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I would also like to

Our models achieve a comparable accuracy while being lightweight and faster compared with some of the top state-of-the-art detectors. We also propose and implement object detection inference acceleration using FPGA around the objects. Object detection, having passed through several evolutions and progressions, nowadays relies on the successes of image classification networks based on deep convolutional neural networks. However, as the depth and complication of convolutional neural networks increased, detection speed reduced, and accuracy increased. Unfortunately, most computer vision applications, such as real-time object tracking on an embedded system, requires lightweight, fast and accurate object detection. As a result, object detection acceleration has become a hot research area, with much attention given to FPGA-based acceleration due to FPGA's highenergy efficiency, high-data bandwidth, and flexible programmability. This Ph.D. dissertation proposes incrementally improving object detection models by repurposing existing well-known object detectors into lighter, more accurate, and faster models. boards of different capacities and resources. We focus on high resource and energy-efficient inference acceleration implementations while preserving the object detector's accuracy performance. Last but not least, we present various auxiliary contributions such as a highly significant synthetic image generation or augmentation technique for training an object detector which is critical for achieving a highperformance object detector. Overall, our work in this thesis has two parts: designing and implementing lightweight and accurate CPU and GPU-based object detection models and implementing high-throughput, energy, and resource-efficient object detection inference acceleration on an FPGA.
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Introduction

In this chapter, we will provide the overall theme of this thesis work. We will discuss our work's motivation, objectives, and signicant contributions. In the end, we present the structure of our dissertation document with an executive summary of each subsequent chapter.

Motivation

We humans can perceive any visible object in front of us eortlessly and with great detail in just a single glance or blink of an eye. These include identifying where an object part begins and ends, its color, size, and the number of objects, to list a few things we can do in a single glance. It is an age-old quest for researchers to mimic this natural ability of human beings using machines after all, vision is one of the most valuable and dominant senses a human depends on to run his or her daily errands. If a machine can see and dependably understand what it sees without human assistance or intervention, that would undoubtedly be one of the most outstanding achievements in modern human history. Considering only the positive repercussion of this achievement, one can think of an innite application that an intelligent machine can render to better our existence, such as surveillance and tracking, medical technology, environmental

protection, text-to-audio conversion, and vice versa, uncrewed vehicles technology, to list the few.

Though progress is still in the infant stage of understanding and mimicking human intelligence using computers, many breakthrough achievements have been achieved in this quest. Blind users can now explore photos by touch with Microsoft's Seeing AI [START_REF] Posey | Microsoft 'Seeing AI': Imagining a New Use for Computer Vision[END_REF]; AI machine has beaten humans in Image classication [START_REF] He | Delving deep into rectiers: Surpassing human-level performance on imagenet classication[END_REF]; AI Beats Radiologists in Detecting Lung Cancer [START_REF] Ardila | End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[END_REF]; Two new planets discovered using articial intelligence [START_REF] Dattilo | Identifying exoplanets with deep learning. ii. two new super-earths uncovered by a neural network in k2 data[END_REF] are success stories showcasing the potential of articial intelligence. Moreover, AI successfully tackles the daunting email spam ltering task [START_REF] Gbenga | Machine learning for email spam ltering: review, approaches and open research problems[END_REF] and face recognition [START_REF] Taigman | Deepface: Closing the gap to human-level performance in face verication[END_REF] functionality running on our favorite social media applications.

Even though these growths and phenomenal advancements of articial intelligence, particularly computer vision, are admirable, the programming complexity, the vast computational resource requirement of the models, their expensive electrical power consumption, and lack of real-time operational speed are bottlenecks that we have to reckon with yet. Embedded systems 1.2. Statement of the Problem Chapter 1 such as implantable medical chips, smart city camera systems for trac control, wireless vision networks for farms, borders, personal property surveillance, uncrewed aerial or land vehicles, etc., are all resource-constrained platforms that could benet from the advancement of AI. However, current AI applications are too big, high resource and power demanding, and also slow. As AI systems' accuracy increases and becomes dependable, research on making them lightweight, realtime, and less complex is getting traction and top priority. This fact brings us to the motivation of this thesis which is the design and implementation of a lightweight, fast and accurate generic object detection . Object detection is one of the most critical computer vision applications whose objective is to precisely locate all known objects on an image or a video frame. In this regard, we intend to contribute by proposing lightweight, fast, and accurate object detection and its hardware acceleration architecture suited for embedded systems using FPGA.

Statement of the Problem

Object detection one of the most critical computer vision applications. It has several real-world applications such as face detection and tracking, emotion recognition, pedestrian detection and tracking, property surveillance, video analysis, numerous military use, medical image analysis, and the list goes on. Most of these applications are needed in resource-constrained environments such as embedded systems where memory storage, battery consumption, and processor processing capacity are adversely low. For example, a path following robot, wireless sensor network of smart surveillance camera system running on a remote secure property, wearable patient monitoring and assistance system, et cetera are embedded systems that could benet from object detection . Even if the deployment is on unconstrained resource environments, object detection should be real-time; after all, humans need computers for accuracy, speed, and ease of doing tasks.

However, the current trend in object detection focuses on boosting accuracy, with less regard for speed and used resources, by using deep learning techniques with several layers and millions of parameters. In a desktop or laptop computer system, the increasing speed and memory of graphical processing units, GPUs, along with readily available software frameworks for creating sophisticated object detectors, has made it easy for researchers to keep increasing the depth of their object detection model with anticipation of obtaining an accurate detector, of course at the cost of speed. Nowadays, nding a commendable balance between speed and accuracy while requiring fewer resources is an active computer vision research question. A framework called oneshot or one-stage object detection is often regarded as light, fast, and commendably accurate even-though usually less accurate than two-stage object detection. This thesis proposes ways to make one-shot object detection even faster, lighter, and competitively accurate against the two-stage object detectors. We implement our object detectors compare them against state-ofthe-art detectors. We also implement a generic hardware accelerator for object detection based on our models using two low-cost FPGA boards.

Objectives and Major Contributions

This thesis work aims to design and implement deep learning-based lightweight, real-time, accurate, and generic object detection . We also aim to make object detection energy ecient and suitable for embedded systems, and hence we implement our lightweight and accurate object detector using FPGA for an increased inference speed. In general, the following are specic objectives and deliverables of our research work on object detection implementation using deep CNN and its inference acceleration using custom buit accelerators built on an FPGA:

Design and implementation of CPU and GPU-based fast, accurate, and lightweight one-shot object detector. Here we propose three dierent deep convolutional neural network-based object detection methods. All three models have one core concept: treating object detection as a single unied feedforward regression problem instead of the pipelined two-stage framework that relies on an underlying object region proposal network. The rst model focuses on object class encoding, the second model proposes change on the use of anchor boxes in a one-stage object detector, and the third model incorporates multiscale detection for increased detection accuracy while maintaining a lightweight and high-detection speed.

We design and implement hardware accelerators based on our object detection models on two FPGAs with dierent onboard resources. We compare our object acceleration with both other similar implementations and against our GPU-based implementation to investigate resource and power consumption and inference speed gain.

We also propose an ecient and straightforward synthetic data augmentation technique 

Introduction

Out of the ve sense organs in our body, vision is the most important yet complex one. Most of our intelligence depends on our ability to see and our brain's ability to process visual inputs almost eortlessly. The sole goal of computer vision is to mimic this ability of our brain in processing visual inputs. Computer vision evolved over many stages of milestones, starting from the early years of the 1950s and 60s till the present date, though we are still very far from fully mimicking the human vision system, if possible at all. Early computer vision approaches, also referred to by the umbrella term traditional computer vision methods, depended on human experts' handcrafted features and shallow classier networks or descriptor algorithms such as SIFT [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF], HOG [8], and SVM [9]. Though still widely used and sometimes best tting for certain types of applications, the challenge with these traditional approaches was the lack of end-to-end trainability and the need for manual feature crafting by an expert for all object categories.

Nowadays, deep articial neural networks, particularly convolutional neural networks, dominate computer vision applications. Before we delve into object detection and tracking, it is customary to briey introduce articial neural networks and convolutional neural networks since they are responsible for computer vision in general and object detection, in particular, be at its pinnacle of modern-day success.

Denitions

Articial intelligence, Machine Learning, and Deep Learning Articial intelligence is a growingly thriving hot area of study with application in almost every science. This popularity is prone to introduce confusing terms and blurred boundaries on de-Chapter 2

2.2. Denitions nitions and scopes of some core concepts in AI. Here we briey introduce and try to clear those confusions. We begin by dening articial intelligence, machine learning, and deep learning. Since the inception of machines that can solve complex mathematical or statistical problems, humans have been in constant quest of making these machines have the ability to think like humans or even better. This process of enabling machines to mimic human intelligence is called articial intelligence or AI [START_REF] Christopher | Pattern recognition and machine learning[END_REF]. Programmable machines or computers easily outperform humans in speed and accuracy in problems with formal rules and procedures such as mathematical or logical operations, thanks to the high computing capacity of the underlying hardware and sophisticated application softwares. However, computers are way behind us,humans, on those problems we humans eortlessly solve, like naming and locating objects on an image or reading someone else's handwriting. Even though we do these tasks seemingly eortlessly, enabling computers to do the same is not a trivial task since we do not have formal rules or algorithms to solve such tasks. Instead, we expect machines to learn from representative data and generalize to other similar problems or tasks. This mimicry of human intelligence through learning from representative data is called machine learning. In general, machine learning is a subset of AI that uses statistical learning algorithms that builds a system that can predict an output from experience or intelligence obtained from prior exposure to similar, not necessarily the same, training representative data.

Based on the data and the problems the machine learning systems target, we can classify machine learning techniques into three categories: supervised, unsupervised, and reinforcement learning. Table 2.1 summarizes the distinction between the three dierent types of machine learnings.

Some of the most successful machine learning algorithms include articial neural networks (ANN), support vector machines (SVM), decision trees, and Bayesian models. These algorithms are further classied into shallow learning and deep learning. Even though there is no standard as to when to call a particular algorithm shallow or deep, generally, deep learning algorithms have more connections and more than one hidden layer. Nowadays, the success of articial neural networks, particularly the one based on convolution, namely referred to as convolutional neural network or CNN, overshadows the other traditional shallow learning networks. CNN's inception is to articially mimic the human brain and usually has thousands or millions of connections.

Chapter 2

In summary, deep learning is a subset of machine learning, specically deep articial neural network-based machine learning, where the interconnection of more than one hidden layer is used to increase a model's accuracy. The model's target could be the natural language processing, image recognition, detection, segmentation, object tracking, etc. Furthermore, machine learning, in turn, is a subset of articial intelligence, meaning, not all articial intelligence is machine learning intelligence. For example, a computer calculator application is an articial intelligence but not a machine learning intelligence since the computer can solve calculation problems due to stored programs rather than the machine's learning from data. Figure 2.1 shows this relationship.

By this, we claim to have cleared the ambiguity between articial intelligence, machine learning, and deep learning and move on to further elaborate phrases directly related to our thesis work.

These are image classication, object detection, segmentation, and tracking.

Supervised Learning

Supervised learning is a machine learning technique in which the input dataset has labeled, named, target output pair. For example, in a handwritten digit recognition task, all handwritten input digits have a corresponding label of 0 9.

Unsupervised Learning

Unsupervised learning is a machine learning technique in which the system under training is expected to distinguish patterns among the input data without being pre-fed with the expected output pair. A typical example is clustering problems, such as K-means clustering.

Reinforcement Learning

Reinforcement learning or semi-supervised learning is a class of machine learning in which learning happens by interacting with the environment, not necessarily the input and output pairs only. Here we describe the current state of the system, specify a goal, provide a list of allowable actions and their environmental constraints for their outcomes, and let the machine learning model experience the process of achieving the goal by itself using the principle of trial and error to maximize some form of cumulative reward. An example is the Markov decision process (MDP). Object Tracking :-is a computer vision application where an object tracking system, could be a single object or multi-object simultaneous tracking system, assigns a unique ID for each detected object in a video frame and follows the object's (s') progression within the video.

Often a tight bounding box with a unique identifying ID is assigned to each object, and(or the neural network's task is to adjust the weights and biases of each layer so that on the output layer, a particular neuron res more strongly than the rest of the neuron for corresponding input data. The forward per layer calculation of new neural output is called feedforward, whereas the backward process of tuning the weights and biases values is called backpropagation. Furthermore, this feedforward and backpropagation are repeated for several iterations to process all input data and learn common features (weights and biases) that better represent a given input to trigger its corresponding output neuron.

)

Details of working principles and mathematical equations explaining articial neural networks

and backpropagation can be referred to from Michael Nielsen's book titled Neural Networks and Deep Learning. [START_REF] Michael A Nielsen | Neural networks and deep learning[END_REF] Here we summarize it into three steps: (1)Feedforward, (2) Error backpropagation, and (3) Updating weight and bias. To explain the underlying mathematics, we will use MNIST handwritten digits recognition as an example problem to solve using ANN.

Assume the digits are 28x28-pixel images, and when attened, it will be 784 x 1 vector. Our neural network will have two hidden layers, each with 30 neurons and the last output layer of size 10, one neuron for each digit. Figure 2.4 shows these assumptions and the training parameters of each layer (the weight and bias on each layer). Now we explain the maths of the three steps we mentioned above in an enumerated bullet points:

Step 1. The feedforward:-this is the process of traversing through the network forward while calculating new neurons from preceding layer neurons and weight and bias pairs. As explained earlier, an articial neuron is a mathematical value calculated, as shown in Figure 2.3 In the input layer, the attened vector of the image pixels, in this case, the 28 × 28 handwritten digit attened to 784x1, is our input x. Let us call this input layer with n 0 = 784 neurons as layer 0. This layer 0 fully connects with the following hidden layer1 neurons of n 1 = 30. Now since layer 0 neurons fully connect with layer 0 neurons, we will have a connection weight of shape w l 0 = 784 × 30, because after all, by the connection, we mean the multiplying weight matrix. Initially, these weight values are initialized with small random numbers, and the sole purpose of training is to x these randomly initialized weights with learned weights. Optionally, we will also initialize a bias parameter of shape b l 1 = 30 × 1, one bias value for each neuron of layer 1. Now having sorted out our mathematical notations for the rst layer, we explain the steps in feedforward to calculate the new neurons of layer 1 (x l 1 ), from layer 0 neurons (x l 0 ), and weights (w l 0 ) and bias (b l 1 ) as follow:

1. Calculate z j l 1 , an intermediate value before calculating the actual (x l 1 ), using the Equation 2.1 for each neuron of layer 1. In Equation 2.1, j = 1, 2, . . . , 30 stands for each neurons in the rst hidden layer and i = 1, 2, . . . , 784 is for each neuron in the input neuron. Note that for the next hidden layer, the current j becomes i, and the neurons of the second hidden layer are j. This way, i and j interchange and Equation 2.1 are repeatedly used for all layers in the forward propagation.

z j l 1 = n i=0 x i l 0 . w ij l 0 T + b j l 1 (2.1)
2. Chose an activation function f and apply it to z j l 1 to calculate the nal value of the new neurons in the rst hidden layer (x l 1 ) as shown in Equation 2.2. Some common activation functions and their graph is shown in Figure 2.5.

x j l 1 = f z j l 1 (2.2) 2.3. Articial Neural
3. Repeat 1 and 2 for all layers in the forward direction taking the preceding layer as an input the following layer until we calculate the last layer neurons.

Step 2: Backpropagation:-This is where we calculate the error on the nal output layer against the expected target output and propagate the error backward. All neurons contributing to the error will gradually x their corresponding weights and biases so that the next time the network sees the same input, it will trigger its corresponding output neuron correctly. Backpropagation is the most excellent quality of ANNs against traditional machine learning techniques because it enables end-to-end learning without a need for human intervention or the introduction of other feature descriptors.

Following the same approach as in step 1, we will explain the steps in backpropagation. The nal goal in backpropagation is to determine the contribution of each layer's parameters (weights and biases) to the nal-layer error or loss. If a function has two or more variables, we can use a partial derivative of the function against each variable to calculate the eect (contribution)

of the each variable on the function. Backpropagation depends on this mathematical principle. Now to the steps (procedures) in backpropagation:

1. Chose a cost function or loss functions. There are several cost functions for dierent applications and targets. Among them, mean-square-error (MSE) is the one we will use here to explain backpropagation due to its simplicity and the understandable intuition behind it. Let the nal layer (L) output be x L = f z L = ŷ. The expected target vector is y. The cost function C is thus given by Equation 2.3:

C = 1 2n n j=0 (y j -ŷj ) 2 (2.3) 
Since we have ten digits targets, y is a vector with a size ten, and thus the last layer has n = 10. We can rewrite Equation 2.3 by replacing the term ˆyj by Equation 2.2.

C = 1 2n

n j=0

y i -f z j L 2 (2.4) C = 1 2n n j=0 y j -f n i=0 x i L-1 . w ij L-1 T + b j L 2 (2.5)
As seen from Equation 2.5, the cost function depends on the weight and bias parameters considering the x i L-1 part as a constant from the previous layer.

2. Calculate the error: once we formulate the error function, we perform partial dierentiation to determine the contribution of the two variable parameters (weight and bias) to the error.

Similarly, we continue backward for each layer. Equation and 2.7 shows the error induced by weights from layer L -1 and bias on the L layer. The equation for all layers is present in Figure 2.6.

∂C ∂w

(L-1) ij = ∂C ∂Z (L) j . ∂Z (L) j ∂w (L-1) ij (2.6) ∂C ∂b (L) j = ∂C ∂Z (L) j . ∂Z (L) j ∂b (L) j (2.7)
Step 3: Update the weights and biases: This step is called gradient descent since we are computing the gradients (slight changes or nudges to the weight and bias parameters) so that the overall cost descends to a minimum point zero or very close to zero. Sometimes this minimum point happens to be a local minimum rather than a global minimum forcing the system or the training stack at an undesirable stage. There are several proposed solutions to this kind of problem, such as tweaking a learning rate parameter (the rate at which the weight and bias change), restarting the training with better initial weight and bias, increasing or decreasing neurons in the hidden layer, etc. The weight and bias are updated using Equations 2.8 and 2.9, respectively. Equations 2.8 and 2.9 are for the last layer; the remaining layer is presented in Figure 2.6. Note that these formulas are for a single image as an input. However, usually, we train on batches of images at once so that 1) the training will be faster, 2) the network learns more common features from batch images and learns to focus on distinguishing features of each object (image).

w

(L-1) ij = w (L-1) ij -η ∂C ∂w (L-1) ij (2.8) b (L) j = b (L) j -η ∂C ∂b (L) j
(2.9) Local receptive elds :-In ANN a neuron of a layer connects with all neurons of the previous layer with a matrix of a multiplier called weights. However, a neuron in CNN is connected with a few neurons of the preceding layer restricted to a small area called the receptive eld. Similar to ANN, when we say connection, we mean a multiplying weight matrix. The kernel is usually square-shaped with odd-numbered sides commonly in the range of 1 to 11.

Shared weights and biases :-During convolution, we use the same kernel or lter, hence shared weight and bias, by sliding and convolving it on the local receptive of the preceding layer. We can use more than one kernel on a given convolutional layer to produce more planes of feature maps on the following layer.

Pooling :-Pooling is a form of down-sampling the size of the feature map outputs of the convolutional layer. 

h ′ = h + 2p c -f c s c + 1
(2.10)

w ′ = w + 2p c -f c s c + 1 (2.11)
Similarly, for the pooling layer, we consider a pooling kernel of f p × f p and a pooling stride of s p × s p and the resulting feature map after the pooling will have a height of h ′′ and width of w ′′ calculated by Equations 2.12 and 2.13:

h ′′ = h ′ + 2p p -f p s p + 1
(2.12)

w ′′ = w ′ + 2p p -f c s p + 1 (2.13)
Figure 2.7 shows only the convolution and pooling layer of a CNN network. However, a typical deep CNN will have many more convolutional and other layers such as batch normalization and activation layers though the convolutional layer is its underpinning. Below we will explain some of these layers one by one. The typical approach to solving such problems is to use some sort of normalization on the output of one layer before inputting it to the next layer (the next convolutional or fully connected layer).

Batch Normalization Layer

In general, we have two standard normalization practices. [START_REF] Posey | Microsoft 'Seeing AI': Imagining a New Use for Computer Vision[END_REF] normalizing the data to a value between 0 and 1, using Equation 2.14 or (2) normalizing it to have a mean of zero and standard deviation of one so that the data would be a normal distribution. We use Equation 2.15 for the second type of normalization. In the equations, x is the input data, and m and s are the mean and standard deviation of the data, respectively.

x normalized ← x -µ x max -x min (2.14) 

x normalized ← x -µ σ (2.
σ 2 B ← 1 m m i=1 (x i -µ B ) 2
(2.17) 

x i ← x i -µ B σ 2 B + ϵ (2.18) y i ← γ x i + β ≡ BN γ,β (x i ) (2.

Activation Layer

The activation layer, also called the non-linearity layer, takes the convolutional layer output and produces an activation map. It is an elementwise operation over an input tensor or matrix, and hence the resulting tensor or matrix will also have the same shape and size as the input. We have already discussed some of the widely used activation layer functions in earlier section,see Figure 2.5. While using these functions in CNN, we only have to remember that the operations are on higher-order matrix or tensors such as 3D or more.

Fully Connected Layer

As the name suggests, Fully connected layers are a complete one-to-one connection of all previous neurons to all subsequent layer activation neurons, as shown in Figure 2.4. In CNN, fully connected layers are usually used on the last few layers and the output layer to classify the output of the CNN network into the classes of objects or images. Due to the full connection, they are the second most resource-consuming processes and lead to heavy networks.

Dropout Layer

Overtting and undertting are two of the most common deep learning challenges. Overtting is when the neural network is too familiarized with the training set but underperforming on the test set. Overtting usually happens when the network has too many neurons to represent the dataset or a small training dataset. One remedy is to remove some layers or neurons of the hidden layers and retrain or increase the size of the training dataset and train further. The Dropout layer in the neural network performs precisely that. Its purpose is to turn o randomly ( that is, set their values to zero) some neurons of a layer it is applied to during training so that the network trains on smaller weight parameters, preventing overtting. This makes the layer look like another network with dierent nodes and connectivity to the prior layer. The eect of Dropout is closely similar to how an ensemble network works since every training iteration makes the network with Dropout appear new network. 

Training Deep Learning Model

Modern machine learning is predominantly dominated by deep learning approaches based on convolutional neural networks, especially for image and video inputs, due to CNN's ability to learn an ample amount of subtle details of its input. More importantly, it is shift and scaleinvariant, meaning, once it is trained well, it can easily recognize an object in any scale, position on an image, and rotations. However, training a deep CNN model is not a trivial job since it requires a massive amount of training data, a cluster of high-performing CPUs and GPUs, and a carefully designed model, usually achieved through time-consuming trial and error-based retraining and hyperparameter tuning process. Below, we summarize some of the basic best practices and stages of training deep CNN to achieve state-of-the-art performance from one's model. However, our below discussion assumes that the developer has thoroughly thought over the problem the machine learning (ML) will solve and hence set an objective; a stage formally can be called the problem denition stage, and we will not be discussing this stage as we only focus on the machine learning part.

1. Prepare Dataset:-Deep learning is a hugely data-hungry learning framework. Moreover, any machine learning is as good as the quality of data it is trained on. Collecting many data by itself may not be enough as the quality of the data for the intended purpose needs to be checked. Quality data for DL has to have at least the following features: The other critical process in dataset preparation is dataset annotation. Dataset annotation is the process of labeling and categorizing all data in the dataset for training, validation, and testing. Data annotation is dependent on the data type (text, audio, image, or video) and the purpose (classication, detection, segmentation, natural language processing, et cetera). It is a laborious, slow, and error-prone process, especially if the purpose is detection or segmentation. The annotated dataset should also be in a simple, compressed, and faster-to-read format so that data reading will not be a bottleneck during training.

2. Data Augmentation:-Data augmentation is a technique for increasing the amount of data by slightly tweaking the copy of existing data through geometric transformation, color augmentation, noise addition, synthetic new data generation, or combining one or more of these techniques. It is a critical pre-processing step even when we think we have enough data to train our model. Often CNN is praised as transformation, scale, viewpoint, and (or) illumination invariant. Nevertheless, these features are achieved or boosted by the data augmentation technique we use. Data augmentation articially exposes the model for all possible types of data the network might encounter in the real-world environment.

Data augmentation can be oine, that is, before training, or online process, meaning augmentation during training.

