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Abstract

Map generalization is a process that aims to adapt the level of detail of geographic
information for cartography at a small scale. Automating the process is complex
but essential in map production. We think this research �eld could bene�t from
the recent advances in deep learning that make it possible to solve more and more
complex tasks, using numerous training examples.

This thesis proposes exploring the potential of deep learning for map generaliza-
tion. This exploration is built upon three map generalization use cases: recognition
of spatial relations, graphic generalization of mountain roads, and generalization of
topographic maps at medium scales. These three use cases enable us to address
research questions relative to the concrete implementation of deep learning models
for map generalization (including dataset creation and architecture), the evaluation
of such models and their integration in existing generalization processes.

In addition to the models and training set adapted for each of our case studies
already mentioned, we propose evaluation methods adapted to the challenges of
cartographic generalization by deep learning. Finally, we propose a partitioning
of the cartographic generalization into sub-problems facilitating the resolution by
learning and allowing the generation of generalized map images.
Keywords : Map generalization, deep learning, generative adversarial networks.

Résumé

La généralisation cartographique est un processus qui vise à adapter le niveau
de détail de l'information géographique présente sur une carte pour la rendre lisi-
ble à une échelle plus petite. L'automatisation de ce processus est complexe mais
essentielle à la production de cartes. Nous pensons que la recherche dans ce do-
maine pourrait béné�cier des avancées récentes en apprentissage profond qui rendent
possible la résolution de tâches de plus en plus complexes, grâce à l'utilisation de
nombreux exemples déjà bien généralisés.

Cette thèse propose d'explorer le potentiel de l'apprentissage profond pour la
recherche en généralisation cartographique. L'exploration est construite autour de
trois problèmes de généralisation cartographique : la recherche de relations spatiales,
la généralisation graphique des routes de montagne, et la généralisation des cartes
topographiques complètes à des échelles intermédiaires. Via ces trois cas d'études,
nous abordons les questions de recherches liées à la mise en ÷uvre concrète des mod-
èles d'apprentissage profond pour la généralisation cartographique (jeu de données
et architecture), l'évaluation de tels modèles, et leur intégration dans des processus
cartographiques préexistants.

Outre les modèles et jeux d'entrainements adaptés pour chacun de nos cas
d'études, déjà mentionnés, nous proposons des méthodes d'évaluations adaptées
aux dé�s de la généralisation cartographique par apprentissage profond. Finalement,
nous proposons un découpage de la généralisation cartographique en sous-problèmes
facilitant la résolution par apprentissage, et permettant la génération d'images de
cartes généralisées.
Mots clefs: Généralisation cartographique, apprentissage profond, réseaux générat-
ifs antagonistes.
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Introduction

Context

Geographic information sciences have evolved widely since the 1960s with the birth
of digital cartography made possible by the development of computers. However, it
has only been in the last 20 years that online maps have been accessible to the general
public. At that time, online map consultation was rare, and paper maps remained
the main means of conveying geographic information. Since the launch of Google
Maps in 2004, the use of online maps has reached a wide audience. Quickly, the usage
of online maps has become democratized, the list of such geoportals has expanded,
and the development of the web allows the integration of cartographic views in
numerous web applications. At the same time, the �eld of geographic information
has been subject to the multiplication of heterogeneous geographic data sets. Indeed,
since the emergence of Web 2.0 in the 2000s, the internet allows not only to �nd and
access information but also to share and collaborate. Then, the success of geographic
information initiatives (VGI) as well as the dynamics of open data in the National
Mapping Agencies (NMA) marks the beginning of the era of big data. On the one
hand, this explosion of data is associated with an increase in the need for synthesis,
harmonization, selection, and abstraction of geographic information. On the other
hand, it also is conducive to the development of automated learning strategies that
require a large amount of data.

In parallel, the internet induces a change in the use of maps. Today, the use of
online, multi-representational, and multi-scale maps is increasingly common, and the
number of cartographic representations at disposal increases. With mobile devices,
maps are accessible anywhere at any time; however, the time dedicated to map
reading seems to decrease. The general public, as well as experts, expect adapted
content and readable information, with a smooth transition towards a more direct
transmission of information. The production of maps adapted to this new usage
(simpler, more legible, etc.) is required.

While Web 4.0 (or intelligent) is currently being announced by the specialized
media, mapping is struggling to reach Web 3.0 (semantic). Indeed, Web semantics
promises to organize the volume of information according to context to meet speci�c
user needs and highly portable and interactive content, while on-demand mapping
is still a myth. On-demand mapping is `the creation of a cartographic product
upon a user request appropriate to its scale and purpose' (Cecconi 2003, p17). It
includes the following issues: understanding the user's needs, dynamically select-
ing the most relevant data source for the user's needs (and eventually including the
user's own data), and generating a product on-the-�y. Today, a few models designed
for on-demand mapping exist, but they have no generic map speci�cation (Balley
and Regnauld 2011). Whether to understand a geographic phenomenon or for more
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common uses (e.g., building an itinerary or �nding a point of interest), completeness,
and especially abstraction are required, and automatic generation of a readable map
for these purposes from a geographic database remains an issue. Thus, this objective
cannot be achieved without an e�ective automated map generalization. Currently,
both printed maps and map panels on computers and mobile devices are neither
speci�c nor easy to navigate. For instance, the gap in representation between scales
in a multi-scales map produces confusion during zooming in and out (sometimes
called desert fog e�ect, Touya 2019). Map production and cartography research
currently require developing techniques to reduce this confusion (e.g., smooth tran-
sition, anchored zoom, and creation of intermediate generalization) (Touya, Lobo,
Mackaness, and Muehlenhaus 2021).

Map generalization is the adaptation of a dataset for a representation in a map
at a smaller scale. This step allows the map content to be legible and is among
other things essential in previously mentioned technologies (on-demand mapping,
and smooth multi-scale maps). Generalization automation is the foundation of the
automation of map creation. Traditional automatics map generalization is often
processed by a combination of operators, each resolving a speci�c con�ict in the
map (e.g. enlargement resolves building legibility con�ict, displacement resolves
overlapping). However, the interest in map generalization has recently decreased. As
shown in Figure 1, despite the general tendency to increase research publication, the
publication related to map generalization is slowing and the proposed presentation
at the annual workshop organized by the ICA Commission on Generalization and
Multiple Representation is decreasing.

Figure 1: Indicators of the evolution of interest in map generalization.

This tendency can be explained by two main elements. On one hand, the NMA
and industries have chosen a compromise between map quality and production time
and cost and reduced their investment in map generalization. Indeed, currently,
the algorithms used are semi-automatic or automatic generalization algorithms that
are mostly acceptable but include weaknesses: they can produce unreadable parts,
unnecessary information loss, inconsistencies between scales, etc. On the other hand,
map generalization is facing a technical gap: the choice and combination of operators
require implicit knowledge acquisition and a di�cult orchestration.

In recent years, the emergence of big data and the di�usion of powerful machines
with important computing capacities have allowed for a large development of deep
learning. Indeed, these arti�cial intelligence techniques are based on the extraction
of implicit information from a set of important examples to learn to mimic human
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behavior in the resolution of a data management task. It is succeeding in solving
more and more tasks in the �eld of geographic information management, and GeoAI
projects appear in NMA and research institutes (Usery, Arundel, Shavers, Stanis-
lawski, Thiem, and Varanka 2021). However, it is currently used for geoinformation
acquisition tasks and is underemployed in cartography or map generalization tasks.
We believe that the numerous existing generalized map and dataset openly available
since the Web revolution could be used as training examples for deep learning mod-
els and allow for automatically extracting the implicit knowledge necessary for map
generalization. Thus, research on deep learning for map generalization could unlock
research on automating map generalization and accelerate the path to Map 3.0 (i.e.,
e�ective map in the Web 3.0 era). Indeed, this generalization would be integrated
into an on-demand process and contribute to the creation of more smooth transi-
tions in multi-scale maps (continuous generalization intermediate scale or smooth
transition).

Research context

The research presented in this thesis is carried out in the research laboratory (Lastig)
on geographic information from IGN the French national mapping agency. This
agency has provided printed and online topographic maps for years, and we bene�t
from archive maps at diverse scales to construct our training sample.

Moreover, this laboratory (and its predecessor COGIT) has an important his-
tory in map generalization automation, and we can reuse previously produced au-
tomatic algorithms for map generalization for training set creation, complementary
approaches, model comparison, and evaluation.

Currently, research on map generalization automation in the laboratory is no
longer a central topic, but many projects still require the automation of map gener-
alization processes. Especially, the question of multi-representation map studied in
the project MapMuxing (ANR 2014-2018), the navigation in multi-scale map stud-
ied in the project LostInZoom (ERC 2021-2026), or tactile map creation with the
project ACTIVmap (ANR 2020-2024). This thesis is not founded on any of these
projects, but each has a speci�c need in map generalization automation, and they
illustrate how research on automatic map generalization is still of interest.

Finally, the IGN has a growing interest in arti�cial intelligence techniques, as
shown by the creation in December 2021 of an agora on arti�cial intelligence, and
the common meeting with production members, researchers, and teachers about
arti�cial intelligence panorama for cartography in June 2022. Furthermore, since
February 1, 2022 IGN is collaborating in the SNSF project (Swiss National Sciences
Foundation) �DeepGeneralization: Utilizing Deep Learning in Map Generalization�.

Problem

The use of deep learning for map generalization is a recent approach to solving a old
problem. At �rst sight, this approach is the opposite of the evolution of map gen-
eralization, where one �rst formalizes map rules and then performs a generalization
operation to �t those rules. Indeed, with a deep learning approach, rule identi�-
cation and generalization are learned together from a set of examples. The main
interest of this approach seems to be the deep learning ability to learn to produce
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generalized maps without explicitly de�ning map rules but by inferring them from
examples. One of the goals of this thesis would be to ensure that it is actually pos-
sible. Then, we propose an exploratory approach that aims to identify and describe
the potential and challenges of the deep learning approach for map generalization.
The objective of this thesis is to:

Explore the potential of deep learning to contribute to map generalization
research.

This exploration is done through several experiments that describe a speci�c gen-
eralization problem. The �rst three proposed experiments correspond to individual
map generalization operators, while the last one is more global and the target tasks
aim at combining several generalization processes during learning:

� Exploring the potential to learn shape generalization: the example
of mountain road shape prediction at 1:250 000 scale. Mountain road
is a classical sub-problem of road generalization because the sinuous shape of
these entities requires an important generalization. Indeed, in a bend series,
roads su�er from symbol coalescence. Depending on the shape and context of
the road, enlargement, displacement, and schematization of the bends must be
applied in some parts of the road. The goal of this experiment is to show that
deep learning can learn to reproduce map generalization operators for shape
simpli�cation. Especially, the particularity of this use case is the generation of
linear shape that is challenging in image approach, and the target is not the
output of generalization algorithms but the element of a cartographic database
constructed including human corrections.

� Exploring the potential to learn patterns: the example alignment
detection in an urban area. An alignment is characterized by a set of
similar building disposals along an axis. Alignments are salient structures in
a map that are expected to be preserved during map generalization. However,
they are exclusively implicit in the map and never explicitly encoded in the
database. Detecting such structures using deep learning would show that
deep learning can e�ectively learn structure and relation in spatial data that
are essential for map generalization.

� Exploring the potential to learn network structures: the example of
road network selection for cartography at 1:50 000 scale. The road
network is a complex structure and during map generalization, all individual
road sections cannot be displayed (e.g. pedestrian roads and dead-ends are
only relevant in detailed hiking or local map). At 1:50 000 the selection is
important: main and regional ways should be kept, but local ways have to be
erased when they reduce the legibility or if they do not belong to an important
itinerary, the choice of selecting or not a road is depending on multiple factors
(e.g. all possible important paths must remain possible even after generaliza-
tion). Learning this selection would show the deep learning ability to learn
from both complex features and multi-scale relation networks.

� Exploring the potential to learn map generation: the example of a
topographic map at 1:50 000 scale. Finally, this experiment investigates
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the deep learning ability to generate a generalized map. This generation in-
volves generalization and the combination of several cartographic themes into
a legible map at the desired level scale.

For each experiment, we try to demonstrate the capability and limitations of
deep learning, we identify the issues of such an approach, and we proposed and
tested improvements. So, our contributions are the following :

� We participate in the creation of benchmarks for the development of deep
learning-based map generalization (accessible on zenodo).

� We provide one or several architectures and some loss function.

� We propose some metrics for evaluation and one user test.

� We provide a pre-trained model that is robust for speci�c input and target
scale and tested for transfer in other regions.

This thesis then aims to collect and organize the lessons learned from these ex-
periments. Especially, our contribution also includes some demonstrations of the
ability of deep learning for a speci�c aspect of map generalization (shape simpli�ca-
tion, pattern recognition, object selection, and complete map generation), and clues
and discussions on deep learning potential, usages, and limits.

Structure of the manuscript

This thesis is structured in three parts: �rst, we present the main issues related to the
use of deep learning for map generalization (Part I), then we present a comparison
of deep learning approaches for a common map generalization task (Part II), and
we discuss the future of map generalization with deep learning (Part III).

The �rst part of the thesis aims to explore the main issues related to the use of
deep learning for map generalization. It consists of a review of the literature (Chap-
ter A) that �rst explains the current need for new approaches in map generalization
research. The purpose of this chapter is also to explain why deep learning would
theoretically be bene�cial to map generalization, and this chapter also helps to state
the motivation of this thesis and to clarify its objectives. Next, Chapter B presents
how to formulate map generalization as a deep learning problem. This chapter de-
scribes the need for map generalization and explores what is the most appropriate
approach for these needs. As a preliminary experimentation step, it is necessary
to delineate the capabilities of each approach. Finally, Chapter C is a theoretical
review of the adaptation methods required to make deep learning models match the
generalization problem. In this chapter, we present the two main issues of such an
approach: designing an architecture and creating the training set, adapted to the
use case of map generalization.

In the second part, we study deep learning approaches for solving three map
generalization problems: spatial relation preservation (Chapter D), graphic gener-
alization (Chapter E), and the generation of complete generalized maps (Chapter
F). All these chapters are based on one or several experiments and are organized
in a similar way: �rst, the problem, materials and methods are presented, then our
results are described, and �nally, a discussion allows us to conclude on the potential
of deep learning for this use case.
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The third part presents experiments and discussions on the future of map gen-
eralization with deep learning. Speci�cally, Chapter G explores the possibility of
using the models trained during this thesis (on French 1:50,000 data) in other con-
texts. Then, two possible uses of deep learning models in map generalization: as
an end-to-end process and as a mixed process. This chapter includes a proposal
to integrate the individual models designed during this thesis to the existing map
generalization model and an initial proposal for an end-to-end process to generalize
the 1:50,000 map. Finally, Chapter H deals with the evaluation of the generalization
of the map processed by deep learning. This is one of the main issues in the develop-
ment of deep learning for map generalization, because without relevant evaluation
methods, the prediction made by deep learning will not be credible and will never
be used. Evaluation is an important issue in map generalization in general but the
deep learning approach also implies new problems.
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Chapter A

Literature review

This thesis proposes to explore the combination of two research �elds: map gener-
alization and deep learning. This chapter aims to present these two �elds and to
expose interest in a deep learning approach for map generalization.

A.1 Map generalization

A.1.1 De�nition

Map and scale

A common de�nition of a map could be the following: a map is an abstracted rep-
resentation of a geographic area. Lapaine, Midtbø, Gartner, Bandrova, Wang, and
Shen (2021) proposes a more accurate de�nition that corresponds to contemporary
cartographic development: "A map is a medium designed for communication of
generalized spatial information and relationships." Both these de�nitions contain
the notion of representation (convey by medium designed for communication in the
second de�nition) of spatial information, and this representation is generalized or
abstracted. This means that the map must not only represent spatial data, but
also mostly preserve spatial arrangements. Fairbairn, Gartner, and Peterson (2021)
add that another important aspect of a map is its function: this representation is
designed for a speci�c usage (i.e., constructing an itinerary, visualizing and analyz-
ing a localized phenomenon, etc.), and propose a de�nition of map based on this
functioning aspect.

The two main questions during map production are "What to represent on the
map ?" and "How to represent information?". Indeed, the map content and repre-
sentation depend not only on the map objective but also on its scale. The notion
of scale is central in cartography and have two dimensions (Mackaness 2007). First,
it basically is the ratio between object size on the map and on the ground. Then,
the scale has a reasoning meaning: it serves to determine a level of analysis (Ruas
2002). For example, a map at the scale of the continent is completely useless for
understanding the distribution of income in a city, even if the map represents the
average income per area and contains the considered city. These two de�nitions of
scale constrain the way in which we can represent geographic information on a map.

Maps are made from a geographic database (databases that contain localized
information). Whether encoded as a rater or as a vector, the information in geo-
graphic databases is neither exhaustive nor exact. Indeed, it is already a simpli�ed
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representation of the location of objects in a continuous space described by a refer-
ence system (Figure A.1). The objects represented in vector form are located using
a point or a set of points, while in raster format the continuous space is discretized
using a partition in a �nite number of units (pixel), each representing a regular
portion of the ground of �xed size.

Figure A.1: A ground and a raster and vector representation of this ground.

By de�nition, a database does not have a scale. However, the geographic database
has a geometric level of detail (i.e. resolution of the raster, geometric accuracy of
points in vector mode, the granularity of the point set in vector mode) and a seman-
tic level of detail (selected entities, the precision of categories, etc.) (Ruas 2002).
Both levels make a database more or less adapted for cartography at a scale. Nev-
ertheless, the map cannot be a simple symbolization of a geographic database, and
scale adaptations are necessary. Figure A.2 explains the main steps in creating a
map and illustrates the di�erence between a symbolized database and a map.

Figure A.2: Main steps of map production.

Scale adaptation

The map creation process is summarized in Figure A.2. The scaling transformation
has the e�ect of reducing the size of represented geographical entities, which can
lead to ambiguity of interpretation. For instance, elements are no longer visible or
di�erentiable and, therefore, the map is no longer usable. To avoid this problem,
cartographic rules include thresholds of perception and dissociability. For instance,
the human eye cannot distinguish too small symbols, too small detail in a shape, too
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close objects, etc. To make the representation of geographic objects �ts these rules,
cartographers proceed to the dilation of elements that do not respect the speci�ed
thresholds. However, this simple dilation is not enough; indeed, after dilation, the
size of the object no longer corresponds to the space occupied on the ground and this
causes clutter on the map. This scale adaptation is called map generalization. Map
generalization seeks to adapt a data set for cartography in a map at a lower smaller
scale. The goal is to improve the legibility of the map while minimizing information
loss. Information selection, simpli�cation, and caricature are required. To maintain
the usefulness of a map at the desired scale, generalization has to keep the "main
information" such as structures or patterns. This process allows for the construction
of multiple maps at multiple scales from one detailed dataset, and its automation
would encourage the reduction of data collection and on-demand mapping.

A.1.2 Map generalization automation

Map generalization was �rst performed manually by cartographers; the question of
map generalization automation appears with the use of computers and geographic
databases. The following section describes the research advancement in map gener-
alization automation.

Constraints

For the automation of map generalization, one of the most important steps was the
formulation of map requirements. A constraint formalizes map speci�cations (Beard
1991). For example, "a building must have a size greater than 2 mm²" is a usual
constraint for automated map generalization.

Constraints �rst aim at formalizing precisely map generalization objectives, but
they also have guided research in map generalization automation. From our per-
spective of learning map generalization, constraints have several roles: �rst, they are
the most important part of the knowledge the network must acquire. For instance,
to learn map generalization, deep neural networks have to understand from images
that the overlapping has to be avoided, the element enlarged, the structures empha-
size, etc. Moreover, these constraints can guide the map generalization, and their
satisfaction is a kind of assessment of map generalization quality. Consequently, in
a learning approach, they can be used to evaluate or guide the learning process.

The �rst attempt to classify constraint separate constraint on legibility called
graphical from other (topological, semantics, structural, of Gestalt etc.) (Ruas and
Plazanet 1996; Weibel and Dutton 1999). However, these �rst classi�cations are
misleading, as most constraints are also graphical (e.g. a topological relation, a
structure, or a perceived Gestalt are graphically salient in the input map and must
remain in the target map). Currently, one of the most common constraint classi�ca-
tions is from (Burghardt, Schmid, and Stoter 2007), it typi�es constraints according
to their nature (legibility or preservation), the type of geometry (point, line, or
area), the number of objects involved (individual, pair of objects, or groups) and
the thematic of objects involved. Further, Touya (2011) proposed a model of ge-
ographic constraints, which �rst distinguishes the level of the objects they involve
and then their types. Both classi�cations better emphasize that most map gener-
alization constraints are graphical constraints (and thus can be learned using deep
learning). Moreover, these questions on constraint classi�cation expose problems on
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the level of analysis, object cardinality, and type; all these problems may also be a
center point during training set creation for a deep learning approach.

Finally, this formalization has also contributed to the research on collaborative
generalization, where common and shared objectives are a prerequisite for comparing
and making work together diverse algorithms and operators. Despite the deep learn-
ing approach for map generalization being a shift in map generalization automation,
its development requires (as any innovation in map generalization automation) to
be inserted and compared with traditional generalization.

Operators

To resolve the con�ict on the map and perform map generalization, many opera-
tors have been proposed (Stanislawski, Butten�eld, Bereuter, Savino, and Brewer
2014). The following paragraphs present the research on some of the most im-
portant operators. Not only do these operators contribute to resolving previously
announced constraints, but they mostly provide an answer to the main questions of
map generalization (What and How). Indeed, elimination operators aim to indicate
which geographic entity or structure must be displayed on the map at the target
scale. Then, shape simpli�cation and displacement allow exploring how they must
be presented to avoid overlapping.

Shape simpli�cation First operators proposed are for line simpli�cation and are
based on the reduction of the number of vertices of the polyline (Douglas and Peucker
1973). However, these operators are not very e�cient at dealing with the speci�city
of geographic data. Then, speci�c methods for geographic objects have been devel-
oped (e.g. Visvalingam and Williamon 1995). When the line to simplify is a road, we
distinguish two approaches (illustrated in Figure A.3): (1) a global approach that
tries to �nd the optimal shape and (2) iterative processes that separate roads into
homogeneous sections, apply several algorithms to each of them, and merge them
together (Lecordix, Plazanet, and Lagrange 1997; Mustiere 1998; Duchêne 2014a).
The algorithms of the �rst approach are often based on the optimization of a set of
constraints on the position of the points of the line (Sester 2005), or on a physical
model (Bader and Barrault 2001). This is also the approach of the processes based
on data �ltering and image compression. In the second approach, the process has
the following steps: 1) separating the road into homogeneous parts; 2) characteriz-
ing each part; 3) choosing and applying the relevant operator; 4) reconstructing the
objects.

Similar processes have been developed for other kinds of geographic objects in-
cluding building (Haunert and Wol� 2010; Ai, Zhou, Zhang, Huang, and Zhou
2014; Cheng, Liu, Li, and Wang 2013) and other more complex shape simpli�cation
(Haunert and Sester 2008).

Displacement Then, operators for placement or displacement of objects are pop-
ular as they avoid overlaps between objects. The limited available space and the
large number of constraints for this displacement (position, structure, and shape
preservation, etc.) make the operation complex. For this task as for simpli�cation,
global and iterative approaches are possibles: the global one de�nes a displacement
for all objects in one step, often inspired by physics models (Liu, Guo, Sun, and
Ma 2014; Li, Ai, Shen, Yang, and Wang 2020; Ai, Zhang, Zhou, and Yang 2015;
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Figure A.3: Example of global and iterative approaches. A: Gaussian smoothing
is a technique from image processing that is sometimes applied for smoothing of
road shapes, in a global approach. B: GALBE is an iterative process proposed
by (Mustiere 1998) that proposes to divide the road into homogeneous parts and
characterize each part to choose the most appropriate operator.

Bader, Barrault, and Weibel 2005), and the iterative approache resolves con�icts
one by one and iterates until achieving a satisfying result (Aslan, Bildirici, Simav,
and Cetinkaya 2012; Ruas 1998; Mackaness and Purves 2001).

Elimination The elimination operators aim to determine which objects should be
kept on the generalized map. One of the main issues in this process is maintaining
the structure of the information while reducing the number of entities. For instance,
Gulgen and Gokgoz (2008) analyze the relations between the scale and the number
of roads kept .

Selection inside a road network is based on shape characteristics (Thomson and
Richardson 1999), semantics features (importance, status, width, etc.), and the role
played in the road network (Garcia-Balboa and Ariza-López 2008; Weiss and Weibel
2014; Jiang and Claramunt 2004). Methods succeed in combining these factors and
properly selecting roads (Touya 2010; Benz and Weibel 2014; Stanislawski, Briat,
Punt, Howard, Brewer, and Butten�eld 2012). Similarly, rivers selection operators
have been developed (e.g. Touya 2007; Benz and Weibel 2014; Ai, Shuai, and Li
2008).

For some other themes, such as buildings, elimination is not the main approach
to reducing the number of objects represented. The aggregation (or amalgamation)
(Allouche and Moulin 2005; Regnauld and Revell 2007; Ai and Zhang 2007) and the
typi�cation (Burghardt and Cecconi 2007; Regnauld 2001; Wang and Burghardt
2019) are preferred. Instead of generalizing a group of buildings with a subset of
buildings from this group, in amalgamation, buildings are progressively fused and
their shape is generalized into an amalgam built-up area; and in typi�cation, the
building group is replaced by another group that is representative of the initial
group. Thus, the authors focus on the operators' ability to recognise (Yan, Weibel,
and Yang 2008; Yan, Ai, Yang, and Tong 2020; Liqiang, Hao, Dong, and Zhen
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2013; Zhang, Ai, Stoter, Kraak, and Molenaar 2013; Christophe and Ruas 2002)
and characterize building groups (Steiniger, Lange, Burghardt, and Weibel 2008;
Yan and Ai 2018).

All these operators are common and challenging; they require understanding
both the graphical aspect and semantics of geographic information. One of the �rst
tasks of our thesis would be to verify that deep learning is able to learn to reproduce
them. Verifying the learnability of these operators has later guided the choice of use
case in our exploration of deep learning potential for map generalization.

Orchestration

Then, the combination of individual operators in a process able to achieve automatic
generalization is still an important problem. Indeed, a fully automatic process should
include decisions about the level of analysis (which object to process), the order and
parameters of the operations, and the evaluation (Ruas and Plazanet 1996). Brassel
and Weibel (1988) state that orchestration must be more than just a sequence of
operators and identify the following steps: structure recognition, process recognition,
process modeling, process execution, and display. There are several approaches
to combining generalization operators: constraint-based optimization, agent-based
generalization, or machine learning (discussed in a later paragraph), among others.

First, optimization-based orchestration aims at de�ning and optimizing an ob-
jective function to lead a generalization process. Harrie (2003) try to parameterize
simultaneous graphic generalization by providing weight on a set of constraints.
Then, optimization algorithms such as gradient descent, least-squares adjustment,
or simulated annealing can be applied to �nd a sequence of operators (or transforma-
tions) that minimize constraints violations (i.e., the objective function) (Edwardes
and Mackaness 2000; Neun, Burghardt, and Weibel 2009; Sester 2000a).

Then, multi-agent systems (MAS) have been applied to map generalization or-
chestration in order to contribute to process modeling. In MAS, each agent (object,
part of object, or group of objects) tries to resolve its own objective (reach its better-
generalized form in our case) by interacting with other agents in these systems and
applying operators to itself. Many multi-agent generalization systems exist (Baeijs,
Demazeau, and Alvares 1996; Lamy, Ruas, Demazeau, Jackson, and Mackaness
1999; Galanda and Weibel 2002; Duchêne 2003; Ga�uri 2007; Zhang and Guilbert
2011; Maudet, Touya, Duchêne, and Picault 2014; Yan, Guilbert, and Saux 2017).
Duchêne, Touya, Taillandier, Ga�uri, Ruas, and Renard (2018) describe in a techni-
cal report the potential, advancement and limitations of this approach. This paper
explains how MAS distributes complexity among a set of agents. This decentraliza-
tion is the main advantage of this system.

If the hope of end-to-end map generalization using deep learning would avoid
this step of orchestration, it is even useful to question how it would be possible to
orchestrate traditional map generalization operators and deep learning-based ones.

Raster-based map generalization

As deep learning methods are mainly image-based, for now, we propose a quick
overview of image-based experiments for map generalization.

In the early years of research on map generalization, raster-based and vector-
based were developed in parallel as both approaches were equally promising (Peu-
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quet 1979; Monmonier 1983; McMaster and Monmonier 1989; Li 1994; Li and Su
1995). In the 1990s, vector-based generalization �nally out-performed raster-based
generalization (Peter and Weibel 1999; Daley, Goodenough, Bhogal, Bradley, and
Yin 1997). As generalization was increasingly monitored by constraints on objects
of the map, the vector-based methods appeared to be more practical to use. Besides
terrain generalization where raster-based methods are prominent (e.g. Raposo and
Samsonov 2014; Guilbert 2013; Li, Wilkinson, and Khaddaj 2001), new raster-based
generalization algorithms were very rare. For instance, Pantazis, Karathanasis, Kas-
soli, Kouko�kis, and Stratakis (2009) discuss the potential of morphing in the gener-
alization of raster data, the main limit noticed is the integration of multiple themes
in an entire generalized map, and Cheng, Liu, Li, and Wang (2013) design raster-
based detector that combines backpropagation neural networks and cartographer's
expertise to learn the relation between the generalized and the detailed shape of the
building.

We can also mention a series of articles that propose generalization operators
based on the superpixel. Superpixel (Ren and Malik 2003) is an image segmentation
method based on features derived from the classical Gestalt cues, including contour,
texture, brightness, and good continuation. This segmentation is then used as a basis
for the generalization of lines and surfaces (Figure A.4). In this manner, authors
propose waterline simpli�cation (Shen, Ai, and He 2018), building simpli�cation
(Shen, Ai, and Li 2019), aggregation (Shen, Ai, Li, Yang, and Feng 2019), building
selection(Shen, Ai, and Zhao 2021), and building typi�cation (Shen, Li, Wang, Zhao,
and Wang 2022). These approaches give promising results for individual object
generalization and generalization of a group of objects. However, like most raster-
based approaches, they are not able to deal with other spatial relations.

Figure A.4: Superpixel and map generalization, from (Shen, Ai, and Li 2019).

Learning map generalization

In this section, we focus on map generalization methods that involve machine learn-
ing techniques. Research in this domain can be organized according to learning
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objectives: learning cartographic rules, interpreting spatial data, predicting a set of
operations, and evaluating.

The idea of using arti�cial intelligence to overcome the knowledge acquisition
bottleneck appears in the 90s (Weibel, Keller, and Reichenbacher 1995). They iden-
ti�ed the human expert as the main source of cartographic knowledge and proposed
to construct an interactive system that would allow cartography experts to realize
maps and the system to learn cartographic rules from their actions.

The approach that tries to infer cartographic rules is quite rare in the literature,
because the diversity of cartographic rules and the lack of metrics limit formalization
and usage of acquired knowledge (Kilpelainen 2000). Karsznia and Weibel (2018)
is a recent example of such an approach, that tries to improve the selection of
settlement points in low-scale generalization maps, by inferring cartographic rules
from existing maps.

On the contrary, the approach that aims at the interpretation of spatial data
allows making explicit the knowledge necessary in map generalization among other
(image interpretation, map-matching, etc.) (Sester 2000b). In particular, she pro-
poses an object-oriented structure where objects are described using a set of at-
tributes and semantic relations. The model learns information on objects by recur-
sively subdividing the training set using an entropy criterion to construct a decision
tree that links the input to the target. Thus, machine learning can be used to en-
rich the initial data and identify patterns to generalize or preserve. For instance,
Steiniger, Lange, Burghardt, and Weibel (2008) works on learning to characterize
buildings in urban areas. Buildings are characterized according to their geometrical
properties and neighborhood, then they are classi�ed into �ve categories of urban
patterns (inner city, urban, suburban, industrial, and rural), and this characteri-
zation can guide the generalization of buildings. Similarly, learning strategy can
provide knowledge for road generalization as the classi�cation of mountain roads
(Garcia-Balboa and Ariza-López 2008) or their selective omission (Zhou and Li
2017).

Then, strategies for learning orchestrating automatic map generalization using
deep learning via the prediction of a sequence of operations emerge. Indeed, the
choice of the relevant algorithm or sequence of algorithms for the generalization of a
set of an object requires an important understanding of implicit spatial knowledge
about objects. Especially for road lines, generalization of bend series, rough parts,
individual bends, etc. require di�erent generalization algorithms, and the choice of
the appropriate algorithm for each part of the entity is an issue (Plazanet, Bigolin,
and Ruas 1998). For instance, Mustière, Zucker, and Saitta (2000) describes a
process in several steps for the generalization of a mountain road: �rst, the road
is split into homogeneous parts, then, the characteristics of objects are learned,
and �nally, these characteristics are used to learn which generalization operator
is relevant to apply. Another example is from (Burghardt and Neun 2006), who
proposes a reinforcement approach for learning a sequence of operations for the
generalization of a set of buildings. However, this kind of approach has progressively
been abandoned for the agent approach, which allows for more e�cient orchestration
of map generalization operators.

Finally, machine learning was also experimented with to learn to evaluate gen-
eralized maps. For instance, Allouche and Moulin (2005) use a Kohonen self-
organization map in order to detect anomalies in patterns and identify regions that
need to be generalized; and Harrie, Stigmar, and Djordjevic (2015) develops a mea-
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sure that learns to �t the visual evaluation of a generalized map.
If machine learning usage in map generalization research appears as spares and

almost anecdotal in this review of the literature, it is mainly due to the follow-
ing limitations: the acquisition of data, the extraction of characteristics, and the
annotation to create an example set was time-consuming and still challenging. Fur-
thermore, the computational resources in the cartography laboratory were limited.
Today, the context is di�erent: expert cartographers are no longer the main source
of cartographic knowledge, and today we hope to extract this information directly
from the existing maps. The open-data dynamic allows for the acquisition of an
important example set of maps at several scales. The computational ability has
increased and the learning models have progressed. In particular, deep learning
architectures promise to skip feature extraction and learn from raw data.

A.1.3 Map generalization is still a challenging question

The literature review also reveals that research on map generalization is still chal-
lenging and useful, even if this question has been explored for years. In one hand,
the generalization of topographic maps has been widely explored in NMA, and many
operators and orchestration methods have been developed. Thus, it is possible to
automate or semi-automate the creation of a satisfactory generalized topographic
map in a prede�ned scale range (Duchêne, Baella, et al. 2014). However, some
questions about the parameterization, integration, conservation, and sharing of ex-
isting code remain important. For instance, (Burghardt, Duchêne, and Mackaness
2014, in Chap. 12, p. 399) formulate the problem this way "How do we standardize
generalization components and make them available as interoperable generalization
services that could then be combined ? ". On the other side, thematic maps have
an increasing usage, and their generalization is rarely explored (Raposo, Touya, and
Bereuter 2020). The diversity of content and objectives makes the creation of generic
generalization rules and operators more di�cult, and the generalization of the base
map and thematic information have to �t together (Duchêne 2014b).

Then, big data and open data streams also involve the multiplication of large
heterogeneous data sources, and new generalization techniques are required for the
level of detail harmonization and to create multi-representation databases (Touya
2017). The application of algorithms to big data and large areas is also an issue. In-
deed, data partitioning, processes parallelization, and calculation cost for on-the-�y
cartography are modern issues of generalization directly involved by data multipli-
cations.

Touya (2017) states that another challenge is the inability to collaborate the
styling processes and map generalization processes. Indeed, both are often applied in
chains; however, they are interdependent: the generalization depends on the chosen
symbol, and the chosen symbol can be more or less adapted with the generalization.
He said that a better collaboration of the two-step would make more e�cient maps.

Finally, the evolution of map usage is also a shift in map generalization needs:
maps are more and more multi-scale, mobile, and interactive. 1) The optimiza-
tion of navigation in multi-scale maps requires smooth and coherent generalization
through the scales. Indeed, several promising approaches to deal with this problem
are investigated: intermediary scale creation (Touya and Dumont 2017), aware gen-
eralisation (Girres and Touya 2014), continuous map generalization, and interactive
derivation from a unique detailed database (Oosterom, Meijers, Stoter, and �uba
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2014). 2) Map supports widely evolved �rst from paper to online maps and then
from computer to mobile devices (mobile phones and smartwatches). The cartogra-
phy on such a device requires responsive and even mobile-�rst map designing with a
generalization adapted to the reduced space dedicated to the map (Ricker and Roth
2018). 3) Interactive cartography as its own challenges: (Burghardt, Duchêne, and
Mackaness 2014, Chap. 12, p. 398) explains that "building a system that is able to
understand a user's needs, and respond with appropriate generalization techniques
to produce a tailored map remains a considerable challenge".

A.2 Deep learning

A.2.1 Deep learning principles

Arti�cial intelligence is the �eld of computer science that aims to make a machine
capable of reproducing human reasoning. Deep learning belongs to the sub�eld of
arti�cial intelligence that aims at reproducing human learning mechanisms (machine
learning). The principle of these mechanisms is to learn a task from many examples
rather than explicitly programming the algorithm to resolve it. The particularity
of deep learning compared to machine learning algorithms is the following: it does
not require feature extraction, it can solve complex tasks, and it requires a very im-
portant amount of training examples. Indeed, deep learning includes representation
learning, and models can be fed with raw data to automatically discover knowl-
edge from the data itself (LeCun, Bengio, and Hinton 2015). Moreover, the deeply
layered structure of the network allows the representation of an increasing level of
abstraction from the input, and consequently, deep implicit knowledge extraction
from the data.

The learning mechanism is organized into two main phases, the training phase,
which aims to de�ne the good weight for the model using the example set, and
the calculation phase: when the model is applied to an unknown input and a pre-
diction is made. The results obtained when applying the model to the input are
called predictions. During the training phase, each prediction is compared with the
expected output of the network (called target). The loss function make this com-
parison. The goal of the training is to optimize the loss function. As illustrated
in Figure A.5 during this phase, the weights are �rst initialized, then the training
examples are used to make the �rst prediction, and �nally the weights are adjusted
to produce a better result (backpropagation). These steps (prediction, comparison,
and backpropagation) are performed until the prediction is satisfactory.

A.2.2 A short history of deep learning

The premises of deep learning appeared with the idea of a neural network (McCulloch
and Pitts 1943), and then in the 1960s with the backpropagation concepts that allow
the neuron to learn. In 1979, the �rst convolution neural network (CNN) �nally
made it possible to learn visual patterns within images (Fukushima 1980).

The GPU (graphics processing units) development since 1999 allows computers
to become faster at processing data and makes the deep learning processes evolve
signi�cantly. Moreover, the increasing use of the internet has favored the creation
and sharing of large training sets. Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-
Farley, Ozair, Courville, and Bengio (2014) proposed a new architecture that is
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Figure A.5: Action diagram of machine learning the global principles.

able not only to recognize visual patterns, but also to produce images with these
patterns. Indeed, generative adversarial networks (GAN) oppose two deep neural
networks: a classi�er trains to distinguish a real image (from the training set) from
a false image (predicted by another learning network), and a generator trains to
predict an image that fools the discriminator. This opposition allows the model to
obtain more and more realistic images.

All these evolutions have conducted to a multitude of models to solve a large and
growing number of diverse applications. This evolution explains why the subject
of machine learning for map generalization can today be treated in a completely
di�erent way than it was in the 2000s. Deep neural networks erased the common
limitation of feature extraction. Then, the image convolution models show the
potential to encode spatial information represented in images and overcome the
knowledge acquisition bottleneck. In parrallel, the graph convolution network aims
at resolving the spatial relation limitations of image-based approaches. Finally,
GANs are promising for generating parameters images and raising the hope of end-
to-end generalized map generation.

A.2.3 Deep learning usage towards map generalization

The goal of this section is to provide a quick overview of the current state-of-the-art
in deep learning and expose elements that lead us to consider this technique for
cartographic generalization.
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Some interesting analogies

In this paragraph, we present some successful applications of deep learning that
are not directly related to map generalization or even geographic information, but
where an appropriate analogy could suggest the interest of deep learning for map
generalization.

