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Résumé: La nanophononique, c’est-à-
dire l’ingénierie des phonons acoustiques,
est un domaine de recherche promet-
teur qui offre un potentiel dans la ma-
nipulation du son et de la chaleur à
l’échelle nanométrique. La recherche
sur les propriétés vibratoires des sys-
tèmes formés par des multicouches de
semi-conducteurs a permis d’atteindre
un nouveau niveau de compréhension
des phonons acoustiques dans ces struc-
tures. Dans ce travail, nous présentons
des dispositifs phononiques topologiques

constitués de super-réseaux de semi-
conducteurs permettant de contrôler la
propagation des phonons dans la gamme
des dizaines au centaines de gigahertz.
Nous avons développé des schémas ex-
périmentaux de spectroscopie Brillouin
pour accéder aux modes acoustiques con-
finés dans des cavités optophononiques
planaires et micropiliers où la lumière
dans le proche infrarouge et les phonons
acoustiques dans la gamme des 20 GHz
peuvent être confinés simultanément.

Title: Brillouin scattering in optophononic heterostructures working at ultrahigh
acoustic frequencies
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Abstract: Nanophononics, i.e. acous-
tic phonon engineering, is a promising re-
search domain with potential in the ma-
nipulation of sound and heat at the nano-
metric scales. Research on the vibra-
tional properties of systems formed by
semiconductor multilayers has permitted
to achieve a new level of understand-
ing of acoustic phonons in these struc-
tures. In this work we introduce topo-
logical phononic devices made of semi-

conductor superlattices to control the
propagation and confinement of acous-
tic phonons in the tens to hundreds of
gigahertz range. We developed Bril-
louin spectroscopy experimental schemes
to access the confined acoustic modes
in planar and micropillar optophononic
cavities where both light in the near in-
frared range and acoustic phonons in the
20 GHz range can be simultaneously con-
fined.



Résumé

L’objectif de cette thèse est de contrôler les phonons à l’échelle nanométrique par
l’ingénierie de nouvelles hétérostructures GaAs/AlAs et de développer de nouveaux
schémas de spectroscopie Brillouin pour étudier les phonons acoustiques confinés à ultra-
hautes fréquences.
Le contrôle précis de la dynamique des phonons acoustiques a permis l’ingénierie des
interactions avec d’autres excitations (photons, électrons, magnons, polaritons ou plas-
mons). Pour cela, une grande variété de systèmes a été développée pour contrôler la
propagation et le confinement des phonons à haute fréquence à l’échelle nanométrique
(nanodisques, micropiliers, nanotrompettes, cristaux phononiques unidimensionnels, et
tambours). Les super-réseaux faits à partir de GaAs/AlAs permettent de contrôler le
champ acoustique à ultra-hautes fréquences avec une grande précision. Ces structures
permettent de concevoir des miroirs acoustiques, des cavités Fabry-Pérot ou des filtres.
Les systèmes multicouches de semi-conducteurs peuvent également être gravés en forme
des micropiliers, ce qui permet de contrôler les champs optique et acoustique en trois
dimensions. Contrairement à l’acoustique macroscopique, l’absence de transducteurs
standards dans la gamme de fréquences allant du GHz au THz encourage le développe-
ment de techniques optiques pour accéder expérimentalement aux modes acoustiques
des systèmes étudiés.
Dans cette thèse, nous abordons les défis théoriques et expérimentaux dans le domaine
de la nanophononique. Le premier axe de recherche est l’ingénierie de structures multi-
couches basées sur des concepts topologiques pour contrôler le confinement des phonons
acoustiques à haute fréquences. Nous étudions le confinement des phonons dans des
dispositifs topologiques, imitant le comportement topologique déjà observé en acous-
tique macroscopique, optique ou électronique. La deuxième ligne de recherche consiste
à développer des schémas optiques pour mesurer les modes acoustiques confinés dans
des microstructures multicouches. Plus précisément, il s’agit de faire progresser les ex-
périences de diffusion Brillouin spontanée pour accéder aux modes acoustiques à 18 GHz
dans des cavités planaires et en trois dimensions. Le manuscrit présente cinq chapitres
qui vont des concepts théoriques utilisés dans cette thèse, aux simulations et aux résul-
tats expérimentaux obtenus au cours de la thèse.
Le premier chapitre est dédié à présenter les concepts qui permettent de contrôler la
propagation d’ondes acoustiques dans la gamme des GHz dans des systèmes multi-
couches. Nous rappelons qu’il est possible de modifier la bande interdite dans des
super-réseaux pour fabriquer des réseaux de Bragg acoustiques et des cavités Fabry-
Pérot. De plus, en raison d’une coïncidence par nature dans les matériaux GaAs/AlAs,
il est possible de simultanément confiner la lumière et le son dans un résonateur Fabry-
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Pérot à une longueur d’onde d’environ 900 nm et à une fréquence acoustique d’environ
18 GHz. Ces concepts sont à la base des résonateurs acoustiques étudiés dans cette
thèse.
Le deuxième hapitre aborde l’interaction photoélastique qui a lieu entre la lumière et le
son à l’échelle nanométrique. Nous présentons la diffusion Brillouin, qui est la diffusion
inélastique de la lumière due à la présence de phonons dans le milieu. Nous rappelons
les différentes règles de polarisation et de sélection géométrique de la diffusion Brillouin
dans les matériaux semi-conducteurs nécessaires dans la suite de la thèse. Nous dis-
cutons également deux autres techniques expérimentales pour la détection de phonons.
La première technique est la génération et la détection cohérente de phonons acous-
tiques, qui permet d’étudier la dynamique des phonons acoustiques cohérents dans le
temps. La deuxième technique est la spectroscopie de bruit, habituellement utilisée en
optomécanique. Dans cette thèse, nous étudions les modes acoustiques confinés dans les
résonateurs optophoniques par le biais de la diffusion inélastique de la lumière avec la
spectroscopie Brillouin.
Dans le troisième chapitre, nous présentons une méthode théorique pour générer un
état d’interface acoustique dans un résonateur topologique, basée sur le principe de
l’inversion de bande. En modifiant le ratio d’épaisseur des couches de GaAs et d’AlAs
dans la cellule unitaire, les symétries des modes autour de la bande interdite changent.
Un état d’interface est alors généré lorsque deux super-réseaux avec des symétries in-
versées sont concaténés.
Nous avons étendu ce principe pour créer des états d’interface dans les bandes interdites
d’ordre élevé. En ajustant l’épaisseur des couches dans la cellule unitaire, nous avons pu
générer de multiples états d’interface acoustiques topologiques dans une large gamme
de fréquences. Nous avons également simulé des structures hybrides pour lesquelles
un état d’interface est généré en combinant deux super-réseaux présentant des bandes
interdites de différents ordres centrés autour de la même fréquence avec des symétries
identiques. Il est ainsi possible d’explorer des structures topologiques inaccessibles en
électronique ou en optique en raison des relations de dispersion. De plus, nous avons
montré que, pour des super-réseaux conçus à des fréquences acoustiques 18 GHz et à la
longueur d’onde optique 900 nm, l’inversion des symétries des modes de bord se produit
simultanément dans les domaines optique et acoustique. Il en résulte un confinement
simultané de la lumière et du son avec des états optiques et acoustiques colocalisés.
Dans le quatrième chapitre, nous démontrons expérimentalement la présence d’états
d’interface acoustiques dans des cavités topologiques au moyen de la spectroscopie Bril-
louin. La technique développée permet d’accéder aux modes acoustiques dans la gamme
de 18 à 300 GHz dans des cavités planaires. Nous bénéficions de la double résonance
optique des cavités optiques multicouches qui induit un décalage angulaire entre le laser
réfléchi et le signal Brillouin. Le signal est filtré à l’aide d’une fibre monomode ce qui
améliore le rapport signal sur bruit. Cette technique est optimale pour des fréquences
acoustiques dans la dizaine du GHz. De plus, l’utilisation d’un étalon avant le spec-
tromètre permet de réduire la lumière parasite résiduelle et d’augmenter la résolution des
spectres Brillouin (jusqu’à 2 GHz). Cependant, cette méthode est limitée aux mesures
sur des cavités planaires en raison de la forte modification de la relation de dispersion
optique de la cavité dans les objets tridimensionnels et de la diffraction de la lumière
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imposée par des objets de taille micrométrique. Il est donc nécessaire de développer une
technique adaptée à l’étude de micrcopiliers.
Dans le dernier chapitre, nous démontrons qu’il est possible de contrôler l’état de po-
larisation du signal de diffusion Brillouin dans des cavités optiques polarisées. Nous
exploitons la rotation de polarisation dépendante de la longueur d’onde induite par
l’ellipticité du micropilier pour contrôler indépendamment l’état de polarisation du sig-
nal Brillouin et du laser d’excitation réfléchi. Par conséquent, nous modifions les rè-
gles de sélection en polarisation de la diffusion Brillouin. En contrôlant la forme des
micropiliers, nous contrôlons de manière déterministe l’état de polarisation du signal
Brillouin. De plus, les polarisations des différents modes Brillouin peuvent être con-
trôlées indépendamment les unes des autres. Le contrôle de la polarisation du signal
Brillouin permet d’implémenter un dispositif expérimental basé sur un filtrage en po-
larisation pour mesurer le signal d’intérêt dans gamme de quelques dizaines de GHz.
Les résultats expérimentaux montrent que nous sommes capables de mesurer les modes
Stokes et anti-Stokes de ± 18 GHz à ± 90 GHz dans un résonateur 3D. Il s’agit d’un
défi technique, car la faible différence de longueur d’onde entre le signal Brillouin et le
laser ne permet pas de filtrer en longueurs d’onde ni d’adapter les modes spatiaux des
deux champs avant le filtrage spatial.
Nous avons étudié différents paramètres contrôlant l’état de polarisation de la diffusion
Brillouin : la longueur d’onde du laser, l’ellipticité de la section transversale et l’état
de polarisation du laser incident. En complément des expériences de spectroscopie
Brillouin, nous avons effectué des simulations des différents états de polarisation qui
soutiennent les spectres expérimentaux. Les conditions idéales pour mesurer sans bruit
de fond les spectres de diffusion spontanée améliorée sans bruit de fond avec le meilleur
filtrage possible est une interdépendance entre l’ellipticité de la section transversale, la
longueur d’onde et l’état de polarisation du laser, ainsi que le couplage du mode de
Brillouin les modes de la cavité optique.
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Motivation

Nanophononics refers to the study and manipulation of acoustic phonons at the nanoscale
[1–4]. The objective of this thesis is to control phonons at the nanoscale by engineering
novel GaAs/AlAs heterostructures and to develop new Brillouin spectroscopy schemes
to study the confined acoustic phonons at ultrahigh frequencies.
The engineering of acoustic waves at the nanoscale is based on the design of structures
to control the propagation of phonons. Acoustic waves can be controlled in a very broad
frequency range; from Hertz to terahertz using similar engineering principles. For in-
stance, mechanical waves in the infrasound have low frequencies (up to a few Hz) and
are associated to long wavelengths in the order of hundreds of meters. At this scale, the
study of acoustic waves can provide information about what happens in the ocean, such
as whale vocalizations or seismic events [5]. It also allows the identification of earth-
quake sources [6]. The human audible domain covers the frequency range from 20 Hz
to 20 kHz, with wavelengths of a few meters. In this domain, noise has become an issue
affecting human health. To address that problem, metamaterials have been developed to
control the propagation of sound for architectural noise mitigation [7]. In addition, there
is a variety of musical instruments with various sound generation processes. For exam-
ple, castanets produce sound when the two shells forming the instrument are clapped
together [8], while the sound generated by trombones is due to the interaction between
the vibrating lips of the musician and the airflow in the instrument [9]. The study of
audible sound can also benefit the exploration of the evolution of language in a small
community of individuals in social sciences [10]. Acoustic waves with frequencies above
the audible domain range and up to a few hundreds of MHz are known as ultrasound.
There is a large scope of applications in the ultrasound domain, from medical sensing
[11] to sound navigation ranging (SONAR) [12]. It also includes acoustic tweezers which
can be applied to trap particles sensitive to the electromagnetic field [13]. Above a few
hundreds of MHz, the mechanical vibrations are known as hypersound and can be used
for sensing applications and nano-electro-mechanical systems (NEMS) [14, 15]. At this
order of magnitude, the typical size of the devices is of a few tens to few hundred of
micrometers. Finally, the control of mechanical vibrations in the GHz to THz range
corresponds to the branch of nanophononics [1, 2, 4, 16, 17].

Acoustic phonons were considered as a main source of decoherence in solid-state systems
and as a main heat carrier. The reduction of decoherence effects and the development of
novel thermal management strategies are classical applications of acoustic phonon engi-
neering at the nanoscale [18–20]. More recently, the fine control achieved over acoustic
phonon dynamics enabled the engineering of interactions with other excitations: photons
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Motivation

[21–23], electrons [24], magnons [25], polaritons [26] or plasmons [27]. For this purpose,
a large variety of devices were developed to control the propagation and confinement of
phonons at high frequencies at the nanoscale, such as: nanodisks [28, 29], micropillars
[30, 31], nanotrumpets [21, 32], one-dimensional phononic crystal [33, 34], and drums
[35, 36].
Acoustic phonons at GHz−THz frequencies have a low occupation number at standard
cryogenic temperatures enabling applications in the quantum regime [37–40]. Finally,
the short wavelengths (of a few nanometers to few hundreds of nanometers) and the long
mean free paths unlock new potential nanoscopies, and a simulation platform where large
systems can be simulated (near-free electron approximation and tight-binding model)
[41, 42]. Furthermore, the properties of solid-state systems affected by the position of
the atoms can be modulated by high-frequency phonons in the device.
The fabrication process of GaAs/AlAs-based heterostructures by molecular beam epi-
taxy allows to control the layer thickness at the atomic scale. By carefully adjusting
the layer thickness, it is possible to design structures with control of the acoustic field
at ultrahigh frequencies with acoustic devices designed in the THz range [43], con-
trary to top-down fabrication techniques. GaAs/AlAs-based multilayered devices are
thus of interest to control the confinement of ultrahigh-frequency acoustic phonons [44,
45]. Multilayered devices can be engineered to fabricate acoustic mirrors, Fabry-Perot
cavities, filters, or acoustic potentials [41, 46, 47]. In the GHz range, the acoustic wave-
length is in the order of a few tens to few hundred of nanometers which are comparable
to optical wavelength in the near infrared (NIR) and infrared (IR) in semiconductors.
GaAs/AlAs-based superlattices can then be designed to simultaneously control the con-
finement of photons in the near-infrared and phonons at a few tens of GHz, resulting in
colocalized acoustic and optical fields which greatly enhances the interactions between
both fields [48, 49]. At higher frequencies, the acoustic wavelength is in the order of a few
nanometers. Semiconductor multilayered devices can be etched in micropillars leading
to the three-dimensional confinement of light and sound [31], altering the acoustic and
optical dispersion relations and density of states. The remarkable colocalization of light
and sound can be used to design optophononic resonators working in the near-infrared
at a few tens of GHz [50, 51]. These devices can also be integrated with quantum dots
or quantum wells where phonons can be used as actuators for quantum emitters [52].
Topological acoustics was developed in recent years to mimic the topological behavior
already studied in optics or electronics [53]. Structures demonstrating topological be-
havior have been engineered from the audible range to acoustic frequencies of a few
hundred of GHz [31, 54, 55]. The robustness that topological devices show when they
undergo local perturbations or fabrication defects [56] is desirable to investigate low-
loss information transmission and phonon transport [57]. The application of topological
principles to engineer the interactions with other excitations remains an open challenge
in nanophononics.
Contrary to macroscopic acoustics, the absence of standard commercial transducers in
the GHz to THz frequency range incites to develop optical techniques to experimentally
access the acoustic modes. In the temporal domain, the development of picosecond
acoustics permits the study of coherent acoustic phonons [58]. Whereas in the spectral
domain, Brillouin and Raman scattering spectroscopies permit the study of incoherent
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Motivation

phonons important for general characterization and thermal management [59]. Brillouin
scattering spectroscopy is a versatile and non-destructive technique used to probe the
presence of acoustic modes. Over recent years, there have been important developments
for Brillouin spectroscopy in a large variety of fields, such as: biology [60–62], acoustic
metamaterials [59] or plasmonics [63]. Brillouin spectroscopy techniques were previ-
ously developed to explore confined acoustic modes in Fabry-Perot resonators at high
frequency of a few hundreds of GHz [31, 64]. Despite promising results, these techniques
restrict the access to lower frequencies in the few tens of GHz range in 3D optophononic
Fabry-Perot cavities [50]. The confined acoustic modes in optophononic Fabry-Perot
micropillar cavities were only evidenced using pump-probe experimental schemes [48,
65].
Standard Brillouin and Raman spectroscopy techniques [66–69] are optimized for fixed
optical wavelengths, and therefore they are not adapted to optophononic cavities with
tunable optical modes in a wide wavelength range and acoustic modes in a large fre-
quency range. Further progress of the nanophononic field requires the development of
experimental schemes to study 3D microresonators with frequencies in the tens of GHz
range.

In this thesis we address current theoretical and experimental challenges in nanophonon-
ics. The first research line is the engineering of multilayered structures based on topology
concepts to control the confinement of high-frequency acoustic phonons. We theoreti-
cally study the confinement of phonons in topological devices, mimicking the topological
behavior already studied in macroscopic acoustics, optics or electronics [53].
The second research line consists of developing optical schemes to measure confined
acoustic modes in multilayered microstructures. More specifically, it concerns advances
of spontaneous Brillouin scattering experiments to access acoustic modes at ∼18 GHz
in both planar and micropillar cavities.
The manuscript presents five chapters which range from theoretical concepts used in
this thesis, to simulations and experimental results obtained during the thesis.

Chapter 1 addresses the fundamental concepts for phonon engineering in layered sys-
tems. We introduce one-dimensional superlattices, acoustic distributed Bragg reflectors
and acoustic Fabry-Perot resonators working at high-frequency range. Finally, we ad-
dress the colocalization of the optical and acoustic fields in multilayer systems made
from GaAs and AlAs semiconductors.

In Chapter 2, we present optical characterization techniques to probe acoustic modes.
In particular, we describe the process of Brillouin inelastic light scattering. We cover
the different selection rules of Brillouin scattering which are of paramount importance.
Then, we discuss the relaxation of some of these selection rules by engineering optical
cavities. We also present the photoelastic model which we use for our calculations of
Brillouin scattering spectra. In addition, we briefly introduce two other experimental
techniques which are widely used to probe acoustic modes: the coherent generation
and detection of phonons with pump-probe spectroscopy and noise measurement with
Brownian motion experiments.
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Chapter 3 focuses on the engineering of acoustic superlattices to generate acoustic con-
fined states by band inversion. We address the relation between the topological proper-
ties of a superlattice and the symmetry of its modes. A variety of designs of topological
interface states between two acoustic distributed Bragg reflectors are presented and an-
alyzed. Moreover, we also use the colocalization of light and sound discussed in Chapter
1 to create optophononic topological resonators.

In Chapter 4, we present a Brillouin spectroscopy scheme to measure acoustic modes
on planar optophononic GaAs/AlAs-based multilayered cavities at a few tens to a few
hundreds of GHz. We exploit the optical dispersion relation of the Fabry-Perot cavity
to spatially discriminate the signal from the reflected laser. We optimize the technique
to measure confined acoustic modes at a frequency of a few tens of gigahertz.

In Chapter 5, we discuss an experimental Brillouin spectroscopy scheme based on po-
larization filtering to measure confined acoustic modes on optophononic micropillars.
We introduce micropillars with an elliptical cross section to independently control the
polarization of the reflected laser and of the Brillouin scattering signal. We theoretically
and experimentally study the behavior of the Brillouin scattering signal as functions of
different external parameters such as wavelength, micropillar ellipticity or incident po-
larization.

Finally, we end the manuscript with a general conclusion which summarizes the results
obtained in this thesis and presents the perspectives of this work.
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Chapter 1

Fundamentals of phonon engineering

The engineering of phonons at the nanoscale, i.e., nanophononics [1, 2, 4], is based on the
design of nanostructures to control the propagation of phonons. In recent years, there
have been important developments involving the control of acoustic phonons, such as:
phonon lasing [26, 70], sensing [14], data storage [71, 72], heat control [17, 73], Brillouin
laser [74], reaching the mechanical quantum ground state [75, 76].
Due to the similar wave behavior of light and sound, the concepts developed in optics
for photonic crystals [77] were transposed to design phononic crystals. In the case of
acoustic phonons, the acoustic dispersion relation can be altered by the modulation of
acoustic impedances of the materials forming the structure. This leads to the creation
of a variety of phononic crystals in one dimension [41, 70, 78, 79], two dimensions [73,
80, 81] and three dimensions [82].
In this work, we focus on one-dimensional superlattices. Multilayered systems are used
to manipulate the propagation of acoustic nanowaves [41, 75, 83]. These devices work in
the high-frequency range from a few GHz to a few THz. They can be grown by molecular
beam epitaxy (MBE) with precise control of the layer thicknesses at the atomic scale,
leading to flat interfaces. At high acoustic frequencies, in the tens to hundreds of GHz
range, the system presents layer thicknesses in the range of a few nm to tens of nm.
In this chapter, we introduce GaAs/AlAs nanometric superlattices as phononic crystals
in one-dimension. In section 1.1, we present the phononic band structure, and show the
main elastic and optical properties used to engineer the optophononic resonators. In
section 1.2, we introduce the building blocks to control the propagation of phonons in
phononic crystals. Section 1.3 is devoted to presenting the acoustic Fabry-Perot cavity,
as the nanoacoustic counterparts of the optical ones. Finally, in section 1.4, we discuss
the coincidence in the optical and acoustic properties of GaAs and AlAs leading to
simultaneous confinement of light and sound in one-dimensional heterostructures.

1.1 Phonon band structure

The devices studied in this thesis are formed by alternated layers of two different mate-
rials with contrasting acoustic and optical properties. GaAs and AlAs semiconductors
have well-known optical, electronic and mechanical properties and are widely used in the
optoelectronic industry. In addition, GaAs and AlAs present a small lattice mismatch.
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1.1. Phonon band structure

Therefore, semiconductor samples with high quality can be readily fabricated with epi-
taxy techniques, making them relevant materials for one-dimensional nanophononic crys-
tals. The optical and mechanical properties of GaAs and AlAs are displayed in table
1.1. The sound velocities are given for longitudinal acoustic phonons propagating in the
(001) direction of the crystal.
Both semiconductors, GaAs and AlAs, have a zinc-blende crystal lattice which contains
two atoms per unit cell, resulting in similar acoustic dispersion relations [84]. The dis-
persion relation of GaAs is represented in panel a of Fig.1.1. There are six branches
which can be separated in two groups. The three branches at lower energy, correspond-
ing to acoustic phonons, have an approximately linear dispersion relation crossing zero
at the Γ point. For acoustic phonons, two neighbouring atoms move in the same direc-
tion, as shown in panel c of Fig.1.1, while the three upper branches correspond to optical
phonons. In that case, there is a π phase shift between the motion of two consecutive
atoms. Thus, they oscillate with opposite directions (panel b of Fig.1.1).
Both type of phonons can be classified into longitudinal or transverse phonons depending
on the orientation of their wavevector q⃗. When the wavevector is perpendicular to the
direction of propagation they are known as transverse phonons. On the contrary, when
the wavevector is parallel to the direction of propagation they are called longitudinal
phonons.
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Figure 1.1: a Phononic band structure of GaAs. The dotted lines are experimental data points and the
continuous lines are simulations. The three lower branches correspond to acoustic phonons while the
three upper bands are optical phonons. The figure is reproduced from reference [84]. b and c represent
the motion of atoms for transverse optical and acoustic phonons, respectively.

Material Density (g.cm−3) LA Sound velocity (m.s−1) Refractive index
GaAs 5.35 4780 3.54
AlAs 3.77 5660 2.96

Table 1.1: Optical and mechanical properties of GaAs and AlAs [85–87]. LA stands for longitudinal
acoustic.
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Chapter 1. Fundamentals of phonon engineering

1.2 One-dimensional phononic crystal

1.2.1 Acoustic superlattices

We consider an infinite structure composed of alternating layers of GaAs and AlAs
(designated by the indices A and B), with thicknesses dA and dB. The unit cell of the
superlattice is formed by a layer of each material, as represented in Fig.1.2, and has
an associated thickness defined as a = dA + dB. The stacking of two materials into
a superlattice causes the folding of the acoustic dispersion relation into the reduced
Brillouin zone, which is defined by the new periodicity a [44, 88]. The growth direction
is aligned along the (001) direction of the crystal, which corresponds to the z axis. The
one-dimensional acoustic wave propagating along the z direction can be described with
the mechanical wave equation:

∂

∂t

(
ρ(z)

∂u(z, t)

∂t

)
=

∂

∂z

(
C(z)

∂u(z, t)

∂z

)
, (1.1)

where u(z, t) is the displacement, ρ(z) and C(z) are the mass density and the stiffness
constant along the (001) crystal direction, respectively.
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Figure 1.2: Schematic of a superlattice. The dark (light) grey represents material A (B). The red box
identifies the unit cell. The acoustic wave propagates along the z direction.