There are many data augmentation techniques proposed and used over the years, mostly in combination. Some of these include: Even though data augmentation is an essential part of training DL models, over utilizing it is also counterproductive since some augmentation might introduce unrealistic data or be too much and slow the learning of the model. For example, if we do not expect vertically ipped data in the real world, then there is no need to use vertical ipping as an augmentation technique during training stages. Another signicant issue is object detection data augmentation; we must not forget to augment the bounding boxes while augmenting the images. Moreover, some augmentation techniques are known to mess up bounding boxes if used as an augmentation technique for object detection, and thus proper procedure to x the mess created by these augmenters must be taken into consideration. Last but not least, in competitions and challenges performance of a network might be enough to win the challenge. However, in real-world computer vision problems, some other factors are as equally critical as performance. These factors include running speed, resources such as memory and processors required to train and deploy the network, power consumption, data size required to train the network, the input image resolution, or video frame rate. The underlying fact is that there is no standard way to determine or calculate the depth of layers, the number of neurons, or feature maps per layer, or lter size to use per convolutional layer. Hence, one must compromise on the acceptable trade-o between speed, performance, and resources required to design and train a model. minimizing input to output mapping error through optimization functions such as stochastic gradient descent. The loss function needs to be dierentiable. However, performance measure metrics do not. The loss function can sometimes be used as performance evaluation metrics in regression-type problems, such as cosine distance, euclidian distance, or mean square error.

Model performance evaluation metrics depend on the type of task the deep learning model tries to solve, classication, regression, or both as in detection problems. In classication challenges, we have metrics such as accuracy, recall, precision, and F1-score. In regression challenges, we have distance measurement, mean square error, or mean absolute error. We have metrics that combine classication and regression for detection challenges, such as MAP based on average precision for classication accuracy and IoU for measuring overlap between the ground-truth and the predicted bounding boxes. Since the classication and detection metrics are of critical concern in this thesis, we will explain them in more detail as follow one by one.

Before explaining each metric, we would like to introduce an essential term to all classication metrics: confusion matrix . Confusion Matrix is a tabular visualization of the ground-truth labels versus model predictions. Each row of the confusion matrix represents the instances in a predicted class, and each column represents the instances in an actual class. It is not a performance metric on its own but sort of a basis on which other metrics evaluate the results. In order to create a confusion matrix of a classication problem, one must set the null hypothesis, which is the thing our model is supposed to classify as correct classication. For example, if we want our model to look at an image and classify it as a cat image and non-cat image, the null hypothesis is "this is a cat image." The null hypothesis is also called true positive (TP). Based on this, table 2 shows the confusion matrix table for our cat and non-cat image classier. Developing and training a model that works with some measurable and commendable performance is the rst step of the entire endeavor of creating the deep learning model, though of paramount signicance. The end goal is deploying and serving the model for end customer users. Some of the major tasks during deployment involves polishing the model codes from error and for readability and future maintenance, developing a platformindependent container such as docker for the model, a client-side interface application like web-application, mobile or desktop application development, and nally deploying on the appropriate environment which can be either edge device or cloud system. Model deployment is a broad topic and dependant on the purpose of the application, and thus we leave it at this. In general, in this section, we have tried to divide the overall stages or processes of creating and deploying a deep learning training model into seven steps, and we briey tried to discuss the details under each section. We are not claiming that our discussions are complete and that the seven stages we mentioned are exhaustive, but we claim that the most critical topics are at least mentioned as a starting point for someone as a reference. Figure 2.10 shows these stages as equally essential stages of deep learning-based model development stages.

Conclusion

In conclusion, this chapter reviewed the basics of articial neural networks, convolutional neural networks, and the overall process of creating and training a deep learning method to solve an articial intelligence problem. We begin the chapter by dening and demarcating the concepts and scopes of basic terms in computer vision challenge and introducing the analogy of the relationship between biological neural networks and articial neural networks. The arithmetics of an articial neural network, whether based on convolutional or fully connected or mixed layer types, pass through an iterative two-stage process. These are (1) feedforward: a process where new model parameters such as weights and biases are learned layer by layer, and (2) backpropagation: a process where errors on the last layer are propagated backward, tweaking the learned parameters so that the loss on the last layer becomes as minimum as possible. A neural network can be shallow or deep based on the number of intermediate layers. Multiple research and current trends have shown that the more profound the networks are, the more accurate they are. In the next chapter, we will discuss some well-known deep convolutional neural networks for object detection and briey introduce object tracking. Unlike image classiers that only seek to label an image in its entirety into one of the predened categories, object detectors, however, are required to precisely locate all known objects on an image using a tightly-t bounding box around each object and label them correctly.

Traditional object detection techniques follow pipelined stages of processes. We can divide these stages into three. The rst stage of a traditional object detector is to generate candidate region proposals using either method such as Selective Search [START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF], Sliding-Window [8], and Edge-Boxes [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF]. A second stage will extract features of a xed-length vector using feature descriptors such as HOG from the generated candidate regions. The third stage will try to classify the extracted features into one of the object classes with some measure of condence score using methods such as SVM. These methods are not end-to-end trainable, require high expertise in feature extraction, are slow for both training and inference, and are impractical for multi-class generic object detection since more human expertise and time are needed to design features for all object classes. These changed when the neural network, particularly convolutional neural network, based methods beat these old approaches and gave birth to modern object detection

Modern Object Detection Trends

Chapter 3 approaches dominated by CNN-based deep learning networks. In this chapter, we will dive deep into a review of these modern object detection techniques followed by object tracking based on object detection, and then nally, we introduce the role of FPGA in object detection and tracking.

Modern Object Detection Trends

The trend in current state-of-the-art object detection networks is to use a deep convolutional classier network as a background extractor. As pointed in [16], these trends of using a deeper proposed SPPnet [20]. Instead of cropping or warping the image data of all the proposals before computing the CNN features, SPPnet rstly computes all the convolutional features of the whole image and then uses spatial pyramid pooling to extract the xed-size features of each proposal. Figure 3.3 gives the illustration of the spatial pyramid pooling layer (SPP). Based on the feature maps of the last convolutional layer, SPP splits the feature maps of the proposal into 3 × 3 spatial bins, 2 × 2 spatial bins, and 1 × 1 spatial bins, respectively. In each spatial bin, the feature response value is calculated as the maximum of all the features which belong to the same spatial bin (i.e., max-pooling). After that, the outputs of 3 × 3 spatial bins, 2 × 2 spatial bins, and 1 × 1 spatial bins are concatenated as a 21c-dimension feature vector, where c = 256 is the number of feature maps of the last convolutional layer. After concatenation, two fully 

L (p, t) = L cls (p, c) + λ [c ≥ 1] L reg (t, v) (3.1)
where λ balances classication loss and regression loss and [c ≥ 1] equal one if the c ≥ 1 and zero otherwise. Namely, the ROI belonging to the background class does not contribute to the regression loss. The classication loss L cls (p, c) = -log p c is the log loss for true class c. The regression loss L reg is dened by the ground-truth regress target (i.e., (v x , v y , v w , v h )) and a predicted target (i.e., (u x , u y , u w , u h )) as follows:

L loc (t, v) = i ∈ x,y,w,h smoothL 1 (t i , v i ) (3.2) where smoothL 1 (x) = 0.5x 2 , if |x| ≤ 1 |x| -0.5, otherwise (3.3)
Compared to L2 loss used in RCNN and SPPnet, the L1 loss is more robust to outliers.

For proposal generation, RCNN, SPPnet, and Fast RCNN are all based on selective search.

The selective search method uses the handcrafted features and adopts the hierarchical grouping strategies to capture all possible object proposals. Generally, it runs at 2s per image on the common CPU. The detection network of Fast RCNN can run at about 100ms per image on the GPU. Thus, proposal generation of Fast RCNN is more time-consuming compared to the detection network of Fast RCNN. Though selective search can also be re-implemented on the GPU, proposal extraction is still isolated from the detection network of Fast RCNN. Thus, region proposal extraction becomes the bottleneck of Fast RCNN on object detection. To solve this problem, Ren et al. proposed Faster RCNN [22]. (Fast RCNN) are integrated into a unied framework. [22] regression layer has 4k outputs for each sliding window, and the box classication layer has 2k outputs for each sliding window. Generally, three dierent aspect ratios of {1 : 2, 1 : 1, 2 : 1} and three dierent scales of {0.5, 1, 2} are used. Thus, there are nine (i.e., 3 × 3) anchors (i.e., k = 9) at each sliding window. The multitask loss of RPN consists of two parts: classication loss L cls and regression loss L reg which can be written as follows:

L (p, v) = 1 N cls i L cls (p i , c i ) + λ 1 N reg [c i ≥ 1] L reg (t i , v i ) (3.4)
where N cls = (256) and N reg = (about 2400) are the terms to, respectively, normalize classication loss and location loss, λ balances classication loss and regression loss, and 

[c i ≥ 1] is 1 if c i ≥ 1

One-Stage Object Detection

One-stage methods aim to predict object category and object location simultaneously in one network and forward-pass without requiring a region proposal network. Compared to two-stage methods, one-stage methods have much faster detection speed and comparable detection ac-curacy. Methods such as OverFeat [25], YOLO ( YOLOv1 [26], YOLOv2 [27], YOLOv3 [28]), SSD [29], and RetinaNet [30] are pioneers and successful one-stage detectors.

OverFeat

Overfeat is a pioneer model of integrating object detection, localization, and classication tasks into one convolutional neural network. It performs (i) multiple scales image classication at dierent locations on an image using a sliding window and (ii) regress bounding boxes from convolutional feature maps generated for classication using the sliding window technique. It Compared to RCNN and other two-stage networks we discussed above that generates over 2000 region proposals, the output of YOLO is minimal. As a result, YOLO processes relatively few bounding boxes making it one of the lightweight and fastest detectors. However, the downside of having a less dense output layer was a lower performance in today's networks standards though it was very competitive during its publication. Nonetheless, it was a state-of-the-art unied object detector that avoided the need for region proposal or complex pipelined object detection paradigm and yet came on top at its time. Figure 3.8 shows the architecture of the YOLO object detection model.

SSD

The other well-known one-stage detector is SSD [29], short for Single Shot Multibox Detection. SSD, like YOLO, presents a unied one-stage detector. However, instead of the grid-based approach of YOLO, the core feature of SSD is the multiscale object detection scheme they introduced by adding InceptioNet inspired convolutional lters on top of the VGG network.

Due to these multiscale lters, SSD has better performance than YOLO in detecting objects of various scales, specically small, medium, and large objects of the COCO dataset. Figure 3.9 shows the architecture of SSD. Assuming that the number of object classes is c and each feature map predicts k objects, it will result (c + 4) × k × m × n output vector for the given m × n feature maps. The objective loss of SSD is a weighted sum of location loss and condence loss similar to that of Fast RCNN.

RetinaNet

In a bid of making one-stage detectors perform as well as two-stage object detectors in detection accuracy, a model dubbed RetinaNet [30] with its novel classication loss function called focal 

F L (p

t ) = -α (1 -p t ) γ log (p t ) (3.5)
where 

p t = p, ifc = 1 1 -p, otherwise

Object Tracking

Object tracking is usually treated as the next step of object detection since it involves detecting an object or objects in a video frame and locking on it (them) and following it(them) until the object(s) exits the video frames. Object tracking can be single or multi-object tracking based on the number of objects to be tracked. The primary dierence between a tracker and detector model is that an object tracker must assign some form of a consistent and unique ID to the individual objects it is tracking and whereas an object detector is required to label the bounding box of the identied object without the need to assign unique ID consistently. For example, if a detector detects three cars in a frame, the object tracker must identify the three separate detections and track them across the subsequent frames with their unique IDs.

When compared to object detection, object tracking is more challenging due to 1) occlusion by other class objects, 2) occlusion by same class objects, 3) temporary frame exit and re-entry, 4) moving object scale variation, 5) non-stationary camera or viewpoint change and 6) tremendous hardship to nd or annotate a tracking dataset. These are partial, not comprehensive, challenges of building a successful object tracker. For example, one essential yet most dicult challenge of building a successful tracker is the requirement of real-time object tracking. An object tracker tted on an uncrewed vehicle or security surveillance system may not be helpful at all if it is not real-time, not to mention the danger it may pose. Due to these and many other reasons, we can safely say object tracking research is yet to mature despite the progress achieved on object detection.

Next, we shall see some of the most common and widely used object tracking techniques:

Mean Shift and Cam Shift

Mean shift [START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF] is a clustering algorithm that assigns the data points to the clusters iteratively by shifting points towards the mode. The mode can be understood as the highest density of data points and hence also called a mode-seeking algorithm. Given a set of data points, the algorithm iteratively assigns each datapoint towards the closest cluster centroid. Unlike the popular K-Means algorithm, meanshift does not require specifying the number of clusters in advance. The algorithm determines the number of clusters based on the data. When the mean shift is applied on a particular object(s) feature map (color, texture, histogram, or any other features of a particular object) on a given input frame, it will try to nd all current locations of the previous frame's feature maps data points to locate the object(s). However, a moving object's size increases or decreases based on the direction of its movement with respect to the camera. This poses diculty for the mean shift to locate all the data points of the feature maps.

In such situations, mean shift is coupled with continuous adaptive mean shift (cam shift) [START_REF] Gary R Bradski | Computer vision face tracking for use in a perceptual user interface[END_REF] so that the tracking box shifts based on appearance change of the object under tracking.

Mean shift-based tracking is practical in situations with no noisy data, little or no occlusion, no signicant change in illumination or color. An example would be tracking a package on a conveyor belt or in a warehouse where colors or textures remain constant. This method's best quality is that it does not require to be trained to perform object detection and then tracking.

OpticalFlow

Optical ow is the pattern of apparent motion of image objects between two consecutive frames caused by object or camera movement. It can also be dened as the distribution of apparent velocities of movement of brightness pattern in an image. In optical ow, an object is tracked using the spatio-temporal image brightness variations at a pixel level using the following assumptions as a precondition about a moving object: 

Kalman Filter

A Kalman lter is the most widely used traditional tracking algorithm still persistent in modern object tracking implementations. It recursively estimates the state of a linear system (also nonlinear system using extended Kalman lter or EKF) with a gaussian process given the previous state and the current measurement of a moving object to predict the object's next likely state (position). If one has a good object detector running along with the Kalman lter, then an object can be successfully tracked across video frames even if the object detector fails to detect the object sometimes since the Kalman lter can use the previous state of the object to predict the next state of the object. As a result, earlier object tracking methods such as SIFT, HOG, Fast Mean Shift, and Kalman lter was used to track an object.

The detailed discussion and derivation of the formulas of the Kalman lter and its use in object tracking can further be referred from [START_REF] Welch | An introduction to the Kalman lter[END_REF][START_REF] Peter S Maybeck | Stochastic models, estimation, and control[END_REF]. Here we present the overview of the Kalman lter and its application in object tracking. The Kalman lter estimates a process by using a form of feedback control: the lter estimates the process state at some time and then obtains feedback in the form of (noisy) measurements. As such, the equations for the Kalman lter fall into two groups: time update equations and measurement update equations. The time update equations are responsible for projecting forward (in time) the current state and error covariance estimates to obtain the priori estimates for the next time step. The measurement update equations are responsible for the feedbacki.e., for incorporating a new measurement into the priori estimate to obtain an improved a posteriori estimate. The time update equations can also be considered predictor equations, while the measurement update equations can be considered corrector equations. Indeed the nal estimation algorithm resembles that of a predictor-corrector algorithm [START_REF] Diethelm | A predictor-corrector approach for the numerical solution of fractional dierential equations[END_REF] for solving numerical problems, as shown below in Figure 3.11. Suppose x is the state, z is the measurement, w is process noise, v is measurement noise, P is covariance error, and they are all Gaussian. The noises w and v are independent of states and measurements. Then the complete Kalman lter equation of the two processes (predict and correct) shown in gure 3.12 can be mathematically given using equations in Table 2. Q and R stand for process noise and measurement noise covariance, respectively, whereas K is Kalman lter gain. In general, the Kalman lter is a handy algorithm with applications ranging from object tracking to any applications where state prediction is required. It is usually used with other algorithms that help to distinguish one object from another object, like a detector based on neural networks or feature descriptors such as SIFT or even a background subtraction and mean shift algorithm.

SORT (Simple Online Real-Time Tracker)

SORT [START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF] presents a lean implementation of tracking by detection framework for the problem of multiple object tracking (MOT), where objects are detected in each frame and represented as bounding boxes. It is an online tracking system where only detections from the previous and the current frame are required to track an object, emphasizing real-time tracking speed for pedestrian tracking or autonomous driving problems. SORT has four key components:

1. Object detection: -CNN based appearance descriptor pre-trained on large person-reidentication dataset is used to detect person appearances (feature vectors) from frame to frame 2. Estimation model:-Here, the object model, i.e., the representation and the motion model based on Kalman-lter is used to propagate a target's identity into the next frame. SORT approximates the inter-frame displacements of each object with a linear constant velocity model independent of other objects and camera motion. The state of each target is modeled as:

x = [u, v, s, r, u, v, ṡ] T
where u and v represent the horizontal and vertical pixel location of the center of the target, while the scale s and r represent the scale (area) and the aspect ratio of the target's bounding box, respectively. Note that the aspect ratio is considered to be constant. When detection is associated with a target, the detected bounding box updates the target state where the velocity components are solved optimally via a Kalman lter. If no detection is associated with the target, its state is predicted without correction using the linear velocity model.

3. Data association:-In assigning detections to existing targets, each target's bounding box geometry is estimated by predicting its new location in the current frame. The assignment cost matrix is then computed as the intersection-over-union (IoU) distance between each detection and all predicted bounding boxes from the existing targets. The assignment is solved optimally using the Hungarian algorithm. Additionally, a minimum IoU is imposed to reject assignments where the detection to target overlap is less than IoU min . 4. Creation and deletion of track identities: When objects enter and leave the image, unique identities need to be created or destroyed accordingly. In SORT, an overlap less than IoU min signies the existence of an untracked object. The tracker is initialized using the geometry of the bounding box with the velocity set to zero. Additionally, the new tracker then undergoes a probationary period where the target needs to be associated with detections to accumulate enough evidence in order to prevent the tracking of false positives.

On the opposite, tracks are terminated if an object is lost for more than T Lost time or frames. This prevents an unbounded growth in the number of trackers and localization errors caused by predictions over long durations without corrections from the detector.

Overall, a simple SORT algorithm in conjunction with Kalman lter achieved a commendable performance in the MOT (multi-object tracking) challenge in 2016, just the second-best performer in the competition while still working at a very high speed.

Deep Learning-Based Object Tracking

Due to the success of CNN-based deep learning methods in object detection, researchers have been looking for ways to harvest from this success and develop a tracking algorithm that benets from deep learning object detectors. One of the early methods that used deep learning for single object tracking is Deep Regression-Based Object Tracking. In this method, a DL model is trained on a dataset consisting of videos with labeled target frames. The objective of the model is to track a given object from the given image crop. To achieve this, they use a twoframe CNN architecture which uses both the current and the previous frame to regress onto the object accurately. It is a single object tracking method, where a user rst sets the object to be tracked. Another elegant method to track an object is ROLO [START_REF] Ning | Spatially supervised recurrent convolutional neural networks for visual object tracking[END_REF], a combination of YOLO Figure 3.13: A simplied overview of ROLO and the tracking procedure [START_REF] Ning | Spatially supervised recurrent convolutional neural networks for visual object tracking[END_REF] and recurrent LSTM. The overview of ROLO depicted in gure 3.13, or its architecture in gure 3.14, shows that YOLO detections are concatenated and passed onto the LSTM cell for spatial information recording and tracking. The most popular and widely used, elegant object tracking Figure 3.14: ROLO network architecture [START_REF] Ning | Spatially supervised recurrent convolutional neural networks for visual object tracking[END_REF] framework is Deep SORT [START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF], an extension to SORT (Simple Real-time Tracker). It has all the four components of SORT and one more deep learning generated component called appearance descriptor. The appearance descriptor is introduced to minimize the identity switch problem prevalent in the SORT algorithm. In SORT, the association between two objects from two successive frames is based on bounding box IoU regression only (distance calculation); however, when two similar class objects overlap, it is easy to mistake one object bounding for another hence case identity switch. In Deep SORT, in addition to the IoU overlap-based distance calculation, cosine loss between appearance description vectors from one frame to another is also considered to associate objects. Moreover, instead of Faster RCNN as an object detection background, current fast and more accurate detectors such as YOLOv4 can be used with the Deep SORT algorithm.

Conclusion

In this chapter, we thoroughly reviewed state-of-the-art object detection and tracking approaches. Though FPGAs are relatively power ecient and have a high level of parallelism, they have relatively more minor resources such as memory and are comparatively challenging to program.

To maximize the memory and power eciency of deep CNNs on FPGAs, recently, various methods have been proposed by researchers worldwide. These optimizations focus on reducing the size of deep CNN networks and increasing ways to exploit FPGAs' parallelism feature. Later, we will discuss some of the well adopted techniques of FPGA-based deep CNN accelerations but rst let us briey explore why one wants to consider FPGA for deep CNN acceleration.

Why FPGA?

1. FPGAs are energy ecient: Though Deep Learning is a resource and power-hungry task, FPGAs can provide an energy-ecient acceleration due to their customizability for a specic model and power-up required resources only [START_REF] Nurvitadhi | Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?[END_REF]. FPGA can be exibly and variably congured to use any bit size, whereas GPUs cannot be customized to use variable data sizes; they are generally suitable for either 32-bit or 64-bit oating-point precisions.

The lower the data representation, the faster the computation. 

Optimizations based on transforming the algorithm of convolution

Optimizations in this category focuses on replacing the standard convolution algorithm altogether with faster algorithms such as Fast Fourier Transform (FFT) [3941], Winograd [42,43] or treating convolution as matrix multiplication or GEMM [44]. [START_REF] Mathieu | Fast training of convolutional networks through ts[END_REF] rst proposed to transform convolution algorithm from spatially sliding kernel over input feature maps to pointwise products in the Fourier domain while reusing the same transformed feature map many times, see Figure 4.1. At the time, this method was implemented on GPU and proved to have superior performance over traditional convolution algorithm. However, it has two problems 1) it requires the inputs always to be in 2'power for optimal performance gain and thus requires zero-padding 2) kernels must be large or needs to be padded to have the same size as the input feature map.

Modern kernels are spatially tiny compared to input feature maps, 1 × 1 or 3 × 3 rendering [START_REF] Mathieu | Fast training of convolutional networks through ts[END_REF]'s implementation in its originality less prevalent in modern deep CNN acceleration. Instead, [40] added the concept of Overlap-and-Add to accelerate the FFT-based implementation of convolution further and also addressed the impact oc size imbalance between input feature map and kernels. Their solution is implemented on FPGA to accelerate the AlexNet model and proved successful. 

Loop Optimizations

The second set of optimizations exploits the dierent types of parallelism in the convolution's nested loops. The parallelism can be manifested between layers or within a layer but among batch-size, channel, or spatial dimensions. However, because of the resource limitation of FPGA devices, it is impossible to exploit all the parallelism patterns at once. Instead, the primary approach that state-of-the-art methods use is to map a certain level of parallel operations onto a limited number of Processing Elements (PEs) and reuse these PEs by iterating data. We nd two unique approaches under this category of optimization, 1) systolic array of PEs and 2) Single Instruction on Multiple Data (SIMD) based dynamic loop optimization.

Early FPGA-based accelerators for CNN [chakradhar2010dynamically, [START_REF] Sankaradas | A Massively Parallel Coprocessor for Convolutional Neural Networks[END_REF][START_REF] Farabet | CNP: An FPGA-based processor for Convolutional Networks[END_REF] implemented and exploited static collection of PEs, called systolic arrays, typically arranged in a 2-dimensional grid operating under the control of a CPU ??. These static collections of PEs are independent of the kernel size of a given layer. They hence can be inecient or incapable of implementing the convolution layer if the layer kernel is greater than the number of implemented PE sizes. Moreover, the lack of data buering in these early systolic arrays increased memory access frequency, reducing their throughput. The inecient hardware resource utilization coupled with high-power consumption renders this systolic array-based acceleration method less favorable in modern deep CNN acceleration.

