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Map generalization is a process that aims to adapt the level of detail of geographic information for cartography at a small scale. Automating the process is complex but essential in map production. We think this research eld could benet from the recent advances in deep learning that make it possible to solve more and more complex tasks, using numerous training examples.

This thesis proposes exploring the potential of deep learning for map generalization. This exploration is built upon three map generalization use cases: recognition of spatial relations, graphic generalization of mountain roads, and generalization of topographic maps at medium scales. These three use cases enable us to address research questions relative to the concrete implementation of deep learning models for map generalization (including dataset creation and architecture), the evaluation of such models and their integration in existing generalization processes.

In addition to the models and training set adapted for each of our case studies already mentioned, we propose evaluation methods adapted to the challenges of cartographic generalization by deep learning. Finally, we propose a partitioning of the cartographic generalization into sub-problems facilitating the resolution by learning and allowing the generation of generalized map images.

Maps in 2004, the use of online maps has reached a wide audience. Quickly, the usage of online maps has become democratized, the list of such geoportals has expanded, and the development of the web allows the integration of cartographic views in numerous web applications. At the same time, the eld of geographic information has been subject to the multiplication of heterogeneous geographic data sets. Indeed, since the emergence of Web 2.0 in the 2000s, the internet allows not only to nd and access information but also to share and collaborate. Then, the success of geographic information initiatives (VGI) as well as the dynamics of open data in the National Mapping Agencies (NMA) marks the beginning of the era of big data. On the one hand, this explosion of data is associated with an increase in the need for synthesis, harmonization, selection, and abstraction of geographic information. On the other hand, it also is conducive to the development of automated learning strategies that require a large amount of data.

In parallel, the internet induces a change in the use of maps. Today, the use of online, multi-representational, and multi-scale maps is increasingly common, and the number of cartographic representations at disposal increases. With mobile devices, maps are accessible anywhere at any time; however, the time dedicated to map reading seems to decrease. The general public, as well as experts, expect adapted content and readable information, with a smooth transition towards a more direct transmission of information. The production of maps adapted to this new usage (simpler, more legible, etc.) is required.

While Web 4.0 (or intelligent) is currently being announced by the specialized media, mapping is struggling to reach Web 3.0 (semantic). Indeed, Web semantics promises to organize the volume of information according to context to meet specic user needs and highly portable and interactive content, while on-demand mapping is still a myth. On-demand mapping is `the creation of a cartographic product upon a user request appropriate to its scale and purpose' (Cecconi 2003, p17). It includes the following issues: understanding the user's needs, dynamically selecting the most relevant data source for the user's needs (and eventually including the user's own data), and generating a product on-the-y. Today, a few models designed for on-demand mapping exist, but they have no generic map specication [START_REF] Balley | Models and Standards for On-Demand Mapping[END_REF]. Whether to understand a geographic phenomenon or for more common uses (e.g., building an itinerary or nding a point of interest), completeness, and especially abstraction are required, and automatic generation of a readable map for these purposes from a geographic database remains an issue. Thus, this objective cannot be achieved without an eective automated map generalization. Currently, both printed maps and map panels on computers and mobile devices are neither specic nor easy to navigate. For instance, the gap in representation between scales in a multi-scales map produces confusion during zooming in and out (sometimes called desert fog eect, Touya 2019). Map production and cartography research currently require developing techniques to reduce this confusion (e.g., smooth transition, anchored zoom, and creation of intermediate generalization) [START_REF] Touya | Please, Help Me! I Am Lost in Zoom[END_REF].

Map generalization is the adaptation of a dataset for a representation in a map at a smaller scale. This step allows the map content to be legible and is among other things essential in previously mentioned technologies (on-demand mapping, and smooth multi-scale maps). Generalization automation is the foundation of the automation of map creation. Traditional automatics map generalization is often processed by a combination of operators, each resolving a specic conict in the map (e.g. enlargement resolves building legibility conict, displacement resolves overlapping). However, the interest in map generalization has recently decreased. As shown in Figure 1, despite the general tendency to increase research publication, the publication related to map generalization is slowing and the proposed presentation at the annual workshop organized by the ICA Commission on Generalization and Multiple Representation is decreasing.

Figure 1: Indicators of the evolution of interest in map generalization.

This tendency can be explained by two main elements. On one hand, the NMA and industries have chosen a compromise between map quality and production time and cost and reduced their investment in map generalization. Indeed, currently, the algorithms used are semi-automatic or automatic generalization algorithms that are mostly acceptable but include weaknesses: they can produce unreadable parts, unnecessary information loss, inconsistencies between scales, etc. On the other hand, map generalization is facing a technical gap: the choice and combination of operators require implicit knowledge acquisition and a dicult orchestration.

In recent years, the emergence of big data and the diusion of powerful machines with important computing capacities have allowed for a large development of deep learning. Indeed, these articial intelligence techniques are based on the extraction of implicit information from a set of important examples to learn to mimic human Introduction behavior in the resolution of a data management task. It is succeeding in solving more and more tasks in the eld of geographic information management, and GeoAI projects appear in NMA and research institutes [START_REF] Usery | GeoAI in the US Geological Survey for topographic mapping[END_REF]. However, it is currently used for geoinformation acquisition tasks and is underemployed in cartography or map generalization tasks.

We believe that the numerous existing generalized map and dataset openly available since the Web revolution could be used as training examples for deep learning models and allow for automatically extracting the implicit knowledge necessary for map generalization. Thus, research on deep learning for map generalization could unlock research on automating map generalization and accelerate the path to Map 3.0 (i.e., eective map in the Web 3.0 era). Indeed, this generalization would be integrated into an on-demand process and contribute to the creation of more smooth transitions in multi-scale maps (continuous generalization intermediate scale or smooth transition).

Research context

The research presented in this thesis is carried out in the research laboratory (Lastig) on geographic information from IGN the French national mapping agency. This agency has provided printed and online topographic maps for years, and we benet from archive maps at diverse scales to construct our training sample.

Moreover, this laboratory (and its predecessor COGIT) has an important history in map generalization automation, and we can reuse previously produced automatic algorithms for map generalization for training set creation, complementary approaches, model comparison, and evaluation.

Currently, research on map generalization automation in the laboratory is no longer a central topic, but many projects still require the automation of map generalization processes. Especially, the question of multi-representation map studied in the project MapMuxing (ANR 2014(ANR -2018)), the navigation in multi-scale map studied in the project LostInZoom (ERC 2021(ERC -2026)), or tactile map creation with the project ACTIVmap (ANR 2020(ANR -2024)). This thesis is not founded on any of these projects, but each has a specic need in map generalization automation, and they illustrate how research on automatic map generalization is still of interest. 

Problem

The use of deep learning for map generalization is a recent approach to solving a old problem. At rst sight, this approach is the opposite of the evolution of map generalization, where one rst formalizes map rules and then performs a generalization operation to t those rules. Indeed, with a deep learning approach, rule identication and generalization are learned together from a set of examples. The main interest of this approach seems to be the deep learning ability to learn to produce generalized maps without explicitly dening map rules but by inferring them from examples. One of the goals of this thesis would be to ensure that it is actually possible. Then, we propose an exploratory approach that aims to identify and describe the potential and challenges of the deep learning approach for map generalization.

The objective of this thesis is to:

Explore the potential of deep learning to contribute to map generalization research.

This exploration is done through several experiments that describe a specic generalization problem. The rst three proposed experiments correspond to individual map generalization operators, while the last one is more global and the target tasks aim at combining several generalization processes during learning:

Exploring the potential to learn shape generalization: the example of mountain road shape prediction at 1:250 000 scale. Mountain road is a classical sub-problem of road generalization because the sinuous shape of these entities requires an important generalization. Indeed, in a bend series, roads suer from symbol coalescence. Depending on the shape and context of the road, enlargement, displacement, and schematization of the bends must be applied in some parts of the road. The goal of this experiment is to show that deep learning can learn to reproduce map generalization operators for shape simplication. Especially, the particularity of this use case is the generation of linear shape that is challenging in image approach, and the target is not the output of generalization algorithms but the element of a cartographic database constructed including human corrections.

Exploring the potential to learn patterns: the example alignment detection in an urban area. An alignment is characterized by a set of similar building disposals along an axis. Alignments are salient structures in a map that are expected to be preserved during map generalization. However, they are exclusively implicit in the map and never explicitly encoded in the database. Detecting such structures using deep learning would show that deep learning can eectively learn structure and relation in spatial data that are essential for map generalization.

Exploring the potential to learn network structures: the example of road network selection for cartography at 1:50 000 scale. The road network is a complex structure and during map generalization, all individual road sections cannot be displayed (e.g. pedestrian roads and dead-ends are only relevant in detailed hiking or local map). At 1:50 000 the selection is important: main and regional ways should be kept, but local ways have to be erased when they reduce the legibility or if they do not belong to an important itinerary, the choice of selecting or not a road is depending on multiple factors (e.g. all possible important paths must remain possible even after generalization). Learning this selection would show the deep learning ability to learn from both complex features and multi-scale relation networks.

Exploring the potential to learn map generation: the example of a topographic map at 1:50 000 scale. Finally, this experiment investigates the deep learning ability to generate a generalized map. This generation involves generalization and the combination of several cartographic themes into a legible map at the desired level scale.

For each experiment, we try to demonstrate the capability and limitations of deep learning, we identify the issues of such an approach, and we proposed and tested improvements. So, our contributions are the following :

We participate in the creation of benchmarks for the development of deep learning-based map generalization (accessible on zenodo).

We provide one or several architectures and some loss function.

We propose some metrics for evaluation and one user test.

We provide a pre-trained model that is robust for specic input and target scale and tested for transfer in other regions.

This thesis then aims to collect and organize the lessons learned from these experiments. Especially, our contribution also includes some demonstrations of the ability of deep learning for a specic aspect of map generalization (shape simplication, pattern recognition, object selection, and complete map generation), and clues

and discussions on deep learning potential, usages, and limits.

Structure of the manuscript

This thesis is structured in three parts: rst, we present the main issues related to the use of deep learning for map generalization (Part I), then we present a comparison of deep learning approaches for a common map generalization task (Part II), and we discuss the future of map generalization with deep learning (Part III).

The rst part of the thesis aims to explore the main issues related to the use of deep learning for map generalization. It consists of a review of the literature (Chapter A) that rst explains the current need for new approaches in map generalization research. The purpose of this chapter is also to explain why deep learning would theoretically be benecial to map generalization, and this chapter also helps to state the motivation of this thesis and to clarify its objectives. Next, Chapter B presents how to formulate map generalization as a deep learning problem. This chapter describes the need for map generalization and explores what is the most appropriate approach for these needs. As a preliminary experimentation step, it is necessary to delineate the capabilities of each approach. Finally, Chapter C is a theoretical review of the adaptation methods required to make deep learning models match the generalization problem. In this chapter, we present the two main issues of such an approach: designing an architecture and creating the training set, adapted to the use case of map generalization.

In the second part, we study deep learning approaches for solving three map generalization problems: spatial relation preservation (Chapter D), graphic generalization (Chapter E), and the generation of complete generalized maps (Chapter F). All these chapters are based on one or several experiments and are organized in a similar way: rst, the problem, materials and methods are presented, then our results are described, and nally, a discussion allows us to conclude on the potential of deep learning for this use case.

The third part presents experiments and discussions on the future of map generalization with deep learning. Specically, Chapter G explores the possibility of using the models trained during this thesis (on French 1:50,000 data) in other contexts. Then, two possible uses of deep learning models in map generalization: as an end-to-end process and as a mixed process. This chapter includes a proposal to integrate the individual models designed during this thesis to the existing map generalization model and an initial proposal for an end-to-end process to generalize the 1:50,000 map. Finally, Chapter H deals with the evaluation of the generalization of the map processed by deep learning. This is one of the main issues in the development of deep learning for map generalization, because without relevant evaluation methods, the prediction made by deep learning will not be credible and will never be used. Evaluation is an important issue in map generalization in general but the deep learning approach also implies new problems.

Part I A new paradigm for map generalization

Chapter A

Literature review

This thesis proposes to explore the combination of two research elds: map generalization and deep learning. This chapter aims to present these two elds and to expose interest in a deep learning approach for map generalization.

A.1 Map generalization

A.1.1 Denition Map and scale

A common denition of a map could be the following: a map is an abstracted representation of a geographic area. [START_REF] Lapaine | Denition of the Map[END_REF] proposes a more accurate denition that corresponds to contemporary cartographic development: "A map is a medium designed for communication of generalized spatial information and relationships." Both these denitions contain the notion of representation (convey by medium designed for communication in the second denition) of spatial information, and this representation is generalized or abstracted. This means that the map must not only represent spatial data, but also mostly preserve spatial arrangements. [START_REF] Fairbairn | Epistemological thoughts on the success of maps and the role of cartography[END_REF] add that another important aspect of a map is its function: this representation is designed for a specic usage (i.e., constructing an itinerary, visualizing and analyzing a localized phenomenon, etc.), and propose a denition of map based on this functioning aspect.

The two main questions during map production are "What to represent on the map ?" and "How to represent information?". Indeed, the map content and representation depend not only on the map objective but also on its scale. The notion of scale is central in cartography and have two dimensions [START_REF] Mackaness | Chapter 1 -Understanding Geographic Space[END_REF]). First, it basically is the ratio between object size on the map and on the ground. Then, the scale has a reasoning meaning: it serves to determine a level of analysis [START_REF] Ruas | Les problématiques de l'automatisation de la généralisation cartographique[END_REF]. For example, a map at the scale of the continent is completely useless for understanding the distribution of income in a city, even if the map represents the average income per area and contains the considered city. These two denitions of scale constrain the way in which we can represent geographic information on a map.

Maps are made from a geographic database (databases that contain localized information). Whether encoded as a rater or as a vector, the information in geographic databases is neither exhaustive nor exact. Indeed, it is already a simplied representation of the location of objects in a continuous space described by a reference system (Figure A.1). The objects represented in vector form are located using a point or a set of points, while in raster format the continuous space is discretized using a partition in a nite number of units (pixel), each representing a regular portion of the ground of xed size. By denition, a database does not have a scale. However, the geographic database has a geometric level of detail (i.e. resolution of the raster, geometric accuracy of points in vector mode, the granularity of the point set in vector mode) and a semantic level of detail (selected entities, the precision of categories, etc.) [START_REF] Ruas | Les problématiques de l'automatisation de la généralisation cartographique[END_REF].

Both levels make a database more or less adapted for cartography at a scale. Nevertheless, the map cannot be a simple symbolization of a geographic database, and scale adaptations are necessary. 

Scale adaptation

The map creation process is summarized in Figure A.2. The scaling transformation has the eect of reducing the size of represented geographical entities, which can lead to ambiguity of interpretation. For instance, elements are no longer visible or dierentiable and, therefore, the map is no longer usable. To avoid this problem, cartographic rules include thresholds of perception and dissociability. For instance, the human eye cannot distinguish too small symbols, too small detail in a shape, too close objects, etc. To make the representation of geographic objects ts these rules, cartographers proceed to the dilation of elements that do not respect the specied thresholds. However, this simple dilation is not enough; indeed, after dilation, the size of the object no longer corresponds to the space occupied on the ground and this causes clutter on the map. This scale adaptation is called map generalization. Map generalization seeks to adapt a data set for cartography in a map at a lower smaller scale. The goal is to improve the legibility of the map while minimizing information loss. Information selection, simplication, and caricature are required. To maintain the usefulness of a map at the desired scale, generalization has to keep the "main information" such as structures or patterns. This process allows for the construction of multiple maps at multiple scales from one detailed dataset, and its automation would encourage the reduction of data collection and on-demand mapping.

A.1.2 Map generalization automation

Map generalization was rst performed manually by cartographers; the question of map generalization automation appears with the use of computers and geographic databases. The following section describes the research advancement in map generalization automation.

Constraints

For the automation of map generalization, one of the most important steps was the formulation of map requirements. A constraint formalizes map specications [START_REF] Beard | Constraints on rule formation[END_REF]. For example, "a building must have a size greater than 2 mm²" is a usual constraint for automated map generalization.

Constraints rst aim at formalizing precisely map generalization objectives, but they also have guided research in map generalization automation. From our perspective of learning map generalization, constraints have several roles: rst, they are the most important part of the knowledge the network must acquire. For instance, to learn map generalization, deep neural networks have to understand from images that the overlapping has to be avoided, the element enlarged, the structures emphasize, etc. Moreover, these constraints can guide the map generalization, and their satisfaction is a kind of assessment of map generalization quality. Consequently, in a learning approach, they can be used to evaluate or guide the learning process.

The rst attempt to classify constraint separate constraint on legibility called graphical from other (topological, semantics, structural, of Gestalt etc.) [START_REF] Ruas | Strategies for automated generalization[END_REF][START_REF] Weibel | Generalising spatial data and dealing with multiple representations[END_REF]. However, these rst classications are misleading, as most constraints are also graphical (e.g. a topological relation, a structure, or a perceived Gestalt are graphically salient in the input map and must remain in the target map). Currently, one of the most common constraint classications is from [START_REF] Burghardt | Investogation on cartographic constraint formalisation[END_REF], it typies constraints according to their nature (legibility or preservation), the type of geometry (point, line, or area), the number of objects involved (individual, pair of objects, or groups) and the thematic of objects involved. Further, [START_REF] Touya | Le Modèle CollaGen: collaboration de processus automatiques pour la généralisation cartographique de paysages hétérogènes[END_REF] proposed a model of geographic constraints, which rst distinguishes the level of the objects they involve and then their types. Both classications better emphasize that most map generalization constraints are graphical constraints (and thus can be learned using deep learning). Moreover, these questions on constraint classication expose problems on the level of analysis, object cardinality, and type; all these problems may also be a center point during training set creation for a deep learning approach.

Finally, this formalization has also contributed to the research on collaborative generalization, where common and shared objectives are a prerequisite for comparing and making work together diverse algorithms and operators. Despite the deep learning approach for map generalization being a shift in map generalization automation, its development requires (as any innovation in map generalization automation) to be inserted and compared with traditional generalization.

Operators

To resolve the conict on the map and perform map generalization, many operators have been proposed [START_REF] Stanislawski | Abstracting Geographic Information in a Data Rich World[END_REF]. The following paragraphs present the research on some of the most important operators. Not only do these operators contribute to resolving previously announced constraints, but they mostly provide an answer to the main questions of map generalization (What and How). Indeed, elimination operators aim to indicate which geographic entity or structure must be displayed on the map at the target scale. Then, shape simplication and displacement allow exploring how they must be presented to avoid overlapping.

Shape simplication First operators proposed are for line simplication and are based on the reduction of the number of vertices of the polyline [START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF]. However, these operators are not very ecient at dealing with the specicity of geographic data. Then, specic methods for geographic objects have been developed (e.g. [START_REF] Visvalingam | Simplication and Generalization of Large Scale Data for Roads: A Comparison of Two Filtring Algorithms[END_REF]. When the line to simplify is a road, we distinguish two approaches (illustrated in Figure A.3): (1) a global approach that tries to nd the optimal shape and (2) iterative processes that separate roads into homogeneous sections, apply several algorithms to each of them, and merge them together [START_REF] Lecordix | A Platform for Research in Generalization: Application to Caricature[END_REF][START_REF] Mustiere | GALBE : Adaptative generalization. the need for an adaptative process for automated generalisation an exemple on roads[END_REF]Duchêne 2014a).

The algorithms of the rst approach are often based on the optimization of a set of constraints on the position of the points of the line [START_REF] Sester | Optimization approaches for generalization and data abstraction[END_REF], or on a physical model [START_REF] Bader | Cartographic Displacement in Generalization: Introducing Elastic Beams. 4th workshop on progress in automated map generalisation[END_REF]. This is also the approach of the processes based on data ltering and image compression. In the second approach, the process has the following steps: 1) separating the road into homogeneous parts; 2) characterizing each part; 3) choosing and applying the relevant operator; 4) reconstructing the objects.

Similar processes have been developed for other kinds of geographic objects including building [START_REF] Haunert | Optimal and topologically safe simplication of building footprints[END_REF][START_REF] Zhou | A Simplication of Ria Coastline with Geomorphologic Characteristics Preserved[END_REF][START_REF] Cheng | Building simplication using backpropagation neural networks: a combination of cartographers' expertise and raster-based local perception[END_REF] and other more complex shape simplication [START_REF] Haunert | Area Collapse and Road Centerlines based on Straight Skeletons[END_REF].

Displacement Then, operators for placement or displacement of objects are popular as they avoid overlaps between objects. The limited available space and the large number of constraints for this displacement (position, structure, and shape preservation, etc.) make the operation complex. For this task as for simplication, global and iterative approaches are possibles: the global one denes a displacement for all objects in one step, often inspired by physics models [START_REF] Liu | A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm[END_REF][START_REF] Li | A Novel Method for Building Displacement Based on Multipopulation Genetic Algorithm[END_REF][START_REF] Zhang | A vector eld model to handle the displacement of multiple conicts in building generalization[END_REF]Figure A.3: Example of global and iterative approaches. A: Gaussian smoothing is a technique from image processing that is sometimes applied for smoothing of road shapes, in a global approach. B: GALBE is an iterative process proposed by [START_REF] Mustiere | GALBE : Adaptative generalization. the need for an adaptative process for automated generalisation an exemple on roads[END_REF]) that proposes to divide the road into homogeneous parts and characterize each part to choose the most appropriate operator.

Bader, [START_REF] Bader | Building displacement over a ductile truss[END_REF], and the iterative approache resolves conicts one by one and iterates until achieving a satisfying result [START_REF] Aslan | An incremental displacement approach applied to building objects in topographic mapping[END_REF][START_REF] Ruas | A method for building displacement in automated map generalisation[END_REF][START_REF] Mackaness | Automated Displacement for Large Numbers of Discrete Map Objects[END_REF].

Elimination The elimination operators aim to determine which objects should be kept on the generalized map. One of the main issues in this process is maintaining the structure of the information while reducing the number of entities. For instance, [START_REF] Gulgen | Selection of roads for cartographic generalization[END_REF] analyze the relations between the scale and the number of roads kept .

Selection inside a road network is based on shape characteristics [START_REF] Thomson | The "Good Continuation" principle of Perceptual Organization applied to the Generalization of Road Networks[END_REF], semantics features (importance, status, width, etc.), and the role played in the road network (Garcia-Balboa and Ariza-López 2008; [START_REF] Weiss | Road network selection for small-scale maps using an improved centrality-based algorithm[END_REF][START_REF] Jiang | A Structural Approach to the Model Generalization of an Urban Street Network[END_REF]. Methods succeed in combining these factors and properly selecting roads [START_REF] Touya | A Road Network Selection Process Based on Data Enrichment and Structure Detection[END_REF][START_REF] Benz | Road network selection for medium scales using an extended stroke-mesh combination algorithm[END_REF][START_REF] Stanislawski | Density-stratied thinning of road networks to support automated generalisation for the national map[END_REF]. Similarly, rivers selection operators have been developed (e.g. [START_REF] Touya | River network selection based on structure and pattern recognition[END_REF][START_REF] Benz | Road network selection for medium scales using an extended stroke-mesh combination algorithm[END_REF][START_REF] Shuai | The Shape Cognition and Query Supported by Fourier Transform. Headway in Spatial Data Handling[END_REF].

For some other themes, such as buildings, elimination is not the main approach to reducing the number of objects represented. The aggregation (or amalgamation) [START_REF] Allouche | Amalgamation in cartographic generalization using Kohonen's feature nets[END_REF][START_REF] Regnauld | Automatic Amalgamation of Buildings for Producing Ordnance Survey ® 1:50 000 Scale Maps[END_REF][START_REF] Ai | The Aggregation of Urban Building Clusters Based on the Skeleton Partitioning of Gap Space[END_REF]) and the typication [START_REF] Burghardt | Mesh simplication for building typication[END_REF][START_REF] Regnauld | Contextual Building Typication in Automated Map Generalization[END_REF][START_REF] Wang | A Mesh-Based Typication Method for Building Groups with Grid Patterns[END_REF] are preferred. Instead of generalizing a group of buildings with a subset of buildings from this group, in amalgamation, buildings are progressively fused and their shape is generalized into an amalgam built-up area; and in typication, the building group is replaced by another group that is representative of the initial group. Thus, the authors focus on the operators' ability to recognise [START_REF] Yan | A Multi-parameter Approach to Automated Building Grouping and Generalization[END_REF]Yan, Ai, Yang, and Tong 2020;[START_REF] Liqiang | A spatial cognition-based urban building clustering approach and its applications[END_REF]Zhang, Ai, Stoter, Kraak, and Molenaar 2013;[START_REF] Ruas | Detecting Building Alignments for Generalisation Purposes[END_REF] and characterize building groups [START_REF] Steiniger | An Approach for the Classication of Urban Building Structures Based on Discriminant Analysis Techniques[END_REF][START_REF] Yan | Analysis of Irregular Spatial Data with Machine Learning: Classication of Building Patterns with a Graph Convolutional Neural Network[END_REF].

All these operators are common and challenging; they require understanding both the graphical aspect and semantics of geographic information. One of the rst tasks of our thesis would be to verify that deep learning is able to learn to reproduce them. Verifying the learnability of these operators has later guided the choice of use case in our exploration of deep learning potential for map generalization.

Orchestration

Then, the combination of individual operators in a process able to achieve automatic generalization is still an important problem. Indeed, a fully automatic process should include decisions about the level of analysis (which object to process), the order and parameters of the operations, and the evaluation [START_REF] Ruas | Strategies for automated generalization[END_REF]. [START_REF] Brassel | A review and conceptual framework of automated map generalization[END_REF] state that orchestration must be more than just a sequence of operators and identify the following steps: structure recognition, process recognition, process modeling, process execution, and display. There are several approaches to combining generalization operators: constraint-based optimization, agent-based generalization, or machine learning (discussed in a later paragraph), among others.

First, optimization-based orchestration aims at dening and optimizing an objective function to lead a generalization process. [START_REF] Harrie | Weight-Setting and Quality Assessment in Simultaneous Graphic Generalization[END_REF] try to parameterize simultaneous graphic generalization by providing weight on a set of constraints.

Then, optimization algorithms such as gradient descent, least-squares adjustment, or simulated annealing can be applied to nd a sequence of operators (or transformations) that minimize constraints violations (i.e., the objective function) [START_REF] Edwardes | Intelligent Generalization of Urban Road Networks[END_REF][START_REF] Neun | Automated processing for map generalization using web services[END_REF]Sester 2000a).

Then, multi-agent systems (MAS) have been applied to map generalization orchestration in order to contribute to process modeling. In MAS, each agent (object, part of object, or group of objects) tries to resolve its own objective (reach its bettergeneralized form in our case) by interacting with other agents in these systems and applying operators to itself. Many multi-agent generalization systems exist [START_REF] Baeijs | SIGMA: Application of Multi-Agent Systems to Cartographic Generalization[END_REF][START_REF] Lamy | The application of agents in automated map generalisation[END_REF][START_REF] Galanda | An agent-based framework for polygonal subdivision generalization[END_REF][START_REF] Duchêne | Automated map generalisation using communicating agents[END_REF][START_REF] Gauri | Field deformation in an agent-based generalisation model: the GAEL model[END_REF][START_REF] Zhang | A multi-agent system approach for featuredriven generalization of isobathymetric line[END_REF][START_REF] Maudet | Representation of interactions in a Multi-Level Multi-Agent model for cartography constraint solving. Advances in Practical Applications of Heterogeneous Multi-Agent Systems[END_REF][START_REF] Yan | An ontology-driven multi-agent system for nautical chart generalization[END_REF]. [START_REF] Duchêne | Multi-Agents Systems for Cartographic Generalization: Feedback from Past and On-going Research[END_REF] describe in a technical report the potential, advancement and limitations of this approach. This paper explains how MAS distributes complexity among a set of agents. This decentralization is the main advantage of this system.

If the hope of end-to-end map generalization using deep learning would avoid this step of orchestration, it is even useful to question how it would be possible to orchestrate traditional map generalization operators and deep learning-based ones.

Raster-based map generalization

As deep learning methods are mainly image-based, for now, we propose a quick overview of image-based experiments for map generalization.

In the early years of research on map generalization, raster-based and vectorbased were developed in parallel as both approaches were equally promising (Peu-quet 1979;[START_REF] Monmonier | Raster-mode area generalization for land use and land cover maps[END_REF][START_REF] Mcmaster | A conceptual framework for quantitative and qualitative raster-mode generalization[END_REF][START_REF] Li | Mathematical Morphology in Digital Generalization of Raster Map Data[END_REF][START_REF] Li | Algebraic Models for Feature Displacement in the Generalization of Digital Map Data Using Morphological Techniques[END_REF]. In the 1990s, vector-based generalization nally out-performed raster-based generalization [START_REF] Peter | Using vector and raster-based techniques in categorical map generalization[END_REF][START_REF] Daley | Comparing raster and object generalization[END_REF]. As generalization was increasingly monitored by constraints on objects of the map, the vector-based methods appeared to be more practical to use. Besides terrain generalization where raster-based methods are prominent (e.g. [START_REF] Raposo | Towards general theory of raster data generalization[END_REF][START_REF] Guilbert | Multi-level representation of terrain features on a contour map[END_REF][START_REF] Li | Cell-based Model For GIS Generalization[END_REF], new raster-based generalization algorithms were very rare. For instance, [START_REF] Pantazis | Morphing techniques: Towards new methods for raster based cartographic generalization[END_REF] discuss the potential of morphing in the generalization of raster data, the main limit noticed is the integration of multiple themes in an entire generalized map, and [START_REF] Cheng | Building simplication using backpropagation neural networks: a combination of cartographers' expertise and raster-based local perception[END_REF] design rasterbased detector that combines backpropagation neural networks and cartographer's expertise to learn the relation between the generalized and the detailed shape of the building.

We can also mention a series of articles that propose generalization operators based on the superpixel. Superpixel [START_REF] Ren | Learning a classication model for segmentation[END_REF] is an image segmentation method based on features derived from the classical Gestalt cues, including contour, texture, brightness, and good continuation. This segmentation is then used as a basis for the generalization of lines and surfaces (Figure A.4). In this manner, authors propose waterline simplication [START_REF] Shen | A New Approach to Line Simplication Based on Image Processing: A Case Study of Water Area Boundaries[END_REF], building simplication (Shen, Ai, and Li 2019), aggregation [START_REF] Shen | A polygon aggregation method with global feature preservation using superpixel segmentation[END_REF], building selection [START_REF] Shen | Raster-based method for building selection in the multi-scale representation of two-dimensional maps[END_REF], and building typication [START_REF] Shen | A raster-based typication method for multiscale visualization of building features considering distribution patterns[END_REF]. These approaches give promising results for individual object generalization and generalization of a group of objects. However, like most rasterbased approaches, they are not able to deal with other spatial relations. 

Learning map generalization

In this section, we focus on map generalization methods that involve machine learning techniques. Research in this domain can be organized according to learning objectives: learning cartographic rules, interpreting spatial data, predicting a set of operations, and evaluating.

The idea of using articial intelligence to overcome the knowledge acquisition bottleneck appears in the 90s [START_REF] Weibel | Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence[END_REF]. They identied the human expert as the main source of cartographic knowledge and proposed to construct an interactive system that would allow cartography experts to realize maps and the system to learn cartographic rules from their actions.

The approach that tries to infer cartographic rules is quite rare in the literature, because the diversity of cartographic rules and the lack of metrics limit formalization and usage of acquired knowledge [START_REF] Kilpelainen | Knowledge Acquisition for Generalization Rules[END_REF]. [START_REF] Karsznia | Improving settlement selection for smallscale maps using data enrichment and machine learning[END_REF] is a recent example of such an approach, that tries to improve the selection of settlement points in low-scale generalization maps, by inferring cartographic rules from existing maps.

On the contrary, the approach that aims at the interpretation of spatial data allows making explicit the knowledge necessary in map generalization among other (image interpretation, map-matching, etc.) [START_REF] Sester | Knowledge acquisition for the automatic interpretation of spatial data[END_REF]. In particular, she proposes an object-oriented structure where objects are described using a set of attributes and semantic relations. The model learns information on objects by recursively subdividing the training set using an entropy criterion to construct a decision tree that links the input to the target. Thus, machine learning can be used to enrich the initial data and identify patterns to generalize or preserve. For instance, [START_REF] Steiniger | An Approach for the Classication of Urban Building Structures Based on Discriminant Analysis Techniques[END_REF] works on learning to characterize buildings in urban areas. Buildings are characterized according to their geometrical properties and neighborhood, then they are classied into ve categories of urban patterns (inner city, urban, suburban, industrial, and rural), and this characterization can guide the generalization of buildings. Similarly, learning strategy can provide knowledge for road generalization as the classication of mountain roads (Garcia-Balboa and Ariza-López 2008) or their selective omission [START_REF] Zhou | A Comparative Study of Various Supervised Learning Approaches to Selective Omission in a Road Network[END_REF].

Then, strategies for learning orchestrating automatic map generalization using deep learning via the prediction of a sequence of operations emerge. Indeed, the choice of the relevant algorithm or sequence of algorithms for the generalization of a set of an object requires an important understanding of implicit spatial knowledge about objects. Especially for road lines, generalization of bend series, rough parts, individual bends, etc. require dierent generalization algorithms, and the choice of the appropriate algorithm for each part of the entity is an issue [START_REF] Plazanet | Experiments with Learning Techniques for Spatial Model Enrichment and Line Generalization[END_REF]. For instance, [START_REF] Mustière | Abstraction-Based Machine Learning Approach To Cartographic Generalisation[END_REF] describes a process in several steps for the generalization of a mountain road: rst, the road is split into homogeneous parts, then, the characteristics of objects are learned, and nally, these characteristics are used to learn which generalization operator is relevant to apply. Another example is from [START_REF] Burghardt | Automated Sequencing of Generalisation Services Based on Collaborative Filtering[END_REF], who proposes a reinforcement approach for learning a sequence of operations for the generalization of a set of buildings. However, this kind of approach has progressively been abandoned for the agent approach, which allows for more ecient orchestration of map generalization operators.

Finally, machine learning was also experimented with to learn to evaluate generalized maps.

For instance, [START_REF] Allouche | Amalgamation in cartographic generalization using Kohonen's feature nets[END_REF] use a Kohonen selforganization map in order to detect anomalies in patterns and identify regions that need to be generalized; and [START_REF] Harrie | Analytical Estimation of Map Readability[END_REF] develops a mea-sure that learns to t the visual evaluation of a generalized map.

If machine learning usage in map generalization research appears as spares and almost anecdotal in this review of the literature, it is mainly due to the following limitations: the acquisition of data, the extraction of characteristics, and the annotation to create an example set was time-consuming and still challenging. Furthermore, the computational resources in the cartography laboratory were limited.

Today, the context is dierent: expert cartographers are no longer the main source of cartographic knowledge, and today we hope to extract this information directly from the existing maps. The open-data dynamic allows for the acquisition of an important example set of maps at several scales. The computational ability has increased and the learning models have progressed. In particular, deep learning architectures promise to skip feature extraction and learn from raw data.

A.1.3 Map generalization is still a challenging question

The literature review also reveals that research on map generalization is still challenging and useful, even if this question has been explored for years. In one hand, the generalization of topographic maps has been widely explored in NMA, and many operators and orchestration methods have been developed. Thus, it is possible to automate or semi-automate the creation of a satisfactory generalized topographic map in a predened scale range [START_REF] Duchêne | Generalisation in Practice Within National Mapping Agencies[END_REF]). However, some questions about the parameterization, integration, conservation, and sharing of existing code remain important. For instance, (Burghardt, Duchêne, and Mackaness 2014, in Chap. 12, p. 399) formulate the problem this way "How do we standardize generalization components and make them available as interoperable generalization services that could then be combined ? ". On the other side, thematic maps have an increasing usage, and their generalization is rarely explored [START_REF] Raposo | A Change of Theme: The Role of Generalization in Thematic Mapping[END_REF]. The diversity of content and objectives makes the creation of generic generalization rules and operators more dicult, and the generalization of the base map and thematic information have to t together [START_REF] Duchêne | Making a map from thematically multi-sourced data: the potential of making inter-layers spatial relations explicit[END_REF]).

Then, big data and open data streams also involve the multiplication of large heterogeneous data sources, and new generalization techniques are required for the level of detail harmonization and to create multi-representation databases [START_REF] Touya | Vers l'automatisation de la production de cartes[END_REF]. The application of algorithms to big data and large areas is also an issue. Indeed, data partitioning, processes parallelization, and calculation cost for on-the-y cartography are modern issues of generalization directly involved by data multiplications. [START_REF] Touya | Vers l'automatisation de la production de cartes[END_REF] states that another challenge is the inability to collaborate the styling processes and map generalization processes. Indeed, both are often applied in chains; however, they are interdependent: the generalization depends on the chosen symbol, and the chosen symbol can be more or less adapted with the generalization.

He said that a better collaboration of the two-step would make more ecient maps.