If we consider concatenated layers made of materials A and B with homogeneous
properties (ρ(z) and C(z)) in each layer, the equation 1.1 in each layer can be rewritten
as:

ρj
∂2uj(z, t)

∂t2
= Cj

∂2uj(z, t)

∂z2
, (1.2)

where the index j indicates the considered layer, either A or B. In order to solve the
wave equation, we need to consider the boundary conditions between two consecutive
layers, related to the continuity of the displacement and stress at the interface between
the layers, zint. The conditions are:

uA(zint) = uB(zint) (1.3)

and

CA
∂uA(zint, t)

∂z
= CB

∂uB(zint, t)

∂z
. (1.4)
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1.2. One-dimensional phononic crystal

The solutions for an acoustic wave with wavevector q⃗ propagating in the z direction and
obeying the selection rules are of the form:

uj(z, t) = Dje
iqjz + Eje

−iqjz, (1.5)

where Dj and Ej are constant coefficients. Taking into account the boundary conditions
and using the Bloch theorem, we can determine the dispersion relation of phonons which
links the wavevector q and the acoustic frequency ω [89]:

cos(qa) = cos

(
ω

(
dA
vA

+
dB
vB

))
− ϵ2

2
sin

(
ω
dA
vA

)
sin

(
ω
dB
vB

)
, (1.6)

with

ϵ =
(ρBvB − ρAvA)

2

ρBvBρAvA
. (1.7)

ϵ describes the acoustic modulation in the superlattice due to the change in acoustic
impedance in the two materials, with ρA (ρB) and vA (vB) the mass density and the
speed of sound for longitudinal acoustic phonons in material A (material B) respectively.
In the case of III-V materials like GaAs and AlAs, the term ϵ2/2 is small (in the order
of 10−2). Therefore, the second term can be neglected in a first order approximation.
This gives [89]:

cos(qa) = cos

(
ω

(
dA
vA

+
dB
vB

))
. (1.8)

We can also write:

qa = ±ω1
v
+ 2pπ, p ∈ Z (1.9)

where

v =
vAvB

(1− β)vB + βvA
with β = dB/a. (1.10)

Equation 1.9 corresponds to the folding of a linear dispersion line into the first Brillouin
zone. The dispersion relation reaches the zone center and zone edge of the Brillouin
zone at the energy Ω defined by:

Ω =
mπv

a
, m ∈ N. (1.11)

m refers to the number of times the acoustic dispersion relation crosses the zone edge or
zone center of the Brillouin zone. Even (odd) numbers refer to the zone center (edge)
of the Brillouin zone. In a second approximation, we can consider ω = Ω +∆Ω, where
Ω designates the central frequency of the bandgap and ∆Ω designates the amplitude of
the bandgap opening. The second term in equation 1.6 is responsible for the opening
and closing of the bandgap. The amplitude of the bandgap is given by [86, 89]:

∆Ω = ±ϵv
a
sin

(
mπ

2

(1− β)vB − βvA
(1− β)vB + βvA

)
= ±ϵv

a
sin (mπδ) , (1.12)
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Chapter 1. Fundamentals of phonon engineering

where δ = dB/a is the ratio of material B in the unit cell. Note that both the opening
and the central frequency of the bandgap depend on the unit cell thickness a. Therefore,
when the thickness of the unit cell increases, the bandgap amplitude expands and the
central frequency reduces. In addition to the thickness of a, the bandgap amplitude also
depends on the relative ratio of both materials in the unit cell δ. This effect will be
discussed later on, in Chapter 3. Figure 1.3 displays the acoustic dispersion relation of
acoustic phonons in an infinite GaAs/AlAs superlattice. The structure is designed to
have the first bandgap centered around f0 = 18.6 GHz, i.e. Ω1 = 2πf0. We define the
layer thicknesses as a quarter of the wavelength λ of the acoustic wave of frequency f0
propagating with a velocity vA/B for both GaAs and AlAs (λ/4, λ/4). In the case of
GaAs, we obtain dGaAs = λGaAs/4 = f0/(vGaAs × 4) = 63.61 nm. For AlAs, this gives
dAlAs = λAlAs/4 = f0/(vAlAs×4) = 75.95 nm. The speeds of sound in GaAs and in AlAs
are given in Table 1.1. We observe that the mode at the zone center of the Brillouin
zone is closed, whereas the bandgaps at the edge of the Brillouin zone are open. For
this design of the unit cell, the amplitude of the zone edge bandgaps is maximized. For
the opened bandgaps, the dispersion relation flattens at the edge of the Brillouin zone,
and the modes surrounding the bandgap have a group velocity dω/dq = 0. Note that
the (λ/4, λ/4) design is the one commonly used in photonics.
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Figure 1.3: Dispersion relation of longitudinal acoustic phonons for an infinite superlattice made of
GaAs/AlAs layers with thicknesses (λ/4, λ/4) designed at a frequency f0 ≈ 18.6 GHz. The dashed
lines indicate the central frequency of each bandgap. The numbers designate the bandgap. ZE and ZC
indicate the zone edge and zone center of the Brillouin zone, respectively. The second bandgap, located
at the zone center, is closed, whereas the bandgaps at the zone edge are open.

1.2.2 Acoustic distributed Bragg reflectors

Acoustic distributed Bragg reflectors (DBRs) are the finite version of infinite acoustic
superlattices. Contrary to the latter, acoustic DBRs can be experimentally studied.
In this section, we consider an acoustic DBR embedded in bulk GaAs medium, as
represented in the schematic of Fig.1.4.
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1.2. One-dimensional phononic crystal
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Figure 1.4: Schematic of a distributed Bragg reflector. The layer of AlAs and GaAs are embedded in
a GaAs substrate.

We consider a longitudinal acoustic wave propagating in the z direction. Due to dif-
ferent acoustic impedances Z between GaAs and AlAs, the acoustic wave is separated
in two fields composed of a reflected and a transmitted part at each interface between
two consecutive layers. The different reflected fields add up in constructive or destruc-
tive waves, likewise for the transmitted fields. We simulate the acoustic properties of
the distributed Bragg reflector using the transfer matrix formalism in one dimension
to solve the 1D wave equation and boundary conditions [86]. Figure 1.5a displays the
acoustic reflectivity spectrum calculated for a DBR composed of 24 pairs of GaAs/AlAs
layers with thicknesses (λ/4, λ/4), designed for a frequency f0 = 18.6 GHz. The DBR
presented here is the finite counterpart of the superlattice whose band diagram is rep-
resented in Fig.1.3. The spectrum shows high reflectivity regions at the positions of
the open bandgaps, centered around 18.6 GHz and 55.8 GHz. The bandwidth of the
high reflectivity region is equal to the bandwidth of the bandgap and is ≈ 2.4 GHz.
The high reflectivity regions are due to constructive interferences in the reflected field.
The maximum of reflectivity depends on the ratio between the acoustic impedances
Z = ZAlAs/ZGaAs and on the number of periods constituting the DBR. The reflectivity
increases with the number of periods.
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Figure 1.5: Calculated acoustic reflectivity for a (λ/4, λ/4) GaAs/AlAs DBR formed by a 24 periods
and b 8 periods, embedded in GaAs substrate.
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Chapter 1. Fundamentals of phonon engineering

As a comparison to the previous DBR, we simulated the acoustic reflectivity spec-
trum for a DBR formed by only 8 periods designed at the same frequency f0, and display
the result in panel b of Fig.1.5. Similarly to panel a of Fig.1.5, we observe high reflectiv-
ity regions at the positions of the bandgaps with a maximum of reflectivity in the center
of the bandgaps. In the case displayed here, due to the reduced number of layers, the
maximum of reflectivity does not reach 1. Whereas for a higher number of periods, the
DBR becomes an almost perfect mirror at the bandgap frequency range. The number
of oscillations surrounding the high reflectivity regions, called Bragg oscillations, also
depend on the number of periods.

1.3 Phononic Fabry-Perot cavity

By introducing a defect, e.g., an extra layer with a different thickness, between two
distributed Bragg reflectors, a confined acoustic mode appears in the bandgap zone.
Here, we concatenate two DBRs with a GaAs spacer layer in between to form an acoustic
Fabry-Perot resonator [46, 90, 91]. The spacer thickness between the two mirrors verifies
[85]:

dspacer = p
f0

2vGaAs

, p ∈ N, (1.13)

where vGaAs is the speed of sound in GaAs and f0 is the acoustic frequency at which the
DBRs are designed. In that case, the confined acoustic mode is pinned at the center of
the bandgap. Inside the spacer, the acoustic field at the frequency f0 forms a standing
wave.
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Figure 1.6: Schematic of a Fabry-Perot cavity embedded in a GaAs medium. The spacer identified in
orange is made of GaAs.

Figure 1.7 displays reflectivity spectra for two Fabry-perot resonators made from the
DBRs whose reflectivities are shown in Fig.1.5. Panels a and b of Fig.1.7 show calculated
acoustic reflectivity spectra for two Fabry-Perot resonators formed by two DBRs of 24
and 8 (λ/4, λ/4) GaAs/AlAs periods embedding a λ/2 GaAs spacer (p = 1), respectively.
The confined acoustic mode appears as a dip in the center of the high-reflectivity region.
The amplitude of the acoustic displacement |u(z)|2 of the confined mode is represented
in panels a and b of Fig.1.8 for both designs of Fabry-Perot resonators. The field is
calculated by considering an incident wave propagating from the substrate. It is then
normalized by the amplitude of the acoustic displacement in the substrate to account
for the thermal bath. The complete multilayer structure is represented on top of the
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1.3. Phononic Fabry-Perot cavity

spatial profile. For the two structures, the acoustic displacement presents a maximum
amplitude in the spacer layer, with a minimum of displacement at the center of the
spacer. The envelope of the acoustic displacement field exponentially decays inside the
DBRs. We observe that the enhancement of the field inside the structure is different for
both Fabry-Perot resonators.
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Figure 1.7: Calculated acoustic reflectivity of a Fabry-Perot cavity made of two (λ4, λ4) GaAs/AlAs
DBRs with a 24, b 8 periods and a λ/2 GaAs spacer.

The enhancement of the field inside the structure is scaled with the mechanical qual-
ity factor Qm. The mechanical quality factor quantifies the field confinement strength.
It can be obtained from the reflectivity spectrum: Qm = f0/Γ, where Γ is the full
width at half maximum of the Lorentzian acoustic mode. The linewidth of the mode
is linked to the energy lost per cycle of oscillation of the field inside the cavity. The
mechanical quality factor of the first Fabry-Perot resonator (24 periods in each DBR)
is Qm = 24063, whereas Qm = 73 in the case of 8 periods in each DBR. On panels
a and b of Fig.1.7, the difference in linewidth of the acoustic mode between the two
designs is clearly visible: the mode for the Fabry-Perot with the lowest number of layers
is broader.
The quality factor directly depends on the number of periods in each DBR. Therefore,
when the number of layers in each DBR is increased, the confinement strength increases,
thus the mechanical quality factor increases.

24



Chapter 1. Fundamentals of phonon engineering

0 2000 4000 6000

Position (nm)

0

1000

2000

3000

4000

5000

A
co

us
tic

 d
is

pl
ac

em
en

t |
u(

z)
|2

0
0

5

10

15

a b
20

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

0 1000 2000

Figure 1.8: Calculated acoustic displacement of the confined acoustic mode. The Fabry-Perot cavity is
made of two (λ/4, λ/4) GaAs/AlAs DBRs with a 24, b 8 periods and a λ/2 GaAs spacer. The complete
structure is plotted on top of the acoustic displacement.

1.4 Simultaneous confinement of light and sound

1.4.1 One-dimensional colocalization

In multilayered structures, the behavior of the optical field is similar to the one of
the acoustic field, since both respond to 1D wave equations [48, 92]. The acoustic wave
propagation at the interface between two materials is governed by the difference in speed
of sound and acoustic impedances. Likewise, the behavior of the electromagnetic wave at
the interface is constrained by the different speed of light and optical indices of refraction
in the two materials. GaAs and AlAs materials present two "magic" coincidences in their
properties: the ratio of speeds of sound and speeds of light in the materials are equal,
as well as the ratio of the optical and acoustic impedances [48, 49].

nGaAs

nAlAs

≈ ZGaAs

ZAlAs

= 1.2, (1.14)

cGaAs

cAlAs

≈ vGaAs

vAlAs

= 0.84, (1.15)

where ZGaAs = ρGaAsvGaAs (ZAlAs = ρAlAsvAlAs) is the acoustic impedance in GaAs
(AlAs), nGaAs (nAlAs) is the optical index of GaAs (AlAs), cGaAs and vGaAs are the
speeds of light and sound in GaAs and cAlAs and vAlAs are the speeds of light and sound
in AlAs. Thus, an acoustic Fabry-Perot resonator designed to have a confined mode
fac
0 at tens of GHz will also confine an optical mode in the near-infrared range at a

frequency f opt
0 [48].

In an acoustic multilayered structure, we can define the thickness dA of the layer A as
a function of a given acoustic frequency fac

0 and the speed of sound in the material
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1.4. Simultaneous confinement of light and sound

vA. Likewise, the thickness of the layer can be expressed as a function of the optical
frequency f opt

0 and the speed of light in the matrial cA. Thus, we define the thickness
of the material A as [92, 93]:

dA = αAλ
ac
A = αA

vA
fac
0

and

dA = βAλ
opt
A = βA

cA

f opt
0

,
(1.16)

where αA and βA are coefficients. We consider the particular optical frequency f opt
0 =

fac
0

cA
vA

. In the material A, we obtain that

λacA = λoptA . (1.17)

If we consider the same frequencies in material B, we have:

λacB =
vB
fac
0

and (1.18a)

λoptB =
cB

f opt
0

. (1.18b)

By replacing f opt
0 in equation 1.18b, the optical wavelength in the material B becomes:

λoptB = λacA
cB
cA

= λacB

(
vA
vB

cB
cA

)
. (1.19)

For the particular case of GaAs and AlAs, equation 1.15 is verified. As a consequence,
equation 1.19 simplifies into:

λoptB = λacB . (1.20)

From the results obtained in equations 1.17 and 1.20, we conclude that a (λ/4, λ/4)
GaAs/AlAs acoustic Fabry-Perot resonator with a λ/2 spacer designed to confine acous-
tic phonons at a frequency fac

0 also confines photons at the same wavelength and at a
frequency f opt

0 .
Note that these coincidences are not present in every set of materials. For example, it
does not exist for Si and Ge. However, similar coincidences in the material properties
can also be found for SiO2/TiO2 or InP/Ga0.53In0.47 [51].
We consider the design for the acoustic Fabry-Perot resonator defined in section 1.3.
The confined acoustic mode is at fac

0 ≈ 18.6 GHz. This corresponds to a near-infrared
confined optical mode at f opt

0 ≈ 333 THz (with a wavelength ≈ 900 nm). Panels a and
b of Fig.1.9 display the confined optical mode at 900 nm for two Fabry-Perot cavities
with 24 and 8 (λ/4, λ/4) GaAs/AlAs periods, respectively.
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Figure 1.9: Calculated optical reflectivity of a Fabry-Perot cavity made of two (λ/4, λ/4) GaAs/AlAs
DBRs with a 24, b 8 periods and a λ/2 GaAs spacer. The designs of the structures are the same as in
previous section.

The optical quality factor depends on the ratio between the optical indices of re-
fraction and on the number of periods constituting the DBRs, analogous to the acous-
tic counterpart. Moreover, thanks to the relation between the optical and acoustic
impedances expressed in equation 1.14, the optical and acoustic reflectivity contrasts
are identical. As a result, the optical and acoustic quality factors for a Fabry-Perot
cavity embedded in GaAs are equal.
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Figure 1.10: Calculated optical field of the confined optical mode. The Fabry-Perot cavity is made
of two (λ/4, λ/4) GaAs/AlAs DBRs with a 24, b 8 periods and a λ/2 GaAs spacer. The complete
structure is plotted on top of the intensity profile.

Panels a and b of Fig.1.10 plot the intensity of the electromagnetic field |E(z)|2 of
the confined optical mode at f opt

0 for the same two Fabry-Perot resonators presented
before. The optical field overlaps perfectly with the acoustic displacement field. That
is, the enhancement of the optical field is maximal in the spacer, with a minimum at
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the center of the spacer layer, and decays in the DBRs. Moreover, the maximum field
intensity in the spacer is equal for both the optical and acoustic fields.
Note that differences arise when the system is in experimental conditions, i.e., when
one side of the structure is in contact with air or vacuum. The air or vacuum acts
as a perfect mirror for acoustic waves. To compensate for the change in boundary
conditions on both sides of the optical Fabry-Perot resonator, the number of periods in
the DBRs is unbalanced. The DBR in contact with the air (or vacuum) contains less
pairs to account for the difference in optical reflectivity. Despite the asymmetry of the
Fabry-Perot cavity, there is still colocalization of the optical and acoustic fields in the
structure.

1.5 Conclusions
In this chapter, we introduced the concepts which permit the control of the propagation
of acoustic waves in the GHz range in multilayered systems. First, we introduced the
acoustic band diagram of superlattices. We showed that we can engineer the bandgap in
superlattices to fabricate acoustic distributed Bragg reflectors and Fabry-Perot cavities
to work at a given frequency. Moreover, we have seen that due to a coincidence by
nature in GaAs/AlAs, we can simultaneously confine light and sound in Fabry-Perot
resonators at a wavelength around 900 nm and an acoustic frequency around 18 GHz.
These concepts are the foundation of the acoustic resonators which we will present in
Chapter 3. In Chapter 5, we present Brillouin spectroscopy measurements on micropil-
lars fabricated from optophononic Fabry-Perot resonators described in this chapter.
The multilayered devices discussed in this thesis have typical resonant acoustic frequen-
cies at ∼18 GHz. These devices simultaneously present an optical mode at 900 nm with
optical quality factor ranging from 2300 to 11000. We study an acoustic resonator with
layer thickness of few nanometers confining phonons at 300 GHz.
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Chapter 2

Optical measurement of acoustic
phonons

Contrary to what happens in audible acoustics, in the GHz to THz range there are no
standard and commercial acoustic transducers that would permit the generation and
detection of acoustic waves. We mainly rely on optical schemes for the excitation and
detection of phonons. Several techniques enable the study of acoustic waves either in
the spectral domain or in the time domain. In this chapter, we present spectroscopy
techniques to evidence the presence of phonons. We introduce the mechanisms involved
in inelastic Brillouin scattering. We describe the process with a microscopic approach
associated to the interaction between different systems, and a macroscopic approach
related to the photoelastic effect. Then, we discuss the resulting geometric and polar-
ization selection rules, and we show that by introducing an optical cavity the scattered
signal can be modified. Finally, we introduce two other techniques to measure acoustic
vibrations. In the time domain, we present the coherent generation and detection of
acoustic phonons in a pump-probe scheme. In the spectral domain, we discuss noise
measurements or Brownian motion characterization, which are standard in cavity op-
tomechanics.

2.1 Brillouin/Raman scattering
When light propagates through a medium it can either be transmitted, reflected or
absorbed. However, a small fraction of the light is scattered by the inhomogeneities in
the material. Atomic displacement due to phonons propagating in the medium is also
a source of scattering of the light [84, 94]. On one hand, the light can be elastically
scattered (without change in frequency) in what is called Rayleigh scattering. On the
other hand, the light can be inelastically scattered with a gain or loss of energy in
Brillouin/Raman Stokes or anti-Stokes scattering processes. The difference between
Brillouin and Raman scattering is discussed in section 2.1.1.
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2.1. Brillouin/Raman scattering

2.1.1 Brillouin scattering by acoustic phonons

Brillouin scattering is the inelastic scattering of light due to acoustic phonons, while
Raman scattering is the inelastic scattering of light due to optical phonons. The main
differences between Brillouin and Raman scattering processes come from the distinc-
tion between the dispersion relations of the acoustic and optical phonons, and on the
frequency range associated to each of them. The dispersion relation of optical phonons
is rather flat (see Fig.1.1a), and their energies do not change much with the wavevec-
tor. The Raman scattering spectrum presents a large spectral shift in the tens of THz
range leading to specific experimental tools. On the other hand, the acoustic phonon
dispersion is linear with the acoustic wavevector q [84]:

ωac = vacq, (2.1)

where ωac and vac are the acoustic angular frequency and the velocity of sound in the
medium. Typically, a Brillouin spectroscopy spectrum presents a short spectral shift
with phonon frequencies ≤ ∼12 GHz. In this thesis, we discuss Brillouin scattering
involving high-frequency acoustic phonons. Due to the particular frequency range, above
10 GHz and much lower than optical phonon frequencies, we will develop experimental
tools based on Raman spectrometer adapted to measure acoustic phonons.

Stokes anti-Stokes ωacωi

Rayleigh

Brillouin RamanBrillouinRaman

ωi + ωacωi − ωac

Figure 2.1: Schematic spectrum of the different scattered optical fields. ωi is the frequency of the
incident optical field and ωac is the acoustic frequency.

2.1.2 Microscopic description of the Brillouin scattering process

The microscopic description of spontaneous Brillouin scattering considers the different
steps and systems involved in the process. Three systems are concerned: the incident and
scattered photons, the absorbed or emitted phonons and the semiconductor electron-
hole pairs. Since the interactions in the scattering process are weak, we can use the
perturbation theory to obtain the scattering probability [85, 94]. Stokes (anti-Stokes)
scattering is a three steps process whhich can be described as follows:

1. The incident photon excites the electron of the semiconductor from an initial
state |i⟩ to an intermediate state |n⟩ and creates an electron-hole pair, an exciton
(grey arrows in Fig.2.2). This interaction is described by an electron-radiation
Hamiltonian Ĥe−R.

2. The exciton is scattered from the state |n⟩ to another state |n′⟩ due to the interac-
tion with a phonon. This interaction is dictated by the electron-phonon interaction
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Chapter 2. Optical measurement of acoustic phonons

Hamiltonian Ĥe−latt. In the case of Stokes scattering, the energy of the state |n′⟩
is lower than the energy of the state |n⟩, and conversely for anti-Stokes scattering
(black arrows in Fig.2.2).

3. The exciton recombines by emitting a scattered photon. Stokes (anti-Stokes) scat-
tered photon is represented by the red (blue) arrow in Fig.2.2, respectively. This
interaction is described by an electron-radiation Hamiltonian Ĥe−R.

Note that, during the process, the electron stays unchanged. The energy and wavevector
are preserved in the overall process. However, it is not the case for each step indepen-
dently.

E

Ephonon

Rayleigh
scattering

anti-Stokes
scattering

Stokes
scattering

kk

EE

ωac

anti-Stokes
scattering

Stokes
scattering

|i⟩

|n′⟩
|n⟩
|n′⟩

anti-Stokes
scattering

Stokes
scattering

kk

EE

|i⟩

|n′⟩

|n⟩

|i⟩
|n′⟩

|n⟩ ωac

Figure 2.2: Diagram of the Brillouin scattering processes. The grey arrows are the excitations path of
the photons.The black arrows are the absorption or emission of a phonon. The red and blue arrows are
the de-excitation paths of the photons in Stokes and anti-Stokes Brillouin scattering, respectively.

The three steps can be transferred into a scattering probability using the perturba-
tion theory. All the steps are virtual processes and do not involve real transitions. The
scattering probability is [84, 85]:

Ps(ωs) =
2π

ℏ

∣∣∣∣∣∑
n,n′

⟨i|Ĥe−R|n′⟩⟨n′|Ĥe−latt|n⟩⟨n|Ĥe−R|i⟩
[ℏωi − (En − Ei)][ℏωi − ℏωac − (En′ − Ei)]

∣∣∣∣∣
2

× δ(ℏωi − ℏωac − ℏωs)

(2.2)

Each successive interaction explained above is described by a term in the numerator.
The delta function represents the energy conservation. The denominator contains the
energy of the scattered and incident photons. The electron-radiation Hamiltonian Ĥe−R

is defined as [84]:

Ĥe−R =
e

mc
A⃗ · p⃗ (2.3)

where e, m and p⃗ are the charge, the mass and the momentum operator of the electron,
respectively. c is the speed of light and A⃗ is the vector potential of the electromagnetic
field.
The electron-phonon interaction can be assumed to be a deformation potential. The elec-
tron energy responds instantaneously to the lattice vibration. For longitudinal acoustic

31



2.1. Brillouin/Raman scattering

phonons with a small wavevector, the electron-phonon interaction Hamiltonian Ĥe−latt

can be expressed as:

Ĥe−latt,LA = ank

(
q⃗ · δR⃗

)
(2.4)

where ank is the volume deformation and q⃗ is the phonon wavevector. δR⃗ depends on
the phonon creation and annihilation operators. Stokes is considered to be a creation
process and anti-Stokes an annihilation process.

2.1.3 The photoelastic model

The inelastic scattering induced by acoustic phonons is mediated through the photoe-
lastic effect [84, 95, 96]. The propagation of an acoustic wave in the z direction in a
medium is described by the equation of motion:

ρ
∂2uz
∂t2

− C
∂2uz
∂z2

= 0 (2.5)

The acoustic wave causes the deformation of the medium which is expressed through
the strain tensor:

ηij =

(
∂ui
∂zj

+
∂uj
∂zi

)
(2.6)

The strain tensor is responsible for variations in the dielectric tensor:

∆(ϵ−1)ij =
∑
kl

pijklηkl , (2.7)

where pijkl is the photoelastic tensor. The photoelastic tensor is related to the electric
susceptibility of the material by:

p =
∂χ

∂η
. (2.8)

The strain is linked to the optical field through the refractive index of the medium. For
materials with cubic crystal structure such as GaAs and AlAs, we can write:

∆(ϵ)ij = −n4
∑
kl

pijklηkl (2.9)

If we consider an acoustic wave propagating along the growth direction z of a GaAs/AlAs
superlattice, the photoelastic tensor can be simplified to p(z) = −n4p1133(z). We can
write the polarization components at the source of Stokes and anti-Stokes scattering,
respectively [95]:

PS(z, t) = p(z)
∂u⋆(z)

∂z
Ei(z, t)

PaS(z, t) = p(z)
∂u(z)

∂z
Ei(z, t)

(2.10)
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The Brillouin cross-section is obtained by integrating the induced polarization com-
ponents. It corresponds to the probability to scatter photons due to the presence of
phonons in the medium [85, 89, 95]:

σ(ω) ∝
∣∣∣∣∫ Ei(z)p(z)

∂u(ω, z)

∂z
E⋆

s (z)dz

∣∣∣∣2 (2.11)

Equation 2.11 gives the intensity of the scattered Brillouin signal. It depends on the
overlap between the incident optical field, the scattered optical field, the strain induced
by the acoustic wave in the medium and the photoelastic constant in the material. Note
that in the case of a Fabry-Perot cavity simultanously confining photons and phonons
this cross-section is enhanced due to the overlap of both fields.

Polarization selection rules

The intensity of the scattered beam is dependent on the polarization of the incident and
scattered beams. If we define the polarization of the incident beam e⃗i, the intensity of
the scattered field depends on its polarization e⃗s and is proportional to [96]:

IS ∝ |e⃗s ·∆ϵ · e⃗i|2 . (2.12)

Thus, the Brillouin polarization selection rules depend on the dielectric tensor of the
material. By combining equations 2.8 and 2.9, we obtain that the dielectric tensor
depends on the electric susceptibility. Therefore, the polarization selection rules of Bril-
louin scattering are identical to those of Raman scattering. The polarization selection
rules of Raman scattering in GaAs and AlAs is described in Appendix A. For the case
of longitudinal acoustic phonons in an isotropic material, the polarization is preserved
for Brillouin scattering. That is the scattered light and the reflected laser have parallel
polarizations [84].

2.1.4 Scattering geometry selection rules

We consider an optical wave propagating in the z direction in a multilayered system.
The electric field can be described as a plane wave: E ∝ eikzz. At high acoustic fre-
quencies, the energy of phonons (∼0.1 meV) is small compared to the energy of photons
(∼1.34 eV). Therefore we can approximate |ki| ≈ |ks| for the incident and scattered
fields, which allows two scattering geometries, represented in Fig.2.3. Forward scatter-
ing corresponds to the scattered light propagating in the same direction as the incident
field, and backward scattering to both fields propagating in opposite directions.

Forward scattering

Backward scattering

Figure 2.3: Schematic of forward and backward scattering geometries. The grey and blue arrows figure
the incident laser and scattered field, respectively.
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2.2. Enhancement of the Brillouin scattering intensity

In forward scattering geometry, ki = ks, resulting in q ≈ 0. This gives the Brillouin
cross-section:

σ(ω) ∝
∣∣∣∣∫ p(z)

∂u(ω, z)

∂t
dz

∣∣∣∣2 (2.13)

In the case of backward scattering: ki = −ks, resulting in q ≈ 2ki. The Brillouin
cross-section is:

σ(ω) ∝
∣∣∣∣∫ e2ikzzp(z)

∂u(ω, z)

∂t
dz

∣∣∣∣2 (2.14)

2.2 Enhancement of the Brillouin scattering intensity
There are two different mechanisms which can enhance Brillouin scattering. Electronic
resonance, when the energy of the scattered signal or of the incident beam is resonant
with the electronic transition of the material; and optical enhancement, when the scat-
tered signal and/or the the incident beam is amplified by the optical density of states
[97]. In the adiabatic approximation, both enhancements can be treated separately since
the processes are independent [98].

2.2.1 Optical resonant Brillouin scattering

The enhancement of light in microcavities can enhance Brillouin scattering. In a planar
optical microcavity, the spacer thickness is dspacer = p λ0

2nspacer
, with p an integer number.