Due to the ineciency of static systolic arrays, exible SIMD accelerators for CNNs on FPGAs were proposed [4749]. The general computation ow in these accelerators is to fetch FMs and weights from DRAM to on-chip buers. These data are then streamed into the PEs. At the end of the PE computation, results are transferred back to on-chip buers and, if necessary, to the external memory to be fetched in their turn to process the subsequent layers. Each PE is congurable and has its computational capabilities using DSP blocs and data caching capabilities employing on-chip registers. Standard loop optimization techniques accelerate the deep CNN layers based on the number of available resources, such as DSPs, logic cells, and on-chip BRAM memories. The number of PEs is dependent on the selected loop optimization techniques. The detail of loop optimization techniques such as loop unrolling, loop pipelining and loop order interchange as applied to CNN layers acceleration on FPGA will be discussed further in Chapter 8, but here we will introduce them briey.

Loop Unrolling

Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, an approach known as space-time tradeo. The goal of loop unwinding is to increase a program's speed by reducing or eliminating instructions that control the loop, such as pointer arithmetic and "end of loop" tests on each iteration, reducing branch penalties; as well as hiding latencies, including the delay in reading data from memory.

Consider the following two simple for-loops side by side. As seen from the left for loop, the elements of array A depend only on the corresponding index elements of arrays B and C. One can implement the left side loop as in the right-side reducing the number of loop iteration check and implementing certain lines to run in parallel thereby increasing overall throughput of the loop execution. The above two implementations of the for loop will give the same result, except the second version is faster by a small factor as there will be less loop iteration, condition check, and branch penalty. Moreover, by duplicating the processes on dierent processing elements (PEs) in FPGA implementation, one can utilize the parallelism feature for further speed gain. The size of the loop unrolling depends on the number of resources of the FPGA and the speed gain of loop-unrolling depends on the maximum data-path width. Loop unrolling also has its own disadvantages, such as increased program size and high power consumption due to intensive parallel computation.

1 for ( i = 0; i < N ; i ++) { 2 A [ i ]= B [ i ]* C [ i ]; 3 } 1 for ( i = 0; i < N ; i = i +5) { 2 A [ i ]= B [ i ]* C [i ]; 3 A [ i +1]= B [ i +1]* C [ i +1]; 4 A [ i +2]= B [ i +2]* C [ i +2];
Moreover, one should also take into account the unrolling factor and the maximum loop size for ecient implementation.

Loop Tiling

One primary limitation of FPGA is the on-chip memory, and as a consequence, it fails to store all intermediate and input data of deep CNNs. Therefore, it is usually necessary to use external DRAMs to store the input and output feature maps, weights, bias, and a partial results from CNN layers. Therefore, loop-tiling thus the process of breaking down these data into small atomic blocks the FPGA can handle.

Below pseudocode listing show a loop before and after tiling is implemented. The inner block on the left side operates on atomic data residing on the FPGA's on-chip buer.

1 for (i = 0; i < 100; i ++) { 2 ... Even though loop-tiling is mandatory for optimizing convolutional neural networks on FPGAs due to the limitation of FPGA on-chip memory, it also comes with its challenges and design parameters that need careful selection. The design parameter that needs careful deliberation is the block size, as too small a block increases communication between on-chip and o-chip memory, and too big block wastes energy.

Loop Pipelining

Pipelining a loop allows the operations of the loop to be implemented concurrently, as shown in the following gure below. In the gure 4.3, part (A) shows the default sequential operation where there are three clock cycles between each input read, and it requires eight clock cycles before the nal output write is performed, whereas only four clock cycles are required when using pipelining, as shown in part B of the gure. Pipelining is a valuable optimization technique, but it is constrained by instructions having dependence on each other and by the available resource.

In general, all the loop optimization techniques we discussed here (unrolling, tiling, and pipelining) can be implemented either by the programmer for every loop or automatically by the compiler, such as HLS pragmas 1 for ( i = 0; i < 2; i ++) { Once all this is over, the design is exported and implemented as an IP block. The custom accelerated IP block with other IPs such as host processors, AXI interfaces to DDR memory, clock generator wizards, post and pre-process modules, etcetera, are bundled into one embedded system hardware implementation. Though we tried to view the end-to-end stages very briey, each section, in reality, is extensive and has its dos-and-don'ts which are beyond the scope of this section. However, one can nd detailed resources on each topic presented by Xilinx and other FPGA vendors in great detail, spread over dierent manuals and tutorials. Lightweight Generic Object Detector using binary encoding

Objectives

Object detection is one of the most challenging and very important branch of computer vision. Some of the challenging aspect of a detection network is the fact that an object can appear anywhere in the image, be partially occluded by another object, might appear in crowd or have greatly varying scales. Consequently, we propose a ne grained and equally spaced dense grid cells throughout an input image be responsible of detecting an object. We re-purpose an already existing deep state-of-the-art detector or classier into deep and dense detector. Our dense object detector uses binary class encoding and hence suitable for very large multi-class object detector.

We also propose a more exible and robust non-max suppression implementation to lter out redundant detection of same object. As a result of our dense object detection implementation we have managed to increase YOLOv2's performance on Pascal VOC 2007 and COCO datasets by +2.3% and +7.2% mean average precision (mAP) respectively.

Introduction

Object detection is one of the most challenging and very important branch of computer vision.

Unlike object classiers that only seek to label an image in its entirety into one of predened categories, object detectors, however, are required to precisely locate all known objects on an image using bounding box around each object and label them correctly.

The trend in current state-of-the-art object detection networks is to use a deep convolutional classier network as background extractor. As pointed in [16], these trends of using deeper network is best explained by the growing trend of using families of the sophisticated and cumbersome ResNet-based classiers in almost all best performing state-of-the-art object detectors at a cost of speed and resource expense.

In this paper we propose to densifying the output layer of a detection network in such a way that detection occur at ne grained equally spaced grid cells all over the input image. This is a similar approach to YOLO [26] except YOLO uses bigger grid cells such as 32 by 32 whereas in our case we propose using smaller grids of size 8 by 8. Densication alone might not yield a signicant performance gain as it leads to overtting, and in fact might also render implementation unfeasible due to large memory requirement on the output layer. We remedy this using a modied form of binary encoding which we refer it as extended binary encoding as opposed to the de-facto onehot encoding of categorical data. We also propose a new classication loss function for object detection to both handle class imbalance and foreground and background grid cell imbalance. Lastly but not least, we also propose a new and robust non-max suppression implementation suitable for ltering less condent and redundant bounding boxes detection. Our network relies on deep convolutional classier or any high performance detector network as feature extractor backbone for improved performance. In this paper, though any high performance network could have been re-purposed into our dense detector, however, we chose YOLOv2 for its simplicity and of course no mean performance.

Related Works

OverFeat [25] for the rst time modeled object detection as one stage, meaning one forward pass to determine both the class of the object and their localization, regression multi-scale sliding window problem. Since then many successful one stage object detectors followed the suite.

One such network is YOLO [26] and its incrementally improved trilogies, namely YOLOv1 [26],

YOLOv2 [27] and YOLOv3 [28]. In general, YOLO divides an input image into equal grid cells, particularly 32 by 32 pixels, and each grid cell predicts one or more objects with condence scores. Though YOLOv1 and YOLOv2 are very fast however, compared to similar scale one stage or two stage object detectors of recent time, their performance trails behind. Recently YOLOv3 by including some best practice of the current object detection trend such as using very deep feature extractor and employing concepts such as residual network, skip connection, multi-scale prediction and up sampling, they managed to signicantly improve YOLO's performance.

The other well-known one stage detector is SSD [29], short for Single Shot Multibox Detection. SSD, like YOLO, presents a unied one stage detector. However, instead of grid based approach of YOLO, the core feature of SSD is the multi-scale object detection scheme they introduced by adding InceptioNet inspired convolutional lters on top of VGG network. Due to these multiscale lters SSD was much better than YOLO in detecting objects of various scales, specically small, medium and large objects of COCO dataset.

Most recently, in a bid of making one stage detectors perform as well as two stage object detectors in detection accuracy, a model dubbed RetinaNet [30] 

Densication: Generation of Dense Detection Grids

As per [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] in COCO dataset more than 41% of the objects have size below 32 by 32 and each YOLO grids cells have an area of 32 by 32. With this grid cell size, it is possible that objects of smaller sizes appearing in group on an image , such as ock of birds or bucket of fruits can fall in the same grid cell. Though rare, two or more partially occluding objects might also fall in the same grid cell and same anchor box. When such cases happen during ground truth annotation, since any anchor per grid only annotates one object the other will be dropped out. Moreover, during inference again since one anchor per grid can only detect at a maximum one object objects of near same size and appearing in a crowd or partially occluded will be dropped out. Tiny dense grids reduces the chance of overlap of ground truth annotations and helps in deep search of a particular image for an object at every location. In our dense grid implementation shown in Fig. 5.1, the output of the YOLOv2 network minus the last layer is fed to depth-tospace reshaping Lambda function with block size of 4 and then passed through additional light weight three convolutional blocks as shown in Fig. 5.2 where the third convolutional layer is the Extended Binary Encoding, n=80 Class One's Complement (width=7) Binary (width=7) Index 6 5 4 3 2 1 0 6 5 4 3 2 1 0 Unlike the de facto onehot encoding of categorical objects, we used extended binary encoding in our ground-truth class encoding. For n classes of nominal categorical objects, onehot encoding requires an array of size n for each object, whereas binary encoding requires only an array of size log 2 n. However, since binary encoding uses fewer features to encode a class, it is expected to loose some information in describing an object when compared with onehot encoding. To compensate this information loss, we followed a novel approach to extend the binary encoding of an object by combining binary encoding of class index with its one's complement so that the nal class encoding will have a size of m = 2 * log 2 n. The extension of binary encoding with one's complement, as shown in table 5.1, is a simple hack to compensate the feature loss in binary encoding and it also balances the number of zeros and ones in a given class encoding.

0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0
In summary, our DDGNet nal layer outputs a feature map of shape bs * g w * g h * k * (4 + 1 + 2 * log 2 n), where bs stands for batch size, g w and g h stands for total number of horizontal and vertical grid cells respectively, k for number of anchor boxes and the expression (4 + 1 + 2 * log 2 n) refers to the coordinate of the bounding boxes, objectness score of each anchors per grid and the class encoding array. We followed the same approach used by YOLOv2 to annotate our ground truth of our training and validation dataset. We used k = 9 in our experiment.

Training

DDGNet training loss function is structurally similar with YOLO. The loss function has three parts: box coordinate prediction loss, the objectness condence prediction loss and class encoding prediction loss.

Coordinate loss

The coordinate loss is given by the following equation, where (x ij , y ij ) and (w ij , h ij ) are the ground truth bounding box center and width and height pair resized by the original image width and height respectively. The i and j stands for the grid cell and anchor box within the grid cell respectively.

crd loss = λ crd gw * g h i=0 k j=0 1 obj ij (x ij -xij ) 2 + (y ij -ŷij ) 2 + λ crd gw * g h i=0 k j=0 1 obj ij (w ij -ŵij ) 2 + h ij -ĥij 2 (5.1)
1 obj ij is the masking tensor for each anchor j of grid cell i. 1 obj ij is set to 1 if anchor j of grid cell i has the highest IOU overlap with the ground truth of a given object; otherwise is set to 0. λ crd is coordinate loss scaling coecient which we always set to 1. However, one can give dierent weights for the center coordinate loss and width and height prediction loss.

Objectness loss

Objectness condence score is the measure of the probability that a given cell has detected an object. Equation (5.2) shows the objectness loss function used in DDGNet. σ t0 is the networks predicted box objectness condence score. λ obj is a weight coecient stressing the cell responsible of detecting an object whereas λ noobj is a weight coecient set to reduce the eect of cells that are not expected to detect an object. Normally, since the majority of the cells doesn't have an object λ obj must be very large compared to λ noobj . In our training we experimented by setting λ obj = 10000 and λ noobj = 10. IOU (b, b) < IOU thrsh is the IOU computation of predicted bounding box against the ground truth bounding boxes. conf loss is computed over all grids and anchor boxes per each grid and averaged by the total number of object detecting grid cells, however we showed a minimal representation of the equation for brevity.

conf loss =λ obj 1 obj ij 1 -σ t0 2 + λ noobj 1 noobj ij σ t0 2 * IOU (b, b) < IOU thrsh (5.2)

Class prediction Loss: Ternary Cross Entropy (TCE) Loss

Before explaining our classication loss function we would like to recall binary cross entropy (BCE) loss for binary classication. BCE loss is calculated using the following equation:

BCE(c, ĉ) = -log(ĉ), if c = 1 -log(1 -ĉ), if c = 0 (5.3)
In the equation (5.3) the c ∈ {0, 1} is the binary ground-truth class annotation of the object to be detected whereas ĉ ∈ [0, 1] is the predicted class probability of the detected object. The rst term in BCE equation trains to predict binary 1 where as the second term trains to predict binary 0. However, in our case since we conduct multi-label classication, multi-label to say more than one label can be value 1 according to their extended binary encoding, we added a third term where we train the network to output a value 0.5 for grids that have no object of interest. In our dataset we don't have object annotated with 0.5 instead all objects are annotated as explained in table 5.1. Since 0.5 is the equally furthest number from both 0 and 1, we push grids that has no object to output 0.5 while pushing the other object containing grids to their extended binary encoding. Due to this three values, that is 0, 0.5 and 1, we refer our classication loss function as ternary cross entropy or TCE for short. Equation (5.4) shows simplied the TCE loss implemented at a given cell. c and ĉ are ground-truth class encoding array and the sigmoid of the class prediction output of the network respectively at a given cell.
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T CE(c, ĉ) =        -log (ĉ + 0.5) -log (1.5 -ĉ) , if 1 obj = 0 -log(ĉ), if c = 1 -log(1 -ĉ), if c = 0 , if 1 obj = 1

Inference

For single input image our network outputs a tensor ŷ of shape g h * g w * k * (4+1+c m ), where g h , g w stands for number of grid cells in height and width direction of the input image,respectively, and k is the number of anchor boxes whereas the term (4 + 1 + c m ) stands for the four parameters of bounding box coordinates, 1 grid cell objectness score or probability measure and c m for the m size extended binary class encoding prediction.

As in as in [27] After sigmoid we the class prediction output to the ternary values, namely 0, 0.5 or 1, using a threshold value δ chosen from range of [0, 0.25]. Fig. 5.3 shows the rounding process whereas equation (5.9) is the mathematical expression of the rounding process.

ĉj =        0, if ĉj < δ 0.5, if δ < ĉj ≤ δ + 0.5 1,
if ĉj > 0.5 + δ

(5.9)

Once class predictions are rounded into the ternary points, then we measure weighted euclidean distance between predicted class encoding and class encoding of each object category of our ground-truth classes using equation (5.10).

d 2 i = m j=0 ( 2 j n ) (ĉ j -c ij ) 2
(5.10)

predclass index = argmax(-d 2 i ), ∀i = {0, n -1} (5.11)
We also measure classication condence score using the following equation:

clf n conf = 1 - 1 m m j=0        1 -ĉj , if ĉj ≥ 0.5 + δ ĉj , ĉj ≤ δ 1, 0.5 -δ ≤ ĉj ≤ 0.5 + δ (5.12)
The classication condence score is computed from the un-rounded direct class encoding prediction output of the network. The classication condence score simply shows how well the network class prediction is close to the extended binary encoding of the objects. It is not a probability measure of condence of the class prediction certainty, like the common softmax or sigmoid based classications.

Finally, we compute overall object prediction condence score using (5.13) from classication condence score and grid objectness condence score g conf which is simply g conf = σ(t o ), where t o is the corresponding objectenss output of the network.

O conf = clf n conf * g conf (5.13)
Bounding boxes with overall score above certain threshold are then selected as detected object and then pass through non max suppression for further removal of redundant prediction of the same object. However, one can also set individual threshold for classication, objectness score and overall score and use the equation (5.14) to mask detected objects.

f ltr mask =(clf n conf < clf n thrsh ) * (g conf < g thrsh ) * (O conf < O thrsh ) (5.14)

Three Way Non-Max Suppression (3WayNMS)

Non max suppression (NMS), as its name suggests, is a mechanism of successively discarding the less condent of two bounding boxes whose IOU overlaps above certain IOU threshold, IoU thrsh . However, picking a single IoU thrsh for all object scale and appearance is painstaking trail and error procedure. In this paper we reduce that burden with a robust and exible NMS implementation we dubbed 3WayNMS. Our NMS implementation employs the usage of two IOU thresholds and a two other thresholds, namely Intersection over smaller box area in short IOS or Intersection over larger box area in short IOL threshold given by equation (5.15) Due to these three possible stages or ways of discarding the less condent of redundant bounding box prediction, we named our suppression technique as Three Way Non-Max Suppression or 3WayNMS for short.

Experiment

We conducted numerous experiments on Pascal VOC and COCO object detection datasets in order to compare the performance of DDGNet against the original YOLOv2 and other related one stage object detectors such as SSD and RetinaNet.

To start our training we used YOLOv2's weight le of both COCO and Pascal VOC datataset from the authors website [START_REF]YOLO: Real-Time Object Detection[END_REF]. In our all test experiments we used small learning rate 1e -4 for the rst 30 epochs and 1e -5 for the last 70 epochs, in total we trained for 100 epochs with early stop in place when the mean average precision stops improving. Random combination of common image augmentation techniques such as cropping,rotating, hue and saturation manipulation and dierent noise additions are implemented using Imgaug package [START_REF] Jung | [END_REF] to articially boost our training dataset. As seen on densication and TCE loss useful. In addition trained on, our model also out performs SSD300 [29] and SSD500 [29] by +7% and +4.5% respectively. Table 7.2 shows detail mAP performance of DDGNet against SSD300, SSD500 and against two stage object detector Faster RCNN [22].

From 

Performance on COCO Object Detection Dataset

We also trained DDGNet on COCO dataset using COCO object detection evaluation metrics.

Table 7.3 shows comparison of DDGNet mean average precision against some well known and recent state-of-the-art detectors. Our DDGNet implementation again shows over +7.2% gain against YOLOv2. However, against the other recent networks DDGNet trails far behind, especially in precisely detecting of smaller objects. In fact our underlying backbone, YOLOv2, lacks some of the recent object detection networks best working and proved features proved for this purpose such as skip connection, residual network and up-sampling, which the authors included in YOLOv3. Accordingly, we believe if recent best performing base networks are used as backbone of DDGNet the detection of small objects would improve.

Conclusion

In this paper we have introduced dense object detector obtained after restructuring and adding few extra layers to an already deep and high performing backbone network. We proposed dense grid based one stage object detector in a assumption that dense and ne grained grid cells better annotates and detects crowded or occluded objects and smaller objects, consequently increasing performance of an object detector. As hypothesized we have managed to increase one of the state-of-the-art object detector YOLOv2 without inducing signicant weight or reduce the speed of YOLOv2 signicantly. Moreover, since our detector uses optimized class encoding it is suitable for very large multi-class object detection and we believe as detection networks are going deeper and heavier the way forward to support very large multi-class detection is probably through the use of binary encoding as hardware always has limit. We have also introduced new bounding box classication loss function called ternary cross entropy to handle the overwhelming imbalance of grids responsible of detecting an object and those which are not. We have also introduced a new and exible non-max suppression implementation to remove redundant detection of the same object.

Chapter 6 Yet Faster, Lighter and More Accurate YOLO

Objective

As much as an object detector should be accurate, it also has to be light and fast. However, determining acceptable tradeo between speed and accuracy is not a simple task. One of the high speed and high performance object detector is the well known YOLOv2. YOLOv2 performs detection by dividing an input image into grids and training each grid cell to predict certain number of object bounding box parameters and their corresponding classes and objectness condence score. We re-frame this multiple object prediction per grid cell approach of YOLOv2 into a single object prediction per grid cell by using smaller area grid cells. We train our system not only to predict box parameters and classes but also to pick an appropriate ]anchor box from a set of K-means generated anchors, or prior boxes, so that the predicted bounding box parameters yield higher IOU overlap against the ground-truth box. For the same input size and grid cell area, our DenseYOLO approach has k -1 folds of less parameters on the output layer compared to YOLOv2's output layer, assuming k is the number of anchor boxes or priors. This reduced output layer parameters directly translates to increased detection speed due to less number of redundant prediction of same object or small false-positive predictions and in general smaller computation. Moreover, since our approach has fewer output parameter one can use large anchor box to start training the system from good initial status or increase image resolution or large class category without worrying the drastic burst of the output layer.

Introduction

One of the most important and challenging computer vision area is object detection. It is a basic rst step for many real-world computer vision and robotics applications such as face detection, object tracking, pose analysis, surveillance, information retrieval and etc. Object detection has a dual goal of both precisely labeling and localizing all known objects on an image using rectangular bounding boxes.

Modern era generic object detection researches are dominated by two deep CNN based approaches. These are implementation of object detection as a two-stage or one-stage detector.

Two-stage detectors perform object detection in two core steps, that is rst using a serious of CNN propose sparse candidate regions on an image, likely containing an object of interest and second classify and score each proposed regions. One-stage detectors, however, perform both the localization and classication simultaneously in one forward pass. Generally, two-stage networks are known for their high performance in detection accuracy though they are usually very slow and heavy. On the contrary, one-stage detectors are very-fast while relatively are also less accurate. Since we believe that an object detection should be fast, accurate and light weight,in this paper we will focus on one-stage object detectors.

YOLO [26], an abbreviation for You Only Look Once, is one of the rst high speed and high performance one-stage object detectors. YOLO divides an entire image into square grid cells of an area 32 by 32 and each grid cells detect a number of object bounding box coordinates and classes. Though YOLO, also called YOLOv1, was very fast however its detection accuracy was not in par with recent detectors. Thus, in a quest of increasing the detection performance of YOLOv1, a new model with more depth and other useful features dubbed YOLOv2 [27] is proposed by authors of YOLO. YOLOv2 has more depth and predicts more bounding boxes per image compared to YOLOv1. Each grid cell in YOLOv2 predicts 5 bounding box coordinates, object classes and objectness condence score for each prediction. Theoretically if one uses dense grid cells with smaller area than 32 by 32 or increased the number of boxes each grid cell predicts, say from 5 to 10 or more, then the chance of detecting partially occluded objects, objects appearing in group and objects of smaller size should increase. These constitutes some of the drawbacks of YOLOv2. However, increasing the density of grid cells by using smaller area grid cells, like 8 by 8, or increasing the number of boxes each grid cell predicts will drastically increase the output layer of YOLOv2 which in turn makes the network either slow or demand large memory for training.

In this paper we present a new more robust and ecient approach of implementing YOLO like, more specically YOLOv2 like, one-stage object detection. Instead of predicting k bounding boxes per grid cells, we train our model to predict only one object per grid cell. We use smaller grid cells, an 8 by 8 grid cell instead of the 32 by 32 used in the YOLO trilogies [26], [27] and [28]. Since the grid cells are tiny it is unlikely for two or more objects to fall in the same grid cell thereby increasing the chance of detecting objects appearing in group such as ock of bird or a bucket of fruits or partially occluded objectsthe type of objects YOLOv2 fails to handle very well. In YOLOv2 K-means generated k number of anchor boxes are made to predict k bounding boxes per grid cell, though only one anchor box is annotated as responsible of detecting an object during ground truth annotation. This leaves the other k -1 anchors per grid cells unnecessarily bloat the output layer into consuming more memory location or resort into redundant prediction of same object multiple times. In our method, which we dubbed DenseYOLO, instead of predicting k bounding boxes using each anchor, we train the system to predict one bounding box coordinate, in fact we predict oset from anchor boxes rather than the Chapter 6

coordinates directly, per grid and also predict a single anchor that yields the highest IOU overlap against the corresponding ground-truth. In short, just like each grid cell predicts coordinates and classes it also predicts an anchor to be used with the predict coordinate so that the predicted box ts the underlying ground-truth. This reduces the output layer of DenseYOLO by atleast k -1 fold compared to YOLOv2 and thus DenseYOLO is lighter and faster. Since the output layer is smaller in DenseYOLO, one can use large number of K-means generated anchor boxes to start the system train from more dataset representative set of anchors or prior boxes. Large set of anchor boxes, also called prior boxes, help to handle appearing in unusual scale or shape-the other problem YOLOv2 cannot handle very well. Moreover, one can easily convert best performing deep classiers such as ResNet [57] or VGG [58] or even YOLOv3 into DenseYOLO based detector for an increased the detection performance and speed.

Related Works

Classical object detection works have been relying on hand crafted features and shallow networks for very long time. However, the success of using deep convolutional methods for object classi- well known one-stage detector called SSD [29] targets multi-scale detection so that a detector could better detect objects of varying scale.