Finally, the evolution of map usage is also a shift in map generalization needs:

maps are more and more multi-scale, mobile, and interactive. 1) The optimization of navigation in multi-scale maps requires smooth and coherent generalization through the scales. Indeed, several promising approaches to deal with this problem are investigated: intermediary scale creation [START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF], aware generalisation [START_REF] Girres | Cartographic Generalisation Aware of Multiple Representations[END_REF], continuous map generalization, and interactive derivation from a unique detailed database [START_REF] Oosterom Van | Data Structures for Continuous Generalisation: tGAP and SSC[END_REF]. 2) Map supports widely evolved rst from paper to online maps and then from computer to mobile devices (mobile phones and smartwatches). The cartography on such a device requires responsive and even mobile-rst map designing with a generalization adapted to the reduced space dedicated to the map [START_REF] Ricker | Mobile Maps and Responsive Design[END_REF]. 3) Interactive cartography as its own challenges: (Burghardt, Duchêne, and Mackaness 2014, Chap. 12, p. 398) explains that "building a system that is able to understand a user's needs, and respond with appropriate generalization techniques to produce a tailored map remains a considerable challenge".

A.2 Deep learning

A.2.1 Deep learning principles

Articial intelligence is the eld of computer science that aims to make a machine 

A.2.2 A short history of deep learning

The premises of deep learning appeared with the idea of a neural network [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF], and then in the 1960s with the backpropagation concepts that allow the neuron to learn. In 1979, the rst convolution neural network (CNN) nally made it possible to learn visual patterns within images [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaected by shift in position[END_REF].

The GPU (graphics processing units) development since 1999 allows computers to become faster at processing data and makes the deep learning processes evolve signicantly. Moreover, the increasing use of the internet has favored the creation and sharing of large training sets. 

A.2.3 Deep learning usage towards map generalization

The goal of this section is to provide a quick overview of the current state-of-the-art in deep learning and expose elements that lead us to consider this technique for cartographic generalization.

Some interesting analogies

In this paragraph, we present some successful applications of deep learning that are not directly related to map generalization or even geographic information, but where an appropriate analogy could suggest the interest of deep learning for map generalization.

First, map generalization is often compared with text summarizing [START_REF] Ruas | Les problématiques de l'automatisation de la généralisation cartographique[END_REF] and it is assumed that researchers in map generalization automation could benet from the advancement of these domains [START_REF] Touya | Lessons Learned From Research on Multimedia Summarization[END_REF]. Indeed, video, text or music summarizing aims to extract the main information and structures from a video, text, or music to produce a less detailed but comprehensible new video, text, or music. These tasks, as map generalization are complex cognitive tasks.

They require high-level context understanding, and there is no perfect solution or reference solution: dierent humans can make dierent acceptable summarization or generalization. Finally, the evaluation of summarized media and generalized maps is a dicult task. Thus, map generalization and media summarization have similar issues but dierent objects to process. Recently, the emergence of deep neural network mechanisms capable of understanding the context in a video (such as the recurrent neural network [START_REF] Cho | Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[END_REF]) and attention network [START_REF] Vaswani | Attention Is All You Need[END_REF]) has encouraged the use of deep learning for video summarization [START_REF] Zhao | Hierarchical Recurrent Neural Network for Video Summarization[END_REF]He, Hua, Song, Zhang, Xue, Ma, Robertson, and Guan 2019). Despite these elements, deep learning has been underexperimented for map generalization compared to research on summarization.

On the other hand, map generalization is a graphical problem, and there is a recent trend to use deep learning to solve graphical problems with similarities to map generalization. For example, image compression aims to reduce redundancy in an image and reduce its weight in memory without degrading the information.

As for map generalization, redundancy reduction, and information preservation are the main goals. [START_REF] Yasin | Image Compression Based on Deep Learning: A Review[END_REF] propose a review and comparison of the numerous deep learning approaches for this task. Map generalization can also be compared with style transfer, commonly style transfer is the transformation of an image to correspond to a target style extracted from one or several over images (i.e., photography to painting, manga to photograph, day photograph to night photograph, etc.). Indeed, the goal of a style transfer is to apply another style to an image while preserving the main information of this one. The preservation of information in this task and in generalization is relatively close. For style transfer, the preservation of information means preserving the structure of objects that are salient in the image, while in generalization, it means preserving the shapes, relationships, and organization (structure) of the important geographical objects on the map (and often salient in the map). Convolutional networks [START_REF] Gatys | Image Style Transfer Using Convolutional Neural Networks[END_REF] and GAN [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] have permitted more and more style transfer applications. However, most of the style transfers mainly imply modication in colors and texture, which is not really the goal in map generalization; we rather expect selection or extraction of synthetic information. A more similar example is the style transfer from sketch to clean drawing [START_REF] Simo-Serra | Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup[END_REF] that involves the selection, simplication and smoothing of drawing lines, which are quite similar to line selection in a road network at some scales.

Deep learning and geographic information

This paragraph is a brief examination of the state of the art of deep learning techniques for the acquisition and enrichment of geographic information.

Most research projects deal with the segmentation of geographic objects from an image acquired using remote sensing. The network classies the pixels of the image according to their nature. Therefore, the network can nd objects (e.g., building, village) or make a map of land-use/land-cover [START_REF] Zhu | Deep learning in remote sensing: a review[END_REF]. However, some use-cases that involve other data sources are possible and promising. For instance, Xu, Chen, Xie, and Wu (2017) and [START_REF] Yuan | Exploiting deep learning and volunteered geographic information for mapping building in Kano, Nigeria[END_REF] includes volunteer geographic information to improve the mapping of buildings. [START_REF] Méneroux | Convolutional Neural Network for Trac Signal Inference based on GPS Traces[END_REF] use GPS path for the detection of trac signals that are not visible in aerial images. [START_REF] Kazimi | Semantic sefmentation of manmande landscape structures in digital terrain models[END_REF] and [START_REF] Satari | Extraction of linear structures from digital terrain models using deep learning[END_REF] use the digital elevation model to detect the structure in the landscape. Finally, some attend to learn structure and object recognition with paper map exist [START_REF] Schnürer | Detection of Pictorial Map Objects with Convolutional Neural Networks[END_REF][START_REF] Chen | Vectorization of historical maps using deep edge ltering and closed shape extraction[END_REF].

Even if these works aim mainly at the identication and segmentation of a particular geographic object or structures and, therefore, are located in the database creation step prior to cartography in Figure A.2, some common elements with map generalization problems exist. Indeed, the use of geographic information as input for deep models is common to map generalization and acquisition or enrichment of geographic information. Consequently, the following two issues arise from this analysis:

Geographic information is spatially correlated, so nearby features are more affected than distant ones [START_REF] Miller | Tobler's First Law and Spatial Analysis[END_REF]. The design of a network that respects this principle is the rst common issue [START_REF] Mai | A Review of Location Encoding for GeoAI: Methods and Applications[END_REF]. For instance, [START_REF] Deng | Generalizing Deep Models for Overhead Image Segmentation Through Getis[END_REF] propose to replace the max-pooling principle from CNN with a Gi*Pooling that better takes into account spatial correlation between close pixels. This pooling allows an improvement of satellite scene segmentation, especially to reduce the noise at the border of a geographic object and the detection of small objects, and we believe that this principle could be benecial for most of the learning algorithms that deal with spatial data.

The constitution of the training set is also aected by the characteristics of geographic information. In fact, the detection of graphic objects as well as their generalization require a certain context around each object, and the constitution of the relevant training set is not as obvious as other computer vision problems (Iddianozie and McArdle 2021;[START_REF] Huang | Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[END_REF] (later detailed in Section C.2)

Among the diversity of possible geographic information that deep learning can help to acquire, some not only feed the geographic database, but are also often crucial for cartographic (and even generalization) purposes. For instance, the following spatial patterns with specic cartographic needs can be detected using deep learning: urban morphology [START_REF] Wu | Classication of urban morphology with deep learning: Application on urban vitality[END_REF][START_REF] Yan | A graph deep learning approach for urban building grouping[END_REF], interchanges (Touya and Lokhat 2020), road type (Iddianozie and Mcardle 2021), building shape (Yan, Ai, Yang, and Tong 2020), etc. This detection is a prerequisite for their correct generalization and representation in a map [START_REF] Mackaness | The Importance of Modelling Pattern and Structure in Automated Map Generalisation[END_REF]. Thus, deep learning has shown its potential to solve enrichment tasks, preliminary to cartographic generalization.

On one hand, it has shown a capacity to produce clues for mapping. For instance, [START_REF] Lan | An ANNs-Based Method for Automated Labelling of Schematic Metro Maps[END_REF] employ an articial neural network to predict the directions and positions of labels in a schematic map and Jenny, Heitzler, Singh, Farmakis-Serebryakova, [START_REF] Heitzler | Cartographic relief shading with neural networks[END_REF] use a CNN to predict the shading location on a map. CNN has shown potential for predicting the shape that objects should have in a specic generalized map from their detailed shape building [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF]. Then, [START_REF] Kang | Towards Cartographic Knowledge Encoding with Deep Learning[END_REF] investigate the potential of GAN for this same task on building [START_REF] Du | Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[END_REF] on the coastline. The experiment on the building did not succeed in improving the quality of the predicted images compared to the segmentation approach: some fuzzy/unrealistic shapes appeared and several buildings were not simplied enough, but for coastline generalization, GANs seem to be ecient. Furthermore, in the coastline experiment, the authors propose to segment the study area into samples that maximize the portion of an object represented in each tile without introducing any distortion. All these attempts have shown the potential of deep learning to produce abstract representations from cartographic data and for graphical generalization, but they have not been tested for the generalization of multiple objects.

On the other hand, deep learning has shown the ability to understand the content of a map and its organization (cartographic rules) from an image. Indeed, Touya, Brisebard, Quinton, and Courtial (2020) succeeded to infer scale and content from images of the thematic maps; Hu, Gui, [START_REF] Hu | Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation[END_REF] propose a deep learning approach to enrich the metadata of map images by predicting spatial extents and place names, [START_REF] Zhou | Deep Convolutional Neural Networks for Map-Type Classication[END_REF] learn to classify six styles of maps and thus show the ability to learn map characteristics. Thus, deep learning models are able to learn the content of a map from an image of the map, [START_REF] Wu | GANmapper: geographical content lling[END_REF] try to go further and experiment how a GAN can ll an incomplete map, using the context of the missing area.

Deep learning and cartography

In this section, we explore how deep learning can be used to generate maps. The task of generating an image of a map with deep learning appears with generative adversarial networks (GAN), which aims to create an image from another. In the literature, most of the experiments of map generation with GAN are about generating an image of a map in the style of GoogleMap from the corresponding aerial photograph. The rst models employed for this purpose are designed for a generic image-to-image conversion from paired [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] and unpaired [START_REF] Zhu | Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks[END_REF] dataset. These models are not designed specically for cartography, but generic models that can learn also map conversion, day-to-night conversion, or label-to-scene conversion (Figure A.6).

These models demonstrate GAN's ability to reproduce main characteristics of the map and preserve salient geographic information. However, preservation and representation challenges proper to cartography remain. Thus, several variations of this architecture have been proposed to improve this specic use case and deal with requirements specic to map generation. [START_REF] Ganguli | GeoGAN: A Conditional GAN with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images[END_REF] compare three dierent GAN architectures for paired training sets and experiment with the addition of a style loss (from the style-transfer network). Chen, Chen, [START_REF] Chen | SMAP-GAN: Generative Adversarial Network-Based Semisupervised Styled Map Tile Generation Method[END_REF] propose to rather use a semi-supervised learning strategy to pre-train the model on rich unpaired samples and ne-tune it on limited paired samples. They also propose an improved loss function based on the image gradient that aims to guarantee the preservation of topological relationships. [START_REF] Zhang | An Enhanced GAN Model for Automatic Satellite-to-Map Image Conversion[END_REF] experiment the interest of external geographic data as implicit guidance, for example, by adding an image of GPS traces to the input to improve the shape of generated roads. Fu, Gong, [START_REF] Fu | Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping[END_REF] propose to resolve the problem of geographic object distortion in GAN predictions with a geometry consistency loss (eq. A.1). Indeed, they state that the model G must not be sensitive to a geometric transformation: the prediction of the same transformation t of any image i must look like the prediction transformation.

G(t(i)) ≈ t(G(i)) (A.1)
These publications experiment with end-to-end map generation for a dened map function and scale, but the output is not a generalized map, as the target and input have a similar level of detail. Very few other experiments have explored other map generation tasks. [START_REF] Li | MapGAN: An Intelligent Generation Model for Network Tile Maps[END_REF] have shown that it is possible to similarly convert aerial images into other styles without scale conversion. They used an additional classier to learn dierent styles of maps. In a similar way Chen, Yin, [START_REF] Chen | Generating Multiscale Maps From Satellite Images via Series Generative Adversarial Networks[END_REF] tries to learn this conversion (aerial to google map) at several scales at once in order to benet from the similarity between scales to learn how a map looks, and Henry, Storie, Alagappan, Alhassan, Swamy, Aleshinloye, Curtis, and Kim (2019) train a deep neural network to generate land use map.

Finally, [START_REF] Kang | Transferring Multiscale Map Styles Using Generative Adversarial Networks[END_REF] propose to generate maps from raw symbolized OSM data instead of aerial images. The dierence in information between input and target allows the authors to note some generalization transformations to avoid symbol coalescence: selection, enhancement, and typication. All these examples include more complex cartography mechanisms and are closer to map generalization.

A.3 Thesis objectives

A.3.1 Needs in map generalization automation

This literature review has shown that map generalization remains an interesting question with unsolved issues. However, interest in this eld seems to decrease. In its history, research on automating map generalization has often followed a dynamic driven by innovation in computer sciences and articial intelligence (e.g., with MAS for orchestration, computational geometry for shape simplication, etc.). We believe that map generalization can benet from the recent deep learning stream. In particular, the deep learning approach can bring solutions to the following issues:

Map generalization must deal with various heterogeneous data. Deep learning is adapted for big data management, and learning is capable of extracting common information from several data sources. Moreover, both thematic map generalization and multi-source data integration are problems of data source combination, and deep learning is able to easily deal with such problems.

On-the-y and parametrization of map generalization are challenging. In deep network setting, several parameters are required; then during the calculation, the parameters are no longer required, and the models can be adaptive. Thus, applying a deep learning-based generalized topographic map generation trained model would no longer raise any parametrization challenge.

Moreover, training such a model requires important computation and time resources, but then it is easy and quick to apply to new data even on-the-y.

Multi-scale map creation is a challenging task. User requirements for map generalization are dicult to handle. As deep learning is able to understand implicit knowledge in images provided by users with specic requirements and generate images with similar characteristics, an approach to on-demand mapping would be to predict the desired map style from user interaction with examples and then learn to t the user data to the desired style and generalization.

This thesis is one of the rst studies on deep learning-based map generalization. Numerous examples of generalized and detailed maps are available for learning.

As summarized in

However, the use of deep learning for map generalization presents at least the following limitations.

The image representation seems to be the main approach to learn about spatial data in deep learning. However, the use of images to represent spatial data is known to be less ecient in map generalization and may involve loss of information, as shown by the current inferiority of raster-based generalization methods.

Deep learning models are complex to parameterize. Moreover, they may need adaptation to deal eciently with spatial data.

Deep learning intern mechanisms are hidden, and unexplained results can be considered unreliable or dicult to integrate into semi-automatic processes.

Training in the deep learning model requires powerful computer materials and high computational time. Such resources can be dicult to obtain for researchers in cartography.

Deep learning has computational limits and can especially be economically, technically, and environmentally unsuitable.

Moreover, it is part of the following moonshot motivation of articial intelligence:

"Design[ing] a software agent that takes a user's GIS-related domain question, understands how to gather the required data, how to analyze them and how to present the results in a suitable form" (Janowicz, Gao, McKenzie, Hu, and Bhaduri 2020, p. 631). Indeed, cartography (and consequently map generalization) is still the most suitable solution for presenting to the human user geographic information or phenomena.

A.3.3 Approach

This thesis aims to contribute to the research on map generalization automation. To explore the main issues in the deep learning model setting for map generalization:

The formulation of an adapted learning task, The practical model implementation (including the architecture of the neural network, the training set, and the design of the learning objective).

To explore the potential and compare deep learning approaches for common map generalization tasks:

Preserving spatial relations while simplifying, Learning complex geometric transformations, Avoiding symbol overlap in a map.

To bring out important discussions on the future of map generalization with deep learning, especially on the: 

B.1.1 Map generalization as an image problem

Even if a raster-based approach for automated map generalization is rarely explored and is said to be limited to dealing with spatial relations, all the information for map generalization are implicitly present in a map image and generalization is mainly a graphical problem.

A map is a representation or medium of communication [START_REF] Lapaine | Denition of the Map[END_REF]; this representation is perceived by the user as an image printed on a computer, a mobile device, or a paper map. A human can extract most of the knowledge required for map generalization from this image, we can see crowded and free areas, spatial relation and structures:

Crowded and free areas, these areas are essential in map generalization, crowded areas need generalization, and may contain many conicts. Free spaces are also important for hosting displaced spatial information that cannot be represented in its place.

Spatial relations, ask a human to describe a map: the description may look the following: "the church is in the park at the north of the river, etc.". Spatial relations are the main elements of this description.

Main structures, the psychology research around Gestalt Theory has shown that humans perceive structure (especially using the principle illustrated in The usability of map images despite the raster representation shows that the map information is implicit in the image representation and that vector encoding seems to be not a necessity for the human perception of the shape, nature, or relationships between geographic objects. Moreover, in cartography history, cartographers were able to draw a generalized map from a detailed one only. So, why would not an advanced articial intelligence mechanism be able to deal with implicit data in an image, such as deep learning?

In computer science, images are encoded using a matrix of pixel values of size height × width × channel. A classical colored image has three channels for the Red, Blue and Green values, each color displayed on the computer is a combination of dierent levels of these three colors. Other image formats are possible using a dierent range of pixel values and number of channels. In an image approach of deep learning for map generalization, two strategies are possible: 1) directly using maps that are images (e.g. raster maps) and 2) constructing map-like images from the vector geographic database. We believe that the second strategy Has to be preferred as it allows one to set up exactly the desired information, generalization, and style in the training example, and making generalization more adaptive and exible. green, e.g., RGB(146,226,133), this rule is not prioritized in case of conicts with river roads or building representation"). Some examples of this construction for the creation of a deep learning dataset are detailed in Chapter C.

B.1.2 Map generalization as a graph problem

The graph representation is particularly appreciated for map generalization, as this structure allows the generalizers to model the spatial relations [START_REF] Regnauld | Spatial structures to support automatic generalisation[END_REF], and especially, how concepts such as isolation, connectivity, adjacency, and neighborhood inuence map generalization [START_REF] Mackaness | Use of Graph Theory to Support Map Generalization[END_REF]. The following paragraphs present the three most common graph representations.

Network-graph In geographic information, graphs are often used to encode physical networks, such as hydrographic or transportation networks. They allow the calculation of paths, ows, measures of centrality, etc. For instance, [START_REF] Thomson | A Graph Theory Approach to Road Network Generalisation[END_REF] use graph techniques, such as the shortest path between network nodes and spanning trees, to provide a solution for deriving measures of the functional relevance of network road segments. Variations of such graphs for a road network representation are possible: the primal graph [START_REF] Porta | The Network Analysis of Urban Streets: A Primal Approach[END_REF] where each vertex represents a segment and connected segments are linked, and the dual graph (Porta, Crucitti, and Latora 2006a) where each vertex represents a named street and a link an intersection.

Relation-graph Spatial relations are primordial in understanding maps and their identication is central in map generalization. [START_REF] Touya | Modelling Geographic Relationships in Automated Environments[END_REF] state that: as a prerequisite to developing relation-driven generalization, we need to formalize spatial relations. The nature of relations can be varied and includes topological relations (containing, intersection, adjacency, etc.), proximity relations, and relative position and relative orientation. [START_REF] Egenhofer | A mathematical framework for the denition of topological relationships[END_REF] propose one of the rst models to describe the topological relations between two objects using the existence of the interior and frontier intersections (see In the literature, the construction of structures like the Voronoï diagram is the basis to identify neighboring [START_REF] Hangouet | Approche et méthodes pour l'automatisation de la généralisation cartographique[END_REF]. Then, it is used to construct triangulation that reects the proximity, to identifying conicts and process displacement [START_REF] Ruas | A method for building displacement in automated map generalisation[END_REF]Sester 2000a), or typication [START_REF] Regnauld | Contextual Building Typication in Automated Map Generalization[END_REF]. Thus, in map generalization graphs are often used to describe proximity (Zhang, Ai, Stoter, Kraak, and Molenaar 2013) or relative position [START_REF] Bader | Building displacement over a ductile truss[END_REF] of buildings during or after their generalization. However, the nature of possible relations 1 Readers can make the test and describe the map in the Figure B.4, they may say that the house is in the forest (topological relation), at the north of the river (relative position), near the road (proximity relation), etc. in a map is heterogeneous and is not limited to proximity, Iddianozie and McArdle (2021) experiment how a graph neural network can deal with both homogeneous (which describe only one kind of relation) and heterogeneous (which describe various relations between diverse objects) graphs.

Shape-graph Finally, graphs can be used to describe and encode the structure of vector objects. For instance, [START_REF] Harrie | Generalisation Of Vector Data Sets By Simultaneous Least Squares Adjustement[END_REF] uses a graph issued from the triangulation between points of geometry to describe and generalize the object shape with an optimization approach, [START_REF] Sester | Knowledge acquisition for the automatic interpretation of spatial data[END_REF] proposes an object-oriented structure with the relation between pair of objects, for the description of arbitrary geometric 2Dobjects in a learning approach. And [START_REF] Gauri | Généralisation automatique pour la prise en compte de thèmes champ : le modèle GAEL[END_REF] denes submicro object for geographic object shape generalization. It is composed of points in an object, linked by segments organized in triangles, each of them has constraints and is used in an agent system. However, such a formulation is rare in the literature, as vector-based approaches are often ecient enough to resolve object-shape problems. A such graph is interesting in our case where the vector representation is not yet compatible with deep learning, while the graph representation is. Yan, Ai, Yang, and Tong (2020) propose a rst simple graph representation for deep encoding of the building shape, each point of the shape outline is a vertex of the graph, and the connected points Once the geographic information is encoded in a graph, a data model is required to store it on a computer. Graphs are mathematical structures of objects composed of objects (nodes) and relations between pairs of objects (edges). Traditionally, object-representation is privileged due to its completeness and eciency in terms of storage space [START_REF] Regnauld | Spatial structures to support automatic generalisation[END_REF]. This representation stores for each node its coordinates, its feature, and the connected edge, for each edge a feature list, a starting and ending node. Finally, a graph is an edge and node list (Figure B.6). 

B.1.3 Other approaches for deep learning-based map generalization

Map generalization can be a sequence problem. On one hand, shapes of a geographic object can be encoded in a sequence of elements with a xed structure (coordinates, attribute, etc.). This representation is done the following way: an origin point and an order are dened, then each point of the shape is stored in a sequence. This representation is more natural to encode the shape of the linear individual object that has a natural direction (waterline), but can also be applied to other objects with arbitrary choices. On the other hand, predicting a sequence of operations (or objects to deal with) for map generalization can also be an object of interest in deep learning. The interest in such representation is the large quantity of deep neural networks designed for sequence from research on text and video learning.

Map generalization can be a video problem A video is the ordered compilation of several images over time. A multiscale map can be seen as a similar structure:

it is the compilation of images over the scale. This representation is based on the same principles as the image, since it is a succession of images. Moreover, it allows us to represent and learn from multi-scale phenomena.

Map generalization with an ad hoc tensor. Finally, we could imagine using none of the approaches presented above and dening an ad hoc tensor for map generalization. Indeed, raster, sequence, graph, etc. are particular examples of tensors.

For example, a point cloud can directly be encoded as the tensor of point coordinates and attribute and would be the simpler representation for POI simplication.

This representation is easy in point, as the points have a xed size representation, contrary to other geometries [START_REF] Knura | Deep Learning for Map Generalization: Towards a new Approach using Vector Data[END_REF].

B.2 Deep learning tasks and map generalization

Deep learning allows various tasks, from classication to generation, that produce a new object with the same or even a dierent structure as the input object (e.g.

predicting a text that describes the content of an image). In the following sections, we review some common deep learning tasks that can be used for map generalization.

B.2.1 Classication and map generalization

Classication is already a classic task in machine learning for data enrichment prior to map generalization. Similarly, deep learning classication can be used for this task. Indeed, data enrichment is essential in map generalization automation, as the information on object structure and hierarchy has to be explicitly known to apply some generalization algorithms or orchestrate them.

Classication and data enrichment First, image classication could contribute to data enrichment prior to map generalization. For example, a classier can detect images containing objects that need a specic generalization (e.g. highway interchanges [START_REF] Touya | Deep learning for enrichment of vector spatial databases: application to highway interchange[END_REF]). It can also be used to infer the content and scale of a map (Touya, Brisebard, Quinton, and Courtial 2020;[START_REF] Zhou | Deep Convolutional Neural Networks for Map-Type Classication[END_REF] and guide its generalization. However, the image representation is often not the most relevant for such a problem, as it classies an image that contains objects instead of the object (e.g. for interchange detection we not only need to know if the interchange is in the map, but also where it is).

Complementary, graph classication can also be used on shape-graphs, networkgraphs, and relation-graphs for data enrichment. The classication on a shape-graph (or network-graph) would provide information on the shape of the object itself (or on the structure of the network itself ). For example, Yan, Ai, Yang, and Tong (2020) use the graph representation of buildings to encode their shape and learn a shape label (L-shape, T-shape, etc.), this label is useful to determine the most adapted shape generalization algorithm for each building. The classication of relation-graphs can be used to obtain information on a group of objects. The same author then uses a Delauney triangulation to describe relations between buildings in an urban block, then a classication model allows to determine if the block has a regular pattern or not [START_REF] Yan | A graph deep learning approach for urban building grouping[END_REF]. This grouping is essential for generalizing groups. In a similar way, the classication of other objects like sequence, etc. could also be used for data enrichment (predicting features on an object represented by a sequence) or to guide map generalization (predicting if an operator sequence is adapted for the generalization of an object).

In general, classication can be used to obtain global information on the content of the cartographic database. Even if a result at the level of graph or image is often not sucient, this demonstration is another clue to the feasibility of our thesis. In fact, the experiment's success with learning to classify images and graphs for data enrichment has shown that deep learning can understand some underlying knowledge for map generalization (e.g., there is a complex situation, the, the image is in urban area, the graph represent a complex building, etc.). With the hypothesis that deep neural networks (and especially convolution networks) are able to understand and encode this underlying knowledge, we expect to design models that learn map generalization without explicitly enriching the data before generalization. Finally, the classication for data enrichment is not a new possibility oered by deep learning (it was already possible with feature-based machine learning). That is why in this thesis we do not explore this approach much in detail and focus on the next tasks.

Classication and evaluation Classication can also be used for the evaluation of map images, as it could classify map images between legible ones and those that require map generalization (not yet studied in the literature). During this thesis, we do not experiment with this approach alone, but the map generation experiment includes a classier that learns if the predicted map looks like a generalized map during the map generation approach (see Chapter F).

B.2.2 Segmentation and map generalization

Segmentation in general is the fact of dividing a structure into a subset consistent with common characteristics. For example, in image processing, segmentation allows one to construct pixel groups. So the segmentation output is another image of the same size as the input, where the pixel value describes the group to which it belongs. In graph learning, the term segmentation is not common; however, node classication is a sublevel segmentation that allows us to group nodes in subsets (see Segmentation is common in image-based deep learning to detect objects in a scene photograph. This section describes how it can be used for map generalization.

Segmentation and data enrichment Segmentation models are often used in remote sensing images to extract the location of an element. Similarly, segmentation can be used to detect a particular element on an image of the map and contribute to data enrichment. This is a more precise way for data enrichment than image classication [START_REF] Touya | Deep learning for enrichment of vector spatial databases: application to highway interchange[END_REF] because it is an enrichment at the pixel level rather than the image level. Especially, segmentation of conict areas that need correction or generalization (rather than object) in the image is interesting, as it allows evaluating, guiding, or post-processing of map generalization (as illustrated in Figure B.9).

Similarly, graph segmentation allows for class prediction at the node level. Graph segmentation (or node classication) can be applied to relation-graphs to predict information on an object regarding its characteristics, its relation with other geographic objects, and even the characteristic of its neighbor. This task is primarily used for data enrichment: for example, to classify buildings that are part of a structure or group (as we do for alignment in Chapter D). Then, it allows for map rendering or operation prediction. For instance, it allows for the prediction of object selection with labels "kept" and "deleted" (as we did for the road network in Chapter E). However, a class for other operators is possible, and we could predict if an object needs smoothing, simplication, schematizing, typication, etc.

Segmentation and shape prediction Furthermore, the segmentation models can be used to predict a shape that is not in the input image when all the clues for this segmentation are. In particular, an approach is to predict the shape of an object on a target generalized map from an input detailed map. During our thesis, we experimented with this technique for mountain road shape generalization (more details in Chapter E) while other authors experimented with it for buildings [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF] and coastline [START_REF] Du | Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[END_REF].

The simplication of isolated polygons, such as buildings, seems more ecient than line simplication, which can suer connectivity alterations due to resolution issues.

Segmentation on a shape-graph can also allow managing the shape of an object by predicting if a point has to be kept or not, but line simplication only based on point selection is often not the most appropriate for map generalization.

B.2.3 Regression and map generalization

Regression models are often similar to classication or segmentation models, but the output is not a class in the set of possible classes but a real value. At the object level, they allow models to rate rather than label objects (images, graphs, pixels, nodes, etc.). Continuous values are more practical for some map generalization steps, especially evaluation and shape generalization.

Regression and evaluation Due to the continuous characteristic of prediction, regression models are more ecient for generalization evaluation and can be used to predict at which level the image is not legible, contains overlap, preserves information, looks like a map, etc. These techniques can also be used to predict information on object generalization, such as clues of the desired level of detail or scaling.

Regression of displacement and deformation Moreover, regression on the nodes of a graph can be used to predict generalization of an object. The model the predicte a new position (X,Y) or a displacement (distance and direction). Once these values are predicted, the reconstruction of the vector with the new position for each point may be the generalized shape of the object (Figure B.10). This approach as well applies to the individual building deformation (using a shape-graph), as to the object displacement to avoid coalescence (using a relation-graph). For instance, the building displacement inside a block to avoid coalescence could be resolved by a model trained on a relation-graph that describ relativ posisiton of roads, buildings and rivers. 

B.2.4 Image generation and map generation

Finally, one of the most promising deep learning tasks is its ability to generate images. Indeed, the map is an image; thus, we hope that deep learning will be able to generate an image of the generalized map. Various image generation networks have been proposed to produce images of a map from raw data, such as aerial images [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] or symbolized OpenStreetMap (OSM) data [START_REF] Kang | Transferring Multiscale Map Styles Using Generative Adversarial Networks[END_REF]. In this thesis, we test the naive approach to learning complete map generalization using a generative network in Chapter F.

B.2.5 Approach combination

All these formulation proposals have limitations, and we believe that a combination of approaches instead of a unique approach could be benecial. For example, a model able to combine graph and image based learning [START_REF] Yang | Graph R-CNN for Scene Graph Generation[END_REF] enables to deep scene description and could be adapted for a deeper analysis of relation in a map.

Other approaches that combine tasks within a single representation are also promising. For instance, the shape prediction using the combination of shape-graph segmentation and regression could achieve better results than individual formulations. Indeed, segmentation is used for predicting if a node has to be kept and structure simplication, then regression predicts the position of the node in the gen-eralized shape. Thus, the combination faces both the limitations of the structure of regression and the limitation of the position of the segmentation.

Similarly, in Chapter G, we propose an approach for generalized map generation that combines the segmentation of the generalized shape of the object and learning about map rendering through a generation approach.

B.2.6 Other tasks

Finally, our review of tasks that deep learning can resolve is not exhaustive and we mostly mention the most common and promising formulations. However, a deeper exploration of the deep learning capacity could provide highly innovative perspectives.

Text generation from an image (Kinghorn, Zhang, and Shao 2017) could be used for map description and even map requirements description.

Text-to-image models such as Dalle 2 are for now very bad at predicting images of a map but could be reworked to make possible the generation of maps from a description and then for on-demand mapping.

Video generation (Rathore, Nagar, Arora, and Jawahar 2019) is promising for the generation of smooth transitions between scales. Indeed video summarization and generation often learn together and enable to create a summary of a few images from a video, on the contrary, generating a video from a few images (see Figure B.11) applied to map images at several scales such approach would allow generating smooth transition between the image of the map at dierent scales.

Scene-graph generation [START_REF] Yang | Graph R-CNN for Scene Graph Generation[END_REF] extracts relation between object in an image (e.g. in this image a man is on a bike, on the street), and could be used to create schematic maps from map images or be combined with map generation to enrich the learning of generalized map generation.

The prediction of a link in a graph is often used by recommendation algorithms.

For a node, it predicts which other nodes in the graph it is most likely to be linked to. This approach can be used for generalization recommendations, for example, if there is a change in the level of detail of this element and which other elements may be aected.

2 https://huggingface.co/spaces/dalle-mini/dalle-mini information levels and will be able to perform more complex tasks. The structure of the network also has an impact on the robustness of the model. For example, dropout layer randomly omits a part of the weight at each iteration of the training, this induces randomness in the information encoding and avoids the model overtting. In deep learning, as in life sciences, the function of a neuron is to transmit information. In fact, a neuron is a bounded parametric function of the following form (eq. C.1) with the input x a tensor with n elements, w i the weight, w 0 the bias, and f the activation function.

y = f (w 0 + n i=1 w i × x i ) (C.1)
Initialization The model has initial weights that are often randomly dened. This initialization is one of the reasons for the non-determinism of deep neural networks 1 .

The random choice is often performed using a Gaussian or Uniform distribution between small/near zeros values, [START_REF] Goodfellow | Deep Learning[END_REF]:

The choice of Gaussian or uniform distribution does not seem to matter very much but has not been exhaustively studied. The scale of the initial distribution, however, does have a large eect on both the outcome of the optimization procedure and the ability of the network to generalize.

However, choosing a non-random point of departure can be benecial when the model has already been trained in other use cases. In fact, using the weights from Iterations Learning is processed by iteration. Each iteration shows the model a certain number of samples (grouped in a batch) and complet the optimization for this batch. The use of bach allows computer to parralelize calculation as optimizaton is performed for several image at once, its size aects the calculation time and memory

required. An epoch is reached when all batches have been seen once. The learning often stops when a certain number of epochs is reached. However, this number 1 The model will be dierent each time it is trained. has to be adapted. If it is too small, learning may not be nished and the results may be poor. On the contrary, when it is too large, the model may overt the exact distribution, but is unable to predict a relevant result for any unseen sample.

To avoid over-tting we have to stop the training at the right time (when the loss converges?); this moment is usually determined empirically.

Learning objective The learning objective (loss function) is the function that measures the deviation between model output and expected result. It is calculated for each prediction and optimized at the end of each iteration during training. An adapted loss function can improve learning. The objective function is basically based on a distance between the prediction Ŷ and the target Y (both composed of n elements). For example, to compare two images, a measure derived from the least absolute error (L1) and the least square error (L2) (eq. C.2) can be used as a loss.

L2-based losses are often preferred, as they generally perform better; however, it is more sensitive to outliers and can produce less satifying results on some datasets.

The choice of an adapted learning objective for map generalization is important and

detailed detailed in Section C.1.4. L1 = n i=1 Y i -Ŷi ) L2 = n i=1 Y i -Ŷi 2 (C.2)
Optimization Several optimization methods (optimizers) exist that dene how the weights are adjusted. At each iteration the optimizer is responsible for changing the weigth values (w i ) to minimize the loss function. The choice of an optimizer aects the speed and accuracy of the training. The learning rate provides a scale of how much model weights should be updated at each iteration. The rst common optimizer is gradient descent. It is dened as follows: let g the objective function be some continuously dierentiable real function. In this method a xed step size, α is chosen and used with the derivation of the loss function (that gives the direction of the functions slot) to determine the new value of weight (eq. C.3).

w i = w i -alpha * ∂g(w) ∂w i (C.3)
This strategy is long and not very adapted for not convex functions. So, several adaptations from this method have been proposed. For instance, the Stochastic Gradient Descent (SDG) uses randomness to reduce computation time. At each iteration the optimization is made for only a small portion of the data, thus, the path for reaching a minimum is noisier, and more iterations are needed, however the time for computation each iteration is reduced. Today, the most popular optimizer is the adaptive moment optimizer (ADAM); unlike the SDG, which maintains a xed learning rate during training, it updates for each weight individually. It estimate the rst and second moment of the gradient using the exponentially moving averages of the gradient m t and of the square gradient v t at iteration t (see eq. C.4, β 1 and β 2 are hyper-parametres and g t is the gradient from eq. C.3, v 0 and m 0 both are initialized at 0).

m t = β 1 m t-1 + (1 -β 1 )g t v t = β 2 v t-1 + (1 -β 2 )g 2 t (C.4)
Then it introduces a bias correction that consistes in dividing m t (resp. v t ) by 1 -β 1 (resp. 1 -β 2 ), and use the corrected moving average to updates weights (see eq. C.5, with ϵ a xed small value to avoid division by zero).

w t = w t-1 -α mt √ vt + ϵ (C.5)
This optimizer is often preferred as it is faster to compute, requires low memory, and less tuning. However, it is most likely to produce a model that does not t the data.

