 03]), appearance measurement is part of the "soft metrology" techniques, which can be defined as the study of the correlation between human, subjective, responses and physical, objective, measures. However quantifying appearance as a whole is a complex process. Thus, thanks to the division introduced by the CIE, it is possible to quantify appearance by studying each of the appearance attributes. As a result, these properties can be examined independently, for example, color can be evaluated using a colorimeter and gloss can be evaluated using a glossmeter. The appearance attributes of a piece of art or an object of historical value may be measured for a variety of reasons, including documentation purposes or even to evaluate its authenticity. This analysis may be applied in many contexts, such as the need of material identification, the study of techniques or processes employed in their manufacture/construction, or even to keep track of their condition of conservation or degeneration over time. As a consequence, there are several ways to conduct this evaluation. We will focus on three categories: sensory evaluation, mechanical evaluation and optical evaluation. Mechanical and optical methods can also be divided in two subcategories: punctual methods and extended field methods. As for optical methods, these include the photometric approaches in which we are particularly interested in the context of the presented work.

Sensory evaluation

In the case of sensory evaluation, this might be further categorized based on the sense or senses employed. Thus, a visual or tactile sensory examination, or even a visuo-tactile inspection, might be used. In this type of evaluation, an observer, usually an expert, inspects the appearance condition of the object using perceptions gained by sight and/or touch. Depending on the type of object, the sensory evaluation may be restricted to the sense of sight only, as a tactile examination could compromise the object's integrity. Sensory evaluation may be influenced by different factors which means that this type of evaluation can be considered as subjective since the perception of appearance attributes can vary from one observer to another. Additionally, it is possible for an observer's perception to change with time. As a result, the results of the first visual evaluation conducted by an observer may differ significantly from those of the last in the series. Given that the perception is linked to a psychological phenomenon, variables like tiredness and others may contribute to evaluations that are not very reliable and/or with low reproducibility. Sensory evaluation may also be influenced by the lighting conditions under which the observation and/or evaluation is carried out.

Mechanical evaluation

The mechanical technique entails utilizing equipment to measure the topography of a surface. Thus, mechanical measurements can be made by touching the surface with a probe or measuring atomic interactions. This measurement may be performed with the use of mechanical probes, which allow the surface profile to be evaluated. For instance, the surface roughness gauge allows one to determine the relief of a surface. The scanning tunneling microscope, which provides an atomic-scale topography measurement is also included in this category. The topography measurement is achieved by measuring the tunnel current whose intensity depends on the distance between the probe and the surface. In this procedure, the displacements of the probe (while maintaining a constant current) or variations in current are measured. These two are classified among the punctual measurements methods, which are suitable for measurements at very fine scales, they generate measurements with a high degree of precision, although at the cost of longer acquisition times. The scanning electron microscope, on the other hand, belongs to the extended field measurements category. Mechanical methods are widely used in the analysis and measurement of appearance attributes for industrial applications. In terms of applications, punctual or extended field approaches can be used depending on the type of anomaly or surface feature to be identified. Occasionally, evaluating an anomaly may necessitate both kinds of evaluations, first at a broader scale to locate an area and then a punctual evaluation to have a measurement at a finer scale.

Optical evaluation

Finally, the optical approaches include a variety of ways ranging from the use of various types of microscopes to photogrammetry and photometry. In the case of microscopy methods, several types of microscopes exist, such as the confocal microscope. In this case it is classified as punctual measurement method. The measurement is accomplished by adjusting the focus of a ray of light on the surface. The lens moves vertically, to always maintain a focused ray. From this information the height of each surface point can be estimated. The condition and/or appearance of a surface can also be revealed using interferometry microscopy or extended focusing microscopy ([Le Goïc 12]). These two approaches are extended field measuring methods. On the other hand, the topography of a surface may be obtained using photogrammetry. This technique consists in collecting photos from several points of view of the surface. For photometry, the variation of light on the examined item is utilized to investigate the surface. Thus, a surface can be lit from different angles or with light sources of different wavelength. Thus, it is common in this practice to illuminate the evaluated object in specific angular positions (at 90 degrees or even grazing positions), as well as to illuminate it with light sources other than visible light (ultraviolet, infrared), in order to reveal the visual characteristics of the object's surface.

For the purposes of our research, we mainly concentrate on photometric approaches, discussed in the next section.

Photometric approaches

The appearance of a surface is the product of the interaction of light with matter and its properties. Considering this, the development of models that describes and characterizes the behavior of real world surfaces has become a subject of major importance in different fields such as optical engineering, remote sensing and computer vision. This responds to needs in particular fields of the industry, such as the analysis of the quality of a product, the aesthetics of an object or the generation of images and/or photorealistic scenes, as in the case of computer graphics. Considering this, we divide the photometric approaches into two broad categories: the "complete" methods and the "multi-light" methods.

Reflectance models

To adequately describe the phenomenon of reflection on surfaces, different models have been proposed. It is frequently necessary to partially or completely combine the generic principles of reflection discussed 1. 

Y GRF r = GRF (λ i , x i , y i , z i , t i , θ i , φ i , λ v , x v , y v , z v , t v , θ v , φ v , φ t ), (1.7)
with r = [r1, ..., r16] being the multi-index with corresponding partial indices. Thus, the GRF describes the incident light with spectral value corresponding to λ i , the illuminated surface location x i , y i , z i , at time t i ; under spherical incidence angles w i = [θ i , φ i ] and observed at time t v from surface location x v , y v , z v under spherical reflection angles w i = [θ v , φ v ] and spectrum λv; where w t = [θ t , φ t ] are the corresponding transmittance angles where w = [θ, φ] are respectively the elevation and azimuthal angles. Due to the complexity of the GRF function (1.7), several simplified assumptions are necessary in any realistic use. Thus, according to Haindl etal. two subgroups of simplified assumptions can be distinguished (see Figure 1.9). Figure 1.9: General reflectance taxonomy [ Désage 15] Although the GRF simplified categorization (Figure 1.9) is clearly not exhaustive, we present it here to illustrate multiple available reflectance models so that the reader can have an idea of the models that allow describing the appearance attributes in a more comprehensive way. Furthermore, we focus on the description of two of the most often used functions in the analysis and description of appearance, the Bidirectional Reflectance Distribution Function BRDF as well as the bidirectional texture function BTF.

BRDF

Material appearance, with the aim of obtaining a realistic description of a surface, has been extensively studied especially in the field computer graphics. One of the earlier contri-butions in the field was presented by Nicodemus et al.[Nicodemus 77] who introduced the Bidirectional Reflectance Distribution Function BRDF to characterize material reflectance properties. The BRDF is a local function which describes how much light is reflected in each direction when the incident light enters from a certain direction at a certain point on a reflecting surface. To be estimated, the BRDF considers the position of the light source, the position of the observer as well as the wavelength λ. the BRDF is expressed as:

f r(θ i , ϕ i , θ o , ϕ o )cosθ o dω o = dΦ o (θ o , ϕ o ) dΦ i (θ i , ϕ i ) (1.8)
where dA (as shown in Figure 1.10) is the surface illuminated by an incident radiant flux dΦ i , from the incoming direction l = (θ i , ϕ i ). dω o is the differential solid angle reflected around the outgoing direction v = (θ o , ϕ o ).

Figure 1.10: BRDF model [ Belcour 14]

The measurement of the BRDF: The measurement of the BRDF is effectuated with a gonioreflectometer or a goniospectrophotometer. Despite the fact that the measurement of the BRDF provides a complete description of the interaction between the light and a surface at a local level, this approach provides a punctual measurement and it has been therefore considered as a complicated process. The BRDF measurement is also time consuming, requires heavy and/or expensive acquisition systems and generates a large amount of data. An alternative to the BRDF is the bidirectional texture function (BTF). This is a new approach for the study of light/surface interaction to gather information from multiple combinations of light sources and camera positions. BTF is a function of (θ i ,ϕ i ,θ o , ϕ o ,λ, u, v), where u and v are the position for each pixel. The BTF is capable of measuring reflectance variations at fine scales. The acquisition of the BTF from a surface is very similar to that of the BRDF, except that the surface is sampled using an image sensor rather than a point sensor. As with the BRDF, the acquisition of the BTF results in a large amount of data.

Considering the difficulties to obtain these functions, subsequent works offer simplified methods for image-based rendering. In this sense, multi-light approaches such us the Reflectance Transformation Imaging (RTI) along with the subsequent methods for modeling angular reflectance present an interesting alternative.

Multi-light approaches for surface analysis

As previously stated, the complexity and cost involved in measuring the attributes of an object through the BRDF have resulted in the introduction of alternative approaches to measure and study the visual appearance. This is the case of multi-light approaches. These techniques are image-based methods that allow the extraction of an object's visual properties through shorter acquisition process thanks to the use of more accessible devices. The Multilight Images Collections (MLICs), as designed by [ Pintus 19] and which encompass various image-based approaches, such as Photometric Stereo (PS) and Reflectance Transformation Imaging (RTI), are very useful tools whose use has been widely extended and nowadays have a wide range of contributions and applications. The basic idea behind the MLICs is to take numerous pictures of an object from a static camera, with the light source moving around the object in each shot while the object remains in the same position. In the category of multi-light approaches we include also the Multispectral Imaging approach (MS) as it also involves the light variation, but unlike PS and RTI, this variation is not spatial, but occurs at the wavelength level.

Photometric Stereo

This technique introduced by [Woodham 80] is an imaging method for constructing a threedimensional (3D) representation from two-dimensional (2D) images based on how objects in the image reflect or refract light. Surface normals, i.e the direction of surface faces/pixels, can be computed by measuring how shadows and highlights fall on the object's surface in each photograph. The varied heights of the surface topography are determined by factors such as the depth of shadows and the intensity of highlights. Although the model proposed by [Woodham 80] and some subsequent works [ . This task, traditionally linked to the knowledge of human experts, is currently moving towards more automated systems with the aim of reducing the cognitive biases that could influence the decisions of a human expert. The RTI method also allows us to reveal in detail the microgeometry at fine-scale, which is of major importance in many industrial inspection tasks.

Principle of the RTI approach

The RTI acquisition process consists of taking a set of images with a fixed camera, while varying the light direction at each image capture. From this set of images, the angular reflectance is described for each pixel as a set of discrete values (measured gray-levels, which are considered to be proportional to the luminance [ Durou 07]). To model the surface's visual appearance continuously, these discrete values can be approximated by projecting for each pixel the vector containing the discrete measured gray-levels on a set of basis functions. This concept is illustrated in Figure 1.12. We can observe in this In addition, we provide a third group, which we refer to as alternative systems. The Dome-based system type can be sub-divided in two categories. The first one consists of light sources at fixed positions that are homogeneously distributed over the surface of the dome, and a camera at fixed position on the hemisphere as shown in Figure 1.13a. In the second one, a more dynamic configuration is achieved by using a single spot light held by an arch that can freely move over the dome to position the light in the desired angular position as the one in Figure 1.13b. The Free-form as it can be inferred by its name does not have a defined structure and it can be implemented depending on the acquisition needs. The most important characteristic of this kind of setups is the use of a single light source whose current position can be manually moved to illuminate the surface from any desired point, but intuitively following the shape of an hemisphere as seen in Figure 1.14. In the Free-form setup, the light source is often positioned by hand, which implies that the light position is not known previously. As light is hand-held, the possibility of dense acquisitions or high repeatability are hardly achievable with this type of system. For the case of industrial applications, such as the case of surface quality inspection tasks, the use of Dome-base systems is more common, as this type of devices allows more robust and reliable acquisition, and comes to surface metrology. In the context of cultural heritage, many of the RTI acquisitions are performed in-situ for artefacts (buildings, wall paintings, artworks, etc.) that can not be moved for many reasons (value, size. . . ). Considering these restrictions, Free-form systems are implemented when acquisitions using Dome-based ones are not suitable. In order to perform this kind of acquisition, [ Mudge 06] has proposed the Highlight Reflectance Transformation Imaging technique also known as Highlight RTI or simply H-RTI. In this technique, it is necessary to use at least one specular sphere that should be captured in the image along with the inspected surface. This allows one to obtain the information related to the light direction by detecting the highlight produced by the light reflected from the sphere during image post-processing. Using the reflective spheres, the lighting direction can be detected following different approaches. Following the method proposed by [Masselus 02], the lighting direction is detected by determining the normal vector at the highlight (specular reflection) form a sphere with a known radius. Using the normals as well as shading information, this method recovers the light direction following the principle of Lambert's Cosine Law.

I p = ρI L (N p .L),
(1.9) with I L being the point light source intensity, ρ the diffuse hemispherical reflectivity of the material, L the illuminant direction and N p the surface normal. The equation is solved for L through Least Squares. In this case light is considered to follow the model of distant light, therefore, the lighting direction detected at the highlight is considered to be the same for all of the points of the surface. This means that although the reflectance modeling is a per-pixel estimation, the angular information assigned to all the pixels of one image is the same.

Figure 1.16: Detection of lighting direction More recent contributions in the field explores both the need of per point lighting direction estimation for a more accurate description of the local reflectance at every pixel, as well as the removal of the extra equipment, including the reflective spheres, in order to reduce the cast shadows that usually appear by the projections of the spheres on the inspected object or other artifacts that might appear on the images as a result of the extra equipment (calibration targets,...).

To address the first point, [ Giachetti 18] proposed that with a modification of the standard acquisition setup, it is possible to significantly improve the quality and accuracy of the relighting model. This work introduces the idea of correcting the light direction and intensity using the per pixel light direction estimation from the highlights on multiple reflective reference spheres by considering perspective correction and performing direction linear interpolation. To compensate the illumination variations the authors proposed an algorithm exploiting light intensity measured on matte white targets positioned around the object of interest. In regard to the detection of light direction while eliminating the need of reflective spheres, [ McGuigan 20] proposed a novel method to estimate light directions without the required calibration equipment, reference spheres and hence claimed that their method can be retrofitted to any existing stack of RTI photographs. The first step in this approach is isolating intensity variations due to light source by subtracting each image with the mean image of the whole stack. Secondly, the paper presents an intensity correction method for the non-uniform lighting. Similar to standard PTM, the proposed method also uses the bi-quadratic function fitting to correct the intensities. The standard PTM method uses the bi-quadratic function to estimate the orientation of a given pixel, whereas this method fits the orientation collectively to all pixels in a given image for intensity correction. By calculating the centroid (mean coordinates of a set of pixels) of the upper intensity group of points on this bi-quadratic fitted function, they can then estimate the light direction in a given image.

Alternative systems: new trends in RTI acquisition devices

Although the two types of RTI systems described above account for the great majority of RTI acquisition devices, new acquisition system options are emerging with the goal of meeting varied demands. The fundamental drawback of Dome-based systems is their lack of flexibility in terms of the size of the surfaces that can be scanned, because these systems often have a restricted radius, limiting the size of the objects that can be analyzed. Although Free-form methods provide greater flexibility and may be more easily adjusted to medium and large sized items, this flexibility sometimes comes at the expense of repeatability. As a result, two new types of RTI systems based on robotic systems and unmanned aerial vehicles commonly known as drones, have gained importance in recent years.

Robot-based RTI system: Although there are few contributions in this type of system according to the state of the art [ Kitanovski 21], robot-based RTI systems are now used in practice.. Figure 1.17 illustrates the ImViA laboratory's robotic system, which includes a 6-degrees-of-freedom robotic arm and an XY displacement platform for transporting the analyzed object. This system was developed with the need of providing more dynamics to the acquisition systems as well as more adaptability to imaged objects. This system, in general, offers more robust and precise acquisitions in terms of repeatability and reproducibility, as well as customizable acquisition modalities. Although this technology is restricted in portability, it allows for the digitization of objects of various sizes since it allows for the modification of the radius of the specified hemispheric space, as well as the displacement of the item in vertical and horizontal positions. Drone-based RTI system: The concept of employing unmanned aerial vehicles (UAV) to record archaeological sites and historical and cultural artefacts has evolved in recent years, making significant contributions [Philip 19,Prins 14]. This is how these vehicles have lately been reintroduced as a basis for new and enhanced RTI acquisition systems. Systems like the one presented by [Fowler 20] employs a drone and can do RTI acquisitions of large objects. Similarly, [ Krátkỳ 20], whose proposed system is illustrated in Figure 1. 19, show how a cooperative system of two UAVs is used to perform RTI acquisitions. With the idea of acquiring difficult to access buildings or large scales objects, these devices appear as a solution for acquisition. This systems uses two UAVs in order to perform a multi-light acquisition. One of the UAV ports the camera while the second one holds the light source. 

Methods for RTI modeling (relighting)

Although several methods for processing data from RTI acquisitions have emerged, three are considered as widely used for a variety of reasons, including their availability in open source software tools or their ability to visualize specific characteristics of the studied surface. Additionally new methods have appeared recently with promising results. We describe these modeling methods below.

Polynomial Texture Maps: PTM provides an approximation of the angular components of the BRDF from a stack of RTI images. This approximation is a projection over a base of functions formed by the terms of a second order bi-polynomial function. In this model, the pixel intensity is a function of the angular coordinates (θ, ϕ), the incident light source and two spatial variables (u, v) [MacDonald 14]

I = I r,g,b (θ i , ϕ i , u, v),
(1.10) assuming a Lambertian surface, only the luminance of each pixel varies with light source direction, while the chromaticity is assumed to be constant. This allows the reconstruction function to be separated, with a constant color per pixel characterized by an angle-dependent luminance factor L(u, v)

I = L(θ i , ϕ i , u, v)G(u, v), (1.11) 
The same processing is implemented for the remaining channels, R(u, v) and B(u, v). Surface luminance is modeled by the polynomial function in Equation 1.12, which provides six coefficients per pixel. Considering the entire stack of images and their corresponding light directions, the equation system is solved by the means of a linear regression.

L(u, v, l u , l v ) = a 0 (u, v)l 2 u + a 1 (u, v)l 2 v + a 2 (u, v)l u l v + a 3 (u, v)l u + a 4 (u, v)l v + a 5 (u, v) (1.12)
Hemispherical Harmonics: HSH is an derivation of Spherical Harmonics (SH), this latter one being a model composed of a set of orthonormal basis functions defined in two dimensions over the surface of a sphere. The SH have also been used in computer graphics to represent BRDFs. Adapted from the SH, HSH basis is derived from a shifting of the associated Legendre polynomials and its components are expressed as functions of azimuth θ and colatitude ϕ angles over the hemisphere in terms of l u and l v .

H m l (θ, ϕ) =        2 Km l cos(mϕ) P m l cos(θ) if m > 0 2 Km l sin(-mϕ) P m l cos(θ) if m < 0 K0 l P 0 l cos(θ) if m = 0 (1.13)
The HSH are orthogonal over 0, π 2 × 0, 2π with respect to l and m, with a normalization value as follows:

Km l = (2l + 1)(l -|m|)! 2π(l + |m|)! (1.14)
Discrete Modal Decomposition: The DMD has its root in vibratory mechanics. In this method a series of a priori descriptors known as "modes" are used to create a decomposition basis named "modal basis". This decomposition allows to isolate the non periodical components of a surface, as modes are intrinsically linked to the notion of periodicity. These modes constitute a base of elementary forms from which it is possible to describe the visual appearance of a surface [Le Goïc 12].

mes V = Nq i=1 λ i Q i + ϵ(N q )        N q = N umber of decomposition modes ϵ(N q ) = Decomposition residue (1.15)
Where λ i corresponds to the coordinates of vector mes V (corresponding to measured luminances of the studied surface) in the modal basis Q. The set of coordinates λ i (i.e modal coefficients) forms the modal vector λ.

λ = Q * . mes V = (Q T .Q) -1 .Q T . mes V, (1.16) 
The modal coefficients λ i are obtained by the vector projection described in equation 1.16 (projection of the vector of measured luminance L onto each of the basis Modes Q).

PCA/RBF: The combination of principal component analysis (PCA) as a reflectance data compression methodology and the application of the radial basic function (RBF) as an interpolation method in the light direction space is proposed in this approach [ Ponchio 19]. The radial basis function (RBF) method is equivalent to a weighted sum of radial basis functions, where the parameters are the distances between the various points on the surface and an origin. Unlike the previous three methods, the RBF aims to create a new view under different light directions by using a fast and direct interpolation from a given reduced set of N multi-light images. The amount of data to be interpolated is previously reduced by the means of PCA.