However, in this paper we take inspiration from YOLOv2's grid based approach of object detection and maximize on its speed and performance. However, it is to be recalled that YOLOv2 lacks depth and few other current best practices such as multi-scale detection, and residual connections which the authors included in latest version YOLOv3 [28]. Theoretically, it is possible to use our approach on an already best performing detector such as [28] or turn any deep CNN based stat-of-the-art classier into DenseYOLO based detector for increased detection performance and speed. However, for a simplistic illustration of our proposed method we focus on simple yet commendably powerful YOLOv2 than the sophisticated YOLOv3.

DenseYOLO

In DenseYOLO, we simply strip the last layer of YOLOv2 and reshape the output layer so that the out put tensor corresponds to a grid cell of an area 32 by 32 to a smaller grid of 8 by 8 area. This simply means we divide the input image width and height by 8 not 32 as YOLOv2 does. After reshaping we add two more blocks composed of convolutional layer followed by batch normalization layer followed by relu activation layer. And lastly, we add an output convolutional layer of tensor corresponding to each grid cells. Figure 6.2 shows the conversion of YOLOv2 into dense detector. DenseYOLO has an output tensor of shape g w * g h * (k + 1 + 4 + n) unlike YOLOv2's g w * g h * (k + 1 + 4 + n). The g w * g h is the total number of grid cells of area 8 by 8 pixels, k and n stand for the number of anchor boxes and number of object categories, respectively.

The 1 stands for binary value 1 or 0 indicating that whether a grid does or does not have an object, respectively. And the 4 stands for the four bounding box coordinate parameters (x 1 , y 1 ) top left corner and (x 2 , y 2 ) bottom right corner. Each grid cells in g w * g h size outputs an array of size (k + 1 + 4 + n) instead of outputting k * (1 + 4 + n), see gure 6.1. With the same grid size our models output layer has k -1 folds of reduced weight than YOLOv2's output layer.

The signicance of this change is that, one can now increase the number of K-means generated anchor boxes to start the training from better representative priors. Or one can increase the input image resolution without worrying that the output layer tensor could explode into large tensor size and restricting implementation due to hardware, specically memory shortage.

A natural intuitions to garner more accuracy from YOLOv2 like model is to increase number of anchor boxes or increase the number of grids by using smaller grid cells. However, those intuitions might lead to either training loss saturation or exploding output layer. Unlike YOLOv2, however, our model predicts only one object per grid cell instead of the k bounding boxes. Since we use a very small grid size, the probability of two or more objects center falling in the same grid cell is very small.These avoids the need to predict multiple objects per grid cell. We still use anchor boxes, but instead of forcing the network to predict one object per anchor box per grid, we train the system to try all k anchor boxes per grid cell and pick the one that led to high IOU against the ground truth. In short we train the network to predict a best tting anchor box just the way it predicts bounding box coordinates, class, and condence score. In the following section we discuss our training loss function and training procedures. 

Training

Ground-Truth Annotation

After re-sizing an input image into xed input size divisible by 8, say 608 by 608 for example, we then divide each image into grids of g w by g h where g w and g h are equal to image width/8 and height/8 respectively. A grid cell with a bounding box center coordinate of an object falling in, is made responsible of detecting an object. We assign a specic anchor out of k anchors,to every bounding box based on their IOU score calculated by centering both the ground truth box and anchor box at origin, that is (0, 0).

Assume (b x , b y ) is the center coordinate of bounding box and (b w , b h ) as pair of the width and height of the bounding box. We train the network not to predict these parameters directly, instead we train it to predict (t x , t y ) and (t w , t h ) for stability, the same way YOLOv2 and SSD does. The relationships between the two sets of parameters are given by the following equations: 

t x = b x -c x (6.1) t y = b y -c y (6.2) t w = log(b w /g w ) (6.3) t h = log(b h /g h ) (6.

Training Loss function

Our loss function has four parts. These are coordinate prediction loss, class prediction loss, objectness prediction loss and anchor prediction loss. We shall see each of them separately as follow:

coordinate prediction loss

Here we use the same loss used by YOLOv2 which is the mean square error of the bounding box coordinates given by the following equation:

crd loss = λ c gw i=0 g h j=0 1 obj ij t xij -txij 2 + t yij -tyij 2 + λ c gw i=0 g h j=0 1 obj ij b wij -bwij 2 + b hij -bhij 2 (6.9)
1 obj ij is 1 if the grid has center of bounding box and zero otherwise. λ c is a coecient to weigh coordinate loss and we simply set it to be 0.5.

Objectness loss

Objectness condence score determines whether a grid has detected an object or not with an IOU above certain threshold. However, imbalance between grids that are made responsible of detecting an object and those are not expected to predict an object, because the center of the bounding box did not fall in them, is very high. And using binary cross entropy is not much of a help, as we expect the objectness condence to match with an IOU measure of the predicted object against the ground-truth, not just only the binary information that the grid has an object or does not.

Our objective is to drive the overwhelmingly many grid cells that do not have the center of an object to quickly converge to a small condence score while the few grid cells that have an object rise to a higher condence as the system learn to predict a better bounding boxes. Thus, our objectness loss function has two parts, one for grids with out object and another for grids with an object. We use log-loss, equation (6.11) for grids without an object whereas IOU based conditional mean square error, equation (6.10), for grids with an object. Both equation (6.11) and equation (6.10) are applied in every grid cell. The term iou in equation (6.10) refers to the best IOU score obtained after computing k IOU against the expected ground truth using each of the k anchors.

conf obj = λ obj 1 obj (1 -σ( t0 )) 2 , iou > iou thrsh λ obj 1 obj (σ( t0 ) -iou)) 2 , otherwise (6.10) conf noobj = λ noobj (1 -1 obj ) log(1.0 -σ( t0 )) (6.11)
λ obj and λ noobj stands for coecient to penalize grids responsible of detecting an object and those that shouldnt, respectively. Normally, λ obj should be set above λ noobj to emphasize more on the grids that have an object. t0 is the system output corresponding to objectenss prediction. As seen from the conditional expression of objectness condence loss of grids that are meant to detect an object, conf obj , whenever the network predicted box with an IOU against ground-truth above certain threshold,iou thrsh , we then push condence score of that grid to 1 like an encouragement to the network to preserve that bounding box prediction. This is one of the novel change we made to the famous YOLO loss. This change amounts to handling foreground-background imbalance prevalent in one-stage object detection. 

Anchor prediction Loss

Anchor prediction loss, like class prediction loss, is a weighted cross entropy loss. Here we set the target anchor to be the anchor that yielded best IOU whereas the predicted anchor tensor is a softmax output of shape g w * g h * k extracted from the output of the network.

Our systems training loss is the mean of the four losses.

Inference

During inference, in one forward pass we evaluate three condence measures for every grid cell.

These are objectness condence, classication condence and anchor prediction condence. Objectness condence is simply sigmoid of network output corresponding to the parameter assigned to tell if the cell has an object or not. Classication prediction condence is argmax of the Soft-Max output of the network class prediction outputs. Similarly, anchor prediction condence is the argmax of the SoftMax output of the anchor prediction tensor. The overall prediction score is the product of these condence scores. We then lter predicted boxes using threshold and further we implement NMS (non-max suppression) to whittle out redundant prediction of same object. Following the same procedure followed by YOLOv2 we convert the predicted bounding boxes into an object bounding box coordinate on an image.

Experiment

We We generated a number of anchor boxes using K-means cluster for both COCO and Pascal VOC dataset for dierent k's using IOU to cluster bounding boxes. As table Since YOLOv2 has already been trained on k = 5, here we train for k = 9 and k = 15.

In the following section we will discuss our result on performance on VOC and COCO dataset. 

Conclusion

In this paper we introduced a new light weight, faster and more accurate implementation of YOLO like one-stage object detector. Our design approach is lighter, because for the same input image size by just reshaping the output layer into dense grid and avoiding the need to predict multiple objects per grid cell while also fully using the concept of anchor box or prior boxes, we obtain a lighter and hence faster network. We have introduced a novel concept of training an object detector to predict a prior box along bounding box coordinate and class prediction.

Apart from design change, we have also introduced new loss calculation for objectness condence prediction to balance the imbalance between grids with no object of interest and grids dedicated to predict an object. The grid cell having the center of an object is the one responsible for detecting the particular object. This paper presents a new mathematical approach that assigns multiple grids per object for accurately tight-t bounding box prediction. We also propose an eective oine copy-paste data augmentation for object detection. Our proposed method signicantly outperforms some current state-of-the-art object detectors with a prospect for further better performance.

Introduction

An object detection network aims to locate an object on an image using a tight-t rectangular bounding box and label it correctly. Nowadays, there are two distinct approaches to achieve 7.3. Related Works Chapter 7 this purpose. The rst and performance-wise, the most dominant approach is two-stage object detection, best represented RCNN [17] and its derivatives [22,[START_REF] Girshick | Fast r-cnn[END_REF]. In contrast, the second set of object detection implementations, well acknowledged for their outstanding detection speed and light-weightiness, are referred to as one-staged networks, representative examples being [26], [29], [30]. Two-stage networks rely on an underlying region proposal network that generates candidate regions of an image likely to contain an object of interest, and a second detection head handles the classication and bounding box regression. In one-stage object detection, detection is a single, fully unied regression problem that simultaneously handles classication and localization in one complete forward pass. Due to this, usually, one-stage networks are lighter, faster, and simple to implement.

One-stage networks can be classied as anchor-based [2630,6163] and anchorless [START_REF] Duan | Centernet: Keypoint triplets for object detection[END_REF][START_REF] Law | Cornernet: Detecting objects as paired keypoints[END_REF].

Anchor-based networks such as YOLOv3 [28] or YOLOv4 [START_REF] Bochkovskiy | Yolov4: Optimal speed and accuracy of object detection[END_REF] mainly divide an input image into equal grid cells. Furthermore, each grid cell regresses object bounding box coordinates and classies them into one of the predened class categories while simultaneously scoring the predicted box's objectness condence. Other anchor-based variants, such as SSD [29] and RetinaNet [30] employ the concept of feature pyramid to perform multi-scale detection extracted from dierent layers of the backbone classier network such as VGG [58] or families of ResNet [57]. Recent anchorless entries of one-shot detectors use key-point such as corners of bounding box [START_REF] Law | Cornernet: Detecting objects as paired keypoints[END_REF] or center coordinate or combination of both [START_REF] Duan | Centernet: Keypoint triplets for object detection[END_REF], replacing the use of anchor boxes by key-point pooling convolutional pipelines along their bounding box regression and classication networks. This paper sticks to YOLO's approach, particularly YOLOv3 [28], and proposes a simple hack that simultaneously enables multiple grid cells to predict an object coordinate, class, and objectness condence. The basic theory behind multi-grid cell assignment per object is to increase the likelihood of predicting a tight-t bounding box by enforcing more than one cell working on the same object. Some of the advantages of multi-grid assignment includes: (a) gives the object detector a multi-perspective view of the object it is detecting rather than relying on just one grid cell to predict the class and the coordinates of an object, (b) less random and erratic bounding box prediction, meaning high precision and recall, since nearby grid cells are trained to predict same object class and coordinates,(c) reducing the imbalance between grid cells with an object of interest against grids without an object of interest. Moreover, since the multigrid assignment is mathematical utilization of an existing parameters and does not require an extra keypoints pooling layer and post-processing to regroup keypoints to their corresponding objects like CenterNet [START_REF] Duan | Centernet: Keypoint triplets for object detection[END_REF] and CornerNet [START_REF] Law | Cornernet: Detecting objects as paired keypoints[END_REF], we say it is a more natural way of achieving what anchorless or keypoint-based object detectors are trying to achieve. In addition to the multigrid redundant annotation, we also introduce a new oine copy-paste-based data augmentation technique for accurate object detection.

Related Works

The pioneer and most successful one stage-detector YOLO [26] and its successive incremental improvements [27], [28], [START_REF] Bochkovskiy | Yolov4: Optimal speed and accuracy of object detection[END_REF] divide an input image into grid cells of equal size. The grid that contains the center of a given object-bounding box on an image is responsible for detecting that particular object. Since YOLOv1, the authors of YOLO tried to improve the performance of their object detector by incrementally incorporating key improvements such as more network depth, more anchor boxes, slight change on loss function, and lately since YOLOv3 best practices such as multi-scale detection and skip-connections are incorporated.

The other typical one-stage detector is SSD [29]. SSD uses multi-layer feature pyramids on top of a backbone classication network, notably a VGG network, to perform a multi-scale detector that better handles objects of various scales. Using a similar concept of feature pyramids as in SSD, another famous object detector called RetinaNet [30] proposed a novel loss function called focal-loss to solve the foreground and background class imbalance prevalent in one-stage detectors unlike two-stage networks.

Recently, anchorless one-stage object detection techniques such as [START_REF] Law | Cornernet: Detecting objects as paired keypoints[END_REF], [START_REF] Duan | Centernet: Keypoint triplets for object detection[END_REF], [START_REF] Tian | Fcos: Fully convolutional one-stage object detection[END_REF], [START_REF] Huang | Densebox: Unifying landmark localization with end to end object detection[END_REF] aim to reduce the hurdle of determining the appropriate number and shape of anchor boxes. Networks such as DSSD [56] and RetinaNet [30] use default-boxes, also referred to as anchor boxes, amounting over tens or hundreds of thousands, resulting in slow training and brutal non-max suppression during inference. Instead, anchorless detectors add a separate layer to pool and process points on the bounding box of an image. CornerNet [START_REF] Law | Cornernet: Detecting objects as paired keypoints[END_REF], for example, adds a pipeline that processes the corner keypoints of an object hence needing no anchor boxes. CenterNet [START_REF] Duan | Centernet: Keypoint triplets for object detection[END_REF],

another anchorless one-stage detector, adds a third point, namely the center point of an object bounding box in addition to the corner keypoints. The center keypoint in CenterNet is to aid CornerNet to have a more global view of an object it is detecting, which was its bottleneck at rst. This paper sticks to YOLO's grid-based approach since YOLO's approach neither requires many anchor boxes like SSD, DSSD or RetinaNet nor adds a separate pipeline to process keypoints like CornerNet or CenterNet. However, unlike YOLO, we propose a mathematical way to assign an object to multiple grid cells, including the grid cell where the center of the object-bound box falls. As we stated earlier, in YOLO, the grid that contains an object's bounding box center is made responsible for detecting that particular object, hence, one grid assignment per object.

In our implementation, we will show that mathematically it is possible to assign any number of grid cells to annotate an object, though we will only use the grids around the center, including the center grid. Due to the multi-grid annotation, we dubbed our object detector MultiGridDet short for Multi-Grid Detector. Our detector is light and faster than YOLOv3 mainly due to two 

Multi-Grid Assignment

Consider Figure 7.1 containing three objects, namely a dog, bicycle, and car. For brevity, we will explain our muti-grid assignment on one object, the dog. , where g w and g h are the grid cell's width and height, respectively. In YOLOv1 and YOLOv2 g w and g h are both 32 pixels each, whereas in YOLOv3, due to the multi-scale detection feature tailored for small, medium and large scale object, the grid cells are also in those three scales; 8 × 8, 16 × 16, and 32 × 32 pixels.

Starting from YOLOv2, YOLO-based object detectors predict an oset of the bounding box from pre-generated anchor boxes instead of directly predicting the bounding box's coordinates.

As a result, the ground-truth bounding box values, (x, y) and (b w , b h ) are rescaled to smaller scales (t x , t y ) and (t w , t h ), respectively, for training stability using Equations (7.1) to (7.4). Note that, t x and t y are in the range [0, 1].

t x = x g w - x g w (7.1) t y = y g h - y g h (7.2) t w = log b w a w (7.3) t h = log b h a h (7.4) 
, where a w , a h are the best-t anchor box's width and height, respectively, generated using K-means IoU clustering.

One can easily convert the (t x , t y ) and (t w , t h ) parameters to the original bounding box parameters of an object, that is (x, y) and (b w , b h ) using the reverse Equations (7.5) to (7.8):

x = (c x + t x ) × g w (7.5) y = (c y + t y ) × g h (7.6) b w = a w × e tw (7.7) b h = a h × e t h (7.8)
Thus far, we have explained how the grid containing the center of an object's bounding box annotates an object's ground truth. This dependence on just one grid cell per object to do the dicult job of predicting the class and the exact tight-t bounding box raises many questions such as (a) massive imbalance between the positive and negative grids, that is, grids with and without object's center coordinate (b) slow bounding box convergence to ground-truth, (c) lack of multi-perspective (angle) view of the object to be predicted. So one natural question to ask here is, obviously, most objects encompass an area of more than one grid cell, and thus would there be a simple mathematical way to assign more of those grid cells try to predict the class and coordinates of the object together with the center grid cell ? . Some of the advantages of doing this are (a) reduce imbalance, (b) faster training to converge to the bounding box as now multiple grid cells target the same object at once, (c) increase the chance of predicting tight t bounding box (d) give grid-based detectors such as YOLOv3 a multi-perspective view rather than a single point view of the objects. Our multi-grid assignment tries to answers the above question, and we explain it as follow: consider c ′

x , c ′ y be any grid cell within the distance of d ∈ {-1, 0, 1} from (c x , c y ), or mathematically c ′

x , c ′ y = (c x + d x , c y + d y ) where d x and d y are distance d in x and y directions from the (c x , c y ) point respectively. Based on the value of d, this equation refers to all the grids marked 0 to 8 in Figure 7.1(b). Then instead of (c x , c y ) based equations of (5-9), we can rewrite a general one using c ′

x , c ′ y that applies for any of the grids labeled 0 to 8 as in Equations (7.9) to (7.12):

x = c ′ x + t ′ x × g w (7.9) y = c ′ y + t ′ y × g h (7.10) b w = a w × e tw (7.11) b h = a h × e t h (7.12)
Where t ′ x = ∓d + t x and t ′ y = ∓d + t y . Note that now the bounding box parameter (t ′ x , t ′ y ), will have a range of [-1, 2], unlike the [0, 1] range of (t x , t y ). MultiGridDet is an object detection network we repurposed by removing six darknet convolutional blocks from YOLOv3 to make it lighter and faster. A convolutional block has one Conv2D layer followed by a Batch Normalization layer followed by a LeakyRelu layer. The removed blocks are not from the classication backbone, that is, Darknet53. Instead, we removed them from the three multi-scale detection output networks or heads, two from each output network.

Though usually deep networks perform well, too deep networks also tend to overt quickly or drastically reduce the network's speed.

In addition to stripping the six convolutional blocks, we also adopt DenseYOLO's output head. In YOLOv3, each output layer has a tensor shape g w × g h × k × (5 + n), where g w × g h is the total grid cells, k is the number of anchors, and n is the total number of object classes. In DenseYOLO, the output layer tensor has a shape g w × g h × (5 + k + n) which means approximately k times fewer parameters on the output layer. Moreover, DenseYOLO introduces a novel approach by making an anchor box a predictable parameter similar to an object's class and bounding box prediction. Thus in MultiGridDet, we opt for DenseYOLO's lighter approach on the output layer. In general, MultiGridDet has less convolutional block and a lighter output head compared to YOLOv3, thus relatively faster.

The Loss function

Like DenseYOLO, our loss function has four parts: class prediction loss, location or coordinate prediction loss, anchor prediction loss, and objectness condence loss. Class prediction loss (error)

Our class prediction loss is a simple binary cross-entropy loss calculated over all grid cells labeled to have contained an object of interest.

Anchor prediction loss (error)

:-Our anchor prediction loss is also a binary cross-entropy loss in which we train our network to pick an appropriate anchor out of a given set of anchors. We generated nine anchor boxes, 3 for each scale, using IoU (Intersection over Union) based K-means using the same approach as YOLOv3. For example, an anchor with the highest IoU against the ground truth bounding box is assigned to an object during ground truth annotation. And during training, we train the network to learn to pick the anchor that gives the highest IoU to a given object, a concept introduced by DenseYOLO.

Coordinate prediction loss (error)

As shown in Figure 7.2, every object bounding box has four parameters (t ′

x , t ′ y , t w , t h ) related to the actual bounding box coordinates using Equations (7.9) to (7.12). Accordingly, the network will predict the corresponding bounding box parameters ( tx , ty , tw , th ). As explained in an earlier section, the (t ′ x , t ′ y ) corresponds to an object's center coordinate and has a value in the range [-1, 2]. Thus the corresponding network output must pass through an activation function whose output value must also be in the same range. However, the common activation functions such as tanh have a range [-1, 1], sigmoid [0, 1], and Relu or LeakyRelu have a range either [0, ∞] or [-∞, +∞], respectively. We experimented with various custom activations, or simple mapping functions, but nally gured out using tanh and sigmoid activation functions in combination works very well since the output of the sum of the two functions is bounded in the range [-1, 2].

Let the direct output of the detection network corresponding to (t ′ x , t ′ y ) before passing through an activation be (ẑ x , ẑy ). Using Equations (7.13) to (7.14), we convert (ẑ x , ẑy ) into ( tx , ty ). tx = tanh(β × ẑx ) + σ(β × ẑx ) (7.13) ty = tanh(β × ẑy ) + σ(β × ẑy )

(7.14)
As shown in Figure 7.3, equation 7.13 and 7.14 smoothly transforms the network output (ẑ x , ẑy ) to the desired output range. The β in equations is to horizontally expand the tanh and sigmoid function to prevent quick saturation of these functions. β should be picked from range [0, 1] since values above 1 make bounding box prediction unstable during training. In our case we set β = 0.25 and during inference also we use the same value for β.

Finally, we calculate coordinate prediction loss using mean square error as given in eq. (7.15).

lcrd ij = λ coord 1 obj ij √ x ij -xij 2 + √ y ij -ŷij 2 + λ coord 1 obj ij b wij -bwij 2 + b hij -bhij 2 (7.15) λ coord = -λ log(IoU score ij ) (7.16 
)

loss coord = 1 m gw i=0 g h j=0 lcrd ij (7.17) 
g w and g h are the total number of grid cells horizontally and vertically, respectively, whereas 1 obj ij = 1 if the grid cell has an object and otherwise equals zero. m refers to the batch size. IoU score i j has a value of 0 to 1 depending on how much the predicted bounding box overlaps with the ground truth. The logarithmic coecient we introduced in the coordinate loss plays a 

Objectness condence loss

Fourth part of our loss function evaluates objectness condence of the predicted bounding box.

Our objectness condence loss has two parts, as seen in equation 6, one for grids labeled to have contained an object, that is t 0 = 1, and those that are not, meaning t 0 = 0.

loss conf = 1 m gw i=0 g h j=0 1 obj ij × BCE obj ij + 1 m gw i=0 g h j=0 1 noobj ij × BCE noobj (7.18) 
BCE obj ij = -log t0

(7.19) BCE noobj ij = -log 1 -ŷ[••• ,4:] (7.20) 
The objectness condence is similar to YOLOv3 because we both use binary cross-entropy loss, except in our case, the no object loss part tries to make classication, anchor prediction, and objectness condence to have probability zero.

Oine Synthetic Data Generation

The other signicant contribution of our work is our oine copy-paste-based data augmentation.

As much as careful design of articial intelligence model is essential, a neat and tremendous amount of training and validation data are also mandatory for a better performing network, especially for an object detection network. Recently copy-paste-based augmentation techniques such as simple alpha blending of two or more images MixUp, CutMix and Mosaic augmentations are reported to increase object detectors' performances. In this work, we implement our own unique and more robust oine copy-paste data augmentation to increase training data signicantly.

In general, our oine copy-paste articial training image synthesis works as follows: First, we download thousands of background objectless images, meaning images without our object of interest, from google images using a simple image search script using keywords such as landmarks, rain, forest, amusement parks, deserts, cities, wallpapers. We then iteratively pick p number of objects and their bounding boxes from random q images of the entire training dataset. We then generate all possible combinations of the p bounding boxes selected using their index as ID. From the set of the combinations, we pick a subset of bounding boxes that satises the following two conditions:

if arranged in some random order side by side, they must t within a given target background image area and should eciently utilize the background image space in its entirety or at least most part of it without the objects overlap.