C.1.2 Some deep neural architectures for map generalization

The goal of this section is to give some examples of deep neural networks and to identify why they are suitable or not for map generalization. Considering the diversity of deep learning models and applications, we choose to focus on the models able to resolve some formulations expressed in Chapter B.

Convolutions neural networks for image based data enrichment Convolution neural network are models able to learn image based tasks. We hope to use the convolution neural network to learn data enrichment and shape simplication for map generalization (see Chapter B). A convolution is an operation on matrix (and images represented as a matrix) that uses a kernel (small matrix with a predened value) to reorganize the patterns in an image (such as edges, textures, object parts, etc.). This kernel is sliding over the input image (as illustrated in 2015). All these improvements have contributes to make CNN able to extract various implicte information from images in general. We think such model would also be able to understand implicite knowledge from image that represent geographique information and particulary maps that are full of relations between pixels.

In parallel, fully convolution networks were developed for image segmentation [START_REF] Long | Fully Convolutional Networks for Semantic Segmentation[END_REF], they allows to predict a classication of pixels in the image. [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF] compare two of them for building generalization: a U-net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] and a residual Unet [START_REF] Zhang | Road Extraction by Deep Residual U-Net[END_REF]. Both models have shown promising results and "the target is x" and Ŷ (x) the probability of the event "the prediction is x". This measure can be biased in case of imbalanced classes whereas Dice D is prefered. The Dice coecient is based on the intersection of the set of predicted elements Y in one class and the set of elements Ŷ in this class in the target (eq. C.8). The objective is to maximize this coecient.

H = - x Y (x) log Ŷ (x) (C.7) D = 2|Y ∩ Ŷ | |Y | + | Ŷ | (C.8)
These measures compare values element by element and summarizes pixel-level dierences; it can be misleading in several cases including map generalization. Figure

C.6 gives an example of this problem for an image of a road: the target generalization avoids the proximity conict between the two roads by displacing the road to the right and enlarging the turn of the road at the left. In contrast, the 'good' prediction does not displace the right road and attenuates the bend, even if this generalization is relevant and correct, the measure would really badly evaluate it. On the contrary, the "bad prediction" has many road pixels common with the target but is not good at all. The problem is the following: several dierent generalizations can be good, errors in some pixels are more important than others, and the overall aspect of the prediction is more important than the local value of the image.

Figure C.6: An example where pixel-level loss is not adapted for map generalization.

Thus, there is a need for an appropriate measure of prediction quality, that is not based on pixel level or that seeks to measure the specics of map generalization for objective function denition (see section C.1.4).

Models for map generation

Several strategies for image generation are possible. The two most common are style transfer and generative adversarial network (GAN), both based on the combination of several CNNs to allow the generation of the desired image.

On one hand, style transfer networks are composed of two CNNs: one that extracts the content from the source images and one that extracts the style features from the source images [START_REF] Gatys | Image Style Transfer Using Convolutional Neural Networks[END_REF]. Then it applies the style of an image to the content of another image. Style transfer approaches are not really adapted for map generalization, as it is not only a style issue but also a content one.

The content has to be simplied to make the style applicable (see A generator is a CNN that derives an output from the the input image using a random noise z.

A discriminator is a classier that assesses whether an image is false or a real target image. The loss of a GAN includes a similarity measure that compares the prediction and the target using the loss L1 or L2 (or the input and reconstruction in the case of an unpaired circular model like CycleGAN or DualGAN) and an adversarial loss that investigates the overall credibility of the prediction, compared to that of the target.

For x and y the associated target, G(x, z) is the generator prediction, the adversarial loss is the sum of the probability of fooling the discriminator E[log(1 -D(x, G(x, z)) and its probability of correctly classifying the target E[logD(x, y)] (eq. C.9).

L cGAN = E[logD(x, y)] + E[log(1 -D(x, G(x, z)))] (C.9)
There are mainly two types of GAN: those that can deal with paired images [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] and those that deals with unpaired images 2 [START_REF] Zhu | Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks[END_REF][START_REF] Yi | DualGAN: Unsupervised Dual Learning for Image-to-Image Translation[END_REF][START_REF] Gan | Triangle Generative Adversarial Networks[END_REF]. Paired images mean that one example is made up of an input image with the corresponding output while using unpaired images means that two independent example sets are used: a set of good input images and 2 GANs designed for paired images are often called supervised and those for unpaired unsupervised, even if it is not properly unsupervised learning as the output is described. a set of good output images without matching both (paired and unpaired image are illustrated in Figure C.8). Paired examples often allow learning some features that unpaired example do not when input and target are similar. In an unpaired approach, the learning objective is less to reproduce the operation of automatic map generalization but more on producing image with the aspect of a the generalized map. This approach is preferred when input and output are very dierent or when it is dicult to nd paired data. For the use case of map generalization, paired learning will learn to link the detailed and the generalized map, while unpaired Models for graph problems.

Graph neural networks (GNNs) are deep neural networks that are capable of dealing with graphs as input. Diverse approaches have been explored to extend deep learning techniques to graphs. However, the graph structure is less regular than an image, and the interdependence between objects is complex. Graph autoencoders (GAEs) encode nodes/graphs into a latent vector space and reconstruct graph data from the encoded information.

For geographic information, the graph convolution network (GCN) is mainly used, it is a convolution graph neural network that denes a graph convolution using the node attribute matrix X and the adjacency matrix A (these notions have been presented earlier in this thesis, see FigureB.7). For a layer l, the convolution result is the matrix product of the adjacency matrix A with the previous layer and a weight matrix W (eq. C.10). The previous section has shown that there is a large diversity of models, and, at rst sight, very little information allows us to determine whether a model is adapted for a dened use case. This section tries to provide guidelines for the choice of models.

H(0) = X H(l + 1) = σ(A.H(l).W (l)) (C.
We explore the following approach: 1) choosing an existing model, and, eventually,

2) adapting it.

Re-using a model from the multitude of existing models

Once the geographic information representation and task have been chose (see Chapter B), it is possible to identify model for this task with this kind of data. Moreover, many generic models exist (i.e. designed to resolve the same task in diverse use cases). For instance, pix2pix [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] is designed for a generic image-to-image task and can be trained for many tasks. However, choosing the best model for our task is not easy. The latest published model is not always the best. A model can be the best on one dataset and not adapted at all for another, even if the new task looks similar. Finally, for this example, the models are compared using accuracy; however, evaluating the task is not always as simple as classication. For instance, the assessment of the image generation network is an issue, since it is dicult to dene a distance to a good solution. Thus, the comparison of architecture is tricky, and it is impossible to determine a priori if an architecture will work for our use case (e.g.

can an architecture capable of digit recognition learn scale recognition?).

Very few models have yet been applied to use cases similar to map generalization, so how do we make sure that we choose an adapted deep neural network? Our strategy during ourexploration was based on two ideas:

1. Analogies and common characteristics: If a network has been successfully applied to a use case with similar or common characteristics, it is most likely to be adapted. For instance, (Simo-Serra, Iizuka, and Ishikawa 2017) designed a network capable of learning the image-to-image conversion from sketch to drawing. This use case is very similar to mountain road generalization, as line smoothing, simplication, and typication are required. Furthermore, this model is robust and has good transferability due to the semi-supervised structure, so we think that this model could be adapted for the generalization of the mountain road shape (see Figure C.2).

2. Ability criteria: we determine a list of criteria to determine if a model is likely to be adapted. Our list of criteria includes abstraction ability, interpolation ability, preservation ability, transferability, spatial ability, variability, and gluttony, and is discussed in greater detail in the following paragraphs.

Abstraction, or interpolation ability Usually two main types of networks are adaptable for map generalization: those able to interpolate and abstract. On one hand, models for interpolation (e.g. colorization, super-resolution, terrain generation (Guérin, Digne, Galin, Peytavie, Wolf, Benes, and Martinez 2017), etc.) convey the idea that deep neural network can do data enrichment. On the other hand, map generalization is an abstraction task, and a deep learning experiment that makes data abstraction may be adaptable to the generation of a generalized map. For instance, [START_REF] Kang | Transferring Multiscale Map Styles Using Generative Adversarial Networks[END_REF] mentioned during their experiments on mapstyle transfer, that some abstractions are learned by GAN models, and with a specic dataset, it would be able to achieve map generalization.

Preservation Another required aspect of a network is the ability to preserve input information. For example, in image generation, a model with the output images really dierent from the input ones would probably be un-adaptable for map generalization, where maximum information preservation is required. In map generalization, the stringency of desired preservation is varying according to the use case and the scale gap. Therefore, a network with an adaptable level of preservation could also be benecial.

Transferability Deep learning is trained on a set of examples, its ability to be applied to other situations is called transferability 3 . This ability is really important in the case of geographic data, where we want to apply a model train in a geographic area to a large region sometime in another country. Moreover, application to other map scales and styles can be hopeful if the model has good transferability. This problem traditionnaly exists in other map generalization process [START_REF] Touya | Le Modèle CollaGen: collaboration de processus automatiques pour la généralisation cartographique de paysages hétérogènes[END_REF].

Spatial-ability Most models are not designed especially for spatial data. An encouraging characteristic would be that the model already solved spatial problems i.e., problem where the localization and geometry of the data have an important role in the problem solving. In the absence of such a test, it does not mean that the model cannot deal with spatial data, but the spatial ability cannot be evaluated. Then, some networks are designed especially for geographic data and include elements 3 Generalization-ability can also be used to describe this notion but in this thesis, we prefer transfer-ability to avoid the confusion with map generalization. Variability Some models are more or less deterministic (especially image generation models). An important variability is particularly adapted for the use case where several dierent predictions can be good and, in the end, the user choice is suitable.

This can be the case for map generalization, e.g., in a perspective of generalization for on-demand mapping, users can prefer one variant of a map. However, this variability is also a limitation for model evaluation, and if the reconstruction/assembly of consecutive image tiles is required, the homogeneity of predictions can be required.

Gluttony On one side, models have dierent learning data requirements; some need thousands of examples to learn, while others need only hundreds. On the other hand, map generalization tasks also have dierent numbers of possible examples. For instance, the detection of ring roads, for simplifying their generalization cannot be performed using a model that requires a large amount of examples as such structures are rare in maps, and few-shot models may be most adapted [START_REF] Potié | When is a Ring Road a 'Ring Road' ? A Brief Perceptual Study[END_REF]. However, for map generation, numerous maps exist, and even a gluttony model can be adapted. Therefore, the gluttony of the chosen model must be adapted to the generalization task.

Adapting a model

In the previous section, we describe methods to ensure that a chosen network is adapted for map generalization. However, in reality, it is not probable to nd a model that meets all our criteria and has no specic limitation. Thus, the development of an improved or adapted network may be required. In this section, we explain how we can adapt a model by successive modications of an existing model. In particular we can propose adaptation of the following elements:

Settings The rst adaptation for a model is to manage its settings (choosing an initialization, optimization methods, and a number of epochs). These adpatations may aect the convergence of the model.

Neurons The type of the neuron have an important role in the eciency of the network, indeed it is the manner the input is transformed into output in each layer. For instance, the introduction of convolutions and the reduction of kernel size have greatly improved the deep learning potential to deal with images. We can apply some improvements, such as the pooling proposed by [START_REF] Deng | Generalizing Deep Models for Overhead Image Segmentation Through Getis[END_REF] to the chosen model. Finally, a dierent choice of activation function can be made and allow a more ecient passing of information.

Structure The depth (number of layers) and the number of neurons in each layer must be adapted to the desired use case: the more abstraction required, the more layers would be needed. The denser the information to encode, the more neurons would be needed.

Combine models The combination of several elements from dierent models is the simplest way to take advantage of models with dierent abilities. For example with an adversarial approach or by including other network components or modules such as fusion [START_REF] Hazrba³ | FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture[END_REF] that encode and fuse separated inforamtion, skip connections [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] that link the encoding and decoding path, etc., can be used to create links between layers and create a more adapted model.

Loss

The change of the objective function for a more adapted loss function could nally improve the model (see C.1.4)

In Part II we describe experiments that include the choice, comparison, and some adaptation of deep neural networks for map generalization. In particular, in Chapters E and F, we provide a comparison of some models for generalized shape prediction and generalized map generation. Chapter E includes a study of the most adapted setting. Then, Chapter G proposes an adapted model for generalized map generalization, constructed by the combination and adaptation of neurons from existing models. However, the goal of these experiments is not to design the most adapted model, but rather to show the potential of an approach, and the time dedicated to each experiment was limited; so we did not experiment with all adaptations mentioned here.

C.1.4 How to choose a relevant learning objective for map generalization

The loss function is a function that summarizes a set of variables (here the prediction) into a real value that represents the error of this set, it aims to guide learning and is the function optimized during the training. The choice of a loss function depends mainly on the architecture and the dataset. It can be a combination of several measures (e.g., GAN loss is the sum of the adversarial loss and the distance L 1 ). To demonstrate the interest of such custom learning objectives for a deep neural network, an ablation study, that compare model with and without the term is necessary. In this section, we present some loss terms for image based approaches that can be helpful to map generalization (formulation from B.1.1). Style losses In general, style losses from style transfer experiments are designed to deal with high-frequency similarity and are more appropriate for map generalization than local losses. For instance, [START_REF] Ganguli | GeoGAN: A Conditional GAN with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images[END_REF] propose a style loss for map images that compares the gram matrix of the prediction and the target.

Adapted distances

The gram matrix is obtained by multiplying a matrix by its transpose, this matrix encodes the aspect of the image and "hide" its content. The distance is a mean square dierence, but since it is computed on the gram matrix and not on the image itself, it allows us to compare the aspect of the map independently from the content concordance. This style loss has shown the potential to understand and apply a map style to geographic information. As map generalization is not only a map style problem, some may state that the interest of the loss is limited. However, it does not measure the dierence in the map style, but rather the dierence in the image style. And this measure includes some characteristics of scale adaptation (e.g. the level of granularity or smoothing of the content is a part of the style loss and more a scale adaptation than map style elements).

Patch-based loss Moreover, some losses can be based on a distance calculation at the patch level. Patches are small portions of pixels from an image (e.g. a windows of 24 pixels). [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] propose a discriminator for their GAN (patchGAN) that is computed at the patch level instead of predicting similarity at the pixel level. A second example is the spatial correlative loss [START_REF] Zheng | The Spatially-Correlative Loss for Various Image Translation Tasks[END_REF], based on patches. It computes for each patch the relation of each pixel with the center point of the patch and compares these values for each center point of the prediction and target. This comparison allows us to compare the position of object on map and thus spatial structure of the image. In the case of image generation, it leads to better preservation of the global shape of the presented object. In the case of a map, it can be ecient to evaluate if the empty and lled spaces are similar. It may be adapted for map images with a main structure that does not varies much, such as thematic maps or large-scale maps. However, it is not relevant when the contour of the object in target and prediction vary a lot, as in our map generalization experiments during our exploration.

Distance loss Another proposed approach to encourage GANs convergence is to compare the distance between two images in the training set [START_REF] Benaim | One-Sided Unsupervised Domain Mapping[END_REF]. This distance must be similar before and after the transformation. It has the advantage of giving an indication of the credibility of the prediction in an unsupervised way and without relying on reconstruction. However, map generalization is not a homogeneous transformation, the generalization of some part of a map may involve a big dierence while in other part the input and generalization are really close. Thus, this loss does not appear to be adapted for most map generalization tasks.

Preservation measures

The loss function can also be used to measure information preservation. The principle is to compare the input X and the prediction Ŷ ; the more similar they are, the more the input information is preserved. In traditional map generalization, information preservation is an important constraint and we expect this constraint to be met even with deep learning based map generalization.

Content loss In style transfer, the content loss aims at preserving the image content, and in GANs, the identity loss computes a distance between the input and prediction. In the case of map generalization, such a measure is important as the main information has to be preserved. The choice of the similarity measure for this term has similar issues with the comparison between prediction and target, as we do not want to learn a pixel similarity, but rather a global similarity: the main geographic information has to be preserved. Therefore, a patch-level or structurelevel measure would be preferred to pixel comparison. 

Connectivity loss

L connectivity (X, Ŷ ) = E X |nback(X) -nback( Ŷ )| + |nroad(X) -nroad( Ŷ )| nback(X) + nroad(X) (C.11)
Topology loss The topology loss from (Chen, Chen, Xu, Yin, Peng, Mei, and Li 2020) is based on the gradient of the image (Figure C.13). Instead of calculating the distance, the Pearson correlation is computed between the gradient image, this correlation measures to what extent the value of the gradient in the input determines that in the output. Thus, this measure is interesting for comparison of salient areas in the image, such as the urban block that must remain the same befor and after generalization. We tested this measure for the generalization of building shape but it is not relevant, as the gradient image of two generalized building groups is too dierent due to displacment and simplication. 

Map characteristics-based losses

We can imagine an objective that evaluates whether the image is a map (and even a good map) or not. The goal is not to provide a unique function for map generalization evaluation (if we could, deep learning would not be useful, and map generalization automation no longer remains a challenge). The goal is to encourage the prediction to follow of desired cartographic rules.

For example, since cartography is a transformation insensitive to rotation, [START_REF] Fu | Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping[END_REF] dataset includes mostly smooth roads and few sinuous roads, the model may not be able to generalize a series of bends. To measure the diversity of images, we can compare statistics on images (e.g., clutter); however, it is often not sucient to describe the diversity of represented situations. This diversity depends on the object and the task. Indeed, evaluating the diversity of an image set of cats is really dierent from evaluating the diversity of map images. For cat diversity, we can study the number of dierent scales, cat positions, or cat breeds. For a map, we consider rather a diversity of landscape, landuse, map style, map scale, conict and map content.

Quality If an example contains errors, the model could learn to reproduce these errors. Moreover, a pattern must exist to be learned: If there is no consistency between the input attributes and the output in the example, learning is impossible

.

This means that to be qualitative, the input must contain the necessary information to learn the task (map generalization). For example, the nature of the road (highway, national, regional or local) is required for road selection. Many useless or not relevant information may confuse the learning and hide the real target knowledge.

4 If all individual situations are in the training dataset, the model has no more situation to be applied on. 5 In the case of image-based deep learning the attribute are pixel values in Red, Blue, and Green (RGB) channel.

For instance, if the image includes rivers but they are not used for road generalization and not generalized themselves, this may make the learning of road shape generalization complicated. Finally, the information must be comprehensive. For instance, images with too small resolution are not comprehensive, and the shape of the un-generalized road is coalescent, so the model cannot grasp it and generalize it.

Thus, the quality evaluation of a dataset cannot be summarized as the evaluation of the quality of the target generalization; it must evaluate the comprehensiveness, relevance, and consistency of the dataset. For example, a dataset composed of generalization example performed with dierent constraint and operators may miss of consistency and the model may be unable to learn any rules.

Dataset creation

A deep learning dataset must be an example set that represents the target task [START_REF] Bengio | Representation learning: a review and new perspectives[END_REF]. The main steps for the creation of the training set are the following.

1. Location We need to choose a study area (where the model takes examples) and an area of interest (where the model should work). This choice is important because it denes the scope of the model. However, this is often not a real choice, as the area in which we have various, qualitative, and annotated data can be limited.

Content

We have to determine the content necessary for the generalization of the map. The deep learning approach can allow us to understand the implicit knowledge in the data; however, we have to make sure that this information is in the data (and if not, perform the necessary data enrichment). On the contrary, unnecessary content must be avoided as much as possible to simplify learning. For example, for road shape generalization at small scales the model must contain the shape, location and importance of roads but not the shape of rivers (in case where they are generalized independantly).

3. Representation We need to choose a representation for input information that can be used by a deep learning model (see Chapter B). The correct representation of vector information in other forms is a challenge. For example, objects in the vector database have relations, and the image representation must show this relation. However, the raster cannot encode relations, especially when objects overlap. Humans are able to see the whole even if a part is hidden due to Gestalt principles of visual perception, which may not be captured by current deep learning models. Thus, if a road crosses a river through a bridge, a human will see the river as a line, while the pixel at the cross is not a river at all, and the image represents two disjoint parts of rivers. This loss of information can be misleading, and the model will learn that a river can be discontinuous.

Splitting

We have to separates the dataset into examples (e.g., image tile, subgraph, etc.). The study area is divided into several examples. This separation or tiling is an issue. In fact, each tile must have the relevant level of detail to allow for generalization. The question of the relevant level of analysis and context for a generalization task is even common with vector approaches [START_REF] Ruas | Modèle de généralisation de données géographiques à base de contraintes et d'autonomie[END_REF]. How to separate the study area into relevant tiles? For example, to generalize a road, it is more practical to see the entire stroke [START_REF] Thomson | The "Good Continuation" principle of Perceptual Organization applied to the Generalization of Road Networks[END_REF].

5. Renement Rening the training set to improve quality, quantity, or diversity. This renement step can include ltering to remove some un-relevant examples or correct an unbalanced dataset, and, on the contrary, data augmentation can be applied to increase the number of examples in some situations.

In the next section, we present and discuss some examples that apply these steps to create learning dataset.

C.2.2 An example of an image dataset for shape generalization

In this section, we will detail an experiment on the creation of an image set for the use case of mountain road shape segmentation at 1:250,000 scale.

Area of interest

For this rst experiment, we mainly used data covering a small portion of the French Alps (2155 km 2 ). The input is an extract from the database used to create topographic maps at 1:25,000 scale at IGN. The generalized dataset is an extract of the database used to create a map at 1:250,000 scale at IGN. It only represents important roads, and their shapes are simplied, smoothed, and often schematized for better visualization of the sinuous bends. It was derived from the detailed one many years ago using generalization algorithms with the GALBE process [START_REF] Mustiere | GALBE : Adaptative generalization. the need for an adaptative process for automated generalisation an exemple on roads[END_REF], and then manual updated.

We also include examples from Corsica, where mountain roads are more uniform and thinner (there are fewer highways and national roads and more local roads).

These examples were used to test the impact of increasing the number of training data, and the eect of the chosen study area. Our rst test shows that the dataset in the Alps is more adapted than the one in Corsica due to the less diverse situations and the thinner roads that make learning dicult 

Tiling

The study area is separate in tiles. We propose two tiling methods (presented in For the window approach, we choose an image resolution (number of pixels), a cartographic resolution (ground size represented by each pixel), and a step for window displacement between two tiles. The image resolution inuences the image legibility and the calculation time, as more pixel have to be processed. The cartographic resolution also impacts the legibility but also the size of the ground in the 6 We compared datasets of the same size and created with similar processes. The object method centers the tile on one road object, the maximum image size is dened, and if the object is larger than this size, it is resized to be completely encased in one tile. This method ensures that the road is completely visible during its shape generalization. However, the rescaling is confusing because we want to learn tasks that are scale-related. This method requires us to dene an image resolution and an object size at which a re-scaling is needed.

For the last method, the tiles follow the axis of the line. This method allow simpler tiles, however, it cannot be applied to our use case where the road line is part of a complex network and the junction of the objects is as important as the central shape.

To choose the relevant tiling methods and parameters, we compare several congurations, presented in Table C.1. This quick test allows us to choose tiles created using the windows method with a cartographic resolution of 2.5 km. 

Content and representation

We choose to include information on the position, shape, and nature of the roads.

The nature of the road indicates the future symbolization on the map and impacts the level of generalization required: the more important road will have a larger symbol and require more important generalization. Table C.2 denes the number of pixels in the image for each type of road. The proposed width of the road allows the shape of the road to be large enough to learn the continuity and to be informative about the importance of the road; however, it is not small enough to avoid all the coalescence of the shapes, and the shape of the input road is sometimes not legible.

Nevertheless, our rst experiment with several scales of symbol (from 1 to 1, from 1 to 3 pixel, and from 1 to 5 pixel) shows this symbolization to be the best compromise. We rst tested learning with a dataset that includes all roads in both the input and output; however, as the scale gap is important, the selection in output is important, and our dataset does not include the necessary information for this selection. Moreover, our goal in this experiment was to learn shape generalization (displacement, bend simplication, schematizing, enlargement, etc.). So, such a dataset is irrelevant, the input and output are really dierent, which is confusing and unnecessary. Then we pre-process the input data to include only the road kept after generalization in the input image. This pre-process is done using a multicriteria data matching algorithm (Olteanu-Raimond, Mustière, and Ruas 2015) and rened manually to match both scales. We observe that our dataset is not large enough to lter out some of the examples.

Moreover, increasing the data does not seem to improve the quality of the prediction.

Indeed, such increases do not improve the diversity of examples in the dataset, which is the main lack of our dataset.

C.2.3 An example of an image dataset for map generation

In this section, we will detail some options tested for the creation of an image set for our use case of urban map generation at the 1:50k scale.

Area of interest

In the case of the map generation experiment, we used an area of 30 * 15 km east of Saint-Jean-de-Luz in the south-west of France. We have an intermediate generalization in this area from the work of [START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF]. This area includes a few urban areas and mainly peri-urban and rural situations, on the land and on the coast.

Tiling

We split our area using a sliding window. Each tile represents 500x500m² of ground and has a size of 512x512 pixels. This resolution allows one to avoid the most important object overlapping in the input image while showing a large portion of the terrain of a few small urban blocks, which is the minimum necessary context to perform building density reduction, in our opinion. This tiling is not related to the data; thus, there is no guarantee that it is relevant, especially, since each tile can suer from the border eect. For instance, the limits of the tile can hide important information (the end of a dead end, the dense part of a dense block, etc.).

For this use case, we did not experiment with dierent tiling methods. However, a more exible method could be possible, for example, based on Huang, Zhao, and Song (2018) methods to produce tiles completely included in an urban block. This tiling method use the point of the skeleton of map block as center for processing unit (images), it was proposed to improve the land use classication of these blocks.

To apply such a method, regular blocks are needed, which is not the case for our dataset.

Content and representation

We choose to represent water, roads, and buildings, as they are the main themes in topographic maps at this scale. The input image is made from data from the BD TOPO ® , the vectorial database of french spatial infrastructure produced by IGN and use for topographic map with scales between 1:2 000 and 1:50 000. The target is a generalized map obtained using semi-automatic generalization on the input dataset for cartography at a 1:50 000 scale (Touya and Dumont 2017) completed with som manual corrections. Both vector datasets are symbolized in a topographic map style and rasterized.

We represent roads with an outline in input and target representations. The outline enlarges the road symbol and makes learning simpler (because thin linear object are traditionnally hard to preserved). Moreover, this representation allows us to verify that our model is capable of understanding and producing complex symbolizations. During generalization, the road network is selected. The buildings are symbolized in brown. We test both with and without outline;

the outline allows us to show the limits and real shape of the building and so avoid losing this information in case of overlapping; however, it enlarges the shape of the objects and so increases the risk of overlapping; moreover, it adds information in an already dense area and so brings confusion. A quick test shows that the symbolization of the building outline is not relevant. We tested and compared the dataset constructed from data generalized using both AGENT method [START_REF] Barrault | Integrating multi-agent, object-oriented, and algorithmic techniques for improved automated map generalisation[END_REF][START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF] and Typify method [START_REF] Burghardt | Mesh simplication for building typication[END_REF]. This comparison has shown that the model can also learn to reproduce each generalization method (a comparison of the prediction for both methods is presented in Chapter F).

The output vector dataset also includes graying: some dense areas of the city center are generalized using a gray area instead of buildings. This symbolization has some defaults: the color used in the topographic map for the center line of the road and the graying is close; however, for the model, close color means close value, which means related objects. This proximity of colors leads to confusion during learning and a more distinct symbolization may be required.

The hydrography includes surface polygons of water and river polylines symbolized in blue with xed width and without an outline. The generalization of this theme is less important: some lines are smoothed, and small water surfaces are removed.

C.2.4 A proposal for a better representation of geo-information in images

Both this use case and the literature review have shown that the creation of an image dataset is a problem, even if the representation of geographic information on a map-like image seems natural. In this section, we present our proposal for the representation of geographic information in tensors to form an adapted training set.

This model is applied to the use case of topographic map generation, and its interest has been demonstrated for this use case. However, we made it generic and easy to apply, and we think it could be as benecial for other use cases.

Problems of naive solutions

The naive solution to create a map generalization image dataset is to represent in the input an image of detailed geographic information and in the output an image representation of the generalized geographic information, with the same input and output size (as we do in C.2.3).

Figure C

.20 illustrates some naive solutions for learning cartography tasks based on images. The examples in line 1 are created by tiling a map-like image (Google map for the target and Google aerial image for the input). However, the chosen resolution is not sucient to make the example set comprehensive, so the lines and thin objects are not legible and imprecise in the prediction. those at line 2. are our naive dataset for map generalization (presented earlier). This dataset reveals another drawback on quality: the target generalization contains many errors, the representation is also in-adapted as much overlapping produces a loss of information and essential information is missing (e.g., the road importance for road selection, or the city center limits for block graying). In line 3, the input is OSM data presented in a raw style (minimal symbolization); the output is a GoogleMap tiling. The representation includes comprehensiveness problems. The resolution is not sucient; dierent objects are too close and too similar, and the model does not understand how to dierentiate them and eliminate them. In fact, this lack of comprehensiveness is due to symbolization problem (building outline and minor road have the same symbol and are confused), consistency problems (some important roads are symbolized with two lines and the other with one, the labels are not in the input, so cannot be produced in the output), and relevance problem (the input contains un-relevant confusing objects). 

A hierarchy in information representation

We propose a representation of vector geographic information for image-based map generalization based on two tensors: one representing the main geographic information (i.e., object of interest shape and position) and one representing all additional information necessary to map generalization. This hierarchy is an original proposal for map generation, inspired by the work of (Hazrba³, Ma, Domokos, and Cremers 2016) about combining scene photograph and depth map to learn indoor scene segmentation. In this study, the photograph is the main information; the segmentation is constructed from this information, it contains information about object position and shape; however, the depth map gives additional information that improves the segmentation. The rst tensor, rather than a simple rasterization of the symbolized data, is the stack of masks of position and shape of geographical. Then an adapted model allows us to eciently combine both information. This separation is also relevant for the perspective of map generalization, where the object shape and location are the base information for map generalization (the main goal is to avoid conicts and preserve content), and then additional information serves to precise the generalization process. The two tensors are organized so that units in the same position in each layer describe the same part of the terrain (Figure C.21).

Main information representation

We propose to represent the main information provided by layer rather than symbolized in RGB. A binary mask of the shape and location of the object is provided for each layer of the input map object. The masks are stacked in the input tensor.

This representation of the main information no longer requires symbolization and is free of symbolization bias. Moreover, the loss of information in the case of an overlap there is limited, and similar objects are in the same layer, so groups are 

Enrichment tensor representation

The main information alone is often not sucient to generalize the map. Map generalization, often require data enrichment prior to the generalization, we think such information is also needed in deep learning based map generalization. Indeed, even if deep learning models are able to use implicte knowledge in the data, the data respresentation (especially as image) often hide some information. Mostly, semantic attributes and context are needed and may be missing. We propose to create another image stack that contains the information for data enrichment. The representation of additional information varies depending on the nature of the variable we want to represent.

Binary variable For a binary variable (e.g., the block is in the city center or not, the road section belong to a round about or not, the road is a dual carryage way or not, etc.), a simple mask with the presence (true) value is a good representation The improvement brought about by this proposal and several additional information is detailed in Chapter F.

C.2.5 Two example graph datasets for learning spatial relations

The interest in choosing the relevant representation of spatial information within a graph for deep learning has already been demonstrated (Iddianozie and McArdle 2021). In this section, we present how we design a graph dataset to test the ability of 

Ailgnement detection

For the alignment detection dataset, we extracted almost 10,000 buildings from OpenStreetMap in urban and suburban residential areas of the United States of America, where buildings are organized in a regular way 7 . We constructed a relation graph that links the building in each urban block. We manually annotated the links as part of a curvy-linear alignment, part of a straight alignment, or not part of any alignment (Zhang, Ai, Stoter, Kraak, and Molenaar 2013).

Representation as relation-graph In map generalization, proximity graphs are often used to analyze urban structures [START_REF] Regnauld | Spatial structures to support automatic generalisation[END_REF]. The structure can be constructed from the center point of the objects or from another set of points (e.g., vertex). We choose to use center points because they involve a smaller amount of information redundancy and simpler structures. It also simplies the reconstruction of alignment after learning.

The chosen graph structure must contain all necessary relations for alignment detection but exclude inconsistent links that confuse the learning. Moreover, the graph must be easy to split into examples, so a big graph of all relations is not relevant) and we chose to make one graph by city block. A such separation is relevant in urban areas but not in suburban and rural areas, where block can be really large. The construction of a proximity graph constrained by the road network is also a solution to the more relevant relations in the examples.

We examine variations of Delaunay triangulation (DT) (Figure C.26). DT is a triangulation that links objects in adjacent cells of a Voronoi diagram; it gives a more complete view of the proximity between buildings, but not all edges of this graph are necessary to identify alignment structures. Relative neighborhood graphs (RNG) connect the nodes that are at least as close to each other as they are to any other points [START_REF] Toussaint | The relative neighbourhood graph of a nite planar set[END_REF]). However, some edges that are part of the alignment are often missing from the RNG. We consequently propose a proximity graph that xes this problem based on RNG and rened by adding the edges of DT that are short enough, following the criterion proposed by [START_REF] Bader | Building displacement over a ductile truss[END_REF] to enrich the graph by important edges. This criterion is based on the comparison of distance between building and cost to travel between them through the graph. 7 We rst experimented with datasets in France but the very low occurrence of clear alignments in the landscape makes the dataset too unbalanced and learning impossible. The length of the link represents the distance between the center points of the buildings; it reects the strength of the proximity relation, however, it should be considered according to the size of the buildings (a large building would have a longer link). The distance between buildings does not have this bias, as it computes the minimum distance between the two buildings; however, it can be inconsistent in the case of a complex building with a long outgoing indentation. Finally, the combination of both attributes is the best description of the proximity strength between buildings and is essential for alignment detection. Both these measures are expressed in meters. The context information is related to the closest road because buildings are generally constructed along the roads (or served by a road depending on the point of view) and an alignment thus often is along a road. The closest road relative orientation is the angle formed by the segment that connects the centers of the two buildings and the tangent of the road at its closest point to the segment. This angle is given between 0 and 90°because the side of the angle is meaningless. Buildings perceived as aligned often look similar, and thus have a similar shape descriptor; we choose to include a measure of three common shape descriptors: area, elongation, and orientation. The elongation of one building is the ratio between its longest direction and its shortest direction; thus, for each building, we computed a rectangular bounding box, and the elongation is the elongation of this bounding box. We use a similar structure for orientation, the orientation is the orientation of the building bounding box [START_REF] Duchêne | Automated map generalisation using communicating agents[END_REF]. Thus, our measures of orientation and elongation are only relevant in the case of a quite regular building; however, in general, and in particular, in our dataset, the alignment mostly concerns the buildings with quite a simple shape. Once the indicators are calculated for each building, it is the relation between these values for two adjacent buildings that interests us; we can characterize a link by a measure of the distance of these attributes; the two obvious distances are the absolute dierence (eq. C.12) and the ratio (eq. C.13). For X an attribute of building A and B.

D(X) = |X A -X B | (C.12) R(X) = |X A -X B | X A + X B (C.13)
The dierence is not bounded; it simply measures the gap between two values.

The ratio allows us to compare the gap between values relative to their magnitude (i.e., a dierence of area of two square meters is less important when the buildings are large). We choose to use the ratio for the area. However, in the case of orientation and elongation that already are bounded and where the sum is meaningless (e.g., the sum of building elongation is not the elongation of the set of both buildings), the absolute dierence is preferred.

Finally, we calculate the facing ratio (from [START_REF] Wang | A Mesh-Based Typication Method for Building Groups with Grid Patterns[END_REF]. This measure takes into account both the relative position and orientation of the buildings. It measures how buildings face each other: it is the maximum intersection of the projection of the rectangular bounding box of the building on the orthogonal marker parallel to each bounding box, divided by the union of the projection. The aligned buildings usually have a large facing ratio, while the non-aligned buildings usually have a small facing ratio.

Road network selection

Our dataset for road selection consists of roads from a map at the 1:25,000 scale and their generalization at the 1:50,000 scale in urban, suburban, and rural areas. In this experiment, geographic information is organized in a network; its representation as a graph is natural. The detailed road network contains 12,837 edges, 55% that should be kept, and 45% that should be deleted in its generalized version.

Content enrichment The graph itself is not sucient to learn the proposed task.

In fact, the selection of the road section is a mixture of its role in the road network and its attributes (e.g. nature, width, etc.). Moreover, the graph also misses some information on the structural role of the road in the network (e.g. stroke, i.e., set of continuos road section that may form a unique road for an human user). Thus, we chose to characterize the edges of our graph with the following attributes.

Segment or line length

Importance: an ordered category from this initial database for the symbolization on the map, derived from width and nature.

Stroke length: measure the stroke to which each link belongs; the stroke is often a more relevant level of analysis for road selection [START_REF] Thomson | The "Good Continuation" principle of Perceptual Organization applied to the Generalization of Road Networks[END_REF].