RBF [X, y] ≡ N i=1 w i φ (∥X -y∥) , (1.17) 
where y is the origin, φ is the function of the radial based and w i is a weight coefficient. This approach has been proved to produce good quality relit images suitable for web visualisation.

NeuralRTI: This method is the first to propose the use of neural networks for image relighting in the context of RTI. In this approach, data from an RTI acquisition are used to train a fully connected asymmetric autoencoder (a type of artificial neural network used to learn efficient codings of unlabeled data) that maps the original per-pixel information into a low-dimensional vector, as well as a decoder capable of reconstructing pixel values from the pixel encoding and a novel light direction [Dulecha 20]. According to the results presented by the authors, this method provides high quality and accurate representation of relight data in relation to the ground truth.

The PTM was the pioneering approach for RTI, and it is still widely used despite its limitations. One of its main disadvantages is caused by the low number of coefficients used to model the luminance. Indeed, this model tends to smooth out complex information, making challenging proper representation of features such as specularity on a surface. In comparison to the PTM model, the HSH model represents hemispheric distributions in a more compact and precise manner. The HSH is widely used in computer graphic applications such as anisotropic BRDF representation, non-diffuse surface rendering, and global illumination calculation. Regarding the DMD, this model has proven to be efficient in terms of the representation of complex reflectance characteristics, such as the representation of shadows or high brightness. Its application has spread in the study of manufactured surfaces given the fact that it generates a more realistic representation of a surface's appearance and better characterization of appearance attributes. Most recent approaches such as the PCA/RBF and the NeuralRTI, they have proven to be well-suited for compact and dynamic representations of relight data, while keeping appropriate quality and reproducing visual characteristics with high accuracy on surfaces of various materials.

Multispectral imaging for surface analysis

Color is a visual perception produced in human visual system by light after interacting with the object material. In this interaction when a beam of light falls on an object, a part of the light is absorbed and another part is reflected. It is the product of these quantities, that the human vision system perceives as color. Multispectral imaging involves acquiring images of a scene under different spectral bands. Although up to now there is no firm classification, multispectral imaging systems can be classified according to the number of spectral bands. Thus, when we speak of monochromatic, we refer to a single band, trichromatic to three bands, multispectral to more than three bands, and finally hyperspectral to more than 100 bands [Imai 03].

Theory of color

The combination of three elements: light sources, object and observer makes the perception of color possible. The relationship of these 3 elements can be mathematically defined by the expression:

I(λ) = E(λ)S(λ)R(λ), (1.18) 
where E(λ) represents the spectral power distribution of the light, S(λ) the surface reflectance, and R(λ), the spectral sensitivity of the sensor. Given this relationship we can see that it is wavelength dependant. As for the observer, it can be a human or an artificial vision sensor (camera). The sensitivity of the human eye varies from one person to another, causing color to appear differently to each person. This subjectivity frequently leads to factual inaccuracies when evaluating and comparing color information. Following that, the CIE established functions to standardize how the color of an object, including the field of view, has to be measured.

The human perception of color

While our eyes are open, the cornea (photosensitive membranes of the eye) sends messages to our brain in order to translate the color we see. The human eye has three types of colorsensitive cones, each with a different spectral sensitivity ranges, for short wavelengths (S, 420-440 nm), medium wavelength (M, 530-555 nm), and long wavelength (L, 560-580 nm) considering the peak wavelengths. Based on that, the three component theory states that our eyes only perceive or respond to the three primary colors of light -red, green, and blue. Each visible color in the spectrum is a combination of these three components (e.g, the combination of red and blue produces violet). In order to quantify the color of an object using a standardized method, the response of the human eye (observer) to these colors must be included in the calculation. Two researchers used light, a pinhole, and the human eye's visual perception to conduct a series of experiments in late 1920s to determine this. The outcome was a significant step forward in the definition of color.

Standard observer: John Guild and David Wright, physicists, conducted a color matching experiment in 1927 to determine how the average person perceives color [Smith 31]. Testing subjects were instructed to look through a hole and match each color in the spectrum by combining different intensities of red, green, and blue light. Because it was thought that our corneas sensitive to color were located in an arc of 2 degrees in the fovea, region of the retina, the hole only allowed a viewing angle of 2 degrees (similar to looking at a fingernail from arm's length or equivalent to a 1.7 cm circle from a distance of 50 cm).

Color values calculated using the 2 Degree Standard Observer function, on the other hand, do not always correspond well to visual assessments by the human eye. It was discovered around 1960 that the human eye has a wider field of vision than previously thought. As a result, the color matching experiment was repeated with a hole that allowed a viewing angle of 10 degrees (equivalent to looking at the palm of one's hand at arm's length, or an 8.8cm circle at arm's length). The function was adjusted and published in 1964 as the 10 Degree Supplementary Standard Observer after showing subtle differences from the first experiment (see Figure 2). Color is perceived by cameras using different technologies, but perhaps one of the best known and most used technologies are color filters, which allow a monochromatic sensor to filter the wavelengths of the three primary colors R,G,B, then using interpolation algorithms, also known as demosaicing techniques, to reconstitute the perceived color of the photographed scenes. The three-channel color imaging may be limited when it comes to describe and analyse the condition and characteristics of a surface. This is why researchers have wanted to expand towards multispectral. Various investigations have shown that it is possible to obtain characteristics that are not visible to the eye and thanks to spectral acquisition systems to reveal important information about objects.

The relevance of a surface appearance attribute, such as color, is of great importance. Efforts have then been made to investigate how to enhance color matching and how to improve and/or modify acquisition technologies to better capture color. Studies also include the utilization of UV and infrared light, as is the case with the multispectral RTI methodology.

State of the art of MLICs

Many contributions have been made in the field of multi-light image-based techniques, with various goals in mind. There are contributions that suggest models to enhance the extraction of visual characteristics from an item or a surface while attempting to be as near to reality as possible. Others aim to highlight certain aspects in order to emphasize characteristics that are not easily perceptible at first glance. Other contributions propose improving acquisition technologies and/or procedures in order to get appropriate data. Some application also propose solutions to generate better results from data acquired in a non-rigorous way as well as those who propose improving lighting methods and/or models. Thus, the number of contributions in the field is wide, and categorizing these contributions might be difficult. In this section, we examine some of the contributions in the field of MLICs, particularly with regard to RTI, using the categorization proposed in [ Pintus 19].

In the first category are the methods which provide the user with an interface that allows the user to interact first-hand with the "raw" data (multi-light pictures that are issued straight from the acquisition). This category is known as direct exploration, enabling the user to swiftly browse and visualize the acquired data, which remains a difficulty given the volume of data that may result from some of these acquisitions. This approach can also convey a sense of dynamism to the user by allowing them to directly interpolate the pictures of the acquisition in order to create the sensation of continuous movement. Unlike Relighting methods, which generate a visualization of a non-acquired light position from a set of images and light positions passing through a mathematical model and generating a projection on a base; models such as the Compressed Radial Basis Function (RBF) aim to generate a new view under a different lighting, thanks to a fast and direct interpolation from two or more images given a set of N multi-light images, following the principle of nearest neighbors. Although this approach allows users to quickly examine and explore their data, the existing user interfaces only offer the selection of illumination patterns that correspond with specific requirements, such as Dome-based acquisitions. As for the direct interpolation approach, despite being a quick solution for visualisation, it can eventually make it difficult to appreciate details due to the lack of continuity. Moving on to the next category, we encounter techniques that strive to build a fused single image. This technique differs from relighting algorithms and instead of looking for a dynamic display, it seeks to generate a static representation, this one being a single image that contains the largest amount of details. The goal of this category is to condense the characteristics identified and dispersed throughout the several photos that constitute the MLICs into a single image that displays the most possible information. This type of application has been (although not exclusively) more oriented towards the shape assessment [Ackermann 15] than towards the appearance. Some of these techniques can be used without knowing the lighting pattern, which minimize calibration requirements. Albedo visualization is one of the most well-known types of fused single image. Then, there is the category of relightable models, perhaps the best known for RTI applications. The relighting approach intends to create an interactive depiction of a surface. This is accomplished by employing several mathematical models that enable the generation of a continuous representation from the discrete data (images and lighting position) collected during acquisition. Relighting allows the properties of a surface to be analysed in a photorealistic manner, in conditions and/or lighting patterns that differ from those of the acquisition (refer to section RTI methods for further details). The Nonphotorealistic enhancement category includes interactive visualizations, however unlike the preceding category, the goal here is to maximize the quantity of visual information accessible. This sort of approximation attempts to ''enhance" the visual qualities in order to allow the user to view details that are fully or partially undetectable to the human eye. Methods such as specular enhancement and unsharped masking are included in this category. And finally we find the Features and derived maps. Unlike the preceding techniques, which were more dedicated to visualization, this category seeks information extraction from the surface. Because certain properties of a surface may be evidenced from these maps, these approaches can be regarded to have a stronger metrological base. This category includes statistical maps such as mean, median, kurtosis, standard deviation, and skewness. Other maps have been implemented for studying the surface's micro topography, such as the normal map and its derived maps (slopes, directional slopes, curvatures). Saliency maps, which offer information on the notable local characteristics of a surface, may also be extracted from MLICs data.

Cultural heritage applications

RTI approaches have a variety of applications in the field of cultural heritage since the beginning. Originally, photography was an essential aspect of the study and documentation of historical artifacts. Likewise, varying lighting conditions has played an essential role in this field from its beginning. This is demonstrated via procedures used for painting analysis or epigraphic investigations, in which images of the piece of art in issue are shot with a torch-type lamp in semi-grazing and grazing light settings. These strategies have been losing ground with the introduction of tools such as RTI. Indeed, the benefits given by the RTI in terms of documentation are numerous, as evidenced by the vast number of publications related to this approach [Mudge 06, Mudge 05, Padfield 05b, Sato 03, MacDonald 10, MacDonald 15, Malzbender 01, Hameeuw 11, Palma 14]. In these publications, it is demonstrated how the employment of the RTI in application cases involving various artifacts (paintings, cave paintings, wall paintings, coins, engraved plates, fibers in historical textiles, cuneiform tablets, among others) allows for a visual representation of the recorded item that is very similar to what a human observer perceives. These investigations also demonstrate that, thanks to RTI, it is not only feasible to have a visual representation of the item that is near to reality, but it is also possible to expose information that would never be gained using traditional photographic approaches. Furthermore RTI is a technique that, as previously said, may be implemented simply and with little material (Free-form RTI, H-RTI), making it affordable. It also features free and simple software that allows the user to quickly acquire a dynamic representation of the item. The RTI is better suited to the study of artifacts with low relief and made of diffuse materials (paintings, canvases, palimpsests, stone inscriptions, engraved plates). However advancements in the technique's development have also allowed the examination of more heterogeneous and/or non-diffuse materials. This is the case of RTI acquisitions on metal surfaces, such as coins, which allows a more precise documentation of inscriptions on the surface of the object. The contributions and application cases show then that RTI technique is a relevant choice for the documentation, the analysis and the understanding of the techniques used (as in the case of paintings, where the artist's stroke can be studied), as well as for the aging monitoring (inspecting the physical or chemical changes over time) of the condition of the artwork. As far as we can tell, there is a wide range of uses for RTI as a tool for the documentation and analysis of cultural heritage artifacts, but there are still significant improvements that can be done to expand the approach. For example, the integration of RTI with multispectral imaging techniques, or the use of RTI in large artworks are still open questions.

Industrial applications

Recently, the use of the RTI has been successfully extended to industrial applications, making it a powerful tool for the inspection and quality control of manufactured surfaces [Pitard 17a, Pitard 17c, Pitard 17b, Le Goïc 12, Coules 19]. This task, traditionally linked to the knowledge of human experts, is currently moving towards more automated systems, with the aim of reducing the cognitive biases that could influence the decisions of a human expert. The RTI method also allows to reveal in detail the micro-geometry at fine scale, which is of major importance in many industrial inspection tasks.

Conclusion

This chapter introduced fundamental concepts. Starting with the three basic elements that enable vision, we cover essential ideas and properties derived from the interaction of light and surface. As a result of this interaction, we have shown how the visual attributes are def fined and how the measurement of these attributes, allow one to describe and evaluate the appearance of a surface. Then we show how the evaluation of the appearance of surface can be carried out from the measurement of these visual attributes. Despite the fact that we have provided several forms of evaluation, this research is centered on photometric approaches, namely MLICs methods. We particularly focus on RTI and multispectral methods. Subsequently, we went through the state of the art in terms of MLICs, with a special emphasis on RTI applications, which are divided into two groups based on the field of application.

Introduction

In the RTI processing, the pixel-wise angular reflectance is modeled to allow the relighting of the surface appearance under any arbitrary light direction. The most often implemented methods used to model this local reflectance at each pixel are the Polynomial Texture Mapping (PTM), the Hemispherical Harmonics (HSH), and, more recently, the Discrete Modal Decomposition (DMD). For all these mentioned methods, a uniform distribution of the light positions over the hemisphere is an implicit hypothesis. However, In practice, it is often not possible to achieve this uniform spatial distribution due to intrinsic limitations in systems or in the acquisition conditions. As a result of this non-uniform distribution, several artifacts can affect the reconstruction and alter the quality of the visual appearance. We propose a methodology to address this issue. This methodology consists in the estimation of the spatial distribution of the lighting directions used during RTI acquisitions. This estimation is based on a local density estimation, and the obtained density values are used afterwards to weigh (Least Square Regression) and thus correct the contributions of each image to the RTI acquisition.

Chapter 2 Calibration of spatial distribution of light positions in RTI acquisitions Two types of devices can generally be used to carry out RTI acquisition: Dome-based and Free-form systems (see subsection 3.2.2). The two types of systems may often lead to a non-uniform distribution of the light positions. This is due to many factors: manual positioning of the light source in Free-form systems, inaccessible zones due to the camera, or the studied objects (example of corners on wall paintings). Thus, in practice, the spatial distribution of the light sources is generally non-uniform over the angular space of acquisitions. Non-homogeneous distributions are a common problem in different studies associated with directional data [Yang 17,Skrodzki 18] the hypothesis of uniformity is still commonly used for directional data evaluation. However, when this hypothesis is not fulfilled, models need to be adapted to avoid altering the quality of the results. In the case of Photometric Stereo acquisition, the light spatial non uniformity affects the estimation of angular reflectance as well as the normal field estimation [Dellepiane 06, MacDonald 10]. [ Dellepiane 06] studied the influence of the quantity as well as the spatial distribution of lighting settings, used in RTI acquisitions. According to their contribution, not taking these conditions into account leads to a loss of quality in the reconstruction of the RTI data. Thus, it is concluded that by having two datasets with the same number of light positions, a dataset with a homogeneous distribution in hemispheric angular space produces a better quality RTI data reconstruction than a non-uniform one. As state of the art methods (PTM, HSH and DMD) for reconstruction i.e relighting are based on the assumption of a uniform distribution, a correction of the real spatial distribution is therefore necessary. The proposed methodology is presented below.

The problem of the light sources distribution on RTI acquisition

The principle of the RTI modeling methods is to estimate coefficients that allow to model continuously the measured data. A linear regression is implemented in order to obtain the best fit to the given dataset by minimizing a global quadratic error (Least Square), as shown in Equation 2.3. The homoscedasticity principle (constant variance, opposite to heteroscedasticity) is implied. 2), the equation for each pixel can be written as:

     l 2 u0 l 2 v0 l u0 l v0 l u0 l v0 1 l 2 u1 l 2 v1 l u1 l v1 l u1 l v1 1 . . . . . . . . . . . . . . . . . . l 2 uN l 2 vN l uN l vN l uN l vN 1           a 0 a 1 . . . a N      =      L 0 L 1 . . . L N      , (2.1)
where,

P × a(i, j) = L(i, j). (2.2)
Thus, implying P = 80 × 6, a(i, j) = (6 × 1) and L(i, j) = (80 × 1). The Least Square solution, can be expressed as:

a(i, j) = (P T P ) -1 P T L(i, j) (2.3)
When the constant variance hypothesis (uniform data distribution) can no longer be assured, an additional parameter W should be considered in the regression. The solution is given then by applying a Weighted Least Square (WLS), where a weight is given to each observation (as stated in Equation 2.4). The task in order to solve this problem considering an RTI dataset will be then how to estimate these weight values (W ). a(i, j) = (P T WP )

-1 P T WL(i, j) (2.4)

3 Principle of the method

Density Estimation Over a Hemisphere

In order to estimate the weights, the method proposed is based on the calculation of the point density over a hemisphere. Several works have been devoted to this subject [Diggle 85, Dupuy 17]. Particularly, Diggle et al. have already described a method that provides a way for density estimation over a sphere [Diggle 85] based on a kernel function. This method proposed a refined version of a wide spread technique consisting in counting points by using a moving spherical cap of fixed size. If (x, y, z) are related to the point where density f (x, y, z) must be estimated, the Fisher kernel is written as

f (x, y, z) ∝ n i=1 e (k(xx i ,yy i ,zz i ) , (2.5) 
where (x i , y i , z i ) with i = 1, ..n refers to all observations on the sphere and k is a smoothing parameter that can be seen as the size of the moving spherical cap. Furthermore, Diggel et al. [Diggle 08] also proposed a way to test uniformity of a spherical distribution based on the angle between a consecutive pair of points. However, most of these methods are appropriate for density estimation in large datasets (considerable amount of data points).

Here we propose a method adapted to RTI datasets where the number of points (sampling) is not big enough to apply conventional methods. It is also based on a moving spherical cap with adaptive sizes combined with the calculation of the solid angle sustained by two consecutive points. The main steps to implement our proposed method are synthesized in the pipeline presented in Figure 2.2. 

Estimation of equivalent angle

A spherical cap is built to achieve the local evaluation of the directional density. For each light position v, a weighted average of solid angle Ω v is evaluated in an angular sector: a cone whose central axis is co-linear to v and whose origin is the center of the unit hemisphere. The intersection cone-hemisphere is a circle of center C and of radius r, forming the circular base of the moving spherical cap. Then, all edges in the triangulation which have an intersection with the virtual cone are determined. The area of each patch of the resulting mesh is then computed to weigh the solid-angle values. For each direction v, the mean value of solid-angle, noted Ωv , is obtained by the following local integration (average):

Ωv = Stri A Ωt + Sseg A Ωs A Scap (2.7)
The area of the spherical cap is A Scap = π(r 2 + h 2 ) where r and h are respectively the radius and the height of the cap. The area of each spherical triangle S tri that composes a part of the cap is A Stri = r 2 E Stri where E Stri is the spherical excess of the triangle. The area of each spherical segment noted S seg , which corresponds to the region between the circle and a line segment I1I2 (I1 and I2 represent two consecutive intersections -blue points -on the circle in Figure 2.4), is given by Equation 2.8

A Sseg = αrh -E t , (2.8) 
where α is the angle (I1CI2) and E t is the spherical excess of triangle (I1; I2; v). The halfangle of the cone can be larger than the angle between two directions which are closer from each other. In this case and for special settings of mesh like the one illustrated in Figure 2.4b, the computation of A Sseg (hatched orange) requires an imaginary triangle (orange dashed lines as edges) to be considered, to obtain the spherical excess E t as a term of equation 2.8.

Size of the cap

The size of the spherical cap is an important parameter that needs to be addressed. Furthermore, it is data-dependent. Therefore, we have implemented an iterative process to compute it automatically. It consists in sliding caps of different sizes at each iteration. Then, the appropriate size for the specific dataset is determined based on an error percentage. Considering that the area of the spherical cap is determined as: where r is the radius and h the height of the cap. The radius r is an assigned parameter that must be between 0.1 and 0.5, so the resulting cap area is lower than the total diameter of the unit hemisphere. During this process, an estimation error is determined at each single direction, and at the end of the iterations a mean error for all directions is estimated. Then the appropriate size for the cap is determined by considering the mean percentage of error computed at each iteration. Once the appropriate size is estimated, the local integration (step 3 of Figure 2.2) is performed again using the appropriate cap size.