Following the above approach, we generate hundreds of thousands of articial images. Moreover, before copy-pasting an object from one image onto the background, we randomly do various common augmentations on the individual object. During training, we randomly implement simple and common augmentations to the training minibatch. Fig. 7.4 shows three sample articially synthesized images using our oine copy paste augmentation. The gure shows that the articial images comprise objects that often will not appear together, reassuring the training dataset's robustness. To prevent the network from learning the copy-paste edges, we add an oset of 10 to 15 pixels in all four sides of the object when copying from the source image, thus assuring the bounding box will not rest on the paste borders. As explained earlier, we also passed each object through one or more common augmentation (ip, brightness, contrast, etc.) before pasting on the background image to prevent early overtting of the network on the training dataset. For detail of our oine supplementary articial image generation please refer Appendix 9.2. MultiGridDet 416x416 (ours) 83.5 We supplement both datasets with articial images we generated using our oine copy-paste augmentation. We downloaded about 10,000 background images from Google Images using simple search keywords and a script. Then using these background images and total Pascal 

Introduction

Object detection is one of the most critical areas of computer vision due to its vast applications in surveillance and security, medical imaging, media and entertainment, and transport automation, to name a few. Though it has been an old and challenging quest for researchers and academia to perfect object detection performance, it is only in recent years that signicant progress has been made due to the success of convolutional neural networks in image classication [59]. The current trend in object detection relies on the use of very deep image classication convolutional neural network(s) (CNNs) repurposed to perform detection tasks [22,26,29,30]. However, the challenge with deep CNN-based detectors is the intensive computation these require in the order of multiple GOPs, which can only be rendered by utilizing high-performance computers and GPUs that consume high energy and resources. On the other hand, most applications require real-time inference capability with a constrained power source for real-time decision-making.

Thus, low energy and resource-constrained small electronics such as embedded systems have beneted little from the leap in the accuracy of object detectors as the achievement also required more advanced machines or clusters of machines [START_REF] Rastegari | Xnor-net: Imagenet classication using binary convolutional neural networks[END_REF].

Nonetheless [28,30]. Moreover, at the core of these heavy models is a convolution operation taking the most resource and computation time, reportedly over 90% [START_REF] Cong | Minimizing computation in convolutional neural networks[END_REF] models' execution time. On the other hand, many real-world problems of computer vision demand real-time and lightweight detectors that t on an embedded system. As a result, FPGA's support for high parallelism and CNN's suitability for such high parallelism elevates the prospect of FPGA becoming the leading hardware solution for accelerating computer vision applications. Unfortunately, most top-performing object detectors are too big to t into most FPGA's on-chip memory, making it dicult or impossible to fully exploit the parallelism support in FPGA and the convolution process.

Over the years, many authors have proposed and tried dierent alternatives for accelerating CNN-based networks, particularly the convolution layer. An extensive review of hardware acceleration methods from multiple points of view can be read from the review works of [START_REF] Kamel | Accelerating CNN inference on FPGAs: A survey[END_REF][START_REF] Zeng | FPGA-based accelerator for object detection: a comprehensive survey[END_REF]. Some optimization methods include replacing the standard convolution algorithm altogether with faster algorithms such as fast Fourier transform (FFT) [40,41] or Winograd [42,43]. Other methods based on the transformation of convolution computation include performing convolution as matrix multiplication [44].

However, most optimization methods nowadays focus on bettering the standard convolution by exploiting its parallelism capability via common loop optimization techniques such as loop unrolling, pipelining, and interchanges [47]. In addition to loop optimization concepts such as maximizing data reuse, employing double-buering to minimize memory access bottleneck or streamlined dataows are integral parts of modern hardware acceleration designs [START_REF] Ma | Optimizing loop operation and dataow in FPGA acceleration of deep convolutional neural networks[END_REF]. Algorithms such as rooine modeling [47] have been used to pick optimum design parameters such as tile size and unroll factors and exploring design spaces.

Furthermore, recent works have also considered data quantization, model pruning, and compressiona core rst step of deep CNN implementations on FPGAs as lighter models tend to be faster and inexpensive in terms of resources. These approaches include quantizing the trained weights and biases to smaller precisions (bits), as small as one-bit quantization [START_REF] Rastegari | Xnor-net: Imagenet classication using binary convolutional neural networks[END_REF]. Although such quantizations are highly hardware ecient or fast, they are also prone to severe accuracy loss. Another related optimization mechanism is to exploit the sparsity of trained networks 87 8.4. Background Chapter 8

weights [START_REF] Wang | Sparse-YOLO: hardware/software co-design of an FPGA accelerator for YOLOv2[END_REF].

In summary, current hardware-acceleration implementations utilize one or more of the above techniques for maximum throughput, ecient resource utilization, and low-power consumption while maintaining the smallest possible drop in accuracy. However, these objectives largely contradict one another, and researchers end up with designs that are inecient in terms of their accuracy, resource use and power eciency. However, in this article, we give an in-depth explanation of our design and implementation of an object detection accelerator with the objective of fair resource utilization while preserving the highest possible accuracy and detection speed.

After all, object detection should be fast and accurate, not only fast or accurate. two-stage [17,22] and one-stage object detectors [26,29,30]. As the names imply, two-stage object detectors perform detection in two core stages; the rst stage proposes the regions and the second stage classies and scores each proposed region by object class and location. One-stage detectors, however, complete both the localization and classication in one forward pass using one unied deep CNN network. Due to one-stage detectors' unied single-network approach, they are relatively less complex, lightweight, and faster although they can be somewhat though not signicantly less accurate. As a result, many hardware acceleration implementations of object detection networks concentrate on these network types [START_REF] Ma | Algorithm-hardware co-design of single shot detector for fast object detection on FPGAs[END_REF]. One well-known and widely implemented object detection network is YOLO [26], particularly YOLO versions 2 and 3, or YOLOv2 [27] and YOLOv3 [28] as they are commonly known, respectively. As a result, we also target one-stage object detector YOLO, particularly YOLOv2, as the basis for our hardware- YOLOv2 has 31 layers, excluding the batch normalization and activation layers. The 31 layers comprise 23 convolutional layers, 5 max-pooling layers, 1 concatenation layer, 1 route layer, and 1 space-to-depth reorganization layer. Moreover, there is an associated batch normalization and the Leaky Relu activation layer following each convolutional layer, except the nal detection head, where the activation is linear.

We will then briey summarize the working principle of YOLO-based object detectors. YOLO generally perceives an input image as divided into S × S grids of equal sizes, and each grid cell predicts at least a K object class, condence score, and bounding box parameters. K is the number of pre-prepared anchor boxes generated from training sets using K-means clustering.

In post-processing, the predictions are ltered out using objectness condence thresholding and non-max suppression mechanisms.

Recent versions of YOLO such as YOLOv3 and YOLOv4 and their derivatives such as Multi-GridDet [78] have multiscale output and are better at handling the detection of varying scales of objects while also very deep and unfortunately heavy for small-scale FPGAs and other embedded systems. There have been various eorts to reduce the size of YOLO while harvesting the benet of the progressive increase in the network's depth and complexity with no or minimal accuracy loss. Some of these modications include removing some convolutional layer(s) or batch normalization layers from the original implementation [START_REF] Huang | YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers[END_REF], reshaping the output layer [78,80] or converting the one-hot encoding into binary encoding [81]. Following this section, we briey summarize some of the core layers of YOLOv2-based object detection networks. 

Convolution Layer

The convolution layer is the core and computation-intensive part of CNN-based networks, reportedly taking over 90% of the network's execution time [START_REF] Cong | Minimizing computation in convolutional neural networks[END_REF]. Consider Figure 8.2 showing a particular convolutional layer with an input feature map (IFM) tensor of shape X = N if × N ix × N iy , weight kernel of shape W = N of × N if × N kx × N ky and an output feature map (OFM) of shape O = N of × N ox × N oy . The subscripts of , ox , oy stand for the output feature map depth, row (height), and column (width) of the output feature map. Similarly, subscripts if , ix , iy serve the same purpose but for the input feature map. We will stick to these notations throughout the paper for consistency.

Convolution is thus a process of repeated multiply and accumulate operations of a pre-trained weight kernel of shape N if × N kx × N ky against an input feature map or an input image of a shape N if × N ix × N iy by striding the weight kernel across the surface of the input with a stride of size S. This process is repeated N of timesonce for each of the N of dierent kernels yielding an output of size N of ×N ox ×N oy . The Equation (8.1) mathematically describes this convolution process.

O[m][x][y] = K-1 i=0 K-1 j=0 N -1 n=0 ( X[n][xi][yi] × W [m][n][i][j]) + B[m] (8.1) 
where 8.1) assumes that the width and height of the weight kernels to be equal as is the case with YOLOv2 and almost all modern CNN-based networks. The relationship between the input and output feature map width and height is also determined using Equations (8.2) and (8.3). The P in the equation stands for the zero-padding of the input feature map so that the resulting output feature map will have either a 'valid' or 'same' shape. Valid is for when the input is not padded, meaning that P = 0 and the output will have a slightly shorter width and height compared to the input feature map, whereas in the 'same' convolution, the output and input will have the same width and height and hence P is dierent from zero.

xi = x × S + i yi = y × S + j K = N kx = N ky , N = N if 3 × 3/
N ox = N ix + 2P -N kx S + 1 (8.2) 
N oy = N iy + 2P -N ky S + 1

(8.3)
The pseudocode in Listing 8.1 demonstrates that the unoptimized convolution will have six nested loops for a single-input image or input feature map. From this, we can understand that there are output so that its mean and variance become 0 and 1, respectively, Equation (8.6); and nally (4) scaling and shifting the normalized data using learned hyperparameters γ and β, Equation (8.7). The value after the fourth step will be input to the next layer, which is going to be Leaky Relu in the YOLOv2 object detector. We propose a hardwaresoftware coprocessing dual system where the computation-intensive layers, namely all convolution, max-pooling, and activation layers, are ooaded to an FPGA (Programmable Logic or PL) to benet from FPGA's parallelism capabilities. In contrast, layers that are non-computation oriented, such as the reorg and route layers, are processed by a processor onboard our test system (processor system or PS), typically an ARM processor. Moreover, the PS supervises the overall control of the detection network's end-to-end ow, including the preand post-processing stages. We shall then discuss these features of our design choice one by one in detail.

N of × N if × N ox × N oy × N kx × N
µ B ← 1 m m i=1 x i (8.4) σ 2 B ← 1 m m i=1 (x i -µ B ) 2 (8.5) x i ← x i -µ B σ 2 B + ϵ (8.6) y i ← γ x i + β ≡ BN γ,β (x i ) ( 8 

Loop Tiling

As discussed in earlier sections, current state-of-the-art object detectors are deep and have millions of trainable parameters and tens or hundreds of megabytes. As a result, breaking the inputs and outputs into FPGA-manageable chunks of blocks is an inevitable part of the hardware-accelerated implementation of these state-of-the-art models. Recall how Figure 8.2

shows a particular convolutional layer with an input tensor of shape X = N if × N ix × N iy , weight kernel of shape W = N of × N if × N kx × N ky and an output feature map (OFM) of shape O = N of × N ox × N oy . To better illustrate loop tiling, we return to our earlier Figure 8.2; however, this time, we include the loop tiling information, as seen in Figure 8.6, with the white-shaded regions indicating the tile sizes.

The two following equations give the relationship between the input and output tiles' width and height:

T ix = (T ox -1)S + N kx (8.9) 
T iy = (T oy -1)S + N ky (8.10) Some prior works relied on custom-built algorithms such as rooine modeling to determine the optimum tile size parameters. Instead, we opt for a simplistic but intuitive strategy or criterion to specify the appropriate tile sizes that guarantee data reuse and optimized resource utilization. Our simplistic yet intuitive strategy is based on the following assumptions or criteria:

1. For the ecient utilization of the scarce on-chip memory of the FPGA (that is, the BRAM or block random access memory), the max-pooling and convolution layers shall use the same memory blocks for buering. This is possible since the two layers never happen simultaneously but one after another. Thus, we enforce resource-sharing among the two core processing elements.

2. The bigger the data that we can t on the on-chip memory through burst transfer is, the better it is to avoid frequent external memory access because external memory access is relatively slow compared to the actual computation.

3. Determining the buer sizes should not be solely based on the layers with the biggest width, height and/or depth. Instead, tile sizes should be a common divisor of all or most layers so as not to assign excessively-big buers for most of layers, thereby wasting on-chip memory and energy or excessively small buers, increasing external memory transaction frequencies.

In YOLOv2, the convolution stride (S) equals one, whereas the max-pooling stride is two.

Based on our strategy of using shared buers for max-pooling and convolution and the fact that max-pooling requires a buer size almost twice that required by convolution for the same output tile of size T of × T ox × T oy , we base our tile size selection based on the demands of max-pooling layers. By substituting the value of S = 2, we can then rewrite Equations (8.9) and (8.10) as follows:

T ix = (T ox -1) × 2 + 2 = 2 × T ox (8.11) 
T iy = (T oy -1) × 2 + 2 = 2 × T oy (8.12) 

N if × N ix × N iy T if × T ix × T iy ⌈ N of T of ⌉ × ⌈ N if T if ⌉ × ⌈ N ox T ox ⌉ × ⌈ N oy T oy ⌉ OFM N of × N ox × N oy T of × T ox × T oy ⌈ N of T of ⌉ × ⌈ N ox T ox ⌉ × ⌈ N oy T oy ⌉ Weights N of × N if × N kx × N ky T of × T if × T kx × T ky ⌈ N of T of ⌉ × ⌈ N if T if ⌉ Biases N of T of ⌈ N of T of ⌉
the overall architecture in Figure 8.5, each tile has an associated line buer for burst transfer, adding up the total BRAM utilization of the hardware solution.

Finally, according to rst of the aforementioned criteria, the input and output tile buer sizes (only the width and height, T ix and T iy for input tile, and T ox and T oy for output tile) are determined based on the max-pooling layer and Equations (8.11) and (8.12). However, T if and T of 's choices require considering the implemented custom convolution accelerator and available resources, such as the DSPs and logic cells and the aforementioned criteria. We analyzed the YOLOv2 layers for setting T if and observed that N ix 's minimum and maximum values are 3 and 1280, corresponding to the input and layer 29, respectively. Similarly, the minimum and maximum values of N of are 32 and 1024, respectively. Although we would like to assign as big a buer as possible for the tiles according to the second of the aforementioned criteria, we should also respect condition 3, i.e., assigning a suitable buer for all the layers of YOLOv2. Accordingly, we selected T if = 4, which is neither excessively larger than the minimum nor excessively small, causing frequent memory access. However, T of can be set to 32 or more based on the available BRAM and DSP, considering we designed a convolution processor with T if × T of simultaneous MACs (explained under Section 8.5.5). The nal tile size choices of our implementation are discussed in Results and Discussions section, Section 8.6.

Double Buering

To further increase the throughput of our hardware accelerator, we use the concept of double buering, also called ping-pong buering. Double buering helps to overlap memory read, compute, and writeback operations, solving the memory access bottleneck. It also requires twice as much memory as implementation without double buering, resulting in high resource consumption. We implement double-buering using an approach similar to that in [47]. We implement a two-stage ping-pong: one for reading input tiles (weight and input feature maps) and another for writing back the nal convolution results. As seen in Figure 8.7, during the rst iteration of the innermost loop, the input feature map and weight tiles are brought to their corresponding buers (IFM_buer0, Weight_buer0). In the next iteration, while the convolution processor simultaneously performs a convolution operation on the earlier inputs, the next batch of inputs are loaded onto the second set of corresponding buers (IFM_buer1, Weight_buer1).

The convolution results are kept on either OFM_buer0 or OFM_buer1 until the innermost loop is completed. The Algorithm 1 shows the ping-pong process more precisely and briey.

Two Boolean variables (pingpong_ifm, pingpong_ofm) control the double buering sequencing, while the input read, compute and output writeback stages are controlled by loop iteration checks, omitted from the pseudocode for brevity. In general, there are ⌈ 

N if T if ⌉ + 1 input

Data Quantization and Weight Reorganization

As state-of-the-art object detections model sizes steadily increase to achieve increased performance, the network becomes slower and more resource-demanding. Consequently, the model quantization of trained weights and biases has become an integral part of hardware acceleration implementation. As discussed in our Related Works section, extreme quantizations yield a highspeed model. However, the accuracy loss is usually not worth the speed gain for most real-world application areas of computer vision since a detector should be not only fast, but fast as well as accurate. As a result, instead of extreme quantization, we opted for the 16-bit quantization of the trained weights, biases, and input feature maps.

Quantization converts the trained network parameters from the de facto 32-bit oating-point precision into an m -bit xed-point precision binary string. The quantized model will be lighter in size and hence faster. To mathematically describe the quantization process, let us consider W f loat32 as the 32-bit (also called single) precision IEEE 754 standard number, and its 16-bit quantized equivalent as W quant16 . To quantize W f loat32 into W quant16 , we rst need to determine an integer Q, such that the integer part of W f loat32 could be represented byn ≥ (m -Q) bits, and in our case m is 16 since we target 16-bit quantization. For example, if W f loat32 = 3.24, the integer part is +3, a small number that can be represented by n = 2 bits. However, considering the potential of W f loat32 as negative, we leave at least three bits for the portion before the decimal point. This leaves our Q to be 13. Once the Q value is determined, the quantized W quant16 is calculated as:

W quant16 = ⌊W f loat32 × 2 Q ⌋ (8.14)
In our example, substituting the Q value gives W quant16 = 3.24×2 13 = 26542. Using Equation (8.15), one can reverse the quantized value back into oating precision though a slight dierence is expected due to rounding. In fact, the quantization error can also be calculated using the Equation (8.16). for Similarly to the above explanation, we implemented the weight, input, and output feature map and bias quantization using 16-bit per-layer dynamic quantization. For example, the 16-bit dynamic weight quantization is presented in the pseudocode listing of Algorithm 2. Furthermore, after quantizing, we reorganized the weight tensor from its original 4D shape of N of × N if × N kx × N ky , as shown in Figure 8.2, to a 3D shape N kxy × N of × N if , as seen in Figure 8.8. N kxy is the product of the width and height of the kernel, that is N kx × N ky = N kxy . Hereafter, in our hardware accelerator design, we refer to the weight tensor in this 3D shape rather than its original 4D shape. The quantized weight tensor is saved in the DDR memory in the order of tiles that the convolution processor expects so that a continuous high-speed burst transfer is made to the on-chip buer. 

W ′ f loat32 = ⌊W quant16 × 2 -Q ⌋ (8.15) error =| W ′ f loat32 -W f loat32 | (8.
( tof = 0; tof < (N of + T of ); tof + = T of ) { compute_ag = (tof < N

Convolution Processor

The convolution layer is the most resource-demanding and computation-intensive part of the object detector CNN network. As shown in Listing 8.1, the unoptimized convolution has six nested loops, even though they must not always be in the same sequence. We use standard loop tiling, unrolling, and interchange to design an optimized hardware-accelerated version of the convolution. Convolution in xed-point precision is no longer only an MAC (multiply and accumulate); instead, it is multiply, right shift, and accumulate. Thus, we like to refer to it as MSA operations, not MAC. The amount of right shift is calculated from the Q values of the input quantization Q X , weight quantization Q W , and an intermediate value Q I . We will explain this better with a diagrammatic depiction. Figure 8.9 shows the smallest processing element (PE) unit of our xed-point convolution implementation. In the gure, two 16-bit numbers with dierent Q, that is, Q X for the input pixel and Q W for the weight 'pixel' pass through the multiplier followed by the right-shift operator and then the accumulator. Had it been a oatingpoint precision, the decimal point would have been placed at Q XW of the resulting product. However, since this is a xed-point precision operation, we replace the decimal point with a two's power division or right-shift. Right shift with Q = Q XW would completely discard the fractional points from the result of the product. Instead, we perform a right-shift operation However, the convolution kernels are not xed for all convolution layers. Instead, they alternate between 1 × 1 and 3 × 3 in YOLOv2. As a result, placing the loops labeled _nki and _nkj in the middle of the nested loops increases the iteration control hardware, consumes more logic cells and increases latency. We compared it against the second version given by Listing 8.4 and found that Listing 8.3 is three times slower. Our nal optimized convolution accelerator was thus chosen to be the one mentioned in Listing 8.4.

using Q = Q IXW = Q XW -Q I .
To summarize some of the core features of our convolution accelerator, we mention the following key points:

Per block (tile), the convolution compute latency is given by the Equation (8.17) below:

(N kx × N ky × T ox × T oy + C) × 1 F clk (8.17)
C stands for the 'constant' referring to the number of cycles needed to perform the fully unrolled inner operations commented 14 in the pseudocode Listing 8.4 and loop iterations control logic. In our implementation, C is equal to either 13 or 21 based on the kernel types, 1 × 1or 3 × 3, respectively. F clk stands for clock frequency.

The total compute latency for a convolution layer is calculated as:

⌈ N of T of ⌉ × ⌈ N ox T ox ⌉ × ⌈ N oy T oy ⌉ × ⌈ N if T if ⌉ × (N kx × N ky × T ox × T oy + C) × 1 F clk (8.18) 
The total number of multiply, shift and accumulate operations per convolution layer is calculated as: 

3 × ⌈ N of T of ⌉ × ⌈ N ox T ox ⌉ × ⌈ N oy T oy ⌉ × ⌈ N if T if ⌉ × (N kx × N ky × T ox × T oy × T of × T if ) (8.19)

YOLOV2 PER-LAYER INFERENCE DELAY

Latency on ZCU102 @300MHz Latency on ZYNQ7020 @150MHz Figure 8.12: Per-layer latency of YOLOv2 inference on ZYNQ 7020 and ZCU102.

Although there are many FPGA-based inference accelerations, the main reasons we picked these sample references to compare against our work are that (1) these works are recent;

(2) all are onestage object detection inference accelerations (4) based on YOLO versions and 1 based on SSD); and

(3) all are abundantly cited prior works with close resemblance to our approach. As the table shows, our implementation maintains the most resource and power-ecient performance while still having a commendable GOP/S at a frequency as high as 300 MHz and higher DSP eciency. Moreover, though some entries in the table never reported their accuracy performance, In general, we obtained an ecient hardware-acceleration design scheme that preserves the scarce and precious resources of an FPGA while yielding higher performance at low-energy consumption. We used a shared double-buered on-chip buer to conserve memory and avoid memory access becoming a bottleneck to our hardware convolution accelerator. Compared to [START_REF] Ma | Algorithm-hardware co-design of single shot detector for fast object detection on FPGAs[END_REF] consuming 100 Watt energy and approximately fteen times more DSPs than our implementation, we achieve a commendable 0.244 s in execution latency of YOLOv2 at a mere 5.376 Watt and 291 DSPs utilized. Given the fact that we used a 16-bit xed-point precision, there is a reasonable prospect for our implementation to achieve real-time acceleration by changing our quantization strategy to an 8-bit or mixed precision as well as save more resources and power while still managing to maintain the minimum possible loss in detection accuracy.

Finally, Figure 8.13 shows the sample output of our hardware accelerator performing impeccably well with high accuracy as good as the full 32-bit oating-point precision implemented on our laptop. Since the early ages of computers, it has been an early-on quest for humankind to be able to mimic the biologically acquired eortless vision system it has from birth and relies on in its everyday daily life. Though the biological vision system appears seemingly eortless at recognizing objects on images and video, enabling a machine that level of eortlessness and condence is challenging, if not outright impossible! However, thanks to the success of convolutional neural networks, machines can now mimic some of our audio-visual capability in processing audio, images, and video inputs though they are still very far from being condently reliable. Moreover, detecting all known objects on an image and localizing them is not trivial compared to image classication due Unfortunately, this latest work is deeper and has hundreds of layers, which led to a considerably slower detector against YOLOv2 but immensely more accurate and better performing in detection speed compared to most of the top-performing state-of-the-art object detectors. In our quest for improved detection accuracy, we yet again repurposed the new YOLOv3 by incorporating our unique approach from DenseYOLO and another novel method of annotating object detection ground truths. Our third model is dubbed MultiGridDet, or simply DenseYOLOv2.

Conclusions

MultiGridDet's primary feature is assigning multiple nearby grid cells to detect an object of interest, unlike the previous models that lay the responsibility of predicting an object to the grid cell that contains the center coordinate of an object. As a result, MultiGridDet has the potential of a multi-perspective view of an object of interest, increasing its chance of predicting a tightly-t object bounding box.