First, map generalization is often compared with text summarizing (Ruas
2002) and it is assumed that researchers in map generalization automation could
bene�t from the advancement of these domains (Touya 2015). Indeed, video, text
or music summarizing aims to extract the main information and structures from
a video, text, or music to produce a less detailed but comprehensible new video,
text, or music. These tasks, as map generalization are complex cognitive tasks.
They require high-level context understanding, and there is no perfect solution or
reference solution: di�erent humans can make di�erent acceptable summarization or
generalization. Finally, the evaluation of summarized media and generalized maps is
a di�cult task. Thus, map generalization and media summarization have similar is-
sues but di�erent objects to process. Recently, the emergence of deep neural network
mechanisms capable of understanding the context in a video (such as the recurrent
neural network (Cho, Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and
Bengio 2014) and attention network (Vaswani, Shazeer, Parmar, Uszkoreit, Jones,
Gmoez, and Kaiser 2017)) has encouraged the use of deep learning for video summa-
rization (Zhao, Li, and Lu 2019; He, Hua, Song, Zhang, Xue, Ma, Robertson, and
Guan 2019). Despite these elements, deep learning has been underexperimented for
map generalization compared to research on summarization.

On the other hand, map generalization is a graphical problem, and there is a
recent trend to use deep learning to solve graphical problems with similarities to
map generalization. For example, image compression aims to reduce redundancy
in an image and reduce its weight in memory without degrading the information.
As for map generalization, redundancy reduction, and information preservation are
the main goals. Yasin and Abdulazeez (2021) propose a review and comparison of
the numerous deep learning approaches for this task. Map generalization can also
be compared with style transfer, commonly style transfer is the transformation of
an image to correspond to a target style extracted from one or several over images
(i.e., photography to painting, manga to photograph, day photograph to night pho-
tograph, etc.). Indeed, the goal of a style transfer is to apply another style to an
image while preserving the main information of this one. The preservation of infor-
mation in this task and in generalization is relatively close. For style transfer, the
preservation of information means preserving the structure of objects that are salient
in the image, while in generalization, it means preserving the shapes, relationships,
and organization (structure) of the important geographical objects on the map (and
often salient in the map). Convolutional networks (Gatys, Ecker, and Bethge 2016)
and GAN (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville,
and Bengio 2014) have permitted more and more style transfer applications. How-
ever, most of the style transfers mainly imply modi�cation in colors and texture,
which is not really the goal in map generalization; we rather expect selection or
extraction of synthetic information. A more similar example is the style transfer
from sketch to clean drawing (Simo-Serra, Iizuka, Sasaki, and Ishikawa 2016)
that involves the selection, simpli�cation and smoothing of drawing lines, which are
quite similar to line selection in a road network at some scales.
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Deep learning and geographic information

This paragraph is a brief examination of the state of the art of deep learning tech-
niques for the acquisition and enrichment of geographic information.

Most research projects deal with the segmentation of geographic objects from
an image acquired using remote sensing. The network classi�es the pixels of the
image according to their nature. Therefore, the network can �nd objects (e.g.,
building, village) or make a map of land-use/land-cover (Zhu, Tuia, Mou, Xia,
Zhang, Xu, and Fraundorfer 2017). However, some use-cases that involve other
data sources are possible and promising. For instance, Xu, Chen, Xie, and Wu
(2017) and Yuan, Chowdhury, McKee, Yang, Weaver, and Bhaduri (2018) includes
volunteer geographic information to improve the mapping of buildings. Méneroux,
Dizier, Margollé, Van Damme, Kanasugi, Le Guilcher, Saint Pierre, and Kato (2018)
use GPS path for the detection of tra�c signals that are not visible in aerial images.
Kazimi, Thiemann, and Sester (2019) and Satari, Kazimi, and Sester (2021) use
the digital elevation model to detect the structure in the landscape. Finally, some
attend to learn structure and object recognition with paper map exist (Schnürer,
Sieber, Schmid-Lanter, Öztireli, and Hurni 2020; Chen, Carlinet, Chazalon, Mallet,
Dumenieu, and Perret 2021).

Even if these works aim mainly at the identi�cation and segmentation of a par-
ticular geographic object or structures and, therefore, are located in the database
creation step prior to cartography in Figure A.2, some common elements with map
generalization problems exist. Indeed, the use of geographic information as input
for deep models is common to map generalization and acquisition or enrichment
of geographic information. Consequently, the following two issues arise from this
analysis:

� Geographic information is spatially correlated, so nearby features are more af-
fected than distant ones (Miller 2004). The design of a network that respects
this principle is the �rst common issue (Mai, Janowicz, Hu, Gao, Yan, Zhu,
Cai, and Lao 2022). For instance, Deng, Tian, and Newsam (2021) propose
to replace the max-pooling principle from CNN with a Gi*Pooling that better
takes into account spatial correlation between close pixels. This pooling al-
lows an improvement of satellite scene segmentation, especially to reduce the
noise at the border of a geographic object and the detection of small objects,
and we believe that this principle could be bene�cial for most of the learning
algorithms that deal with spatial data.

� The constitution of the training set is also a�ected by the characteristics of
geographic information. In fact, the detection of graphic objects as well as
their generalization require a certain context around each object, and the
constitution of the relevant training set is not as obvious as other computer
vision problems (Iddianozie and McArdle 2021; Huang, Zhao, and Song 2018)
(later detailed in Section C.2)

Among the diversity of possible geographic information that deep learning can
help to acquire, some not only feed the geographic database, but are also often crucial
for cartographic (and even generalization) purposes. For instance, the following
spatial patterns with speci�c cartographic needs can be detected using deep learning:
urban morphology (Chen, Wu, and Biljecki 2021; Yan, Ai, Yang, Tong, and Liu
2020), interchanges (Touya and Lokhat 2020), road type (Iddianozie and Mcardle
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2021), building shape (Yan, Ai, Yang, and Tong 2020), etc. This detection is a
prerequisite for their correct generalization and representation in a map (Mackaness
and Edwards 2002). Thus, deep learning has shown its potential to solve enrichment
tasks, preliminary to cartographic generalization.

On one hand, it has shown a capacity to produce clues for mapping. For in-
stance, Lan, Li, Wang, Gong, and Ti (2022) employ an arti�cial neural network to
predict the directions and positions of labels in a schematic map and Jenny, Heit-
zler, Singh, Farmakis-Serebryakova, Liu, and Hurni (2021) use a CNN to predict
the shading location on a map. CNN has shown potential for predicting the shape
that objects should have in a speci�c generalized map from their detailed shape
building (Feng, Thiemann, and Sester 2019). Then, Kang, Rao, Wang, Peng, Gao,
and Zhang (2020) investigate the potential of GAN for this same task on building
and Du, Wu, Xing, Gong, and Yu (2021) on the coastline. The experiment on the
building did not succeed in improving the quality of the predicted images compared
to the segmentation approach: some fuzzy/unrealistic shapes appeared and several
buildings were not simpli�ed enough, but for coastline generalization, GANs seem
to be e�cient. Furthermore, in the coastline experiment, the authors propose to
segment the study area into samples that maximize the portion of an object rep-
resented in each tile without introducing any distortion. All these attempts have
shown the potential of deep learning to produce abstract representations from car-
tographic data and for graphical generalization, but they have not been tested for
the generalization of multiple objects.

On the other hand, deep learning has shown the ability to understand the content
of a map and its organization (cartographic rules) from an image. Indeed, Touya,
Brisebard, Quinton, and Courtial (2020) succeeded to infer scale and content from
images of the thematic maps; Hu, Gui, Wang, and Li (2021) propose a deep learning
approach to enrich the metadata of map images by predicting spatial extents and
place names, Zhou, Li, Arundel, and Liu (2018) learn to classify six styles of maps
and thus show the ability to learn map characteristics. Thus, deep learning models
are able to learn the content of a map from an image of the map, Wu and Biljecki
(2021) try to go further and experiment how a GAN can �ll an incomplete map,
using the context of the missing area.

Deep learning and cartography

In this section, we explore how deep learning can be used to generate maps. The
task of generating an image of a map with deep learning appears with generative
adversarial networks (GAN), which aims to create an image from another. In the
literature, most of the experiments of map generation with GAN are about gener-
ating an image of a map in the style of GoogleMap from the corresponding aerial
photograph. The �rst models employed for this purpose are designed for a generic
image-to-image conversion from paired (Isola, Zhu, Zhou, and Efros 2017) and un-
paired (Zhu, Park, Isola, and Efros 2017) dataset. These models are not designed
speci�cally for cartography, but generic models that can learn also map conversion,
day-to-night conversion, or label-to-scene conversion (Figure A.6).

These models demonstrate GAN's ability to reproduce main characteristics of
the map and preserve salient geographic information. However, preservation and
representation challenges proper to cartography remain. Thus, several variations
of this architecture have been proposed to improve this speci�c use case and deal
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Figure A.6: Example of use-cases of the generic image to image networks, from
(Isola, Zhu, Zhou, and Efros 2017).

with requirements speci�c to map generation. Ganguli, Garzon, and Glaser (2019)
compare three di�erent GAN architectures for paired training sets and experiment
with the addition of a style loss (from the style-transfer network). Chen, Chen,
Xu, Yin, Peng, Mei, and Li (2020) propose to rather use a semi-supervised learning
strategy to pre-train the model on rich unpaired samples and �ne-tune it on limited
paired samples. They also propose an improved loss function based on the image
gradient that aims to guarantee the preservation of topological relationships. Zhang,
Yin, Zimmermann, Wang, Varadarajan, and Ng (2020) experiment the interest of
external geographic data as implicit guidance, for example, by adding an image
of GPS traces to the input to improve the shape of generated roads. Fu, Gong,
Wang, Batmanghelich, Zhang, and Tao (2019) propose to resolve the problem of
geographic object distortion in GAN predictions with a geometry consistency loss
(eq. A.1). Indeed, they state that the model G must not be sensitive to a geometric
transformation: the prediction of the same transformation t of any image i must
look like the prediction transformation.

G(t(i)) ≈ t(G(i)) (A.1)

These publications experiment with end-to-end map generation for a de�ned map
function and scale, but the output is not a generalized map, as the target and input
have a similar level of detail. Very few other experiments have explored other map
generation tasks. Li, Chen, Zhao, and Shao (2020) have shown that it is possible
to similarly convert aerial images into other styles without scale conversion. They
used an additional classi�er to learn di�erent styles of maps. In a similar way Chen,
Yin, Chen, Li, and Xu (2022) tries to learn this conversion (aerial to google map) at
several scales at once in order to bene�t from the similarity between scales to learn
how a map looks, and Henry, Storie, Alagappan, Alhassan, Swamy, Aleshinloye,
Curtis, and Kim (2019) train a deep neural network to generate land use map.
Finally, Kang, Gao, and Roth (2019) propose to generate maps from raw symbolized
OSM data instead of aerial images. The di�erence in information between input
and target allows the authors to note some generalization transformations to avoid
symbol coalescence: selection, enhancement, and typi�cation. All these examples
include more complex cartography mechanisms and are closer to map generalization.
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A.3 Thesis objectives

A.3.1 Needs in map generalization automation

This literature review has shown that map generalization remains an interesting
question with unsolved issues. However, interest in this �eld seems to decrease. In
its history, research on automating map generalization has often followed a dynamic
driven by innovation in computer sciences and arti�cial intelligence (e.g., with MAS
for orchestration, computational geometry for shape simpli�cation, etc.). We be-
lieve that map generalization can bene�t from the recent deep learning stream. In
particular, the deep learning approach can bring solutions to the following issues:

� Map generalization must deal with various heterogeneous data. Deep
learning is adapted for big data management, and learning is capable of ex-
tracting common information from several data sources. Moreover, both the-
matic map generalization and multi-source data integration are problems of
data source combination, and deep learning is able to easily deal with such
problems.

� On-the-�y and parametrization of map generalization are challeng-
ing. In deep network setting, several parameters are required; then during
the calculation, the parameters are no longer required, and the models can be
adaptive. Thus, applying a deep learning-based generalized topographic map
generation trained model would no longer raise any parametrization challenge.
Moreover, training such a model requires important computation and time re-
sources, but then it is easy and quick to apply to new data even on-the-�y.

� Multi-scale map creation is a challenging task. Most of the proposed
approach for this task would bene�t from a deep learning approach: basically,
improvement in map generalization in general would simplify the generation
of map at intermediate scale; moreover, attention networks could improve
context-aware map generalization, and the technique for spatio-temporal data
and video generation (such as LSTM Mahasseni, Lam, and Todorovic 2017)
are promising for continuous generalization (with the time replaced by scale).

� Map styling and map generalization are performed separately. With
a deep learning approach, style and generalization can be learned together
from examples.

� User requirements for map generalization are di�cult to handle. As
deep learning is able to understand implicit knowledge in images provided by
users with speci�c requirements and generate images with similar characteris-
tics, an approach to on-demand mapping would be to predict the desired map
style from user interaction with examples and then learn to �t the user data
to the desired style and generalization.

This thesis is one of the �rst studies on deep learning-based map generalization.
As summarized in Figure A.7 map generalization can involve a multitude of methods,
including those of arti�cial intelligence; however, the scope of this thesis is restricted
to the exploration of deep learning-based methods.



36 Chapter A. Literature review

Figure A.7: Scope of this thesis.

A.3.2 Summary of the theoretical motivation

Thus, this thesis is based on the assumption that deep learning is a powerful tool
that has the potential to solve problems of map generalization. The main clues to
this postulate are the following:

� Deep learning succeeds in solving similar tasks or with similar objectives.

� Deep learning is adapted for graphical problems where the knowledge is im-
plicit in the data.

� Numerous examples of generalized and detailed maps are available for learning.

However, the use of deep learning for map generalization presents at least the
following limitations.

� The image representation seems to be the main approach to learn about spatial
data in deep learning. However, the use of images to represent spatial data
is known to be less e�cient in map generalization and may involve loss of
information, as shown by the current inferiority of raster-based generalization
methods.

� Deep learning models are complex to parameterize. Moreover, they may need
adaptation to deal e�ciently with spatial data.

� Deep learning intern mechanisms are hidden, and unexplained results can be
considered unreliable or di�cult to integrate into semi-automatic processes.

� Training in the deep learning model requires powerful computer materials and
high computational time. Such resources can be di�cult to obtain for re-
searchers in cartography.

� Deep learning has computational limits and can especially be economically,
technically, and environmentally unsuitable.
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Moreover, it is part of the following moonshot motivation of arti�cial intelligence:
"Design[ing] a software agent that takes a user's GIS-related domain question, un-
derstands how to gather the required data, how to analyze them and how to present
the results in a suitable form" (Janowicz, Gao, McKenzie, Hu, and Bhaduri 2020,
p. 631). Indeed, cartography (and consequently map generalization) is still the
most suitable solution for presenting to the human user geographic information or
phenomena.

A.3.3 Approach

This thesis aims to contribute to the research on map generalization automation.
The use of deep learning for map generalization is a new research topic and the
potential of this approach remains to be de�ned. Thus, this thesis has two consecu-
tive objectives: �rst, to demonstrate the potential of this technique by reaching the
level of existing methods from the literature review, then going further toward fully
automatic generalized map generation. This thesis is positioned as an exploration to
better understand the issues in deep learning map generalization. This exploration is
permitted by the exploitation of IGN archives that provide a large example of a gen-
eralized map for multiple objectives and at multiple scales with manual correction
produced for years. Moreover, it deals with the following research questions:

1. How to automatically construct an adapted training set from IGN data?

2. How to conceive an adapted deep neural network?

3. How to deal with the speci�cs aspect linked to geographic information and map
generalization (e.g. cartographic context and spatial relation representation
in an image.)

4. How to evaluate the result of deep learning-based map generalization?

5. How could the deep neural network collaborate with previous techniques for
automatic map generalization (e.g., in a collaborative process Touya, Duchêne,
and Ruas 2010)?

6. To what extent is it possible to transfer or apply the models learned with deep
learning to large areas?

Thus, our work is organized into two experiments of map generalization: moun-
tain road generalization at the 1:250 000 scales, and urban area generalization at the
1:50 000 scales. These two use cases cover most generalization operators, including
simpli�cation, enlargement, deformation, displacement, selection, and typi�cation.
These use cases allow us to test graph and image-based approaches and were useful
in this thesis for three main purposes:

� To explore the main issues in the deep learning model setting for map gener-
alization:

� The formulation of an adapted learning task,

� The practical model implementation (including the architecture of the
neural network, the training set, and the design of the learning objective).
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� To explore the potential and compare deep learning approaches for common
map generalization tasks:

� Preserving spatial relations while simplifying,

� Learning complex geometric transformations,

� Avoiding symbol overlap in a map.

� To bring out important discussions on the future of map generalization with
deep learning, especially on the:

� Contribution of deep learning in map generalization research,

� Evaluation of deep learning prediction.

Chapter's conclusions

In conclusion, map generalization is an essential and complex process that
requires understanding the implicit knowledge in the data. Thus, research for
map generalization automation involves more and more advanced information
and computer sciences techniques, including arti�cial intelligence. Current re-
search on map generalization has slowed down, while research on deep learning
is expanding to more and more use cases. This lets us think that deep learning
can contribute in map generalization research.
Consequently, our thesis is an exploration that aims to:

� Identify the potential and issues of this approach (Part I).

� Explore concretely the ability of deep learning for the most important
generalization tasks (Part II).

� Gives directions for the future usage of deep learning in map generaliza-
tion (Part III).
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Chapter B

Formulating map generalization as a

deep learning task

Chapter A has shown that deep learning has potential in contributing to map gen-
eralization. Some tasks of map generalization can be clearly seen as a classi�cation
problem (e.g. object selection); but, most map generalization operators are less sim-
ple to formulate as a deep learning task. The goal of this chapter is to describe how
to formulate a map generalization task so that a deep learning algorithm can solve
it. This formulation is mainly composed of geographic information representation
(i.e. as image, graph, etc.) and task de�nition (i.e. regression, classi�cation, etc.).

B.1 Geographic information representation for deep

learning

Map generalization is traditionally mainly formulated as a vector problem: carto-
graphic objects are points, lines, or polygons, encoded using the coordinate of one
or a set of points and the interpolation function (see Figure A.1). However, most
deep learning algorithms are not adapted to vector data. A tensor is a generic data
structure that is used as input for deep learning. Mostly, deep learning can deal
with images, graphs, text, and sequences. In the following section, we explain how
map generalization can be formulated as an image or a graph problem that can be
resolved using deep learning.

B.1.1 Map generalization as an image problem

Even if a raster-based approach for automated map generalization is rarely explored
and is said to be limited to dealing with spatial relations, all the information for map
generalization are implicitly present in a map image and generalization is mainly a
graphical problem.

A map is a representation or medium of communication (Lapaine, Midtbø, Gart-
ner, Bandrova, Wang, and Shen 2021); this representation is perceived by the user
as an image printed on a computer, a mobile device, or a paper map. A human can
extract most of the knowledge required for map generalization from this image, we
can see crowded and free areas, spatial relation and structures:

� Crowded and free areas, these areas are essential in map generalization,
crowded areas need generalization, and may contain many con�icts. Free
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spaces are also important for hosting displaced spatial information that cannot
be represented in its place.

� Spatial relations, ask a human to describe a map: the description may look
the following: "the church is in the park at the north of the river, etc.". Spatial
relations are the main elements of this description.

� Main structures, the psychology research around Gestalt Theory has shown
that humans perceive structure (especially using the principle illustrated in
Figure B.1). These principles are involved when using a map and allow users
to perceive spatial relations. Moreover, these principles have been widely used
in cartography and map generalization to de�ne a relevant group of objects
(Thomson and Richardson 1999; Steiniger, Burghardt, and Weibel 2006).

Figure B.1: Law of Gestalt perception: similar objects, close objects, connected
objects, etc. are perceived as more related than others.

The usability of map images despite the raster representation shows that the map
information is implicit in the image representation and that vector encoding seems
to be not a necessity for the human perception of the shape, nature, or relationships
between geographic objects. Moreover, in cartography history, cartographers were
able to draw a generalized map from a detailed one only. So, why would not an
advanced arti�cial intelligence mechanism be able to deal with implicit data in an
image, such as deep learning?

In computer science, images are encoded using a matrix of pixel values of size
height × width × channel. A classical colored image has three channels for the
Red, Blue and Green values, each color displayed on the computer is a combination
of di�erent levels of these three colors. Other image formats are possible using a
di�erent range of pixel values and number of channels. In an image approach of deep
learning for map generalization, two strategies are possible: 1) directly using maps
that are images (e.g. raster maps) and 2) constructing map-like images from the
vector geographic database. We believe that the second strategy Has to be preferred
as it allows one to set up exactly the desired information, generalization, and style
in the training example, and making generalization more adaptive and �exible.
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Figure B.2: Some elements of a geographic database and an image representation
of these data.

However, the representation as an image requires rasterization as illustrated in
Figure B.2, and especially choosing symbolization, order, and rules for a�ecting a
value to pixels (e.g. "if the pixel crosses the shape of the forest its value is light
green, e.g., RGB(146,226,133), this rule is not prioritized in case of con�icts with
river roads or building representation"). Some examples of this construction for the
creation of a deep learning dataset are detailed in Chapter C.

B.1.2 Map generalization as a graph problem

The graph representation is particularly appreciated for map generalization, as this
structure allows the generalizers to model the spatial relations (Regnauld 2005), and
especially, how concepts such as isolation, connectivity, adjacency, and neighborhood
in�uence map generalization (Mackaness and Beard 1993). The following paragraphs
present the three most common graph representations.

Network-graph In geographic information, graphs are often used to encode phys-
ical networks, such as hydrographic or transportation networks. They allow the
calculation of paths, �ows, measures of centrality, etc. For instance, Thomson and
Richardson (1995) use graph techniques, such as the shortest path between network
nodes and spanning trees, to provide a solution for deriving measures of the func-
tional relevance of network road segments. Variations of such graphs for a road
network representation are possible: the primal graph (Porta, Crucitti, and Latora
2006b) where each vertex represents a segment and connected segments are linked,
and the dual graph (Porta, Crucitti, and Latora 2006a) where each vertex represents
a named street and a link an intersection.

Relation-graph Spatial relations are primordial in understanding maps and their
identi�cation is central in map generalization. Touya, Bucher, Falquet, Jaara, and
Steiniger (2014) state that: as a prerequisite to developing relation-driven gener-
alization, we need to formalize spatial relations. The nature of relations can be
varied and includes topological relations (containing, intersection, adjacency, etc.),
proximity relations, and relative position and relative orientation. Egenhofer and
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Herring (1990) propose one of the �rst models to describe the topological relations
between two objects using the existence of the interior and frontier intersections (see
Figure B.3).

Figure B.3: The topological relations according to the 4-intersections model (Egen-
hofer and Herring 1990).

Spatial relations are one of the most critical information in a map and have to
be preserved during map generalization: When a human describes a map, he mainly
describes the relation in the map1. Thus, it is necessary for map generalization to
provide a structure that describes relations. For that purpose, a graph representation
is often involved. As illustrated in Figure B.4, the relations between the objects on
the map are multiple and can be represented in a graph that links each related
object.

Figure B.4: Example of a graph of spatial relations.

In the literature, the construction of structures like the Voronoï diagram is the
basis to identify neighboring (Hangouet 1998). Then, it is used to construct triangu-
lation that re�ects the proximity, to identifying con�icts and process displacement
(Ruas 1998; Sester 2000a), or typi�cation (Regnauld 2001). Thus, in map general-
ization graphs are often used to describe proximity (Zhang, Ai, Stoter, Kraak, and
Molenaar 2013) or relative position (Bader, Barrault, and Weibel 2005) of build-
ings during or after their generalization. However, the nature of possible relations

1Readers can make the test and describe the map in the Figure B.4, they may say that the
house is in the forest (topological relation), at the north of the river (relative position), near the
road (proximity relation), etc.
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in a map is heterogeneous and is not limited to proximity, Iddianozie and McAr-
dle (2021) experiment how a graph neural network can deal with both homogeneous
(which describe only one kind of relation) and heterogeneous (which describe various
relations between diverse objects) graphs.

Shape-graph Finally, graphs can be used to describe and encode the structure of
vector objects. For instance, Harrie (2000) uses a graph issued from the triangulation
between points of geometry to describe and generalize the object shape with an
optimization approach, Sester (2000b) proposes an object-oriented structure with
the relation between pair of objects, for the description of arbitrary geometric 2D-
objects in a learning approach. And Ga�uri (2008) de�nes submicro object for
geographic object shape generalization. It is composed of points in an object, linked
by segments organized in triangles, each of them has constraints and is used in an
agent system. However, such a formulation is rare in the literature, as vector-based
approaches are often e�cient enough to resolve object-shape problems. A such graph
is interesting in our case where the vector representation is not yet compatible with
deep learning, while the graph representation is. Yan, Ai, Yang, and Tong (2020)
propose a �rst simple graph representation for deep encoding of the building shape,
each point of the shape outline is a vertex of the graph, and the connected points
by the outline are linked (as illustrated in Figure B.5).

Figure B.5: Example of graph representation of building shape (from Yan, Ai, Yang,
and Tong 2020).

Once the geographic information is encoded in a graph, a data model is required
to store it on a computer. Graphs are mathematical structures of objects composed
of objects (nodes) and relations between pairs of objects (edges). Traditionally,
object-representation is privileged due to its completeness and e�ciency in terms of
storage space (Regnauld 2005). This representation stores for each node its coor-
dinates, its feature, and the connected edge, for each edge a feature list, a starting
and ending node. Finally, a graph is an edge and node list (Figure B.6).

Figure B.6: Graph object representations.

However, some other models can be involved; Figure B.7 illustrates some of them:
the list of edges and the adjacency matrix for a graph. Graphical representation is
only convenient for human reasoning. The list of edges is a convenient transition
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between human and computer representations, as it is easily constructed by listing
the relation visible in the graphic representation and easily convertible in an adja-
cency matrix. The adjacency matrix is more practical for path computation and
graph analysis.

Figure B.7: Graph representations: list of edges, graphical representation, and ad-
jacency matrix.

B.1.3 Other approaches for deep learning-based map gener-

alization

Map generalization can be a sequence problem. On one hand, shapes of a
geographic object can be encoded in a sequence of elements with a �xed structure
(coordinates, attribute, etc.). This representation is done the following way: an
origin point and an order are de�ned, then each point of the shape is stored in a
sequence. This representation is more natural to encode the shape of the linear
individual object that has a natural direction (waterline), but can also be applied
to other objects with arbitrary choices. On the other hand, predicting a sequence of
operations (or objects to deal with) for map generalization can also be an object of
interest in deep learning. The interest in such representation is the large quantity of
deep neural networks designed for sequence from research on text and video learning.

Map generalization can be a video problem A video is the ordered compila-
tion of several images over time. A multiscale map can be seen as a similar structure:
it is the compilation of images over the scale. This representation is based on the
same principles as the image, since it is a succession of images. Moreover, it allows
us to represent and learn from multi-scale phenomena.

Map generalization with an ad hoc tensor. Finally, we could imagine using
none of the approaches presented above and de�ning an ad hoc tensor for map gen-
eralization. Indeed, raster, sequence, graph, etc. are particular examples of tensors.
For example, a point cloud can directly be encoded as the tensor of point coordi-
nates and attribute and would be the simpler representation for POI simpli�cation.
This representation is easy in point, as the points have a �xed size representation,
contrary to other geometries (Knura 2021).
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B.2 Deep learning tasks and map generalization

Deep learning allows various tasks, from classi�cation to generation, that produce
a new object with the same or even a di�erent structure as the input object (e.g.
predicting a text that describes the content of an image). In the following sections,
we review some common deep learning tasks that can be used for map generalization.

B.2.1 Classi�cation and map generalization

Classi�cation is already a classic task in machine learning for data enrichment prior
to map generalization. Similarly, deep learning classi�cation can be used for this
task. Indeed, data enrichment is essential in map generalization automation, as the
information on object structure and hierarchy has to be explicitly known to apply
some generalization algorithms or orchestrate them.

Classi�cation and data enrichment First, image classi�cation could contribute
to data enrichment prior to map generalization. For example, a classi�er can detect
images containing objects that need a speci�c generalization (e.g. highway inter-
changes (Touya and Lokhat 2020)). It can also be used to infer the content and
scale of a map (Touya, Brisebard, Quinton, and Courtial 2020; Zhou, Li, Arundel,
and Liu 2018) and guide its generalization. However, the image representation is
often not the most relevant for such a problem, as it classi�es an image that con-
tains objects instead of the object (e.g. for interchange detection we not only need
to know if the interchange is in the map, but also where it is).

Complementary, graph classi�cation can also be used on shape-graphs, network-
graphs, and relation-graphs for data enrichment. The classi�cation on a shape-graph
(or network-graph) would provide information on the shape of the object itself (or on
the structure of the network itself). For example, Yan, Ai, Yang, and Tong (2020) use
the graph representation of buildings to encode their shape and learn a shape label
(L-shape, T-shape, etc.), this label is useful to determine the most adapted shape
generalization algorithm for each building. The classi�cation of relation-graphs can
be used to obtain information on a group of objects. The same author then uses a
Delauney triangulation to describe relations between buildings in an urban block,
then a classi�cation model allows to determine if the block has a regular pattern or
not (Yan, Ai, Yang, Tong, and Liu 2020). This grouping is essential for generalizing
groups. In a similar way, the classi�cation of other objects like sequence, etc. could
also be used for data enrichment (predicting features on an object represented by
a sequence) or to guide map generalization (predicting if an operator sequence is
adapted for the generalization of an object).

In general, classi�cation can be used to obtain global information on the content
of the cartographic database. Even if a result at the level of graph or image is often
not su�cient, this demonstration is another clue to the feasibility of our thesis. In
fact, the experiment's success with learning to classify images and graphs for data
enrichment has shown that deep learning can understand some underlying knowl-
edge for map generalization (e.g., there is a complex situation, the, the image is in
urban area, the graph represent a complex building, etc.). With the hypothesis that
deep neural networks (and especially convolution networks) are able to understand
and encode this underlying knowledge, we expect to design models that learn map
generalization without explicitly enriching the data before generalization. Finally,
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the classi�cation for data enrichment is not a new possibility o�ered by deep learn-
ing (it was already possible with feature-based machine learning). That is why in
this thesis we do not explore this approach much in detail and focus on the next
tasks.

Classi�cation and evaluation Classi�cation can also be used for the evaluation
of map images, as it could classify map images between legible ones and those that
require map generalization (not yet studied in the literature). During this thesis,
we do not experiment with this approach alone, but the map generation experiment
includes a classi�er that learns if the predicted map looks like a generalized map
during the map generation approach (see Chapter F).

B.2.2 Segmentation and map generalization

Segmentation in general is the fact of dividing a structure into a subset consistent
with common characteristics. For example, in image processing, segmentation allows
one to construct pixel groups. So the segmentation output is another image of
the same size as the input, where the pixel value describes the group to which it
belongs. In graph learning, the term segmentation is not common; however, node
classi�cation is a sublevel segmentation that allows us to group nodes in subsets (see
Figure B.8), and its usage for map generalization is analogous to image segmentation.

Figure B.8: Illustration of the segmentation de�nition: a) in common meaning, b)
in image processing, c) in a graph.

Segmentation is common in image-based deep learning to detect objects in a
scene photograph. This section describes how it can be used for map generalization.

Segmentation and data enrichment Segmentation models are often used in
remote sensing images to extract the location of an element. Similarly, segmentation
can be used to detect a particular element on an image of the map and contribute
to data enrichment. This is a more precise way for data enrichment than image
classi�cation (Touya and Lokhat 2020) because it is an enrichment at the pixel level
rather than the image level. Especially, segmentation of con�ict areas that need
correction or generalization (rather than object) in the image is interesting, as it
allows evaluating, guiding, or post-processing of map generalization (as illustrated
in Figure B.9).

Similarly, graph segmentation allows for class prediction at the node level. Graph
segmentation (or node classi�cation) can be applied to relation-graphs to predict
information on an object regarding its characteristics, its relation with other geo-
graphic objects, and even the characteristic of its neighbor. This task is primarily
used for data enrichment: for example, to classify buildings that are part of a
structure or group (as we do for alignment in Chapter D). Then, it allows for map
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Figure B.9: An example of segmentation for map generalization con�icts detection.

rendering or operation prediction. For instance, it allows for the prediction of ob-
ject selection with labels "kept" and "deleted" (as we did for the road network in
Chapter E). However, a class for other operators is possible, and we could predict
if an object needs smoothing, simpli�cation, schematizing, typi�cation, etc.

Segmentation and shape prediction Furthermore, the segmentation models
can be used to predict a shape that is not in the input image when all the clues
for this segmentation are. In particular, an approach is to predict the shape of an
object on a target generalized map from an input detailed map. During our thesis,
we experimented with this technique for mountain road shape generalization (more
details in Chapter E) while other authors experimented with it for buildings (Feng,
Thiemann, and Sester 2019) and coastline (Du, Wu, Xing, Gong, and Yu 2021).
The simpli�cation of isolated polygons, such as buildings, seems more e�cient than
line simpli�cation, which can su�er connectivity alterations due to resolution issues.

Segmentation on a shape-graph can also allow managing the shape of an object
by predicting if a point has to be kept or not, but line simpli�cation only based on
point selection is often not the most appropriate for map generalization.

B.2.3 Regression and map generalization

Regression models are often similar to classi�cation or segmentation models, but
the output is not a class in the set of possible classes but a real value. At the object
level, they allow models to rate rather than label objects (images, graphs, pixels,
nodes, etc.). Continuous values are more practical for some map generalization
steps, especially evaluation and shape generalization.

Regression and evaluation Due to the continuous characteristic of prediction,
regression models are more e�cient for generalization evaluation and can be used to
predict at which level the image is not legible, contains overlap, preserves informa-
tion, looks like a map, etc. These techniques can also be used to predict information
on object generalization, such as clues of the desired level of detail or scaling.
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Regression of displacement and deformation Moreover, regression on the
nodes of a graph can be used to predict generalization of an object. The model
the predicte a new position (X,Y) or a displacement (distance and direction). Once
these values are predicted, the reconstruction of the vector with the new position for
each point may be the generalized shape of the object (Figure B.10). This approach
as well applies to the individual building deformation (using a shape-graph), as to
the object displacement to avoid coalescence (using a relation-graph). For instance,
the building displacement inside a block to avoid coalescence could be resolved by a
model trained on a relation-graph that describ relativ posisiton of roads, buildings
and rivers.

Figure B.10: Learning shape generalization with shape-graph node regression.

B.2.4 Image generation and map generation

Finally, one of the most promising deep learning tasks is its ability to generate
images. Indeed, the map is an image; thus, we hope that deep learning will be able
to generate an image of the generalized map. Various image generation networks
have been proposed to produce images of a map from raw data, such as aerial
images (Isola, Zhu, Zhou, and Efros 2017) or symbolized OpenStreetMap (OSM)
data (Kang, Gao, and Roth 2019). In this thesis, we test the naive approach to
learning complete map generalization using a generative network in Chapter F.

B.2.5 Approach combination

All these formulation proposals have limitations, and we believe that a combination
of approaches instead of a unique approach could be bene�cial. For example, a
model able to combine graph and image based learning (Yang, Lu, Lee, Batra, and
Parikh 2018) enables to deep scene description and could be adapted for a deeper
analysis of relation in a map.

Other approaches that combine tasks within a single representation are also
promising. For instance, the shape prediction using the combination of shape-graph
segmentation and regression could achieve better results than individual formula-
tions. Indeed, segmentation is used for predicting if a node has to be kept and
structure simpli�cation, then regression predicts the position of the node in the gen-
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eralized shape. Thus, the combination faces both the limitations of the structure of
regression and the limitation of the position of the segmentation.

Similarly, in Chapter G, we propose an approach for generalized map generation
that combines the segmentation of the generalized shape of the object and learning
about map rendering through a generation approach.

B.2.6 Other tasks

Finally, our review of tasks that deep learning can resolve is not exhaustive and
we mostly mention the most common and promising formulations. However, a
deeper exploration of the deep learning capacity could provide highly innovative
perspectives.

� Text generation from an image (Kinghorn, Zhang, and Shao 2017) could be
used for map description and even map requirements description.

� Text-to-image models such as Dalle2 are for now very bad at predicting images
of a map but could be reworked to make possible the generation of maps from
a description and then for on-demand mapping.

� Video generation (Rathore, Nagar, Arora, and Jawahar 2019) is promising for
the generation of smooth transitions between scales. Indeed video summariza-
tion and generation often learn together and enable to create a summary of a
few images from a video, on the contrary, generating a video from a few images
(see Figure B.11) applied to map images at several scales such approach would
allow generating smooth transition between the image of the map at di�erent
scales.

� Scene-graph generation (Yang, Lu, Lee, Batra, and Parikh 2018) extracts re-
lation between object in an image (e.g. in this image a man is on a bike, on
the street), and could be used to create schematic maps from map images or
be combined with map generation to enrich the learning of generalized map
generation.

� The prediction of a link in a graph is often used by recommendation algorithms.
For a node, it predicts which other nodes in the graph it is most likely to be
linked to. This approach can be used for generalization recommendations, for
example, if there is a change in the level of detail of this element and which
other elements may be a�ected.

2https://huggingface.co/spaces/dalle-mini/dalle-mini
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Figure B.11: Learning scale transitions with a video approach.

Chapter's conclusions

As summarized in Figure B.12, deep learning can solve various data manage-
ment problems, and most map generalization tasks can be formulated as a
deep learning problem. However, several formulations are often possible and
may lead to a di�erent result and a di�erent level of information in the results.
Finally, combinations of several approaches and more innovative approaches
are possible and promising.

Figure B.12: Main possible formulation of map generalization as a deep learn-
ing problem (the approaches that are experimented in this thesis are high-
lighted in pink).
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Chapter C

Designing a framework for deep

learning based map generalization

In the previous chapter, we presented various way to formulate the desired map
generalization task into a deep learning problem. In this chapter, we propose to
go deeper into the de�nition of a learning strategy and explore how deep learning
can be implemented in real-world map generalization applications. This chapter
presents some concrete insights about deep neural network design and training set
creation.

C.1 The characteristics of an adapted deep neural

network

The creation of new architectures that converge faster, encode thinner information,
need less data, etc. is one of the most important points of interest in deep learning
research. This section aims to provide keys for using an adapted deep neural network
for map generalization among the numerous existing deep neural networks.

C.1.1 What is a deep neural network?

This �rst section explains more precisely what a deep neural network is. The dif-
ferent components of the deep neural network are reviewed to allow the reader to
understand how a deep neural network is designed.

Architecture A deep neural network is a succession of neurons, as illustrated
in Figure C.1. Each neuron summaries a set of inputs in one output value. The
organization of these neurons is called architecture.

The model architecture is responsible for the encoding and decoding of the in-
formation to produce the target. The structure of this model (number of layers,
number of neurons per layer, and neurons activation function) can vary depending
on the target task. For instance, a deeper model (with more layers) will encode more
information levels and will be able to perform more complex tasks. The structure
of the network also has an impact on the robustness of the model. For example,
dropout layer randomly omits a part of the weight at each iteration of the training,
this induces randomness in the information encoding and avoids the model over-
�tting. In deep learning, as in life sciences, the function of a neuron is to transmit
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Figure C.1: Neurons and deep neural network.

information. In fact, a neuron is a bounded parametric function of the following
form (eq. C.1) with the input x a tensor with n elements, wi the weight, w0 the
bias, and f the activation function.

y = f(w0 +
n∑

i=1

wi × xi) (C.1)

Initialization The model has initial weights that are often randomly de�ned. This
initialization is one of the reasons for the non-determinism of deep neural networks1.
The random choice is often performed using a Gaussian or Uniform distribution
between small/near zeros values, (Goodfellow, Bengio, and Courville 2016):

The choice of Gaussian or uniform distribution does not seem to matter
very much but has not been exhaustively studied. The scale of the initial
distribution, however, does have a large e�ect on both the outcome of
the optimization procedure and the ability of the network to generalize.

However, choosing a non-random point of departure can be bene�cial when the
model has already been trained in other use cases. In fact, using the weights from
one step of a previous training may reduce training time. If this choice is relevant
in some common use case from computer vision (photograph of an indoor scene,
outdoor scene, animals photograph, etc.), is it true of map generalization? The idea
is to skip some of the initial learning steps that consist of learning the encoding
of the global property of objects, because they may be shared. Is there su�cient
common knowledge between map examples you give to your network and the one the
initialization network has already seen? For example, we think it may be relevant
to choose the weight of a style transfer network for regularization of hand drawings
to initialize a road generalization model because they are both composed of lines on
a background (Figure C.2).