A Scap = π(r 2 + h 2 ) (2.9)
error percentage = abs((1 -A tot /A Scap ) * 100), (2.10)
where the total area is determined as

A tot = A Swedge + A Spoly + A Stri , (2.11)
with A Swedge the area of a spherical wedge, A Spoly the area of each spherical polygon and A Stri the area of each spherical triangle inside the current cap. From the previously described process, a vector containing the mean error values from each iteration (with different radius size) is obtained. From this resulting error vector, the radius parameter for the cap is the closest one to the mean error value. The cap size has an influence on the estimation of weight, and this can be noticed in Figure 2.7. It can cause either an under-evaluation of densely populated areas or, on the contrary, an over-evaluation of low density areas. This can then cause a wider gap (in terms of weight) between high and low density areas, which is why it is important to estimate the size of the cap towards an average estimate, thus avoiding reaching any of these extreme points. By analysing results showed in Figure 2.7, we can observe the variation depending on the cap size. We can see that with a very small cap the variance of the estimated weights is small while the number of outliers is high. In contrast, larger cap sizes lead to a more significant weight variance but a lower number of outliers. For a mean cap size, we can see that a better rate is obtained between estimated weights and we also have a lower number of outliers.

Normalization

Normalization is obtained by dividing each solid angle mean value by the value of solid angle calculated if the samples had a uniform distribution over the unit hemisphere. For an acquisition with n light positions the mean solid angle (homogeneous distribution) would be 2π n , then the normalized D v angle can be calculated as follows. Ωv is the inverse value of D v (inversely proportional to D v ). D v is a dimensionless quantity:

D v = Ωv n 2π (2.12)
A representation of the resulting weights obtained for an example RTI dataset is illustrated in 

Results

The proposed method aims to take into account the non-uniformity of the lighting positions of an RTI acquisition during the modeling (LS regression). Thus, we first propose to illustrate its application on two shiny metallic surfaces, precisely datasets RTI-A0 and RTI-A1. Indeed, 63 not taking into account the actual distribution of lighting for this type of surface would be particularly detrimental, because of its anisotropic behavior. RTI-A0: this RTI acquisition was performed on a one pound Egyptian coin (Figure 2.9a). The acquisition is composed of 120 images obtained using an automated home-made RTI acquisition device with one single light source positioned by a motorized arc in the (ϕ, θ) angular space (Annexes 4). The sensor used for this acquisition is a monochromatic 6 Mp industrial camera. The distribution of this acquisition (L u , L v ) coordinate system, and the weights estimated using the proposed WLS-RTI method, are presented in Figure 2.9c. Two evaluations are performed: a local one, in which only one light direction is rendered using three RTI fitting approaches (HSH (third order),PTM, DMD), and then their difference maps are analyzed. Furthermore, a global evaluation which evaluates the contribution of the proposed WLS-RTI method on all of the images in the dataset. Two metrics are used: the Root Mean Square Error (RMSE) and the Structural Similarity Index (SSIM). RTI-A1: this RTI acquisition was performed on a 500 pesos Colombian coin (figure 2.14a). The acquired area of the object is marked in Figure 2.14b The object was acquired at 47 light positions not homogeneously distributed, using the same acquisition system used in dataset RTI-A0. The spatial distribution of this acquisition and the weights estimated using the proposed WLS-RTI method, are shown in figure 2.14c. For this dataset, one global evaluation is performed to evaluate the contribution of the proposed WLS-RTI method on all of the images in the dataset. The same two metrics (RMSE) and (SSIM) are used.

To assess the efficiency of the proposed method, we employ two metrics typically used to quantify the similarity of two images. The first is the RMSE, which is calculated by taking the square root of the average square difference between the estimated and true values. This metric quantifies the error objectively but does not aim to match the human visual system (HVS) [ Silva 07]. Nonetheless, this metric is one of the most commonly used one when evaluating images. The second metric, SSIM, is correlated to the perception of HSV [Wang 05]. The SSIM takes spatial information into consideration and describes image distortion as a mixture of three factors: loss of correlation, brightness distortion, and contrast distortion. Thus, to carry out the evaluation of the proposed method, we take as ground truth the image acquired during the RTI acquisition, (Image acquired for each angular position) and compare it with the images rendered from the classical method using linear regression (LS RTI) and the rendered image from the proposed method (WLS RTI).

Dataset RTI-A0

Local results

Comparisons of results between LS and WLS reconstructions are presented for PTM, HSH and DMD fitting approaches respectively in Figure 2.10, 2.11 and 2.12. The reference image I ref used for the calculation of the difference maps in these 3 figures is presented in Figure 2.9b. The chosen acquired light direction for this assessment is highlighted in Figure 2.9c (red dot, enclosed by a blue circle). It corresponds to the light direction at which a higher weight was assigned. Resulting difference maps show that the reconstruction error is lower when the WLS regression is applied, regardless which fitting model that is used. This result is confirmed by the Root Mean Square Error (RMSE) estimated between reference and reconstructed images (LS and WLS) on these data (Table 2 

Global results

In Figure 2.13a and Figure 2.13b, we present the results of the global analysis of method performance. The figures show the distribution of the RMSE error between reconstructed images, using LS and WLS, for all acquired directions for the two methods, PTM and DMD. First, the SSIM and the RMSE have been estimated for each of the dataset images, using the two reconstruction methods LS and WLS in comparison with the ground truth (Image acquired in said position). After analyzing both metrics, it has been notice that for this datset the results obtained with the proposed WLS-RTI method are in most cases better. 67 Thus, a smaller RMSE and a larger SSIM are obtained, and for a few positions the result is similar. The graphs show us the results of comparing both metrics for both LS and WLS reconstructions. We can indeed notice that whether we apply DMD or PTM reconstruction method, the difference between LS and WLS is still significant. For the majority of the light directions the RMSE gap between both regression methods is high, which indicates that WLS performs better than LS. On the contrary, for few directions, the difference is close to zero.

In these cases we will get similar results whether we apply LS or WLS regression. Similarly in Figures 2.13c and 2.13d we show the comparison between LS and WLS reconstruction for all of the images of the dataset, but this time using another metric, the SSIM. In the case of SSIM with the WLS images we get values closer to one, indicating a structural similarity closer to the reference image. The results from the second RTI-A1 dataset are analyzed in this part. Figure 2.14b shows a sample of the acquired object, while Figure 2.14c shows the spatial distribution of the 47 light positions applied and the resulting weights. For this dataset, we use the SSIM and RMSE measures to assess global results, meaning results for all of the lighting directions in the dataset. The comparison of the SSIM obtained for each image of the dataset using both the LS and the WLS reconstruction, for the 3 reconstruction methods RTI, PTM, HSH, and DMD, are shown in Figures 2.15, 2.16 and 2.17. The red bars show the images rendered using the proposed WLS approach, and the blue bars show the SSIM value of each image reconstructed using the traditional LS technique. We can see that when utilizing the proposed WLS-RTI reconstruction method, the SSIM value is higher (closer to one) for most of the light positions. 2.18b, 2.18c). Thus, we can see that for the PTM model the difference is almost always positive, indicating that a result closer to the ground truth is obtained when applying the proposed WLS-RTI method. Similar results are observed for the HSH and DMD models. Similarly, it is noteworthy that the negative difference (when the LS result is closer to the ground truth) is much smaller compared to the positive difference. In other words, when the rendering improves as a result of the WLS action, the difference is much greater, and when it does not, the result is closer to being the same as if the LS modeling was used. We have also measured the difference between the LS and WLS reconstruction based on the RMSE metric (in a similar way as for SSIM). In this case, applying LS leads to higher RMSE than WLS, indicating that the proposed reconstruction is closer to the ground truth. By analyzing Figure 2.22a, we can see that for the PTM model, around 21% of the light positions have a negative error greater than 1, indicating that the LS reconstruction is closer to the ground truth. According to this metric, the WLS result is better in 44% of images, while the two methods achieve similar performance in the remaining images. In the context of the HSH model reconstructions, they demonstrate that roughly 15% of the images have a negative difference greater than 1, while approximately 16% have a better reconstruction with the WLS approach, and the remaining images indicate similar performance by both methods (LS and WLS). In the case of reconstructions with the DMD model, it can be seen that for 15% of the illumination directions, the difference is negative and greater than 1, with an important peak greater than 4 for one of the directions, indicating that the LS result is closer to the desired one. For roughly 45% of the images, the result is better with WLS, and for the other 40%, the improvement provided by the proposed method is less. In other cases, the results produced by WLS and LS are fairly close. 

Application on a CH case study

After evaluating the proposed method on a metallic sample presenting a complex reflectance behavior and including local specularities, we apply this method to a particular case study for cultural heritage. The CH RTI dataset is identified as RTI-A2. This acquisition was performed by using a handheld white light source (Free-form RTI), using a Nikon camera D7100, with an image resolution of 4000 by 6000 pixels.

RTI-A2

. This case study is a part of a painting entitled Triptyque de Venasque from the Musée du Petit Palais in Avignon, France. The RTI acquisition was performed during a restoration process of the artwork. The dataset contains 49 images. The spatial distribution and the weights estimated from this dataset are represented in figure 2.23b. A sample image acquired at respectively azimuth and elevation angles (θ = 57°, ϕ = 86°) is presented in figure 2.23a. We present below the results corresponding to dataset RTI-A2. In this case, we choose to compare the reconstruction for the image corresponding to the light direction at which higher weight was assigned during the density estimation process (the reddest dot in the W matrix). This can be associated to a sparse, strongly non homogeneous area in the acquisition angular space. Results are presented in Figures 2.24a Considering that the fitting process aims at a continuous relighting of the surface, having an error at a particular light direction implies that the applied correction should also affect the surrounding points of that direction, hence even if the computed RMSE for LS and WLS regression are not high, results confirm that the correction should be applied to not alter rendering of the final reconstruction.

Conclusion

This chapter presents our first contribution. Here, we present a methodology to palliate the often non-uniform distribution of light directions implemented in RTI acquisitions, allowing the improvement of the quality of the modeling/relighting stages. The proposed methodology is based on estimating the local density of the lighting directions used during acquisition. This local density estimation allows us to estimate the weights used in the approximation methods (PTM, HSH and DMD) by means of a WLS regression to correct the imbalance in the spatial distribution of the light sources. This method was applied on three different surfaces with visual singularities and presents different reflectance responses. The results showed that applying the proposed calibration when RTI acquisitions are not uniform is essential to avoid a loss of quality on the image reconstruction and consequently in the appearance modeling and rendering of the studied surface.
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Pixel-wise processing on multi-light image collections

Chapter overview

Most of the methods used to process (model and relight) RTI data assume only one light direction for all pixels as well as a single light source-surface distance for the entire image, following the model of a very distant (far) light source. This hypothesis does not hold in practice. Therefore, we propose in this chapter to consider the way light really spreads into the surface and follow the model of a near light to obtain a per-pixel processing methodology.

Introduction

To date, most of the models for processing RTI data have been based on the assumption of unique angular positions as well as a unique light-surface distance to represent the entire surface. This is linked to the fact that the majority of the contributions in the area follow the model of a distant light. In this model, the light source is assumed to be placed at a long distance away from the lit object/surface. As a result, even if the light source is not collimated, the light rays can be presumed to reach the object's surface in parallel, because of the light-object distance. In this situation, the lighting energy of the light source that reaches the object's surface is not affected by distance or angular variation of the light beams.

As illustrated in Figure 3.2, in the case of a near light, the amount of light that reaches the surface of the object is affected by both a variation in distance at each point on the surface and a variation of the angle of incidence. Thus, the light rays are scattered and the distance measured between the center of the surface and the light source varies in relation to other points on the surface. For example, as illustrated in Figure 3.2, the distance (light sourcesurface) d is significantly shorter than the distance d3, which implies a loss of lighting energy. Indeed, due to the light sources commonly used when applying MLICs acquisition (spot light / photo flash), light rays do not hit the surface in parallel, producing a non-uniform lighting (Figure 3.2). As a consequence, the assumption of unique angular positions and a unique distance is generally not a valid assumption. To overcome this, we propose a perpixel processing based on illumination laws that allows one to correct both loss of lighting energy due to the distance variation as well as the elevation angle. Firstly, we provide a proof of concept. Secondly, we show the efficiency of the proposed method on RTI acquisitions performed on cultural heritages objects and a manufactured surface. We verify the presented method with RTI datasets acquired in a Dome-based system as well as a Free-form acquisition. We show that the implementation of the proposed method improves the effects of non-uniform illumination and consequently improves RTI relighting.

MLICs lighting problems and Related works

In the case of Photometric Stereo (PS) this problem have been approached and it is referred as near PS, on the other hand in the case RTI the subject finds less contributions. In this section, we present a non-exhaustive review on the related works in both near PS and RTI.

PS near light methods [Iwahori 90] presented one of the earliest proposal on the subject. In this contribution, the authors propose a solution based on the inverse square law and the theory of monocular vision. In order to minimize the derived equation, at least 4 input images are needed. Besides, to solve the equation it is necessary to provide a large angle variation between images, to produce a significant difference on the illumination. Additionally, as mentioned in their work, the distance between the light source and the studied object needs to be large. These last two conditions are the main drawbacks of their method.

[ Quéau 18] propose a unified irradiance equation, with the aim of being closer to real world scenarios. This solution considers both diffuse and specular reflections. The algorithm first corrects the input images to get a more uniform lighting. For performing the correction, the method uses an ambient light image following the Cosine-Fourth-Power Law of Illumination, and creates a cos 4 alpha map to compensate for darkening at the borders. Its main drawback is the need of the camera intrinsic matrix in order to estimate the solution.

[Santo 20] proposed a per-point solution, in which a distant light setting needed to be considered to produce a solution. This approach is based on a deep learning algorithm, and therefore needs a large dataset for training the neural network. Alternatively, a pre-trained PS network can be used, but in this case the network is pre-trained with distant assumption PS data. This method is computer dependant, taking at least half an hour for processing a 256×256 image in a powerful computer (tested on a on an NVIDIA Quadro RTX 8000 GPU).

Following these presented publications, none of them seem suitable for RTI data, that usually produces around or more that 70 images, at different light positions in order to provide enough data for the relighting fitting algorithm and obtain accurate estimation of surface normals..

RTI non-uniform lighting

Whether considering the Dome or the standard H-RTI (Free-form) setup, RTI consists of a camera facing the object and a moving light source to illuminate the object from different directions. The use of a non-collimated light source in this type of acquisition produces different aberrations that have already been pointed out, and different solutions approaching them have been proposed. Here, we present some of the works that are found in the literature.

[Winnemoeller 05] proposed an algorithm capable of automatically extracting three dimensional light positions from acquired images. The algorithm is based on dimensionality reduction techniques. This approach eliminates the use of reflective shiny spheres or any calibration target; instead, it involves the use of a diffuse reflector in addition to the light source. The method also relies on the fact that the distance between the successive directions of lighting in the image stack is comparatively small. This could be a good and applicable solution when using an automated Dome-based system, On the other hand, H-RTI usually employs a hand-held light source, which makes it difficult to accomplish small and successive light positions.

[ Walton 15] proposed a distance compensated pixel intensity framework that follows a near point illumination model in order to correct the non-uniform lighting and to estimate light directions. This method eliminates the need of placing shiny spheres, however, the method relies on the use of a flat matte surface such as a color checker that needs to be placed in the scene. Their method proposes an estimation of 3D scene points but still requires initial values for combined albedo and vignetting. Initial surface normal estimates are also needed. Considering this last requirement, their methodology can be problematic if images were acquired over non rigorous conditions. That can be the case of H-RTI, where acquisition conditions may often lead to inaccurate normals estimation.

In one recent work, [ Giachetti 18] show that, with a modification of the standard acquisition setup, it is possible to significantly improve the quality and accuracy of the relighting model. This work introduces the idea of correcting the light direction and intensity using the per-pixel light direction estimation from the highlights on multiple reflective reference spheres by considering perspective correction and performing direction linear interpolation. To compensate the illumination variations the authors proposed an algorithm exploiting light intensity measured on matte white targets positioned around the object of interest. The main drawback of this method is the need of extra equipment in order to perform the acquisition, which also implies that exiting datasets cannot be processed following this method.

In a more recent work, [ McGuigan 20] proposed a novel method to estimate light directions without the requirement of a calibration equipment, reference spheres and hence claim that their method can be retrofitted to any existing stack of RTI photographs. The first step in this approach is isolating intensity variations due to light source by subtracting each image with the mean image of the whole stack. Secondly, the paper presents an intensity correction method for the non-uniform lighting. Similar to standard PTM, the proposed method also uses the bi-quadratic function fitting to correct the intensities. The standard PTM method uses the bi-quadratic function to estimate the orientation of a given pixel, whereas this method fits the orientation collectively to all pixels in a given image for intensity correction. From the experimental results, the authors claim that there is a significant improvement in the surface normals estimation using their method as compared to the standard H-RTI method.

In the case of PS application, none of the presented solutions can be easily adapted for RTI acquisition as it usually produces around 70 images, at different light positions to provide enough data for the relighting fitting algorithm and obtain accurate normal map estimation. In the case of RTI, the methods presented propose the estimation of the angular position of the incident light, but providing only a single position for the entire surface. Only one method proposed the estimation of the angular position per-pixel. However, it is based on the use of 4 reflective spheres since the method requires multiple points to create an interpolation and estimate a per-point angular position. Considering this, we propose a methodology that helps to improve illumination uniformity of the surface and allows to estimate a per-pixel angular position without the need of any additional equipment or target in the acquired scene.

Proposed methodology

For a diffuse shaded surface, directly illuminated by a punctual light source of fixed intensity, the lighting energy received by the surface varies as a function of two parameters: (1) the distance from the light source (the Inverse Square Law), (2) the angle between the normal surface and the light rays (called the Lambert's Cosine Law) Figure 3.3. Following these two illumination laws, we propose a solution to adjust the pixel value in order to compensate the variation of lighting energy produced by the spread of light on the surface. We also propose to use the per-pixel estimated angular position, in order to improve the quality of the RTI modeling. In this section we present how the angular position as well as the distance are estimated for each pixel of the image. Once these values are obtained, we use the per-pixel distance information as well as the per-pixel elevation angle information to estimate a correction coefficient to implement an illumination correction. This correction is applied to the RTI acquisition dataset. Then, we show how the corrected images as well as the per-pixel set of angular positions (θ, ϕ) can be used for RTI modeling and relighting steps. The proposed methodology consists of two blocks of steps: The first block (B1) can be applied to any existing dataset, while the second one implements an improvement for dark and saturated pixels (by allowing the application of the coefficients obtained in the first block of steps (B1) in unmeasured pixels (saturated -black)), for which it is necessary to acquire a second image at the same angular position. The second block (B2) is independent from the estimation of the pixel-wise illumination obtained in the first block. B1 of the methodology can thus be applied to pre-existing RTI datasets. The proposed method is summarized in the flow chart presented in Figure 3.4. Figure 3.3: Lambert's Cosine Law. For a non-collimated light source, the light spreads more when it is oriented in grazing positions with respect to the surface. Thus, for a normal position, the surface will receive the highest percentage of illumination. Inversely, in a grazing position, the lower light will be received. In order to estimate the distance and the angular position (θ, ϕ) for each pixel, there are two reference values that are needed. The first one is the distance between the light source and the center of the surface. The second is the angular position of the light source with respect to the center of the surface. From this information and knowing the real geometric size of the surface, it is then possible to estimate a new set of distance and angular position values for each pixel following the presented approach.

Step B1.1: Determine and set distance and angular reference At this point, the angular position of the light source and the distance between it and the center of the surface must be determined (radius of the hemisphere). This depends on the acquisition system used, which in this case is an automated Dome-type system (Annexe 4) with a radius of 220mm and known angular positions. At this stage it is also necessary to input the real size of the acquired surface.

Step B1.2: Per-pixel distance and angular position estimation Each point in space can be represented by an ordered triplet of real numbers P = (x, y, z). Let be P = (x 1 , y 1 , z 1 ) and Q = (x 2 , y 2 , z 2 ) two points in the space, the distance between them is defined by:

d(P, Q) = ||P.Q|| 2 = (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 + (z 2 -z 1 ) 2 .
(3.1)

The estimation of angle between two vectors is given by:

β = arcos P.Q ||P || 2 .||Q|| 2 , (3.2) 
where P.Q is the scalar product of P and Q and ||P || 2 .||Q|| 2 is the product of magnitudes of P and Q respectively.

Step B1.3: Estimation of pixel-wise adjustment coefficients

Considering the Inverse Square Law (ISL)

The Inverse Square Law of illumination is given by:

E d i,j = I i,j d 2 i,j , (3.3) 
where E d i,j , is the energy, I i,j , is the luminance and d i,j is the distance of a pixel (i, j). As shown in Figure 3.2, the distance d is pixel dependent. To normalize the illumination as if it was a collimated source, we need to correct the energy to a reference distance.