Moreover, in addition to the multigrid annotation of an object ground-truth, we also proposed a powerful oine synthetic data generation and augmentation to supplement the object detection dataset. One of the signicant challenges in training an object detection model is the lack of a large, well-annotated, class-balanced dataset. The most common approach to treating dataset scarcity is articial data augmentations such as rotating, ipping, contrast and brightness manipulation, etc. However, these geometrical and texture transformations alone will not address an image's random combination of real-world object occurrence. As a result, many researchers seek ways to generate additional articial training sets using methods such as copy-paste. We Fortunately, FPGA's high data bandwidth, ecient power consumption, parallelism, and exible programmability attracted many researchers' attention to address these requirements. We proposed high-throughput energy and resource-ecient acceleration of object detection inference using FPGA to play our part. Finally, our object detection inference acceleration incorporated double-buering, dynamic xed-point quantization, loop tiling, loop optimizations, and buer sharing to achieve a high-throughput, low resource, and energy-ecient inference acceleration.

Using Xilinx's Vitis Unied Software Platform, we successfully tested our proposed object detection acceleration by implementing YOLOv2, DDGNet, and DenseYOLO models on at least two FPGA boards.

Future Works and Perspectives

In this Ph.D. dissertation work, we proposed, designed, and implemented lightweight, fast, and accurate object detection models using a deep convolutional neural network-based and implemented their acceleration using FPGA. Our models' accuracy is commendable and comparable to current state-of-the-art detectors. Furthermore, our hardware acceleration design and implementation showed superior performance against some comparable prior related works measured using metrics such as power eciency, resource eciency, and throughput.

Even though we listed several laudable contributions in this thesis work, we still have some prospects for improvement or extension work. Particular future works of our contributions are already mentioned in their corresponding chapters and sections. However, the general prospect is to enable our object detection models to perform object segmentation, both semantic and instance object segmentation. Object segmentation is a valuable area of computer vision where many sensitive real-world applications such as medical institutions could benet greatly. Moreover, we also intend to extend our study to include object tracking based on deep CNN networks.

On the hardware acceleration, in the future, we would like to experiment with extreme quantization and mixed data width quantization for higher speed while maintaining detection accuracy.

Moreover, due to time limitations, we did not implement and test our third object detection model, MultiGridDet, on an FPGA board; however, we intend to do so in the future. Last but not least future work is to design a user-friendly and congurable framework that, based on available resources onboard a given FPGA board, maps the software-based deep CNN networks into hardware-accelerated version with high-throughput, ecient resources and power consumption as its core value.

Synthetic

Image Generator(SIG) for Supplementing Object Detection and Segmentation Datasets Even though research on object detection has immensely improved since the success of deep convolutional neural networks, the success is yet not on par with image classication. One of the challenges in object detection is the lack of a large, carefully annotated, balanced dataset, as one can nowadays easily nd for training image classiers or produce one at ease. However, preparing an object detection dataset is dicult since nding object(s) of interest, putting a bounding box around each object, and labeling them is very cumbersome, tiresome, and error-prone. Especially in generic object detection, preparing object class and scale balanced datasets from scratch is near impossible considering the sheer amount of images required to train an accurate object detector.

Due to this lack of robust and abundant object detection datasets, data augmentation has become integral to training deep learning models, often signicantly inuencing model performance based on the quality of the chosen augmentation techniques. Some of the standard practices in data augmentation include random resizing or cropping, randomly altering the brightness, contrast, or saturation of an image, rotating an image, and adding noises or dropping out certain parts or pixels of an image. However, the new images produced via these augmentation techniques maintain the relative positions of objects or will not change the set of objects on an image unless an object is entirely cropped out of an image. Hence, even if the augmented image is more bright or darker, noised or rotated from the respective source image, the objects are still the same and in the same viewpoints from one another. Moreover, these geometrical or morphological augmentations will not correct the dataset's class and scale imbalance of object representations.

In addition to the geometrical and morphological online data augmentations we mentioned earlier, copy-paste-based augmentations such as CutMix and alpha-blending-based or more advanced approaches based on generative adversarial networks (GANs) are becoming alternative augmentation techniques. As the name suggests, copy-paste augmentation is simply copying an object from one image and populating it on a new background image. The copy-pasting could be context-aware or random. The challenge with the copy-paste method is that the pasting process leaves visual artifacts that the network quickly picks, misleading the detector into looking for the artifacts rather than the object's core features, hence lacking generalization. To alleviate this, mask-based blending is required, which is another time-consuming process since producing a mask is even more dicult than annotating bounding boxes. The other approaches, such as modeling visual contexts or training networks to produce articial images, require sophisticated designing and building of a network that trains and creates articial images suitable for specic purposes.

This work presents our synthetic image generator (SIG) based on copy-paste and OpenCV's seamless clone functionality. We develop a unique and robust algorithm to select objects from Chapter 0 an existing dataset and create a new, well-annotated, photo-realistic supplementary dataset to boost the existing object detection dataset. The OpenCV's seamless clone of images is based on Poisson image editing. Though the cloning leaves few artifacts that could distract the object detection training from focusing on the primary object features, we try to remove or alleviate the eect of the artifacts by using various lterings such as Gaussian Blurring or Median Blurring. We randomly apply contrast sharpening and size augmentation on small objects to boost their resolution and visibility. Moreover, to avoid the redundancy of objects in the dataset, we apply random geometric and morphological augmentation on every object we clone onto a new background.

Below we explain our SIG step-by-step:

Step 1: Prepare Background Images:-We write a script that runs on web browsers such as google chrome to download thousands of images with minimal objects in them.

We run our script on Flickr, Pinterest, and Google Images with search keywords such as a landmark, weather, empty city, streets, etc. We download the URLs and the images. We use these images as a background to populate our cloned objects from the object detection dataset.

Step 2: Prepare Annotated Object Detection Dataset:-Our SIG requires an exist- Step 3: Populating the objects:-Once we prepare the background images and some preexisting object detection datasets (e.g., Pascal VOC or COCO datasets) with segmentation masks, we follow a step-by-step procedure to randomly select objects from ground truth and clone them onto a new background to create a new seamless and photo-realistic dataset. This step-by-step ow is best explained using a owchart as shown in gure 2. As seen on the owchart, selecting objects, followed by additional augmentations and placement on to background image, involves several stages. To explain the owchart briey:

1. We randomly pick objects from an image until the cumulative sum of the IoU of the selected objects can at least cover the entirety of the background image. We calculate the IoU of the objects against the background image by assuming all objects top left corner to be pasted at the index (0,0) of the image. If the total IoU of the selected objects is greater or equal to 1.0, then that guarantees that the selected objects, if pasted on the background in some order, will cover the area of the object. That is not a requirement but is a means to control how many objects to select and not to underutilize the background image area. If the IoU is less than 1.0, then we repeat this step with a dierent image so that the newly created image has objects mixed from various images. Note that we also apply random augmentations from the standard image processing techniques to ensure the robustness of our dataset.

2. After picking a certain number of objects with overall IoU >= 1.0, we apply a fairly complex algorithm to determine paste coordinates for the selected objects. The algorithm ensures that no objects overlap or at least not signicantly, and the background image space is utilized eciently.

3. Finally, after populating the objects onto the background image, we apply random histogram equalization techniques and gamma correction to smooth out the brightness and contrast of the newly created image. At last, we save our new image and the bounding box coordinates and object classes and repeat the process all over again to generate as many new images as possible.

Figure 3 shows sample outputs of our synthetic image generator or SIG for short. The gure shows the newly generated images on the left and the bounding boxes drawn on each object on the right for better visibility and to showcase the quality of our generator. The owchart shown in Figure 2 is simplistic as it leaves many little but vital details for brevity. For example, when cloning an object, e.g., a sofa, a bus, or a horse being ridden by a person, etc., it is evident that there will be part of objects that will be brought with these objects and cloned on the new image. Thus, if a signicant portion of inner objects is cloned(copied) with other objects, we must also annotate the coordinates of these piggybacked objects as well, given that these inner objects also are our objects of interest. Figure 3 
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  for object detection. Training object detection requires an enormous amount of carefully annotated data, and obtaining or producing such data is a very tedious and cumbersome task. Instead, researchers rely on dierent image augmentation techniques. Our synthetic image generation algorithm proves very useful in training object detection. Furthermore, Figure 1.1 summarizes our objective and major contributions in this Ph.D. work pictorially by grouping our core objectives and contributions into two categories. As seen from the gure, our rst objective is to design and implement a new and better object detection network based on deep CNN by re-purposing an already existing well-performing model into a more lightweight, faster, and accurate detector. Under this objective, our signicant contributions yield three new object detection models based on a one-stage object detection paradigm and are derived from YOLOv2 and YOLOv3, well-reputed object detection models. Moreover, we also devise a new and valuable synthetic data augmentation technique to supplement object detection training datasets. Our second core objective is to design and implement a faster, lighter, and resource and power-ecient hardware version of our object detectors. Under this objective, we achieved high resource and power eciencies and more accurate and high-throughput object detection inference acceleration.
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 11 Figure 1.1: Our objectives and major contributions
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 21 Figure 2.1: AI vs. ML vs. DL: A Venn Diagram depicting Deep Learning as Part of Machine Learning which is, in turn, one of the ways of mimicking human intelligence articially to machines

Figure 2 . 2 (

 22 Figure 2.2 (fourth image), we call it instance segmentation. In contrast, semantic segmentation assigns similar color for pixels of objects of the same class regardless of the pixels belonging to dierent objects even though the same class. See Figure 2.2, (the third image) for semantic segmentation.

  a path is drawn in the video frames showing the object's trajectory. Object tracking has several applications, including surveillance, activity recognition, uncrewed vehicles (areal and land), and various military purposes. Image classication, object detection, or segmentation are typically time-insensitive, whereas object tracking has an added complication due to its need to be realtime or instantaneous. Since this thesis focuses on real-time object detection and tracking, we will discuss these two concepts in detail in the following chapters, including our proposed methods and contributions.
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 22 Figure 2.2: Illustration of image classication, object detection, semantic, and instance segmentation
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 23 Figure 2.3: Biological vs. Articial Neuron

Figure 2 . 4 :

 24 Figure 2.4: Articial Neural Network

Figure 2 . 5 :

 25 Figure 2.5: Common Activation functions

Figure 2 . 6 :

 26 Figure 2.6: Training ANNs: 1) Feedforward to calculate new activations (neurons), 2 ) backpropagate the error, 3) update weight and bias. Repeat these three steps until the cost is close or equal to zero or the stops lowering signicantly

  (a) Fully Connected Layer Without DropOut (b) Fully Connected Layer With DropOut Figure 2.8: Fully Connected Layers without Dropout (a) and with Dropout (b) layers

Figure 2 .

 2 8 shows a simple, Fully connected network with and without Dropout layer. Residual Blocks A common technique to increase the performance of deep learning models is to go even deeper and use more training. However, as the depth of a model increases, the training tends to saturate, and training loss stops reducing beyond some value since the last layers tend to capture no useful feature maps from the input image. To solve this problem in deep models, researchers at Microsoft proposed adding a by-pass connection to transfer features from earlier layers to a later layer repeat the stack of such blocks to construct a very deep model. The by-pass connection is commonly called skip-connection or shortcut connection. Since the rst paper, researchers have utilized dierent kinds of skip-connections and residual blocks.

Figure 2 .

 2 9 shows some of these varieties. Note how the skip connection is before the activation function; in this example, LeakyRelu is the activation we utilized since it is the most used non-linearity function. The activation is applied after adding the transferred feature map (residual block) and current layer feature map.

  (a) Identity Residual block (b) Convolutional residual block Figure 2.9: Residual blocks
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 215 Geometric transformation: ipping (vertically or horizontally), rotating, zooming, cropping and padding, ane transformation, sheering Color manipulation: adding or decreasing brightness, contrast, hue, and saturation Adding noise, randomly eliminating a portion of data Synthetic data generation: copy-paste data generation, training model to generate data using GAN (generative adversary network) Training Deep Learning Model Chapter 2

  For example, rotation augmentations might make the bounding box a) to get out of the image boundary or b) tightly unt the object. In general, though data augmentation is the pinnacle of the success of training deep CNN model, it should be handled with great care and proper vetting of techniques to be used. 3. Create the Model:-To create a deep learning model, we need to identify the objective of the model. We should ask whether we need classication, detection, segmentation, tracking, language processing, and the like. Because, based on the objective, we determine our model's objective function, also called loss, cost, or error function. We have many well-known objective functions at our disposal that we can choose based on the dataset and the task at hand. To mention a few: binary-cross entropy, categorical cross-entropy, mean square error, hinge loss, mean absolute error. Usually, in detection problems, one or more of these loss types are used together to target the classication loss and bounding-box regression loss separately.

Figure 2 . 10 :

 210 Figure 2.10: Stages of training and deploying Deep CNN based networks

4 .

 4 Training the Model:-Training a deep learning model or machine learning, in general, is a process of iteratively modifying a layered weight and bias parameters of a network so that the network can map an input to its output encoding by gradually learning to minimize a given cost function. During training, our decisions on the following core concepts matter the most on the performance of our model: Size, Early-Stopping Considering the broadness of this topic, we recommend the reader to reference books such as [Pattern recognition by Bishop [10], Deep Learning Book by Ian Goodfella [13], Neural Network and Deep Learning by Micheal Nelson [11]]. 5. Model Evaluation:-After training or training a model, evaluating the model's performance is an unarguably critical part of model development. Model evaluation is dierent from model loss calculation. Loss guides the network toward maximum performance by

(2. 23 )

 23 All the above metrics are explained from a classication point of view since we only considered the ground truth and prediction class. However, in detection challenges, the class of the object and the bounding box of the predicted object must signicantly overlap with the ground truth class and bounding box. To say an object is detected, that is, a true positive (TP) detection, the class of the predicted object must match the class of the ground truth, and the bounding box of the predicted object must overlap above a certain threshold against the ground truth bounding box. The metric we commonly use to check whether a predicted bounding box overlaps against the ground truth is IoU.

Figure 2 . 11 :

 211 Figure 2.11: Intersection over Union Assume the blue box labeled A, in gure 2.11, is the ground truth, and the red box labeled B is the predicted bounding box of object A. Both boxes A and B are the same class; for example, say both are "cat," hence the classication is correct. But for us to call cat is detected, the IoU needs to be above some preset IoU threshold, IoU thresh . The shaded region labeled C is the intersection box. If A and B do not overlap, then the area of box C is zero indicating that the IoU is also zero. We calculate the IoU using Equation 2.24.
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  network are best explained by the growing trend of using families of the sophisticated and cumbersome ResNet-based classiers in almost all best performing state-of-the-art object detectors at the cost of speed and resource expense. Two deep CNN-based approaches, shown in gure 3.1 dominate modern era generic object detection researches. These are implementation of object detection as a two-stage or one-stage detector. Two-stage detectors perform object detection in two core steps, that is, rst using a serious of CNN propose sparse candidate regions on an image, likely containing an object of interest, and second classify and score each proposed region. One-stage detectors, however, perform both the localization and classication simultaneously in one forward pass. Generally, two-stage networks are known for their high performance in detection accuracy though they are usually very slow and heavy. On the contrary, one-stage detectors are very-fast while relatively are also less accurate.

Figure 3 . 1 :

 31 Figure 3.1: Modern Deep-Learning Based Object Detection Categories

Figure 3 . 2 :

 32 Figure 3.2: The architecture of R-CNN. (Image source: [17])

  connected layers are connected to this 21c-dimension feature vector. Two dierent strategies can be adopted for training the CNN network of SPPnet: single-scale training and multiscale training. Single-scale training uses a xed-size input (i.e., 224 × 224) wrapped from the input images. Multiscale training uses images of multiple dierent sizes, wherein each iteration, only the images of one scale are used for training the CNN network. The size of the input image is represented by s × s, where s is uniformly sampled from 180 to 224. Because the multiscale training can simulate the varying sizes of images, it can improve detection accuracy. For training SVM classiers, the specic steps are the same as that of RCNN. In the test stage, the image of an arbitrary scale can be put into SPPnet.

Figure 3 . 3 :Figure 3 .

 333 Figure 3.3: Spatial pyramid pooling layer. The feature maps of a given proposal are pooled into 3 Ö 3 spatial bins, 2Ö2 spatial bins, and 1Ö1 spatial bins, respectively. After that, they are concatenated into a xed-size feature vector and fed into two fully connected layers.

Figure 3 . 4 :

 34 Figure 3.4: The architecture of Fast RCNN. Compared to RCNN and SPPnet, it joins the classicationand regression into a unied framework.[START_REF] Girshick | Fast r-cnn[END_REF] 

Figure 3 . 5 :

 35 Figure 3.5: The architecture of Faster RCNN. Proposal generation (RPN) and proposal classication

  or 0 otherwise. The classication loss and regression loss are the same as that of Fast RCNN. If an anchor has an IoU overlap over 0.7 with any ground truth bounding boxes, the anchor is labeled as positive. If the anchors have an IoU overlap under 0.3 with all ground-truth bounding boxes, then the anchor is labeled as negative. The third range of overlap between 0.3 and 0.7 is left as neither negative nor positive. R-FCN Generally, the above state-of-the-art object detection methods (i.e., RCNN, SPPnet, Fast RCNN, and Faster RCNN) use the pre-trained CNN network on the image classication dataset (i.e., ImageNet ). Dai et al. argued that this design has a dilemma to some degree. Generally, a deep CNN network for image classication favors translation invariance, while a deep CNN network for object detection needs translation variance. Dai et al. proposed R-FCN [23] to address the above dilemma between image classication and object detection. It encodes the object position information by the position-sensitive ROI pooling layer (PSROI) for the following Fast RCNN subnet. Figure 3.6 shows the architecture of R-FCN. Region proposal generation is the same as Faster RCNN. Based on the output layer of the original base network, R-FCN generates the new k × k position-sensitive convolutional banks. The convolutional banks correspond to the k × k spatial grids, respectively. In each convolutional bank, there are c + 1 convolutional layers (c means the number of object categories, and +1 means the background category). Namely, k × k × (c + 1) convolutional feature maps. At k(C + 1)-d convolutional layer, a sibling 4k 2 -d convolutional layer is appended. Position-sensitive RoI pooling is performed on this bank of 4k 2 maps, producing a 4k 2 -d vector for each RoI. k 2 (C + 1) is for class prediction of the object whereas the 4k 2 -d is for bounding-box regression. Overall, R-FCN has a competitive performance with Faster RCNN while beating it in detection and training speed. Mask RCNN Most object detection methods only predict object locations by bounding boxes without providing more accurate segmentation information. In recent few years, some researchers proposed instance segmentation, which usually contains object detection and segmentation. Mask RCNN [24] is a famous method for instance segmentation and object detection. As shown in Figure 3.7, Mask RCNN architecture incorporates instance segmentation and object detection into a unied framework based on Faster RCNN architecture. Specically, it adds an extra mask branch to predict the object's mask aside from the object classication and box regression branch. The mask branch has c binary masks with the size of m × m. c means the number of object categories. The multi-loss head of Mask RCNN on each sampled ROI includes classication loss, regression loss, and mask loss. It can be represented as L = L cls + L reg + L mask . The losses of L cls and L reg are the same as that of Faster RCNN. For an RoI proposal associated with the ground-truth class c, L mask is only dened on the c th mask and other mask outputs do not contribute to the loss. L mask is dened as the average binary cross-entropy loss, only including c th mask if the region is associated with the ground truth class c th .

Figure 3 . 6 :

 36 Figure 3.6: The architecture of R-FCN. Position information is encoded into the network by positionsensitive ROI pooling (PSROI)[START_REF] Dai | R-fcn: Object detection via region-based fully convolutional networks[END_REF] 

Figure 3 . 7 :

 37 Figure 3.7: The architecture of Mask RCNN. Apart from the detection branch of Faster RCNN, the extra branch of mask segmentation is added. [24]

  has a model architecture similar to AlexNet but optimized for speed. Though it is a pioneer one-stage detector and ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) winner, its performance is inferior to current one-stage detectors. YOLO YOLO (also called YOLOv1 due to follow-up successive incremental versions), an abbreviation for You Only Look Once, is one of the rst high-speed and high-performance one-stage object detectors. YOLO divides an entire image into S × S grid cells of area 32 by 32 pixels, and each grid cell detects B object bounding box coordinates, objectness condence score, and class probabilities. The output layer of YOLO has a tensor of shape S ×S ×(5B + C), meaning each of the S ×S grids has a tensor of size (5B + C) corresponding for the four bounding box parameters (i.e., b x , b y , b w , b h ) plus one for objectness score and C for the number of class categories. The B signies that each grid predicts B bounding boxes and condence scores where B was two in the original implementation. In general, for an input image of size 224×224 and Pascal VOC dataset with 20 object classes, the YOLO outputs 7 × 7 × (5 × 2 + 20). For this image size thus there will be 49 grids, and each grid predicts two bounding boxes, making 98 bounding boxes per image.
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 3839 Figure 3.8: YOLO has 24 convolutional layers followed by two fully connected layers. Alternating 1 Ö 1 convolutional layers reduces the features space from preceding layers. It is rst trained on the ImageNet classication task at half the resolution (224 Ö 224 input image) and then doubles the resolution fordetection.[26] 
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 63 Figure 3.10 shows the architecture of RetinaNet with a base network is FPN. which constructs multiple feature maps. As seen from the gure, RetinaNet has two task-specic subnetworks, one subnet for performing convolutional object classication on the backbone's output and a second subnet for convolutional bounding box regression.
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 310 Figure 3.10: The architecture of RetinaNet. The base network is FPN with ResNet classication back-bone.[30] 

  Brightness consistency: Brightness around a small region is assumed to remain nearly constant Spatial coherence: Neighboring points in the scene typically belong to the same surface and hence typically have similar motions Temporal persistence: Motion of a patch has a gradual change Limited motion: Points do not move very far or haphazardly

Figure 3 .

 3 Figure 3.11: The ongoing discrete Kalman lter cycle. The time update projects the current state estimate ahead of time. The measurement update adjusts the projected estimate by an actual measurement at that time.

Figure 3 .

 3 Figure 3.12: A complete picture of the operation of the Kalman lter illustrated mathematically

  We classied the current object detection trends into two well-known categories based on the approaches to implementing the detection networks. These two categories are called two-stage object detection and one-stage object detection. Two-stage object detectors perform detection in two tightly coupled stages. The rst stage is a region of interest proposal or pooling, where thousands of likely objects of interest containing regions of an image are pooled and wrapped together to be fed to the next stage. The second stage is the classication and localization stage, where the wrapped regions are passed through several layers, most probably CNN layers, and scored on their likelihood of containing objects. Non-Max-Suppression and thresholding methods lter out weak predictions while preserving the most condent ones. The other set of modern object detection methods is based on one-stage detection in which classication of object class and regression of their location is done in one unied network in a single forward pass. These models are fast, lightweight, and suitable for embedded system applications. However, they are relatively less accurate since they don't have a separate network to propose regions and likely locations of objects. As a result, these types of object detectors are the center of our research work. In the coming chapters, we present dierent, more accurate, lightweight, and fast one-stage detectors followed by hardware acceleration implementation FPGA as Hardware Accelerator for Object Detection and Tracking Chapter content FPGA as Hardware Accelerator for Object Detection and Tracking . . . 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Why FPGA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Short Review of FPGA Based Deep Learning Acceleration . . . . . 44 4.3.1 Optimizations based on transforming the algorithm of convolution . . . 44 4.3.2 Loop Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.3 Optimization based on lightweight implementation . . . . . . . . . . . . 48 4.4 Hardware-accelerated deep CNN design and implementation ow . 48 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 FPGA as Hardware Accelerator for Object Detection and Tracking4.1 IntroductionAs explained in previous chapters, deep learning techniques, mainly based on CNN, dominate computer vision applications, with breakthroughs announced nearly every month. The pace of innovation in this eld is astounding. It means that new, previously unobtainable applications are likely to be enabled within the next few years. However, the challenge with CNNs is the intense amount of computation required -commonly requiring multiple TeraOPS. As a result, deep CNNs are mainly trained on a cluster of computers with high-performance GPUs, thereby consuming high power and resources. Low power and resource-constrained small electronics such as embedded systems have beneted little from the accuracy-wise advancement the deep learning is going through as the networks' depth, size, and complication kept increasing as well.Recently, Field-Programmable Gate Arrays (FPGAs) and Application-Specic Integrated Circuits (ASICs) are getting more attention to balance the tradeo between the high-power demand of GPUs and the intensive computation demand of deep convolution-based learning networks. Though FPGAs and ASICs hardly reach the same or increased throughput as GPUs, their power is limited. However, compared to FPGAs, the high cost and long development period of ASICs make them unable to keep up with the rapid changes of deep CNNs. As a result, FPGA-based deep CNNs are becoming a center of attention for lightweight and real-time deep CNNs for embedded systems.