Betweeness centrality [START_REF] Jiang | A Structural Approach to the Model Generalization of an Urban Street Network[END_REF]: measure the number of shortest paths between two pairs of nodes that use each section. This centrality measure is really important to determine the usefulness of a section in a transportation network, and contrary to other centrality measures (e.g. degree centrality and closeness centrality), cannot be handled by convolution on the graph (as dened in GCN).

Face size: measure for each face of the network its size and report for each edge the largest and smallest adjacent face. It gives information on the density of the network around the section; it also allows one to detect the city limits (e.g. a large face and a small one mean the network is dense on one side of the section and dense on the other side).

Sinuosity road length divided by section base length. Very sinuous roads are often less useful for path construction; however, they can be important on a map, as they reect a certain type of landscape (mountain road).

We tested the interest and consistency of all of these attributes for the desired task by training a random forest classication on the nodes of the graph using these attributes. This classication gives results worse than the graph classication because it does not use the structure and relation between elements. However, it allows one to see the contribution of each attribute in the classication decision for each attribute. We conclude that each the proposed attribute are relevant and usefull for the desired task.

Chapter's conclusions

Applying a deep learning model for map generalization requires setting up an adapted architecture and a training dataset. The choice of each of these elements can aect the quality of the prediction and must be adapted for the desired task.

First, the characteristics of a deep neural network to keep in mind when dening or choosing a deep neural network are its ability to abstract, preserve, transfer, deal with spatial information, its variability, and its gluttony.

Then the objective function guides the learning, this function may require an adaptation to be more relevant for the desired task. In particular we think the objectiv function must encourage the preservation of information and must not be calculated at element level (compare prediction and target element by element), but rather globally verify the target and prediciton are similare. In this use case, we experiment with pattern detection in the classical use case of building alignments. This is a pattern composed of three or more buildings belonging to the same block, relatively close, similar (especially with a similar size and orientation), and with a linear arrangement. An alignment can be colinear if the orientation and distance are regular or curvilinear if the orientation and/or distance smoothly vary (the axis of the alignment is a curve). This pattern is quite common in urban areas on a detailed map; its generalization must reduce the density of buildings while still conveying this idea of alignment. Our goal is to demonstrate that deep learning can recognize spatial patterns, so we will train a graph neural network to classify the link in a proximity structure with labels: "curvilinear alignment" or "colinear alignment". This classication enables the alignment pattern to be located on a building block. 

D.2.2 Method

We use a graph structure to encode the input and target characteristics. We aim to predict the relation between buildings (colinear, curvilinear, or not an alignment). For this experiment, we tested a GCN (Kipf and Welling 2017), which is specialized in analyzing nodes and adjacencies in a graph to predict node or graph level information. As explained in Chapter C the GCN uses as input a feature description for every node, summarized in a feature matrix, with the adjacency matrix of the graph. We hypothesize that this characteristic would enable the model to make a consistent decision across spatial relations. For example, an inconsistent decision would be saying that a link is an alignment if no neighbor is. We trained the Py- 

D.2.3 Results

The model fails to recognize patterns from our example set: the result is really irregular across epochs, and no optimum is found. The confusion matrix ( 

D.2.4 Discussion

Can GNN learn spatial relations?

The results of this experiment are not clearly satisfying and are really dierent from the target. A quick analysis would lead to the conclusion that GNN cannot learn spatial relations. However, looking at these results in more detail may lead to some clues of the potential of GNN for learning spatial relations. Indeed, a building that has an alignment link is most likely to have its other link that is also in alignment.

However, this element is not sucient to say the model understand the spatial relation and our experiement has to be improved.

Probable causes of failure and possible improvements

The origin of this failure may be the dataset, model, or modeling. The following paragraphs investigate the limits of these three aspects in our experiment.

1 https://github.com/tkipf/pygcn structure are not correctly encoded or used. We conclude that our data modeling may not be adapted for this use case.

In this experiment, we proposed a custom proximity graph made from the renement of a Delaunay triangulation between building center points; this structure aims to be the most complete as necessary to cover the aligned building while avoiding irrelevant links. We compare this proposal with other common proximity graphs constructed from the center of the building, this leads to similar or worst results.

To go further, a structure that is constrained by a road network or based on other building points has to be investigated [START_REF] Zhao | Recognition of building group patterns using graph convolutional network[END_REF]. Our modeling may be unadapted In fact, alignment detection is more of a clustering problem than a classication one, but in our experiment we try to simplify it to classication with a neighborhood relation. The simplication may not be best way to model this pattern recognition problem. The alignement detection require many features and several kind of relations, while in our experiment, we only used a homogeneous graph. However, the ability to handle a heterogeneous graph is one of the main advantages of GNN and oers a wide opportunity to describe spatial relations (Iddianozie and McArdle 2021). For example, to detect alignments, a heterogeneous graph would be preferred that describes both the proximity between buildings and the road network, as alignments are often enclosed in urban blocks and along roads.

Then, the denition of neighboring in GCN allows the model to propagate information over neighboring nodes and make a consistent prediction. However, it relies on proximity in the graph, which is not exactly cartographic proximity. For Moreover, the level of neighboring required for relation understanding in spatial data varies, while the GCN always uses a xed number of neighbors (related to the model depth). For example, in rural areas where the road network is spare, looking at fourth-order neighboring can be sucient for road selection, while in urban areas the fourth-order neighbor can be a section of the same complex intersection! In our experiment, the building distance, and link length may represent the strength of the neighboring. However, this information is not enough to encode relative location of the object, this is an explanation for the unsatifactory results. To overcome these limitations, it is necessary to encode the spatial characteristics of the node and edge;

the training graph must be a spatial graph 2 . Then we believe that a model that learn to look further when the edges are small, could be relevant. However to our knowledge a such model does not exist in the litterature. Another possible solution is to train separatly a model for dense area and one for rural areas.

D.3 The use case of the road network selection D.3.1 Presentation

Network generalization is challenging because it is a multi-criteria decision that takes into account the semantic and geometric properties of the road section, the properties of spatially and topologically neighboring sections, and more globally, the role of the section in the road network. The generalization of the road network aims at removing the least signicant sections while preserving the road networks global structure, preserving the main routes, and preserving coherence with other themes (e.g. if a point of interest is in the generalized map, the section that leads to this point has to be kept even if it is a dead end). Thus, to achieve network selection, it is necessary to encode and use the following relations: "section is connected with", and "belongs to a stroke", "belong to a pattern (e.g. round about)" but also "belongs to an important route", "serves", or is "redundant with". Finally, one of the challenges in road network generalization is that a road network includes complex patterns that require a specic generalization (e.g. roundabout, interchange, dual carriage ways, etc.). The reduction of road network density is a complex process that includes road section selection at some stage. For instance, Touya (2010) and [START_REF] Luan | Generating strokes of road networks based on pattern recognition[END_REF] propose a road selection process based on the geographical context, where the rst step is identifying such a pattern using network analysis;

then strokes are used for the network selection. However, the generalized network is not a subset of the detailed network sections (see Figure D.6), and typication of particular structure have to be resolved otherwise.

We experiment with the prediction of a value for each road section; the objective is to learn from the example the probability to be selected for each edge of the graph (i.e. road section in the geographical database). This information depends on the characteristics of the section, but also on its relations with the rest of the 

D.3.2 Method

The road network is already a graph-like structure; however, the graph that supports the learning must represent the section as a node. Therefore, we use a graph In this experiment, we used a GCN with the same experiment setting as previous use case. Our training set is a graph with 12,837 edges. The creation of this training set is detailed in Chapter C. We explore the interest of several features to characterize road sections. Then, the edges of the graph are describ using some attributes.

First, we include attributes that give direct information about the sections : length, importance, and sinuosity. The length is expressed in meters; the importance is a categorical attribute with a value between (1: highway and 6: local narrow path) issued from the initial database; the sinuosity is the ratio between the section length and base length (distance between start and endpoint). This information is interesting in road selection, as very sinuous roads are often less useful for path construction; however, they can be important on a map as they reect a certain type of landscape (mountain road). This ratio is between 0 and 1.

Secondly, we include some attributes that describe the spatial relations internal to the road network and the context of the road sections:

We measure the length of the longest stroke the section belongs to; the stroke is often a more relevant level of analysis for road selection [START_REF] Thomson | The "Good Continuation" principle of Perceptual Organization applied to the Generalization of Road Networks[END_REF]. Even a small road that belongs to a long stroke may be important.

We measure the area of adjacent faces of the network. It gives information on the density of the network around the section; it also allows one to detect the city boundary (e.g. a large face and a small one mean that the network is sparse on one side and dense on the other side). We store two attributes, the size of the smallest and largest faces (the network may be able to discover the relevant combination of both these values).

Finally, we added betweenness centrality for each section. The betweeness centrality measure is essential for road network selection, and we do not think it can be learned for the graph structure with the convolution denition in GCN. Indeed, it is the number of shortest paths in the network that uses this section. In our GCN, the convolution propagates node information to its neighbor, it does not considere shortest path and gives the same importance to each path in the network 3 .

D.3.3 Results

In this section, gures illustrate only extracts from our results (chosen as fairly as possible) the complete results are publicly available in Zenodo https://doi.org/10.5281 /zenodo.7244049. The prediction of this experiment is the probability for each edge to be selected by the classication model. For evalauation we choose a threshold of 50% to perform a classication; this classicaiton has a recall of around 83% and 3 We think that the graph representation and denition of graph convolution in GCN nevertheless enable model to learn some other centrality measures (e.g., the degree centrality, or closeness centrality). For the small town (the most common situation in our dataset), we observe that the model can clearly identify the main connections to the city (Figure D.9); these roads appear with a signicant probability of being kept (in red). Some local roads also have a clear tendency to be deleted (in yellow). However, the dominant prediction is a medium probability to be selected and does not enable a clear separation between kept and deleted roads. Finally, in the urban area (Figure D.11) we observemore errors, the block structure of the road network is not learned at all, and the littoral path surrounding the city is not kept, while it structure the town. This defect comes from the small number of such a situation in our dataset and the more complex structure of the network in such an area. Moreover more features can be required for such complex situations. 

D.3.4 Discussion

Can GNN learn spatial relations?

The results of this experiment are quite more satisfying. The predictions on the road section are credible and could mostly correspond to a correct map generalization.

Some of the underlying relations are clearly understood, especially the consistency of a neighborhood. For example, the probability of selecting one section is similar to that of the other part of the road. Similarly to the previous use case, some improvement in the modeling of the use case may contribute to reinforce the demonstration of GCN potential to use spatial relation in map generalisation task. In particular, the road selection process may require learning graph that explicitly decribe the relations: "a road section belongs to an important route" or "a road section serves an important point of interest" with an heterogeneous graph.

The potential of GCN for map generalization

Our experiment has shown that GCN are able to make consistent predictions across a graph structure. Thus, such networks may be used to make explicit spatial relations for data enrichment prior to map generalization and for an integration in a global deep learning map generalization process. In this paragraph, we use predictions of alignments and road selection to explain how of such networks can be used in a generalization process. The road selection is the rst step for topographic map generalization. The predicted importance of road sections from the GCN model could be used in several ways for road selection.

The result of our model can be directly employed for selection, using a threshold (e.g., all sections with a probability up to 50% percent are kept). This simple solution is not the most ecient regarding our prediction distribution that gives a medium value to most of the section.

The predicted value can be included as an attribute in a geometry-based or graph based process for road selection (e.g., [START_REF] Touya | A Road Network Selection Process Based on Data Enrichment and Structure Detection[END_REF].

A mixed solution that combine network renement by selection and stroke based simplication. For example, rst we keep (and respectively erase) section with an extremely high (and extremely low) probability predicted. Then, we process selection based on stroke characterized by the maximum, or mean prediction of its sections (this extreme value would allow keeping even small paths that directly deserve an important section).

Chapter's conclusions

In this chapter, we presented two experiments that aimed to identify the po- Traditional methods for mountain road generalization are already ecient; however, they are dicult to apply, as they require important knowledge about road sections and important calculation time. We are not aiming at results with a better cartographic quality, but results of equivalent quality that could be obtained more easily.

In these experiments, we focus on the second step, the graphical generalization that produces the shape of generalized roads.

In the litterature review (Chapter A), we present two usual road simplication processes, (1) the global approaches that try to nd the optimal shape at once [START_REF] Bader | Cartographic Displacement in Generalization: Introducing Elastic Beams. 4th workshop on progress in automated map generalisation[END_REF][START_REF] Sester | Optimization approaches for generalization and data abstraction[END_REF] 2014a). In the proposed deep learning approach the model is applied identically to each image of the test set, thus the approach is close to a global approach.

E.1.2 Approach

Our approach is framed as an image segmentation or generation problem using map images (raster data) as input. That is, using an image of detailed map tile as input This approach is similar to those of (Feng, Thiemann, and Sester 2019) and (Du, Wu, Xing, Gong, and Yu 2021)

1 respectively for building and coastline generaliza- tion. These studies have demonstrated the potential of the segmentation approach for polygon simplication generalization 2 . Our experiments are complementary to these two studies that learn the shape of a generalized polygon while we try to learn on polylines. The generation of polylines is challenging, as their narrow width is more sensitive to disconnections and dependencies between pixels are larger (very far pixels can belong to the same entity). Moreover, mountain road generalization is a complex task (see Figure E.1) that not only includes smoothing and symbol enlargement, but also bend enlargement, bend series typication/schematization, etc.

1 Realized after our experiment. 2 In the coastline experiment the input is not only the line but segmentation of inland and sea parts, that are polygons.

Finally, in our experiment, and contrary to these rst studies, we do not try to learn how to reproduce a generalization performed by an automatic generalization process, but we learn from a cartographic database that includes manual correction. This use case is thus a good complement to demonstrate the ability of an imagebased approach to generate the shape of a generalized object using deep learning.

E.1.3 Experiment setting

In this section, we present our experiments, especially the dataset construction methods, our models, and the tested loss function for connectivity preservation improvment. We tested and compare the ability of several models to learn graphic generalization: one segmentation model and two image generation models.

Segmentation model We rst tested a convolutional neural network designed for image segmentation called U-Net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF]. This network has already shown potential to predict generalized shapes [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF] and relies on a u-shape structure that encodes and decodes an image with convolutions. It includes skip connections to deal with multiscale relations in the image (a more detailed explanation of the U-net architecture is given in Figure C.5). We implemented a U-Net using Python 3 with the Keras library [START_REF] Chollet | Deep learning with Python[END_REF] in the Google Colaboratory platform with the available graphic processing unit (GPU) for standard licenses. Our U-net is designed to deal with images of size 256 × 256; it includes six up and down sampling layers. We then provide and compare a similar architecture made for images of size 512 × 512.

Generation models

We trained two generic GANs to generate images of generalized roads: CycleGAN and pix2pix. We used the PyTorch implementation of these models 3 . Each model has been trained over 200 epochs with default param- eters. The choice of the number of epochs for a GAN is a dicult question as the model convergence is sometimes never reached [START_REF] Arjovsky | Wasserstein Generative Adversarial Networks[END_REF]. This number of epochs gives a good level of satisfaction for both the loss value and the visual observation of the validation data. The visual analysis of the results shows that below this number of epochs, the results are still unsatisfactory, while they show no more progress after this value for both paired and unpaired models.

Datasets For these experiments we use the datasets presented in C.2.2. This dataset includes 1, 223 pairs of images from the Alps and represents the road shape at 1:25,000 and 1:250,000 scales.

Connectivity loss Finally, one of our challenges is the preservation of the topology and connectivity of the road network, despite the image approach. We tested the connectivity loss proposed in C.1.4 as an additional part of the GAN objective function. It measures the preservation of connectivity information in images. The objective of our cycleGAN is thus eq. E.1, with L cycle the cycle consistency loss, and L GAN the adversarial losses for each side of the learning.

3 Available here https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git.

L(G, F, D X , D Y ) = L GAN (G, D Y , X, Y ) + L GAN (F ), D X , Y, X + λ 1 L cycle (G, F ) + λ 2 L connectivity (X, G) (E.1)

E.2 Results

In this section, the results are presented and evaluated according to visual evaluation focusing on the list of questions below. The conclusions were conrmed with some quantitative measures and a user test (see Chapter H). Reader can refer to Appendix A for more results images of main experiments.

Except for the contrary mention, in this section, all results are obtained using the dataset with xed-size tiles of 2.5km where each pixel represents 10 meters on the ground, and the overlapping rate between tiles is 60 percent.

What is a good image prediction?

Q1: Does the image look like a map and especially a road map? This question refers to the realism of the prediction. We trained the network with map images that follow cartographic rules, and the network should learn to generate images that look like a map.

Q2: Are the geographic objects credible? [START_REF] Goodchild | Assuring the quality of volunteered geographic information[END_REF] propose to control spatial relations between objects. They develop this idea for maps produced using volunteer geographic information (VGI) where the expertise of contributors is unknown. This point is also important in the case of deep learning where the prediction process is a "black box" [START_REF] Touya | Is deep learning the new agent for map generalization[END_REF]. The key criteria for a road to be credible are its connectivity in the network and its linear and smooth shape.

Q3: Is the image generalized enough to be legible at the target scale? In the use case of mountain roads, we have to take care of the smoothing level, and the reduction of symbol coalescence.

Q4: Is the information suciently preserved and are errors created during the generalization process?

E.2.1 Segmentation approach

In this section, we present some results obtained with the U-Net segmentation of mountain road images. This section rst includes an analysis of the overall quality obtained with this approach, and then we compare and discuss the creation of the training dataset. In most of the images, the road shape is recognizable (Q1) and is very similar to the generalized image. However roads are often discontinuous and not credible (Q2) and some undesired part of road can be seen in some images. It is also often smoother than the initial image, even if it is sometimes less smooth than the generalized image (Q3). Bends are enlarged in most sinuous bend series, but the enlargement is sometimes not correct, which can lead to loops or U-shaped bends (Q3). The displacement performed to avoid parallel road to overlap is learned; however, when roads are displaced to avoid overlaps with other objects (river or rail line), as such data are not visible in our images, the displacement fails. Then, the main limitation of the prediction is the numerous disconnections, that decrease the information preservation (Q4). We observe that the xed-scale tiling approach gives better results than the object-based approach. The object-based approach seems to systematically create loops in bends and enlarge the road symbols too much. It is probably due to its varying scale. Indeed, the coalescence in the initial image that prevents "seeing" the initial shape of the line, is more important in images of the objects approach.

Overall quality

Results on training set constitution

Then, we tested to improve the object method with a mixed representation of roads in input images. The shape of the line is displayed in green with a width of 1 pixel, this shape includes no coalescence at all and thus allows the model to access the exact shape of the road. It is overlayed on top of the larger red symbol that coalesces and represents the width of the road on the map. Thus in this image the model may have at once a legible representation of the exact shape and the road symbol. Figure E.6 presents a comparison of the results given by this mixed representation. The mixed method is compared to an image where the symbol width is left unchanged and to an image where symbol width is exaggerated to convey the scale reduction due to the size of the road. It shows that the shape readability improves thanks to the green thin lines, and it does reduce the "loop" eect, but the results remain unsatisfactory.

Finally, the method comparison leads to the conclusion that despite randomly cutting roads and degrading context (i.e. the global shape of the road), the window approach is currently the most adapted for map generalization. investigates the optimal size for each example. It is a parameter that aects two characteristics: the context and the number of images. We measure this parameter in terms of the ground size represented by a 256*256 pixel image. It is not relevant to choose a size under 1 km (not enough context). As a result, all pixels are classied as "not road". In contrast, up to 5 km, the covered study zone is too small to have enough images (less than 150). We observe that sizes between 2.5 and 3 km are more relevant for our tasks. Moreover, we can see that smoothing is not well learned when the model is trained with large areas (5*5 km). The coalescence of small bends increases when the size of window increase, and this leads to bad results. 

E.2.2 Generation approach

In this section, we present some results obtained with pix2pix and cycleGAN to generate generalized mountain road images. We rst analyse the overall quality obtained and compare the two models, then we discuss some model improvements, in particular the model setting, the addition of a connectivity loss, and the addition of examples.

Model comparison

We present and compare the results obtained by training cycleGAN and pix2pix.

Figures E.9 to E.11 present some predictions from both models in dierent situations (for images that includes an important series of bends, for images that includes a main road and for images that includes an intersection). Figure E.8 ilustrates and

gives an example of the main defaults identifyed. We observe that both models produce images of roads (Q1) and lines are smoother than the input (Q3). However, the paths produced by pix2pix are neither legible nor credible because of loops and disconnections, that alterate the cartographic information (Q2 and Q4). This problem is less important in CycleGAN predictions (unexpected disconnections are rare, and the loop problem occurs only when the input is not legible enough). Then, cycleGAN does not enhance correctly the road shape in prediction; some bends are not enlarged enough and some edges not enough smoothed. In fact, it seems that when the model cannot conclude how to generalize a situation, it leaves the input shape. Finally, cycleGAN produces some small blue noise that does not visually aect the legibility of the road. This noise may be a consequence of the steganog- alized by both models. However, the next images show that despite the fact that it produces incredible images and provokes an important loss of information pix2pix

proposes more enlargement and some simplications, that cycleGAN do not generalize enough.

Figure E.10 focuses on intersections. The preservation of the main structure and shape of such an image seems learned in most cases; however, in the case of the second situation, the models fails because the input is not very legible at this resolution, and because of the presence of two bends close to the intersection.

Pix2pix learns the intersection global shape, but, it creates a loop, while cycleGAN learns a solution that does not preserve the connection but has more road pixel correspondence with the input. 

Model improvement

The interest of a connectivity loss. The measure of disconnections and loop creations decreases, but few changes are visible. This means that the loss instead of discouraging visible connectivity alteration discourages very small alterations that are not visible to humans (isolated road pixel on background or background on road). We also hypothesis that in some cases the number of background and roads pixel set does not reect the connectivity alteration, as the change in background and in road sets can be balanced. For example, in situation 3 a loop and a disconnection are created, the loop increases the number of the background sets by one and the disconnection decreases this same number by one, so the measure detects no alteration while there are two. We think we could improve the loss by separate the two-aspect disconnection and loop creation and providing a more precise measure for each cases.

The interest of adding examples. 

E.3 Discussion

We discuss the learning strategy, the quality of the results, and the ability of deep learning to learn graphical generalization.

E.3.1 Learning strategy

This chapter contributes to highlighting the comparative interest of several learning strategies for object generalized shape prediction using an image-based approach.

Segmentation vs generation approach For the use case of mountain road, and unlike for building simplication [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF], the GAN architecture gives much better results than a U-Net architecture. The discriminator forces the generated image to look like a road. The main dierence between the two use cases is that buildings are mostly composed of angular shapes that GANs were unable to precisely reproduce, whereas in the road use case, a smooth shape is desired. Nevertheless, segmentation has some advantages, in particular, models train quicker and require fewer examples, they give a less fuzzy outline for objects and are more stable/easier to make converge.

Paired vs unpaired approach Another surprising result of our experiment is that the paired model (pix2pix) was less eective than the unpaired one (Cycle-GAN). In other words, it is easier to learn what a generalized map looks like than to learn how to generalize a map with mountain roads. The main aw of images generated by the paired model is that the network structure is hardly preserved:

the multiple loop creations and disconnections make the generated images highly unrealistic. In our training set, several parts of roads can appear in one image, several close roads and two disconnected parts of a unique road are really similar, this can cause the model to not learn to avoid disconnection. With the unpaired approach, the cycle consistency prevents generators from modifying the information conveyed in the image. Thus, this approach is less sensitive to disconnections and loop creation. Nevertheless, paired learning has two advantages: 1) it is able to learn displacement, even if it cannot be well applied due to the lack of context of with the small tiles; and 2) it does not simplify the results too much. Finally, we hypothesize that a semisupervised approach, such as the one proposed in SMAPGAN (Chen, Chen, Xu, Yin, Peng, Mei, and Li 2020), could help us get the advantages of both approaches, and maybe the most adapted for mountain road shape generalization.

E.3.2 What can we learn?

In this section, we go further to explore what can be learned by networks such as those employed in our experiment.

Can we learn the selection of roads? We observe that removing the unselected roads from the initial image seems to be a better solution, but the results in both cases are quite unsatisfactory for this road. We can note that the model learns to remove the unimportant roads, but does not do it properly (some road parts remain, and one important road on top is partially erased). Road selection is based on shape characteristics [START_REF] Thomson | The "Good Continuation" principle of Perceptual Organization applied to the Generalization of Road Networks[END_REF], semantics features (importance, status, width, etc.), and the role played in the road network (Garcia-Balboa and Ariza-López 2008). Most of these elements are not accessible in a small image of the map, image representation is not really adapted for this step [START_REF] Touya | Is deep learning the new agent for map generalization[END_REF]. Moreover, many other methods succeed in combining these factors and properly select roads (e.g., [START_REF] Touya | A Road Network Selection Process Based on Data Enrichment and Structure Detection[END_REF]Benz and Weibel 2014, etc.).

Generalization of roads and rivers A comparison with previous experiments

on buildings has shown that the appropriate deep learning architecture is closely related to the use case, and our method cannot be directly applied to other cartographic objects. To assess the ability of the proposed method to generalize other objects, we experimented with the joint generalization of roads and rivers. The geometric generalization of both map themes has similarities, but rivers naturally have smoother shapes and require less generalization. Adding rivers should provide more context in tiles, which should explain the displacement frequently applied to roads to avoid overlaps between roads and rivers. However, more context will produce more complex situations and make the task more complex.

For this experiment, CycleGAN was trained with the same datasets, but the image tiles contained blue lines representing the rivers, under the road lines (red pixels are visible when roads and rivers intersect). Some results are presented in Figure E.15. We observe that roads are globally as well generalized as when they are alone. Then, rivers are really slightly generalized as expected, and the model learns that roads and rivers have to be generalized dierently. We can see very few local errors due to a very coalescent input image, such as the road bend that is not enlarged enough in Situation 6, or the island creation in Situation 4. Then, the relations between roads and rivers seem to be a problem for the model. In Situation 1, the enlargement to avoid symbol overlap is not applied, and some parts of the rivers are erased. It seems that our model has learned that roads and rivers do not have to overlap, but did not learn how to avoid it. We can nd an explanation for this problem in our input data: only half of our target training data present a signicant displacement to avoid symbol overlap between roads and rivers (1,5,7), and the other half only propose a very small displacement (2), or no displacement at all [START_REF] Harrie | Weight-Setting and Quality Assessment in Simultaneous Graphic Generalization[END_REF].

It reects some generalization problems in our target dataset. The GAN logically learns to generate badly generalized maps from badly generalized training examples.

A correction of the 1:250k dataset would be necessary to check if CycleGAN is able to learn how to generate images where roads and rivers have been displaced from each other. However, this use case has shown the ability of deep neural networks to learn the generalization of several dierent objects at the same time.

Finally, we believe that a graph approach is most adapted to learning the relation between objects, and especially this displacement while the image approach is more relevant to learning the shape of the generalized object. Thus, we think for a complete generalization, a mixed deep learning approach would benet from image and graph information and generalize together several objects.

E.3.3 Remaining limitations

In this section, we discuss the remaining errors and try to explain their causes. The user test (see Chapter H) has shown that the images generated using cycleGAN are considered as legitimate as the reference map. Nevertheless, these results are not really adapted for cartographic production for the following reasons: Some important loops and disconnections remain in some tiles, while the preservation of road structure is a hard constraint compared to the other constraints well managed by the model.

The output tiles are not a usable map, and post-processes are necessary to integrate these predictions in a map or in a more classical generalization process (see Chapter F).

Some noise can occur; in particular, we observe small blue dots that are barely visible in the output images. This color noise has to be post-processed.

Only roads are generalized in the experiment, and a complete topographic map is made of other topographic features, and these features (e.g., nearby buildings, relief, or rivers) may even inuence how roads are generalized.

One of the main reasons for loops and disconnection is that training images contain too much detail for the image resolution. This complexity in our input images has at least three consequences: (1) we need more examples to train the model;

(2) we need larger images or images with a better resolution; and (3) the network needs to be much deeper than our current setting to understand these images. Our proposed connectivity measure penalizes these errors without completely avoiding them.

The second problem is the displacement failure. First, to avoid overlaping of two roads (e.g. parralele roads), they have to be displaced from each other, but this case is too rare in our example set to be learnt. Then, to learn to move the roads from other obstacle, we need to know that there are other close objects on the map. Therefore, this information must be represented in tiles, and we need a representative example for this displacement.

The third problem is the alteration of visible connectivity in some images. It consists of the appearance of a few background pixels in the middle of some roads, which does not much alter the quantitative evaluation but clearly degrades the legibility of the road. This problem is less present if we augment the number of epochs but still occurs. Our proposed connectivity loss also penalizes such disconnections without completely avoiding them. Then, the only post-process that could restore connectivity would be to convert the roads back to vectors and to use a connectivity check [START_REF] Touya | A Road Network Selection Process Based on Data Enrichment and Structure Detection[END_REF].

Our work also experienced limitations that are not errors.

The evaluation measure and associated loss function should be improved; this may allow one to make the connectivity loss more ecient and avoid loop and disconnection in the output, or other measures used as the loss may improve the prediction in another manner.

Our dataset has a limited size, and it does not contain enough examples of very narrow and sinuous bend series.

We also faced computation time and memory limitations. Indeed, this thesis was done during the covid19 pandemic and the dierent lockdowns forced me to work several months from my personal computer and thus to give up some experiments.

Chapter's conclusions

In conclusion, the models we proposed correctly achieves smoothing, enlarge- The unpaired generative approach is preferred by the evaluators and give results considered as good as the reference map. However, some important local issues remain, and the generated images cannot be used as end-product topographic maps yet. The post-process and integration of the predicted road into a nal map have to be investigated.

This chapter also contributes to illustrate the diculty in creating an adapted training set and an adapted deep learning model, even with an image representation. In particular, the large gap of scale make tiles suering from a legibility problem that blurs the input shape of the road. We proposed several tile creation and improvement methods. The training set improvement aects the global quality of prediction, while improving the loss function rather focus on correcting some specic errors.

In addition, this experiment can be extended by adding multiple geographic themes to the training datasets to predict a complete map. This perspective would have to deal with spatial relations in a dense context, such as urban areas and multiple representations of objects, and is explored in Chapter F.

Chapter F

The generation of topographic map with several cartographic themes

The challenges of deep learning-based generalization are numerous, but the rst step is to address a more global approach with multiple cartographic themes generalized at the same time on the map. This chapter presents some rst experiments to test the suitability of generative adversarial networks (GAN) for the generation of generalized maps. It is a step towards the generation of complete generalized maps. Our goal is to generate maps of urban areas at a medium-large scale (e.g.

F.1 Materials and methods

1:50,000). This is a complex scale, with a dicult balance to nd between the buildings enlargements and the constraints of minimum separation between buildings and with road symbols. At smaller scales, the buildings are no longer shown individually, and at the larger scales, they do not need to be generalized to much.

The input data are extracted from detailed maps at 1:25,000, whereas the target scale is 1:50,000. These maps mainly contain buildings, roads, and rivers, and the representation of these elements should maintain an adequate level of detail to be legible and prevent symbol overlap. We chose a study area that includes a dense context of urban and rural areas, located near Saint-Jean-de-Luz, which covers 30* 15 kilometers in the southwest of France. We use detailed buildings, roads, and rivers from topographic datasets produced by the French National Mapping Agency (IGN) as input, and we expect as an output of the GAN a legible map of these elements at a target scale of 1:50,000.

This level of detail requires reducing the amount of information while preserving the patterns and main relations. Usually, roads and rivers are generalized rst, because they partition and structure the space [START_REF] Ruas | Strategies for automated generalization[END_REF]. They may be selected, and some patterns may be schematized. However, the shape and position vary very little at this scale. Then the buildings have to be enlarged and simplied to make them legible. As the space in each block is limited, the buildings also have to be displaced, typied (density is reduced while preserving patterns), amalgamated, etc. Finally, it may be necessary to cover dense inner cities with polygons of builtup areas when these areas cannot be represented by enlarged individual buildings [START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF].

The generalization can be performed by several algorithms, each focusing on some aspect and giving less or more importance to each constraint. Thus, we compare how deep learning is able to learn to reproduce the result of two alternative generalization processes. Both have been proposed to be progressive intermediate representations between 1:25,000 and 1:100,000 scales by [START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF]. We compared the AGENT process [START_REF] Barrault | Integrating multi-agent, object-oriented, and algorithmic techniques for improved automated map generalisation[END_REF], that focuses on building end position, and the typication-based generalization [START_REF] Burghardt | Mesh simplication for building typication[END_REF], that rather focus on building patterns and relation preservation.

In our use case, generalized road and river are really similar with the input.

Then, network is selected and complexe interesections and situations are simplifyed (e.g. round-about), but the global shape does not change. Generalized buildings must satisfy the following classical constraints:

(C 1 ) Buildings should be larger than a minimum size (25mm 2 );

(C 2 ) the smallest edge of the buildings should be greater than a minimum value (2mm);

(C 3 ) The buildings should not be too close to the roads symbols (2mm);

(C 4 ) The buildings should not be too close to each other (2mm);

(C 5 ) The density of buildings in a block should remain stable;

(C 6 ) Building patterns, such as alignments, should be preserved;

(C 7 ) Topological relations should be preserved; for example, the buildings should remain in the same block.

Built-up areas must be areas in the city center, where the density of construction is important compared to the rest of the city, it might be one or more blocks and constitute a coherent area, which is interpreted by map users as a whole with a meaning of "city center".

F.1.2 Implementation Dataset

We created square tiles of map image each of size 512x512 pixels, and representing 500x500m² on the ground (this means that each pixel represent aroud 0.98m). Table F.1 represent the constraint threshold in pixel. These dimensions guarantee a legible situation for both input and target data, and it is small enough to build a training set with around 2,700 images. We randomly extracted 100 tiles to evaluate the model (test set), we make sure afterwards that the dierent building densities are represented in these 100 images.

Input representation The input tiles are created using the detailed dataset. For the sake of simplicity, we only extracted the main themes of the map (i.e., buildings, roads, and rivers). We proposed and tested two representations of input data as image tiles (see C. Target The output data are manually corrected to remove errors due to the automatic processes used. In particular, some overlaps between buildings and rivers and buildings and roads were removed.

The output information is always symbolized. In a rst quick test we tried to mimics the style of planIGN (Figure F.2), and use the same colors in our target scale images. However, we observe that the two browns used for buildings and built-up areas are very close, and model confused both elements. Therefore, we decided to use our own style with more contrast.

In our target style of map, we symbolized the roads with a borderline with sizes and colors that vary according to their importance, and the buildings are represented in brown or gray according to their nature. We did not represent the building outlines to reduce overlaps between symbols. For simplicity, we decided to preserve a unique symbol for each road (the yellow one) and building (the brown one). The covering of dense blocks (or graying) is symbolized in ligth brown.

Model

We explore and compare the potential of paired and unpaired GANs, using pix2pix and cycleGAN PyTorch implementation 1 . We believe that the preservation of geo- graphic information should be better learned by a paried model, while the increase in legibility can be learned from both methods, as they only need to learn how each domain looks like. Objective improvement Then these networks are not specically designed for geographic data, so adjustments to default architectures may be required. We tested two loss functions that aim to improve the shape preservation in map (see C. Fusion GAN As mentioned in the dataset section we experimented with the addition of a context tensor. [START_REF] Hazrba³ | FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture[END_REF] propose an architecture to fuse a colored image and a depth map and generate a segmentation of indoor scene. Our idea is to use this architecture for map generation: the architecture fuse the input location and shape of map objects with the additional information and then generate the gneeralized map. The architecture is composed of two encoding paths (one for each input tensor, linked by "fuse connections", which sum the encoded additional information to the input, at dierent stages. We used this architecture as the generator of our GAN to replace the U-Net or ResNet (which are traditional GAN generator). Thus, our FusionGAN uses the main and additional information to predict images that are evaluated by a discriminator trained to learn if the image of the generalized map looks realistic (see Figure F.3).

F.2 Results

In this section, we present the results of the experiment and vissually evaluate (using the criteria C 1 to C 7 from F.1.1). The prediction presented are issues from our test set, the complete results are available here https://doi.org/10.5281/zenodo.7244047.

F.2.1 General results

Overall quality In the results presentation, the not dense and dense areas, where block covering is necessary, are separated in two gure ( First, at the individual building level, or micro-level accroding to [START_REF] Barrault | Integrating multi-agent, object-oriented, and algorithmic techniques for improved automated map generalisation[END_REF], we observe that the building size constraint (C1 ) is always satised, buildings are large enough, even a bit larger than in the reference. But the granularity constraint (C2 ) is somewhat less satised: the shape is simplied, but sometimes blurred, which is consistent with previous attempts to generalize buildings with GANs and and U-Nets [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF][START_REF] Kang | Towards Cartographic Knowledge Encoding with Deep Learning[END_REF]. We can also observe that some rectangles can be distorted and have an unrealistic shape. Moreover, some buildings are over-simplied and lose their distinctive shape: for example, some L-shaped buildings are transformed into a rectangle (see Figure F.5).

Figure F.5: Some zoomed image on prediction and target, the predicted building shape may be blurred, irregulare or not credible.