Iterations Learning is processed by iteration. Each iteration shows the model a
certain number of samples (grouped in a batch) and complet the optimization for this
batch. The use of bach allows computer to parralelize calculation as optimizaton is
performed for several image at once, its size a�ects the calculation time and memory
required. An epoch is reached when all batches have been seen once. The learning
often stops when a certain number of epochs is reached. However, this number

1The model will be di�erent each time it is trained.
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Figure C.2: Comparison of the sketch-to-drawing conversion (from Simo-Serra,
Iizuka, and Ishikawa 2017) and mountain road shape generalization.

has to be adapted. If it is too small, learning may not be �nished and the results
may be poor. On the contrary, when it is too large, the model may over�t the
exact distribution, but is unable to predict a relevant result for any unseen sample.
To avoid over-�tting we have to stop the training at the right time (when the loss
converges?); this moment is usually determined empirically.

Learning objective The learning objective (loss function) is the function that
measures the deviation between model output and expected result. It is calculated
for each prediction and optimized at the end of each iteration during training. An
adapted loss function can improve learning. The objective function is basically
based on a distance between the prediction Ŷ and the target Y (both composed of
n elements). For example, to compare two images, a measure derived from the least
absolute error (L1) and the least square error (L2) (eq. C.2) can be used as a loss.
L2-based losses are often preferred, as they generally perform better; however, it is
more sensitive to outliers and can produce less satifying results on some datasets.
The choice of an adapted learning objective for map generalization is important and
detailed detailed in Section C.1.4.

L1 =
n∑

i=1

∣∣∣Yi − Ŷi

∣∣∣)
L2 =

n∑
i=1

(
Yi − Ŷi

)2
(C.2)

Optimization Several optimization methods (optimizers) exist that de�ne how
the weights are adjusted. At each iteration the optimizer is responsible for changing
the weigth values (wi) to minimize the loss function. The choice of an optimizer
a�ects the speed and accuracy of the training. The learning rate provides a scale
of how much model weights should be updated at each iteration. The �rst common
optimizer is gradient descent. It is de�ned as follows: let g the objective function be
some continuously di�erentiable real function. In this method a �xed step size, α is
chosen and used with the derivation of the loss function (that gives the direction of
the functions slot) to determine the new value of weight (eq. C.3).
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wi = wi − alpha ∗ ∂g(w)

∂wi

(C.3)

This strategy is long and not very adapted for not convex functions. So, several
adaptations from this method have been proposed. For instance, the Stochastic
Gradient Descent (SDG) uses randomness to reduce computation time. At each
iteration the optimization is made for only a small portion of the data, thus, the
path for reaching a minimum is noisier, and more iterations are needed, however the
time for computation each iteration is reduced. Today, the most popular optimizer is
the adaptive moment optimizer (ADAM); unlike the SDG, which maintains a �xed
learning rate during training, it updates for each weight individually. It estimate the
�rst and second moment of the gradient using the exponentially moving averages
of the gradient mt and of the square gradient vt at iteration t (see eq. C.4, β1 and
β2 are hyper-parametres and gt is the gradient from eq. C.3, v0 and m0 both are
initialized at 0).

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(C.4)

Then it introduces a bias correction that consistes in dividing mt (resp. vt) by
1− β1 (resp. 1− β2), and use the corrected moving average to updates weights (see
eq. C.5, with ϵ a �xed small value to avoid division by zero).

wt = wt−1 − α
m̂t√
v̂t + ϵ

(C.5)

This optimizer is often preferred as it is faster to compute, requires low memory,
and less tuning. However, it is most likely to produce a model that does not �t the
data.

C.1.2 Some deep neural architectures for map generalization

The goal of this section is to give some examples of deep neural networks and
to identify why they are suitable or not for map generalization. Considering the
diversity of deep learning models and applications, we choose to focus on the models
able to resolve some formulations expressed in Chapter B.

Convolutions neural networks for image based data enrichment Convolu-
tion neural network are models able to learn image based tasks. We hope to use the
convolution neural network to learn data enrichment and shape simpli�cation for
map generalization (see Chapter B). A convolution is an operation on matrix (and
images represented as a matrix) that uses a kernel (small matrix with a prede�ned
value) to reorganize the patterns in an image (such as edges, textures, object parts,
etc.). This kernel is sliding over the input image (as illustrated in Figure C.3). The
value of an output pixel is the sum of a element-wise product of the kernel and the
input. In CNNs the values of kernel are learned from data rather than prede�ned
manually, so they are intialized according the choosen initialization method and
then optimized during training. CNNs also include pooling (also illustrated on �g-
ure C.3), it allows the model to reduce the dimension of information; it summarizes
(via maximum, average, or other methods) the information in a neighborhood.
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Figure C.3: Image processing in CNN. Convolution with a kernel of size (3 ∗ 3).
Max-pooling of size (2 ∗ 2).

Most deep learning models based on images are derived from convolution neural
networks (CNN). CNNs are organized in two steps (Figure C.4): 1) a series of
convolutions that �lter each image and extract features from an image, and 2) a
layer connects each input to all neurones (fully connected), it decodes the feature
to achieve the target task (e.g. predict a label by image for classi�cation). Most
convolution layer consists of convolution, pooling, and activation.

Figure C.4: The functioning of a CNN.

Since the �rst functioning implementation of a CNN, named LeNet (Lecun, Bot-
tou, Bengio, and Ha�ner 1998), CNN architectures have evolved widely. They tend
to increase the number of layers (depth). Furthemore, the layers structure man-
agement involved a large improvement in performance: the average pooling was
replaced by max-pooling, and padding was introduced. The order of layer com-
ponent also changes, in particular the systematic usage of max-pooling on top of
each convolution layer is questionned and abandoned (Krizhevsky, Sutskever, and
Hinton 2012). The Recti�ed Linear Unit (ReLU) is today one of the most popular
activation functions, it replaces the negative value with zero (eq. C.6).

y = max(0, x) (C.6)

Finally, a smaller �lter size (combined with increasing model depth) allows the
model to encode a di�erent level of relation in the image (Simonyan and Zisserman
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2015). All these improvements have contributes to make CNN able to extract various
implicte information from images in general. We think such model would also be
able to understand implicite knowledge from image that represent geographique
information and particulary maps that are full of relations between pixels.

In parallel, fully convolution networks were developed for image segmentation
(Long, Shelhamer, and Darrell 2015), they allows to predict a classi�cation of pixels
in the image. Feng, Thiemann, and Sester (2019) compare two of them for building
generalization: a U-net (Ronneberger, Fischer, and Brox 2015) and a residual U-
net (Zhang, Liu, and Wang 2018). Both models have shown promising results and
seem to be able to encode the di�erent levels of relation in a map image. The
U-net (illustrated in Figure C.5) is structured in a series of convolutional layers
into a contracting path with the typical architecture of a convolution network and
an expansive path that reconstructs the spatial size of the input. Both parts are
connected through skip connections that they stcka the embbeding of each layer
with the input of each decoding steps information, this allow for manage border
e�ects and introduce several levels of information encoding in the prediction. The
residual U-net is a U-net where the convolutional layers are replaced by the residual
unit from (He, Zhang, Ren, and Sun 2016) (i.e. batch normalization BN, ReLU
activation, and convolution, illustrated on Figure C.5). Furthermore, the input of
the residual unit is skip-connected after the next convolution layers. This model
improved the generalization of the building shape without increasing the depth of
the network (Feng, Thiemann, and Sester 2019).

Figure C.5: A U-Net architecture and a residual block.

CNNs produce categorical predictions (classi�cation/segmentation) and thus in-
volve speci�c learning objectives. The Cross-Entropy also called Log Loss and the
Dice coe�cient are the most common learning objectives for such models. Cross-
Entropy (eq. C.7) measures the di�erence between the distribution Y for target and
Ŷ for prediction and x a possible output class, Y (x) is the probability of the event
"the target is x" and Ŷ (x) the probability of the event "the prediction is x". This
measure can be biased in case of imbalanced classes whereas Dice D is prefered. The
Dice coe�cient is based on the intersection of the set of predicted elements Y in one
class and the set of elements Ŷ in this class in the target (eq. C.8). The objective
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is to maximize this coe�cient.

H = −
∑
x

Y (x) log Ŷ (x) (C.7)

D =
2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(C.8)

These measures compare values element by element and summarizes pixel-level
di�erences; it can be misleading in several cases including map generalization. Figure
C.6 gives an example of this problem for an image of a road: the target generalization
avoids the proximity con�ict between the two roads by displacing the road to the
right and enlarging the turn of the road at the left. In contrast, the 'good' prediction
does not displace the right road and attenuates the bend, even if this generalization
is relevant and correct, the measure would really badly evaluate it. On the contrary,
the "bad prediction" has many road pixels common with the target but is not good
at all. The problem is the following: several di�erent generalizations can be good,
errors in some pixels are more important than others, and the overall aspect of the
prediction is more important than the local value of the image.

Figure C.6: An example where pixel-level loss is not adapted for map generalization.

Thus, there is a need for an appropriate measure of prediction quality, that is
not based on pixel level or that seeks to measure the speci�cs of map generalization
for objective function de�nition (see section C.1.4).

Models for map generation

Several strategies for image generation are possible. The two most common are style
transfer and generative adversarial network (GAN), both based on the combination
of several CNNs to allow the generation of the desired image.

On one hand, style transfer networks are composed of two CNNs: one that
extracts the content from the source images and one that extracts the style features
from the source images (Gatys, Ecker, and Bethge 2016). Then it applies the style
of an image to the content of another image. Style transfer approaches are not really
adapted for map generalization, as it is not only a style issue but also a content one.
The content has to be simpli�ed to make the style applicable (see Figure A.2).
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On the other hand, GANs can perform various transformations, especially those
that contain changes in content and level of detail. They are based are based on the
combination a generator and a discriminator (see Figure C.7):

� A generator is a CNN that derives an output from the the input image using
a random noise z.

� A discriminator is a classi�er that assesses whether an image is false or a real
target image.

Figure C.7: Conditional GAN principles.

The loss of a GAN includes a similarity measure that compares the prediction
and the target using the loss L1 or L2 (or the input and reconstruction in the case of
an unpaired circular model like CycleGAN or DualGAN) and an adversarial loss that
investigates the overall credibility of the prediction, compared to that of the target.
For x and y the associated target, G(x, z) is the generator prediction, the adversarial
loss is the sum of the probability of fooling the discriminator E[log(1−D(x,G(x, z))
and its probability of correctly classifying the target E[logD(x, y)] (eq. C.9).

LcGAN = E[logD(x, y)] + E[log(1−D(x,G(x, z)))] (C.9)

There are mainly two types of GAN: those that can deal with paired images
(Isola, Zhu, Zhou, and Efros 2017) and those that deals with unpaired images2 (Zhu,
Park, Isola, and Efros 2017; Yi, Zhang, Tan, and Gong 2017; Gan, Chen, Wang,
Pu, Zhang, Liu, Li, and Carin 2017). Paired images mean that one example is made
up of an input image with the corresponding output while using unpaired images
means that two independent example sets are used: a set of good input images and

2GANs designed for paired images are often called supervised and those for unpaired unsuper-
vised, even if it is not properly unsupervised learning as the output is described.
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a set of good output images without matching both (paired and unpaired image
are illustrated in Figure C.8). Paired examples often allow learning some features
that unpaired example do not when input and target are similar. In an unpaired
approach, the learning objective is less to reproduce the operation of automatic map
generalization but more on producing image with the aspect of a the generalized
map. This approach is preferred when input and output are very di�erent or when
it is di�cult to �nd paired data. For the use case of map generalization, paired
learning will learn to link the detailed and the generalized map, while unpaired
learning would rather learn what a detailed and generalized image look like and then
how to transform the detailed one so that it looks like a generalized map. Finally,
semi-supervised learning represents a key issue for GAN improvement (Simo-Serra,
Iizuka, and Ishikawa 2017). It consists in combining learning on a few paired and
many unpaired examples, and this process is expected to bene�t from the advantages
of both methods.

Figure C.8: Example of tiles from paired (a) and unpaired (b) datasets for roads
generalisation.

Models for graph problems.

Graph neural networks (GNNs) are deep neural networks that are capable of dealing
with graphs as input. Diverse approaches have been explored to extend deep learning
techniques to graphs. However, the graph structure is less regular than an image,
and the interdependence between objects is complex.

(Wu and Biljecki 2021) proposes a review of GNN and proposes the following
classi�cation:

� Recurrent graph neural networks (RecGNNs) learn a target node's represen-
tation by propagating neighbor information in an iterative way until a stable
�xed point is reached.

� Convolutionel graph neural networks (ConvGNNs) try to generalize the no-
tion of convolution to a graph. Research in this �eld has two main ap-
proaches, spectral-based which proposes a matrix decomposition of the graph,
and spatial-based which works on a local neighbor of the node.
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� Graph autoencoders (GAEs) encode nodes/graphs into a latent vector space
and reconstruct graph data from the encoded information.

For geographic information, the graph convolution network (GCN) is mainly
used, it is a convolution graph neural network that de�nes a graph convolution
using the node attribute matrix X and the adjacency matrix A (these notions have
been presented earlier in this thesis, see FigureB.7). For a layer l, the convolution
result is the matrix product of the adjacency matrix A with the previous layer and
a weight matrix W (eq. C.10).{

H(0) = X

H(l + 1) = σ(A.H(l).W (l))
(C.10)

Figure C.9: Illustration of graph convolution with a simple example (for simpli�ca-
tion the activation function is identity and not represented).

This de�nition allows the content of the graph to be encoded while propagating
the value of the node through the edge of the graph (see Figure C.9). Indeed, the
matrix product sums the attributes of neighboring nodes. Thus, this model learns
the structure in neighboring, and the deeper the model is, the more neighbors are
considered for each decision prediction on a node.

C.1.3 Choosing or designing deep neural network for map

generalization?

The previous section has shown that there is a large diversity of models, and, at �rst
sight, very little information allows us to determine whether a model is adapted for
a de�ned use case. This section tries to provide guidelines for the choice of models.
We explore the following approach: 1) choosing an existing model, and, eventually,
2) adapting it.

Re-using a model from the multitude of existing models

Once the geographic information representation and task have been chose (see Chap-
ter B), it is possible to identify model for this task with this kind of data. Moreover,
many generic models exist (i.e. designed to resolve the same task in diverse use
cases). For instance, pix2pix (Isola, Zhu, Zhou, and Efros 2017) is designed for a
generic image-to-image task and can be trained for many tasks. However, choosing



61

the best model for our task is not easy. The latest published model is not always
the best. A model can be the best on one dataset and not adapted at all for an-
other, even if the new task looks similar. For example, Pubmed and Cora are both
benchmarks for graph node classi�cation that include a graph of scienti�c publica-
tion linked by citation relations, and Figure C.10 shows that at one time, the best
models di�er for Pubmed and Cora benchmarks.

Figure C.10: Comparison of model accuracy over time for node classi�cation on
Cora and Pubmed datasets (from paperswithcode.com visited on 05/07/2022).

Finally, for this example, the models are compared using accuracy; however,
evaluating the task is not always as simple as classi�cation. For instance, the as-
sessment of the image generation network is an issue, since it is di�cult to de�ne a
distance to a good solution. Thus, the comparison of architecture is tricky, and it
is impossible to determine a priori if an architecture will work for our use case (e.g.
can an architecture capable of digit recognition learn scale recognition?).

Very few models have yet been applied to use cases similar to map generalization,
so how do we make sure that we choose an adapted deep neural network? Our
strategy during ourexploration was based on two ideas:

1. Analogies and common characteristics: If a network has been successfully
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applied to a use case with similar or common characteristics, it is most likely
to be adapted. For instance, (Simo-Serra, Iizuka, and Ishikawa 2017) designed
a network capable of learning the image-to-image conversion from sketch to
drawing. This use case is very similar to mountain road generalization, as
line smoothing, simpli�cation, and typi�cation are required. Furthermore,
this model is robust and has good transferability due to the semi-supervised
structure, so we think that this model could be adapted for the generalization
of the mountain road shape (see Figure C.2).

2. Ability criteria: we determine a list of criteria to determine if a model is
likely to be adapted. Our list of criteria includes abstraction ability, interpola-
tion ability, preservation ability, transferability, spatial ability, variability, and
gluttony, and is discussed in greater detail in the following paragraphs.

Abstraction, or interpolation ability Usually two main types of networks are
adaptable for map generalization: those able to interpolate and abstract. On one
hand, models for interpolation (e.g. colorization, super-resolution, terrain generation
(Guérin, Digne, Galin, Peytavie, Wolf, Benes, and Martinez 2017), etc.) convey the
idea that deep neural network can do data enrichment. On the other hand, map
generalization is an abstraction task, and a deep learning experiment that makes
data abstraction may be adaptable to the generation of a generalized map. For
instance, Kang, Gao, and Roth (2019) mentioned during their experiments on map-
style transfer, that some abstractions are learned by GANmodels, and with a speci�c
dataset, it would be able to achieve map generalization.

Preservation Another required aspect of a network is the ability to preserve in-
put information. For example, in image generation, a model with the output images
really di�erent from the input ones would probably be un-adaptable for map gener-
alization, where maximum information preservation is required. In map generaliza-
tion, the stringency of desired preservation is varying according to the use case and
the scale gap. Therefore, a network with an adaptable level of preservation could
also be bene�cial.

Transferability Deep learning is trained on a set of examples, its ability to be
applied to other situations is called transferability3. This ability is really important
in the case of geographic data, where we want to apply a model train in a geographic
area to a large region sometime in another country. Moreover, application to other
map scales and styles can be hopeful if the model has good transferability. This
problem traditionnaly exists in other map generalization process (Touya 2011).

Spatial-ability Most models are not designed especially for spatial data. An
encouraging characteristic would be that the model already solved spatial problems
i.e., problem where the localization and geometry of the data have an important role
in the problem solving. In the absence of such a test, it does not mean that the model
cannot deal with spatial data, but the spatial ability cannot be evaluated. Then,
some networks are designed especially for geographic data and include elements

3Generalization-ability can also be used to describe this notion but in this thesis, we prefer
transfer-ability to avoid the confusion with map generalization.
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to improve this ability. For example, Deng, Tian, and Newsam (2021) propose
pooling methods that take into account the �rst law of geography to aggregate data
from an image during convolution. They propose to replace the max-polling in
the convolution layer with Gi*pooling adapted to geographic data. This pooling
selection takes the interpolated value at the center location of the windows and thus
depends on the spatial cluster (Figure C.11).

Figure C.11: Comparison of max pooling and G*pooling create di�erent given a
feature map as an input (from Deng, Tian, and Newsam 2021).

Variability Some models are more or less deterministic (especially image genera-
tion models). An important variability is particularly adapted for the use case where
several di�erent predictions can be good and, in the end, the user choice is suitable.
This can be the case for map generalization, e.g., in a perspective of generalization
for on-demand mapping, users can prefer one variant of a map. However, this vari-
ability is also a limitation for model evaluation, and if the reconstruction/assembly
of consecutive image tiles is required, the homogeneity of predictions can be required.

Gluttony On one side, models have di�erent learning data requirements; some
need thousands of examples to learn, while others need only hundreds. On the other
hand, map generalization tasks also have di�erent numbers of possible examples. For
instance, the detection of ring roads, for simplifying their generalization cannot be
performed using a model that requires a large amount of examples as such structures
are rare in maps, and few-shot models may be most adapted (Potié, Mackaness,
and Touya 2022). However, for map generation, numerous maps exist, and even a
gluttony model can be adapted. Therefore, the gluttony of the chosen model must
be adapted to the generalization task.

Adapting a model

In the previous section, we describe methods to ensure that a chosen network is
adapted for map generalization. However, in reality, it is not probable to �nd a model
that meets all our criteria and has no speci�c limitation. Thus, the development of
an improved or adapted network may be required. In this section, we explain how



64 Chapter C. Designing a framework for deep learning based map generalization

we can adapt a model by successive modi�cations of an existing model. In particular
we can propose adaptation of the following elements:

� Settings The �rst adaptation for a model is to manage its settings (choos-
ing an initialization, optimization methods, and a number of epochs). These
adpatations may a�ect the convergence of the model.

� Neurons The type of the neuron have an important role in the e�ciency of
the network, indeed it is the manner the input is transformed into output in
each layer. For instance, the introduction of convolutions and the reduction
of kernel size have greatly improved the deep learning potential to deal with
images. We can apply some improvements, such as the pooling proposed by
(Deng, Tian, and Newsam 2021) to the chosen model. Finally, a di�erent
choice of activation function can be made and allow a more e�cient passing
of information.

� Structure The depth (number of layers) and the number of neurons in each
layer must be adapted to the desired use case: the more abstraction required,
the more layers would be needed. The denser the information to encode, the
more neurons would be needed.

� Combine models The combination of several elements from di�erent models
is the simplest way to take advantage of models with di�erent abilities. For
example with an adversarial approach or by including other network compo-
nents or modules such as fusion (Haz�rba³, Ma, Domokos, and Cremers 2016)
that encode and fuse separated inforamtion, skip connections (Ronneberger,
Fischer, and Brox 2015) that link the encoding and decoding path, etc., can
be used to create links between layers and create a more adapted model.

� Loss The change of the objective function for a more adapted loss function
could �nally improve the model (see C.1.4)

In Part II we describe experiments that include the choice, comparison, and
some adaptation of deep neural networks for map generalization. In particular, in
Chapters E and F, we provide a comparison of some models for generalized shape
prediction and generalized map generation. Chapter E includes a study of the most
adapted setting. Then, Chapter G proposes an adapted model for generalized map
generalization, constructed by the combination and adaptation of neurons from ex-
isting models. However, the goal of these experiments is not to design the most
adapted model, but rather to show the potential of an approach, and the time dedi-
cated to each experiment was limited; so we did not experiment with all adaptations
mentioned here.

C.1.4 How to choose a relevant learning objective for map

generalization

The loss function is a function that summarizes a set of variables (here the predic-
tion) into a real value that represents the error of this set, it aims to guide learning
and is the function optimized during the training. The choice of a loss function
depends mainly on the architecture and the dataset. It can be a combination of
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several measures (e.g., GAN loss is the sum of the adversarial loss and the distance
L1). To demonstrate the interest of such custom learning objectives for a deep neu-
ral network, an ablation study, that compare model with and without the term is
necessary. In this section, we present some loss terms for image based approaches
that can be helpful to map generalization (formulation from B.1.1).

Adapted distances

First, we have seen that the comparison of images at pixel level (like in L1, L2 and
Dice measure, see Figure C.6) is often not adapted. This paragraph presents some
losses that are not based on the pixel value, but rather compare the target and
the prediction globally. A such comparison would encourage the credibility of the
prediction.

Style losses In general, style losses from style transfer experiments are designed to
deal with high-frequency similarity and are more appropriate for map generalization
than local losses. For instance, (Ganguli, Garzon, and Glaser 2019) propose a style
loss for map images that compares the gram matrix of the prediction and the target.
The gram matrix is obtained by multiplying a matrix by its transpose, this matrix
encodes the aspect of the image and "hide" its content. The distance is a mean
square di�erence, but since it is computed on the gram matrix and not on the image
itself, it allows us to compare the aspect of the map independently from the content
concordance. This style loss has shown the potential to understand and apply a
map style to geographic information. As map generalization is not only a map style
problem, some may state that the interest of the loss is limited. However, it does
not measure the di�erence in the map style, but rather the di�erence in the image
style. And this measure includes some characteristics of scale adaptation (e.g. the
level of granularity or smoothing of the content is a part of the style loss and more
a scale adaptation than map style elements).

Patch-based loss Moreover, some losses can be based on a distance calculation
at the patch level. Patches are small portions of pixels from an image (e.g. a
windows of 24 pixels). Isola, Zhu, Zhou, and Efros (2017) propose a discriminator
for their GAN (patchGAN) that is computed at the patch level instead of predicting
similarity at the pixel level. A second example is the spatial correlative loss (Zheng,
Cham, and Cai 2021), based on patches. It computes for each patch the relation
of each pixel with the center point of the patch and compares these values for each
center point of the prediction and target. This comparison allows us to compare the
position of object on map and thus spatial structure of the image. In the case of
image generation, it leads to better preservation of the global shape of the presented
object. In the case of a map, it can be e�cient to evaluate if the empty and �lled
spaces are similar. It may be adapted for map images with a main structure that
does not varies much, such as thematic maps or large-scale maps. However, it is not
relevant when the contour of the object in target and prediction vary a lot, as in
our map generalization experiments during our exploration.

Distance loss Another proposed approach to encourage GANs convergence is to
compare the distance between two images in the training set (Benaim and Wolf
2017). This distance must be similar before and after the transformation. It has
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the advantage of giving an indication of the credibility of the prediction in an unsu-
pervised way and without relying on reconstruction. However, map generalization
is not a homogeneous transformation, the generalization of some part of a map may
involve a big di�erence while in other part the input and generalization are really
close. Thus, this loss does not appear to be adapted for most map generalization
tasks.

Preservation measures

The loss function can also be used to measure information preservation. The prin-
ciple is to compare the input X and the prediction Ŷ ; the more similar they are,
the more the input information is preserved. In traditional map generalization, in-
formation preservation is an important constraint and we expect this constraint to
be met even with deep learning based map generalization.

Content loss In style transfer, the content loss aims at preserving the image
content, and in GANs, the identity loss computes a distance between the input and
prediction. In the case of map generalization, such a measure is important as the
main information has to be preserved. The choice of the similarity measure for this
term has similar issues with the comparison between prediction and target, as we
do not want to learn a pixel similarity, but rather a global similarity: the main
geographic information has to be preserved. Therefore, a patch-level or structure-
level measure would be preferred to pixel comparison.

Connectivity loss We proposed a connectivity loss in our experiment on moun-
tain road segmentation. It compares the connectivity of the road network in the
input and the predicted image. This connectivity is approximated by the number
of pixels on the road and in the background. In fact, these quantities are a�ected
by alterations in the structure of the road network (Figure C.12).

Figure C.12: Example of alteration of the connectivity of the road network and
number of set of background and roads.

This loss aims to penalize changes in the connectivity of an image. The formula
is given in (eq. C.11): it sums up the absolute di�erence between the number of
sets of pixels of objects of interest (road) and the number of sets of background (not
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road). A detailed comparison of the interest in this loss is given in Chapter E.

Lconnectivity(X, Ŷ ) = EX
|nback(X)− nback(Ŷ )|+ |nroad(X)− nroad(Ŷ )|

nback(X) + nroad(X)
(C.11)

Topology loss The topology loss from (Chen, Chen, Xu, Yin, Peng, Mei, and Li
2020) is based on the gradient of the image (Figure C.13). Instead of calculating
the distance, the Pearson correlation is computed between the gradient image, this
correlation measures to what extent the value of the gradient in the input determines
that in the output. Thus, this measure is interesting for comparison of salient areas
in the image, such as the urban block that must remain the same befor and after
generalization. We tested this measure for the generalization of building shape but
it is not relevant, as the gradient image of two generalized building groups is too
di�erent due to displacment and simpli�cation.

Figure C.13: A 256Ö256 Google map tile and its 255Ö255 gradient map (from Chen,
Chen, Xu, Yin, Peng, Mei, and Li 2020).

Map characteristics-based losses

We can imagine an objective that evaluates whether the image is a map (and even
a good map) or not. The goal is not to provide a unique function for map gen-
eralization evaluation (if we could, deep learning would not be useful, and map
generalization automation no longer remains a challenge). The goal is to encourage
the prediction to follow of desired cartographic rules.

For example, since cartography is a transformation insensitive to rotation, (Fu,
Gong, Wang, Batmanghelich, Zhang, and Tao 2019) proposes a loss that encourages
this characteristic by comparing the prediction of rotation of an image with the
rotation of the prediction. This loss has shown interest in the generation of maps in
the style of Google Maps. Interest in this measure for the generation of generalized
topographic maps is tested in Chapter F.

Moreover, in map generalization, it is quite easy to identify places that require a
�xed generalization and places where the generalization varies more. Thus, we could
use a spatially weighted loss. Indeed, in Chapter F we propose employing such a
mask for building generalization: an error in this area is more important and "costs
more" than in other areas.
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C.2 Designing a good training dataset

Deep learning models learn from examples. Examples are organized in a dataset
that contains at least examples of the input and target data. The creation of an
e�cient training set is a critical point in learning success. Even the most powerful
model could be totally useless if it is trained with non-relevant data. In this section,
we present what an adapted training set is and how to create it.

C.2.1 What is an e�cient dataset?

During the training phase, several batches of examples are used to optimize the
weight of the models. During this phase, some unseen examples can be required to
verify the model progresses and is not over-�tting. The validation set is a subset
of the dataset not used to train the model; however, the model is applied to each
example in this set after each epoch and the evaluation is calculated. It is used to
determine the number of epochs required during training. Finally, during the test-
ing phase, another set of examples (test set) is used to fairly evaluate and compare
models. Thus, the dataset is generally divided into three image sets: the training,
validation and testing sets (Figure C.14). This separation is not strictly regulated
and must be adapted to the complexity of the model (the more parameters, the
more validations are needed) and the total size of the dataset. Finally, each set
must at least cover most of the situation expected. For example, in the case of map
generation, the train, validation and test sets must contain images of maps with
di�erent land uses (urban and suburban, and rural map image, etc.) and di�er-
ent landscapes (mountain, forest area, coastal area, etc.) since all these situations
involve di�erent cartographic knowledge.

Figure C.14: The partition of the dataset for deep learning.

Characteristics of an e�cient dataset

In machine learning, the relevance of a dataset is based on the quality, quantity, and
diversity of the examples.

Quantity The number of examples in deep learning is often a critical point. There
are several methods to arti�cially increase the number of examples (e.g., image aug-
mentation see Figure C.15). Image augmentation consists in adding new examples
derivated from real ones by simple geometric or color transformation. However, this
augmentation is not always relevant for map generalization. For instance, the crop-
ping and scaling changes the scale of some of the images, and in map generalization,
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the objective is to learn scale relativ characteristics. Similarly, all color augmenta-
tions are only relevant for natural images like photographs, but not for maps, where
each color have a particulare meaning.

Figure C.15: Illustration of the most common image augmentation in deep learning
applied to an image of a mountain road.

Diversity If a training set includes only similar examples (e.g., only a sleeping
cat or a map of an urban area), the model will not be able to be applied to other
situations (e.g., a walking cat or a rural map). However, it is not possible and useless
to constitute a dataset that includes all possible individual situations4. Furthermore,
the more similar the situations in the training set are, the simpler the model would
be and the faster it would converge. Thus, it is necessary to �nd a balance in which
the dataset is representative of most of the situations we expect the model to be able
to deal with and gives enough examples of each situation to allow learning. Finally,
the dataset should avoid being really unbalanced, unless the model may apply the
knowledge learned in a common situation to other situations. For example, if our
dataset includes mostly smooth roads and few sinuous roads, the model may not
be able to generalize a series of bends. To measure the diversity of images, we
can compare statistics on images (e.g., clutter); however, it is often not su�cient
to describe the diversity of represented situations. This diversity depends on the
object and the task. Indeed, evaluating the diversity of an image set of cats is really
di�erent from evaluating the diversity of map images. For cat diversity, we can
study the number of di�erent scales, cat positions, or cat breeds. For a map, we
consider rather a diversity of landscape, landuse, map style, map scale, con�ict and
map content.

Quality If an example contains errors, the model could learn to reproduce these
errors. Moreover, a pattern must exist to be learned: If there is no consistency
between the input attributes and the output in the example, learning is impossible5.
This means that to be qualitative, the input must contain the necessary information
to learn the task (map generalization). For example, the nature of the road (high-
way, national, regional or local) is required for road selection. Many useless or not
relevant information may confuse the learning and hide the real target knowledge.

4If all individual situations are in the training dataset, the model has no more situation to be
applied on.

5In the case of image-based deep learning the attribute are pixel values in Red, Blue, and Green
(RGB) channel.
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For instance, if the image includes rivers but they are not used for road general-
ization and not generalized themselves, this may make the learning of road shape
generalization complicated. Finally, the information must be comprehensive. For
instance, images with too small resolution are not comprehensive, and the shape of
the un-generalized road is coalescent, so the model cannot grasp it and generalize it.
Thus, the quality evaluation of a dataset cannot be summarized as the evaluation
of the quality of the target generalization; it must evaluate the comprehensiveness,
relevance, and consistency of the dataset. For example, a dataset composed of gen-
eralization example performed with di�erent constraint and operators may miss of
consistency and the model may be unable to learn any rules.

Dataset creation

A deep learning dataset must be an example set that represents the target task
(Bengio, Courville, and Vincent 2013). The main steps for the creation of the
training set are the following.

1. Location We need to choose a study area (where the model takes examples)
and an area of interest (where the model should work). This choice is impor-
tant because it de�nes the scope of the model. However, this is often not a
real choice, as the area in which we have various, qualitative, and annotated
data can be limited.

2. ContentWe have to determine the content necessary for the generalization of
the map. The deep learning approach can allow us to understand the implicit
knowledge in the data; however, we have to make sure that this information
is in the data (and if not, perform the necessary data enrichment). On the
contrary, unnecessary content must be avoided as much as possible to simplify
learning. For example, for road shape generalization at small scales the model
must contain the shape, location and importance of roads but not the shape
of rivers (in case where they are generalized independantly).

3. Representation We need to choose a representation for input information
that can be used by a deep learning model (see Chapter B). The correct rep-
resentation of vector information in other forms is a challenge. For example,
objects in the vector database have relations, and the image representation
must show this relation. However, the raster cannot encode relations, espe-
cially when objects overlap. Humans are able to see the whole even if a part is
hidden due to Gestalt principles of visual perception, which may not be cap-
tured by current deep learning models. Thus, if a road crosses a river through
a bridge, a human will see the river as a line, while the pixel at the cross is
not a river at all, and the image represents two disjoint parts of rivers. This
loss of information can be misleading, and the model will learn that a river
can be discontinuous.

4. SplittingWe have to separates the dataset into examples (e.g., image tile, sub-
graph, etc.). The study area is divided into several examples. This separation
or tiling is an issue. In fact, each tile must have the relevant level of detail
to allow for generalization. The question of the relevant level of analysis and
context for a generalization task is even common with vector approaches (Ruas
1999). How to separate the study area into relevant tiles? For example, to
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generalize a road, it is more practical to see the entire stroke (Thomson and
Richardson 1999).

5. Re�nement Re�ning the training set to improve quality, quantity, or di-
versity. This re�nement step can include �ltering to remove some un-relevant
examples or correct an unbalanced dataset, and, on the contrary, data augmen-
tation can be applied to increase the number of examples in some situations.

In the next section, we present and discuss some examples that apply these steps
to create learning dataset.

C.2.2 An example of an image dataset for shape generaliza-

tion

In this section, we will detail an experiment on the creation of an image set for the
use case of mountain road shape segmentation at 1:250,000 scale.

Area of interest

For this �rst experiment, we mainly used data covering a small portion of the French
Alps (2155 km2). The input is an extract from the database used to create topo-
graphic maps at 1:25,000 scale at IGN. The generalized dataset is an extract of
the database used to create a map at 1:250,000 scale at IGN. It only represents
important roads, and their shapes are simpli�ed, smoothed, and often schematized
for better visualization of the sinuous bends. It was derived from the detailed one
many years ago using generalization algorithms with the GALBE process (Mustiere
1998), and then manual updated.

We also include examples from Corsica, where mountain roads are more uniform
and thinner (there are fewer highways and national roads and more local roads).
These examples were used to test the impact of increasing the number of training
data, and the e�ect of the chosen study area. Our �rst test shows that the dataset
in the Alps is more adapted than the one in Corsica due to the less diverse situa-
tions and the thinner roads that make learning di�cult6. Finally, we constructed
a similar small dataset in another important mountain area in France to test the
transferability of our model (this experiment is detailed in Chapter H). It includes
roads in an other part of the Alps, in Corsica, in Jura, and in the Pyrenees.

Tiling

The study area is separate in tiles. We propose two tiling methods (presented in
Figure C.16): tiling using a regular window that slides into the study area or using a
window centered on each object. To complete the overview of possible tiling methods
we can mention Du, Wu, Xing, Gong, and Yu (2021), who proposes a third tiling
method illustrated in Figure C.17.

For the window approach, we choose an image resolution (number of pixels),
a cartographic resolution (ground size represented by each pixel), and a step for
window displacement between two tiles. The image resolution in�uences the image
legibility and the calculation time, as more pixel have to be processed. The carto-
graphic resolution also impacts the legibility but also the size of the ground in the

6We compared datasets of the same size and created with similar processes.
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Figure C.16: The two proposed tiling methods. Left: the sliding windows. Right:
the object's shell.

Figure C.17: (Du, Wu, Xing, Gong, and Yu 2021) tiling methods.

image, and so the level of analysis: with small pixels, the image represents a small
portion of terrain really precisely, so it is able to learn a thin local transformation
but not a global generalization (see Figure C.18). Finally, the step mainly changes
the number and diversity of the examples.

Figure C.18: Example of two tiles with di�erent cartographic resolution.

The object method centers the tile on one road object, the maximum image size
is de�ned, and if the object is larger than this size, it is resized to be completely
encased in one tile. This method ensures that the road is completely visible during its
shape generalization. However, the rescaling is confusing because we want to learn
tasks that are scale-related. This method requires us to de�ne an image resolution
and an object size at which a re-scaling is needed.

For the last method, the tiles follow the axis of the line. This method allow
simpler tiles, however, it cannot be applied to our use case where the road line is
part of a complex network and the junction of the objects is as important as the
central shape.



73

To choose the relevant tiling methods and parameters, we compare several con-
�gurations, presented in Table C.1. This quick test allows us to choose tiles created
using the windows method with a cartographic resolution of 2.5 km.

Table C.1: Comparison of several methods and parameters for the creation of a
mountain road shape generalization dataset (+: good, -: bad, �: very bad).

Method QuantityDice IOU Visu

Window 2.5 km 560 0,2 0,3 +
Object 2.5 km 687 0,05 0,1 -
Window 1 km 2128 0.05 0.1 �
Windows 5 km 182 0,3 0,4 -

Content and representation

We choose to include information on the position, shape, and nature of the roads.
The nature of the road indicates the future symbolization on the map and impacts
the level of generalization required: the more important road will have a larger
symbol and require more important generalization. Table C.2 de�nes the number of
pixels in the image for each type of road. The proposed width of the road allows the
shape of the road to be large enough to learn the continuity and to be informative
about the importance of the road; however, it is not small enough to avoid all the
coalescence of the shapes, and the shape of the input road is sometimes not legible.
Nevertheless, our �rst experiment with several scales of symbol (from 1 to 1, from 1
to 3 pixel, and from 1 to 5 pixel) shows this symbolization to be the best compromise.

Table C.2: Conversion table road nature and width on map-like image.
Width
in pixel

Symbolization
at 1:25 000

Attribute values translation at 1:250 000

1 5 Irrelevant, forbidden, local narrow roads
2 4 Regional roads and narrow regional roads
3 3 Regional roads with bike path
4 Ø Major roads
5 2 Highway

We �rst tested learning with a dataset that includes all roads in both the in-
put and output; however, as the scale gap is important, the selection in output
is important, and our dataset does not include the necessary information for this
selection. Moreover, our goal in this experiment was to learn shape generalization
(displacement, bend simpli�cation, schematizing, enlargement, etc.). So, such a
dataset is irrelevant, the input and output are really di�erent, which is confusing
and unnecessary. Then we pre-process the input data to include only the road kept
after generalization in the input image. This pre-process is done using a multi-
criteria data matching algorithm (Olteanu-Raimond, Mustière, and Ruas 2015) and
re�ned manually to match both scales. Figure C.19 illustrates the interest in the
pre-process.

Our idea was to �rst compare the training with images of all roads in our area
and only the sinuous road, to show the interest of a more restricted dataset for a
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Figure C.19: Comparison of prediction a: with and b: wihtout selection.

really speci�c use case. However, our dataset does not include enough roads for
this experiment. Finally, the shape of the road also depends on its environment,
especially topography and hydrography. We also trained a model with a variation
of this training set that includes the rivers' shapes. This experiment is discussed in
Chapter E.

Re�nement

We tested several re�nement methods, especially the �ltering of training set to
remove unrelevant examples, and several data augmentation methods. Table C.3
compares the di�erent proposed datasets. The quantity column gives the number
of examples in the dataset. The e�ciency of a dataset is described via a visual
evaluation and quality measures including the intersection over union and Dice (for
both these measures a grater value indicates a greater quality of prediction).

Table C.3: Comparison of the quality of several datasets for the generalization of
the shape of mountain roads (+: good, -: bad, �: very bad).