The wavenumber k⃗ of the optical mode in the cavity can be decomposed as k⃗ = k⃗z + k⃗//
where k⃗// is the in-plane component and k⃗z is the component normal to the surface, see
Fig.2.4. The optical dispersion relation of the cavity follows:

ω =
c

nspacer

√
k2z + k2// , (2.15)

where c is the speed of light in vacuum and nspacer is the refractive index of the spacer.
The k⃗z component complies with:

kz = p
π

nspacerdspacer
, (2.16)

where p is an integer number and dspacer is the thickness of the spacer. Therefore, the
resonance is achieved for a fixed kz. The dispersion relation only depends on k//:

ω(k//) =
c

nspacer

√(
p

π

nspacerdspacer

)2

+ k2// . (2.17)

Figure 2.4 shows the optical dispersion for a Fabry-Perot cavity with kz kept constant
and varying k//. When changing k//, and thus the incident angle, the overall optical
wavevector is modified, causing an increase in the resonant frequency.
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Figure 2.4: Dispersion relation of an optical cavity with a λ/2 spacer as a function of the in-plane
wavevector k⃗//. Schematic of the different components of k⃗ in a Fabry-Perot cavity.

2.2.2 Double optical resonance

The objective of the double optical resonance is to simultaneously enhance the inci-
dent and the scattered fields by taking advantage of the optical dispersion of the planar
cavity. In a planar optical microcavity, the incident and scattered fields can be de-
scribed by a standing wave inside the spacer, with their electric field written as [85]:
Ei/s = Ai/s

(
e2ikz,i/sz + e−2ikz,i/sz

)
, where Ai/s is the enhancement factor of the inten-

sity of the incident/scattered field at the center of the cavity, respectively. Thus, the
enhancement of the Brillouin scattering intensity is maximal when both the incident
and scattered beams are tuned in resonance with an optical cavity, in double opti-
cal resonance (DOR). Under double optical resonance both fields are almost equal:
Ei = Es = A

(
e2ikzz + e−2ikzz

)
[46]. Therefore, we can write:

EiE
⋆
s = |E(z)|2 = A2

(
2 + e2ikzz + e−2ikzz

)
(2.18)

The enhancement of the field inside the cavity is quantified by the optical Q-factor of
the cavity, giving A ∝ Q [99]. Consequently, by combining equations 2.11 and 2.18, we
obtain:

σ(ω) ∝ Q2 ×
∣∣∣∣∫ (2 + e2ikzz + e−2ikzz

)
p(z)

∂u(ω, z)

∂t
dz

∣∣∣∣2 . (2.19)

Equation 2.19 can be expressed as:

σ(ω) ∝
∣∣∣∣∫ |E(z)|2p(z)∂u(ω, z)

∂t
dz

∣∣∣∣2 . (2.20)

Let us consider the Stokes scattering component. In that case, ωS = ωi − ωac and
k⃗S = k⃗i− q⃗. According to equation 2.17, the energy of the resonant field depends on the
wavevector k//. Due to the energy difference between the scattered and incident photons,
both fields are resonant with the optical cavity at different k//. Figure 2.5a shows the
optical dispersion relation of a Fabry-Perot cavity. The red and blue points mark the
frequency of the incident and scattered beams separated by the acoustic frequency. Both
fields are resonant with distinct wavevectors. We suppose that the scattered signal is
resonant at normal incidence (i.e. k// = 0). To experimentally achieve the double optical
resonance condition, the angle of incidence of the incoming beam can be tuned so the
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2.2. Enhancement of the Brillouin scattering intensity

energies of the scattered and incident photons are resonant with the optical cavity [97,
99, 100]. In the simulations we achieve the DOR condition by considering that Ei ∼ Es.

k//

ω

−π/a 0 −π/a

θ
ωiωs

k//

kzωac

Figure 2.5: Dispersion relation of an optical cavity with a λ/2 spacer as a function of the in-plane
wavevector k⃗//. The incident (blue) and scattered (red) frequencies are marked on the dispersion
relation. Schematic of the double optical resonance geometry in the case of Stokes scattering.

The experimental configuration allowing to reach the double optical resonance con-
dition for Stokes scattering is shown in Fig.2.5b. The incident and scattered beams
have an angular shift which depends on the energy detuning. The incident beam, rep-
resented by the blue arrow, enters the sample with an angle of incidence θ compared
to the normal of the sample, while the scattered beam is collected at normal incidence.
Note that, due to the energy conservation, Stokes and anti-Stokes are resonant with the
optical cavity with nonidentical energies. Therefore, the conditions to achieve the dou-
ble optical resonance will differ in both cases. The detuning angle between the incident
and scattered frequencies is given by [100]:

θ = neff arccos (ωi/ωs), (2.21)

where neff is the effective optical index of refraction. The implementation of an ex-
perimental technique benefiting from the double optical resonance is presented in more
detail in Chapter 4.

2.2.3 Relaxation of backscattering selection rules

Considering a stationary electromagnetic field in a cavity, the cross-section of the optical
enhanced Brillouin scattering σ(ω) (equation 2.19) can be separated into two compo-
nents [98]:

σ(ω) ∝ σFS + σBS (2.22)

with

σFS = Q2 ×
∣∣∣∣∫ 2p(z)

∂u(ω, z)

∂t
dz

∣∣∣∣2 and

σBS = Q2 ×
∣∣∣∣∫ (e2ikzz + e−2ikzz

)
p(z)

∂u(ω, z)

∂t
dz

∣∣∣∣2 .
(2.23)
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The first term σFS is a constant field. σFS is related with acoustic phonons having an
acoustic wavevector q ≈ 0. This term corresponds to photons scattered in a forward
scattering configuration (ki = ks). The term σBS corresponds to a standing wave inside
the spacer. It is responsible for the photons scattered with q ≈ 2ki which are usually
observable in backscattering configuration. This term gives rise to two Brillouin peaks:
one corresponding to backscattering to the left and the other one corresponding to
backscattering to the right. In an optical cavity, the modes which should be active
in forward scattering are also detectable in backward scattering configuration and vice
versa. This can be explained by the fact that both waves are standing waves inside the
cavity. The excitation and scattered photons are bouncing back and forth in the cavity,
before tunnelling through the DBRs. As a result, both contributions can be observed
in any geometry.

2.3 Coherent generation and detection of acoustic phonons

The coherent generation and detection of acoustic phonons is based on a pump-probe
experimental technique. It is in contrast with Brillouin scattering spectroscopy, where
we study spontaneous emission or absorption of acoustic phonons. The pump-probe
spectroscopy technique is a time dependent technique which allows to reconstruct the
phonon dynamics over time [101].

sample

delay line

probe
pump

PD lens

Figure 2.6: Schematic of a pump-probe experiment. The pump (blue) generates phonons in the system.
The probe (red) is delayed in time and measures the change of reflectivity as a function of time. The
signal is analyzed with a photodiode.

The principle of a pump-probe experiment is the following. A laser emits pulses of
light of a few picoseconds or femtoseconds with a repetition rate of a few tens of MHz
that are focused onto the sample. The light pulses are separated into two paths: the
pump and the probe. In a very simplified protocol:

1. The pump pulse arrives on the sample at time t0 = 0 ns. The pulse interacts
with the sample and generates a strain which propagates through the sample.
There are four mechanisms involved in the generation of coherent phonons: elec-
trostriction, thermoelasticity, piezoelectricity and deformation potential [58]. The
coherent phonons generated through this process modulate the optical properties
of the medium through the photoelastic effect and induce the displacement of the
interfaces.
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2.4. Probing the mechanical motion by noise spectroscopy

2. The probe goes through a mechanical delay line and arrives on the sample with a
delay time t = t0 + ∆t. The intensity of the reflected probe is modulated by the
phonons generated in the medium [58]. The reflected probe is sent to a detector to
measure the relative intensity of the beam, ∆R/R. By controlling the time delay
between the pump and the probe, the change in reflectivity is reconstructed as a
function of time.

An experimental time-trace is displayed in Fig.2.7a. At t = 0 ns, the pump and probe
reach the sample simultaneously. This appears as a rapid change from zero to 2.2 in the
reflectivity. Then, the signal decays, as the optical cavity mode returns to equilibrium.
A complete description of the optical response of the cavity is described in references
[51, 86, 102, 103]. In the inset of Fig.2.7, we can see the modulation in the reflectivity
induced by the presence of acoustic phonons. The oscillations have a period of ∼50
ps corresponding to an acoustic frequency f0 = 18.5 GHz. The frequency spectrum
is obtained after applying a fast Fourier transformation to the derivative of the time
trace. The resulting spectrum is shown in panel b of Fig.2.7. The peak at 18.5 GHz
corresponds to the confined acoustic mode.
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Figure 2.7: a Time trace of the optical reflectivity obtained from a pump-probe experiment on an
optophononic Fabry-Perot resonator. At zero delay, a rapid change of the instantaneous reflectivity is
the result of the pump pulse ultrafast action on the sample. Inset: zoom in the time resolved reflectivity.
The oscillations with a ∼50 ps period feature the confined acoustic mode. b Phononic spectrum
obtained after Fourier transforming the reflectivity time trace. The peak at 18.5 GHz corresponds to
the fundamental mode of the structure.

2.4 Probing the mechanical motion by noise spectroscopy
In the context of cavity optomechanics, the interaction between optical and acoustic
waves is usually studied through noise spectroscopy measurements. For an optome-
chanical resonator simultaneously confining light and sound, the mechanical and optical
degrees of freedom are not independent. As a model, we consider a standard Fabry-
Perot resonator made of two mirrors separated by a distance L and constituting a cavity
with optical resonant frequency ωc. One mirror is attached to a spring oscillating at a
frequency ωm, as displayed in Fig.2.8. When the spring is oscillating, the mirror dis-
placement u(t) modifies the length of the cavity, modulating the optical field inside the
cavity. In return, the modulation of optical field induces a dynamic backaction on the
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acoustic resonator [104]. The thermal fluctuations induced by the mechanical resonator
on the optical cavity modulate the optical reflectivity R(t) in time. Figure 2.9 shows a
schematic of the optical reflectivity. The orange sinusoid represents the oscillations of
the optical mode as a function of the acoustic displacement u(t). In a Brownian motion
experiment, a continuous wave laser is tuned on the flank of the cavity at a frequency
ωlaser, where the slope is maximal. The variation in intensity of the reflected laser I(t)
is represented by a blue sinusoid. The reflected laser intensity is acquired in time with
a photodiode and then sent to a spectrum analyzer. Thus, we can acquire the noise
spectrum of the optomechanical resonator [85].

L

E⃗in
ωm

ωc

u(t)optical
losses

acoustic
losses

Figure 2.8: Schematic of an optomechanical Fabry-Perot resonator. The Fabry-Perot resonator is made
of two mirrors forming an optical cavity. The right mirror is attached to a mechanical resonator. The
optical and mechanical resonances are ωc and ωm, respectively. A incident beam E⃗in impinges on the
Fabry-Perot resonator. The motion of the mirror is indicated by an arrow u(t).

ωc

u(t)

R(t)

Figure 2.9: Schematic principle of Brownian motion. The orange sinusoid represents the fluctuations of
the optical mode as a function of time due to the mechanical vibrations. The blue sinusoid represents
the fluctuations of the reflected laser R(t) as a function of time.

In optomechanics, there is a vast spectrum of systems where the coupling of light and
mechanical vibrations is studied. In Table 2.1 we compiled a list of representative devices
studied with noise spectroscopy experiments and their figures of merit. The typical
Fabry-Perot optophononic resonator studied in our group work at optical wavelength
comparable to that of reference [105], which is shorter than most of the devices which are
working in the mid-infrared and which benefit from all the available tools in the telecom
range. On the contrary, the acoustic frequency of our resonator is above the ones of the
devices presented in Table 2.1. The acoustic frequency of the Fabry-Perot multilayered
cavity studied in our group is three orders of magnitude higher than that of the Bragg
cantilever presented in reference [106] and two times higher than the frequency of the
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diamond optomechanical crystal presented in reference [107]. The typical optical quality-
factor of our device (in the 3000 to 11000 range) is rather low, especially considering
reference [108] which is also at room temperature. A high-quality factor is important
for the detection sensitivity. However, due to the colocalization of the optical and
acoustic field in GaAs/AlAs superlattices, the acoustic quality-factor of the multilayered
resonator presented in this thesis is similar to the optical one. A large mechanical
quality factor is desired for self-cooling towards the quantum limit. Due to their acoustic
frequency and optical wavelength, the devices studied in our group are challenging to
study with noise measurement spectroscopy. Therefore, it is necessary to develop tools
which are adapted to these characteristics.
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2.5. Conclusions

2.5 Conclusions
In this chapter we discussed the photoelastic interaction which takes place between
light and sound at the nanoscale. We discussed Brillouin scattering which is the inelas-
tic scattering of light due to the presence of phonons in the medium. We introduced
the different polarization and geometric selection rules of Brillouin scattering in semi-
conductor materials.
We explained that by engineering an optical cavity, the geometric selection rules are
bent and all the modes are accessible in a backscattering geometry. In addition, the
scattered signal is enhanced by the presence of an optical cavity. Both the incident and
scattered beams can be resonant with the cavity when the angle of incidence on the
sample is tuned to be in double optical resonance condition.
We also presented two other experimental techniques employed for the detection of
phonons. The first one is the coherent generation and detection of acoustic phonons,
which allows to study the dynamics of coherent acoustic phonons over time. This tech-
nique will be occasionally used in this thesis in Chapter 3. The second technique is the
noise spectroscopy experiment usually used in the context of cavity optomechanics.
In this thesis, we study confined acoustic modes in optophononic resonators through
the inelastic scattering of light with Brillouin spectroscopy. In Chapter 4, we will dis-
cuss how we take advantage of the double optical resonance to implement a filtering
scheme for Brillouin spectroscopy. Finally, in Chapter 5, we discuss how we can bend
the polarization selection rules of Brillouin scattering to achieve filtering based on the
polarization.
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Chapter 3

Acoustic confinement in
one-dimensional topological structures

The study of topology enabled the development of new tools to describe the physical
properties of matter, and in particular electronic properties such as topological insula-
tors or the quantum hall effect[115, 116]. The principles of topology were transferred to
other platforms (photons [117–120], polaritons [121–123], phonons [124, 125], acoustic
vibrations or mechanical vibrations [32, 54, 126]) leading to the generation of a new
class of topological devices. These devices show unchanged properties when they un-
dergo local perturbations or fabrication defects [56].
In the previous chapter, we discussed the confinement of acoustics phonons in standard
Fabry-Perot resonators. In this chapter, we extend the principle of multilayered struc-
tures to confine phonons in topological one-dimensional cavities. We take advantage of
the relation between the topological and acoustic properties of superlattices to create
an interface state between two DBRs. The presence of ultrahigh-frequencies topological
acoustic interface states in GaAs/AlAs-based multilayered structures has already been
demonstrated by means of Brillouin spectroscopy [31]. Moreover, in the optical domain,
it was demonstrated that in superlattice devices, it is possible to generate optical inter-
face states in any bandgap of the band-structure [120].
In this chapter, we present acoustic multilayered systems where topological interface
states are generated in any bandgap of the nanoacoustic band-structure. In addition,
we present a multilayered GaAs/AlAs structure which supports simultaneously an op-
tical and an acoustic interface state.
First, we introduce the Su-Schrieffer-Heeger model which can be employed to describe
the topological properties of periodic systems. We introduce the Zak phase, which is a
topological invariant relevant for one-dimensional multilayered systems. We discuss the
generation of topological interface states based on the principle of band inversion. We
present the generalization of this principle to high-order bandgaps of the acoustic band-
structure. Then, we present a GaAs/AlAs structure in which we can simultaneously
design perfectly overlapping acoustic and optical interface states. We discuss the effi-
ciency of these systems compared with a traditional Fabry-Perot resonator. Finally, we
present experimental results on a one-dimensional topological optophononic resonator.
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3.1. Topological microcavities by band inversion

3.1 Topological microcavities by band inversion

3.1.1 The Su-Schrieffer-Heeger model

The devices we present in this chapter are designed in analogy with the Su-Schrieffer-
Heeger (SSH) model [124, 127]. The SSH model was originally used to describe electrons
in a one-dimensional polyacetylene chain composed of alternated single and double bonds
connecting carbon atoms [128], as shown in Fig.3.1. In the tight binding approximation,
we can associate an electronic band structure to the chain. The relative strength of the
bonds defines the symmetries of the electronic wave function around the bandgap. When
the unit cell changes from being centered around a double bond (panel a of Fig.3.1) to
a single bond (panel b), the symmetries of the electronic wave functions around the
bandgap are inverted. The swap in symmetries when changing the relative strength of
the bond is the principle of band inversion. This results in two energetically degenerate
isomers with different topological configurations [115].
This model could be applied to high frequency acoustic superlattice devices, since by
alternating layers of GaAs and AlAs bandgaps are open. In this chapter, we extend the
concept of band inversion to nanoacoustic superlattices to generate topological interface
states.

C C C C C C

C C C C CC

a

b

Figure 3.1: Polyacetylene molecule. The unit cell is indicated with a red box. a and b are two different
topological cases.

3.1.2 Topological invariants

Let us consider a periodic phononic 1D system of periodicity a. The Zak phase of the
nth band is calculated by integrating across the Brillouin zone:

θZak
n =

∫ π/a

−π/a

[
i

∫
unit cell

1

2ρ(z)v2(z)
dzu∗n,k(z)∂kun,k(z)

]
dk, (3.1)

where un,k(z) is the acoustic displacement, k is the acoustic wave-vector and ρ(z) and
v(z) are the mass density and speed of sound in the materials [126, 129]. We consider
a periodic structure with inversion symmetry, that is the unit-cell is defined centro-
symmetric around AlAs. Consequently, the Zak phase can only take two values: 0 or
π [120, 126]. The Zak phase is the 1D equivalent of the Berry phase. It is associated
with the symmetry of the Bloch modes at the band-edges. When the modes at both
extremities of the same nth band (i.e. at the edge and center of the Brillouin zone) have
the same symmetries, θZak

n = 0 for the given band. On the contrary when a band has
edge modes with opposite symmetries, θZak

n = π [120].
We can characterize the topological properties of an acoustic multilayered device with
the Zak phase.
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Chapter 3. Acoustic confinement in one-dimensional topological structures

3.1.3 Principle of band inversion in nanoacoustic multilayered
structures

We consider acoustic DBRs made of GaAs/AlAs. For a designated acoustic frequency,
the total acoustic path length of the unit cell is set to half a phonon wavelength. There-
fore, the unit cell thickness must comply to

dGaAs

vGaAs

+
dAlAs

vAlAs

=
1

2fac
0

, (3.2)

where dGaAs/AlAs is the total thickness of GaAs/AlAs in the unit cell and vGaAs/AlAs is
the speed of sound in the material. We define a parameter δ ∈ [−1, 1] to determine the
relative thickness of AlAs and GaAs in the unit cell. The thicknesses of the two layers
are then given by:

dGaAs =
λGaAs

4
(1 + δ) and

dAlAs =
λAlAs

4
(1− δ).

(3.3)

When δ = 0, it corresponds to the case of a superlattice made of (λ/4, λ/4) GaAs/AlAs
layers. When δ = 1 the unit cell is purely made of GaAs, and when δ = −1 it is purely
made of AlAs. We define a centro-symmetric unit-cell around AlAs, i.e., the GaAs layer
in the unit cell is equally distributed around the AlAs layer as following: λGaAs

8
(1 + δ),

λAlAs

4
(1− δ), λGaAs

8
(1 + δ) .

Figure 3.2 displays the acoustic dispersion relations for superlattices complying to equa-
tion 3.2, with fac

0 ∼ 9 GHz. The thicknesses of the layers are defined using equation
3.3 for three different values of δ associated to the three panels in Fig.3.2. We observe
that for values of δ with opposite signs, the band diagrams are comparable. In the case
of δ = 0, the second band gap, indicated by a red box, is closed. Note that by only
varying δ, the bandgap stays centered around the same frequency. Moreover, we focus
on the second bandgap, but all the bandgaps are affected by changing δ. Only the first
bandgap remains open for all values of δ except when δ = ±1. The behavior of the
other bandgaps will be discussed in section 3.2.1.
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Figure 3.2: Acoustic dispersion relation of superlattices with δ = ±0.5 and δ = 0. The grey rectangles
mark the positions of the acoustic bandgaps. The red box indicates the bandgap opening and closing
by varying δ.
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3.1. Topological microcavities by band inversion

Let us focus on the second band gap at ∼18 GHz, at the center of the Brillouin
zone. When varying δ continuously over [-1, 1], the width of the acoustic bandgap
changes. In Fig.3.3, the lines indicate the frequency of the band-edge modes enclosing
the bandgap. The interval between the two band-edges corresponds to the span of the
acoustic bandgap. The mode symmetries, symmetric (orange line) and anti-symmetric
(blue line), are defined with respect to the center of the unit cell. The acoustic dis-
placement pattern inside the unit cell is represented as insets for the two band-edge
modes when δ < 0 and δ > 0. When δ < 0, the displacement of the lower edge-mode
is symmetric with respect to the center of the unit cell and the upper edge-mode is
anti-symmetric. At δ = 0 the bandgap closes. When δ > 0, the symmetries of the
edge modes undergo an inversion. In the case of the second bandgap, this transition is
characterized by the Zak phase changing from 0 to π [130].

Figure 3.3: Band inversion of the acoustic bandgap at the center of the Brillouin zone around 18.3 GHz.
The frequency of the band-edges (orange and blue) bounding the bandgap is plotted as a function of
the parameter δ. A sign change in δ marks the transition between the topological phases of a super-
lattice. For δ < 0 the Bloch mode at the lower (upper) band-edge has a symmetric (anti-symmetric)
displacement pattern with respect to the centers of the unit cell, these symmetries exchange for δ >
0. The band-edge modes are illustrated in the insets. The mode symmetries are indicated with orange
(symmetric) and blue (anti-symmetric) lines.

We look at two specific cases marked by vertical lines in Fig.3.3, at δ = ±0.5. The
acoustic dispersion relations of those two cases are plotted in Fig.3.4, with a schematic
of the unit cell on top. When δ = −0.5, the modes at the center and at the edge of
the Brillouin zone for the second band are both symmetric. Therefore, the Zak phase
attributed to the band is zero. On the contrary, when δ = +0.5, the mode at the center
of the Brillouin zone for the second band is symmetric while the mode at the edge of
the Brillouin zone is anti-symmetric, resulting in the Zak phase equal to π [120]. By
changing the relative thickness of GaAs and Alas in the unit cell, we can modify the
topological properties of the superlattice.
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Chapter 3. Acoustic confinement in one-dimensional topological structures
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Figure 3.4: Acoustic dispersion relation of two superlattices with δ = −0.5 and δ = 0.5. The schematics
of the unit cells of each superlattice are represented in insets. The two dispersion relations present
inverted Bloch mode symmetries around the bandgap at the Brillouin zone center. The red box indicates
the bandgap over which the band inversion takes place. The mode symmetries are indicated with orange
(symmetric) and blue (anti-symmetric) dots. The Zak phase of the second band is indicated.

3.1.4 Interface states

To get a confined mode at a given frequency fac in a Fabry-Perot resonator, two DBRs
with bandgaps centered around fac are concatenated with a spacer of length pλac/2 in
between. We define r = eiϕ(f) the complex reflection coefficient of a semi infinite DBR,
where ϕ(f) is the reflection phase of the system. To achieve a stationary wave, the
reflection phases of both DBRs (ϕtop and ϕbottom) and the phases acquired through the
spacer must add up to a multiple of 2π [130]:

ϕtop + ϕbottom + ϕspacer = 2mπ, m ∈ Z. (3.4)

In the case where there is no spacer, this relation would give:

ϕtop + ϕbottom = 2mπ, m ∈ Z. (3.5)

We take advantage of the relationship between the reflection properties and the topo-
logical properties of the superlattices to predict the existence of an interface state [124,
126]. It has been demonstrated that the reflection phase ϕ(f) in the second bandgap is
connected to the Zak phase [120]. The sign of the reflection phase for the first Brillouin
zone center acoustic bandgap is given by:

sgn(ϕ) = ei(θ
Zak
0 +θZak

1 ). (3.6)

We consider the two cases presented in Fig.3.4. They feature two different unit cells
with δ = ±0.5 and the corresponding Zak phases. When δ < 0, sgn(ϕ) = −1, whereas
sgn(ϕ) = 1 when δ > 0. Therefore, by concatenating these two superlattices equation
3.5 is respected, resulting in the presence of an interface state between the DBRs [125].
Figure 3.5a displays the simulated reflectivity for a topological acoustic resonator de-
signed at fac ∼18 GHz. The structure is formed by two concatenated DBRs embedded
in GaAs. Each DBR is made of 16 unit cells with δtop = −0.5 and δbottom = 0.5, with
a bandgap centered around fac ∼18 GHz. In Fig.3.5a, there is a dip in the reflectivity
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3.2. High-order bandgap engineering

bandgap, featuring the confined topological interface mode in the middle of the bandgap
at the zone center of the Brillouin zone. The spatial displacement |u(z)|2 of the topo-
logical acoustic interface state at ∼18 GHz is represented on Fig.3.5b together with the
complete structure. The amplitude of the displacement is maximum at the interface
and decays evanescently in the DBRs.
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Figure 3.5: a Simulated acoustic reflectivity for a topological resonator formed by two concatenated
DBRs with δ = −0.5 and δ = 0.5 embedded in GaAs. The topological interface mode appears as a dip
in the bandgap at ∼18 GHz. b The spatial displacement pattern |u(z)|2 of the topological interface
state at ∼18 GHz presents a maximum at the interface between the two DBRs. The fields decay
evanescently away from the interface. The complete heterostructure is represented at the top. The
dark (light) colors represent GaAs (AlAs). Green and blue are to differentiate both DBRs.

3.2 High-order bandgap engineering

As we discussed above, for the second bandgap the symmetry of the displacement pat-
tern with respect to the centers of the unit cell at the lower and upper band-edges
reverses when δ crosses zero. The inversion of symmetry of the modes around the
bandgap also occurs at higher bandgaps. Thus, interface states can be generated by ap-
plying the method presented in the previous section 3.1.4. Versatile topological devices
can be engineered where we could create high-frequencies interface states in a broad
frequency range and hybrid structures combining superlattices designed for different
acoustic frequencies.

3.2.1 Generalization of the band inversion principle

The evolution of the first, second, third and fourth bandgaps as a function of δ (relative
thickness ratio of GaAs/AlAs) are plotted on Fig.3.6. The orange lines indicate modes
which are symmetric with respect to the center of the unit cell, while the blue lines
indicate anti-symmetric modes. When varying δ, there are changes in the width of the
bandgaps. For certain values of δ the bandgaps close and the modes surrounding the
bandgaps undergo inversion of symmetry when they reopen. The number of nodes is
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Chapter 3. Acoustic confinement in one-dimensional topological structures

related to the order of the bandgap. The first bandgap (panel d) opens and closes only
once. It reaches a maximum of amplitude at δ = 0. At the third bandgap, the band-
edge modes change symmetry twice (panel b). At the fourth bandgap the symmetry of
the modes changes thrice (panel a). In general, for the nth bandgap, there are (n − 1)
inversions of symmetries.
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Figure 3.6: Band inversion of the acoustic bandgap around a 9.3 GHz, b 18.6 GHz, c 28 GHz and
d 37.3 GHz. The frequency of the band-edges bounding the bandgap is plotted as a function of the
parameter δ. The mode symmetries are indicated with orange (symmetric) and blue (anti-symmetric)
lines. The acoustic displacements |u(z)|2 of the edge modes are plotted in the unit cells for the different
bandgaps. The thickness ratio of GaAs/AlAs is indicated by the vertical dashed line in each case.

