
HAL Id: tel-04090134
https://theses.hal.science/tel-04090134v1

Submitted on 5 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Convolutional Neural Network Based Object
Detection Inference Acceleration Using FPGA

Solomon Negussie Tesema

To cite this version:
Solomon Negussie Tesema. Deep Convolutional Neural Network Based Object Detection Inference
Acceleration Using FPGA. Signal and Image Processing. Université Bourgogne Franche-Comté, 2022.
English. �NNT : 2022UBFCK050�. �tel-04090134�

https://theses.hal.science/tel-04090134v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE

PREPAREE A Université de Bourgogne

Ecole doctorale n°37

L’Ecole Doctorale de Sciences Physiques pour l’Ingénieur et Microtechniques (ED SPIM)

Doctorat Instrumentation et informatique de l'image

Par

Mr. TESEMA Solomon Negussie

Deep Convolutional Neural Network Based Object Detection Inference Acceleration Using FPGA

Thèse présentée et soutenue à Dijon, le 09 Septembre 2022

Composition du Jury :

Professeure Fan YANG Professeure de Université de Bourgogne Président

Professeur Camel TANOUGAST Professeur de Université de Lorraine Rapporteur

MCF-HDR Samy MEFTALI MCF-HDR Université de Lille Rapporteur

Professeur El-Bay BOURENNANE Professeur de Université de Bourgogne Directeur de thèse

Titre : Accélération de l'inférence de la détection d'objets basée sur un réseau neuronal convolutif

profond à l'aide de FPGA

Mots clés : Apprentissage profond, CNN, Accélérateur matériel, Détection d'objets, FPGA

Résumé : La détection d'objets est l'un des

domaines de recherche en vision par ordinateur

les plus difficiles et pourtant essentiels. Elle

consiste à étiqueter et à localiser tous les objets

d'intérêt connus sur une image d'entrée en

utilisant des boîtes de délimitation

rectangulaires bien ajustées autour des objets.

La détection d'objets, après avoir connu

plusieurs évolutions et progressions, repose

aujourd'hui sur les succès des réseaux de

classification d'images basés sur des réseaux de

neurones convolutifs profonds. Toutefois, à

mesure que la profondeur et la complexité des

réseaux neuronaux convolutifs augmentent, la

vitesse de détection diminue et la précision

augmente. Malheureusement, la plupart des

applications de vision par ordinateur, comme le

suivi d'objets en temps réel sur un système

embarqué, nécessitent une détection d'objets

légère, rapide et précise. Par conséquent,

l'accélération de la détection d'objets est

devenue un domaine de recherche très

dynamique, avec beaucoup d'attention

accordée à l'accélération basée sur le FPGA en

raison de la haute efficacité énergétique, de la

grande largeur de bande de données et de la

programmabilité flexible du FPGA.

Cette thèse de doctorat propose d'améliorer
progressivement les modèles de détection
d'objets en reconvertissant les détecteurs
d'objets connus existants en modèles plus
légers, plus précis et plus rapides. Nos modèles
atteignent une précision comparable, tout en
étant légers et rapides, à celles de obtenues par
les meilleurs détecteurs de l'état de l'art. Nous
proposons et mettons également en œuvre
l'accélération de l'inférence de la détection
d'objets à l'aide de cartes FPGA de différentes
capacités et ressources. Nous nous concentrons
sur les implémentations d'accélération
d'inférence à haute efficacité énergétique et en
ressources, tout en préservant les performances
de précision du détecteur d'objets. Enfin, nous
présentons diverses contributions auxiliaires
telles qu'une technique de génération ou
d'augmentation d'images synthétiques très
significative pour l'entraînement d'un détecteur
d'objets, ce qui est essentiel pour obtenir un
détecteur d'objets performant. Dans
l'ensemble, notre travail dans cette thèse
comporte deux grandes parties : la conception
et la mise en œuvre de modèles de détection
d'objets légers et précis basés sur le CPU et le
GPU et la mise en œuvre d'une accélération
d'inférence de détection d'objets à haut débit, à
faible consommation d'énergie et de ressources
sur un FPGA.

Title: Deep Convolutional Neural Network Based Object Detection Inference Acceleration Using

FPGA

Keywords: Deep Learning, CNN, Hardware Accelerator, Object Detection, FPGA

Abstract: Object detection is one of the most

challenging yet essential computer vision

research areas. It means labeling and localizing

all known objects of interest on an input image

using tightly fit rectangular bounding boxes

Our models achieve a comparable accuracy

while being lightweight and faster compared

with some of the top state-of-the-art detectors.

We also propose and implement object

detection inference acceleration using FPGA

around the objects. Object detection, having

passed through several evolutions and

progressions, nowadays relies on the successes

of image classification networks based on deep

convolutional neural networks. However, as

the depth and complication of convolutional

neural networks increased, detection speed

reduced, and accuracy increased.

Unfortunately, most computer vision

applications, such as real-time object tracking

on an embedded system, requires lightweight,

fast and accurate object detection. As a result,

object detection acceleration has become a hot

research area, with much attention given to

FPGA-based acceleration due to FPGA's high-

energy efficiency, high-data bandwidth, and

flexible programmability.

This Ph.D. dissertation proposes incrementally
improving object detection models by
repurposing existing well-known object
detectors into lighter, more accurate, and
faster models.

boards of different capacities and resources.

We focus on high resource and energy-efficient

inference acceleration implementations while

preserving the object detector's accuracy

performance. Last but not least, we present

various auxiliary contributions such as a highly

significant synthetic image generation or

augmentation technique for training an object

detector which is critical for achieving a high-

performance object detector. Overall, our work

in this thesis has two parts: designing and

implementing lightweight and accurate CPU

and GPU-based object detection models and

implementing high-throughput, energy, and

resource-efficient object detection inference

acceleration on an FPGA.

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon

Dedicated to my heavenly late sister Mixuye!

Chapter 0

Acknowledgments

First, I would like to express my sincere gratitude to my thesis supervisor Prof. El-Bay Bouren-
nane for his unbounded patience, guidance, and support. I am forever indebted to his magnan-
imous personality, advice, and perpetual hardworking nature that genuinely made this thesis
work a success story. I extend my heartfelt gratitude to the member of the thesis defense jury
Professor Fan Yang, Professor Camel Tanougast, and Associate Professor Samey Meftali.

I would also like to extend my heartfelt gratitude to the Ethiopian Ministry of Higher Edu-
cation and Campus France for sponsoring my study. I would also like to thank the University
of Burgundy and the ImViA laboratory for accepting me as a Ph.D. student and o�ering me
teaching jobs, which helped me improve my scienti�c research and teaching skills.

Special thanks to my friends and colleagues for the fun times, discussions, and interactions
we had. Though it might be challenging to list all your names here, I must mention a few of
you: Kibrom, Yousef, Rabid, Juhlyn, Ichraf, and Tedy � please accept my sincerest thank you.

It will be an unforgivable mistake not to thank my loving, caring, and beautiful wife, Lelisie
Esaw Abosse, who made this study bearable. You are and will forever be the most invaluable
being I genuinely adore and hold on to dearly. So thank you very much, darling, for making
my study and life enjoyable. I also extend my heartfelt thank you to my parents, sisters, and
brothers for staying strong and making me feel strong even though we had to go through the
ordeal of our unjust loss of our beloved Mixuye to the cruel brutality of the world we live in and
the evils surrounding us.

v

Acronyms

AI Arti�cial Intelligence

ANN Arti�cial Neural Networks

BN Batch Normalization

CNN Convolutional Neural Networks

CPU Central Processing Unit

DL Deep Learning

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

HOG Histogram of oriented gradients

ID Identi�er

ML Machine Learning

MSE Mean Square Error

SVM Support Vector Machine

Terms Used

DDGNet Dense Detection Grid Network is an object detection model created by restructuring
the well-known YOLOv2 model's detection head using binary encoding instead of one-hot
encoding. It is our �rst modi�cation to YOLOv2 in our quest to create a lightweight and
fast detector which also generic or large multiclass.

DenseYOLO Is our second version object detector based on YOLOv2.

IoU stands for intersection over union and is a prime method for identifying if two overlapping
bounding boxes belong to the same or di�erent objects. It is the measure or ratio of an
area of an intersection between two boxes to the area of the union of the two boxes.

mAP stands for mean average precision and is used to tell the accuracy performance of an
object detector or image classi�cation network.

MNIST is a well-known database of handwritten digits (0 through 9).

MultiGridDet Is the third incremental improvement of our object detector and is based on
YOLOv3 and DenseYOLO.

SIFT is a computer vision algorithm to detect, describe, and match local features in images,
invented by David Lowe in 1999.

ThreeWayNMS is custom non-max-suppression for �ltering redundant and overlapping object
detection bounding boxes. It is more �exible than the traditional non-max-suppression,
which uses only a single threshold, whereas ThreeWayNMS uses two thresholds and area-
based neighborhood clustering.

YOLO You Only Look Once, or YOLO, is a pioneer and state-of-the-art one-stage object de-
tection model based on fully convolutional neural networks. It is the �rst of the successive
incrementally improved versions released by the original authors of the object detector
network and is usually known as YOLOv1, short for YOLO version one.

YOLOv2 YOLO Version 2.

YOLOv3 YOLO Version 3.

Contents

Acknowledgments v

Contents vii

1 Introduction 1
Introduction . 1

1.1 Motivation . 1

1.2 Statement of the Problem . 2

1.3 Objectives and Major Contributions . 2

1.4 Dissertation Structure . 3

I Theory Overview 6

2 Overview of Basics of Deep Learning 8
Overview of Basics of Deep Learning . 8

2.1 Introduction . 8

2.2 De�nitions . 8

2.3 Arti�cial Neural Networks . 11

2.4 Convolutional Neural Networks . 15

2.5 Training Deep Learning Model . 20

2.6 Conclusion . 26

3 Object Detection and Tracking: Study of Current Trends and State-of-the-art
approaches 27
Object Detection and Tracking: Study of Current Trends and State-of-the-art approaches 27

3.1 Introduction . 27

3.2 Modern Object Detection Trends . 28

3.2.1 Two-Stage Object Detection . 28

3.2.2 One-Stage Object Detection . 34

3.3 Object Tracking . 37

3.4 Conclusion . 42

4 FPGA as Hardware Accelerator for Object Detection and Tracking 43
FPGA as Hardware Accelerator for Object Detection and Tracking 43

4.1 Introduction . 43

4.2 Why FPGA? . 44

4.3 Short Review of FPGA Based Deep Learning Acceleration 44

4.3.1 Optimizations based on transforming the algorithm of convolution 44

4.3.2 Loop Optimizations . 45

4.3.3 Optimization based on lightweight implementation 48

4.4 Hardware-accelerated deep CNN design and implementation �ow 48

Chapter 0 Terms Used

4.5 Conclusion . 49

II Experiments and Major Contributions 51

5 Lightweight Generic Object Detector using binary encoding 53
Lightweight Generic Object Detector using binary encoding 53

5.1 Objectives . 53

5.2 Introduction . 54

5.3 Related Works . 54

5.4 Densi�cation: Generation of Dense Detection Grids 55

5.5 Training . 56

5.5.1 Coordinate loss . 56

5.5.2 Objectness loss . 57

5.5.3 Class prediction Loss: Ternary Cross Entropy (TCE) Loss 57

5.6 Inference . 58

5.6.1 Three Way Non-Max Suppression (3WayNMS) 59

5.7 Experiment . 60

5.7.1 Performance on Pascal VOC Object Detection Dataset 60

5.7.2 Performance on COCO Object Detection Dataset 62

5.8 Conclusion . 62

6 Yet Faster, Lighter and More Accurate YOLO 64
Yet Faster, Lighter and More Accurate YOLO . 64

6.1 Objective . 64

6.2 Introduction . 65

6.3 Related Works . 66

6.4 DenseYOLO . 66

6.5 Training . 68

6.5.1 Ground-Truth Annotation . 68

6.5.2 Training Loss function . 69

6.6 Inference . 70

6.7 Experiment . 70

6.7.1 Performance on Pascal VOC Object Detection Dataset 71

6.7.2 Performance on COCO Object Detection Dataset 71

6.8 Conclusion . 72

7 MultiGrid Redundant Bounding Box Annotation for Accurate Object Detec-
tion 73
MultiGrid Redundant Bounding Box Annotation for Accurate Object Detection 73

7.1 Objective . 73

7.2 Introduction . 73

7.3 Related Works . 74

7.4 Multi-Grid Assignment . 75

7.5 Training . 77

7.5.1 The Detection Network: MultiGridDet . 77

7.5.2 The Loss function . 77

7.5.3 O�ine Synthetic Data Generation . 79

7.6 Experiment . 80

7.7 Conclusion . 84

ix

Terms Used Chapter 0

8 Resource and Power E�cient High-Performance Object Detection Inference
Acceleration Using FPGA 85
Resource and Power E�cient High-Performance Object Detection Inference Accelera-

tion Using FPGA . 86
8.1 Objective . 86
8.2 Introduction . 86
8.3 Related Works . 87
8.4 Background . 88

8.4.1 Overview of Object Detection Models . 88
8.4.2 Convolution Layer . 89
8.4.3 Pooling Layer . 92
8.4.4 Depth-to-Space or Space-to-Depth Reorganization Layer 92
8.4.5 Batch Normalization Layer . 92
8.4.6 Leaky Relu Activation Layer . 93

8.5 The Proposed Hardware Acceleration of Object Detection Inference 93
8.5.1 General Overview . 93
8.5.2 Loop Tiling . 94
8.5.3 Double Bu�ering . 96
8.5.4 Data Quantization and Weight Reorganization 97
8.5.5 Convolution Processor . 100
8.5.6 Max-Pooling Processor . 104
8.5.7 Leaky Relu Hardware Processor . 105

8.6 Results and Discussions . 105
8.7 Conclusions . 107

III Conclusions and Future Works 110

9 Conclusion and Future Works 112
9.1 General Conclusion . 112
9.2 Future Works and Perspectives . 114

List of Publications 115

Bibliography 116

Appendix Synthetic Image Generator(SIG) for Supplementing Object Detection
and Segmentation Datasets 126

Appendix Analysis of Our Inference Acceleration Implementation on DDGNet,
DenseYOLO and YOLOv2 131

x

List of Figures

1.1 Our objectives and major contributions . 3

2.1 AI vs. ML vs. DL: A Venn Diagram depicting Deep Learning as Part of Ma-
chine Learning which is, in turn, one of the ways of mimicking human intelligence
arti�cially to machines . 9

2.2 Illustration of image classi�cation, object detection, semantic, and instance seg-
mentation . 11

2.3 Biological vs. Arti�cial Neuron . 12

2.4 Arti�cial Neural Network . 13

2.5 Common Activation functions . 15

2.6 Training ANNs: 1) Feedforward to calculate new activations (neurons), 2) back-
propagate the error, 3) update weight and bias. Repeat these three steps until the
cost is close or equal to zero or the stops lowering signi�cantly 16

2.7 Convolution and Pooling layer of CNN . 17

2.8 Fully Connected Layers without Dropout (a) and with Dropout (b) layers 19

2.9 Residual blocks . 20

2.10 Stages of training and deploying Deep CNN based networks 22

2.11 Intersection over Union . 25

3.1 Modern Deep-Learning Based Object Detection Categories 28

3.2 The architecture of R-CNN. (Image source: [17]) 29

3.3 Spatial pyramid pooling layer. The feature maps of a given proposal are pooled
into 3 Ö 3 spatial bins, 2Ö2 spatial bins, and 1Ö1 spatial bins, respectively. After
that, they are concatenated into a �xed-size feature vector and fed into two fully
connected layers. 30

3.4 The architecture of Fast RCNN. Compared to RCNN and SPPnet, it joins the
classi�cation and regression into a uni�ed framework.[21] 32

3.5 The architecture of Faster RCNN. Proposal generation (RPN) and proposal clas-
si�cation (Fast RCNN) are integrated into a uni�ed framework. [22] 32

3.6 The architecture of R-FCN. Position information is encoded into the network by
position-sensitive ROI pooling (PSROI) [23] . 34

3.7 The architecture of Mask RCNN. Apart from the detection branch of Faster
RCNN, the extra branch of mask segmentation is added. [24] 34

3.8 YOLO has 24 convolutional layers followed by two fully connected layers. Alter-
nating 1 Ö 1 convolutional layers reduces the features space from preceding layers.
It is �rst trained on the ImageNet classi�cation task at half the resolution (224 Ö
224 input image) and then doubles the resolution for detection. [26] 36

3.9 The architecture of SSD. The base network is VGG16.[29] 36

3.10 The architecture of RetinaNet. The base network is FPN with ResNet classi�ca-
tion backbone.[30] . 37

List of Figures Chapter 0

3.11 The ongoing discrete Kalman �lter cycle. The time update projects the current
state estimate ahead of time. The measurement update adjusts the projected
estimate by an actual measurement at that time. 39

3.12 A complete picture of the operation of the Kalman �lter illustrated mathematically 39

3.13 A simpli�ed overview of ROLO and the tracking procedure [37] 41

3.14 ROLO network architecture[37] . 41

4.1 Illustration of the convolution algorithm using FFTs [39] 45

4.2 Loop Unrolling. 4.2a 1 data-path, 1 sample per iteration and total of N iterations.
4.2b 4 data-path, 4 samples per iteration and N/4 total iterations. 46

4.3 Loop pipelining . 47

4.4 Xilinx Vitis HLS Design Flow . 49

4.5 End-to-end Deep CNN-based hardware inference acceleration overall implementa-
tion stages, tools and languages . 50

5.1 Dense Detection Grid Network (DDGNet). YOLOv2 used as base model
after stripping the last detection layer. 55

5.2 Grid densi�cation. After striping o� the last detection layer of YOLOv2 output
layer we then pass it through CONVBNL1, CONVBNL2 and CONV layers to give
dense output. CONVBNL* stands for Convolution −→ Batch Normalization −→
LeakyRelu layers. 55

5.3 Rounding class encoding prediction to either of the three value 0, 0.5 and 1. If
the predicted value is in the range of [0, δ] we round the predicted value to 0, if it
is in range (0.5 − δ, 0.5 + δ) then we round to 0.5 and if in the range [0.5 + δ, 1]
we round it to 1. 58

6.1 DenseYOLO . 67

6.2 The repurposing of YOLOv2 into DenseYOLO. In the �gure YOLOv2 with
an input image of 416 by 416 is assumed and bs stands for batch size. CONVBL1
and CONVBL2 refers to two blocks each made up of Convolution layer followed
by Batch Normalization layer followed by Leaky Relu layer. 68

7.1 Multi-grid assignment . 75

7.2 Ground-truth encoding . 77

7.3 Coordinate activation function plot with di�erent β values 79

7.4 Sample O�ine Copy-Paste Generated Arti�cial Images 80

7.5 Sample MultiGridDet output on randomly selected Pascal VOC 2007
test set images. As seen from the �gure the �rst row shows six input images,
whereas the second row shows the prediction of the network before non-max-
suppression (NMS) and the last row shows the �nal bounding box prediction of
MultiGridDet on the input image after NMS thresholding. 84

8.1 YOLOv2 object detection model layers and their corresponding tensor shapes.
ConvBNL stands for convolution followed by batch normalization and Leaky Relu
activation layers. Numbers 0�31 show the YOLOv2 layers. For a detailed under-
standing of each layer's parameter size, refer to Table 8.1. 89

8.2 Feature maps and weight tensors representation of a particular convolution layer.
Although not indicated in the �gure, usually convolution layers have also learned
bias (B) parameters of size equal to the number of output channels, that is Nof .
That is one bias value per output channel. 91

8.3 Space-to-Depth . 92

8.4 Depth-to-Space . 92

xii

Chapter 0 List of Figures

8.5 Overall architecture of the proposed HW/SW co-design of the inference accelera-
tion system. 94

8.6 Convolution layer with loop tiling of the input, output and weight 'pixels' or
'feature maps'. 95

8.7 Illustration of double-bu�ering sequencing. 97
8.8 Weight 4D�3D reorganization. The colors are only to show a sample of the corre-

sponding pixels' positions before and after the reorganization of the weight tensor.
. 100

8.9 Convolution processing element and its working procedure. 101
8.10 Convolution processor architecture. 101
8.11 Max-pool processor. 104
8.12 Per-layer latency of YOLOv2 inference on ZYNQ 7020 and ZCU102. 107
8.13 Sample YOLOv2 inference output of our hardware accelerator. 109

1 Illustration of Bounding Box Ground-Truth Annotation 127
2 Minimal �owchart showing the overall process �ow of our synthetic image genera-

tor (SIG). Note that SIG is an o�ine data augmentation, meaning the augmented
or arti�cial images are generated before training is started not during training. Us-
ing SIG we can generate unlimited unique images to supplement an existing object
detection dataset with seamlessly generated photo-realistic new images. We have
used SIG in training MultiGridDet, explained in Chapter 7 brie�y. There is slight
change, though than the version we presented in chapter 7. The version presented
in chapter 7 does not use object mask and hence relatively leaves visible edges
on an image since it is a simple copy-paste. However, the version presented in
this chapter uses seamless cloning using Poisson Image Editing and Various gradi-
ent and Histogram Equalization based image processing. As a result current SIG
version is more powerful and generates more seamless images at extremely high
speed. 129

3 Sample synthetically generated images using our SIG Algorithm. Note that, each
image depicted here are duplicates , one without bounding boxes on the left and
the other pair with bounding boxes drawn around each objects on the right. And
also note how no objects overlap and each output image have randomly varying
sizes. 130

4 Vivado Interface View of our inference accelerator. 131

xiii

List of Tables

2.1 The three types of machine learning techniques 10
2.2 Classi�cation Confusion Matrix . 24

5.1 Extended Binary Encoding. For class size n = 80 we need m = 2 ∗ log2n = 14
size array to encode a class. 56

5.2 Performance comparison on Pascal VOC 2007 test dataset against some
equivalent models. As seen from the table at 544 by 544 input image DDGNet
outperforms the equivalent networks in the table. 58

5.3 Individual Pascal VOC 2007 dataset classes mAP. DDGNet works better in almost
all objects the other networks struggles with. 61

5.4 COCO dataset test result. Though DDGNet sweepingly outperforms the underly-
ing YOLOv2, but it still remains behind the rest current state-of-the-art including
behind YOLOv3. 62

6.1 Performance comparison of DenseYOLO trained with k = 9 and k = 15
and tested on Pascal VOC 2007 test dataset against some equivalent
models. 70

6.2 IOU cluster of bounding boxes of combined Pascal VOC 2007 and 2012 training set 71
6.3 COCO dataset test result. 71

7.1 Performance Comparison on Pascal VOC 2007 test set 81
7.2 Individual Pascal VOC 2007 dataset classes mAP. 82
7.3 AP Performance on COCO test set . 83

8.1 YOLOv2 layers and their input and output sizes presented in detail. 90
8.2 Loop tile sizes and memory read�write access iterations to or from the tile bu�ers. 96
8.3 Available resources onboard ZYNQ-7020 and ZCU102. 106
8.4 Design parameter choices and performance measures. 106
8.5 Comparison of our implementation against other prior works using several metrics. 108

1 YOLOv2 vs DDGNet vs DenseYOLO models layer parameter comparisons and tile
read or write access cycles. As explained in Chapter 8 the tile sizes for acceleration
implementation on ZYNQ 7020 and ZCU102 boards are di�erent. See chapter 8
Table 8.4 for details of the tile size choices of each boards. As seen in this table the
three models have similar backbone network,Darknet-19, and di�erent detection
head. As a result, the inference implementation discussed in chapter 8 fully applies
to all three models. 132

2 YOLOv2 vs DDGNET vs DenseYOLO Latency, GOPS and DSP e�ciency Com-
parison. 133

Chapter

1
Introduction

Chapter content

Introduction . 1

1.1 Motivation . 1

1.2 Statement of the Problem . 2

1.3 Objectives and Major Contributions 2

1.4 Dissertation Structure . 3

Introduction

In this chapter, we will provide the overall theme of this thesis work. We will discuss our work's
motivation, objectives, and signi�cant contributions. In the end, we present the structure of our
dissertation document with an executive summary of each subsequent chapter.

1.1 Motivation

We humans can perceive any visible object in front of us e�ortlessly and with great detail in
just a single glance or blink of an eye. These include identifying where an object part begins
and ends, its color, size, and the number of objects, to list a few things we can do in a single
glance. It is an age-old quest for researchers to mimic this natural ability of human beings using
machines � after all, vision is one of the most valuable and dominant senses a human depends
on to run his or her daily errands. If a machine can see and dependably understand what
it sees without human assistance or intervention, that would undoubtedly be one of the most
outstanding achievements in modern human history. Considering only the positive repercussion
of this achievement, one can think of an in�nite application that an intelligent machine can render
to better our existence, such as surveillance and tracking, medical technology, environmental
protection, text-to-audio conversion, and vice versa, uncrewed vehicles technology, to list the few.
Though progress is still in the infant stage of understanding and mimicking human intelligence
using computers, many breakthrough achievements have been achieved in this quest. Blind
users can now explore photos by touch with Microsoft's Seeing AI [1]; AI machine has beaten
humans in Image classi�cation[2]; AI Beats Radiologists in Detecting Lung Cancer [3]; Two new
planets discovered using arti�cial intelligence[4] � are success stories showcasing the potential
of arti�cial intelligence. Moreover, AI successfully tackles the daunting email spam �ltering task
[5] and face recognition [6] functionality running on our favorite social media applications.

Even though these growths and phenomenal advancements of arti�cial intelligence, partic-
ularly computer vision, are admirable, the programming complexity, the vast computational
resource requirement of the models, their expensive electrical power consumption, and lack of
real-time operational speed are bottlenecks that we have to reckon with yet. Embedded systems

1.2. Statement of the Problem Chapter 1

such as implantable medical chips, smart city camera systems for tra�c control, wireless vision
networks for farms, borders, personal property surveillance, uncrewed aerial or land vehicles, etc.,
are all resource-constrained platforms that could bene�t from the advancement of AI. However,
current AI applications are too big, high resource and power demanding, and also slow. As AI
systems' accuracy increases and becomes dependable, research on making them lightweight, real-
time, and less complex is getting traction and top priority. This fact brings us to the motivation
of this thesis which is the design and implementation of a lightweight, fast and accurate generic
object detection . Object detection is one of the most critical computer vision applications whose
objective is to precisely locate all known objects on an image or a video frame. In this regard,
we intend to contribute by proposing lightweight, fast, and accurate object detection and its
hardware acceleration architecture suited for embedded systems using FPGA.

1.2 Statement of the Problem

Object detection one of the most critical computer vision applications. It has several real-world
applications such as face detection and tracking, emotion recognition, pedestrian detection and
tracking, property surveillance, video analysis, numerous military use, medical image analysis,
and the list goes on. Most of these applications are needed in resource-constrained environments
such as embedded systems where memory storage, battery consumption, and processor processing
capacity are adversely low. For example, a path following robot, wireless sensor network of smart
surveillance camera system running on a remote secure property, wearable patient monitoring
and assistance system, et cetera are embedded systems that could bene�t from object detection
. Even if the deployment is on unconstrained resource environments, object detection should be
real-time; after all, humans need computers for accuracy, speed, and ease of doing tasks.

However, the current trend in object detection focuses on boosting accuracy, with less regard
for speed and used resources, by using deep learning techniques with several layers and millions
of parameters. In a desktop or laptop computer system, the increasing speed and memory of
graphical processing units, GPUs, along with readily available software frameworks for creating
sophisticated object detectors, has made it easy for researchers to keep increasing the depth of
their object detection model with anticipation of obtaining an accurate detector, of course at
the cost of speed. Nowadays, �nding a commendable balance between speed and accuracy while
requiring fewer resources is an active computer vision research question. A framework called one-
shot or one-stage object detection is often regarded as light, fast, and commendably accurate
even-though usually less accurate than two-stage object detection. This thesis proposes ways
to make one-shot object detection even faster, lighter, and competitively accurate against the
two-stage object detectors. We implement our object detectors compare them against state-of-
the-art detectors. We also implement a generic hardware accelerator for object detection based
on our models using two low-cost FPGA boards.

1.3 Objectives and Major Contributions

This thesis work aims to design and implement deep learning-based lightweight, real-time, accu-
rate, and generic object detection . We also aim to make object detection energy e�cient and
suitable for embedded systems, and hence we implement our lightweight and accurate object
detector using FPGA for an increased inference speed. In general, the following are speci�c
objectives and deliverables of our research work on object detection implementation using deep
CNN and its inference acceleration using custom buit accelerators built on an FPGA:

� Design and implementation of CPU and GPU-based fast, accurate, and lightweight one-shot
object detector. Here we propose three di�erent deep convolutional neural network-based

2

Chapter 1 1.4. Dissertation Structure

object detection methods. All three models have one core concept: treating object detec-
tion as a single uni�ed feedforward regression problem instead of the pipelined two-stage
framework that relies on an underlying object region proposal network. The �rst model
focuses on object class encoding, the second model proposes change on the use of anchor
boxes in a one-stage object detector, and the third model incorporates multiscale detection
for increased detection accuracy while maintaining a lightweight and high-detection speed.

� We design and implement hardware accelerators based on our object detection models
on two FPGAs with di�erent onboard resources. We compare our object acceleration
with both other similar implementations and against our GPU-based implementation to
investigate resource and power consumption and inference speed gain.

� We also propose an e�cient and straightforward synthetic data augmentation technique
for object detection. Training object detection requires an enormous amount of carefully
annotated data, and obtaining or producing such data is a very tedious and cumbersome
task. Instead, researchers rely on di�erent image augmentation techniques. Our synthetic
image generation algorithm proves very useful in training object detection.

Furthermore, Figure 1.1 summarizes our objective and major contributions in this Ph.D. work
pictorially by grouping our core objectives and contributions into two categories. As seen from the
�gure, our �rst objective is to design and implement a new and better object detection network
based on deep CNN by re-purposing an already existing well-performing model into a more
lightweight, faster, and accurate detector. Under this objective, our signi�cant contributions
yield three new object detection models based on a one-stage object detection paradigm and are
derived from YOLOv2 and YOLOv3, well-reputed object detection models. Moreover, we also
devise a new and valuable synthetic data augmentation technique to supplement object detection
training datasets. Our second core objective is to design and implement a faster, lighter, and
resource and power-e�cient hardware version of our object detectors. Under this objective, we
achieved high resource and power e�ciencies and more accurate and high-throughput object
detection inference acceleration.

Figure 1.1: Our objectives and major contributions

1.4 Dissertation Structure

This thesis comprises nine chapters, including this chapter introductory chapter, where we stated
our objectives and mission in this Ph.D. work. Below we summarize the focuses of each chapter

3

1.4. Dissertation Structure Chapter 1

in a bulleted manner:

� Chapter 1: Introduction: presents the thesis motivation, objectives, problem statement,
scopes, and limitations.

� Chapter 2: Overview of Basics of Deep Learning: introduces deep learning, particularly
arti�cial neural networks and convolutional neural networks. Moreover, the chapter also
tries to de�ne some critical terms in machine learning. Finally, the chapter introduces the
process of creating and training a deep learning model and its challenges.

� Chapter 3: Object detection and tracking: a study of current trends and state-of-the-
art approaches. This chapter focuses on object detection and tracking, delves in detail
into modern object detection trends and introduces some of the most well-known object
detection models of the past decade. We also introduce object tracking and current object
tracking implementation approaches.

� Chapter 4: FPGA for Object Detection Acceleration: presents why FPGA is used to accel-
erate object detection, reviews recent deep CNN acceleration using FPGA, some standard
go-to approaches in implementing custom object acceleration, and �nally presents the end-
to-end implementation of hardware/software co-design tools and �ows.

� Chapter 5: Lightweight Generic object detection using binary encoding� is the beginning
of part two of this thesis document and presents our �rst signi�cant contribution: an object
detection model called DDGNet. DDGNet is a lightweight object detection model faster
than the famous YOLOv2 object detector and slightly more accurate. This chapter also
introduces our object prediction �ltering technique called ThreeWayNMS.

� Chapter 6: Yet Faster, Lighter, and More Accurate YOLO, DenseYOLO, is our second ver-
sion object detection model repurposed from YOLOv2. DenseYOLO introduces a unique
anchor-based object detection network. It is lighter than YOLOv2 and better handles the
removal of false-positive object detection. In short, it outperforms the parent YOLOv2
and some state-of-the-art detectors in detection accuracy and speed.

� Chapter 7: Our third signi�cant thesis contribution is the multi-grid redundant bounding
box annotation for accurate object detection. This chapter presents the detail of Multi-
GridDet, our third model and more robust detector suited for multi-scale object detection.
Multi-scale object detection is nowadays becoming the focus of object detection research.
It means detecting objects of varying sizes, namely small, medium, and large, using one
uni�ed network but multiple output stages dedicated for each scale. The chapter also in-
troduces synthetic data generation and augmentation techniques for supplementing object
detection training datasets. Object detection requires a termoundous amount of datasets,
and it is usually tiresome and boring, if not impossible, to create millions of datasets for
object detection. Instead, some arti�cial dataset generation is a paramount demand nowa-
days, and our seemingly smooth and dynamic synthetic data generation is an outstanding
contribution in this regard.

� Chapter 8: Resource and Power E�cient High-performance Object Detection Inference
Acceleration Using FPGA � is our other signi�cant contribution to this thesis. This
chapter introduces hardware acceleration implementation, custom acceleration techniques,
design choices, and lastly, implement and test our acceleration design using YOLOv2,
DDGNet, and DenseYOLO.

� Chapter 9: Conclusion and Future Works � is the closing chapter of the dissertation. We
summarize the major points of each earlier chapter, our contributions, and some anticipated

4

Chapter 1 1.4. Dissertation Structure

future works of the thesis. Finally, in the appendixes, we present the main components
of our hardware acceleration implementation codes, and details of our synthetic data gen-
eration and augmentation are included. Moreover, references used in each chapter are
presented in the biography section, which wraps up our dissertation.

5

Part I

Theory Overview

6

Chapter

2
Overview of Basics of Deep
Learning

Chapter content

Overview of Basics of Deep Learning . 8

2.1 Introduction . 8

2.2 De�nitions . 8

2.3 Arti�cial Neural Networks . 11

2.4 Convolutional Neural Networks . 15

2.5 Training Deep Learning Model . 20

2.6 Conclusion . 26

Overview of Basics of Deep Learning

2.1 Introduction

Out of the �ve sense organs in our body, vision is the most important yet complex one. Most
of our intelligence depends on our ability to see and our brain's ability to process visual inputs
almost e�ortlessly. The sole goal of computer vision is to mimic this ability of our brain in
processing visual inputs. Computer vision evolved over many stages of milestones, starting from
the early years of the 1950s and 60s till the present date, though we are still very far from
fully mimicking the human vision system, if possible at all. Early computer vision approaches,
also referred to by the umbrella term traditional computer vision methods, depended on human
experts' handcrafted features and shallow classi�er networks or descriptor algorithms such as
SIFT[7], HOG[8], and SVM[9]. Though still widely used and sometimes best �tting for certain
types of applications, the challenge with these traditional approaches was the lack of end-to-end
trainability and the need for manual feature crafting by an expert for all object categories.

Nowadays, deep arti�cial neural networks, particularly convolutional neural networks, dom-
inate computer vision applications. Before we delve into object detection and tracking, it is
customary to brie�y introduce arti�cial neural networks and convolutional neural networks since
they are responsible for computer vision in general and object detection, in particular, be at its
pinnacle of modern-day success.

2.2 De�nitions

Arti�cial intelligence, Machine Learning, and Deep Learning

Arti�cial intelligence is a growingly thriving hot area of study with application in almost every
science. This popularity is prone to introduce confusing terms and blurred boundaries on de�-

Chapter 2 2.2. De�nitions

nitions and scopes of some core concepts in AI. Here we brie�y introduce and try to clear those
confusions. We begin by de�ning arti�cial intelligence, machine learning, and deep learning.

Figure 2.1: AI vs. ML vs. DL: A Venn Diagram depicting Deep Learning as Part of Machine Learning
which is, in turn, one of the ways of mimicking human intelligence arti�cially to machines

Since the inception of machines that can solve complex mathematical or statistical problems,
humans have been in constant quest of making these machines have the ability to think like
humans or even better. This process of enabling machines to mimic human intelligence is called
arti�cial intelligence or AI [10]. Programmable machines or computers easily outperform humans
in speed and accuracy in problems with formal rules and procedures such as mathematical
or logical operations, thanks to the high computing capacity of the underlying hardware and
sophisticated application softwares. However, computers are way behind us,humans, on those
problems we humans e�ortlessly solve, like naming and locating objects on an image or reading
someone else's handwriting. Even though we do these tasks seemingly e�ortlessly, enabling
computers to do the same is not a trivial task since we do not have formal rules or algorithms to
solve such tasks. Instead, we expect machines to learn from representative data and generalize
to other similar problems or tasks. This mimicry of human intelligence through learning from
representative data is called machine learning. In general, machine learning is a subset of AI
that uses statistical learning algorithms that builds a system that can predict an output from
experience or intelligence obtained from prior exposure to similar, not necessarily the same,
training representative data.

Based on the data and the problems the machine learning systems target, we can classify
machine learning techniques into three categories: supervised, unsupervised, and reinforcement
learning. Table 2.1 summarizes the distinction between the three di�erent types of machine
learnings.

Some of the most successful machine learning algorithms include arti�cial neural networks
(ANN), support vector machines (SVM), decision trees, and Bayesian models. These algorithms
are further classi�ed into shallow learning and deep learning. Even though there is no standard
as to when to call a particular algorithm shallow or deep, generally, deep learning algorithms
have more connections and more than one hidden layer. Nowadays, the success of arti�cial neural
networks, particularly the one based on convolution, namely referred to as convolutional neural
network or CNN, overshadows the other traditional shallow learning networks. CNN's inception
is to arti�cially mimic the human brain and usually has thousands or millions of connections.

9

2.2. De�nitions Chapter 2

In summary, deep learning is a subset of machine learning, speci�cally deep arti�cial neural
network-based machine learning, where the interconnection of more than one hidden layer is used
to increase a model's accuracy. The model's target could be the natural language processing,
image recognition, detection, segmentation, object tracking, etc. Furthermore, machine learning,
in turn, is a subset of arti�cial intelligence, meaning, not all arti�cial intelligence is machine
learning intelligence. For example, a computer calculator application is an arti�cial intelligence
but not a machine learning intelligence since the computer can solve calculation problems due to
stored programs rather than the machine's learning from data. Figure 2.1 shows this relationship.
By this, we claim to have cleared the ambiguity between arti�cial intelligence, machine learning,
and deep learning and move on to further elaborate phrases directly related to our thesis work.
These are image classi�cation, object detection, segmentation, and tracking.

Supervised
Learning

Supervised learning is a machine learning technique in which
the input dataset has labeled, named, target output pair. For
example, in a handwritten digit recognition task, all hand-
written input digits have a corresponding label of 0 � 9.

Unsupervised
Learning

Unsupervised learning is a machine learning technique in
which the system under training is expected to distinguish
patterns among the input data without being pre-fed with
the expected output pair. A typical example is clustering
problems, such as K-means clustering.

Reinforcement
Learning

Reinforcement learning or semi-supervised learning is a class
of machine learning in which learning happens by interacting
with the environment, not necessarily the input and output
pairs only. Here we describe the current state of the system,
specify a goal, provide a list of allowable actions and their
environmental constraints for their outcomes, and let the
machine learning model experience the process of achieving
the goal by itself using the principle of trial and error to
maximize some form of cumulative reward. An example is
the Markov decision process (MDP).

Table 2.1: The three types of machine learning techniques

Image classi�cation, object detection, segmentation, and tracking

Computer vision is one of the most widely researched application areas of arti�cial intelligence
where a computer system tries to mimic a human vision system from digital images or videos.
Common computer vision application includes image classi�cation, object detection or recogni-
tion, object segmentation, and object tracking.

Image classi�cation:- is the task of labeling an image regardless of the object's position on
an image. Inputs to classi�cation networks usually has a single object, and the classi�er outputs
the label or name of this object or at least the dominantly visible object's name on the image.
See Figure 2.2 �st image.