Method QuantityDice IOU Visu

Win 2.5 km 560 0,2 0,3 +
Win 2.5km �ltered 284 0,1 0,2 -
Win 2.5 km rotation 1120 0.2 0.4 +
Win 2.5 km crop 1120 0.3 0.4 �
Win 2.5 km without selection 560 0,1 0,2 -

We observe that our dataset is not large enough to �lter out some of the examples.
Moreover, increasing the data does not seem to improve the quality of the prediction.
Indeed, such increases do not improve the diversity of examples in the dataset, which
is the main lack of our dataset.

C.2.3 An example of an image dataset for map generation

In this section, we will detail some options tested for the creation of an image set
for our use case of urban map generation at the 1:50k scale.

Area of interest

In the case of the map generation experiment, we used an area of 30 * 15 km
east of Saint-Jean-de-Luz in the south-west of France. We have an intermediate
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generalization in this area from the work of (Touya and Dumont 2017). This area
includes a few urban areas and mainly peri-urban and rural situations, on the land
and on the coast.

Tiling

We split our area using a sliding window. Each tile represents 500x500m² of ground
and has a size of 512x512 pixels. This resolution allows one to avoid the most
important object overlapping in the input image while showing a large portion of
the terrain of a few small urban blocks, which is the minimum necessary context to
perform building density reduction, in our opinion. This tiling is not related to the
data; thus, there is no guarantee that it is relevant, especially, since each tile can
su�er from the border e�ect. For instance, the limits of the tile can hide important
information (the end of a dead end, the dense part of a dense block, etc.).

For this use case, we did not experiment with di�erent tiling methods. However,
a more �exible method could be possible, for example, based on Huang, Zhao, and
Song (2018) methods to produce tiles completely included in an urban block. This
tiling method use the point of the skeleton of map block as center for processing
unit (images), it was proposed to improve the land use classi�cation of these blocks.
To apply such a method, regular blocks are needed, which is not the case for our
dataset.

Content and representation

We choose to represent water, roads, and buildings, as they are the main themes in
topographic maps at this scale. The input image is made from data from the BD
TOPO®, the vectorial database of french spatial infrastructure produced by IGN
and use for topographic map with scales between 1:2 000 and 1:50 000. The target is
a generalized map obtained using semi-automatic generalization on the input dataset
for cartography at a 1:50 000 scale (Touya and Dumont 2017) completed with som
manual corrections. Both vector datasets are symbolized in a topographic map style
and rasterized.

We represent roads with an outline in input and target representations. The
outline enlarges the road symbol and makes learning simpler (because thin linear
object are traditionnally hard to preserved). Moreover, this representation allows
us to verify that our model is capable of understanding and producing complex
symbolizations. During generalization, the road network is selected. Small and
local roads are removed. The selection requires a deep understanding of the context
of the map image and object attributes. To test whether just the image is enough
to learn this change, we constructed a version of the dataset with and without this
selection.

The buildings are symbolized in brown. We test both with and without outline;
the outline allows us to show the limits and real shape of the building and so avoid
losing this information in case of overlapping; however, it enlarges the shape of
the objects and so increases the risk of overlapping; moreover, it adds information
in an already dense area and so brings confusion. A quick test shows that the
symbolization of the building outline is not relevant. We tested and compared the
dataset constructed from data generalized using both AGENT method (Barrault
et al. 2001; Touya and Dumont 2017) and Typify method (Burghardt and Cecconi
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2007). This comparison has shown that the model can also learn to reproduce each
generalization method (a comparison of the prediction for both methods is presented
in Chapter F).

The output vector dataset also includes graying: some dense areas of the city
center are generalized using a gray area instead of buildings. This symbolization has
some defaults: the color used in the topographic map for the center line of the road
and the graying is close; however, for the model, close color means close value, which
means related objects. This proximity of colors leads to confusion during learning
and a more distinct symbolization may be required.

The hydrography includes surface polygons of water and river polylines symbol-
ized in blue with �xed width and without an outline. The generalization of this
theme is less important: some lines are smoothed, and small water surfaces are
removed.

C.2.4 A proposal for a better representation of geo-information

in images

Both this use case and the literature review have shown that the creation of an
image dataset is a problem, even if the representation of geographic information on
a map-like image seems natural. In this section, we present our proposal for the
representation of geographic information in tensors to form an adapted training set.
This model is applied to the use case of topographic map generation, and its interest
has been demonstrated for this use case. However, we made it generic and easy to
apply, and we think it could be as bene�cial for other use cases.

Problems of naive solutions

The naive solution to create a map generalization image dataset is to represent in
the input an image of detailed geographic information and in the output an image
representation of the generalized geographic information, with the same input and
output size (as we do in C.2.3).

Figure C.20 illustrates some naive solutions for learning cartography tasks based
on images. The examples in line 1 are created by tiling a map-like image (Google
map for the target and Google aerial image for the input). However, the chosen
resolution is not su�cient to make the example set comprehensive, so the lines and
thin objects are not legible and imprecise in the prediction. those at line 2. are
our naive dataset for map generalization (presented earlier). This dataset reveals
another drawback on quality: the target generalization contains many errors, the
representation is also in-adapted as much overlapping produces a loss of information
and essential information is missing (e.g., the road importance for road selection, or
the city center limits for block graying). In line 3, the input is OSM data presented
in a raw style (minimal symbolization); the output is a GoogleMap tiling. The
representation includes comprehensiveness problems. The resolution is not su�cient;
di�erent objects are too close and too similar, and the model does not understand
how to di�erentiate them and eliminate them. In fact, this lack of comprehensiveness
is due to symbolization problem (building outline and minor road have the same
symbol and are confused), consistency problems (some important roads are
symbolized with two lines and the other with one, the labels are not in the input,
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so cannot be produced in the output), and relevance problem (the input contains
un-relevant confusing objects).

Figure C.20: Some examples of naive geographic information representation for
cartography learning, from 1) Kang, Gao, and Roth 2019, 2) our experiment.

A hierarchy in information representation

We propose a representation of vector geographic information for image-based map
generalization based on two tensors: one representing the main geographic informa-
tion (i.e., object of interest shape and position) and one representing all additional
information necessary to map generalization. This hierarchy is an original proposal
for map generation, inspired by the work of (Haz�rba³, Ma, Domokos, and Cremers
2016) about combining scene photograph and depth map to learn indoor scene seg-
mentation. In this study, the photograph is the main information; the segmentation
is constructed from this information, it contains information about object position
and shape; however, the depth map gives additional information that improves the
segmentation. The �rst tensor, rather than a simple rasterization of the symbol-
ized data, is the stack of masks of position and shape of geographical. Then an
adapted model allows us to e�ciently combine both information. This separation is
also relevant for the perspective of map generalization, where the object shape and
location are the base information for map generalization (the main goal is to avoid
con�icts and preserve content), and then additional information serves to precise
the generalization process. The two tensors are organized so that units in the same
position in each layer describe the same part of the terrain (Figure C.21).

Main information representation

We propose to represent the main information provided by layer rather than sym-
bolized in RGB. A binary mask of the shape and location of the object is provided
for each layer of the input map object. The masks are stacked in the input tensor.
This representation of the main information no longer requires symbolization and
is free of symbolization bias. Moreover, the loss of information in the case of an
overlap there is limited, and similar objects are in the same layer, so groups are
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Figure C.21: Organization of the geographic in tensor for map generalization.

easier to identify. Figure C.22 illustrates this representation for our use case of map
generation. However, the number of themes stacked is not limited to three. One of
the inconvenient features of this representation is that the visualization for humans
is less convenient than the symbolized representation.

Figure C.22: Example of symbolized and layered representation of geographic infor-
mation.

Enrichment tensor representation

The main information alone is often not su�cient to generalize the map. Map
generalization, often require data enrichment prior to the generalization, we think
such information is also needed in deep learning based map generalization. Indeed,
even if deep learning models are able to use implicte knowledge in the data, the data
respresentation (especially as image) often hide some information. Mostly, semantic
attributes and context are needed and may be missing. We propose to create another
image stack that contains the information for data enrichment. The representation
of additional information varies depending on the nature of the variable we want to
represent.

Binary variable For a binary variable (e.g., the block is in the city center or not,
the road section belong to a round about or not, the road is a dual carryage way
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or not, etc.), a simple mask with the presence (true) value is a good representation
(see Figure C.23).

Figure C.23: Example of representation of the binary information location of city
center with a black and white mask.

Quantity variable or ordered category For a quantity variable (e.g., sinuosity
measure, density measure, etc.) or ordered categories (e.g., Horton order, ranking of
city population, etc.), a simple pixel mask in the entity is a good representation (see
Figure C.24). We normalize the value to be between 0 and 255, then the normalized
value is the level of gray for representation of the enrichment tensor.

Figure C.24: Example of representation for an ordered categorical variable.

Un-ordered categories For unordered categories (e.g. building type), one mask
per category is required; this solution avoids the symbolization problem of the col-
ored image representation and the false order problem of the grayscale representation
(see Figure C.25).

The improvement brought about by this proposal and several additional infor-
mation is detailed in Chapter F.

C.2.5 Two example graph datasets for learning spatial rela-

tions

The interest in choosing the relevant representation of spatial information within
a graph for deep learning has already been demonstrated (Iddianozie and McArdle
2021). In this section, we present how we design a graph dataset to test the ability of
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Figure C.25: Example of representation for a un-ordered categorical variable.

a graph neural network to deal with spatial relations, and we especially constructed
a dataset for road selection and one for alignment detection.

Ailgnement detection

For the alignment detection dataset, we extracted almost 10,000 buildings from
OpenStreetMap in urban and suburban residential areas of the United States of
America, where buildings are organized in a regular way7. We constructed a relation
graph that links the building in each urban block. We manually annotated the links
as part of a curvy-linear alignment, part of a straight alignment, or not part of any
alignment (Zhang, Ai, Stoter, Kraak, and Molenaar 2013).

Representation as relation-graph In map generalization, proximity graphs are
often used to analyze urban structures (Regnauld 2005). The structure can be
constructed from the center point of the objects or from another set of points (e.g.,
vertex). We choose to use center points because they involve a smaller amount of
information redundancy and simpler structures. It also simpli�es the reconstruction
of alignment after learning.

The chosen graph structure must contain all necessary relations for alignment
detection but exclude inconsistent links that confuse the learning. Moreover, the
graph must be easy to split into examples, so a big graph of all relations is not
relevant) and we chose to make one graph by city block. A such separation is
relevant in urban areas but not in suburban and rural areas, where block can be
really large. The construction of a proximity graph constrained by the road network
is also a solution to the more relevant relations in the examples.

We examine variations of Delaunay triangulation (DT) (Figure C.26). DT is a
triangulation that links objects in adjacent cells of a Voronoi diagram; it gives a
more complete view of the proximity between buildings, but not all edges of this
graph are necessary to identify alignment structures. Relative neighborhood graphs
(RNG) connect the nodes that are at least as close to each other as they are to any
other points (Toussaint 1980). However, some edges that are part of the alignment
are often missing from the RNG. We consequently propose a proximity graph that
�xes this problem based on RNG and re�ned by adding the edges of DT that are
short enough, following the criterion proposed by (Bader, Barrault, andWeibel 2005)
to enrich the graph by important edges. This criterion is based on the comparison
of distance between building and cost to travel between them through the graph.

7We �rst experimented with datasets in France but the very low occurrence of clear alignments
in the landscape makes the dataset too unbalanced and learning impossible.
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Figure C.26: Di�erent proximity graphs in a simple situation of two parallels align-
ment perturbed by a building without relation.

The graph obtained consists of 13993 edges labeled no alignment, 2976 edges la-
beled straight alignments, and 2010 edges labeled curvilinear alignments. An extract
of the input dataset is presented in Figure C.27.

Figure C.27: Extract of the annotated graph for aligement detection.

Content enrichment The relation graph of the center point is not enough; the
relations and the building must be characterized with attributes. Thus, we �rst
characterize the relations between the building (see Figure C.28 and the explanations
below).

Figure C.28: The characteristics and context of proximity links.

The length of the link represents the distance between the center points of
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the buildings; it re�ects the strength of the proximity relation, however, it should
be considered according to the size of the buildings (a large building would have a
longer link). The distance between buildings does not have this bias, as it computes
the minimum distance between the two buildings; however, it can be inconsistent
in the case of a complex building with a long outgoing indentation. Finally, the
combination of both attributes is the best description of the proximity strength
between buildings and is essential for alignment detection. Both these measures are
expressed in meters. The context information is related to the closest road because
buildings are generally constructed along the roads (or served by a road depending
on the point of view) and an alignment thus often is along a road. The closest road
relative orientation is the angle formed by the segment that connects the centers
of the two buildings and the tangent of the road at its closest point to the segment.
This angle is given between 0 and 90° because the side of the angle is meaningless.
The closest road distance is calculated between the closest point of the road and
the segment that represents the link. It represents the relevance of the angle (the
more roads are far, the less relevant it is to use the angle to determine whether it is
an alignment).

Then, we introduce some attributes about the similarity relation of the two linked
buildings for each possible alignment (see Figure C.29 and the explanations below).

Figure C.29: Attributes that describe the di�erence or ratio of related buildings.

Buildings perceived as aligned often look similar, and thus have a similar shape
descriptor; we choose to include a measure of three common shape descriptors:
area, elongation, and orientation. The elongation of one building is the ratio
between its longest direction and its shortest direction; thus, for each building, we
computed a rectangular bounding box, and the elongation is the elongation of this
bounding box. We use a similar structure for orientation, the orientation is the
orientation of the building bounding box (Duchêne 2003). Thus, our measures of
orientation and elongation are only relevant in the case of a quite regular building;
however, in general, and in particular, in our dataset, the alignment mostly concerns
the buildings with quite a simple shape. Once the indicators are calculated for
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each building, it is the relation between these values for two adjacent buildings
that interests us; we can characterize a link by a measure of the distance of these
attributes; the two obvious distances are the absolute di�erence (eq. C.12) and the
ratio (eq. C.13). For X an attribute of building A and B.

D(X) = |XA −XB| (C.12)

R(X) =
|XA −XB|
XA +XB

(C.13)

The di�erence is not bounded; it simply measures the gap between two values.
The ratio allows us to compare the gap between values relative to their magnitude
(i.e., a di�erence of area of two square meters is less important when the buildings are
large). We choose to use the ratio for the area. However, in the case of orientation
and elongation that already are bounded and where the sum is meaningless (e.g.,
the sum of building elongation is not the elongation of the set of both buildings),
the absolute di�erence is preferred.

Finally, we calculate the facing ratio (from Wang and Burghardt 2019). This
measure takes into account both the relative position and orientation of the build-
ings. It measures how buildings face each other: it is the maximum intersection of
the projection of the rectangular bounding box of the building on the orthogonal
marker parallel to each bounding box, divided by the union of the projection. The
aligned buildings usually have a large facing ratio, while the non-aligned buildings
usually have a small facing ratio.

Road network selection

Our dataset for road selection consists of roads from a map at the 1:25,000 scale and
their generalization at the 1:50,000 scale in urban, suburban, and rural areas. In
this experiment, geographic information is organized in a network; its representation
as a graph is natural. The detailed road network contains 12,837 edges, 55% that
should be kept, and 45% that should be deleted in its generalized version.

Content enrichment The graph itself is not su�cient to learn the proposed task.
In fact, the selection of the road section is a mixture of its role in the road network
and its attributes (e.g. nature, width, etc.). Moreover, the graph also misses some
information on the structural role of the road in the network (e.g. stroke, i.e., set of
continuos road section that may form a unique road for an human user). Thus, we
chose to characterize the edges of our graph with the following attributes.

� Segment or line length

� Importance: an ordered category from this initial database for the symbol-
ization on the map, derived from width and nature.

� Stroke length: measure the stroke to which each link belongs; the stroke
is often a more relevant level of analysis for road selection (Thomson and
Richardson 1999).
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� Betweeness centrality(Jiang and Claramunt 2004): measure the number
of shortest paths between two pairs of nodes that use each section. This
centrality measure is really important to determine the usefulness of a section
in a transportation network, and contrary to other centrality measures (e.g.
degree centrality and closeness centrality), cannot be handled by convolution
on the graph (as de�ned in GCN).

� Face size: measure for each face of the network its size and report for each
edge the largest and smallest adjacent face. It gives information on the density
of the network around the section; it also allows one to detect the city limits
(e.g. a large face and a small one mean the network is dense on one side of
the section and dense on the other side).

� Sinuosity road length divided by section base length. Very sinuous roads are
often less useful for path construction; however, they can be important on a
map, as they re�ect a certain type of landscape (mountain road).

We tested the interest and consistency of all of these attributes for the desired
task by training a random forest classi�cation on the nodes of the graph using
these attributes. This classi�cation gives results worse than the graph classi�cation
because it does not use the structure and relation between elements. However, it
allows one to see the contribution of each attribute in the classi�cation decision
for each attribute. We conclude that each the proposed attribute are relevant and
usefull for the desired task.

Chapter's conclusions

Applying a deep learning model for map generalization requires setting up
an adapted architecture and a training dataset. The choice of each of these
elements can a�ect the quality of the prediction and must be adapted for the
desired task.
First, the characteristics of a deep neural network to keep in mind when
de�ning or choosing a deep neural network are its ability to abstract, preserve,
transfer, deal with spatial information, its variability, and its gluttony.
Then the objective function guides the learning, this function may require an
adaptation to be more relevant for the desired task. In particular we think
the objectiv function must encourage the preservation of information and must
not be calculated at element level (compare prediction and target element by
element), but rather globally verify the target and prediciton are similare.
Finally, it is critical to create a dataset adapted for training. An example
has to include all the necessary information for generalization (at least in an
implicit way) and to be consistent. Representation must include as little bias
as possible. Especially, the MAUP (Modi�able Areal Unit Problem) and the
symbolization e�ect have to be avoided.
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Chapter D

Can graph neural networks model

spatial relations?

The goal of this chapter is to illustrate the potential of graph-convolutional networks
(GCNs) for tasks that ask a deep understanding of spatial relations. The ability to
understand spatial relation is essential in map generalization as spatial relations
structure the map. We explore two use cases: building pattern detection and road
selection. Both tasks require some degree of understanding of the spatial relations
between map objects.

D.1 Motivations

Spatial relations and map generalization automation Maps are made up of
geographically related spatial objects. Spatial relations are key information on the
map, as they support the understanding of geographic space. These relations are
usually not explicitly encoded in the database. Consequently, conceiving a model
or algorithm capable of automatically identifying and preserving these relations
is important for the automation of map generalization (Mackaness and Edwards
2002). For example, building typi�cation is a generalization operation that seeks
to reduce the number of buildings while preserving the relation between and within
homogeneous building groups (Regnauld 2001). Furthermore, Mustière and Moulin
(2002) explain that spatial relations are parts of the spatial context necessary for
the correct generalization of cartographic objects. For instance, Touya, Bucher,
Falquet, Jaara, and Steiniger (2014) raise the following issue : "how do we handle
the relation of a building alignment along a dead end street when moving the street
is required by the city generalisation process?". Then, Duchêne, Ruas, and Cambier
(2012) explain how relational constraints can be used for map generalization in an
agent process. These constraints are designed to a) ensure the legibility of the map,
b) ensure the preservation of the relations, and c) ensure the geographic coherence
of map content.

Which spatial relation to learn ? Spatial relations are diverse; they can be
one-to-one relations or link several objects together, like groups and patterns. All
relations are not equaly di�cult to make explicit. For example, the recognition of
topological relations is quite well processed since the 9-intersections model extended
to the dimension (Clementini, Di Felice, and Oosterom 1993), while the detection
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of groups is currently still experimented (Yan, Ai, Yang, and Tong 2020; Wang and
Burghardt 2020). In fact, the current challenge is to identify non-topologic relations
as they are perceive by human.

D.2 The use case of pattern recognition in a map

D.2.1 Presentation

Mackaness and Edwards (2002) describe a pattern as a complex of primitive objects
linked by relations; thus, the patterns can be seen as N-to-one partonomic relations
(e.g., buildings are part of the city). Figure D.1 illustrates the interest of pattern-
based generalization. The generalization of an object in a pattern must be consistent
with the generalized shape of the pattern.

Figure D.1: Di�erent generalization solutions when contextual relations are ignored
(top-right) and observed (lower-right) (from Steiniger and Weibel 2007).

The identi�cation of a pattern by a human is related to a remarkable or mean-
ingful feature group with particular common characteristics and relations. This
identi�cation often relies on a Gestalt property (e.g. objects are close, similar, and
in a common region; see Figure B.1). Several papers are interested in automating
the identi�cation of such patterns; most of them rely on an auxiliary structure, this
structure links potentially related features, and then this structure is characterized
and re�ned to extract a relation (e.g., Wang and Burghardt 2020).

In this use case, we experiment with pattern detection in the classical use case
of building alignments. This is a pattern composed of three or more buildings
belonging to the same block, relatively close, similar (especially with a similar size
and orientation), and with a linear arrangement. An alignment can be colinear
if the orientation and distance are regular or curvilinear if the orientation and/or
distance smoothly vary (the axis of the alignment is a curve). This pattern is
quite common in urban areas on a detailed map; its generalization must reduce
the density of buildings while still conveying this idea of alignment. Figure D.2
illustrates the input, expected prediction, and building patterns in our experiments.
Our goal is to demonstrate that deep learning can recognize spatial patterns, so we
will train a graph neural network to classify the link in a proximity structure with
labels: "curvilinear alignment" or "colinear alignment". This classi�cation enables
the alignment pattern to be located on a building block.
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Figure D.2: The input, the prediction, and the goal of the alignments detection
experiment. We predict the link between two building that are aligned, this link
is characterised by the nature (colinear or curvilinear) of the alignment, from this
prediction we can annotated with a same label building that belong to the same
alignment.

D.2.2 Method

We use a graph structure to encode the input and target characteristics. We aim to
predict the relation between buildings (colinear, curvilinear, or not an alignment).
The general process is explained below (each point in the list on the right corresponds
to the respective image in Figure D.3).

Figure D.3: Process for the prediction of
alignments.

1. We construct a proximity structure
that links the building of potential
alignments.

2. We construct the associate graph
where the nodes are the potential
relation and the relation that con-
cern the same building are linked;
this graph is quali�ed with relation
and building characteristics.

3. The model is trained to predict the
classi�cation of the nodes.

4. The node classi�cation enables us
to �nd the link between the aligned
building and the proximity struc-
ture.

For this experiment, we tested a GCN (Kipf and Welling 2017), which is special-
ized in analyzing nodes and adjacencies in a graph to predict node or graph level
information. As explained in Chapter C the GCN uses as input a feature description
for every node, summarized in a feature matrix, with the adjacency matrix of the
graph. We hypothesize that this characteristic would enable the model to make a
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consistent decision across spatial relations. For example, an inconsistent decision
would be saying that a link is an alignment if no neighbor is. We trained the Py-
Torch implementation of GCN1 with our dataset for 200 epochs. Our training set is
a graph with 17281 nodes. The construction of this dataset is detailed in Chapter
C. We constructed the annotation of this dataset manually. The goal is to verify
that the network can learn what a human perceives as an alignment.

D.2.3 Results

The model fails to recognize patterns from our example set: the result is really
irregular across epochs, and no optimum is found. The confusion matrix (Table
D.1) shows that the main problem lies in the distinction between non-alignment
and alignment relations (e.g. a large portion of colinear and curvilinear edges are
misclassi�ed as non-alignment edges, and vise versa) and not the problem in the
distinction between curvilinear and colinear alignments.

Prediction
Annotation

Curvilinear Colinear No Total

Curvilinear 1125 34 1412 2571
Colinear 66 1196 2662 3924
No 819 1746 9919 12484
Total 2010 2976 13993 18979

Table D.1: Confusion matrix for alignments detection using a GCN.

The visual interpretation of the results is consistent with this interpretation;
the model is not able to detect which links belong to an alignment, but area with
curvilinear alignement tend to contains only links curvilinear alignement and no
alignement links and conversly.

D.2.4 Discussion

Can GNN learn spatial relations?

The results of this experiment are not clearly satisfying and are really di�erent from
the target. A quick analysis would lead to the conclusion that GNN cannot learn
spatial relations. However, looking at these results in more detail may lead to some
clues of the potential of GNN for learning spatial relations. Indeed, a building that
has an alignment link is most likely to have its other link that is also in alignment.
However, this element is not su�cient to say the model understand the spatial
relation and our experiement has to be improved.

Probable causes of failure and possible improvements

The origin of this failure may be the dataset, model, or modeling. The following
paragraphs investigate the limits of these three aspects in our experiment.

1https://github.com/tkipf/pygcn
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Figure D.4: Prediction of the model trained for alignment detection.

The training dataset may not be adapted for the expected task As ex-
plained in Chapter C, deep learning is based on examples and a bad example can
compromise the learning. First of all, our number of examples seems reasonable com-
pared to the other successful applications of the chosen model (Kipf and Welling
2017). Then, to determine the interest and su�ciency of the proposed features, we
trained a random forest model for building classi�cation. This quick experiment
does not include the graph structure and considers each node individually. The
results are better than with the GCN, which means that the information of graph
structure are not correctly encoded or used. We conclude that our data modeling
may not be adapted for this use case.

In this experiment, we proposed a custom proximity graph made from the re�ne-
ment of a Delaunay triangulation between building center points; this structure aims
to be the most complete as necessary to cover the aligned building while avoiding
irrelevant links. We compare this proposal with other common proximity graphs
constructed from the center of the building, this leads to similar or worst results.
To go further, a structure that is constrained by a road network or based on other
building points has to be investigated (Zhao, Ai, Yu, He, and Shen 2020).

Finally, we investigate the diversity of the examples: our examples are really
imbalanced (most links are non-alignment links), this is a common limitation to deep
learning. Thus, we tested to train the model with weighted examples: alignment
link have a more important weight during the loss calculation. This experiment aims
at testing the impact of the imbalance in our training set and bring no concluding
results, the imbalance was probably not the main problem.

The model may be unadapted for the expected task The major advantage
of GCN is its ability to learn from neighboring nodes. To ensure our GCN is adapted
to our use case we explore di�erent settings of the model. In particular, we make
varying the depth, i.e. the number of convolutions, of the network. It re�ects
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the number of neighbors considered during information encoding for the use case
of alignment. Nevertheless, this sensitivity study gives very few variations in the
quality of predictions.

During our experiment, we only tested the GCN, mainly for time reasons. How-
ever, GCN is one particular model in the �eld of graph neural networks, and our
experience does not allow us to conclude on the potential of all GNNs to learn
spatial relations. Especially, some recent examples from the literature have shown
the potential of other models for encoding relations in spatial data (Yan, Ai, Yang,
Tong, and Liu 2020; Yan, Ai, Yang, and Tong 2020).

Our modeling may be unadapted In fact, alignment detection is more of a
clustering problem than a classi�cation one, but in our experiment we try to simplify
it to classi�cation with a neighborhood relation. The simpli�cation may not be best
way to model this pattern recognition problem. The alignement detection require
many features and several kind of relations, while in our experiment, we only used
a homogeneous graph. However, the ability to handle a heterogeneous graph is one
of the main advantages of GNN and o�ers a wide opportunity to describe spatial
relations (Iddianozie and McArdle 2021). For example, to detect alignments, a
heterogeneous graph would be preferred that describes both the proximity between
buildings and the road network, as alignments are often enclosed in urban blocks
and along roads.

Then, the de�nition of neighboring in GCN allows the model to propagate in-
formation over neighboring nodes and make a consistent prediction. However, it
relies on proximity in the graph, which is not exactly cartographic proximity. For
example, in Figure D.5 the two highlighted roads are close to each other and have a
similar role in the road network (join the city center to the highway), however, they
are distant and di�erent in the graph and thus not considered redundant during road
selection learning. Similarly, the blue and purple buildings are not close enough to
be in the same alignement, but the blue and pink buildings are even more distant
neighbors in the same alignment.

Figure D.5: Illustration of the limitations of neighboring de�nition. The blue and
purple buildings are not close enough to be in the same alignement, but the blue
and pink buildings are even more distant neighbors in the same alignment. The two
highlighted roads are close to each other and have a similar role in the road network,
however, they are distant and di�erent in the learning graph.

Moreover, the level of neighboring required for relation understanding in spatial
data varies, while the GCN always uses a �xed number of neighbors (related to the
model depth). For example, in rural areas where the road network is spare, looking
at fourth-order neighboring can be su�cient for road selection, while in urban areas
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the fourth-order neighbor can be a section of the same complex intersection! In our
experiment, the building distance, and link length may represent the strength of the
neighboring. However, this information is not enough to encode relative location of
the object, this is an explanation for the unsatifactory results. To overcome these
limitations, it is necessary to encode the spatial characteristics of the node and edge;
the training graph must be a spatial graph2. Then we believe that a model that
learn to look further when the edges are small, could be relevant. However to our
knowledge a such model does not exist in the litterature. Another possible solution
is to train separatly a model for dense area and one for rural areas.

D.3 The use case of the road network selection

D.3.1 Presentation

Network generalization is challenging because it is a multi-criteria decision that
takes into account the semantic and geometric properties of the road section, the
properties of spatially and topologically neighboring sections, and more globally, the
role of the section in the road network. The generalization of the road network aims
at removing the least signi�cant sections while preserving the road networks global
structure, preserving the main routes, and preserving coherence with other themes
(e.g. if a point of interest is in the generalized map, the section that leads to this
point has to be kept even if it is a dead end). Thus, to achieve network selection,
it is necessary to encode and use the following relations: "section is connected
with", and "belongs to a stroke", "belong to a pattern (e.g. round about)" but also
"belongs to an important route", "serves", or is "redundant with". Finally, one of
the challenges in road network generalization is that a road network includes complex
patterns that require a speci�c generalization (e.g. roundabout, interchange, dual
carriage ways, etc.). The reduction of road network density is a complex process
that includes road section selection at some stage. For instance, Touya (2010) and
Luan and Yang (2010) propose a road selection process based on the geographical
context, where the �rst step is identifying such a pattern using network analysis;
then strokes are used for the network selection. However, the generalized network
is not a subset of the detailed network sections (see Figure D.6), and typi�cation of
particular structure have to be resolved otherwise.

We experiment with the prediction of a value for each road section; the objective
is to learn from the example the probability to be selected for each edge of the
graph (i.e. road section in the geographical database). This information depends
on the characteristics of the section, but also on its relations with the rest of the
network. The success of this task would contribute to the demonstration that the
model has encoded the spatial relations. To simplify the problem, the model is
trained to reproduce a classi�cation of road sections according to whether they are
"kept" or "erased" in the generalized network. This annotation is made on the
detailed network and obtained by comparing the detailed and generalized networks
(see Figure D.7). The generalized network is issued from a generalization process
based on data enrichment and structure detection (Touya 2010) that takes into
account the spatial relations. The generalized network is not an exact subset of the
detailed one and includes schematization/typi�cation of complex intersections; in

2Graph having nodes with spatial location (e.g. coordinates).
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Figure D.6: The generalization of patterns in a road network is not a subset of initial
sections.

our experiment, these cases are ignored, and sections of complex intersections are
all annotated as kept to avoid the model learning to make disconnections.

Figure D.7: The generalization of the road in the source databases (examples of
pattern schematization in the generalization are circled in blue) and the annotations
that the neural network aims to learn ("kept" section are symbolize in blue; "erased"
one in pink).

D.3.2 Method

The road network is already a graph-like structure; however, the graph that sup-
ports the learning must represent the section as a node. Therefore, we use a graph
complementary to the road network where the edges are the intersection and the
nodes are the sections (see Figure D.8). Then, the model is trained for node binary
classi�cation; �nally, when we apply the model instead of the prediction (label kept
or erased), we extract the output of the last layer of the model value that corre-
sponds to the probability of the positive value (kept label) for each a node (road
section).

In this experiment, we used a GCN with the same experiment setting as previous
use case. Our training set is a graph with 12,837 edges. The creation of this training
set is detailed in Chapter C. We explore the interest of several features to characterize
road sections. Then, the edges of the graph are describ using some attributes.

First, we include attributes that give direct information about the sections :
length, importance, and sinuosity. The length is expressed in meters; the im-
portance is a categorical attribute with a value between (1: highway and 6: local
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Figure D.8: A road network and the associated learning graph.

narrow path) issued from the initial database; the sinuosity is the ratio between the
section length and base length (distance between start and endpoint). This infor-
mation is interesting in road selection, as very sinuous roads are often less useful
for path construction; however, they can be important on a map as they re�ect a
certain type of landscape (mountain road). This ratio is between 0 and 1.

Secondly, we include some attributes that describe the spatial relations internal
to the road network and the context of the road sections:

� We measure the length of the longest stroke the section belongs to; the
stroke is often a more relevant level of analysis for road selection (Thomson
and Richardson 1999). Even a small road that belongs to a long stroke may
be important.

� Wemeasure the area of adjacent faces of the network. It gives information
on the density of the network around the section; it also allows one to detect
the city boundary (e.g. a large face and a small one mean that the network is
sparse on one side and dense on the other side). We store two attributes, the
size of the smallest and largest faces (the network may be able to discover the
relevant combination of both these values).

� Finally, we added betweenness centrality for each section. The betweeness
centrality measure is essential for road network selection, and we do not think
it can be learned for the graph structure with the convolution de�nition in
GCN. Indeed, it is the number of shortest paths in the network that uses
this section. In our GCN, the convolution propagates node information to its
neighbor, it does not considere shortest path and gives the same importance
to each path in the network3.

D.3.3 Results

In this section, �gures illustrate only extracts from our results (chosen as fairly as
possible) the complete results are publicly available in Zenodo https://doi.org/10.5281
/zenodo.7244049. The prediction of this experiment is the probability for each edge
to be selected by the classi�cation model. For evalauation we choose a threshold of
50% to perform a classi�cation; this classi�caiton has a recall of around 83% and

3We think that the graph representation and de�nition of graph convolution in GCN neverthe-
less enable model to learn some other centrality measures (e.g., the degree centrality, or closeness
centrality).
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precision of around 72% (see confusion matrix, Table D.2). The model is under se-
lecting the road network and kept too many undesired sections, however, it deletes
very few undesired sections.

Prediction
Annotation

Deleted Kept Total

Deleted 3098 1280 4378
Kept 2313 6246 8559
Total 411 7526 12937

Table D.2: Confusion matrix for the selection of road sections using a GCN.

Figures D.9 to D.11 allow us to visually compare this value (between 0% and
100%) with the selection annotation in the cartographic database in the city center,
small town, and rural areas.

For the small town (the most common situation in our dataset), we observe that
the model can clearly identify the main connections to the city (Figure D.9); these
roads appear with a signi�cant probability of being kept (in red). Some local roads
also have a clear tendency to be deleted (in yellow). However, the dominant predic-
tion is a medium probability to be selected and does not enable a clear separation
between kept and deleted roads.

Figure D.9: Annotation and prediction of selection in a small town.

In the rural area (Figure D.10) the predictions are consistent with the annota-
tion, and similarly, the prediction shows a mainly medium probability. The two
hamlets are correctly classi�ed. However, some probability discontinuities on an
important road that can lead to disconnection are visible on the lower right of the
area. Moreover, the classi�cation of small dead ends includes errors.

Finally, in the urban area (Figure D.11) we observemore errors, the block struc-
ture of the road network is not learned at all, and the littoral path surrounding
the city is not kept, while it structure the town. This defect comes from the small
number of such a situation in our dataset and the more complex structure of the
network in such an area. Moreover more features can be required for such complex
situations.
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Figure D.10: Annotation and prediction of selection in a rural area.

Figure D.11: Annotation and prediction of selection in the city center.

In fact, this classi�cation does not tell us what to select but gives a hierarchy
from which we can select the right number of routes, it indicates the negligible roads,
the important ones, and the average ones. The integration of this information in a
selection process is later discuss in next section.

D.3.4 Discussion

Can GNN learn spatial relations?

The results of this experiment are quite more satisfying. The predictions on the road
section are credible and could mostly correspond to a correct map generalization.
Some of the underlying relations are clearly understood, especially the consistency
of a neighborhood. For example, the probability of selecting one section is similar to
that of the other part of the road. Similarly to the previous use case, some improve-
ment in the modeling of the use case may contribute to reinforce the demonstration



97

of GCN potential to use spatial relation in map generalisation task. In particular,
the road selection process may require learning graph that explicitly decribe the
relations: "a road section belongs to an important route" or "a road section serves
an important point of interest" with an heterogeneous graph.

The potential of GCN for map generalization

Our experiment has shown that GCN are able to make consistent predictions across a
graph structure. Thus, such networks may be used to make explicit spatial relations
for data enrichment prior to map generalization and for an integration in a global
deep learning map generalization process. In this paragraph, we use predictions
of alignments and road selection to explain how of such networks can be used in
a generalization process. The road selection is the �rst step for topographic map
generalization. The predicted importance of road sections from the GCN model
could be used in several ways for road selection.

� The result of our model can be directly employed for selection, using a thresh-
old (e.g., all sections with a probability up to 50% percent are kept). This
simple solution is not the most e�cient regarding our prediction distribution
that gives a medium value to most of the section.

� The predicted value can be included as an attribute in a geometry-based or
graph based process for road selection (e.g., Touya 2010).

� A mixed solution that combine network re�nement by selection and stroke
based simpli�cation. For example, �rst we keep (and respectively erase) section
with an extremely high (and extremely low) probability predicted. Then, we
process selection based on stroke characterized by the maximum, or mean
prediction of its sections (this extreme value would allow keeping even small
paths that directly deserve an important section).

Chapter's conclusions

In this chapter, we presented two experiments that aimed to identify the po-
tential of deep learning to learn spatial relations with a graph modeling. These
experiments have shown potential to make predictions consistent with spatial
relations. The road selection experiment is satisfaying for most situtations,
but the results su�er from a lack of city center examples. The alignment de-
tection is less satifying and su�ered from both dataset and model limitations.
Both experiments have revealed challenges in the modeling as a graph and in
the development of adapted GNN, in particular they have shown the necessity
of encoding and using the location of the node and cartographic neighboring.
Our experiment did not fully succeed in demonstrating the potential of deep
learning to understand spatial relations. In next chapters we rather ex-
periement with an image based approach and the understanding of spatial
relation is no more the central question, but an ability required to perform
the desired task. For example, to predict the shape of a generalized road in
Chapter E, the continuity and noncoalescence of the road section has to be
encoded; and for map generation explored in Chapter F the relative position
of di�erent map objects and patterns have to be preserved.
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Chapter E

Convolutional Neural Networks for

the generalization of roads

This chapter aims at the exploration of the potential of the image-based approach
for roads generalization. As stated in Chapter B, learning graphic generalization
operations can be made from various approaches; in this chapter we focus on the
image-based approaches, which seem more natural and direct for this problem.

E.1 Materials and methods

E.1.1 Use case

To explore the potential of an image-based deep neural networks for graphic gen-
eralization, we choose the use case of the mountain road generalization. This use
case is classical an challenging in map generalization because the sinuosity of roads
causes symbol coalescence (Lecordix, Plazanet, and Lagrange 1997; Mustiere 1998;
Duchêne 2014a). Moreover, roads play an important role in maps, they partition the
map in blocks and their generalization is always the �rst step in the generalization of
maps (Ruas and Morisset 1997). Thus, it may be impossible to learn a more complex
generalization without �rst learning how to generalize roads. The generalization of
mountain road shape involves simpli�cation, caricature, typi�cation, displacement,
and smoothing operations (see Figure E.1), and frequently requires the combination
of several algorithms (Roth, Brewer, and Stryker 2011). Mountain road general-
ization is often composed of two steps: �rst, road selection allows the elimination
of insigni�cant roads, then graphical generalization adapts road line shape to be
legible at a target scale, removes symbol coalescence, and smooths the geometries.
Traditional methods for mountain road generalization are already e�cient; however,
they are di�cult to apply, as they require important knowledge about road sections
and important calculation time. We are not aiming at results with a better carto-
graphic quality, but results of equivalent quality that could be obtained more easily.
In these experiments, we focus on the second step, the graphical generalization that
produces the shape of generalized roads.

In the litterature review (Chapter A), we present two usual road simpli�cation
processes, (1) the global approaches that try to �nd the optimal shape at once (Bader
and Barrault 2001; Sester 2005); (2) the iterative processes that separate roads in
homogeneous sections, and apply several algorithms to each of them (Lecordix,
Plazanet, and Lagrange 1997), and merge them together (Mustiere 1998; Duchêne
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Figure E.1: Some examples of operations during mountain road generalization.