The global legibility of the images is satisfactory: most of the buildings are suciently separated from the roads (C3 ) and do not overlap each other (C4 ). Building density is well preserved globally (C5 ). However, some parts of the map (e.g. in Situation 1) suer from over-reduction of density. The remaining overlap problems are mainly induced by similar errors in the target images. Then, the most important challenge is to preserve the relations between dierent geographic objects (C6 and C7 ). For the road-building and river-building relations, the relative orientation, topology most of the time, and proximity relations are preserved. However, we do observe some building-road overlaps, and some inclusions in a small block disappear (i.e. some buildings change block). Grids and alignement are really rare in our dataset and thus it is dicult to evaluate the quality of their presevration, this point is later discuss in next section.

In city centers, the most important challenge is to transform dense urban blocks into built-up areas. Figure F.6 illustrates some prediction in a dense area where graying may be required. We observe that the model tends to erase most of the buildings but does not apply a gray area in the whole area. For some images, the predicted covering corresponds to the target (e.g., Situation 4), while for some other examples, unexpected parts of built-up areas are covered, and some covering are missing (Situations 5 and 6). We believe that there are three possible causes for this problem:

1. The image is not sucient to learn the block covering. The density and shape of the buildings in a block are important criteria for a block-covering decision [START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF], and both are visible in the images, but they are not 2. The image tiles might not show the complete block. Coverage is applied to a complete block, but nothing guarantees that the image shows the complete block. For example, in Situation 6 the graying is not predicted because only a short part of the expected covered area is visible, and this short part is not really dense to justify a covering decision. Typication vs Agent target In map generalization, there is often no unique optimal solution, as most of the time it is not possible to satisfy all constraints at the same time, and compromises are necessary. Dierent algorithms will focus We observe that predicted alignments and other building structures are better preserved by model trained with example from typication-based method; however, the shapes are less regular and the minimum separation between buildings is violated more frequently. The preservation of structures and alignements is one of the big strength of typicaiton process. The fact that these elements are better preserved with the model trained from typication exmaples is a rst hint to conclude that the network learns to reproduce generalization strategies from the examples and prioritizes the same constraints as the generalization used for the target data.

F.2.2 Improving the default models

In this section, we present the experimented models and datasets to improve the generation of generalized maps. 

Input representation

First, we tested using a layered representation of the input representation that limits the image bias and simplies the input preparation for a computer. Figure F.9 compares the symbolized and the layered representations to learn the generation of generalized maps. We only represented the symbolized input in the gure because it is more convenient for human readers.

We observe that the results are quite similar in most cases (e.g. Situation 1).

However, in dense parts of the map (Situation 2), the prediction of layered method contains less undesired fading and overlapping, and the information is less blurred and more preserved. Finally, in Situation 3, the layered method reduces overlapping between buildings and roads, and the prediction is a generalization as relevant as the target. So, the layered representation seems to be useful in the ambiguous case, where the input information is dense or overlapping, and it does neither decrease the quality of prediction nor increase the time required for training (for a three-layer image, with roads, rivers and buildings). 

Road selection

Our previous experiment, despite good results, suers from a major limitation: the road network is not selected during the process. We did not experiment to learn this selection because we think that the image alone is not sucient for this generalization, indeed it is a multicriteria decision based on road attributes , and section role in the global road network. 

Alignments preservation

The preservation of alignments is a classical challenge in map generalization at this scale. As there are very few alignments in our dataset, we cannot strictly verify how the models learn alignement generalization. Thus, we try to apply the model trained on our dataset to a test set in another area with more alignment (see Figure F.12). We observe that the prediction does not preserve all alignments, the building orientations, shape, and spacing does not vary very much but they vary irregularly across the buildings making the alignment not salient anymore for humans. We present for comparison a manual generalization of both area that illustrate an acceptable generalizaion of the situation. We expect the model to preserv alignement and the classical struce of building in two lines in each blocks. Thus, we tried several stategies to teach the model to give more importance to such areas.

First, we tested a weighted loss that gives more importance to errors in aligned areas. We dene for each input image X i the map W i of the pixel that belongs to an alignment with eq. F.1. Then we train the model with W L1 (see eq. F.2) loss instead of L1 (see eq. C.2) First, the weight objective requires annotated training data; second, the ne-tuning method requires to train the model a few times instead of once and to have some reference generalized data with the desired characteristics (here alignments).

W i = 1.25, if i belong to an alignment 1, otherwise. (F.1) W L1 = n i=1 W i × Y i -Ŷi (F.2)
An adapted objective function for map generation?

Finally, we tested the interest of two loss functions that aim to improve the prediction of maps from the literature review. We do not observe that the building outlines are less blurred than without the loss. Building shapes are neither regular nor credible. More buildings are kept in the prediction; however, the overlaps between the roads and the buildings are also more frequent. Then the model tends to predict some nonexistent buildings on isolated roads as if the model is learning that the buildings must be along the roads (even if there is no building in the input). Finally, the generated road appears to be more blurred and poorly generalized compared to the prediction without this loss.

Geometry consistency

The predicted image seem to suer from a too important complexity that degraded the results, especially the road generalization does not benet from the geometry consistency loss. Thus, why not only applying this loss only to themes where it is benecial? We think that such a loss can be interesting in a simpler case (i.e. for the generalization of buildings only). We observe that for simple situations the results are similar to the prediction without this loss, the edges of objects are neither more regular nor more credible. In the most complex situations (e.g. line 2), the result is not satisfying, the model learns to predict an image with very few changes from the input (except a small undesirable noise), and no generalization is performed. Indeed, in these cases, we expect the loss to encourage the preservation of topological relations between dierent elements (i.e., maintaining disjoint relation between a road and a building, inclusion between a block and a building, or disjoint relation between two dierent buildings, etc.).

Structure loss

However, the loss rather measures the structural variation between one element and its generalized version, and this comparison, contrary to the symbolization task, is not relevant because the generalization of the dense areas involves an important change in the shape and location of objects. Such loss seems to be not adapted to a map generation task that includes a change in the level of abstraction between the target and the input map.

F.3 Discussion

This section presents some discussions about our experiments on generalized map generation. In particular, we discuss the interest of the fusion GAN architecture; the additional information required to generalize a complete map at the 1:50,000 scale, and the possibility of a model for complete map generation.

F.3.1 Are fusion models useful?

First, we discuss why a fusion architecture is necessary for the models to benet from additional information. During traditional generalization, cartographers do not use all the information on geographic objects at the same time; they rst look at the position and shape of the object, nd conicts and then use other information (the importance, meaning of objects, etc.). The fusion architecture is based on the same principle; the model rst encodes the shape and position of the cartographic object and then needs additional information to resolve the conict, but this information does not require the same encoding as the main information. To demonstrate the interest of such architecture, we compared its predictions with an architecture that sees all information in the same tensor, and the main and additive tensors are stacked together. Figure F.17 presents the results of this experiment. We observe that the prediction of stacked information is similar to the prediction without additional information, random road parts are selected, many disconnections appear and the result is not legible. The model does not understand the information hierarchy and does not benet from the additional information.

Then, the results predicted with the fusion GAN have a degraded quality: including more disconnection, more blurred boundaries, etc. than the model trained with the base architecture of pix2pix. This degradation of quality is partly due to the increase of the task complexity, but mainly due to the model that has to be improved. Indeed, the Fusion GAN we propose is just a Pix2pix where we replaced the U-Net with a FuseNet. Indeed, this replacement is bound to include additional information, but fusenet structure does not include the ability to deal with multiscale phenomena unlike the u-net that include long-range skip connection (see Figure C.5). Moreover, the depth, initialization method, and optimization method of both these models are dierent, and thus have to be investigated.

Finally, in our architecture the discriminator is unchanged and trained with input, output and input predicitons paires. However, the GAN discriminator may also requires to "see" the additional information to judge if the predictions are realistic. We can assume an architecture that uses the triplet: main input, additional input, output or prediction, might be more suitable.

Which information to fuse? If the optimal method to fuse additional information is not yet dened, the interest of this information is not a question and the more complex the target map, the more additional information may be required.

We think that the attribute information of map objects and the context around the tiles are the more relevant additional information, but we did not have time to study the benet of many additional information sources. Thus, in this section, we give some examples of potential improvement with additional information.

A meaning-aware generalization of building: in some cases, it can be interesting to apply dierent generalization rules to some buildings due to their nature, e.g. a church often has a cross shape, and preserving this shape even if it breaks the minimum side constraint may be interesting as this shape is meaningful and may serve as a landmark in the city. However, such a generalization can be learned only with information on the nature of the building.

The articial and natural waterways are often really dierent to generalize, and this information may be provided as additional information.

The Horton order of a river or river stroke can be useful for its generalization [START_REF] Touya | River network selection based on structure and pattern recognition[END_REF], as it describes the context in the watershed that is not visible in an image.

The density of a block can be a contextual information as the block can be heterogeneous in its spatial distribution and not completely visible. This information may inuence the block covering decision and building placement in the block.

F.3.2 How to learn the preservation of spatial relations?

The main limitation of our results is the preservation of spatial relations. Our networks seem to succeed in preserving the relative orientation and relative position of element pairs in most situations. However, they fails to preserve the patterns of particular group of map objects. For example, it fails to select roads while preserving the connectivity of the road network.

The main dierence between road density reduction and building density reduction seems to be the scale of the change: erasing a road would impact several tiles, while erasing a building may only impact a part of a tile. The tile scale may not be adapted to represent the context necessary for road selection. Furthermore, the absence of attribute information on the road is more important for roads than for buildings. For such relations we think the image approach is not the most adapted, or have to be combined with other approaches (e.g., graph based learning).

F.3.3 Is it possible to generate a complete generalized map?

The last and most important question brought up by this experiment is the possibility of generalizing a map that combines several cartographic themes using these networks.

First, we observe the following limitations:

The predicted buildings have a blurred outline and not regular shapes. Some buildings are not credible. This problem is common with all GAN architectures tested in the literature and some model improvements for geographical data or regular data have to be investigated.

Some overlaps between roads and buildings remain. This problem has two main causes: (1) the under-selection of the road network which makes it difcult to nd a generalization solution that avoids overlapping and (2) the presence of such overlaps in the example from the reference. The correction of the training set is time-consuming but required to improve the results.

Disconnections appear in the road network, or the road network is poorly generalized. In the rst step, this problem was due to a lack of context. Then we provided context with the Fusion GAN, but the model has to be adapted to use it.

the block graying fails. We think that our input data do not include enough graying to allow us to learn this process, and our tiles are not adapted, a tile that includes the whole block may be required.

Secondly, we learnt from this experiment the following guidelines for the use of GANs for map generalization:

The input and target domains should not be too dierent with a supervised architecture. Consequently, we believe that only a small-scale gap is possible (i.e. initial and target scales should be close enough).

Input and target tiles must be legible; thus, the information presented in a symbolized representation must be limited, or a layered representation has to be used.

A sucient context has to be visible in the tile, so the scale of the images has to be adapted, or an additional information tensor has to be provided; this information has to be relevant and correctly encoded to benet the learning.

These constraints on task denition and tile creation reduce the possibility offered by GAN. Moreover, some other techniques like attention-based architectures [START_REF] Vaswani | Attention Is All You Need[END_REF] may resolve some context-relative issues. Finally, model improvement can benet some cartographic themes and degrade others. Therefore, we believe that it is currently more reasonable to design a process that learns to generalize dierent independent elements of the map separately. Such an architecture is explored in Chapter G, our proposal seperates generalization processes by theme, similarly to traditional generalization methods that treats roads rst and then buildings in the xed generalized road network; etc.

Chapter's conclusions

This experiment shows that GANs can generate map-looking images that include generalization. Our results succeed in reproducing the simplication, enlargement, and typication of buildings. However, more context is needed to achieve road selection.

This experience also highlights some challenges in the data organization. We

proposed an organization of geographic information that seems promising for map generation. This information is organized as two tensors (see Figure Finally, we think that GAN are more adapted for map style transfer tasks than map generalization.The generation of a complete map may require much context information and hard work on tile preparation. We believe that a more promising approach is the successive learning of theme generalization combined with a GAN that makes a map from raw generalized tiles. This process is explored in Chapter G.

Part III

The future of map generalization with deep learning 

G.1.2 Transfer to geographic information from a new data source

Secondly, we experiment with how the model trained for topographic map generalization (from Chapter F) can be transferred to some maps with other data sources.

The input tiles are created using OSM data in the USA. The level of detail of the input is not homogeneous and more detailed than the input tiles of the training set (we estimate that the level of detail for selected areas would be adapted for cartography between 1:10,000 and 1:25,000; see Figure G.3). The second challenge of the chosen dataset is that it is very dense compared to the French one and contains many small and aligned buildings. We have shown that the model transfer to USA data is not ecient unless retraining a few epochs of the model with a few examples from the target areas. We consider that the objective of the model is not exactly the same as when it is applied to french data: the input data are constructed dierently and the scale gap is greater. Moreover, the very dense situation are common in the new test area and rare in the initial trainging set, they may be hardly generalized without ne-tuning. (that describe existing objects, make explicit the implicit knowledge necessary to map generalization and help to choose and parameterize operators). According to its formulation (see Chapter B) a deep learning model can play both roles; for example, the detection of alignments (proposed in Chapter D) is an indicator of building group, which can be used to improve the generalization of these groups, while the segmentation of road shape (proposed in Chapter E) is an operator as it produces a new road shape. Moreover, some models, such as road section classication, can be employed both as an indicator of the importance of road sections in a road network selection process or directly applied as an operator to select edges in the road network. In the next paragraphs, we detail the issues of using deep learning as an indicator and as an operator for in a map generalization process.

G.2.1 Deep enrichment

First, many deep learning tasks can be seen as data enrichment for map generalization. Concretely; it can be employed similarly to traditional data enrichment prior to map generalization, the information is made explicit, registered as a characteristic for the database object, and then used during the generalization process. For example, the following enrichment can be brought about by a deep learning model and is a benet to map generalization.

Urban block classication could be performed using a deep neural network and can be benecial for progressive block graying [START_REF] Touya | Progressive Block Graying and Landmarks Enhancing as Intermediate Representations between Buildings and Urban Areas[END_REF].

The segmentation of highway interchange [START_REF] Touya | Deep learning for enrichment of vector spatial databases: application to highway interchange[END_REF][START_REF] Yang | Detecting interchanges in road networks using a graph convolutional network approach[END_REF]) can be benecial for the generalization of such patterns;

Building shape classication (Yan, Ai, Yang, and Tong 2020) may allow models to choose the relevant operator for building simplication.

Alignment detection (Chapter D) can be used to assess the generalization of the building group or to determine the groups for the generalization of the buildings.

The data enrichment prior to map generalization is classical, and the use of deep learning for such a task does not imply new/specic integration issues. Knowledge is made explicit and can be used for map generalization processes (eventually with a form adaptation 1 ). In this case, the contribution of deep learning is to make accessible knowledge that was previously not (except by a manual annotation).

G.2.2 Deep generalization

The usage of deep learning as an operator is promising, as it allows one to generate generalized entities and to use them in a generalized map. For now, the creation of such a model is more challenging, and in most identied approaches (see Chapter B) the prediction cannot be in vector format and require post-process to be integrating into a map generalization process. Indeed, in the construction of a map generalization process that includes a deep learning operator, the output of the deep learning process must match with the expected input in the next step of the generalization process (which are commonly entirely vector).

Graph to vector The conversion from graph to vector is often not a problem, as graph construction methods are a bijection (one element in the graph corresponds to one element in the vector), and the graph structure is not altered during learning (even removal of an object is not properly a removal, but the prediction of a removal label that will lead to suppression of the associated object in the generalized output). For example, if a shape graph (i.e., a graph that encode the shape of an entity, see Chapter B) is used to predict a generalized shape, one corner corresponds to one node, and the existence and displacement of each node is predicted, then this information applied to the corner point allows the generation of the vector generalized shape. Similarly, for the selection of the road network in Chapter D the graph and the road network are linked by a bijection and the selection of the road section (according to a chosen threshold) can be applied to the road network to obtain the vector selection of the road network.

1 The image approach may require more form adaptation to nd the object concerned by each images.

Image to vector The integration of generalized objects in image format is more challenging, very few raster data are used in the map generalization process, and the conversion has important limits [START_REF] Shunbao | Errors Prediction for Vectorto-Raster Conversion Based on Map Load and Cell Size[END_REF]. In fact, the vectorization process creates an envelope of consecutive pixels that represent the same object. This process depends on a pixel clustering method (to determine which pixel describes the same vector object) and the pixel resolution. For example, for the generalized mountain road shape in Chapter E, we proposed the following steps 2 :

1. Projecting images. During the image creation, we stored the coordinates of the input image and used this information to project the corresponding output image of the map.

2. Constructing a road mask. We identify the pixels representing a road in the image (i.e. whose color is closer to the color of the roads in the target style than any other color of the target style.) 3. Polygonize. We use the gdal_polygonize function that creates vector polygons for all connected regions of pixels in the raster that share a common pixel value. 4. Skeleton. The polygon skeleton is used to nd the road axes and linearize the shape.

Smoothing. The artifacts of linearization are eliminated.

The second challenge is the assembly of tiles. Indeed, tiles are generalized independently and roads are arbitrarily separated by the image border, but at the end, we expect a coherent road vector network without disconnection at the tile limits.

Moreover, with the tile overlapping and the independent generalization of each tile, several generalizations are provided for one part of an object, and the assembly process has to match dierent generalizations in a unique shape. Several approaches to merge shapes are possible from the choice of one (the best) of the predicted shapes; to the creation of a new 'average' shape of all predictions. Finally, the assembly may be performed before or after the vector conversion according to the use case.

For mountain roads we choose to make an average summary of all shapes, as the most important criterion was continuity preservation between lines in dierent tiles and the mean line may be closer than two independent best generalizations from dierent tiles (we think the best generalization assemblies are better adapted for polygon objects like buildings); then we tested both approaches of assembly in raster and vector mode, and nally proposed a combined approach that may improve the quality of assembly:

1. The roads are arbitrary separated in sections.

2. Section are matched using a distance criteria.

3. The shape of matched section is optimized unsing a least square optimization, to induce a "mean" shape for each road portion.

The optimized constraints are the following:

2 The work about mountain road tiles vectorization and assembly is the results of a student project by Ziad Boukbir, Quentin Courtiade, and Julliette Rabbe and that we supervised.

Minimization of the movement of each point.

Preservation of angles.

Minimization of the Hausdor distance between two analogous segments. This process results in a vector road network that suers from some disconnections and important distortions at some parts where two matched routes are very far apart, either because the matching is wrong or because the two generalizations are very dierent. Moreover, the displacement is homogeneous along the section, while we may want some points to be xed (e.g., the intersection or dead end). Thus, we propose a second approach for tile assembly but before vectorization: we try to detect points of interest in the image and use them for distorting the image so that analogous roads cover each other. Such a process is promising for maintaining structure and connectivity of the network while assembling the tiles, but, we were not able to nd both enough relevant points of interest and an adapted deformation function for tile assembly. This work was done in a limited time and that it deserves to be explored further. Our last suggestion is to combine both approaches and apply a smooth distortion to the image to assemble the points of interest, and then vectorize and match the other segment point.

G.3 Usage as an end-to-end process

The second approach is to use deep learning models in a holistic deep learning approach for generalized map generation. Chapter F has shown the complexity of learning to generate a generalized topographic map image from a detailed geographic database, using an image approach. Indeed, it seems complex to encode all the necessary information in a single tensor that is the input of a neural network, and the complexity of the task makes the model design complex. Moreover, we have shown that some architectures are suitable for some sub-tasks of the generalization, but not for others. No architecture proved eective for all required tasks.

In this section, we propose to combine several simpler generalization models in an end-to-end process. Indeed, the separation into simpler tasks allows us to simplify the formulation, the research of relevant deep neural networks, and its adaptation and evaluation. For example, the additional information that can improve the generalization of the road network in Chapter F also degrade the prediction in the case of a complete map generalization. Bias can be avoided in the case of a separate process. Thus, we propose, experiment, and discuss a deep neural network workow for generalized map generation, called DeepMapScaler.

G.3.1 DeepMapScaler: a workow of deep neural networks for the generation of generalized maps

We propose to separate the problem into several simpler tasks in order to apply the relevant deep learning architecture to the small problem it is able to solve (U-Net, FuseNet, GAN, Graph Convolution Network, etc.). Our contribution is organized as a workow that describes an end-to-end process for generalized map generation, where deep learning is used in most steps.

The rst part of the workow is called data adaptation for a reduced scale (or in a shortened way scale adaptation); it encodes the detailed shape and location of each desired geographic theme and predicts a possible generalization. This stage is responsible for adapting the level of detail of objects and preserving the main struc- Data adaptation to the scale reduction The scale adaptation manages the level of detail of the geographical data, but does not exactly perform its complet generalization, as the inter-theme relation and resulting displacements are not considered. It may be assimilated to the creation of a rst draft of cartographic database for a specic scale. The goal of scale adaptation is to produce the masks used as input for map generation. This shape satises legibility constraints at the target scale; it may respect constraint that concern individual, paire or group of object from the same class (e.g. the granularity, pattern preservation constraint, etc.).

The scale adaptation of each cartographic theme is processed independently in one or several steps (including both some deep enrichement and operator steps).

It can have diverse forms according to the themes depicted in the map and the scale; the more complex a theme generalization at a scale, the more steps may be needed. We think it is possible and benecial to mix diverse representations of geographic information during the scale adaptation of one theme (e.g., graph and raster). The input of the rst step must be derived from the detailed database, then the information of the next step can be derived from both the detailed database and/or the predictions of previous steps.

Map generation This step leads to the prediction of a map image at the target scale, it is composed of only one model that is trained to generate a symbolized map from cartographic data, it mainly aect the style of images. Cartographic data already have a level of detail adapted to the scale of the target map, but it also includ generalization step to displace objects that overlap once symbolized and gather in map. We propose to repeat our proposal of layered representation and use as input a stack of masks that represent the position and shape of the generalized map item organized with one cartographic theme on each layer.

G.3.2 Experiment

To illustrate the interest of such a workow, we propose an instanciation for the use case of topographic map generation at 1:50,000 scale, already presented in Part II.

Implementation

The use case and base vector database are the same as for experiement presented in Chapter E. Thus, we can compare the results of both approaches. The target maps includes roads, buildings, and hydrography, at 1:50000 scale. The global implementation of the workow for this use case is illustrate in Figure G.5 and then detailed in next paragraphs.

We propose to experiment with the scale adaptation of roads and buildings and then with the generation of maps. We did not experiment with the water scale adaptation, as it is really simple at the chosen scale (no shape simplication is performed, the water container are deleted and a slight selection of water lines based on attribute is performed). We implemented the deep learning models of the 

Road generalization

For the road generalization, we tested a proposal in two steps: rst, a GCN predicts the probability for each road to be selected at target scale from the attribute and context of each road sections (from Chapter D). Then, a GAN is responsible for interpreting this information and generating images of the generalized road. For this step, we use the proposed fusionGAN from Chapter F, with a binary mask of the presence or absence of roads as output. This part of the workow is illustrated in Figure G.6. We also tested the addition of a connectivity loss (adapted from the connectivity loss proposed in Chapter F) and the topology loss from (Chen, Chen, Xu, Yin, Peng, Mei, and Li 2020). The connectivity loss measures the preservation of the number of road sets after generalization to avoid disconnections. Contrary to the experiment at the 1:250 000 scale, the loop creation and undesired coalescence of two road parts are very rare, so we did not measure the preservation of the number of background sets. This measure can be computed even in the more complex images; however, the overlapping of the road and other themes create disconnections that does not aect human perception of continuity and makes it less relevant in the case of map generation. The topology loss computes the structure of the predicted image and compares it with the input image. This comparison seems relevant to use for the case of roads image because the global structure of the road network does not change much. However, we do not think it is adapted for most other themes (e.g.

building) that also contribute to the structure of the image and may vary in position in an important range. is required. The connectivity loss slightly reduces the number of disconnections, but the numerous artifacts make the image hardly legible.

We believe that despite the obvious failure of our attempts to maintain the continuity of the road network in the predictions. The image approach may be adpated for the road generalization, however, further research on the fusion model and the loss function are necessary. 

Building generalization

The experiment on map generation from Chapter F lets us consider building generalization as simple enough to be learned in one step with satisfying results. Thus, we train a supervised GAN to predict the position and shape of the generalized building in a mask. The input of the model is the layered representation of the detailed buildings, roads, and hydrography because we think that the other theme of the map helps to identify crowded and free areas and gives an indication for the generalization of buildings. We tested the classical implementation of pix2pix and one that included the geometry consistency loss from [START_REF] Fu | Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping[END_REF]. This loss may allow us to generate more regular shapes and reduce the number of epochs required for generating acceptable results (see Figure Figure G.8 presents the results of these steps. The evaluation of such buildings is visually dicult, the both results seems satisfying, with realistic and generalized buildings. However a quantitative evaluation of buildidng shape regularity is necessary to study the interest of the geometry consistency loss. This evaluation is based on conversion to vector and vector constraint evaluation and detailed in Section H.4. It leads to the conclusion that the geometry consistency loss does not bring a signicant improvment of regularity in predicted building shape.

Block graying

Finally, we try to learn the graying of the city center. This task is essential for legibility when the situation is too dense at this scale. This process requires the road and buildings shape and locations are the main information, a grayscale category map that describes with values from 0 to 255 for categories from rural to inner-city is the additional information. This additional information is obtained using the multi-criteria classication described in [START_REF] Touya | Multi-Criteria Geographic Analysis for Automated Cartographic Generalization[END_REF]). The resulting dataset was not really relevant because the graying case is very rare (representing less than 20% of our tiles) in such mostly rural areas and at this scale; thus, we only kept tiles that include urban pixels and added examples from other cities in France until we obtained a reasonable dataset of 1200 images. The graying was manually annotated.

We trained a FuseNet to segment pixels that may require to be grayed. Figure G.9 presents one tile of input, target, and prediction. We observe that the model learned to cover the entire urban envelope rather than just the dense blocks of the center.

We did not have time to further improve the prediction of graying, but we think that the tile scale and the provided information are not adapted. The classication results are not correlated with target graying (e.g.some block are classiyied as suburban and grayed and conversly some urban block are not grayed). Moreover we think the size of tile is not adapted for block analysis, and images that allow to see several blocks or even the whole city would be more relevant for this task. to reproduce new generalization operators: in purple, we observe some amalgamations when the initial buildings are too close and have a complex shape; in green, we observe some cases where the buildings are displaced or distorted to avoid overlaps with the roads; in pink we observe some displacements to avoid the overlap of two or more buildings. However, the prediction still has some limitations (illustrated on the right part of the gure), in particular in the prediction, the road-river relation and road-building relations are sometimes not correctly processed and undesired overlaps occur (circled in red); and some building-to-building proximity relations are not correctly handled as the model does not choose between amalgamation or displacement, and tries to do both, which results in a shape that is not credible. We explain the buildings-roads overlap by the rarety and complexity of the situtation, buildings are in a very thin block and where it is not possible to maintain buildings in the blocks while increasing theire size. The roads-river overlaps is due to a bad generalization of such situation in our example set. For the second problem, the 

G.3.3 Discussion

Advantages and limitations of the workow Our experiment aims to show that a workow that combines several deep neural networks is more promising than the approach of Chapter E (i.e., training a unique model to achieve map generalization at once). The proposed approach has the following advantages:

It allows for a simpler evaluation and comparison of prediction quality for each task.

It allows the independent training of dierent tasks: some tasks are more complex and require a dierent number of steps (e.g., map generation takes 300 epochs, while building generalization only needs between 150 and 200 according to the model).

As the objective is more clearly dened, the model and loss adaptations are also simpler.

Some tasks (e.g. road network selection) require dierent representations, and such a model allows the combination of representations.

We can choose and use dierent input data for each task.

Post-processes and corrections between steps are more easy than with one model for holitics generalization (e.g. the blue spot noise in cycleGAN prediction can be simply corrected in buildings or road images as no blue pixels are expected, while in a complete map they can be noise or rivers pixels).

However, our experiment is limited by the chosen model for each scale adaptation;

in fact, if we are convinced that the separation by theme will allow the design of a specic architecture, and thus the prediction of better generalization, we were unable to propose a model that visually improvement of the prediction is signicant and not just link to the randomness of learning processes. In particular, road connectivity is still a problem and may require an improved fusion architecture. Furthermore, the map generation step provides an improvement. In particular, it has shown that the unpaired GAN can learn displacement and amalgamation and seems more ecient in producing a legible map than the unique generalization model. Finally, the proposed workow has limitations in its denition.

Data acquisition is more complex than for the unique model;

It requires more time and storage capacity than the unique model;

The propagation of errors is more probable.

Transition between steps Then we discuss the transition between steps. In our rst implementation, we decided to train each step independently and to include a data representation between each step to make the transition between one model output and the next input. This choice is benecial for research purposes where we are still searching for an adapted model for each step, and we can and want to evaluate each of the steps visually. This choice is the simpler one for us, but other solutions are possible and may be of benet. In particular, for a step that has a data enrichment function (e.g. prediction of elimination probability), an approach with an encoding-only model that provides an embedding representation of attributes or context information to the next model directly may be adapted. The idea is that the decoding step is to render the information in a form that is understandable to a human. But as in the case of our workow it is directly another learning model that will use it and not a human, it could be possible to transmit directly the encoded information (emmbeding) to the next model (see Figure G.12). We imagine that this should reduce the eventual degradation of the information related to its successive encoding and decoding.

More than reducing the cost and bias of decoding/representation such transition would also allow to chain processes based on any kind of object representation, while for now the decoding transition only allows some transition (e.g. the graph-to-raster transition is possible but not raster-to-graph), and would give more freedom on the steps of the workow.

Chapter's conclusions

In this chapter, we show that the use of deep learning may allow us to apply deep learning-based generalization model to a large dataset. However, this application may require ne-tuning in the case where it must be applyed to very dierent situations or to use case where the objectivs varies (e.g. the input data is form another source, the target style is quite dierent, the scale gap has changed, etc.).

We also explore the possible usage of deep leanring based model in a generalization process. We assume that the usage of deep leaning alone is currently not suitable and models have to be integrated in larger workows. We show that models can serve as an enrichment indicator or a generalization operator in a traditional generalization process or in a fully learning-based map generation workow. In both cases, integration is challenging, mainly due to the data format (that is not vector) and the deep learning evaluation (see Chapter H).

Chapter H

Evaluation of deep learning predictions

As shown in Chapter F, the evaluation of generalization performed using deep learning is a challenge. This chapter introduces the main notions and issues about evalu- or guide the post-processing (e.g. identifying a noise to eliminate). Finally, the main interest of an evaluation measure calculated using images is to guide the learning process, i.e. including a particular evaluation measure in the objective function of the neural network. This evaluation requires a very small computation time and cost, as it is repeated for each image in the dataset at each epoch of the training. On the contrary, the evaluation at the end of the process can be more time consuming, as it would be calculated only once; however, this evaluation must be as quick as possible.

In Controlling An evaluation measure can be used to control the learning process.

At the end of each epoch the measure is used to verify the progress of the model and to choose when to stop learning. For now the loss value and a pixel wise comparison with the reference are used in most training process. The evaluation for controlling the learning requires a measure that globally describes the quality of the prediction; moreover, the calculation of such an evaluation has to be done automatically in a reasonable time, because it is repeated many times during the training process.

Setting An evaluation measure can also be used as a part of the objective function Validating The most common reason for evaluation is the validation of a model.

An evaluation of this type has to make comparisons with other generalization methods or with a reference generalized map. The aim is to verify that the produced map is a functioning map. We think such measures are essential for the development of deep learning-based map generalization, as this allows us to formally demonstrate the potential of such an approach and promote the comparison, and thus the progression of models.

Post processing Finally, evaluation can be used to identify errors after generalization and choose a post-processing method that corrects them. For example, we can apply a lter to correct a noise using the relevant evaluation. Consequently, the goal of this evaluation is to fully describe errors in a map image.

1 The evaluation measure can be used for tuning the training set but the training set tuning is not necessarily based on an evaluation measure (e.g., the sinuosity based ltering, and the diversity measure for mountain road in Chapter E).

H.1.2 Evaluation in map generalization

The objective of the evaluation is to determine whether the map has the characteristics necessary to be used for a given task. This evaluation can be performed visually by an expert or automatically by identifying and measuring the respect (or violation) of a set of constraints. Constraints are essential for many tasks in cartography, including map generalization evaluation [START_REF] Werder | Formalization of Spatial Constraints[END_REF][START_REF] Touya | Collaborative Generalisation: Formalisation of Generalisation Knowledge to Orchestrate Dierent Cartographic Generalisation Processes[END_REF]. For example, Figure H.2 is an illustration of the main constraints for buildings on a topographic map. Evaluating a map or a generalization process from a set of constraints is challenging and raises the following issues:

1. Identication of relevant constraints/desired characteristics of the map. Both legibility and preservation should have similar weights in the evaluation to avoid caricatured results [START_REF] Zhang | Automated evaluation of generalized topographic maps[END_REF].

2. Identication of the relevant level of analysis for each constraint. This is a key issue in constraint denition: a constraint on each section of the road is dierent from those on a complete road or on the entire road network. [START_REF] Ruas | Modèle de généralisation de données géographiques à base de contraintes et d'autonomie[END_REF] identies three levels of constraints: micro which relates to an individual object of the database used to make the map; meso which relates to a group of objects, and macro which relates to a population (e.g. all roads of the map).

3. The denition of a measurement method that ts the visual ranking [START_REF] Taillandier | Objective Function Designing Led by User Preferences Acquisition[END_REF][START_REF] Harrie | Analytical Estimation of Map Readability[END_REF]. The complexity of the measure depends on the constraint. For instance, constraints on object size can be easily measured, while others require advanced spatial analysis, e.g. alignment preservation (Zhang, Stoter, Ai, Kraak, and Molenaar 2013), line position accuracy (Skopeliti and Tsoulos 2001), etc. 4. The calculation of a level of satisfaction. The goal of this step is to determine whether the result of the measure is acceptable. To do this, we can dene an evaluation function [START_REF] Bard | Quality Assessment of Cartographic Generalisation[END_REF]. For example, for the constraint "the road position must be preserved", the measure could be the distance between two points from the previous and the new positions, and the evaluation function would evaluate how the constraint is respected or violated given the measured distance.

5. The fusion of all constraints into a synthetic value would allow the comparison of map generalization methods. However, generalization constraints often express conicting ideas and cannot be totally satised at the same time: in a dense area, the legibility constraint demands information selection and/or object displacement, which violates the preservation constraints. Several strategies can be used for the fusion of constraints [START_REF] Touya | Social Welfare to Assess the Global Legibility of a Generalized Map. Geographic Information Science[END_REF]. For instance the general objective can be to minimize the value of the worst satised constraint, or to reduce the number of critical measures (measure with a very bad value (under a certain threshold), to reduce the number of conict areas (area where one or several constraint cannot be satised), or to increase the average satisfying of all constraints using a mean value, etc.

Many constraints and measures have been proposed for map generalization. However, most of them cannot be directly employed to evaluate the prediction from deep learning for three reasons: First, the output format is not adapted: such constraints and measurements are dened for vector objects, while our prediction may be a raster. Although conversion to vector format is possible, it can complicate the whole end-to-end process. Sometimes it is even not suitable. For example, when evaluation is used to guide the learning process during training.

Second, the evaluation of a map can require important computation time, while deep learning evaluation may be computed many times for large example sets (in particular the evaluation for controlling and setting the learning).

Finally, deep learning processes tend to hide causal mechanisms and do not guarantee a result that follows cartographic principles. Traditional map generalization evaluation may hypothesize that the evaluated map follow cartographic principles. Thus, the evaluation of deep learning prediction may requires to examine whether and how the map objectives are satised with an independent evaluation process, before the evalaution of generalization.

H.1.3 Evaluation in deep learning research

The evaluation of deep learning models diers according to the problem formulation; in this subsection, we describe these dierent methods and the challenge for the dierent formulations described in Chapter B.

Classication The evaluation of any classication (even without deep learning) is commonly performed using a confusion matrix and some scores calculated on its values. For example, Table H Segmentation Segmentation is a kind of classication at the pixel level; consequently, classication measures can be applied to each image; however, the number of correctly classied pixels is not really signicant. Most papers on deep learning segmentation evaluate the quality of the segmentation using the intersection over union (IOU) measure, which quanties the number of common pixels for each class in the ground truth and the prediction divided by the among of pixels in the union of these two images. Image generation and style transfer The evaluation of images generated using a GAN is an important issue in the literature. In such generations, the problem is similar to the evaluation of map generalization, the pixel accuracy is less important than the global appearance of the images. Moreover, the evaluation of the generated images often deals with problems where a good solution does not exist or where the good solution is not unique. This is also true for map generalizations: several dierent generalizations can be acceptable. There is no unique global measure for generalization quality [START_REF] Touya | Social Welfare to Assess the Global Legibility of a Generalized Map. Geographic Information Science[END_REF], and there is no easy way to measure how much an image looks like a real map. The questions that evaluation of GANs seeks to answer are the following: "Is the prediction realistic?", "Does it look like to the target domain?", "Does it have the expected style?", etc.