Object detection:- is a computer vision challenge where a model predicts the location and
class of all known objects on an image and draws a tightly �t rectangular bounding box on the
areas occupied by the individual objects. Simply put, it is a classi�cation with localization, but
often the image contains more than one object. Figure 2.2, second image, shows an example
object detector's output.

Segmentation:- is in short, segmentation is pixel-level image classi�cation, except instead of

10

Chapter 2 2.3. Arti�cial Neural Networks

labeling the image as an image classi�er does, a segmentation system assigns a similar color
value to each object of the same class or instance, creating a color blob resembling the objects.
If a segmentation system assigns di�erent colors for each object instance of a similar class as in
Figure 2.2 (fourth image), we call it instance segmentation. In contrast, semantic segmentation
assigns similar color for pixels of objects of the same class regardless of the pixels belonging to
di�erent objects even though the same class. See Figure 2.2, (the third image) for semantic
segmentation.

Object Tracking :- is a computer vision application where an object tracking system, could
be a single object or multi-object simultaneous tracking system, assigns a unique ID for each
detected object in a video frame and follows the object's (s') progression within the video.
Often a tight bounding box with a unique identifying ID is assigned to each object, and(or) a
path is drawn in the video frames showing the object's trajectory. Object tracking has several
applications, including surveillance, activity recognition, uncrewed vehicles (areal and land), and
various military purposes. Image classi�cation, object detection, or segmentation are typically
time-insensitive, whereas object tracking has an added complication due to its need to be real-
time or instantaneous. Since this thesis focuses on real-time object detection and tracking, we
will discuss these two concepts in detail in the following chapters, including our proposed methods
and contributions.

Figure 2.2: Illustration of image classi�cation, object detection, semantic, and instance segmentation

2.3 Arti�cial Neural Networks

Arti�cial neural networks (ANNs) are computing systems inspired by the human brain's biological
neural networks or circuits. The brain has over 10 billion interconnected neurons. Figure 2.3 (a)
shows a single neuron that on its own has over 10 thousand interconnections with other close and
distant neurons through the synapses. A signal from one cell to another is transmitted through a
complex chemical process at the synapses forcing the receiving cell to react by raising or lowering
its electrical potential (Inhibitory vs. Excitatory synapses). If this potential reaches a certain
threshold, a pulse or an action potential (of �xed strength and duration) is sent down the axon.
This pulse, in turn, branches through the axon to synaptic junctions with other cells. [excerpt
from Lecture 8: Arti�cial neural networks by Natan Intrator]

Similarly, but not precisely, arti�cial neurons, Figure 2.3 (b), mimic this process of the
biological neuron. Input vector from neurons of a preceding layer x = x1, x2, . . . , xn pass
through a dot product and overall summation with a weight matrix w = w11, w21, . . . , wn1 and
addition of an optional bias term. Then on the resulting summation, we apply an activation
function, linear or nonlinear function. The resemblance between the biological neuron and the
arti�cial neuron is that the summation process mimics the neural summation of the potential
of the signals coming from both nearby and distant neurons at the postsynaptic membrane of
the cell body. Based on the potential in the cell body, whether the potential is above a certain
threshold or not, and the neuron type (inhibitory or excitatory), a neurotransmitter signal is
sent to the synapse junction through the axon. The activation function and its output mimic
this later stage of the biological neuron.

11

2.3. Arti�cial Neural Networks Chapter 2

Figure 2.3: Biological vs. Arti�cial Neuron

An arti�cial neural network, Figure 2.4, is thus a set of connected layered arti�cial neurons in
which each connection has an associated weight and optionally bias. During the learning phase,
the neural network's task is to adjust the weights and biases of each layer so that on the output
layer, a particular neuron �res more strongly than the rest of the neuron for corresponding input
data. The forward per layer calculation of new neural output is called feedforward, whereas the
backward process of tuning the weights and biases values is called backpropagation. Furthermore,
this feedforward and backpropagation are repeated for several iterations to process all input data
and learn common features (weights and biases) that better represent a given input to trigger
its corresponding output neuron.

Details of working principles and mathematical equations explaining arti�cial neural networks
and backpropagation can be referred to from Michael Nielsen's book titled �Neural Networks
and Deep Learning. [11]� Here we summarize it into three steps: (1)Feedforward, (2) Error
backpropagation, and (3) Updating weight and bias. To explain the underlying mathematics,
we will use MNIST handwritten digits recognition as an example problem to solve using ANN.
Assume the digits are 28x28-pixel images, and when �attened, it will be 784 x 1 vector. Our
neural network will have two hidden layers, each with 30 neurons and the last output layer of size
10, one neuron for each digit. Figure 2.4 shows these assumptions and the training parameters
of each layer (the weight and bias on each layer). Now we explain the maths of the three steps
we mentioned above in an enumerated bullet points:

Step 1. The feedforward:-this is the process of traversing through the network forward
while calculating new neurons from preceding layer neurons and weight and bias pairs. As
explained earlier, an arti�cial neuron is a mathematical value calculated, as shown in Figure 2.3

12

Chapter 2 2.3. Arti�cial Neural Networks

Figure 2.4: Arti�cial Neural Network

(b), and a neural network is the network of such neurons. In the input layer, the �attened vector
of the image pixels, in this case, the 28 × 28 handwritten digit �attened to 784x1, is our input
x. Let us call this input layer with n0 = 784 neurons as layer 0. This layer 0 fully connects
with the following hidden layer1 neurons of n1 = 30. Now since layer 0 neurons fully connect
with layer 0 neurons, we will have a connection weight of shape wl0 = 784 × 30, because after
all, by the connection, we mean the multiplying weight matrix. Initially, these weight values are
initialized with small random numbers, and the sole purpose of training is to �x these randomly
initialized weights with learned weights. Optionally, we will also initialize a bias parameter of
shape bl1 = 30 × 1, one bias value for each neuron of layer 1. Now having sorted out our
mathematical notations for the �rst layer, we explain the steps in feedforward to calculate the
new neurons of layer 1 (xl1), from layer 0 neurons (xl0), and weights (wl0) and bias (bl1) as follow:

1. Calculate zj
l1 , an intermediate value before calculating the actual (xl1), using the Equation

2.1 for each neuron of layer 1. In Equation 2.1, j = 1, 2, . . . , 30 stands for each neurons
in the �rst hidden layer and i = 1, 2, . . . , 784 is for each neuron in the input neuron.
Note that for the next hidden layer, the current j becomes i, and the neurons of the second
hidden layer are j. This way, i and j interchange and Equation 2.1 are repeatedly used for
all layers in the forward propagation.

zj
l1 =

n∑
i=0

((
xi

l0 .
(
wij

l0
)T)

+ bj
l1

)
(2.1)

2. Chose an activation function f and apply it to zj
l1 to calculate the �nal value of the new

neurons in the �rst hidden layer (xl1) as shown in Equation 2.2. Some common activation
functions and their graph is shown in Figure 2.5.

xj
l1 = f

(
zj

l1
)

(2.2)

13

2.3. Arti�cial Neural Networks Chapter 2

3. Repeat 1 and 2 for all layers in the forward direction taking the preceding layer as an input
the following layer until we calculate the last layer neurons.

Step 2: Backpropagation:- This is where we calculate the error on the �nal output layer
against the expected target output and propagate the error backward. All neurons contributing
to the error will gradually �x their corresponding weights and biases so that the next time the
network sees the same input, it will trigger its corresponding output neuron correctly. Backprop-
agation is the most excellent quality of ANNs against traditional machine learning techniques
because it enables end-to-end learning without a need for human intervention or the introduction
of other feature descriptors.

Following the same approach as in step 1, we will explain the steps in backpropagation. The
�nal goal in backpropagation is to determine the contribution of each layer's parameters (weights
and biases) to the �nal-layer error or loss. If a function has two or more variables, we can use
a partial derivative of the function against each variable to calculate the e�ect (contribution)
of the each variable on the function. Backpropagation depends on this mathematical principle.
Now to the steps (procedures) in backpropagation:

1. Chose a cost function or loss functions. There are several cost functions for di�erent
applications and targets. Among them, mean-square-error (MSE) is the one we will use
here to explain backpropagation due to its simplicity and the understandable intuition
behind it. Let the �nal layer (L) output be xL = f

(
zL
)
= ŷ. The expected target vector

is y. The cost function C is thus given by Equation 2.3:

C =
1

2n

n∑
j=0

(yj − ŷj)
2 (2.3)

Since we have ten digits targets, y is a vector with a size ten, and thus the last layer has
n = 10. We can rewrite Equation 2.3 by replacing the term ŷj by Equation 2.2.

C =
1

2n

n∑
j=0

(
yi − f

(
zj

L
))2

(2.4)

C =
1

2n

n∑
j=0

(
yj − f

(
n∑

i=0

((
xi

L−1.
(
wij

L−1
)T)

+ bj
L
)))2

(2.5)

As seen from Equation 2.5, the cost function depends on the weight and bias parameters
considering the xi

L−1 part as a constant from the previous layer.

2. Calculate the error: once we formulate the error function, we perform partial di�erentiation
to determine the contribution of the two variable parameters (weight and bias) to the error.
Similarly, we continue backward for each layer. Equation and 2.7 shows the error induced
by weights from layer L− 1 and bias on the L layer. The equation for all layers is present
in Figure 2.6.

∂C

∂w
(L−1)
ij

=
∂C

∂Z
(L)
j

.
∂Z

(L)
j

∂w
(L−1)
ij

(2.6)

∂C

∂b
(L)
j

=
∂C

∂Z
(L)
j

.
∂Z

(L)
j

∂b
(L)
j

(2.7)

14

Chapter 2 2.4. Convolutional Neural Networks

Step 3: Update the weights and biases: This step is called gradient descent since we are
computing the gradients (slight changes or nudges to the weight and bias parameters) so that the
overall cost descends to a minimum point zero or very close to zero. Sometimes this minimum
point happens to be a local minimum rather than a global minimum forcing the system or the
training stack at an undesirable stage. There are several proposed solutions to this kind of
problem, such as tweaking a learning rate parameter (the rate at which the weight and bias
change), restarting the training with better initial weight and bias, increasing or decreasing
neurons in the hidden layer, etc. The weight and bias are updated using Equations 2.8 and 2.9,
respectively. Equations 2.8 and 2.9 are for the last layer; the remaining layer is presented in
Figure 2.6. Note that these formulas are for a single image as an input. However, usually, we
train on batches of images at once so that 1) the training will be faster, 2) the network learns
more common features from batch images and learns to focus on distinguishing features of each
object (image).

w
(L−1)
ij = w

(L−1)
ij − η

∂C

∂w
(L−1)
ij

(2.8)

b
(L)
j = b

(L)
j − η

∂C

∂b
(L)
j

(2.9)

Figure 2.5: Common Activation functions

2.4 Convolutional Neural Networks

ANNs have been working well in classifying images, and deeper ANNs work even more but since
the networks are fully connected, increasing neurons per the hidden layer means quickly escalating
weight parameters. Apart from the drastic increase of weight parameters with increasing neurons,
ANNs have one critical pitfall: they do not consider the spatial structure of the image while
learning to classify it. Instead of learning directly from the natural arrangement of an image's
pixels, ANNs have to �atten the input, ignoring the pixels' spatial distribution on an image. The
problem is not only the loss of spatial information, but the fact that ANNs are fully connected
(meaning all neurons of the previous layer connects to all neurons of the next layer), it is almost
impossible to use bigger images as that would mean an exploding size of weight parameter. As
a result, a new learning paradigm that considers the spatial location of pixels as well as suited
for higher resolution images was necessary, hence a convolution-based neural network.

15

2.4. Convolutional Neural Networks Chapter 2

Figure 2.6: Training ANNs: 1) Feedforward to calculate new activations (neurons), 2) backpropagate
the error, 3) update weight and bias. Repeat these three steps until the cost is close or equal to zero or
the stops lowering signi�cantly

Convolutional Neural Networks (CNNs) operate more or less like ANNs except that the layers
in CNN are two or more dimensional, called feature maps, instead of the one-dimensional fully-
connected layers of ANNs (see Figure 2.4). CNN is a specialized form of neural network in which
at least in one of its layers, a kernel or �lter window is convolved over the preceding layer feature
map (input image) to produce new feature maps. CNN operates on three key features: local
receptive �elds, shared weights and bias, and pooling. We will explain CNN with an example,
but �rst, let us brie�y explain these critical features of CNN.

Local receptive �elds:-In ANN a neuron of a layer connects with all neurons of the previous
layer with a matrix of a multiplier called weights. However, a neuron in CNN is connected with
a few neurons of the preceding layer restricted to a small area called the receptive �eld. Similar
to ANN, when we say connection, we mean a multiplying weight matrix. The kernel is usually
square-shaped with odd-numbered sides commonly in the range of 1 to 11.

Shared weights and biases:- During convolution, we use the same kernel or �lter, hence shared
weight and bias, by sliding and convolving it on the local receptive of the preceding layer. We
can use more than one kernel on a given convolutional layer to produce more planes of feature
maps on the following layer.

Pooling :- Pooling is a form of down-sampling the size of the feature map outputs of the
convolutional layer. It reduces the memory footprint of CNN while preserving the prevalent
features and disregarding the less in�uential features. This down-sampling enables CNNs to
have more depth, which is why CNN-based networks dominate modern deep learnings. There
are di�erent types of pooling layers. The most common are max-pooling, average pooling, and
l2 pooling.

Next, we explain the mathematical aspect of the convolutional neural network. Assume an
input image of size h×w× c where h and w are the height and width of the image, respectively,
and c is the image channel or depth. c = 1 for grayscale image whereas c = 3 for an RGB
image. And again, let us assume that the convolution has a kernel (�lter) of size fc×fc×nc and
a stride of sc × sc, the c subscript denotes that the kernel f × f or the stride s× s is associated
with the convolution layer. For further clarity, see Figure 2.7. We can perform the convolution
on the input image in either of two formats, valid convolution or same convolution. If we want
to get an output feature map of equal height and width with the input feature map (image),
we need to pad the input with zero. Otherwise, the convolved output feature map will have a

16

Chapter 2 2.4. Convolutional Neural Networks

Figure 2.7: Convolution and Pooling layer of CNN

relatively smaller size than the input feature map. The output feature map width w
′
and height

h
′
are given by Equations 2.10 and 2.11:

h
′
=

h+ 2pc − fc
sc

+ 1 (2.10)

w
′
=

w + 2pc − fc
sc

+ 1 (2.11)

Similarly, for the pooling layer, we consider a pooling kernel of fp × fp and a pooling stride
of sp × sp and the resulting feature map after the pooling will have a height of h

′′
and width of

w
′′
calculated by Equations 2.12 and 2.13:

h
′′
=

h
′
+ 2pp − fp

sp
+ 1 (2.12)

w
′′
=

w
′
+ 2pp − fc

sp
+ 1 (2.13)

Figure 2.7 shows only the convolution and pooling layer of a CNN network. However, a typical
deep CNN will have many more convolutional and other layers such as batch normalization and
activation layers though the convolutional layer is its underpinning. Below we will explain some
of these layers one by one.

Batch Normalization Layer

Training deep networks, either ANN or CNN, is challenging because each input batches of an
image are di�erent and have a di�erent distribution. Moreover, since the initial state of the
network is random due to the random weight initialization, each layer of the network treats the
input image di�erently. Especially if the input image varies considerably, the network might not
converge sooner, and training might take very long if it converges at all due to the need to use a
lower learning rate to minimize �uctuation. This phenomenon is called internal covariate shift.
The typical approach to solving such problems is to use some sort of normalization on the output
of one layer before inputting it to the next layer (the next convolutional or fully connected layer).

17

2.4. Convolutional Neural Networks Chapter 2

In general, we have two standard normalization practices. (1) normalizing the data to a value
between 0 and 1, using Equation 2.14 or (2) normalizing it to have a mean of zero and standard
deviation of one so that the data would be a normal distribution. We use Equation 2.15 for the
second type of normalization. In the equations, x is the input data, and m and s are the mean
and standard deviation of the data, respectively.

xnormalized ←
x− µ

xmax − xmin
(2.14)

xnormalized ←
x− µ

σ
(2.15)

Moreover, we can have two distinct normalization processes based on where or when we apply
the normalization in the network. First is normalization during pre-processing, and second is
normalization between the layers of the network. The second type of normalization makes the
normalization task part of the network like the trainable convolutional or activation layers. Here
want to discuss the latter type of normalization, normalization between neural networks, and
hence we will call it the normalization layer since it is part of a network, CNN or ANN, as a
layer.

There are di�erent normalization techniques proposed and tried over the years. One of
the well-known, such normalization is called Batch Normalization [12] or BN for short. It is
a normalization technique done between the layers of a Neural Network instead of in the raw
data, and it is done along mini-batches instead of the complete data set. Its purpose is to speed
up training and use higher learning rates, making learning easier. It is a slight modi�cation of
Equation 2.15 to include two learnable parameters, γ scaling factor and β a shift factor.

Let us formulate the equation of BN; Assume that x is an input data, to be exact, it is an
output of a batch of a neural network layer of mini-bach size m either from a previous fully con-
nected or convolutional layer, and it is an input to the next layer. And let yi = BNγ,β (x) be the
batch normalization of x. Then BNγ,β (x) is calculated using the following four steps (Equation
2.16 � 2.19). Equation 2.16 calculates the mean of the mini-batch, whereas equation 2.17 cal-
culates the standard deviation of the mini-batch output of the network. Furthermore, equation
2.18 normalizes the mini-batch data x. Finally, equation 2.19 is the BN of the normalized x,
including the network learnable γ and β.

µB ←
1

m

m∑
i=1

xi (2.16)

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2 (2.17)

x̂i ←
xi − µB√
σ2
B + ϵ

(2.18)

yi ← γx̂i + β ≡ BNγ,β (xi) (2.19)

Batch Normalization has another bene�cial side-e�ect which is regularizing a network. Though
it is not a very good regularizer, it has a regularization e�ect since it keeps network outputs from
exploding and allows a higher learning rate. Other very recent network normalization techniques
can sometimes o�er a better result than batch normalization. These are weight normalization,
layer normalization, instance normalization, batch-instance normalization, group normalization,
and switchable normalization. All have their own merits and demerits that need to be investi-
gated individually while using one to include in one's custom network.

18

Chapter 2 2.4. Convolutional Neural Networks

(a) Fully Connected Layer Without DropOut (b) Fully Connected Layer With DropOut

Figure 2.8: Fully Connected Layers without Dropout (a) and with Dropout (b) layers

Activation Layer

The activation layer, also called the non-linearity layer, takes the convolutional layer output and
produces an activation map. It is an elementwise operation over an input tensor or matrix, and
hence the resulting tensor or matrix will also have the same shape and size as the input. We
have already discussed some of the widely used activation layer functions in earlier section,see
Figure 2.5. While using these functions in CNN, we only have to remember that the operations
are on higher-order matrix or tensors such as 3D or more.

Fully Connected Layer

As the name suggests, Fully connected layers are a complete one-to-one connection of all previous
neurons to all subsequent layer activation neurons, as shown in Figure 2.4. In CNN, fully
connected layers are usually used on the last few layers and the output layer to classify the
output of the CNN network into the classes of objects or images. Due to the full connection,
they are the second most resource-consuming processes and lead to heavy networks.

Dropout Layer

Over�tting and under�tting are two of the most common deep learning challenges. Over�tting is
when the neural network is too familiarized with the training set but underperforming on the test
set. Over�tting usually happens when the network has too many neurons to represent the dataset
or a small training dataset. One remedy is to remove some layers or neurons of the hidden layers
and retrain or increase the size of the training dataset and train further. The Dropout layer in
the neural network performs precisely that. Its purpose is to turn o� randomly (that is, set their
values to zero) some neurons of a layer it is applied to during training so that the network trains
on smaller weight parameters, preventing over�tting. This makes the layer look like another
network with di�erent nodes and connectivity to the prior layer. The e�ect of Dropout is closely
similar to how an ensemble network works since every training iteration makes the network with
Dropout appear new network. Figure 2.8 shows a simple, Fully connected network with and
without Dropout layer.

19

2.5. Training Deep Learning Model Chapter 2

Residual Blocks

A common technique to increase the performance of deep learning models is to go even deeper and
use more training. However, as the depth of a model increases, the training tends to saturate,
and training loss stops reducing beyond some value since the last layers tend to capture no
useful feature maps from the input image. To solve this problem in deep models, researchers at
Microsoft proposed adding a by-pass connection to transfer features from earlier layers to a later
layer repeat the stack of such blocks to construct a very deep model. The by-pass connection
is commonly called skip-connection or shortcut connection. Since the �rst paper, researchers
have utilized di�erent kinds of skip-connections and residual blocks. Figure 2.9 shows some of
these varieties. Note how the skip connection is before the activation function; in this example,
LeakyRelu is the activation we utilized since it is the most used non-linearity function. The
activation is applied after adding the transferred feature map (residual block) and current layer
feature map.

(a) Identity Residual block

(b) Convolutional residual block

Figure 2.9: Residual blocks

2.5 Training Deep Learning Model

Modern machine learning is predominantly dominated by deep learning approaches based on
convolutional neural networks, especially for image and video inputs, due to CNN's ability to
learn an ample amount of subtle details of its input. More importantly, it is shift and scale-
invariant, meaning, once it is trained well, it can easily recognize an object in any scale, position
on an image, and rotations. However, training a deep CNN model is not a trivial job since
it requires a massive amount of training data, a cluster of high-performing CPUs and GPUs,
and a carefully designed model, usually achieved through time-consuming trial and error-based
retraining and hyperparameter tuning process. Below, we summarize some of the basic best
practices and stages of training deep CNN to achieve state-of-the-art performance from one's
model. However, our below discussion assumes that the developer has thoroughly thought over
the problem the machine learning (ML) will solve and hence set an objective; a stage formally
can be called the problem de�nition stage, and we will not be discussing this stage as we only
focus on the machine learning part.

1. Prepare Dataset:- Deep learning is a hugely data-hungry learning framework. Moreover,
any machine learning is as good as the quality of data it is trained on. Collecting many

20

Chapter 2 2.5. Training Deep Learning Model

data by itself may not be enough as the quality of the data for the intended purpose needs
to be checked. Quality data for DL has to have at least the following features:

� Balanced data:- the training, validation, and testing dataset must not overly favor
certain classes, shapes, or textures over others.

� Enough data sample to represent each class and type of data

� Su�ciently representative of the real-world data the model encounters, there should
be no surprise data type that the network never saw during training but are common
on real-world application of the model.

Once the data is prepared, one should divide the data into training, validation, and test
set. The training set is the data the DL uses to learn appropriate weights, biases, and
other model hyperparameters to minimize a given cost function. The validation set is used
to optimize and control the network's training, and it should never be mixed with the
training set since that would lead to over�tting or false performance reporting. However,
if the dataset is small, one can use Kth-fold cross-validation to train both on training and
validation set and report model performance on average of K iterations. However, the
test set should entirely be separate and representative of the real-world data the model
will encounter. Its purpose is to evaluate the performance of the model. Though it is not
standard, common practice is to make 80 % of the data training, 10 % validation, and 10%
test set.

The other critical process in dataset preparation is dataset annotation. Dataset an-
notation is the process of labeling and categorizing all data in the dataset for training,
validation, and testing. Data annotation is dependent on the data type (text, audio, im-
age, or video) and the purpose (classi�cation, detection, segmentation, natural language
processing, et cetera). It is a laborious, slow, and error-prone process, especially if the
purpose is detection or segmentation. The annotated dataset should also be in a simple,
compressed, and faster-to-read format so that data reading will not be a bottleneck during
training.

2. Data Augmentation:- Data augmentation is a technique for increasing the amount of
data by slightly tweaking the copy of existing data through geometric transformation, color
augmentation, noise addition, synthetic new data generation, or combining one or more of
these techniques. It is a critical pre-processing step even when we think we have enough
data to train our model. Often CNN is praised as transformation, scale, viewpoint, and
(or) illumination invariant. Nevertheless, these features are achieved or boosted by the
data augmentation technique we use. Data augmentation arti�cially exposes the model
for all possible types of data the network might encounter in the real-world environment.
Data augmentation can be o�ine, that is, before training, or online process, meaning
augmentation during training.

There are many data augmentation techniques proposed and used over the years, mostly
in combination. Some of these include:

� Geometric transformation: �ipping (vertically or horizontally), rotating, zooming,
cropping and padding, a�ne transformation, sheering

� Color manipulation: adding or decreasing brightness, contrast, hue, and saturation

� Adding noise, randomly eliminating a portion of data

� Synthetic data generation: copy-paste data generation, training model to generate
data using GAN (generative adversary network)

21

2.5. Training Deep Learning Model Chapter 2

Even though data augmentation is an essential part of training DL models, over utilizing it
is also counterproductive since some augmentation might introduce unrealistic data or be
too much and slow the learning of the model. For example, if we do not expect vertically
�ipped data in the real world, then there is no need to use vertical �ipping as an augmen-
tation technique during training stages. Another signi�cant issue is object detection data
augmentation; we must not forget to augment the bounding boxes while augmenting the
images. Moreover, some augmentation techniques are known to mess up bounding boxes
if used as an augmentation technique for object detection, and thus proper procedure to
�x the mess created by these augmenters must be taken into consideration. For example,
rotation augmentations might make the bounding box a) to get out of the image boundary
or b) tightly un�t the object. In general, though data augmentation is the pinnacle of
the success of training deep CNN model, it should be handled with great care and proper
vetting of techniques to be used.

3. Create the Model:- To create a deep learning model, we need to identify the objective
of the model. We should ask whether we need classi�cation, detection, segmentation,
tracking, language processing, and the like. Because, based on the objective, we determine
our model's objective function, also called loss, cost, or error function. We have many
well-known objective functions at our disposal that we can choose based on the dataset
and the task at hand. To mention a few: binary-cross entropy, categorical cross-entropy,
mean square error, hinge loss, mean absolute error. Usually, in detection problems, one or
more of these loss types are used together to target the classi�cation loss and bounding-box
regression loss separately.

Figure 2.10: Stages of training and deploying Deep CNN based networks

Nowadays, there are several software frameworks and programming language choices to
create a DL model. Each of them has its advantages and shortcomings that need to be
analyzed individually by the developer. In general, one can consider criterions such as
abstractions the frameworks o�er to hide the details of creating, training, and deploying
a model as a selection criterion. Alternatively, the framework's �exibility to include one's
custom methods or other changes, support community it has, ease of programming, and

22

Chapter 2 2.5. Training Deep Learning Model

the like can be a criterion to select a framework. Well-known deep learning frameworks
include Tensor�ow, Keras, PyTorch, Theano, Ca�e, OpenCV, and Matlab Deep Learning
ToolBox.

Last but not least, in competitions and challenges performance of a network might be
enough to win the challenge. However, in real-world computer vision problems, some
other factors are as equally critical as performance. These factors include running speed,
resources such as memory and processors required to train and deploy the network, power
consumption, data size required to train the network, the input image resolution, or video
frame rate. The underlying fact is that there is no standard way to determine or calculate
the depth of layers, the number of neurons, or feature maps per layer, or �lter size to use
per convolutional layer. Hence, one must compromise on the acceptable trade-o� between
speed, performance, and resources required to design and train a model.

4. Training the Model:- Training a deep learning model or machine learning, in general, is
a process of iteratively modifying a layered weight and bias parameters of a network so that
the network can map an input to its output encoding by gradually learning to minimize a
given cost function. During training, our decisions on the following core concepts matter
the most on the performance of our model:

� Weight initialization technique

� Transfer Learning and Fine Tuning

� Loss function

� Optimization algorithm

� Learning rate scheduling

� Epoch, Batch Size, Early-Stopping

Considering the broadness of this topic, we recommend the reader to reference books such
as [Pattern recognition by Bishop [10], Deep Learning Book by Ian Goodfella [13], Neural
Network and Deep Learning by Micheal Nelson [11]].

5. Model Evaluation:- After training or training a model, evaluating the model's perfor-
mance is an unarguably critical part of model development. Model evaluation is di�erent
from model loss calculation. Loss guides the network toward maximum performance by
minimizing input to output mapping error through optimization functions such as stochas-
tic gradient descent. The loss function needs to be di�erentiable. However, performance
measure metrics do not. The loss function can sometimes be used as performance evalu-
ation metrics in regression-type problems, such as cosine distance, euclidian distance, or
mean square error.

Model performance evaluation metrics depend on the type of task the deep learning model
tries to solve, classi�cation, regression, or both as in detection problems. In classi�cation
challenges, we have metrics such as accuracy, recall, precision, and F1-score. In regression
challenges, we have distance measurement, mean square error, or mean absolute error. We
have metrics that combine classi�cation and regression for detection challenges, such as
MAP based on average precision for classi�cation accuracy and IoU for measuring overlap
between the ground-truth and the predicted bounding boxes. Since the classi�cation and
detection metrics are of critical concern in this thesis, we will explain them in more detail
as follow one by one.

Before explaining each metric, we would like to introduce an essential term to all classi-
�cation metrics: confusion matrix . Confusion Matrix is a tabular visualization of the
ground-truth labels versus model predictions. Each row of the confusion matrix represents

23

2.5. Training Deep Learning Model Chapter 2

the instances in a predicted class, and each column represents the instances in an actual
class. It is not a performance metric on its own but sort of a basis on which other metrics
evaluate the results. In order to create a confusion matrix of a classi�cation problem, one
must set the null hypothesis, which is the thing our model is supposed to classify as
correct classi�cation. For example, if we want our model to look at an image and classify
it as a cat image and non-cat image, the null hypothesis is "this is a cat image." The null
hypothesis is also called true positive (TP). Based on this, table 2 shows the confusion
matrix table for our cat and non-cat image classi�er.

Table 2.2: Classi�cation Confusion Matrix

Ground-truth class
Cat Not Cat

Predicted class
Cat TP FP

Not Cat FN TN

True Positive(TP):- positive samples predicted correctly, i.e., an actual cat image
predicted as cat image by the model

True Negative(TN):- negative images classi�ed correctly, i.e., an actual not cat
image is predicted as a not cat image by the model too

False Positive(FP):- negative sample classi�ed incorrectly, i.e., not cat image pre-
dicted as cat image. This error is also called Type-1 error.

False Negative(FN):- positive image classi�ed incorrectly, i.e., a cat image classi�ed
as not cat image. This error is also called Type-2 error.

The position of FP and FN in the confusion matrix entirely depends on our null hypothesis.

Now let us explain the classi�cation and detection evaluation metrics:

Accuracy:- is the most basic and intuitive measure, and it is given by the number of
all correct predictions divided by all predictions multiplied by 100 to convert it into a
percentage.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2.20)

Precision:- we can summarize it as answering the question, "of all the predictions the
model predicted as positive, how many are actually positive or correct?". It measures the
hit rate of the model.

Precision =
TP

TP + FP
× 100% (2.21)

Recall:- is another very informative metric, and it answers the question "how many of the
positive samples was the model able to classify correctly?". It measures the sensitivity of
the model.

Recall =
TP

TP + FN
× 100% (2.22)

F1-Score:- is the weighted average of precision and recall. Precision considers TP and
FP, whereas the recall uses only the TP and FN and F1-score instead takes into account
both FP and FN in addition to the TP. This makes F1-score more interesting metrics and
general but not as intuitive as accuracy.

F1score = 2× Recall × Precision

Recall + Precision
× 100% (2.23)

24

Chapter 2 2.5. Training Deep Learning Model

All the above metrics are explained from a classi�cation point of view since we only con-
sidered the ground truth and prediction class. However, in detection challenges, the class
of the object and the bounding box of the predicted object must signi�cantly overlap with
the ground truth class and bounding box. To say an object is detected, that is, a true pos-
itive (TP) detection, the class of the predicted object must match the class of the ground
truth, and the bounding box of the predicted object must overlap above a certain threshold
against the ground truth bounding box. The metric we commonly use to check whether a
predicted bounding box overlaps against the ground truth is IoU.

Figure 2.11: Intersection over Union

Assume the blue box labeled A, in �gure 2.11, is the ground truth, and the red box labeled
B is the predicted bounding box of object A. Both boxes A and B are the same class; for
example, say both are "cat," hence the classi�cation is correct. But for us to call cat is
detected, the IoU needs to be above some preset IoU threshold, IoUthresh. The shaded
region labeled C is the intersection box. If A and B do not overlap, then the area of box
C is zero indicating that the IoU is also zero. We calculate the IoU using Equation 2.24.

IoU =
Area of C

Area of A + Area of B − Area of C
(2.24)

Image classi�cation or object detection models are usually trained to classify or detect
more than one class of objects or images, respectively. Accordingly, the standard metric in
such multi-class image classi�cation or detection metrics is an average of all classes in the
dataset. One widely used metric in many classi�cation and detection challenges is called
mean average precision(mAP). Public challenges such as the Imagenet classi�cation
challenge and Pascal VOC and COCO dataset object detection challenges use mAP to
measure performances and reward winning models.

6. Model Optimization:-

Model optimization in deep learning can be implemented in the overall deep learning model
creation training and deployment stage. Optimization algorithms or methods to train a
deep learning model might work on optimizing the loss function, error backpropagation
optimizer (e.g., stochastic gradient descent(SDG), Adam, RMSprop optimizer), data rep-
resentation (encoding) optimization, data feeding, and �ne-tuning. Other optimization
focuses on minimizing the model's size by pruning the redundant or irrelevant neurons
or layers of the network or compressing model representation through quantization to
transform the model from �oating-point format to quantized integer format. Retraining
a pruned or quantized (or both pruned and quantized) model might even solve the local
minima problem of the earlier unquantized and unpruned version of the model and improve
the performance of the model.

25

2.6. Conclusion Chapter 2

7. Model Deployment:-

Developing and training a model that works with some measurable and commendable
performance is the �rst step of the entire endeavor of creating the deep learning model,
though of paramount signi�cance. The end goal is deploying and serving the model for
end customer users. Some of the major tasks during deployment involves polishing the
model codes from error and for readability and future maintenance, developing a platform-
independent container such as docker for the model, a client-side interface application
like web-application, mobile or desktop application development, and �nally deploying on
the appropriate environment which can be either edge device or cloud system. Model
deployment is a broad topic and dependant on the purpose of the application, and thus we
leave it at this.

In general, in this section, we have tried to divide the overall stages or processes of creating
and deploying a deep learning training model into seven steps, and we brie�y tried to discuss
the details under each section. We are not claiming that our discussions are complete and that
the seven stages we mentioned are exhaustive, but we claim that the most critical topics are at
least mentioned as a starting point for someone as a reference. Figure 2.10 shows these stages
as equally essential stages of deep learning-based model development stages.

2.6 Conclusion

In conclusion, this chapter reviewed the basics of arti�cial neural networks, convolutional neural
networks, and the overall process of creating and training a deep learning method to solve an
arti�cial intelligence problem. We begin the chapter by de�ning and demarcating the concepts
and scopes of basic terms in computer vision challenge and introducing the analogy of the
relationship between biological neural networks and arti�cial neural networks. The arithmetics
of an arti�cial neural network, whether based on convolutional or fully connected or mixed
layer types, pass through an iterative two-stage process. These are (1) feedforward: a process
where new model parameters such as weights and biases are learned layer by layer, and (2)
backpropagation: a process where errors on the last layer are propagated backward, tweaking
the learned parameters so that the loss on the last layer becomes as minimum as possible. A
neural network can be shallow or deep based on the number of intermediate layers. Multiple
research and current trends have shown that the more profound the networks are, the more
accurate they are. In the next chapter, we will discuss some well-known deep convolutional
neural networks for object detection and brie�y introduce object tracking.

26

Chapter

3
Object Detection and Track-
ing: Study of Current Trends
and State-of-the-art ap-
proaches

Chapter content

Object Detection and Tracking: Study of Current Trends and State-of-
the-art approaches . 27

3.1 Introduction . 27

3.2 Modern Object Detection Trends . 28

3.2.1 Two-Stage Object Detection . 28

3.2.2 One-Stage Object Detection . 34

3.3 Object Tracking . 37

3.4 Conclusion . 42

Object Detection and Tracking: Study of Current Trends and

State-of-the-art approaches

3.1 Introduction

Object detection is one of the most challenging and fundamental branches of computer vision.
Unlike image classi�ers that only seek to label an image in its entirety into one of the prede�ned
categories, object detectors, however, are required to precisely locate all known objects on an
image using a tightly-�t bounding box around each object and label them correctly.

Traditional object detection techniques follow pipelined stages of processes. We can divide
these stages into three. The �rst stage of a traditional object detector is to generate candidate
region proposals using either method such as Selective Search [14], Sliding-Window[8], and Edge-
Boxes[15]. A second stage will extract features of a �xed-length vector using feature descriptors
such as HOG from the generated candidate regions. The third stage will try to classify the
extracted features into one of the object classes with some measure of con�dence score using
methods such as SVM. These methods are not end-to-end trainable, require high expertise in
feature extraction, are slow for both training and inference, and are impractical for multi-class
generic object detection since more human expertise and time are needed to design features for
all object classes. These changed when the neural network, particularly convolutional neural
network, based methods beat these old approaches and gave birth to modern object detection

3.2. Modern Object Detection Trends Chapter 3

approaches dominated by CNN-based deep learning networks. In this chapter, we will dive deep
into a review of these modern object detection techniques followed by object tracking based
on object detection, and then �nally, we introduce the role of FPGA in object detection and
tracking.

3.2 Modern Object Detection Trends

The trend in current state-of-the-art object detection networks is to use a deep convolutional
classi�er network as a background extractor. As pointed in [16], these trends of using a deeper
network are best explained by the growing trend of using families of the sophisticated and cum-
bersome ResNet-based classi�ers in almost all best performing state-of-the-art object detectors
at the cost of speed and resource expense.

Two deep CNN-based approaches, shown in �gure 3.1 dominate modern era generic object
detection researches. These are implementation of object detection as a two-stage or one-stage
detector. Two-stage detectors perform object detection in two core steps, that is, �rst using
a serious of CNN propose sparse candidate regions on an image, likely containing an object
of interest, and second classify and score each proposed region. One-stage detectors, however,
perform both the localization and classi�cation simultaneously in one forward pass. Generally,
two-stage networks are known for their high performance in detection accuracy though they are
usually very slow and heavy. On the contrary, one-stage detectors are very-fast while relatively
are also less accurate.

Figure 3.1: Modern Deep-Learning Based Object Detection Categories

3.2.1 Two-Stage Object Detection

The pioneer and undoubtedly most representative of the two-stage object detection technique is
the famed R-CNN [17](region-based convolutional neural network). Operation-wise, R-CNN is
almost the same as the families of the traditional object detectors, except it replaces the feature
extraction stage of traditional detectors with CNN-based feature extractors, hence avoiding the

28

Chapter 3 3.2. Modern Object Detection Trends

need for a human expert to generate the features for descriptors. As a result, compared to the
famous traditional detector called DPM [18](Deformable Parts Model), RCNN improves mean
average precision (mAP) by 21% on the PASCAL VOC2010 object detection dataset. This
performance gain was the case for attracting much research attention for this line of object
detection leading to successive incremental versions based on the �rst R-CNN.

RCNN

As seen in �gure 3.2, RCNN has three main parts(Steps) minus the input image and input
pre-processing. (1) Propose category-independent regions of interest by Selective Search (2k
candidates per image). Those regions may contain target objects, and they are of di�erent sizes.
Other than Selective Search, EdgeBox, and BING[19] can also be also used to generate the region
proposals. (2) For each object proposal of arbitrary scale, the image data is then warped into
a �xed size (e.g., 227Ö227) and put into the deep CNN network (e.g., AlexNet) to compute a
4096-dimensional feature vector. (3) Finally, based on the feature vector extracted by the CNN
network, the SVM classi�ers predict the speci�c category of each proposal.

Figure 3.2: The architecture of R-CNN. (Image source: [17])

As typical in all modern object detection approaches, a detector is �rst trained on an image
classi�cation dataset such as ImageNet as a classi�er and then repurposed into the detector using
detection datasets such as Pascal VOC or COCO dataset. Accordingly, in RCNN's second stage,
the CNN network (e.g., AlexNet) is �rstly pre-trained on ImageNet and then �ne-tuned on a
speci�c object detection dataset (e.g., Pascal VOC). Because the number of object categories
on ImageNet and Pascal VOC is di�erent, the outputs of the �nal fully connected layer in the
CNN network should be changed from 1000 of ImageNet to 21 (20 Pascal VOC classes plus the
background). Based on the CNN features extracted from the trained CNN network, the linear
SVM classi�ers for di�erent classes are further trained. When training the SVM classi�er per
class, only the ground-truth bounding box is labeled as positive. Otherwise, the proposal is
negative if the IoU overlaps below 0.3 with all the ground-truth bounding boxes. Because the
extracted CNN features are too large to load in memory, the bootstrap technique is used to mine
the hard negatives in training SVM classi�ers.