3.2.2 Interface states at higher bandgap order

Fundamentally, an interface state appears when concatenating two DBRs with opposite
reflection phase signs. For the nth bandgap, the sign of the reflection phase is given by
[120]:

sgn(ϕ) = (−1)n(−1)l × exp

(
i

n−1∑
m=0

θZak
m

)
, (3.7)

where l is the number of closed bandgaps below the nth bandgap. Therefore, for the nth

bandgap, there is an interface state at the condition that
∑n−1

m=0 θ
Zak
m = 0 + 2pπ, p ∈ N

for one DBR and
∑n−1

m=0 θ
Zak
m = π + 2pπ, p ∈ N for the other one.

The generation of an interface state at the nth bandgap between two DBRs with different
topological properties results in the combination of two DBRs with opposite mode sym-
metries around the nth bandgap. The creation of an interface state at the nth bandgap
does not necessarily imply the generation of an interface state in other bandgaps.
Panels a to c of Fig.3.7 display reflectivity spectra which are obtained by combining two
DBRs with different values of δ. In each case, the amplitude of the third bandgap of the
corresponding superlattice is maximized. The values of δ are marked on the respective

49



3.2. High-order bandgap engineering

top panel with vertical dashed lines. In panels a and c, the two DBRs have inverted
symmetry around the bandgap. In the acoustic reflectivity spectra there is a dip cen-
tered in the high reflectivity region featuring the interface state. Whereas, in panel b,
the two DBRs have the same symmetry around the bandgap. Thus, the structure acts
as a standard DBR and the reflectivity spectrum presents only a high reflectivity region.
In general terms, for the third bandgap, there are two alternatives to generate an in-
terface state. That is, a DBR with δ in the second opening of the bandgap (δ ∈
[−0.33, 0.33]) can be concatenated with a DBR either having δ < 0.33 (Fig.3.7a) or
δ > 0.33 (Fig.3.7c).
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Figure 3.7: Top panel: Band inversion of the third acoustic bandgap around 28 GHz. a,b, c Calculated
acoustic reflectivity spectra. The values of δ selected for the two concatenated DBRs are marked by
dashed lines on the corresponding top panel.

In the case of the fourth bandgap, Fig.3.8 displays the acoustic reflectivity spectra
of six possible combinations between two DBRs with different values of δ. Again, the
amplitude of the bandgap is maximized for all cases, resulting in high reflectivity regions
centered around ∼28 GHz. The different δ used for the design of the unit cells are marked
by vertical dashed lines in the bandgap. In cases b and e, the two DBRs which are
concatenated have the same symmetry (both modes at the bottom band are symmetric
in panel b, while they are anti-symmetric in panel e). Thus, the acoustic reflectivity
spectra present high reflectivity regions like a standard DBR. On the contrary, for
panels a, c, d and f the two DBRs which are concatenated have inverted symmetries.
Therefore, an interface state is generated. Generally, an inversion of symmetry of the
modes around the nth bandgap takes place when going from an odd to an even opening of
the bandgap (or vice-versa). Consequently, to generate an interface state, it is needed to
concatenate two DBRs corresponding to superlattices with an even and an odd opening
of the bandgap (for example panel a in Fig.3.7 and panel c of Fig. 3.8).
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Figure 3.8: a-f Calculated acoustic reflectivity spectra. Top panel: Band inversion of the fourth acoustic
bandgap around 37.3 GHz. The values of δ selected for the two concatenated DBRs are marked by
dashed lines on the corresponding top panel.

3.2.3 Robustness against disorder

The band inversion principle exploited here to build topological resonators preserves
the center of the bandgap by varying δ. In this section, we numerically show that the
robustness of the interface mode applies to all bandgap orders when introducing a par-
ticular kind of noise in the layer thickness. We compare the topological interface state
generated in the third bandgap presented in panel c of Fig.3.7 to a Fabry-Perot cavity
formed by non-centrosymmetric unit cells of GaAs/AlAs with δ = 0.66 surrounding a
spacer of thickness λ and embedded in a GaAs background. We implement the noise
using a flat distribution of random number with an amplitude ∆δ/δ ranging from zero
(unperturbed system) to 0.5 (0.999 being the local bandgap which can almost completely
close due to fluctuations). The results for the topological (blue) and the Fabry-Perot
(orange) resonators are presented in panels a and b of Fig.3.9. The acoustic frequencies
of the interface state generated at the third bandgap of the two systems are compared
in panel a of Fig.3.9. When introducing the local fluctuations in the layer thickness, the
resonance of the topological resonator stays fixed at the bandgap center, whereas the
mode of the Fabry-Perot resonator fluctuates away from the center. Figure 3.9b com-
pares the acoustic quality factors of the two structures. Both quality factors decrease by
a factor 10 when the fluctuations increase. This effect can be explained by the reduction
in the width of the bandgap, resulting in the growth of the evanescent decay length of
the confined mode and thus in the enhancement of the leakages through the DBRs into
the background [51]. The quality factor of the Fabry-Perot resonator decreases faster
for small noise fluctuations.
Likewise, we compare the topological interface state generated in the fourth bandgap,
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3.2. High-order bandgap engineering

presented in panel c of Fig.3.8, to a Fabry-Perot cavity formed by non-centrosymmetric
unit cells of GaAs/AlAs with δ = 0.75 surrounding a spacer of thickness λ/2 and embed-
ded in a GaAs background. The results for the topological (blue) and the Fabry-Perot
(orange) resonators are presented in panels c and d of Fig.3.9. The acoustic frequencies
of the interface state generated at the fourth bandgap of the two systems are compared
in panel c of Fig.3.9. The behavior is similar to the case of the third bandgap: the
frequency is clamped at the bandgap center for the topological structure and fluctuates
for the Fabry-Perot resonator. The acoustic quality factor of the two structures, shown
in panel d of Fig.3.9, decreases by more than an order of magnitude. The quality factor
of the topological interface state at the fourth bandgap is more sensitive to fluctuations
than in the case of the third bandgap. These results show that the robustness charac-
teristic of topological devices, protecting the acoustic resonance against disorder, also
operates at high-orders of the bandgap.

Topological
Fabry-Perot

3rd bandgap 4th bandgap

a

b

c

d

Figure 3.9: a Resonant frequency in the third bandgap under random perturbations. We choose random
variations with a uniform distribution of width ∆δ/δ. The acoustic resonance frequency stays trapped
at the bandgap center for the topological mode (orange) but undergoes variations for the Fabry–Perot
case (blue). b Acoustic quality factor under random perturbations. For both types of resonators, the
acoustic quality factor drops by a factor of ten. Likewise c and d for the fourth bandgap, respectively.

3.2.4 Multimode engineering

In the previous section we showed that we can engineer the interface states at the nth

bandgap in topological acoustic resonators by carefully choosing the appropriate mate-
rial ratio in both juxtaposed DBRs. In this section, we present designs of topological
acoustic resonators realized for various ratios of GaAs/AlAs in the two unit cells deter-
mining the topological structure.
By varying δ, we simultaneously alter the bandgap amplitudes at all the orders. How-
ever, the closing and reopening of the bandgaps is not coincident for all bandgap orders.
As δ is changing, we can reach different combinations of bandgap symmetries and thus
engineer the formation of interface states. It is then possible to address the generation of
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Chapter 3. Acoustic confinement in one-dimensional topological structures

multimode interface states, with the only constraint that all the bandgaps are modified
simultaneously by δ.
Figure 3.10 presents conditions to generate interface states in the second and fourth
bandgap. Panel b shows the unit cells at the interface. In that case, we chose δ = ±0.33.
Panel a reproduces the band inversion from Fig.3.6. The values of δ chosen for the top
and bottom DBR are marked by vertical dashed lines. The symmetries of the modes
around the bandgap are marked by blue (anti-symmetric) and orange (symmetric) dots.
As an inset, the symmetries of the band in the two DBRs are plotted together. In
that case, we observe that there is an inversion of symmetry at the second and fourth
bandgaps. At the particular value of δ chosen here, the third bandgap is closed. In
the calculated acoustic reflectivity spectra (panel c) the closed bandgap appears as a
minimum in reflectivity, while the interface states due to the inversion of symmetry are
the dips centered in the high reflectivity regions at ∼18 GHz and ∼37 GHz.
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Figure 3.10: a Band inversion of the acoustic bandgaps. The dots show the bandgaps opening and
symmetries at the given δ. Inset: Symmetry of the two concatenated DBRs. There is inversion for the
second and fourth bandgaps, while the third bandgap is closed. b Schematic of the unit cells at the
interface between the two DBRs. c Simulated acoustic reflectivity spectra for two topological resonators
formed by two concatenated DBRs embedded in GaAs with a δtop = −0.33 and δbottom = +0.33

Figure 3.11 presents conditions to generate interface states in the third and fourth
bandgaps simultaneously. The structure is designed with δtop/bottom = −0.15/− 0.85 for
the top and bottom DBRs. In comparison to the previous case, the four bandgaps are
open for both superlattices (see panel a), resulting in four high reflectivity regions in
the reflectivity spectrum plotted in panel c. In the third and fourth bandgaps, there
are interface states indicated by dips in the high reflectivity regions of the reflectivity
spectrum. They are induced by the inversion of symmetry of the modes around the third
and fourth bandgaps, as shown in panel a. On the contrary, there is no interface mode
in the first and second bandgaps because they have the same band-edge symmetries for
both superlattices.
Note that the mode is not centered in the third bandgap as we can see in panel c of
Fig.3.11. Two conditions to generate an interface state between two acoustic DBRs
centered in the bandgap are: i) common bandgap must have equal central frequency
and ii) same bandwidth. The first one is necessary for topological robustness. The
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3.2. High-order bandgap engineering

second condition results in similar evanescent decay lengths into both DBRs. In case
δ is not symmetric with respect to an inversion point, the interface state generated is
not centered in the bandgap, as we can see in Fig.3.11 and 3.12 at the third and second
bandgaps, respectively.
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Figure 3.11: a Band inversion of the acoustic bandgaps. The dots show the bandgaps opening and
symmetries at the given δ. Inset: Symmetry of the two concatenated DBRs. There is inversion for
the third and fourth bandgaps. b Schematic of the unit cells at the interface between the two DBRs.
c Simulated acoustic reflectivity spectra for two topological resonators formed by two concatenated
DBRs embedded in GaAs with a δtop = −0.15 and δbottom = −0.85

Figure 3.12 presents conditions to generate interface states in the third and fourth
bandgaps with δtop/bottom = −0.8/+ 0.2. On panel a, the two DBRs have inverted sym-
metry at the second and third bandgaps. Even though they fall into different openings
of the fourth bandgap, both have the same symmetry.
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Figure 3.12: a Band inversion of the acoustic bandgaps. The dots show the bandgaps opening and
symmetries at the given δ. Inset: Symmetry of the two concatenated DBRs. There is inversion for
the second and third bandgaps, while the third bandgap is closed. b Schematic of the unit cells at the
interface between the two DBRs. c Simulated acoustic reflectivity spectra for two topological resonators
formed by two concatenated DBRs embedded in GaAs with a δtop = −0.8 and δbottom = +0.2

Figure 3.13 presents conditions to generate interface states in the third and fourth
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Chapter 3. Acoustic confinement in one-dimensional topological structures

bandgaps with δtop/bottom = +0.4/+ 0.6. There is very little difference between the unit
cells of the two superlattices as shown in panel b. However, the modes at the fourth
bandgap have inverted symmetry. All the other bandgaps fall in the same openings.
Therefore, the acoustic reflectivity spectrum (panel c) presents four high reflectivity
regions, with only one interface mode in the fourth bandgap.
Note that there is no inversion of the band symmetry and it is impossible to create
an interface state at the first bandgap because the topological phase of the lower band
around the first bandgap (at the zone edge of the Brillouin zone) does not switch with
the variation of δ.
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Figure 3.13: a Band inversion of the acoustic bandgaps. The dots show the bandgaps opening and
symmetries at the given δ. Inset: Symmetry of the two concatenated DBRs. There is inversion only for
the fourth bandgap. b Schematic of the unit cells at the interface between the two DBRs. c Simulated
acoustic reflectivity spectra for two topological resonators formed by two concatenated DBRs embedded
in GaAs with a δtop = +0.4 and δbottom = +0.6

3.2.5 Hybrid topological resonators

To generate an interface state at a given acoustic frequency between two DBRs, it is
required they have bandgaps with overlapping frequency ranges. So far, we created
interface modes in a given bandgap by concatenating two DBRs designed at the same
acoustic frequency. In this section, we generate an interface state between two DBRs
designed at different fundamental frequencies, resulting in bandgaps of different orders
sharing the same frequency range.
The band inversion of the two superlattices are plotted in panels a and b of Fig.3.14.
The first superlattice S1 (panel a) is designed to have a fundamental bandgap centered
around 9.3 GHz, while the second superlattice (S2) is designed at 14 GHz (panel b).
This results in the third bandgap of S1 centered at the same frequency as the second
bandgap of S2. However, none of the lower order bandgaps have matching frequencies.
Panel c presents the acoustic reflectivity spectra of the two DBRs associated to the
band structures in panels a and b. The reflectivities are calculated for values of δ where
all the bandgaps are open. The high reflectivity regions only overlap around 28 GHz.
Hence, it is possible to generate an interface state at 28 GHz. Panels d to g of Fig.3.14
present calculated acoustic reflectivity spectra for four different combinations of DBRs.
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3.2. High-order bandgap engineering

The values of δ utilized are identified on the band inversion figures with vertical dashed
lines. The labels indicate the corresponding acoustic reflectivity spectrum. For panel
d,e and f, there is an interface state at 28 GHz. The only difference between the cases
d and f is the thickness ratio used to design the unit cell of the DBR S1. In spite of
this difference, the symmetries around the third bandgaps of S1 are the same in both
cases. In these two cases, all the bandgaps at lower frequencies are open, resulting in
three high reflectivity regions. For panel e, since the second bandgap of S1 is closed,
there are only two high-reflectivity regions at lower frequencies. For the three cases,
there is a dip in the reflectivity at 28 GHz featuring the interface state. For case g, all
the bandgaps are open, resulting in five high-reflectivity regions. However, there is no
interface state. It is important to mention that the rule to create an interface state by
band inversion does not apply for bandgaps of different orders. In the case presented
in Fig.3.14 an interface state is generated when the modes surrounding the bandgap of
interest have same symmetries in both superlattices. We can generalize that when one
bandgap is even and the other one is odd, an interface state is generated if both have
similar symmetries. On the contrary, if two odd or even bandgaps are concatenated,
both need to have inverted symmetries to generate an interface state. This is because,
the difference in phases of the reflection coefficient does not only depends on the sum
of the Zak phases anymore but also on the order of the bandgap.
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Figure 3.14: Hybrid topological acoustic resonator. a, b Band inversion of the acoustic bandgaps
associated with the two concatenated DBRs. The third bandgap of the superlattice a and the second
bandgap of the superlattice b share the same central frequency. c Simulated acoustic reflectivity of
the two DBRs. The green line (blue) corresponds to the band inversion diagram displayed in panel
a (panel b, respectively). d, e, f, g Simulated acoustic reflectivity spectra for different concatenated
DBR embedded in GaAs. δ of the corresponding DBRs is marked by dashed lines on panel a and b.

Note that the presence of an interface mode at a frequency f0 is not determinant of
an interface mode at 2f0. Here, the sixth and fourth bandgaps of the superlattices S1
and S2 (respectively) would be closed at 56 GHz for the chosen values of δ. However, at
84 GHz, the bandgaps (corresponding to the ninth and sixth orders, respectively) are
open with identical symmetries, leading to an interface state. The possibility to create
an interface state in a bandgap at different orders gives the opportunity to explore a
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Chapter 3. Acoustic confinement in one-dimensional topological structures

full class of hybrid topological resonators which would be difficult to study in optics or
electronics due to the dispersion relations.

3.3 Simultaneous confinement of light and sound by
band inversion

3.3.1 Simultaneous band-inversion

As we have seen in Chapter 1, in GaAs/AlAs the optical and acoustic fields are super-
imposed in a multilayer system. Moreover, a Fabry-Perot resonator designed to confine
an acoustic mode at ∼18 GHz also confines an optical mode around 900 nm. Likewise,
the principle of band inversion in the acoustic domain also occurs in the optical domain.
For a superlattice designed to have the second bandgap centered around the acoustic
frequency fac = 18 GHz, there is a simultaneous inversion of the mode symmetries for
both the acoustic displacement and the optical field when δ crosses zero. Similarly to the
acoustic band-dispersion, the lower band-edge mode of the optical bandgap at ∼1.34 eV
is symmetric when δ < 0 and anti-symmetric when δ > 0. Whereas the upper band-edge
mode is anti-symmetric when δ < 0 and symmetric when δ > 0. This results in both
cases having different Zak phases. In Fig.3.15, similarly to Fig.3.4, the edge-modes at
the band gap at the zone center of the Brillouin zone invert their symmetries when the
sign of δ changes.
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Figure 3.15: Optical dispersion relation of two superlattices with δ = −0.5 and δ = 0.5. The schematic
of the unit cells of each superlattice is represented in insets. The two dispersion relations present
inverted Bloch mode symmetries around the bandgap at the Brillouin zone center. The dashed red box
indicates the bandgap over which the band inversion takes place. The mode symmetries are indicated
with orange (symmetric) and blue (anti-symmetric) dots. The Zak phase of the second band is indicated.

Therefore, by concatenating two DBRs with inverted bandgaps, we engineer an op-
tophononic topological cavity, simultaneously confining phonons and photons. Figure
3.16 displays the acoustic displacement |u(z)|2 and optical field |E(z)|2 for a topological
optophononic resonator formed by 14 (16) GaAs/Al0.95Ga0.05As centro-symmetric unit
cells with δtop = −0.5 (δbottom = +0.5) at the top (bottom). The structure is surrounded
by a GaAs substrate on one side and air on the other side. The superlattices are designed
to have the interface state at the center bandgap at 18 GHz in the acoustic domain and
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3.3. Simultaneous confinement of light and sound by band inversion

1.34 eV in the optical domain. Both the optical field and the acoustic displacement
are colocalized and present a maximum of amplitude at the interface between the two
DBRs. This structure will be experimentally studied in a following section.
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Figure 3.16: The spatial displacement pattern |u(z)|2 (black) and optical profile |E(z)|2 (grey) of
the topological interface state at 18.12 GHz/1.34 eV are colocalized and present a maximum at the
interface between the two DBRs. Both fields decay evanescently away from the interface. The complete
heterostructure is represented at the top.

3.3.2 Topological engineering of the interface states and inter-
actions

Until section 3.3 we were discussing only acoustic topological interface states. However,
there is a simultaneous band inversion for the acoustic and optical dispersion relation
at ∼18 GHz and ∼900 nm, respectively. The resulting colocalized optical and acoustic
states offer the possibility of studying the topology of the interactions.
In this section, we theoretically compare four topological structures and a standard
Fabry-Perot resonator. We consider topological structures made of two concatenated
DBRs presenting inverted bands and centrosymmetric unit cells. We engineer the in-
terface state by changing two parameters: the sign of δ, and the DBR inversion centers
which coincide with the origin of the unit cells. This means that the materials of the
layers forming a centrosymmetric unit cell are swapped. By combining those parame-
ters, we can consider different topological combinations (see Table 3.1). The different
configurations are displayed in the table as a function of δtop/bottom and the central ma-
terial of the unit cell. Due to the symmetry of the structure, the table has a diagonal
symmetry, resulting in only six different topological structures. The diagonal, with the
cases shaded in grey, corresponds to symmetric cases, where the top and bottom DBRs
are identical. The simulations of the Brillouin cross-section presented in this section are
performed using the transfer matrix method and a photoelastic model, assuming p = 1
in Ga-rich layers and p = 0 in Al-rich layers. The laser wavelength is considered at the
optical resonance. The acoustic resonators are made from two DBRs where each DBR
consists of 16 periods, surrounded by GaAs. Here we present only the five cases wich
are indicated in the table by the corresponding letter in Fig.3.17.
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AlAs GaAs AlAs GaAs
δtop < 0 δtop < 0 δtop > 0 δtop > 0

AlAs
δbottom < 0

GaAs c
δbottom < 0

AlAs a e
δbottom > 0

GaAs b d
δbottom > 0

Table 3.1: Table with the different combinations of two parameters: the sign of δ, and the materials of
the layers forming a centrosymmetric unit cell. The table has a diagonal symmetry. The grey shaded
cases are symmetric cases, where the top and bottom DBRs are identical.

Panels a to d of Fig.3.17 present four topological structures and panel e presents the
Fabry-Perot resonator. On the left, there are schematics of the unit cells of each DBR,
parametrized by δtop and δbottom. Dark (light) colors represent GaAs (AlAs). The case
presented in panel a of Fig.3.17 is the same as in Fig.3.5, where δtop < 0 and δbottom > 0
and all the unit cells are centered around AlAs. The presence of interface modes at
the center of the acoustic and optical bandgaps, at a frequency of 18.2 GHz and an
optical wavelength of 920 nm (1.36 eV), is evidenced in the first and second columns,
respectively. The third column displays the acoustic displacement |u(z)|2 (black) and
the optical intensity |E(z)|2 (grey) of the topological interface modes. They exhibit a
perfect mode overlap, with a maximum of intensity at the interface between the two
DBRs. The last column plots the value of the integrand of the overlap integral for the
photoelastic interaction |E(z)|2p(z)(∂u(ω, z)/∂t). The Brillouin cross-section and the
optical Q-factor are written as an inset. The Brillouin cross-section is defined by the
overlap integral:

σ(ω) =

∫
|E(z)|2p(z)∂u(ω, z)

∂t
dz (3.8)

The cross-section is determined by two conditions: (i) the overlap between the antin-
odes of the opto-phononic field |E(z)|2(∂u(ω, z)/∂z) and the maxima of the photoelastic
constant distribution p(z) (ii) the relative sign of the opto-phononic antinodes in the
regions where the photoelastic constant is non-zero. It is important to note that the
antinodes with the maximum amplitude at the interface between the two DBRs is the
main contributor to the overall cross-section. The integrand features signals composed
either of double peaks (thick lines) or single peaks (thin lines). We can analyze the
integrand by splitting it into quadrants (left/right DBR, positive/negative amplitude
contributions).
The integrand shown in panel a of Fig.3.17 presents signals with positive amplitude
composed of single peaks in one DBR and double peaks in the other. Only one DBR
contributes with single peaks of negative amplitude. Practically, the peaks with negative
amplitude compensate for half of the positive double peaks producing an overall signal
with single peaked contributions of positive amplitude from both the DBRs.
In panel b of Fig.3.17, δtop < 0 and δbottom > 0 and all the unit cells are centered around
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GaAs. The concatenation of the two inverted DBRs results in the colocalized interface
modes at the center of the acoustic and optical bandgap, 18.23 GHz and 920 nm, respec-
tively. In that case the integrand is similar to the previous case in Fig.3.17a, resulting
in an overall signal with positive single peaks.
In panel c of Fig.3.17, δtop/bottom < 0 with the top DBR centered on AlAs and the bot-
tom DBR centered on GaAs. The interface modes in the acoustic and optical bandgap
appear slightly off-centered at 18.18 GHz and 922.06 nm, respectively. The acoustic
displacement |u(z)|2 (black) and the optical intensity |E(z)|2 (grey) of the topological
interface modes are also colocalized. However, in contrast to cases a and b, the fields
are not symmetric in both DBRs. The integrand shows only one DBR with positive
double peaks, while it is formed by negative single peaks in both DBRs.
In panel d of Fig.3.17, δtop/bottom > 0 with the top DBR centered on AlAs and the
bottom DBR centered on GaAs. This case presents colocalized interface modes in the
acoustic and optical bandgap, at 18.26 GHz and 917.9 nm, respectively. The acoustic
and optical fields, as well as the integrand show similar features as in case c of Fig.3.17.
Panel e of Fig.3.17 presents the case of a Fabry-Perot resonator made of λ/4 GaAs,
3λ/4 AlAs DBRs enclosing a λ/2 GaAs spacer. The simulated reflectivities evidence
an acoustic and an optical interface state at 18.2 GHz and 920 nm, respectively. The
integrand presents only positive single peaks over the full structure.

We compare the Brillouin cross-section of the different structures to determine their
Brillouin efficiency. Based on the profile of the integrand, we can divide the topological
structures into two categories. First, cases a and b have an integrand which is positive
in average. This gives an overall large Brillouin cross-section σ. The main difference
between those two cases, is that in case a, the unit cells are centered around AlAs and
in case b they are centered around GaAs. It suggests that the interface is formed by
GaAs in case a, which contributes more to the Brillouin cross-section. Second, cases c
and d have the positive and negative peaks of the integrand compensating each other,
resulting in an overall small Brillouin cross-section σ.
The maximum cross-section (σ = 2939) is obtained in the case of the Fabry-Perot res-
onator presented in panel e of Fig.3.17. It is noteworthy that the topological resonator
presented in case a has a cross-section σ = 2841 in the same range, almost matching
the performance of a trivial resonator. The Brillouin cross-section would profit from the
robustness intrinsic to the topological interface modes.
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Figure 3.17: Comparison between different topological structures and a Fabry–Perot resonator. The
structures are designed to confine an acoustic mode at ∼18.2 GHz and an optical mode at ∼1.36 eV
(920 nm). Schematic of the unit cells at the interface are displayed on the left. Dark (light) colors
represent GaAs (AlAs). For each structure, the simulated acoustic and optical reflectivities are plotted
(first and second columns, respectively) showing an interface state around the middle of the bandgap
. The spatial displacement pattern |u(z)|2 (black) and the optical intensity profile |E(z)|2 (grey) are
displayed in the third column. They show a maximum at the interface between the two DBRs indicating
colocalized topological interface states. The last panels display the integrand of the Brillouin cross-
section.
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3.4 Experimental measurements of the interface states
We experimentally validated some of the concepts discussed previously by experimen-
tally studying a sample designed with the band inversion principle. The sample is
engineered to simultaneously present an acoustic and an optical topological interface
state as presented in section 1.4. The sample is composed of two concatenated DBRs to
confine simultaneously an acoustic interface mode at 18.3 GHz and an optical interface
mode at ∼920 nm. The top and bottom DBRs are charaterized by δtop/bottom = ±0.5.
The DBRs are formed by 14 (16) periods of 65.1 nm/231.1 nm (195.5 nm/77.0 nm)
GaAs/Al0.95Ga0.05As layers for the top (bottom).
We experimentally evidenced the presence of an acoustic interface state in a topolog-
ical acoustic resonator by making measurements in the time domain with a pump-
probe experimental setup. The process of coherent phonon generation and detection
in pump-probe spectroscopy is described in section 2.3. The complete experimental
setup is depicted in reference [86]. We used a titanium:sapphire laser (Spectra Physics
Tsunami) producing 3.4 ps long pulses at an 80 MHz repetition rate. A polarizing beam
splitter splits the laser beam into pump and probe with powers of 3.2 and 1 mW, respec-
tively. The pump beam passes through an acousto-optical modulator for synchronous
detection, while the probe beam passes through a mechanical delay line to control the
relative arrival time of the pump and probe on the sample. Both beams merge again at
a polarizing beam splitter and are focused onto the sample with the same microscope
objective with 20x magnification into a spot of 5.5 µm in a collinear geometry. Using a
cross-polarization scheme, the reflected probe (modulated by the presence of phonons)
is measured with a photodetector. A lock-in amplifier extracts differential reflectivity
time traces.
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Figure 3.18: a Measured optical reflectivity spectrum. The dip at 921 nm features the optical interface
state. b Time trace of the optical reflectivity obtained on a topological optophononic resonator. c
Phononic spectrum obtained after Fourier transforming the reflectivity time trace. The peaks at 18
GHz and 54 GHz correspond to the fundamental and third harmonics of the interface state, respectively.