For the evaluation of such generated images, computer scientists propose evaluating the similarity with a reference or conducting a user preference test. On the one hand, the similarity measures are often not correlated with a visual evaluation of the prediction; this bias may also be important in map generalization, where results that are really similar to the target can be very bad. On the other hand, user tests focus on the realism of the output and try to demonstrate that people would not be able to determine which image is generated, and which one is real. This show the requirement of specic evaluation for map generated using GANs that question both the image realism and the map generalization quality.

H.1.4 Proposed evaluation methods

Neither the map generation evaluation method nor those of deep learning seem to be adapted to evaluate the prediction of deep learning-based map generalization.

In most cases, the prediction assessment requires a visual examination of results; however, we want a more formal and automatic measure of quality to complement this visual examination. Procedure The user test was designed as a web questionnaire; the link has been sent to two dierent e-mail lists: one composed of generalization experts and one of the researchers from various domains and the employees of our university. The test is designed to take around 20 minutes. The rst page of this survey gives information on the objective of the test, the images presented, and the generalization of the mountain road. This introduction page can be reached again at any time in the test if the user has doubts. The last page asks some general information questions, such as their level of expertise in maps and generalization. For the main part of the test, we selected 30 situations (24 for the matking task and 6 for the ranking task), and we distributed the images (for each situation and method) in 8 tests, which were randomly assigned to the respondents. Each test is organized as follows: 5 marking tasks; 1 ranking task; 5 marking tasks; 1 ranking taks.

H.2.2 Results

We obtained between 2 and 20 responses for each image. This dierence is due to the random distribution of the tests. All images with more than ve responses are included in the evaluation. Marking ranges from 0: "very bad" to 3: "very good".

Overall results ization, the visual evaluation is often performed by a cartographer who knows the cartographic rules, while in deep learning the user evaluation rather focuses on the user. In our case, we ask both cartography experts and map users (almost everyone is at one moment a map user) to answer our test. Then, we compare the responses given by the two populations, to verify if a non-expert population that does not know map generalization and cartography rules is able to assess the eciency of a map. We observe that the results are similar for both populations.

Statistic verication of hypothesis In the following statistical test M r represents the average realism mark (between 0 and 3) and M represents the average sum of each mark (realism, generalization and legibility, between 0 and 9). The average realism markss for the images from reference (M r =1.90) and from Model A (M r =2.05) are similar. A paired t-test on the realism average marks for each image shows no signicant dierence (t(8) = 0.26, p= 0.79) and validates (H1 Variation in evaluation In addition to the statistical validation of the hypothesis, we study the variation in evaluation. In fact, each model may be more or less adapted to certain particular situations. For example, we observe that the standard deviation is lower for CycleGAN images than for the reference, i.e., there are more dierences in quality perception between dierent situations when they are traditionally generalized than when they are generalized using deep learning. Deep learning seems to have an averaging eect that smooths generalization. The higher deviation for the improved model (Models B and C) can be explained by the error correction on some images and some other images where errors are introduced compared to the standard CycleGAN.

Extreme values The study of some controversial images (with the larger dier- Then, with regards to the realism question, there are some surprising answers. Image number 294 has a very low realism for Model C only, we cannot be explain this dierence. Finally, Image 214 have a low realism for each method it reveals that the real shape of the road in this image may not seems no to user. In general the evalaution of legibility has a less extreme low value,user consider each image equally legible. 

H.2.3 Limitations

Our user test presents the following limitations:

The images presented are not maps, but maps extracts of 2.5 × 2.5km. The evaluation of the usability of such an image in a concrete task (e.g., following a routes) may be more relevant ranking and marking. We think that the evaluation of tiles is necessary to attest theire quality and usability in but not sucient. Moreover, a more complet evalution of map functioning is not possible without the map reconstruction.

The number of images for each method is limited and can constitute a bias in model evaluation. We choose the images of the user test manually to be representative of most situations from the test set. However, this image set may contain less simple situation than the global study area. Increasing the number of images presented may require increasing the number of participants to maintain a sucient number of responses for each image.

The number of evaluations for each image is limited and not xed; the random attribution of the test makes the number of responses by image varying, which is not practical for evaluation and comparison between images (if we had to do it again, we would correct this point).

The questions are imprecise. In particular, some problems in the predictions can be interpreted by some users as information alteration, while considered as a legibility problem by others.

The topological correctness of the prediction is not evaluated, while it is a major characteristic of road generalization.

H.3 Constraints for raster based evaluation

The denition of constraints is common in map generalization [START_REF] Beard | Constraints on rule formation[END_REF], but most of the measures of constraint violation are adapted to vector data [START_REF] Mackaness | Chapter 5 -Evaluation in the Map Generalisation Process[END_REF], and not to raster data. Traditionally, the constraint-based evaluation of map generalization is based on a constraint violation measure calculated on vector data. In this section, we describe how some constraints can be adapted to be applied to generalized mountain road images produced using deep learning.

H.3.1 Method

In this section, we present how raster-based constraints can be dened, congured, and applied to the specic case of mountain roads. We focus on evaluating mountainroad graphic generalization for a display at the 1:250,000 scale. The goal is to be able to evaluate the images generated in Chapter E.

The main challenge of this use case is the raster format of maps. In vector map generalization, road segments, faces, and networks are used to set up constraints.

In contrast, a raster is a grid of pixels valued, where the limit of each object is not explicitly dened. Consequently, constraints should not hold to the notion of object shape or limits, and other levels of analysis must be explored, such as the pixel, a set of pixels, or the image. These levels are presented in Table H.4. We can construct a pixel set using the following rule: two pixels that are 4-connected and have the same color should belong to the same pixel set. Consequently, a road map is made up of sets of road and background pixels. First, we directly derived some constraints from the usual requirements of mountain road map generalization and road map generalization [START_REF] Mustiere | GALBE : Adaptative generalization. the need for an adaptative process for automated generalisation an exemple on roads[END_REF]Duchêne 2014a). We expect the mountain road generalization to reduce coalescence in a series of bends and smooth the shape of the road while preserving the position, connectivity, and structure of the network. All these constraints are classical, and we only need to adapt the way they are measured. In addition, the observation of the example images of our use case validates our hypothesis that specic measures are required for deep learning results. We observe that some predictions are unrealistic, blurred, or noisy. Consequently, we decided to add some realism constraints that aim to check that the model produces images that look like real maps.

To validate and congure the proposed measures, we use a validation set with both real data (images extracted from our deep learning results presented above) and fake data (hand-drawn images of interesting road congurations). For example, Table H.5 lists interesting fake situations constructed by modifying the shape of a random road. 

Clutter Reduction

Clutter can be dened as too much and disorganized information in an image and can be seen as a proxy for the complexity of the image. The clutter has been shown

to make image use more dicult [START_REF] Rosenholtz | Measuring visual clutter[END_REF]. This is why we introduce a constraint to avoid the clutter that could arise during generalization.

This constraint may be adapted for images of generalized maps, not only for images of generalized mountain roads.

Clutter measures are image-level measures that aim to evaluate the complexity of an image. Their adaptation to assess map legibility remains a question [START_REF] Dumont | Assessing the Variation of Visual Complexity in Multi-Scale Maps with Clutter Measures. 19th ICA Workshop on Generalisation and Multiple Representation[END_REF]. We have tested four dierent measures for estimating the legibility of our road images: edge density, the subband entropy [START_REF] Rosenholtz | Measuring visual clutter[END_REF], which is similar to JPEG compression, the quad-tree method, which measures the number of homogeneous square cells in the image [START_REF] Touya | Comparing Image-Based Methods for Assessing Visual Clutter in Generalized Maps[END_REF], and the object segmentation-based measure [START_REF] Bravo | A scale invariant measure of clutter[END_REF]. Most of these measures represent a quantity; for more clarity, we propose to convert these quantities into a ratio using the formula (eq. H.1). observation is similar to all the clutter calculation methods tested. The measure succeeds in detecting an increase in complexity in the images. However, some images that a human could judge as quite more complex than the others only sow a small dierence in clutter value. 2 The code is available in the DeepMapGen repository https://github.com/umrlastig/DeepMapGen, and should run on any square image, but most measures are only relevant for images made up of roads (pixels close to red) and backgrounds (pixels close to white). 

Smoothness

The smoothness constraint is a legibility measure that should make the generalized road smoother than the input road. The fewer irregularities are visible, the more legible the shape is. This constraint is designed for images of generalized roads in general.

To measure smoothness, we have to detect and measure the number of irregularities around the roads. We detect irregularities at the pixel level using mathematical morphology. We simplify the problem by transforming the image from colored (RGB) to a black-and-white map that represents the presence or absence of a road. The size of the closing determines the size of the biggest irregularity that should be smoothed by generalization; if we choose a threshold too large, concave portions that are not irregularities might be wrongly lled. This measure seems to work the best at the resolution and scale of our use case with a closing value of three pixels (30 m). Our experiment has shown that closing with less than three pixels detects very few irregularities, while closing with more pixels lls the bends and tiny regular background areas.

Validation and Limits Figure H.8 represents the distribution and some example values of the smoothness measure. This measure is globally well correlated with our visual perception of smoothness. However, we observe the following limitations:

The accuracy of irregularity detection has to be questioned; depending on the threshold, irregularities can be missed, and/or some sharp bends can be wrongly identied as smoothness problems.

The measure depends on the resolution and scale of the road; other use cases might require dierent parameters.

If the initial image is not irregular, the ratio measure cannot be computed (this case occurs in 10 percent of images in our test set). 

Coalescence Reduction

The coalescence constraint is a legibility constraint. Coalescence is the fact that the symbol of a line overlaps itself in the interior of a sharp bend [START_REF] Mustiere | GALBE : Adaptative generalization. the need for an adaptative process for automated generalisation an exemple on roads[END_REF].

The generalized image should not contain symbol coalescence. This constraint is designed for generalized mountain roads, where coalescence might occur.

To measure coalescence, we also use mathematical morphology operations to detect pixels that belong to a coalescent part of the road. This measure is also based on black-and-white images. The measure is also at the pixel level if we consider the map of the coalescent pixels and aggregated at the image level, as we consider the ratio of pixels in an image. First, a dilation of roads (of n pixels) simulates the coalescence that occurs when the symbol of the road is enlarged due to scale change; then an erosion of the size n + w (the maximum width of the roads) erases the parts that are not coalescent; and nally, a dilation of w pixels evaluates the number of pixels in the coalescent areas. This process is illustrated in Figure H.9.

Finally, similarly to the smoothness constraint, we propose to measure the evolution of coalescence instead of the number of coalescent pixels using (Eq. H.3). of all, it does not exactly measure the coalescent parts but the pixels that could be coalescent with a larger symbol. This denition implies that the overlapping parts of the coalescent road are identied as a unique road and are not detected as coalescent. The observed ratio value is most of the time consistent with our visual evaluation of coalescence, but some high coalescence values are explained by two parallel roads that are separated by fewer pixels than the threshold (detected as coalescent by the measure), and this is not coalescence, as these are dierent roads, but just symbol overlap. These situations are limited to 5% of the cases in our real test set.

Position Preservation

The generalized road must be as close as possible to the initial one. This constraint is designed for an image of generalized roads, in general.

We measure this constraint using the intersection over union (IoU) of the road pixels of the initial and generalized images. Here, we also based our computation on transformed black-and-white images. The intersection between the road pixels in the initial image and the road pixels in the generalized image is computed, and the intersection area is divided by the union area, that is, the pixels that belong to the generalized or the initial roads (Eq. H.4). This is a classic measure for assessing image segmentation and determining which parts of the road pixels are common in the initial image. Figure H.12 represents the intersection and union of a road and its generalization.

IoU = road_pixel(initial) ∩ road_pixel(prediction) road_pixel(initial) ∪ road_pixel(prediction) (H.4)
We propose to use a buer of size n around roads instead of just the road pixels.

This threshold should model the area where the roads are allowed to move or be distorted without considering the position as too far. This threshold can be very large because the displacement oset can be large for mountain roads at this scale (1:250k). In our image set, the position is always visually preserved. However, the measured position accuracy is usually less than 50%, so introducing this buer with a size of 20 pixels (200 m) better reects this preservation and the variation between the two generalization methods: some cause more displacement than others. we observe that all real images visually respect position accuracy, even those with a very low IoU threshold. Moreover, the measure is not regular: with a similar displacement, the IoU of two large objects will be more important than the IoU of two small objects. Then this measure quantify the displacement but does not identify whether the displacement is relevant. Road displacements and distortions are allowed when they tend to increase legibility. Finally, the accuracy of the road position is a minor constraint: it can be seen as a soft constraint whose satisfaction does not need to be maximized. Each point represents an image from our testing set, the corresponding level of satisfaction of the constraint is indicated in green.

Road Connectivity Preservation

Then, we think that more than the position, the preservation of the structure of the road network is a key point for road maps. With road connections, map readers can follow routes, which is the most important function of such maps. This constraint is adapted to images of generalized roads in general.

For the connectivity preservation constraint, we measure connections and disconnections using the number of sets of contiguous road pixels and contiguous background pixels. This measure is based on the same principle as the connectivity loss proposed in C.1.4: a disconnection will reduce the number of background pixel sets and increase the number of road pixel sets. This measure also detects problems such as the creation of a loop, which deteriorates both the correctness and legibility of the information. Equation H.5 shows how we combine these numbers of contiguous parts to measure continuity preservation for (x, y) a pair of detailed and generalized images.

structure_alteration = |nback(x) -nback(y)| + |nroad(x) -nroad(y)| nback(x) + nroad(x) (H.5)
We choose to use the 4-connectivity to construct the sets of pixels; pixels of the same value connected by diagonal only do not belong to the same group of pixels.

We also include a threshold for set size: the groups composed of one or two pixels are not considered, consequently the appearance or disappearance of such group is not measured. When a road has bends at the border of an image, these bends can be connected or disconnected by a small displacement, without a real change in the structure. 

Color Realism

The next two constraints are not adapted from conventional vector-based constraints but are specic to images generated by deep learning models. They aim to quantify errors that do not exist in traditional map generalization. The goal of the color constraint is to ensure that the generated images do not convey unexpected information. On a map, a dierent color represents a dierent object. This constraint is adapted for all images of maps generated using deep learning.

We propose to measure if there is color noise: in our use case, it means pixels that are not roads (red) or backgrounds (white). We have decided to use an implementation of the CIEDE2000 distance between colors [START_REF] Sharma | The CIEDE2000 color-dierence formula: Implementation notes, supplementary test data, and mathematical observations[END_REF] because of its consistency with human color perception. Then, we counted the number of pixels that are visibly too distant from red or white. We choose to consider a pixel white or red when the distance with pure red (255,0,0) or pure white (255,255,255) is greater than 9. 

Noise Absence

We also found that some deep learning models can generate noisy pixels: for example, isolated road pixels that are not roads. This is because the loss function optimized in the training process is global and might not be fully optimized after all iterations of the training. This constraint is designed for all images of maps generated using deep learning, not just generalized mountain roads.

We just count the number of sets of contiguous road pixels that are too small to be real roads. Similarly to the road connectivity preservation constraint, we use 4-connectivity to dene sets of contiguous pixels. The noise detection threshold depends on the resolution of the image. For our use case, we have xed a size below 6 pixels. Figure H.16 presents the distribution and some examples of values for this measure. This measure is quite satisfying, as it permits us to distinguish noise in both the fake images that we created with noise in our validation set and in the images generated by a U-Net model, which often contain noise pixels.

H.3.3 Interpretation and usage of constraint values

In this section, we present how the proposed constraint can be interpreted and used for validating a model, identifying and solving its quality issues, and comparing deep learning models. 

Constraint values interpretation and model validation

We choose to dene a qualitative level of constraint satisfaction: "very good", "good", "neutral", "bad", "very bad". We propose the denition of a threshold for each satisfaction level based on the examination of the validation set of our experiment. The satisfaction values for the constraints are presented in 

x > 60 60 ≥ x > 40 40 ≥ x > 20 20 ≥ x > 0 x ≤ 0 Coalescence x > 30 30 ≥ x > 20 20 ≥ x > 10 10 ≥ x > 0 x ≤ 0 Position x > 30 20 < x < 30 10 < x < 20 5 < x < 10 x < 5 Noise x = 0 x < 3 3 ≤ x < 6 6 ≤ x < 9 x ≥ 9
To validate a model, we propose to verify that all its predictions are evaluated above a dened threshold of satisfaction for each constraint (e.g., "good" or "very good"). Then a model with a majority of valid images is valid [START_REF] Touya | Social Welfare to Assess the Global Legibility of a Generalized Map. Geographic Information Science[END_REF].

Identifying and solving the quality issues of a model

In this section, we explain how constraint evaluation can be used to detect quality issues of a given deep learning model and then eventually improve the model. In this experiment, we provide two levels of constraints: at the pixel level (e.g., smoothness and coalescence identify the irregulare or coalescence pixels) and at the image level (e.g., clutter measure or position accuracy).

At the image level, the constraints provide a comprehensive indicator of quality for the constrained property. 

H.3.4 Discussion

Limitations

Image representation allows for a visual evaluation of generalization. Automating this evaluation is a complex combination of multiple constraints. We described how some constraints can be adapted for a calculation based on raster data. However, we do not believe that all existing constraints can be converted using this method.

Especially, the relation preservation constraints seem to be challenging as the raster format does not encode object boundaries and spatial relations.

Moreover, the evaluation of a map must be related to the map function. The automatic evaluation of map eciency is still challenging for both raster and vector data, as it relates to human perception. Finally, the proposed measures still suers from multiple limitations.

The measure is sometimes not representative of a real dierence in quality or of the desired characteristic (clutter and position accuracy measures).

The measure is sometimes not accurate and can miss or overestimate some errors. This is the case for the smoothness, connectivity, and coalescence measures. Some measures vary more according to the initial situation than according to the quality of the prediction (smoothness and coalescence values). Some measures are not calculable (division by zero) for some images (smoothness and coalescence measures).

The connectivity measure may suer from some border eects.

All of these limitations mean that the proposed constraint-based evaluation is not sucient for analysis without visual exploration of predictions. Therefore, the evaluation of the prediction provided by this evaluation needs to be nuanced. An improvement and completion of our constriant may be needed for evaluation tasks that require fully automatic evaluation, such as controling and tuning deep learning processes.

Do we need a meso level of analysis? Some of the major limitations identied above may be due to an unadapted level of analysis. In this paragraph, we discuss the interest in using a meso-level of analysis.

First, the border eect can be reduced by the use of a sliding window over the image to create a new sub-image or a patch that can be better adapted for the calculation of some constraints. This process can permit locating problems in the image for constraints that are only measurable at the image level. For example, the connectivity constraint of an image that suers from border eects would have a high value for a patch at the border but not for a patch in the middle of the tile Then, we believe that it could be useful to dene a intermediaite level of constraint. It would synthesize the satisfaction of several pixel-level constraints for each pixel contained in a meso object [START_REF] Ruas | Modèle de généralisation de données géographiques à base de contraintes et d'autonomie[END_REF]. For example, instead of measuring the ratio of the pixels that are not smooth in the whole image, we could syntethize the smoothness at the level of a pixel set (e.g., set of contiguous pixels with the same value, patches, or image segment from image processing). Then, an image is smooth if all or most of its pixels sets are not irregular. This denition rst designed for agent models is also adapted to guide deep learning processes, where the loss is a statistical summary of the values of pixels or patches.

Can these methods be adapted to a multi-theme map?

Then, a challenge is to adapt this constraint-based evaluation to maps with several themes, not just roads. In these maps, the spatial relations are even more important and concern several dierent objects. For example, buildings are aligned along a road or a road is crossing a forest. The preservation of these relations is an important point in the preservation of information, as they contribute to the global structure and understanding of the map [START_REF] Mackaness | The Importance of Modelling Pattern and Structure in Automated Map Generalisation[END_REF] and help determine the location of the map.

However, the raster representation makes conict detection harder on target and prediction map, as each pixel can have only one value even if there is a coalescence of several elements at this place. Finally, the identication of groups of objects can be done using a distance criterion using buers. We propose to estimate the diculty of the raster adaptation of the constraints [START_REF] Stoter | Methodology for evaluating automated map generalization in commercial software[END_REF]) in the Appendix B. We identify four levels of adaptability of a constraint: some constraints can be measured directly in the image (e.g. noise quantity, size of objects); some may require image processing (e.g. granularity, squarness), some may require a new manner of calculating (e.g. orientation measure, topology preservation measure), and some seem impossible to adapt without vectorization (e.g. spatial distribution preservation measure).

Finally, we think that raster evaluation can be useful at a stage where vector conversion is not ideal. However, the vectors remain more accurate and practical and permit comparison with classical generalization approaches or validation.

H.4 Vector based evaluation

In this last section, we explore an evaluation that includ vector conversion. Such a process can be used to compare our results with a classical map generalization approach or to evaluate some aspects of predicted maps, where the raster adaptation is not possible. For illustrating this evaluation method we use building generalizatin as case study. Indeed, we observe in Chapter G that building shape is sometimes not credible. However, the image format does not allow the quantication of this problem.

H.4.1 Vector conversion for tiles of generalized buildings Building tiles to vector

To vectorize the buildings on tiles, we propose the following process:

1. Projecting images: during image creation, we stored the coordinates of the input image, and we use this information to project the corresponding output image of the map.

2. Constructing a building mask. We identify the pixels representing a building in prediction (e.i. whose color is closer to the color of the buildings in the target style than any other color of the target style. )

3. Polygonize. We use the gdal_polygonize function that creates vector polygons for all connected regions of pixels in the raster that share a common pixel value.

4. Pixel smoothing. Vectorization cannot be evaluated directly due to the notched shape due to the pixel limits. Thus, we apply a Douglas-Peucker lter (threshold = 2m) to simplify the shape (see Figure H.19). This simplication does not generalize the building and globally preserves the generalization problems of the building, but it smooths the pixel border.

5. Elimination of the truncated building at the border of the image.

Evaluation

Then we propose to evaluate the generalization of the shape of the building. In particular, we want to quantify the not-credible shape irregularities. We propose several measures to compare the quality of the prediction without and without the geometry consistency loss.

Granularity We measure the length of the smallest building edge for each building, this measure indicates the granularity of a building. Number of signicant orientations We clustered edges according to their orientation, the contribution of an edge to orientation is its length. Then we count the number of signicant orientations i.e., above a certain threshold [START_REF] Duchêne | Quantitative and qualitative description of building orientation[END_REF]. The more orientation a building has, the less credible its shape is, in fact, even a very complex real building often has very few dierent wall orientations.

Rectangularity coecient We measure the dierence in area between the building shape and its minimal bounding box; this measures how far a shape is from a rectangle (in a similar way we could compare it with the maximal rectangle included in the shape). However, it is only relevant in quasi-rectangularshaped buildings, and in the case of more complex buildings, this measure is not relevant.

Deviation to the most credible angle Finally we sum up how far the angle is from a at or right angle, for each pair of the consecutive edge of the building [START_REF] Touya | Enhancing building footprints with squaring operations[END_REF].

We compare the distribution of these measures for both buildings generalized with and without the geometry consistency (see Table H .7). This comparison shows really similar results that could not prove the interest of geometry consistency loss for building generalization. If we could not show a signicant dierence between models using this evaluation, it has been shown a signicant dierence between entities and in particular between several generalizations of one building. In fact, the overlapping between tiles conduces to several generalizations for each building and the proposed evaluation could help to choose which is the best assembly tiles. The human perception of a prediction can be assessed with a user test. Such evaluation is closer to the real expectation of generalization (we do a generalized map for the user). However, it is not practical and the presentation of small tiles is biased. Measuring constraints is a more formal evaluation, but, it is sometimes not correlated with human perception. Moreover, the calculation of traditional constraints cannot be performed directly on the raster.

We experiment with both strategies: adapting constraint measures for vector calculation and converting to vector prior evaluation. The rst option is more practical when the evaluation has to be integrated in a fully raster pipeline but can require image processing (segmentation, mathematical morphology statistical analysis, etc.) or a new level of analysis (e.g., considering a group of pixels instead of an object) and even sometimes it seems not possible to evaluate. The second option is useful when compared with the non-vector approach required or when adaptation is not possible.

Conclusion

Reminder of the objective and approach

The objective of this thesis was to explore the potential of deep learning to contribute to map generalization research.

We conducted this exploration using four use cases. For each use case we highlighted potentials and issues of deep learning and current use of deep learning models are still far from practical map generalization and cartography.

Road network selection and alignment detection, both these experiments assess the potential of deep learning to encode spatial relations with graph modeling. They have shown potential to make predictions that are consistent with spatial relations. The road selection experiment is satisfactory for most situations, but the results suer from the lack of city center examples.

The alignment detection is less satisfying and suers from both dataset and model limitations.

Road shape generalization, this experiment shows that most of the knowledge for shape generalization can be captured from an image. The unpaired generative model gives results considered as good as the reference map. It correctly achieves smoothing, enlargement, and caricature operations.

Holistic map generation. This experiment shows that GANs can generate map-like images that include generalization. Our results succeed in reproducing the simplication, enlargement, and typication of buildings. However, more context is needed for road selection and graying in the city center. We proposed an organization of geographic information that seems promising for map generation.

Can deep learning contribute to map generalization?

All these experiments reveal the ability of deep learning models to learn, to interpret, to abstract, and to represent geographic information from images or graphs. It leads to the conclusion that deep learning is promising for the automation of map generalization.

First, the use of deep learning as an indicator for data enrichment prior to map generalization is already possible and benecial. Indeed, the quality of prediction in our experiments and in the literature review is satisfactory, and the integration and evaluation of such models is simpler than when they are used as a generalization operator.

Then, the use of deep learning models as generalization operators seem possible.

This usage would require further development of specic models for map generalization, in particular for the encoding of spatial geometry and relations. Moreover, for integrating deep learning-based operators in a traditional generalization proces, the explanation and evaluation of such models have to be investigated.

Finally, the holistic approach is more a long-term goal than a short-term objective. Both explored approaches (with a unique end-to-end model and with a workow in several steps) are promising but require still lacks the mechanism to better integrate the spatial context required in most map generalization tasks. The workow approach seems to oer more possibilities, as each step may have spe- An evaluation method to assess and compare the regularity of building shape in deep learning predictions.

A user test to evaluate GAN prediction for mountain road generalization.

A method for reconstructing and assembling independently generalized tiles into a vector database.

Lessons learned

Due to its exploratory approach, this thesis deals with various research questions, and the lessons learned from the exploration are varied. Our exploration provides rst lessons on the potential of deep learning for map generalization:

Can graph convolution networks encode the spatial relations that are important for cartography? In our experiement on road selection, GCN reveale an ability to understand/encode some relations in a graph. However, the denition of neighbors in graph convolution and cartography is dierent and the construction of a graph adapted for learning has to be investigate.

Can image-based approaches learn graphic generalization? Our experiements on mountain roads show that image based model can learn to reproduce most generalization operator that aect the shape of a road (simplication, schematization, bends enlargment etc.), the predicted image are close to our expectations and lead us to think that image approach is relevant for graphic generalization.

Can GAN learn the generation of generalized maps?Our experiements show that it is possible to generate maps that look like the target map and respect the target level of detail.

The exploration then provides responses to the research questions identied in 3) in general, the more complete and simple the representation of information is, the easier the learning would be. Moreover we observed that the IGN data was not perfect, and that it must be manually corrected to avoid inducing the model to reproduce the residual errors. How to evaluate the results of deep learning-based map generalization?

The evaluation of the deep learning-based map generalization must be more complete than the classical map generalization because we have to ensure that the prediction follows cartographic rules and is a valid map. In addition to the visual assessemnt of our results, we proposes three dierent approaches for evaluation (adapted constraint, user test, and constraint evaluation on converted data). We believe that the most promising method is the completion and adaptation of the generalization constraints.

How could the deep neural network collaborate with previous techniques for automatic map generalization? Each problem formulation (Chapter B) requires a dierent integration in automatic map generalization process. Globally we identify two kind of usages of the deep learning models: as a data enrichment step and as an operator. We also found that the diculty of the integration lies mainly in the format conversion because, for now, most automatic map generalization processes are vector-based and this representation cannot be used in deep learning-based map generalization.

To what extent is it possible to transfer or apply the models learned with deep learning to large areas? The transferability seems sucient for the transfer to a similar situation in other areas; however, ne-tuning may be required in cases where the input or target are too dierent from those presented in the example set (dierent data sources, dierent geographic conguration, dierent scales, etc.).

The use of image representation is a major obstacle to the encoding of spatial relations. In fact, the use of image representation is not mandatory for deep learning-based map generalization and other approaches are also promising (see Chapter B). The image representation, even if it does not model cartographic objects explicitly, seem able to encode and preserve relations between objects and seem to include most of the necessary knowledge for map generalization.

Future research

During our exploration, we also identied some new research questions that must be addressed in a future research.

Experiments on spatial relations

The experiments on the spatial relations (in Chapter D) have shown the complexity of the creation of the best graph for the task. In this paragraph, we present some perspectives to improve alignement and selection predictions.

Improving the graph for road selection The graph used for road selection is the road section graph. However, the selection of the road network is often made on strokes, i.e. groups of connected road sections that follow the Gestalt principle of good continuity. Because a stroke should be entirely selected or eliminated, we could improve this use case by constructing and learning on the stroke relation graph (graph where node are strokes and link represent stroke connections (Touya 2010))

instead of the section graph.

Improving the graph for the detection of alignments The alignment detection is performed on a proximity graph, and the method chosen for the construction of this graph does not seem satisfying to us. In particular, we would like to compare more construction methods, including a triangulation constrained by roads and a triangulation not based on the center point but on several building points. We also think that the number of examples and the consistency of the examples for this use case could be improved, but it requires time to manually annotate alignments.

Simplifying the tasks Urban and rural areas respond to very dierent rules for both the tested tasks (alignement detection and road seelction). In particular, urban data are denser and then require an implicit relation between the farthest objects, therefore we think that it can be benecial to train two separate models with dierent depths for urban and rural data.

Experiments on mountain roads

Despite the good quality of our predictions, they face a certain number of limitations that make them undesirable for production. The main problem is the alteration of the structure of the road network (loops and disconnections). Among other more minor problems, we can cite the absence of context that causes errors in displacement; the noise in the image and the diculties in tile assembly.

Training set improvement One of the reasons for loops and disconnection is that the input of training images contain too much detail for the resolution, that makes them few legible. Thus, it is necessary to improve the training set. On one hand, we believe that increasing the number of examples (and especially example of very narrow and sinuous bend series that are underrepresented) would benet to the model. On the other hand, increasing the image quality seem dicult: larger tiles or tiles with a better resolution would require to widely increase the computation ability and seem not suitable; and constructing tiles with a more relevant splitting method may be benecal, but impossible. Then, the lack of displacement causes road overlaps, but, to learn that the roads should be moved, we rst need to know where are other close objects on the map. Therefore, we want to experiment with the layered representation of main map theme for learning road generalization that includes displacement.

Model improvement We suggest testing the use of a more adapted model for a geographic image (e.g., Deng, Tian, and Newsam 2021) for making a stronger prediction. In a similar way, we think the use of a specic term in the objective function can be a good solution to encourage (or discourage) a specic characteristic in prediction. However, our proposed connectivity measure penalizes these errors without completely avoiding them. We think this measure can be improved to emphasize visible connectivity alteration and the border eect. Moreover, other kinds of complementary loss terms can be experimented to penalize other problems in prediction (e.g. fuzzy border, isolated road section, etc.). Then, we would like to experiment with the depth of the model and the size of the convolution kernel to encourage the model to look at long-range relations between pixels in the images.

Indeed, in road images, two far pixels may be related (belong to the same road, while in a building, the pixels belonging to the same entity are closer).

Work on post processes Finally, we proposes a method for post-processand assembly of tiles generalized independently. It imply to match roads that can have very dierent shapes, and nding a solution that creates a correct connection between edges both this aspect require further research. Then, a line connectivity check [START_REF] Touya | A Road Network Selection Process Based on Data Enrichment and Structure Detection[END_REF]) must be used at image border.

Experiments on map generation

During our exploration, we experimented with the generation of generalized maps in two manners: rst, a GAN is trained for holistic generation of generalized map from detailed data with an image representation (Chapter F), then a workow combines several models to perform a part of the generalization (Chapter H). Both approaches give map-looking results and succeeded in generalizing and combining several cartographic themes into a credible map. The second approach allows us to make the training set architecture and/or objective function adapted for the specic task of the model, and, it resolves the overlap between roads and buildings. However, models still have important limitations and require further experiments before considering using them for map production: they fail to generate road selection without disconnection, and block are not properly grayed. We also observe that the predicted buildings have a blurred outline and not regular/credible shapes.

Understanding spatial context The main limitation of our proposal is due to the tiles that lack the context for map generalization. We proposed a fusionGAN model that can provide additional information on attributes of the tile features and on the context of the tile and inform the encoding path of the spatial context. The results of this model are not yet satisfying: they allow some generalization operations that were not possible without context (e.g. road selection); however, the proposed model degrades the global quality of the predicted map tiles (predictions include more disconnections and more blurred boundaries). We believe that this model could be improved. First, in our implementation, we did not experiment with the depth, initialization method, and optimization method of the model before using it as a generator, and these parameters have to be explored. Then, in its current form, the model does not include skip connections (while it replaces a U-Net in the GAN), since [START_REF] Feng | Learning cartographic building generalization with deep convolutional neural networks[END_REF] showed that they are essential to encode multi-scale relations in map images. We think a fusion model with such a connection must be tested. A second hypothesis is that the connnection between main and additioanl encoding path are not adpated (e.g. too frequent, thus fusions have to be done only at a certain level of encoding or require a dropout to make the prediction less dependent on the additional information). Another perspective is to use another model. For example, recent approach to integrate a vision transformer mechanism to image approach, it promise to focus on some parts of a large image and resolve some context-related issues. In principle, they have better capability than convolution network in capturing long-range dependence between pixels/objects on an input image, but requires far more data to train. Indeed, such methods separate the image into a patch and examine the sequence of the patches (rather than the image). This allows the model to nd the parts of the image that are most important in learning and encoding a distant or heterogeneous relation in the image (between patches).

Training set improvement Our training set also includes some limitations: the number of examples and the diversity of situations could be improved, in particular, city center situations are too rare (we think it is the main explanation for block graying problems with the lack of context). Despite the manual correction of the target generalization, some badly generalized features remain in our target images, which can encourage the generation of unclear shapes in the prediction.

Workow improvement DeepMapScaler is a sequence of models trained separately, and we think that a deeper collaboration between the models needs to be studied. In fact, in the current vesion of DeepMapScaler, each model encodes and decodes the information in a result that can be interpreted by a human, but we could use as input of a step the embedding of the previous step instead of the decoded output that is only suitable for human interpretation (see Figure G.12). Then, each step of the workow can be independantly improved to better t to the specic constraints it aims to resolves.

Diversication of applications

The diversity of map objects, generalization operators, input scales, target scales, styles, formulations (see Chapter B) induces a great diversity of possible use cases.

In this thesis, we explore four use cases among the many possible. We chose our use cases with three criteria: 1) the scientic interest of the use case (e.g. the mountain roads generalization and the alignment detection are challenging tasks;

the generation of a complete generalized map at once is a moonshot objective of map generalization, etc.); 2) the existence of data at our disposal; and 3) the existence of one or several state-of-the-art solution to compare with; but we could have chosen many others.

First, many other experiment can be used to demonstrate for the potential of deep learning for the choosen tasks of our exploration (relation encoding, shape generalization, and map generation). For instance, we only experiment the graph approach for two kinds of spatial relations, while they are numerous in maps, especially this thesis does not address the study of the relations between dierent types of map object with heterogeneous graph representation (Iddianozie and McArdle 2021). We further encourage the experiment with a graph that encodes several kinds of spatial relations useful form map generalization [START_REF] Touya | Towards an Ontology of Spatial Relations and Relational Constraints[END_REF]) may be more ecient. Moreover, in Chapter F we restrict our work to simple maps where only roads and rivers are represented, while the generalization of various other themes (e.g. vegetation, elevation, etc.) may be interesting. Moreover, we only experimented use cases with a small scale gap between input and target. We think that the more the input and target are dierent the more complex would be the learning. To verify this statement we would like to replicate our experiment with other target scales. Nevertheless, we considere the generalization of widely generalized map more promizing using several successive models, each perfoming a small generalization. Finally, we claim that the the proposed layered representation is essential for map generation, but we only tested it for a few examples of possible information.

Secondly, Chapter B includes many ideas of deep learning usage for map generalization that could resolve several other research questions. In particular, after our exploration, we estimate that the following applications are the most important to explore:

Graph-based shape generalization, consists in encoding the shape of an object in a graph and predicting position in the generalized object of each edges. Such a method, allows us to better control the shape of objects and avoid blurred shapes. Moreover it is more convenient for the integration in a generalization process and for the generalization evaluation.

Prediction of label placement in map and schematics map is a common and important problem in cartography and map generalization for years. Both the graph (label are node of a graph that represent map relations, the model perform a regression of a position for each label) and image approach (segmentation of place where it is possible to set a label) may be investigate for this task.

Making spatial relations explicit from a map using link prediction or scene graph generation. Indeed, recent models from computer vision has shown potential to generate a graph that describs the relation between objects in an image (e.g. the image depict a man on a bike, the bike in behind the car).

Our goal would be to apply such interpretation to a map image and produce a description of spatial relations useful for map generalization (e.g. the road is connected to the highway; it leads to a forest, etc.).