Though RCNN dramatically improves object detection performance, it has had several short-
falls. To mention the major ones, RCNN:

� detection was very slow (47 seconds per image)

� the training was slow and complex too. Separate network to generate region proposals, wrap
the region proposal into �xed image size, pass through CNN for object feature generation,
classify the generated features into object class using another separate procedure (SVN)

� not end to end uni�ed training

29

3.2. Modern Object Detection Trends Chapter 3

� memory-wise the generated 2k region proposals per image were massive. An image might
contain one or two objects, but the RCNN region proposal must generate about 2k proposals

SPPnet

To remove the �xed-size constraint and accelerate the detection speed of R-CNN, He et al.
proposed SPPnet [20]. Instead of cropping or warping the image data of all the proposals
before computing the CNN features, SPPnet �rstly computes all the convolutional features of
the whole image and then uses spatial pyramid pooling to extract the �xed-size features of each
proposal. Figure 3.3 gives the illustration of the spatial pyramid pooling layer (SPP). Based on
the feature maps of the last convolutional layer, SPP splits the feature maps of the proposal into
3 × 3 spatial bins, 2 × 2 spatial bins, and 1 × 1 spatial bins, respectively. In each spatial bin,
the feature response value is calculated as the maximum of all the features which belong to the
same spatial bin (i.e., max-pooling). After that, the outputs of 3 × 3 spatial bins, 2 × 2 spatial
bins, and 1 × 1 spatial bins are concatenated as a 21c-dimension feature vector, where c = 256
is the number of feature maps of the last convolutional layer. After concatenation, two fully
connected layers are connected to this 21c-dimension feature vector. Two di�erent strategies
can be adopted for training the CNN network of SPPnet: single-scale training and multiscale
training. Single-scale training uses a �xed-size input (i.e., 224 × 224) wrapped from the input
images. Multiscale training uses images of multiple di�erent sizes, wherein each iteration, only
the images of one scale are used for training the CNN network. The size of the input image is
represented by s × s, where s is uniformly sampled from 180 to 224. Because the multiscale
training can simulate the varying sizes of images, it can improve detection accuracy. For training
SVM classi�ers, the speci�c steps are the same as that of RCNN. In the test stage, the image of
an arbitrary scale can be put into SPPnet.

Figure 3.3: Spatial pyramid pooling layer. The feature maps of a given proposal are pooled into 3 Ö 3
spatial bins, 2Ö2 spatial bins, and 1Ö1 spatial bins, respectively. After that, they are concatenated into a
�xed-size feature vector and fed into two fully connected layers.

30

Chapter 3 3.2. Modern Object Detection Trends

Compared to RCNN, SPPnet has the following advantages: (1) All the candidate proposals
share all the convolutional layers before the fully connected layers. Thus, it has a faster detection
speed than R-CNN. (2) SPPnet uses multilevel spatial information of objects, which is more
robust to object deformations. Meanwhile, multiscale training can enlarge the training data.
Thus, it has a higher detection accuracy than R-CNN. Though SPPnet accelerates detection
speed by sharing computation of all the convolutional layers, the training of SPPnet is still a
multistage process similar to RCNN. Namely, they need to, respectively, �ne-tune the CNN
network on object detection dataset, train multiple SVM classi�ers, and learn the bounding
box regressors. To �x the disadvantages of R-CNN and SPPnet, Girshick and et. al, RCNN
authors, further proposed Fast RCNN[21], which integrates the training of CNN networks,
object classi�cation, and bounding regression into a uni�ed framework.

Fast RCNN

Figure 3.4 shows the architecture of Fast RCNN. Generally, Fast RCNN �rstly calculates all the
convolutional layers of the whole image. For each proposal, Fast RCNN uses an ROI pooling
layer to extract the �xed-size feature maps from the feature maps of the last convolutional layer,
and then feeds the �xed-size feature maps to two fully connected layers, and �nally generates
two sibling branches with a fully connected operation for object classi�cation and box regression.
The object classi�cation part has c+1 outputs by softmax, where c means the number of object
classes. The box regression part has 4c outputs, where every four outputs correspond to the
box o�set per class. The ROI pooling layer warps the feature maps of object proposals into the
�xed-size spatial bins (e.g., 7 × 7) and uses a max-pooling operation to calculate the feature
responses in each bin. Because Fast RCNN has two sibling outputs for object classi�cation and
box regression, the multitask training loss (i.e., L) is the joint of classi�cation loss (i.e., Lcls) and
regression loss (i.e.,Lloc) for each ROI as follows:

L (p, t) = Lcls (p, c) + λ [c ≥ 1]Lreg (t, v) (3.1)

where λ balances classi�cation loss and regression loss and [c ≥ 1] equal one if the c ≥ 1
and zero otherwise. Namely, the ROI belonging to the background class does not contribute to
the regression loss. The classi�cation loss Lcls (p, c) = − log pc is the log loss for true class c.
The regression loss Lreg is de�ned by the ground-truth regress target (i.e., (vx, vy, vw, vh)) and a
predicted target (i.e., (ux, uy, uw, uh)) as follows:

Lloc (t, v) =
∑

i ∈ x,y,w,h

smoothL1 (ti, vi) (3.2)

where

smoothL1 (x) =

{
0.5x2, if |x| ≤ 1

|x| − 0.5, otherwise
(3.3)

Compared to L2 loss used in RCNN and SPPnet, the L1 loss is more robust to outliers.

For proposal generation, RCNN, SPPnet, and Fast RCNN are all based on selective search.
The selective search method uses the handcrafted features and adopts the hierarchical grouping
strategies to capture all possible object proposals. Generally, it runs at 2s per image on the
common CPU. The detection network of Fast RCNN can run at about 100ms per image on
the GPU. Thus, proposal generation of Fast RCNN is more time-consuming compared to the
detection network of Fast RCNN. Though selective search can also be re-implemented on the
GPU, proposal extraction is still isolated from the detection network of Fast RCNN. Thus, region
proposal extraction becomes the bottleneck of Fast RCNN on object detection. To solve this
problem, Ren et al. proposed Faster RCNN [22].

31

3.2. Modern Object Detection Trends Chapter 3

Figure 3.4: The architecture of Fast RCNN. Compared to RCNN and SPPnet, it joins the classi�cation
and regression into a uni�ed framework.[21]

Faster RCNN

As shown in Figure 3.5, Faster RCNN architecture integrates proposal generation, proposal
classi�cation, and proposal regression into a uni�ed network. It consists of two modules. One
module, called region proposal network (i.e., RPN), is used to extract candidate object
proposals. Another module is Fast RCNN, which aims to classify these proposals into speci�c
categories and predict more accurate proposal locations. The two modules share the same base
sub-network.

Figure 3.5: The architecture of Faster RCNN. Proposal generation (RPN) and proposal classi�cation
(Fast RCNN) are integrated into a uni�ed framework. [22]

On the one hand, RPN can generate candidate object proposals using deep convolutional
features, improving proposal location quality. On the other hand, Faster RCNN is an end-to-end
framework with a multi-loss head. Compared to Fast RCNN, Faster RCNN can achieve better
detection performance with much fewer proposals. RPN slides a small network over the output
layer of the base network. The small network consists of one 3 × 3 convolutional layer and
two siblings 1× 1 convolutional layers for box regression and classi�cation. Box classi�cation is
class-agnostic. For each sliding window location, RPN predicts multiple proposals based on the
anchors of di�erent aspect ratios and scales. Assuming that the number of anchors is k, the box

32

Chapter 3 3.2. Modern Object Detection Trends

regression layer has 4k outputs for each sliding window, and the box classi�cation layer has 2k
outputs for each sliding window. Generally, three di�erent aspect ratios of {1 : 2, 1 : 1, 2 : 1}
and three di�erent scales of {0.5, 1, 2} are used. Thus, there are nine (i.e., 3 × 3) anchors (i.e.,
k = 9) at each sliding window. The multitask loss of RPN consists of two parts: classi�cation
loss Lcls and regression loss Lreg which can be written as follows:

L (p, v) =
1

Ncls

∑
i

Lcls (pi, ci) + λ
1

Nreg
[ci ≥ 1]Lreg (ti, vi) (3.4)

where Ncls = (256) and Nreg = (about 2400) are the terms to, respectively, normalize
classi�cation loss and location loss, λ balances classi�cation loss and regression loss, and [ci ≥ 1]
is 1 if ci ≥ 1 or 0 otherwise. The classi�cation loss and regression loss are the same as that of
Fast RCNN. If an anchor has an IoU overlap over 0.7 with any ground truth bounding boxes, the
anchor is labeled as positive. If the anchors have an IoU overlap under 0.3 with all ground-truth
bounding boxes, then the anchor is labeled as negative. The third range of overlap between 0.3
and 0.7 is left as neither negative nor positive.

R-FCN

Generally, the above state-of-the-art object detection methods (i.e., RCNN, SPPnet, Fast RCNN,
and Faster RCNN) use the pre-trained CNN network on the image classi�cation dataset (i.e.,
ImageNet). Dai et al. argued that this design has a dilemma to some degree. Generally, a deep
CNN network for image classi�cation favors translation invariance, while a deep CNN network
for object detection needs translation variance. Dai et al. proposed R-FCN [23] to address the
above dilemma between image classi�cation and object detection. It encodes the object position
information by the position-sensitive ROI pooling layer (PSROI) for the following Fast RCNN
subnet. Figure 3.6 shows the architecture of R-FCN. Region proposal generation is the same
as Faster RCNN. Based on the output layer of the original base network, R-FCN generates the
new k × k position-sensitive convolutional banks. The convolutional banks correspond to the
k× k spatial grids, respectively. In each convolutional bank, there are c + 1 convolutional layers
(c means the number of object categories, and +1 means the background category). Namely,
k × k × (c+ 1) convolutional feature maps. At k(C + 1)-d convolutional layer, a sibling 4k2-d
convolutional layer is appended. Position-sensitive RoI pooling is performed on this bank of
4k2 maps, producing a 4k2-d vector for each RoI. k2(C + 1) is for class prediction of the object
whereas the 4k2-d is for bounding-box regression. Overall, R-FCN has a competitive performance
with Faster RCNN while beating it in detection and training speed.

Mask RCNN

Most object detection methods only predict object locations by bounding boxes without providing
more accurate segmentation information. In recent few years, some researchers proposed instance
segmentation, which usually contains object detection and segmentation. Mask RCNN [24] is
a famous method for instance segmentation and object detection. As shown in Figure 3.7,
Mask RCNN architecture incorporates instance segmentation and object detection into a uni�ed
framework based on Faster RCNN architecture. Speci�cally, it adds an extra mask branch to
predict the object's mask aside from the object classi�cation and box regression branch. The
mask branch has c binary masks with the size of m × m. c means the number of object
categories. The multi-loss head of Mask RCNN on each sampled ROI includes classi�cation loss,
regression loss, and mask loss. It can be represented as L = Lcls + Lreg + Lmask. The losses
of Lcls and Lreg are the same as that of Faster RCNN. For an RoI proposal associated with
the ground-truth class c, Lmask is only de�ned on the cth mask and other mask outputs do not
contribute to the loss. Lmask is de�ned as the average binary cross-entropy loss, only including
cth mask if the region is associated with the ground truth class cth.

33

3.2. Modern Object Detection Trends Chapter 3

Figure 3.6: The architecture of R-FCN. Position information is encoded into the network by position-
sensitive ROI pooling (PSROI) [23]

This design allows the network to generate masks for every class without competition among
classes. In the test stage, the output mask of an object is determined by the predicted category
of the classi�cation branch. ROI pooling quantizes the �oating number of ROI proposal locations
into discrete values. The quantization of the ROI pool causes the misalignment between the input
and the output, which negatively a�ects instance segmentation. To solve this problem, ROI-Align
is proposed. It uses bilinear interpolation to compute the feature values of four corner locations
in each spatial bin and then aggregates the feature response of each bin by max-pooling. Based
on multitask learning, Mask RCNN can achieve state-of-the-art performance on object detection
and instance segmentation. It means that joining the instance segmentation task with the object
detection task can also help improve detection performance.

Figure 3.7: The architecture of Mask RCNN. Apart from the detection branch of Faster RCNN, the
extra branch of mask segmentation is added. [24]

3.2.2 One-Stage Object Detection

One-stage methods aim to predict object category and object location simultaneously in one
network and forward-pass without requiring a region proposal network. Compared to two-stage
methods, one-stage methods have much faster detection speed and comparable detection ac-

34

Chapter 3 3.2. Modern Object Detection Trends

curacy. Methods such as OverFeat [25], YOLO (YOLOv1[26], YOLOv2[27], YOLOv3[28]),
SSD[29], and RetinaNet[30] are pioneers and successful one-stage detectors.

OverFeat

Overfeat is a pioneer model of integrating object detection, localization, and classi�cation tasks
into one convolutional neural network. It performs (i) multiple scales image classi�cation at
di�erent locations on an image using a sliding window and (ii) regress bounding boxes from
convolutional feature maps generated for classi�cation using the sliding window technique. It
has a model architecture similar to AlexNet but optimized for speed. Though it is a pioneer
one-stage detector and ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013)
winner, its performance is inferior to current one-stage detectors.

YOLO

YOLO (also called YOLOv1 due to follow-up successive incremental versions), an abbreviation
for You Only Look Once, is one of the �rst high-speed and high-performance one-stage object
detectors. YOLO divides an entire image into S × S grid cells of area 32 by 32 pixels, and
each grid cell detects B object bounding box coordinates, objectness con�dence score, and class
probabilities. The output layer of YOLO has a tensor of shape S×S×(5B + C), meaning each of
the S×S grids has a tensor of size (5B + C) corresponding for the four bounding box parameters
(i.e., bx, by, bw, bh) plus one for objectness score and C for the number of class categories. The B
signi�es that each grid predicts B bounding boxes and con�dence scores where B was two in the
original implementation. In general, for an input image of size 224×224 and Pascal VOC dataset
with 20 object classes, the YOLO outputs 7×7× (5×2+20). For this image size thus there will
be 49 grids, and each grid predicts two bounding boxes, making 98 bounding boxes per image.
Compared to RCNN and other two-stage networks we discussed above that generates over 2000
region proposals, the output of YOLO is minimal. As a result, YOLO processes relatively few
bounding boxes making it one of the lightweight and fastest detectors. However, the downside of
having a less dense output layer was a lower performance in today's networks standards though
it was very competitive during its publication. Nonetheless, it was a state-of-the-art uni�ed
object detector that avoided the need for region proposal or complex pipelined object detection
paradigm and yet came on top at its time. Figure 3.8 shows the architecture of the YOLO object
detection model.

SSD

The other well-known one-stage detector is SSD [29], short for Single Shot Multibox Detection.
SSD, like YOLO, presents a uni�ed one-stage detector. However, instead of the grid-based
approach of YOLO, the core feature of SSD is the multiscale object detection scheme they
introduced by adding InceptioNet inspired convolutional �lters on top of the VGG network.
Due to these multiscale �lters, SSD has better performance than YOLO in detecting objects of
various scales, speci�cally small, medium, and large objects of the COCO dataset. Figure 3.9
shows the architecture of SSD. Assuming that the number of object classes is c and each feature
map predicts k objects, it will result (c + 4) × k × m × n output vector for the given m × n
feature maps. The objective loss of SSD is a weighted sum of location loss and con�dence loss
similar to that of Fast RCNN.

RetinaNet

In a bid of making one-stage detectors perform as well as two-stage object detectors in detection
accuracy, a model dubbed RetinaNet [30] with its novel classi�cation loss function called focal

35

3.2. Modern Object Detection Trends Chapter 3

Figure 3.8: YOLO has 24 convolutional layers followed by two fully connected layers. Alternating 1 Ö
1 convolutional layers reduces the features space from preceding layers. It is �rst trained on the ImageNet
classi�cation task at half the resolution (224 Ö 224 input image) and then doubles the resolution for
detection. [26]

Figure 3.9: The architecture of SSD. The base network is VGG16.[29]

loss was proposed by Tsung-Yi Lin et al. of Facebooks AI Research. Their network predicts
very dense bounding boxes, about 100k per image, and their cross-entropy modulating focal
loss handles the class imbalance during training. The novel focal-loss proposed by RetinaNet
was to solve the localization error, which is paramount in one-stage networks, by punishing the
easy negative ones while simultaneously rewarding positive predictions. Focal loss is simply a
modulation of cross-entropy loss, and it is given by equation 3.5.

FL (pt) = −α (1− pt)
γ log (pt) (3.5)

where

pt =

{
p, ifc = 1

1− p, otherwise
(3.6)

Figure 3.10 shows the architecture of RetinaNet with a base network is FPN. which constructs
multiple feature maps. As seen from the �gure, RetinaNet has two task-speci�c subnetworks,
one subnet for performing convolutional object classi�cation on the backbone's output and a
second subnet for convolutional bounding box regression.

36

Chapter 3 3.3. Object Tracking

Figure 3.10: The architecture of RetinaNet. The base network is FPN with ResNet classi�cation back-
bone.[30]

3.3 Object Tracking

Object tracking is usually treated as the next step of object detection since it involves detecting
an object or objects in a video frame and locking on it (them) and following it(them) until the
object(s) exits the video frames. Object tracking can be single or multi-object tracking based
on the number of objects to be tracked. The primary di�erence between a tracker and detector
model is that an object tracker must assign some form of a consistent and unique ID to the
individual objects it is tracking and whereas an object detector is required to label the bounding
box of the identi�ed object without the need to assign unique ID consistently. For example,
if a detector detects three cars in a frame, the object tracker must identify the three separate
detections and track them across the subsequent frames with their unique IDs.

When compared to object detection, object tracking is more challenging due to 1) occlusion
by other class objects, 2) occlusion by same class objects, 3) temporary frame exit and re-entry, 4)
moving object scale variation, 5) non-stationary camera or viewpoint change and 6) tremendous
hardship to �nd or annotate a tracking dataset. These are partial, not comprehensive, challenges
of building a successful object tracker. For example, one essential yet most di�cult challenge of
building a successful tracker is the requirement of real-time object tracking. An object tracker
�tted on an uncrewed vehicle or security surveillance system may not be helpful at all if it is
not real-time, not to mention the danger it may pose. Due to these and many other reasons, we
can safely say object tracking research is yet to mature despite the progress achieved on object
detection.

Next, we shall see some of the most common and widely used object tracking techniques:

Mean Shift and Cam Shift

Mean shift [31] is a clustering algorithm that assigns the data points to the clusters iteratively
by shifting points towards the mode. The mode can be understood as the highest density of
data points and hence also called a mode-seeking algorithm. Given a set of data points, the
algorithm iteratively assigns each datapoint towards the closest cluster centroid. Unlike the
popular K-Means algorithm, meanshift does not require specifying the number of clusters in
advance. The algorithm determines the number of clusters based on the data. When the mean
shift is applied on a particular object(s) feature map (color, texture, histogram, or any other
features of a particular object) on a given input frame, it will try to �nd all current locations
of the previous frame's feature maps data points to locate the object(s). However, a moving
object's size increases or decreases based on the direction of its movement with respect to the
camera. This poses di�culty for the mean shift to locate all the data points of the feature maps.
In such situations, mean shift is coupled with continuous adaptive mean shift (cam shift)[32] so
that the tracking box shifts based on appearance change of the object under tracking.

37

3.3. Object Tracking Chapter 3

Mean shift-based tracking is practical in situations with no noisy data, little or no occlusion,
no signi�cant change in illumination or color. An example would be tracking a package on a
conveyor belt or in a warehouse where colors or textures remain constant. This method's best
quality is that it does not require to be trained to perform object detection and then tracking.

OpticalFlow

Optical �ow is the pattern of apparent motion of image objects between two consecutive frames
caused by object or camera movement. It can also be de�ned as the distribution of apparent ve-
locities of movement of brightness pattern in an image. In optical �ow, an object is tracked using
the spatio-temporal image brightness variations at a pixel level using the following assumptions
as a precondition about a moving object:

� Brightness consistency: Brightness around a small region is assumed to remain nearly
constant

� Spatial coherence: Neighboring points in the scene typically belong to the same surface
and hence typically have similar motions

� Temporal persistence: Motion of a patch has a gradual change

� Limited motion: Points do not move very far or haphazardly

Kalman Filter

A Kalman �lter is the most widely used traditional tracking algorithm still persistent in modern
object tracking implementations. It recursively estimates the state of a linear system (also non-
linear system using extended Kalman �lter or EKF) with a gaussian process given the previous
state and the current measurement of a moving object to predict the object's next likely state
(position). If one has a good object detector running along with the Kalman �lter, then an
object can be successfully tracked across video frames even if the object detector fails to detect
the object sometimes since the Kalman �lter can use the previous state of the object to predict
the next state of the object. As a result, earlier object tracking methods such as SIFT, HOG,
Fast Mean Shift, and Kalman �lter was used to track an object.

The detailed discussion and derivation of the formulas of the Kalman �lter and its use in
object tracking can further be referred from [33, 34]. Here we present the overview of the Kalman
�lter and its application in object tracking. The Kalman �lter estimates a process by using a
form of feedback control: the �lter estimates the process state at some time and then obtains
feedback in the form of (noisy) measurements. As such, the equations for the Kalman �lter fall
into two groups: time update equations and measurement update equations. The time update
equations are responsible for projecting forward (in time) the current state and error covari-
ance estimates to obtain the priori estimates for the next time step. The measurement update
equations are responsible for the feedback�i.e., for incorporating a new measurement into the
priori estimate to obtain an improved a posteriori estimate. The time update equations can also
be considered predictor equations, while the measurement update equations can be considered
corrector equations. Indeed the �nal estimation algorithm resembles that of a predictor-corrector
algorithm [35] for solving numerical problems, as shown below in Figure 3.11.

Suppose x is the state, z is the measurement, w is process noise, v is measurement noise,
P is covariance error, and they are all Gaussian. The noises w and v are independent of states
and measurements. Then the complete Kalman �lter equation of the two processes (predict and
correct) shown in �gure 3.12 can be mathematically given using equations in Table 2. Q and R
stand for process noise and measurement noise covariance, respectively, whereas K is Kalman
�lter gain.

38

Chapter 3 3.3. Object Tracking

Figure 3.11: The ongoing discrete Kalman �lter cycle. The time update projects the current state
estimate ahead of time. The measurement update adjusts the projected estimate by an actual measurement
at that time.

Figure 3.12: A complete picture of the operation of the Kalman �lter illustrated mathematically

39

3.3. Object Tracking Chapter 3

In general, the Kalman �lter is a handy algorithm with applications ranging from object
tracking to any applications where state prediction is required. It is usually used with other
algorithms that help to distinguish one object from another object, like a detector based on
neural networks or feature descriptors such as SIFT or even a background subtraction and mean
shift algorithm.

SORT (Simple Online Real-Time Tracker)

SORT [36] presents a lean implementation of tracking by detection framework for the problem
of multiple object tracking (MOT), where objects are detected in each frame and represented
as bounding boxes. It is an online tracking system where only detections from the previous
and the current frame are required to track an object, emphasizing real-time tracking speed for
pedestrian tracking or autonomous driving problems. SORT has four key components:

1. Object detection: - CNN based appearance descriptor pre-trained on large person-re-
identi�cation dataset is used to detect person appearances (feature vectors) from frame to
frame

2. Estimation model:- Here, the object model, i.e., the representation and the motion model
based on Kalman-�lter is used to propagate a target's identity into the next frame. SORT
approximates the inter-frame displacements of each object with a linear constant velocity
model independent of other objects and camera motion. The state of each target is modeled
as:

x = [u, v, s, r, u̇, v̇, ṡ]T

where u and v represent the horizontal and vertical pixel location of the center of the
target, while the scale s and r represent the scale (area) and the aspect ratio of the target's
bounding box, respectively. Note that the aspect ratio is considered to be constant. When
detection is associated with a target, the detected bounding box updates the target state
where the velocity components are solved optimally via a Kalman �lter. If no detection is
associated with the target, its state is predicted without correction using the linear velocity
model.

3. Data association:- In assigning detections to existing targets, each target's bounding box
geometry is estimated by predicting its new location in the current frame. The assignment
cost matrix is then computed as the intersection-over-union (IoU) distance between each
detection and all predicted bounding boxes from the existing targets. The assignment is
solved optimally using the Hungarian algorithm. Additionally, a minimum IoU is imposed
to reject assignments where the detection to target overlap is less than IoUmin.

4. Creation and deletion of track identities: When objects enter and leave the image,
unique identities need to be created or destroyed accordingly. In SORT, an overlap less
than IoUmin signi�es the existence of an untracked object. The tracker is initialized using
the geometry of the bounding box with the velocity set to zero. Additionally, the new
tracker then undergoes a probationary period where the target needs to be associated with
detections to accumulate enough evidence in order to prevent the tracking of false positives.
On the opposite, tracks are terminated if an object is lost for more than TLost time or
frames. This prevents an unbounded growth in the number of trackers and localization
errors caused by predictions over long durations without corrections from the detector.

Overall, a simple SORT algorithm in conjunction with Kalman �lter achieved a commend-
able performance in the MOT (multi-object tracking) challenge in 2016, just the second-best
performer in the competition while still working at a very high speed.

40

Chapter 3 3.3. Object Tracking

Deep Learning-Based Object Tracking

Due to the success of CNN-based deep learning methods in object detection, researchers have
been looking for ways to harvest from this success and develop a tracking algorithm that bene�ts
from deep learning object detectors. One of the early methods that used deep learning for single
object tracking is Deep Regression-Based Object Tracking. In this method, a DL model
is trained on a dataset consisting of videos with labeled target frames. The objective of the
model is to track a given object from the given image crop. To achieve this, they use a two-
frame CNN architecture which uses both the current and the previous frame to regress onto the
object accurately. It is a single object tracking method, where a user �rst sets the object to be
tracked. Another elegant method to track an object is ROLO [37], a combination of YOLO

Figure 3.13: A simpli�ed overview of ROLO and the tracking procedure [37]

and recurrent LSTM. The overview of ROLO depicted in �gure 3.13, or its architecture in �gure
3.14, shows that YOLO detections are concatenated and passed onto the LSTM cell for spatial
information recording and tracking. The most popular and widely used, elegant object tracking

Figure 3.14: ROLO network architecture[37]

framework is Deep SORT [36], an extension to SORT (Simple Real-time Tracker). It has all the
four components of SORT and one more deep learning generated component called appearance
descriptor. The appearance descriptor is introduced to minimize the identity switch problem
prevalent in the SORT algorithm. In SORT, the association between two objects from two
successive frames is based on bounding box IoU regression only (distance calculation); however,
when two similar class objects overlap, it is easy to mistake one object bounding for another hence
case identity switch. In Deep SORT, in addition to the IoU overlap-based distance calculation,
cosine loss between appearance description vectors from one frame to another is also considered
to associate objects. Moreover, instead of Faster RCNN as an object detection background,

41

3.4. Conclusion Chapter 3

current fast and more accurate detectors such as YOLOv4 can be used with the Deep SORT
algorithm.

3.4 Conclusion

In this chapter, we thoroughly reviewed state-of-the-art object detection and tracking approaches.
We classi�ed the current object detection trends into two well-known categories based on the
approaches to implementing the detection networks. These two categories are called two-stage
object detection and one-stage object detection. Two-stage object detectors perform detection
in two tightly coupled stages. The �rst stage is a region of interest proposal or pooling, where
thousands of likely objects of interest containing regions of an image are pooled and wrapped
together to be fed to the next stage. The second stage is the classi�cation and localization stage,
where the wrapped regions are passed through several layers, most probably CNN layers, and
scored on their likelihood of containing objects. Non-Max-Suppression and thresholding methods
�lter out weak predictions while preserving the most con�dent ones. The other set of modern
object detection methods is based on one-stage detection in which classi�cation of object class
and regression of their location is done in one uni�ed network in a single forward pass. These
models are fast, lightweight, and suitable for embedded system applications. However, they are
relatively less accurate since they don't have a separate network to propose regions and likely
locations of objects. As a result, these types of object detectors are the center of our research
work. In the coming chapters, we present di�erent, more accurate, lightweight, and fast one-stage
detectors followed by hardware acceleration implementation

42

Chapter

4
FPGA as Hardware Accelera-
tor for Object Detection and
Tracking

Chapter content

FPGA as Hardware Accelerator for Object Detection and Tracking . . . 43

4.1 Introduction . 43

4.2 Why FPGA? . 44

4.3 Short Review of FPGA Based Deep Learning Acceleration 44

4.3.1 Optimizations based on transforming the algorithm of convolution . . . 44

4.3.2 Loop Optimizations . 45

4.3.3 Optimization based on lightweight implementation 48

4.4 Hardware-accelerated deep CNN design and implementation �ow . 48

4.5 Conclusion . 49

FPGA as Hardware Accelerator for Object Detection and Tracking

4.1 Introduction

As explained in previous chapters, deep learning techniques, mainly based on CNN, dominate
computer vision applications, with breakthroughs announced nearly every month. The pace of
innovation in this �eld is astounding. It means that new, previously unobtainable applications
are likely to be enabled within the next few years. However, the challenge with CNNs is the
intense amount of computation required - commonly requiring multiple TeraOPS. As a result,
deep CNNs are mainly trained on a cluster of computers with high-performance GPUs, thereby
consuming high power and resources. Low power and resource-constrained small electronics such
as embedded systems have bene�ted little from the accuracy-wise advancement the deep learning
is going through as the networks' depth, size, and complication kept increasing as well.

Recently, Field-Programmable Gate Arrays (FPGAs) and Application-Speci�c Integrated
Circuits (ASICs) are getting more attention to balance the tradeo� between the high-power
demand of GPUs and the intensive computation demand of deep convolution-based learning
networks. Though FPGAs and ASICs hardly reach the same or increased throughput as GPUs,
their power is limited. However, compared to FPGAs, the high cost and long development
period of ASICs make them unable to keep up with the rapid changes of deep CNNs. As a
result, FPGA-based deep CNNs are becoming a center of attention for lightweight and real-time
deep CNNs for embedded systems.

4.2. Why FPGA? Chapter 4

Though FPGAs are relatively power e�cient and have a high level of parallelism, they have
relatively more minor resources such as memory and are comparatively challenging to program.
To maximize the memory and power e�ciency of deep CNNs on FPGAs, recently, various meth-
ods have been proposed by researchers worldwide. These optimizations focus on reducing the
size of deep CNN networks and increasing ways to exploit FPGAs' parallelism feature. Later,
we will discuss some of the well adopted techniques of FPGA-based deep CNN accelerations but
�rst let us brie�y explore why one wants to consider FPGA for deep CNN acceleration.

4.2 Why FPGA?

1. FPGAs are energy e�cient: Though Deep Learning is a resource and power-hungry
task, FPGAs can provide an energy-e�cient acceleration due to their customizability for
a speci�c model and power-up required resources only [38]. FPGA can be �exibly and
variably con�gured to use any bit size, whereas GPUs cannot be customized to use variable
data sizes; they are generally suitable for either 32-bit or 64-bit �oating-point precisions.
The lower the data representation, the faster the computation.

2. FPGAs have high �exibility: It is a well-founded fact that FPGAs are highly �exible
development tools. The area of Deep Learning or AI is a very fast-changing one. FPGAs'
recon�gurability and re-programmability accommodate these continuous improvements and
can be reprogrammed many times, saving costs. This advantage is relevant when compared
with ASIC-based development, given their long development time and lack of reusability
or re-programmability.

3. FPGAs can yield high-throughput: Since FPGAs, support variable bit quantization
and deep learnings are being proved to work just �ne with extreme quantization, as extreme
as one or two-bit quantization, the throughput of FPGA based deep-learnings are bound to
be in par or more than that of GPUs. Moreover, FPGA bandwidth is many orders faster
than GPUs, meaning low latency computation for the most compute-intensive operation,
the convolution layer.

Though the pros mentioned above entail good prospects for FPGA-based Deep CNN accel-
eration, there are some cons. These shortcomings include the relative di�culty in programming
FPGA, complexity and the need for special expert knowledge in the underlying hardware, lack
of free or less-cost tools and libraries for test and development, and �nally, the cost of the FPGA
boards themselves.

4.3 Short Review of FPGA Based Deep Learning Acceleration

Over the years, many authors have proposed and tried di�erent alternatives for accelerating
CNN-based networks, particularly the convolution layer. An extensive review of hardware accel-
eration methods from multiple points of view can be read from review works of [empty citation].
Here we brie�y summarize some well-known approaches by grouping them into three subsets. 1)
Optimizations based on convolution mathematics transformation 2) Optimizations based on ex-
ploiting the parallelism of convolution nested loop execution 3) Optimization based on lightweight
implementation.

4.3.1 Optimizations based on transforming the algorithm of convolution

Optimizations in this category focuses on replacing the standard convolution algorithm alto-
gether with faster algorithms such as Fast Fourier Transform (FFT) [39�41], Winograd[42, 43]
or treating convolution as matrix multiplication or GEMM [44]. [39] �rst proposed to transform

44

Chapter 4 4.3. Short Review of FPGA Based Deep Learning Acceleration

convolution algorithm from spatially sliding kernel over input feature maps to pointwise prod-
ucts in the Fourier domain while reusing the same transformed feature map many times, see
Figure 4.1. At the time, this method was implemented on GPU and proved to have superior
performance over traditional convolution algorithm. However, it has two problems 1) it requires
the inputs always to be in 2'power for optimal performance gain and thus requires zero-padding
2) kernels must be large or needs to be padded to have the same size as the input feature map.
Modern kernels are spatially tiny compared to input feature maps, 1× 1 or 3× 3 rendering [39]'s
implementation in its originality less prevalent in modern deep CNN acceleration. Instead, [40]
added the concept of Overlap-and-Add to accelerate the FFT-based implementation of convo-
lution further and also addressed the impact oc size imbalance between input feature map and
kernels. Their solution is implemented on FPGA to accelerate the AlexNet model and proved
successful.

On the other hand, Winograd-based methods implement convolution as Hadamard prod-
uct or Element-Wise Matrix Multiplication (EWMM). Unlike FFT, they are more suitable for
smaller kernels and can bene�t from standard loop optimization techniques such as unrolling
and pipelining. Since Winograd-based methods e�ciency is associated with smaller tile sizes,
on-chip bu�ering aided with double-bu�ering is necessary to reduce memory access for bringing
tiles or bu�ering partial results.

Figure 4.1: Illustration of the convolution algorithm using FFTs [39]

4.3.2 Loop Optimizations

The second set of optimizations exploits the di�erent types of parallelism in the convolution's
nested loops. The parallelism can be manifested between layers or within a layer but among
batch-size, channel, or spatial dimensions. However, because of the resource limitation of FPGA
devices, it is impossible to exploit all the parallelism patterns at once. Instead, the primary
approach that state-of-the-art methods use is to map a certain level of parallel operations onto
a limited number of Processing Elements (PEs) and reuse these PEs by iterating data. We �nd
two unique approaches under this category of optimization, 1) systolic array of PEs and 2) Single
Instruction on Multiple Data (SIMD) based dynamic loop optimization.

Early FPGA-based accelerators for CNN [chakradhar2010dynamically, 45, 46] imple-
mented and exploited static collection of PEs, called systolic arrays, typically arranged in a
2-dimensional grid operating under the control of a CPU ??. These static collections of PEs are
independent of the kernel size of a given layer. They hence can be ine�cient or incapable of
implementing the convolution layer if the layer kernel is greater than the number of implemented
PE sizes. Moreover, the lack of data bu�ering in these early systolic arrays increased mem-
ory access frequency, reducing their throughput. The ine�cient hardware resource utilization
coupled with high-power consumption renders this systolic array-based acceleration method less
favorable in modern deep CNN acceleration.

Due to the ine�ciency of static systolic arrays, �exible SIMD accelerators for CNNs on

45

4.3. Short Review of FPGA Based Deep Learning Acceleration Chapter 4

FPGAs were proposed [47�49]. The general computation �ow in these accelerators is to fetch
FMs and weights from DRAM to on-chip bu�ers. These data are then streamed into the PEs. At
the end of the PE computation, results are transferred back to on-chip bu�ers and, if necessary,
to the external memory to be fetched in their turn to process the subsequent layers. Each
PE is con�gurable and has its computational capabilities using DSP blocs and data caching
capabilities employing on-chip registers. Standard loop optimization techniques accelerate the
deep CNN layers based on the number of available resources, such as DSPs, logic cells, and
on-chip BRAM memories. The number of PEs is dependent on the selected loop optimization
techniques. The detail of loop optimization techniques such as loop unrolling, loop pipelining
and loop order interchange as applied to CNN layers acceleration on FPGA will be discussed
further in Chapter 8, but here we will introduce them brie�y.

Loop Unrolling

Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts
to optimize a program's execution speed at the expense of its binary size, an approach known as
space-time tradeo�. The goal of loop unwinding is to increase a program's speed by reducing or
eliminating instructions that control the loop, such as pointer arithmetic and "end of loop" tests
on each iteration, reducing branch penalties; as well as hiding latencies, including the delay in
reading data from memory.

Consider the following two simple for-loops side by side. As seen from the left for loop, the
elements of array A depend only on the corresponding index elements of arrays B and C. One
can implement the left side loop as in the right-side reducing the number of loop iteration check
and implementing certain lines to run in parallel thereby increasing overall throughput of the
loop execution.

1 for (i = 0; i < N; i++) {

2 A[i]=B[i]*C[i];

3 }

1 for (i = 0; i < N; i=i+5) {

2 A[i]=B[i]*C[i];

3 A[i+1]=B[i+1]*C[i+1];

4 A[i+2]=B[i+2]*C[i+2];

5 A[i+3]=B[i+3]*C[i+3];

6 A[i+4]=B[i+4]*C[i+4];

7 }

(a) Without unrolling (b) Unrolled loop

Figure 4.2: Loop Unrolling. 4.2a 1 data-path, 1 sample per iteration and total of N iterations. 4.2b 4
data-path, 4 samples per iteration and N/4 total iterations.

The above two implementations of the for loop will give the same result, except the second
version is faster by a small factor as there will be less loop iteration, condition check, and branch
penalty. Moreover, by duplicating the processes on di�erent processing elements (PEs) in FPGA
implementation, one can utilize the parallelism feature for further speed gain. The size of the loop
unrolling depends on the number of resources of the FPGA and the speed gain of loop-unrolling

46

Chapter 4 4.3. Short Review of FPGA Based Deep Learning Acceleration

depends on the maximum data-path width. Loop unrolling also has its own disadvantages, such
as increased program size and high power consumption due to intensive parallel computation.
Moreover, one should also take into account the unrolling factor and the maximum loop size for
e�cient implementation.

Loop Tiling

One primary limitation of FPGA is the on-chip memory, and as a consequence, it fails to store
all intermediate and input data of deep CNNs. Therefore, it is usually necessary to use external
DRAMs to store the input and output feature maps, weights, bias, and a partial results from
CNN layers. Therefore, loop-tiling thus the process of breaking down these data into small
atomic blocks the FPGA can handle.

Below pseudocode listing show a loop before and after tiling is implemented. The inner block
on the left side operates on atomic data residing on the FPGA's on-chip bu�er.

1 for (i = 0; i < 100; i++) {

2 ...

3 }

1 for (j = 0; j < N; j+=B) {

2 for (i = j; i < min(N, j+B); i++) {

3 ...

4 }

5 }

Even though loop-tiling is mandatory for optimizing convolutional neural networks on FPGAs
due to the limitation of FPGA on-chip memory, it also comes with its challenges and design
parameters that need careful selection. The design parameter that needs careful deliberation
is the block size, as too small a block increases communication between on-chip and o�-chip
memory, and too big block wastes energy.