E d ref i,j = I i,j d 2 ref = K d i,j .E i,j , (3.4) 
where d ref is the distance of the pixel at the center of the surface. We obtain the correction coefficient K d i,j as follows:

K d i,j = d i,j d ref 2 (3.5)
Considering the Lambert's Cosine Law (LCL) The Lambert Cosine's Law is given by: E ϕ i,j = I i,j cos(α i,j ), (3.6) where α is the elevation angle with respect to the normal, as shown in Figure 3.5. The cosine law considers the elevation angle with respect to the normal (angle α). In order to obtain the elevation angle as used in the standard RTI model (angle ϕ) as shown in Figure3.5, we must note:

ϕ + α = π 2 → α = π 2 -ϕ, (3.7) 
therefore

E ϕ = I cos(α) = I sin(ϕ), (3.8) 
with ϕ ref being the elevation angle of pixel at the center of the surface E

ϕ ref i,j = I i,j * sin(ϕ ref ). A correction coefficient K ϕ i,j
is obtained as follows:

K ϕ i,j = sin(ϕ ref ) sin(ϕ i,j ) . ( 3 
.9)

Step B1.4: Final step image adjustment

The final correction coefficient to apply on each pixel of a given input image is obtained using both of the correction coefficients previously estimated, K ϕ i,j and K d i,j . A corrected output image (I B1 ) is obtained following the equation:

I B1 (i, j) = (K i,j ).(I i,j ), where K i,j = K d i,j .K ϕ i,j = d i,j d ref 2 .
sin(ϕ ref ) sin(ϕ i,j ) .

(3.10)

Validation of block of steps one (B1)

In order to validate the proposed method, we describe in this section the method is applied on a standard reference surface (ColorChecker GRAY BALANCE) as a proof of concept. An RTI acquisition was carried out using a Dome-based system with a single light source held by a motorized arch (see Annexe 4). The presented surface was acquired over 77 light angular positions homogeneously distributed over the hemisphere, using a 12.4 megapixel monochrome camera. The distance from the light source to the center of the surface is 220 mm and the acquired area is 30 x 50 mm. We analyse here the results obtained by applying the proposed illumination correction to one of the images of the dataset, acquired at (θ = 10 • , ϕ = 24 • ) angular position.

As mentioned in section 2.1, a per-pixel light-surface distance as well as light angular position are estimated. The obtained results are presented in Figure 3.6. Figure 3.6a illustrates the variation of the estimated distance depending on the pixel. Considering that light arrives to the surface from the upper right side (θ = 10 • , ϕ = 24 • ), the smaller distance values are in the top-right corner (197.5 mm). On the other hand, as light spreads across the surface, the larger distance is obtained at the bottom-left corner pixel (245 mm). This is the expected behavior; considering that the distance at the center is 220 mm, as the points on the surface move away from the central position, the distance difference to the center increases. This behavior is evident by observing the diagonal of the distance map (Figure 3.6a). Consequently to the resulting distance map, the ϕ map presented in Figure 3.6c follows an inverse relationship; as distance grows, the elevation angle decreases and vice-versa. Having a 24 • elevation angle at the center of the surface, the largest angle is found in top-right corner 28 • and the smallest at the bottom-left corner 22 • . As light spreads following a conical shape (solid angle), the azimuth angle also diverges from the one found at the center of the surface (10 • ). The variation of this angle can be observed in Figure 3.6b. As explained in the presented approach, the elevation angle is the one influencing the amount of light received by the surface (LCL). Thus, the per-pixel θ information is only used in the RTI modeling part, along with the ϕ information, to improve the accuracy of the relighting model. Finally, we provided both the distance and angular variation along the first 21 images of the acquisition dataset. In Figure 3.7a, we can see the variation of the elevation angle across all pixels of 21 images. One of the largest variation is observed at image 10, where the central angle correspond to 37 • , but the maximal and minimal values corresponds to 43.4 • and 32.2 • respectively. In Figure 3.7b, the angular variation on the azimuth is represented, and one of the greatest variation is observed at image 14 where the angle at center pixel is 168.8 • with a maximum of 177.6 • and minimum of 158.6 • . This represents a 19% difference. In Figure 3.8a, it can be seen the variation of distance for all pixels across the 21 images of the dataset. Finally on Figure 3.8b the distance variation for all of the 76 images of the dataset are shown, but with respect to the angular position. As illustrated in Figure 3.8b, at grazing positions, distance variation is larger; conversely, lower values are observed at angular positions closer to the normal.

Considering black and saturated pixels (B2)

In cases where there exist either saturated or black pixels, an additional adjustment should be applied. This additional process allows to improve the resulting image and to apply the coefficients acquired in B1 to unmeasured pixels (black and/or saturated). To apply this step, it will be necessary to take one or two more pictures at the same light position, depending on the following thresholds.

Step B2.1: Check for over-and underexposed pixels For a grayscale image with pixel values between 0 and 255, we define two thresholds. Consequently, pixel values equal or less than five (≤ 5) are considered as underlit and pixel values equal or grater than two hundred fifty (≥ 250) as overlit. These thresholds were chosen considering the non-linear behavior of the camera at the borders.

Step B2.2: Take image I min and/or a I max at the same angular position Let K min be the minimum and K max the maximum value of the correction coefficient K i,j . When the image presents saturated pixels (overlit) a new image I min is acquired.

I min = exposure time.K min , (3.11) 
where the exposure time is related to lighting time of the LED as it is synchronized with shutter speed of the camera lenses.

When the image presents dark pixels (underlit), a new image I max is acquired

I max = exposure time.K max .
(3.12)

Step B2.3: Adjust grayscale pixel values based on I min and/or I max Once I min and/or I max is acquired a new output image I B2 can be determined to adjust each grayscale pixel value as follows:

For every pixel I i,j ≥ 250

I B2 (i, j) = I min (i, j). K i,j K min , (3.13) 
for every pixel I i,j ≤ 5

I B2 (i, j) = I max (i, j). K i,j
Kmax .

(3.14)

Thus, for pixel values within the range of 5 ≥ pixel ≤ 250, the final adjusted value depends solely on the result produced at B1.

Proof of concept

In this section we present a proof of concept of the proposed methodology, we show the results obtained with the proposed correction at different light angular positions. A test RTI dataset is obtained using a fully automated Dome-based system. The RTI acquisition was performed over a flat surface (7.5 × 5.8cm), using 76 light positions (22cm surfacelight source distance). The block of steps 1 (B1) of the proposed methodology was applied to the images. Figure 3.12a shows the input image at light position (θ = 9, 4, ϕ = 20) before applying the proposed method. First the per-pixel distance and angular position are estimated. From the distance map (3.9a) the distance coefficients per-pixel are estimated result can be seen in Figure 3.9b. Then, per-pixel coefficients from the phi map (3.10a) are estimated. The resulting map can be observed in Figure 3.10b. In can be notice that light is coming from the right side of the surface, thus the higher value of the elevation (phi) angle is closer to light and this value decreases as we move to the left side. Furthermore, the coefficients map estimated from Equation 3.9 follows an inverse proportional relationship. Thus, for larger angles we apply a smaller coefficient and vice versa. The final coefficients that are applied to input image can be seen in figure 3.11. This coefficient is the result of combining both distance and cos phi coefficient maps. In Figure 3.13 we presents the results obtained by applying the proposed method for another angular position ( θ = 83, 74, ϕ = 29, 16). Figure 3.13a shows the input image, and Figure 3.13b shows the resulting image after applying the proposed methodology. It can be observed in that after applying the proposed methodology the surface presents a more uniform illumination. The first dataset (dataset RTI-D1) was obtained using the SyntheticRTI, a plugin that allows one to created Multi-light Image Collections using the Blender rendering engine. The render object is a 19th century headstone standing of Monsea church ruins, Co. Tipperary, the model can be download from SketchFab (https : //sketchf ab.com). The render area can be seen in Figure 3.14a (red rectangle).

The second one (dataset RTI-D2) is a modern daguerreotype made by Marinus Ortelee. Thanks to the reflectance characteristics of the surface, the acquisition over this artefact is used to show the results regarding the illumination correction presented in section 2.2. This object was acquired using the same automated Dome-based system used in section 3. The size of the object is 42.9 x 28.8 mm. [ Pagi 17] have already established the relevance of RTI as a great tool for documentation of daguerreotypes thanks to its non-invasiveness. This technique allows conservation specialists to obtain information and study different aspects of these delicate artifacts such as scratches, hallmarks, hand coloring or even tarnish. However, one of the biggest problems of using RTI for analyzing daguerreotypes is the very nature of these objects. In daguerreotypes, an image is formed on a silver-coated copper plate; they can also be covered with a protective glass, which makes them highly reflective, making the RTI acquisition process more complex. To deal with this characteristic of the surface, [ Webb 11] proposed the use of a home-made snoot to reduce reflections but at the expense of reducing important details on the surface. To avoid this, [ Pagi 17] proposed another solution to get a better final dataset, which was to simply obviate some angular positions in order reduce unwanted glare. In our work, we show that the proposed methodology improves the RTI resulting model of daguerreotypes, as it is able to manage critical angular positions, allowing to properly capture surface details.

The third dataset (RTI-D3) is an H-RTI acquisition that was made on a part of a famous historical painting named Retable de la Trinité (Catalan school), a painting on wood attributed to Canapost's Master (XVth century) and located at the Hyacinthe Rigaud museum of arts in Perpignan, France. The size of the artwork is 3,69 m. hight and 2,19 m wide, but the acquisition zone corresponds to 0.297m x 0.21m. This second dataset is used to show the results regarding RTI relighting after the energy correction is applied to the input image. The image is relighted using the per-pixel light positions (θ, ϕ), estimated as shown in section 2.1. The RTI acquisition was carried out during a restoration process of the artwork. This allows keeping a record of the state of the artwork before restoration. As mentioned earlier in this document, H-RTI acquisitions often lead to inaccuracies during the surface modeling, as some requirements regarding the acquisition are difficult to fulfill, such us keeping a constant distance between consecutive images or properly pointing light to the center of the surface. Even if one gets to manage these aspects, the use of non-collimated illumination is still necessary when it comes to acquiring large-scale objects. The effects generated by the use of these illuminations must be considered during data processing in order to avoid artifacts during the reconstruction i.e relighting of the images and thus be able to obtain a precise representation of the state of the artwork, which is crucial for documentation purposes.

The fourth dataset (RTI-D4), is a raw flat manufactured metallic surface, treated with blasting and showing some blasting defects. This surface was acquired with the same RTI Dome-based system as dataset RTI-D1. The surface was acquired under 101 different lighting directions and from the dataset surface normals and saliency maps were estimated. Surface characteristics are analyzed following features described by [ Nurit 21]. Further analysis and results are presented in the corresponding section (4.3).

Application on CH objects Headstone dataset RTI-D1

The RTI technique has already been used to analyze stone inscriptions; however, in this section, we demonstrate the importance of dealing with non-uniform illumination to improve the visibility of such inscriptions. To do this, we rendered the 3D model of the headstone using 20 lighting directions, then we applied the block of step B1 of the proposed methodology. The results for 3 different angular positions are shown below. Figure 3.15a shows the input image for light position θ = 185.2 • , ϕ = 40 • , as it can be notice, the light is coming from the left-side corner, and this area of the surface is brighter. On the contrary, the right side of the surface appears darker in comparison, making the engraving more difficult to read. Figure 3.15b shows the effect of applying the proposed methodology to the input image; the lighting is more homogenous and the marked contrast between the left and right areas of the surfaces is less prominent, resulting in a better appreciation of the inscription. Similarly, we can see in Figure 3.16a the image acquired at angular position θ = 163 • , ϕ = 40 • that the light comes from the top-left corner, producing an effect like that seen in the previous image (3.15a), making the right side of the surface appear less lighted. The resulting image after employing the proposed methodology is shown in Figure 3.16b, where the lighting is more uniform. Conversely, in Figure 3.17b, the result produced after applying the proposed approach to the image corresponding to angular position θ = 20 • , ϕ = 40 • can be seen (see Figure 3.17a). Similarly, after applying the correction, the lighting is more uniform, which allows for a better visualization of the inscriptions. 

Daguerreotype dataset RTI-D2

Being a metallic object, the studied daguerreotype presents a high reflection in angular positions close to normal position (ϕ = 90). On the contrary, when the surface is illuminated in grazing positions, the reflected light tends to be lower. This behavior generates an important number of saturated pixels in the first case, and in contrast, many poorly illuminated pixels in grazing lighting. Figure 3.18a shows the input image, which is shown with a false colormap to better visualize the intensity variation. In Figure 3.18b, the effect of applying the correction regarding both laws is shown. It can be observed from the resulting image that the illumination is more uniform. It can also be noticed that even if the image presents a better illumination, some pixels at the center of the image present a high specular reflection producing saturated areas.

This behavior emphasizes the defects over the surface, hiding the details of the surface. In order to overcome this, the solution presented in section 2.2 is implemented. In this case a new image is acquired at the same angular position but using the minimum value of correction coefficient in order to decrease the exposure time and limit saturation. This produces a so called I min image (Figure 3.21a) that is then used to correct saturated pixels according to equation 3.13. Results regarding this correction applied to the input image can be seen in Figure 3.18c. It can be observed that the saturation effect is reduced regarding the first block of steps of the correction (B1) and is significantly improved thanks to the application of the proposed correction. This reduces the effect of the scratches in the surface allowing to better appreciate the details of the building. The final correction is shown in real color (gray-scale) on Figure 3.19. It is possible to estimate the total amount of saturated pixels across all the images by counting the number of times that a pixel falls into saturation values across the dataset. This lets us to produce the " Saturation map". In Figure 3.20 saturation maps corresponding to the dataset before and after correction (Figure 3.20a , 3.20b) are presented. Thanks to these maps it is possible to see that without applying the correction the amount of overlit pixels is higher along all the images of the dataset. On the other hand, it can be perceived that after applying the correction, the amount of overlit pixels is reduced by 60%. Similarly, in order to manage dark (underexposed) pixels, a solution is proposed in section 2.2. Figure 3.22a, shows the input image acquired at grazing angular position θ = 15°, ϕ = 20°. It can be seen that the building part looks darker, presenting a notable contrast with the background part. In order to correct this, an energy correction regarding the underlit pixels is applied. The corrected image is shown in Figure 3.22b. A small improvement can be observed, but a better result is obtained when the full correction (B1 + B2) is applied. In this case a new image is acquired at the same angular position using the minimum value of correction coefficient in order to increase the exposure time and improve dark (underexposed) pixels. This produces the I max image (Figure 3.21b) that is used to correct dark pixels according to equation 3.14. Results of this correction applied to the input image is shown in Figure 3.22c. It can be observed that the image is significantly improved thanks to the application of the second block of steps B2 reducing the high contrast between the darkest part of image (building) and the clearest one (background). The final correction is shown in real color (gray-scale) on Figure 3.23. We consider overlit as well as underlit pixels as unmeasured points because these pixels do not really provide quantitative luminance information. These points can be seen as measurement errors, due to the nature of the surface and surface-light interaction that can produce either saturation on the sensor, or on the contrary black pixels. In Figure 3.24, it can be observed the amount of unmeasured information (underexposed and overexposed pixels) according to the angular position. It can be seen that the percentage of unmeasured pixels is higher before the illumination correction (Figure 3.24a). On the contrary this percentage is reduced thanks to the method here proposed, as shown in Figure 3.24b, which is an additional interesting feature of the proposed approach. It can be observed in these graphics that the angular positions produce more unmeasured pixels when placed at grazing angles or near to normal positions. This demonstrates the importance of applying the proposed illumination correction in order to avoid the undesired effects induced by the cosine law.

Application of the angular correction for RTI relighting (Retable de la trinité dataset RTI-D3)

This artwork was processed using the illumination correction. The corrected images were relight using the HSH approach. In Figure 3.25, the per-pixel variations regarding both azimuth and elevation angles are presented for one of the images of the dataset RTI-D3. From these maps it can be observed that the angular position changes significantly from the one that is calculated at the center of the surface. Considering this per-pixel angular position correction, it is possible to provide a more accurate reconstruction of the angular reflectance and therefore a better relighting. Figure 3.25 shows the angular variation on the angular positions from one of the images of dataset RTI-D3. From these maps we can observe variations of 10 and 5 percent respectively. In Figure 3.26, correction regarding only energy is presented for input image in Figure 3.26a. In Figure 3.27 and 3.28 the corrected and corresponding relight images are shown, for two different angular positions. From these results, it can be observed that energy corrected images present a more uniform lighting. Furthermore, as the per-pixel corrected angular position is used to model the surface, the reconstructed image is also improved. The proposed method can be applied independently of the RTI modeling approach that is used to relight the surface. 

Application of the method on a manufactured surface

We present in this section the proposed correction method applied to a metallic industrially manufactured surface. Indeed, this surface presents particular characteristics that allow us to show the effectiveness of the method. In the bottom-right corner an engraving is observed in the surface. This feature is used to evaluates the correction performed by the method regarding the saliency (Saliency maps offer information on the notable local characteristics of a surface [Pitard 17c]). Saliency maps before (Figure 3.29a) and after (Figure 3.29b) the application of the per-pixel energy correction are presented. In Figure 3.30b which presents the difference between the corrected and uncorrected saliency map, the engraved number appears more visible on the corrected saliency map. On the other hand, pixels at the center of the surface look less salient as the geometry of this part of the surface is more similar to the one presented by pixels at the surface borders. Regarding the elevation angle (ϕ), it can be observed ( Figure 3.30a) a significant difference before and after the correction. Indeed, on this difference map, we can observe higher variation at the borders, as the pixels closer to center differences is lower. This behavior is consistent with the described problem. As the rays spread from the center, the angle of every ray changes. 

Conclusion

This chapter proposed a methodology for pixel-wise processing of RTI data. This methodology seeks to reduce the non uniformity of illumination obtained with non-collimated light sources when performing MLICs acquisitions. We show that it is possible to obtain a perpixel estimation of light-surface distance as well as light angular position knowing the real size of the surface as well as the light distance and angle at the center of the surface. Using the estimated distances and the elevation angles, it is possible to obtain correction coefficients following the illumination model of a point light source, and produce therefore a per-pixel light correction. Results show that when the proposed processing is applied, images present an improvement regarding the illumination uniformity. It can also be observed that when the hypothesis of a distant light is not satisfied, it is essential to use a per-pixel corrected angular position to avoid a loss of quality on the RTI reconstructed (relight) images. We show that performing this processing methodology improves the non-uniform illumination commonly seen on RTI datasets. We also show that correcting the perceived light at each pixel as well as the the angular position, contributes to improve the visualization of surface's features, providing more reliable information regarding the condition of the surface, which is crucial when considering moving RTI to the field of surface metrology.

A methodology for large scale RTI acquisitions

Chapter overview

The collection and modeling of large objects appearance is still a challenge. This chapter examines strategies for making possible RTI acquisitions of large-scale cultural heritage artifacts taking into account the constraints of the existing technology. In addition to the instrumental customization to respond to the size constraints of the analyzed objects, we investigate acquisition modalities and appropriate processing strategies for the collected data.

Introduction

In the context of cultural heritage, many RTI acquisitions are performed in situ, as artworks can not be moved for many reasons (value, size...). The use of RTI technique to study large objects is not yet mature. In general, we can say that Dome-based systems are not often suitable for large scale acquisition because their radius is generally limited. Thus, acquiring areas of one square meter or more is not possible with this type of systems. Therefore, Free-form systems are often used. Even though this allows for better adaption to acquisition situations, the flexibility given by this sort of system has a number of downsides. One of which is not knowing the positions of the light source in advance. Indeed, when it comes to RTI, the manual placement of the illumination source results in non-homogeneous distributions. Another disadvantage when acquiring large scale objects is the decrease of resolution of the pictures collected, which has a direct impact on the degree of detail observed in the RTI reconstruction. However, one of the most important disadvantages is due to the light source. As we presented in Chapter 3, light loses intensity as it spreads, therefore to illuminate a large area, a light source of significant power is also necessary. As the luminous power of a light source increases, its size also tends to increase. An important size and weight could then make it difficult to handle the light source. Having a fully automated system is not always possible. The alternative is to use a semi-automated device or to manually position the light source. Taking this into account, in this chapter we explore a methodology for acquiring large scale (LS) artworks, that will allow us to obtain reliable data and obtain an accurate visual representation of the appearance of the object, after modeling and reconstruction.