2014a). In the proposed deep learning approach the model is applied identically to
each image of the test set, thus the approach is close to a global approach.

E.1.2 Approach

Our approach is framed as an image segmentation or generation problem using map
images (raster data) as input. That is, using an image of detailed map tile as input
to predict an image of the same size where each pixel value represents the probability
of belonging to the generalized shape (Figure E.2).

Figure E.2: Simple illustration of our approach.

This approach is similar to those of (Feng, Thiemann, and Sester 2019) and (Du,
Wu, Xing, Gong, and Yu 2021)1 respectively for building and coastline generaliza-
tion. These studies have demonstrated the potential of the segmentation approach
for polygon simpli�cation generalization2. Our experiments are complementary to
these two studies that learn the shape of a generalized polygon while we try to learn
on polylines. The generation of polylines is challenging, as their narrow width is
more sensitive to disconnections and dependencies between pixels are larger (very
far pixels can belong to the same entity). Moreover, mountain road generalization
is a complex task (see Figure E.1) that not only includes smoothing and symbol
enlargement, but also bend enlargement, bend series typi�cation/schematization,
etc.

1Realized after our experiment.
2In the coastline experiment the input is not only the line but segmentation of inland and sea

parts, that are polygons.
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Finally, in our experiment, and contrary to these �rst studies, we do not try to
learn how to reproduce a generalization performed by an automatic generalization
process, but we learn from a cartographic database that includes manual correction.
This use case is thus a good complement to demonstrate the ability of an image-
based approach to generate the shape of a generalized object using deep learning.

E.1.3 Experiment setting

In this section, we present our experiments, especially the dataset construction
methods, our models, and the tested loss function for connectivity preservation
improvment. We tested and compare the ability of several models to learn graphic
generalization: one segmentation model and two image generation models.

Segmentation model We �rst tested a convolutional neural network designed
for image segmentation called U-Net (Ronneberger, Fischer, and Brox 2015). This
network has already shown potential to predict generalized shapes (Feng, Thiemann,
and Sester 2019) and relies on a u-shape structure that encodes and decodes an image
with convolutions. It includes skip connections to deal with multiscale relations in
the image (a more detailed explanation of the U-net architecture is given in Figure
C.5). We implemented a U-Net using Python 3 with the Keras library (Chollet
2018) in the Google Colaboratory platform with the available graphic processing
unit (GPU) for standard licenses. Our U-net is designed to deal with images of
size 256 × 256; it includes six up and down sampling layers. We then provide and
compare a similar architecture made for images of size 512× 512.

Generation models We trained two generic GANs to generate images of gen-
eralized roads: CycleGAN and pix2pix. We used the PyTorch implementation of
these models3. Each model has been trained over 200 epochs with default param-
eters. The choice of the number of epochs for a GAN is a di�cult question as
the model convergence is sometimes never reached (Arjovsky, Chintala, and Bottou
2017). This number of epochs gives a good level of satisfaction for both the loss
value and the visual observation of the validation data. The visual analysis of the
results shows that below this number of epochs, the results are still unsatisfactory,
while they show no more progress after this value for both paired and unpaired
models.

Datasets For these experiments we use the datasets presented in C.2.2. This
dataset includes 1, 223 pairs of images from the Alps and represents the road shape
at 1:25,000 and 1:250,000 scales.

Connectivity loss Finally, one of our challenges is the preservation of the topol-
ogy and connectivity of the road network, despite the image approach. We tested
the connectivity loss proposed in C.1.4 as an additional part of the GAN objective
function. It measures the preservation of connectivity information in images. The
objective of our cycleGAN is thus eq. E.1, with Lcycle the cycle consistency loss,
and LGAN the adversarial losses for each side of the learning.

3Available here https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git.
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L(G,F,DX , DY ) = LGAN(G,DY , X, Y ) + LGAN(F ), DX , Y,X

+ λ1 Lcycle(G,F ) + λ2Lconnectivity(X,G) (E.1)

E.2 Results

In this section, the results are presented and evaluated according to visual evaluation
focusing on the list of questions below. The conclusions were con�rmed with some
quantitative measures and a user test (see Chapter H). Reader can refer to Appendix
A for more results images of main experiments.

Except for the contrary mention, in this section, all results are obtained using
the dataset with �xed-size tiles of 2.5km where each pixel represents 10 meters on
the ground, and the overlapping rate between tiles is 60 percent.

What is a good image prediction?

� Q1: Does the image look like a map and especially a road map? This question
refers to the realism of the prediction. We trained the network with map
images that follow cartographic rules, and the network should learn to generate
images that look like a map.

� Q2: Are the geographic objects credible? Goodchild and Li (2012) propose
to control spatial relations between objects. They develop this idea for maps
produced using volunteer geographic information (VGI) where the expertise
of contributors is unknown. This point is also important in the case of deep
learning where the prediction process is a "black box" (Touya, Zhang, and
Lokhat 2019). The key criteria for a road to be credible are its connectivity
in the network and its linear and smooth shape.

� Q3: Is the image generalized enough to be legible at the target scale? In the
use case of mountain roads, we have to take care of the smoothing level, and
the reduction of symbol coalescence.

� Q4: Is the information su�ciently preserved and are errors created during the
generalization process?

E.2.1 Segmentation approach

In this section, we present some results obtained with the U-Net segmentation of
mountain road images. This section �rst includes an analysis of the overall quality
obtained with this approach, and then we compare and discuss the creation of the
training dataset.

Overall quality Our model reaches a segmentation accuracy on the validation
(and training) dataset of around 60% (80%) according to the Dice measure and
50% (70%) according to the IOU measure (see Figure E.3). This Figure shows the
progress of the model during the training phase but values calulation is based on the
pixel accuracy that is not suitable for line generalization and not consistent with the
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Figure E.3: Evolution of the evaluation value across epochs. (a)With Dice measure.
(b) With IOU measure.

visual quality of the prediction. Nevertheless, the validation score shows that the
model is not over�tting (validation and training score are relatively close), and �nds
consistency between input and target (the scores are increasing). This progression
gets slower from the 50th epoch, which means the results may be correct from this
point.

Figure E.4: Some results of the segmentation approach (input, prediction and target
from the testing set).

Figure E.4 shows some of the results obtained on the images of the test set. In
most of the images, the road shape is recognizable (Q1) and is very similar to the
generalized image. However roads are often discontinuous and not credible (Q2) and
some undesired part of road can be seen in some images. It is also often smoother
than the initial image, even if it is sometimes less smooth than the generalized
image (Q3). Bends are enlarged in most sinuous bend series, but the enlargement
is sometimes not correct, which can lead to loops or U-shaped bends (Q3). The
displacement performed to avoid parallel road to overlap is learned; however, when
roads are displaced to avoid overlaps with other objects (river or rail line), as such
data are not visible in our images, the displacement fails. Then, the main limitation
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of the prediction is the numerous disconnections, that decrease the information
preservation (Q4).

Results on training set constitution In this section, we compare the di�erent
proposed methods for creating the training dataset. First, Figure E.5 compares the
two proposed approaches for tile generation (�xed scale window-based and object-
based).

Figure E.5: Comparison of U-Net predictions for di�erent tiling methods. a. Fixed-
size tiles with an image size of 2.5km and an overlapping rate of 40%. b. Object-
based tiles.

We observe that the �xed-scale tiling approach gives better results than the
object-based approach. The object-based approach seems to systematically create
loops in bends and enlarge the road symbols too much. It is probably due to its
varying scale. Indeed, the coalescence in the initial image that prevents "seeing"
the initial shape of the line, is more important in images of the objects approach.

Then, we tested to improve the object method with a mixed representation of
roads in input images. The shape of the line is displayed in green with a width
of 1 pixel, this shape includes no coalescence at all and thus allows the model to
access the exact shape of the road. It is overlayed on top of the larger red symbol
that coalesces and represents the width of the road on the map. Thus in this image
the model may have at once a legible representation of the exact shape and the
road symbol. Figure E.6 presents a comparison of the results given by this mixed
representation. The mixed method is compared to an image where the symbol width
is left unchanged and to an image where symbol width is exaggerated to convey the
scale reduction due to the size of the road. It shows that the shape readability
improves thanks to the green thin lines, and it does reduce the "loop" e�ect, but
the results remain unsatisfactory.

Finally, the method comparison leads to the conclusion that despite randomly
cutting roads and degrading context (i.e. the global shape of the road), the win-
dow approach is currently the most adapted for map generalization. Figure E.7
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Figure E.6: Comparison of methods to avoid coalescence in the input image. a)
without correction, the width of the road is �xed, b) moderate enlargement relative
to the deformation rate, c) enlargement relative to the deformation rate (red) and
the shape of the road (green)

investigates the optimal size for each example. It is a parameter that a�ects two
characteristics: the context and the number of images. We measure this parameter
in terms of the ground size represented by a 256*256 pixel image. It is not relevant
to choose a size under 1 km (not enough context). As a result, all pixels are clas-
si�ed as "not road". In contrast, up to 5 km, the covered study zone is too small
to have enough images (less than 150). We observe that sizes between 2.5 and 3
km are more relevant for our tasks. Moreover, we can see that smoothing is not
well learned when the model is trained with large areas (5*5 km). The coalescence
of small bends increases when the size of window increase, and this leads to bad
results.

Figure E.7: E�ect of window size on generalization. (a) 2.5*2.5 km tile (b) 5*5 km
tile, the limits of the smaller size are represented in blue over the input and target
image to improve readability.
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The last parameters of the �xed-size tiling approach are the overlapping ratio
between tiles, and the image resolution. The overlapping increases the number of
tiles. The experiment with 40%, 50%, and 60% values shows good progress in both
qualitative and quantitative evaluation when overlap increases. Finally, to reduce
the amount of non-readable tiles, we increase the resolution of tiles to 512. This
change increases the computation time required to train the model, but it greatly
decreases the connectivity errors in the predictions. All the next predictions and
those of Appendix A are made with this resolution.

E.2.2 Generation approach

In this section, we present some results obtained with pix2pix and cycleGAN to
generate generalized mountain road images. We �rst analyse the overall quality
obtained and compare the two models, then we discuss some model improvements,
in particular the model setting, the addition of a connectivity loss, and the addition
of examples.

Model comparison

We present and compare the results obtained by training cycleGAN and pix2pix.
Figures E.9 to E.11 present some predictions from both models in di�erent situations
(for images that includes an important series of bends, for images that includes a
main road and for images that includes an intersection). Figure E.8 ilustrates and
gives an example of the main defaults identifyed. We observe that both models
produce images of roads (Q1) and lines are smoother than the input (Q3). How-
ever, the paths produced by pix2pix are neither legible nor credible because of loops
and disconnections, that alterate the cartographic information (Q2 and Q4). This
problem is less important in CycleGAN predictions (unexpected disconnections are
rare, and the loop problem occurs only when the input is not legible enough). Then,
cycleGAN does not enhance correctly the road shape in prediction; some bends are
not enlarged enough and some edges not enough smoothed. In fact, it seems that
when the model cannot conclude how to generalize a situation, it leaves the input
shape. Finally, cycleGAN produces some small blue noise that does not visually
a�ect the legibility of the road. This noise may be a consequence of the steganog-
raphy e�ect of cycleGAN (Chu, Zhmoginov, and Sandler 2017); the reconstruction
tends to teach the model to hide information in the prediction for a later iteration
of the cycle. It can easily be post-processed.

Figure E.8: Illustration of the main defaults of generation models with two predic-
tions example.
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Figure E.9: Comparison of CycleGAN and pix2pix prediction in situations including
an important bend series.

Figure E.9 focuses on bend series, which is the most challenging situation in
mountain areas. They require bend enlargements, displacements, schematizations
and simpli�cations. The �rst image shows that simple situations are as well gener-
alized by both models. However, the next images show that despite the fact that it
produces incredible images and provokes an important loss of information pix2pix
proposes more enlargement and some simpli�cations, that cycleGAN do not gener-
alize enough.

Figure E.10 focuses on intersections. The preservation of the main structure
and shape of such an image seems learned in most cases; however, in the case
of the second situation, the models fails because the input is not very legible at
this resolution, and because of the presence of two bends close to the intersection.
Pix2pix learns the intersection global shape, but, it creates a loop, while cycleGAN
learns a solution that does not preserve the connection but has more road pixel
correspondence with the input.

Figure E.11 represents situations near a major road; such situations are of-
ten those that require more displacement because the information on the map is
more dense. This �gure con�rms that the displacement cannot be learned from tile
datasets like ours because more context is needed.

Model improvement

The interest of a connectivity loss. Figure E.12 compares the prediction made
with cycleGAN for the common objective function and for the objective function that
includes our connectivity loss. The results of both models look similar. The global
prediction quality appears to be not a�ected. Visual comparison of connectivity is
not su�cient to say if the loss improves prediction. Most predictions are identical,
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Figure E.10: Comparison of CycleGAN and pix2pix prediction in situations includ-
ing an intersection.

Figure E.11: Comparison of CycleGAN and pix2pix prediction in situations includ-
ing a main road.

but the selected example in Figure E.12 shows some di�erences. For example, the
connection of the main road with the image border of Situation 1 is better with the
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connectivity loss, in Situation 2 the loop is avoided and one pixel is left between
both roads.

Figure E.12: Comparison of the model trained without and with the connectivity
loss.

The measure of disconnections and loop creations decreases, but few changes
are visible. This means that the loss instead of discouraging visible connectivity
alteration discourages very small alterations that are not visible to humans (isolated
road pixel on background or background on road). We also hypothesis that in some
cases the number of background and roads pixel set does not re�ect the connectivity
alteration, as the change in background and in road sets can be balanced. For
example, in situation 3 a loop and a disconnection are created, the loop increases
the number of the background sets by one and the disconnection decreases this
same number by one, so the measure detects no alteration while there are two. We
think we could improve the loss by separate the two-aspect disconnection and loop
creation and providing a more precise measure for each cases.

The interest of adding examples. Figure E.13 compares the models trained
with 1223 images and 2271 images. We created the second dataset by manually
matching and adding road images from several mountain areas in France. In this
experiment, the bene�t of adding training examples is not clear; models predictions
are similar; we suppose that the di�erences in prediction are probably due to random
e�ects during the learning process. In fact, we think that adding new images to the
training set only improves the results if the images added are of good quality and
add diversity to the training set that may not be the case in our experiment.
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Figure E.13: Comparison of CycleGAN trained with di�erent sizes of the training
set.

E.3 Discussion

We discuss the learning strategy, the quality of the results, and the ability of deep
learning to learn graphical generalization.

E.3.1 Learning strategy

This chapter contributes to highlighting the comparative interest of several learning
strategies for object generalized shape prediction using an image-based approach.

Segmentation vs generation approach For the use case of mountain road,
and unlike for building simpli�cation (Feng, Thiemann, and Sester 2019), the GAN
architecture gives much better results than a U-Net architecture. The discriminator
forces the generated image to look like a road. The main di�erence between the
two use cases is that buildings are mostly composed of angular shapes that GANs
were unable to precisely reproduce, whereas in the road use case, a smooth shape
is desired. Nevertheless, segmentation has some advantages, in particular, models
train quicker and require fewer examples, they give a less fuzzy outline for objects
and are more stable/easier to make converge.

Paired vs unpaired approach Another surprising result of our experiment is
that the paired model (pix2pix) was less e�ective than the unpaired one (Cycle-
GAN). In other words, it is easier to learn what a generalized map looks like than
to learn how to generalize a map with mountain roads. The main �aw of images
generated by the paired model is that the network structure is hardly preserved:
the multiple loop creations and disconnections make the generated images highly
unrealistic. In our training set, several parts of roads can appear in one image,
several close roads and two disconnected parts of a unique road are really similar,
this can cause the model to not learn to avoid disconnection. With the unpaired
approach, the cycle consistency prevents generators from modifying the information
conveyed in the image. Thus, this approach is less sensitive to disconnections and
loop creation. Nevertheless, paired learning has two advantages: 1) it is able to learn
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displacement, even if it cannot be well applied due to the lack of context of with the
small tiles; and 2) it does not simplify the results too much. Finally, we hypothesize
that a semisupervised approach, such as the one proposed in SMAPGAN (Chen,
Chen, Xu, Yin, Peng, Mei, and Li 2020), could help us get the advantages of both
approaches, and maybe the most adapted for mountain road shape generalization.

E.3.2 What can we learn?

In this section, we go further to explore what can be learned by networks such as
those employed in our experiment.

Can we learn the selection of roads? Figure E.14 compares the prediction
of the segmentation model trained with initial images that contain all the roads
and the prediction made with the same model trained with road selection already
processes.

Figure E.14: Comparison of prediction when the model is trained (a) without the
selection preprocess. (b) with the selection preprocess.

We observe that removing the unselected roads from the initial image seems to
be a better solution, but the results in both cases are quite unsatisfactory for this
road. We can note that the model learns to remove the unimportant roads, but
does not do it properly (some road parts remain, and one important road on top
is partially erased). Road selection is based on shape characteristics (Thomson and
Richardson 1999), semantics features (importance, status, width, etc.), and the role
played in the road network (Garcia-Balboa and Ariza-López 2008). Most of these
elements are not accessible in a small image of the map, image representation is
not really adapted for this step (Touya, Zhang, and Lokhat 2019). Moreover, many
other methods succeed in combining these factors and properly select roads (e.g.,
Touya 2010; Benz and Weibel 2014, etc.).

Generalization of roads and rivers A comparison with previous experiments
on buildings has shown that the appropriate deep learning architecture is closely
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Figure E.15: Example of CycleGAN predictions for images with roads and rivers.

related to the use case, and our method cannot be directly applied to other carto-
graphic objects. To assess the ability of the proposed method to generalize other
objects, we experimented with the joint generalization of roads and rivers. The geo-
metric generalization of both map themes has similarities, but rivers naturally have
smoother shapes and require less generalization. Adding rivers should provide more
context in tiles, which should explain the displacement frequently applied to roads
to avoid overlaps between roads and rivers. However, more context will produce
more complex situations and make the task more complex.

For this experiment, CycleGAN was trained with the same datasets, but the
image tiles contained blue lines representing the rivers, under the road lines (red
pixels are visible when roads and rivers intersect). Some results are presented in
Figure E.15. We observe that roads are globally as well generalized as when they
are alone. Then, rivers are really slightly generalized as expected, and the model
learns that roads and rivers have to be generalized di�erently. We can see very few
local errors due to a very coalescent input image, such as the road bend that is not
enlarged enough in Situation 6, or the island creation in Situation 4. Then, the
relations between roads and rivers seem to be a problem for the model. In Situation
1, the enlargement to avoid symbol overlap is not applied, and some parts of the
rivers are erased. It seems that our model has learned that roads and rivers do not
have to overlap, but did not learn how to avoid it. We can �nd an explanation for this
problem in our input data: only half of our target training data present a signi�cant
displacement to avoid symbol overlap between roads and rivers (1,5,7), and the
other half only propose a very small displacement (2), or no displacement at all (8).
It re�ects some generalization problems in our target dataset. The GAN logically
learns to generate badly generalized maps from badly generalized training examples.
A correction of the 1:250k dataset would be necessary to check if CycleGAN is able
to learn how to generate images where roads and rivers have been displaced from
each other. However, this use case has shown the ability of deep neural networks to
learn the generalization of several di�erent objects at the same time.

Finally, we believe that a graph approach is most adapted to learning the rela-
tion between objects, and especially this displacement while the image approach is
more relevant to learning the shape of the generalized object. Thus, we think for a
complete generalization, a mixed deep learning approach would bene�t from image
and graph information and generalize together several objects.
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E.3.3 Remaining limitations

In this section, we discuss the remaining errors and try to explain their causes. The
user test (see Chapter H) has shown that the images generated using cycleGAN are
considered as legitimate as the reference map. Nevertheless, these results are not
really adapted for cartographic production for the following reasons:

� Some important loops and disconnections remain in some tiles, while the
preservation of road structure is a hard constraint compared to the other con-
straints well managed by the model.

� The output tiles are not a usable map, and post-processes are necessary to in-
tegrate these predictions in a map or in a more classical generalization process
(see Chapter F).

� Some noise can occur; in particular, we observe small blue dots that are barely
visible in the output images. This color noise has to be post-processed.

� Only roads are generalized in the experiment, and a complete topographic
map is made of other topographic features, and these features (e.g., nearby
buildings, relief, or rivers) may even in�uence how roads are generalized.

One of the main reasons for loops and disconnection is that training images con-
tain too much detail for the image resolution. This complexity in our input images
has at least three consequences: (1) we need more examples to train the model;
(2) we need larger images or images with a better resolution; and (3) the network
needs to be much deeper than our current setting to understand these images. Our
proposed connectivity measure penalizes these errors without completely avoiding
them.

The second problem is the displacement failure. First, to avoid overlaping of
two roads (e.g. parralele roads), they have to be displaced from each other, but
this case is too rare in our example set to be learnt. Then, to learn to move the
roads from other obstacle, we need to know that there are other close objects on
the map. Therefore, this information must be represented in tiles, and we need a
representative example for this displacement.

The third problem is the alteration of visible connectivity in some images. It
consists of the appearance of a few background pixels in the middle of some roads,
which does not much alter the quantitative evaluation but clearly degrades the legi-
bility of the road. This problem is less present if we augment the number of epochs
but still occurs. Our proposed connectivity loss also penalizes such disconnections
without completely avoiding them. Then, the only post-process that could restore
connectivity would be to convert the roads back to vectors and to use a connectivity
check (Touya 2010).

Our work also experienced limitations that are not errors.

� The evaluation measure and associated loss function should be improved; this
may allow one to make the connectivity loss more e�cient and avoid loop and
disconnection in the output, or other measures used as the loss may improve
the prediction in another manner.

� Our dataset has a limited size, and it does not contain enough examples of
very narrow and sinuous bend series.
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� We also faced computation time and memory limitations. Indeed, this thesis
was done during the covid19 pandemic and the di�erent lockdowns forced me
to work several months from my personal computer and thus to give up some
experiments.

Chapter's conclusions

In conclusion, the models we proposed correctly achieves smoothing, enlarge-
ment, and caricature operations in most of the cases. It shows that most of the
knowledge behind road generalization can be captured by a convolution neural
network. Thus, this chapter has shown the ability of deep learning methods
to achieve generalization tasks from images derived from vector data. The
modelisation as a segmentation tasks or as a generation tasks and between
paired and unpaired image has shown di�erent capabilities for generalization
sumarized in Table E.1.

Approach Realism Credibility Legibility Preservation
Segmentation ✓ ✗ ✗ ✗

Paired generation ✓ ✗ ✓ ✓
Unpaired generation ✓ ✓ ✓ ✗

Table E.1: Comparison of approach for image-based graphic generalization.

The unpaired generative approach is preferred by the evaluators and give
results considered as good as the reference map. However, some important
local issues remain, and the generated images cannot be used as end-product
topographic maps yet. The post-process and integration of the predicted road
into a �nal map have to be investigated.
This chapter also contributes to illustrate the di�culty in creating an adapted
training set and an adapted deep learning model, even with an image represen-
tation. In particular, the large gap of scale make tiles su�ering from a legibility
problem that blurs the input shape of the road. We proposed several tile cre-
ation and improvement methods. The training set improvement a�ects the
global quality of prediction, while improving the loss function rather focus on
correcting some speci�c errors.
In addition, this experiment can be extended by adding multiple geographic
themes to the training datasets to predict a complete map. This perspective
would have to deal with spatial relations in a dense context, such as urban
areas and multiple representations of objects, and is explored in Chapter F.
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Chapter F

The generation of topographic map

with several cartographic themes

The challenges of deep learning-based generalization are numerous, but the �rst step
is to address a more global approach with multiple cartographic themes generalized
at the same time on the map. This chapter presents some �rst experiments to
test the suitability of generative adversarial networks (GAN) for the generation of
generalized maps. It is a step towards the generation of complete generalized maps.

F.1 Materials and methods

F.1.1 Approach

In our experiment, we trained GAN models to produce a generalized map from an
image of detailed geographic information. This approach is illustrated in Figure F.1.

Figure F.1: Simple illustration of our approach for generalized map generation.

Our goal is to generate maps of urban areas at a medium-large scale (e.g.
1:50,000). This is a complex scale, with a di�cult balance to �nd between the
buildings enlargements and the constraints of minimum separation between build-
ings and with road symbols. At smaller scales, the buildings are no longer shown
individually, and at the larger scales, they do not need to be generalized to much.
The input data are extracted from detailed maps at 1:25,000, whereas the target
scale is 1:50,000. These maps mainly contain buildings, roads, and rivers, and the
representation of these elements should maintain an adequate level of detail to be
legible and prevent symbol overlap. We chose a study area that includes a dense
context of urban and rural areas, located near Saint-Jean-de-Luz, which covers 30*
15 kilometers in the southwest of France. We use detailed buildings, roads, and
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rivers from topographic datasets produced by the French National Mapping Agency
(IGN) as input, and we expect as an output of the GAN a legible map of these
elements at a target scale of 1:50,000.

This level of detail requires reducing the amount of information while preserving
the patterns and main relations. Usually, roads and rivers are generalized �rst,
because they partition and structure the space (Ruas and Plazanet 1996). They may
be selected, and some patterns may be schematized. However, the shape and position
vary very little at this scale. Then the buildings have to be enlarged and simpli�ed to
make them legible. As the space in each block is limited, the buildings also have to
be displaced, typi�ed (density is reduced while preserving patterns), amalgamated,
etc. Finally, it may be necessary to cover dense inner cities with polygons of built-
up areas when these areas cannot be represented by enlarged individual buildings
(Touya and Dumont 2017).

The generalization can be performed by several algorithms, each focusing on some
aspect and giving less or more importance to each constraint. Thus, we compare how
deep learning is able to learn to reproduce the result of two alternative generalization
processes. Both have been proposed to be progressive intermediate representations
between 1:25,000 and 1:100,000 scales by (Touya and Dumont 2017). We compared
the AGENT process (Barrault et al. 2001), that focuses on building end position,
and the typi�cation-based generalization (Burghardt and Cecconi 2007), that rather
focus on building patterns and relation preservation.

In our use case, generalized road and river are really similar with the input.
Then, network is selected and complexe interesections and situations are simplifyed
(e.g. round-about), but the global shape does not change. Generalized buildings
must satisfy the following classical constraints:

� (C1) Buildings should be larger than a minimum size (25mm2);

� (C2) the smallest edge of the buildings should be greater than a minimum
value (2mm);

� (C3) The buildings should not be too close to the roads symbols (2mm);

� (C4) The buildings should not be too close to each other (2mm);

� (C5) The density of buildings in a block should remain stable;

� (C6) Building patterns, such as alignments, should be preserved;

� (C7) Topological relations should be preserved; for example, the buildings
should remain in the same block.

Built-up areas must be areas in the city center, where the density of construction
is important compared to the rest of the city, it might be one or more blocks and
constitute a coherent area, which is interpreted by map users as a whole with a
meaning of "city center".

F.1.2 Implementation

Dataset

We created square tiles of map image each of size 512x512 pixels, and representing
500x500m² on the ground (this means that each pixel represent aroud 0.98m). Table
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F.1 represent the constraint threshold in pixel.

Table F.1: Table of constraint threshold in pixel for a display at 1:50 000 scale.

Name Constraint
Thresold in
mm on map

Threshold in
pixel

Size threshold C1 25mm² 256
Granularity threshold C2 2mm 102
Separation threshold C3 and C4 2mm 102

These dimensions guarantee a legible situation for both input and target data,
and it is small enough to build a training set with around 2,700 images. We randomly
extracted 100 tiles to evaluate the model (test set), we make sure afterwards that
the di�erent building densities are represented in these 100 images.

Input representation The input tiles are created using the detailed dataset. For
the sake of simplicity, we only extracted the main themes of the map (i.e., buildings,
roads, and rivers). We proposed and tested two representations of input data as
image tiles (see C.22):

� symbolized representation: the geographic information is represented us-
ing a cartographic style (the same as the target style),

� layered representation: the shape and position of each theme are encoded
as a binary value for each pixel in one layer of the image.

Target The output data are manually corrected to remove errors due to the au-
tomatic processes used. In particular, some overlaps between buildings and rivers
and buildings and roads were removed.

The output information is always symbolized. In a �rst quick test we tried to
mimics the style of planIGN (Figure F.2), and use the same colors in our target scale
images. However, we observe that the two browns used for buildings and built-up
areas are very close, and model confused both elements. Therefore, we decided to
use our own style with more contrast.

In our target style of map, we symbolized the roads with a borderline with
sizes and colors that vary according to their importance, and the buildings are
represented in brown or gray according to their nature. We did not represent the
building outlines to reduce overlaps between symbols. For simplicity, we decided to
preserve a unique symbol for each road (the yellow one) and building (the brown
one). The covering of dense blocks (or graying) is symbolized in ligth brown.

Model

We explore and compare the potential of paired and unpaired GANs, using pix2pix
and cycleGAN PyTorch implementation1. We believe that the preservation of geo-
graphic information should be better learned by a paried model, while the increase
in legibility can be learned from both methods, as they only need to learn how each
domain looks like.

1Available here https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git.
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Figure F.2: Extract of Plan IGN, inspiration for our target representation.

Objective improvement Then these networks are not speci�cally designed for
geographic data, so adjustments to default architectures may be required. We tested
two loss functions that aim to improve the shape preservation in map (see C.1.4 Fu,
Gong, Wang, Batmanghelich, Zhang, and Tao 2019; Chen, Chen, Xu, Yin, Peng,
Mei, and Li 2020).

Fusion GAN As mentioned in the dataset section we experimented with the ad-
dition of a context tensor. Haz�rba³, Ma, Domokos, and Cremers (2016) propose
an architecture to fuse a colored image and a depth map and generate a segmenta-
tion of indoor scene. Our idea is to use this architecture for map generation: the
architecture fuse the input location and shape of map objects with the additional
information and then generate the gneeralized map. The architecture is composed of
two encoding paths (one for each input tensor, linked by "fuse connections", which
sum the encoded additional information to the input, at di�erent stages. We used
this architecture as the generator of our GAN to replace the U-Net or ResNet (which
are traditional GAN generator). Thus, our FusionGAN uses the main and additional
information to predict images that are evaluated by a discriminator trained to learn
if the image of the generalized map looks realistic (see Figure F.3).

F.2 Results

In this section, we present the results of the experiment and vissually evaluate (using
the criteria C1 to C7 from F.1.1). The prediction presented are issues from our test
set, the complete results are available here https://doi.org/10.5281/zenodo.7244047.

F.2.1 General results

Overall quality In the results presentation, the not dense and dense areas, where
block covering is necessary, are separated in two �gure (Figure F.4 for not dense areas
and Figure F.6 for dense areas) because expectations and generalization mechanisms
in both situations are really di�erent.

In Figure F.4 we observe that the predicted images look like the target map,
the style is consistent with our expectations, and the predictions are credible map
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Figure F.3: The fusion GAn architecture.

images. However, some complex rivers su�er from fading (We observe in another
test that this problem is simply solved by enlarging the water symbol on examples
tiles). Roads are also globally preserved.

Figure F.4: Pix2pix prediction for generalized map generation.

First, at the individual building level, or micro-level accroding to (Barrault et al.
2001), we observe that the building size constraint (C1 ) is always satis�ed, build-
ings are large enough, even a bit larger than in the reference. But the granularity



119

constraint (C2 ) is somewhat less satis�ed: the shape is simpli�ed, but sometimes
blurred, which is consistent with previous attempts to generalize buildings with
GANs and and U-Nets (Feng, Thiemann, and Sester 2019; Kang, Rao, Wang, Peng,
Gao, and Zhang 2020). We can also observe that some rectangles can be distorted
and have an unrealistic shape. Moreover, some buildings are over-simpli�ed and lose
their distinctive shape: for example, some L-shaped buildings are transformed into
a rectangle (see Figure F.5).

Figure F.5: Some zoomed image on prediction and target, the predicted building
shape may be blurred, irregulare or not credible.

The global legibility of the images is satisfactory: most of the buildings are su�-
ciently separated from the roads (C3 ) and do not overlap each other (C4 ). Building
density is well preserved globally (C5 ). However, some parts of the map (e.g. in
Situation 1) su�er from over-reduction of density. The remaining overlap problems
are mainly induced by similar errors in the target images. Then, the most impor-
tant challenge is to preserve the relations between di�erent geographic objects (C6
and C7 ). For the road-building and river-building relations, the relative orienta-
tion, topology most of the time, and proximity relations are preserved. However,
we do observe some building-road overlaps, and some inclusions in a small block
disappear (i.e. some buildings change block). Grids and alignement are really rare
in our dataset and thus it is di�cult to evaluate the quality of their presevration,
this point is later discuss in next section.

In city centers, the most important challenge is to transform dense urban blocks
into built-up areas. Figure F.6 illustrates some prediction in a dense area where
graying may be required. We observe that the model tends to erase most of the
buildings but does not apply a gray area in the whole area. For some images, the
predicted covering corresponds to the target (e.g., Situation 4), while for some other
examples, unexpected parts of built-up areas are covered, and some covering are
missing (Situations 5 and 6). We believe that there are three possible causes for this
problem:

1. The image is not su�cient to learn the block covering. The density and shape
of the buildings in a block are important criteria for a block-covering decision
(Touya and Dumont 2017), and both are visible in the images, but they are not
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Figure F.6: Pix2pix prediction for generalized map generation in city center areas.

su�cient. For example, on Situation 6 the central block needs to be covered,
while the block up to it has a similar aspect and does not. The covering
decision might be due to touching blocks outside the image, which are also
covered.

2. The image tiles might not show the complete block. Coverage is applied to
a complete block, but nothing guarantees that the image shows the complete
block. For example, in Situation 6 the graying is not predicted because only
a short part of the expected covered area is visible, and this short part is not
really dense to justify a covering decision.

3. There are not enough examples of block covering in the training set. Our
training set is composed of 2,623 images with very few (57) containing block
covering.

Paired vs unpaired approach Figure F.7 compares the prediction of paired
(pix2pix) and unpaired (cycleGAN) models. The �rst column presents the input
images, the second and third columns present the predicted image for each approach,
and the last column presents the target generalization. We observe that the paired
(pix2pix) and unpaired (CycleGAN) results are really similar. Contrary to the
use case of mountain roads (see Chapter E), pix2pix seems more promizing for this
experiment, the shape of buildings is quite more regular with pix2pix and this model
took less time to train. Thus, we use this model for the next experiments.

Typi�cation vs Agent target In map generalization, there is often no unique
optimal solution, as most of the time it is not possible to satisfy all constraints
at the same time, and compromises are necessary. Di�erent algorithms will focus
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Figure F.7: Examples of results from pix2pix (paired) and CycleGAN (unpaired) to
generate generalized maps.

on solving di�erent constraints and will give di�erent results. We want to verify
whether the model can learn to focus on di�erent generalization constraints when
we train it with data produced with di�erent generalization algorithms. Thus, we
compare the prediction targets of the trained model with the agent-based (Barrault
et al. 2001) and the typi�cation-based (Burghardt and Cecconi 2007) generalization
(Figure F.8).

We observe that predicted alignments and other building structures are better
preserved by model trained with example from typi�cation-based method; however,
the shapes are less regular and the minimum separation between buildings is violated
more frequently. The preservation of structures and alignements is one of the big
strength of typi�caiton process. The fact that these elements are better preserved
with the model trained from typi�cation exmaples is a �rst hint to conclude that
the network learns to reproduce generalization strategies from the examples and
prioritizes the same constraints as the generalization used for the target data.

F.2.2 Improving the default models

In this section, we present the experimented models and datasets to improve the
generation of generalized maps.
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Figure F.8: Comparison of images generated by pix2pix trained with agent-based
generalization, and typi�cation-based generalization.

Input representation

First, we tested using a layered representation of the input representation that limits
the image bias and simpli�es the input preparation for a computer. Figure F.9
compares the symbolized and the layered representations to learn the generation of
generalized maps. We only represented the symbolized input in the �gure because
it is more convenient for human readers.

We observe that the results are quite similar in most cases (e.g. Situation 1).
However, in dense parts of the map (Situation 2), the prediction of layered method
contains less undesired fading and overlapping, and the information is less blurred
and more preserved. Finally, in Situation 3, the layered method reduces overlapping
between buildings and roads, and the prediction is a generalization as relevant as
the target. So, the layered representation seems to be useful in the ambiguous case,
where the input information is dense or overlapping, and it does neither decrease
the quality of prediction nor increase the time required for training (for a three-layer
image, with roads, rivers and buildings).
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Figure F.9: Comparison of images generated by pix2pix trained with layered and
symbolized representation as input.

Road selection

Our previous experiment, despite good results, su�ers from a major limitation: the
road network is not selected during the process. We did not experiment to learn this
selection because we think that the image alone is not su�cient for this generaliza-
tion, indeed it is a multicriteria decision based on road attributes , and section role
in the global road network. Figure F.10 illustrates this problem, showing the pre-
diction of a model trained to produce maps that include road selection. We observe
that the model understands that it has to erase some roads, but not which one or
what a complete road is (which pixel belongs to the same object). The other themes
of the map are also badly generalized. Therefore, road selection widely increases the
complexity of the target task.

To allow the model to also learn the selection of the roads, we integrated addi-
tional information that should give hints on which road to eliminate, and we use
this additional information with a Fusion GAN. In our experiment, this additional
information is the prediction of the probability of road selection from Chapter D,
computed with a GCN. In Figure F.11 we present the prediction made by the Fusion
GAN model. We observe that the results are more blurred and less legible than the
initial model (when selection is not required), but more credible than the predic-
tions without the additional information (when selection is required). The roads are
not correctly/completely erased, but the model tends to erase more often the less
important roads, leaving the important roads. It seems that the model learns which
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Figure F.10: Prediction of a model trained to generate a generalized map that
includes road selection.

pixels are more important to keep and erase, but it still does not learn to �nd the
roads limits and to applies the same decision to a whole road.

Figure F.11: Comparison of prediction of base model and fusion model with road
selection probability information to generate a generalized map that includes road
selection.
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Alignments preservation

The preservation of alignments is a classical challenge in map generalization at
this scale. As there are very few alignments in our dataset, we cannot strictly
verify how the models learn alignement generalization. Thus, we try to apply the
model trained on our dataset to a test set in another area with more alignment
(see Figure F.12). We observe that the prediction does not preserve all alignments,
the building orientations, shape, and spacing does not vary very much but they
vary irregularly across the buildings making the alignment not salient anymore for
humans. We present for comparison a manual generalization of both area that
illustrate an acceptable generalizaion of the situation. We expect the model to
preserv alignement and the classical struce of building in two lines in each blocks.

Figure F.12: Prediction on test area with many strong alignments.

To improve alignment preservation during the generation of a generalized topo-
graphic map, we �rst tested the fusion of additional information that would help
locate the alignment (e.g., alignment axes, see Figure F.13). The alignments have
been manually annotated to obtain this additional information. However, none of
these representations improve the prediction, moreover, some decrease the quality
of the generated maps. Unlike the selection probability that improve prediction, the
di�erent variants we proposed do not help the model to know how to generalize the
alignments. Indeed, the alignment location contrary to our other porposal of the
additional information, does not aim to add information not visible in the image
such as context or attribute value. It is more an indication of areas that require
more care during the generation process.

Thus, we tried several stategies to teach the model to give more importance to
such areas.

First, we tested a weighted loss that gives more importance to errors in aligned
areas. We de�ne for each input image Xi the map Wi of the pixel that belongs to
an alignment with eq. F.1. Then we train the model with WL1 (see eq. F.2) loss
instead of L1 (see eq. C.2)

Wi =

{
1.25, if i belong to an alignment
1, otherwise.

(F.1)

WL1 =
n∑

i=1

Wi ×
∣∣∣Yi − Ŷi

∣∣∣ (F.2)
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Figure F.13: Some proposals to represent the alignment on an additional image.

Secondly, we try to �ne-tune the model with only tiles that contains alignments
(i.e., continuing to train the model for a few only epochs with the examples of the
particular situation we want to �t to).

Figure F.14: Prediction of the two proposed alignment improvement methods.

Figure F.14 presents the results of both of these improvements. We observe
that both solutions work well to improve alignment prediction quality in the not-
dense case. For the very dense case (Situation 1) the weighted model is less e�cient
because such images are very rare in our input data, the errors are more linked to
the extreme density than to the presence of alignments. Both solutions make the
model able to learn the alignment generalization; however, both have limitations.
First, the weight objective requires annotated training data; second, the �ne-tuning
method requires to train the model a few times instead of once and to have some
reference generalized data with the desired characteristics (here alignments).