Promoting the usage of deep learning for cartography

To encourage the use deep learning for map generalization, we believe that the promizing results of this thesis must be completed with the exploration of the following research question.

Explainability The default of explainability of deep learning is the rst fear for considering the use of deep learning. This default is a common limitation to many applications of deep learning where we want to be sure and understand predictions to trust them (e.g. medicine). Thus, it is a complete eld of research (Barredo [START_REF] Arrieta | Explainable Articial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI[END_REF]), and we believe that improvement in the explainability of deep neural networks is needed. For example, for a convolution neural network, it is already possible to visualize some explanations, such as the overlaid heat map or gradient-based localization [START_REF] Selvaraju | Grad-CAM: Visual Explanations from Deep Networks via Gradientbased Localization[END_REF] that indicates which image regions are most important for a prediction. This explanation can be benecial to some use cases of cartography, in particular, the detection of map objects and classication of map types. However, for the use case where we want to predict a map object (e.g. a generalized map object in the Chapter E) we do not want to see which input pixels impact each class but which input pixels impact each output pixel.

Computation cost Then the important computational requirement of deep learning may be a limitation to the use of deep learning for cartography. In particular, we think that it is essential to ensure that the environmental and economical cost of such a model is suitable for map production. This cost is mainly impacted by how much the models have to be trained (epochs and number of examples) before providing satisfying results for map production. Then model can be applied at a small cost to a large area. In comparison, the agent-based processes require few resources at when they are congured, but are expensive to apply to large areas.

Evaluation Finally, the use of deep learning for cartography and map generalization cannot spread without a strong evaluation and comparison with traditional processes. In this thesis, we proposed evaluation methods and shared our datasets to encourage the comparison. We also co-organized a workshop on benchmarks in map generalization. We believe that research must continue in this direction and propose new benchmarks and evaluation methods. In particular, our proposed raster constraints must be extended to other cartographic themes, corrected to limit bias, and improved to better t the human perception of generalization quality.

The future of cartography with map generalization based on deep learning

This thesis is part of the global objective of the articial geo-intelligence: "Design[ing] a software agent that takes a user's GIS-related domain question, understands how to gather the required data, how to analyze them, and how to present the results in a suitable form" (Janowicz, Gao, McKenzie, Hu, and Bhaduri 2020, p. 631). Indeed, cartography is still the most suitable solution for presenting to the human user geographic information or phenomena, and we think that the use of deep learning could unlock the search for a model capable of generating such maps. We already observe that deep learning oers an answer to some of the current limitations in map generalization automation listed in Chapter A. For example, the map generation approach deals with map stylization and map generalization all together, and it can deal with heterogeneous data. We demonstrate in Chapter G that a model trained with a data source can be transferred and applied to an image constructed with other data sources (with a fairly similar level of detail) with very few changes. An important perspective of this thesis is to test how other current challenges can be dealt with using a deep learning approach.

Parametrization of map generalization is challenging. Pre-trained deep learning models can be used without any parametrization very quickly. The difculty is not in parametrization, but more on identifying the case where the model can apply. Moreover, in traditional map generalization, the parametrization can allow the production of dierent variants of generalization. Thus, the research question can be reformulated as: how to make possible this variability of solutions in deep learning-based map generalization. The simplest solution is in the training set characteristic; indeed it is not the model choice or hyper-parameter that will determine how the output will be generalized but rather the training examples. However, this solution is not ecient: we do not want to re-create an example set and retrain (or ne-tune) the model to obtain a small variation that can be obtained by just changing one parameter in traditional map generalization (e.g; changing the minimum display size of an element, or encouraging typication rather than aggregation). We think research must focus on a model that can produce several dierent solutions for one input like multi-modal GANs [START_REF] Huang | Multimodal Unsupervised Image-to-Image Translation[END_REF].

User requirements for map generalization are dicult to handle. Our opinion is that user requirements are simpler to formulate using examples (the user wants a generalization similar to this or that map) [START_REF] Hubert | Map Samples to Help GI Users Specify their Needs[END_REF], a perspective is to explore how deep learning could use such input to predict a generalization that ts the user requirement expressed in the example. Our rst idea is to explore the usage of reference-guided image synthesis [START_REF] Choi | StarGAN v2: Diverse Image Synthesis for Multiple Domains[END_REF].

On-the-y map generalization. We think that it would be interesting to study the feasibility of an application that interactively produces a generalized map, on the same idea as [START_REF] Guérin | Interactive example-based terrain authoring with conditional generative adversarial networks[END_REF] that proposes an interactive platform for quickly, easily and intuitively authoring realistic terrain models by using sketches of crest lines, rivers, or iso-contours (i.e. map element). The task for this application is an interpolation task, while on the contrary the task for map generalization is an abstraction task; thus we have to explore how the input data must be prompt. Then, the input data would be represented in the appropriate form and serve as input of a model or workow that generates map tiles, nally the tiles are assembled and displayed together.

Multi-scale map generation. and we would like to explore how the model can be trained to generate a consistent series of generalizations that together can form a multi-scale map. In the Chapter B we already mention that a formulation as a video problem can be used for this problem; in addition, we propose the perspective of the model that predicts smooth interpolations between domains (see Figure 2).

B Estimation of constraint adaptability for raster calculation

In Chapter H, we observe that it is challenging to adapt constraint-based evaluation to maps with several themes. In these maps, the spatial relations are even more important and concern several dierent objects, e.g. buildings are aligned along a road, or a road is crossing a forest. The preservation of relations contributes to the global structure and understanding of the map [START_REF] Mackaness | The Importance of Modelling Pattern and Structure in Automated Map Generalisation[END_REF] and help to determine map location. However it seem dicult to evaluate.

Moreover, the raster representation makes conict detection harder, as each pixel can have only one value even if there is a coalescence of several elements at this place.

Finally, the identication of groups of objects can be done using a distance criterion using buers, but the identication with similarity criteria could be more dicult.

In this appendix, we propose to estimate the diculty of the raster adaptation of constraints from [START_REF] Stoter | Methodology for evaluating automated map generalization in commercial software[END_REF]). We identify four levels of adaptability of measure:

++ Can be measured directly in the image (i.e., involves only a measure on the pixel values, the image statistics, the patch, or the pixel set).

+ May require image processing before the measurement calculation; the measure is calculated on a derived image.

-May require a new paradigm. For example, for an overlapping measure, we

propose not to measure existing overlapping (this seems impossible in raster), but rather measuring "almost overlapping" (i.e., pixel that would be overlap if the image is slightly zoomed out) that is simpler to measure in raster, and hypothesize that these two measures (overlapping and almost overlapping) are correlated. Similarly, for orientation rather than comparing all directions for each element, we identify some direction (horizontal and vertical) and compare the edge distribution for these directions, supposing that the edge distribution for all directions is correlated with the edge distribution for these directions.

We think there is no possible adaptation and that the measure may require vectorization. For these points we did not prove the in-adaptability and some un-evisaged solution may exist, and thus suggestions are welcome. Objectif et approche Partie III : Le futur de la généralisation cartographique par apprentissage.

Id

Les résultats de la seconde partie nous laissent penser que l'utilisation de l'apprentis- 
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Finally

  , the IGN has a growing interest in articial intelligence techniques, as shown by the creation in December 2021 of an agora on articial intelligence, and the common meeting with production members, researchers, and teachers about articial intelligence panorama for cartography in June 2022. Furthermore, since February 1, 2022 IGN is collaborating in the SNSF project (Swiss National Sciences Foundation) DeepGeneralization: Utilizing Deep Learning in Map Generalization.

Figure

  Figure A.1: A ground and a raster and vector representation of this ground.

  Figure A.2 explains the main steps in creating a map and illustrates the dierence between a symbolized database and a map.

Figure A. 2 :

 2 Figure A.2: Main steps of map production.

Figure A. 4 :

 4 Figure A.4: Superpixel and map generalization, from (Shen, Ai, and Li 2019).

  capable of reproducing human reasoning. Deep learning belongs to the subeld of articial intelligence that aims at reproducing human learning mechanisms (machine learning). The principle of these mechanisms is to learn a task from many examples rather than explicitly programming the algorithm to resolve it. The particularity of deep learning compared to machine learning algorithms is the following: it does not require feature extraction, it can solve complex tasks, and it requires a very important amount of training examples. Indeed, deep learning includes representation learning, and models can be fed with raw data to automatically discover knowledge from the data itself (LeCun, Bengio, and Hinton 2015). Moreover, the deeply layered structure of the network allows the representation of an increasing level of abstraction from the input, and consequently, deep implicit knowledge extraction from the data. The learning mechanism is organized into two main phases, the training phase, which aims to dene the good weight for the model using the example set, and the calculation phase: when the model is applied to an unknown input and a prediction is made. The results obtained when applying the model to the input are called predictions. During the training phase, each prediction is compared with the expected output of the network (called target). The loss function make this comparison. The goal of the training is to optimize the loss function. As illustrated in Figure A.5 during this phase, the weights are rst initialized, then the training examples are used to make the rst prediction, and nally the weights are adjusted to produce a better result (backpropagation). These steps (prediction, comparison, and backpropagation) are performed until the prediction is satisfactory.

Figure A. 5 :

 5 Figure A.5: Action diagram of machine learning the global principles.

Figure A. 6 :

 6 Figure A.6: Example of use-cases of the generic image to image networks, from (Isola, Zhu, Zhou, and Efros 2017).

  Figure A.7 map generalization can involve a multitude of methods, including those of articial intelligence; however, the scope of this thesis is restricted to the exploration of deep learning-based methods.

Figure A. 7 :

 7 Figure A.7: Scope of this thesis.

Figure B. 1

 1 Figure B.1). These principles are involved when using a map and allow users to perceive spatial relations. Moreover, these principles have been widely used in cartography and map generalization to dene a relevant group of objects[START_REF] Thomson | The "Good Continuation" principle of Perceptual Organization applied to the Generalization of Road Networks[END_REF][START_REF] Steiniger | Recognition of island structures for map generalization[END_REF].

Figure B. 1 :

 1 Figure B.1: Law of Gestalt perception: similar objects, close objects, connected objects, etc. are perceived as more related than others.

Figure B. 2 :

 2 Figure B.2: Some elements of a geographic database and an image representation of these data.

Figure

  Figure B.3).

Figure B. 3 :

 3 Figure B.3: The topological relations according to the 4-intersections model (Egenhofer and Herring 1990).

Figure B. 4 :

 4 Figure B.4: Example of a graph of spatial relations.

  by the outline are linked (as illustrated in Figure B.5).

Figure B. 5 :

 5 Figure B.5: Example of graph representation of building shape (from Yan, Ai, Yang, and Tong 2020).

Figure B. 6 :

 6 Figure B.6: Graph object representations.

Figure B. 7 :

 7 Figure B.7: Graph representations: list of edges, graphical representation, and adjacency matrix.

Figure B. 8 )

 8 Figure B.8), and its usage for map generalization is analogous to image segmentation.

Figure B. 8 :

 8 Figure B.8: Illustration of the segmentation denition: a) in common meaning, b) in image processing, c) in a graph.

Figure B. 9 :

 9 Figure B.9: An example of segmentation for map generalization conicts detection.

Figure B. 10 :

 10 Figure B.10: Learning shape generalization with shape-graph node regression.

Figure B. 11 :

 11 Figure B.11: Learning scale transitions with a video approach.

Figure B. 12 :

 12 Figure B.12: Main possible formulation of map generalization as a deep learning problem (the approaches that are experimented in this thesis are highlighted in pink).

Figure C. 1 :

 1 Figure C.1: Neurons and deep neural network.

Figure C. 2 :

 2 Figure C.2: Comparison of the sketch-to-drawing conversion (from Simo-Serra, Iizuka, and Ishikawa 2017) and mountain road shape generalization.

  Figure C.3). The value of an output pixel is the sum of a element-wise product of the kernel and the input. In CNNs the values of kernel are learned from data rather than predened manually, so they are intialized according the choosen initialization method and then optimized during training. CNNs also include pooling (also illustrated on gure C.3), it allows the model to reduce the dimension of information; it summarizes (via maximum, average, or other methods) the information in a neighborhood.

Figure C. 3 :

 3 Figure C.3: Image processing in CNN. Convolution with a kernel of size (3 * 3). Max-pooling of size (2 * 2).

Figure C. 4 :

 4 Figure C.4: The functioning of a CNN.

  seem to be able to encode the dierent levels of relation in a map image. The U-net (illustrated in Figure C.5) is structured in a series of convolutional layers into a contracting path with the typical architecture of a convolution network and an expansive path that reconstructs the spatial size of the input. Both parts are connected through skip connections that they stcka the embbeding of each layer with the input of each decoding steps information, this allow for manage border eects and introduce several levels of information encoding in the prediction. The residual U-net is a U-net where the convolutional layers are replaced by the residual unit from (He, Zhang, Ren, and Sun 2016) (i.e. batch normalization BN, ReLU activation, and convolution, illustrated on Figure C.5). Furthermore, the input of the residual unit is skip-connected after the next convolution layers. This model improved the generalization of the building shape without increasing the depth of the network (Feng, Thiemann, and Sester 2019).

Figure C. 5 :

 5 Figure C.5: A U-Net architecture and a residual block.

  Figure A.2). On the other hand, GANs can perform various transformations, especially those that contain changes in content and level of detail. They are based are based on the combination a generator and a discriminator (see Figure C.7):

Figure C. 7 :

 7 Figure C.7: Conditional GAN principles.

  learning would rather learn what a detailed and generalized image look like and then how to transform the detailed one so that it looks like a generalized map. Finally, semi-supervised learning represents a key issue for GAN improvement (Simo-Serra, Iizuka, and Ishikawa 2017). It consists in combining learning on a few paired and many unpaired examples, and this process is expected to benet from the advantages of both methods.

Figure C. 8 :

 8 Figure C.8: Example of tiles from paired (a) and unpaired (b) datasets for roads generalisation.

(

  [START_REF] Wu | GANmapper: geographical content lling[END_REF] proposes a review of GNN and proposes the following classication: Recurrent graph neural networks (RecGNNs) learn a target node's representation by propagating neighbor information in an iterative way until a stable xed point is reached. Convolutionel graph neural networks (ConvGNNs) try to generalize the notion of convolution to a graph. Research in this eld has two main approaches, spectral-based which proposes a matrix decomposition of the graph, and spatial-based which works on a local neighbor of the node.

10 )Figure C. 9 :

 109 Figure C.9: Illustration of graph convolution with a simple example (for simplication the activation function is identity and not represented).

  For example, Pubmed and Cora are both benchmarks for graph node classication that include a graph of scientic publication linked by citation relations, and Figure C.10 shows that at one time, the best models dier for Pubmed and Cora benchmarks.

Figure C. 10 :

 10 Figure C.10: Comparison of model accuracy over time for node classication on Cora and Pubmed datasets (from paperswithcode.com visited on 05/07/2022).

  to improve this ability. For example,[START_REF] Deng | Generalizing Deep Models for Overhead Image Segmentation Through Getis[END_REF] propose pooling methods that take into account the rst law of geography to aggregate data from an image during convolution. They propose to replace the max-polling in the convolution layer with Gi*pooling adapted to geographic data. This pooling selection takes the interpolated value at the center location of the windows and thus depends on the spatial cluster(Figure C.11).

Figure C. 11 :

 11 Figure C.11: Comparison of max pooling and G*pooling create dierent given a feature map as an input (from Deng, Tian, and Newsam 2021).

First, we have

  seen that the comparison of images at pixel level (like in L 1 , L 2 and Dice measure, see Figure C.6) is often not adapted. This paragraph presents some losses that are not based on the pixel value, but rather compare the target and the prediction globally. A such comparison would encourage the credibility of the prediction.

  We proposed a connectivity loss in our experiment on mountain road segmentation. It compares the connectivity of the road network in the input and the predicted image. This connectivity is approximated by the number of pixels on the road and in the background. In fact, these quantities are aected by alterations in the structure of the road network (Figure C.12).

Figure C. 12 :

 12 Figure C.12: Example of alteration of the connectivity of the road network and number of set of background and roads.

Figure C. 13 :

 13 Figure C.13: A 256Ö256 Google map tile and its 255Ö255 gradient map (from Chen, Chen, Xu, Yin, Peng, Mei, and Li 2020).

  validation and testing sets(Figure C.14). This separation is not strictly regulated and must be adapted to the complexity of the model (the more parameters, the more validations are needed) and the total size of the dataset. Finally, each set must at least cover most of the situation expected. For example, in the case of map generation, the train, validation and test sets must contain images of maps with dierent land uses (urban and suburban, and rural map image, etc.) and dierent landscapes (mountain, forest area, coastal area, etc.) since all these situations involve dierent cartographic knowledge.

Figure C. 14 :

 14 Figure C.14: The partition of the dataset for deep learning.

Figure C. 15 :

 15 Figure C.15: Illustration of the most common image augmentation in deep learning applied to an image of a mountain road.

Figure

  Figure C.16): tiling using a regular window that slides into the study area or using a window centered on each object. To complete the overview of possible tiling methods we can mention Du, Wu, Xing, Gong, and Yu (2021), who proposes a third tiling method illustrated in Figure C.17.

Figure C. 16 :

 16 Figure C.16: The two proposed tiling methods. Left: the sliding windows. Right: the object's shell.

Figure C. 17

 17 Figure C.17: (Du, Wu, Xing, Gong, and Yu 2021) tiling methods.

Figure C. 18 :

 18 Figure C.18: Example of two tiles with dierent cartographic resolution.

  Figure C.19: Comparison of prediction a: with and b: wihtout selection.

  Small and local roads are removed. The selection requires a deep understanding of the context of the map image and object attributes. To test whether just the image is enough to learn this change, we constructed a version of the dataset with and without this selection.

Figure

  Figure C.20: Some examples of naive geographic information representation for cartography learning, from 1) Kang, Gao, and Roth 2019, 2) our experiment.

Figure

  Figure C.21: Organization of the geographic in tensor for map generalization.

Figure

  Figure C.22: Example of symbolized and layered representation of geographic information.

(

  see Figure C.23).

Figure C. 23 :

 23 Figure C.23: Example of representation of the binary information location of city center with a black and white mask.

Figure

  Figure C.24: Example of representation for an ordered categorical variable.

Figure C. 25 :

 25 Figure C.25: Example of representation for a un-ordered categorical variable.

Figure

  Figure C.26: Dierent proximity graphs in a simple situation of two parallels alignment perturbed by a building without relation.

Figure

  Figure C.27: Extract of the annotated graph for aligement detection.

Figure

  Figure C.28: The characteristics and context of proximity links.

  The closest road distance is calculated between the closest point of the road and the segment that represents the link. It represents the relevance of the angle (the more roads are far, the less relevant it is to use the angle to determine whether it is an alignment).Then, we introduce some attributes about the similarity relation of the two linked buildings for each possible alignment (see FigureC.29 and the explanations below).

Figure

  Figure C.29: Attributes that describe the dierence or ratio of related buildings.

Finally, it is

  critical to create a dataset adapted for training. An example has to include all the necessary information for generalization (at least in an implicit way) and to be consistent. Representation must include as little bias as possible. Especially, the MAUP (Modiable Areal Unit Problem) and the symbolization eect have to be avoided. this chapter is to illustrate the potential of graph-convolutional networks (GCNs) for tasks that ask a deep understanding of spatial relations. The ability to understand spatial relation is essential in map generalization as spatial relations structure the map. We explore two use cases: building pattern detection and road selection. Both tasks require some degree of understanding of the spatial relations between map objects.D.1 MotivationsSpatial relations and map generalization automation Maps are made up of geographically related spatial objects. Spatial relations are key information on the map, as they support the understanding of geographic space. These relations are usually not explicitly encoded in the database. Consequently, conceiving a model or algorithm capable of automatically identifying and preserving these relations is important for the automation of map generalization[START_REF] Mackaness | The Importance of Modelling Pattern and Structure in Automated Map Generalisation[END_REF]. For example, building typication is a generalization operation that seeks to reduce the number of buildings while preserving the relation between and within homogeneous building groups[START_REF] Regnauld | Contextual Building Typication in Automated Map Generalization[END_REF]. Furthermore,[START_REF] Mustière | What is Spatial Context in Cartographi Generalization[END_REF] explain that spatial relations are parts of the spatial context necessary for the correct generalization of cartographic objects. For instance, Touya, Bucher, Falquet, Jaara, and Steiniger (2014) raise the following issue : "how do we handle the relation of a building alignment along a dead end street when moving the street is required by the city generalisation process?". Then,[START_REF] Duchêne | The CartACom model: transforming cartographic features into communicating agents for cartographic generalisation[END_REF] explain how relational constraints can be used for map generalization in an agent process. These constraints are designed to a) ensure the legibility of the map, b) ensure the preservation of the relations, and c) ensure the geographic coherence of map content.Which spatial relation to learn ? Spatial relations are diverse; they can be one-to-one relations or link several objects together, like groups and patterns. All relations are not equaly dicult to make explicit. For example, the recognition of topological relations is quite well processed since the 9-intersections model extended to the dimension[START_REF] Clementini | A small set of formal topological relationships suitable for end-user interaction[END_REF], while the detection of groups is currently still experimented(Yan, Ai, Yang, and Tong 2020;[START_REF] Wang | Using stroke and mesh to recognize building group patterns[END_REF]. In fact, the current challenge is to identify non-topologic relations as they are perceive by human. D.2 The use case of pattern recognition in a map D.2.1 Presentation Mackaness and Edwards (2002) describe a pattern as a complex of primitive objects linked by relations; thus, the patterns can be seen as N-to-one partonomic relations (e.g., buildings are part of the city).Figure D.1 illustrates the interest of patternbased generalization. The generalization of an object in a pattern must be consistent with the generalized shape of the pattern.

Figure D. 1 :

 1 Figure D.1: Dierent generalization solutions when contextual relations are ignored (top-right) and observed (lower-right) (from Steiniger and Weibel 2007).

  Figure D.2 illustrates the input, expected prediction, and building patterns in our experiments.

Figure D. 2 :

 2 Figure D.2: The input, the prediction, and the goal of the alignments detection experiment. We predict the link between two building that are aligned, this link is characterised by the nature (colinear or curvilinear) of the alignment, from this prediction we can annotated with a same label building that belong to the same alignment.

  The general process is explained below (each point in the list on the right corresponds to the respective image in FigureD.3).

Figure

  Figure D.3: Process for the prediction of alignments.

Figure D. 4 :

 4 Figure D.4: Prediction of the model trained for alignment detection.

Finally, we investigate

  the diversity of the examples: our examples are really imbalanced (most links are non-alignment links), this is a common limitation to deep learning. Thus, we tested to train the model with weighted examples: alignment link have a more important weight during the loss calculation. This experiment aims at testing the impact of the imbalance in our training set and bring no concluding results, the imbalance was probably not the main problem.The model may be unadapted for the expected task The major advantage of GCN is its ability to learn from neighboring nodes. To ensure our GCN is adapted to our use case we explore dierent settings of the model. In particular, we make varying the depth, i.e. the number of convolutions, of the network. It reects the number of neighbors considered during information encoding for the use case of alignment. Nevertheless, this sensitivity study gives very few variations in the quality of predictions.During our experiment, we only tested the GCN, mainly for time reasons. However, GCN is one particular model in the eld of graph neural networks, and our experience does not allow us to conclude on the potential of all GNNs to learn spatial relations. Especially, some recent examples from the literature have shown the potential of other models for encoding relations in spatial data[START_REF] Yan | A graph deep learning approach for urban building grouping[END_REF] Yan, Ai, Yang, and Tong 2020).

  example, in Figure D.5 the two highlighted roads are close to each other and have a similar role in the road network (join the city center to the highway), however, they are distant and dierent in the graph and thus not considered redundant during road selection learning. Similarly, the blue and purple buildings are not close enough to be in the same alignement, but the blue and pink buildings are even more distant neighbors in the same alignment.

Figure D. 5 :

 5 Figure D.5: Illustration of the limitations of neighboring denition. The blue and purple buildings are not close enough to be in the same alignement, but the blue and pink buildings are even more distant neighbors in the same alignment. The two highlighted roads are close to each other and have a similar role in the road network, however, they are distant and dierent in the learning graph.

  network. The success of this task would contribute to the demonstration that the model has encoded the spatial relations. To simplify the problem, the model is trained to reproduce a classication of road sections according to whether they are "kept" or "erased" in the generalized network. This annotation is made on the detailed network and obtained by comparing the detailed and generalized networks (seeFigure D.7). The generalized network is issued from a generalization process based on data enrichment and structure detection[START_REF] Touya | A Road Network Selection Process Based on Data Enrichment and Structure Detection[END_REF]) that takes into account the spatial relations. The generalized network is not an exact subset of the detailed one and includes schematization/typication of complex intersections; in 2 Graph having nodes with spatial location (e.g. coordinates).

Figure D. 6 :

 6 Figure D.6: The generalization of patterns in a road network is not a subset of initial sections.

Figure D. 7 :

 7 Figure D.7: The generalization of the road in the source databases (examples of pattern schematization in the generalization are circled in blue) and the annotations that the neural network aims to learn ("kept" section are symbolize in blue; "erased" one in pink).

  complementary to the road network where the edges are the intersection and the nodes are the sections (seeFigure D.8). Then, the model is trained for node binary classication; nally, when we apply the model instead of the prediction (label kept or erased), we extract the output of the last layer of the model value that corresponds to the probability of the positive value (kept label) for each a node (road section).

Figure D. 8 :

 8 Figure D.8: A road network and the associated learning graph.

Figures D. 9

 9 Figures D.9 to D.11 allow us to visually compare this value (between 0% and 100%) with the selection annotation in the cartographic database in the city center, small town, and rural areas.

Figure D. 9 :

 9 Figure D.9: Annotation and prediction of selection in a small town.

Figure D. 10 :

 10 Figure D.10: Annotation and prediction of selection in a rural area.

Figure D. 11 :

 11 Figure D.11: Annotation and prediction of selection in the city center.

  tential of deep learning to learn spatial relations with a graph modeling. These experiments have shown potential to make predictions consistent with spatial relations. The road selection experiment is satisfaying for most situtations, but the results suer from a lack of city center examples. The alignment detection is less satifying and suered from both dataset and model limitations.Both experiments have revealed challenges in the modeling as a graph and in the development of adapted GNN, in particular they have shown the necessity of encoding and using the location of the node and cartographic neighboring.Our experiment did not fully succeed in demonstrating the potential of deep learning to understand spatial relations.In next chapters we rather experiement with an image based approach and the understanding of spatial relation is no more the central question, but an ability required to perform the desired task. For example, to predict the shape of a generalized road in Chapter E, the continuity and noncoalescence of the road section has to be encoded; and for map generation explored in Chapter F the relative position of dierent map objects and patterns have to be preserved.Chapter E Convolutional Neural Networks for the generalization of roadsThis chapter aims at the exploration of the potential of the image-based approach for roads generalization. As stated in Chapter B, learning graphic generalization operations can be made from various approaches; in this chapter we focus on the image-based approaches, which seem more natural and direct for this problem.E.1 Materials and methodsE.1.1 Use caseTo explore the potential of an image-based deep neural networks for graphic generalization, we choose the use case of the mountain road generalization. This use case is classical an challenging in map generalization because the sinuosity of roads causes symbol coalescence[START_REF] Lecordix | A Platform for Research in Generalization: Application to Caricature[END_REF][START_REF] Mustiere | GALBE : Adaptative generalization. the need for an adaptative process for automated generalisation an exemple on roads[END_REF] Duchêne 2014a). Moreover, roads play an important role in maps, they partition the map in blocks and their generalization is always the rst step in the generalization of maps[START_REF] Ruas | Simulation and Agent Modelling for road selection in generalisation[END_REF]. Thus, it may be impossible to learn a more complex generalization without rst learning how to generalize roads. The generalization of mountain road shape involves simplication, caricature, typication, displacement, and smoothing operations (see FigureE.1), and frequently requires the combination of several algorithms[START_REF] Roth | A typology of operators for maintaining legible map designs at multiple scales[END_REF]. Mountain road generalization is often composed of two steps: rst, road selection allows the elimination of insignicant roads, then graphical generalization adapts road line shape to be legible at a target scale, removes symbol coalescence, and smooths the geometries.

Figure E. 1 :

 1 Figure E.1: Some examples of operations during mountain road generalization.

  to predict an image of the same size where each pixel value represents the probability of belonging to the generalized shape (Figure E.2).

Figure E. 2 :

 2 Figure E.2: Simple illustration of our approach.

  Figure E.3: Evolution of the evaluation value across epochs. (a)With Dice measure. (b) With IOU measure.

Figure E. 4 :

 4 Figure E.4: Some results of the segmentation approach (input, prediction and target from the testing set).

Figure E. 4

 4 Figure E.4 shows some of the results obtained on the images of the test set. In

  In this section, we compare the dierent proposed methods for creating the training dataset. First, Figure E.5 compares the two proposed approaches for tile generation (xed scale window-based and objectbased).

Figure E. 5 :

 5 Figure E.5: Comparison of U-Net predictions for dierent tiling methods. a. Fixedsize tiles with an image size of 2.5km and an overlapping rate of 40%. b. Objectbased tiles.

Figure E. 7 Figure E. 6 :

 76 Figure E.6: Comparison of methods to avoid coalescence in the input image. a) without correction, the width of the road is xed, b) moderate enlargement relative to the deformation rate, c) enlargement relative to the deformation rate (red) and the shape of the road (green)

Figure E. 7 :

 7 Figure E.7: Eect of window size on generalization. (a) 2.5*2.5 km tile (b) 5*5 km tile, the limits of the smaller size are represented in blue over the input and target image to improve readability.

  raphy eect of cycleGAN[START_REF] Chu | CycleGAN, a Master of Steganography[END_REF]; the reconstruction tends to teach the model to hide information in the prediction for a later iteration of the cycle. It can easily be post-processed.

Figure E. 8 :

 8 Figure E.8: Illustration of the main defaults of generation models with two predictions example.

Figure E. 9 :

 9 Figure E.9: Comparison of CycleGAN and pix2pix prediction in situations including an important bend series.

Figure E. 9

 9 Figure E.9 focuses on bend series, which is the most challenging situation in mountain areas. They require bend enlargements, displacements, schematizations and simplications. The rst image shows that simple situations are as well gener-

Figure E. 11

 11 Figure E.11 represents situations near a major road; such situations are often those that require more displacement because the information on the map is more dense. This gure conrms that the displacement cannot be learned from tile datasets like ours because more context is needed.

  Figure E.10: Comparison of CycleGAN and pix2pix prediction in situations including an intersection.

Figure E. 11 :

 11 Figure E.11: Comparison of CycleGAN and pix2pix prediction in situations including a main road.

Figure E. 12 :

 12 Figure E.12: Comparison of the model trained without and with the connectivity loss.

  Figure E.13 compares the models trained with 1223 images and 2271 images. We created the second dataset by manually matching and adding road images from several mountain areas in France. In this experiment, the benet of adding training examples is not clear; models predictions are similar; we suppose that the dierences in prediction are probably due to random eects during the learning process. In fact, we think that adding new images to the training set only improves the results if the images added are of good quality and add diversity to the training set that may not be the case in our experiment.

Figure E. 13 :

 13 Figure E.13: Comparison of CycleGAN trained with dierent sizes of the training set.

  Figure E.14 compares the prediction of the segmentation model trained with initial images that contain all the roads and the prediction made with the same model trained with road selection already processes.

Figure E. 14 :

 14 Figure E.14: Comparison of prediction when the model is trained (a) without the selection preprocess. (b) with the selection preprocess.

Figure E. 15 :

 15 Figure E.15: Example of CycleGAN predictions for images with roads and rivers.

F

  , we trained GAN models to produce a generalized map from an image of detailed geographic information. This approach is illustrated in Figure F.1.

Figure F. 1 :

 1 Figure F.1: Simple illustration of our approach for generalized map generation.

  22): symbolized representation: the geographic information is represented using a cartographic style (the same as the target style), layered representation: the shape and position of each theme are encoded as a binary value for each pixel in one layer of the image.

Figure F. 2 :

 2 Figure F.2: Extract of Plan IGN, inspiration for our target representation.

  1.4 Fu, Gong, Wang, Batmanghelich, Zhang, and Tao 2019; Chen, Chen, Xu, Yin, Peng, Mei, and Li 2020).

  Figure F.3: The fusion GAn architecture.

Figure F. 4 :

 4 Figure F.4: Pix2pix prediction for generalized map generation.

Figure F. 6 :

 6 Figure F.6: Pix2pix prediction for generalized map generation in city center areas.

3.

  There are not enough examples of block covering in the training set. Our training set is composed of 2,623 images with very few (57) containing block covering.Paired vs unpaired approach Figure F.7 compares the prediction of paired (pix2pix) and unpaired (cycleGAN) models. The rst column presents the input images, the second and third columns present the predicted image for each approach, and the last column presents the target generalization. We observe that the paired (pix2pix) and unpaired (CycleGAN) results are really similar. Contrary to the use case of mountain roads (see Chapter E), pix2pix seems more promizing for this experiment, the shape of buildings is quite more regular with pix2pix and this model took less time to train. Thus, we use this model for the next experiments.

Figure F. 7 :

 7 Figure F.7: Examples of results from pix2pix (paired) and CycleGAN (unpaired) to generate generalized maps.

Figure F. 8 :

 8 Figure F.8: Comparison of images generated by pix2pix trained with agent-based generalization, and typication-based generalization.

Figure F. 9 :

 9 Figure F.9: Comparison of images generated by pix2pix trained with layered and symbolized representation as input.

  Figure F.10: Prediction of a model trained to generate a generalized map that includes road selection.

Figure F. 11 :

 11 Figure F.11: Comparison of prediction of base model and fusion model with road selection probability information to generate a generalized map that includes road selection.

Figure F. 12 :

 12 Figure F.12: Prediction on test area with many strong alignments.

Figure F. 13 :

 13 Figure F.13: Some proposals to represent the alignment on an additional image.

Figure F. 14 :

 14 Figure F.14: Prediction of the two proposed alignment improvement methods.

FigureF

  Figure F.14 presents the results of both of these improvements. We observe that both solutions work well to improve alignment prediction quality in the notdense case. For the very dense case (Situation 1) the weighted model is less ecient because such images are very rare in our input data, the errors are more linked to the extreme density than to the presence of alignments. Both solutions make the model able to learn the alignment generalization; however, both have limitations.

  First, we tested the geometry consistency loss (from Fu, Gong,[START_REF] Fu | Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping[END_REF] that encourages simple geometric transformations to not change the semantic structure of the image. This loss is presented with more detail in Chapter A. It is coupled with an unpaired GAN has shown the potential to make a more regular predictions of map (in style of google map without generalization) and simplify learning by reducing the space of possible solutions. This loss is based on the comparison of several generalizations for one building (with dierent orientations); thus, we hope to force this irregular prediction to converge to a regular shape. Therefore, the fuzzy outline of the buildings may be reduced. Figure F.15 presents the results of our model trained with this loss.

Figure F. 15 :

 15 Figure F.15: Prediction made with the geometry consistency loss.

  We tested the loss of image gradient structure (from Chen, Chen, Xu, Yin, Peng, Mei, and Li 2020) designed for map style transfer with preservation of global topological relations and detailed edge curves of objects, which are important in cartography. The interest of this loss for map generalization is explained in Capter C. We tested this loss for data without road selection because road selection involves a large change of image structure that the loss penalizes. Figure F.16 presents the results of our model trained with this loss.

Figure F. 16 :

 16 Figure F.16: Results of the model trains with the structure loss.

Figure F. 17 :

 17 Figure F.17: Prediction of the model trained with the stack of the main and additional information for map generation that includes road selection.

F

  .18), one representing the shape and position of the cartographic object by theme, and one representing additional information required for map generalization. The layered representation limits bias in the creation of the dataset makes the input information more accessible for a computer, and the output is more complete in dense areas. Then, the additional information characterizes the map objects (attributes or context) and helps their generalization. This additional information must be encoded by the generator network to benet from the prediction. For this task, we propose using a FuseNet as a generator, but our proposal is not yet satisfactory.

Figure F. 18 :

 18 Figure F.18: The recommended organization of input data to learn generalized map generation.

Figure G. 1 :

 1 Figure G.1: Situation map of the training and tested transfer areas.

Figure G. 2 :

 2 Figure G.2: Prediction of the model trained in the north Alps for tiles from other regions in the same country.

Figure G. 3 :

 3 Figure G.3: Input tile a) in the USA; b) in France.

  tures in each theme, it include both the enrichment priror to generalization and the individual generalization of themes. Then, the second stage assembles generalized objects in a symbolized map; it is responsible for the preservation of inter-theme spatial relations, and for the global legibility of the map. The general organization is illustrated in Figure G.4, then G.5 illustrate an application for this workow on a map containing roads, rivers and buildings. In the following paragraphs, we describe the process with more detail.

Figure G. 4 :

 4 Figure G.4: Illustration of the main steps of DeepMapScaler workow.

  workow using PyTorch, and the code for raster tile creation is published as a plugin of CartAGen open-source map generalization software. Each model is trained after the validation of the previous one in the workow.