We measured the optical interface state with an optical reflectivity measurement.
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Chapter 3. Acoustic confinement in one-dimensional topological structures

The spectrum is obtained by illuminating the samples with a broadband source in a
wavelength range over the cavity mode in a home-built reflectometer. The obtained
spectrum is plotted in panel a of Fig.3.18. The dip at 921 nm corresponds to the optical
interface mode in the first bandgap.
Panel b of Fig.3.18 displays the time dependent optical reflectivity of the probe beam.
The fast change in reflectivity at 0 ns corresponds to the pump and probe impinging the
sample together inducing a blueshift of the optical cavity mode. After 0 ns, the slope
corresponds to the optical mode returning to equilibrium. After Fourier transforming the
time trace, we obtain the spectrum shown in panel c. The peak at 18 GHz corresponds
to the interface state of the designed aocustic topological resonator. The peaks at 54
GHz corresponds to the third acoustic harmonic for which there is also a band inversion
around the bandgap. The broad peak at 37 GHz is the Brillouin mode of GaAs.

3.5 Conclusions
In this chapter, we theoretically presented a method to generate an acoustic interface
state in a topological resonator, based on the band inversion principle. By changing the
thickness ratio of GaAs and AlAs in the unit cell the symmetries of the modes around the
bandgap change. An interface state is generated when two superlattices with inverted
symmetries are concatenated. We extended this principle to create interface states in
high-order bandgaps. By carefully adjusting the layer thicknesses in the unit cell we
could generate multiple topological acoustic interface states robust against disorder in
a broad frequency range. In addition, we simulated hybrid structures where interface
states are created by combining two superlattices presenting bandgaps of different or-
ders centered around the same frequency. We could then explore topological structures
which are difficult to study in electronics or in optics due to the dispersion relations.
The modes would be accessible in a Brillouin or pump-probe experiment.
Moreover, we showed that for superlattices designed at acoustic frequencies ∼18 GHz
and optical wavelength ∼900 nm the inversion of symmetries of the edge-modes simulta-
neously occurs both in the optical and acoustic domains. This results in a simultaneous
confinement of light and sound with colocalized optical and acoustic states.
We simulated a panel of topological optophononic resonators with different combina-
tions of concatenated superlattices. We numerically discussed the Brillouin efficiency
of those resonators and compared them with a Fabry-Perot resonator. We obtained a
topological device comparable to a Fabry-Perot resonator in both quality factor and
Brillouin efficiency. We experimentally evidenced the acoustic interface state in that
sample with a pump-probe experiment and the optical interface state with a reflectivity
experiment. In Chapter 4, we will study this sample in a Brillouin spectroscopy exper-
iment. The topological devices with large cross-section presented in this chapter would
also be adapted for measurements in a Brillouin spectroscopy experiment.
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3.5. Conclusions

Main contributions:

• Topological interface nanoacoustic state engineering at high-order bandgaps

• Engineering of hybrid topological states, combining nanoacoustic superlattices
with bandgaps of different orders

• Simultaneous confinement of NIR light and GHz sound in topological interface
states
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Chapter 4

Brillouin spectroscopy in planar
multilayered optophononic
microcavities

Brillouin spectroscopy is a non-invasive technique to investigate the mechanical prop-
erties of bulk materials and nanoscale systems. Brillouin spectra provide information
about thermodynamic and acoustic properties of the studied system. The technique
is used for a wide range of applications including geosciences, biology or fundamental
physics [59, 60, 131].
In Brillouin spectroscopy, the frequency shift between the incident beam and the scat-
tered signal induced by interactions between light and the mechanical waves in the
medium is relatively small (up to a few GHz). In addition, the intensity of light inelas-
tically scattered by acoustic phonons is approximately nine orders of magnitude weaker
than the intensity of the elastic scattering [132]. Therefore, it is necessary to have a
spectrometer which provides high resolution and effective extinction of the elastic scat-
tering.
A significant step forward in Brillouin spectroscopy appeared with the development of
the multi-pass Fabry-Perot interferometer (FPI) by Sandercock [133, 134]. It consists of
a tunable Fabry-Perot interferometer in tandem with a monochromator. The scattered
light passes multiple times through the FPI before entering the monochromator. Hence,
the resolution and filtering rely on the finesse of the Fabry-Perot and the number of pas-
sages through it. Despite the high resolution spectra achieved, this technique requires
long integration times due to the low intensity of the signal [84, 132].
In recent years, Brillouin spectroscopy has been widely developed in terms of measuring
Brillouin frequency shifts in the range of 0.1 GHz to 1 THz with ultra-high resolution
of 0.1 GHz [59, 64, 66–69]. Advanced Brillouin spectrometers are based on the virtually
imaged phase array (VIPA) equipped with notch filters and on the scanning multiple
pass tandem Fabry-Perot interferometers (TFPI). Motivated by the fact that Brillouin
scattering offers the possibility to probe the mechanical properties of tissues and cells
without contact, progress was made in Brillouin spectroscopy [60, 61, 135].
However, the performance of the developed techniques highly depends on the optimiza-
tion of the optics and detectors to work at a fixed wavelength and frequency shift. This
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4.1. Double optical resonance-based experimental setup

intricate alignment limits the application of such Brillouin spectrometers in accessing
the confined acoustic modes in tunable optophononic cavities, and novel schemes need
to be developed [136].
Standard Raman spectroscopy techniques are used to study optical phonons with fre-
quencies in the THz range, which are spectrally far from the laser line. Although these
techniques are usually compatible with excitation sources over a broad optical wave-
length range, the stray-light rejection is insufficient to observe Brillouin modes with
frequencies as low as a few tens of GHz. Spectral filtering is also unsuitable due to
the small spectral shift between the Brillouin signal and the laser. Thus, experimental
techniques have been developed to access the acoustic modes of tunable optophononic
cavities with Brillouin spectroscopy [31, 64]. In particular we are interested in exper-
imental techniques based on the double optical resonance (DOR) of optical cavities
[97, 136, 137]. Under this condition, the spatial filtering of the Brillouin signal with a
single-mode fiber is achieved by exploiting the in-plane dispersion relation of the optical
cavity. In addition, the Brillouin signal is enhanced by the optical cavity. Such setups
are tunable and allow access to a wide range of acoustic frequencies.
In this chapter, we first discuss Brillouin spectroscopy experimental schemes based on
the DOR condition. Then, we introduce a DOR-based Brillouin spectroscopy scheme
to measure longitudinal acoustic phonons in the 20 GHz to 300 GHz range without op-
tical wavelength restriction in planar optophononic cavities. The experimental scheme
is based on the spatial filtering with a single-mode fiber permitted by the angular offset
between the incoming laser and scattered signal. In addition, we use a tandem of an
etalon and a double spectrometer to spectrally filter out the remains of the laser and
increase the resolution of the spectra. We carried out experiments on two samples pre-
senting topological acoustic interface modes. First, we tested the technique on a sample
presenting an acoustic mode at 300 GHz. Finally, we further exploit the technique by
measuring a more challenging sample with an acoustic mode at 18 GHz.

4.1 Double optical resonance-based experimental setup
In this chapter we present the DOR which we briefly described in Chapter 2. Due to
their difference in energy, the incident and scattered beams are resonant with the optical
cavity at different angles of incidence [46, 90, 97, 138]. As a consequence, the Brillouin
signal can be spatially filtered. By appropriately tuning the angle of incidence of the
incident laser θin, the Brillouin signal is scattered with normal incidence to the surface
of the sample. At high frequencies, the angle of incidence is large, resulting in a better
laser rejection than at lower frequencies. Due to the index of refraction of the cavity,
the angle between the incident field and the Brillouin field is small inside the sample,
resulting in an approximate backscattering configuration.
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θin
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laser

Figure 4.1: Experimental setup based on the DOR. The laser (blue) is incident on the sample with an
angle θin while the Stokes Brillouin signal (red) is scattered at normal incidence.

Figure 4.1 displays a basic experimental setup based on DOR where the Stokes Bril-
louin signal (red) is collected at normal incidence and the reflected laser beam (blue)
is blocked. Several works exploring the DOR in optical cavities to measure Brillouin
signal were presented in references [97, 136, 137, 139]. DOR-based experimental setups
enable enable the measurement of Brillouin modes which are otherwise inaccessible [97,
137]. By carefully tuning the angle of incidence of the laser defined as θin, the DOR
condition can be modified to measure different Brillouin modes. It is possible to selec-
tively enhance and collect the signal at a given frequency range. Fig.4.2, adapted from
reference [137], shows two Brillouin spectra measured with different DOR conditions.
The black spectrum is obtained by optimizing θin to access signals at 350 GHz scattered
at normal incidence, while for the red spectrum, θin is optimized so the Brillouin modes
at 700 GHz is scattered at normal incidence, resulting in a fundamental mode measured
with low intensity. The laser rejection strongly depends on the angle of incidence of the
laser.

Figure 4.2: Brillouin spectra measured on an adiabatic cavity with a DOR-based experimental setup,
reproduced from reference [137]. The black and red curves are measured with the DOR condition
optimized for signals at 350 GHz and 700 GHz respectively.

A similar approach to the one presented in this chapter has already been addressed
in reference [136]. The method exploits the DOR condition in the DBR-based optical
cavity to enhance Brillouin scattering and filter the reflected laser. The incident laser is
tuned with θin to remain in DOR while the signal is collected at normal incidence. In
the collection path, a small aperture is used to filter out the Brillouin signal from the
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4.2. Spatial filtering by coupling to an optical fiber

reflected laser. In addition, there is a tandem of a gas-pressure controlled FPI and a
triple spectrometer to access broadband acoustic frequencies [64]. With this technique,
the spectra have a high resolution of 0.3 GHz in the few tens to few hundred GHz range.
However, for modes at lower acoustic frequencies, the DOR condition still results in
insufficient stray-light rejection.
In the following section, we propose an experimental setup based on the spatial filtering
with a single-mode fiber permitted by the DOR condition to measure Brillouin signals
in optophononic planar cavities in a large range of acoustic frequencies.

4.2 Spatial filtering by coupling to an optical fiber
To increase the signal to noise ratio we implemented a single-mode fiber in the collection
path to spatially filter the Brillouin signal.

4.2.1 Experimental setup

Fig.4.3 displays a schematic of the developed experimental scheme. A collimated laser
beam from a tunable continuous wave (cw) Ti:Sapphire laser (M2 SolsTis) operating at
the wavelength in resonance with the fundamental optical cavity mode of the studied
sample is used as an excitation source. First, the laser is coupled in and out of a single-
mode fiber to obtain a beam with a well-defined Gaussian shape. The excitation laser
beam passes through a mirrorM mounted on a translation stage which allows controlling
the path of the incident beam and thus the angle of incidence θin. The incident laser is
focused on the sample with a spot diameter of 10 µm using a plano-convex lens (focal
length, f = 13 mm). The sample is placed at room pressure and room temperature.
The same lens is used to collect the scattered signal from the sample. The Brillouin
signal is collected by a single-mode fiber (Thorlabs 780HP, core diameter 4.5 µm) with
an input port consisting of an 11.17 mm focal length fiber coupler and NA of 0.13. The
single-mode fiber allows us to spatially filter the Brillouin signal to attenuate stray-light
elastically scattered in the setup and reject the reflected excitation laser. The signal
emerges from the fiber through a collimator before passing through a removable etalon
filter. Finally, it is analyzed with a double-stage spectrometer in additive mode (HRD
2 Jobin Yvon).
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Figure 4.3: Schematic of the Brillouin spectroscopy setup. A tunable cw Ti:Sapphire laser excites the
sample with an angle of incidence θin. The Brillouin signal is scattered at normal incidence through the
same lens and collected into a single-mode fiber, which allows us to spatially filter out the laser. Then,
it is sent into a double grating spectrometer through a tunable etalon. a Zoom-in on the excitation
scheme on the sample. The Brillouin signal (red) is scattered with a Gaussian shape. b Schematic of
the collection into the fiber.

The setup is designed in an approximated backscattering geometry with near-normal
excitation. The measurements are performed in DOR condition to enhance the Brillouin
scattering signal [90, 97, 99, 100]. We tune θin and the collection angle so that both
beams remain in resonance with the cavity mode. The collection along the surface
normal of the Brillouin signal resulting from the Stokes process is optimized by tuning
θin of the laser away from the surface normal (see panel a of Fig.4.3). On the contrary,
the configuration would be reversed in the case of anti-Stokes Brillouin scattering. For
an incoming beam at normal incident, the anti-Stokes signal would be scattered with
an angle θ. The double grating spectrometer is a combination of two monochromator
chambers connected through an intermediate slit in additive mode (1200g/mm ruled
grating). The slit between the two chambers allows us to choose the measured optical
wavelength range and is used to lower the amount of stray-light generated inside the first
chamber from the remaining excitation laser. The signal is then detected by a liquid
nitrogen-cooled charge-coupled device (CCD) at the exit of the spectrometer (LN 100BR
Detector Excelon Princeton instruments). The spectrometer provides an experimental
resolution of 7 GHz which is measured as full width at half maximum (FWHM) of
the laser source. We align the fiber port at the collection by mimicking the spatial
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4.2. Spatial filtering by coupling to an optical fiber

mode of the Brillouin signal with the reflected excitation laser. That is, the movable
mirror M is placed such that the laser reaches the sample at normal incidence and
the reflected laser is coupled into the collection fiber, as shown in panel a of Fig.4.4.
Then, mirror M is displaced such that the laser is again incident with an angle θin for
the spectroscopy measurement, resulting in Stokes Brillouin signal scattered at normal
incidence (see Fig.4.4b). For Brillouin emission at normal incidence, the scattered signal
has a Gaussian shape. Therefore, the overlap of the scattering pattern with the fiber
NA results in a large collection efficiency (see panel b of Fig.4.3).

lens

x y

z

lens

sample sample

MM
ya b

Figure 4.4: Schematic of the alignment process. a The reflected laser at normal incidence is coupled
into the collection fiber. b Mirror M is displaced to couple the resonant Brillouin scattering into the
collection fiber.

4.2.2 Measurements on a hybrid optophononic resonator

We employed the technique described in the previous section to study a sample designed
with the band inversion principle described in Chapter 3. The sample studied in this
section is a topological acoustic planar cavity presenting an acoustic interface mode
at 300 GHz embedded into an optical Fabry-Pérot cavity. The sample was grown by
molecular beam epitaxy on a (001) GaAs substrate by the team of Aristide Lemaître in
the C2N facilities. It is grown with a spatial gradient which leads to position-dependent
resonance wavelengths. The sample is made of two optical DBRs enclosing an optical
spacer with an optical path-length of 2.5λ at a resonant optical wavelength of around 910
nm. The optical spacer is composed of two concatenated acoustic DBRs with different
topological phases. The top (bottom) optical DBR is made of 14(18) periods of 65.1
nm/76.3 nm Al0.95Ga0.05As/Al0.1Ga0.9As. The acoustic top (bottom) DBR is formed by
16 periods (each) of 8.7 nm/8.4 nm (7.5 nm/10.0 nm) GaAs/AlAs layers, see Fig.4.5.
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Figure 4.5: a Schematic of the sample. A topological acoustic resonator is embedded in an optical
Fabry-Pérot cavity. Two acoustic DBRs with δtop = −0.1 and δbottom = 0.1 are concatenated. Dark
(light) colors represent GaAs (AlAs). b Spatial displacement pattern |u(z)|2 of the topological state at
260 GHz, 300 GHz and 335 GHz in the acoustic structure (A, B and C, respectively). c Optical profile
|E(z)|2 of the confined optical mode in the full structure.

We measured the optical reflectivity as a function of the mirror M position, see panel
a of Fig.4.6. We experimentally obtained the dispersion relation of the cavity. For each
reflectivity measurement, the coupling at the collection is optimized. The Brillouin
shift of 300 GHz acoustic phonons corresponds to a wavelength difference of ∼0.8 nm
between the laser and the scattered signal wavelengths (green arrow). For an excitation
angle θin = 13◦ (i.e. a 3 mm displacement of the mirror), the Brillouin signal at 300
GHz is scattered at near-normal incidence. Under this condition, the Brillouin signal is
scattered with a Gaussian shape defined by the optical mode. At this angle, the optical
cavity mode is centered around 910 nm, with FWHM of ∼0.4 nm, giving a Q-factor of
∼2300.
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Figure 4.6: a Measured in-plane dispersion relation when moving the mirror M . The vertical green
arrow show the acoustic shift between the laser and Brillouin scattering for 300 GHz phonons. b
optical reflectivity spectrum measured for an incident angle θin = 7◦, which corresponds to a 2 mm
displacement of the mirror.
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The sample is resonantly excited with a laser tuned at 909.45 nm with an incident
power of 16 mW measured before the lens. The spatial gradient of the sample under
study enables us to maximize the coupling of the scattering signal with the optical cav-
ity by changing the sample position. The combination of θin and sample position is set
to obtain the maximal spectral coupling of the excitation and scattered Brillouin signal
with the optical cavity mode. Fig.4.7 presents the experimental Stokes Brillouin signal
acquired with the fiber filtering technique described above without inserting an etalon
in the collection path. The integration time is 8 s. The peak at 300 GHz corresponds
to the first interface mode between the two acoustic DBRs. The two peaks at ∼260
GHz and 335 GHz correspond to modes propagating in the acoustic DBRs, as shown in
Fig.4.5 [31]. The peaks at lower frequencies <250 GHz correspond to acoustic modes
propagating in the full optical structure.The peak at 37 GHZ is related to the Brillouin
mode arising due to the scattering from the GaAs substrate. The peak at low frequency
<20 GHz is due to laser light diffracted by the edge of the slit inside the spectrometer.

A

B

C

Figure 4.7: Brillouin spectrum of a hybrid topological optophononic cavity measured in DOR condition
with θin optimized to enhance the mode at 300 GHz. The peak at 300 GHz corresponds to the interface
mode between the two acoustic DBRs.

4.3 Spectral filtering by an etalon filter
To increase the resolution of the Brillouin spectra and to further improve the laser
filtering, we implemented an etalon filter in the collection path.

4.3.1 Experimental technique

In the collection path, in front of the spectrometer, we can now insert an etalon (see
Fig.4.3). It has two primary purposes in our experiment: first, it increases the spectral
resolution beyond the resolution of the double spectrometer. Second, it improves the
rejection of scattered laser light [64, 136].
Before entering a double-grating spectrometer through a slit, the fiber-coupled signal
passes through a free-space removable etalon. Our setup consists of a double spectrome-
ter and a simple etalon in tandem which permits us to reconstruct a Brillouin spectrum
with high spectral resolution compared to using a single spectrometer. The etalon is
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mounted on a motorized rotation stage on a magnetic base and can be easily inserted
or removed. We rotate the etalon to vary the angle of incidence of the collected beam
and thus tune the transmission modes of the etalon. The Brillouin spectrum is a recon-
struction from a series of measurements where the modes of the etalon are tuned over
the full wavelength range. The broadband white light source is used to get the position
of the transmission lines of the etalon (see Fig.4.3).
The etalon has a linewidth of 2 GHz and a free spectral range (FSR) of 60 GHz at a peak
transmission of 83%. Panel a of Fig.4.8 shows a transmission spectrum of the etalon at
normal incidence acquired using a broadband white light source. The position of each
transmission line is extracted and marked with a blue dot. By rotating the etalon with
respect to the beam, the transmission lines move and span all the frequencies to cover
the FSR (see panel b of Fig.4.8, blue dots). To cover the full FSR, the rotation angle
of the etalon θetalon goes from normal incidence to θetalon = 1.8◦ with a step of 0.02◦.
The position of the transmission lines follows a parabola whit the change in θetalon, in
a similar way to that of the dispersion relation of an optical Fabry-Perot cavity. For
each transmission line in the spectrometer window, there is a corresponding parabola.
However, the displacement of the transmission line is limited by the resolution of the
spectrometer and pixel size of the detector. Hence, the displacement of the transmis-
sion lines progresses in a stepwise fashion. To smooth this behavior and increase the
resolution, each transmission line displacement is fitted with a parabola (see panel b of
Fig.4.8, red lines).
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Figure 4.8: a Transmission line spectrum measured using broadband white light at normal incidence.
Displacement of the etalon transmission lines (blue dots) as a function of θetalon fitted with parabola
(red lines).

Once the displacement pattern of the transmission lines of the etalon is known, the
Brillouin scattering signal is acquired in a similar way. Thus, for each position of the
transmission lines, a Brillouin spectrum is acquired through the etalon. Panel a of
Fig.4.9 shows a Brillouin spectrum acquired through the etalon at normal incidence
(black line) superimposed with the transmission lines of the etalon (dashed grey). Panel
b of Fig.4.9 displays the Brillouin spectra acquired for each angle θetalon. As soon
as they match with the transmission line of the etalon, Brillouin peaks appear in the
measured spectra. Note that the strongest peaks are not entirely rejected between two

73



4.3. Spectral filtering by an etalon filter

transmission lines of the etalon, particularly the Brillouin peaks at 40 GHz and 300 GHz
and intense stray-light close to the laser line.
When the transmission line of the etalon coincides with the laser line, the laser rejection
is not as efficient. Therefore the background intensity increases and we can see parasitic
peaks appearing corresponding to θetalon ∼ 0.75◦ in panel b of Fig.4.9.
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Figure 4.9: a Data analysis using an etalon (dashed grey) Transmission line spectrum measured using
broadband white light at normal incidence. (black) Brillouin signal acquired through the etalon at
normal incidence. (red) Lorentzian fit of the Brillouin spectrum. b Brillouin signal acquired through
the etalon as a function of θetalon.

The last step to obtain a reconstructed Brillouin spectrum is to process the acquired
data. The Brillouin spectra acquired through the etalon are fitted with Lorentzian
centered at each transmission line of the etalon (see red lines in Fig.4.9a). It allows us
to reduce the stray-light due to the laser reflection on the sample and the optics. Then,
the Lorentzian fits are integrated into areas with a window of 17 GHz centered on the
transmission lines. Each integral is then associated with a position of the transmission
line at a given angle. Therefore, for each transmission line, we can associate a piece of
the Brillouin spectrum. By concatenating all the pieces, we are able to reconstruct a
complete Brillouin spectrum, with higher resolution and laser filtering. This technique
is mainly limited by the stability of the signal over time. An intense stray-light would
increase the noise of the measurements making the processing of the data and the fitting
with Lorentzian curves difficult. Thus, the technique strongly relies on filtering the signal
with the single-mode fiber. Despite the limitations, the resolutions and stability are
sufficient to measure Brillouin spectra with frequencies in the few tens to few hundred
of GHz range.
The acquisition time over the full FSR ranges from 10 to 20 minutes. It depends on
the step-size, the duration of rotation of the mount, and the integration time for each
spectrum which is of a few seconds.
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4.3.2 Measurements on a hybrid optophononic resonator

The results presented here are obtained from the same sample as in section 4.2.2. The
sample is a topological acoustic planar cavity presenting a confined acoustic mode at
300 GHz embedded into an optical Fabry-Pérot cavity.
Figure 4.10 is a comparison between the spectrum obtained with only the fiber filtering
(grey dashed line) presented in Fig.4.7, with a spectrum obtained after reconstruction
of the etalon measurements (black dots) and a calculated Brillouin cross-section using
a photoelastic model and transfer matrix method for the structure embedded in GaAs.
The spectra measured with the etalon are obtained by integrating 0.3 s at each angle of
incidence of the etalon. The calculated spectrum (red solid line) in Fig.4.10 is convoluted
with a Gaussian function with a linewidth of 2 GHz to account for the linewidth of the
etalon to match the resolution of the experimental spectrum. The measured acoustic
modes with small oscillations in the experimental spectrum are consistent with the
calculations. The peak at 37 GHz also agrees well with our calculations. The weak
peak with a blue cross on top is a parasitic line from the laser. When the laser line is
transmitted through a transmission line of the etalon, the laser rejection is insufficient.
Therefore, parasitic lines corresponding to the increase of the background appear with
a spacing corresponding to the FSR of the etalon. The intensity of the background
reduces with the distance to the laser line, resulting in only one visible parasitic line.
At high frequencies, the etalon mainly contributes to increasing the resolution. The
improvement of the resolution is visible for the peak at ∼255 GHz where we are able to
resolve the shoulder of the peak. At lower frequencies ∼ 40 GHz, the primary role of the
etalon is the laser-filtering in order to obtain a better signal:background ratio (SBR).
Without the etalon, the signal:background ratio is 24, while it is 162 with etalon. It
results in an almost sevenfold improvement.
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Figure 4.10: Brillouin spectra. The calculated (red solid) and experimental (black symbols) Brillouin
spectrum with the etalon. The Brillouin spectrum measured without etalon (grey dashed line) is shown
with an offset of 0.25 for comparison. The peak at 60 GHz marked with a blue cross is parasitic light
from the laser.

4.4 Unveiling the 5−100 GHz range
We further exploit the experimental setup presented above by working with low acoustic
frequency in the tens of GHz range. We present the modification of the setup we
implemented to optimize the detection in DOR.

4.4.1 Angular filtering adjustments

Generally, for an incoming beam with an incident angle θin, the Stokes signal is scattered
with an angular offset θ from the incident beam, with θ ≤ θin. For phonons in the 18
GHz range, the energy shift is significantly smaller than in the previous case. Therefore,
while keeping θin = 13◦ constant, the outgoing signal has k⃗// ̸= 0 and is scattered with
an angle (θ < θin). Hence, the Brillouin signal is scattered with an annular shape, as
represented in panel a of Fig.4.11.
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Figure 4.11: Schematic of the Brillouin spectroscopy setup. A tunable cw Ti:Sapphire laser excites
the sample with an angle of incidence θin. The Brillouin signal is scattered with an angular shift θ
through the same lens and collected into a single-mode fiber, which allows us to spatially filter out
the laser. Then, it is sent into a double-grating spectrometer through a tunable etalon. a Zoom-in on
the excitation scheme on the sample. The Brillouin signal (red) is scattered with a ring-like shape. b
Schematic of the collection into the fiber. Only a part of the Brillouin annular shape is collected.

As a result of the annular shape induced by the small angular offset θ < θin, the
distance between the reflected laser beam and the collected Brillouin signal can be maxi-
mized. The scattered signal is collected on the opposite of the reflected laser beam, thus
on the same side of the normal as the incoming laser beam (see experimental setup in
Fig.4.11). This results in a better rejection of the reflected laser beam. In this configura-
tion, the angular filtering selects a circular section from the annular Brillouin radiation
pattern (see inset b) with a NA= 0.13× 11.17/13 = 0.11 . For the experimental quality
factor and angle of incidence, we estimate a maximum Brillouin collection efficiency of
14% inside the fiber, which corresponds to the percentage of the ring selected with the
collection fiber. Similarly to the previous case, the collection fiber is aligned by mim-
icking the spatial mode of the Brillouin signal with the reflected excitation laser. The
laser is injected under an angle of incidence θ−θin and the reflected laser is coupled into
the collection fiber (see panel a of Fig.4.12). Then, by translating the mirror M back
such that the laser is again incident at θin = 13◦, we collect Stokes Brillouin signal with
an angle θin − θ (see panel b of Fig.4.12). A careful pre-alignment of the objective lens
and mirror M ensures that the laser focus maintains its position on the sample while
translating mirror M .
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Figure 4.12: Schematic of the alignment process. a The reflected laser coupled into the collection fiber
for laser incident at θ − θin. b Mirror M is displaced to couple the resonant Brillouin scattering into
the collection fiber.