An adapted objective function for map generation?

Finally, we tested the interest of two loss functions that aim to improve the prediction
of maps from the literature review.

Geometry consistency First, we tested the geometry consistency loss (from Fu,
Gong, Wang, Batmanghelich, Zhang, and Tao 2019) that encourages simple geomet-
ric transformations to not change the semantic structure of the image. This loss is
presented with more detail in Chapter A. It is coupled with an unpaired GAN has
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shown the potential to make a more regular predictions of map (in style of google
map without generalization) and simplify learning by reducing the space of possible
solutions. This loss is based on the comparison of several generalizations for one
building (with di�erent orientations); thus, we hope to force this irregular prediction
to converge to a regular shape. Therefore, the fuzzy outline of the buildings may be
reduced. Figure F.15 presents the results of our model trained with this loss.

Figure F.15: Prediction made with the geometry consistency loss.

We do not observe that the building outlines are less blurred than without the
loss. Building shapes are neither regular nor credible. More buildings are kept in
the prediction; however, the overlaps between the roads and the buildings are also
more frequent. Then the model tends to predict some nonexistent buildings on
isolated roads as if the model is learning that the buildings must be along the roads
(even if there is no building in the input). Finally, the generated road appears to be
more blurred and poorly generalized compared to the prediction without this loss.
The predicted image seem to su�er from a too important complexity that degraded
the results, especially the road generalization does not bene�t from the geometry
consistency loss. Thus, why not only applying this loss only to themes where it is
bene�cial? We think that such a loss can be interesting in a simpler case (i.e. for
the generalization of buildings only).

Structure loss We tested the loss of image gradient structure (from Chen, Chen,
Xu, Yin, Peng, Mei, and Li 2020) designed for map style transfer with preservation of
global topological relations and detailed edge curves of objects, which are important
in cartography. The interest of this loss for map generalization is explained in Capter
C. We tested this loss for data without road selection because road selection involves
a large change of image structure that the loss penalizes. Figure F.16 presents the
results of our model trained with this loss.

We observe that for simple situations the results are similar to the prediction
without this loss, the edges of objects are neither more regular nor more credible. In
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Figure F.16: Results of the model trains with the structure loss.

the most complex situations (e.g. line 2), the result is not satisfying, the model learns
to predict an image with very few changes from the input (except a small undesirable
noise), and no generalization is performed. Indeed, in these cases, we expect the
loss to encourage the preservation of topological relations between di�erent elements
(i.e., maintaining disjoint relation between a road and a building, inclusion between
a block and a building, or disjoint relation between two di�erent buildings, etc.).
However, the loss rather measures the structural variation between one element and
its generalized version, and this comparison, contrary to the symbolization task, is
not relevant because the generalization of the dense areas involves an important
change in the shape and location of objects. Such loss seems to be not adapted to a
map generation task that includes a change in the level of abstraction between the
target and the input map.

F.3 Discussion

This section presents some discussions about our experiments on generalized map
generation. In particular, we discuss the interest of the fusion GAN architecture;
the additional information required to generalize a complete map at the 1:50,000
scale, and the possibility of a model for complete map generation.

F.3.1 Are fusion models useful?

First, we discuss why a fusion architecture is necessary for the models to bene�t from
additional information. During traditional generalization, cartographers do not use
all the information on geographic objects at the same time; they �rst look at the
position and shape of the object, �nd con�icts and then use other information (the
importance, meaning of objects, etc.). The fusion architecture is based on the same
principle; the model �rst encodes the shape and position of the cartographic object
and then needs additional information to resolve the con�ict, but this information
does not require the same encoding as the main information. To demonstrate the
interest of such architecture, we compared its predictions with an architecture that
sees all information in the same tensor, and the main and additive tensors are stacked
together. Figure F.17 presents the results of this experiment. We observe that the
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Figure F.17: Prediction of the model trained with the stack of the main and addi-
tional information for map generation that includes road selection.

prediction of stacked information is similar to the prediction without additional
information, random road parts are selected, many disconnections appear and the
result is not legible. The model does not understand the information hierarchy and
does not bene�t from the additional information.

Then, the results predicted with the fusion GAN have a degraded quality: in-
cluding more disconnection, more blurred boundaries, etc. than the model trained
with the base architecture of pix2pix. This degradation of quality is partly due to
the increase of the task complexity, but mainly due to the model that has to be
improved. Indeed, the Fusion GAN we propose is just a Pix2pix where we replaced
the U-Net with a FuseNet. Indeed, this replacement is bound to include additional
information, but fusenet structure does not include the ability to deal with multi-
scale phenomena unlike the u-net that include long-range skip connection (see Figure
C.5). Moreover, the depth, initialization method, and optimization method of both
these models are di�erent, and thus have to be investigated.

Finally, in our architecture the discriminator is unchanged and trained with
input, output and input predicitons paires. However, the GAN discriminator may
also requires to "see" the additional information to judge if the predictions are
realistic. We can assume an architecture that uses the triplet: main input, additional
input, output or prediction, might be more suitable.

Which information to fuse? If the optimal method to fuse additional informa-
tion is not yet de�ned, the interest of this information is not a question and the
more complex the target map, the more additional information may be required.
We think that the attribute information of map objects and the context around the
tiles are the more relevant additional information, but we did not have time to study
the bene�t of many additional information sources. Thus, in this section, we give
some examples of potential improvement with additional information.
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� Ameaning-aware generalization of building: in some cases, it can be interesting
to apply di�erent generalization rules to some buildings due to their nature,
e.g. a church often has a cross shape, and preserving this shape even if it breaks
the minimum side constraint may be interesting as this shape is meaningful
and may serve as a landmark in the city. However, such a generalization can
be learned only with information on the nature of the building.

� The arti�cial and natural waterways are often really di�erent to generalize,
and this information may be provided as additional information.

� The Horton order of a river or river stroke can be useful for its generalization
(Touya 2007), as it describes the context in the watershed that is not visible
in an image.

� The density of a block can be a contextual information as the block can be
heterogeneous in its spatial distribution and not completely visible. This in-
formation may in�uence the block covering decision and building placement
in the block.

F.3.2 How to learn the preservation of spatial relations?

The main limitation of our results is the preservation of spatial relations. Our
networks seem to succeed in preserving the relative orientation and relative position
of element pairs in most situations. However, they fails to preserve the patterns of
particular group of map objects. For example, it fails to select roads while preserving
the connectivity of the road network.

The main di�erence between road density reduction and building density reduc-
tion seems to be the scale of the change: erasing a road would impact several tiles,
while erasing a building may only impact a part of a tile. The tile scale may not
be adapted to represent the context necessary for road selection. Furthermore, the
absence of attribute information on the road is more important for roads than for
buildings. For such relations we think the image approach is not the most adapted,
or have to be combined with other approaches (e.g., graph based learning).

F.3.3 Is it possible to generate a complete generalized map?

The last and most important question brought up by this experiment is the possi-
bility of generalizing a map that combines several cartographic themes using these
networks.

First, we observe the following limitations:

� The predicted buildings have a blurred outline and not regular shapes. Some
buildings are not credible. This problem is common with all GAN architectures
tested in the literature and some model improvements for geographical data
or regular data have to be investigated.

� Some overlaps between roads and buildings remain. This problem has two
main causes: (1) the under-selection of the road network which makes it dif-
�cult to �nd a generalization solution that avoids overlapping and (2) the
presence of such overlaps in the example from the reference. The correction
of the training set is time-consuming but required to improve the results.
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� Disconnections appear in the road network, or the road network is poorly
generalized. In the �rst step, this problem was due to a lack of context. Then
we provided context with the Fusion GAN, but the model has to be adapted
to use it.

� the block graying fails. We think that our input data do not include enough
graying to allow us to learn this process, and our tiles are not adapted, a tile
that includes the whole block may be required.

Secondly, we learnt from this experiment the following guidelines for the use of
GANs for map generalization:

� The input and target domains should not be too di�erent with a supervised
architecture. Consequently, we believe that only a small-scale gap is possible
(i.e. initial and target scales should be close enough).

� Input and target tiles must be legible; thus, the information presented in a
symbolized representation must be limited, or a layered representation has to
be used.

� A su�cient context has to be visible in the tile, so the scale of the images has
to be adapted, or an additional information tensor has to be provided; this
information has to be relevant and correctly encoded to bene�t the learning.

These constraints on task de�nition and tile creation reduce the possibility of-
fered by GAN. Moreover, some other techniques like attention-based architectures
(Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gmoez, and Kaiser 2017) may resolve
some context-relative issues. Finally, model improvement can bene�t some carto-
graphic themes and degrade others. Therefore, we believe that it is currently more
reasonable to design a process that learns to generalize di�erent independent ele-
ments of the map separately. Such an architecture is explored in Chapter G, our
proposal seperates generalization processes by theme, similarly to traditional gener-
alization methods that treats roads �rst and then buildings in the �xed generalized
road network; etc.
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Chapter's conclusions

This experiment shows that GANs can generate map-looking images that
include generalization. Our results succeed in reproducing the simpli�cation,
enlargement, and typi�cation of buildings. However, more context is needed
to achieve road selection.
This experience also highlights some challenges in the data organization. We
proposed an organization of geographic information that seems promising for
map generation. This information is organized as two tensors (see Figure
F.18), one representing the shape and position of the cartographic object by
theme, and one representing additional information required for map general-
ization. The layered representation limits bias in the creation of the dataset
makes the input information more accessible for a computer, and the output is
more complete in dense areas. Then, the additional information characterizes
the map objects (attributes or context) and helps their generalization. This
additional information must be encoded by the generator network to bene�t
from the prediction. For this task, we propose using a FuseNet as a generator,
but our proposal is not yet satisfactory.

Figure F.18: The recommended organization of input data to learn generalized
map generation.

Finally, we think that GAN are more adapted for map style transfer tasks
than map generalization.The generation of a complete map may require much
context information and hard work on tile preparation. We believe that a
more promising approach is the successive learning of theme generalization
combined with a GAN that makes a map from raw generalized tiles. This
process is explored in Chapter G.



Part III

The future of map generalization

with deep learning
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Chapter G

Usages of deep learning models for

map generalization

This chapter deals with the main possible perspectives for using the deep learning
models in map generalization. In particular, we discuss the ability of deep learning
models to be applied in new unseen situations. Then we describe how both the
integration of deep learning in pre-existing map generalization process and its usage
as an end-to-end process are challenging.

G.1 Transfer learning

Once a deep learning model has been trained, it aims to be applied and �tted to
unseen situations. This ability of a model to be relevant for various unseen situations
is called transferability.

In this section, we illustrate this ability in case of map generalization models for
some models presented earlier in this thesis.

G.1.1 Location transfer

First, we tested the transfer capacity for other geographic areas. Indeed, location
can impact both the map content (e.g. some area are denser or more regular than
others) and cartography (the requirement, scale, level of detail or feature of the map
varies in space and time); and as our model is trained with examples from the same
geographic area as the test set, we would like to verify that it can be in other areas.
We tested the transferability of the graphic generalization learned for the mountain
road use case described in Chapter E. Models were trained with images from the
Alps, we applied them to roads in other mountain areas of France (see Figure G.1).

Each new testing area was separated in testing images created in the same man-
ner as training images, and contains at least 200 new images with various road
con�gurations. Figure G.2 shows a very small extract of these test sets for each
of these areas. We observe that the prediction is as good as for the initial test set
(in the north Alps). Quantitative evaluation (presented in the next chapter) also
con�rms this result. Thus, this model is correctly transferred to mountain roads
from the same country.

This use case is quite simple as the input images in the test set are quite similar
to those of the training set but some other cases are more complex. For example,
in next section we present experiment for transferring model to another country. A
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Figure G.1: Situation map of the training and tested transfer areas.

Figure G.2: Prediction of the model trained in the north Alps for tiles from other
regions in the same country.

such tranfer require to �ne tune the model as the input image may be created from
other data sources or in a di�erent manner, and the characteristics of represented
situation can be very di�erent.

G.1.2 Transfer to geographic information from a new data

source

Secondly, we experiment with how the model trained for topographic map general-
ization (from Chapter F) can be transferred to some maps with other data sources.
The input tiles are created using OSM data in the USA. The level of detail of the
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input is not homogeneous and more detailed than the input tiles of the training set
(we estimate that the level of detail for selected areas would be adapted for car-
tography between 1:10,000 and 1:25,000; see Figure G.3). The second challenge of
the chosen dataset is that it is very dense compared to the French one and contains
many small and aligned buildings. We have shown that the model transfer to USA
data is not e�cient unless retraining a few epochs of the model with a few examples
from the target areas. We consider that the objective of the model is not exactly the
same as when it is applied to french data: the input data are constructed di�erently
and the scale gap is greater. Moreover, the very dense situation are common in the
new test area and rare in the initial trainging set, they may be hardly generalized
without �ne-tuning.

Figure G.3: Input tile a) in the USA; b) in France.

G.2 Usage as a tool in a mixed process

Map generalization models are traditionally composed of operators (that construct
new objects or geometries from existing entities) and indicators or data enrichment
(that describe existing objects, make explicit the implicit knowledge necessary to
map generalization and help to choose and parameterize operators). According to its
formulation (see Chapter B) a deep learning model can play both roles; for example,
the detection of alignments (proposed in Chapter D) is an indicator of building
group, which can be used to improve the generalization of these groups, while the
segmentation of road shape (proposed in Chapter E) is an operator as it produces
a new road shape. Moreover, some models, such as road section classi�cation, can
be employed both as an indicator of the importance of road sections in a road
network selection process or directly applied as an operator to select edges in the
road network. In the next paragraphs, we detail the issues of using deep learning as
an indicator and as an operator for in a map generalization process.

G.2.1 Deep enrichment

First, many deep learning tasks can be seen as data enrichment for map generaliza-
tion. Concretely; it can be employed similarly to traditional data enrichment prior
to map generalization, the information is made explicit, registered as a character-
istic for the database object, and then used during the generalization process. For
example, the following enrichment can be brought about by a deep learning model
and is a bene�t to map generalization.
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� Urban block classi�cation could be performed using a deep neural network and
can be bene�cial for progressive block graying (Touya and Dumont 2017).

� The segmentation of highway interchange (Touya and Lokhat 2020; Yang,
Jiang, Yan, Ai, Cao, and Chen 2022) can be bene�cial for the generalization
of such patterns;

� Building shape classi�cation (Yan, Ai, Yang, and Tong 2020) may allow models
to choose the relevant operator for building simpli�cation.

� Alignment detection (Chapter D) can be used to assess the generalization of
the building group or to determine the groups for the generalization of the
buildings.

The data enrichment prior to map generalization is classical, and the use of deep
learning for such a task does not imply new/speci�c integration issues. Knowledge
is made explicit and can be used for map generalization processes (eventually with
a form adaptation1). In this case, the contribution of deep learning is to make
accessible knowledge that was previously not (except by a manual annotation).

G.2.2 Deep generalization

The usage of deep learning as an operator is promising, as it allows one to generate
generalized entities and to use them in a generalized map. For now, the creation of
such a model is more challenging, and in most identi�ed approaches (see Chapter B)
the prediction cannot be in vector format and require post-process to be integrating
into a map generalization process. Indeed, in the construction of a map generaliza-
tion process that includes a deep learning operator, the output of the deep learning
process must match with the expected input in the next step of the generalization
process (which are commonly entirely vector).

Graph to vector The conversion from graph to vector is often not a problem, as
graph construction methods are a bijection (one element in the graph corresponds
to one element in the vector), and the graph structure is not altered during learning
(even removal of an object is not properly a removal, but the prediction of a re-
moval label that will lead to suppression of the associated object in the generalized
output). For example, if a shape graph (i.e., a graph that encode the shape of an
entity, see Chapter B) is used to predict a generalized shape, one corner corresponds
to one node, and the existence and displacement of each node is predicted, then this
information applied to the corner point allows the generation of the vector general-
ized shape. Similarly, for the selection of the road network in Chapter D the graph
and the road network are linked by a bijection and the selection of the road section
(according to a chosen threshold) can be applied to the road network to obtain the
vector selection of the road network.

1The image approach may require more form adaptation to �nd the object concerned by each
images.
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Image to vector The integration of generalized objects in image format is more
challenging, very few raster data are used in the map generalization process, and
the conversion has important limits (Shunbao, Zhongqiang, and Yan 2012). In fact,
the vectorization process creates an envelope of consecutive pixels that represent
the same object. This process depends on a pixel clustering method (to determine
which pixel describes the same vector object) and the pixel resolution. For example,
for the generalized mountain road shape in Chapter E, we proposed the following
steps2:

1. Projecting images. During the image creation, we stored the coordinates of
the input image and used this information to project the corresponding output
image of the map.

2. Constructing a road mask. We identify the pixels representing a road in the
image (i.e. whose color is closer to the color of the roads in the target style
than any other color of the target style.)

3. Polygonize. We use the gdal_polygonize function that creates vector polygons
for all connected regions of pixels in the raster that share a common pixel value.

4. Skeleton. The polygon skeleton is used to �nd the road axes and linearize the
shape.

5. Smoothing. The artifacts of linearization are eliminated.

The second challenge is the assembly of tiles. Indeed, tiles are generalized inde-
pendently and roads are arbitrarily separated by the image border, but at the end,
we expect a coherent road vector network without disconnection at the tile limits.
Moreover, with the tile overlapping and the independent generalization of each tile,
several generalizations are provided for one part of an object, and the assembly pro-
cess has to match di�erent generalizations in a unique shape. Several approaches to
merge shapes are possible from the choice of one (the best) of the predicted shapes;
to the creation of a new 'average' shape of all predictions. Finally, the assembly
may be performed before or after the vector conversion according to the use case.

For mountain roads we choose to make an average summary of all shapes, as
the most important criterion was continuity preservation between lines in di�erent
tiles and the mean line may be closer than two independent best generalizations
from di�erent tiles (we think the best generalization assemblies are better adapted
for polygon objects like buildings); then we tested both approaches of assembly in
raster and vector mode, and �nally proposed a combined approach that may improve
the quality of assembly:

1. The roads are arbitrary separated in sections.

2. Section are matched using a distance criteria.

3. The shape of matched section is optimized unsing a least square optimization,
to induce a "mean" shape for each road portion.

The optimized constraints are the following:
2The work about mountain road tiles vectorization and assembly is the results of a student

project by Ziad Boukbir, Quentin Courtiade, and Julliette Rabbe and that we supervised.
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� Minimization of the movement of each point.

� Preservation of angles.

� Minimization of the Hausdor� distance between two analogous segments.

This process results in a vector road network that su�ers from some disconnec-
tions and important distortions at some parts where two matched routes are very far
apart, either because the matching is wrong or because the two generalizations are
very di�erent. Moreover, the displacement is homogeneous along the section, while
we may want some points to be �xed (e.g., the intersection or dead end). Thus,
we propose a second approach for tile assembly but before vectorization: we try
to detect points of interest in the image and use them for distorting the image so
that analogous roads cover each other. Such a process is promising for maintaining
structure and connectivity of the network while assembling the tiles, but, we were
not able to �nd both enough relevant points of interest and an adapted deforma-
tion function for tile assembly. This work was done in a limited time and that it
deserves to be explored further. Our last suggestion is to combine both approaches
and apply a smooth distortion to the image to assemble the points of interest, and
then vectorize and match the other segment point.

G.3 Usage as an end-to-end process

The second approach is to use deep learning models in a holistic deep learning
approach for generalized map generation. Chapter F has shown the complexity of
learning to generate a generalized topographic map image from a detailed geographic
database, using an image approach. Indeed, it seems complex to encode all the
necessary information in a single tensor that is the input of a neural network, and
the complexity of the task makes the model design complex. Moreover, we have
shown that some architectures are suitable for some sub-tasks of the generalization,
but not for others. No architecture proved e�ective for all required tasks.

In this section, we propose to combine several simpler generalization models in an
end-to-end process. Indeed, the separation into simpler tasks allows us to simplify
the formulation, the research of relevant deep neural networks, and its adaptation
and evaluation. For example, the additional information that can improve the gen-
eralization of the road network in Chapter F also degrade the prediction in the case
of a complete map generalization. Bias can be avoided in the case of a separate
process. Thus, we propose, experiment, and discuss a deep neural network work�ow
for generalized map generation, called DeepMapScaler.

G.3.1 DeepMapScaler: a work�ow of deep neural networks

for the generation of generalized maps

We propose to separate the problem into several simpler tasks in order to apply the
relevant deep learning architecture to the small problem it is able to solve (U-Net,
FuseNet, GAN, Graph Convolution Network, etc.). Our contribution is organized
as a work�ow that describes an end-to-end process for generalized map generation,
where deep learning is used in most steps.

The �rst part of the work�ow is called data adaptation for a reduced scale (or
in a shortened way scale adaptation); it encodes the detailed shape and location of
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each desired geographic theme and predicts a possible generalization. This stage is
responsible for adapting the level of detail of objects and preserving the main struc-
tures in each theme, it include both the enrichment priror to generalization and the
individual generalization of themes. Then, the second stage assembles generalized
objects in a symbolized map; it is responsible for the preservation of inter-theme
spatial relations, and for the global legibility of the map. The general organization
is illustrated in Figure G.4, then G.5 illustrate an application for this work�ow on a
map containing roads, rivers and buildings. In the following paragraphs, we describe
the process with more detail.

Figure G.4: Illustration of the main steps of DeepMapScaler work�ow.

Data adaptation to the scale reduction The scale adaptation manages the
level of detail of the geographical data, but does not exactly perform its complet
generalization, as the inter-theme relation and resulting displacements are not con-
sidered. It may be assimilated to the creation of a �rst draft of cartographic database
for a speci�c scale. The goal of scale adaptation is to produce the masks used as
input for map generation. This shape satis�es legibility constraints at the target
scale; it may respect constraint that concern individual, paire or group of object
from the same class (e.g. the granularity, pattern preservation constraint, etc.).

The scale adaptation of each cartographic theme is processed independently in
one or several steps (including both some deep enrichement and operator steps).
It can have diverse forms according to the themes depicted in the map and the
scale; the more complex a theme generalization at a scale, the more steps may be
needed. We think it is possible and bene�cial to mix diverse representations of
geographic information during the scale adaptation of one theme (e.g., graph and
raster). The input of the �rst step must be derived from the detailed database, then
the information of the next step can be derived from both the detailed database
and/or the predictions of previous steps.

Map generation This step leads to the prediction of a map image at the target
scale, it is composed of only one model that is trained to generate a symbolized
map from cartographic data, it mainly a�ect the style of images. Cartographic data
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already have a level of detail adapted to the scale of the target map, but it also includ
generalization step to displace objects that overlap once symbolized and gather in
map. We propose to repeat our proposal of layered representation and use as input
a stack of masks that represent the position and shape of the generalized map item
organized with one cartographic theme on each layer.

G.3.2 Experiment

To illustrate the interest of such a work�ow, we propose an instanciation for the use
case of topographic map generation at 1:50,000 scale, already presented in Part II.

Implementation

The use case and base vector database are the same as for experiement presented
in Chapter E. Thus, we can compare the results of both approaches. The target
maps includes roads, buildings, and hydrography, at 1:50000 scale. The global
implementation of the work�ow for this use case is illustrate in Figure G.5 and then
detailed in next paragraphs.

We propose to experiment with the scale adaptation of roads and buildings and
then with the generation of maps. We did not experiment with the water scale
adaptation, as it is really simple at the chosen scale (no shape simpli�cation is
performed, the water container are deleted and a slight selection of water lines
based on attribute is performed). We implemented the deep learning models of the
work�ow using PyTorch, and the code for raster tile creation is published as a plugin
of CartAGen open-source map generalization software. Each model is trained after
the validation of the previous one in the work�ow.

Figure G.5: Illustration of an application for our work�ow on map containing roads,
rivers and buildings.
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Road generalization

For the road generalization, we tested a proposal in two steps: �rst, a GCN predicts
the probability for each road to be selected at target scale from the attribute and
context of each road sections (from Chapter D). Then, a GAN is responsible for
interpreting this information and generating images of the generalized road. For
this step, we use the proposed fusionGAN from Chapter F, with a binary mask of
the presence or absence of roads as output. This part of the work�ow is illustrated
in Figure G.6. We also tested the addition of a connectivity loss (adapted from the
connectivity loss proposed in Chapter F) and the topology loss from (Chen, Chen,
Xu, Yin, Peng, Mei, and Li 2020). The connectivity loss measures the preservation
of the number of road sets after generalization to avoid disconnections. Contrary to
the experiment at the 1:250 000 scale, the loop creation and undesired coalescence of
two road parts are very rare, so we did not measure the preservation of the number of
background sets. This measure can be computed even in the more complex images;
however, the overlapping of the road and other themes create disconnections that
does not a�ect human perception of continuity and makes it less relevant in the case
of map generation. The topology loss computes the structure of the predicted image
and compares it with the input image. This comparison seems relevant to use for
the case of roads image because the global structure of the road network does not
change much. However, we do not think it is adapted for most other themes (e.g.
building) that also contribute to the structure of the image and may vary in position
in an important range.

Figure G.6: Proposed steps for scale adaptation of road network at 1: 50 000 scale.

The results are presented in Figure G.7. We observe that the continuity of the
prediction is still the major issue, the model is able to understand the selection and
select appropriate edges but it does not preserve them entirely, and intersections are
disconnected. The proposed improvements are not conclusive; the topology loss gives
a similar quality of results for most situations and creates new disconnections for
complex intersections where simpli�cation (and thus change in the image structure)
is required. The connectivity loss slightly reduces the number of disconnections, but
the numerous artifacts make the image hardly legible.

We believe that despite the obvious failure of our attempts to maintain the
continuity of the road network in the predictions. The image approach may be
adpated for the road generalization, however, further research on the fusion model
and the loss function are necessary.
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Figure G.7: Prediction of the scale adaptation for the road at 1:50 000.

Building generalization

The experiment on map generation from Chapter F lets us consider building gener-
alization as simple enough to be learned in one step with satisfying results. Thus,
we train a supervised GAN to predict the position and shape of the generalized
building in a mask. The input of the model is the layered representation of the de-
tailed buildings, roads, and hydrography because we think that the other theme of
the map helps to identify crowded and free areas and gives an indication for the gen-
eralization of buildings. We tested the classical implementation of pix2pix and one
that included the geometry consistency loss from (Fu, Gong, Wang, Batmanghelich,
Zhang, and Tao 2019). This loss may allow us to generate more regular shapes and
reduce the number of epochs required for generating acceptable results (see Figure
F.15).

Figure G.8 presents the results of these steps. The evaluation of such buildings
is visually di�cult, the both results seems satisfying, with realistic and generalized
buildings. However a quantitative evaluation of buildidng shape regularity is neces-
sary to study the interest of the geometry consistency loss. This evaluation is based
on conversion to vector and vector constraint evaluation and detailed in Section
H.4. It leads to the conclusion that the geometry consistency loss does not bring a
signi�cant improvment of regularity in predicted building shape.

Block graying

Finally, we try to learn the graying of the city center. This task is essential for
legibility when the situation is too dense at this scale. This process requires the road
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Figure G.8: Prediction for building shape adaptation.

network (to de�ne the urban block), the detailed shape and position of the buildings
(to determine the cluttered areas), and some semantic information that summerize
the properties and the spatial neighbourhood of each block. For this experiment
we reuse the organization of geographic information proposed in Figure C.21: roads
and buildings shape and locations are the main information, a grayscale category
map that describes with values from 0 to 255 for categories from rural to inner-city
is the additional information. This additional information is obtained using the
multi-criteria classi�cation described in (Touya 2021). The resulting dataset was
not really relevant because the graying case is very rare (representing less than 20%
of our tiles) in such mostly rural areas and at this scale; thus, we only kept tiles
that include urban pixels and added examples from other cities in France until we
obtained a reasonable dataset of 1200 images. The graying was manually annotated.
We trained a FuseNet to segment pixels that may require to be grayed. Figure G.9
presents one tile of input, target, and prediction. We observe that the model learned
to cover the entire urban envelope rather than just the dense blocks of the center.
We did not have time to further improve the prediction of graying, but we think
that the tile scale and the provided information are not adapted. The classi�cation
results are not correlated with target graying (e.g.some block are classi�yied as sub-
urban and grayed and conversly some urban block are not grayed). Moreover we
think the size of tile is not adapted for block analysis, and images that allow to see
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several blocks or even the whole city would be more relevant for this task.

Figure G.9: Prediction made by the model trained for graying segmentation.

Map generation

Finally, we experiment with the generation of legible maps without overlapping data
at the target scale from the scale adapted cartographic data (output of the previous
steps). The goal of our experiment is to test the interest of DeepMapScaler princi-
ples. As the quality of road network and graying prediction are not good enough,
we only use the buildings generalized by a GAN and faked the scale adaptation of
roads and hydrography (at this step the roads and hydrography input tile are not
the output of the previous step but a generalization obtained using a traditional
map generalization process and manual corrections). The input and target of this
step are illustrate in Figure G.10.

Figure G.10: Input and target of map ganeration step.

We choose an unpaired model (cycleGAN) because we want to learn what a
generalized map looks like and not how to convert from one generalization (the one
performed by previous steps) to another (the target one). This approach had worked
quite well for mountain roads in Chapter E. Figure G.11 presents the results of this
generation experiement. The output is in a satisfying style and quite credible. The
images presented on the left are particularly satisfying because the prediction outper-
forms the generation made in Chapter E and demonstrates the ability of CycleGAN
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to reproduce new generalization operators: in purple, we observe some amalgama-
tions when the initial buildings are too close and have a complex shape; in green, we
observe some cases where the buildings are displaced or distorted to avoid overlaps
with the roads; in pink we observe some displacements to avoid the overlap of two
or more buildings. However, the prediction still has some limitations (illustrated on
the right part of the �gure), in particular in the prediction, the road-river relation
and road-building relations are sometimes not correctly processed and undesired
overlaps occur (circled in red); and some building-to-building proximity relations
are not correctly handled as the model does not choose between amalgamation or
displacement, and tries to do both, which results in a shape that is not credible. We
explain the buildings-roads overlap by the rarety and complexity of the situtation,
buildings are in a very thin block and where it is not possible to maintain buildings
in the blocks while increasing theire size. The roads-river overlaps is due to a bad
generalization of such situation in our example set. For the second problem, the
amalgamation and displacment of buildings, we think it is mostly an under-training
problem; we con�rmed this hypothesis by training the model for a few more epochs
and observing a reduction of such situations.

Figure G.11: Predictions of the map generation steps; good predictions are presented
on the left and more controversial ones on the right.

G.3.3 Discussion

Advantages and limitations of the work�ow Our experiment aims to show
that a work�ow that combines several deep neural networks is more promising than
the approach of Chapter E (i.e., training a unique model to achieve map generaliza-
tion at once). The proposed approach has the following advantages:

� It allows for a simpler evaluation and comparison of prediction quality for each
task.

� It allows the independent training of di�erent tasks: some tasks are more
complex and require a di�erent number of steps (e.g., map generation takes
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300 epochs, while building generalization only needs between 150 and 200
according to the model).

� As the objective is more clearly de�ned, the model and loss adaptations are
also simpler.

� Some tasks (e.g. road network selection) require di�erent representations, and
such a model allows the combination of representations.

� We can choose and use di�erent input data for each task.

� Post-processes and corrections between steps are more easy than with one
model for holitics generalization (e.g. the blue spot noise in cycleGAN predic-
tion can be simply corrected in buildings or road images as no blue pixels are
expected, while in a complete map they can be noise or rivers pixels).

However, our experiment is limited by the chosen model for each scale adaptation;
in fact, if we are convinced that the separation by theme will allow the design of a
speci�c architecture, and thus the prediction of better generalization, we were unable
to propose a model that visually improvement of the prediction is signi�cant and not
just link to the randomness of learning processes. In particular, road connectivity is
still a problem and may require an improved fusion architecture. Furthermore, the
map generation step provides an improvement. In particular, it has shown that the
unpaired GAN can learn displacement and amalgamation and seems more e�cient in
producing a legible map than the unique generalization model. Finally, the proposed
work�ow has limitations in its de�nition.

� Data acquisition is more complex than for the unique model;

� It requires more time and storage capacity than the unique model;

� The propagation of errors is more probable.

Transition between steps Then we discuss the transition between steps. In our
�rst implementation, we decided to train each step independently and to include a
data representation between each step to make the transition between one model
output and the next input. This choice is bene�cial for research purposes where
we are still searching for an adapted model for each step, and we can and want to
evaluate each of the steps visually. This choice is the simpler one for us, but other
solutions are possible and may be of bene�t. In particular, for a step that has a data
enrichment function (e.g. prediction of elimination probability), an approach with
an encoding-only model that provides an embedding representation of attributes or
context information to the next model directly may be adapted. The idea is that
the decoding step is to render the information in a form that is understandable to a
human. But as in the case of our work�ow it is directly another learning model that
will use it and not a human, it could be possible to transmit directly the encoded
information (emmbeding) to the next model (see Figure G.12). We imagine that this
should reduce the eventual degradation of the information related to its successive
encoding and decoding.

More than reducing the cost and bias of decoding/representation such transition
would also allow to chain processes based on any kind of object representation, while
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Figure G.12: Illustration of the alternative transition between steps based on em-
bedding.

for now the decoding transition only allows some transition (e.g. the graph-to-raster
transition is possible but not raster-to-graph), and would give more freedom on the
steps of the work�ow.

Chapter's conclusions

In this chapter, we show that the use of deep learning may allow us to apply
deep learning-based generalization model to a large dataset. However, this
application may require �ne-tuning in the case where it must be applyed to
very di�erent situations or to use case where the objectivs varies (e.g. the
input data is form another source, the target style is quite di�erent, the scale
gap has changed, etc.).
We also explore the possible usage of deep leanring based model in a general-
ization process. We assume that the usage of deep leaning alone is currently
not suitable and models have to be integrated in larger work�ows. We show
that models can serve as an enrichment indicator or a generalization operator
in a traditional generalization process or in a fully learning-based map gener-
ation work�ow. In both cases, integration is challenging, mainly due to the
data format (that is not vector) and the deep learning evaluation (see Chapter
H).
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Chapter H

Evaluation of deep learning

predictions

As shown in Chapter F, the evaluation of generalization performed using deep learn-
ing is a challenge. This chapter introduces the main notions and issues about evalu-
ation and then proposes three evaluation methods adapted for deep-learning based
map generalization.

H.1 The speci�cities of evaluation of deep learning-

based generalization

H.1.1 Why evaluating deep learning predictions?

The evaluation of generalization is traditionally an important research problem;
evaluation is used to tune the parameters of generalization processes (e.g. setting
constraint threshold and importance), to control its orchestration (e.g. choose the
relevant operator or level of analysis), and to assess its results (e.g. verifying the
legibility and informatio presevration) (Mackaness and Ruas 2007). In addition,
deep learning processes also require evaluations at several steps (Figure H.1) and
the evaluation often di�ers according to its objective.

Figure H.1: The main evaluation steps when designing a deep learning model (the
learning process is colored in green, and the evaluation steps are colored in purple).

First, the evaluation of the training examples is used to ensure that the examples
are good enough for learning or to �lter examples of lower quality. Then, evaluation
can be used to validate a model, choose the most adapted con�guration of a network,
or guide the post-processing (e.g. identifying a noise to eliminate). Finally, the main
interest of an evaluation measure calculated using images is to guide the learning
process, i.e. including a particular evaluation measure in the objective function
of the neural network. This evaluation requires a very small computation time and
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cost, as it is repeated for each image in the dataset at each epoch of the training. On
the contrary, the evaluation at the end of the process can be more time consuming,
as it would be calculated only once; however, this evaluation must be as quick as
possible.

In next paragraph we summarize the evaluation objectives for deep learning
based map generalization.

Tuning In deep learning the main parametre we can tune are not the model
paramter that are learnt but the training data set from which they are learnt. Thus,
the evaluation processed on the training set at the beginning of the experiments,can
be seen as a kind of tuning evaluation. This step aims at identifying un-desired
examples and estimating the quality and diversity of examples. Identifying unde-
sired examples and estimating the quality of the training set require an evaluation
methods that identify and quantify errors in each image. Then, describing the di-
versity of a training set requires a more global indicator, such as the measure of
image complexity and similarity to the detailed map1.

Controlling An evaluation measure can be used to control the learning process.
At the end of each epoch the measure is used to verify the progress of the model and
to choose when to stop learning. For now the loss value and a pixel wise comparison
with the reference are used in most training process. The evaluation for controlling
the learning requires a measure that globally describes the quality of the prediction;
moreover, the calculation of such an evaluation has to be done automatically in a
reasonable time, because it is repeated many times during the training process.

Setting An evaluation measure can also be used as a part of the objective function
during training. The learning objective (loss function) is the function that measures
the error of a model and is optimized during learning. The choice of an adapted
learning objective for map generalization is detailed in Section C.1.4.

Validating The most common reason for evaluation is the validation of a model.
An evaluation of this type has to make comparisons with other generalization meth-
ods or with a reference generalized map. The aim is to verify that the produced map
is a functioning map. We think such measures are essential for the development of
deep learning-based map generalization, as this allows us to formally demonstrate
the potential of such an approach and promote the comparison, and thus the pro-
gression of models.

Post processing Finally, evaluation can be used to identify errors after general-
ization and choose a post-processing method that corrects them. For example, we
can apply a �lter to correct a noise using the relevant evaluation. Consequently, the
goal of this evaluation is to fully describe errors in a map image.

1The evaluation measure can be used for tuning the training set but the training set tuning is
not necessarily based on an evaluation measure (e.g., the sinuosity based �ltering, and the diversity
measure for mountain road in Chapter E).
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H.1.2 Evaluation in map generalization

The objective of the evaluation is to determine whether the map has the charac-
teristics necessary to be used for a given task. This evaluation can be performed
visually by an expert or automatically by identifying and measuring the respect (or
violation) of a set of constraints. Constraints are essential for many tasks in cartog-
raphy, including map generalization evaluation (Werder 2009; Touya, Duchêne, and
Ruas 2010). For example, Figure H.2 is an illustration of the main constraints for
buildings on a topographic map.

Figure H.2: Illustration of the main speci�cations of the buildings on a topographic
map.

Evaluating a map or a generalization process from a set of constraints is chal-
lenging and raises the following issues:

1. Identi�cation of relevant constraints/desired characteristics of the map. Both
legibility and preservation should have similar weights in the evaluation to
avoid caricatured results (Zhang 2012).

2. Identi�cation of the relevant level of analysis for each constraint. This is a
key issue in constraint de�nition: a constraint on each section of the road
is di�erent from those on a complete road or on the entire road network.
Ruas (1999) identi�es three levels of constraints: micro which relates to an
individual object of the database used to make the map; meso which relates
to a group of objects, and macro which relates to a population (e.g. all roads
of the map).

3. The de�nition of a measurement method that �ts the visual ranking (Tail-
landier and Ga�uri 2009; Harrie, Stigmar, and Djordjevic 2015). The com-
plexity of the measure depends on the constraint. For instance, constraints
on object size can be easily measured, while others require advanced spatial
analysis, e.g. alignment preservation (Zhang, Stoter, Ai, Kraak, and Molenaar
2013), line position accuracy (Skopeliti and Tsoulos 2001), etc.

4. The calculation of a level of satisfaction. The goal of this step is to determine
whether the result of the measure is acceptable. To do this, we can de�ne an
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evaluation function (Bard 2004). For example, for the constraint "the road
position must be preserved", the measure could be the distance between two
points from the previous and the new positions, and the evaluation function
would evaluate how the constraint is respected or violated given the measured
distance.

5. The fusion of all constraints into a synthetic value would allow the compari-
son of map generalization methods. However, generalization constraints often
express con�icting ideas and cannot be totally satis�ed at the same time: in a
dense area, the legibility constraint demands information selection and/or ob-
ject displacement, which violates the preservation constraints. Several strate-
gies can be used for the fusion of constraints (Touya 2012). For instance the
general objective can be to minimize the value of the worst satis�ed constraint,
or to reduce the number of critical measures (measure with a very bad value
(under a certain threshold), to reduce the number of con�ict areas (area where
one or several constraint cannot be satis�ed), or to increase the average satis-
fying of all constraints using a mean value, etc.