4. 2 .

 2 Why FPGA? Chapter 4

2 .

 2 FPGAs have high exibility: It is a well-founded fact that FPGAs are highly exible development tools. The area of Deep Learning or AI is a very fast-changing one. FPGAs' recongurability and re-programmability accommodate these continuous improvements and can be reprogrammed many times, saving costs. This advantage is relevant when compared with ASIC-based development, given their long development time and lack of reusability or re-programmability. 3. FPGAs can yield high-throughput: Since FPGAs, support variable bit quantization and deep learnings are being proved to work just ne with extreme quantization, as extreme as one or two-bit quantization, the throughput of FPGA based deep-learnings are bound to be in par or more than that of GPUs. Moreover, FPGA bandwidth is many orders faster than GPUs, meaning low latency computation for the most compute-intensive operation, the convolution layer. Though the pros mentioned above entail good prospects for FPGA-based Deep CNN acceleration, there are some cons. These shortcomings include the relative diculty in programming FPGA, complexity and the need for special expert knowledge in the underlying hardware, lack of free or less-cost tools and libraries for test and development, and nally, the cost of the FPGA boards themselves. 4.3 Short Review of FPGA Based Deep Learning Acceleration Over the years, many authors have proposed and tried dierent alternatives for accelerating CNN-based networks, particularly the convolution layer. An extensive review of hardware acceleration methods from multiple points of view can be read from review works of [empty citation]. Here we briey summarize some well-known approaches by grouping them into three subsets. 1) Optimizations based on convolution mathematics transformation 2) Optimizations based on exploiting the parallelism of convolution nested loop execution 3) Optimization based on lightweight implementation.

  On the other hand, Winograd-based methods implement convolution as Hadamard product or Element-Wise Matrix Multiplication (EWMM). Unlike FFT, they are more suitable for smaller kernels and can benet from standard loop optimization techniques such as unrolling and pipelining. Since Winograd-based methods eciency is associated with smaller tile sizes, on-chip buering aided with double-buering is necessary to reduce memory access for bringing tiles or buering partial results.

Figure 4 . 1 :

 41 Figure 4.1: Illustration of the convolution algorithm using FFTs[START_REF] Mathieu | Fast training of convolutional networks through ts[END_REF] 
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 56 [ i +3]= B [ i +3]* C [ i +3]; [ i +4]= B [ i +4]* C [ i +4]; 7 } (a) Without unrolling (b) Unrolled loop Figure 4.2: Loop Unrolling. 4.2a 1 data-path, 1 sample per iteration and total of N iterations. 4.2b 4 data-path, 4 samples per iteration and N/4 total iterations.
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 433 Without pipelining (b) With pipelining Figure 4.3: Loop pipelining 47 4.4. Hardware-accelerated deep CNN design and implementation ow Chapter Optimization based on lightweight implementationThe other set of optimization focus on trimming the trained network using methods such as model quantization, pruning, compression and sparse convolution. Pruning generally means cutting down parts of the network that contribute less or nothing to the network during inference. This results in smaller models, more memory-ecient, more power-ecient, and faster networks during inference with minimal loss of accuracy. Due to the loss of connections and neurons, pruning usually results in a slight loss of accuracy compared with the unpruned network. It is customary to cyclically retrain or ne-tune a pruned network to revive the accuracy drop.The cycle continues until the ne-tuning stops improving or starts to overt. However, the most common optimization is based on data quantization. Research has shown that the accuracy drop of using xed-point operations is insignicant, especially considering the vast resource ecient utilization quantization can render. Nowadays, the most common FPGA implementations are 16 and 8-bit quantization of the 32-bit oating-point trained model. Extreme quantizations such as 1, 3, and 4-bit are also being proposed and some commendable performance and signicantly ecient memory utilization are reported by many authors.In summary, current hardware-acceleration implementations utilize one or more of the above techniques for maximum throughput, ecient resource utilization, and low-power consumption while maintaining accuracy drop as minimum as possible though usually these objectives conict and results in trading one over the other. 4.4 Hardware-accelerated deep CNN design and implementation ow Every deep CNN-based AI solution has two main stages: Training and Inference. Since the training stage requires a large dataset (usually in tens or hundreds of gigabytes), a computer system with a high-performance GPU cluster is used to create and train models in oating-point precisions. Many popular frameworks and tools exist to create deep CNN models prominently as Tensorow, Pytorch, Cae, and Theano are the usual ones to mention. Once a network is trained, and performance requirements are met, an optional stage of pruning and compression follows to yield a lightweight and faster model for embedded systems. However, pruning usually reduces the accuracy of a network and is thus accompanied by a cyclic ne-tuning until the performance reaches the unpruned network or stops improving. Whether pruning is done, the trained network weight, bias, and other hyperparameters are exported and quantized before hardware acceleration. Quantization is not mandatory for hardware implementation but is the most common rst step in implementing energy-ecient and high-throughput hardware-accelerated inference of the deep CNN model. It also helps to reduce the hardware resource consumption of the inference model. Quantization can be done using a custom algorithm on the exported model parameters (weights and biases) using any preferred programing language such as C/C++ or can be done using Tensorow's quantization aware training as part of training or ne-tuning. Nonetheless, the trained oating or the xed-point quantized weight and bais must be exported and saved separately for the hardware-accelerated inference stage. Based on the board or software vendor, one can use dierent IDEs to implement the accelerator for the hardware inference implementation. Full-edged IDEs such as Intel Quartus for Intel FPGAs and Vitis and Vivado for Xilinx FPGA provide full support for creating, synthesizing, debugging, implementing, and deploying the hardware acceleration deep CNN functions.Figure4.4 shows the Vitis hardware design ow based on C/C++ and Vitis HLS compiler. As seen from the gure, one rst writes C/C++ code for inference of the deep CNN, in our case, the object detection inference, and also a C-testbench to evaluate the implemented inference C/C++ code. Once the C-simulation passes, then hardware synthesis with certain design constraints such as target clock, target device, and some other congurations of interfaces, if necessary, is
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 44 Figure 4.4: Xilinx Vitis HLS Design Flow

Figure 4 . 5 summarizes

 45 our above discussions and the end-to-end model creation, training weights and bias, quantizing, and designing hardware acceleration to deployment on the FPGA board.4.5 ConclusionThis chapter briey summarized dierent object detection inference acceleration techniques using FPGAs. We categorized prior acceleration implementations into three categories and referenced some representative works by prior researchers falling into each category. The rst category of inference accelerations implementations focuses on transforming the standard convolution operations into faster matrix multiplication or other approximate processes such as frequency domain Fourier transforms. The most common technique is optimizing the standard convolution implementation using loop optimizations such as pipelining, unrolling, and loop order interchanges.These loop optimization coupled with various data quantization, network pruning, and compression techniques comprises the modern object detection inference acceleration. Our object detection inference acceleration discussed in chapter eight details these and other state-of-the-art concepts in our quest to implement our object detection acceleration using some test development boards in our lab.
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 4556515753 Figure 4.5: End-to-end Deep CNN-based hardware inference acceleration overall implementation stages, tools and languages

  with its novel classication loss function called focal loss, was proposed by Tsung-Yi Lin, et al of Facebooks AI Research. Their network predicts very dense bounding boxes, about 100k per image, and their cross entropy modulating focal loss handles the class imbalance during training. However, due to the underlying 5.4. Densication: Generation of Dense Detection Grids ResNet network and the dense bounding box prediction,the speed of RetinaNet is signicantly slow than the above two models.

Figure 5 . 1 :

 51 Figure 5.1: Dense Detection Grid Network (DDGNet). YOLOv2 used as base model after stripping the last detection layer.

Figure 5 . 2 :

 52 Figure 5.2: Grid densication. After striping o the last detection layer of YOLOv2 output layer we then pass it through CONVBNL1, CONVBNL2 and CONV layers to give dense output. CONVBNL* stands for Convolution -→ Batch Normalization -→ LeakyRelu layers.
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 453 Figure 5.3: Rounding class encoding prediction to either of the three value 0, 0.5 and 1. If the predicted value is in the range of [0, δ] we round the predicted value to 0, if it is in range (0.5 -δ, 0.5 + δ) then we round to 0.5 and if in the range [0.5 + δ, 1] we round it to 1.

b

  x = σ (t x ) + c x (5.5) b y = σ (t y ) + c y (5.6) b w = p w e tw (5.7) b h = p h e t h (5.8)
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 71 Performance on Pascal VOC Object Detection Dataset We trained on combined 2007 and 2012 Pascal VOC training dataset and tested the performance of our system on Pascal VOC 2007 test set.

  cation and detection revolutionized by AlexNet[59], triggered deep CNNs to conquer modern object detection researches. As presented in the introduction section, current trend in object detection follows either two stage detection approach or one-stage detection. Both have their own advantages over the other and usually models based on the former approach are more accurate whereas models based on the later are signicantly faster. Determining trade-of between detection speed, memory and accuracy is a prime concern in object detection. As[54] proposed, two-stage detectors can be speedup by using smaller image resolution or light and deep classier as a backbone.Recently, a one-stage object detection model called RetinaNet[57] targeted solving class imbalance challenge in one-stage detector in a bid of uplifting performance of one-stage detector to be in par with two-stage detectors such as Faster-RCNN. They proposed a new loss function called focal-loss to naturally handle the background-foreground class imbalance of dense bounding box perdition in one-stage detector. However, RetinaNet is very slow for real-time tasks though still faster than most two-stage networks and competitively high performing. Another

Figure 6

 6 Figure 6.1: DenseYOLO

Figure 6 . 2 :

 62 Figure 6.2: The repurposing of YOLOv2 into DenseYOLO. In the gure YOLOv2 with an input image of 416 by 416 is assumed and bs stands for batch size. CONVBL1 and CONVBL2 refers to two blocks each made up of Convolution layer followed by Batch Normalization layer followed by Leaky Relu layer.

4 )

 4 In the equations c x and c y the grid cells row and column top-left corner. The corresponding network output ( tx , ty , tw , th ) are easily converted to ( bx , by , bw , bh ) by the opposite process given by the following equations: bx = σ( tx ) + c x (6.5) by = σ( ty ) + c y (6.6) bw = p w e tw (6.7) bh = p h e th (6.8) These bounding box parameters are then scaled back by the original image size to yield true predicted image bounding box coordinates.

  experiment on Pascal VOC and COCO dataset by changing the input image size and the number of k anchor boxes on the detection speed and detection performance of DenseYOLO. In our test on Pascal VOC dataset we merged Pascal VOC 2007 and 2012 training datasets and tested the performance on Pascal VOC-2007 test set. Since we started training from YOLOv2's object detection weight le trained already on Pascal VOC and COCO dataset, we only ne tuned our system for 100 epochs starting from small learning rate of 1e -3 for the rst ten epochs on the added auxiliary layer and unfreezing 22 more layers and training with learning rate 1e -4 scheduled to reduce by 10 every 50 epochs.
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 51 The Detection Network: MultiGridDet . . . . . . . . . . . . . . . . . . . 77 7.5.2 The Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5.3 Oine Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . 79 7.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 MultiGrid Redundant Bounding Box Annotation for Accurate Object Detection 7.1 Objective Modern leading object detectors are either two-stage or one-stage networks repurposed from a deep CNN-based backbone classier network. YOLOv3 is one such very-well known state-of-theart one-shot detector that takes in an input image and divides it into an equal-sized grid matrix.

reasons; ( 1 )

 1 MultiGridDet has relatively less depth number of layers and (2) we use a lighter output layer, or detection head, based on the technique introduced by DenseYOLO [62].

Figure 7 .

 7 1(a) shows the three objects bounding box with more detail on the dog's bounding box.

Figure 7 .

 7 1(b) shows the zoomed-out region of Figure 7.1(a), focusing on the dog's bounding box center. The top-left coordinate of the grid cell containing the center of the dog bounding box is labeled by number 0, while the other eight grid cells around the grid containing the center have a label from 1 up to 8.In YOLO and other YOLO-based detection networks, the grid labeled 0 is solely responsible for predicting the class dog and its precise bounding box coordinates (x, y, b w , b h ), whereas in our case, we assign all grids labeled 0 to 8 to predict the class and the precise bounding box of the dog simultaneously.

Figure 7 . 1 :

 71 Figure 7.1: Multi-grid assignment

Figure 7 .

 7 2 shows the ground-truth annotation of the expected output of our object detector.

Figure 7 . 2 :

 72 Figure 7.2: Ground-truth encoding

Figure 7 . 3 :

 73 Figure 7.3: Coordinate activation function plot with dierent β values

Figure 7 . 4 :

 74 Figure 7.4: Sample Oine Copy-Paste Generated Articial Images

  VOC 2007 and 2012 training and validation images, which constitute about 16K images, we generate an additional 200K articial images for pascal VOC object detection. In total, we increased the initial 16K Pascal VOC 2007 + 2012 training + validation set images to 216K images and used a validation split of 0.2 so that 80% of the total data are used for training while the remaining 20% are for validation. Similarly, we used the same 10K background images and the original 118K COCO images to generate another 200K articial COCO images. This increases our COCO dataset to 318K images. Similar to the strategy we used on the Pascal VOC dataset, we used a validation split of 0.2 to train object detection on the COCO dataset as well. It is good to note that, though we articially generated hundreds of thousands of new images, our articially generated images objects are from the same dataset, picked randomly, individually augmented, and pasted on a randomly picked background image. We used the Darknet53 weight le from YOLOv3 authors to train the detector. For the rst 50 epochs, we trained only the detection head by freezing the Darknet53 weight le and 150 more epochs by unfreezing the whole network. We start the training with learning rate 1e -4 , and after the 75 th epochs, we started using cosine decay to update the learning rate. Throughout the training, we used Adam optimizer. We had access only to 2 Tesla V100 32 GB Nvidia GPU, which limited our training batch size to 64 (32 per GPU) and made the training take longer, restricting us from testing our network performance with other backbones such as ResNet. Next, we will discuss our experiment's result on the two datasets and compare them with other well-known object detection networks. Pascal VOC 2007 test set:-Pascal VOC 2007 test set has about 5k test images in 20 class categories. It is one of the widely used generic object detection datasets for comparing the performance of general-purpose object detectors. Accordingly, we tested our MultiGridDet performance using Pascal VOC mean average precision (mAP) metrics at IOU (intersection over union) 0.5.

Figure 7 . 5 :

 75 Figure 7.5: Sample MultiGridDet output on randomly selected Pascal VOC 2007 test set images. As seen from the gure the rst row shows six input images, whereas the second row shows the prediction of the network before non-max-suppression (NMS) and the last row shows the nal bounding box prediction of MultiGridDet on the input image after NMS thresholding.

8. 4 Background 8 . 4 . 1

 4841 Overview of Object Detection ModelsTwo deep CNN-based approaches dominate modern generic object detection implementations:

  accelerated object detection design and implementation. Commonly, an object detection model is a repurposed image classication network obtained after removing the output layer of a classier and adding a few more convolution layers tailored toward detection. For example, YOLOv2 repurposes a classication network called Darknet-19, a network with 19 convolutional layershence the name Darknet-19into a unied object detection network with a few extra layers, as shown in Figure 8.1 or in greater detail in Table 8.1.

Figure 8 . 1 :

 81 Figure 8.1: YOLOv2 object detection model layers and their corresponding tensor shapes. ConvBNL stands for convolution followed by batch normalization and Leaky Relu activation layers. Numbers 031 show the YOLOv2 layers. For a detailed understanding of each layer's parameter size, refer to Table 8.1.

Figure 8 . 2 :

 82 Figure 8.2: Feature maps and weight tensors representation of a particular convolution layer. Although not indicated in the gure, usually convolution layers have also learned bias (B) parameters of size equal to the number of output channels, that is N of . That is one bias value per output channel.

1 : 2 (

 12 ky total multiplyaccumulate (MAC) operations for every convolution layer. The X, W, B and the O in the pseudocode stands for IFM, weight, bias and OFM, respectively. for ( m =0; m < Nof ; m ++) { for ( y =0; y < Noy ; y += S ) { for ( x =0; x < Nox ; x += S ) { for ( n =0; n < Nif ; n ++) { for ( ky =0; ky < Nky ; ky ++) { for ( kx =0; kx < Nkx ; kx ++) { O [ m ][ x ][ y ]+= X [ ni ][ S * x + kx ][ S * y + ky ] * W [ m ][ n ][ kx ][ ky ]; } } } O [ m ][ x ][ y ] += B [ m ]; Unoptimized standard convolution pseudocode for batch-size = 1. 8.4.3 Pooling Layer Another common layer type in a modern object detection CNN network is a pooling layer. A pooling layer reduces the preceding layer's spatial dimensions and facilitates the prospect of a deeper network. Moreover, it also increases the network's translation invariance by omitting pixels from a feature map through either maximum or average pooling. It also minimizes, to a lesser extent, network overtting to the training dataset. It is worth noting that the pooling layer has no trainable parameter. Accordingly, more recent state-of-the-art models utilize alternative layers such as up-sampling and down-sampling to enable learned pooling. The pooling layer, particularly the max-pooling layer, has three nested loops as depicted in pseudocode Listing 8.2. for ( no =0; no < Nof ; no ++) for (y =0; y < Noy ; y += S ) for (x =0; x < Nox ; x += S ) O [ no ][ x ][ y ]= Max ( X [ n0 ][ x : x + S ][ y : y + S ]) Listing 8.2: Original max-pooling pseudocode.8.4.4 Depth-to-Space or Space-to-Depth Reorganization LayerThe other layer type in YOLOv2 is a reorganization layer, known in the TensorFlow framework as the space-to-depth or depth-to-space layer. These reorganization processes reshue the previous layer's feature maps into either channel-wise deeper feature maps, shown in Figure 8.3, or spatially wider feature maps, shown in Figure 8.4. Reorganization is commonly performed for the facilitation of the concatenation of two or more layers of dierent shapes. In our case, layer 27 of YOLOv2 is a space-to-depth reorganization of layer 26 with a block-size of B = 2 × seen Figure 8.1 or Table8.1). The following layer, layer 28, concatenates the output of layers 24 and 27. Note that, in the reorganization layer, there are no learned or learnable parameters (or hyperparameters).

Figure 8 . 3 :

 83 Figure 8.3: Space-to-Depth Figure 8.4: Depth-to-Space

Figure 8 .

 8 Figure 8.5 shows the overall architecture of our proposed object detection accelerator. As seen from the gure, a pre-trained YOLOv2 weight, bias and input-images are stored on a DDR memory of the host system which also contains the processor and the software accelerated portions of our object detection network. All contents of the DDR memory are 16-bit quantized.An AXI-DMA interface connects the host systems' PS and DDR memory with the PL side's custom accelerator, where the heavy-duty arithmetic of the convolution, max-pooling and Leaky Relu are executed. In general, the core features of our hardware-accelerated object detection inference includes:

Figure 8 . 5 :

 85 Figure 8.5: Overall architecture of the proposed HW/SW co-design of the inference acceleration system.

Figure 8 . 6 :

 86 Figure 8.6: Convolution layer with loop tiling of the input, output and weight 'pixels' or 'feature maps'.

  tile reads for each output tile writeback and in total there are ⌈ N of T of ⌉ + 1 writebacks.

Figure 8 . 7 :

 87 Figure 8.7: Illustration of double-buering sequencing.

16 )Algorithm 1 :

 161 Illustration of our double-buering implementation /* 1. ping-pong write-back or double buffering the output write-back */ 1 for ( tor = 0; tor < N ox ; tor+ = T ox ) { 2 for ( toc = 0; toc < N oy ; toc+ = T oy ) { 3 for ( tof = 0; tof < (N of + T of ); tof + = T of ) { pingpong_ofm=false;

Figure 8 . 8 :

 88 Figure 8.8: Weight 4D3D reorganization. The colors are only to show a sample of the corresponding pixels' positions before and after the reorganization of the weight tensor.

  The best Q I for 16-bit quantization is Q I = 15 since this value leaves the maximum room for the decimal parts without completely discarding the fractional value. One might refer to this as an intermediate or partial sum quantization. Note that we also perform an output quantization after Leaky Relu to convert the 32-bit partial sum back to 16-bit and write back the result of the output quantization to the DDR memory through a pipelined burst-transfer.

Figure 8 . 9 :

 89 Figure 8.9: Convolution processing element and its working procedure.

Figure 8 . 10 :

 810 Figure 8.10: Convolution processor architecture.

  ( tr = 0; tr < min ( Tox , Nox ) ; tr ++) { _tcconv : for ( tc = 0; tc < min ( Toy , Noy ) ; tc ++) { // 1. clear _pmulclear : for ( tm = 0; tm < Tof ; tm ++) { # pragma HLS unroll // PIPELINE II =1 psum [ tm ]=0; } // 2. compute multiply , shift and accumulate _nkiconv : for ( i =0; i < Nkx ; i ++) { _nkjconv : for ( j = 0; j < Nky ; j ++) { tix = tr * Kstride + i; tiy = tc * Kstride + j; tkxy = i * Ksize + j ; _tnminiInput : for ( tn = 0; tn < Tn ; tn ++) { # pragma HLS unroll lineinput [ tn ]= X [ tn ][ tix ][ tiy ]; } _tmconv : for ( tm = 0; tm < Tof ; tm ++) { # pragma HLS unroll _tnconv1 : for ( tn = 0; tn < Tif ; tn ++) { # pragma HLS unroll

  our implementation of YOLOv2 inference on the Pascal VOC 2007 dataset at a resolution of 416 × 416 yielded an mAP of 76.21%, a little below the baseline 32-bit oating precision's 76.8% mAP of the original YOLOv2. The 16-bit quantization of the data and the xed-point arithmetic of our custom convolution processor explained by Figure8.9 played a signicant role in increasing the mean average precision of our accelerator.

Figure 8 .

 8 Figure 8.13: Sample YOLOv2 inference output of our hardware accelerator.

9 9. 1 .