Note that, in order to realize the DOR condition, we tune θin by displacing the mirror
M . For ∼18 GHz phonons, it is also possible to rotate the sample, keeping the mirror M
at the zero-position. Consequently, both the incident laser and the scattered Brillouin
signal would pass close to the center of the lens, avoiding chromatic aberrations. This
configuration is shown in Fig.4.13.

lens

sample

M

θin

Figure 4.13: Schematic of the DOR-based setup with the sample rotated. The resonant Stokes Brillouin
scattering is coupled into the collection fiber.

4.4.2 Experimental results on a topological optophononic cavity.

The sample studied in this section is a topological optophononic cavity presenting colo-
calized optical and acoustic interface modes. The design of this sample is discussed in
section 3.3. The sample is composed of two DBRs concatenated to confine simultane-
ously an acoustic interface mode at 18.3 GHz and an optical interface mode at ∼920
nm. The DBRs are formed by 14 (16) periods of 65.1 nm/231.1 nm (195.5 nm/77.0
nm) GaAs/Al0.95Ga0.05As layers for the top (bottom). The schematic of the structure is
displayed in panel c of Fig.4.14. The quality factor of the optical cavity is around 2300.
Fig.4.14a displays the measured dispersion relation of the optical cavity. The Brillouin
shift of 18.3 GHz acoustic phonons associated with a difference in optical wavelength of
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Chapter 4. Brillouin spectroscopy in planar multilayered optophononic microcavities

∼0.05 nm is identified with a green arrow in the dispersion relation. Due to the small
angular shift induced by the wavelength detuning, the scattered signal is no longer col-
lected at normal incidence to satisfy the DOR condition in the case where θin = 13◦.
Panel b of Fig.4.14 shows the acoustic reflectivity for θin = 2.3◦. For the Brillouin spec-
troscopy measurements, the sample is resonantly excited at a laser wavelength of 924.72
nm, with an excitation power of 6.3 mW. The excitation laser is kept with the same
angle of incidence, θin = 13◦. As a consequence, the Brillouin signal is scattered with
an annular shape as shown in Fig.4.3a. The signal is collected with k⃗// in the opposite
direction from the reflected laser, increasing the distance between the reflected laser
and the signal collected into the fiber. This enables better fiber-based angular filtering.
Even though the Brillouin signal is scattered with an annular shape, only a small part
of the ring is collected. The experimental Brillouin spectrum presented here is obtained
with the experimental configuration represented in Fig.4.13. The transmission lines of
the etalon are scanned over the full FSR using a step of 0.01◦.
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Figure 4.14: a Measured in-plane dispersion relation when moving the mirror M . The green arrow
indicates the wavelength shift induced by acoustic phonons at 18.3 GHz. b Optical reflectivity spectrum
measured with an objective lens with f = 100 mm. for an incident angle θin = 2.3◦. c Schematic of the
sample. Two GaAs/AlAs DBRs with δtop = −0.5 and δbottom = 0.5 are concatenated. The topological
resonator simultaneously confine light and sound at the interface.

Fig.4.15 displays the measured Stokes Brillouin spectrum without and with etalon
in the collection path (grey dashed line and black dots, respectively), together with the
calculated spectrum convoluted with a Gaussian of 2 GHz linewidth (red solid line).
The spectrum without etalon is obtained after integrating 10 s, while each spectrum
measured with the etalon is obtained by integrating 4 s. The peak at 18.3 GHz is
the first interface mode we observe in DOR condition. The peaks at 56 and 90 GHz
correspond to the third and fifth harmonic of the acoustic interface mode. The acoustic
displacement at the interface for the three acoustic harmonics is displayed in an inset in
Fig.4.15. Similarly to the previous sample, the peak at 37 GHz is related to the Brillouin
mode of the GaAs substrate. Likewise, the parasitic line coming from the increase of the
background when the laser line crosses the transmission line of the etalon is identified at
60 GHz with a blue cross on top. The calculated spectrum obtained for the structure is in
complete agreement with the experimental result. For the Brillouin spectrum acquired
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without etalon (grey dashed line), the peak at 18.3 GHz is already visible due to the
efficiency of the fiber-filtering scheme. However, the peak is slightly shifted due to the
presence of the laser background. In addition, an intense peak appears close to the laser
line at a frequency < 10 GHz. This peak is due to laser light diffracted by the edge of
the slit inside the spectrometer. When we insert the etalon in the collection path, the
laser filtering before entering the spectrometer is improved. Therefore, the background
and the peak at low frequency disappear, improving the contrast of the mode at 18.3
GHz. The SBR for the peak at 18.3 GHz resulting in SBR = 0.65 without and SBR =
2.53 with etalon, i.e., in a fourfold improvement.
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Figure 4.15: The experimental Brillouin spectra without (grey dashed line with an offset of 0.25) and
with etalon (black symbols) along with the calculated spectrum (red solid). The peak at 63 GHz marked
with a blue cross is parasitic light from the laser. Inset: The acoustic displacement for the 1st, 3rd and
5th harmonic at the interface.

4.5 Conclusions

We experimentally evidenced the presence of acoustic interface states in topological
cavities by means of Brillouin spectroscopy. The technique developed enables access
to acoustic modes ranging from 18 to 300 GHz. We benefit from the double optical
resonance in multilayer optical cavities to filter out the laser with a single-mode fiber
and improve the signal-over-noise ratio. This technique shows its full potential at lower
acoustic frequencies. In that case, both the laser and the Brillouin signal are tuned with
an angle of incidence. In this way, we can achieve better filtering of the signal. Moreover,
the use of an etalon before the spectrometer enables to extinguish most of remaining
stray-light and to increase the resolution of the Brillouin spectra to a resolution of ∼2
GHz adapted to our experiment. The use of the etalon improves the extinction ratio by
a factor of seven at 40 GHz and a factor of four at 18.3 GHz.
The signal/noise ratio could be further improved by using annular apertures similar
to the work presented in reference [136]. Moreover the resolution could be enhanced
by changing the traditional Fabry-Perot etalon at the collection with a notch filter, a
gas-pressure controlled Fabry-Perot interferometer or a Michelson interferometer [64,
140]. In addition, the reconstruction of the Brillouin spectrum could be optimized by
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always integrating the signal convoluted with the white light spectrum around the fixed
position of the Brillouin peaks.
The high resolution and filtering obtained with this method could also be valuable to
probe any change in the density of acoustic modes by probing the phonon sideband
of quantum emitters coupled to an acoustic cavity. Hence, the proposed experimental
scheme provides an accessible and versatile platform for exploring cavity optomechanics
and phonon lasing at broadband acoustic frequencies.
This approach could also be applied to filter out the signal in forward Brillouin scat-
tering. However, this method is limited to measurements on planar cavities due to the
strong modification of the optical dispersion relation of the cavity in three-dimensional
objects. Moreover, there is a limitation imposed by the light diffraction by micromet-
ric sized objects. An experimental method based on the diffraction pattern mismatch
between the reflected laser and Brillouin scattering to study micropillar resonators is
presented by Esmann et al. in reference [31]. This technique enables measuring high
frequency acoustic modes of 3D micropillars (∼ 300 GHz). In the next chapter, we de-
velop an experimental strategy to access 18 GHz confined acoustic modes in micropillars
with Brillouin spectroscopy based on polarization filtering.

Main contributions:

• Implementation of spatial filtering with a single-mode fiber in DOR-based Brillouin
spectroscopy setup to measure 10-500 GHz phonons

• Measurement of confined acoustic modes at 18 GHz in planar optophononic cavi-
ties with Brillouin spectroscopy
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Chapter 5

Optophononic Fabry-Perot resonators
based on 3D micropillars

By means of Brillouin spectroscopy adapted to planar systems, we have studied the con-
finement of high-frequency longitudinal acoustic phonons in one-dimensional GaAs/AlAs
multilayered devices. The same planar structures can be etched into three-dimensional
structures with lateral sizes of a few micrometers. These micropillar resonators can
work both in the optical and acoustic regime resulting in a promising platform to study
optomechanics at high frequencies [30, 50]. In this chapter, we present a method to mea-
sure Brillouin scattering signal at frequencies of a few tens of GHz in these optophononic
micropillars. A method for measuring Brillouin scattering signal at frequencies ∼300
GHz in micropillars has already been presented in reference [31]. The technique is based
on the diffraction pattern mismatch between the reflected laser and Brillouin scattering
to filter the signal. However, the laser rejection is not sufficient for lower frequencies. So
far, measurement of confined acoustic modes at frequencies ∼20 GHz in micropillars has
only been achieved through pump-probe measurements [30, 65]. We propose an experi-
mental scheme based on the control of polarization of the Brillouin scattering signal to
access the confined acoustic mode with frequencies in the 20 GHz range in micropillars.
The polarization control in spontaneous Brillouin scattering has seldom been explored
in polarization-sensitive devices. Only recently, the control of the polarization state in
stimulated Brillouin scattering has been reported in birefringent photonic crystal fibers,
polarization maintaining fibers, and nanofibers [114, 141, 142].
In this chapter, we show how we can control the polarization selection rules of sponta-
neous Brillouin scattering in micropillar resonators with elliptical cross-sections. The
principle we exploit here is similar to birefringent materials for which light can suffer an
energy-dependent rotation of polarization determined by the thickness of the material
[143, 144]. In the case of micropillars, the rotation of polarization is determined by the
ellipticity of the cross-section.
We experimentally and theoretically explore the polarization dependence of Brillouin
scattering, to reach a situation where the Brillouin signal and the reflected laser have
different polarization states. In this way, almost background-free spontaneous Brillouin
scattering spectra can be efficiently measured in a cross-polarization scheme.
The optical properties of micropillars with elliptical cross-sections have already been
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5.1. 3D optical confinement in micropillars with circular cross-sections

extensively studied [145, 146]. First, we introduce the optical properties of GaAlAs
micropillars with circular and elliptical cross-sections. Then, we discuss how we could
bend the Brillouin scattering selection rules in polarization-sensitive devices. Finally, we
present experimental results and simulations obtained by optimizing different parame-
ters, such as the laser wavelength, the ellipticity of the cross-section and the polarization
state of the laser.

5.1 3D optical confinement in micropillars with circu-
lar cross-sections

In this section, we present a theoretical model to describe the three-dimensional confine-
ment of light in Fabry-Perot micropillars. This model allows us to explain the mechanics
of three-dimensional optical confinement in cylindrical resonators with a circular cross-
section. This model is fully explained in reference [147].

5.1.1 Guided optical modes in micropillars with circular cross-
sections

/2
/4
/4

GaAs
Al0.95Ga0.05As
Al0.01Ga0.90As

Substrate

x 25

x 29

(e)

mirror

wave-guide GaAs spacer

x y

z

DBR

Figure 5.1: a Infinite waveguide with a cylindrical cross-section. We then insert two mirrors at the end
of the cylindrical structure. b Schematic diagram of a micropillar.

First, let us consider an infinite dielectric GaAs waveguide with a circular cross-section.
To obtain the confined optical modes, the Maxwell equations are solved in a cylindrical
basis. The expansion in circular coordinates is given by:(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂ϕ2
+ (k2 − β2)

){
Ez

Hz

}
= 0, (5.1)

where k is the wavevector and β is the propagation constant along the cylinder axis.
The solutions for the components of the electric and magnetic fields are given by the
Bessel functions [147]. For each mode of frequency ω, we can then associate an effective
refractive index of the guided mode neff = βc

ω
, where c is the speed of light in vacuum.

By applying appropriate boundary conditions, one can determine the set of discrete
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Chapter 5. Optophononic Fabry-Perot resonators based on 3D micropillars

modes propagating in the waveguide.
We introduce the 3D confinement by "cutting" the waveguide and adding perfect metal-
lic mirrors at both ends separated by the distance L. The interferences between counter-
propagating waves, with the same phase and spatial profile, reflected on the mirrors
produce a confined mode in between the two mirrors. The resonance condition is the
one of a Fabry-Perot cavity, that can be expressed as

ωc =
pπc

neffL
, (5.2)

where p is an integer number characterizing the longitudinal order of the confined mode.
For Fabry-Perot micropillars where the metallic mirrors are replaced by distributed
Bragg reflectors, the above description is still valid because the transverse spatial profiles
are the same in GaAs and in AlAs waveguides. In the lateral direction, the confinement
is thus similar to what was previously discussed. In the vertical direction, the confine-
ment is controlled by the Fabry-Perot cavity as discussed in Chapter 1. The optical
modes decay along the z direction. The energy of the confined mode depends on the
radius of the micropillar, increasing when the radius decreases [50, 147].

Note that the micropillars discussed in this chapter simultaneously confine light and
sound with acoustic frequencies ∼18 GHz. The colocalization of the acoustic and op-
tical fields in the vertical direction is discussed in Chapter 1. The confinement of the
optical field in the lateral direction is due to the difference between the optical indices
of the micropillar and vacuum. Similarly, the radial confinement of the acoustic fields
is due to the difference in acoustic impedances between both media [50, 148].

5.1.2 Optical response

We are interested in the optical response of a pillar microcavity. In particular we are
interested in the reflected field. The total reflected field can be interpreted as an in-
terference between the input light reflected on top of the micropillar and the light that
entered the cavity and is emerging from the top mirror. It is described by the reflection
coefficient [149]:

r = 1− 2ηtop
1

1− 2iω−ωc

κ

(5.3)

where ω is the energy of the incident beam, ωc is the energy of the cavity mode, κ is
the cavity damping rate including the sidewall losses κs and leakage from the top and
bottom DBRs κt/b (κ = κs + κt + κb) [150]. The output coupling through the top DBR
is defined by ηtop = κtop/κ. We assume a perfect input coupling, i.e., all the light is
injected inside the cavity. Since the reflectivity is a complex number, both the phase
and amplitude of the reflected beam are modified by the reflection from the micropillar.
Experimentally, we only measure the amplitude of the reflectivity coefficient:

R = |r|2 =
∣∣∣∣1− 2ηtop

1

1− 2iω−ωc

κ

∣∣∣∣2 . (5.4)

85



5.1. 3D optical confinement in micropillars with circular cross-sections

The minimum of reflectivity is reached when the wavelength of the input light is equal
to the cavity resonant wavelength (ω = ωc). The minimum is then given by: Rmin =
|1− 2ηtop|2.
We experimentally measured the reflectivity of a micropillar with circular cross-section
using a home-built reflectometer. The spectrum is obtained by scanning a continuous
wave laser (M2 SolsTiS) over a wavelength range covering the cavity mode. Panel a
of Fig.5.2 shows the measured reflectivity on a Fabry-Perot micropillar with a circular
cross-section of diameter of 2.4 µm. The measured reflectivity (dots) is fitted with the
equation 5.4 (solid line). The minimum of reflectivity is obtained at λ = 899.94 nm.

The micropillars used for the experiments are etched out of a planar optophononic
cavity by optical lithography and inductively coupled plasma etching. A SEM image of
a micropillar with a circular cross-section is displayed in panel c of Fig.5.2. The sample
under study is grown on a (001)-oriented GaAs substrate by molecular-beam epitaxy. It
consists of an optophononic cavity made of two DBRs enclosing a resonant spacer with
an optical path length of λ/2 at a resonance wavelength of around λ ∼ 900 nm. The
top (bottom) optical DBR is formed by 25 (29) periods of Ga0.9Al0.1As/Ga0.05Al0.95As
(λ/4, λ/4) bilayers, see panel b of Fig.5.2. They act as an optical resonator for near-
infrared photons and as an acoustic resonator for longitudinal acoustic phonons around
18 GHz, as described in section 1.4. The micropillars confine an optical mode with
typical Q-factors ∼11 000. The samples were fabricated in the clean room facilities of
C2N, involving the group of Aristide Lemaître for the growth and the group of Isabelle
Sagnes for the etching.
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Figure 5.2: a Measured (dot) and fitted (solid line) optical reflectivity of a micropillar with circular
cross-section of diameter of 2.4 µm. b Schematic of the vertical layer structure of the micropillar with
two DBRs enclosing a resonant spacer. c SEM image of a micropillar with a circular cross-section.
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5.2 3D optical confinement in micropillars with ellip-
tical cross-sections

We introduce micropillars with elliptical cross-sections to mimic birefringent materials
that scatter light with an energy-dependent change of polarization. Thus, we can control
the polarization of the reflected beam.

5.2.1 Guided optical modes in micropillars with elliptical cross-
sections

To describe the confined modes in GaAs micropillars with an elliptical cross-section, we
first solve the vector Helmholtz wave equation obtained from Maxwell’s equations for a
waveguide in elliptic coordinates. The development is fully explained in references [151]
and [152]. The coordinates are described by ξ and ϕ as depicted in Fig.5.3. We can
introduce the elliptic coordinates:

x = ρ cosh (ξ) cos (ϕ),

y = ρ sinh (ξ) sin (ϕ),
(5.5)

where ρ depends on the eccentricity of the ellipse ec as ρ = eca =
√
a2 − b2, with

a = ρ cosh(ξ) and b = ρ sinh(ξ). a and b describe the semimajor and semiminor axes of
the ellipse.
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Figure 5.3: Elliptic coordinates.

In the case of a field propagating with a wavevector k along the z direction, the
expansion of the wave equation in elliptic coordinates is given by(

1

ρ′(ξ, ϕ)

(
∂2

∂ξ2
+

∂2

∂ϕ2

)
+ (k2 − β2)

){
Ez

Hz

}
= 0, (5.6)

where β is the propagation constant along the cylinder axis. The differential area element
in elliptic coordinates is defined by ρ′(ξ, ϕ) = ρ2

2
(cosh(2ξ)− cos(2ϕ)). The solutions for
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5.2. 3D optical confinement in micropillars with elliptical cross-sections

both Ez and Hz can be expressed with the Mathieu functions, which consist of angular
and radial parts. Inside the waveguide, the solutions of the angular part are expressed
as a function of the angular Mathieu cosine and sine functions, noted cem(ϕ; q) and
sem(ϕ; q), respectively. They are elliptic analogs of the sine and cosine functions that
are the angular solutions in systems with circular symmetry. The radial solutions are
given by the modified/radial Mathieu even and odd functions, Cem(ξ; q) and Sem(ξ; q)
respectively. When the cross-section tends to be circular, the Mathieu functions can be
expanded into a series of Bessel functions. The fields inside the waveguide are:

Ez(ξ, ϕ) =
∞∑

m=0

amSem(ξ; q)sem(ϕ; q),

Hz(ξ, ϕ) =
∞∑

m=0

bmCem(ξ; q)cem(ϕ; q),

(5.7)

where am/bm are coefficients to be determined. The solutions depend on q = (k2 −
β2)ρ2/4, which depends on the eccentricity of the waveguide. When the eccentricity
increases, that is, when the ellipse flattens, the splitting between the even and odd
modes increases. In the case of elliptical micropillars, this leads to the presence of two
fundamental optical modes for which the splitting depends on the eccentricity.
The description of guided modes in a waveguide with an elliptical cross-section is defined
as a function of the eccentricity of the ellipse. In the case of micropillars, the cross-section
is usually described in terms of ellipticity.

5.2.2 Polarization response of an elliptical micropillar cavity

The eccentricity of a micropillar cavity induces a splitting of the fundamental optical
cavity mode into two optical modes with orthogonal linear polarizations |H⟩ and |V ⟩
aligned with the minor/major axis of the ellipse, as shown in Fig.5.4, whose energies are
ωc,H and ωc,V , respectively.
We define the ellipticity of a micropillar as e =

√
m
n
− 1 (not to be confused with the

eccentricity) [145], where m and n are the major and minor axis lengths of the elliptical
cross-section. Figure 5.4 shows an SEM image of a micropillar with an elliptical cross-
section where the two axes are indicated. The reflectivity coefficient depends on the
considered axis, yielding:

rH = 1− 2ηtop,H
1

1− 2i
ω−ωc,H

κH

(5.8)

rV = 1− 2ηtop,V
1

1− 2i
ω−ωc,V

κV

(5.9)

If one considers an incoming laser beam with polarization amplitudes bin,H and bin,V
along |H⟩ and |V ⟩, respectively, the input polarization state is defined as:

|ψin⟩ =
1√

|bin,H |2 + |bin,V |2
(bin,H |H⟩+ bin,V |V ⟩ (5.10)
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The associated intracavity field as:

|ψcav⟩ =
1√

|aH |2 + |aV |2
(aH |H⟩+ aV |V ⟩ (5.11)

And the reflected field as:

|ψrefl⟩ =
1√

|brefl,H |2 + |brefl,V |2
(brefl,H |H⟩+ brefl,V |V ⟩ (5.12)

In equations 5.10 to 5.12, bin,H/V , aH/V and brefl,H/V are the polarization dependent
amplitudes of the incoming, intracavity and reflected laser fields, respectively. In equa-
tion 5.11, the intracavity field aH/V ∝ bin,H/V

1

1−2i
ω−ωc,H/V

κH/V

where ω is the input en-

ergy, ωc,H/V are the polarization-dependent cavity resonant energies and κH/V are the
polarization-dependent overall cavity damping rates [150, 153]. The reflected fields
in equations 5.12 are obtained using the standard input-output equations brefl,H/V =
bin,H/V +

√
κt,H/V ×aH/V [153, 154]. brefl,H/V represents the reflected field as an interfer-

ence between the input light directly reflected by the top DBR and the light emerging
from the cavity in the |H⟩/|V ⟩ polarization states, respectively.

Δλ

m
n

5 µm

∣V⟩

∣H⟩

a b

Figure 5.4: a SEM image of an elliptical micropillar. m and n are the major and minor axis of the
structure, respectively. b Measured (dots) and fitted (solid line) optical reflectivity of an elliptical
pillar with ellipticity e = 0.29, with m = 4 µm. Inset, the two fundamental optical eigenmodes are of
orthogonal linear polarizations |V ⟩ and |H⟩, polarized along the two axes of the cross-section. The blue
(red) line corresponds to |H⟩ (|V ⟩).

We experimentally measured the polarization-resolved reflectivity of a micropillar
with an elliptical cross-section using a home-built reflectometer. The micropillar is
made of two DBRs enclosing a resonant spacer with an optical path length of λ/2 at a
resonance wavelength of around λ ∼ 900 nm. The top (bottom) optical DBR is formed
by 25 (29) periods of Ga0.9Al0.1As/Ga0.05Al0.95As (λ/4, λ/4) bilayers. The spectra are
obtained by illuminating the micropillar with a broadband light source. The polarization
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5.2. 3D optical confinement in micropillars with elliptical cross-sections

of the incident beam is controlled by a quarter and a half waveplates. Panel b of
Fig.5.4 displays the measured reflectivity spectra (dots) of a micropillar with an elliptical
cross-section with e = 0.29 and m = 4 µm. The blue and red spectra are acquired
with the incident beam H - and V -polarized along the minor and major axes of the
micropillar, respectively. The minima of reflectivity are obtained at λH = 901.158 nm
and λV = 901.247 nm and have optical quality factors ∼12000 and ∼11000, respectively.
The two optical modes have a wavelength shift ∆λ = 0.89 nm. The spectra are fitted
with equations 5.8 and 5.9 (solid line).

5.2.3 Polarization state of the reflected beam

Representation of the polarization on the Poincaré sphere

An electromagnetic plane wave can be described by the projection of its electric field
on the horizontal/vertical (H/V ) basis. The resultant complex numbers EH and EV

indicate the amplitude and phase of the electromagnetic wave. The choice of the basis
is arbitrary, and it is possible to choose a diagonal/anti-diagonal or left/right basis.
Here, we choose it to be aligned with the minor and major axes of the elliptical pillar.
The polarization state of the electric field can be represented on the Poincaré sphere
[155]. We use it to represent the polarization state of the reflected beam and the Brillouin
scattering signal. It allows us to represent any coherent or incoherent superposition of
polarization states. Pure polarization states are vectors pointing from the center to the
surface of the sphere. For incoherent superposition of polarizations, the vector does
not reach the surface of the sphere [156]. Linearly polarized states correspond to the
"equator" of the sphere, while circular left and right polarization states correspond to
the "South" and "North" poles of the sphere. Orthogonal states of polarization, as |H⟩
and |V ⟩ or |D⟩ and |A⟩, are opposite vectors.

2ϕ

2θ

Figure 5.5: Pure polarization state represented on a Poincaré sphere. θ is the ellipticity angle and ϕ is
the orientation angle. V, H, D, A, L, R represent the vertical, horizontal, diagonal, anti-diagonal, left
and right polarization states, respectively.

We define the Stokes parameters to describe the polarization state of the optical
field. They are the projection of the electromagnetic field on the HV , DA and LR axes
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on the Poincaré sphere. In the H/V basis, the Stokes parameters are [157, 158]:

SHV =
|EH |2 − |EV |2

I

SDA =
2Re(EHE

∗
V )

I

SRL =
−2Im(EHE

∗
V )

I

(5.13)

The normalization parameter I is the total intensity, I = |EH |2+|EV |2. The polarization
state is characterized by two angles θ and ϕ, represented on the Poincaré sphere. The
ellipticity of the polarization state is defined by θ. For θ = 0◦ we obtain a linear state,
while for θ = 45◦ we obtain a circular state. ϕ defines the orientation of the polarization
state, where ϕ = 0◦, 45◦ and 90◦ correspond to |H⟩, |D⟩ and |V ⟩, respectively.

Simulations using the Jones Matrices formalism

The polarization state of the reflected beam is simulated using the Jones matrices for-
malism [157]. The calculation of the polarization state is based on the experimental
scheme. The input polarization state is initialized with a vertical linear polarizer. Then,
a quarter and a half waveplates control the polarization state of the incident beam on
the micropillar. The polarization state of the incident beam in the H/V basis is given
by:

|ψin⟩ =M(−θ2)Wλ/2M(θ2)×M(−θ1)Wλ/4M(θ1)× PV × |ψ0⟩, (5.14)

where |ψ0⟩ is a random polarization. The Jones matrices of the waveplates (Wλ/2 and
Wλ/4), the polarizer (PV ) and the rotation matrix (M(θ)) are given in Appendix B. The
polarization of the reflected beam is given by:

|ψrefl⟩ =Msample × |ψin⟩ (5.15)

To simulate the spectrum of light with rotation of polarization, we measure in the
orthogonal basis:

|ψmeas⟩ = PH ×M(θ1)Wλ/4M(−θ1)×M(θ2)Wλ/2M(−θ2)× |ψrefl⟩. (5.16)

Polarization rotation of the reflected laser

We consider a diagonal incident field |ψin⟩ = 1√
2
(|H⟩+|V ⟩) = |D⟩ and detect |⟨ψdet|ψrefl⟩|2.

We measure the antidiagonal component of the signal, |ψdet⟩ = |ψin⟩ = |A⟩, collecting
the light in a cross-polarized scheme. The collected signal corresponds to light with a
polarization component along |A⟩, i.e., that has undergone a rotation of polarization.
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Figure 5.6: a, b Calculated phase and amplitude, respectively, of the H (blue) and V (red) optical
modes. c Intensity of the reflected field projected along |A⟩ as a function of wavelength. d Poincaré
sphere displaying the calculated wavelength-dependent polarization state |ψrefl⟩ of the reflected laser.