Many constraints and measures have been proposed for map generalization. How-
ever, most of them cannot be directly employed to evaluate the prediction from deep
learning for three reasons:

� First, the output format is not adapted: such constraints and measurements
are de�ned for vector objects, while our prediction may be a raster. Although
conversion to vector format is possible, it can complicate the whole end-to-end
process. Sometimes it is even not suitable. For example, when evaluation is
used to guide the learning process during training.

� Second, the evaluation of a map can require important computation time, while
deep learning evaluation may be computed many times for large example sets
(in particular the evaluation for controlling and setting the learning).

� Finally, deep learning processes tend to hide causal mechanisms and do not
guarantee a result that follows cartographic principles. Traditional map gen-
eralization evaluation may hypothesize that the evaluated map follow car-
tographic principles. Thus, the evaluation of deep learning prediction may
requires to examine whether and how the map objectives are satis�ed with an
independent evaluation process, before the evalaution of generalization.

H.1.3 Evaluation in deep learning research

The evaluation of deep learning models di�ers according to the problem formulation;
in this subsection, we describe these di�erent methods and the challenge for the
di�erent formulations described in Chapter B.

Classi�cation The evaluation of any classi�cation (even without deep learning)
is commonly performed using a confusion matrix and some scores calculated on its
values. For example, Table H.1 presents the evaluation of road selection using a
GCN (from Chapter D).

This evaluation is simple and relevant as long as classes are not fuzzy and a
validation set can be provided. It is informative on the quality of prediction and
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Prediction
Annotation

Deleted Kept Total

Deleted 3098 1280 4378
Kept 2313 6246 8559
Total 5411 7526 12937

Table H.1: Confusion matrix for the selection of road section at 1:50 000 using a
GCN.

most of the time adapted for the evaluation of the desired task: it answers questions
like "How well the selection corresponds to the target?". However, it may not be
su�cient to determine if the generalization is good; for example, in the use case of
road selection, it does not say if the selection preserves the connectivity of the road
network or if the model is more e�cient in some situation or very bad in another (like
city center). Finally, our validation set does not represent the only good solution
for generalization. Thus, we can have solutions for which the confusion matrix is
bad, but which are cartographically correct because the di�erences in selection are
for small routes, and the two selections are cartographically equivalent.

Segmentation Segmentation is a kind of classi�cation at the pixel level; conse-
quently, classi�cation measures can be applied to each image; however, the number
of correctly classi�ed pixels is not really signi�cant. Most papers on deep learning
segmentation evaluate the quality of the segmentation using the intersection over
union (IOU) measure, which quanti�es the number of common pixels for each class
in the ground truth and the prediction divided by the among of pixels in the union
of these two images.

Figure H.3: Illustration of the limits of intersection over union. The value is almost
the same for two di�erent generalizations: one very bad at the top and one correct
at the bottom.

This measure is quite e�cient in estimating the accuracy of the predicted shape
occupied by a class. However, it does not really match for evaluating map gener-
alization results because map generalization involves displacement that reduces the
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intersection and increases the union. Therefore, in Figure H.3 the second generaliza-
tion is better: the shape, position and relation constraints on building are satisfyed,
but this generalization has a worst IOU value because the position preservation con-
straint is not respected. Moreover, this measure is only adapted for evaluating the
segmentation of surface objects, the intersection of a line is almost always null if
the prediction and reference are not exactly the same. If the IOU is not the only
measure used for the evaluation of segmentation, deep learning measure are often
base on pixel-wise comparison and su�er from the same bias (e.g. pixel accuracy
and Dice coe�cient).

Image generation and style transfer The evaluation of images generated using
a GAN is an important issue in the literature. In such generations, the problem is
similar to the evaluation of map generalization, the pixel accuracy is less important
than the global appearance of the images. Moreover, the evaluation of the generated
images often deals with problems where a good solution does not exist or where the
good solution is not unique. This is also true for map generalizations: several
di�erent generalizations can be acceptable. There is no unique global measure for
generalization quality (Touya 2012), and there is no easy way to measure how much
an image looks like a real map. The questions that evaluation of GANs seeks to
answer are the following: "Is the prediction realistic?", "Does it look like to the
target domain?", "Does it have the expected style?", etc.

For the evaluation of such generated images, computer scientists propose evalu-
ating the similarity with a reference or conducting a user preference test. On the one
hand, the similarity measures are often not correlated with a visual evaluation of
the prediction; this bias may also be important in map generalization, where results
that are really similar to the target can be very bad. On the other hand, user tests
focus on the realism of the output and try to demonstrate that people would not
be able to determine which image is generated, and which one is real. This show
the requirement of speci�c evaluation for map generated using GANs that question
both the image realism and the map generalization quality.

H.1.4 Proposed evaluation methods

Neither the map generation evaluation method nor those of deep learning seem to
be adapted to evaluate the prediction of deep learning-based map generalization.
In most cases, the prediction assessment requires a visual examination of results;
however, we want a more formal and automatic measure of quality to complement
this visual examination. Table H.2 summarizes the evaluation methods from the
literature on deep learning and map generalization. In the next sections, we propose
to detail the two approaches highlighted in Table H.2 we selected to assess the
prediction of map generalization based on deep learning.

Automatic Manual
Map generalization Constraint violation measure Expert evaluation
Deep learning Similarity with target measure User preference test

Table H.2: Possible and tested evaluation methods.
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H.2 User test

We proposed a user test to evaluate and compare the generalization of the mountain
roads. The design and results of this test are described in this section.

H.2.1 Design of the user test

We designed a test that aims to attest and quantify the observation made in Chap-
ter E, i.e. that the GAN model produce image of map that cannot be distinguish
from semiautomatics generalization and the interest proposed improvement. In par-
ticular, we compare the prediction of �ve models (see Table H.3). We hypothesize
that:

� H1: The predictions should not be distinguished from the reference.

� H2: Model B should perform better than Model D.

� H3: The predictions for Model C should be more appreciated.

Name Strategy Model Sample image
Model A Unsupervised CycleGAN 1223 from Alps only
Model B Unsupervised CycleGAN 2271 from several mountain regions
Model C Unsupervised CycleGAN 1223 with connectivity loss
Model D Supervised Pix2pix 1223 from Alps only

Table H.3: List of the models compared during the user test.

Task The test is composed of two di�erent tasks: an absolute evaluation (marking
task) and a relative evaluation (ranking task). For both tasks, users do not know
how each image has been produced. In the absolute evaluation, participants have to
observe an input-generalization pair and answer to three questions (listed below).
For each question, a Likert scale with four values from "very good" to "very bad"
is proposed.

1. How well do you think roads are generalized? The goal of this question is to
evaluate whether the generalization operations have been applied properly.

2. How much do you think the generalized image seems realistic? This ques-
tion evaluates whether the images look like a map that has been traditionally
produced.

3. How well do you think the generalized image is readable? This question as-
sesses the legibility of images.

Then, the ranking task presents an input image and �ve generalization images
for the corresponding area. Participants have to drag and drop the generalization
images by preference (from the most appreciated to the least appreciated). This
task is common in GAN prediction evaluations (Wang, Girshick, Gupta, and He
2018) because it veri�es that predictions cannot be distinguished from real images.
Moreover, the ranking task seems to be an easier task for people who are not familiar
with the expected output. Finally, the combination of these two tasks should avoid
fatigue for participants.
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Participants We received 113 responses during the two weeks of the test from
nonpaid volunteers. The participant population is made up of men at 60 %; only 10
% of the participants are aged under 25 and more than 40 % are aged over 50. Most
of the respondents use maps weekly or more often, but have never heard of gen-
eralization. The "expert population" is composed of twelve generalization experts,
twelve geo-visualization or cartography experts, and 25 other informed people (who
declared having already heard about map generalization).

Procedure The user test was designed as a web questionnaire; the link has been
sent to two di�erent e-mail lists: one composed of generalization experts and one of
the researchers from various domains and the employees of our university. The test is
designed to take around 20 minutes. The �rst page of this survey gives information
on the objective of the test, the images presented, and the generalization of the
mountain road. This introduction page can be reached again at any time in the test
if the user has doubts. The last page asks some general information questions, such
as their level of expertise in maps and generalization. For the main part of the test,
we selected 30 situations (24 for the matking task and 6 for the ranking task), and
we distributed the images (for each situation and method) in 8 tests, which were
randomly assigned to the respondents. Each test is organized as follows: 5 marking
tasks; 1 ranking task; 5 marking tasks; 1 ranking taks.

H.2.2 Results

We obtained between 2 and 20 responses for each image. This di�erence is due to
the random distribution of the tests. All images with more than �ve responses are
included in the evaluation. Marking ranges from 0: "very bad" to 3: "very good".

Overall results Figure H.4 represents the average mark given to all images for
each method. We observe that the CycleGAN model and its improvements (Models
A, B, and C) are rated better than the reference image for the generalization ques-
tion (1), and at least as good as the reference for the realism (2) and legibility (3)
questions. We tested the impact of population expertise; indeed, in map general-

Figure H.4: Evaluation of the di�erent methods according to user marks.

ization, the visual evaluation is often performed by a cartographer who knows the
cartographic rules, while in deep learning the user evaluation rather focuses on the
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user. In our case, we ask both cartography experts and map users (almost everyone
is at one moment a map user) to answer our test. Then, we compare the responses
given by the two populations, to verify if a non-expert population that does not
know map generalization and cartography rules is able to assess the e�ciency of a
map. We observe that the results are similar for both populations.

Statistic veri�cation of hypothesis In the following statistical test Mr repre-
sents the average realism mark (between 0 and 3) and M represents the average
sum of each mark (realism, generalization and legibility, between 0 and 9). The
average realism markss for the images from reference (Mr=1.90) and from Model A
(Mr=2.05) are similar. A paired t-test on the realism average marks for each image
shows no signi�cant di�erence (t(8) = 0.26, p= 0.79) and validates (H1). Model A
gives better quality results (M=6.43) than Model D (M=3.32), a unilateral t-test
allows us to con�rms H2 (the null hypothesis: learning approach does not a�ect gen-
eralization quality is rejected t (7) = 7.70, p < 0.01). The ranking evaluation also
con�rms this idea; Model D is classi�ed as the last for 72.5% of the trials. Finally,
the average image marks for Models A (M=6.43) and C (M=6.51) are similar. A
paired unilateral t-test on the marks shows that Model C is not signi�cantly better
than Model A (t(6) = 0.80, p= 0.77) and to refute (H3). The ranking evaluation
gave similar results: the location of the reference in the ranking is the one varying
the most, and most of the time Models A, B, and C are well placed.

Variation in evaluation In addition to the statistical validation of the hypoth-
esis, we study the variation in evaluation. In fact, each model may be more or less
adapted to certain particular situations. For example, we observe that the stan-
dard deviation is lower for CycleGAN images than for the reference, i.e., there are
more di�erences in quality perception between di�erent situations when they are
traditionally generalized than when they are generalized using deep learning. Deep
learning seems to have an averaging e�ect that smooths generalization. The higher
deviation for the improved model (Models B and C) can be explained by the er-
ror correction on some images and some other images where errors are introduced
compared to the standard CycleGAN.

Extreme values The study of some controversial images (with the larger di�er-
ence in marks) helps to more precisely explain this deviation. These images are
grouped in Figure H.5. Image 25 is the image where people are less agreeing: 25%
of the participants rank the reference as the best and 45% as the worst generaliza-
tion result. The left of this image is a very good generalization, whereas the right
contains inconsistent information compared to the input image. This inconsistency
in our data, due to di�erent update processes in input and output data, is avoided
in the deep learning process. The same kind of problem is visible in Image 166.
Then, with regards to the realism question, there are some surprising answers. Im-
age number 294 has a very low realism for Model C only, we cannot be explain this
di�erence. Finally, Image 214 have a low realism for each method it reveals that
the real shape of the road in this image may not seems no to user. In general the
evalaution of legibility has a less extreme low value,user consider each image equally
legible.
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Figure H.5: Examples of images badly evaluated from the validation set. All tiles
represent a part of the map of 2.5 km square. Each line represents a situation and
in each column the employed learning method.

H.2.3 Limitations

Our user test presents the following limitations:

� The images presented are not maps, but maps extracts of 2.5 × 2.5km. The
evaluation of the usability of such an image in a concrete task (e.g., following
a routes) may be more relevant ranking and marking. We think that the
evaluation of tiles is necessary to attest theire quality and usability in but
not su�cient. Moreover, a more complet evalution of map functioning is not
possible without the map reconstruction.

� The number of images for each method is limited and can constitute a bias
in model evaluation. We choose the images of the user test manually to be
representative of most situations from the test set. However, this image set
may contain less simple situation than the global study area. Increasing the
number of images presented may require increasing the number of participants
to maintain a su�cient number of responses for each image.

� The number of evaluations for each image is limited and not �xed; the random
attribution of the test makes the number of responses by image varying, which
is not practical for evaluation and comparison between images (if we had to
do it again, we would correct this point).

� The questions are imprecise. In particular, some problems in the predictions
can be interpreted by some users as information alteration, while considered
as a legibility problem by others.
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� The topological correctness of the prediction is not evaluated, while it is a
major characteristic of road generalization.

H.3 Constraints for raster based evaluation

The de�nition of constraints is common in map generalization (Beard 1991), but
most of the measures of constraint violation are adapted to vector data (Mackaness
and Ruas 2007), and not to raster data. Traditionally, the constraint-based evalua-
tion of map generalization is based on a constraint violation measure calculated on
vector data. In this section, we describe how some constraints can be adapted to be
applied to generalized mountain road images produced using deep learning.

H.3.1 Method

In this section, we present how raster-based constraints can be de�ned, con�gured,
and applied to the speci�c case of mountain roads. We focus on evaluating mountain-
road graphic generalization for a display at the 1:250,000 scale. The goal is to be
able to evaluate the images generated in Chapter E.

The main challenge of this use case is the raster format of maps. In vector map
generalization, road segments, faces, and networks are used to set up constraints.
In contrast, a raster is a grid of pixels valued, where the limit of each object is not
explicitly de�ned. Consequently, constraints should not hold to the notion of object
shape or limits, and other levels of analysis must be explored, such as the pixel, a set
of pixels, or the image. These levels are presented in Table H.4. We can construct
a pixel set using the following rule: two pixels that are 4-connected and have the
same color should belong to the same pixel set. Consequently, a road map is made
up of sets of road and background pixels.

Table H.4: Table of possible levels of analysis for vector and raster data.
Level of analysis Vector data Raster data

Micro Roads Pixel
Road network faces Set of background pixels

Meso Stroke
Other sets of road Set of road pixels

Macro Road network Image

First, we directly derived some constraints from the usual requirements of moun-
tain road map generalization and road map generalization (Mustiere 1998; Duchêne
2014a). We expect the mountain road generalization to reduce coalescence in a
series of bends and smooth the shape of the road while preserving the position, con-
nectivity, and structure of the network. All these constraints are classical, and we
only need to adapt the way they are measured. In addition, the observation of the
example images of our use case validates our hypothesis that speci�c measures are
required for deep learning results. We observe that some predictions are unrealistic,
blurred, or noisy. Consequently, we decided to add some realism constraints that
aim to check that the model produces images that look like real maps.

To validate and con�gure the proposed measures, we use a validation set with
both real data (images extracted from our deep learning results presented above)
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and fake data (hand-drawn images of interesting road con�gurations). For example,
Table H.5 lists interesting fake situations constructed by modifying the shape of a
random road.

Table H.5: Alterations are applied to create fake test images.
Legibility alteration Information alteration
Enlarged bends Appearance of a road
Enlarged road width Noise in the image
Small displacement Big structure alteration
Loop creation Continuity alteration
Blurred road Continuity alteration at border
Only background in the image Only roads

H.3.2 Proposed constraints

In this section, we de�ne each chosen constraint and associated measures, validation,
and limitations. We implemented all our measures in Python using the open-source
libraries PIL and Image2.

Clutter Reduction

Clutter can be de�ned as too much and disorganized information in an image and
can be seen as a proxy for the complexity of the image. The clutter has been shown
to make image use more di�cult (Rosenholtz, Li, and Nakano 2007). This is why
we introduce a constraint to avoid the clutter that could arise during generalization.
This constraint may be adapted for images of generalized maps, not only for images
of generalized mountain roads.

Clutter measures are image-level measures that aim to evaluate the complexity
of an image. Their adaptation to assess map legibility remains a question (Dumont,
Touya, and Duchêne 2016). We have tested four di�erent measures for estimating the
legibility of our road images: edge density, the subband entropy (Rosenholtz, Li, and
Nakano 2007), which is similar to JPEG compression, the quad-tree method, which
measures the number of homogeneous square cells in the image (Touya, Decherf,
Lalanne, and Dumont 2015), and the object segmentation-based measure (Bravo
and Farid 2008). Most of these measures represent a quantity; for more clarity, we
propose to convert these quantities into a ratio using the formula (eq. H.1).

clutter_generalisation =
|clutterinitial − clutterprediction|

clutterinitial
(H.1)

Figure H.6 presents the value of the edge density measure for the validation
images. This measure mainly distinguishes the noisy image from other images. This
observation is similar to all the clutter calculation methods tested. The measure
succeeds in detecting an increase in complexity in the images. However, some images
that a human could judge as quite more complex than the others only sow a small
di�erence in clutter value.

2The code is available in the DeepMapGen repository
https://github.com/umrlastig/DeepMapGen, and should run on any square image, but most
measures are only relevant for images made up of roads (pixels close to red) and backgrounds
(pixels close to white).
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Figure H.6: Distribution and examples of the value for edge-density clutter measure.
Each point represents an image from our testing set, the corresponding level of
satisfaction of the constraint is indicated in green.

Smoothness

The smoothness constraint is a legibility measure that should make the generalized
road smoother than the input road. The fewer irregularities are visible, the more
legible the shape is. This constraint is designed for images of generalized roads in
general.

To measure smoothness, we have to detect and measure the number of irregular-
ities around the roads. We detect irregularities at the pixel level using mathemati-
cal morphology. We simplify the problem by transforming the image from colored
(RGB) to a black-and-white map that represents the presence or absence of a road.
A closing (dilation followed by erosion) of road pixel with an adapted size should
allows us to �ll in the concave irregularities of the road shape. Then, the removal of
the road shape (irregularpixels = closingpixels−roadpixels) isolates the irregular
pixels near the road, as illustrated in Figure H.7. Then we propose a measure at
the image level: the ratio of the initial roughness removed by generalization (H.2).

smoothness =
irregularinitial − irregularprediction

irregularinitial
(H.2)

Figure H.7: E�ect of the smoothing operation on a road and its generalization.
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The size of the closing determines the size of the biggest irregularity that should
be smoothed by generalization; if we choose a threshold too large, concave portions
that are not irregularities might be wrongly �lled. This measure seems to work the
best at the resolution and scale of our use case with a closing value of three pixels
(30 m). Our experiment has shown that closing with less than three pixels detects
very few irregularities, while closing with more pixels �lls the bends and tiny regular
background areas.

Validation and Limits Figure H.8 represents the distribution and some example
values of the smoothness measure. This measure is globally well correlated with our
visual perception of smoothness. However, we observe the following limitations:

� The accuracy of irregularity detection has to be questioned; depending on
the threshold, irregularities can be missed, and/or some sharp bends can be
wrongly identi�ed as smoothness problems.

� The measure depends on the resolution and scale of the road; other use cases
might require di�erent parameters.

� If the initial image is not irregular, the ratio measure cannot be computed
(this case occurs in 10 percent of images in our test set).

Figure H.8: Distribution and examples of values for the smoothness measure. Each
point represents an image from our testing set, the corresponding level of satisfaction
of the constraint is indicated in green.

Coalescence Reduction

The coalescence constraint is a legibility constraint. Coalescence is the fact that
the symbol of a line overlaps itself in the interior of a sharp bend (Mustiere 1998).
The generalized image should not contain symbol coalescence. This constraint is
designed for generalized mountain roads, where coalescence might occur.

To measure coalescence, we also use mathematical morphology operations to
detect pixels that belong to a coalescent part of the road. This measure is also
based on black-and-white images. The measure is also at the pixel level if we consider
the map of the coalescent pixels and aggregated at the image level, as we consider
the ratio of pixels in an image. First, a dilation of roads (of n pixels) simulates
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the coalescence that occurs when the symbol of the road is enlarged due to scale
change; then an erosion of the size n+ w (the maximum width of the roads) erases
the parts that are not coalescent; and �nally, a dilation of w pixels evaluates the
number of pixels in the coalescent areas. This process is illustrated in Figure H.9.
Finally, similarly to the smoothness constraint, we propose to measure the evolution
of coalescence instead of the number of coalescent pixels using (Eq. H.3).

Figure H.9: Steps for detecting coalescent pixels, from left to right: initial image,
dilation, erosion, and dilation.

Coalescence =
coalescent_pixel(initial)− coalescent_pixel(prediction)

coalescent_pixel(initial)
(H.3)

In this process, the size n represents the maximal distance between two coalescent
parts of the road from the map speci�cations. For our use case (at the 1:250k scale),
a threshold of �ve pixels is the most adapted, and it corresponds to a distance of
50 m. This value allows the detection of most of the coalescent areas. However, it
also detects some non-coalescent areas, as presented in Figure H.10, while a thinner
threshold would miss many coalescent areas.

Figure H.10: E�ect of coalescence detection on a road and its generalization. a) Ex-
ample with a few over-detections. b) Example with an over-detection of coalescence
in the generalized image.

Figure H.11 presents the distribution and some examples of values for the coales-
cence reduction measure. This measure is more questionable than the others. First
of all, it does not exactly measure the coalescent parts but the pixels that could
be coalescent with a larger symbol. This de�nition implies that the overlapping
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Figure H.11: Distribution and examples of values for the coalescence reduction
measure. Each point represents an image from our testing set, the corresponding
level of satisfaction of the constraint is indicated in green.

parts of the coalescent road are identi�ed as a unique road and are not detected as
coalescent. The observed ratio value is most of the time consistent with our visual
evaluation of coalescence, but some high coalescence values are explained by two
parallel roads that are separated by fewer pixels than the threshold (detected as
coalescent by the measure), and this is not coalescence, as these are di�erent roads,
but just symbol overlap. These situations are limited to 5% of the cases in our real
test set.

Position Preservation

The generalized road must be as close as possible to the initial one. This constraint
is designed for an image of generalized roads, in general.

We measure this constraint using the intersection over union (IoU) of the road
pixels of the initial and generalized images. Here, we also based our computation
on transformed black-and-white images. The intersection between the road pixels
in the initial image and the road pixels in the generalized image is computed, and
the intersection area is divided by the union area, that is, the pixels that belong to
the generalized or the initial roads (Eq. H.4). This is a classic measure for assessing
image segmentation and determining which parts of the road pixels are common in
the initial image. Figure H.12 represents the intersection and union of a road and
its generalization.

IoU =
road_pixel(initial) ∩ road_pixel(prediction)

road_pixel(initial) ∪ road_pixel(prediction)
(H.4)

We propose to use a bu�er of size n around roads instead of just the road pixels.
This threshold should model the area where the roads are allowed to move or be
distorted without considering the position as too far. This threshold can be very
large because the displacement o�set can be large for mountain roads at this scale
(1:250k). In our image set, the position is always visually preserved. However, the
measured position accuracy is usually less than 50%, so introducing this bu�er with
a size of 20 pixels (200 m) better re�ects this preservation and the variation between
the two generalization methods: some cause more displacement than others.

Figure H.13 represents the distribution and some examples of values for position
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Figure H.12: Intersection and union of roads and their generalization.

measurement. Despite the great dissimilarity of the IoU values in our image set,
we observe that all real images visually respect position accuracy, even those with
a very low IoU threshold. Moreover, the measure is not regular: with a similar
displacement, the IoU of two large objects will be more important than the IoU
of two small objects. Then this measure quantify the displacement but does not
identify whether the displacement is relevant. Road displacements and distortions
are allowed when they tend to increase legibility. Finally, the accuracy of the road
position is a minor constraint: it can be seen as a soft constraint whose satisfaction
does not need to be maximized.

Figure H.13: Distribution and examples of values for the position measurement.
Each point represents an image from our testing set, the corresponding level of
satisfaction of the constraint is indicated in green.

Road Connectivity Preservation

Then, we think that more than the position, the preservation of the structure of the
road network is a key point for road maps. With road connections, map readers can
follow routes, which is the most important function of such maps. This constraint
is adapted to images of generalized roads in general.

For the connectivity preservation constraint, we measure connections and dis-
connections using the number of sets of contiguous road pixels and contiguous back-
ground pixels. This measure is based on the same principle as the connectivity loss
proposed in C.1.4: a disconnection will reduce the number of background pixel sets
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and increase the number of road pixel sets. This measure also detects problems such
as the creation of a loop, which deteriorates both the correctness and legibility of
the information. Equation H.5 shows how we combine these numbers of contiguous
parts to measure continuity preservation for (x, y) a pair of detailed and generalized
images.

structure_alteration =
|nback(x)− nback(y)|+ |nroad(x)− nroad(y)|

nback(x) + nroad(x)
(H.5)

We choose to use the 4-connectivity to construct the sets of pixels; pixels of the
same value connected by diagonal only do not belong to the same group of pixels.
We also include a threshold for set size: the groups composed of one or two pixels
are not considered, consequently the appearance or disappearance of such group is
not measured.

Figure H.14 gives the distribution and some examples of values for the con-
nectivity measure, each pair represents an initial situation and the corresponding
generalization. This measure is quite consistent with our observation, but it seems
to overvalue the structure changes. This problem is explained by the fact that all
changes have equal weight in the calculation, even the addition of very small sets or
the disconnection of one pixel, which is not visible at the target scale. Then, this
measure is sensitive to border e�ects (illustrated in the last column of Figure ??).
When a road has bends at the border of an image, these bends can be connected or
disconnected by a small displacement, without a real change in the structure.

Figure H.14: Distribution and examples of values for the connectivity alteration
measure. Each point represents an image from our testing set, the corresponding
level of satisfaction of the constraint is indicated in green.

Color Realism

The next two constraints are not adapted from conventional vector-based constraints
but are speci�c to images generated by deep learning models. They aim to quantify
errors that do not exist in traditional map generalization. The goal of the color
constraint is to ensure that the generated images do not convey unexpected infor-
mation. On a map, a di�erent color represents a di�erent object. This constraint is
adapted for all images of maps generated using deep learning.
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We propose to measure if there is color noise: in our use case, it means pixels
that are not roads (red) or backgrounds (white). We have decided to use an im-
plementation of the CIEDE2000 distance between colors (Sharma, Wu, and Dalal
2005) because of its consistency with human color perception. Then, we counted
the number of pixels that are visibly too distant from red or white. We choose to
consider a pixel white or red when the distance with pure red (255,0,0) or pure white
(255,255,255) is greater than 9.

Figure H.15: Distribution and examples of values for the color measure. Each point
represents an image from our testing set, the corresponding level of satisfaction of
the constraint is indicated in green.

Figure H.15 represents the distribution and examples of values for the color mea-
sure. This measure has allowed quantifying the observed noise of CycleGAN images
and verifying that images from other methods do not su�er from this problem.

Noise Absence

We also found that some deep learning models can generate noisy pixels: for ex-
ample, isolated road pixels that are not roads. This is because the loss function
optimized in the training process is global and might not be fully optimized after
all iterations of the training. This constraint is designed for all images of maps
generated using deep learning, not just generalized mountain roads.

We just count the number of sets of contiguous road pixels that are too small
to be real roads. Similarly to the road connectivity preservation constraint, we use
4-connectivity to de�ne sets of contiguous pixels. The noise detection threshold
depends on the resolution of the image. For our use case, we have �xed a size below
6 pixels. Figure H.16 presents the distribution and some examples of values for this
measure. This measure is quite satisfying, as it permits us to distinguish noise in
both the fake images that we created with noise in our validation set and in the
images generated by a U-Net model, which often contain noise pixels.

H.3.3 Interpretation and usage of constraint values

In this section, we present how the proposed constraint can be interpreted and used
for validating a model, identifying and solving its quality issues, and comparing deep
learning models.
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Figure H.16: Distribution and examples of values for the noise measure. Each point
represents an image from our testing set; the corresponding level of satisfaction of
the constraint is indicated in green.

Constraint values interpretation and model validation

We choose to de�ne a qualitative level of constraint satisfaction: "very good",
"good", "neutral", "bad", "very bad". We propose the de�nition of a threshold
for each satisfaction level based on the examination of the validation set of our
experiment. The satisfaction values for the constraints are presented in Table H.6.

Table H.6: Interpretation of constraints in a level of satisfaction (at the image level
all values are in percent except noise that is in pixel).
Constraint Very good Good Neutral Bad Very bad
Color x < 2.5 2.5 ≤ x < 5 5 ≤ x < 7.5 7.5 ≤ x < 10 x ≥ 10
Connectivity x < 10 10 ≤ x < 40 40 ≤ x < 70 70 ≤ x < 100 x ≥ 100
Clutter x < 10 10 ≤ x < 20 20 ≤ x < 30 30 ≤ x < 60 x ≥ 60
Smoothness x > 60 60 ≥ x > 40 40 ≥ x > 20 20 ≥ x > 0 x ≤ 0
Coalescence x > 30 30 ≥ x > 20 20 ≥ x > 10 10 ≥ x > 0 x ≤ 0
Position x > 30 20 < x < 30 10 < x < 20 5 < x < 10 x < 5
Noise x = 0 x < 3 3 ≤ x < 6 6 ≤ x < 9 x ≥ 9

To validate a model, we propose to verify that all its predictions are evaluated
above a de�ned threshold of satisfaction for each constraint (e.g., "good" or "very
good"). Then a model with a majority of valid images is valid (Touya 2012).

Identifying and solving the quality issues of a model

In this section, we explain how constraint evaluation can be used to detect quality
issues of a given deep learning model and then eventually improve the model. In this
experiment, we provide two levels of constraints: at the pixel level (e.g., smoothness
and coalescence identify the irregulare or coalescence pixels) and at the image level
(e.g., clutter measure or position accuracy).

At the image level, the constraints provide a comprehensive indicator of quality
for the constrained property.
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� If a characteristic is often badly generalized, it means that the model is not
adapted to learn to reproduce this characteristic (e.g., disconnections in our
experiment). Since this default has been identi�ed, it can be solved by explor-
ing the adapted loss functions.

� If a situation or a kind of situation is often poorly generalized, it might re�ect
an imbalance in the training dataset. For example, in our experiments, the
cases with two close parallel roads are badly generalized because they are
under-represented. Then, adaptations of the training set can be performed.

On the other hand, at the pixel level, constraints identify con�icts and situations
that are badly generalized within each tile, which enables post processes with other
generalization techniques.

Comparing Models

In this section, we propose to explain how evaluation can be used to compare dif-
ferent deep learning models or similar models used with di�erent parameters. A
good generalization solution is a balance between several criteria, so it is not easy to
determine if a solution is better than another. Constraints could contribute to the
evaluation of which network con�guration gives better results in an ambiguous case
where it is visually di�cult to determine a preference. For comparison purposes,
a good combination of di�erent measures is needed to give a synthetic measure of
the global quality of a tile image. Finally, the average values are often not su�cient
for this task, and the worst or last deciles are interesting to �nd the weakness of a
model. We propose in Figure H.17 a visual comparison of the average and worst
constraint values for several models for mountain road segmentation. It is a conve-
nient representation for model strength and weakness comparison and con�rms that
cycleGAN gives as good results as the reference (see Chapter E).

H.3.4 Discussion

Limitations

Image representation allows for a visual evaluation of generalization. Automating
this evaluation is a complex combination of multiple constraints. We described how
some constraints can be adapted for a calculation based on raster data. However,
we do not believe that all existing constraints can be converted using this method.
Especially, the relation preservation constraints seem to be challenging as the raster
format does not encode object boundaries and spatial relations.

Moreover, the evaluation of a map must be related to the map function. The
automatic evaluation of map e�ciency is still challenging for both raster and vector
data, as it relates to human perception. Finally, the proposed measures still su�ers
from multiple limitations.

� The measure is sometimes not representative of a real di�erence in quality or
of the desired characteristic (clutter and position accuracy measures).

� The measure is sometimes not accurate and can miss or overestimate some
errors. This is the case for the smoothness, connectivity, and coalescence
measures.
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Figure H.17: Comparison of models strengths and weakness, with a visual represen-
tation of constraint satisfaction.

� Some measures are sensitive to resolution and scale (smoothness, coalescence,
and position measures).

� Some measures vary more according to the initial situation than according to
the quality of the prediction (smoothness and coalescence values).

� Some measures are not calculable (division by zero) for some images (smooth-
ness and coalescence measures).

� The connectivity measure may su�er from some border e�ects.

All of these limitations mean that the proposed constraint-based evaluation is
not su�cient for analysis without visual exploration of predictions. Therefore, the
evaluation of the prediction provided by this evaluation needs to be nuanced. An
improvement and completion of our constriant may be needed for evaluation tasks
that require fully automatic evaluation, such as controling and tuning deep learning
processes.

Do we need a meso level of analysis?

Some of the major limitations identi�ed above may be due to an unadapted level of
analysis. In this paragraph, we discuss the interest in using a meso-level of analysis.

First, the border e�ect can be reduced by the use of a sliding window over the
image to create a new sub-image or a patch that can be better adapted for the
calculation of some constraints. This process can permit locating problems in the



171

image for constraints that are only measurable at the image level. For example, the
connectivity constraint of an image that su�ers from border e�ects would have a
high value for a patch at the border but not for a patch in the middle of the tile
(see Figure H.18).

Figure H.18: Illustration of the patches to detect border e�ects: green patches
would have a greater value than purple ones.

Then, we believe that it could be useful to de�ne a intermediaite level of con-
straint. It would synthesize the satisfaction of several pixel-level constraints for each
pixel contained in a meso object (Ruas 1999). For example, instead of measuring
the ratio of the pixels that are not smooth in the whole image, we could syntethize
the smoothness at the level of a pixel set (e.g., set of contiguous pixels with the
same value, patches, or image segment from image processing). Then, an image is
smooth if all or most of its pixels sets are not irregular. This de�nition �rst designed
for agent models is also adapted to guide deep learning processes, where the loss is
a statistical summary of the values of pixels or patches.

Can these methods be adapted to a multi-theme map?

Then, a challenge is to adapt this constraint-based evaluation to maps with several
themes, not just roads. In these maps, the spatial relations are even more important
and concern several di�erent objects. For example, buildings are aligned along a road
or a road is crossing a forest. The preservation of these relations is an important
point in the preservation of information, as they contribute to the global structure
and understanding of the map (Mackaness and Edwards 2002) and help determine
the location of the map.

However, the raster representation makes con�ict detection harder on target and
prediction map, as each pixel can have only one value even if there is a coalescence of
several elements at this place. Finally, the identi�cation of groups of objects can be
done using a distance criterion using bu�ers. We propose to estimate the di�culty
of the raster adaptation of the constraints (Stoter et al. 2009) in the Appendix
B. We identify four levels of adaptability of a constraint: some constraints can be
measured directly in the image (e.g. noise quantity, size of objects); some may
require image processing (e.g. granularity, squarness), some may require a new
manner of calculating (e.g. orientation measure, topology preservation measure),
and some seem impossible to adapt without vectorization (e.g. spatial distribution
preservation measure).
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Finally, we think that raster evaluation can be useful at a stage where vector
conversion is not ideal. However, the vectors remain more accurate and practical
and permit comparison with classical generalization approaches or validation.

H.4 Vector based evaluation

In this last section, we explore an evaluation that includ vector conversion. Such
a process can be used to compare our results with a classical map generalization
approach or to evaluate some aspects of predicted maps, where the raster adaptation
is not possible. For illustrating this evaluation method we use building generalizatin
as case study. Indeed, we observe in Chapter G that building shape is sometimes
not credible. However, the image format does not allow the quanti�cation of this
problem.

H.4.1 Vector conversion for tiles of generalized buildings

Building tiles to vector

To vectorize the buildings on tiles, we propose the following process:

1. Projecting images: during image creation, we stored the coordinates of the
input image, and we use this information to project the corresponding output
image of the map.

2. Constructing a building mask. We identify the pixels representing a building
in prediction (e.i. whose color is closer to the color of the buildings in the
target style than any other color of the target style. )

3. Polygonize. We use the gdal_polygonize function that creates vector polygons
for all connected regions of pixels in the raster that share a common pixel value.

4. Pixel smoothing. Vectorization cannot be evaluated directly due to the notched
shape due to the pixel limits. Thus, we apply a Douglas-Peucker �lter (thresh-
old = 2m) to simplify the shape (see Figure H.19). This simpli�cation does
not generalize the building and globally preserves the generalization problems
of the building, but it smooths the pixel border.

5. Elimination of the truncated building at the border of the image.

Evaluation

Then we propose to evaluate the generalization of the shape of the building. In
particular, we want to quantify the not-credible shape irregularities. We propose
several measures to compare the quality of the prediction without and without the
geometry consistency loss.

� Granularity We measure the length of the smallest building edge for each
building, this measure indicates the granularity of a building.
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Figure H.19: Vectorization of the building (green), and a Douglas Peucker simpli�-
cation (purple).

� Number of signi�cant orientations We clustered edges according to their
orientation, the contribution of an edge to orientation is its length. Then we
count the number of signi�cant orientations i.e., above a certain threshold
(Duchêne, Bard, Barillot, Ruas, Trévisan, and Holzapfel 2003). The more
orientation a building has, the less credible its shape is, in fact, even a very
complex real building often has very few di�erent wall orientations.

� Rectangularity coe�cient We measure the di�erence in area between the
building shape and its minimal bounding box; this measures how far a shape is
from a rectangle (in a similar way we could compare it with the maximal rect-
angle included in the shape). However, it is only relevant in quasi-rectangular-
shaped buildings, and in the case of more complex buildings, this measure is
not relevant.

� Deviation to the most credible angle Finally we sum up how far the
angle is from a �at or right angle, for each pair of the consecutive edge of the
building (Touya and Lokhat 2016).

We compare the distribution of these measures for both buildings generalized with
and without the geometry consistency (see Table H.7). This comparison shows
really similar results that could not prove the interest of geometry consistency loss
for building generalization. If we could not show a signi�cant di�erence between
models using this evaluation, it has been shown a signi�cant di�erence between
entities and in particular between several generalizations of one building. In fact,
the overlapping between tiles conduces to several generalizations for each building
and the proposed evaluation could help to choose which is the best assembly tiles.

Table H.7: Table of statistiques on regularity measures for prediction of model with
and without geometry consistency (GC).
Constraint With GC Without GC

min max mean median min max mean median
Granularity (metre) 2 32 7.7 4.5 2 38 8 4.5
Number of edges 4 70 7.6 6 4 70 7.5 6
Rectangular coe�-
cient (percent)

0 2.3 0.3 0.2 0 1.7 0.2 0

Deviation coe�-
cient (degree)

0 45 15.6 14.0 0 45 15.7 14.0
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Chapter's conclusions

The development and integration of deep learning into the map generaliza-
tion process is conditioned to the existence of common and adapted evalua-
tion methods. The evaluation of deep learning-based map generalization is a
challenge. Table H.8 summarizes for each of the main evaluation objectives
identi�ed, if the proposed evaluation is adapted.

Objective
Constraint
adaptation

User test
Vector

conversion
Tuning ✓ ✗ ✗

Controlling ✓ ✗ ✗

Setting ✓ ✗ ✓
Descriptive evaluation ✓ ✓ ✓
Evaluation for grading ✗ ✓ ✓
Evaluation for post-processing ✓ ✗ ✗

Table H.8: Applicability of proposed evaluation methods to main evaluation
objectives.

The human perception of a prediction can be assessed with a user test. Such
evaluation is closer to the real expectation of generalization (we do a gener-
alized map for the user). However, it is not practical and the presentation of
small tiles is biased. Measuring constraints is a more formal evaluation, but,
it is sometimes not correlated with human perception. Moreover, the calcu-
lation of traditional constraints cannot be performed directly on the raster.
We experiment with both strategies: adapting constraint measures for vector
calculation and converting to vector prior evaluation. The �rst option is more
practical when the evaluation has to be integrated in a fully raster pipeline
but can require image processing (segmentation, mathematical morphology
statistical analysis, etc.) or a new level of analysis (e.g., considering a group
of pixels instead of an object) and even sometimes it seems not possible to
evaluate. The second option is useful when compared with the non-vector
approach required or when adaptation is not possible.
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Conclusion

Reminder of the objective and approach

The objective of this thesis was to explore the potential of deep learning to
contribute to map generalization research.

We conducted this exploration using four use cases. For each use case we high-
lighted potentials and issues of deep learning and current use of deep learning models
are still far from practical map generalization and cartography.