Method for large scale (LS) H-RTI acquisitions

In order to perform H-RTI acquisitions, a basic set of equipment is needed. This set is principally composed of: a camera, a light source, an element to measure the distance (Light source-surface) and references used to recover the light position (generally shiny spheres).

The chosen equipment

The light source: In automated RTI setups the use of LED-based light sources is common, and usually the LEDs are synchronized with the camera and allow light source/camera synchronized shots. In contrast, for acquiring large scale objects the use of a continuous light source has been preferred as it eliminates the need of camera synchronization. After investigation, we chose a LED-based light source with a standard lighting temperature of 5500K with a high luminous power (output up to 200W ). This choice is justified for several reasons: it makes it possible to illuminate large areas, it can be turned on for an extended period of time, which is often needed to check the direction of illumination. Besides, it eliminates the need of light source/camera synchronization. This high power LED-based light source (Figure 4.1) also provides an adjustable intensity which allows lighting objects of different material reducing damaging risk (excess of temperature). This light source is also equipped with a cooler system to allow continuous lighting. Despite that, it keeps an acceptable weight (approximately 1.5 kilograms). The light source holder: Considering the height and size of the objects we studied (up to 5 meters as the artwork shown in Figure 4.5), moving the light source manually as commonly done in Free-form RTI setups is not a viable option. Thus, inspired by a system commonly used in television and/or film sets, it was decided to use a crane with a motorized head to carry the light source (Figure 4.2). The motorized crane head allows to correctly point the light source to the imaged object. The references: As previously stated, the use of reflective spheres in H-RTI acquisitions is commonly recommended. These are used to determine the position of light. As proposed by [Giachetti 18], it was decided to use four reference spheres to obtain more precise information about the direction of the incoming light. A 2 × 1 meter support, which can be adapted to different large objects, was built to support the spheres. The height of this structure can be adjusted as needed thanks to the use of tripods. In the structure it is also possible to place other reference, such as color checkers that are of great use for color corrections. The structure can be fully assembled to form a box enclosing the region of interest, or it can be split into two halves to suit the item being examined. This can be seen in Figure 4.3. On the right, the entire structure is kept on a flat item, whereas on the right, it is split to meet the position and shape of a statue. The camera: Two color cameras were selected, the first one (Nikon D850) equipped with a CMOS sensor of 45.4 megapixels, and the second one (Nikon D7100) equipped with a 24 megapixel CMOS sensor. Furthermore, the use of a stable support is critical, as the camera must remain static throughout the acquisition. To achieve a stable support, a sufficiently robust tripod coupled with a horizontal slider was used to allow fixing the cameras' position (Figure 4.4). The purpose of using two cameras is to execute an acquisition at 2 different scales (see Figure 4.16). The reference spheres are utilized to determine the position of the incoming light in traditional Free-form RTI acquisitions, but they can then be removed from the final image. Indeed, these references are solely required to obtain the so-called LP file, which contains the lighting positions of each image in Cartesian coordinates. Once this information is extracted, the images are cropped such that the spheres do not appear on the margins of the image, implying a loss of information (removed edges). Because the reference spheres in large-scale works cannot be situated outside (on the boundaries of the work of art), a portion of the surface of interest is covered by them. Thus, cropping the references results in losing part of the surface. Taking this into account, it was decided to build an acquisition setup with two cameras, where one of the camera has a lower resolution and a broader zone of interest (including the references). The second camera captures a smaller zone of interest in the middle of the surface where the region of interest is located, without the references. The second camera is the one with the higher resolution. This large-scale object acquisition technique was implemented and tested following two ideas. The first one was to study a multiscale approach and the second one to test a stitching strategy in the context of H-RTI.

Recovering angular position from spheres

Given four reference spheres, the location of the incoming light may be determined using the approach presented by [ Mudge 06]. Considering a sphere of radius r with center C u , C v and H u , H v being the coordinates of the highlight (in pixels), as the one shown in Figure 4.6 we have that:

S = H -C r (4.1)
The normal to the surface of the sphere at the highlight is given by:

N = (S u , S v ) 1 -S 2 u -S 2 v (4.2)
The colatitude angle θ N , is estimated as:

θ N = cos -1 1 -S 2 u -S 2 v (4.3)
To simplify the computations, we assume that the vector V represents the observation direction, which is parallel to the Z axis. As a result, according to Snell-Descartes' rules, the zenithal angle is given by θ L = 2θ N , thus:

θ L = 2 cos -1 1 -S 2 u -S 2 v (4.4)
The azimutal angle is then given by:

ϕ L = tan -1 S v S u (4.5)
Following the conversion from spherical to Cartesian coordinates, the normalized light vector's components are: 

L x = sin(ϕ L ) cos(θ L ) (4.6) L y = sin(ϕ L ) sin(θ L ) (4.7) L z = cos(θ L ) (4.8)

Combining LP files from multiple spheres

The first step to process the acquired RTI data is the detection of the angular position of the light source, from to the reflective spheres. To achieve this, the spheres are identified in the picture as well as their corresponding specular highlights. From this process we obtain a LP file (Light Position file) which contains the estimated incident light angular position for each photograph. As the setup uses four reference spheres, four LP files are then obtained. In general, there are different approaches of handling these LP files in order to create RTI relighting from them. The easiest method, and the one supported by available free software, is to select only one of the LP files. The disadvantage of this approach is that the information offered by the other three references is ignored. A second technique is to compute an average LP file from the four LPs, which would use information from the four reference spheres instead. In subsection 2.2 we detail the estimation of the LPs. In this section, we investigate the issue of imprecise estimation of the light position through application a case study. Indeed, there is a difference in the angular position calculated from each sphere in these large scale acquisitions, which is significant enough to produce changes and alter the RTI reconstruction quality. This difference can occur for a many reasons. These causes might be attributed to human errors, such as inappropriate placement of references. As a result, the four spheres may not be properly aligned. Another possibility is that the spheres are not oriented in the same visual plane as the camera, which means that one is perceived closer to the camera than the other, resulting in spheres of unequal radius in the image. Another issue that might occur is produced when the light source is not correctly pointed towards the center of the surface. However, even if these acquisition parameters are met and the four references (spheres) are appropriately positioned (aligned), the nature of light ray propagation of the lamps used in H-RTI causes the angular position estimated from each sphere to mismatch (not collimated light sources).

Considering this, we conducted an experiment to illustrate the types of artifacts that can appear in the RTI reconstruction if this inaccuracy is not addressed and/or corrected. The experiment consists in separating the picture into four parts as illustrated in Figure 4.7.

The four resulting pictures are analyzed individually using the angular position information (LP file) corresponding to the sphere in each of the image's subdivisions. Thus, for the first subimage, the LP file is taken from the first sphere (labeled LP 1 ), and the subsequent three subimages are processed in the same way with the corresponding LP file. Then, a RTI relighting model is estimated for each subimage. In this case, the DMD approach is used. The picture is reassembled after the subimages have been relighted independently. It can be observed, in Figure 4.8 that the final rendered image for a particular angular position, loses completely its uniformity. This is easily noticeable since it has a significant impact on the perceived hue of the surface. This is most visible in the image's center, where the four subimages join together (see zoomed area). In this figure, one can see how lines that clearly divide the zones appear. This effect is caused by the variation in perceived color between the four areas, which is induced by the difference of light direction estimations (LP files) among the four subparts. 

The LP files study case

As previously stated, one of the issues associated with RTI models is that they are based on assumptions that cannot always be satisfied. One of theme, is the way light spreads. We have explained in the previous chapter that this is mainly influenced by two parameters linked to light distance and incident angle. As a result, it is reasonable to infer that the angular location of the light source in relation to the surface varies depending on the point at which it is evaluated. Because of this, the location relative to the surface's center will differ from the predicted position at the surface's corners. Based on this idea, an experiment was conducted employing a calibrated dome in which the angular location of the light (relative to the center of the surface) is known and reliable. A surface of (7 × 5cm) has been prepared, with four reference spheres put in the corners. An RTI acquisition was conducted and the images corresponding to the first 10 positions (grazing positions) can be seen in Figure 4.9. The four LP files are extracted from the test dataset using the approach described in subsection 2.2. Taking as ground truth (LP ref ) the angular potions of the dome, we compare the information collected from the four reference spheres. When analyzing the results (Figure 4.10), it appears that the angular position information extracted from the spheres is not exactly the same as the reference position. We can also see that the estimated positions from the four references vary among them. This implies that when using a single reference sphere (which is a common practice), the exact information of the incident light is not reflected. We can also observe that this variation has more impact in the elevation angle (ϕ). The graph in Figure 4.11 illustrates what occurs when an average LP (LP mean ) is calculated. Similarly, we can observe that when we compare this information to the reference LP, we do not get precise locations. However, we observed that it is more similar than if only one of the spheres was picked. Indeed the error to the reference is stable through the angle and could be analyzed as a bias in the measure that can be determined and corrected. 

Per point angular variation

Given the way light spreads on a surface, we may deduce that it is incorrect to assume one and the same angular location for every point of surface because in fact, this position changes from point to point.

Figure 4.12: Near illumination Taking this into account, we may restate the need of estimating an angular position point by point, so that instead of having a single angular position for the whole image, there is a corrected angular position for each pixel. One approach proposed by [ Giachetti 18] implements a linear interpolation of the related information of each of the four LP files to produce a per pixel angular position correction. However, as illustrated in Figure 4.12, the angle θ 2 is grater than angle θ 1 . Following this, the spread of light beams cannot be considered as linear. In chapter 3, we described a new methodology for estimating this per pixel angular positions. To illustrate this, we compare the linear interpolation method to our method described in Chapter 3. Using the datset from subsection 3.1, we have selected a light position to show the per pixel angular variation produced by both approaches. This image (Figure 4.13) shows how light reaches from the top-right corner of the surface and spreads towards the center, while its intensity decreases according to distance. The angular position measured at the center of the surface is known (dataset acquired with an automated Dome-based system), and used as ground truth. From the four spheres positioned at the corners, the angular position is estimated (by highlight detection) and then from the coordinates obtained from each sphere a linear interpolation is performed. Figure 4.14a shows the rusting per pixel angle map obtained for the elevation angle (ϕ). When measuring the angle at the center of the surface from the interpolated map (indicated in the figure), it can be seen that it does not match the real angular position. In this case, the estimation presents a 2.14 error. Figure 4.14b, shows the result produce by the our proposed method. It can be seen that the estimation error of the angle measured at the center of the surface is 0.03. It can also be seen how the angle variation per pixel behaves similarly to the spread of light seen in the input image (Figure 4.13b). Something similar occurs with the azimuthal angle, as seen by the 15.27 difference between the linear interpolation estimate and the ground truth (see Figure 4.15a). In contrast, the estimate obtained using the proposed method, which only differs by 0.1 (see Figure 4.15b). Thus, we can see that our proposed method for estimating the angular position per pixel is closer to that produced by the propagation of light beams on the surface. Thus, our proposed method is subsequently utilized to process the data presented in this chapter. 

Multiscale approach for LS H-RTI acquisitions

To carry out this acquisition, we employ the elements indicated in the previous subsection and place them according to the scheme shown in Figure 4.16. A slider is used to position the two cameras, which must remain within a small distance to each other. The slider is supported by a tripod, which must be stable enough because the cameras must not move between shots. Similarly, to minimize camera manipulation during the acquisition, the cameras are connected to a computer throughout the duration of the acquisition. In this manner, the capture action is carried out remotely, and the images are immediately recorded in the computer. To acquire an area of 109cm × 43cm , the cameras are placed at two meters from the scene, and the light source describes circles with a radius equal to two times the diagonal of the picture with the biggest field of view (ROI2). (The largest area is ROI2 = 109cm × 43cm. Diagonal = 117cm. Thus, distance d to the center of the surface is equal to 234cm). The distances are measured with a laser, and the light source is repositioned with the use of a crane. Once the data are collected, the pictures are processed following the steps of the flow chart presented in Figure 4.17. 

Multiscale processing

After analyzing the images to extract the LP files, a pixel-wise LP is estimated, which contains an estimated angular location at each point on the surface. Following that, the mean maps are estimated. The mean maps are the arithmetic mean of each pixel luminance computed across the set of images. For this, the two datasets (acquired images) extracted from each of the cameras are taken and from each one the average value of the pixels throughout the image series is estimated, resulting in ROI1 mean and ROI2 mean maps. From the two maps obtained, a matrix that allows matching ROI1 and ROI2 is calculated. This transformation matrix allows ROI2 to be registered in ROI1. The described process is illustrated in Figure 4.18. The registration is accomplished by the use of a feature detection method, in this case a SURF (Speeded Up Robust Features) algorithm [ Bay 06]. An optimization approach based on the mutual information algorithm is utilized to enhance the registration after the first estimation of the transformation matrix. The process of evaluating the matching points between ROI1 and ROI2 is illustrated in Figure 4.19. The final transformation matrix is then applied to each picture in ROI1 dataset. A mask can be added to the ROI2 image in some circumstances, depending on the acquired object, to shorten execution time and refine the feature points. This is the case, for example, with the dataset utilized in this study. Following the registration procedure, the pixel-wise LP is used to relight, but before the nonuniform illumination of the pictures is corrected as described in the previous chapter. This is critical since we have already observed that a uniform illumination of examined surface is highly influenced by distance. As previously stated, this impact may be amplified by the size of the inspected surface.

Stitching approach for LS H-RTI acquisitions

This second configuration is a variation on the multiscale setup. Two regions of interest (in the middle of the surface) are captured with the high resolution camera, as well as a region of interest in which the reference spheres are presented. Because there are only two cameras, this acquisition is done in two phases. Following the initial acquisition, camera 2 is relocated to a new zone of interest (a new ROI1), but camera 1 shows the same ROI2 as the first acquisition. The goal is to get greater resolution in certain areas of the surface that exhibit anomalies, and then to investigate the viability of image stitching as an approach for acquiring big works of art. As seen in Figure 4.22 , the setup requires an overlap zone, or common points between the two central sections (ROI1 st1 and ROI1 st2 ). This coverage area should be between 20 and 30 % of the photo in order to ensure a sufficient number of features for the stitching process. The greatest issue for this configuration is once again linked with light positions. Given that two acquisitions are required and that the light source is not automatically positioned, repeatability between the light positions of the first and second acquisitions is not guaranteed. The procedure for processing the images is similar to that outlined in the preceding section for multiscale images. As a result, mean maps are calculated for each series of images (dataset ROI1 and ROI2). In this case, we obtain four sets of images, the first two relating to the first acquisition ROI2 and ROI1 st1, and the second two corresponding to the second acquisition ROI2 and ROI1 st2. The needed transformations to align ROI1 st1 and ROI2 st2 with ROI2 are then calculated using the mean maps.

As previously stated, there is no repeatability between the two acquisitions produced for the stitching test. As previously demonstrated, variations in the angular position can result in significant changes in the appearance rendering of the surface. Thus, we need to know how this issue can be addressed in order to get a uniform-looking stitched image without seeing these strong and noticeable contrasts that can arise when the angular orientations of the light source do not match for ROI1 st1 (see Figure 5.9a) and ROI1 st2 (see Figure 5.9a). In Figure 4.24 we can observe ROI1 st1 registered with ROI2, as well as in Figure 4.25 , we can see the registration between ROI1 st2 and ROI2.

Multi-light blending problem and explored solutions

Until this stage, the acquired data has been partially processed and could be registered with the computation of the transformation matrix. If we wish to combine ROI1 st1 and ROI1 st2, we must first consider the fact that their LP files are not the same. As two H-RTI acquisitions were performed, there is no repetability in the lighting positions. In Figure 4.26, the top view corresponding to LP1 (ROI1 st1) and LP2 (ROI1 st2) is shown. Indeed, we can see how both light position distributions vary from one LP to the second one. However it can be seen that some points in the LP1 are closer to match a point of the LP2. If we take one of those "matching points" (angular positions) and stitch their corresponding images, we then will have a problem of non-homogeneity due to naive blending. In Figure 4.27, both ROI1 st1 and ROI1 st2 are registered and stitched. We can observe that there exists a significant contrast between the two ROIs over the zoomed area. This is due to the fact that the illumination direction is not precisely the same. Furthermore, there are other parameters that might affect, such as the distance between the light source and the surface. However, even if these two requirements are met (equal distance and identical angular position), the issue persists in the overlap area. As illustrated in Figure 4.28, surface illumination is not uniform with a non-collimated light. In fact, according to the near light model, the distance between the light beams and the surface is not identical at each point on the surface, causing the amount of light received by the surface to vary. Taking this into consideration and referring to the illustration (see Figure 4.28), we can see that the perceived luminous energy changes for the same position of the light source. When illuminating ROI1 st1, the overlap area is further away from the light source, but when illuminating ROI1 st2, the light source is closer to the overlap region. As a result, the same area in both images has a different lighting pattern. This issue can be addressed in order to correctly merge these images. Nevertheless, in this study, we only investigate different ways for generating a uniform visualization in the overlap area. To address this issue and homogenize the overlap region between the ROI1 st1 and ROI1 st2, we explore two approaches: images blending algorithms, as well as local interpolation methods. Image blending is a well established approach that allows one to merge two images creating a smooth transition in the overlap zone. We explore here, one of these methods, the Poisson blending. The second approach employed the same interpolation idea that underpins the RTI method. In other words, because there is no correlation between the two LP files from both acquisitions, one of the various approximation methods (PTM, HSH, DMD) can be used to display the picture in the required direction and therefore combine the images.

For the local interpolation approach, the nearest neighbor methodology was implemented.

Blending algorithms

Poisson blending: When considering two images A and B with an intersection A ∩ B, the method fixes the pixels on the boundary of image B to be equal to the pixels on image A where B dwells (overlap region). Then, it solves for the remaining pixels on the interior of image B that conserve image B's original gradient [ Afifi 15]. It is appears that a seamless blending is achieved in the overlap zone and that the distinct difference shown in Figure 4.27 disappears. This result demonstrates that this strategy is successful in dealing with the problem that arises in the overlap region from a visual assessment point of view.

To the best of our knowledge, there are two ways for relighting the surface in any desired direction: the relighting and the direct exploration methods. Relighting methods are based on coefficient estimation. These approaches require as input all of the acquisition's illumination positions. Direct exploration approaches, on the other hand, allow us to re-illuminate the surface in a different direction without passing through a projection model, as it is the case with relighting. Instead, using the k nearest neighbors strategy, this methods generates an image with a new lighting direction by direct interpolation of the input images. Here we exploit these two methodologies and investigate whether they can be used to address the inhomogeneity of the overlap zone when performing the stitching. In this strategy for the global approach an interpolation of the image corresponding to ROI1 st1 is generated with the same input lighting position, as for ROI1 st2 an interpolation is generated at the same position of ROI1 st1. Then, the stitched image is the result of ROI1 st1 and interpolated at the same lighting position. On the other hand for the local method, the resulting stitched image is formed from the input image of ROI1 (acquired image at a particular light direction), while the resulting interpolated image of ROI1 st2 is derived from nearest neighbors to the same position in LP2.

Global and local interpolation

Local interpolation (nearest neighbors) Instead of employing all of the images and their respective angular positions, this approach uses a local interpolation based on the minimal distance measurement. So, given a point in LP1, the points in LP2 that are the closest to that location are chosen. Following the equation below:

Dist(a, b) = r • arccos( a |a| • b |b| ) (4.9)
Where a corresponds to a point in LP1, b is a point in LP2 and r is the corresponding radius. .30, shows the result of of this approach. At this particular lighting direction, two nearest neighbors were identified, so the resulting image for ROI1 st2, is the interpolation of only two images of the input dataset. As shown in Figure 4.30, this approach does not solve the issue, as we still observe the marked contrast between both ROIs.

Global interpolation HSH: For this test, we illustrate the result using HSH model to process each dataset independently, along with its corresponding LP file. Following that, we interpolate for a given angular position(θ = 45, ϕ = 45) for ROI1 st1 and ROI1 st2. We then obtain two output images that are the product of HSH interpolation at the same lighting direction, but produced from two different LP files (LP1 and LP2). Then, the transformation matrix is used to spatially match the pixels of the overlap region. We can see from the results of both global and local interpolation that none of these solutions seems adequate for dealing with the problem of low uniformity in the overlap zone. Although these strategies allow us to generate an image of the surface in any chosen illumination position, the outcome is dependent on the acquisition positions (input positions). Due to the low coincidence between the input positions of LP1 and LP2, attaining a similar output for the resulting images from both LPs for the same lighting position is not achievable. As a result, we may deduce that in order to employ stitching as a strategy for documenting large objects, the repeatability of the lighting positions must be controlled. If this criterion cannot be fulfilled, a blending method such as the one implemented here can be used to provide a better visual representation despite having low repeatability in acquisitions.