The calculated amplitudes and phases of the reflection coefficients for the H- and
V -polarized optical cavities of a micropillar with e = 0.41 are plotted in panels a and b
of Fig.5.6. When the wavelength is swept across the cavity modes, there is a phase shift
of the H mode centered on its resonant wavelength, followed by a phase shift of the V
mode. For a laser tuned in the optical modes, the components of the fields projected on
|H⟩ and |V ⟩ will get reflected with different reflectivity coefficients rH and rV inducing a
rotation of polarization of the reflected state. When the wavelength of the incoming laser
is far-detuned from the cavity modes, the beam cannot enter the cavity and therefore,
there is no cavity-induced polarization rotation, resulting in the rotated signal being
nearly zero. Panel d of Fig.5.6 shows the polarization state of the reflected field as
a function of wavelength on a Poincaré sphere. We observe a wavelength-dependent
rotation of polarization of the reflected field with a trajectory covering the full sphere,
starting from |D⟩ when the laser is outside the cavity modes. The spectrum on panel c
of Fig.5.6 displays the intensity of the reflected field projected along |A⟩ as a function of
wavelength |⟨A|ψrefl⟩|2, which corresponds to the rotation of polarization of the reflected
field. The two amplitude maxima correspond to wavelengths for which the polarization
of the reflected laser is the closest to anti-diagonal.

5.2.4 Incidence of the micropillar ellipticity on the optical prop-
erties

Optical mode splitting

As mentioned in Sect.5.2.1, the cross-section ellipticity of the micropillars controls the
splitting between the H and V -polarized optical modes. By changing the ratio between
the two axes, m and n, of the micropillar we can engineer the splitting between both
optical modes. Figure 5.7 shows the measured mode splitting of the micropillar with
different ellipticities (e =

√
m/n − 1), with the major axis length kept constant. The

splitting between the two optical modes is proportional to the micropillar ellipticity.
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Figure 5.7: Measured evolution of the optical mode splitting as a function of the ellipticity. The major
axis length is kept constant m = 4 µm, and only the minor axis length is varying from 1.6 µm to 4 µm.

Polarization state of the reflected beam

We theoretically demonstrate that by changing the mode splitting, the rotation of po-
larization encountered by the reflected beam for diagonal incident polarization (|ψin⟩ =
|D⟩) is modified. Figure 5.8 displays the calculated reflectivity amplitudes (middle
panel) and phases (top panel) for optical modes with a splitting going from 0.005 nm
(panel a) to 0.60 nm (panel f). The bottom panel shows the spectra of the reflected
laser projected on the anti-diagonal axis |⟨A|ψrefl⟩|2, i.e., the reflected laser with rota-
tion of polarization . For cases a to c, the spectra with rotation of polarization show
single peaks, corresponding to the maximum rotation of polarization toward |A⟩, equally
detuned from the H and V optical cavity modes. The maximum intensity centered be-
tween the two optical modes can be explained by the fact that we obtain both equal
amplitudes for rH and rV , and opposite phases. In the particular case of panel c of
Fig.5.8, the polarization is maximally rotated to the anti-diagonal state. When the
mode splitting is smaller (panels a and b), the polarization of the reflected beam does
not reach anti-diagonal when it is equally detuned from both modes, hence the lower
amplitude.
For the cases with higher ellipticity (panels d to f), ∆ϕ = |ϕ(rH) − ϕ(rV )| decreases
for a wavelength equally detuned from the H and V -polarized cavity modes. There-
fore, between the two optical modes the polarization state of the reflected laser tends
to turn back to diagonal. As a result, the spectra of the reflected field with rotation of
polarization present two peaks centered on the resonant wavelength and with linewidths
similar to those of the optical cavity modes. The Poincaré sphere in panel g displays
the polarization state of the reflected beam for a wavelength centered between the two
optical modes as a function of the mode splitting. We can clearly see that, when the
mode splitting increases, the polarization state of the central wavelength goes around
the Poincaré sphere following the DRAL meridian and crossing |A⟩ when ∆λ ≈ 0.055
nm.
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Figure 5.8: Top panel: Simulated reflectivity phase of the H and V optical modes as a function of the
mode splitting ∆λ. Middle panel: Simulated reflectivity amplitude of the H and V optical modes as a
function of the mode splitting. Bottom panel: Calculated spectra of the reflected laser with rotation
of polarization. The incident laser is polarized along |D⟩, while the detection is along |A⟩. The mode
splitting increases from a to f. g Polarization state of the reflected beam plotted on a Poincaré sphere
when equally detuned from both optical modes.

We experimentally measured the influence of ellipticity on the polarization state of
the reflected beam. We studied a sample consisting of arrays of GaAs/AlAs micropillars
with different elliptical cross-sections (see panel a of Fig.5.9). The micropillars are made
from Fabry-Perot cavities with two DBRs enclosing a resonant spacer with an optical
path length of λ/2. The structure is described in section 5.1.2.
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Figure 5.9: a SEM image of an array of micropillars with various sizes and ellipticities. b Schematic of
the vertical layer structure of the micropillar with two DBRs enclosing a resonant spacer.

We measured the projection of the reflected field |ψrefl⟩ on the anti-diagonal polar-
ization axis |⟨A|ψrefl⟩|2 for three micropillars presenting ellipticities e = 0.29, e = 0.41
and e = 0.58 with m = 4 µm kept constant, i.e. corresponding to the minor axis length
n = 2.4 µm, n = 2 µm and n = 1.6 µm, as shown in panels a, b and c of Fig.5.10,
respectively. We observe two peaks in the spectra of the reflected beam with rotation
of polarization when the ellipticity increases. Moreover, even though m is constant, we
observe a blue-shift of the V -polarized mode when the ellipticity increases. This is due
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to the decrease in the mean radius of the pillar [152].
The bottom panel of Fig.5.10 displays the calculated polarization state of the reflected
beam |ψrefl⟩ as a function of wavelength. Similarly to Fig.5.8, the polarization state of
the reflected field goes around the Poincaré sphere when the mode splitting increases.
Thus, by engineering the ellipticity of the micropillar we can control the polarization
state of the reflected laser.
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Figure 5.10: Top panel: Experimental reflectivity spectra of an elliptical micropillar of ellipticity (a)
e =0.29, (b) e =0.4 and (c) e =0.58, with m = 4 µm. The blue (red) spectrum is measured with a
linear polarization aligned with the minor (major) axis of the elliptical pillar cross-section. Two clear
optical modes are observed at different central wavelengths. Middle panel: Spectrum of the reflected
laser with rotation of polarization for the three ellipticity respectively. The incident laser is polarized
along |D⟩, while the detection is along |A⟩. Bottom panel: Poincaré sphere displaying the calculated
wavelength-dependent polarization state |ψrefl⟩ of the reflected laser.

5.3 Controlling the Brillouin scattering polarization
with elliptical micropillars

Performing a similar analysis to the one presented for the reflected beam, the polariza-
tion state of the Raman scattering field can be expressed as:

|ψB⟩ =
1√

|bB,H |2 + |bB,V |2
(bB,H |H⟩+ bB,V |V ⟩, (5.17)

where bB,H/V is the reflectivity coefficient for Brillouin scattering. The Brillouin scatter-
ing field, which is generated inside the GaAs spacer, has the same polarization state as
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the intracavity field |ψcav⟩ but at a different frequency ωB. Therefore, the polarization
of Brillouin scattering depends on both intracavity field polarization generated by the
incident beam and on the Brillouin frequency:

bB,H/V ∝ aH/V × 1

1− 2i
ωB−ωc,H/V

κH/V

, (5.18)

where aH,V ∝ bin,H/V
1

1−2i
ωin−ωc,H/V

κH/V

is defined in section 5.2.2. The first term of bB,H/V

depends on the input polarization state and energy through the intracavity amplitude
aH/V . The second term depends on the detuning between the energy of the Brillouin
scattering mode with the optical modes. Similarly to the reflectivity of the micropillar,
we can assign a Jones matrix to the Brillouin scattering. The polarization states of
Brillouin scattering are simulated considering Brillouin scattering as a source inside the
cavity spacer:

|ψB⟩ =
[
bB,H 0
0 bB,V

]
× |ψin⟩ (5.19)

Similarly to the polarization state of the reflected laser, depending on the ellipticity of
the micropillar and the laser wavelength, the polarization state of the Brillouin signal
scattered from the micropillar depends on these same parameters. Moreover, due to the
frequency shift of the Brillouin scattering from the laser line, both signals experience dif-
ferent degrees of polarization rotation, resulting in |ψin⟩ ≠ |ψrefl⟩ ≠ |ψB⟩. In addition,
the Brillouin scattering signals of the different acoustic modes also have different polar-
ization states. Therefore, the polarization state of the Brillouin signal in a micropillar
with an elliptical cross-section is no longer determined only by the intrinsic selection
rules of the material as defined in section 2.1.3 (|ψin⟩ = |ψrefl⟩ = |ψB⟩ for GaAs), but
can be controlled by the micropillar geometry. The different polarization states of the
reflected laser and Brillouin scattered from the micropillar allow for the discrimination
of the Brillouin signal from the reflected laser by polarization filtering.

5.4 Brillouin scattering experimental results on ellip-
tical micropillars

5.4.1 Experimental scheme

In this section we measure Brillouin spectra on 3D micropillar cavities. The 3D con-
finement breaks up the optical dispersion relation of the cavity into discretized modes,
restricting the use of the Brillouin scattering spectroscopy technique based on angu-
lar filtering that we presented in Chapter 4. In addition, the stray-light due to the
wavelength-scale object is more intense than in a planar cavity. The Brillouin spec-
troscopy setup is in backscattering configuration, with both the incident and reflected
beams at normal incidence on the sample. As a result, the reflected beam and the
Brillouin signal spatially overlap. We implement an alternative filtering of the Brillouin
signal based on polarization.
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The sample is placed in a vacuum chamber at room temperature to avoid oxidation of
the Al on the sides of the micropillar. A schematic of the cross-polarized experimental
setup is presented in Fig.5.11. A collimated laser beam from a tunable continuous wave
(CW) Ti:Sapphire laser (M2 SolsTis) is used as the excitation source. The incident
beam polarization is initialized with a polarizer. A second polarizer is placed in the
collection path in a cross-polarized scheme. A quarter-waveplate and a half-waveplate
(λ/4 and λ/2) control the incident polarization state on the sample |ψin⟩. The incident
laser beam is focused onto the sample with a spot diameter of approximately 2.2 µm
using a NA = 0.7 objective lens placed inside the vacuum chamber of the cryostat. We
collect the reflected signal through the same objective and waveplates. A second set of
waveplates, placed in front of the polarizer in the collection path, allows us to choose
the polarization basis for the collection, while the second polarizer acts as an analyzer.

CCD

Ti:Saph laser

Double spectrometer

Filtering

projection

Vacuum

λ/4
λ/2

λ/2
λ/4

Pol

Pol

lens

lens

Polarization

sample

Figure 5.11: Cross-polarized experimental setup. A laser generates a continuous wave laser beam. The
beam is coupled into a single mode fiber. The collimated beam at the output of the fiber passes through
a polarizer (Pol) to initialize the polarization being sent onto the onto the sample by a beam splitter.
Then, the beam passes through a quarter and a half waveplates (λ/4, λ/2) to project the polarization to
the H/V basis. The beam is focused on the sample with an objective lens inside the vacuum chamber.
The reflected beam and the Brillouin signal pass through the same objective and waveplates. A second
set of waveplates and polarizer after the beam splitter allow us to collect in any polarization basis. The
beam is coupled into a fiber and sent into a double chamber spectrometer. The dashed line represents
the path of the beam inside the spectrometer.

To observe the rotation of polarization of the reflected beam, the incident beam
polarization is set to |D⟩ and collection is set to |A⟩. The Brillouin signal emerging
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from the sample is collected through the same objective and waveplates.
The second set of waveplates in front of the polarizer in the collection path allows us to
extinguish the laser before the remainder of the light is coupled into a single mode fiber
when performing Brillouin scattering measurements. The transmission of the polarizer
in the collection path is 86% at the wavelength of interest 900 nm. The extinction
ratio of the reflected excitation laser measured on a micropillar of e = 0.41 is 45:1 when
Stokes and anti-Stokes are coupled to the V and H optical modes and 78:1 when only
Stokes is coupled to a cavity mode, measured before the collection fiber. The use of a
single mode fiber increases the purity of the signal through spatial filtering [154]. The
Brillouin signal is finally analyzed with a double spectrometer operating in additive
mode. The Brillouin spectra presented below are typically obtained with an incident
laser power of 50 µW, with integration times in the range of 0.1 s to 5 s.

5.4.2 Polarization rotation-enabled optical filtering

To discriminate the Brillouin signal from the reflected laser, we exploit the difference
in rotation of polarization between the reflected laser beam and Brillouin scattering
which implies |ψin⟩ ̸= |ψrefl⟩ ̸= |ψB⟩. Detecting the Brillouin scattered signal requires
to filter out the laser light. We achieve this filtering by detecting in a cross-polarization
geometry ensuring that ⟨ψdet|ψrefl⟩ = 0. That is:

|ψdet⟩ = |ψrefl⟩ =
1√

|brefl,H |2 + |brefl,V |2
(b∗refl,V |H⟩+ b∗refl,H |V ⟩). (5.20)

Due to the wavelength-dependence of |ψrefl⟩, the cross-polarized scheme ensuring that
⟨ψdet|ψrefl⟩ = 0 is wavelength-dependent as shown in panels b to d of Fig.5.12. In-
deed, the conditions to obtain cross-polarization vary with the wavelength to which the
excitation laser is tuned to obtain the Brillouin spectra. Panels b to d display the re-
flectivity spectra obtained after filtering the reflected laser in Brillouin experiments for
three different laser wavelengths. The spectra correspond to |⟨ψrefl(ωlaser)|ψrefl(ω)⟩|2,
where ωlaser is the energy of the incident laser used to acquire the Brillouin spectrum.
Thedashed vertical line in each spectrum marks the wavelength of the incident laser.
One can observe that after filtering, the reflectivity is minimum at the excitation wave-
length used to acquire Brillouin spectra. In panel a, the reflectivities of the H- and
V -polarized optical modes are plotted for reference. The experiment is performed at
low laser power to avoid thermal effects [31].
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Figure 5.12: a Optical modes for a micropillar with e = 0.41 and m = 4 µm. The blue line is the
H -polarized mode and the red line is the V -polarized mode. b-d Reflectivity spectra acquired after
filtering out the reflected laser in a Brillouin spectroscopy measurement. The dashed vertical lines
indicate the wavelength of the excitation laser used for the Brillouin measurements.

Figure 5.13 shows a Brillouin spectrum acquired on a micropillar with an elliptical
cross-section e = 0.41 with m = 4 µm. The laser wavelength is tuned to λ = 900.542
nm, corresponding to the reflectivity after filtering displayed in panel c of Fig.5.12. To
acquire this spectrum, an etalon filter was inserted before the spectrometer to increase
the resolution. The method for the sequential point-by-point reconstruction of the
Brillouin spectrum is presented in Chapter 4. In the spectrum displayed in Fig.5.13,
due to the polarization filtering, we are able to observe peaks corresponding to both
Stokes and anti-Stokes next to the laser line. The peaks at ±18 GHz correspond to the
fundamental confined acoustic mode in anti-Stokes and Stokes scattering. The peaks
at ∼40 GHz in Stokes and anti-Stokes Brillouin scattering correspond to the Brillouin
mode of GaAs.

anti-Stokes Stokeslaser

Figure 5.13: Brillouin spectrum acquired on an elliptical micropillar with e = 0.41 and m = 4 µm. The
laser wavelength is λ = 900.542 nm and the incident power is 50 µW.
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5.4.3 Influence of the laser wavelength on the Brillouin spec-
trum

In this section, we study the influence of the laser wavelength on the Brillouin spectrum.
We measured multiple Brillouin spectra by varying the excitation laser wavelength across
the cavity modes. The polarization of the incident beam is fixed to diagonal |D⟩ for all
the measurements. The polarization filtering of the signal at the collection is adjusted
for each measurement to filter out the reflected laser.
The micropillar studied in this section has an ellipticity e = 0.29, with m = 4 µm.
The H and V -polarized optical modes are centered at 900.158 nm and 900.247 nm,
respectively (see figure 5.10a). The polarization states of the different Brillouin modes,
as well as the reflected laser, are simulated and plotted on a Poincaré sphere for the
different laser wavelengths. As a reference, the polarization state of the reflected beam
as a function of wavelength is plotted on a Poincaré sphere in panel m of Fig.5.14, where
the stars indicate the polarization state of the reflected laser for each of the measured
cases.
In panel a of Fig.5.14 we show a simulated Brillouin spectrum of the vertical one-
dimensional multilayered structure. We assume a purely photoelastic interaction [97].
For the numerical implementation, we use the transfer matrix method with nominal
material properties (see Table 1) and assume a planar GaAs/AlAs Fabry-Perot cavity
with a single optical mode. The vertical structure is described in section 5.1.2. The
polarization is not taken into account in this model. The spectrum is convoluted with a
Gaussian function resulting in a resolution of 0.025 GHz. We observe peaks at ±18 GHz,
±54 GHz and ±90 GHz corresponding to the Stokes and anti-Stokes harmonics of the
acoustic modes confined in the cavity [48, 136]. Panels b to h correspond to experimental
Brillouin spectra measured at excitation laser wavelengths going from 900.918 nm to
901.390 nm. The polarization-dependent optical reflectivity is included in each panel
with dashed blue and red lines corresponding to |H⟩ and |V ⟩ polarization, respectively.
Panels b to e of Fig.5.14 display Brillouin spectra obtained with the laser blue-detuned
from the cavity modes, at wavelengths of 900.918 nm, 901.002 nm, 901.088 nm and
901.107 nm, respectively. Those spectra present only Stokes components since the anti-
Stokes components lie outside of the cavity modes and are thus not enhanced. Panels i
to l of Fig.5.14 show on the same sphere the simulated polarization states of the reflected
laser |ψrefl⟩ (black star) and of the Brillouin scattered signals |ψB⟩ corresponding to the
measured cases. In Fig.5.14b, where the laser is the most blue-detuned, the observed
Stokes Brillouin spectrum shows that the fifth harmonic mode, at 90 GHz, is resonant
with the H-polarized cavity mode. The Stokes components at high frequencies are
enhanced by the presence of the optical cavity modes. We also see weak contributions
at −40 GHz corresponding to the Brillouin signal originating in the GaAs substrate, and
at −54 GHz. The contribution from GaAs is observable in all the spectra with various
intensity depending on its coupling to the optical modes. In panel c of Fig.5.14, the
laser is slightly red-shifted with respect to the previous case. In that case, the Stokes
Brillouin mode at −54 GHz is enhanced by the H-polarized cavity mode. Even though
the fifth harmonic polarization state is also different from |ψrefl(ωlaser)⟩, we are not able
to see it because the laser is too blue-detuned from the V -polarized cavity. In panel d
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Figure 5.14: a Simulated Brillouin spectrum for a planar cavity with the multilayer structure shown
in Fig.5.9. Experimental Brillouin spectra acquired on a micropillar with e = 0.29, with the excitation
laser b-e blue-detuned from the optical modes and f-h red-detuned from the optical modes. The peak
at ±18 GHz corresponds to the fundamental confined acoustic mode of the resonator. The peak at ±37
GHz corresponds to bulk Brillouin scattering from the substrate. The peak at ±54 GHz corresponds to
the third harmonic of the confined mode. The peak at ±90 GHz corresponds to the third harmonic of the
confined mode. Simulated polarization of the reflected laser and Brillouin signals plotted on Poincaré
spheres, i-l when the laser is blue-detuned and m-o when the laser is red-detuned, corresponding
to panels b-h, respectively. p Simulated polarization states of the reflected laser as a function of
wavelength. The stars indicate the polarization states of the reflected laser for the wavelength used
experimentally.
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and e of Fig.5.14, the fundamental mode at −18 GHz is clearly observable in the Stokes
Brillouin spectrum. The Stokes mode at −18 GHz is resonant with the H-polarized
cavity mode and the third harmonic, at −54 GHz, is coupled to the V -polarized cavity
mode.
In order to selectively measure the anti-Stokes components enhanced by the coupling
to the optical cavity modes in a cross-polarized configuration, the laser is red-detuned
from the optical cavity modes. Panels f to h of Fig.5.14 display Brillouin spectra
obtained with a laser red-detuned from the cavity modes, at wavelengths of 901.284 nm,
901.314 nm and 901.390 nm, respectively. Panels m to o of Fig.5.14 show the simulated
polarization states of the reflected laser |ψrefl⟩ and of the Brillouin scattered signals
|ψB⟩. These spectra present only anti-Stokes components since only they are coupled
to the cavity modes.
Panels f and g of Fig.5.14 show spectra obtained with the laser red-detuned at 901.284
nm and 901.390 nm. The observed anti-Stokes Brillouin spectra show the mode at
18 GHz which is coupled to the V -polarized optical cavity, and the mode at 54 GHz
coupled to the H-polarized cavity mode. However, the laser line is rather intense which
prevents us from observing a clear peak at 18 GHz. The intense laser line can be due to
stray-light scattered by the optical elements of the setup or by remains of the reflected
laser. Note that the stray-light may not have the same polarization as the reflected laser
since it does not necessarily emerge from the micropillar. Nevertheless, the peak at 40
GHz is clearly visible, as well as a weak contribution from Stokes Brillouin scattering
at −40 GHz. Panel h of Fig.5.14 is the mirrored version of panel c. The anti-Stokes
Brillouin mode at 54 GHz is enhanced by the V -polarized optical cavity mode. Similarly
to Stokes, the anti-Stokes Brillouin signal experiences a rotation of polarization different
from the reflected laser enabling its detection.
It is interesting to note that the polarization state of the Brillouin scattering depends
on the optical mode to which both the laser and the Brillouin signal are mainly coupled.
When the laser is blue-detuned, the different modes have polarization states on the |H⟩
hemisphere, in opposition with a red-detuned laser. A Brillouin mode coupled to the
H-polarized mode tends to get scattered with a polarization along |H⟩, while a Brillouin
mode coupled to the V -polarized mode tends to get scattered with a polarization along
|V ⟩. In Fig.5.14, we observe that in the case of Stokes Brillouin scattering, the modes
are mainly enhanced by the H-polarized mode (panels b to e of Fig.5.14), resulting
in scattered signals more H-polarized (panels i to l of Fig.5.14). On the other hand,
anti-Stokes Brillouin scattering is mainly V -polarized (panels m to o of Fig.5.14), due
to the coupling to the V -polarized mode (panels f to h of Fig.5.14).
In this section, we discussed the excitation wavelength as a means to optimize the
measurement of Brillouin spectra in an elliptical micropillar. The optimum configuration
for cross-polarized filtering would be having the reflected laser and the Brillouin signal
with orthogonal polarization states, i.e. in opposite poles of the Poincaré sphere. In the
next section, we see how the ellipticity of the micropillar also plays an important role
in the acquired Brillouin spectra.
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5.4.4 Incidence of the ellipticity on the Brillouin spectrum

In this section, we theoretically and experimentally analyze the effects of changing the
ellipticity of the micropillar on the scattering selection rules. In section 5.2.4, we dis-
cussed the effect of the ellipticity on the optical mode splitting and polarization state of
the reflected beam. When the ellipticity increases, the splitting between the two optical
modes increases. As a consequence, we have seen that the rotation of polarization of
the reflected beam is strongly modified. Here, we discuss how the ellipticity impacts the
Brillouin scattering polarization state.
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Figure 5.15: Brillouin polarization states for the fundamental and third harmonic of the confined
acoustic mode as a function of the mode splitting ∆λ between the two optical modes in elliptical
micropillars. We consider the particular case of an excitation laser polarized along |D⟩ and spectrally
tuned between the two optical modes. By increasing ∆λ, the Brillouin modes describe frequency-
dependent trajectories that span the Poincaré sphere.

Figure 5.15 shows the simulated polarization state of the Brillouin signal as a function
of the micropillar ellipticity while keeping the excitation wavelength centered between
the two optical cavity modes and the input polarization along |D⟩. This set of condi-
tions corresponds to the same excitation conditions used in Fig.5.8. We observe that,
contrary to the polarization state of the reflected laser, the Brillouin polarization states
are always away from the DRAL meridians. Moreover, the trajectory of the Brillouin
signal shows that the relation between the incident laser and signal polarization states
is strongly modified, breaking the intrinsic polarization selection rules of GaAs. The
accessible phonon frequency band is determined by the separation of the optical cavity
modes. For zero separation, the Brillouin polarization states coincide with the excitation
laser. The difference in polarization states observed between Brillouin scattering and
the reflected laser enables an efficient polarization filtering protocol for non-degenerate
polarization-dependent optical modes.
We experimentally studied Brillouin scattering in two micropillars with different ellip-
ticities e = 0.41 and e = 0.58 and the major axis length fixed (figures 5.16 and 5.17
respectively), whose reflectivity spectra and spectra of the reflected beam with rotation
of polarization are shown in panels b and c of Fig.5.10, respectively.
Figure 5.16 displays Brillouin spectra from a micropillar with e = 0.41. The H and
V -polarized optical modes are centered at 900.667 nm and 900.795 nm, respectively.
The spectra are acquired with the laser tuned at 900.615 nm, 900.737 nm and 900.860
nm (panel a,b and c, respectively). Panels d to f show on the same sphere the matching
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5.4. Brillouin scattering experimental results on elliptical micropillars

simulated polarization states of the reflected laser |ψrefl(ωlaser)⟩ and the Brillouin scat-
tered signals |ψB⟩. Contrary to the Brillouin spectra presented in Fig.5.14, we are able
to measure Stokes and anti-Stokes Brillouin scattering at the same time, see Fig.5.16b.
The optical mode splitting ∆λ = 0.128 nm is larger in that case than for e = 0.29, en-
abling us to simultaneously enhance Stokes and anti-Stokes when the laser wavelength
is centered in between the two optical modes. The polarization states corresponding
to this situation are plotted on the Poincaré sphere in panel e. We can see that the
different Brillouin modes and the reflected laser have polarizations distributed all over
the Poincaré sphere. Panel a of Fig.5.16 plots a Stokes Brillouin spectrum (with the
laser blue-detuned) where the mode at −18 GHz is enhanced by the H-polarized optical
mode. This configuration results in a spectrum mostly polarized along |H⟩. On the
opposite, panel c displays an enhanced anti-Stokes spectrum, with a Poincaré sphere
(panel f) mirrored from the one in panel d.
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Figure 5.16: Experimental Brillouin spectra acquired on a micropillar with e = 0.41, with the excitation
laser blue-detuned from the optical modes a, between the optical modes b and red-detuned from the
optical modes c. The peak at ±18 GHz corresponds to the fundamental confined acoustic mode of the
resonator. The peak at ±37 GHz corresponds to bulk Brillouin scattering from the substrate. The peak
at ±54 GHz corresponds to the third harmonic of the confined mode. d-f Simulated polarization of
the reflected laser and Brillouin signals plotted on Poincaré spheres, using the experimental conditions
of a-c, respectively. The Poincaré spheres are rotated such that the reflected laser state is localized at
the South pole.