� Road network selection and alignment detection, both these experi-
ments assess the potential of deep learning to encode spatial relations with
graph modeling. They have shown potential to make predictions that are con-
sistent with spatial relations. The road selection experiment is satisfactory for
most situations, but the results su�er from the lack of city center examples.
The alignment detection is less satisfying and su�ers from both dataset and
model limitations.

� Road shape generalization, this experiment shows that most of the knowl-
edge for shape generalization can be captured from an image. The unpaired
generative model gives results considered as good as the reference map. It
correctly achieves smoothing, enlargement, and caricature operations.

� Holistic map generation. This experiment shows that GANs can generate
map-like images that include generalization. Our results succeed in reproduc-
ing the simpli�cation, enlargement, and typi�cation of buildings. However,
more context is needed for road selection and graying in the city center. We
proposed an organization of geographic information that seems promising for
map generation.

Can deep learning contribute to map generalization?

All these experiments reveal the ability of deep learning models to learn, to interpret,
to abstract, and to represent geographic information from images or graphs. It
leads to the conclusion that deep learning is promising for the automation of map
generalization.

First, the use of deep learning as an indicator for data enrichment prior to map
generalization is already possible and bene�cial. Indeed, the quality of prediction in
our experiments and in the literature review is satisfactory, and the integration and
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evaluation of such models is simpler than when they are used as a generalization
operator.

Then, the use of deep learning models as generalization operators seem possible.
This usage would require further development of speci�c models for map general-
ization, in particular for the encoding of spatial geometry and relations. Moreover,
for integrating deep learning-based operators in a traditional generalization proces,
the explanation and evaluation of such models have to be investigated.

Finally, the holistic approach is more a long-term goal than a short-term ob-
jective. Both explored approaches (with a unique end-to-end model and with a
work�ow in several steps) are promising but require still lacks the mechanism to
better integrate the spatial context required in most map generalization tasks. The
work�ow approach seems to o�er more possibilities, as each step may have spe-
ci�c needs in terms of the number of examples; input information representation;
architecture; and loss function.

Contributions

Our exploration leads to the proposal of several solutions for each use case. Thus our
contribution include datasets and models for each proposed use cases. In addition,
we propose:

� The layer representation, a method for representing geographic information
in an e�cient training dataset for learning map generalization from images. It
allows to encode two di�erent levels of information (main and additional infor-
mation) in a machine-readable way. The code to generate tiles with this repre-
sentation from vector geodatabases is available as a plugin of the open source
generalization platform CartAgen https://github.com/IGNF/CartAGen.

� DeepMapScaler, a deep neural network work�ow for generalized map gener-
ation. In this work�ow, we organize and divide the generation of generalized
maps into simpler tasks that deep learning now seems capable of solving. Un-
like approaches in the literature that attempt to train a single model for map
generation, this approach precisely tailors the dataset and model component
for each step of the generalization and makes the generation of generalized
maps possible.

� The connectivity loss, a measure of road network connectivity alteration
that can be used as a part of deep neural network objective function https://
github.com/ACourtial/DeepMapGen.git.

� FusePix, an architecture able to use the additionnal and main information in
a GAN https://github.com/ACourtial/FusePix.git.

� AlpineBends, a benchmark for the graphical generalization of mountain
roads that includes a training set and several test sets to study the trans-
ferability of the model (available on Zenodo: 10.5281/zenodo.5257686).

� An evaluation method based on adapting the traditional map constraint for an
image-based measure. This includes a proposal for six constraints for evalua-
tion of the AlpineBends benchmark (code available in DeepMapGen's Github
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repository: https://github.com/umrlastig/DeepMapGen); and the study of
the adaptability of twelve other classical map generalization constants from
the EuroSDR framework (see Appendix B).

� An evaluation method to assess and compare the regularity of building shape
in deep learning predictions.

� A user test to evaluate GAN prediction for mountain road generalization.

� A method for reconstructing and assembling independently generalized tiles
into a vector database.

Lessons learned

Due to its exploratory approach, this thesis deals with various research questions,
and the lessons learned from the exploration are varied. Our exploration provides
�rst lessons on the potential of deep learning for map generalization:

� Can graph convolution networks encode the spatial relations that are
important for cartography? In our experiement on road selection, GCN
reveale an ability to understand/encode some relations in a graph. However,
the de�nition of neighbors in graph convolution and cartography is di�erent
and the construction of a graph adapted for learning has to be investigate.

� Can image-based approaches learn graphic generalization? Our ex-
periements on mountain roads show that image based model can learn to
reproduce most generalization operator that a�ect the shape of a road (sim-
pli�cation, schematization, bends enlargment etc.), the predicted image are
close to our expectations and lead us to think that image approach is relevant
for graphic generalization.

� Can GAN learn the generation of generalized maps?Our experiements
show that it is possible to generate maps that look like the target map and
respect the target level of detail.

The exploration then provides responses to the research questions identi�ed in
Chapter A.

How to automatically construct an adapted training set from IGN data?
The construction of an adapted training set is mainly based on the quantity, diver-
sity, and quality of the examples. The examples must not include errors and have to
be legible and adapted to the target task. They must contain the necessary informa-
tion to allow the model to learn the desired task (in particular, map generalization
requires several levels of contextual information, and the representation of this con-
text is an issue). The main conclusions of our experiments on dataset creation are
the following: 1) the more complex the task is, the more examples would be needed;
2) the choice of the study area for the example extraction a�ects both the scope of
the possible situations resolved by the model and the transferability of the model;
3) in general, the more complete and simple the representation of information is,
the easier the learning would be. Moreover we observed that the IGN data was
not perfect, and that it must be manually corrected to avoid inducing the model to
reproduce the residual errors.
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How to conceive an adapted deep neural network? In Chapter C, we iden-
tify seven criteria for the choice of an adapted deep neural network: abstraction
ability, interpolation ability, preservation ability, transferability, spatial ability, vari-
ability, and gluttony. Furthermore, our experiments have shown that the adapted
model may require to encode multiple level of spatial information and context. Sub-
sequently, we believe that if the generic models tested in our exploration are able
to demonstrate the potential of deep leaning for map generalization, it is now nec-
essary to develop speci�c and adapted models. This would allow to reach a level
of prediction quality, that would further unlock the integration of the deep learning
model in the map production process. In conclusion, we suggest that research on the
conception of such a model has to be directed towards an architecture with several
encoding path (for the di�erent levels of information and context) that would focus
on improving one or more of the seven idenitfyed abilities.

How to deal with the speci�c aspects linked to geographic information
and map generalization? This research question is about the spatial ability
of deep neural networks. Some elements of common neural network tend to �t
spatial caracteristics by de�nition. For example, convolution series �rst encode
small-range relations and progressively search for long-range relations, this encoding
is consistante with the principle of geography (close things are more related than
far ones). On the contrary, we identify some aspects that are not adpated to spatial
data. For example, most of the loss function calculations are based on a pixel
level comparison. However, in cartography and map generalization, a more global
comparison of the image is needed.

How to evaluate the results of deep learning-based map generalization?
The evaluation of the deep learning-based map generalization must be more complete
than the classical map generalization because we have to ensure that the prediction
follows cartographic rules and is a valid map. In addition to the visual assessemnt
of our results, we proposes three di�erent approaches for evaluation (adapted con-
straint, user test, and constraint evaluation on converted data). We believe that
the most promising method is the completion and adaptation of the generalization
constraints.

How could the deep neural network collaborate with previous techniques
for automatic map generalization? Each problem formulation (Chapter B)
requires a di�erent integration in automatic map generalization process. Globally
we identify two kind of usages of the deep learning models: as a data enrichment
step and as an operator. We also found that the di�culty of the integration lies
mainly in the format conversion because, for now, most automatic map general-
ization processes are vector-based and this representation cannot be used in deep
learning-based map generalization.

To what extent is it possible to transfer or apply the models learned
with deep learning to large areas? The transferability seems su�cient for the
transfer to a similar situation in other areas; however, �ne-tuning may be required in
cases where the input or target are too di�erent from those presented in the example
set (di�erent data sources, di�erent geographic con�guration, di�erent scales, etc.).
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The use of image representation is a major obstacle to the encoding of
spatial relations. In fact, the use of image representation is not mandatory for
deep learning-based map generalization and other approaches are also promising
(see Chapter B). The image representation, even if it does not model cartographic
objects explicitly, seem able to encode and preserve relations between objects and
seem to include most of the necessary knowledge for map generalization.

Future research

During our exploration, we also identi�ed some new research questions that must
be addressed in a future research.

Experiments on spatial relations

The experiments on the spatial relations (in Chapter D) have shown the complexity
of the creation of the best graph for the task. In this paragraph, we present some
perspectives to improve alignement and selection predictions.

Improving the graph for road selection The graph used for road selection is
the road section graph. However, the selection of the road network is often made
on strokes, i.e. groups of connected road sections that follow the Gestalt principle
of good continuity. Because a stroke should be entirely selected or eliminated, we
could improve this use case by constructing and learning on the stroke relation graph
(graph where node are strokes and link represent stroke connections (Touya 2010))
instead of the section graph.

Improving the graph for the detection of alignments The alignment detec-
tion is performed on a proximity graph, and the method chosen for the construction
of this graph does not seem satisfying to us. In particular, we would like to compare
more construction methods, including a triangulation constrained by roads and a
triangulation not based on the center point but on several building points. We also
think that the number of examples and the consistency of the examples for this use
case could be improved, but it requires time to manually annotate alignments.

Simplifying the tasks Urban and rural areas respond to very di�erent rules
for both the tested tasks (alignement detection and road seelction). In particular,
urban data are denser and then require an implicit relation between the farthest
objects, therefore we think that it can be bene�cial to train two separate models
with di�erent depths for urban and rural data.

Experiments on mountain roads

Despite the good quality of our predictions, they face a certain number of limitations
that make them undesirable for production. The main problem is the alteration
of the structure of the road network (loops and disconnections). Among other
more minor problems, we can cite the absence of context that causes errors in
displacement; the noise in the image and the di�culties in tile assembly.
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Training set improvement One of the reasons for loops and disconnection is
that the input of training images contain too much detail for the resolution, that
makes them few legible. Thus, it is necessary to improve the training set. On one
hand, we believe that increasing the number of examples (and especially example of
very narrow and sinuous bend series that are underrepresented) would bene�t to the
model. On the other hand, increasing the image quality seem di�cult: larger tiles
or tiles with a better resolution would require to widely increase the computation
ability and seem not suitable; and constructing tiles with a more relevant splitting
method may be bene�cal, but impossible. Then, the lack of displacement causes
road overlaps, but, to learn that the roads should be moved, we �rst need to know
where are other close objects on the map. Therefore, we want to experiment with
the layered representation of main map theme for learning road generalization that
includes displacement.

Model improvement We suggest testing the use of a more adapted model for
a geographic image (e.g., Deng, Tian, and Newsam 2021) for making a stronger
prediction. In a similar way, we think the use of a speci�c term in the objective
function can be a good solution to encourage (or discourage) a speci�c characteristic
in prediction. However, our proposed connectivity measure penalizes these errors
without completely avoiding them. We think this measure can be improved to
emphasize visible connectivity alteration and the border e�ect. Moreover, other
kinds of complementary loss terms can be experimented to penalize other problems
in prediction (e.g. fuzzy border, isolated road section, etc.). Then, we would like to
experiment with the depth of the model and the size of the convolution kernel to
encourage the model to look at long-range relations between pixels in the images.
Indeed, in road images, two far pixels may be related (belong to the same road,
while in a building, the pixels belonging to the same entity are closer).

Work on post processes Finally, we proposes a method for post-processand as-
sembly of tiles generalized independently. It imply to match roads that can have
very di�erent shapes, and �nding a solution that creates a correct connection be-
tween edges both this aspect require further research. Then, a line connectivity
check (Touya 2010) must be used at image border.

Experiments on map generation

During our exploration, we experimented with the generation of generalized maps
in two manners: �rst, a GAN is trained for holistic generation of generalized map
from detailed data with an image representation (Chapter F), then a work�ow com-
bines several models to perform a part of the generalization (Chapter H). Both
approaches give map-looking results and succeeded in generalizing and combining
several cartographic themes into a credible map. The second approach allows us to
make the training set architecture and/or objective function adapted for the speci�c
task of the model, and, it resolves the overlap between roads and buildings. How-
ever, models still have important limitations and require further experiments before
considering using them for map production: they fail to generate road selection
without disconnection, and block are not properly grayed. We also observe that the
predicted buildings have a blurred outline and not regular/credible shapes.
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Understanding spatial context The main limitation of our proposal is due to
the tiles that lack the context for map generalization. We proposed a fusionGAN
model that can provide additional information on attributes of the tile features and
on the context of the tile and inform the encoding path of the spatial context. The
results of this model are not yet satisfying: they allow some generalization operations
that were not possible without context (e.g. road selection); however, the proposed
model degrades the global quality of the predicted map tiles (predictions include
more disconnections and more blurred boundaries). We believe that this model
could be improved. First, in our implementation, we did not experiment with the
depth, initialization method, and optimization method of the model before using
it as a generator, and these parameters have to be explored. Then, in its current
form, the model does not include skip connections (while it replaces a U-Net in the
GAN), since (Feng, Thiemann, and Sester 2019) showed that they are essential to
encode multi-scale relations in map images. We think a fusion model with such a
connection must be tested. A second hypothesis is that the connnection between
main and additioanl encoding path are not adpated (e.g. too frequent, thus fusions
have to be done only at a certain level of encoding or require a dropout to make the
prediction less dependent on the additional information). Another perspective is to
use another model. For example, recent approach to integrate a vision transformer
mechanism to image approach, it promise to focus on some parts of a large image and
resolve some context-related issues. In principle, they have better capability than
convolution network in capturing long-range dependence between pixels/objects on
an input image, but requires far more data to train. Indeed, such methods separate
the image into a patch and examine the sequence of the patches (rather than the
image). This allows the model to �nd the parts of the image that are most important
in learning and encoding a distant or heterogeneous relation in the image (between
patches).

Training set improvement Our training set also includes some limitations: the
number of examples and the diversity of situations could be improved, in particular,
city center situations are too rare (we think it is the main explanation for block
graying problems with the lack of context). Despite the manual correction of the
target generalization, some badly generalized features remain in our target images,
which can encourage the generation of unclear shapes in the prediction.

Work�ow improvement DeepMapScaler is a sequence of models trained sepa-
rately, and we think that a deeper collaboration between the models needs to be
studied. In fact, in the current vesion of DeepMapScaler, each model encodes and
decodes the information in a result that can be interpreted by a human, but we could
use as input of a step the embedding of the previous step instead of the decoded
output that is only suitable for human interpretation (see Figure G.12). Then, each
step of the work�ow can be independantly improved to better �t to the speci�c
constraints it aims to resolves.

Diversi�cation of applications

The diversity of map objects, generalization operators, input scales, target scales,
styles, formulations (see Chapter B) induces a great diversity of possible use cases.
In this thesis, we explore four use cases among the many possible. We chose our
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use cases with three criteria: 1) the scienti�c interest of the use case (e.g. the
mountain roads generalization and the alignment detection are challenging tasks;
the generation of a complete generalized map at once is a moonshot objective of map
generalization, etc.); 2) the existence of data at our disposal; and 3) the existence of
one or several state-of-the-art solution to compare with; but we could have chosen
many others.

First, many other experiment can be used to demonstrate for the potential of
deep learning for the choosen tasks of our exploration (relation encoding, shape
generalization, and map generation). For instance, we only experiment the graph
approach for two kinds of spatial relations, while they are numerous in maps, espe-
cially this thesis does not address the study of the relations between di�erent types
of map object with heterogeneous graph representation (Iddianozie and McArdle
2021). We further encourage the experiment with a graph that encodes several
kinds of spatial relations useful form map generalization (Touya, Balley, Duchêne,
Jaara, Regnauld, and Gould 2012) may be more e�cient. Moreover, in Chapter F
we restrict our work to simple maps where only roads and rivers are represented,
while the generalization of various other themes (e.g. vegetation, elevation, etc.)
may be interesting. Moreover, we only experimented use cases with a small scale
gap between input and target. We think that the more the input and target are
di�erent the more complex would be the learning. To verify this statement we would
like to replicate our experiment with other target scales. Nevertheless, we considere
the generalization of widely generalized map more promizing using several succes-
sive models, each perfoming a small generalization. Finally, we claim that the the
proposed layered representation is essential for map generation, but we only tested
it for a few examples of possible information.

Secondly, Chapter B includes many ideas of deep learning usage for map gener-
alization that could resolve several other research questions. In particular, after our
exploration, we estimate that the following applications are the most important to
explore:

� Graph-based shape generalization, consists in encoding the shape of an object
in a graph and predicting position in the generalized object of each edges. Such
a method, allows us to better control the shape of objects and avoid blurred
shapes. Moreover it is more convenient for the integration in a generalization
process and for the generalization evaluation.

� Prediction of label placement in map and schematics map is a common and
important problem in cartography and map generalization for years. Both
the graph (label are node of a graph that represent map relations, the model
perform a regression of a position for each label) and image approach (seg-
mentation of place where it is possible to set a label) may be investigate for
this task.

� Making spatial relations explicit from a map using link prediction or scene
graph generation. Indeed, recent models from computer vision has shown
potential to generate a graph that describs the relation between objects in an
image (e.g. the image depict a man on a bike, the bike in behind the car).
Our goal would be to apply such interpretation to a map image and produce
a description of spatial relations useful for map generalization (e.g. the road
is connected to the highway; it leads to a forest, etc.).
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Promoting the usage of deep learning for cartography

To encourage the use deep learning for map generalization, we believe that the
promizing results of this thesis must be completed with the exploration of the fol-
lowing research question.

Explainability The default of explainability of deep learning is the �rst fear for
considering the use of deep learning. This default is a common limitation to many
applications of deep learning where we want to be sure and understand predictions
to trust them (e.g. medicine). Thus, it is a complete �eld of research (Barredo
Arrieta et al. 2019), and we believe that improvement in the explainability of deep
neural networks is needed. For example, for a convolution neural network, it is
already possible to visualize some explanations, such as the overlaid heat map or
gradient-based localization (Selvaraju, Cogswell, Das, Vedantam, Parikh, and Batra
2019) that indicates which image regions are most important for a prediction. This
explanation can be bene�cial to some use cases of cartography, in particular, the
detection of map objects and classi�cation of map types. However, for the use case
where we want to predict a map object (e.g. a generalized map object in the Chapter
E) we do not want to see which input pixels impact each class but which input pixels
impact each output pixel.

Computation cost Then the important computational requirement of deep learn-
ing may be a limitation to the use of deep learning for cartography. In particular,
we think that it is essential to ensure that the environmental and economical cost
of such a model is suitable for map production. This cost is mainly impacted by
how much the models have to be trained (epochs and number of examples) before
providing satisfying results for map production. Then model can be applied at a
small cost to a large area. In comparison, the agent-based processes require few
resources at when they are con�gured, but are expensive to apply to large areas.

Evaluation Finally, the use of deep learning for cartography and map general-
ization cannot spread without a strong evaluation and comparison with traditional
processes. In this thesis, we proposed evaluation methods and shared our datasets
to encourage the comparison. We also co-organized a workshop on benchmarks in
map generalization. We believe that research must continue in this direction and
propose new benchmarks and evaluation methods. In particular, our proposed raster
constraints must be extended to other cartographic themes, corrected to limit bias,
and improved to better �t the human perception of generalization quality.

The future of cartography with map generalization based on

deep learning

This thesis is part of the global objective of the arti�cial geo-intelligence: "De-
sign[ing] a software agent that takes a user's GIS-related domain question, under-
stands how to gather the required data, how to analyze them, and how to present
the results in a suitable form" (Janowicz, Gao, McKenzie, Hu, and Bhaduri 2020,
p. 631). Indeed, cartography is still the most suitable solution for presenting to
the human user geographic information or phenomena, and we think that the use
of deep learning could unlock the search for a model capable of generating such
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maps. We already observe that deep learning o�ers an answer to some of the cur-
rent limitations in map generalization automation listed in Chapter A. For example,
the map generation approach deals with map stylization and map generalization all
together, and it can deal with heterogeneous data. We demonstrate in Chapter G
that a model trained with a data source can be transferred and applied to an image
constructed with other data sources (with a fairly similar level of detail) with very
few changes. An important perspective of this thesis is to test how other current
challenges can be dealt with using a deep learning approach.

Parametrization of map generalization is challenging. Pre-trained deep
learning models can be used without any parametrization very quickly. The dif-
�culty is not in parametrization, but more on identifying the case where the model
can apply. Moreover, in traditional map generalization, the parametrization can
allow the production of di�erent variants of generalization. Thus, the research ques-
tion can be reformulated as: how to make possible this variability of solutions in
deep learning-based map generalization. The simplest solution is in the training set
characteristic; indeed it is not the model choice or hyper-parameter that will deter-
mine how the output will be generalized but rather the training examples. However,
this solution is not e�cient: we do not want to re-create an example set and re-
train (or �ne-tune) the model to obtain a small variation that can be obtained by
just changing one parameter in traditional map generalization (e.g; changing the
minimum display size of an element, or encouraging typi�cation rather than aggre-
gation). We think research must focus on a model that can produce several di�erent
solutions for one input like multi-modal GANs (Huang, Liu, Belongie, and Kautz
2018).

User requirements for map generalization are di�cult to handle. Our
opinion is that user requirements are simpler to formulate using examples (the user
wants a generalization similar to this or that map)(Hubert 2002), a perspective is
to explore how deep learning could use such input to predict a generalization that
�ts the user requirement expressed in the example. Our �rst idea is to explore the
usage of reference-guided image synthesis (Choi, Uh, Yoo, and Ha 2019).

On-the-�y map generalization. We think that it would be interesting to study
the feasibility of an application that interactively produces a generalized map, on
the same idea as (Guérin, Digne, Galin, Peytavie, Wolf, Benes, and Martinez 2017)
that proposes an interactive platform for quickly, easily and intuitively authoring
realistic terrain models by using sketches of crest lines, rivers, or iso-contours (i.e.
map element). The task for this application is an interpolation task, while on
the contrary the task for map generalization is an abstraction task; thus we have
to explore how the input data must be prompt. Then, the input data would be
represented in the appropriate form and serve as input of a model or work�ow that
generates map tiles, �nally the tiles are assembled and displayed together.

Multi-scale map generation. This generation is more than the generation of one
representation for each desired representation level, it requires multiple consistent
intermediate representations and smooth transitions. We already demonstrate that
deep learning is able to generate one intermediate generalization (see Chapter F),
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Figure 2: Multi-scale map generation as a smooth interpolation problem: compari-
son between example of smooth interpolations generated by (Liu, Sangineto, Chen,
Bao, Zhang, Sebe, Lepri, Wang, and Nadai 2021) methods, and an extract of the
geoportal.

and we would like to explore how the model can be trained to generate a consistent
series of generalizations that together can form a multi-scale map. In the Chapter
B we already mention that a formulation as a video problem can be used for this
problem; in addition, we propose the perspective of the model that predicts smooth
interpolations between domains (see Figure 2).
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Appendices

A Comparison of models for road shape generaliza-

tion

We propose a comparison of the di�erent models proposed in Chapter B. We com-
pare the reference (i.e. state-of-the-art vector algorithms generalization and manual
corrections) with the prediction of �ve variations of the proposed model for 18 sit-
uations from the test set. All tiles represent a portion of the 2.5 km2 map.

Name Strategy Model Sample image
Model A Unsupervised CycleGAN 1223 (from Alps only)
Model B Unsupervised CycleGAN 2271 (from several mountain regions)
Model C Unsupervised CycleGAN 1223 (+ connectivity loss)
Model D Supervised Pix2pix 1223 (from Alps only)

Table 1: List of the experiments compared in this appendix.
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B Estimation of constraint adaptability for raster

calculation

In Chapter H, we observe that it is challenging to adapt constraint-based evaluation
to maps with several themes. In these maps, the spatial relations are even more
important and concern several di�erent objects, e.g. buildings are aligned along a
road, or a road is crossing a forest. The preservation of relations contributes to the
global structure and understanding of the map (Mackaness and Edwards 2002) and
help to determine map location. However it seem di�cult to evaluate.

Moreover, the raster representation makes con�ict detection harder, as each pixel
can have only one value even if there is a coalescence of several elements at this place.
Finally, the identi�cation of groups of objects can be done using a distance criterion
using bu�ers, but the identi�cation with similarity criteria could be more di�cult.
In this appendix, we propose to estimate the di�culty of the raster adaptation
of constraints from (Stoter et al. 2009). We identify four levels of adaptability of
measure:

� ++ Can be measured directly in the image (i.e., involves only a measure on
the pixel values, the image statistics, the patch, or the pixel set).

� +May require image processing before the measurement calculation; the mea-
sure is calculated on a derived image.

� - May require a new paradigm. For example, for an overlapping measure, we
propose not to measure existing overlapping (this seems impossible in raster),
but rather measuring "almost overlapping" (i.e., pixel that would be overlap
if the image is slightly zoomed out) that is simpler to measure in raster, and
hypothesize that these two measures (overlapping and almost overlapping) are
correlated. Similarly, for orientation rather than comparing all directions for
each element, we identify some direction (horizontal and vertical) and compare
the edge distribution for these directions, supposing that the edge distribution
for all directions is correlated with the edge distribution for these directions.

� � We think there is no possible adaptation and that the measure may require
vectorization. For these points we did not prove the in-adaptability and some
un-evisaged solution may exist, and thus suggestions are welcome.
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Résumé substantiel : Exploration du potentiel de

l'apprentissage profond pour la généralisation

cartographique.

Contexte

Depuis 20 ans, l'usage des cartes a évolué de façon importante, les cartes sont désor-
mais majoritairement en ligne, multi-représentations, et multi-échelles. Les utilisa-
teurs attendent un contenu spéci�que à leurs besoins, à leurs appareils et interactif,
où les informations sont accessibles de façon directe et lisible. Néanmoins, actuelle-
ment les cartes en lignes ne sont ni spéci�ques aux besoins de l'utilisateur ni simple
à naviguer. Par exemple, le saut de représentation entre les échelles d'une carte pro-
duit de la confusion pendant le zoom (Touya 2019). D'autre part, la multiplication
des sources de données a entraîné l'augmentation du besoin de synthèse, d'harmoni-
sation et d'abstraction de l'information géographique sous forme d'une carte. Nous
pensons que le développement de processus cartographiques qui limitent cette confu-
sion, et répondent à ces nouveaux besoins est conditionné à de grandes avancées de la
recherche en automatisation de la généralisation cartographique. Il s'agit du proces-
sus d'abstraction qui vise à adapter le niveau de détail de l'information géographique
pour la rendre lisible sur une carte à une échelle plus petite. L'automatisation de ce
processus est complexe mais essentielle à la production de cartes répondant à la fois
aux usages traditionnels et à ces nouveaux usages. La recherche sur l'automatisa-
tion de la généralisation cartographique a ralenti ces dernières années tandis que le
besoin lui n'a pas diminué. Nous pensons qu'elle pourrait béné�cier des avancées ré-
centes en apprentissage profond qui rendent possible la résolution de tâches de plus
en plus complexes, grâce à l'utilisation de nombreux exemples. L'usage de méthodes
issues de l'apprentissage automatique pour la généralisation cartographique a déjà
été expérimenté dans quelques cas d'étude isolés et limités. Le contexte actuel, et
l'apprentissage profond sont prometteurs :

- les dynamiques open-data et l'ère du big data constituent de nombreuses
sources pour construire d'importants jeux d'apprentissages ;

- la promesse de l'apprentissage profond d'apprendre de données brutes, nous
permettrait de se passer de l'étape d'extraction de variables, qui était la prin-
cipale limite à l'utilisation de l'apprentissage automatique en généralisation
cartographique ;

- l'état de l'art en apprentissage profond montre une capacité accrue à résoudre
des tâches similaires à la généralisation cartographique dans les domaines des
sciences de l'information géographique et de la visualisation d'informations ;

Objectif et approche

L'approche par apprentissage profond de la généralisation est encore expérimentale,
et par ailleurs elle est à l'opposé des approches traditionnelles de la généralisation
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cartographique, où l'on formalisait d'abord des spéci�cations cartographiques puis
on appliquait des opérations pour s'y conformer. En e�et, un modèle d'apprentissage
profond va plutôt apprendre à reproduire des cartes généralisées sans explicitement
dé�nir les spéci�cations de la carte ou les opérateurs employés, mais en déduisant
ce à quoi devrait ressembler le résultat de la généralisation. Le premier objectif
de cette thèse est donc de démontrer que l'approche est possible et prometteuse,
puis nous proposons d'explorer via divers cas d'étude le potentiel et les questions
de recherche soulevées par l'usage de l'apprentissage profond pour la généralisation
cartographique. Notre exploration est construite à travers quatre cas d'études qui dé-
crivent chacun un problème particulier de généralisation cartographique. Les trois
premiers cas d'étude correspondent à des étapes classiques de processus de géné-
ralisation cartographique (généralisation graphique, détection de pattern, sélection
d'entités) ; tandis que le dernier correspond à une approche plus globale pour la gé-
nération d'une carte généralisée qui combine plusieurs opérateurs de généralisation.
Ce manuscrit collecte et organise les leçons apprises de ces expériences. Nous discu-
tons donc les questions de recherches liées à la mise en ÷uvre concrète des modèles
d'apprentissage profonds pour la généralisation cartographique (jeu de données et
architecture), leurs usages et limites, l'évaluation de tels modèles, et leur intégration
dans des processus cartographiques préexistants. En particulier, nous cherchons :

- à identi�er le potentiel et les dé�s d'une telle approche (Partie I) ;

- à concrètement expérimenter l'apprentissage de quelques tâches de généralisa-
tion cartographique importantes (Partie II) ;

- à donner des indications pour les futures utilisations de l'apprentissage profond
pour la généralisation cartographique (Partie III).

Partie I : Un nouveau paradigme pour la généralisation carto-

graphique

Cette partie a pour objectif d'identi�er le potentiel et les dé�s de l'approche par
apprentissage profond pour la généralisation cartographique. Elle est constituée d'un
chapitre d'état de l'art qui présente la recherche en généralisation cartographique,
et en apprentissage profond, puis deux chapitres mobilisent cet état de l'art pour
identi�er, d'une part, les tâches de généralisation cartographique qui peuvent être
résolues par une approche par apprentissage profond, et d'autre part, les méthodes
d'apprentissage profond pouvant être mobilisées pour résoudre des problèmes de
généralisation cartographique.

L'état de l'art (Chapitre A) nous permet d'identi�er le potentiel et les dé�s d'une
approche par apprentissage profond pour la généralisation cartographique :

+ l'apprentissage profond est capable de résoudre des tâches similaires à la gé-
néralisation cartographique (par exemple la génération de résumé à partir de
vidéo, la simpli�cation de ligne à main levée en dessin, ou la génération d'image
de carte) ;

+ il est adapté pour résoudre des problèmes graphiques où l'information néces-
saire est implicite dans les données (et c'est le cas de la généralisation carto-
graphique) ;

+ de nombreux exemples de cartes détaillées et généralisées sont disponibles pour
servir d'exemples d'apprentissage ;
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- la représentation image est l'approche principale en apprentissage profond,
mais l'utilisation d'images pour la généralisation cartographique est considérée
moins e�cace, car elle implique une perte d'information par rapport aux bases
de données géographiques vectorielles ;

- les modèles d'apprentissage profonds sont complexes à paramétrer et néces-
siterons probablement d'être adaptés pour traiter des informations cartogra-
phiques ;

- l'apprentissage profond donne des résultats sans explication qui peuvent être
considérés comme non �ables ou di�ciles à intégrer dans un processus semi
automatique ;

- l'entraînement de modèles d'apprentissage profond demande des ressources
importantes qui peuvent être di�cilement accessibles aux chercheurs en car-
tographie, ou avoir un coût économique ou environnemental trop important.

Ensuite, dans le Chapitre B nous identi�ons comment des opérations de généra-
lisation cartographique peuvent être formulées en une tâche qu'un modèle d'appren-
tissage profond peut résoudre. En particulier, nous relevons qu'une grande partie des
tâches de généralisation cartographique peuvent être exprimées comme un problème
de classi�cation, segmentation ou régression sur des images ou des graphes (ou les
éléments d'une image ou d'un graphe). Finalement, nous notons que la combinaison
de plusieurs approches semble plus prometteuse encore. Par exemple pour la sim-
pli�cation d'une forme, une approche image est possible, ou bien une approche qui
combine sélection et régression sur les n÷uds d'un graphe pour prédire les nouvelles
position des sommets.

En�n, dans le Chapitre C, nous explorons comment mettre en ÷uvre des modèles
d'apprentissage profond pour la généralisation cartographique. En particulier, nous
proposons : des critères pour le choix d'un modèle de la littérature en vision par
ordinateur ; des adaptations pour améliorer l'apprentissage de la généralisation car-
tographique ; des lignes directrices pour la création de jeux de donnée d'apprentissage
adaptés et un modèle d'organisation des données géographiques en jeu d'exemples
pour l'apprentissage de tâche liée à la cartographie et à la généralisation.

Partie II : L'apprentissage profond peut-il apprendre la géné-

ralisation cartographique ?

Cette partie à pour objectif d'expérimenter le potentiel de l'apprentissage de quelques
tâches de généralisation cartographique importantes. Elle est organisée en trois cha-
pitres décrivant chacun une série d'expériences visant a répondre à une probléma-
tique : l'apprentissage profond peut-il comprendre des relation spatiales / apprendre
la généralisation graphique / générer des cartes topographique généralisées.

Le Chapitre D teste la capacité des réseaux d'apprentissage sur les graphes à
comprendre des relations spatiales, pour cela nos explorons la capacité de ces mo-
dèles à réaliser des tâches de généralisation qui reposent sur des relations spatiales
complexes et implicites dans les graphes. Les cas d'études sont la détection d'aligne-
ment de bâtiments et la sélection du réseau routier. Ces expériences montrent des
résultats perfectibles mais révèlent une capacité à faire des prédictions cohérentes
avec les relations spatiales que nous (humains) observons dans les données.
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Le Chapitre E propose d'éprouver la capacité des modèles d'apprentissage basés
sur des images à apprendre la généralisation graphique des entités cartographiques
via le cas d'étude des route de montagne pour un saut d'échelle important. Cette
expérience compare plusieurs approches (par segmentation et avec un GAN) et ré-
vèle que les modèles sont capables de reproduire le lissage des lignes, l'élargissement
de virages serrés, et la caricature, pour la plupart des situations testées. Dans cette
expérience la préservation de la structure du réseaux routier (et en particulier évi-
ter la création de boucle et les déconnexions) est un enjeu majeur et les modèles
génératifs sont plus prometteurs sur ce point. Nous introduisons également une me-
sure de ces altérations de structure, et proposons de l'utiliser comme terme de la
fonction d'objectif pour les minimiser. Finalement nous obtenons des prédictions
jugées aussi bonne que la généralisation de l'état de l'art obtenue par des processus
semi-automatiques.

Dans le Chapitre F, nous démontrons que les réseaux adverses génératifs (GAN)
sont capables de générer des images ressemblant à des cartes à une échelle don-
née. Nous générons des images de cartes généralisées à partir de cartes détaillées
comportant : des bâtiments, les réseaux routier et hydrographique. Nos résultats
reproduisent la simpli�cation, l'agrandissement et la typi�cation de bâtiments, mais
la représentation en tuiles est limitante pour les tâches nécessitant plus de contexte
comme la sélection du réseau routier et le grisage des centres ville.

Partie III : Le futur de la généralisation cartographique par

apprentissage.

Les résultats de la seconde partie nous laissent penser que l'utilisation de l'apprentis-
sage profond pour la généralisation cartographique pourrait être un tournant dans
l'automatisation de la généralisation cartographique. Mais pour cela, les modèles
doivent être insérés et comparés avec les processus traditionnels de généralisation
cartographique. L'objectif de cette partie est de discuter les enjeux de l'utilisation
d'approche par apprentissage profond pour la généralisation.

Dans le Chapitre G, nous discutons la capacité de transfert des modèles d'appren-
tissage profond et l'illustrons pour les modèles du Chapitre E et F. Puis, nous étu-
dions l'intégration d'un modèle, d'une part dans un processus traditionnel (comme
indicateur pour l'enrichissement des données géographique ou comme opérateur de
généralisation) et d'autre part dans un processus constitué entièrement de modèles
d'apprentissage. En�n, nous proposons un exemple de processus de généralisation
qui intégrerait les modèles proposés et testés dans la Partie II pour la génération de
cartes topographique au 1 :50 000.

Dans le Chapitre H nous expliquons les enjeux d'évaluation de la généralisation
cartographique réalisée par apprentissage profond. Nous illustrons trois méthodes
d'évaluation en les appliquant à l'évaluation des modèles proposés en Partie II. En
particulier, nous montrons que l'adaptation des contraintes de généralisation carto-
graphique pour une mesure basée sur des tuiles permet une évaluation automatique
et assez �ne des di�érents aspects de la généralisation, mais toutes les contraintes
proposées dans le passé pour des cartes topographiques ne semblent pas adaptables.
La reconstruction d'une base de données vectorielle avant l'évaluation, quant à elle,
permet d'appliquer les méthodes traditionnelles d'évaluation de la généralisation
cartographique, mais demande un temps de calcul important et peut altérer la qua-
lité des prédictions, ce qui n'est pas approprié dans de nombreux cas. Finalement,
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le test utilisateur est le seul moyen totalement �able de s'assurer que la prédic-
tion correspond à ce qui est attendu par l'utilisateur, néanmoins, il ne permet pas
l'évaluation automatique.

Contributions et conclusions

Pour conclure, les contributions de cette thèse sont d'une part des enseignements
sur l'utilisation de l'apprentissage profond pour la généralisation cartographique et
d'autre part des modèles, benchmarks et un processus de généralisation cartogra-
phique par apprentissage profond. En particulier, nous proposons :

- un jeu de données pour la généralisation graphique de routes de montagne
incluant un jeu d'entrainement et plusieurs jeux tests pour étudier la trans-
férabilité du modèle (disponible sur Zenodo) et un ensemble de mesures pour
valider les tuiles prédites (disponibles dans le dépôt Github DeepMapGen) ;

- des modèles entraînés pour chaque cas d'études proposé ;

- le code pour les adaptations proposées des modèles utilisés notamment la fonc-
tion d'objectif de connectivité et le fusionGAN ;

- le processus DeepMapScaler qui intègre les modèles proposés dans cette thèse
pour générer des cartes généralisées ;

- une méthode pour générer des jeux de donnée d'apprentissage adaptés à la
généralisation cartographique et le code associé (disponible sous la forme d'un
plugin de la plateforme open source de généralisation CartAgen) ;

- une méthode pour la reconstruction et l'assemblage de tuiles généralisées in-
dépendamment en une base de données vecteur.

L'objectif de notre thèse était d'explorer le potentiel de l'apprentissage profond
pour la généralisation cartographique. Les résultats de nos expériences sont pro-
metteurs et révèlent la capacité des modèles d'apprentissage profond à apprendre
à interpréter, abstraire et représenter l'information géographique depuis des images
ou des graphes. Nos résultats sont su�samment performants pour un usage comme
indicateur (c'est-à-dire pour l'enrichissement de l'information géographique avant la
généralisation), mais la qualité et les di�cultés d'évaluation/intégration, des mo-
dèles qui visent à apprendre un ou plusieurs opérateurs ne sont pour l'instant pas
su�sant pour remplacer ou compléter les opérateurs traditionnels dans un processus
de généralisation. Nous pensons que pour rendre possibles de tels usages, l'amélio-
ration des architectures et jeux d'apprentissage est nécessaire et en particulier pour
une meilleure utilisation du contexte spatial.

Aussi, notre thèse s'inscrit dans l'objectif global de la geo-intelligence arti�cielle,
qui est de concevoir un programme capable de comprendre une question d'un utili-
sateur relative à l'information géographique, et de regrouper, analyser et présenter
les données requises pour répondre à la question de l'utilisateur dans une forme
adaptée (Janowicz, Gao, McKenzie, Hu et Bhaduri 2020, p. 631). En e�et,
la carte est bien souvent le mode de communication de la solution la plus souhai-
table pour communiquer une information géographique à un utilisateur humain, et
requiert l'automatisation et l'adaptabilité des processus de généralisation. L'usage
de l'apprentissage profond pourrait débloquer la recherche d'un modèle capable de
générer de telles cartes.
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