Loop Pipelining

Pipelining a loop allows the operations of the loop to be implemented concurrently, as shown
in the following �gure below. In the �gure 4.3, part (A) shows the default sequential operation
where there are three clock cycles between each input read, and it requires eight clock cycles
before the �nal output write is performed, whereas only four clock cycles are required when using
pipelining, as shown in part B of the �gure. Pipelining is a valuable optimization technique, but
it is constrained by instructions having dependence on each other and by the available resource.

In general, all the loop optimization techniques we discussed here (unrolling, tiling, and
pipelining) can be implemented either by the programmer for every loop or automatically by the
compiler, such as HLS pragmas

1 for (i = 0; i < 2; i++) {

2 read();

3 compute ();

4 write();

5 }

6

(a) Without pipelining (b) With pipelining

Figure 4.3: Loop pipelining

47

4.4. Hardware-accelerated deep CNN design and implementation �ow Chapter 4

4.3.3 Optimization based on lightweight implementation

The other set of optimization focus on trimming the trained network using methods such as
model quantization, pruning, compression and sparse convolution. Pruning generally means
cutting down parts of the network that contribute less or nothing to the network during inference.
This results in smaller models, more memory-e�cient, more power-e�cient, and faster networks
during inference with minimal loss of accuracy. Due to the loss of connections and neurons,
pruning usually results in a slight loss of accuracy compared with the unpruned network. It
is customary to cyclically retrain or �ne-tune a pruned network to revive the accuracy drop.
The cycle continues until the �ne-tuning stops improving or starts to over�t. However, the most
common optimization is based on data quantization. Research has shown that the accuracy drop
of using �xed-point operations is insigni�cant, especially considering the vast resource e�cient
utilization quantization can render. Nowadays, the most common FPGA implementations are
16 and 8-bit quantization of the 32-bit �oating-point trained model. Extreme quantizations such
as 1, 3, and 4-bit are also being proposed and some commendable performance and signi�cantly
e�cient memory utilization are reported by many authors.

In summary, current hardware-acceleration implementations utilize one or more of the above
techniques for maximum throughput, e�cient resource utilization, and low-power consumption
while maintaining accuracy drop as minimum as possible though usually these objectives con�ict
and results in trading one over the other.

4.4 Hardware-accelerated deep CNN design and implementation

�ow

Every deep CNN-based AI solution has two main stages: Training and Inference. Since the
training stage requires a large dataset (usually in tens or hundreds of gigabytes), a computer
system with a high-performance GPU cluster is used to create and train models in �oating-point
precisions. Many popular frameworks and tools exist to create deep CNN models prominently as
Tensor�ow, Pytorch, Ca�e, and Theano are the usual ones to mention. Once a network is trained,
and performance requirements are met, an optional stage of pruning and compression follows to
yield a lightweight and faster model for embedded systems. However, pruning usually reduces
the accuracy of a network and is thus accompanied by a cyclic �ne-tuning until the performance
reaches the unpruned network or stops improving. Whether pruning is done, the trained network
weight, bias, and other hyperparameters are exported and quantized before hardware accelera-
tion. Quantization is not mandatory for hardware implementation but is the most common �rst
step in implementing energy-e�cient and high-throughput hardware-accelerated inference of the
deep CNN model. It also helps to reduce the hardware resource consumption of the inference
model. Quantization can be done using a custom algorithm on the exported model parameters
(weights and biases) using any preferred programing language such as C/C++ or can be done
using Tensor�ow's quantization aware training as part of training or �ne-tuning. Nonetheless,
the trained �oating or the �xed-point quantized weight and bais must be exported and saved
separately for the hardware-accelerated inference stage.

Based on the board or software vendor, one can use di�erent IDEs to implement the accelera-
tor for the hardware inference implementation. Full-�edged IDEs such as Intel Quartus for Intel
FPGAs and Vitis and Vivado for Xilinx FPGA provide full support for creating, synthesizing,
debugging, implementing, and deploying the hardware acceleration deep CNN functions. Figure
4.4 shows the Vitis hardware design �ow based on C/C++ and Vitis HLS compiler. As seen
from the �gure, one �rst writes C/C++ code for inference of the deep CNN, in our case, the ob-
ject detection inference, and also a C-testbench to evaluate the implemented inference C/C++
code. Once the C-simulation passes, then hardware synthesis with certain design constraints
such as target clock, target device, and some other con�gurations of interfaces, if necessary, is

48

Chapter 4 4.5. Conclusion

Figure 4.4: Xilinx Vitis HLS Design Flow

con�gured and synthesized. Suppose the synthesis passes and the design constraint and target
performance are satis�ed. One can then export the custom design as an IP block or proceed with
more optimization steps to increase throughput (reduce latency), optimize resource utilization,
and eliminate ine�cient design choices with better ones for optimum implementation.

Moreover, synthesized hardware does not necessarily mean it works as expected and is veri�ed
by the C-simulation. Instead, one needs to perform a further simulation called C/RTL co-
simulation to test whether synthesized hardware works as identical as the software version.
Once all this is over, the design is exported and implemented as an IP block. The custom
accelerated IP block with other IPs such as host processors, AXI interfaces to DDR memory,
clock generator wizards, post and pre-process modules, etcetera, are bundled into one embedded
system hardware implementation. Though we tried to view the end-to-end stages very brie�y,
each section, in reality, is extensive and has its dos-and-don'ts which are beyond the scope of
this section. However, one can �nd detailed resources on each topic presented by Xilinx and
other FPGA vendors in great detail, spread over di�erent manuals and tutorials. Figure 4.5
summarizes our above discussions and the end-to-end model creation, training weights and bias,
quantizing, and designing hardware acceleration to deployment on the FPGA board.

4.5 Conclusion

This chapter brie�y summarized di�erent object detection inference acceleration techniques using
FPGAs. We categorized prior acceleration implementations into three categories and referenced
some representative works by prior researchers falling into each category. The �rst category of
inference accelerations implementations focuses on transforming the standard convolution opera-
tions into faster matrix multiplication or other approximate processes such as frequency domain
Fourier transforms. The most common technique is optimizing the standard convolution imple-
mentation using loop optimizations such as pipelining, unrolling, and loop order interchanges.
These loop optimization coupled with various data quantization, network pruning, and com-
pression techniques comprises the modern object detection inference acceleration. Our object
detection inference acceleration discussed in chapter eight details these and other state-of-the-art
concepts in our quest to implement our object detection acceleration using some test development
boards in our lab.

49

4.5. Conclusion Chapter 4

Figure 4.5: End-to-end Deep CNN-based hardware inference acceleration overall implementation stages,
tools and languages

50

Part II

Experiments and Major Contributions

51

Chapter

5
Lightweight Generic Object
Detector using binary encod-
ing

Chapter content

Lightweight Generic Object Detector using binary encoding 53

5.1 Objectives . 53

5.2 Introduction . 54

5.3 Related Works . 54

5.4 Densi�cation: Generation of Dense Detection Grids 55

5.5 Training . 56

5.5.1 Coordinate loss . 56

5.5.2 Objectness loss . 57

5.5.3 Class prediction Loss: Ternary Cross Entropy (TCE) Loss . . . 57

5.6 Inference . 58

5.6.1 Three Way Non-Max Suppression (3WayNMS) 59

5.7 Experiment . 60

5.7.1 Performance on Pascal VOC Object Detection Dataset 60

5.7.2 Performance on COCO Object Detection Dataset 62

5.8 Conclusion . 62

Lightweight Generic Object Detector using binary encoding

5.1 Objectives

Object detection is one of the most challenging and very important branch of computer vision.
Some of the challenging aspect of a detection network is the fact that an object can appear
anywhere in the image, be partially occluded by another object, might appear in crowd or have
greatly varying scales. Consequently, we propose a �ne grained and equally spaced dense grid
cells throughout an input image be responsible of detecting an object. We re-purpose an already
existing deep state-of-the-art detector or classi�er into deep and dense detector. Our dense object
detector uses binary class encoding and hence suitable for very large multi-class object detector.
We also propose a more �exible and robust non-max suppression implementation to �lter out
redundant detection of same object. As a result of our dense object detection implementation
we have managed to increase YOLOv2's performance on Pascal VOC 2007 and COCO datasets
by +2.3% and +7.2% mean average precision (mAP) respectively.

5.2. Introduction Chapter 5

5.2 Introduction

Object detection is one of the most challenging and very important branch of computer vision.
Unlike object classi�ers that only seek to label an image in its entirety into one of prede�ned
categories, object detectors, however, are required to precisely locate all known objects on an
image using bounding box around each object and label them correctly.

The trend in current state-of-the-art object detection networks is to use a deep convolutional
classi�er network as background extractor. As pointed in [16], these trends of using deeper
network is best explained by the growing trend of using families of the sophisticated and cum-
bersome ResNet-based classi�ers in almost all best performing state-of-the-art object detectors
at a cost of speed and resource expense.

In this paper we propose to densifying the output layer of a detection network in such a
way that detection occur at �ne grained equally spaced grid cells all over the input image.
This is a similar approach to YOLO[26] except YOLO uses bigger grid cells such as 32 by 32
whereas in our case we propose using smaller grids of size 8 by 8. Densi�cation alone might
not yield a signi�cant performance gain as it leads to over�tting, and in fact might also render
implementation unfeasible due to large memory requirement on the output layer. We remedy this
using a modi�ed form of binary encoding which we refer it as extended binary encoding as
opposed to the de-facto onehot encoding of categorical data. We also propose a new classi�cation
loss function for object detection to both handle class imbalance and foreground and background
grid cell imbalance. Lastly but not least, we also propose a new and robust non-max suppression
implementation suitable for �ltering less con�dent and redundant bounding boxes detection. Our
network relies on deep convolutional classi�er or any high performance detector network as feature
extractor backbone for improved performance. In this paper, though any high performance
network could have been re-purposed into our dense detector, however, we chose YOLOv2 for
its simplicity and of course no mean performance.

5.3 Related Works

OverFeat[25] for the �rst time modeled object detection as one stage, meaning one forward pass
to determine both the class of the object and their localization, regression multi-scale sliding
window problem. Since then many successful one stage object detectors followed the suite.
One such network is YOLO[26] and its incrementally improved trilogies, namely YOLOv1[26],
YOLOv2[27] and YOLOv3[28]. In general, YOLO divides an input image into equal grid cells,
particularly 32 by 32 pixels, and each grid cell predicts one or more objects with con�dence scores.
Though YOLOv1 and YOLOv2 are very fast however, compared to similar scale one stage or
two stage object detectors of recent time, their performance trails behind. Recently YOLOv3
by including some best practice of the current object detection trend such as using very deep
feature extractor and employing concepts such as residual network, skip connection, multi-scale
prediction and up sampling, they managed to signi�cantly improve YOLO's performance.

The other well-known one stage detector is SSD [29], short for Single Shot Multibox Detection.
SSD, like YOLO, presents a uni�ed one stage detector. However, instead of grid based approach
of YOLO, the core feature of SSD is the multi-scale object detection scheme they introduced by
adding InceptioNet inspired convolutional �lters on top of VGG network. Due to these multi-
scale �lters SSD was much better than YOLO in detecting objects of various scales, speci�cally
small, medium and large objects of COCO dataset.

Most recently, in a bid of making one stage detectors perform as well as two stage object
detectors in detection accuracy, a model dubbed RetinaNet [30] with its novel classi�cation
loss function called focal loss, was proposed by Tsung-Yi Lin, et al of Facebooks AI Research.
Their network predicts very dense bounding boxes, about 100k per image, and their cross entropy
modulating focal loss handles the class imbalance during training. However, due to the underlying

54

Chapter 5 5.4. Densi�cation: Generation of Dense Detection Grids

ResNet network and the dense bounding box prediction,the speed of RetinaNet is signi�cantly
slow than the above two models.

Figure 5.1: Dense Detection Grid Network (DDGNet). YOLOv2 used as base model after
stripping the last detection layer.

Figure 5.2: Grid densi�cation. After striping o� the last detection layer of YOLOv2 output layer
we then pass it through CONVBNL1, CONVBNL2 and CONV layers to give dense output. CONVBNL*
stands for Convolution −→ Batch Normalization −→ LeakyRelu layers.

5.4 Densi�cation: Generation of Dense Detection Grids

As per [50] in COCO dataset more than 41% of the objects have size below 32 by 32 and each
YOLO grids cells have an area of 32 by 32. With this grid cell size, it is possible that objects of
smaller sizes appearing in group on an image , such as �ock of birds or bucket of fruits can fall
in the same grid cell. Though rare, two or more partially occluding objects might also fall in the
same grid cell and same anchor box. When such cases happen during ground truth annotation,
since any anchor per grid only annotates one object the other will be dropped out. Moreover,
during inference again since one anchor per grid can only detect at a maximum one object objects
of near same size and appearing in a crowd or partially occluded will be dropped out.

Tiny dense grids reduces the chance of overlap of ground truth annotations and helps in deep
search of a particular image for an object at every location. In our dense grid implementation
shown in Fig. 5.1, the output of the YOLOv2 network minus the last layer is fed to depth-to-
space reshaping Lambda function with block size of 4 and then passed through additional light
weight three convolutional blocks as shown in Fig. 5.2 where the third convolutional layer is the

55

5.5. Training Chapter 5

Extended Binary Encoding, n=80
Class One's Complement (width=7) Binary (width=7)

Index 6 5 4 3 2 1 0 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 0 0 0 0 0 1

1 1 1 1 1 1 0 1 0 0 0 0 0 1 0

.

.

.

79 0 1 0 1 1 1 1 1 0 1 0 0 0 0

Table 5.1: Extended Binary Encoding. For class size n = 80 we need m = 2 ∗ log2n = 14 size array
to encode a class.

new output head of the network. The middle two added convolutional blocks are to counter the
bottleneck layer that might be created due to the folding of the depth feature map into small
sized space feature map, though we merely reorder the same feature map. Since we use an 8 by
8 grid cell, our network predicts four time as many bounding as YOLOV2 detects. Due to this
dense grid and dense predictinon we refer our network as dense detection grid network or
DDGNet.

Unlike the de facto onehot encoding of categorical objects, we used extended binary encoding
in our ground-truth class encoding. For n classes of nominal categorical objects, onehot encoding
requires an array of size n for each object, whereas binary encoding requires only an array of
size log2 n. However, since binary encoding uses fewer features to encode a class, it is expected
to loose some information in describing an object when compared with onehot encoding. To
compensate this information loss, we followed a novel approach to extend the binary encoding of
an object by combining binary encoding of class index with its one's complement so that the �nal
class encoding will have a size of m = 2 ∗ log2 n. The extension of binary encoding with one's
complement, as shown in table 5.1, is a simple hack to compensate the feature loss in binary
encoding and it also balances the number of zeros and ones in a given class encoding.

In summary, our DDGNet �nal layer outputs a feature map of shape bs ∗ gw ∗ gh ∗k ∗ (4+1+
2 ∗ log2 n), where bs stands for batch size, gw and gh stands for total number of horizontal and
vertical grid cells respectively, k for number of anchor boxes and the expression (4+1+2∗ log2 n)
refers to the coordinate of the bounding boxes, objectness score of each anchors per grid and the
class encoding array. We followed the same approach used by YOLOv2 to annotate our ground
truth of our training and validation dataset. We used k = 9 in our experiment.

5.5 Training

DDGNet training loss function is structurally similar with YOLO. The loss function has three
parts: box coordinate prediction loss, the objectness con�dence prediction loss and class encoding
prediction loss.

5.5.1 Coordinate loss

The coordinate loss is given by the following equation, where (xij , yij) and (wij , hij) are the
ground truth bounding box center and width and height pair resized by the original image width
and height respectively. The i and j stands for the grid cell and anchor box within the grid cell
respectively.

56

Chapter 5 5.5. Training

crdloss = λcrd

gw∗gh∑
i=0

k∑
j=0

1
obj
ij

[
(xij − x̂ij)

2 + (yij − ŷij)
2
]
+

λcrd

gw∗gh∑
i=0

k∑
j=0

1
obj
ij

[
(wij − ŵij)

2 +
(
hij − ĥij

)2] (5.1)

1
obj
ij is the masking tensor for each anchor j of grid cell i. 1obj

ij is set to 1 if anchor j of grid
cell i has the highest IOU overlap with the ground truth of a given object; otherwise is set to
0. λcrd is coordinate loss scaling coe�cient which we always set to 1. However, one can give
di�erent weights for the center coordinate loss and width and height prediction loss.

5.5.2 Objectness loss

Objectness con�dence score is the measure of the probability that a given cell has detected
an object. Equation (5.2) shows the objectness loss function used in DDGNet. σ

(
t̂0
)
is the

networks predicted box objectness con�dence score. λobj is a weight coe�cient stressing the cell
responsible of detecting an object whereas λnoobj is a weight coe�cient set to reduce the e�ect of
cells that are not expected to detect an object. Normally, since the majority of the cells doesn't
have an object λobj must be very large compared to λnoobj . In our training we experimented

by setting λobj = 10000 and λnoobj = 10. IOU(b, b̂) < IOUthrsh is the IOU computation of
predicted bounding box against the ground truth bounding boxes. confloss is computed over all
grids and anchor boxes per each grid and averaged by the total number of object detecting grid
cells, however we showed a minimal representation of the equation for brevity.

confloss =λobj1
obj
ij

(
1− σ

(
t̂0
))2

+

λnoobj1
noobj
ij

(
σ
(
t̂0
))2 ∗ IOU(b, b̂) < IOUthrsh

(5.2)

5.5.3 Class prediction Loss: Ternary Cross Entropy (TCE) Loss

Before explaining our classi�cation loss function we would like to recall binary cross entropy
(BCE) loss for binary classi�cation. BCE loss is calculated using the following equation:

BCE(c, ĉ) =

{
− log(ĉ), if c = 1

− log(1− ĉ), if c = 0
(5.3)

In the equation (5.3) the c ∈ {0, 1} is the binary ground-truth class annotation of the object
to be detected whereas ĉ ∈ [0, 1] is the predicted class probability of the detected object. The
�rst term in BCE equation trains to predict binary 1 where as the second term trains to predict
binary 0. However, in our case since we conduct multi-label classi�cation, multi-label to say more
than one label can be value 1 according to their extended binary encoding, we added a third term
where we train the network to output a value 0.5 for grids that have no object of interest. In our
dataset we don't have object annotated with 0.5 instead all objects are annotated as explained
in table 5.1. Since 0.5 is the equally furthest number from both 0 and 1, we push grids that
has no object to output 0.5 while pushing the other object containing grids to their extended
binary encoding. Due to this three values, that is 0, 0.5 and 1, we refer our classi�cation loss
function as ternary cross entropy or TCE for short. Equation (5.4) shows simpli�ed the TCE
loss implemented at a given cell. c and ĉ are ground-truth class encoding array and the sigmoid
of the class prediction output of the network respectively at a given cell.

57

5.6. Inference Chapter 5

Detection Frameworks Train mAP

Fast R-CNN [22] 2007+2012 70

YOLO [26] 2007+2012 63.4

SSD300 [29] 2007+2012 74.3

SSD500 citessd 2007+2012 76.8

YOLOv2 416 [27] 2007+2012 76.8

YOLOv2 544 [27] 2007+2012 78.6

DDGNet 544 ours 2007+2012 81.3

Table 5.2: Performance comparison on Pascal VOC 2007 test dataset against some equiv-
alent models. As seen from the table at 544 by 544 input image DDGNet outperforms the equivalent
networks in the table.

TCE(c, ĉ) =

− log (ĉ+ 0.5)− log (1.5− ĉ) , if 1obj = 0{
− log(ĉ), if c = 1

− log(1− ĉ), if c = 0
, if 1obj = 1

(5.4)

Figure 5.3: Rounding class encoding prediction to either of the three value 0, 0.5 and 1. If the predicted
value is in the range of [0, δ] we round the predicted value to 0, if it is in range (0.5− δ, 0.5 + δ) then we
round to 0.5 and if in the range [0.5 + δ, 1] we round it to 1.

5.6 Inference

For single input image our network outputs a tensor ŷ of shape gh∗gw∗k∗(4+1+cm), where gh, gw
stands for number of grid cells in height and width direction of the input image,respectively, and
k is the number of anchor boxes whereas the term (4 + 1 + cm) stands for the four parameters
of bounding box coordinates, 1 grid cell objectness score or probability measure and cm for the
m size extended binary class encoding prediction.

As in as in [27] we calculate bounding box coordinates relative to grid cell from the network
output corresponding the four coordinate values tx, ty, tw, th and corresponding grid coordinate
(cx, cy) that detected the bounding box as shown below. The (pw, ph) stands for the width and
height of the anchor box detecting the object.

bx = σ (tx) + cx (5.5)

by = σ (ty) + cy (5.6)

bw = pwe
tw (5.7)

bh = phe
th (5.8)

58

Chapter 5 5.6. Inference

After sigmoid we the class prediction output to the ternary values, namely 0, 0.5 or 1, using
a threshold value δ chosen from range of [0, 0.25]. Fig. 5.3 shows the rounding process whereas
equation (5.9) is the mathematical expression of the rounding process.

ĉj =

0, if ĉj < δ

0.5, if δ < ĉj ≤ δ + 0.5

1, if ĉj > 0.5 + δ

(5.9)

Once class predictions are rounded into the ternary points, then we measureweighted euclidean distance
between predicted class encoding and class encoding of each object category of our ground-truth
classes using equation (5.10).

d2i =
m∑
j=0

(
2j

n
) (ĉj − cij)

2 (5.10)

predclassindex = argmax(−d2i), ∀i = {0, n− 1} (5.11)

We also measure classi�cation con�dence score using the following equation:

clfnconf = 1− 1

m

m∑
j=0

1− ĉj , if ĉj ≥ 0.5 + δ

ĉj , ĉj ≤ δ

1, 0.5− δ ≤ ĉj ≤ 0.5 + δ

(5.12)

The classi�cation con�dence score is computed from the un-rounded direct class encoding pre-
diction output of the network. The classi�cation con�dence score simply shows how well the
network class prediction is close to the extended binary encoding of the objects. It is not a
probability measure of con�dence of the class prediction certainty, like the common softmax or
sigmoid based classi�cations.

Finally, we compute overall object prediction con�dence score using (5.13) from classi�cation
con�dence score and grid objectness con�dence score gconf which is simply gconf = σ(to), where
to is the corresponding objectenss output of the network.

Oconf = clfnconf ∗ gconf (5.13)

Bounding boxes with overall score above certain threshold are then selected as detected object
and then pass through non max suppression for further removal of redundant prediction of the
same object. However, one can also set individual threshold for classi�cation, objectness score
and overall score and use the equation (5.14) to mask detected objects.

fltrmask =(clfnconf < clfnthrsh) ∗ (gconf < gthrsh)∗
(Oconf < Othrsh)

(5.14)

5.6.1 Three Way Non-Max Suppression (3WayNMS)

Non max suppression (NMS), as its name suggests, is a mechanism of successively discarding
the less con�dent of two bounding boxes whose IOU overlaps above certain IOU threshold,
IoUthrsh. However, picking a single IoUthrsh for all object scale and appearance is painstaking
trail and error procedure. In this paper we reduce that burden with a robust and �exible NMS
implementation we dubbed 3WayNMS. Our NMS implementation employs the usage of two
IOU thresholds and a two other thresholds, namely Intersection over smaller box area in
short IOS or Intersection over larger box area in short IOL threshold given by equation
(5.15) and (5.16).

59

5.7. Experiment Chapter 5

Let IoUthrsh1 and IoUthrsh2, where IoUthrsh1 > IoUthrsh2, be the two IOU threshold values
and IoSthrsh IOS threshold and IoLthrsh IOL threshold. Now consider two overlapping bounding
boxes, A and B, of same class. Using the following three steps we can check if the boxes are
redundant detection of same object and hence leading to suppression of the less con�dent of the
two bounding box:

1. if IOU(A,B) > IOUthrsh1, then remove either of the box whose overall con�dence score is
smaller.

2. if IoUthrsh2 ≤ IOU(A,B) < IoUthrsh1 and the center coordinates of box A and B are
within r grids apart of one another in all direction, then we remove the box with smaller
con�dence score. In our case we used r = 4, meaning a grid within maximum 4 grids of
one another in any direction are considered neighbors.

3. if IOU(A,B) is less than IoUthrsh1 but higher than IoUthrsh2 though the center coordinates
of box A and B are not within r grids cells away of one another, if IOS(A,B) > IoSthrsh

then remove the box with smaller grid or if IOL(A,B) > IoLthrsh then again remove the
box with smaller threshold. The meaning of this is, if two boxes overlap above certain small
threshold, that is IoUthrsh2 but fail from meeting the required IoUthrsh1, then we check
how much percent of the smaller or the larger box is in the intersection. If the smaller
object's, say 75% of the area is in the intersection then we remove one of the two boxes
having smaller score. However, though not frequently true we also check the ration of the
intersection to the bigger area and if some part of less con�dent large box intersect with
more con�dent large above certain threshold, say 50% then we remove the less con�dent
box.

IoS = Intersecion(A,B)/min(areaA, areaB) (5.15)

IoL = Intersecion(A,B)/max(areaA, areaB) (5.16)

Due to these three possible stages or ways of discarding the less con�dent of redundant bound-
ing box prediction, we named our suppression technique as Three Way Non-Max Suppression or
3WayNMS for short.

5.7 Experiment

We conducted numerous experiments on Pascal VOC and COCO object detection datasets in
order to compare the performance of DDGNet against the original YOLOv2 and other related
one stage object detectors such as SSD and RetinaNet.

To start our training we used YOLOv2's weight �le of both COCO and Pascal VOC datataset
from the authors website [51]. In our all test experiments we used small learning rate 1e−4 for the
�rst 30 epochs and 1e−5 for the last 70 epochs, in total we trained for 100 epochs with early stop
in place when the mean average precision stops improving. Random combination of common
image augmentation techniques such as cropping,rotating, hue and saturation manipulation and
di�erent noise additions are implemented using Imgaug package [52] to arti�cially boost our
training dataset.

5.7.1 Performance on Pascal VOC Object Detection Dataset

We trained on combined 2007 and 2012 Pascal VOC training dataset and tested the performance
of our system on Pascal VOC 2007 test set.

As seen on Table 7.1 DDGNet trained with input image size 544 by 544 on combined Pascal
VOC 2007 and 2012 shows a performance gain of +2.7% over the original YOLOv2 proving

60

Chapter 5 5.7. Experiment

T
a
b
le
5
.3
:
In
d
iv
id
u
a
l
P
a
sc
a
l
V
O
C
2
0
0
7
d
a
ta
se
t
cl
a
ss
es

m
A
P
.
D
D
G
N
et

w
o
rk
s
be
tt
er

in
a
lm
o
st
a
ll
o
bj
ec
ts
th
e
o
th
er

n
et
w
o
rk
s
st
ru
gg
le
s
w
it
h
.

M
o
d
el

d
at
a

m
A
P
ae
ro

b
ik
e

b
ir
d

b
oa
t
b
ot
tl
eb
u
s

ca
r

ca
t

ch
ai
r
co
w

ta
b
le
d
og

h
or
se
m
b
ik
ep
er
so
np
la
n
t
sh
ee
p
so
fa

tr
ai
n

tv

F
as
te
r
[2
2]

07
+
12

73
.2

76
.5

79
.0

70
.9

65
.5

52
.1

83
.1

84
.7

86
.4

52
.0

81
.9

65
.7

84
.8

84
.6

77
.5

76
.7

38
.8

73
.6

73
.9

83
.0

72
.6

S
S
D
30
0
[2
9]

07
+
12

74
.3

75
.5

80
.2

72
.3

66
.3

47
.6

83
.0

84
.2

86
.1

54
.7

78
.3

73
.9

84
.5

85
.3

82
.6

76
.2

48
.6

73
.6

73
.9

83
.4

74
.0

S
S
D
51
2
[2
9]

07
+
12

76
.8

82
.4

84
.7

78
.4

73
.8

53
.2

86
.2

87
.5

86
.0

57
.8

83
.1

70
.2

84
.9

85
.2

83
.9

79
.7

50
.3

77
.9

73
.9

82
.5

75
.3

D
D
G
N
et

5
4
4

07
+
12

8
1
.3

81
.9

86
.1

76
.3

74
.5

71
.3

85
.3

88
.0

87
.7

72
.4

83
.9

87
.4

83
.8

86
.3

85
.1

81
.2

66
.2

74
.6

91
.4

82
.6

80
.1

61

5.8. Conclusion Chapter 5

densi�cation and TCE loss useful. In addition trained on, our model also out performs SSD300
[29] and SSD500 [29] by +7% and +4.5% respectively. Table 7.2 shows detail mAP performance
of DDGNet against SSD300, SSD500 and against two stage object detector Faster RCNN [22].
From the table we can see that DDGNet works much better on usually occluded or partially
visible and small objects such as boat, bottle, chair, table, sofa and potted plants when all other
detectors struggle with these objects.

Models AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [20] 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [53] 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [54] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [55] 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 [27] 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [28] 608 33.0 57.9 34.4 18.3 35.4 41.9

DSSD513 [56] 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [30] 40.8 61.1 44.1 24.1 44.2 51.2

DDGNet 608(ours) 28.8 51.2 30.8 12.1 39.4 50.7

Table 5.4: COCO dataset test result. Though DDGNet sweepingly outperforms the underlying YOLOv2,
but it still remains behind the rest current state-of-the-art including behind YOLOv3.

5.7.2 Performance on COCO Object Detection Dataset

We also trained DDGNet on COCO dataset using COCO object detection evaluation metrics.
Table 7.3 shows comparison of DDGNet mean average precision against some well known and
recent state-of-the-art detectors. Our DDGNet implementation again shows over +7.2% gain
against YOLOv2. However, against the other recent networks DDGNet trails far behind, es-
pecially in precisely detecting of smaller objects. In fact our underlying backbone, YOLOv2,
lacks some of the recent object detection networks best working and proved features proved for
this purpose such as skip connection, residual network and up-sampling, which the authors in-
cluded in YOLOv3. Accordingly, we believe if recent best performing base networks are used as
backbone of DDGNet the detection of small objects would improve.

5.8 Conclusion

In this paper we have introduced dense object detector obtained after restructuring and adding
few extra layers to an already deep and high performing backbone network. We proposed dense
grid based one stage object detector in a assumption that dense and �ne grained grid cells better
annotates and detects crowded or occluded objects and smaller objects, consequently increasing
performance of an object detector. As hypothesized we have managed to increase one of the
state-of-the-art object detector YOLOv2 without inducing signi�cant weight or reduce the speed
of YOLOv2 signi�cantly. Moreover, since our detector uses optimized class encoding it is suitable
for very large multi-class object detection and we believe as detection networks are going deeper
and heavier the way forward to support very large multi-class detection is probably through the
use of binary encoding as hardware always has limit. We have also introduced new bounding box
classi�cation loss function called ternary cross entropy to handle the overwhelming imbalance
of grids responsible of detecting an object and those which are not. We have also introduced

62

Chapter 5 5.8. Conclusion

a new and �exible non-max suppression implementation to remove redundant detection of the
same object.

63

Chapter

6
Yet Faster, Lighter and More
Accurate YOLO

Chapter content

Yet Faster, Lighter and More Accurate YOLO 64

6.1 Objective . 64

6.2 Introduction . 65

6.3 Related Works . 66

6.4 DenseYOLO . 66

6.5 Training . 68

6.5.1 Ground-Truth Annotation . 68

6.5.2 Training Loss function . 69

6.6 Inference . 70

6.7 Experiment . 70

6.7.1 Performance on Pascal VOC Object Detection Dataset 71

6.7.2 Performance on COCO Object Detection Dataset 71

6.8 Conclusion . 72

Yet Faster, Lighter and More Accurate YOLO

6.1 Objective

As much as an object detector should be accurate, it also has to be light and fast. However,
determining acceptable tradeo� between speed and accuracy is not a simple task. One of the
high speed and high performance object detector is the well known YOLOv2. YOLOv2 performs
detection by dividing an input image into grids and training each grid cell to predict certain num-
ber of object bounding box parameters and their corresponding classes and objectness con�dence
score. We re-frame this multiple object prediction per grid cell approach of YOLOv2 into a single
object prediction per grid cell by using smaller area grid cells. We train our system not only
to predict box parameters and classes but also to pick an appropriate]anchor box from a set
of K-means generated anchors, or prior boxes, so that the predicted bounding box parameters
yield higher IOU overlap against the ground-truth box. For the same input size and grid cell
area, our DenseYOLO approach has k− 1 folds of less parameters on the output layer compared
to YOLOv2's output layer, assuming k is the number of anchor boxes or priors. This reduced
output layer parameters directly translates to increased detection speed due to less number of
redundant prediction of same object or small false-positive predictions and in general smaller

Chapter 6 6.2. Introduction

computation. Moreover, since our approach has fewer output parameter one can use large an-
chor box to start training the system from good initial status or increase image resolution or
large class category without worrying the drastic burst of the output layer.

6.2 Introduction

One of the most important and challenging computer vision area is object detection. It is a basic
�rst step for many real-world computer vision and robotics applications such as face detection,
object tracking, pose analysis, surveillance, information retrieval and etc. Object detection has a
dual goal of both precisely labeling and localizing all known objects on an image using rectangular
bounding boxes.

Modern era generic object detection researches are dominated by two deep CNN based ap-
proaches. These are implementation of object detection as a two-stage or one-stage detector.
Two-stage detectors perform object detection in two core steps, that is �rst using a serious of
CNN propose sparse candidate regions on an image, likely containing an object of interest and
second classify and score each proposed regions. One-stage detectors, however, perform both the
localization and classi�cation simultaneously in one forward pass. Generally, two-stage networks
are known for their high performance in detection accuracy though they are usually very slow
and heavy. On the contrary, one-stage detectors are very-fast while relatively are also less accu-
rate. Since we believe that an object detection should be fast, accurate and light weight,in this
paper we will focus on one-stage object detectors.

YOLO [26], an abbreviation for You Only Look Once, is one of the �rst high speed and high
performance one-stage object detectors. YOLO divides an entire image into square grid cells
of an area 32 by 32 and each grid cells detect a number of object bounding box coordinates
and classes. Though YOLO, also called YOLOv1, was very fast however its detection accuracy
was not in par with recent detectors. Thus, in a quest of increasing the detection performance
of YOLOv1, a new model with more depth and other useful features dubbed YOLOv2[27] is
proposed by authors of YOLO. YOLOv2 has more depth and predicts more bounding boxes per
image compared to YOLOv1. Each grid cell in YOLOv2 predicts 5 bounding box coordinates,
object classes and objectness con�dence score for each prediction. Theoretically if one uses
dense grid cells with smaller area than 32 by 32 or increased the number of boxes each grid
cell predicts, say from 5 to 10 or more, then the chance of detecting partially occluded objects,
objects appearing in group and objects of smaller size should increase. These constitutes some
of the drawbacks of YOLOv2. However, increasing the density of grid cells by using smaller area
grid cells, like 8 by 8, or increasing the number of boxes each grid cell predicts will drastically
increase the output layer of YOLOv2 which in turn makes the network either slow or demand
large memory for training.

In this paper we present a new more robust and e�cient approach of implementing YOLO
like, more speci�cally YOLOv2 like, one-stage object detection. Instead of predicting k bounding
boxes per grid cells, we train our model to predict only one object per grid cell. We use smaller
grid cells, an 8 by 8 grid cell instead of the 32 by 32 used in the YOLO trilogies [26], [27]
and [28]. Since the grid cells are tiny it is unlikely for two or more objects to fall in the same
grid cell thereby increasing the chance of detecting objects appearing in group such as �ock
of bird or a bucket of fruits or partially occluded objects − the type of objects YOLOv2 fails
to handle very well. In YOLOv2 K-means generated k number of anchor boxes are made to
predict k bounding boxes per grid cell, though only one anchor box is annotated as responsible
of detecting an object during ground truth annotation. This leaves the other k − 1 anchors per
grid cells unnecessarily bloat the output layer into consuming more memory location or resort
into redundant prediction of same object multiple times. In our method, which we dubbed
DenseYOLO, instead of predicting k bounding boxes using each anchor, we train the system to
predict one bounding box coordinate, in fact we predict o�set from anchor boxes rather than the

65

6.3. Related Works Chapter 6

coordinates directly, per grid and also predict a single anchor that yields the highest IOU overlap
against the corresponding ground-truth. In short, just like each grid cell predicts coordinates
and classes it also predicts an anchor to be used with the predict coordinate so that the predicted
box �ts the underlying ground-truth. This reduces the output layer of DenseYOLO by atleast
k − 1 fold compared to YOLOv2 and thus DenseYOLO is lighter and faster. Since the output
layer is smaller in DenseYOLO, one can use large number of K-means generated anchor boxes to
start the system train from more dataset representative set of anchors or prior boxes. Large set
of anchor boxes, also called prior boxes, help to handle appearing in unusual scale or shape−−
the other problem YOLOv2 cannot handle very well. Moreover, one can easily convert best
performing deep classi�ers such as ResNet[57] or VGG[58] or even YOLOv3 into DenseYOLO
based detector for an increased the detection performance and speed.

6.3 Related Works

Classical object detection works have been relying on hand crafted features and shallow networks
for very long time. However, the success of using deep convolutional methods for object classi-
�cation and detection revolutionized by AlexNet[59], triggered deep CNNs to conquer modern
object detection researches. As presented in the introduction section, current trend in object
detection follows either two stage detection approach or one-stage detection. Both have their
own advantages over the other and usually models based on the former approach are more ac-
curate whereas models based on the later are signi�cantly faster. Determining trade-of between
detection speed, memory and accuracy is a prime concern in object detection. As [54] proposed,
two-stage detectors can be speedup by using smaller image resolution or light and deep classi�er
as a backbone.

Recently, a one-stage object detection model called RetinaNet[57] targeted solving class im-
balance challenge in one-stage detector in a bid of uplifting performance of one-stage detector
to be in par with two-stage detectors such as Faster-RCNN. They proposed a new loss function
called focal-loss to naturally handle the background-foreground class imbalance of dense bound-
ing box perdition in one-stage detector. However, RetinaNet is very slow for real-time tasks
though still faster than most two-stage networks and competitively high performing. Another
well known one-stage detector called SSD[29] targets multi-scale detection so that a detector
could better detect objects of varying scale.

However, in this paper we take inspiration from YOLOv2's grid based approach of object de-
tection and maximize on its speed and performance. However, it is to be recalled that YOLOv2
lacks depth and few other current best practices such as multi-scale detection, and residual con-
nections which the authors included in latest version YOLOv3 [28]. Theoretically, it is possible
to use our approach on an already best performing detector such as [28] or turn any deep CNN
based stat-of-the-art classi�er into DenseYOLO based detector for increased detection perfor-
mance and speed. However, for a simplistic illustration of our proposed method we focus on
simple yet commendably powerful YOLOv2 than the sophisticated YOLOv3.

6.4 DenseYOLO

In DenseYOLO, we simply strip the last layer of YOLOv2 and reshape the output layer so that
the out put tensor corresponds to a grid cell of an area 32 by 32 to a smaller grid of 8 by 8
area. This simply means we divide the input image width and height by 8 not 32 as YOLOv2
does. After reshaping we add two more blocks composed of convolutional layer followed by batch
normalization layer followed by relu activation layer. And lastly, we add an output convolutional
layer of tensor corresponding to each grid cells. Figure 6.2 shows the conversion of YOLOv2 into
dense detector.

66

Chapter 6 6.4. DenseYOLO

Figure 6.1: DenseYOLO

DenseYOLO has an output tensor of shape gw ∗ gh ∗ (k + 1 + 4 + n) unlike YOLOv2's
gw ∗ gh ∗ (k + 1 + 4 + n). The gw ∗ gh is the total number of grid cells of area 8 by 8 pixels,
k and n stand for the number of anchor boxes and number of object categories, respectively.
The 1 stands for binary value 1 or 0 indicating that whether a grid does or does not have an
object, respectively. And the 4 stands for the four bounding box coordinate parameters (x1, y1)
top left corner and (x2, y2) bottom right corner. Each grid cells in gw ∗ gh size outputs an array
of size (k + 1 + 4 + n) instead of outputting k ∗ (1 + 4 + n), see �gure 6.1. With the same grid
size our models output layer has k − 1 folds of reduced weight than YOLOv2's output layer.
The signi�cance of this change is that, one can now increase the number of K-means generated
anchor boxes to start the training from better representative priors. Or one can increase the
input image resolution without worrying that the output layer tensor could explode into large
tensor size and restricting implementation due to hardware, speci�cally memory shortage.