Figure G. 5 :

 5 Figure G.5: Illustration of an application for our workow on map containing roads, rivers and buildings.

Figure G. 6 :

 6 Figure G.6: Proposed steps for scale adaptation of road network at 1: 50 000 scale.

Figure G. 7 :

 7 Figure G.7: Prediction of the scale adaptation for the road at 1:50 000.

F

  

Figure G. 8 :

 8 Figure G.8: Prediction for building shape adaptation.

Figure G. 9 :

 9 Figure G.9: Prediction made by the model trained for graying segmentation.

Figure G. 10 :

 10 Figure G.10: Input and target of map ganeration step.

  amalgamation and displacment of buildings, we think it is mostly an under-training problem; we conrmed this hypothesis by training the model for a few more epochs and observing a reduction of such situations.

Figure G. 11 :

 11 Figure G.11: Predictions of the map generation steps; good predictions are presented on the left and more controversial ones on the right.

Figure G. 12 :

 12 Figure G.12: Illustration of the alternative transition between steps based on embedding.

  ation and then proposes three evaluation methods adapted for deep-learning based map generalization. H.1 The specicities of evaluation of deep learningbased generalization H.1.1 Why evaluating deep learning predictions? The evaluation of generalization is traditionally an important research problem; evaluation is used to tune the parameters of generalization processes (e.g. setting constraint threshold and importance), to control its orchestration (e.g. choose the relevant operator or level of analysis), and to assess its results (e.g. verifying the legibility and informatio presevration) (Mackaness and Ruas 2007). In addition, deep learning processes also require evaluations at several steps (Figure H.1) and the evaluation often diers according to its objective.

Figure H. 1 :

 1 Figure H.1: The main evaluation steps when designing a deep learning model (the learning process is colored in green, and the evaluation steps are colored in purple).

  next paragraph we summarize the evaluation objectives for deep learning based map generalization. Tuning In deep learning the main parametre we can tune are not the model paramter that are learnt but the training data set from which they are learnt. Thus, the evaluation processed on the training set at the beginning of the experiments,can be seen as a kind of tuning evaluation. This step aims at identifying un-desired examples and estimating the quality and diversity of examples. Identifying undesired examples and estimating the quality of the training set require an evaluation methods that identify and quantify errors in each image. Then, describing the diversity of a training set requires a more global indicator, such as the measure of image complexity and similarity to the detailed map 1 .

  during training. The learning objective (loss function) is the function that measures the error of a model and is optimized during learning. The choice of an adapted learning objective for map generalization is detailed in Section C.1.4.

Figure H. 2 :

 2 Figure H.2: Illustration of the main specications of the buildings on a topographic map.

Figure H. 3 :

 3 Figure H.3: Illustration of the limits of intersection over union. The value is almost the same for two dierent generalizations: one very bad at the top and one correct at the bottom.

  Figure H.4: Evaluation of the dierent methods according to user marks.

  ence in marks) helps to more precisely explain this deviation. These images are grouped in Figure H.5. Image 25 is the image where people are less agreeing: 25% of the participants rank the reference as the best and 45% as the worst generalization result. The left of this image is a very good generalization, whereas the right contains inconsistent information compared to the input image. This inconsistency in our data, due to dierent update processes in input and output data, is avoided in the deep learning process. The same kind of problem is visible in Image 166.

Figure H. 5 :

 5 Figure H.5: Examples of images badly evaluated from the validation set. All tiles represent a part of the map of 2.5 km square. Each line represents a situation and in each column the employed learning method.

  Figure H.6 presents the value of the edge density measure for the validation images. This measure mainly distinguishes the noisy image from other images. This

Figure H. 6 :

 6 Figure H.6: Distribution and examples of the value for edge-density clutter measure.Each point represents an image from our testing set, the corresponding level of satisfaction of the constraint is indicated in green.

A

  Figure H.7: Eect of the smoothing operation on a road and its generalization.

Figure H. 8 :

 8 Figure H.8: Distribution and examples of values for the smoothness measure. Each point represents an image from our testing set, the corresponding level of satisfaction of the constraint is indicated in green.

Figure H. 9 :

 9 Figure H.9: Steps for detecting coalescent pixels, from left to right: initial image, dilation, erosion, and dilation.

Figure H. 10 :

 10 Figure H.10: Eect of coalescence detection on a road and its generalization. a) Example with a few over-detections. b) Example with an over-detection of coalescence in the generalized image.

Figure

  Figure H.11 presents the distribution and some examples of values for the coalescence reduction measure. This measure is more questionable than the others. First

Figure H. 11 :

 11 Figure H.11: Distribution and examples of values for the coalescence reduction measure. Each point represents an image from our testing set, the corresponding level of satisfaction of the constraint is indicated in green.

Figure H. 13

 13 Figure H.13 represents the distribution and some examples of values for position

Figure H. 13 :

 13 Figure H.13: Distribution and examples of values for the position measurement.

Figure

  Figure H.14 gives the distribution and some examples of values for the connectivity measure, each pair represents an initial situation and the corresponding generalization. This measure is quite consistent with our observation, but it seems to overvalue the structure changes. This problem is explained by the fact that all changes have equal weight in the calculation, even the addition of very small sets or the disconnection of one pixel, which is not visible at the target scale. Then, this measure is sensitive to border eects (illustrated in the last column of Figure ??).

Figure H. 14 :

 14 Figure H.14: Distribution and examples of values for the connectivity alteration measure. Each point represents an image from our testing set, the corresponding level of satisfaction of the constraint is indicated in green.

Figure H. 15 :

 15 Figure H.15: Distribution and examples of values for the color measure. Each point represents an image from our testing set, the corresponding level of satisfaction of the constraint is indicated in green.

Figure H. 15

 15 Figure H.15 represents the distribution and examples of values for the color measure. This measure has allowed quantifying the observed noise of CycleGAN images and verifying that images from other methods do not suer from this problem.

Figure H. 16 :

 16 Figure H.16: Distribution and examples of values for the noise measure. Each point represents an image from our testing set; the corresponding level of satisfaction of the constraint is indicated in green.

Figure H. 17 :

 17 Figure H.17: Comparison of models strengths and weakness, with a visual representation of constraint satisfaction.

(

  see Figure H.18).

Figure

  Figure H.18: Illustration of the patches to detect border eects: green patches would have a greater value than purple ones.

Figure H. 19 :

 19 Figure H.19: Vectorization of the building (green), and a Douglas Peucker simplication (purple).

  construct an adapted training set from IGN data? The construction of an adapted training set is mainly based on the quantity, diversity, and quality of the examples. The examples must not include errors and have to be legible and adapted to the target task. They must contain the necessary information to allow the model to learn the desired task (in particular, map generalization requires several levels of contextual information, and the representation of this context is an issue). The main conclusions of our experiments on dataset creation are the following: 1) the more complex the task is, the more examples would be needed; 2) the choice of the study area for the example extraction aects both the scope of the possible situations resolved by the model and the transferability of the model;

Figure 2 :

 2 Figure 2: Multi-scale map generation as a smooth interpolation problem: comparison between example of smooth interpolations generated by (Liu, Sangineto, Chen, Bao, Zhang, Sebe, Lepri, Wang, and Nadai 2021) methods, and an extract of the geoportal.

  , l'usage des cartes a évolué de façon importante, les cartes sont désormais majoritairement en ligne, multi-représentations, et multi-échelles. Les utilisateurs attendent un contenu spécique à leurs besoins, à leurs appareils et interactif, où les informations sont accessibles de façon directe et lisible. Néanmoins, actuellement les cartes en lignes ne sont ni spéciques aux besoins de l'utilisateur ni simple à naviguer. Par exemple, le saut de représentation entre les échelles d'une carte produit de la confusion pendant le zoom[START_REF] Touya | Finding the Oasis in the Desert Fog? Understanding Multi-Scale Map Reading[END_REF]. D'autre part, la multiplication des sources de données a entraîné l'augmentation du besoin de synthèse, d'harmonisation et d'abstraction de l'information géographique sous forme d'une carte. Nous pensons que le développement de processus cartographiques qui limitent cette confusion, et répondent à ces nouveaux besoins est conditionné à de grandes avancées de la recherche en automatisation de la généralisation cartographique. Il s'agit du processus d'abstraction qui vise à adapter le niveau de détail de l'information géographique pour la rendre lisible sur une carte à une échelle plus petite. L'automatisation de ce processus est complexe mais essentielle à la production de cartes répondant à la fois aux usages traditionnels et à ces nouveaux usages. La recherche sur l'automatisation de la généralisation cartographique a ralenti ces dernières années tandis que le besoin lui n'a pas diminué. Nous pensons qu'elle pourrait bénécier des avancées récentes en apprentissage profond qui rendent possible la résolution de tâches de plus en plus complexes, grâce à l'utilisation de nombreux exemples. L'usage de méthodes issues de l'apprentissage automatique pour la généralisation cartographique a déjà été expérimenté dans quelques cas d'étude isolés et limités. Le contexte actuel, et l'apprentissage profond sont prometteurs :-les dynamiques open-data et l'ère du big data constituent de nombreuses sources pour construire d'importants jeux d'apprentissages ; -la promesse de l'apprentissage profond d'apprendre de données brutes, nous permettrait de se passer de l'étape d'extraction de variables, qui était la principale limite à l'utilisation de l'apprentissage automatique en généralisation cartographique ; -l'état de l'art en apprentissage profond montre une capacité accrue à résoudre des tâches similaires à la généralisation cartographique dans les domaines des sciences de l'information géographique et de la visualisation d'informations ;

  sage profond pour la généralisation cartographique pourrait être un tournant dans l'automatisation de la généralisation cartographique. Mais pour cela, les modèles doivent être insérés et comparés avec les processus traditionnels de généralisation cartographique. L'objectif de cette partie est de discuter les enjeux de l'utilisation d'approche par apprentissage profond pour la généralisation. Dans le Chapitre G, nous discutons la capacité de transfert des modèles d'apprentissage profond et l'illustrons pour les modèles du Chapitre E et F. Puis, nous étudions l'intégration d'un modèle, d'une part dans un processus traditionnel (comme indicateur pour l'enrichissement des données géographique ou comme opérateur de généralisation) et d'autre part dans un processus constitué entièrement de modèles d'apprentissage. Enn, nous proposons un exemple de processus de généralisation qui intégrerait les modèles proposés et testés dans la Partie II pour la génération de cartes topographique au 1 :50 000. Dans le Chapitre H nous expliquons les enjeux d'évaluation de la généralisation cartographique réalisée par apprentissage profond. Nous illustrons trois méthodes d'évaluation en les appliquant à l'évaluation des modèles proposés en Partie II. En particulier, nous montrons que l'adaptation des contraintes de généralisation cartographique pour une mesure basée sur des tuiles permet une évaluation automatique et assez ne des diérents aspects de la généralisation, mais toutes les contraintes proposées dans le passé pour des cartes topographiques ne semblent pas adaptables. La reconstruction d'une base de données vectorielle avant l'évaluation, quant à elle, permet d'appliquer les méthodes traditionnelles d'évaluation de la généralisation cartographique, mais demande un temps de calcul important et peut altérer la qualité des prédictions, ce qui n'est pas approprié dans de nombreux cas. Finalement, le test utilisateur est le seul moyen totalement able de s'assurer que la prédiction correspond à ce qui est attendu par l'utilisateur, néanmoins, il ne permet pas l'évaluation automatique. Contributions et conclusions Pour conclure, les contributions de cette thèse sont d'une part des enseignements sur l'utilisation de l'apprentissage profond pour la généralisation cartographique et d'autre part des modèles, benchmarks et un processus de généralisation cartographique par apprentissage profond. En particulier, nous proposons : -un jeu de données pour la généralisation graphique de routes de montagne incluant un jeu d'entrainement et plusieurs jeux tests pour étudier la transférabilité du modèle (disponible sur Zenodo) et un ensemble de mesures pour valider les tuiles prédites (disponibles dans le dépôt Github DeepMapGen) ; -des modèles entraînés pour chaque cas d'études proposé ; -le code pour les adaptations proposées des modèles utilisés notamment la fonction d'objectif de connectivité et le fusionGAN ; -le processus DeepMapScaler qui intègre les modèles proposés dans cette thèse pour générer des cartes généralisées ; -une méthode pour générer des jeux de donnée d'apprentissage adaptés à la généralisation cartographique et le code associé (disponible sous la forme d'un plugin de la plateforme open source de généralisation CartAgen) ; -une méthode pour la reconstruction et l'assemblage de tuiles généralisées indépendamment en une base de données vecteur. L'objectif de notre thèse était d'explorer le potentiel de l'apprentissage profond pour la généralisation cartographique. Les résultats de nos expériences sont prometteurs et révèlent la capacité des modèles d'apprentissage profond à apprendre à interpréter, abstraire et représenter l'information géographique depuis des images ou des graphes. Nos résultats sont susamment performants pour un usage comme indicateur (c'est-à-dire pour l'enrichissement de l'information géographique avant la généralisation), mais la qualité et les dicultés d'évaluation/intégration, des modèles qui visent à apprendre un ou plusieurs opérateurs ne sont pour l'instant pas susant pour remplacer ou compléter les opérateurs traditionnels dans un processus de généralisation. Nous pensons que pour rendre possibles de tels usages, l'amélioration des architectures et jeux d'apprentissage est nécessaire et en particulier pour une meilleure utilisation du contexte spatial.Aussi, notre thèse s'inscrit dans l'objectif global de la geo-intelligence articielle, qui est de concevoir un programme capable de comprendre une question d'un utilisateur relative à l'information géographique, et de regrouper, analyser et présenter les données requises pour répondre à la question de l'utilisateur dans une forme adaptée(Janowicz, Gao, McKenzie, Hu et Bhaduri 2020, p. 631). En eet, la carte est bien souvent le mode de communication de la solution la plus souhai-

  

  

  

  proposes a loss that encourages this characteristic by comparing the prediction of rotation of an image with the rotation of the prediction. This loss has shown interest in the generation of maps in the style of Google Maps. Interest in this measure for the generation of generalized topographic maps is tested in Chapter F. Designing a good training dataset Deep learning models learn from examples. Examples are organized in a dataset that contains at least examples of the input and target data. The creation of an ecient training set is a critical point in learning success. Even the most powerful model could be totally useless if it is trained with non-relevant data. In this section, we present what an adapted training set is and how to create it. During the training phase, several batches of examples are used to optimize the weight of the models. During this phase, some unseen examples can be required to verify the model progresses and is not over-tting. The validation set is a subset of the dataset not used to train the model; however, the model is applied to each example in this set after each epoch and the evaluation is calculated. It is used to determine the number of epochs required during training. Finally, during the test-

	C.2.1 What is an ecient dataset?

Moreover, in map generalization, it is quite easy to identify places that require a xed generalization and places where the generalization varies more. Thus, we could use a spatially weighted loss. Indeed, in Chapter F we propose employing such a mask for building generalization: an error in this area is more important and "costs more" than in other areas.

C.2 ing phase, another set of examples (test set) is used to fairly evaluate and compare models. Thus, the dataset is generally divided into three image sets: the training,

Table C .

 C 1: Comparison of several methods and parameters for the creation of a mountain road shape generalization dataset (+: good, -: bad, : very bad).

	Method	Quantity Dice IOU Visu
	Window 2.5 km	560	0,2	0,3	+
	Object 2.5 km	687	0,05	0,1	-
	Window 1 km	2128	0.05	0.1	
	Windows 5 km	182	0,3	0,4	-

Table C

 C 

	Width	Symbolization	Attribute values translation at 1:250 000
	in pixel	at 1:25 000	
	1	5	Irrelevant, forbidden, local narrow roads
	2	4	Regional roads and narrow regional roads
	3	3	Regional roads with bike path
	4	Ø	Major roads
	5	2	Highway

.2: Conversion table road nature and width on map-like image.

Table C

 C 

	Method	Quantity Dice IOU Visu
	Win 2.5 km	560	0,2	0,3	+
	Win 2.5km ltered	284	0,1	0,2	-
	Win 2.5 km rotation	1120	0.2	0.4	+
	Win 2.5 km crop	1120	0.3	0.4	
	Win 2.5 km without selection	560	0,1	0,2	-

.3: Comparison of the quality of several datasets for the generalization of the shape of mountain roads (+: good, -: bad, : very bad).

  Torch implementation of GCN 1 with our dataset for 200 epochs. Our training set is a graph with 17281 nodes. The construction of this dataset is detailed in Chapter C. We constructed the annotation of this dataset manually. The goal is to verify that the network can learn what a human perceives as an alignment.

Table D .

 D 1) shows that the main problem lies in the distinction between non-alignment and alignment relations (e.g. a large portion of colinear and curvilinear edges are misclassied as non-alignment edges, and vise versa) and not the problem in the distinction between curvilinear and colinear alignments.

	Prediction	Annotation	Curvilinear	Colinear	No	Total
	Curvilinear		1125	34	1412	2571
	Colinear		66	1196	2662	3924
	No		819	1746	9919	12484
	Total		2010	2976	13993 18979

Table

D

.1: Confusion matrix for alignments detection using a GCN.

The visual interpretation of the results is consistent with this interpretation; the model is not able to detect which links belong to an alignment, but area with curvilinear alignement tend to contains only links curvilinear alignement and no alignement links and conversly.

Table D .

 D precision of around 72% (see confusion matrix, TableD.2). The model is under selecting the road network and kept too many undesired sections, however, it deletes very few undesired sections. 2: Confusion matrix for the selection of road sections using a GCN.

	Prediction	Annotation	Deleted	Kept	Total
	Deleted		3098	1280	4378
	Kept		2313	6246	8559
	Total		411	7526 12937

Table F .

 F 1: Table of constraint threshold in pixel for a display at 1:50 000 scale.

	Name	Constraint	Thresold mm on map	in	Threshold in pixel
	Size threshold	C 1	25mm²		256
	Granularity threshold	C 2	2mm		102
	Separation threshold	C 3 and C 4	2mm		102

  .1 presents the evaluation of road selection using a GCN (from Chapter D). This evaluation is simple and relevant as long as classes are not fuzzy and a validation set can be provided. It is informative on the quality of prediction and How well the selection corresponds to the target?". However, it may not be sucient to determine if the generalization is good; for example, in the use case of road selection, it does not say if the selection preserves the connectivity of the road network or if the model is more ecient in some situation or very bad in another (like city center). Finally, our validation set does not represent the only good solution for generalization. Thus, we can have solutions for which the confusion matrix is bad, but which are cartographically correct because the dierences in selection are for small routes, and the two selections are cartographically equivalent.

	Prediction	Annotation	Deleted	Kept	Total
	Deleted		3098	1280	4378
	Kept		2313	6246	8559
	Total		5411	7526	12937
	Table H.1: Confusion matrix for the selection of road section at 1:50 000 using a
	GCN.				
	most of the time adapted for the evaluation of the desired task: it answers questions
	like "				

  TableH.2 summarizes the evaluation methods from the literature on deep learning and map generalization. In the next sections, we propose to detail the two approaches highlighted in TableH.2 we selected to assess the prediction of map generalization based on deep learning. We received 113 responses during the two weeks of the test from nonpaid volunteers. The participant population is made up of men at 60 %; only 10 % of the participants are aged under 25 and more than 40 % are aged over 50. Most of the respondents use maps weekly or more often, but have never heard of generalization. The "expert population" is composed of twelve generalization experts,

	twelve geo-visualization or cartography experts, and 25 other informed people (who
	declared having already heard about map generalization).	
		Automatic	Manual
	Map generalization	Constraint violation measure	Expert evaluation
	Deep learning	Similarity with target measure	User preference test
	Table H.2: Possible and tested evaluation methods.

Participants

  : the location of the reference in the ranking is the one varying the most, and most of the time Models A, B, and C are well placed.

	). Model A
	gives better quality results (M =6.43) than Model D (M =3.32), a unilateral t-test
	allows us to conrms H2 (the null hypothesis: learning approach does not aect gen-
	eralization quality is rejected t (7) = 7.70, p < 0.01). The ranking evaluation also
	conrms this idea; Model D is classied as the last for 72.5% of the trials. Finally,
	the average image marks for Models A (M =6.43) and C (M =6.51) are similar. A
	paired unilateral t-test on the marks shows that Model C is not signicantly better
	than Model A (t(6) = 0.80, p= 0.77) and to refute (H3). The ranking evaluation
	gave similar results

Table H .

 H 4: Table of possible levels of analysis for vector and raster data.

	Level of analysis	Vector data	Raster data
	Micro	Roads	Pixel
		Road network faces	Set of background pixels
	Meso	Stroke	
		Other sets of road	Set of road pixels
	Macro	Road network	Image

Table H .

 H 5: Alterations are applied to create fake test images.

	Legibility alteration	Information alteration
	Enlarged bends	Appearance of a road
	Enlarged road width	Noise in the image
	Small displacement	Big structure alteration
	Loop creation		Continuity alteration
	Blurred road		Continuity alteration at border
	Only background in the image	Only roads
	H.3.2 Proposed constraints
	In this section, we dene each chosen constraint and associated measures, validation,
	and limitations. We implemented all our measures in Python using the open-source
	libraries PIL and Image	2 .

  Table H.6.

	Table H.6: Interpretation of constraints in a level of satisfaction (at the image level
	all values are in percent except noise that is in pixel).	
	Constraint Very good	Good	Neutral	Bad	Very bad
	Color	x < 2.5	2.5 ≤ x < 5 5 ≤ x < 7.5 7.5 ≤ x < 10	x ≥ 10
	Smoothness				

Connectivity x < 10 10 ≤ x < 40 40 ≤ x < 70 70 ≤ x < 100 x ≥ 100 Clutter x < 10 10 ≤ x < 20 20 ≤ x < 30 30 ≤ x < 60 x ≥ 60

  If a characteristic is often badly generalized, it means that the model is not adapted to learn to reproduce this characteristic (e.g., disconnections in our experiment). Since this default has been identied, it can be solved by exploring the adapted loss functions.

	If a situation or a kind of situation is often poorly generalized, it might reect
	an imbalance in the training dataset. For example, in our experiments, the
	cases with two close parallel roads are badly generalized because they are
	under-represented. Then, adaptations of the training set can be performed.
	On the other hand, at the pixel level, constraints identify conicts and situations
	that are badly generalized within each tile, which enables post processes with other
	generalization techniques.
	Comparing Models

In this section, we propose to explain how evaluation can be used to compare different deep learning models or similar models used with dierent parameters. A good generalization solution is a balance between several criteria, so it is not easy to determine if a solution is better than another. Constraints could contribute to the evaluation of which network conguration gives better results in an ambiguous case where it is visually dicult to determine a preference. For comparison purposes, a good combination of dierent measures is needed to give a synthetic measure of the global quality of a tile image. Finally, the average values are often not sucient for this task, and the worst or last deciles are interesting to nd the weakness of a model. We propose in Figure H.17 a visual comparison of the average and worst constraint values for several models for mountain road segmentation. It is a convenient representation for model strength and weakness comparison and conrms that cycleGAN gives as good results as the reference (see Chapter E).

Table H .

 H 7: Table of statistiques on regularity measures for prediction of model with and without geometry consistency (GC).The development and integration of deep learning into the map generalization process is conditioned to the existence of common and adapted evaluation methods. The evaluation of deep learning-based map generalization is a challenge. TableH.8 summarizes for each of the main evaluation objectives identied, if the proposed evaluation is adapted.

	Chapter's conclusions						
	Objective				Constraint adaptation	User test	Vector conversion
	Tuning				✓		✗		✗
	Controlling				✓		✗		✗
	Setting				✓		✗		✓
	Descriptive evaluation		✓		✓		✓
	Evaluation for grading		✗		✓		✓
	Evaluation for post-processing	✓		✗		✗
	Table H.8: Applicability of proposed evaluation methods to main evaluation
	objectives.								
	Constraint			With GC			Without GC
			min	max	mean	median	min	max	mean	median
	Granularity (metre)	2	32	7.7	4.5	2	38	8	4.5
	Number of edges	4	70	7.6	6	4	70	7.5	6
	Rectangular coe-	0	2.3	0.3	0.2	0	1.7	0.2	0
	cient (percent)								
	Deviation	coe-	0	45	15.6	14.0	0	45	15.7	14.0
	cient (degree)									

  Github repository: https://github.com/umrlastig/DeepMapGen); and the study of the adaptability of twelve other classical map generalization constants from the EuroSDR framework (see Appendix B).

	cic needs in terms of the number of examples; input information representation;
	architecture; and loss function.
	Contributions
	Our exploration leads to the proposal of several solutions for each use case. Thus our
	contribution include datasets and models for each proposed use cases. In addition,
	we propose:
	The layer representation, a method for representing geographic information
	in an ecient training dataset for learning map generalization from images. It
	allows to encode two dierent levels of information (main and additional infor-
	mation) in a machine-readable way. The code to generate tiles with this repre-
	sentation from vector geodatabases is available as a plugin of the open source
	generalization platform CartAgen https://github.com/IGNF/CartAGen.
	DeepMapScaler, a deep neural network workow for generalized map gener-
	ation. In this workow, we organize and divide the generation of generalized
	maps into simpler tasks that deep learning now seems capable of solving. Un-
	like approaches in the literature that attempt to train a single model for map
	generation, this approach precisely tailors the dataset and model component
	for each step of the generalization and makes the generation of generalized
	maps possible.
	The connectivity loss, a measure of road network connectivity alteration
	that can be used as a part of deep neural network objective function https://
	github.com/ACourtial/DeepMapGen.git.
	FusePix, an architecture able to use the additionnal and main information in
	a GAN https://github.com/ACourtial/FusePix.git.
	AlpineBends, a benchmark for the graphical generalization of mountain

roads that includes a training set and several test sets to study the transferability of the model (available on Zenodo: 10.5281/zenodo.5257686).

An evaluation method based on adapting the traditional map constraint for an image-based measure. This includes a proposal for six constraints for evaluation of the AlpineBends benchmark (code available in DeepMapGen's

  How to conceive an adapted deep neural network? In Chapter C, we identify seven criteria for the choice of an adapted deep neural network: abstraction ability, interpolation ability, preservation ability, transferability, spatial ability, variability, and gluttony. Furthermore, our experiments have shown that the adapted model may require to encode multiple level of spatial information and context. Subsequently, we believe that if the generic models tested in our exploration are able to demonstrate the potential of deep leaning for map generalization, it is now necessary to develop specic and adapted models. This would allow to reach a level of prediction quality, that would further unlock the integration of the deep learning model in the map production process. In conclusion, we suggest that research on the conception of such a model has to be directed towards an architecture with several encoding path (for the dierent levels of information and context) that would focus on improving one or more of the seven idenitfyed abilities.

	How to deal with the specic aspects linked to geographic information
	and map generalization?

This research question is about the spatial ability of deep neural networks. Some elements of common neural network tend to t spatial caracteristics by denition. For example, convolution series rst encode small-range relations and progressively search for long-range relations, this encoding is consistante with the principle of geography (close things are more related than far ones). On the contrary, we identify some aspects that are not adpated to spatial data. For example, most of the loss function calculations are based on a pixel level comparison. However, in cartography and map generalization, a more global comparison of the image is needed.

  This generation is more than the generation of one representation for each desired representation level, it requires multiple consistent intermediate representations and smooth transitions. We already demonstrate that deep learning is able to generate one intermediate generalization (see Chapter F),

  où l'on formalisait d'abord des spécications cartographiques puis on appliquait des opérations pour s'y conformer. En eet, un modèle d'apprentissage profond va plutôt apprendre à reproduire des cartes généralisées sans explicitement dénir les spécications de la carte ou les opérateurs employés, mais en déduisant ce à quoi devrait ressembler le résultat de la généralisation. Le premier objectif de cette thèse est donc de démontrer que l'approche est possible et prometteuse, puis nous proposons d'explorer via divers cas d'étude le potentiel et les questions de recherche soulevées par l'usage de l'apprentissage profond pour la généralisation cartographique. Notre exploration est construite à travers quatre cas d'études qui décrivent chacun un problème particulier de généralisation cartographique. Les trois premiers cas d'étude correspondent à des étapes classiques de processus de généralisation cartographique (généralisation graphique, détection de pattern, sélection d'entités) ; tandis que le dernier correspond à une approche plus globale pour la génération d'une carte généralisée qui combine plusieurs opérateurs de généralisation. Ce manuscrit collecte et organise les leçons apprises de ces expériences. Nous discutons donc les questions de recherches liées à la mise en ÷uvre concrète des modèles d'apprentissage profonds pour la généralisation cartographique (jeu de données et architecture), leurs usages et limites, l'évaluation de tels modèles, et leur intégration dans des processus cartographiques préexistants. En particulier, nous cherchons : Un nouveau paradigme pour la généralisation cartographique Cette partie a pour objectif d'identier le potentiel et les dés de l'approche par apprentissage profond pour la généralisation cartographique. Elle est constituée d'un chapitre d'état de l'art qui présente la recherche en généralisation cartographique, et en apprentissage profond, puis deux chapitres mobilisent cet état de l'art pour identier, d'une part, les tâches de généralisation cartographique qui peuvent être résolues par une approche par apprentissage profond, et d'autre part, les méthodes d'apprentissage profond pouvant être mobilisées pour résoudre des problèmes de généralisation cartographique. L'état de l'art (Chapitre A) nous permet d'identier le potentiel et les dés d'une approche par apprentissage profond pour la généralisation cartographique : + l'apprentissage profond est capable de résoudre des tâches similaires à la généralisation cartographique (par exemple la génération de résumé à partir de vidéo, la simplication de ligne à main levée en dessin, ou la génération d'image de carte) ; la représentation image est l'approche principale en apprentissage profond, mais l'utilisation d'images pour la généralisation cartographique est considérée moins ecace, car elle implique une perte d'information par rapport aux bases de données géographiques vectorielles ; les modèles d'apprentissage profonds sont complexes à paramétrer et nécessiterons probablement d'être adaptés pour traiter des informations cartographiques ; l'apprentissage profond donne des résultats sans explication qui peuvent être considérés comme non ables ou diciles à intégrer dans un processus semi automatique ; l'entraînement de modèles d'apprentissage profond demande des ressources importantes qui peuvent être dicilement accessibles aux chercheurs en cartographie, ou avoir un coût économique ou environnemental trop important. Ensuite, dans le Chapitre B nous identions comment des opérations de généralisation cartographique peuvent être formulées en une tâche qu'un modèle d'apprentissage profond peut résoudre. En particulier, nous relevons qu'une grande partie des tâches de généralisation cartographique peuvent être exprimées comme un problème de classication, segmentation ou régression sur des images ou des graphes (ou les éléments d'une image ou d'un graphe). Finalement, nous notons que la combinaison de plusieurs approches semble plus prometteuse encore. Par exemple pour la simplication d'une forme, une approche image est possible, ou bien une approche qui combine sélection et régression sur les n÷uds d'un graphe pour prédire les nouvelles position des sommets. Enn, dans le Chapitre C, nous explorons comment mettre en ÷uvre des modèles d'apprentissage profond pour la généralisation cartographique. En particulier, nous proposons : des critères pour le choix d'un modèle de la littérature en vision par ordinateur ; des adaptations pour améliorer l'apprentissage de la généralisation cartographique ; des lignes directrices pour la création de jeux de donnée d'apprentissage adaptés et un modèle d'organisation des données géographiques en jeu d'exemples pour l'apprentissage de tâche liée à la cartographie et à la généralisation. Partie II : L'apprentissage profond peut-il apprendre la généralisation cartographique ? Cette partie à pour objectif d'expérimenter le potentiel de l'apprentissage de quelques tâches de généralisation cartographique importantes. Elle est organisée en trois chapitres décrivant chacun une série d'expériences visant a répondre à une problématique : l'apprentissage profond peut-il comprendre des relation spatiales / apprendre la généralisation graphique / générer des cartes topographique généralisées. Le Chapitre D teste la capacité des réseaux d'apprentissage sur les graphes à comprendre des relations spatiales, pour cela nos explorons la capacité de ces modèles à réaliser des tâches de généralisation qui reposent sur des relations spatiales complexes et implicites dans les graphes. Les cas d'études sont la détection d'alignement de bâtiments et la sélection du réseau routier. Ces expériences montrent des résultats perfectibles mais révèlent une capacité à faire des prédictions cohérentes avec les relations spatiales que nous (humains) observons dans les données. Le Chapitre E propose d'éprouver la capacité des modèles d'apprentissage basés sur des images à apprendre la généralisation graphique des entités cartographiques via le cas d'étude des route de montagne pour un saut d'échelle important. Cette expérience compare plusieurs approches (par segmentation et avec un GAN) et révèle que les modèles sont capables de reproduire le lissage des lignes, l'élargissement de virages serrés, et la caricature, pour la plupart des situations testées. Dans cette expérience la préservation de la structure du réseaux routier (et en particulier éviter la création de boucle et les déconnexions) est un enjeu majeur et les modèles génératifs sont plus prometteurs sur ce point. Nous introduisons également une mesure de ces altérations de structure, et proposons de l'utiliser comme terme de la fonction d'objectif pour les minimiser. Finalement nous obtenons des prédictions jugées aussi bonne que la généralisation de l'état de l'art obtenue par des processus semi-automatiques. Dans le Chapitre F, nous démontrons que les réseaux adverses génératifs (GAN) sont capables de générer des images ressemblant à des cartes à une échelle donnée. Nous générons des images de cartes généralisées à partir de cartes détaillées comportant : des bâtiments, les réseaux routier et hydrographique. Nos résultats reproduisent la simplication, l'agrandissement et la typication de bâtiments, mais la représentation en tuiles est limitante pour les tâches nécessitant plus de contexte comme la sélection du réseau routier et le grisage des centres ville.

L'approche par apprentissage profond de la généralisation est encore expérimentale, et par ailleurs elle est à l'opposé des approches traditionnelles de la généralisation cartographique, -à identier le potentiel et les dés d'une telle approche (Partie I) ; -à concrètement expérimenter l'apprentissage de quelques tâches de généralisation cartographique importantes (Partie II) ; -à donner des indications pour les futures utilisations de l'apprentissage profond pour la généralisation cartographique (Partie III). Partie I : + il est adapté pour résoudre des problèmes graphiques où l'information nécessaire est implicite dans les données (et c'est le cas de la généralisation cartographique) ; + de nombreux exemples de cartes détaillées et généralisées sont disponibles pour servir d'exemples d'apprentissage ; -

Available here https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git.

Chapter G

Usages of deep learning models for map generalization

This chapter deals with the main possible perspectives for using the deep learning models in map generalization. In particular, we discuss the ability of deep learning models to be applied in new unseen situations. Then we describe how both the integration of deep learning in pre-existing map generalization process and its usage as an end-to-end process are challenging.

G.1 Transfer learning

Once a deep learning model has been trained, it aims to be applied and tted to unseen situations. This ability of a model to be relevant for various unseen situations is called transferability.

In this section, we illustrate this ability in case of map generalization models for some models presented earlier in this thesis.

G.1.1 Location transfer

First, we tested the transfer capacity for other geographic areas. Indeed, location can impact both the map content (e.g. some area are denser or more regular than others) and cartography (the requirement, scale, level of detail or feature of the map varies in space and time); and as our model is trained with examples from the same geographic area as the test set, we would like to verify that it can be in other areas.

We tested the transferability of the graphic generalization learned for the mountain road use case described in Chapter E. Models were trained with images from the Alps, we applied them to roads in other mountain areas of France (see Figure G.1).

Each new testing area was separated in testing images created in the same manner as training images, and contains at least 200 new images with various road congurations. Figure G.2 shows a very small extract of these test sets for each of these areas. We observe that the prediction is as good as for the initial test set (in the north Alps). Quantitative evaluation (presented in the next chapter) also conrms this result. Thus, this model is correctly transferred to mountain roads from the same country. This use case is quite simple as the input images in the test set are quite similar to those of the training set but some other cases are more complex. For example, in next section we present experiment for transferring model to another country. A

H.2 User test

We proposed a user test to evaluate and compare the generalization of the mountain roads. The design and results of this test are described in this section.

H.2.1 Design of the user test

We designed a test that aims to attest and quantify the observation made in Chapter E, i.e. that the GAN model produce image of map that cannot be distinguish from semiautomatics generalization and the interest proposed improvement. In particular, we compare the prediction of ve models (see Table H Task The test is composed of two dierent tasks: an absolute evaluation (marking task) and a relative evaluation (ranking task). For both tasks, users do not know how each image has been produced. In the absolute evaluation, participants have to observe an input-generalization pair and answer to three questions (listed below).

For each question, a Likert scale with four values from "very good" to "very bad" is proposed.

1. How well do you think roads are generalized? The goal of this question is to evaluate whether the generalization operations have been applied properly.

2. How much do you think the generalized image seems realistic? This question evaluates whether the images look like a map that has been traditionally produced.

3. How well do you think the generalized image is readable? This question assesses the legibility of images.

Then, the ranking task presents an input image and ve generalization images for the corresponding area. Participants have to drag and drop the generalization images by preference (from the most appreciated to the least appreciated). This task is common in GAN prediction evaluations [START_REF] Wang | Non-local Neural Networks[END_REF] because it veries that predictions cannot be distinguished from real images.

Moreover, the ranking task seems to be an easier task for people who are not familiar with the expected output. Finally, the combination of these two tasks should avoid fatigue for participants.
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