Figure 5.17 displays Brillouin spectra on a micropillar with e = 0.58. The H and V -
polarized optical modes are centered at 899.550 nm and 899.823 nm, respectively. The
Brillouin spectra are acquired with the laser tuned to 899.424 nm, 899.729 nm, 899.792
and 900.011 nm (panel a,b, c and d, respectively). Panels e to h show on the same sphere
the matching simulated polarization states of the reflected laser, |ψrefl(ωlaser)⟩ and the
Brillouin scattered signals |ψB⟩. Here, due to the larger optical mode splitting ∆λ =
0.273 nm we are able to simultaneously enhance the third harmonic, at ±54 GHz, in
the Stokes and anti-Stokes spectra, see panel b. In panel c, we observe the fundamental
mode at −18 GHz in Stokes Brillouin scattering. The corresponding polarization states
are plotted on the Poincaré sphere g. Both the polarization states of the -18GHz mode
and of the reflected laser are on different hemispheres, resulting in a good laser filtering.

104



Chapter 5. Optophononic Fabry-Perot resonators based on 3D micropillars

We observe that, by changing the ellipticity, we are able to selectively enhance Brillouin
modes in the measured spectra. Moreover, we can independently control the polarization
state of the reflected beam and Brillouin scattering.
Note that, even if the polarization state of the reflected laser |ψrefl(ωlaser)⟩ and the
Brillouin scattered signals |ψB⟩ stay on the same hemisphere of the Poincaré sphere, this
is sufficient to filter out the laser and acquire Stokes Brillouin spectra with frequencies
going from 18 GHz to 90 GHz. Similarly, anti-Stokes Brillouin spectra can be acquired
with frequencies going from −18 GHz to −90 GHz.
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Figure 5.17: Experimental Brillouin spectra acquired on a micropillar with e = 0.58, with the excitation
laser blue-detuned from the optical modes a, between the optical modes b,c and red-detuned from the
optical modes d. The peak at ±18 GHz corresponds to the fundamental confined acoustic mode of the
resonator. The peak at ±37 GHz corresponds to bulk Brillouin scattering from the substrate. The peak
at ±54 GHz corresponds to the third harmonic of the confined mode. e-h Simulated polarization of
the reflected laser and Brillouin signals plotted on Poincaré spheres, using the experimental conditions
of a-d, respectively. The Poincaré spheres are rotated such that the reflected laser state is localized at
the South pole.

In the experiments presented above, the polarization of the incident beam is always
fixed to |D⟩. In that configuration, the laser is equally projected on |H⟩ and |V ⟩. As
a result, the coupling of the laser with the optical modes only depends on the laser
wavelength. Moreover, it is relatively straightforward to experimentally ensure that the
laser is in |D⟩ in a cross-polarized setup, by looking at the reflectivity spectrum with
rotation of polarization, as in Fig.5.10 for example. In Appendix C, we discuss the effect
of the polarization of the incident laser on the efficiency of the Brillouin filtering.
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5.5 Conclusions
In this chapter we have demonstrated that we are able to control the polarization state
of the Brillouin scattering signal in polarization-dependent optical cavities. We first de-
scribed how it is possible to independently rotate the polarization state of the reflected
beam and Brillouin scattering signal in a micropillar with elliptical cross-section. Then,
we presented the experimental setup enabling us to measure Brillouin spectra in the
range of few tens of GHz.
The experimental results show that we are able to measure both Stokes and anti-Stokes
modes from ± 18 GHz to ± 90 GHz in a 3D resonator. This is a technical challenge,
since the low difference in wavelength between the Brillouin signal and the laser does
not allow wavelength filtering and the spatial mode matching of both fields prevents
us from applying spatial filtering. We exploit the wavelength-dependent polarization-
rotation induced by the ellipticity to independently control the polarization state of the
Brillouin signal and the reflected excitation laser to filter out the signal of interest.
As a consequence, we bend the polarization selection rules of Brillouin scattering. By
controlling the shape of the micropillars, we deterministically control the polarization
state of the Brillouin signal. Moreover, the polarization of different Brillouin modes can
be independently controlled. The principle that we exploit here is similar to birefrin-
gent materials that scatter light with an energy dependent change of polarization [143,
144]. In the case of micropillars with elliptical cross-sections the birefringence is tuned
to control the extent of rotation of polarization, whereas in birefringent materials the
change in polarization depends on the penetration depth in the material.
We investigated different parameters controlling the polarization state of Brillouin scat-
tering: the laser wavelength, the ellipticity of the cross-section and the polarization
state of the incident laser. In complement to the Brillouin spectroscopy experiments,
we performed simulations of the different polarization states which support the experi-
mental spectra. The ideal conditions to measure background-free enhanced spontaneous
Brillouin scattering spectra with the best filtering possible is an interplay between the
ellipticity of the cross-section, the wavelength and polarization state of the laser and
the coupling of the Brillouin mode to the optical cavity modes. The same working prin-
ciple applies to any photonic system with localized, polarization-sensitive modes, such
as plasmonic resonators, photonic crystals, and birefringent micro and nano-structures
[159–161].

Main contributions:

• Modification of the Brillouin scattering polarization selection rules using micropil-
lars with an elliptical cross-section

• Implementation of a novel Brillouin spectroscopy scheme based on polarization
filtering
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Conclusions and perspectives

The engineering of high-frequency mechanical vibrations at the nanoscale paves the way
to the development of a broad variety of technologies. The interaction of phonons with
photons and electrons make them a versatile platform with a large range of applications
[1]. These include thermal transport management [80, 162], quantum technologies [37,
110], sensing [14, 163] and lasers [26, 74]. Therefore, it is essential to control phonon
propagation, confinement and detection at the nanoscale. GaAs/AlAs-based acoustic
superlattices can be used to manipulate the confinement of ultrahigh-frequency acous-
tic waves [50, 83]. Acoustic mirrors, Fabry-Perot cavities, filters, or acoustic potentials
can be engineered by controlling the phonon propagation in superlattices [41, 46, 47].
Moreover, GaAs/AlAs-based resonators have well-known optical properties. GaAs/AlAs
micropillar cavities confine light in three dimensions, making them suitable for quantum
technologies based on quantum dots and quantum wells [52, 164, 165]. In this thesis, we
have investigated optophononic multilayer devices working in the 20−300 GHz frequency
range. We designed samples that simultaneously confine light in the near-infrared range
and sound at frequency of few tens of GHz and developed experimental techniques to
detect the confined acoustic mode through Brillouin spectroscopy.

The first research line concentrated on the engineering of nanophononic resonators and
novel strategies to confine phonons in multilayer systems. By benefiting from the topo-
logical properties of the superlattices it is possible to create interface states. The strategy
involves the variation in the thickness ratio of the two materials constituting the unit
cell to induce a modification in the symmetry of the modes around a bandgap that
can be associated to the Zak phase of the bands [120, 130]. By concatenating two
DBRs with opposite symmetry properties, it is possible to create an interface state. In
Chapter 3, we presented a repertoire of topological resonators for which we extended
this principle to create acoustic interface states at high-order bandgaps. We designed
versatile topological devices with nanophononic interface states simultaneously created
in a broad frequency range. In addition, we presented interface states of hybrid struc-
tures that combine two superlattices containing bandgaps of different orders centered
around the same acoustic frequency. Furthermore, the colocalization of light and sound
in GaAs/AlAs multilayers results in the band inversion simultaneously occurring in both
domains. As a consequence, topological acoustic resonators at a frequency around 18
GHz are also topological optical resonators at a wavelength around 920 nm, leading to
enhanced optophononic interactions.
Our second research line consisted in developing experimental Brillouin spectroscopy
schemes to access confined acoustic modes at a resonance frequency around 18 GHz.
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Experimental techniques to measure thermal fluctuations are of great interest in the
context of cavity optomechanics. For acoustic phonons with frequencies at 18 GHz, the
small wavelength shift between the intense reflected laser and the weak Brillouin signal
makes the access to the Brillouin signal a challenge in standard double-chamber spec-
trometers. Chapter 4 was dedicated to the implementation of a Brillouin experimental
scheme on planar cavities, while Chapter 5 was focused on Brillouin spectroscopy on
micropillar cavities.
In planar cavities, the double optical resonance simultaneously enhances the incident
laser and the scattered Brillouin signal [100]. This results in an angular offset between
the reflected laser and the scattered signal. In Chapter 4, we proposed an experimental
technique based on the double optical resonance to perform Brillouin spectroscopy at
high frequencies on one-dimensional optophononic Fabry-Perot resonators. We used a
single-mode fiber to spatially filter the Brillouin signal, while exciting the sample with
an angle of incidence θin. In addition, we used a tandem of an etalon and a double
spectrometer to spectrally filter out the laser and increase the resolution of the spectra.
This technique shows its full potential at 18 GHz. In that case, both the laser and the
Brillouin signal are tuned with an angle of incidence, improving the spatial filtering with
the single-mode fiber.
While the previous technique is adapted to planar cavities, it is not suitable for micropil-
lar cavities for which the main challenge to perform Brillouin spectroscopy measurements
is that the spatial mode of the reflected laser and of the Brillouin signal overlap. In Chap-
ter 5, we presented an experimental technique for Brillouin spectroscopy on micropillars
with an elliptical cross-section to control the polarization of the different beams. Ellip-
tical micropillar resonators have polarization-dependent optical resonances that induce
wavelength-dependent rotation of polarization when the incident beam polarization is
not aligned with an eigenmode of the cavity. Due to the wavelength shift between the re-
flected laser and the Brillouin scattering signal, they obtain different polarization states.
Thus, by inducing an artificial shape-dependent birefringence, the intrinsic polarization
selection rules of Brillouin scattering in GaAs/AlAs can be altered. We benefit from
this to filter out the laser on the basis of polarization.

One perspective of this work is to engineer the confined acoustic modes in multilay-
ered systems to design new devices for different application purposes.
The first design could be a multilayer structure with a surface acoustic mode. In con-
trast to Fabry-Perot resonators, where the mode is confined in a spacer in between two
DBRs, we can benefit from the difference in acoustic impedance between GaAs and air
to generate a surface mode [166]. This structure could be integrated with other systems
for sensing applications or actuation. For example, mesoporous thin film layers could
be deposited at the surface of an open acoustic cavity to act as a spacer. Mesoporous
materials present adaptable mesopores which allows chemical functionalization under
liquid infiltration [167–170]. The functionalization modifies the elastic properties of the
material, which changes the acoustic resonance. Mesoporous materials present the ad-
vantage of being easily accessible and their growth is fully controlled. By combining
them with multilayered acoutic cavities, they are a promising platform for nanoacoustic
sensing. The DBR-based open cavity could also be integrated with two-dimensional
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materials like transition metal dichalcogenide or graphene that can be used to obtain
tunable phonon transducers. [171, 172].

A second category of devices we could conceive are quasi-periodic multilayered structures
based on the Fibonacci and Aubry-André models, with GaAs and AlAs layers as building
blocks for the series. These structures present different types of topological states such
as: localized, extended or critical modes [173–175]. Multilayered quasicrystals designed
according to higher-order Fibonacci sequences are large structures with layer thicknesses
covering multiple scales. The short acoustic wavelengths in GaAs/AlAs associated to
high-frequency acoustic phonons enables us to grow layers with thicknesses going from
few nm to few µm, limiting the overall size of the structure. In addition, the linear
dispersion relation of acoustic phonons enables to study localization phenomena in qua-
sicrystals designed according to higher-order Fibonacci sequences, inaccessible in optics
or electronics. The localized acoustic phonons can be experimentally accessed through
prump-probe spectroscopy and inelastic Brillouin scattering spectroscopy. These devices
can be fabricated by molecular beam epitaxy (MBE) that enables a precise control over
the thickness of each layer at the atomic scale. The structures can thus be fabricated
to operate from the gigahertz up to the terahertz range.

In terms of Brillouin spectroscopy, the experimental approach we proposed here al-
lows us to measure 18 GHz acoustic modes on micropillars resonators. A perspective of
this work would be to implement noise spectroscopy measurements coupled to the opti-
mized measurement schemes developed in this thesis. We would then be able to study
resonators with acoustic frequencies considerably higher than the state of the art in
optomechanics. Noise spectroscopy measurements are widely used in optomechanics to
access the phononic population in acoustic resonators, as well as to study optomechani-
cal backaction [33, 105, 110]. The standard detection equipment is optimized to perform
experiments on optomechanical systems with an optical resonance in the mid-infrared
(around 1.5 µm), with large optical Q-factor and an acoustic mode at low frequency (up
to few GHz). Thus, performing sensitive measurement on an optomechanical system
with high-frequency acoustic modes at 18 GHz and an optical wavelength resonant in
the NIR range (∼920 nm) is a challenge. Some experimental details must be considered.
The detection system, comprising a photodetector and a spectrum analyzer, requires a
large acoustic frequency bandwidth with a high sensitivity in the NIR range. To per-
form this experiment, there are three major parameters to control. First, the laser power
needs to be large enough to have a signal-to-noise ratio observable by the detection line.
However, it is limited by the saturation power of the detector and by the minimal power
inducing phonon lasing. Second, the laser wavelength should be tuned to the position of
the highest sensitivity, at the slope of the optical mode. Third, the spectrum analyzer
resolution bandwidth and frequency span have to be carefully tuned according to the
characteristics of the signal of interest.
The signal of interest is rather weak compared to the noise levels of the photodetector
and spectrum analyzer and it might be particularly difficult to detect it. To address
this issue, improvements could be done to the setup: implementing a homodyne detec-
tion with a balanced photodetector would increase the signal-to-noise ratio. A way of
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improving the signal intensity would be to enhance the photoelastic interaction in the
micropillar. Etching micropillars with a smaller radius to increase the lateral confine-
ment of the phonons or modifying the GaAs/AlAs thickness ratio in the unit cell of
the DBRs would enhance the Brillouin-cross section. Another alternative to optimize
the measurement of thermal fluctuations in GaAs/AlAs Fabry-Perot optophononic res-
onators would be to design resonators that confine phonons at a frequency ∼13 GHz,
corresponding to an optical wavelength of 1.3 µm. In that case, the resonant optical
wavelength and acoustic frequency would fall in the maximum of sensitivity of the pho-
todetector and spectrum analyzer, resulting in an improved ability to measure Brownian
motion.

Finally, GaAs/AlAs-based micropillars are suitable platforms towards the quantum
regime. Optophononic micropillars can host quantum dots, whose optical excitation
can be mediated by phonons [52]. Controlling the state of a quantum dot embedded in
an optophononic resonator with confined high frequency cavity phonons would offer a
novel degree of freedom for the operation of quantum systems. It would also be possible
to generate single phonons through the emission of single photons.

The ultimate control of acoustic nanowaves in optophononic systems and the devel-
opment of adaptive spectroscopy schemes like the ones developed in this thesis consti-
tute an essential step toward the study of optomechanical systems at ultrahigh acoustic
frequencies. The engineering of acoustic phonons has strong implications on the devel-
opment of novel quantum and classical applications where phonons can be used to probe
and actuate nanodevices.

110



List of publications

• Multiple topological states in nanophononic superlattice devices

A. Rodriguez, E. Cardozo de Oliveira, N.D. Lanzillotti-Kimura.
In progress

• Elliptical micropillars for efficient generation and detection of coherent acoustic
phonons

A. Rodriguez, C. Xiang, E. Cardozo de Oliveira, L. Le Gratiet, I. Sagnes, M.
Morassi, A. Lemaître, and N.D. Lanzillotti-Kimura
In progress

• Brillouin scattering selection rules in polarization-sensitive photonic resonators

A. Rodriguez, P. Priya, E. C. de Oliveira, L. L. Gratiet, I. Sagnes, M. Morassi, A.
Lemaître, F. Pastier, L. Lanco, M. Esmann, and N. D. Lanzillotti-Kimura.
arXiv:2209.12659 [cond-mat, physics:physics], Sept. 2022.

• Simultaneous confinement of acoustic phonons and near infrared photons in GaAs/AlAs
multilayers by band inversion

P. Priya, A. Rodriguez, O. Ortiz, A. Lemaitre, M. Esmann, and N. D. Lanzillotti-
Kimura.
in Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices
XIX, Vol. 12202, pp. 45–57 (Oct. 2022).

• Topological optical and phononic interface mode by simulta- neous band inversion

O. Ortiz, P. Priya, A. Rodriguez, A. Lemaitre, M. Esmann, and N.D. Lanzillotti-
Kimura.
Optica 8, 598 (2021).

111



List of publications

• Fiber-based angular filtering for high-resolution Brillouin spectroscopy in the 20-
300 GHz frequency range

A. Rodriguez, P. Priya, O. Ortiz, P. Senellart, C Gomez-Carbonell, A. Lemaître,
M. Esmann, and N.D. Lanzillotti-Kimura.
Optics Express 29, 2637 (2021).

• Fiber-integrated microcavities for efficient generation of co- herent acoustic phonons

O. Ortiz, F. Pastier, A. Rodriguez, P. Priya, A. Lemaitre, C. Gomez-Carbonell,
I. Sagnes, A. Harouri, P. Senellart, V. Giesz, M. Esmann, and N.D. Lanzillotti-
Kimura.
Applied Physics Letters 117, 183102 (2020).

112



Appendix A

Macroscopic description of the Raman
scattering process

In this section we present the process of Raman scattering using a macroscopic descrip-
tion from which we can obtain the polarization selection rules. This method is described
in details in reference [84]. Let us consider an electromagnetic plane wave propagating
in a semiconductor material. The electric field is given by:

E⃗(r⃗, t) = E⃗i(k⃗i, t)× cos(k⃗i · r⃗ − ωit), (A.1)

where k⃗i is the incident optical wavevector and ωi is angular frequency. The electro-
magnetic wave in the medium causes a sinusoidal polarization wave:

P⃗ (r⃗, t) = P⃗i(k⃗i, t)× cos(k⃗i · r⃗ − ωit) (A.2)

The polarization of the medium is related to the electromagnetic wave by the electric
susceptibility tensor of the material χ:

P⃗ (r⃗, t) = χ⃗(k⃗i, ωi)× E⃗(r, t). (A.3)

Due to thermal excitation, the atoms in the lattice vibrate. The resulting atomic dis-
placement can be expressed as a plane wave:

u⃗(r⃗, t) = u⃗(q⃗, ωac)× cos(q⃗ · r⃗ − ωact), (A.4)

where q⃗ is the phonon wavevector and ωac is the acoustic frequency.
The phonon displacement causes fluctuations in the electric susceptibility. In an adia-
batic approximation (i.e. the electrons adiabatically follow the atomic displacement),
the electric susceptibility χ can thus be expressed as a function of u⃗(r⃗, t) and expanded
as a Taylor series. We can then formulate the polarization wave with an acoustic wave
propagating in the medium as:

P⃗ (r⃗, t, u⃗) = χ⃗(k⃗i, ωi, u⃗)× E⃗(r, t). (A.5)

The polarization wave can be separated into two terms:

P⃗ (r⃗, t, u⃗) = P⃗0 + P⃗ind, (A.6)
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where P⃗0 is the polarization without perturbation in the system and P⃗ind is the po-
larization induced by an acoustic wave propagating in the system. The two terms are
expressed as

P⃗0(r⃗, t, u⃗) = χ⃗0(k⃗i, ωi, u⃗)E⃗i(k⃗i, t)× cos(k⃗i · r⃗ − ωit) (A.7)

and

P⃗ind(r⃗, t, u⃗) =
1

2

∂χ

∂u⃗

∣∣∣∣
0

u⃗(q⃗, ωac)E⃗i(k⃗i, ωi) ×{
cos[(k⃗i − q⃗) · r⃗ − (ωi − ωac)t] + cos[(k⃗i + q⃗) · r⃗ − (ωi + ωac)t]

}
.

(A.8)

P⃗ind(r⃗, t, u⃗) is constituted of two sinusoidal waves shifted by a frequency ωac from the
frequency of the incident wave. Those two contributions are the sources of the scattered
fields known as Stokes and anti-Stokes scattering. Both fields verify the energy and
wavevector conservation. Stokes scattering is an optical plane wave with a wavevector
k⃗S = k⃗i − q⃗ and a frequency ωS = ωi − ωac. Anti-Stokes scattering is an optical wave
with a wavevector k⃗aS = k⃗i + q⃗ and a frequency ωaS = ωi + ωac.

Polarization selection rules

The intensity of the scattered field depends on its polarization e⃗s as |P⃗ind · e⃗s|2. If we
define the polarization of the incident beam e⃗i, the intensity of the scattered field is
proportional to

IS ∝
∣∣∣∣e⃗i · ∂χ∂u⃗

∣∣∣∣
0

u⃗(ωac) · e⃗s
∣∣∣∣2 (A.9)

We define the Raman tensor to be R = (∂χ/∂u⃗)0u⃗(ωac). The Raman polarization
selection rules are defined by the symmetries of this tensor. Moreover, the Raman
active modes depend on the orientation of the incident wavevector to the lattice and on
the incident polarization. For some geometries, the scattered field intensities vanish.
In this thesis, we consider inelastic scattering in GaAs and AlAs, which are zinc-blende-
type semiconductors. The samples are grown along the (001) direction. We regard a
backscattering and forward scattering configuration where k⃗i and k⃗S/aS are anti-parallel.
For longitudinal optical phonons the polarization is preserved. That is the scattered
light and the reflected laser have parallel polarizations [84]. Note that the development
described here is only valid for optical phonons.
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Appendix B

The Jones matrices formalism

The Jones formalism is employed to describe the polarization state of a plane wave
and its evolution through an optical system. In this formalism, each optical element
is represented by a Jones matrix (see Table B.1) in the H/V polarization basis. The
polarization of the incident beam before the the sample is controlled by θ1 and θ2, the
angles of the quarter and half waveplates with their fast axis, respectively. The rotation
of the waveplates is then defined using the following rotation matrix:

M =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(B.1)

The Jones matrix of the sample is given by:

Msample =

[
rH 0
0 rV

]
, (B.2)

where rH/V are the reflectivity coefficients defined in equations 5.8-5.9. The reflectivity
contrast, resonance wavelength and linewidth of the modes are obtained by fitting the
experimental reflectivity of the elliptical micropillar with the Lorentzian model. The
different optical elements are described by the following Jones matrices:

linear H polarizer PH =

[
1 0
0 0

]

linear V polarizer PV =

[
0 0
0 1

]

quarter waveplate Wλ/4 = e−iπ/4

[
1 0
0 −i

]

half waveplate Wλ/2 =

[
1 0
0 −1

]
Table B.1: Jones matrices of waveplates and polarizers in the H/V basis [157]
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Appendix C

Influence of the polarization state of
the laser on the Brillouin polarization
state

We consider the elliptical pillar studied in Fig.5.16 in the cases where the laser is blue
and red-detuned as in panels a and d of Fig.C.1, respectively. We numerically vary the
polarization of the incident beam while keeping the laser wavelength fixed. Figure C.1b,c
and e,f show the filtering efficiency, that is the contrast between the polarization state
of the reflected laser |ψrefl(ωlaser)⟩ and the polarization state of the Brillouin scattering
of the fundamental acoustic mode |ψB(±18GHz)⟩. The filtering efficiency is maximum
(i.e = 2) when both fields have polarization states on opposite poles of the Poincaré
sphere. Panels b and c of Fig.C.1 show the filtering efficiency as a function of the laser
polarization state for the anti-Stokes and Stokes Brillouin signal of the fundamental
acoustic mode at 18 GHz when the laser is blue-detuned, respectively. The overall
pattern is similar in both cases: there is a large area centered around |V ⟩ where the
filtering is maximum. The Stokes signal is coupled to the optical cavity modes and
is thus more sensitive to polarization changes. As a consequence, the filtering is more
efficient for the mode in Stokes scattering than in anti-Stokes. Panels e and f of Fig.C.1
show the filtering efficiency as a function of the laser polarization state for the anti-
Stokes and Stokes Brillouin signal of the fundamental acoustic mode at 18 GHz when
the laser is red-detuned, respectively. The Poincaré spheres are mirrored to the previous
case, with the maximum of efficiency centered around |H⟩. Here, the anti-Stokes signal
is resonant with the optical modes, resulting in a more efficient filtering.
Note that in the experiment we fixed the polarization of the incident laser to |D⟩,
as indicated on the Poincaré spheres of Fig.C.1 with black dots. According to the
simulations, the filtering is not the most effective for this polarization.
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Figure C.1: Experimental Brillouin spectra acquired on a micropillar with e = 0.41, with the excitation
laser a blue-detuned from the optical modes and d red-detuned from the optical modes. b and c show
the filtering efficiency of the fundamental mode at 18 GHz in anti-Stokes and Stokes Brillouin scattering
as a function of the incident polarization state for the blue detuned laser. Likewise, e and f show the
filtering efficiency of the fundamental mode at 18 GHz in anti-Stokes and Stokes Brillouin scattering
as a function of the incident polarization state for the red-detuned laser. The black dots indicate the
polarization state of the incident laser in the experiment.

In order to find the optimal filtering conditions, let us tune the laser wavelength over
the cavity modes. We extract the maximum of filtering efficiency as a function of the
laser wavelength. Figure C.2 shows Poincaré spheres where we plot the polarization of
the incident laser that gives the best Brillouin filtering for the anti-Stokes and Stokes
fundamental mode at ±18 GHz (panel a and b, respectively) and mode at ±54 GHz
(panel c and d, respectively) as a function of wavelength. When the laser is tuned
outside of the two optical cavity modes, the polarization state of the incident laser
behaves similarly depending on the wavelength for the four cases. When the laser is
blue-detuned from the optical cavity modes, the optimal polarization of the incident
beam has a ring-shape centered around |V ⟩ and centered around |H⟩ when the laser
is red-detuned. The incident polarization is never purely |V ⟩ or |H⟩, since that would
prevent any rotation of polarization of the different fields. However, when the laser is
between the cavity modes, the polarization state of the incident beam evolves differently
as a function of wavelength. The transition from the |V ⟩ side of the sphere to the |H⟩
side happens at longer wavelengths in the case of anti-Stokes scattering than Stokes
scattering, and more particularly for the mode at 54 GHz. On the contrary, the mode
at −54 GHz in Stokes scattering goes from |V ⟩ to |H⟩ at lower wavelengths. The
polarization of the incident beam is further scattered toward |D⟩ in the case of the
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mode at ±54 GHz. From this simulation, we observed that the experimental polarization
scheme that we initialized is not the most effective for our objective. Indeed by fixing
the polarization state of the incident laser to |D⟩, we cannot achieve an optimal filtering.
Nevertheless, for certain wavelengths the incident polarization state is approaching |D⟩.
Therefore, by adjusting the polarization state of the incident laser in the experiment,
it should be possible to increase the signal to noise ratio. Note that the model used
here does not take into account the mismatch between the spatial modes of the incident
beam (circular Gaussian shape) and of the micropillar (elliptical cross-section) that
contributes to uncertainty in the actual projection of the polarization on the H/V basis
of the micropillar. Nevertheless, we are able to measure Brillouin scattering spectra with
an excellent laser rejection. The achieved filtering with an incident beam diagonally
polarized is above average.
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Figure C.2: Incident polarization as function of wavelength giving the best polarization filtering of the
fundamental acoustic mode at ±18 GHz in a anti-Stokes and b Stokes Brillouin scattering. Similarly
for the mode at ±54 GHz in c anti-Stokes and d Stokes Brillouin scattering. The mode splitting and
reflectivity characteristics of the micropillar are the ones of the studied micropillar with e = 0.41.

It is important to mention that the best filtering does not mean that the mode is
observable with the best contrast. The amplitude of the Brillouin spectrum also depends
on the coupling with the optical modes, which is defined by the incident wavelength and
polarization [46, 91]. Therefore, the polarization of the incident beam is a compromise
between the one giving the best polarization and the one giving the best coupling with
the optical modes.
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