A natural intuitions to garner more accuracy from YOLOv2 like model is to increase number
of anchor boxes or increase the number of grids by using smaller grid cells. However, those intu-
itions might lead to either training loss saturation or exploding output layer. Unlike YOLOv2,
however, our model predicts only one object per grid cell instead of the k bounding boxes. Since
we use a very small grid size, the probability of two or more objects center falling in the same
grid cell is very small.These avoids the need to predict multiple objects per grid cell. We still
use anchor boxes, but instead of forcing the network to predict one object per anchor box per
grid, we train the system to try all k anchor boxes per grid cell and pick the one that led to high
IOU against the ground truth. In short we train the network to predict a best �tting anchor box
just the way it predicts bounding box coordinates, class, and con�dence score. In the following
section we discuss our training loss function and training procedures.

67

6.5. Training Chapter 6

Figure 6.2: The repurposing of YOLOv2 into DenseYOLO. In the �gure YOLOv2 with an input
image of 416 by 416 is assumed and bs stands for batch size. CONVBL1 and CONVBL2 refers to two
blocks each made up of Convolution layer followed by Batch Normalization layer followed by Leaky Relu
layer.

6.5 Training

6.5.1 Ground-Truth Annotation

After re-sizing an input image into �xed input size divisible by 8, say 608 by 608 for example, we
then divide each image into grids of gw by gh where gw and gh are equal to image width/8 and
height/8 respectively. A grid cell with a bounding box center coordinate of an object falling in,
is made responsible of detecting an object. We assign a speci�c anchor out of k anchors,to every
bounding box based on their IOU score calculated by centering both the ground truth box and
anchor box at origin, that is (0, 0).

Assume (bx, by) is the center coordinate of bounding box and (bw, bh) as pair of the width
and height of the bounding box. We train the network not to predict these parameters directly,
instead we train it to predict (tx, ty) and (tw, th) for stability, the same way YOLOv2 and SSD
does. The relationships between the two sets of parameters are given by the following equations:

tx = bx − cx (6.1)

ty = by − cy (6.2)

tw = log(bw/gw) (6.3)

th = log(bh/gh) (6.4)

In the equations cx and cy the grid cells row and column top-left corner.

The corresponding network output (t̂x, t̂y, t̂w, t̂h) are easily converted to (b̂x, b̂y, b̂w, b̂h) by the
opposite process given by the following equations:

b̂x = σ(t̂x) + cx (6.5)

b̂y = σ(t̂y) + cy (6.6)

b̂w = pwe
t̂w (6.7)

b̂h = phe
t̂h (6.8)

These bounding box parameters are then scaled back by the original image size to yield true
predicted image bounding box coordinates.

68

Chapter 6 6.5. Training

6.5.2 Training Loss function

Our loss function has four parts. These are coordinate prediction loss, class prediction loss,
objectness prediction loss and anchor prediction loss. We shall see each of them separately as
follow:

coordinate prediction loss

Here we use the same loss used by YOLOv2 which is the mean square error of the bounding box
coordinates given by the following equation:

crdloss = λc

gw∑
i=0

gh∑
j=0

1
obj
ij

[(
txij − t̂xij

)2
+
(
tyij − t̂yij

)2]
+

λc

gw∑
i=0

gh∑
j=0

1
obj
ij

[(
bwij − b̂wij

)2
+
(
bhij − b̂hij

)2] (6.9)

1
obj
ij is 1 if the grid has center of bounding box and zero otherwise. λc is a coe�cient to weigh

coordinate loss and we simply set it to be 0.5.

Objectness loss

Objectness con�dence score determines whether a grid has detected an object or not with an
IOU above certain threshold. However, imbalance between grids that are made responsible of
detecting an object and those are not expected to predict an object, because the center of the
bounding box did not fall in them, is very high. And using binary cross entropy is not much of
a help, as we expect the objectness con�dence to match with an IOU measure of the predicted
object against the ground-truth, not just only the binary information that the grid has an object
or does not.

Our objective is to drive the overwhelmingly many grid cells that do not have the center of
an object to quickly converge to a small con�dence score while the few grid cells that have an
object rise to a higher con�dence as the system learn to predict a better bounding boxes. Thus,
our objectness loss function has two parts, one for grids with out object and another for grids
with an object. We use log-loss, equation (6.11) for grids without an object whereas IOU based
conditional mean square error, equation (6.10), for grids with an object. Both equation (6.11)
and equation (6.10) are applied in every grid cell. The term iou in equation (6.10) refers to the
best IOU score obtained after computing k IOU against the expected ground truth using each
of the k anchors.

confobj =

{
λobj1

obj(1− σ(t̂0))
2, iou > iouthrsh

λobj1
obj(σ(t̂0)− iou))2, otherwise

(6.10)

confnoobj = λnoobj(1− 1obj) log(1.0− σ(t̂0)) (6.11)

λobj and λnoobj stands for coe�cient to penalize grids responsible of detecting an object and
those that shouldnt, respectively. Normally, λobj should be set above λnoobj to emphasize more on
the grids that have an object. t̂0 is the system output corresponding to objectenss prediction. As
seen from the conditional expression of objectness con�dence loss of grids that are meant to detect
an object, confobj , whenever the network predicted box with an IOU against ground-truth above
certain threshold,iouthrsh, we then push con�dence score of that grid to 1 like an encouragement
to the network to preserve that bounding box prediction. This is one of the novel change we made
to the famous YOLO loss. This change amounts to handling foreground-background imbalance
prevalent in one-stage object detection.

69

6.6. Inference Chapter 6

Detection Frameworks Train mAP

Fast R-CNN [22] 2007+2012 70

YOLO [26] 2007+2012 63.4

SSD300 [29] 2007+2012 74.3

SSD500 citessd 2007+2012 76.8

YOLOv2 416 [27] 2007+2012 76.8

YOLOv2 544 [27] 2007+2012 78.6

DenseYOLO 608@k=9 2007+2012 80.3
DenseYOLO 608@k=15 2007+2012 82.7

Table 6.1: Performance comparison of DenseYOLO trained with k = 9 and k = 15 and
tested on Pascal VOC 2007 test dataset against some equivalent models.

Class prediction Loss

Class prediction loss is simply a weighted categorical cross entropy loss. However, one could use
focal-loss instead for better handling of class imbalance among the dataset.

Anchor prediction Loss

Anchor prediction loss, like class prediction loss, is a weighted cross entropy loss. Here we set
the target anchor to be the anchor that yielded best IOU whereas the predicted anchor tensor is
a softmax output of shape gw ∗ gh ∗ k extracted from the output of the network.

Our systems training loss is the mean of the four losses.

6.6 Inference

During inference, in one forward pass we evaluate three con�dence measures for every grid cell.
These are objectness con�dence, classi�cation con�dence and anchor prediction con�dence. Ob-
jectness con�dence is simply sigmoid of network output corresponding to the parameter assigned
to tell if the cell has an object or not. Classi�cation prediction con�dence is argmax of the Soft-
Max output of the network class prediction outputs. Similarly, anchor prediction con�dence is
the argmax of the SoftMax output of the anchor prediction tensor. The overall prediction score
is the product of these con�dence scores. We then �lter predicted boxes using threshold and
further we implement NMS (non-max suppression) to whittle out redundant prediction of same
object. Following the same procedure followed by YOLOv2 we convert the predicted bounding
boxes into an object bounding box coordinate on an image.

6.7 Experiment

We experiment on Pascal VOC and COCO dataset by changing the input image size and the
number of k anchor boxes on the detection speed and detection performance of DenseYOLO.

In our test on Pascal VOC dataset we merged Pascal VOC 2007 and 2012 training datasets
and tested the performance on Pascal VOC-2007 test set. Since we started training from
YOLOv2's object detection weight �le trained already on Pascal VOC and COCO dataset, we
only �ne tuned our system for 100 epochs starting from small learning rate of 1e−3 for the �rst
ten epochs on the added auxiliary layer and unfreezing 22 more layers and training with learning
rate 1e−4 scheduled to reduce by 10 every 50 epochs.

We generated a number of anchor boxes using K-means cluster for both COCO and Pascal
VOC dataset for di�erent k's using IOU to cluster bounding boxes. As table 6.2 shows IOU based

70

Chapter 6 6.7. Experiment

of k Average IOU on VOC

5 62.14

9 69.09

15 74.47

Table 6.2: IOU cluster of bounding boxes of combined Pascal VOC 2007 and 2012 training set

K-mean clustering generates more representative priors (anchors) as k increases suggesting better
starting point for training if k is large enough. This might not be true if we keep increasing k as
the system would struggle to quickly predict a �tting anchor box for a given shape of objects.
Since YOLOv2 has already been trained on k = 5, here we train for k = 9 and k = 15.

In the following section we will discuss our result on performance on VOC and COCO dataset.

6.7.1 Performance on Pascal VOC Object Detection Dataset

After training for 100 epochs on combined 2007 and 2012 Pascal VOC training dataset at 608
by 608 input image resolution, our network achieved a mean Average Precision of over 80.3% for
k = 9 and 82.7% for k = 15 on Pascal VOC 2007 test dataset. This is a signi�cant increase over
YOLOv2's 78.6% mAP on Pascal VOC dataset. It is a prove to our natural instinct that letting
the system to dynamically pick anchor from better dataset representative anchors, de�nitely
helped to achieve increased detection performance. However, we have also observed that as
training progresses for a longer duration, though DenseYOLO's recall keep increasing, the mAP
�uctuates up and down almost around the same value. Proper and smart training loss coe�cient
setting mechanism or more advanced backbone classi�er, the kind used in YOLOv3 or RetinaNet,
might convert the recall into precision. Tabel 7.3 compares the result of our DenseYOLO's mAP
against YOLOv2 and other comparable networks tested on the same dataset.

Models AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [20] 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [53] 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [54] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [55] 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 [27] 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [28] 608 33.0 57.9 34.4 18.3 35.4 41.9

DSSD513 [56] 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [30] 40.8 61.1 44.1 24.1 44.2 51.2

DenseYOLO 608(@k=9) 27.6 47.1 29.7 11.04 30.9 38.4

DenseYOLO 608(@k=15) 29.03 50.4 32.6 13.11 33.2 40.3

Table 6.3: COCO dataset test result.

6.7.2 Performance on COCO Object Detection Dataset

COCO dataset has more generic and challenging 80 category datasets compared to Pascal VOC's
20 category. Moreover, COCO performance evaluation metrics is more stricter in that it requires
mean average precision (mAP) to be calculated over 10 scales of IOU 0.5-0.95. Like on VOC

71

6.8. Conclusion Chapter 6

dataset, we also experimented on COCO datasets for k = 9 and k = 15 with an input image of
size 608 by 608. Table 7.3 compares DenseYOLO against some well known detectors. mAP in
both k = 9 and k = 15 signi�cantly outperforms YOLOv2, though still behind some of the recent
networks such as YOLOv3 and RetinaNet. This has certain obvious reasons such as the fact that
YOLOv2 has shallower depth compared to the rest of the network leading to poor classi�cation
or feature extraction capability.

6.8 Conclusion

In this paper we introduced a new light weight, faster and more accurate implementation of
YOLO like one-stage object detector. Our design approach is lighter, because for the same input
image size by just reshaping the output layer into dense grid and avoiding the need to predict
multiple objects per grid cell while also fully using the concept of anchor box or prior boxes,
we obtain a lighter and hence faster network. We have introduced a novel concept of training
an object detector to predict a prior box along bounding box coordinate and class prediction.
Apart from design change, we have also introduced new loss calculation for objectness con�dence
prediction to balance the imbalance between grids with no object of interest and grids dedicated
to predict an object.

72

Chapter

7
MultiGrid Redundant Bound-
ing Box Annotation for Accu-
rate Object Detection

Chapter content

MultiGrid Redundant Bounding Box Annotation for Accurate Object
Detection . 73

7.1 Objective . 73

7.2 Introduction . 73

7.3 Related Works . 74

7.4 Multi-Grid Assignment . 75

7.5 Training . 77

7.5.1 The Detection Network: MultiGridDet 77

7.5.2 The Loss function . 77

7.5.3 O�ine Synthetic Data Generation . 79

7.6 Experiment . 80

7.7 Conclusion . 84

MultiGrid Redundant Bounding Box Annotation for Accurate Ob-

ject Detection

7.1 Objective

Modern leading object detectors are either two-stage or one-stage networks repurposed from a
deep CNN-based backbone classi�er network. YOLOv3 is one such very-well known state-of-the-
art one-shot detector that takes in an input image and divides it into an equal-sized grid matrix.
The grid cell having the center of an object is the one responsible for detecting the particular
object. This paper presents a new mathematical approach that assigns multiple grids per object
for accurately tight-�t bounding box prediction. We also propose an e�ective o�ine copy-paste
data augmentation for object detection. Our proposed method signi�cantly outperforms some
current state-of-the-art object detectors with a prospect for further better performance.

7.2 Introduction

An object detection network aims to locate an object on an image using a tight-�t rectangular
bounding box and label it correctly. Nowadays, there are two distinct approaches to achieve

7.3. Related Works Chapter 7

this purpose. The �rst and performance-wise, the most dominant approach is two-stage object
detection, best represented RCNN [17] and its derivatives [22, 60]. In contrast, the second set
of object detection implementations, well acknowledged for their outstanding detection speed
and light-weightiness, are referred to as one-staged networks, representative examples being [26],
[29],[30]. Two-stage networks rely on an underlying region proposal network that generates
candidate regions of an image likely to contain an object of interest, and a second detection
head handles the classi�cation and bounding box regression. In one-stage object detection,
detection is a single, fully uni�ed regression problem that simultaneously handles classi�cation
and localization in one complete forward pass. Due to this, usually, one-stage networks are
lighter, faster, and simple to implement.

One-stage networks can be classi�ed as anchor-based [26�30, 61�63] and anchorless [64, 65].
Anchor-based networks such as YOLOv3[28] or YOLOv4[61] mainly divide an input image into
equal grid cells. Furthermore, each grid cell regresses object bounding box coordinates and clas-
si�es them into one of the prede�ned class categories while simultaneously scoring the predicted
box's objectness con�dence. Other anchor-based variants, such as SSD [29] and RetinaNet [30]
employ the concept of feature pyramid to perform multi-scale detection extracted from di�erent
layers of the backbone classi�er network such as VGG [58] or families of ResNet [57]. Recent
anchorless entries of one-shot detectors use key-point such as corners of bounding box [65] or
center coordinate or combination of both [64], replacing the use of anchor boxes by key-point
pooling convolutional pipelines along their bounding box regression and classi�cation networks.

This paper sticks to YOLO's approach, particularly YOLOv3 [28], and proposes a simple
hack that simultaneously enables multiple grid cells to predict an object coordinate, class, and
objectness con�dence. The basic theory behind multi-grid cell assignment per object is to increase
the likelihood of predicting a tight-�t bounding box by enforcing more than one cell working on
the same object. Some of the advantages of multi-grid assignment includes: (a) gives the object
detector a multi-perspective view of the object it is detecting rather than relying on just one
grid cell to predict the class and the coordinates of an object, (b) less random and erratic
bounding box prediction, meaning high precision and recall, since nearby grid cells are trained
to predict same object class and coordinates,(c) reducing the imbalance between grid cells with
an object of interest against grids without an object of interest. Moreover, since the multi-
grid assignment is mathematical utilization of an existing parameters and does not require an
extra keypoints pooling layer and post-processing to regroup keypoints to their corresponding
objects like CenterNet[64] and CornerNet[65], we say it is a more natural way of achieving what
anchorless or keypoint-based object detectors are trying to achieve. In addition to the multi-
grid redundant annotation, we also introduce a new o�ine copy-paste-based data augmentation
technique for accurate object detection.

7.3 Related Works

The pioneer and most successful one stage-detector YOLO [26] and its successive incremental
improvements [27], [28], [61] divide an input image into grid cells of equal size. The grid that
contains the center of a given object-bounding box on an image is responsible for detecting that
particular object. Since YOLOv1, the authors of YOLO tried to improve the performance of their
object detector by incrementally incorporating key improvements such as more network depth,
more anchor boxes, slight change on loss function, and lately since YOLOv3 best practices such
as multi-scale detection and skip-connections are incorporated.

The other typical one-stage detector is SSD[29]. SSD uses multi-layer feature pyramids on top
of a backbone classi�cation network, notably a VGG network, to perform a multi-scale detector
that better handles objects of various scales. Using a similar concept of feature pyramids as
in SSD, another famous object detector called RetinaNet [30] proposed a novel loss function
called focal-loss to solve the foreground and background class imbalance prevalent in one-stage

74

Chapter 7 7.4. Multi-Grid Assignment

detectors unlike two-stage networks.

Recently, anchorless one-stage object detection techniques such as [65], [64], [66], [67] aim
to reduce the hurdle of determining the appropriate number and shape of anchor boxes. Net-
works such as DSSD [56] and RetinaNet [30] use default-boxes, also referred to as anchor boxes,
amounting over tens or hundreds of thousands, resulting in slow training and brutal non-max
suppression during inference. Instead, anchorless detectors add a separate layer to pool and
process points on the bounding box of an image. CornerNet[65], for example, adds a pipeline
that processes the corner keypoints of an object hence needing no anchor boxes. CenterNet[64],
another anchorless one-stage detector, adds a third point, namely the center point of an object
bounding box in addition to the corner keypoints. The center keypoint in CenterNet is to aid
CornerNet to have a more global view of an object it is detecting, which was its bottleneck at
�rst.

This paper sticks to YOLO's grid-based approach since YOLO's approach neither requires
many anchor boxes like SSD, DSSD or RetinaNet nor adds a separate pipeline to process key-
points like CornerNet or CenterNet. However, unlike YOLO, we propose a mathematical way to
assign an object to multiple grid cells, including the grid cell where the center of the object-bound
box falls. As we stated earlier, in YOLO, the grid that contains an object's bounding box center
is made responsible for detecting that particular object, hence, one grid assignment per object.
In our implementation, we will show that mathematically it is possible to assign any number of
grid cells to annotate an object, though we will only use the grids around the center, including
the center grid. Due to the multi-grid annotation, we dubbed our object detector MultiGridDet
short for Multi-Grid Detector. Our detector is light and faster than YOLOv3 mainly due to two
reasons; (1) MultiGridDet has relatively less depth number of layers and (2) we use a lighter
output layer, or detection head, based on the technique introduced by DenseYOLO [62].

7.4 Multi-Grid Assignment

Consider Figure 7.1 containing three objects, namely a dog, bicycle, and car. For brevity, we will
explain our muti-grid assignment on one object, the dog. Figure 7.1(a) shows the three objects
bounding box with more detail on the dog's bounding box. Figure 7.1(b) shows the zoomed-out
region of Figure 7.1(a), focusing on the dog's bounding box center. The top-left coordinate of
the grid cell containing the center of the dog bounding box is labeled by number 0, while the
other eight grid cells around the grid containing the center have a label from 1 up to 8.

In YOLO and other YOLO-based detection networks, the grid labeled 0 is solely responsible
for predicting the class dog and its precise bounding box coordinates (x, y, bw, bh), whereas in
our case, we assign all grids labeled 0 to 8 to predict the class and the precise bounding box of
the dog simultaneously.

Figure 7.1: Multi-grid assignment

The grid containing the center coordinate, the small red box on Figure 7.1(a), or coordinate

75

7.4. Multi-Grid Assignment Chapter 7

labeled 0 on Figure 7.1(b) is at the grid location (cx, cy). We calculate the (cx, cy) coordinates

using the equation, cx =
⌈

x
gw

⌉
and cy =

⌈
y
gh

⌉
, where gw and gh are the grid cell's width

and height, respectively. In YOLOv1 and YOLOv2 gw and gh are both 32 pixels each, whereas
in YOLOv3, due to the multi-scale detection feature tailored for small, medium and large scale
object, the grid cells are also in those three scales; 8× 8, 16× 16, and 32× 32 pixels.

Starting from YOLOv2, YOLO-based object detectors predict an o�set of the bounding box
from pre-generated anchor boxes instead of directly predicting the bounding box's coordinates.
As a result, the ground-truth bounding box values, (x, y) and (bw, bh) are rescaled to smaller
scales (tx, ty) and (tw, th), respectively, for training stability using Equations (7.1) to (7.4). Note
that, tx and ty are in the range [0, 1].

tx =
x

gw
−
⌈
x

gw

⌉
(7.1)

ty =
y

gh
−
⌈
y

gh

⌉
(7.2)

tw = log

(
bw
aw

)
(7.3)

th = log

(
bh
ah

)
(7.4)

, where aw, ah are the best-�t anchor box's width and height, respectively, generated using
K-means IoU clustering.

One can easily convert the (tx, ty) and (tw, th) parameters to the original bounding box
parameters of an object, that is (x, y) and (bw, bh) using the reverse Equations (7.5) to (7.8):

x = (cx + tx)× gw (7.5)

y = (cy + ty)× gh (7.6)

bw = aw × etw (7.7)

bh = ah × eth (7.8)

Thus far, we have explained how the grid containing the center of an object's bounding box
annotates an object's ground truth. This dependence on just one grid cell per object to do the
di�cult job of predicting the class and the exact tight-�t bounding box raises many questions
such as (a) massive imbalance between the positive and negative grids, that is, grids with and
without object's center coordinate (b) slow bounding box convergence to ground-truth, (c) lack
of multi-perspective (angle) view of the object to be predicted. So one natural question to ask
here is, �obviously, most objects encompass an area of more than one grid cell, and thus would
there be a simple mathematical way to assign more of those grid cells try to predict the class and
coordinates of the object together with the center grid cell ?�. Some of the advantages of doing
this are (a) reduce imbalance, (b) faster training to converge to the bounding box as now multiple
grid cells target the same object at once, (c) increase the chance of predicting tight �t bounding
box (d) give grid-based detectors such as YOLOv3 a multi-perspective view rather than a single
point view of the objects. Our multi-grid assignment tries to answers the above question, and
we explain it as follow: consider

(
c′x, c

′
y

)
be any grid cell within the distance of d ∈ {−1, 0, 1}

from (cx, cy), or mathematically
(
c′x, c

′
y

)
= (cx + dx, cy + dy) where dx and dy are distance d in

x and y directions from the (cx, cy) point respectively. Based on the value of d, this equation
refers to all the grids marked 0 to 8 in Figure 7.1(b). Then instead of (cx, cy) based equations of
(5-9), we can rewrite a general one using

(
c′x, c

′
y

)
that applies for any of the grids labeled 0 to 8

as in Equations (7.9) to (7.12):

76

Chapter 7 7.5. Training

x =
(
c′x + t′x

)
× gw (7.9)

y =
(
c′y + t′y

)
× gh (7.10)

bw = aw × etw (7.11)

bh = ah × eth (7.12)

Where t′x = ∓d + tx and t′y = ∓d + ty. Note that now the bounding box parameter (t′x, t′y),
will have a range of [−1, 2], unlike the [0, 1] range of (tx, ty). Figure 7.2 shows the ground-truth
annotation of the expected output of our object detector.

Figure 7.2: Ground-truth encoding

7.5 Training

7.5.1 The Detection Network: MultiGridDet

MultiGridDet is an object detection network we repurposed by removing six darknet convolu-
tional blocks from YOLOv3 to make it lighter and faster. A convolutional block has one Conv2D
layer followed by a Batch Normalization layer followed by a LeakyRelu layer. The removed
blocks are not from the classi�cation backbone, that is, Darknet53. Instead, we removed them
from the three multi-scale detection output networks or heads, two from each output network.
Though usually deep networks perform well, too deep networks also tend to over�t quickly or
drastically reduce the network's speed.

In addition to stripping the six convolutional blocks, we also adopt DenseYOLO's output
head. In YOLOv3, each output layer has a tensor shape gw × gh × k × (5 + n), where gw ×
gh is the total grid cells, k is the number of anchors, and n is the total number of object
classes. In DenseYOLO, the output layer tensor has a shape gw × gh× (5 + k + n) which means
approximately k times fewer parameters on the output layer. Moreover, DenseYOLO introduces
a novel approach by making an anchor box a predictable parameter similar to an object's class
and bounding box prediction. Thus in MultiGridDet, we opt for DenseYOLO's lighter approach
on the output layer. In general, MultiGridDet has less convolutional block and a lighter output
head compared to YOLOv3, thus relatively faster.

7.5.2 The Loss function

Like DenseYOLO, our loss function has four parts: class prediction loss, location or coordinate
prediction loss, anchor prediction loss, and objectness con�dence loss.

77

7.5. Training Chapter 7

Class prediction loss (error)

Our class prediction loss is a simple binary cross-entropy loss calculated over all grid cells labeled
to have contained an object of interest.

Anchor prediction loss (error)

:- Our anchor prediction loss is also a binary cross-entropy loss in which we train our network
to pick an appropriate anchor out of a given set of anchors. We generated nine anchor boxes,
3 for each scale, using IoU (Intersection over Union) based K-means using the same approach
as YOLOv3. For example, an anchor with the highest IoU against the ground truth bounding
box is assigned to an object during ground truth annotation. And during training, we train
the network to learn to pick the anchor that gives the highest IoU to a given object, a concept
introduced by DenseYOLO.

Coordinate prediction loss (error)

As shown in Figure 7.2, every object bounding box has four parameters (t′x, t
′
y, tw, th) related to

the actual bounding box coordinates using Equations (7.9) to (7.12). Accordingly, the network
will predict the corresponding bounding box parameters (t̂x, t̂y, t̂w, t̂h). As explained in an earlier
section, the (t′x, t′y) corresponds to an object's center coordinate and has a value in the range
[−1, 2]. Thus the corresponding network output must pass through an activation function whose
output value must also be in the same range. However, the common activation functions such
as tanh have a range [−1, 1], sigmoid [0, 1], and Relu or LeakyRelu have a range either [0,∞] or
[−∞,+∞], respectively. We experimented with various custom activations, or simple mapping
functions, but �nally �gured out using tanh and sigmoid activation functions in combination
works very well since the output of the sum of the two functions is bounded in the range [−1, 2].

Let the direct output of the detection network corresponding to (t′x, t′y) before passing
through an activation be (ẑx, ẑy). Using Equations (7.13) to (7.14), we convert (ẑx, ẑy) into
(t̂x, t̂y).

t̂x = tanh(β × ẑx) + σ(β × ẑx) (7.13)

t̂y = tanh(β × ẑy) + σ(β × ẑy) (7.14)

As shown in Figure 7.3, equation 7.13 and 7.14 smoothly transforms the network output
(ẑx, ẑy) to the desired output range. The β in equations is to horizontally expand the tanh and
sigmoid function to prevent quick saturation of these functions. β should be picked from range
[0, 1] since values above 1 make bounding box prediction unstable during training. In our case
we set β = 0.25 and during inference also we use the same value for β.

Finally, we calculate coordinate prediction loss using mean square error as given in eq. (7.15).

lcrdij = λcoord1
obj
ij

[(√
xij −

√
x̂ij

)2
+
(√

yij −
√
ŷij

)2]
+

λcoord1
obj
ij

[(√
bwij − b̂wij

)2
+
(√

bhij −
√
b̂hij

)2] (7.15)

λcoord = −λ log(IoUscoreij) (7.16)

losscoord =
1

m

gw∑
i=0

gh∑
j=0

lcrdij (7.17)

gw and gh are the total number of grid cells horizontally and vertically, respectively, whereas
1objij = 1 if the grid cell has an object and otherwise equals zero. m refers to the batch size.
IoU scoreij has a value of 0 to 1 depending on how much the predicted bounding box overlaps
with the ground truth. The logarithmic coe�cient we introduced in the coordinate loss plays a

78

Chapter 7 7.5. Training

Figure 7.3: Coordinate activation function plot with di�erent β values

signi�cant role. It penalizes incorrect bounding box prediction and rewards the more accurate
ones logarithmically, similar to what focal-loss of RetinaNet intends to achieve, except ours is
for localization rather than classi�cation.

Objectness con�dence loss

Fourth part of our loss function evaluates objectness con�dence of the predicted bounding box.
Our objectness con�dence loss has two parts, as seen in equation 6, one for grids labeled to have
contained an object, that is t0 = 1, and those that are not, meaning t0 = 0.

lossconf =
1

m

gw∑
i=0

gh∑
j=0

1
obj
ij ×BCEobjij+

1

m

gw∑
i=0

gh∑
j=0

1
noobj
ij ×BCEnoobj

(7.18)

BCEobjij = − log
(
t̂0
)

(7.19)

BCEnoobjij = − log
(
1− ŷ[··· ,4:]

)
(7.20)

The objectness con�dence is similar to YOLOv3 because we both use binary cross-entropy loss,
except in our case, the no object loss part tries to make classi�cation, anchor prediction, and
objectness con�dence to have probability zero.

7.5.3 O�ine Synthetic Data Generation

The other signi�cant contribution of our work is our o�ine copy-paste-based data augmentation.
As much as careful design of arti�cial intelligence model is essential, a neat and tremendous
amount of training and validation data are also mandatory for a better performing network,
especially for an object detection network. Recently copy-paste-based augmentation techniques
such as simple alpha blending of two or more images MixUp, CutMix and Mosaic augmenta-
tions are reported to increase object detectors' performances. In this work, we implement our
own unique and more robust o�ine copy-paste data augmentation to increase training data
signi�cantly.

In general, our o�ine copy-paste arti�cial training image synthesis works as follows: First,
we download thousands of background objectless images, meaning images without our object of
interest, from google images using a simple image search script using keywords such as landmarks,

79

7.6. Experiment Chapter 7

rain, forest, amusement parks, deserts, cities, wallpapers. We then iteratively pick p number of
objects and their bounding boxes from random q images of the entire training dataset. We then
generate all possible combinations of the p bounding boxes selected using their index as ID. From
the set of the combinations, we pick a subset of bounding boxes that satis�es the following two
conditions:

� if arranged in some random order side by side, they must �t within a given target back-
ground image area

� and should e�ciently utilize the background image space in its entirety or at least most
part of it without the objects overlap.

Following the above approach, we generate hundreds of thousands of arti�cial images. More-
over, before copy-pasting an object from one image onto the background, we randomly do various
common augmentations on the individual object. During training, we randomly implement sim-
ple and common augmentations to the training minibatch. Fig. 7.4 shows three sample arti�cially
synthesized images using our o�ine copy paste augmentation. The �gure shows that the arti�cial
images comprise objects that often will not appear together, reassuring the training dataset's
robustness. To prevent the network from learning the copy-paste edges, we add an o�set of 10
to 15 pixels in all four sides of the object when copying from the source image, thus assuring the
bounding box will not rest on the paste borders. As explained earlier, we also passed each object
through one or more common augmentation (�ip, brightness, contrast, etc.) before pasting on
the background image to prevent early over�tting of the network on the training dataset. For
detail of our o�ine supplementary arti�cial image generation please refer Appendix 9.2.

Figure 7.4: Sample O�ine Copy-Paste Generated Arti�cial Images

7.6 Experiment

To test our multi-grid redundant object annotation and our o�ine copy-paste data augmentation,
we repurposed the YOLOv3 network into a lighter and faster network, dubbed MultiGridDet,
as explained in the earlier section. We perform training on two well-known object detection
datasets, namely Pasca-VOC (VOC 2007 + 2012) and COCO datasets.

80

Chapter 7 7.6. Experiment

Detection Frameworks mAP

Fast R-CNN [22] 70

YOLO [26] 63.4

SSD300 [29] 74.3

SSD500 citessd 76.8

YOLOv2 416 [27] 76.8

YOLOv2 544 [27] 78.6

MultiGridDet 416x416 (ours) 83.5

Table 7.1: Performance Comparison on Pascal VOC 2007 test set

We supplement both datasets with arti�cial images we generated using our o�ine copy-paste
augmentation. We downloaded about 10,000 background images from Google Images using
simple search keywords and a script. Then using these background images and total Pascal
VOC 2007 and 2012 training and validation images, which constitute about 16K images, we
generate an additional 200K arti�cial images for pascal VOC object detection. In total, we
increased the initial 16K Pascal VOC 2007 + 2012 training + validation set images to 216K
images and used a validation split of 0.2 so that 80% of the total data are used for training while
the remaining 20% are for validation.

Similarly, we used the same 10K background images and the original 118K COCO images
to generate another 200K arti�cial COCO images. This increases our COCO dataset to 318K
images. Similar to the strategy we used on the Pascal VOC dataset, we used a validation split
of 0.2 to train object detection on the COCO dataset as well. It is good to note that, though
we arti�cially generated hundreds of thousands of new images, our arti�cially generated images
objects are from the same dataset, picked randomly, individually augmented, and pasted on a
randomly picked background image.

We used the Darknet53 weight �le from YOLOv3 authors to train the detector. For the
�rst 50 epochs, we trained only the detection head by freezing the Darknet53 weight �le and
150 more epochs by unfreezing the whole network. We start the training with learning rate
1e−4, and after the 75th epochs, we started using cosine decay to update the learning rate.
Throughout the training, we used Adam optimizer. We had access only to 2 Tesla V100 32 GB
Nvidia GPU, which limited our training batch size to 64 (32 per GPU) and made the training
take longer, restricting us from testing our network performance with other backbones such as
ResNet. Next, we will discuss our experiment's result on the two datasets and compare them
with other well-known object detection networks.

Pascal VOC 2007 test set:- Pascal VOC 2007 test set has about 5k test images in 20
class categories. It is one of the widely used generic object detection datasets for comparing
the performance of general-purpose object detectors. Accordingly, we tested our MultiGridDet
performance using Pascal VOC mean average precision (mAP) metrics at IOU (intersection
over union) 0.5. Table 7.1 shows the mAP performance comparison of MultiGridDet against
other state-of-the-art one-stage detectors and equivalent two-stage detectors. As seen from the
table, our detector signi�cantly outperforms all older versions of YOLO, YOLOv1, and YOLOv2,
including all variants of SSD, RetinaNet, and Fast RCNN. Table 7.2 further shows our detector's
per class mAP score in detail. The authors of YOLOv3 never reported the performance of
the original YOLOv3 on the Pascal VOC dataset. However, following their training and data
augmentation approaches detailed in paper [28], we retrained YOLOv3 on the combined Pascal
VOC 2007 and 2012 training set and achieved a maximum mAP of 77.63% at input image size
608. This score is much lower than our MultiGridDet score of 83.5% mAP at an input image
resolution 416.

81

7.6. Experiment Chapter 7

M
o
d
el

d
ata

m
A
P
aero

b
ike

b
ird

b
oat

b
ottleb

u
s

car
cat

ch
air

cow
tab

le
d
og

h
orse

m
b
ikep

ersonp
p
lan

tsh
eep

sofa
trai
n

tv

F
aster

[22]
07+

12
73.2

76.5
79.0

70.9
65.5

52.1
83.1

84.7
86.4

52.0
81.9

65.7
84.8

84.6
77.5

76.7
38.8

73.6
73.9

83.0
72.6

S
S
D
300

[29]
07+

12
74.3

75.5
80.2

72.3
66.3

47.6
83.0

84.2
86.1

54.7
78.3

73.9
84.5

85.3
82.6

76.2
48.6

73.6
73.9

83.4
74.0

S
S
D
512

[29]
07+

12
76.8

82.4
84.7

78.4
73.8

53.2
86.2

87.5
86.0

57.8
83.1

70.2
84.9

85.2
83.9

79.7
50.3

77.9
73.9

82.5
75.3

M
u
ltiG

rid
D
et

07+
12+

C
P

8
3
.5

87
93

84
70

73
96

88
93

65
83

80
90

92
92

87
55

85
78

93
84

T
a
b
le
7
.2
:
In
d
ivid

u
a
l
P
a
sca

l
V
O
C
2
0
0
7
d
a
ta
set

cla
sses

m
A
P
.

82

Chapter 7 7.6. Experiment

MS COCO test set:- COCO dataset is the most challenging dataset for object detection,
typically due to its massively unfair under and over-representation of object class categories and
object scale imbalance in the dataset. Nonetheless, it is a more generic dataset consisting of
80 class categories and more robust performance measurement metrics; an mAP averaged over
11 IoU ranges [0.5 − 1.0] referred to as AP(average precision). Accordingly, we trained our
MultiGridDet on the COCO dataset and obtained an AP of 31.8%, a little less than YOLOv3's
33% AP at 608 × 608 input image size as shown in Table 7.3. However, on large images, that
is objects with a bounding box area above 962 according to COCO metrics, MultiGridDet by
far outperforms YOLOv3's AP 41.9% by +15.5%, scoring AP 57.4%. MultiGridDet is poor on
small and medium image detections; only 11%AP against YOLOv3's 18.3% AP on small objects
and 24.6% AP on medium images against YOLOv3 35.5% AP. Objects such as bottles usually
appear in smaller sizes and crowed, whereas objects such as boats and potted plants usually
appear in widely irregular shapes and sizes. These are objects MultiGridDet struggled to detect
correctly.

Finally, to illustrate the quality of MultiGridDet bounding box prediction, we visualize the
prediction of six randomly picked images from the Pascal VOC 2007 test dataset. Fig. 7.5 shows
these visualization. As seen from the �gure, almost in all cases, the predicted un�ltered bounding
boxes overlap perfectly, proving tight-�t bounding box prediction.

In summary, since small objects have tiny widths or height, some even smaller than the 8
grid size, thus they are e�ectively annotated with a single grid cell, whereas larger objects will
have a maximum of 9 grid cells to annotate and predict them. Probably, the addition of more
�ne-grained output layers, typically an output layer with 2 and/or 4 grid cell sizes in addition
to the 8, 16, and 32 grid cells, might help to increase the performance of MultiGridDet on small
object detections.

We have also compared MultiGridDet inference speed with YOLOv3 on a standard personal
laptop with Nvidia GPU Geforce 1060 and 16 GB RAM Intel Core i7-7700HQ CPU 2.80GHz
processor. On average, YOLOv3 at 416 × 416 input image for 80 class COCO dataset takes
0.149 seconds to infer an image, the overall time spent from reading input image, preprocess,
predict, and draw bounding boxes back on the image and display it or save it in a directory. For
MultiGridDet at the same input resolution and same dataset, it takes only 0.103 seconds. On
video object detection at 416× 416 80 Class COCO dataset YOLOv3 reaches detection speed of
6FPS (frame per second) whereas MultiGridDet reaches upto 9FPS. Note that the computer we
used is not the same as the one the author used, and it has a much slower GPU. In general, in
the speed test, MultiGridDet is signi�cantly faster than YOLOv3.

Models AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [20] 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [53] 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [54] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [55] 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 [27] 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [28] 608 33.0 57.9 34.4 18.3 35.4 41.9

DSSD513 [56] 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [30] 40.8 61.1 44.1 24.1 44.2 51.2

DDGNet [63] 28.8 51.2 30.8 12.1 39.4 50.7

DenseYOLO[62] 29.03 50.4 32.6 13.11 33.2 40.3

MultiGridDet @608x608 31.8 52.1 40.7 11.0 24.6 57.4

Table 7.3: AP Performance on COCO test set

83

7.7. Conclusion Chapter 7

Figure 7.5: Sample MultiGridDet output on randomly selected Pascal VOC 2007 test set
images. As seen from the �gure the �rst row shows six input images, whereas the second row shows the
prediction of the network before non-max-suppression (NMS) and the last row shows the �nal bounding
box prediction of MultiGridDet on the input image after NMS thresholding.

7.7 Conclusion

In this paper, we proposed a new and alternative object detection implementation for one-stage
YOLO-like object detectors that rely on a matrix of grid cells. It is a lightweight, faster, and
commendably accurate detector with a prospect for further improvement that addresses the
poor performance on the in�nitesimally tiny objects of the COCO dataset. A straightforward
technique is probably to add �ner output scales, for example, 2×2 or 4×4, so that the multi-grid
annotation could also be implemented on those tiny objects. Another signi�cant contribution
we achieved in this work is our unique data augmentation technique that vastly increases object
detection training sets without needing additional external dataset. Finally, as future work, we
would like to tackle small object detection challenges and try to use MultiGridDet on object
tracking and segmentation challenges.