Conclusion

In this chapter, the H-RTI approach has been investigated with a focus on its utilization in the study of large CH artifacts. The instrumental aspects have been examined in order to assess this adaptation to big objects. Then, acquisition strategies that may be effective for acquiring large objects were studied. Thus, multiscale and stitching approaches have been proposed, and their benefits and limits have been discussed. The relevance of employing several references, in particular, has been demonstrated in order to have a more accurate estimation of the illumination location. Similarly, it can be inferred that an optimal solution is point-to-point modeling based on the near illumination model, which allows for an angular position correction for each pixel of the image. In the case of stitching as a method for digitizing large scale artworks, such as those examined in this chapter, it can be concluded that, while it is a viable approach, its execution is subject to repeatability in the lighting positions during the acquisition of every ROI. Additionally, proper image processing is needed, which must surely include a specialized treatment for the overlap area. This is a work in progress, which will be continued in collaboration with a fellow phd student. The results of such collaboration are outside the scope of this thesis (Annexe 4).
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Active Mulstispectral RTI system

Chapter overview

Considering the importance of one attribute of appearance such as color, we propose in this chapter the creation of LED-based spotlights that allow us to perform color-RTI as well as multispectral-RTI acquisitions. As a result, in this chapter, we will discuss the key elements for the design and development of these light sources. Then, we look at data processing and color correction methods. Finally, we offer a strategy for joint reconstruction of the surface angular reflectance and spectral response.

Introduction

Many contributions have been made in using multispectral images in the study and recording of cultural heritage artifacts, demonstrating the significant value brought by this this imaging approach. In regard to the RTI topic, there have already been certain contributions, which, while not numerous, have demonstrated the possibility of combining these two imaging techniques. This technology, also known as spectral-RTI or multispectral-RTI (MS-RTI), offers new exploration options in terms of not only visual perception of an object's properties, but also beyond what the human visual system can sense. In this chapter, we discuss the design and implementation of a multispectral solution for RTI, more precisely, two LEDbased spotlights capable of producing color and multispectral RTI acquisitions. These light sources can be easily adapted to different RTI acquisition systems (Dome-based, Robotbased, Free-form systems). By integrating multispectral imaging to RTI, we seek to obtain a model that provides a more complete representation of the surface reflectance. We will then first introduce the development of the multispectral-RTI system (MS-RTI) and then we will focus on the processing and analysis of acquired data.

Multispectral applications for documenting CH objects

Contributions have already been made to the application of multispectral analysis for historical and culture heritage artifacts, demonstrating the technique's usefulness in this domain. Investigations such as those conducted by [Easton 03], who employed multispectral imaging to investigate historical manuscripts, prove the benefits of this technique to show stages of an artifact's development, features buried behind colored varnishes, and deterioration effects such as encrustations. It is highly useful in detecting under-drawings and over-paintings (older or modern). It also has been used to document and enhance the interpretation of ancient inscriptions, as well as to identify and differentiate materials [Faigenbaum-Golovin 12, Easton 03, Maino 07]. Following this spirit, some researchers have already prepared the road for RTI and multispectral fusion. Earlier contributions on the MS-RTI were presented by [Castriota 11,Schroer 12]. Later, [ Giachetti 17] proposed a framework for the acquisition and analysis of multispectral RTI data. More recently, [Ono 19] demonstrated the feasibility and relevance of MS-RTI for the investigation of varnish cleaning in paints. In terms of acquisition systems for acquiring MS RTI data, we have contributions such as RICH's Dome-based multispectral system ([RICH 15]). This dome has 226 LEDs distributed into five spectral bands: ultraviolet (365nm), blue (460nm), green (523nm), red (623nm) and near infrared (850nm). This dome also includes a monochrome camera with a resolution of 28 Mp. In their investigation on the use of MS-RTI for the varnish cleaning study, Ono et al. [Ono 19] also introduced the acquisition system used for their study. It is a Dome-based system that employs 132 lights, a monochromator, and an industrial monochromatic camera. Ciortan et al. [Ciortan 18] introduces an MS RTI acquisition system with 156 multispectral LEDs arranged uniformly in 52 lighting positions on a 60 cm hemisperic surface. This system incorporates light sources distributed in three bands: a wide spectrum that together with a DLSR camera (Nikon 810), allows to obtain the RGB bands. Additionally, two narrow band lights: ultraviolet (395nm) and infrared (850nm). Considering this, in this chapter we present the design and implementation of 2 LED-based spotlights, suitable for color and MS-RTI acquisitions, which can be adapted to an existing RTI system (such as a Dome-based system with a single light source, a H-RTI system, or a Robotics-based system).

When we talk about color imaging, we are referring to the trichromatic model, in which the color image is generated from three wavelengths. The term "multispectral" refers to images formed from more than three wavelengths. There are two fundamental strategies for obtaining color or multispectral images: passive and active methods ([Burgos- Fernández 17]). The passive methods incorporate filter elements in the optic path; they usually use light sources of broad-spectrum, as well as spectral filters coupled to the image sensor. On the other hand, active systems perform spectral sampling by controlling the illumination, that is to say that instead of using a wide-spectrum light source, active systems use different light sources of narrow spectrum. Based on this definition, we discuss below the advantages and disadvantages of both alternatives, to reach the conclusion about what type of system should be implemented.

Active multispectral RTI vs Passive multispectral RTI: Although the evolution of color and multispectral cameras constituted a great progress in the field of photography, these cameras, as is well known, utilize filter arrays, which when placed in front of the photosensitive cells of a CDD sensor, may provide a color or a multispectral image. Color filter arrays (CFA) are used in color cameras, whereas multispectral filter arrays (MSFA) are used in multispectral cameras. However, because of the nature of these filters, the image generated is actually the result of interpolation, thanks to demosaicing techniques. In a typical CFA, as the one illustrated in Figure 5.1, the quantity of green pixels available is 50%, while the amount of red and blue pixels available is 25% each. When viewed in this way, a color camera already results in a loss in image quality. In contrast, combining a monochromatic sensor with a multi-wavelength light source, does not result in such loss since 100% of the photosensitive cells of the sensor are active at all wavelengths, hence in the case of a color image, 100% of the pixels are red, green, and blue. Furthermore, color and multispectral cameras are frequently used in conjunction with broad-spectrum illumination sources (white or halogen). Although this method of obtaining color and multispectral images has proven to be very useful in order to provide visual information of great quality, for the purposes of this study we consider that an active type solution can be more appropriate for the evaluation of surface properties. methods, but also to the fact that when using broad-spectrum light sources there is a higher probability of parasitization between the bands as a result of light interaction with the surface materials. That is to say, by illuminating the surface with a narrow spectrum illumination source and acquiring the images with a monochrome sensor, we obtain the response of the surface to that particular wavelength. Thus, the design of two LED-based spotlights is proposed. These, coupled with a monochromatic industrial camera of 12.4 (Manta G1236) form the base to develop the proposed multispectral-RTI system. The spectral sensitivity of the camera is illustrated in Figure 5.2 (green curve). The image sensor has limited sensitivity in the infrared and a greater response in the visible spectrum, as can be seen from the graph. We subsequently decide the range of light sources to be used based on the spectral sensitivity of the camera. 2 Proposed material for MS-RTI

Independent wavelength spotlights

A first evaluation to determine the bands (wavelengths) of the LEDs to be used was carried out using an in-house RTI system (Annexe 4). Given the spotlight already employed in our in-house RTI system, which is powered at 24V and produces high-intensity white light in pulses of up to 250µs, testing additional LEDs from the manufacturer was a good option in the first place, since no special system adaptation was required. The only required manipulation was to progressively switch each spotlight in each acquisition. The available wavelengths are shown in Figure 5.3. From these options, the following light sources were tested : 395nm, 505nm, 530nm, 625nm and 850nm. Although the use of LEDs of different bands represents in itself a viable option, it is far from being a practical solution, as is clearly not suitable in terms of acquisition time. Considering that a single multispectral RTI acquisition required the light source to be replaced five times, this represents a significant time investment when considering that a typical acquisition requires between 70 and 100 different lighting positions, this represents a significant amount of time and effort. This means that the time it takes to acquire 100 positions, which would normally take roughly 10 minutes, would be magnified by a factor of 5, which is far from ideal. Another issue that may arise is accidental displacement of the imaged object during light source changes, which not only increases the acquisition time but the data processing needed (need of image registration).

Integration of multiple wavelengths in a single spotlight

Given the difficulty of performing multispectral-RTI using single LEDs of different bands, we devised a design that combines multiple wavelengths into a single spotlight. We describe the design of two LED-based spotlights, one designated RGBW spotlight and the other named M ultispectral spotlight . The goal is to be able to perform acquisitions of multiple modalities (color and multispectral) and at different scales (objects from a few centimeters to objects of 50 × 50cm). The light source in our in-house RTI system is active during brief impulses, which are synchronized with the camera. As a result, the duration of the illumination period equals the duration of the camera sensor's exposure time. It is well known that the longer the exposure period on a camera, the higher the probability of catching noise. Knowing this, it is possible to deduce that it is preferable to have a short-duration, high-intensity light pulse. Taking this into consideration, we employ high luminous power LEDs in the designed spotlights.

Color spotlight (RGBW)

LEDs choice

Following a brief market study, it was discovered that two brands stand out among those who provide power LEDs: ®Osram and ®CREE. Both companies sell high-power LEDs in a variety of wavelengths. We decided on ®CREE's XML-color series, which combine light emitting diodes of various colors into a single component. This multicolor LED allows one to have four different wavelengths, red, green, blue, and white in one package. 5.4a), not only offer four distinct light sources in one package, but they also have a compact size of only 5 × 5 mm, making them suitable for easy integration into our design. The spectral response of each of the four LEDs is shown in Figure 5.5. As can be seen, the white LED has three different choices. Cold white was chosen in this case, with a color temperature of 5,700 to 8,000 K. In addition, in order to ensure an acquisition in white light with an appropriate lighting power, it was chosen to include a high-power light emitting diode from the ®CREE XML-2 series (see Figure 5.4b), which is capable of delivering a maximum illumination of 1052 lm at its maximum driving current (3A). Figure 5.6 depicts the spectrum response of the selected white LED. This LED, like the color ones (XML-color), is controlled by pulses that are timed to the camera. This is important because the higher the luminous intensity provided by the light source, the shorter the sensor exposure time.

Taking into account the color synthesis with the RGBW spotlight, there are seven possible wavelengths. Thus, three extra colors are created from the mixing of the three fundamental wavelengths, starting with three basic colors (red, green, and blue) and based on the principle of additive color synthesis (Figure 5.7). Magenta is created by combining blue and red; yellow is created by combining red and green; and cyan is created by combining blue and green. 

Power Driver

To ensure a stable lighting power, an LED driver of constant current is incorporated in the design. This driver can supply up to 1A of output current to high-power/high-brightness

LEDs. Considering the high power applied to LEDs, an aluminum PCB is incorporated in the design in order to improve heat dissipation.

Controller

In order to control the spotlight, it was decided to employ a microcontroller with wireless communication capabilities, allowing direct connection through the software that runs the RTI system. The chosen microcontroller supports communication via the Bluetooth and Wifi protocols.

Spatial Distribution of LEDs

After deciding on the LEDs to be utilized, the amount required to provide the specified light output had to be determined. Three ®CREE XML-color LEDs and one ®CREE XLM-2 LED were determined to be required. Following that, the question turned to the spatial distribution to be applied to the components in order to provide homogeneous lighting. According to LED array research [Moreno 06b, Moreno 06a, Moreno 07] it is critical to consider the distance between each LED in order to achieve uniform irradiance from a cluster of multiple LEDs (Figure 5.9). Taking this into consideration, the three XML-color LEDs were arranged in an equilateral triangle with sides of 12.13 mm, which is the shortest distance achievable given their size and the placement of the XML-2 white LED in the centre of the triangle. This is shown in Figure 5.8 The XML-color LED's individual cells of each colors were connected in series, so the three red light emitting diodes lit up simultaneously and equally for the other wavelengths of the encapsulated. The central LED, XML-2 white, has a separate connection because, as is a 3A LED, it is individually controlled by a power Mosfet, in contrast to the RGBW (XML-color) package, in which each LED is restricted to 1A for which a LED driver is used.

Optic lenses

Despite taking the spatial distribution of the LEDs into consideration, the emitted light may not be totally uniform. Considering the homogeneity of light, which is a well-studied subject, we attempted to enhance such uniformity with lenses. Thus, one of the solutions proposed by several contributions in the field of optics is to do the equivalent of what a cloud does, which is to scatter light rays in all directions randomly until uniform lighting is achieved.

To accomplish this, a diffuser and an aspherical condenser lenses are utilized in conjunction.

In Figure 5.10, the corresponding spectrum of the four principal colors of the designed spotlight is shown. In the illustration, we can observe the measured spectrum of red, green, blue and white central lights. As we can see, the intensity of red is greater than blue and green. In addition, it can be noticed that intensity of blue is greater than green. 

Multispectral spotlight

In order to obtain a MS-RTI system, we propose a design for a multispectral light based on the criteria examined for the design of the color spotlight. We start with the premise of being able to illuminate scenes of a wide range of sizes, thereby capable of providing effective illumination to objects of a few centimeters, up to objects of approximately 60x60cm. As a consequence, the elements and studies previously carried out for the design and conception of the RGBW light source are used as a foundation for this multispectral light source.

As a result, we propose a design based on high luminous power LEDs that can produce homogeneous illumination and can be easily integrated into any RTI system.

LED choice

Following the same criteria as the light source presented above, the range of possible wavelengths, as well as the light power supplied, are considered when selecting the type of LEDs.

As a result, we determined to use of ®CREE XP-E2 series LEDs, which offer 9 narrow spectrum wavelengths ranging from 400nm to 780nm, as well as a broad spectrum white light. The highest luminous power of this LEDs is achieved at its maximum driving current of 1A. The spectrum of the employed bands is shown in Figure 5.11. As shown in the illustration, the amber color can be either a wide-spectrum LED marked as "PC Amber" or a narrowspectrum LED marked as "Amber". Only the second one is employed in our design since, as seen in the illustration, the first option has such a broad range that it covers three additional bands. The white light spectrum, as shown in Figure 5.12 (blue curve), corresponds to a cool white. Figure 5.12: M ultsipectral spotlight white light spectrum (provided by manufacturer)

Spatial Distribution of LEDs

The number of LEDs required for each color has been estimated based on the light output provided by each LED according to its wavelength, in order to achieve a similar light intensity for each spectral band. Taking into account the spectral response of the camera in use (5.2), it is determined that the Photo Red and Far Red bands require the largest number of LEDs, with a total of 9 LEDs needed for each. Regarding the spatial distribution of the LEDs to achieve a homogeneous lighting pattern, we have based the selection of LEDs arrays distribution, following the study presented by [Moreno 06b].

Considering that the number of LEDs required varies depending on the wavelength, four distribution patterns are used, as shown in Figure 5.13. As a result, the triangle pattern employed in the design of the RGBW light is maintained for the cluster of three LEDs, as it is for the Royal blue and the Green. For Blue and White a square pattern is used, since four LEDs are employed for each of these bands. Six LEDs are required for each of Amber, Orange Red, and Red, for theme a hexagonal configuration is chosen. Finally, nine LEDs are required for each band Photo red and Far red, these are placed in a circular arrangement. The final LED array achieved is shown in Figure 5.14b. In the illustration, it can be seen how each color LED array is divided according to the pattern selected for each cluster. The final result of the design of the multispectral light source is shown in Figure 5.14a. Because of the form of the LEDs PCB , it was decided to use a circular design for the control PCB, which integrates the power drivers and the microcontroller commanded by Bluetooth protocol (Figure 5.14c). A set of lenses identical to the ones used in the RGBW light source was added to improve illumination uniformity. 

Processing of MS-RTI data

After presenting the design and implementation of two LED-based spotlights allowing color and multispectral RTI acquisition, in this section we explore processing approaches for the acquired data. This section presents: a technique for calibrating intensity of every spectral band (white balance), a methodology for color calibration in RGB-RTI acquisitions, as well as a methodology for the joint representation of the angular reflectance and the spectral response of a surface.

Methodology for white balance

Given that the multiple spectral bands employed do not have the same light intensity and that the camera's spectral sensitivity varies for each wavelength, it is necessary to calibrate each LED. This calibration can be done electronically by limiting the light intensity of each LED through hardware, or in the acquisition stage by introducing a calibration coefficient that adjusts the lighting time of each LED. This last option is used. These coefficients can also be applied directly to acquired images. To estimate this coefficients an RGB-RTI acquisition was performed (using the RGBW spotlight ) over a white calibrated surface (W hite 99%), using blue, green, and red lights. Then these images were used to reconstruct a color image. Resulting reconstructed color image can be seen in Figure 5.15a. As it can be noticed that the resulting image appears reddish , which is explained as mentioned before by the difference in intensity of the light sources employed (red > blue > green) as well as the camera's spectral sensitivity. To address this issue caused by the change of the luminous intensity provided by each light source, a white balance (WB) correction is accomplished by using calibration coefficients. These coefficients are determined by the relationship between the three bands. Thus, the ratio of luminous intensity of one band with regard to another may be obtained by computing the maximum values of each band and dividing each pair (see Figure 5.16). By repeating this procedure for all of the images in the dataset, the average values of this ratio were determined, that are then utilized as correction coefficients. Figure 5.15b depicts the outcome of the correction supplied by the application of coefficients. The predominance of the red band has decreased in this picture, and the colors now differ from those seen in Figure 5.15a. However, this is insufficient for total color correction. The color reconstruction results after applying a white balance through coefficients are displayed using a ColorChecker, which is a standard calibration element containing 24 patches of different colors. Figure 5.17 shows the results regarding to the acquisition performed with the developed light source RGBW spotlight . Thus, in Figure 5.17a, the naive reconstruction by direct assembly of the three RGB bands is presented. On the other hand, Figure 5.17b shows the result of the application of the white balance correction by using estimated coefficients. The same white balance is applied to data acquired with the individual LEDs. Figure 5.18a shows the result of an intuitive color reconstruction based on acquisitions performed with individual LEDs. This indicates that images from three spectral bands, 505, 530, and 625, which correspond to blue, green, and red, were used to reconstruct a color image. Figure 5.18b, on the other hand shows the results after applying the white balance coefficients. These coefficients are calculated analogously to those calculated for the acquisition with RGBW spotlight . 

Methodology for color calibration

Because of the narrow spectrum LEDs employed do not cover the entire visible spectrum, attaining perfect color reconstruction using naive reconstruction is not achievable. With this in mind, we investigate an approach to try to correct this persistent error in the color reconstruction. Thus, two methods were tested. The first one is a polynomial approximation correction using a root-polynomial of second order [ Finlayson 15]. The image resulting from the application of this correction can be seen in Figure 5.27a. The second method implemented for color correction was a thin-plate spline ([Menesatti 12]), which is a n-dimensional interpolation technique that generalizes single-dimensional cubic splines. Cubic splines provide a smoother and less error-prone interpolating polynomial than other interpolating polynomials. The image resulting from this technique can be seen in Figure 5.27b. These results are further analyzed in section 3.4 through the use of the ∆E metric. 

Combining MS and RTI data

The concept of coupling these two approaches (RTI + Multispectral imaging) introduces the first question: how to integrate the information produced by both techniques. In this study, we explore three approaches; an interpolation in the image space (Images interpolation), this approach is summarized in Figure 5.21, an interpolation of RTI model coefficients (Coefficients interpolation) illustrated in Figure 5.23 and a method based on principal component analysis (PCA). As a result of the proposed strategy it is possible to visualize:

• The continuous representation of the angular reflectance of the set of images of each spectral band independently.

• Using the two suggested integration approaches, it is possible to synthesize the information extracted from all the bands in a single image.

• It is possible to interpolate in the space of wavelengths. Thus, analogous to the interpolation in non-acquired light directions, it is possible through a linear or polynomial interpolation to visualize non-acquired wavelengths.