84

Chapter

8
Resource and Power Efficient
High-Performance Object De-
tection Inference Accelera-
tion Using FPGA

Chapter content

Resource and Power E�cient High-Performance Object Detection Infer-
ence Acceleration Using FPGA . 86

8.1 Objective . 86

8.2 Introduction . 86

8.3 Related Works . 87

8.4 Background . 88

8.4.1 Overview of Object Detection Models 88

8.4.2 Convolution Layer . 89

8.4.3 Pooling Layer . 92

8.4.4 Depth-to-Space or Space-to-Depth Reorganization Layer 92

8.4.5 Batch Normalization Layer . 92

8.4.6 Leaky Relu Activation Layer . 93

8.5 The Proposed Hardware Acceleration of Object Detection Inference 93

8.5.1 General Overview . 93

8.5.2 Loop Tiling . 94

8.5.3 Double Bu�ering . 96

8.5.4 Data Quantization and Weight Reorganization 97

8.5.5 Convolution Processor . 100

8.5.6 Max-Pooling Processor . 104

8.5.7 Leaky Relu Hardware Processor . 105

8.6 Results and Discussions . 105

8.7 Conclusions . 107

8.1. Objective Chapter 8

Resource and Power E�cient High-Performance Object Detection

Inference Acceleration Using FPGA

8.1 Objective

The success of deep convolutional neural networks in solving age-old computer vision challenges,
particularly object detection, came with high requirements in terms of computation capability,
energy consumption, and a lack of real-time processing capability. However, FPGA-based infer-
ence accelerations have recently been receiving more attention from academia and industry due to
their high energy e�ciency and �exible programmability. This paper presents resource-e�cient
yet high-performance object detection inference acceleration with detailed implementation and
design choices. We tested our object detection acceleration by implementing YOLOv2 on two
FPGA boards and achieved up to 184 GOPS with limited resource utilization.

8.2 Introduction

Object detection is one of the most critical areas of computer vision due to its vast applications in
surveillance and security, medical imaging, media and entertainment, and transport automation,
to name a few. Though it has been an old and challenging quest for researchers and academia
to perfect object detection performance, it is only in recent years that signi�cant progress has
been made due to the success of convolutional neural networks in image classi�cation [59]. The
current trend in object detection relies on the use of very deep image classi�cation convolutional
neural network(s) (CNNs) repurposed to perform detection tasks [22, 26, 29, 30]. However, the
challenge with deep CNN-based detectors is the intensive computation these require in the order
of multiple GOPs, which can only be rendered by utilizing high-performance computers and
GPUs that consume high energy and resources. On the other hand, most applications require
real-time inference capability with a constrained power source for real-time decision-making.
Thus, low energy and resource-constrained small electronics such as embedded systems have
bene�ted little from the leap in the accuracy of object detectors as the achievement also required
more advanced machines or clusters of machines [68].

Nonetheless, recently �eld-programmable gate arrays (FPGAs) and application-speci�c in-
tegrated circuits (ASICs) are gaining increased attention as energy-e�cient and real-time time
alternatives [68�71]. Although FPGAs and ASICs hardly reach the same or increased throughput
as GPUs, they consume less energy. On the other hand, compared to FPGAs, the high cost and
long development period of ASICs also make them unfavorable as it is challenging to keep them
up with the rapid changes of deep CNNs. As a result, FPGA-based deep CNN inference accel-
erations are becoming a center of focus for lightweight and real-time deep CNNs for embedded
systems.

86

Chapter 8 8.3. Related Works

Despite FPGA-based machine learning implementations generally gaining traction, the progress
is slow and marked by disjoined and irregular individual e�orts, unlike the software world where
there is a broad community base and frameworks. Recent hardware acceleration implementations
exhaustively but ine�ciently consume onboard resources, such as DSPs, BRAMs, and logic cells,
sometimes beyond what is recommended by development boards. Such implementations lead to
high power consumption and are costly in terms of energy. On the other hand, extreme data
quantization, typically one to three-bit quantization, has been tried to accelerate CNN on FPGA.
However, although such quantization quickly achieves more than real-time speed, their accuracy
loss is signi�cant. This paper, however, presents a detailed end-to-end hardware acceleration
implementation while maintaining high performance and speed and�at the same time�highly
e�cient resource utilization. Although we demonstrate our accelerator design based on the well-
known YOLOv2 detector, our object detection implementation is easily customizable to di�erent
YOLO-like one-stage accelerators. The analysis of our custom inference accelerator on DenseY-
OLO and DDGNet by comparing against this YOLOv2 acceleration implementation is explained
in Appendix 9.2.

8.3 Related Works

Increasing accuracy performance has been at the center of computer vision challenges for a long
time. In this quest for increased accuracy, object detection networks, or CNN-based networks in
general, have become very deep, complex, heavy, resource-wise expensive, and energy ine�cient.
Top state-of-the-art object detection networks are based on deep CNN networks and have tens or
hundreds of layers and over 50 million parameters [28, 30]. Moreover, at the core of these heavy
models is a convolution operation taking the most resource and computation time, reportedly
over 90% [72] models' execution time. On the other hand, many real-world problems of computer
vision demand real-time and lightweight detectors that �t on an embedded system. As a result,
FPGA's support for high parallelism and CNN's suitability for such high parallelism elevates
the prospect of FPGA becoming the leading hardware solution for accelerating computer vision
applications. Unfortunately, most top-performing object detectors are too big to �t into most
FPGA's on-chip memory, making it di�cult or impossible to fully exploit the parallelism support
in FPGA and the convolution process.

Over the years, many authors have proposed and tried di�erent alternatives for accelerat-
ing CNN-based networks, particularly the convolution layer. An extensive review of hardware
acceleration methods from multiple points of view can be read from the review works of [73,
74]. Some optimization methods include replacing the standard convolution algorithm alto-
gether with faster algorithms such as fast Fourier transform (FFT) [40, 41] or Winograd [42,
43]. Other methods based on the transformation of convolution computation include performing
convolution as matrix multiplication [44].

However, most optimization methods nowadays focus on bettering the standard convolution
by exploiting its parallelism capability via common loop optimization techniques such as loop
unrolling, pipelining, and interchanges [47]. In addition to loop optimization concepts such
as maximizing data reuse, employing double-bu�ering to minimize memory access bottleneck or
streamlined data�ows are integral parts of modern hardware acceleration designs [75]. Algorithms
such as roo�ine modeling [47] have been used to pick optimum design parameters such as tile
size and unroll factors and exploring design spaces.

Furthermore, recent works have also considered data quantization, model pruning, and
compression�a core �rst step of deep CNN implementations on FPGAs as lighter models tend to
be faster and inexpensive in terms of resources. These approaches include quantizing the trained
weights and biases to smaller precisions (bits), as small as one-bit quantization [68]. Although
such quantizations are highly hardware e�cient or fast, they are also prone to severe accuracy
loss. Another related optimization mechanism is to exploit the sparsity of trained networks

87

8.4. Background Chapter 8

weights [76].

In summary, current hardware-acceleration implementations utilize one or more of the above
techniques for maximum throughput, e�cient resource utilization, and low-power consumption
while maintaining the smallest possible drop in accuracy. However, these objectives largely con-
tradict one another, and researchers end up with designs that are ine�cient in terms of their
accuracy, resource use and power e�ciency. However, in this article, we give an in-depth expla-
nation of our design and implementation of an object detection accelerator with the objective
of fair resource utilization while preserving the highest possible accuracy and detection speed.
After all, object detection should be fast and accurate, not only fast or accurate.

8.4 Background

8.4.1 Overview of Object Detection Models

Two deep CNN-based approaches dominate modern generic object detection implementations:
two-stage [17, 22] and one-stage object detectors [26, 29, 30]. As the names imply, two-stage
object detectors perform detection in two core stages; the �rst stage proposes the regions and the
second stage classi�es and scores each proposed region by object class and location. One-stage
detectors, however, complete both the localization and classi�cation in one forward pass using
one uni�ed deep CNN network. Due to one-stage detectors' uni�ed single-network approach,
they are relatively less complex, lightweight, and faster although they can be somewhat though
not signi�cantly less accurate. As a result, many hardware acceleration implementations of
object detection networks concentrate on these network types [77]. One well-known and widely
implemented object detection network is YOLO [26], particularly YOLO versions 2 and 3, or
YOLOv2 [27] and YOLOv3 [28] as they are commonly known, respectively. As a result, we also
target one-stage object detector YOLO, particularly YOLOv2, as the basis for our hardware-
accelerated object detection design and implementation.

Commonly, an object detection model is a repurposed image classi�cation network obtained
after removing the output layer of a classi�er and adding a few more convolution layers tailored
toward detection. For example, YOLOv2 repurposes a classi�cation network called Darknet-
19, a network with 19 convolutional layers�hence the name Darknet-19�into a uni�ed object
detection network with a few extra layers, as shown in Figure 8.1 or in greater detail in Table 8.1.
YOLOv2 has 31 layers, excluding the batch normalization and activation layers. The 31 layers
comprise 23 convolutional layers, 5 max-pooling layers, 1 concatenation layer, 1 route layer, and
1 space-to-depth reorganization layer. Moreover, there is an associated batch normalization and
the Leaky Relu activation layer following each convolutional layer, except the �nal detection
head, where the activation is linear.

We will then brie�y summarize the working principle of YOLO-based object detectors. YOLO
generally perceives an input image as divided into S × S grids of equal sizes, and each grid cell
predicts at least a K object class, con�dence score, and bounding box parameters. K is the
number of pre-prepared anchor boxes generated from training sets using K-means clustering.
In post-processing, the predictions are �ltered out using objectness con�dence thresholding and
non-max suppression mechanisms.

Recent versions of YOLO such as YOLOv3 and YOLOv4 and their derivatives such as Multi-
GridDet [78] have multiscale output and are better at handling the detection of varying scales
of objects while also very deep and unfortunately heavy for small-scale FPGAs and other em-
bedded systems. There have been various e�orts to reduce the size of YOLO while harvesting
the bene�t of the progressive increase in the network's depth and complexity with no or minimal
accuracy loss. Some of these modi�cations include removing some convolutional layer(s) or batch
normalization layers from the original implementation [79], reshaping the output layer [78, 80]
or converting the one-hot encoding into binary encoding [81]. Following this section, we brie�y

88

Chapter 8 8.4. Background

summarize some of the core layers of YOLOv2-based object detection networks.

Figure 8.1: YOLOv2 object detection model layers and their corresponding tensor shapes. ConvBNL
stands for convolution followed by batch normalization and Leaky Relu activation layers. Numbers 0�31
show the YOLOv2 layers. For a detailed understanding of each layer's parameter size, refer to Table 8.1.

8.4.2 Convolution Layer

The convolution layer is the core and computation-intensive part of CNN-based networks, report-
edly taking over 90% of the network's execution time [72]. Consider Figure 8.2 showing a partic-
ular convolutional layer with an input feature map (IFM) tensor of shape X = Nif ×Nix×Niy,
weight kernel of shape W = Nof ×Nif ×Nkx×Nky and an output feature map (OFM) of shape
O = Nof × Nox × Noy. The subscripts of , ox, oy stand for the output feature map depth, row
(height), and column (width) of the output feature map. Similarly, subscripts if , ix, iy serve the
same purpose but for the input feature map. We will stick to these notations throughout the
paper for consistency.

Convolution is thus a process of repeated multiply and accumulate operations of a pre-trained
weight kernel of shape Nif × Nkx × Nky against an input feature map or an input image of a
shape Nif ×Nix×Niy by striding the weight kernel across the surface of the input with a stride
of size S. This process is repeated Nof times�once for each of the Nof di�erent kernels yielding
an output of size Nof×Nox×Noy. The Equation (8.1) mathematically describes this convolution
process.

O[m][x][y] =

K−1∑
i=0

K−1∑
j=0

N−1∑
n=0

(X[n][xi][yi]× W [m][n][i][j]) +B[m] (8.1)

where

xi = x× S + i

yi = y × S + j

K = Nkx = Nky, N = Nif

89

8.4. Background Chapter 8

Table 8.1: YOLOv2 layers and their input and output sizes presented in detail.

Layer Layer Type Filters Size/Stride Input Size Output Size

D
a
rk
n
et
-1
9
B
a
ck
b
o
n
e

0 ConvBNL 32 3× 3/1 416× 416× 3 416× 416× 32

1 Max Pool 2× 2/2 416× 416× 32 208× 208× 32

2 ConvBNL 64 3× 3/1 208× 208× 32 208× 208× 64

3 Max Pool 2× 2/2 208× 208× 64 104× 104× 64

4 ConvBNL 128 3× 3/1 104× 104× 64 104× 104× 128

5 ConvBNL 64 1× 1/1 104× 104× 128 104× 104× 64

6 ConvBNL 128 3× 3/1 104× 104× 64 104× 104× 128

7 Max Pool 2× 2/2 104× 104× 128 52× 52× 128

8 ConvBNL 256 3× 3/1 52× 52× 128 52× 52× 256

9 ConvBNL 128 1× 1/1 52× 52× 256 52× 52× 128

10 ConvBNL 256 3× 3/1 52× 52× 128 52× 52× 256

11 Max Pool 2× 2/2 52× 52× 256 26× 26× 256

12 ConvBNL 512 3× 3/1 26× 26× 256 26× 26× 512

13 ConvBNL 256 1× 1/1 26× 26× 512 26× 26× 256

14 ConvBNL 512 3× 3/1 26× 26× 256 26× 26× 512

15 ConvBNL 256 1× 1/1 26× 26× 512 26× 26× 256

16 ConvBNL 512 3× 3/1 26× 26× 256 26× 26× 512

17 Max Pool 2× 2/2 26× 26× 512 13× 13× 512

18 ConvBNL 1024 3× 3/1 13× 13× 512 13× 13× 1024

19 ConvBNL 512 1× 1/1 13× 13× 1024 13× 13× 512

20 ConvBNL 1024 3× 3/1 13× 13× 512 13× 13× 1024

21 ConvBNL 512 1× 1/1 13× 13× 1024 13× 13× 512

22 ConvBNL 1024 3× 3/1 13× 13× 512 13× 13× 1024

23 ConvBNL 1024 3× 3/1 13× 13× 1024 13× 13× 1024

D
et
ec
ti
o
n
H
ea
d

24 ConvBNL 1024 3× 3/1 13× 13× 1024 13× 13× 1024

25 Route 16 26× 26× 512

26 ConvBNL 64 1× 1/1 26× 26× 512 26× 26× 64

27 Reorg /2 26× 26× 64 13× 13× 256

28 Concat 24 and 27 13× 13× 1280

29 ConvBNL 1024 1× 1/1 13× 13× 1280 13× 13× 1024

30 ConvBNL 425 1× 1/1 13× 13× 1024 13× 13× 425

31 Detection-head (output post-processing)

90

Chapter 8 8.4. Background

Figure 8.2: Feature maps and weight tensors representation of a particular convolution layer. Although
not indicated in the �gure, usually convolution layers have also learned bias (B) parameters of size equal
to the number of output channels, that is Nof . That is one bias value per output channel.

m ∈ {0, Nof}, x ∈ {0, Nox}, & y ∈ {0, Noy}

Equation (8.1) assumes that the width and height of the weight kernels to be equal as is the
case with YOLOv2 and almost all modern CNN-based networks. The relationship between the
input and output feature map width and height is also determined using Equations (8.2) and
(8.3). The P in the equation stands for the zero-padding of the input feature map so that the
resulting output feature map will have either a 'valid' or 'same' shape. Valid is for when the
input is not padded, meaning that P = 0 and the output will have a slightly shorter width and
height compared to the input feature map, whereas in the 'same' convolution, the output and
input will have the same width and height and hence P is di�erent from zero.

Nox =
Nix + 2P −Nkx

S
+ 1 (8.2)

Noy =
Niy + 2P −Nky

S
+ 1 (8.3)

The pseudocode in Listing 8.1 demonstrates that the unoptimized convolution will have six
nested loops for a single-input image or input feature map. From this, we can understand that
there are Nof ×Nif ×Nox ×Noy ×Nkx ×Nky total multiply�accumulate (MAC) operations for
every convolution layer. The X, W, B and the O in the pseudocode stands for IFM, weight, bias
and OFM, respectively.

1 for (m=0; m<Nof;m++){

2 for (y=0; y<Noy;y+=S){

3 for (x=0; x<Nox;x+=S){

4 for (n=0; n<Nif;n++){

5 for (ky=0; ky <Nky;ky++){

6 for (kx=0; kx <Nkx;kx++){

7 O[m][x][y]+= X[ni][S*x+kx][S*y+ky] * W[m][n][kx][ky];

8 }

9 }

10 }

11 O[m][x][y] += B[m];

12 }

91

8.4. Background Chapter 8

13 }

14 }

Listing 8.1: Unoptimized standard convolution pseudocode for batch-size = 1.

8.4.3 Pooling Layer

Another common layer type in a modern object detection CNN network is a pooling layer. A
pooling layer reduces the preceding layer's spatial dimensions and facilitates the prospect of a
deeper network. Moreover, it also increases the network's translation invariance by omitting
pixels from a feature map through either maximum or average pooling. It also minimizes, to a
lesser extent, network over�tting to the training dataset. It is worth noting that the pooling layer
has no trainable parameter. Accordingly, more recent state-of-the-art models utilize alternative
layers such as up-sampling and down-sampling to enable learned pooling. The pooling layer,
particularly the max-pooling layer, has three nested loops as depicted in pseudocode Listing 8.2.

1 for (no=0; no<Nof;no++)

2 for (y=0; y<Noy;y+=S)

3 for (x=0; x<Nox;x+=S)

4 O[no][x][y]=Max(X[n0][x:x+S][y:y+S])

Listing 8.2: Original max-pooling pseudocode.

8.4.4 Depth-to-Space or Space-to-Depth Reorganization Layer

The other layer type in YOLOv2 is a reorganization layer, known in the TensorFlow framework
as the space-to-depth or depth-to-space layer. These reorganization processes reshu�e the pre-
vious layer's feature maps into either channel-wise deeper feature maps, shown in Figure 8.3,
or spatially wider feature maps, shown in Figure 8.4. Reorganization is commonly performed
for the facilitation of the concatenation of two or more layers of di�erent shapes. In our case,
layer 27 of YOLOv2 is a space-to-depth reorganization of layer 26 with a block-size of B = 2× 2
(seen Figure 8.1 or Table 8.1). The following layer, layer 28, concatenates the output of layers
24 and 27. Note that, in the reorganization layer, there are no learned or learnable parameters
(or hyperparameters).

Figure 8.3: Space-to-Depth Figure 8.4: Depth-to-Space

8.4.5 Batch Normalization Layer

The batch normalization layer is inter-layer data normalization, which di�ers from input normal-
ization during pre-processing, to accelerate object detection training convergence by minimizing
internal variance among layers. This usually comes after the convolution layer, just before the
non-linear activation layer. In short, batch normalization involves four mathematical steps: (1)
calculating the mean of an output of the convolution layer Equation (8.4); (2) calculating the
variance of an output of the convolution layer, Equation (8.5); (3) normalizing the convolution
output so that its mean and variance become 0 and 1, respectively, Equation (8.6); and �nally

92

Chapter 8 8.5. The Proposed Hardware Acceleration of Object Detection Inference

(4) scaling and shifting the normalized data using learned hyperparameters γ and β, Equation
(8.7). The value after the fourth step will be input to the next layer, which is going to be Leaky
Relu in the YOLOv2 object detector.

µB ←
1

m

m∑
i=1

xi (8.4)

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2 (8.5)

x̂i ←
xi − µB√
σ2
B + ϵ

(8.6)

yi ← γx̂i + β ≡ BNγ,β (xi) (8.7)

8.4.6 Leaky Relu Activation Layer

In YOLOv2, the Leaky Relu activation function given by Equation (8.8) is used for the non-
linear transformation of the feature map pixels yielded from the preceding layer�in our case,
the batch normalization layer.

y =

{
x, if x ≥ 0

αx, otherwise, where α ∈ [0, 1]
(8.8)

8.5 The Proposed Hardware Acceleration of Object Detection

Inference

8.5.1 General Overview

We propose a hardware�software coprocessing dual system where the computation-intensive lay-
ers, namely all convolution, max-pooling, and activation layers, are o�oaded to an FPGA (Pro-
grammable Logic or PL) to bene�t from FPGA's parallelism capabilities. In contrast, layers that
are non-computation oriented, such as the reorg and route layers, are processed by a processor
onboard our test system (processor system or PS), typically an ARM processor. Moreover, the
PS supervises the overall control of the detection network's end-to-end �ow, including the pre-
and post-processing stages.

Figure 8.5 shows the overall architecture of our proposed object detection accelerator. As
seen from the �gure, a pre-trained YOLOv2 weight, bias and input-images are stored on a
DDR memory of the host system which also contains the processor and the software accelerated
portions of our object detection network. All contents of the DDR memory are 16-bit quantized.
An AXI-DMA interface connects the host systems' PS and DDR memory with the PL side's
custom accelerator, where the heavy-duty arithmetic of the convolution, max-pooling and Leaky
Relu are executed. In general, the core features of our hardware-accelerated object detection
inference includes:

� A highly hardware resource-e�cient and optimized convolution and max-pool processors
based on standard optimization techniques such as loop tiling, unrolling and convolution
loop reordering;

� Per-layer dynamic 16-bit data quantization of the weight, bias, IFM and OFM;

93

8.5. The Proposed Hardware Acceleration of Object Detection Inference Chapter 8

Figure 8.5: Overall architecture of the proposed HW/SW co-design of the inference acceleration system.

� Double bu�ering-based memory read, computation and writeback for smooth convolution
acceleration, one that avoids memory access from becoming its bottleneck.

We shall then discuss these features of our design choice one by one in detail.

8.5.2 Loop Tiling

As discussed in earlier sections, current state-of-the-art object detectors are deep and have
millions of trainable parameters and tens or hundreds of megabytes. As a result, breaking
the inputs and outputs into FPGA-manageable chunks of blocks is an inevitable part of the
hardware-accelerated implementation of these state-of-the-art models. Recall how Figure 8.2
shows a particular convolutional layer with an input tensor of shape X = Nif × Nix × Niy,
weight kernel of shape W = Nof × Nif × Nkx × Nky and an output feature map (OFM) of
shape O = Nof × Nox × Noy. To better illustrate loop tiling, we return to our earlier Figure
8.2; however, this time, we include the loop tiling information, as seen in Figure 8.6, with the
white-shaded regions indicating the tile sizes.

The two following equations give the relationship between the input and output tiles' width
and height:

Tix = (Tox − 1)S +Nkx (8.9)

Tiy = (Toy − 1)S +Nky (8.10)

Some prior works relied on custom-built algorithms such as roo�ine modeling to determine
the optimum tile size parameters. Instead, we opt for a simplistic but intuitive strategy or
criterion to specify the appropriate tile sizes that guarantee data reuse and optimized resource
utilization. Our simplistic yet intuitive strategy is based on the following assumptions or criteria:

1. For the e�cient utilization of the scarce on-chip memory of the FPGA (that is, the BRAM
or block random access memory), the max-pooling and convolution layers shall use the

94

Chapter 8 8.5. The Proposed Hardware Acceleration of Object Detection Inference

Figure 8.6: Convolution layer with loop tiling of the input, output and weight 'pixels' or 'feature maps'.

same memory blocks for bu�ering. This is possible since the two layers never happen
simultaneously but one after another. Thus, we enforce resource-sharing among the two
core processing elements.

2. The bigger the data that we can �t on the on-chip memory through burst transfer is, the
better it is to avoid frequent external memory access because external memory access is
relatively slow compared to the actual computation.

3. Determining the bu�er sizes should not be solely based on the layers with the biggest
width, height and/or depth. Instead, tile sizes should be a common divisor of all or most
layers so as not to assign excessively-big bu�ers for most of layers, thereby wasting on-chip
memory and energy or excessively small bu�ers, increasing external memory transaction
frequencies.

In YOLOv2, the convolution stride (S) equals one, whereas the max-pooling stride is two.
Based on our strategy of using shared bu�ers for max-pooling and convolution and the fact that
max-pooling requires a bu�er size almost twice that required by convolution for the same output
tile of size Tof × Tox × Toy, we base our tile size selection based on the demands of max-pooling
layers. By substituting the value of S = 2, we can then rewrite Equations (8.9) and (8.10) as
follows:

Tix = (Tox − 1)× 2 + 2 = 2× Tox (8.11)

Tiy = (Toy − 1)× 2 + 2 = 2× Toy (8.12)

Table 8.2 shows the tensor shapes, corresponding tile sizes and the number of external memory
read- or write-access iterations. The number of BRAMs (on-chip bu�ers) required for each tile
is calculated as:

Number of BRAM per T ile =
Tile Size×Data Width

Size of One BRAM
(8.13)

However, depending on the convolution loop arrangement and array partitioning, the actual
required BRAM would be larger than what we obtain by Equation (8.13). Moreover, as seen from

95

8.5. The Proposed Hardware Acceleration of Object Detection Inference Chapter 8

Table 8.2: Loop tile sizes and memory read�write access iterations to or from the tile bu�ers.

Tensors Original Shape
Tile Sizes
(Shapes)

Number of External Memory
Access (Either to Read from or

Write to DDR Memory)

IFM Nif ×Nix ×Niy Tif × Tix × Tiy ⌈
Nof

Tof
⌉ × ⌈

Nif

Tif
⌉ × ⌈Nox

Tox
⌉ × ⌈Noy

Toy
⌉

OFM Nof ×Nox ×Noy Tof × Tox × Toy ⌈
Nof

Tof
⌉ × ⌈Nox

Tox
⌉ × ⌈Noy

Toy
⌉

Weights
Nof ×Nif ×
Nkx ×Nky

Tof × Tif × Tkx ×
Tky

⌈
Nof

Tof
⌉ × ⌈

Nif

Tif
⌉

Biases Nof Tof ⌈
Nof

Tof
⌉

the overall architecture in Figure 8.5, each tile has an associated line bu�er for burst transfer,
adding up the total BRAM utilization of the hardware solution.

Finally, according to �rst of the aforementioned criteria, the input and output tile bu�er
sizes (only the width and height, Tix and Tiy for input tile, and Tox and Toy for output tile) are
determined based on the max-pooling layer and Equations (8.11) and (8.12). However, Tif and
Tof 's choices require considering the implemented custom convolution accelerator and available
resources, such as the DSPs and logic cells and the aforementioned criteria. We analyzed the
YOLOv2 layers for setting Tif and observed that Nix's minimum and maximum values are 3
and 1280, corresponding to the input and layer 29, respectively. Similarly, the minimum and
maximum values of Nof are 32 and 1024, respectively. Although we would like to assign as big a
bu�er as possible for the tiles according to the second of the aforementioned criteria, we should
also respect condition 3, i.e., assigning a suitable bu�er for all the layers of YOLOv2. Accordingly,
we selected Tif = 4, which is neither excessively larger than the minimum nor excessively small,
causing frequent memory access. However, Tof can be set to 32 or more based on the available
BRAM and DSP, considering we designed a convolution processor with Tif × Tof simultaneous
MACs (explained under Section 8.5.5). The �nal tile size choices of our implementation are
discussed in Results and Discussions section, Section 8.6.

8.5.3 Double Bu�ering

To further increase the throughput of our hardware accelerator, we use the concept of double
bu�ering, also called ping-pong bu�ering. Double bu�ering helps to overlap memory read, com-
pute, and writeback operations, solving the memory access bottleneck. It also requires twice as
much memory as implementation without double bu�ering, resulting in high resource consump-
tion. We implement double-bu�ering using an approach similar to that in [47]. We implement
a two-stage ping-pong: one for reading input tiles (weight and input feature maps) and another
for writing back the �nal convolution results. As seen in Figure 8.7, during the �rst iteration of
the innermost loop, the input feature map and weight tiles are brought to their corresponding
bu�ers (IFM_bu�er0, Weight_bu�er0). In the next iteration, while the convolution processor
simultaneously performs a convolution operation on the earlier inputs, the next batch of in-
puts are loaded onto the second set of corresponding bu�ers (IFM_bu�er1, Weight_bu�er1).
The convolution results are kept on either OFM_bu�er0 or OFM_bu�er1 until the innermost
loop is completed. The Algorithm 1 shows the ping-pong process more precisely and brie�y.
Two Boolean variables (pingpong_ifm, pingpong_ofm) control the double bu�ering sequenc-
ing, while the input read, compute and output writeback stages are controlled by loop iteration

96

Chapter 8 8.5. The Proposed Hardware Acceleration of Object Detection Inference

checks, omitted from the pseudocode for brevity. In general, there are ⌈Nif

Tif
⌉+1 input tile reads

for each output tile writeback and in total there are ⌈Nof

Tof
⌉+ 1 writebacks.

Figure 8.7: Illustration of double-bu�ering sequencing.

8.5.4 Data Quantization and Weight Reorganization

As state-of-the-art object detections model sizes steadily increase to achieve increased perfor-
mance, the network becomes slower and more resource-demanding. Consequently, the model
quantization of trained weights and biases has become an integral part of hardware acceleration
implementation. As discussed in our Related Works section, extreme quantizations yield a high-
speed model. However, the accuracy loss is usually not worth the speed gain for most real-world
application areas of computer vision since a detector should be not only fast, but fast as well as
accurate. As a result, instead of extreme quantization, we opted for the 16-bit quantization of
the trained weights, biases, and input feature maps.

Quantization converts the trained network parameters from the de facto 32-bit �oating-point
precision into an m− bit �xed-point precision binary string. The quantized model will be lighter
in size and hence faster. To mathematically describe the quantization process, let us consider
Wfloat32 as the 32-bit (also called single) precision IEEE 754 standard number, and its 16-bit
quantized equivalent as Wquant16. To quantize Wfloat32 into Wquant16, we �rst need to determine
an integer Q, such that the integer part of Wfloat32 could be represented byn ≥ (m − Q) bits,
and in our case m is 16 since we target 16-bit quantization. For example, if Wfloat32 = 3.24, the
integer part is +3, a small number that can be represented by n = 2 bits. However, considering
the potential ofWfloat32 as negative, we leave at least three bits for the portion before the decimal
point. This leaves our Q to be 13. Once the Q value is determined, the quantized Wquant16 is
calculated as:

Wquant16 = ⌊Wfloat32 × 2Q⌋ (8.14)

In our example, substituting the Q value givesWquant16 = 3.24×213 = 26542. Using Equation
(8.15), one can reverse the quantized value back into �oating precision though a slight di�erence
is expected due to rounding. In fact, the quantization error can also be calculated using the
Equation (8.16).

W
′
float32 = ⌊Wquant16 × 2−Q⌋ (8.15)

error =|W ′
float32 −Wfloat32 | (8.16)

97

8.5. The Proposed Hardware Acceleration of Object Detection Inference Chapter 8

Algorithm 1: Illustration of our double-bu�ering implementation

/* 1. ping-pong write-back or double buffering the output write-back */

1 for (tor = 0; tor < Nox; tor+ = Tox) {
2 for (toc = 0; toc < Noy; toc+ = Toy) {
3 for (tof = 0; tof < (Nof + Tof); tof+ = Tof) {
4 pingpong_ofm=false;
5 for (tof = 0; tof < (Nof + Tof); tof+ = Tof) {
6 compute_�ag = (tof < Nof) ? true: false;
7 write_�ag = tof > 0 ? true: false;
8 if (pingpong_ofm) then
9 compute_conv(ifm, weight, bias, ofm_bu�er1,
10 ifm_bu�er0, ifm_bu�er1, weight_bu�er0,
11 weight_bu�er1,tof1, compute_�ag, ...);
12 writeback_convoutput(ofm_bu�er0,ofm, write_�ag, ...);
13 pingpong_ofm=false;

14 else
15 compute_conv(ifm, weight, bias, ofm_bu�er0,
16 ifm_bu�er0, ifm_bu�er1, weight_bu�er0,
17 weight_bu�er1, compute_�ag, ...);
18 writeback_convoutput(ofm_bu�er1, ofm, write_�ag, ...);
19 pingpong_ofm=true;

/* the following sequence is inside compute_conv function */

/* 2. ping-pong tile reads and convolution computation or double buffering of input read

*/

20 pingpong_ifm = false;
21 load_bias(bias, bias_bu�er, ...);
22 for (tin = 0; tin < Nif + Tif ; tin+ = Tif) {
23 if (pingpong_ifm) then
24 load_convinputtile(ifm, ifm_bu�er1,..., tin < Nif);
25 load_weight(weight,weight_bu�er1,..., tin < Nif);
26 conv_tile(ifm_bu�er0, ofm_bu�er, weight_bu�er0, bias_bu�er, ...,tin > 0);
27 pingpong_ifm=false;

28 else
29 load_convinputtile(ifm,ifm_bu�er0,...,tin < Nif);
30 load_weight(weight,weight_bu�er0,...,tin < Nif);
31 conv_tile(ifm_bu�er1, ofm_bu�er, weight_bu�er1, bias_bu�er,..., tin > 0);
32 pingpong_ifm=true;

98

Chapter 8 8.5. The Proposed Hardware Acceleration of Object Detection Inference

Algorithm 2: Per-layer 16-bit dynamic quantization of weight

Input: Wfloat32

Output: Wquantized, WeightQ
/* Iterate through all N layers of the network. */

1 for (n = 0; n < N ; n++) {
/* for all convolution layer */

2 if (layerIsConvLayer) then
3 read(wfloat32,Wfloat32, n ∗ float32);
4 minV alue← 0x7FFF ; // 16-bit 2's complement maximum range

5 maxV alue← 0x8000; // 16-bit 2's complement minimum range

/* within a layer search the minimum and maximum weight entry! */

6 for (k = 0; k < (Nof ×Nif ×Nkx ×Nky); k ++) {
7 if (minV alue > wfloat32[k]) then
8 minV alue← wfloat32[k];

9 else if (maxV alue < wfloat32[k]) then
10 maxV alue← wfloat32[k];

/* Search the quantization Q value for the layer. */

11 for (i = 16; i > 0; i−−) {
12 if (minV alue > 0x8000 ∗ 2−i and maxV alue < 0x7FFF ∗ 2−i) then
13 Q← i;
14 break;

15 else
/* min and max values are not in the range of 16-bit, very unlikely. However,

one can truncate the numbers to within the range. */

/* tile by tile read, reorganize, quantize and save the quantized weight

parameters, and its corresponding Q value. */

16 open(Wquantized, 'w');
17 for (nof = 0; nof < Nof ; nof+ = Tof) {
18 for (nif = 0; nif < Nif ; nif+ = Tif) {
19 wbuf ← wfloat32[nof : nof + Tof][nif : nif + Tif];
20 for (tk = 0; tk < Nkx ×Nky; tk ++) {
21 for (tof = 0; tof < Tof ; tof ++) {
22 for (tif = 0; tif < Tif ; tif ++) {
23 Wbufquantized[tk × Tof × Tif + tof × Tof + tif]←

short(wbuf [tk][tof][tif]× 2Q);

24 write(Wquantized,Wbufquantized, short);// Write a tile

25 write(WeightQ,Q, short);

99

8.5. The Proposed Hardware Acceleration of Object Detection Inference Chapter 8

Similarly to the above explanation, we implemented the weight, input, and output feature
map and bias quantization using 16-bit per-layer dynamic quantization. For example, the 16-bit
dynamic weight quantization is presented in the pseudocode listing of Algorithm 2. Furthermore,
after quantizing, we reorganized the weight tensor from its original 4D shape of Nof × Nif ×
Nkx×Nky, as shown in Figure 8.2, to a 3D shape Nkxy ×Nof ×Nif , as seen in Figure 8.8. Nkxy

is the product of the width and height of the kernel, that is Nkx × Nky = Nkxy. Hereafter, in
our hardware accelerator design, we refer to the weight tensor in this 3D shape rather than its
original 4D shape. The quantized weight tensor is saved in the DDR memory in the order of tiles
that the convolution processor expects so that a continuous high-speed burst transfer is made to
the on-chip bu�er.

Figure 8.8: Weight 4D�3D reorganization. The colors are only to show a sample of the corresponding
pixels' positions before and after the reorganization of the weight tensor.

8.5.5 Convolution Processor

The convolution layer is the most resource-demanding and computation-intensive part of the
object detector CNN network. As shown in Listing 8.1, the unoptimized convolution has six
nested loops, even though they must not always be in the same sequence. We use standard
loop tiling, unrolling, and interchange to design an optimized hardware-accelerated version of
the convolution. Convolution in �xed-point precision is no longer only an MAC (multiply and
accumulate); instead, it is multiply, right shift, and accumulate. Thus, we like to refer to it as
MSA operations, not MAC. The amount of right shift is calculated from the Q values of the
input quantization QX , weight quantization QW , and an intermediate value QI . We will explain
this better with a diagrammatic depiction. Figure 8.9 shows the smallest processing element
(PE) unit of our �xed-point convolution implementation. In the �gure, two 16-bit numbers with
di�erent Q, that is, QX for the input pixel and QW for the weight 'pixel' pass through the
multiplier followed by the right-shift operator and then the accumulator. Had it been a �oating-
point precision, the decimal point would have been placed at QXW of the resulting product.
However, since this is a �xed-point precision operation, we replace the decimal point with a
two's power division or right-shift. Right shift with Q = QXW would completely discard the
fractional points from the result of the product. Instead, we perform a right-shift operation
using Q = QIXW = QXW −QI . The best QI for 16-bit quantization is QI = 15 since this value

100

Chapter 8 8.5. The Proposed Hardware Acceleration of Object Detection Inference

leaves the maximum room for the decimal parts without completely discarding the fractional
value. One might refer to this as an intermediate or partial sum quantization. Note that we also
perform an output quantization after Leaky Relu to convert the 32-bit partial sum back to 16-bit
and write back the result of the output quantization to the DDR memory through a pipelined
burst-transfer.

Figure 8.9: Convolution processing element and its working procedure.

In general, our convolution processor has Tof ×Tif fully unrolled multipliers followed by fully
unrolled Tof×Tif right-shift operation and Tof×Tif partial adder trees fully unrolled in the Tof di-
mension and pipelined with the smallest possible initiation interval
(II = 1) in Tif dimensions. The overall architecture of the designed convolution processor is
shown in Figure 8.10.

Figure 8.10: Convolution processor architecture.

Given the overall design of the convolution processor, the next target was to determine the op-
timum sequence of the nested loops of convolution. An optimum design for the convolution loops
needs to minimize the number of partial sum store and read operations, utilize fewer logic cells,
and take full advantage of the redundant onboard resources of the FPGA and DSPs for paral-
lelism, all while being energy e�cient. To this point, we tested many possible arrangements of the
convolution nested loops, and we �nally came down to two contending choices given the limited
resources of our development boards. These two competing implementations of the convolution
compute function, also brie�y mentioned under the double bu�ering section (see Algorithm 1), are

101

8.5. The Proposed Hardware Acceleration of Object Detection Inference Chapter 8

given by
Listing 8.3 and 8.4. In the �rst version, we obtain the lowest partial sum read and write.
However, the convolution kernels are not �xed for all convolution layers. Instead, they alternate
between 1 × 1 and 3 × 3 in YOLOv2. As a result, placing the loops labeled _nki and _nkj
in the middle of the nested loops increases the iteration control hardware, consumes more logic
cells and increases latency. We compared it against the second version given by Listing 8.4 and
found that Listing 8.3 is three times slower. Our �nal optimized convolution accelerator was
thus chosen to be the one mentioned in Listing 8.4.

To summarize some of the core features of our convolution accelerator, we mention the
following key points:

� Per block (tile), the convolution compute latency is given by the Equation (8.17) below:

(Nkx ×Nky × Tox × Toy + C)× 1

Fclk
(8.17)

C stands for the 'constant' referring to the number of cycles needed to perform the fully
unrolled inner operations commented 1�4 in the pseudocode Listing 8.4 and loop iterations
control logic. In our implementation, C is equal to either 13 or 21 based on the kernel
types, 1× 1or 3× 3, respectively. Fclk stands for clock frequency.