All these features are included in the visualization tool designed to analyze MS-RTI data. This visualization app is presented in section 3.3.1. Considering the classical RTI data processing, the first step in the proposed approach is to estimate i.e relight images for a specific light direction for all input wavelengths, using calculated coefficient matrices. From this process, we get a stack of images for all input wavelengths. So for a given input series of RTI images in five different wavelengths we will obtain five estimated images. Then, a final image is calculated as an interpolation of images in the stack. Considering the second approach, we start with batches of images of each wavelength, then we calculate the coefficients depending on the specific RTI model that is being used, for each image batch. After obtaining the coefficient matrices for each wavelength, these coefficient matrices are interpolated to produce a single coefficient matrix. The interpolated coefficient matrix may then be used to reconstruct an image in any desired angular direction. Finally, for the third approach as PCA is used. PCA is a linear transformation that reorganizes the variance in a multispetral image into a new set of image bands. These PC bands are linear combinations of the input bands that are not correlated. Using the PCA method and the set of images resulting from the interpolation from each relighting method, a new image for a given illumination direction can be obtained. In this study, we employ three models: the PTM, the HSH, and the DMD. The PTM model will have six coefficients, the HSH model will have sixteen, and the DMD model will have up to fifty, depending on the number of input images. 

User interface for multispectral-RTI visualization

A Matlab-based interface was designed to allow the viewing and extraction of information from multispectral RTI data in order to simplify its use. Below, we include a brief overview of the application's most significant features. Using buttons "Load Images" and "Load LP" the images and the lighting potions file (LP file) may be loaded. After loading the images and the LP file, the acquisition's angular positions can be viewed in panel "LP file display", and the images corresponding to each wavelength can be observed in panel "Independent wavelength input images display". "Image slider" allows one to scroll through the sequence of input images and display them in the panel "Independent wavelength input images display". One can choose between the two proposed interpolation modes, images or coefficients, using the drop menu "Method selection". From drop menu "Model selection", one may choose among three relighting models available for the reflectance reconstruction: PTM, HSH, and DMD. By pressing button "Build", an image will be reconstructed at the angular position given by sliders 2 and 3 (azimuth angle and collateral angle respectively), which correspond to theta and phi, respectively. The "wavelength slider", allows user to get a visualization of interpolated wavelength estimated through linear or polynomial interpolation. The relighted image can be then observed at axis "Relighted image display". An additional feature is included for the DMD modeling approach. In the case of choosing DMD model a pop up menu will ask the user to input the desired number of modes in order to perform the modal reconstruction. This interface was implemented to facilitate the dynamic exploration of multispectral-RTI data. One of the most significant downsides of this type of acquisition is the volume of data generated. Considering this, visualization tools that assist data exploration and analysis are required.

Results and discussion

Results analysis for WB and color correction

The results obtained from white balance WB and color correction applied to the colorChecker, are analyzed using the reference values and compared with the values obtained using the ∆E color measurement technique.

The ∆E differences of each of the 24 color patches are presented in Table 5.3. In this table, it can be seen that for all patches, the color variation with respect to the reference is higher than 14.4 for the WB correction. This value corresponds to the error produced in the reconstruction of the blue sky color, this being the smallest error. The largest error is found in patch number 16, which presents an error greater than 50%. In order to try to correct this persistent error in the color reconstruction, a polynomial approximation correction was applied as a second step. The results obtained are shown in the color correction column and the image resulting from the application of this correction can be seen in Figure 5.27a.

Although the second correction is not complete, the considerable decrease in error produced by the correction approach is evident. To start with, it is clear that, in general, the error values fell significantly as compared to the errors reported in the first correction. As a consequence, the lowest error is in patch number six, which has a ∆E of 3. [START_REF] Gaël | Métrologie de l'apparence[END_REF].9, the most significant difference is in the blue color. Although this is far less than the 53.7 that was obtained with the first correction, it is still a significant error. Thus for the assembly of 24 patches we find an average error of 9.45. Due to these still significant errors a second method for color correction was implemented, a thin-plate spline correction. According to estimated ∆E, we get in general better global results with a mean error of 3, 1. Nevertheless, obtain high errors for some patches, principally for patch 18, that shows a ∆E value of 8, 3 and patch 2, with an error of 5, 6.

Similarly, we evaluate the results obtained for the data acquired using the RGBW spotlight . Similarly, when the correction coefficients for WB are applied, the tendency towards red becomes less noticeable. Table 5.4 shows that after this initial correction, the errors, while significant, are often smaller than when doing the same correction on the acquisition done with individual LEDs. Similarly, after applying the root polynomial correction (Table 5.4), the error falls significantly, with an average ∆E of 10. Furthermore, better results are obtained with the thin-plate spline color correction technique. As seen in the 

Comparison of three approaches of combining MS and RTI

Tested approaches (images interpolation, coefficients interpolation and PCA) are compared in this section with multispectral-RTI acquisition performed with the individual LEDs ( 395nm, 505nm, 530nm, 625nm and 850nm) over a ColorChecker. We relight images from six different light directions, using three RTI models for the three approaches. Results are presented and discussed below. Im P T M , refers to the first evaluated method (image interpolation), Cf P T M , refers to the second method (coefficient interpolation) and P ca P T M refers to the third method (PCA) using the PTM model. Similarly for the other two models (HSH and DMD). In Figure 5.24, it can be seen that the SSIM obtained for the first two methods (image interpolation and coefficient interpolation) is identical, regardless of the relighting method used. On the other hand, it can be observed that the SSIM values obtained for the PCA method are a little lower compared to the first two methods, although it should be noted that for 4 of the analyzed images there are SSIM values greater than 0.9 for the 3 methods. Similarly, when we look at the results of the second metric (RMSE, see Figure 5.25) , we can see that the PCA method has the highest error in general, but for the Im05 and IM16 images, which have the highest error, the RMSE values for the first two methods are superior to those obtained with PCA, which has a lower error for these two specific directions. After evaluating the results, it is possible to conclude that the three strategies work similarly, with the first two methods slightly outperforming the third. Similarly, in terms of efficiency, the second and third approaches outperform the first way in terms of computation time. 5.5, we show resulting images obtained through linear interpolation in the wavelengths space using an acquisition performed over a a Swiss artisanal gouache painting made with natural pigments on paper (signed David, depicting Yverdon). This feature allows one to generate an image that is the product of interpolation of input images at all wavelengths, after the model fitting is applied. In this case, a light direction is set first, then an interpolated image is produced at the specific wavelength.

Example of images at interpolated wavelengths 405nm 420nm 465nm 510nm 555nm 585nm Table 5.5: Example of generated images at interpolated wavelengths (through linear interpolation)

Conclusion

In this chapter the design, development and implementation of a color and multispectral LED-based spotlights for color and multispectral-RTI acquisition have been presented. Following that, the use of collected color and multispectral-RTI data is shown and examined. First, the reconstruction of color acquired from the acquisition of images using LEDs of red, green, and blue wavelengths is demonstrated. The acquired data and the adjustment made in two phases (WB and polynomial color correction) are provided. Later, the color reconstruction achieved using the explored methods applied over the sample ColorChecker, are examined using ∆E as the evaluation metric. Although the color reconstruction is not totally accurate even after the corrections, it is clear that the contribution of the applied correction is considerable. In the second part, two approaches for combining angular and spectral reflectance are investigated. These two approaches propose integration at the reconstructed image level and at the coefficient level (coefficients of the utilized reconstruction models (HSH, PTM, DMD). Thirdly, we propose dynamic visualization in the wavelength space thanks to linear and polynomial interpolation. These solutions enable dynamic exploration of the surface in angular space (relighting) as well as continuous observation in spectral space. Additionally, a visualization tool was created and utilized to facilitate data analysis. Finally, the results of presented approaches are evaluated and discussed.

Publications associated with this chapter

• Yuly Castro, Aamlia Siatou, Mathieu Rossé, Hermine Chatoux, Ramamoorthy Luxman, Gaëtan Le Goïc, and Alamin Mansouri. "Extended framework for Multispectral RTI", Archiving Conference 2022.

Conclusion and future work

The visual appearance of an object, particularly a piece of art, must be accurately documented. As a consequence, in this thesis, we study many factors in pursuit of a more reliable measurement/representation of visual appearance from multi-light approaches, notably the RTI method. Starting from different existing problems, notably associated with laxity in the application of acquisition protocols in the RTI methodology, we have tried to provide solutions, which are distributed in four chapters of contributions documented here.

In the first contribution, we studied the spatial distribution of the lighting positions employed in RTI. Thus, we have seen that the data modeling methods associated with the reconstruction of the reflectance commonly used (HSH, PTM, DMD), are based on a linear regression. This is intrinsically subject to a hypothetical homogeneous distribution of said positions in the hemispheric space, this assumption is not met on many occasions. As a solution, we suggested a method for estimating such angular distribution and assigning a weigh to each position, allowing us to weight the regression and therefore recalibrate the contribution of each point in the final fitting.

The second contribution focuses on the illumination variation that occurs in RTI and, more broadly, in multi-light approaches as a result of the employment of non-collimated light sources. As we have seen, it is not possible to have a light that follows the model of a distant light given the conditions under which these acquisitions occur. Actually, the illumination pattern created by the lamps frequently employed in this sort of acquisition may be more clearly characterized by using the model of a point light, which obeys the distance square law. Thus, starting with the fundamental rules of lighting, we proposed a technique for estimating a per point correction factor. This allows not only the intensity in each pixel to be corrected in proportion to the distance from the light source, but also the angular position seen in each pixel to be corrected.

The third contribution focuses on the RTI method's adaption to large objects. Indeed, Dome-based systems are not suitable for large scale objects or non movable objects. We have consequently provided both technical and methodological solutions in order to be able to document works of several meters using the RTI technique. In this regard, we suggested a portable acquisition system based on the H-RTI approach that is suitable for large objects. Similarly, we studied acquisition strategies that allow us to document these items, such as acquisitions at different scales and the stitching approach, which may be used to acquire big objects. Thus, by performing several RTI acquisitions on different areas of an object over several meters in length, it could be fully documented by joining said acquisitions using the stitching method, given that the variations in illumination in areas of overlap are properly handled.

Finally, in our last contribution, we focused on the integration of RTI and multispectral imaging. As a result, we have presented both instrumental and methodological solutions. To begin, we designed and built a color LED-based light source. Then we have extended the development of this light source to a new version, which is more powerful (luminous power) and adaptable to larger surfaces, allowing to perform multispectral-RTI acquisitions. In terms of methodology, we studied two approaches that allow for the simultaneous exploration and visualization of the spectral and angular components of surface reflectance. Similarly, we developed a visualization tool to aid the processing and analysis of multispectral-RTI data.

Our contributions

In terms of research and development, we have made the following contributions: → Calibration of the spatial distribution of lighting sources in RTI acquisitions. ← ☞ Implementation of a density estimation method in a hemispherical space.

☞ Determination and allocation of a weight to each lighting position in order to balance the spatial distribution in the hemispheric space.

☞ Implementation of a weighted linear regression to calibrate the fitting model.

→ Pixel-wise illumination correction for RTI acquisitions. ← ☞ Implementation of a lighting correction method per pixel.

☞ Implementation of a correction method of the angular position per pixel.

☞ Implementation of an advanced correction for pixels that present over and under exposure.

→ H-RTI Free-form system ← ☞ Implementation of a portable H-RTI acquisition system adapted to large objects.

☞ Implementation of a multiscale acquisition protocol.

☞ Investigation of the stitching method adapted to H-RTI for large objects. ☞ Visualization of the surface's spectral and angular reflectance components.

Future work

The research and development works presented in this thesis lead to different challenges and new ideas of research topics that could further explored. Starting with the H-RTI acquisitions, various factors need to be investigated in order to develop more robust acquisition protocols. One of them is unquestionably the placement of the light source. It is commonly known that the light source in the context of H-RTI is positioned by hand, which causes a variety of issues. The distance between the surface and the lamp, for example, is not always consistent. The fluctuation of this distance is crucial because it changes the amount of light emitted towards the surface, resulting in inconsistent illumination in a series of RTI pictures. In this thesis, we examine how light fluctuates from point to point on the surface as a result of distance (i.e., intra-pixel distance variation), and propose a solution accordingly. However, for the purposes of the distance square law, an extensive research is required to correct the non-uniform lighting across photographs of the same RTI dataset (intra-image lighting correction). Another disadvantage of using a handheld lamp is that the light beams are not properly pointed towards the center of the object's surface. It is therefore important to investigate how to identify whether or not this condition is satisfied and, if not, how to estimate a correction. Another drawback of H-RTI is the requirement to employ targets to establish the position of the incoming light. Although a solution has already been offered to avoid this requirement,this solution is still preliminary since it only determines a global illumination direction. As we have shown in this thesis, a more accurate reconstruction of reflectance requires an angular adjustment per pixel. Likewise, a more in-depth examination into RTI's adaptability to larger surfaces would be required. For objects of several meters large, existing instrumentation may be limited. To cope with such limitations, solutions based on the image stitching methods investigated in this thesis are worth exploring and deepening.

There are still many avenues of research that still have to be explored in the field of multispectral RTI. For example, the study of a surface's color as a parameter to indicate changes or as an indicator of heterogeneity in the materials that form the object's surface. Although we do not dive into the potential applications obtained from the coupling of RTI and multispectral imaging in this thesis, parallel investigations carried out by colleagues demonstrate great potential in this field of study. It is important to highlight the significant amount of data collected in a multispectral RTI acquisition, because images are captured not only at a given lighting direction, but also at multiple wavelengths, which quickly lead to an increase in data. In a simple example, an item captured at a hundred illumination positions will not yield a hundred photos; instead, that quantity will be multiplied by the existing wavelengths. Thus the photographs could easily be quadrupled or multiplied by a factor of six, as in the case of the RTI-multispectral system shown in this thesis. As a result, a more thorough investigation into data minimization is required. This might be directed toward a self-adaptive acquisition methodology. Thus, a prior evaluation might indicate which wavelengths cause the most changes in the observed visual properties, and define the angular locations, as well as the most relevant wavelengths to utilize for any subsequent acquisition.

Annexes

• Azimuth (axis θ)

A motorized precision rotation stage from PI (M062.PD) is used for this axis. This device allows for a high degree of precision in movement. The embedded encoder allows for more robust control, as well as the ability to easily perform a homing routine.

• Elevation (axis φ) The system is built around a carrier arch that is moved by a selflubricating ring on one side and is directly attached to the motor on the other side. The axis is driven by a Faulhaber motor (3242 G024CR), equipped with a reduction gear (32A236:1) and an encoder (IE3-256). The lighting system

The system supports the use of various types of lighting. The main light source is a highpower white-light LED (SmartVision Light -ODSX30). For the same series, the manufacturer offers 8 LEDs of different wavelengths; these LEDs can also be utilized in the RTI system. Finally, the RGBW spotlight designed and presented in Chapter 5 that integrates multiple wavelengths into a single spotlight. Because these lighting are pulsed, they must be synchronized with the camera. Additionally, at the top of the dome, an LED-based ring light (CCS HPR2-250SW) provides bright and homogeneous lighting that is useful for object positioning as well as image focusing. The optical system

We employ an AVT MANTA industrial camera for the RTI device. This type of camera is easier to automate and has faster cycle times. The camera has a monochrome sensor to prevent compromising the resolution of the captured images (presence of Bayer filters on the color cameras). The camera has a 12.4M p resolution (AVT MANTA G1236), improved sensitivity across the full visible spectrum, less noise, and faster transfer speeds. This model includes the PoE/ToE (Power and Trigger over Ethernet) modes. This allows having a single Ethernet cable to connect the camera, thus simplifying its installation and its control. Additionally, adapted optics are coupled to the camera to provide high quality images.

The choice of appropriate optics is essential in order to provide great flexibility in applications while ensuring image quality. Thus, we use an Optem FUSION system from Qioptic. This is a modular system allowing to adjust the magnification and the focus thanks to motorized devices (zoom + focus). The elements of the optical system employed are detailed below. The motorized magnification and focusing system are controlled by a controller supplied with the optical system. This device is used to control the motors on board, the zoom, and the focus. The control device can be controlled thanks to the integration of functions (APIs) directly in the RTI system software (user interface installed in the computer) by serial communication. It is also possible to carry out a manual control directly on the box panel using the buttons in the controller.

The supporting structure and the casing

The structure of the device is laterally made up of 40 × 40mm bars (frame structure plus two struts). Horizontally, two 40 × 80mm section bars ensure better overall rigidity. A protective shell (plastic) is placed to the device's lower section in order to isolate the inspected part from probable light multi-reflections and, of course, to safeguard electrical access from users.

Its upper section can be totally disassembled to allow for device maintenance. A 700mm diameter dome is placed around the surface, providing independence from the external light. The dome has two apertures, one at the top for the camera and optical system and one in the front, for item positioning. The latter can be covered once the object is in place. The power supply elements of the device (3 stabilized 24V switching power supplies) as well as the rotation table associated with the θ axis are housed inside the case. To prevent vibrations, the machine is placed on a honeycomb optical breadboard table (M-IG-23-2 by Newport) held by five mechanical vibration isolators (VIB320 2340 by NewPort). Finally, the whole structure is held by marble surface plate (Mitutoyo) to provide more rigidity. 

User interface

The user interface, implemented in C++/QT, provides the user complete control over the acquisition device. The execution of acquisition cycles is totally automated thanks to the use of the various APIs related to each component (Camera, Galil controller, Qioptic controller). The software allows storage of images and data files associated with acquisition conditions (camera settings, light direction (LP file)), which can then be used to easily reproduce a second acquisition with the same parameters. The system is based on a motion controller (Galil DMC 4183) dedicated to axis control with an inbuilt amplifier (AMP-D3640) that integrates the necessary power elements and access to the signals required to control the three axes. Communication with the computer is done via an Ethernet link. The control board also provides numerous opto-isolated digital inputs/outputs (24 VDC) as well as analog inputs/outputs. The card can be controlled via the manufacturer's software (Galil suite) or by integrating its API into software designed specifically for this RTI system application. The diagram below illustrates all of the Domebased system's components. The standard outputs provide a voltage of 24 Vdc with an outgoing current (sourcing) of 25mA max. the output voltage is common to all outputs and is configured at 24 Vdc. 

A2, XY platform for RTI-Stitching

A robotic arm-based RTI acquisition technology was implemented. To acquire large surfaces, the robotic arm is coupled to a motorized XY stage (41 × 35mm) that allows the analyzed surface to be moved. Thanks to the XY stage, the object can be moved to acquire different ROIs and then assembled using image stitching. The XY stage uses 2 servomotors and 2 optical switches for limit detection. The stage is controlled by an ®Arduino board that is serially connected to the PC, allowing for easier integration into the RTI acquisition system's control software. The electrical connections of the XY stage are described in detail below. 
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  1.1 in order to establish a single model. Beckmann-Spizzichino [Beckmann 67] describes reflection processes on surfaces with a Gaussian height distribution. It comprised two components the peak and the specular lobe. Based on geometric optics, the Torrance and Sparrow model [Torrance 67] models surfaces as a series of flat, perfectly specular micro-facets. This model only includes the specular and diffusion lobes. This model is commonly used, however it is not appropriate for low rough surfaces. The model of Oren and Nayar [Nayar 90], known as the unified model of Nayar, is a more complete model that unites the concepts presented by Beckmann-Spizzichino and Torrance-Sparrow. This model divides the reflection of incident light on a surface into three components: scattering lobe, specular lobe, and specular peak. In an attempt to answer the problem of light reflection from a surface and to propose a generalized reflectance function, Haindl etal. ([Haindl 13]) presented a general reflectance function (GRF) described as a complex function of 16 variables (1.7).
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 111 Figure 1.11: BRDF measurement [White 98]

  Figure the gray level values of a single pixel across the RTI dataset (same pixel across all the images). These values are modeled following three mathematical approaches. It can also be observed that two reconstruction models allow better fitting reflectance measured values. From this fitting/modeling process it is possible then to reconstruct, or relight the surface appearance at any arbitrary light position. The main methods used to model RTI information are the Polynomial Texture Mapping (PTM), a method introduced by [Malzbender 01], and that finds later contributions made by authors like: [Padfield 05a, Dellepiane 06, Rajiv 10]. The Hemispherical Harmonics (HSH) [Gautron 04, MacDonald 14, Lam 12] and a more recent method named Discrete Modal Decomposition (DMD) [Le Goïc 12, Pitard 17c, Pitard 15, Pitard 17b, Pitard 17a]. Among the most recent contributions to the subject we can find the bi-polynomial model [Shi 13], which presents a solution to the representation of the lowfrequency component of reflectance. Another recently proposed method is the Bivariate Regression [Ikehata 14], which proposes a photometric stereometric method for the estimation of the surface normal based on the bivariate Bernstein polynomials. A much more recent approach based on local interpolation has proposed to use radial basis functions [Ponchio 18] as a method for RTI image representation and has shown good performance for high-frequency detail reconstruction as well as for fast reflectance representation.
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 2 D Delaunay triangulation is created from the points corresponding to directions of light positions which are projected on three dimensional sample space corresponding to the surface of a unit hemisphere. As shown in Figure2.3b, the triangulation tends to have smaller triangles in dense regions and larger triangles in sparse zones; i.e. the larger the triangle is, the larger the solid angle is.

  (a) Light Positions non-uniformly distributed over the unit hemisphere (b) I Bs Delaunay Triangulation built from the sparse points 3.3 Computation of the solid angle The solid angle Ω(a, b, c) of a spherical triangle defined by its three vectors a, b, c ∈ R 3 is computed using an equality presented by Oosterom et al [Oosterom 83]. See Figure 2.3 and Equation 2.6.
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  Figure 2.8. Blue values underweigh the contribution of the corresponding sample, and inversely, red values imply greater local weights. The graphical representation of weighting factors provides a useful indication on the condition of uniform distribution of various points (light sources).

Figure 2 . 8 :

 28 Figure 2.8: Weight matrix sample obtained from an example of non-homogeneous RTI acquisition.

  (a) Egyptian coin sample (b) Reference image I ref (c) Spatial distribution and weights

Figure 2 .

 2 Figure 2.9: (RTI-A0) Sample dataset for validation test

Figure 2 .

 2 Figure 2.11: (RTI-A0) HSH fitting : LS reconstruction, WLS reconstruction and difference maps

Figure 2 .

 2 Figure 2.12: (RTI-A0) DMD fitting : LS reconstruction, WLS reconstruction and difference maps

  (a) Delta RMSE for RTI-A0 DM D ls -DM D wls (b) Delta RMSE for RTI-A0 P T M ls -P T M wls (c) Delta SSMI for RTI-A0 DM D wls -DM D ls (d) Delta SSMI for RTI-A0 P T M wls -P T M ls

Figure 2 . 13 :

 213 Figure 2.13: Global evaluation metrics

  Figure 2.14: (RTI-A1) Sample dataset for second validation test

Figure 2 .

 2 Figure 2.17: SSIM of DM D ls and DM D wls reconstruction for dataset RTI-A1.
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  acquisitions

  (a) Delta SSMI for RTI-A0 P T M wls -P T M ls (b) Delta SSMI for RTI-A0 HSH wls -HSH ls (c) Delta SSMI for RTI-A0 DM D wls -DM D ls

Figure 2 . 18 :

 218 Figure 2.18: Global evaluation metrics

Figure 2 .

 2 Figure 2.19: RMSE of P T M ls and P M T wls reconstruction for dataset RTI-A1.

Figure 2 .

 2 Figure 2.21: SSIM of DM D ls and DM D wls reconstruction for dataset RTI-A1.

  (a) Delta RMSE for RTI-A0 P T M ls -P T M wls (b) Delta RMSE for RTI-A0 HSH ls -HSH wls (c) Delta RMSE for RTI-A0 DM D ls -DM D wls

Figure 2 .

 2 Figure 2.22: Global evaluation metrics

  (a) Triptyque de Venasque (I ref at angular direction θ = 57°, ϕ = 86°). (b) Illustration of computed weight matrix for the selected datasets (Top view) RT I -A2 Venasque dataset

Figure 2 .

 2 Figure 2.23: Illustration Venasque dataset

  to 2.25d.
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 2 Figure 2.24: (RTI-A2) PTM fitting : LS reconstruction, WLS reconstruction and difference maps

  Figure 2.25: (RTI-A2) HSH fitting : LS reconstruction, WLS reconstruction and difference maps

Figure 3 . 1 :

 31 Figure 3.1: Distant illumination, where the distance d can be approximated to infinity

Figure 3 . 2 :

 32 Figure 3.2: With a point light source, the distance d i and the angle θ i vary with the pixels (A to D)

Figure 3 . 4 :

 34 Figure 3.4: Flow chart of the proposed methodology

Figure 3 . 5 :

 35 Figure 3.5: Standard RTI angular position of light source

  Figure 3.6: Distance and angular(θ, ϕ) per-pixel maps

Figure 3 . 7 :Figure 3 . 8 :

 3738 Figure 3.7: Angular variation across pixels on 21 Images

Figure 3 . 9 :

 39 Figure 3.9: Distance and distance coefficients maps for input image at position θ = 9, 4, ϕ = 20.

Figure 3 .

 3 Figure 3.10: Phi and Cos phi coefficients maps for input image at position θ = 9, 4, ϕ = 20.

Figure 3 . 11 :

 311 Figure 3.11: Final coefficients map to apply to input image at light position θ = 9, 4, ϕ = 20.

Figure 3 .

 3 Figure 3.12: Input image at position θ = 9, 4, ϕ = 20 before and after applying the proposed methodology.

Figure 3 . 13 :Figure 3 .

 3133 Figure 3.13: Input image at position θ = 83, 74, ϕ = 29, 16 before and after applying the proposed methodology.

Figure 3 . 15 :

 315 Figure 3.15: Correction for input image at light position θ = 185.2 • , ϕ = 40 • .

Figure 3 . 16 :

 316 Figure 3.16: Correction for input image at light position θ = 163 • , ϕ = 40 • .

Figure 3 . 17 :

 317 Figure 3.17: Correction for input image at light position θ = 20 • , ϕ = 40 • .

Figure 3 . 18 :Figure 3 . 19 :

 318319 Figure 3.18: I B2 correction for overlit pixels for input image at (θ = 321 • , ϕ = 69 • )

Figure 3 . 20 :

 320 Figure 3.20: Saturation maps of dataset RTI-D2

Figure 3 . 21 :

 321 Figure 3.21: Images I min and I max of the correction

  Figure 3.22: I B2 correction for underlit pixels for input image at (θ = 14.9 • , ϕ = 20 • )

Figure 3 .

 3 Figure 3.23: I B2 correction for underlit pixels for input image at (θ = 14.9 • , ϕ = 20 • )

  Figure 3.24: Unmeasured pixels before and after application of per-pixel illumination correction

( a )Figure 3 .

 a3 Figure 3.25: Variation across azimuth and elevation angles for the first image of dataset RTI-D3

  (a) Input Image (b) I B1 corrected Image

Figure 3 .

 3 Figure 3.26: Retable de la Trinité I B1 correction for input image at (θ = 120 • , ϕ = 28 • )

Figure 3 .

 3 Figure 3.29: Saliency maps for manufactured surface

  (a) Difference between corrected and not corrected normal maps (b) Difference between corrected and not corrected saliency maps

Figure 3 .

 3 Figure 3.30: Results for dataset RTI-D4
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 41 Figure 4.1: Wide spectrum light source

Figure 4 . 2 :

 42 Figure 4.2: Light source crane

Figure 4 . 3 :

 43 Figure 4.3: Reference spheres setup. Fully assembled structure over an artwork of Victor Vasarely. Split structure over an sculpture (L'Arbre aux serpents, artist: Niki de Saint Phalle)

Figure 4 . 4 :

 44 Figure 4.4: Camera setup, with tripod, slider and two cameras

Figure 4 . 5 :

 45 Figure 4.5: In situ acquisition at the Vassarely foundation. Artwork: ZETT. Acquisition setup, including a light source, a light source crane and 4 specular balls L1, L2, L3 and L4 (Used for light position detection)

Figure 4 . 6 :

 46 Figure 4.6: Light detection from spheres, where V is the viewing direction, L the lighting direction and N the normal at the highlight spot of coordinates H u , H v .

Figure 4 .

 4 Figure 4.7: RTI acquisition of artwork "MAJUS" (Vassarely foundation) divided in four subimges

Figure 4 .

 4 Figure 4.8: DMD rendering of Artwork Majus, using independently the light direction detected at each specular balls, L1, L2, L3 and L4. Zoomed over the central region

Figure 4 . 9 :

 49 Figure 4.9: Light detection from spheres testing dataset

Figure 4 .

 4 Figure 4.10: Angular position variation from four LP files Vs LP ref

Figure 4 . 11 :

 411 Figure 4.11: Angular position variation from LP mean files Vs LP ref

Figure 4 .

 4 13a presents a real-color grayscale image acquired at angular position θ = 30, ϕ = 20.

Figure 4 .

 4 13b shows the same image using a false colormap to better visualize the intensity variation. (a) Acquired image at angular position θ = 30, ϕ = 20 (b) Acquired image at angular position θ = 30, ϕ = 20 in false colormap

Figure 4 . 13 :

 413 Figure 4.13: Input image at light position θ = 30, ϕ = 20

( a )

 a Elevation angle map from linear interpolation (b) Elevation angle map from proposed method

Figure 4 . 14 :

 414 Figure 4.14: Per pixel angular position variation for elevation angle (ϕ)

Figure 4 . 15 :

 415 Figure 4.15: Per pixel angular position variation for azimuth angle (θ)

Figure 4 . 16 :Figure 4 . 17 :

 416417 Figure 4.16: Multiscale acquisition setup

Figure 4 . 18 :

 418 Figure 4.18: Multiscale ROI1 and ROI2 processing outline

Figure 4 .

 4 19 (left image) shows that the ROI2 borders are dark because they have been masked to optimize the search for feature points.

Figure 4 . 19 :

 419 Figure 4.19: Multiscale ROI1 and ROI2 matching points

Figure 4 . 20 :

 420 Figure 4.20: Multiscale acquisition registration

Figure 4 . 21 :

 421 Figure 4.21: Zoom over the same area on ROI1 and ROI2 to compare visual resolution

Figure 4 .

 4 Figure 4.22: Stitching acquisition setup

Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.23: ROI1 st1 and ROI1 st2

Figure 4 .

 4 Figure 4.26: LP files plot for ROI1 st1 and ROI2 st2

Figure 4 .

 4 Figure 4.27: ROI1 st1 and ROI1 st2 blended and zoomed over default zone

Figure 4 .

 4 Figure 4.28: Overlap problem on RTI due to near light illumination conditions. d c (green line), indicates the light source distance to the surface center marked as C x,y .

Figure 4 .Figure 4 .

 44 Figure 4.29: ROI1 st1 and ROI1 st2 blended, using Poisson blending)

Figure 4 .

 4 Figure 4.30: ROI1 st1 and ROI1 st2 blended, nearest neighbors

Figure 4

 4 Figure 4.30, shows the result of of this approach. At this particular lighting direction, two nearest neighbors were identified, so the resulting image for ROI1 st2, is the interpolation of only two images of the input dataset. As shown in Figure4.30, this approach does not solve the issue, as we still observe the marked contrast between both ROIs.

Figure 4 .Figure 4 .

 44 Figure 4.31: ROI1 st1 and ROI1 st2 blended, HSH (θ = 45, ϕ = 45)

Figure 5 .

 5 Figure 5.1: Camera's CFA and MSFA filter arrays

Figure 5 . 2 :

 52 Figure 5.2: Spectral sensitivity of the camera Manta G1236 (graphic provided by manufacturer)

Figure 5 . 3 :

 53 Figure 5.3: Spotlight integrated in the RTI system and the available wavelengths offered by the same manufacturer

Figure 5 . 4 :

 54 Figure 5.4: Selected LEDs for RGBW spotlight

Figure 5 . 5 :

 55 Figure 5.5: ®CREE XML-color spectral distribution (provided by manufacturer)

Figure 5 . 7 :

 57 Figure 5.7: Additive color synthesis

Figure 5 . 8 :

 58 Figure 5.8: RGBW spotlight , LEDs spatial distribution in aluminium PCB

Figure 5 . 9 :

 59 Figure 5.9: Taken from [Moreno 06b] Two-LEDs array. (a) Schematic illustration of the LED array with a screen at a distance z. (b) The uniform irradiance distribution (normalized to its maximum value) along the x direction at y = 0 for m = 80.7 and d = d 0 = 0.219. The dotted curves show the irradiance patterns of each single LED. (c) Corresponding pattern when the separation between LEDs is slightly increased.

Figure 5 .

 5 Figure 5.10: Designed spotlight RGBW spectrum (measured with a ®JETI specbos 1211-2)

Figure 5 . 11 :

 511 Figure 5.11: M ultispectral spotlight spectrum (provided by manufacturer)

Figure 5 .

 5 Figure 5.13: LED array spatial distribution M ultispectral spotlight

Figure 5 . 15 :

 515 Figure 5.15: White balance before and after correction (RGBW spotlight ) for a white calibrated surface

Figure 5 . 16 :

 516 Figure 5.16: RGBW spotlight mean pixel profile across RTI dataset

Figure 5 . 17 :

 517 Figure 5.17: RGBW spotlight acquisition color assessment before and after correction coefficients application

Figure 5 . 18 :

 518 Figure 5.18: Individual LEDs acquisition color correction before and after coefficients application

Figure 5 . 19 :

 519 Figure 5.19: Result of color correction for image acquired with Individual LEDs

Figure 5 . 20 :

 520 Figure 5.20: Result of color correction for image acquired with developed RGBW spotlight

Figure 5 . 21 :

 521 Figure 5.21: Image interpolation approach summarized

Figure 5 .

 5 Figure 5.23: Visualization App

Figure 5 .

 5 Figure 5.24: SSIM comparison

Figure 5 .

 5 Figure 5.25: RMSE comparison

☞→☞

  Development and implementation of a multispectral light source adapted to large size objects. Color and Multispectral RTI ← ☞ Design and implementation of color and multispectral light sources. Color reconstruction and processing methods for multispectral-RTI data. → Multispectral RTI visualisation tool ← ☞ Matlab-based visualization application for multispectral-RTI data.

( a )Figure 5 .

 a5 Figure 5.27: Light source positioning system axis θ and axis φ

Figure 5 .

 5 Figure 5.28: Light sources of the Dome-based system

Figure 5 .

 5 Figure 5.29: Optical system

Figure 5 .

 5 Figure 5.30: Dome-based system structure

Figure 5 .

 5 Figure 5.31: Fully assembled Dome-based system

Figure 5 .

 5 Figure 5.32: User interface

Figure 5 .

 5 Figure 5.35: θ and Z axis encoder signals

Figure 5 .

 5 Figure 5.36: φ axis power and encoder connections

Figure 5 .

 5 Figure 5.37: Digital inputs connection

Figure 5 .

 5 Figure 5.38: Digital outputs connection

Figure 5 .

 5 Figure 5.39: Robotic-based RTI system and associated XY stage for RTI stitching

Figure 5 .

 5 Figure 5.41: RGBW spotlight schematics

Figure 5 .

 5 Figure 5.44: RGBW spotlight driver PCB

Figure 5 .

 5 Figure 5.45: Multispectral light source schematics
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Table 2 .

 2 .1).

	-	PTM rmse HSH rmse DMD rmse
	LS regression	37.29	24.13	9.89
	WLS regression 35.48	21.90	7.87

1: RMSE comparison for dataset RTI-A0

Table 2 .

 2 

	LS regression	22.71	24.19
	WLS regression 19.46	19.88

2: RMSE comparison for dataset RTI-A2

Results in terms of RSME (table 2.2) highlight that the obtained values when using LS

  Yuly Castro, Gilles Pitard, Abir Zendagui, Gaëtan Le Goïc, Vincent Brost, Arnaud Boucher and Alamin Mansouri. "Light spatial distribution calibration based on local density estimation for reflectance transformation imaging". Proceedings Volume 11172, 14th International Conference On Quality Control By Artificial Vision QCAV 2019, Mulhouse, France. ✓ Yuly Castro, Gilles Pitard, Gaëtan Le Goïc, Vincent Brost, Alamin Mansouri, Anthony Pamart, Jean-Marc Vallet and Livio De Luca. "A new method for calibration of the spatial distribution of light positions in free-form RTI acquisitions". Proceedings Volume 11058, In Optics for Arts, Architecture, and Archaeology VII . 2020, Munich, Germany . ✓ Yuly Castro, Marvin Nurit, Gilles Pitard, Abir Zendagui, Gaëtan Le Goïc, Vincent Brost, Arnaud Boucher, Alamin Mansouri, Anthony Pamart and Livio De luca. "Calibration of spatial distribution of light sources in Reflectance Transformation Imaging based on adaptive local density estimation". Journal of Electronic Imaging, 2020.

  Ramamoorthy Luxman, Yuly Castro, Hermine Chatoux, Marvin Nurit, Amalia Siatou, Gaëtan Le Goïc, Laura Brambilla, Christian Degrigny, Franck Marzani, et Alamin Mansouri. "LightBot: A Multi-Light Position Robotic Acquisition System for Adaptive Capturing of Cultural Heritage Surfaces". Journal of Imaging, 2022.
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 5 

	.1 lists

Table 5 .

 5 1: ®CREE XML-color LED specifications These LEDs, as shown in the diagram (Figure

Table 5 .

 5 2 lists the characteristics for each one.

	Color	Dominant wavelength (nm) or color temperature (K)	Minimum luminous flux (lm) at 350mA	Minimum radiant flux (mW) at 350mA
	Royal blue	450 -465	-	525
	Blue	465-480	35.2	-
	Green	525-535	100	-
	Amber	585-595	87.4	-
	Red orange	610-620	100	-
	Red	620-630	80.6	-
	Photo red	650-670	-	450
	Far red	720-740	-	350
	White	Cool White: 5700-8000	100	-

Table 5 . 2 :

 52 ®CREE XP-E2 LED specifications

Table 5 . 4 :

 54 table, we get a 2, 8 mean global error. Furthermore, we get ∆E values equal or lower than 1 for patches: 5, 22, 23, 24, which according to theory is not perceptible for human eye. Additionally, for patches: 3, 6, 10, 11, 20 , 21, we get values between 1 -2, which are very small difference, only obvious to a trained eye. Comparison of results WB and color correction for RGBW spotlight

	Patch N°Patch Name	Raw image (Naive)	White balance	Root polynomial correction	Thin-plate spline correction
	1	Dark skin	34,9	33,4	9,2	2,1
	2	Light skin	43,4	22	6,3	4,1
	3	Blue sky	62,9	37,4	6,7	1,8
	4	Foliage	44,4	28,2	9,9	3,3
	5	Blue flower	67,4	43,6	4,7	0,4
	6	Bluish green	70,5	20,5	7,3	1,7
	7	Orange	38,3	38,1	13,9	4,9
	8	Purplish blue	53,7	40,5	10,9	3
	9	Moderate red	34,6	25,7	6,9	6
	10	Purple	19,6	14,2	5,4	1,5
	11	Yellow green	54,6	8,4	6,6	1,5
	12	Orange yellow	57,3	42,4	14,1	3,1
	13	Blue	22,3	18,1	16,5	5,3
	14	Green	50,4	20,8	10,7	2,8
	15	Red	38,3	29,9	23,2	2,1
	16	Yellow	64,9	24,3	10,3	3,8
	17	Magenta	38,5	29,8	10,7	4,4
	18	Cyan	73,5	33,7	10,5	8,1
	19	White	81,3	25,7	6,1	3,1
	20	Neutral 8	78,1	26,7	6,1	1,4
	21	Neutral 6.5	80	41,3	13,1	1,2
	22	Neutral 5	55	30,1	12,7	0,8
	23	Neutral 3.5	36,5	23,1	10,7	0,6
	24	Black	19	15,2	9	1
		MEAN	50,8	28	10,1	2,8
		STD	18,9	9,5	4,2	1,9

Annexes

A1, Developed RTI acquisition system

A Dome-based system was developed during this PhD for research purposes, aiming to serve 3 different projects focused on RTI technique. The Dome-based RTI system developed at the ImViA laboratory is the result of a collaborative multidisciplinary effort that included mechanical (G. Le Goïc), software development (M. Nurit), and electronic engineering (Y. Castro) expertises. The Dome-based system developed is a fully automated one with a single light source held on a motorized arch that allows the light source to be set in any desired position in the prescribed angular space between 0 and 360 for the azimuth and 0 and 75 for the elevation angle. The system includes a 12.4 megapixels monochrome camera, as well as a motorized zoom and focus, to form an optical system that produces high-quality images. The components of the system are presented in detail below. The positioning system for the light source

The system for positioning the light source consists of two controllable rotary axes (φ and θ axes).