� The total compute latency for a convolution layer is calculated as:

⌈
Nof

Tof
⌉ × ⌈Nox

Tox
⌉ × ⌈Noy

Toy
⌉ × ⌈

Nif

Tif
⌉ × (Nkx ×Nky × Tox × Toy + C)× 1

Fclk
(8.18)

� The total number of multiply, shift and accumulate operations per convolution layer is
calculated as:

3× ⌈
Nof

Tof
⌉ × ⌈Nox

Tox
⌉ × ⌈Noy

Toy
⌉ × ⌈

Nif

Tif
⌉ × (Nkx ×Nky × Tox × Toy × Tof × Tif) (8.19)

1 int32_t lineinput[Tif];

2 int32_t pmul[Tif];

3 int32_t rshift[Tif];

4 int32_t psum[Tof];

5 int32_t pstore[Tof];

6 _trconv:for(tr = 0;tr < min(Tox ,Nox);tr++){

7 _tcconv:for(tc = 0;tc < min(Toy ,Noy);tc++){

8 //1. clear

9 _pmulclear:for(tm = 0;tm <Tof;tm++){

10 #pragma HLS unroll // PIPELINE II=1

11 psum[tm]=0;

12 }

13 //2. compute multiply , shift and accumulate

14 _nkiconv:for(i =0;i < Nkx; i++){

15 _nkjconv:for(j = 0;j < Nky; j++){

16 tix = tr*Kstride + i;

17 tiy = tc*Kstride + j;

18 tkxy = i*Ksize + j;

19 _tnminiInput:for(tn = 0;tn <Tn;tn++){

20 #pragma HLS unroll

21 lineinput[tn]= X[tn][tix][tiy];

22 }

23 _tmconv:for(tm = 0;tm < Tof;tm++){

24 #pragma HLS unroll

25 _tnconv1:for(tn = 0;tn <Tif;tn++){

26 #pragma HLS unroll

102

Chapter 8 8.5. The Proposed Hardware Acceleration of Object Detection Inference

27 pmul[tn]= W[tkxy][tm][tn]* lineinput[tn];

28 }

29 _tnconv2:for(tn = 0;tn <Tif;tn++){

30 #pragma HLS unroll

31 rshift[tn]= pmul[tn]>>Qixw;

32 }

33 _tnconv3:for(tn = 0;tn <Tif;tn++){

34 #pragma HLS unroll

35 psum[tm]+= rshift[tn];

36 }

37 }

38 }

39 }

40 //3. update

41 _psupdate:for(tm = 0;tm <Tof;tm++){

42 #pragma HLS unroll

43 if(n==0){

44 pstore[tm] = B[tm] + (psum[tm]);

45 }

46 else{

47 pstore[tm] = O[tm][tr][tc]+ (psum[tm]);

48 }

49 }

50 //4. store

51 _psstore:for(tm = 0;tm <Tof;tm++){

52 #pragma HLS unroll

53 O[tm][tr][tc]= pstore[tm];

54 }

55 }

56 }

Listing 8.3: Version 1: Optimized convolution pseudocode on input and weight tile.

1 int32_t mul[Tif];

2 int32_t rshift[Tif];

3 int32_t psum[Tof];

4 int32_t pstore[Tm];

5 _nkiconv:for(i =0;i < Nkx; i++){

6 _nkjconv:for(j = 0;j < Nky; j++){

7 _trconv:for(tr = 0;tr < min(Tox ,Nox);tr++){

8 _tcconv:for(tc = 0;tc < min(Toy ,Noy);tc++){

9 //1. clear partial sum

10 _pmulclear:for(tm = 0;tm <Tof;tm++){

11 #pragma HLS unroll

12 msa[tm]=0;

13 }

14 //2. compute multiply , shift and accumulate

15 _tmconv:for(tm = 0;tm < Tof;tm++){

16 #pragma HLS unroll

17 //2.1 multiply

18 _tnmultiply:for(tn = 0;tn <Tif;tn++){

19 #pragma HLS unroll

20 mul[tn]= W[i*Nkx+j][tm][tn]*

21 X[tn][tr*S + i][tc*S + j];

22 }

23 //2.2 right -shift for decimal point consideration

24 _tnshift:for(tn = 0;tn <Tif;tn++){

25 #pragma HLS unroll

26 rshift[tn]= mul[tn]>>Qixw;

27 }

28 //2.3 accumulate to partial sum

29 _tnaccumulate:for(tn = 0;tn <Tif;tn++){

30 #pragma HLS unroll

103

8.5. The Proposed Hardware Acceleration of Object Detection Inference Chapter 8

31 psum[tm]+= rshift[tn];

32 }

33 }

34 //3. update stored partial sum

35 _pupdate:for(tm = 0;tm <Tof;tm++){

36 #pragma HLS unroll

37 if(i ==0 && j==0 && n==0){

38 pstore[tm] = B[tm] + (psum[tm]);

39 }

40 else{

41 pstore[tm] = O[tm][tr][tc]+ (psum[tm]);

42 }

43 }

44 //4. store partial sum

45 _pstore:for(tm = 0;tm <Tof;tm++){

46 #pragma HLS unroll

47 O[tm][tr][tc]= pstore[tm];

48 }

49 }

50 }

51 }

52 }

Listing 8.4: Version 2: Optimized convolution pseudocode on input and weight tile.

8.5.6 Max-Pooling Processor

As explained earlier, YOLOv2 has �ve 2 Ö 2 max pool layers with a stride of S = 2, each following
a Leaky Relu activation layer. Although max-pooling does not have an intensive computation
complexity, it could bene�t from FPGA's parallelism since it works on the individual 'pixels'
of the input feature maps. Likewise, we designed a pipelined max-pool accelerator with three
selectors and comparators, as seen in Figure 8.11. The input tile size for max-pool has the
same depth as the convolution's input feature map depth, which is Tif . The pseudocode for the
hardware-accelerated max-pool on an input tile is given in Listing 8.5.

Figure 8.11: Max-pool processor.

1 int16_t tmp[Tif];

2 int16_t tmp1 , tmp2 ,tmp3 , tmp4 , max1 ,max2;

3 _toxmax:for(_tox = 0;_tox < min(Tox ,Nox);_tox ++){

4 _toymax:for(_toy = 0;_toy < min(Toy ,Noy);_toy ++){

5 _tofmax:for(_tof = 0; _tof < min(Tif ,N_{if}); _tof ++){

6 #pragma HLS PIPELINE II=1

7 tmp1=X[_tof][_tox*S][_toy*S];

8 tmp2=X[_tof][_tox*S][_toy*S+1];

9 max1 = (tmp1 > tmp2) ? tmp1 : tmp2;

10

104

Chapter 8 8.6. Results and Discussions

11 tmp3=X[_tof][_tox*S+1][_toy*S];

12 tmp4=X[_tof][_tox*S+1][_toy*S+1];

13 max2 = (tmp3 > tmp4) ? tmp3 : tmp4;

14

15 tmp[_tof] = max1 > max2 ? max1 : max2;

16

17 }

18 maxstore:for(_tof = 0; _tof < min(Tif ,Nif); _tof ++){

19 #pragma HLS PIPELINE II=1

20 O[_tof][_tox][_toy] = tmp[_tof];

21 }

22 }

23 }

Listing 8.5: Optimized max-pool processor for 2 x 2 kernel stride.

8.5.7 Leaky Relu Hardware Processor

In YOLOv2, following every convolution layer comes a Leaky Relu activation, except for the last
convolution layer, which is linear activation. The �oating-point equivalent of Leaky Relu was
discussed earlier and described using Equation (8.8). In the equation, the constant α is set to
0.1 for YOLOv2, and since we are working on 16-bit �xed precision, we convert the multiplying
α = 0.1 into 16-bit �xed-point quantized binary string using Q = 15. The quantized α is
equivalent to base ten 32768 or hex 0xCCC. In general, the hardware equivalent of Leaky Relu
is implemented using the following expression:

1 tmp_out[i]= (tmp_in[i] < 0) ? (tmp_in[i]*0 xccc) >>15 : tmp_in[i];

where tmp_in is a pixel from the output bu�er, and tmp_out is the 'pixel' after passing through
a Leaky Relu processor. The overall architecture can be seen in Figure 8.5 for clarity.

8.6 Results and Discussions

Although we mainly discussed the FPGA implementation of object detection using YOLOv2, our
implementation can be easily con�gured for other types of similar networks such as DenseYOLO
and DDGNet, which are even more lightweight and accurate. We implemented the proposed
hardware accelerator using C++, Vitis HLS 2021.1, and Vivado 2021.1. The convolution, max
pooling, and Leaky Relu layers are implemented as FPGA accelerated functions. In contrast,
the remaining space-to-depth reorganization, concatenation, and route layers, including the input
and output pre-processing and post-processing, are performed on the ARM processor onboard our
test boards. Following every convolution layer, the batch normalization layer computations were
already included in generating the quantized weights and biases, avoiding the need to construct
a hardware-equivalent one.

We targeted two Xilinx boards, namely ZYNQ-7000 SoC, speci�cally Z-7020CGL484-1 and
ZCU102 development boards from ZYNQUltraScale+MPSoC for the implementation of YOLOv2-
based object detection inference. As seen in Table 8.3, the Z-7020CGL484-1 has minimal re-
sources compared to ZCU102. Since double bu�ering requires twice as many on-chip bu�ers
than an implementation without double-bu�ering, we had to use di�erent tile sizes for the two
boards.

Table 8.4 shows our tile-size design choices and implementation clock frequencies for the
two boards. The table also shows the total resources consumed by our hardware accelerator.
Both implementations required resources well under the range of the design guidelines of the
boards, proving e�cient implementation. We also achieved a clock frequency of 150 MHz and
300 MHz for ZYNQ-7020 and ZCU-102, respectively. By combining Equations (8.18) and (8.19),
we calculated an overall throughput (giga operations per second (GOP/S)) of 51.06 GOP/S and

105

8.6. Results and Discussions Chapter 8

Table 8.3: Available resources onboard ZYNQ-7020 and ZCU102.

Boards Z-7020CGL484-1 ZCU102-XCZU9EG-2FFVB1156E

Flip �ops (FF) 106,400 548,160

LUT 53,200 274,080

BRAM_18Kb 280 1824

DSP 220 2520

184.06 GOP/S for ZYNQ7020 and ZCU102, respectively. Another helpful metric called DSP
e�ciency, as coined by [77, 82], measures how e�ciently the DSPs in the convolution accelerator
are utilized. These de�ne DSP e�ciency as a ratio of e�ective operation or the actual operation
that the layer requires over the actual number of operations that the implemented convolution
processor performed. According to this de�nition, our tile size choices and accelerator loop
arrangement, the DSP e�ciency is 100% for both boards, except for the �rst and last YOLOv2
layers. Such a high DSP e�ciency is partly because of the uniformity of YOLOv2's layers.

Table 8.4: Design parameter choices and performance measures.

Boards ZYNQ 7020 ZCU102

Tile sizes

Tof 32 64

Tif 4 4

Tox 26 52

Toy 26 52

Tix 52 104

Tiy 52 104

Resource utilization

FF 22,239(20.9%) 34,076(6%)

LUT 28,333(53.2%) 97,971 (35%)

BRAM(18 Kb) 170 (60.7%) 1008(55%)

DSP 180(81.8%) 291(11%)

Clock (MHz) 150 300

GOP 44.36 44.96

GOPS 51.06 184.06

Power (Watt) 2.78 5.376

Furthermore, we also analyzed the per layer execution latency of YOLOv2 layers for the
two boards, as shown in Figure 8.12 for the two implementations. For ZYNQ-7020, the total
execution time for end-to-end YOLOv2 object detection inference processing takes 0.868 s. In
contrast, the ZCU102 only takes 0.244 s for a single 416× 416 RGB image of the COCO object
detection dataset. From the �gure, layer 29 of YOLOv2 is the slowest, taking up to 26 and 104
ms on ZCU102 and ZYNQ-7020, respectively. On a personal laptop computer of Intel(R) Core i7-
7700HQ CPU @ 2.80GHz 16GB RAM Ubuntu 20.04, our YOLOv2 inference takes a maximum of
7 s to infer all bounding boxes and object classes on a single-core single-thread CPU for a single
batch of image from COCO dataset with size 416 × 416. Thus, our FPGA implementation
accelerates YOLOv2 inference by up to 28.68 and 8.06 times for ZCU102 and ZYNQ-7020,
respectively, compared to the software version on the personal laptop. All this consumes 2.78
watt for ZYNQ-7020 and 5.376 watt on ZCU102, evidencing how our implementation is much
more e�cient than the other implementations we compared it with.

We compared our YOLOv2 object detection inference implementation with other closely
related works, and Table 8.5 summarizes the comparison using di�erent metrics or criteria.

106

Chapter 8 8.7. Conclusions

5
.1

9

2
5

.3
6

1
0

.3
8

1
2

.6
8

1
0

.3
8

1
.1

5 1
0

.3
8

6
.3

4

1
0

.3
8

1
.1

5 1
0

.3
8

3
.1

7 1
0

.3
8

1
.1

5 1
0

.3
8

1
.1

5 1
0

.3
8

1
.5

8 1
0

.3
8

1
.1

5 1
0

.3
8

1
.1

5 1
0

.3
8 2
0

.7
6

2
0

.7
6

0
.2

9

2
5

.9
6

1
.0

11
0

.3
9

5
0

.7
9

4
1

.5
5

2
5

.3
8

4
1

.5
5

4
.6

2

4
1

.5
5

1
2

.6
9

4
1

.5
5

4
.6

2

4
1

.5
5

6
.3

5

4
1

.5
5

4
.6

2

4
1

.5
5

4
.6

2

4
1

.5
5

3
.1

7

4
1

.5
5

4
.6

2

4
1

.5
5

4
.6

2

4
1

.5
5

8
3

.1
1

8
3

.1
1

1
.1

5

1
0

3
.8

9

4
.0

4

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 6 2 9 3 0

YOLOV2 PER-LAYER INFERENCE DELAY

Latency on ZCU102 @300MHz Latency on ZYNQ7020 @150MHz

Figure 8.12: Per-layer latency of YOLOv2 inference on ZYNQ 7020 and ZCU102.

Although there are many FPGA-based inference accelerations, the main reasons we picked these
sample references to compare against our work are that (1) these works are recent; (2) all are one-
stage object detection inference accelerations (4) based on YOLO versions and 1 based on SSD);
and (3) all are abundantly cited prior works with close resemblance to our approach. As the
table shows, our implementation maintains the most resource and power-e�cient performance
while still having a commendable GOP/S at a frequency as high as 300 MHz and higher DSP
e�ciency. Moreover, though some entries in the table never reported their accuracy performance,
our implementation of YOLOv2 inference on the Pascal VOC 2007 dataset at a resolution of 416
× 416 yielded an mAP of 76.21%, a little below the baseline 32-bit �oating precision's 76.8%
mAP of the original YOLOv2. The 16-bit quantization of the data and the �xed-point arithmetic
of our custom convolution processor explained by Figure 8.9 played a signi�cant role in increasing
the mean average precision of our accelerator.

In general, we obtained an e�cient hardware-acceleration design scheme that preserves the
scarce and precious resources of an FPGA while yielding higher performance at low-energy
consumption. We used a shared double-bu�ered on-chip bu�er to conserve memory and avoid
memory access becoming a bottleneck to our hardware convolution accelerator. Compared to [77]
consuming 100 Watt energy and approximately �fteen times more DSPs than our implementa-
tion, we achieve a commendable 0.244 s in execution latency of YOLOv2 at a mere 5.376 Watt
and 291 DSPs utilized. Given the fact that we used a 16-bit �xed-point precision, there is a
reasonable prospect for our implementation to achieve real-time acceleration by changing our
quantization strategy to an 8-bit or mixed precision as well as save more resources and power
while still managing to maintain the minimum possible loss in detection accuracy.

Finally, Figure 8.13 shows the sample output of our hardware accelerator performing impec-
cably well with high accuracy as good as the full 32-bit �oating-point precision implemented on
our laptop.

8.7 Conclusions

This paper implemented the YOLOv2 inference accelerator on two Xilinx development boards
with varying available resources and achieved a resource- and power-e�cient accelerator. Our
best-performing implementation achieved a commendable throughput of 184 GOP/S and 0.244 s
inference time per image using 16-bit �xed point dynamic quantization and consuming only 5.376
watts. In future work, we intend to test di�erent quantization strategies without compromising

107

8.7. Conclusions Chapter 8

Table 8.5: Comparison of our implementation against other prior works using several metrics.

[83] [84] [85] [86] [77] This
Work

This
Work

Device Virtex-7
VC707

ZCU102 Zedboard Intel
Arria 10

Intel
Stratix
10

ZYNQ
-7020

ZCU102

Models Sim-
YOLOv2

YOLOv2 YOLOv3
tiny

YOLOv2 SSD300 YOLOv2 YOLOv2

Design
tool

OpenCL Vivado
HLS

Vivado
HLS

OpenCL RTL Vitis
HLS

Vitis
HLS

Design
scheme

HW HW/SW HW/SW HW/SW HW/SW HW/SW HW/SW

Precision
(bits)

1�6 16 16 8�16 8�16 16 16

Frequency
(MHz)

200 300 100 200 300 150 300

FF Uti-
lization

115 K
(18.9%)

90,589 46.7 K 523.7 K - 22.2
K(20.9%)

34,076
(6%)

LUT
Utiliza-
tion

155.2 K
(51.1%)

95136 25.9 K 360 K 532 K 28.3
K(53.2%)

97,971
(35%)

DSP Uti-
lization

272
(9.7%)

609 160 410 4363 180
(81.8%)

291(11%)

BRAM(18Kb)
utiliza-
tions

1144
(55.5%)

491 185 1366* 3844* 170 (60.7
%)

1008
(55%)

Throughput
(GOP/S)

1877 102.5 464.7 740 2178 51.06 184.06

Power 18.29 11.8 3.36 27.2 100 2.78 5.376

Latency
(ms)

- 288 532 - 29.11 868 244

Accuracy
(mAP)

64.16 - - 73.6 76.94 76.21 76.21

Input
image
size

416× 416 416× 416 - 416× 416 300× 300 416× 416 416× 416

* Intel FPGA with BRAM 20 Kb.

108

Chapter 8 8.7. Conclusions

Figure 8.13: Sample YOLOv2 inference output of our hardware accelerator.

accuracy and energy e�ciency so that our implementation achieves real-time inference.

109

Part III

Conclusions and Future Works

110

Chapter

9
Conclusion and Future Works

9.1 General Conclusion

Since the early ages of computers, it has been an early-on quest for humankind to be able to mimic
the biologically acquired e�ortless vision system it has from birth and relies on in its everyday
daily life. Though the biological vision system appears seemingly e�ortless at recognizing objects
on images and video, enabling a machine that level of e�ortlessness and con�dence is challenging,
if not outright impossible! However, thanks to the success of convolutional neural networks,
machines can now mimic some of our audio-visual capability in processing audio, images, and
video inputs though they are still very far from being con�dently reliable. Moreover, detecting all
known objects on an image and localizing them is not trivial compared to image classi�cation due
to a) lack of extensive and carefully labeled detection datasets, b) signi�cant randomness of object
scale and position distribution on an image, and c) an imbalance of object representation within
a dataset. Nonetheless, deeper and more sophisticated CNN-based networks have commendable
performance in the accuracy of detecting objects.

The current trend in object detection implementation appears to have two distinctive forms:
object detection as a two-step process and another approach that treats object detection as a
uni�ed one-stage or one-shot task. Since early object detection challenges focused on maximizing
accuracy, both one-shot and two-stage object detections have become immensely deep and easily
have millions of trainable parameters. These resulted in slow and heavy networks, both during
training and inference. However, nowadays, researchers give speed and e�ciency the due focus it
deserves as much as object detection accuracy. In this arena, a one-shot object detector uni�ed
and holistic approach to solving object detection problems has garnered much more attention
than two-stage object detectors. However, the accuracy of one-stage object detectors usually
trails behind two-stage detectors. Thus, it is an active research endeavor to balance the speed,
accuracy, and complexity of one-stage detectors so that one metric's success will not signi�cantly
trail the other metrics.

Considering this observation, we researched ways to improve the speed and accuracy of cur-
rent state-of-the-art object detection implementations before proposing and implementing an
FPGA acceleration of the object detectors. We found YOLO-like detectors as an intuitive
approach to localization and classi�cation problems, meaning object detection, due to their
uniform network construct and global reasoning of object localization and classi�cations. The
uniform construct of the YOLO-based object detection network structure means easy mapping
to hardware implementation. Moreover, the detection approach appears perceptive and has a
commendable balance of speed versus accuracy trade-o� compared to other relevant detectors.
This assessment justi�ed our choice of detection implementation paradigms and motivated us
to propose a serious of gradually improving object detection models with higher accuracy, less
weight, and faster.

This thesis work proposed three object detection models, two based on YOLOv2 and one
based on YOLOv3. As detailed in chapter 5, our �rst object detection model, DDGNet, pro-
posed restructuring the YOLOv2 detection using binary encoding instead of the defacto one-hot
encoding. Moreover, restructuring the detection head also meant using �ne-grained grids to

Chapter 9 9.1. General Conclusion

deep search objects of interest throughout the surface of an input image or frame of video, unlike
YOLOv2's coarse-grained grid sizes. We also proposed a robust non-max-suppression technique
called ThreeWayNMS to �lter out the same object's redundant predictions and minimize false
positives. Our DDGNet model achieved higher accuracy while being lighter. Moreover, since
DDGNet uses a modi�ed (extended) binary encoding, its output layer has fewer parameters
and can easily be extended to perform a true generic object detector with thousands of object
categories.

Our second object detection model, DenseYOLO, detailed in chapter 6, proposes a unique
approach for YOLO-based object detection. The original YOLOv2 divides an input image into
equal grids of size 32 pixels by 32 pixels and expects or trains each grid to predict up to �ve
objects. Each predicted object has a vector representation constituting objectness con�dence
probability, one-hot encoded class prediction probability, and the bounding box parameters: the
left-top coordinate pair and the right-bottom coordinate pair. YOLOv2, instead of predicting
the bounding box coordinates directly, predicts o�sets to a pre-generated dataset representative
set of boxes called anchor boxes. There are �ve anchor boxes in YOLOv2. Since there are �ve
anchor boxes, each grid predicts �ve o�sets, one for each anchor box. This explodes the output
layer of YOLOv2 in addition to increasing false positives that slow down the post-processing
non-max-suppression. Instead, in DenseYOLO, the anchor box is a trainable parameter. Our
model is trained to pick or predict a best-�tting anchor box and its associated o�sets from the
ground-truth bounding box. This avoided the need to make a redundant prediction of one object
using each pre-generated anchor box and, therefore, made DenseYOLO less complex, lighter, and
faster during training and inference than the original YOLOv2. Moreover, since we incorporated
the idea of �ne-grained grid cells from DDGNet, DenseYOLO outperforms the state-of-the-art
YOLOv2 in detection accuracy.

The third model we proposed utilizes the more recent and robust YOLO implementation
called YOLOv3, authored by the creators of the YOLO model. This latest version includes
modern best practices such as multi-scale object detection, skip-connections, and upsampling.
Unfortunately, this latest work is deeper and has hundreds of layers, which led to a consider-
ably slower detector against YOLOv2 but immensely more accurate and better performing in
detection speed compared to most of the top-performing state-of-the-art object detectors. In our
quest for improved detection accuracy, we yet again repurposed the new YOLOv3 by incorpo-
rating our unique approach from DenseYOLO and another novel method of annotating object
detection ground truths. Our third model is dubbed MultiGridDet, or simply DenseYOLOv2.
MultiGridDet's primary feature is assigning multiple nearby grid cells to detect an object of
interest, unlike the previous models that lay the responsibility of predicting an object to the
grid cell that contains the center coordinate of an object. As a result, MultiGridDet has the
potential of a multi-perspective view of an object of interest, increasing its chance of predicting
a tightly-�t object bounding box.

Moreover, in addition to the multigrid annotation of an object ground-truth, we also proposed
a powerful o�ine synthetic data generation and augmentation to supplement the object detection
dataset. One of the signi�cant challenges in training an object detection model is the lack
of a large, well-annotated, class-balanced dataset. The most common approach to treating
dataset scarcity is arti�cial data augmentations such as rotating, �ipping, contrast and brightness
manipulation, etc. However, these geometrical and texture transformations alone will not address
an image's random combination of real-world object occurrence. As a result, many researchers
seek ways to generate additional arti�cial training sets using methods such as copy-paste. We
contributed an o�ine seamless arti�cial data generation and augmentation technique using copy-
paste method. The main features of our data generation are dynamic and seamless stitching of
di�erent objects from the dataset, the capability to change the background of generated arti�cial
images, and each object can be an augmented, and dataset class imbalances are addressed. In
general, through the help of our data augmentation technique and redundant annotation of object

113

9.2. Future Works and Perspectives Chapter 9

ground-truth MultiGridDet outperforms YOLOv3 in detection accuracy. Moreover, given the
lightweight detection head we incorporated from DenseYOLO, our MultiGridDet implementation
is faster and lighter.

Following the series of successful object detection implementations on computer and GPU
systems, we focused on the second theme of our study in this thesis work: hardware acceleration
of deep convolutional neural network-based object detection. Due to the high resources and
energy consumption of computation of current state-of-the-art deep CNN networks, many real-
world applications are yet to bene�t from the advancement of deep learning. This lag is because
many real-world applications have strict requirements such as less memory, less energy consump-
tion, and real-time performances due to the limited resources onboard their embedded platforms.
Fortunately, FPGA's high data bandwidth, e�cient power consumption, parallelism, and �ex-
ible programmability attracted many researchers' attention to address these requirements. We
proposed high-throughput energy and resource-e�cient acceleration of object detection inference
using FPGA to play our part. Finally, our object detection inference acceleration incorporated
double-bu�ering, dynamic �xed-point quantization, loop tiling, loop optimizations, and bu�er
sharing to achieve a high-throughput, low resource, and energy-e�cient inference acceleration.
Using Xilinx's Vitis Uni�ed Software Platform, we successfully tested our proposed object de-
tection acceleration by implementing YOLOv2, DDGNet, and DenseYOLO models on at least
two FPGA boards.

9.2 Future Works and Perspectives

In this Ph.D. dissertation work, we proposed, designed, and implemented lightweight, fast, and
accurate object detection models using a deep convolutional neural network-based and imple-
mented their acceleration using FPGA. Our models' accuracy is commendable and comparable
to current state-of-the-art detectors. Furthermore, our hardware acceleration design and imple-
mentation showed superior performance against some comparable prior related works measured
using metrics such as power e�ciency, resource e�ciency, and throughput.

Even though we listed several laudable contributions in this thesis work, we still have some
prospects for improvement or extension work. Particular future works of our contributions are
already mentioned in their corresponding chapters and sections. However, the general prospect
is to enable our object detection models to perform object segmentation, both semantic and
instance object segmentation. Object segmentation is a valuable area of computer vision where
many sensitive real-world applications such as medical institutions could bene�t greatly. More-
over, we also intend to extend our study to include object tracking based on deep CNN networks.
On the hardware acceleration, in the future, we would like to experiment with extreme quantiza-
tion and mixed data width quantization for higher speed while maintaining detection accuracy.
Moreover, due to time limitations, we did not implement and test our third object detection
model, MultiGridDet, on an FPGA board; however, we intend to do so in the future. Last but
not least future work is to design a user-friendly and con�gurable framework that, based on avail-
able resources onboard a given FPGA board, maps the software-based deep CNN networks into
hardware-accelerated version with high-throughput, e�cient resources and power consumption
as its core value.

114

List of Publications

Conference publications

1. Solomon Negussie Tesema and El-Bay Bourennane. �Towards General Purpose Object De-
tection: Deep Dense Grid Based Object Detection�. In: 2020 14th International Conference
on Innovations in Information Technology (IIT). IEEE. 2020, pp. 227�232

2. Solomon Negussie Tesema and El-Bay Bourennane. �DenseYOLO: Yet Faster, Lighter and
More Accurate YOLO�. in: 2020 11th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON). IEEE. 2020, pp. 0534�0539

3. Solomon Negussie Tesema and El-Bay Bourennane. �Multi-Grid Redundant Bounding
Box Annotation for Accurate Object Detection�. In: 2021 IEEE Intl Conf on Dependable,
Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE. 2021, pp. 145�152

Journal publications

4. Solomon Negussie Tesema and El-Bay Bourennane. �Resource- and Power-E�cient High-
Performance Object Detection Inference Acceleration Using FPGA�. in: Electronics 11.12
(2022). issn: 2079-9292. doi: 10.3390/electronics11121827

https://doi.org/10.3390/electronics11121827

Bibliography

References for Chapter 1: Introduction

[1] Brien Posey. Microsoft 'Seeing AI': Imagining a New Use for Computer Vision. https:
//redmondmag.com/articles/2021/03/12/microsoft-seeing-ai.aspx. Accessed: 2022-
06-10 Cited on

page 1.

[2] Kaiming He et al. �Delving deep into recti�ers: Surpassing human-level performance on
imagenet classi�cation�. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 1026�1034 Cited on page 1.

[3] Diego Ardila et al. �End-to-end lung cancer screening with three-dimensional deep learning
on low-dose chest computed tomography�. In: Nature medicine 25.6 (2019), pp. 954�961
Cited on page 1.

[4] Anne Dattilo et al. �Identifying exoplanets with deep learning. ii. two new super-earths
uncovered by a neural network in k2 data�. In: The Astronomical Journal 157.5 (2019),
p. 169 Cited on page 1.

[5] Emmanuel Gbenga Dada et al. �Machine learning for email spam �ltering: review, ap-
proaches and open research problems�. In: Heliyon 5.6 (2019), e01802. issn: 2405-8440.
doi: https://doi.org/10.1016/j.heliyon.2019.e01802 Cited on page 1.

[6] Yaniv Taigman et al. �Deepface: Closing the gap to human-level performance in face veri�-
cation�. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2014, pp. 1701�1708 Cited on page 1.

References for Chapter 2: Overview of Basics of Deep Learning

[7] David G Lowe. �Distinctive image features from scale-invariant keypoints�. In: International
journal of computer vision 60.2 (2004), pp. 91�110 Cited on page 8.

[8] Navneet Dalal and Bill Triggs. �Histograms of oriented gradients for human detection�.
In: 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR'05). Vol. 1. Ieee. 2005, pp. 886�893 Cited on pages 8, 27.

[9] Corinna Cortes and Vladimir Vapnik. �Support-vector networks�. In: Machine learning
20.3 (1995), pp. 273�297 Cited on page 8.

[10] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning.
Vol. 4. 4. Springer, 2006 Cited on pages 9, 23.

[11] Michael A Nielsen. Neural networks and deep learning. Vol. 25. Determination press San
Francisco, CA, USA, 2015 Cited on pages 12, 23.

https://redmondmag.com/articles/2021/03/12/microsoft-seeing-ai.aspx
https://redmondmag.com/articles/2021/03/12/microsoft-seeing-ai.aspx
https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01802

Chapter 9 9.2. Future Works and Perspectives

[12] Sergey Io�e and Christian Szegedy. �Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift�. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings
of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 448�456 Cited on

page 18.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016 Cited
on page 23.

References for Chapter 3: Object Detection and Tracking: Study

of Current Trends and State-of-the-art approaches

[8] Navneet Dalal and Bill Triggs. �Histograms of oriented gradients for human detection�.
In: 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR'05). Vol. 1. Ieee. 2005, pp. 886�893 Cited on pages 8, 27.

[14] Jasper RR Uijlings et al. �Selective search for object recognition�. In: International journal
of computer vision 104.2 (2013), pp. 154�171 Cited on page 27.

[15] C Lawrence Zitnick and Piotr Dollár. �Edge boxes: Locating object proposals from edges�.
In: European conference on computer vision. Springer. 2014, pp. 391�405 Cited on page 27.

[16] Licheng Jiao et al. �A survey of deep learning-based object detection�. In: IEEE Access 7
(2019), pp. 128837�128868 Cited on pages 28, 54.

[17] Ross Girshick et al. �Rich feature hierarchies for accurate object detection and semantic
segmentation�. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014, pp. 580�587 Cited on pages 28, 29, 74, 88.

[18] Pedro F Felzenszwalb, Ross B Girshick, and David McAllester. �Cascade object detection
with deformable part models�. In: 2010 IEEE Computer society conference on computer
vision and pattern recognition. IEEE. 2010, pp. 2241�2248 Cited on page 29.

[19] Ming-Ming Cheng et al. �BING: Binarized Normed Gradients for Objectness Estimation at
300fps�. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). June 2014 Cited on

page 29.

[20] Kaiming He et al. �Deep Residual Learning for Image Recognition�. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016 Cited

on pages 30, 62, 71, 83.

[21] Ross Girshick. �Fast r-cnn�. In: Proceedings of the IEEE international conference on com-
puter vision. 2015, pp. 1440�1448 Cited on pages 31,

32.

[22] Shaoqing Ren et al. �Faster r-cnn: Towards real-time object detection with region proposal
networks�. In: Advances in neural information processing systems. 2015, pp. 91�99 Cited

on pages 31, 32, 58, 61, 62, 70, 74, 81, 82, 86, 88.

[23] Jifeng Dai et al. �R-fcn: Object detection via region-based fully convolutional networks�.
In: Advances in neural information processing systems 29 (2016) Cited on pages 33, 34.

[24] Kaiming He et al. �Mask r-cnn�. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 2961�2969 Cited on pages 33, 34.

[25] Pierre Sermanet et al. �Overfeat: Integrated recognition, localization and detection using
convolutional networks�. In: arXiv preprint arXiv:1312.6229 (2013) Cited on pages 35, 54.

117

9.2. Future Works and Perspectives Chapter 9

[26] Joseph Redmon et al. �You only look once: Uni�ed, real-time object detection�. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 779�788
Cited on pages 35, 36, 54, 58, 65, 70, 74, 81, 86, 88.

[27] Joseph Redmon and Ali Farhadi. �YOLO9000: better, faster, stronger�. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263�7271 Cited

on pages 35, 54, 58, 62, 65, 70, 71, 74, 81, 83, 88.

[28] Joseph Redmon and Ali Farhadi. �Yolov3: An incremental improvement�. In: arXiv preprint
arXiv:1804.02767 (2018) Cited on pages 35, 54, 62, 65, 66, 71, 74, 81, 83, 87, 88.

[29] Wei Liu et al. �Ssd: Single shot multibox detector�. In: European conference on computer
vision. Springer. 2016, pp. 21�37 Cited on pages 35, 36, 54, 58, 61, 62, 66, 70, 74, 81, 82, 86,

88.

[30] Tsung-Yi Lin et al. �Focal loss for dense object detection�. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2980�2988 Cited on pages 35, 37, 54,

62, 71, 74, 75, 83, 86�88.

[31] Yizong Cheng. �Mean shift, mode seeking, and clustering�. In: IEEE transactions on pattern
analysis and machine intelligence 17.8 (1995), pp. 790�799 Cited on page 37.

[32] Gary R Bradski. �Computer vision face tracking for use in a perceptual user interface�. In:
(1998) Cited on page 37.

[33] Greg Welch, Gary Bishop, et al. �An introduction to the Kalman �lter�. In: (1995) Cited

on page 38.

[34] Peter S Maybeck. Stochastic models, estimation, and control. Academic press, 1982 Cited

on page 38.

[35] Kai Diethelm, Neville J Ford, and Alan D Freed. �A predictor-corrector approach for the
numerical solution of fractional di�erential equations�. In: Nonlinear Dynamics 29.1 (2002),
pp. 3�22 Cited on page 38.

[36] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. �Simple online and realtime tracking with
a deep association metric�. In: 2017 IEEE international conference on image processing
(ICIP). IEEE. 2017, pp. 3645�3649 Cited on pages 40, 41.

[37] Guanghan Ning et al. �Spatially supervised recurrent convolutional neural networks for
visual object tracking�. In: 2017 IEEE international symposium on circuits and systems
(ISCAS). IEEE. 2017, pp. 1�4 Cited on page 41.

References for Chapter 4: FPGA as Hardware Accelerator for

Object Detection and Tracking

[38] Eriko Nurvitadhi et al. �Can FPGAs Beat GPUs in Accelerating Next-Generation Deep
Neural Networks?� In: Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. FPGA '17. Monterey, California, USA: Association for
Computing Machinery, 2017, pp. 5�14. isbn: 9781450343541. doi: 10.1145/3020078.
3021740 Cited on page 44.

[39] Michael Mathieu, Mikael Hena�, and Yann LeCun. �Fast training of convolutional networks
through �ts�. In: arXiv preprint arXiv:1312.5851 (2013) Cited on pages 44, 45.

[40] Chi Zhang and Viktor Prasanna. �Frequency domain acceleration of convolutional neural
networks on CPU-FPGA shared memory system�. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2017, pp. 35�44 Cited on

pages 44, 45, 87.

118

https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1145/3020078.3021740

Chapter 9 9.2. Future Works and Perspectives

[41] Hanqing Zeng et al. �A framework for generating high throughput CNN implementations
on FPGAs�. In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2018, pp. 117�126 Cited on pages 44,

87.

[42] Chun Bao et al. �A power-e�cient optimizing framework FPGA accelerator based on wino-
grad for YOLO�. In: IEEE Access 8 (2020), pp. 94307�94317 Cited on pages 44,

87.

[43] Utku Aydonat et al. �An OpenCL(TM) Deep Learning Accelerator on Arria 10�. In: CoRR
abs/1701.03534 (2017). arXiv: 1701.03534 Cited on pages 44, 87.

[44] Yap June Wai et al. �Fixed Point Implementation of Tiny-Yolo-v2 using OpenCL on
FPGA�. In: International Journal of Advanced Computer Science and Applications 9.10
(2018). doi: 10.14569/IJACSA.2018.091062 Cited on pages 44, 87.

[45] Murugan Sankaradas et al. �A Massively Parallel Coprocessor for Convolutional Neural
Networks�. In: 2009 20th IEEE International Conference on Application-speci�c Systems,
Architectures and Processors. 2009, pp. 53�60. doi: 10.1109/ASAP.2009.25 Cited on

page 45.

[46] Clement Farabet et al. �CNP: An FPGA-based processor for Convolutional Networks�.
In: 2009 International Conference on Field Programmable Logic and Applications. 2009,
pp. 32�37. doi: 10.1109/FPL.2009.5272559 Cited on page 45.

[47] Chen Zhang et al. �Optimizing fpga-based accelerator design for deep convolutional neural
networks�. In: Proceedings of the 2015 ACM/SIGDA international symposium on �eld-
programmable gate arrays. 2015, pp. 161�170 Cited on pages 46, 87,

96.

[48] Jiantao Qiu et al. �Going Deeper with Embedded FPGA Platform for Convolutional Neu-
ral Network�. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA '16. Monterey, California, USA: Association for Com-
puting Machinery, 2016, pp. 26�35. isbn: 9781450338561. doi: 10.1145/2847263.2847265
Cited on page 46.

[49] Mohammad Motamedi et al. �Design space exploration of FPGA-based Deep Convolutional
Neural Networks�. In: 2016 21st Asia and South Paci�c Design Automation Conference
(ASP-DAC). 2016, pp. 575�580. doi: 10.1109/ASPDAC.2016.7428073 Cited on page 46.

References for Chapter 5: Lightweight Generic Object Detector

using binary encoding

[16] Licheng Jiao et al. �A survey of deep learning-based object detection�. In: IEEE Access 7
(2019), pp. 128837�128868 Cited on pages 28, 54.

[20] Kaiming He et al. �Deep Residual Learning for Image Recognition�. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016 Cited

on pages 30, 62, 71, 83.

[22] Shaoqing Ren et al. �Faster r-cnn: Towards real-time object detection with region proposal
networks�. In: Advances in neural information processing systems. 2015, pp. 91�99 Cited

on pages 31, 32, 58, 61, 62, 70, 74, 81, 82, 86, 88.

[25] Pierre Sermanet et al. �Overfeat: Integrated recognition, localization and detection using
convolutional networks�. In: arXiv preprint arXiv:1312.6229 (2013) Cited on pages 35, 54.

119

https://arxiv.org/abs/1701.03534
https://doi.org/10.14569/IJACSA.2018.091062
https://doi.org/10.1109/ASAP.2009.25
https://doi.org/10.1109/FPL.2009.5272559
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1109/ASPDAC.2016.7428073

9.2. Future Works and Perspectives Chapter 9

[26] Joseph Redmon et al. �You only look once: Uni�ed, real-time object detection�. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 779�788
Cited on pages 35, 36, 54, 58, 65, 70, 74, 81, 86, 88.

[27] Joseph Redmon and Ali Farhadi. �YOLO9000: better, faster, stronger�. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263�7271 Cited

on pages 35, 54, 58, 62, 65, 70, 71, 74, 81, 83, 88.

[28] Joseph Redmon and Ali Farhadi. �Yolov3: An incremental improvement�. In: arXiv preprint
arXiv:1804.02767 (2018) Cited on pages 35, 54, 62, 65, 66, 71, 74, 81, 83, 87, 88.

[29] Wei Liu et al. �Ssd: Single shot multibox detector�. In: European conference on computer
vision. Springer. 2016, pp. 21�37 Cited on pages 35, 36, 54, 58, 61, 62, 66, 70, 74, 81, 82, 86,

88.

[30] Tsung-Yi Lin et al. �Focal loss for dense object detection�. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2980�2988 Cited on pages 35, 37, 54,

62, 71, 74, 75, 83, 86�88.

[50] Tsung-Yi Lin et al. �Microsoft coco: Common objects in context�. In: European conference
on computer vision. Springer. 2014, pp. 740�755 Cited on page 55.

[51] YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/yolov2/. Accessed:
2020-08-12 Cited on page 60.

[52] Alexander B. Jung et al. imgaug. https://github.com/aleju/imgaug. Online; accessed
01-Feb-2020. 2020 Cited on page 60.

[53] Tsung-Yi Lin et al. �Feature pyramid networks for object detection�. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2117�2125 Cited

on pages 62, 71, 83.

[54] Jonathan Huang et al. �Speed/accuracy trade-o�s for modern convolutional object detec-
tors�. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 7310�7311 Cited on pages 62, 66, 71, 83.

[55] Abhinav Shrivastava et al. �Beyond skip connections: Top-down modulation for object
detection�. In: arXiv preprint arXiv:1612.06851 (2016) Cited on pages 62, 71, 83.

[56] Cheng-Yang Fu et al. �Dssd: Deconvolutional single shot detector�. In: arXiv preprint
arXiv:1701.06659 (2017) Cited on pages 62, 71, 75, 83.

References for Chapter 6: Yet Faster, Lighter and More Accurate

YOLO

[20] Kaiming He et al. �Deep Residual Learning for Image Recognition�. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016 Cited

on pages 30, 62, 71, 83.

[22] Shaoqing Ren et al. �Faster r-cnn: Towards real-time object detection with region proposal
networks�. In: Advances in neural information processing systems. 2015, pp. 91�99 Cited

on pages 31, 32, 58, 61, 62, 70, 74, 81, 82, 86, 88.

[26] Joseph Redmon et al. �You only look once: Uni�ed, real-time object detection�. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 779�788
Cited on pages 35, 36, 54, 58, 65, 70, 74, 81, 86, 88.

[27] Joseph Redmon and Ali Farhadi. �YOLO9000: better, faster, stronger�. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263�7271 Cited

on pages 35, 54, 58, 62, 65, 70, 71, 74, 81, 83, 88.

120

https://pjreddie.com/darknet/yolov2/
https://github.com/aleju/imgaug

Chapter 9 9.2. Future Works and Perspectives

[28] Joseph Redmon and Ali Farhadi. �Yolov3: An incremental improvement�. In: arXiv preprint
arXiv:1804.02767 (2018) Cited on pages 35, 54, 62, 65, 66, 71, 74, 81, 83, 87, 88.

[29] Wei Liu et al. �Ssd: Single shot multibox detector�. In: European conference on computer
vision. Springer. 2016, pp. 21�37 Cited on pages 35, 36, 54, 58, 61, 62, 66, 70, 74, 81, 82, 86,

88.

[30] Tsung-Yi Lin et al. �Focal loss for dense object detection�. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2980�2988 Cited on pages 35, 37, 54,

62, 71, 74, 75, 83, 86�88.

[53] Tsung-Yi Lin et al. �Feature pyramid networks for object detection�. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2117�2125 Cited

on pages 62, 71, 83.

[54] Jonathan Huang et al. �Speed/accuracy trade-o�s for modern convolutional object detec-
tors�. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 7310�7311 Cited on pages 62, 66, 71, 83.

[55] Abhinav Shrivastava et al. �Beyond skip connections: Top-down modulation for object
detection�. In: arXiv preprint arXiv:1612.06851 (2016) Cited on pages 62, 71, 83.

[56] Cheng-Yang Fu et al. �Dssd: Deconvolutional single shot detector�. In: arXiv preprint
arXiv:1701.06659 (2017) Cited on pages 62, 71, 75, 83.

[57] Kaiming He et al. �Deep residual learning for image recognition�. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 770�778 Cited on

pages 66, 74.

[58] Karen Simonyan and Andrew Zisserman. �Very deep convolutional networks for large-scale
image recognition�. In: arXiv preprint arXiv:1409.1556 (2014) Cited on pages 66, 74.

[59] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. �Imagenet classi�cation with deep
convolutional neural networks�. In: Advances in neural information processing systems.
2012, pp. 1097�1105 Cited on pages 66, 86.

References for Chapter 7: MultiGrid Redundant Bounding Box

Annotation for Accurate Object Detection

[17] Ross Girshick et al. �Rich feature hierarchies for accurate object detection and semantic
segmentation�. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014, pp. 580�587 Cited on pages 28, 29, 74, 88.

[20] Kaiming He et al. �Deep Residual Learning for Image Recognition�. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016 Cited

on pages 30, 62, 71, 83.

[22] Shaoqing Ren et al. �Faster r-cnn: Towards real-time object detection with region proposal
networks�. In: Advances in neural information processing systems. 2015, pp. 91�99 Cited

on pages 31, 32, 58, 61, 62, 70, 74, 81, 82, 86, 88.

[26] Joseph Redmon et al. �You only look once: Uni�ed, real-time object detection�. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 779�788
Cited on pages 35, 36, 54, 58, 65, 70, 74, 81, 86, 88.

[27] Joseph Redmon and Ali Farhadi. �YOLO9000: better, faster, stronger�. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263�7271 Cited

on pages 35, 54, 58, 62, 65, 70, 71, 74, 81, 83, 88.

121

9.2. Future Works and Perspectives Chapter 9

[28] Joseph Redmon and Ali Farhadi. �Yolov3: An incremental improvement�. In: arXiv preprint
arXiv:1804.02767 (2018) Cited on pages 35, 54, 62, 65, 66, 71, 74, 81, 83, 87, 88.

[29] Wei Liu et al. �Ssd: Single shot multibox detector�. In: European conference on computer
vision. Springer. 2016, pp. 21�37 Cited on pages 35, 36, 54, 58, 61, 62, 66, 70, 74, 81, 82, 86,

88.

[30] Tsung-Yi Lin et al. �Focal loss for dense object detection�. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2980�2988 Cited on pages 35, 37, 54,

62, 71, 74, 75, 83, 86�88.

[53] Tsung-Yi Lin et al. �Feature pyramid networks for object detection�. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2117�2125 Cited

on pages 62, 71, 83.

[54] Jonathan Huang et al. �Speed/accuracy trade-o�s for modern convolutional object detec-
tors�. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 7310�7311 Cited on pages 62, 66, 71, 83.

[55] Abhinav Shrivastava et al. �Beyond skip connections: Top-down modulation for object
detection�. In: arXiv preprint arXiv:1612.06851 (2016) Cited on pages 62, 71, 83.

[56] Cheng-Yang Fu et al. �Dssd: Deconvolutional single shot detector�. In: arXiv preprint
arXiv:1701.06659 (2017) Cited on pages 62, 71, 75, 83.

[57] Kaiming He et al. �Deep residual learning for image recognition�. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 770�778 Cited on

pages 66, 74.

[58] Karen Simonyan and Andrew Zisserman. �Very deep convolutional networks for large-scale
image recognition�. In: arXiv preprint arXiv:1409.1556 (2014) Cited on pages 66, 74.

[60] Ross Girshick. �Fast r-cnn�. In: Proceedings of the IEEE international conference on com-
puter vision. 2015, pp. 1440�1448 Cited on

page 74.

[61] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. �Yolov4: Optimal speed
and accuracy of object detection�. In: arXiv preprint arXiv:2004.10934 (2020) Cited on

page 74.

[62] Solomon Negussie Tesema and El-Bay Bourennane. �DenseYOLO: Yet Faster, Lighter and
More Accurate YOLO�. In: 2020 11th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON). IEEE. 2020, pp. 0534�0539 Cited on

pages 74, 75, 83.

[63] Solomon Negussie Tesema and El-Bay Bourennane. �Towards General Purpose Object De-
tection: Deep Dense Grid Based Object Detection�. In: 2020 14th International Conference
on Innovations in Information Technology (IIT). IEEE. 2020, pp. 227�232 Cited on

pages 74, 83.

[64] Kaiwen Duan et al. �Centernet: Keypoint triplets for object detection�. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2019, pp. 6569�6578 Cited

on pages 74, 75.

[65] Hei Law and Jia Deng. �Cornernet: Detecting objects as paired keypoints�. In: Proceedings
of the European conference on computer vision (ECCV). 2018, pp. 734�750 Cited on

pages 74, 75.

[66] Zhi Tian et al. �Fcos: Fully convolutional one-stage object detection�. In: Proceedings of
the IEEE/CVF international conference on computer vision. 2019, pp. 9627�9636 Cited on

page 75.

122

Chapter 9 9.2. Future Works and Perspectives

[67] Lichao Huang et al. �Densebox: Unifying landmark localization with end to end object
detection�. In: arXiv preprint arXiv:1509.04874 (2015) Cited on page 75.

References for Chapter 8: Resource and Power E�cient High-

Performance Object Detection Inference Acceleration Using FPGA

[17] Ross Girshick et al. �Rich feature hierarchies for accurate object detection and semantic
segmentation�. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014, pp. 580�587 Cited on pages 28, 29, 74, 88.

[22] Shaoqing Ren et al. �Faster r-cnn: Towards real-time object detection with region proposal
networks�. In: Advances in neural information processing systems. 2015, pp. 91�99 Cited

on pages 31, 32, 58, 61, 62, 70, 74, 81, 82, 86, 88.

[26] Joseph Redmon et al. �You only look once: Uni�ed, real-time object detection�. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 779�788
Cited on pages 35, 36, 54, 58, 65, 70, 74, 81, 86, 88.

[27] Joseph Redmon and Ali Farhadi. �YOLO9000: better, faster, stronger�. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263�7271 Cited

on pages 35, 54, 58, 62, 65, 70, 71, 74, 81, 83, 88.

[28] Joseph Redmon and Ali Farhadi. �Yolov3: An incremental improvement�. In: arXiv preprint
arXiv:1804.02767 (2018) Cited on pages 35, 54, 62, 65, 66, 71, 74, 81, 83, 87, 88.

[29] Wei Liu et al. �Ssd: Single shot multibox detector�. In: European conference on computer
vision. Springer. 2016, pp. 21�37 Cited on pages 35, 36, 54, 58, 61, 62, 66, 70, 74, 81, 82, 86,

88.

[30] Tsung-Yi Lin et al. �Focal loss for dense object detection�. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2980�2988 Cited on pages 35, 37, 54,

62, 71, 74, 75, 83, 86�88.

[40] Chi Zhang and Viktor Prasanna. �Frequency domain acceleration of convolutional neural
networks on CPU-FPGA shared memory system�. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2017, pp. 35�44 Cited on

pages 44, 45, 87.

[41] Hanqing Zeng et al. �A framework for generating high throughput CNN implementations
on FPGAs�. In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2018, pp. 117�126 Cited on pages 44,

87.

[42] Chun Bao et al. �A power-e�cient optimizing framework FPGA accelerator based on wino-
grad for YOLO�. In: IEEE Access 8 (2020), pp. 94307�94317 Cited on pages 44,

87.

[43] Utku Aydonat et al. �An OpenCL(TM) Deep Learning Accelerator on Arria 10�. In: CoRR
abs/1701.03534 (2017). arXiv: 1701.03534 Cited on pages 44, 87.

[44] Yap June Wai et al. �Fixed Point Implementation of Tiny-Yolo-v2 using OpenCL on
FPGA�. In: International Journal of Advanced Computer Science and Applications 9.10
(2018). doi: 10.14569/IJACSA.2018.091062 Cited on pages 44, 87.

[47] Chen Zhang et al. �Optimizing fpga-based accelerator design for deep convolutional neural
networks�. In: Proceedings of the 2015 ACM/SIGDA international symposium on �eld-
programmable gate arrays. 2015, pp. 161�170 Cited on pages 46, 87,

96.

123

https://arxiv.org/abs/1701.03534
https://doi.org/10.14569/IJACSA.2018.091062

9.2. Future Works and Perspectives Chapter 9

[59] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. �Imagenet classi�cation with deep
convolutional neural networks�. In: Advances in neural information processing systems.
2012, pp. 1097�1105 Cited on pages 66, 86.

[68] Mohammad Rastegari et al. �Xnor-net: Imagenet classi�cation using binary convolutional
neural networks�. In: European conference on computer vision. Springer. 2016, pp. 525�542
Cited on pages 86, 87.

[69] Hiroki Nakahara et al. �A lightweight YOLOv2: A binarized CNN with a parallel support
vector regression for an FPGA�. In: Proceedings of the 2018 ACM/SIGDA International
Symposium on �eld-programmable gate arrays. 2018, pp. 31�40 Cited on page 86.

[70] Amr Suleiman and Vivienne Sze. �Energy-e�cient HOG-based object detection at 1080HD
60 fps with multi-scale support�. In: 2014 IEEE Workshop on Signal Processing Systems
(SiPS). IEEE. 2014, pp. 1�6 Cited on page 86.

[71] Jos IJzerman et al. �AivoTTA: an energy e�cient programmable accelerator for CNN-
based object recognition�. In: Proceedings of the 18th International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation. 2018, pp. 28�37 Cited on

page 86.

[72] Jason Cong and Bingjun Xiao. �Minimizing computation in convolutional neural networks�.
In: International conference on arti�cial neural networks. Springer. 2014, pp. 281�290 Cited
on pages 87, 89.

[73] Kamel Abdelouahab et al. �Accelerating CNN inference on FPGAs: A survey�. In: arXiv
preprint arXiv:1806.01683 (2018) Cited on page 87.

[74] Kai Zeng et al. �FPGA-based accelerator for object detection: a comprehensive survey�.
In: The Journal of Supercomputing (2022), pp. 1�41 Cited on page 87.

[75] Yufei Ma et al. �Optimizing loop operation and data�ow in FPGA acceleration of deep
convolutional neural networks�. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 2017, pp. 45�54 Cited on page 87.

[76] Zixiao Wang et al. �Sparse-YOLO: hardware/software co-design of an FPGA accelerator
for YOLOv2�. In: IEEE Access 8 (2020), pp. 116569�116585 Cited on page 88.

[77] Yufei Ma et al. �Algorithm-hardware co-design of single shot detector for fast object de-
tection on FPGAs�. In: 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE. 2018, pp. 1�8 Cited on pages 88, 106�108.

[78] Solomon Negussie Tesema and El-Bay Bourennane. �Multi-Grid Redundant Bounding Box
Annotation for Accurate Object Detection�. In: 2021 IEEE Intl Conf on Dependable, Auto-
nomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE. 2021, pp. 145�152 Cited on pages 88, 115,

131.

[79] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. �YOLO-LITE: a real-time object
detection algorithm optimized for non-GPU computers�. In: 2018 IEEE International Con-
ference on Big Data (Big Data). IEEE. 2018, pp. 2503�2510 Cited on

page 88.

[80] Solomon Negussie Tesema and El-Bay Bourennane. �DenseYOLO: Yet Faster, Lighter and
More Accurate YOLO�. In: 2020 11th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON). IEEE. 2020, pp. 0534�0539 Cited on

pages 88, 115, 131.

124

Chapter 9 9.2. Future Works and Perspectives

[81] Solomon Negussie Tesema and El-Bay Bourennane. �Towards General Purpose Object De-
tection: Deep Dense Grid Based Object Detection�. In: 2020 14th International Conference
on Innovations in Information Technology (IIT). IEEE. 2020, pp. 227�232 Cited on

pages 88, 115, 131.

[82] Xuechao Wei et al. �Automated systolic array architecture synthesis for high throughput
CNN inference on FPGAs�. In: Proceedings of the 54th Annual Design Automation Con-
ference 2017. 2017, pp. 1�6 Cited on

page 106.

[83] Duy Thanh Nguyen et al. �A high-throughput and power-e�cient FPGA implementation of
YOLO CNN for object detection�. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27.8 (2019), pp. 1861�1873 Cited on page 108.

[84] Shiguang Zhang et al. �An fpga-based recon�gurable cnn accelerator for yolo�. In: 2020
IEEE 3rd International Conference on Electronics Technology (ICET). IEEE. 2020, pp. 74�
78 Cited on page 108.

[85] Zhewen Yu and Christos-Savvas Bouganis. �A parameterisable FPGA-tailored architec-
ture for YOLOv3-tiny�. In: International Symposium on Applied Recon�gurable Comput-
ing. Springer. 2020, pp. 330�344 Cited on

page 108.

[86] Shuai Li et al. �A novel FPGA accelerator design for real-time and ultra-low power deep
convolutional neural networks compared with titan X GPU�. In: IEEE Access 8 (2020),
pp. 105455�105471 Cited on page 108.

References for Chapter 9.2: List of Publications

[78] Solomon Negussie Tesema and El-Bay Bourennane. �Multi-Grid Redundant Bounding Box
Annotation for Accurate Object Detection�. In: 2021 IEEE Intl Conf on Dependable, Auto-
nomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE. 2021, pp. 145�152 Cited on pages 88, 115,

131.

[80] Solomon Negussie Tesema and El-Bay Bourennane. �DenseYOLO: Yet Faster, Lighter and
More Accurate YOLO�. In: 2020 11th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON). IEEE. 2020, pp. 0534�0539 Cited on

pages 88, 115, 131.

[81] Solomon Negussie Tesema and El-Bay Bourennane. �Towards General Purpose Object De-
tection: Deep Dense Grid Based Object Detection�. In: 2020 14th International Conference
on Innovations in Information Technology (IIT). IEEE. 2020, pp. 227�232 Cited on

pages 88, 115, 131.

[87] Solomon Negussie Tesema and El-Bay Bourennane. �Resource- and Power-E�cient High-
Performance Object Detection Inference Acceleration Using FPGA�. In: Electronics 11.12
(2022). issn: 2079-9292. doi: 10.3390/electronics11121827 Cited on page 115.

125

https://doi.org/10.3390/electronics11121827

Appendix

Synthetic Image Genera-
tor(SIG) for Supplementing
Object Detection and Segmen-
tation Datasets

Even though research on object detection has immensely improved since the success of deep
convolutional neural networks, the success is yet not on par with image classi�cation. One of the
challenges in object detection is the lack of a large, carefully annotated, balanced dataset, as one
can nowadays easily �nd for training image classi�ers or produce one at ease. However, preparing
an object detection dataset is di�cult since �nding object(s) of interest, putting a bounding box
around each object, and labeling them is very cumbersome, tiresome, and error-prone. Especially
in generic object detection, preparing object class and scale balanced datasets from scratch is
near impossible considering the sheer amount of images required to train an accurate object
detector.

Due to this lack of robust and abundant object detection datasets, data augmentation has be-
come integral to training deep learning models, often signi�cantly in�uencing model performance
based on the quality of the chosen augmentation techniques. Some of the standard practices in
data augmentation include random resizing or cropping, randomly altering the brightness, con-
trast, or saturation of an image, rotating an image, and adding noises or dropping out certain
parts or pixels of an image. However, the new images produced via these augmentation tech-
niques maintain the relative positions of objects or will not change the set of objects on an
image unless an object is entirely cropped out of an image. Hence, even if the augmented image
is more bright or darker, noised or rotated from the respective source image, the objects are
still the same and in the same viewpoints from one another. Moreover, these geometrical or
morphological augmentations will not correct the dataset's class and scale imbalance of object
representations.

In addition to the geometrical and morphological online data augmentations we mentioned
earlier, copy-paste-based augmentations such as CutMix and alpha-blending-based or more ad-
vanced approaches based on generative adversarial networks (GANs) are becoming alternative
augmentation techniques. As the name suggests, copy-paste augmentation is simply copying an
object from one image and populating it on a new background image. The copy-pasting could be
context-aware or random. The challenge with the copy-paste method is that the pasting process
leaves visual artifacts that the network quickly picks, misleading the detector into looking for
the artifacts rather than the object's core features, hence lacking generalization. To alleviate
this, mask-based blending is required, which is another time-consuming process since producing
a mask is even more di�cult than annotating bounding boxes. The other approaches, such as
modeling visual contexts or training networks to produce arti�cial images, require sophisticated
designing and building of a network that trains and creates arti�cial images suitable for speci�c
purposes.

This work presents our synthetic image generator (SIG) based on copy-paste and OpenCV's
seamless clone functionality. We develop a unique and robust algorithm to select objects from

Chapter 0

an existing dataset and create a new, well-annotated, photo-realistic supplementary dataset to
boost the existing object detection dataset. The OpenCV's seamless clone of images is based
on Poisson image editing. Though the cloning leaves few artifacts that could distract the object
detection training from focusing on the primary object features, we try to remove or alleviate
the e�ect of the artifacts by using various �lterings such as Gaussian Blurring or Median Blur-
ring. We randomly apply contrast sharpening and size augmentation on small objects to boost
their resolution and visibility. Moreover, to avoid the redundancy of objects in the dataset, we
apply random geometric and morphological augmentation on every object we clone onto a new
background.

Below we explain our SIG step-by-step:

Step 1: Prepare Background Images:- We write a script that runs on web browsers
such as google chrome to download thousands of images with minimal objects in them.
We run our script on Flickr, Pinterest, and Google Images with search keywords such as a
landmark, weather, empty city, streets, etc. We download the URLs and the images. We
use these images as a background to populate our cloned objects from the object detection
dataset.

Step 2: Prepare Annotated Object Detection Dataset:- Our SIG requires an exist-
ing object detection annotation, a text �le containing a list of all training (and validation)
image paths with all bounding box information of all objects on an image. The annotation
should be written in Pascal VOC format as shown below:

Image1_path x11, y11, x12, y12, c1 x21, y21, x22, y22, c2 x31, y31, x32, y32, c3 . . .
Image2_path x11, y11, x12, y12, c1 . . .
Image2_path x11, y11, x12, y12, c1 x21, y21, x22, y22, c2 . . .
. . .

Each line in the annotation represents an image and the bounding boxes of all objects
on the image. xij or yij corresponds to the top-left and bottom-right coordinates of each
object on the image, as shown in Figure 1. The ci in the annotation stands for the object's
class.

Figure 1: Illustration of Bounding Box Ground-Truth Annotation

In addition to the training images, one should also prepare object masks, though not

127

Chapter 0

mandatory but will signi�cantly impact the quality of the seamless clone. In our case, we
used the Pascal VOC and COCO datasets and the segmentation masks provided within
the datasets.

Step 3: Populating the objects:- Once we prepare the background images and some
preexisting object detection datasets (e.g., Pascal VOC or COCO datasets) with segmen-
tation masks, we follow a step-by-step procedure to randomly select objects from ground
truth and clone them onto a new background to create a new seamless and photo-realistic
dataset. This step-by-step �ow is best explained using a �owchart as shown in �gure 2. As
seen on the �owchart, selecting objects, followed by additional augmentations and place-
ment on to background image, involves several stages. To explain the �owchart brie�y:

1. We randomly pick objects from an image until the cumulative sum of the IoU of the
selected objects can at least cover the entirety of the background image. We calculate
the IoU of the objects against the background image by assuming all objects top left
corner to be pasted at the index (0,0) of the image. If the total IoU of the selected
objects is greater or equal to 1.0, then that guarantees that the selected objects, if
pasted on the background in some order, will cover the area of the object. That is
not a requirement but is a means to control how many objects to select and not to
underutilize the background image area. If the IoU is less than 1.0, then we repeat this
step with a di�erent image so that the newly created image has objects mixed from
various images. Note that we also apply random augmentations from the standard
image processing techniques to ensure the robustness of our dataset.

2. After picking a certain number of objects with overall IoU >= 1.0, we apply a fairly
complex algorithm to determine paste coordinates for the selected objects. The algo-
rithm ensures that no objects overlap or at least not signi�cantly, and the background
image space is utilized e�ciently.

3. Finally, after populating the objects onto the background image, we apply random
histogram equalization techniques and gamma correction to smooth out the brightness
and contrast of the newly created image. At last, we save our new image and the
bounding box coordinates and object classes and repeat the process all over again to
generate as many new images as possible.

Figure 3 shows sample outputs of our synthetic image generator or SIG for short. The �gure
shows the newly generated images on the left and the bounding boxes drawn on each object on
the right for better visibility and to showcase the quality of our generator. The �owchart shown
in Figure 2 is simplistic as it leaves many little but vital details for brevity. For example, when
cloning an object, e.g., a sofa, a bus, or a horse being ridden by a person, etc., it is evident
that there will be part of objects that will be brought with these objects and cloned on the new
image. Thus, if a signi�cant portion of inner objects is cloned(copied) with other objects, we
must also annotate the coordinates of these piggybacked objects as well, given that these inner
objects also are our objects of interest. Figure 3 also shows an example of cases where such inner
objects are annotated with a bigger and outer object around them.

128

Chapter 0

Figure 2: Minimal �owchart showing the overall process �ow of our synthetic image generator (SIG).
Note that SIG is an o�ine data augmentation, meaning the augmented or arti�cial images are generated
before training is started not during training. Using SIG we can generate unlimited unique images to
supplement an existing object detection dataset with seamlessly generated photo-realistic new images. We
have used SIG in training MultiGridDet, explained in Chapter 7 brie�y. There is slight change, though
than the version we presented in chapter 7. The version presented in chapter 7 does not use object mask
and hence relatively leaves visible edges on an image since it is a simple copy-paste. However, the version
presented in this chapter uses seamless cloning using Poisson Image Editing and Various gradient and
Histogram Equalization based image processing. As a result current SIG version is more powerful and
generates more seamless images at extremely high speed.

129

Chapter 0

Figure 3: Sample synthetically generated images using our SIG Algorithm. Note that, each image
depicted here are duplicates , one without bounding boxes on the left and the other pair with bounding
boxes drawn around each objects on the right. And also note how no objects overlap and each output
image have randomly varying sizes.

130

Appendix

Analysis of Our Inference
Acceleration Implementation
on DDGNet, DenseYOLO and
YOLOv2

In chapter 8, we explained our inference accelerator by implementing YOLOv2 object detection
acceleration and published our result in the journal of Electronics [78]. However, even though
we presented our result on YOLOv2 we also tested our inference implementation on DDGNet
[81] and DenseYOLO [80], our own object detection models presented in Chapter 5 and Chapter
6, respectively. The Vivado interface view of our implementation on ZCU102 is depicted in
Figure 4. The �gure shows the AXI-DMA interface view between the processor system and
custom accelerator labeled FPGAAcc0 to say FPGA accelerator and the DDR memory interface
through AXI smart interconnect.

Figure 4: Vivado Interface View of our inference accelerator.

Next, we present the details of our comparison of inference acceleration tested with all three
models mentioned earlier. Table 1 presents the parameters of the three models, and as such, the
three models have the same backbone but di�erent detection heads and, as a result, di�erent
post-processing. Moreover, Table 2 shows the comparison of throughput or latency, GOPS
(Giga Operations Per Seconds), and DSP E�ciency of the three models on ZYNQ 7020 and
ZCU 102. As explained in Chapter 8 we calculate latency and GOP using Equation 8.18 and
8.19 respectively. Accordingly, as seen from the result in Table 2, our two models, DDGNet
and DenseYOLO are slightly faster and have lighter output detection heads. DDGNet and
DenseYOLO give an output prediction in 229 milliseconds, whereas it takes 244 milliseconds
for YOLOv2. However, these delays are before the post-processing, that is, before the non-max-
suppression and thresholding of the output layer. Given our models' lighter output heads, further
speed gains are an obvious expectation.

Chapter 0

Table 1: YOLOv2 vs DDGNet vs DenseYOLO models layer parameter comparisons and tile read or write access cycles.
As explained in Chapter 8 the tile sizes for acceleration implementation on ZYNQ 7020 and ZCU102 boards are di�erent.
See chapter 8 Table 8.4 for details of the tile size choices of each boards. As seen in this table the three models have
similar backbone network,Darknet-19, and di�erent detection head. As a result, the inference implementation discussed
in chapter 8 fully applies to all three models.

ZYNQ 7020 ZCU102

Layer
Type

Layers Nix Niy Nif Nkx Nky Nox Noy Nof
Nif

Tif

Nox
Tox

Noy

Toy

Nof

Tof

Nox
Tox

Noy

Toy

Nof

Tof

Darknet-19
Back Bone

Conv 0 416 416 3 3 3 416 416 32 1 16 16 8 8 1 1

Max 1 416 416 32 2 2 208 208 32 8 8 8 4 4 1 1

Conv 2 208 208 32 3 3 208 208 64 8 8 8 4 4 2 1

Max 3 208 208 64 2 2 104 104 64 16 4 4 2 2 2 1

Conv 4 104 104 64 3 3 104 104 128 16 4 4 2 2 4 2

Conv 5 104 104 128 1 1 104 104 64 32 4 4 2 2 2 1

Conv 6 104 104 64 3 3 104 104 128 16 4 4 2 2 4 2

Max 7 104 104 128 2 2 52 52 128 32 2 2 1 1 4 2

Conv 8 52 52 128 3 3 52 52 256 32 2 2 1 1 8 4

Conv 9 52 52 256 1 1 52 52 128 64 2 2 1 1 4 2

Conv 10 52 52 128 3 3 52 52 256 32 2 2 1 1 8 4

Max 11 52 52 256 2 2 26 26 256 64 1 1 1 1 8 4

Conv 12 26 26 256 3 3 26 26 512 64 1 1 1 1 16 8

Conv 13 26 26 512 1 1 26 26 256 128 1 1 1 1 8 4

Conv 14 26 26 256 3 3 26 26 512 64 1 1 1 1 16 8

Conv 15 26 26 512 1 1 26 26 256 128 1 1 1 1 8 4

Conv 16 26 26 256 3 3 26 26 512 64 1 1 1 1 16 8

Max 17 26 26 512 2 2 13 13 512 128 1 1 1 1 16 8

Conv 18 13 13 512 3 3 13 13 1024 128 1 1 1 1 32 16

Conv 19 13 13 1024 1 1 13 13 512 256 1 1 1 1 16 8

Conv 20 13 13 512 3 3 13 13 1024 128 1 1 1 1 32 16

Conv 21 13 13 1024 1 1 13 13 512 256 1 1 1 1 16 8

Conv 22 13 13 512 3 3 13 13 1024 128 1 1 1 1 32 16

Conv 23 13 13 1024 3 3 13 13 1024 256 1 1 1 1 32 16

Conv 24 13 13 1024 3 3 13 13 1024 256 1 1 1 1 32 16

YOLOv2 De-
tection Head

Route 25 Layer 16 to Layer 25 0 0 0 0 0 0 0

Conv 26 26 26 512 1 1 26 26 64 128 1 1 1 1 2 1

Reorg 27 26 26 64 13 13 256 16 1 1 1 1 8 4

Concat 28 13 13 1280 0 1 1 1 1 40 20

Conv 29 13 13 1280 3 3 13 13 1024 320 1 1 1 1 32 16

Conv 30 13 13 1024 1 1 13 13 425 256 1 1 1 1 14 7

head 31 13 13 425 post processing 0 0 0 0 0 0 0

DDGNet De-
tection Head

Reorg 25 13 13 1024 52 52 64 256 2 2 1 1 2 1

Route 26 Layer 16 to Layer 26 0 0 0 0 0 0 0

Conv 27 26 26 512 1 1 26 26 256 128 1 1 1 1 8 4

Reorg 28 26 26 256 52 52 64 64 2 2 1 1 2 1

Concat 29 52 52 128 0 2 2 1 1 4 2

Conv 30 52 52 128 3 3 52 52 256 32 2 2 1 1 8 4

Conv 31 52 52 256 1 1 52 52 95 64 2 2 1 1 3 2

head 32 52 52 95 post processing 0 0 0 0 0 0 0

DenseYOLO
Detection
Head

Reorg 25 13 13 1024 52 52 64 256 2 2 1 1 2 1

Route 26 Layer 16 to Layer 26 0 0 0 0 0 0 0

Conv 27 26 26 512 1 1 26 26 256 128 1 1 1 1 8 4

Reorg 28 26 26 256 52 52 64 64 2 2 1 1 2 1

Concat 29 52 52 128 0 2 2 1 1 4 2

Conv 30 52 52 128 3 3 52 52 256 32 2 2 1 1 8 4

Conv 31 52 52 256 1 1 52 52 90 64 2 2 1 1 3 2

head 32 52 52 90 post processing 0 0 0 0 0 0 0

132

Chapter 0

Table 2: YOLOv2 vs DDGNET vs DenseYOLO Latency, GOPS and DSP e�ciency Comparison.

Layer
Type

Layers Execute
Latency
ZCU102

Execute
Latency
ZYNQ
7020

GOP
ZCU102

GOP
ZYNQ
7020

DSP Ef-
�ciency
ZCU102

DSP Ef-
�ciency
ZYNQ
7020

Darknet-19
Back Bone

Conv 0 5.19 10.39 1.20 0.60 0.14 0.56

Max 1 25.36 50.79 0.00 0.00 1 1

Conv 2 10.38 41.55 2.39 2.39 1 1

Max 3 12.68 25.38 0.00 0.00 1 1

Conv 4 10.38 41.55 2.39 2.39 1 1

Conv 5 1.15 4.62 0.27 0.27 1 1

Conv 6 10.38 41.55 2.39 2.39 1 1

Max 7 6.34 12.69 0.00 0.00 1 1

Conv 8 10.38 41.55 2.39 2.39 1 1

Conv 9 1.15 4.62 0.27 0.27 1 1

Conv 10 10.38 41.55 2.39 2.39 1 1

Max 11 3.17 6.35 0.00 0.00 1 1

Conv 12 10.38 41.55 2.39 2.39 1 1

Conv 13 1.15 4.62 0.27 0.27 1 1

Conv 14 10.38 41.55 2.39 2.39 1 1

Conv 15 1.15 4.62 0.27 0.27 1 1

Conv 16 10.38 41.55 2.39 2.39 1 1

Max 17 1.58 3.17 0.00 0.00 1 1

Conv 18 10.38 41.55 2.39 2.39 1 1

Conv 19 1.15 4.62 0.27 0.27 1 1

Conv 20 10.38 41.55 2.39 2.39 1 1

Conv 21 1.15 4.62 0.27 0.27 1 1

Conv 22 10.38 41.55 2.39 2.39 1 1

Conv 23 20.76 83.11 4.78 4.78 1 1

Conv 24 20.76 83.11 4.78 4.78 1 1

YOLOv2 De-
tection Head

Route 25 0.00 0.00 0.00 0.00 1 1

Conv 26 0.29 1.15 0.07 0.07 1 1

Reorg 27 0.00 0.00 0.00 0.00 1 1

Concat 28 0.00 0.00 0.00 0.00 1 1

Conv 29 25.96 103.89 5.98 5.98 1 1

Conv 30 1.01 4.04 0.23 0.23 0.95 0.95

head 31 0.00 0.00 0.00 0.00 1 1

Total 244.23 868.87 44.96 44.37 0.97 0.98

GOP/S 184.10 51.06

DDGNet De-
tection Head

Reorg 25 0 0 0 0 1 1

Route 26 0 0 0 0 1 1

Conv 27 1.15 4.62 0.27 0.27 1 1

Reorg 28 0 0 0 0 1 1

Concat 29 0 0 0 0 1 1

Conv 30 10.38 41.55 2.39 2.39 1.00 1.00

Conv 31 1.15 3.46 0.27 0.20 0.74 0.99

head 31 0.00 0.00 0.00 0.00 1.00 1.00

Total 229.67 809.42 41.61 40.94 0.97 0.99

GOP/S 181.17 50.58

DenseYOLO
Detection
Head

Reorg 25 0 0 0 0 1 1

Route 26 0 0 0 0 1 1

Conv 27 1.15 4.62 0.27 0.27 1 1

Reorg 28 0 0 0 0 1 1

Concat 29 0 0 0 0 1 1

Conv 30 10.38 41.55 2.39 2.39 1 1

Conv 31 1.15 3.46 0.27 0.20 0.70 0.94

head 31 0 0 0 0 1 1

Total 229.67 809.42 41.61 40.94 0.96 0.99

GOP/S 181.17 50.58

133

Chapter 0

134

	Acknowledgments
	Contents
	Introduction
	Introduction
	Motivation
	Statement of the Problem
	Objectives and Major Contributions
	Dissertation Structure

	I Theory Overview
	Overview of Basics of Deep Learning
	Overview of Basics of Deep Learning
	Introduction
	Definitions
	Artificial Neural Networks
	Convolutional Neural Networks
	Training Deep Learning Model
	Conclusion

	Object Detection and Tracking: Study of Current Trends and State-of-the-art approaches
	Object Detection and Tracking: Study of Current Trends and State-of-the-art approaches
	Introduction
	Modern Object Detection Trends
	Two-Stage Object Detection
	One-Stage Object Detection

	Object Tracking
	Conclusion

	FPGA as Hardware Accelerator for Object Detection and Tracking
	FPGA as Hardware Accelerator for Object Detection and Tracking
	Introduction
	Why FPGA?
	Short Review of FPGA Based Deep Learning Acceleration
	Optimizations based on transforming the algorithm of convolution
	Loop Optimizations
	Optimization based on lightweight implementation

	Hardware-accelerated deep CNN design and implementation flow
	Conclusion

	II Experiments and Major Contributions
	Lightweight Generic Object Detector using binary encoding
	Lightweight Generic Object Detector using binary encoding
	Objectives
	Introduction
	Related Works
	Densification: Generation of Dense Detection Grids
	Training
	Coordinate loss
	Objectness loss
	Class prediction Loss: Ternary Cross Entropy (TCE) Loss

	Inference
	Three Way Non-Max Suppression (3WayNMS)

	Experiment
	Performance on Pascal VOC Object Detection Dataset
	Performance on COCO Object Detection Dataset

	Conclusion

	Yet Faster, Lighter and More Accurate YOLO
	Yet Faster, Lighter and More Accurate YOLO
	Objective
	Introduction
	Related Works
	DenseYOLO
	Training
	Ground-Truth Annotation
	Training Loss function

	Inference
	Experiment
	Performance on Pascal VOC Object Detection Dataset
	Performance on COCO Object Detection Dataset

	Conclusion

	MultiGrid Redundant Bounding Box Annotation for Accurate Object Detection
	MultiGrid Redundant Bounding Box Annotation for Accurate Object Detection
	Objective
	Introduction
	Related Works
	Multi-Grid Assignment
	Training
	The Detection Network: MultiGridDet
	The Loss function
	Offline Synthetic Data Generation

	Experiment
	Conclusion

	Resource and Power Efficient High-Performance Object Detection Inference Acceleration Using FPGA
	Resource and Power Efficient High-Performance Object Detection Inference Acceleration Using FPGA
	Objective
	Introduction
	Related Works
	Background
	Overview of Object Detection Models
	Convolution Layer
	Pooling Layer
	Depth-to-Space or Space-to-Depth Reorganization Layer
	Batch Normalization Layer
	Leaky Relu Activation Layer

	The Proposed Hardware Acceleration of Object Detection Inference
	General Overview
	Loop Tiling
	Double Buffering
	Data Quantization and Weight Reorganization
	Convolution Processor
	Max-Pooling Processor
	Leaky Relu Hardware Processor

	Results and Discussions
	Conclusions

	III Conclusions and Future Works
	Conclusion and Future Works
	General Conclusion
	Future Works and Perspectives

	List of Publications
	Bibliography
	Appendix Synthetic Image Generator(SIG) for Supplementing Object Detection and Segmentation Datasets
	Appendix Analysis of Our Inference Acceleration Implementation on DDGNet, DenseYOLO and YOLOv2