 91 to a) lack of extensive and carefully labeled detection datasets, b) signicant randomness of object scale and position distribution on an image, and c) an imbalance of object representation within a dataset. Nonetheless, deeper and more sophisticated CNN-based networks have commendable performance in the accuracy of detecting objects.The current trend in object detection implementation appears to have two distinctive forms: object detection as a two-step process and another approach that treats object detection as a unied one-stage or one-shot task. Since early object detection challenges focused on maximizing accuracy, both one-shot and two-stage object detections have become immensely deep and easily have millions of trainable parameters. These resulted in slow and heavy networks, both during training and inference. However, nowadays, researchers give speed and eciency the due focus it deserves as much as object detection accuracy. In this arena, a one-shot object detector unied and holistic approach to solving object detection problems has garnered much more attention than two-stage object detectors. However, the accuracy of one-stage object detectors usually trails behind two-stage detectors. Thus, it is an active research endeavor to balance the speed, accuracy, and complexity of one-stage detectors so that one metric's success will not signicantly trail the other metrics.Considering this observation, we researched ways to improve the speed and accuracy of current state-of-the-art object detection implementations before proposing and implementing an FPGA acceleration of the object detectors. We found YOLO-like detectors as an intuitive approach to localization and classication problems, meaning object detection, due to their uniform network construct and global reasoning of object localization and classications. The uniform construct of the YOLO-based object detection network structure means easy mapping to hardware implementation. Moreover, the detection approach appears perceptive and has a commendable balance of speed versus accuracy trade-o compared to other relevant detectors. This assessment justied our choice of detection implementation paradigms and motivated us to propose a serious of gradually improving object detection models with higher accuracy, less weight, and faster. This thesis work proposed three object detection models, two based on YOLOv2 and one based on YOLOv3. As detailed in chapter 5, our rst object detection model, DDGNet, proposed restructuring the YOLOv2 detection using binary encoding instead of the defacto one-hot encoding. Moreover, restructuring the detection head also meant using ne-grained grids to Chapter General Conclusion deep search objects of interest throughout the surface of an input image or frame of video, unlike YOLOv2's coarse-grained grid sizes. We also proposed a robust non-max-suppression technique called ThreeWayNMS to lter out the same object's redundant predictions and minimize false positives. Our DDGNet model achieved higher accuracy while being lighter. Moreover, since DDGNet uses a modied (extended) binary encoding, its output layer has fewer parameters and can easily be extended to perform a true generic object detector with thousands of object categories.Our second object detection model, DenseYOLO, detailed in chapter 6, proposes a unique approach for YOLO-based object detection. The original YOLOv2 divides an input image into equal grids of size 32 pixels by 32 pixels and expects or trains each grid to predict up to ve objects. Each predicted object has a vector representation constituting objectness condence probability, one-hot encoded class prediction probability, and the bounding box parameters: the left-top coordinate pair and the right-bottom coordinate pair. YOLOv2, instead of predicting the bounding box coordinates directly, predicts osets to a pre-generated dataset representative set of boxes called anchor boxes. There are ve anchor boxes in YOLOv2. Since there are ve anchor boxes, each grid predicts ve osets, one for each anchor box. This explodes the output layer of YOLOv2 in addition to increasing false positives that slow down the post-processing non-max-suppression. Instead, in DenseYOLO, the anchor box is a trainable parameter. Our model is trained to pick or predict a best-tting anchor box and its associated osets from the ground-truth bounding box. This avoided the need to make a redundant prediction of one object using each pre-generated anchor box and, therefore, made DenseYOLO less complex, lighter, and faster during training and inference than the original YOLOv2. Moreover, since we incorporated the idea of ne-grained grid cells from DDGNet, DenseYOLO outperforms the state-of-the-art YOLOv2 in detection accuracy.The third model we proposed utilizes the more recent and robust YOLO implementation called YOLOv3, authored by the creators of the YOLO model. This latest version includes modern best practices such as multi-scale object detection, skip-connections, and upsampling.

  contributed an oine seamless articial data generation and augmentation technique using copypaste method. The main features of our data generation are dynamic and seamless stitching of dierent objects from the dataset, the capability to change the background of generated articial images, and each object can be an augmented, and dataset class imbalances are addressed. In general, through the help of our data augmentation technique and redundant annotation of object ground-truth MultiGridDet outperforms YOLOv3 in detection accuracy. Moreover, given the lightweight detection head we incorporated from DenseYOLO, our MultiGridDet implementation is faster and lighter.Following the series of successful object detection implementations on computer and GPU systems, we focused on the second theme of our study in this thesis work: hardware acceleration of deep convolutional neural network-based object detection. Due to the high resources and energy consumption of computation of current state-of-the-art deep CNN networks, many realworld applications are yet to benet from the advancement of deep learning. This lag is because many real-world applications have strict requirements such as less memory, less energy consumption, and real-time performances due to the limited resources onboard their embedded platforms.

  ing object detection annotation, a text le containing a list of all training (and validation) image paths with all bounding box information of all objects on an image. The annotation should be written in Pascal VOC format as shown below: Image1_path x11, y11, x12, y12, c1 x21, y21, x22, y22, c2 x31, y31, x32, y32, c3 . . . Image2_path x11, y11, x12, y12, c1 . . . Image2_path x11, y11, x12, y12, c1 x21, y21, x22, y22, c2 . . . . . . Each line in the annotation represents an image and the bounding boxes of all objects on the image. x ij or y ij corresponds to the top-left and bottom-right coordinates of each object on the image, as shown in Figure 1. The c i in the annotation stands for the object's class.

Figure 1 :

 1 Figure 1: Illustration of Bounding Box Ground-Truth Annotation

  also shows an example of cases where such inner objects are annotated with a bigger and outer object around them.

Figure 2 :

 2 Figure 2: Minimal owchart showing the overall process ow of our synthetic image generator (SIG). Note that SIG is an oine data augmentation, meaning the augmented or articial images are generated before training is started not during training. Using SIG we can generate unlimited unique images to supplement an existing object detection dataset with seamlessly generated photo-realistic new images. We have used SIG in training MultiGridDet, explained in Chapter 7 briey. There is slight change, though than the version we presented in chapter 7. The version presented in chapter 7 does not use object mask and hence relatively leaves visible edges on an image since it is a simple copy-paste. However, the version presented in this chapter uses seamless cloning using Poisson Image Editing and Various gradient and Histogram Equalization based image processing. As a result current SIG version is more powerful and generates more seamless images at extremely high speed.

Figure 3 :

 3 Figure 3: Sample synthetically generated images using our SIG Algorithm. Note that, each image depicted here are duplicates , one without bounding boxes on the left and the other pair with bounding boxes drawn around each objects on the right. And also note how no objects overlap and each output image have randomly varying sizes.
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1: The three types of machine learning techniques Image classication, object detection, segmentation, and tracking

Computer vision is one of the most widely researched application areas of articial intelligence where a computer system tries to mimic a human vision system from digital images or videos.

  Inputs to classication networks usually has a single object, and the classier outputs the label or name of this object or at least the dominantly visible object's name on the image.

	See Figure 2.2 st image.
	Object detection :-is a computer vision challenge where a model predicts the location and
	class of all known objects on an image and draws a tightly t rectangular bounding box on the

Common computer vision application includes image classication, object detection or recognition, object segmentation, and object tracking. Image classication :-is the task of labeling an image regardless of the object's position on an image. areas occupied by the individual objects. Simply put, it is a classication with localization, but often the image contains more than one object.

Figure 2.2, second image, shows an example object detector's output. Segmentation :-is in short, segmentation is pixel-level image classication, except instead of Chapter 2 2.3. Articial Neural Networks labeling the image as an image classier does, a segmentation system assigns a similar color value to each object of the same class or instance, creating a color blob resembling the objects. If a segmentation system assigns dierent colors for each object instance of a similar class as in

  × w × c where h and w are the height and width of the image, respectively, and c is the image channel or depth. c = 1 for grayscale image whereas c = 3 for an RGB image. And again, let us assume that the convolution has a kernel (lter) of size f c × f c × n c and a stride of s c × s c , the c subscript denotes that the kernel f × f or the stride s × s is associated with the convolution layer. For further clarity, see Figure2.7. We can perform the convolution on the input image in either of two formats, valid convolution or same convolution. If we want to get an output feature map of equal height and width with the input feature map (image), we need to pad the input with zero. Otherwise, the convolved output feature map will have a Figure 2.7: Convolution and Pooling layer of CNN relatively smaller size than the input feature map. The output feature map width w

	h	It reduces the memory footprint of CNN while preserving the prevalent features and disregarding the less inuential features. This down-sampling enables CNNs to have more depth, which is why CNN-based networks dominate modern deep learnings. There are dierent types of pooling layers. The most common are max-pooling, average pooling, and l 2 pooling. Next, we explain the mathematical aspect of the convolutional neural network. Assume an and height input image of size h ′

′

are given by Equations 2.10 and 2.11:

Table 2 .
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		2: Classication Confusion Matrix
						Ground-truth class
						Cat	Not Cat
	Predicted class	Cat Not Cat	TP FN	FP TN
	True Positive(TP):-positive samples predicted correctly, i.e., an actual cat image
	predicted as cat image by the model
	True Negative(TN):-negative images classied correctly, i.e., an actual not cat
	image is predicted as a not cat image by the model too
	False Positive(FP):-negative sample classied incorrectly, i.e., not cat image pre-
	dicted as cat image. This error is also called Type-1 error.
	False Negative(FN):-positive image classied incorrectly, i.e., a cat image classied
	as not cat image. This error is also called Type-2 error.
	The position of FP and FN in the confusion matrix entirely depends on our null hypothesis.
	Now let us explain the classication and detection evaluation metrics:
	Accuracy:-is the most basic and intuitive measure, and it is given by the number of
	all correct predictions divided by all predictions multiplied by 100 to convert it into a
	percentage.				
		Accuracy =	T P + T N T P + T N + F P + F N	× 100%	(2.20)
	Precision:-we can summarize it as answering the question, "of all the predictions the
	model predicted as positive, how many are actually positive or correct?". It measures the
	hit rate of the model.	P recision =	T P T P + F P	× 100%	(2.21)
	Recall:-is another very informative metric, and it answers the question "how many of the
	positive samples was the model able to classify correctly?". It measures the sensitivity of
	the model.	Recall =	T P T P + F N	× 100%	(2.22)
	F1-Score:-is the weighted average of precision and recall. Precision considers TP and
	FP, whereas the recall uses only the TP and FN and F1-score instead takes into account
	both FP and FN in addition to the TP. This makes F1-score more interesting metrics and
	general but not as intuitive as accuracy.	
		F 1 score = 2 ×	Recall × P recision Recall + P recision	× 100%

Table 5 .

 5 1: Extended Binary Encoding. For class size n = 80 we need m = 2 * log 2 n = 14 size array to encode a class.new output head of the network. The middle two added convolutional blocks are to counter the bottleneck layer that might be created due to the folding of the depth feature map into small sized space feature map, though we merely reorder the same feature map. Since we use an 8 by 8 grid cell, our network predicts four time as many bounding as YOLOV2 detects. Due to this dense grid and dense predictinon we refer our network as dense detection grid network or DDGNet.

	1	0

Table 5 .

 5 2: Performance comparison on Pascal VOC 2007 test dataset against some equivalent models. As seen from the table at 544 by 544 input image DDGNet outperforms the equivalent networks in the table.

	22]	2007+2012	70
	YOLO [26]	2007+2012	63.4
	SSD300 [29]	2007+2012	74.3
	SSD500 citessd	2007+2012	76.8
	YOLOv2 416 [27]	2007+2012	76.8
	YOLOv2 544 [27]	2007+2012	78.6
	DDGNet 544 ours	2007+2012	81.3

  we calculate bounding box coordinates relative to grid cell from the network output corresponding the four coordinate values t x , t y , t w , t h and corresponding grid coordinate (c x , c y ) that detected the bounding box as shown below. The (p w , p h ) stands for the width and height of the anchor box detecting the object.

  and (5.16).Let IoU thrsh1 and IoU thrsh2 , where IoU thrsh1 > IoU thrsh2 , be the two IOU threshold values and IoS thrsh IOS threshold and IoL thrsh IOL threshold. Now consider two overlapping bounding boxes, A and B, of same class. Using the following three steps we can check if the boxes are redundant detection of same object and hence leading to suppression of the less condent of the two bounding box:1. if IOU (A, B) > IOU thrsh1 ,then remove either of the box whose overall condence score is smaller. 2. if IoU thrsh2 ≤ IOU (A, B) < IoU thrsh1 and the center coordinates of box A and B are within r grids apart of one another in all direction, then we remove the box with smaller condence score. In our case we used r = 4, meaning a grid within maximum 4 grids of one another in any direction are considered neighbors. 3. if IOU (A, B) is less than IoU thrsh1 but higher than IoU thrsh2 though the center coordinates of box A and B are not within r grids cells away of one another, if IOS(A, B) > IoS thrsh then remove the box with smaller grid or if IOL(A, B) > IoL thrsh then again remove the box with smaller threshold. The meaning of this is, if two boxes overlap above certain small threshold, that is IoU thrsh2 but fail from meeting the required IoU thrsh1 , then we check how much percent of the smaller or the larger box is in the intersection. If the smaller

object's, say 75% of the area is in the intersection then we remove one of the two boxes having smaller score. However, though not frequently true we also check the ration of the intersection to the bigger area and if some part of less condent large box intersect with more condent large above certain threshold, say 50% then we remove the less condent box.

IoS = Intersecion(A, B)/min(area A , area B )

(5.15) IoL = Intersecion(A, B)/max(area A , area B )

(5.16) 
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 7 

.1 DDGNet trained with input image size 544 by 544 on combined Pascal VOC 2007 and 2012 shows a performance gain of +2.7% over the original YOLOv2 proving

Table 5 .

 5 3: Individual Pascal VOC 2007 dataset classes mAP. DDGNet works better in almost all objects the other networks struggles with.

	mAP aero bike bird boat bottlebus car cat chair cow table dog horse mbikeperson plant sheep sofa train tv	73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6	74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.6 73.9 83.4 74.0	76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3	81.3 81.9 86.1 76.3 74.5 71.3 85.3 88.0 87.7 72.4 83.9 87.4 83.8 86.3 85.1 81.2 66.2 74.6 91.4 82.6 80.1
	Model data	Faster [22] 07+12	SSD300 [29] 07+12	SSD512 [29] 07+12	DDGNet 544 07+12

Table 5 .

 5 the table we can see that DDGNet works much better on usually occluded or partially visible and small objects such as boat, bottle, chair, table, sofa and potted plants when all other detectors struggle with these objects. 4: COCO dataset test result. Though DDGNet sweepingly outperforms the underlying YOLOv2, but it still remains behind the rest current state-of-the-art including behind YOLOv3.

	Models	AP AP50 AP75 APS APM APL
	Two-stage methods					
	Faster R-CNN+++ [20]	34.9 55.7	37.4	15.6	38.7	50.9
	Faster R-CNN w FPN [53]	36.2 59.1	39.0	18.2	39.0	48.2
	Faster R-CNN by G-RMI [54] 34.7 55.5	36.7	13.5	38.1	52.0
	Faster R-CNN w TDM [55]	36.8 57.7	39.2	16.2	39.8	52.1
	One-stage methods					
	YOLOv2 [27]	21.6 44.0	19.2	5.0	22.4	35.5
	YOLOv3 [28] 608	33.0 57.9	34.4	18.3	35.4	41.9
	DSSD513 [56]	33.2 53.3	35.2	13.0	35.4	51.1
	RetinaNet [30]	40.8 61.1	44.1	24.1	44.2	51.2
	DDGNet 608(ours)	28.8 51.2	30.8	12.1	39.4	50.7

  Lighter and More Accurate YOLO . . . . . . . . . . . . . . . . 64 6.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3 Related Works . .
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Table 6 .

 6 1: Performance comparison of DenseYOLO trained with k = 9 and k = 15 and tested on Pascal VOC 2007 test dataset against some equivalent models.

	Detection Frameworks	Train	mAP
	Fast R-CNN [22]	2007+2012	70
	YOLO [26]	2007+2012	63.4
	SSD300 [29]	2007+2012	74.3
	SSD500 citessd	2007+2012	76.8
	YOLOv2 416 [27]	2007+2012	76.8
	YOLOv2 544 [27]	2007+2012	78.6
	DenseYOLO 608@k=9 2007+2012 80.3
	DenseYOLO 608@k=15 2007+2012 82.7
	Class prediction Loss		

Class prediction loss is simply a weighted categorical cross entropy loss. However, one could use focal-loss instead for better handling of class imbalance among the dataset.

Table 6 .

 6 2: IOU cluster of bounding boxes of combined Pascal VOC 2007 and 2012 training set K-mean clustering generates more representative priors (anchors) as k increases suggesting better starting point for training if k is large enough. This might not be true if we keep increasing k as the system would struggle to quickly predict a tting anchor box for a given shape of objects.

	6.2 shows IOU based

  6.7.1 Performance on Pascal VOC Object Detection DatasetAfter training for 100 epochs on combined 2007 and 2012 Pascal VOC training dataset at 608 by 608 input image resolution, our network achieved a mean Average Precision of over 80.3% for k = 9 and 82.7% for k = 15 on Pascal VOC 2007 test dataset. This is a signicant increase over YOLOv2's 78.6% mAP on Pascal VOC dataset. It is a prove to our natural instinct that letting the system to dynamically pick anchor from better dataset representative anchors, denitely dataset, we also experimented on COCO datasets for k = 9 and k = 15 with an input image of size 608 by 608. Table7.3 compares DenseYOLO against some well known detectors. mAP in both k = 9 and k = 15 signicantly outperforms YOLOv2, though still behind some of the recent networks such as YOLOv3 and RetinaNet. This has certain obvious reasons such as the fact that YOLOv2 has shallower depth compared to the rest of the network leading to poor classication or feature extraction capability.

	Models	AP AP50 AP75 APS APM APL
	Two-stage methods						
	Faster R-CNN+++ [20]	34.9	55.7	37.4	15.6	38.7	50.9
	Faster R-CNN w FPN [53]	36.2	59.1	39.0	18.2	39.0	48.2
	Faster R-CNN by G-RMI [54]	34.7	55.5	36.7	13.5	38.1	52.0
	Faster R-CNN w TDM [55]	36.8	57.7	39.2	16.2	39.8	52.1
	One-stage methods						
	YOLOv2 [27]	21.6	44.0	19.2	5.0	22.4	35.5
	YOLOv3 [28] 608	33.0	57.9	34.4	18.3	35.4	41.9
	DSSD513 [56]	33.2	53.3	35.2	13.0	35.4	51.1
	RetinaNet [30]	40.8	61.1	44.1	24.1	44.2	51.2
	DenseYOLO 608(@k=9) 27.6 47.1 29.7 11.04 30.9 38.4
	DenseYOLO 608(@k=15) 29.03 50.4 32.6 13.11 33.2 40.3
	Table 6.3: COCO dataset test result.			
	6.7.2 Performance on COCO Object Detection Dataset		

helped to achieve increased detection performance. However, we have also observed that as training progresses for a longer duration, though DenseYOLO's recall keep increasing, the mAP uctuates up and down almost around the same value. Proper and smart training loss coecient setting mechanism or more advanced backbone classier, the kind used in YOLOv3 or RetinaNet, might convert the recall into precision. Tabel 7.3 compares the result of our DenseYOLO's mAP against YOLOv2 and other comparable networks tested on the same dataset. COCO dataset has more generic and challenging 80 category datasets compared to Pascal VOC's 20 category. Moreover, COCO performance evaluation metrics is more stricter in that it requires mean average precision (mAP) to be calculated over 10 scales of IOU 0.5-0.95. Like on VOC Chapter 6
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 7 1: Performance Comparison on Pascal VOC 2007 test set

Table 7 .

 7 [START_REF] Posey | Microsoft 'Seeing AI': Imagining a New Use for Computer Vision[END_REF] shows the mAP performance comparison of MultiGridDet against other state-of-the-art one-stage detectors and equivalent two-stage detectors. As seen from the table, our detector signicantly outperforms all older versions of YOLO, YOLOv1, and YOLOv2, including all variants of SSD, RetinaNet, and Fast RCNN. Table7.2 further shows our detector's per class mAP score in detail. The authors of YOLOv3 never reported the performance of the original YOLOv3 on the Pascal VOC dataset. However, following their training and data augmentation approaches detailed in paper[28], we retrained YOLOv3 on the combined Pascal VOC 2007 and 2012 training set and achieved a maximum mAP of 77.63% at input image size 608. This score is much lower than our MultiGridDet score of 83.5% mAP at an input image resolution 416.

	MultiGridDet 07+12+CP 83.5 87 93 84 70 73 96 88 93 65 83 80 90 92 92 87 55 85 78 93 84	SSD512 [29] 07+12 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3	SSD300 [29] 07+12 74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.6 73.9 83.4 74.0	Faster [22] 07+12 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6	n	Model data mAP aero bike bird boat bottlebus car cat chair cow table dog horse mbikeperson pplant sheepsofa trai tv

Table 7 .

 7 2: Individual Pascal VOC 2007 dataset classes mAP.MS COCO test set:-COCO dataset is the most challenging dataset for object detection, typically due to its massively unfair under and over-representation of object class categories and object scale imbalance in the dataset. Nonetheless, it is a more generic dataset consisting of 80 class categories and more robust performance measurement metrics; an mAP averaged over 11 IoU ranges [0.5 -1.0] referred to as AP(average precision). Accordingly, we trained our MultiGridDet on the COCO dataset and obtained an AP of 31.8%, a little less than YOLOv3's 33% AP at 608 × 608 input image size as shown in Table7.3. However, on large images, that is objects with a bounding box area above 96 2 according to COCO metrics, MultiGridDet by far outperforms YOLOv3's AP 41.9% by +15.5%, scoring AP 57.4%. MultiGridDet is poor on small and medium image detections; only 11%AP against YOLOv3's 18.3% AP on small objects and 24.6% AP on medium images against YOLOv3 35.5% AP. Objects such as bottles usually appear in smaller sizes and crowed, whereas objects such as boats and potted plants usually appear in widely irregular shapes and sizes. These are objects MultiGridDet struggled to detect correctly.Finally, to illustrate the quality of MultiGridDet bounding box prediction, we visualize the prediction of six randomly picked images from the Pascal VOC 2007 test dataset. Fig.7.5 shows these visualization. As seen from the gure, almost in all cases, the predicted unltered bounding boxes overlap perfectly, proving tight-t bounding box prediction.In summary, since small objects have tiny widths or height, some even smaller than the 8 grid size, thus they are eectively annotated with a single grid cell, whereas larger objects will have a maximum of 9 grid cells to annotate and predict them. Probably, the addition of more ne-grained output layers, typically an output layer with 2 and/or 4 grid cell sizes in addition to the 8, 16, and 32 grid cells, might help to increase the performance of MultiGridDet on small object detections.We have also compared MultiGridDet inference speed with YOLOv3 on a standard personal laptop with Nvidia GPU Geforce 1060 and 16 GB RAM Intel Core i7-7700HQ CPU 2.80GHz processor. On average, YOLOv3 at 416 × 416 input image for 80 class COCO dataset takes 0.149 seconds to infer an image, the overall time spent from reading input image, preprocess, predict, and draw bounding boxes back on the image and display it or save it in a directory. For MultiGridDet at the same input resolution and same dataset, it takes only 0.103 seconds. On video object detection at 416 × 416 80 Class COCO dataset YOLOv3 reaches detection speed of 6FPS (frame per second) whereas MultiGridDet reaches upto 9FPS. Note that the computer we used is not the same as the one the author used, and it has a much slower GPU. In general, in the speed test, MultiGridDet is signicantly faster than YOLOv3.

	Models	AP AP50 AP75 APS APM APL
	Two-stage methods						
	Faster R-CNN+++ [20]	34.9	55.7	37.4	15.6	38.7	50.9
	Faster R-CNN w FPN [53]	36.2	59.1	39.0	18.2	39.0	48.2
	Faster R-CNN by G-RMI [54]	34.7	55.5	36.7	13.5	38.1	52.0
	Faster R-CNN w TDM [55]	36.8	57.7	39.2	16.2	39.8	52.1
	One-stage methods						
	YOLOv2 [27]	21.6	44.0	19.2	5.0	22.4	35.5
	YOLOv3 [28] 608	33.0	57.9	34.4	18.3	35.4	41.9
	DSSD513 [56]	33.2	53.3	35.2	13.0	35.4	51.1
	RetinaNet [30]	40.8	61.1	44.1	24.1	44.2	51.2
	DDGNet [63]	28.8	51.2	30.8	12.1	39.4	50.7
	DenseYOLO[62]	29.03 50.4	32.6	13.11 33.2	40.3
	MultiGridDet @608x608 31.8 52.1 40.7 11.0 24.6 57.4

Table 7 .

 7 3: AP Performance on COCO test set
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	detection training sets without needing additional external dataset. Finally, as future work, we would like to tackle small object detection challenges and try to use MultiGridDet on object tracking and segmentation challenges. Resource and Power Efficient High-Performance Object De-tection Inference Accelera-tion Using FPGA Chapter content 8.4.4 Depth-to-Space or Space-to-Depth Reorganization Layer . . . . . . . . . Chapter 8 Resource and Power Ecient High-Performance Object Detection Inference Acceleration Using FPGA 8.1 Objective The success of deep convolutional neural networks in solving age-old computer vision challenges, particularly object detection, came with high requirements in terms of computation capability, energy consumption, and a lack of real-time processing capability. However, FPGA-based infer-ence accelerations have recently been receiving more attention from academia and industry due to their high energy eciency and exible programmability. This paper presents resource-ecient yet high-performance object detection inference acceleration with detailed implementation and design choices. We tested our object detection acceleration by implementing YOLOv2 on two 8.4.5 8.1. Objective FPGA boards and achieved up to 184 GOPS with limited resource utilization.

  , recently eld-programmable gate arrays (FPGAs) and application-specic integrated circuits (ASICs) are gaining increased attention as energy-ecient and real-time time alternatives[6871]. Although FPGAs and ASICs hardly reach the same or increased throughput as GPUs, they consume less energy. On the other hand, compared to FPGAs, the high cost and long development period of ASICs also make them unfavorable as it is challenging to keep them up with the rapid changes of deep CNNs. As a result, FPGA-based deep CNN inference accelerations are becoming a center of focus for lightweight and real-time deep CNNs for embedded systems.Despite FPGA-based machine learning implementations generally gaining traction, the progress is slow and marked by disjoined and irregular individual eorts, unlike the software world where there is a broad community base and frameworks. Recent hardware acceleration implementations exhaustively but ineciently consume onboard resources, such as DSPs, BRAMs, and logic cells, sometimes beyond what is recommended by development boards. Such implementations lead to high power consumption and are costly in terms of energy. On the other hand, extreme data quantization, typically one to three-bit quantization, has been tried to accelerate CNN on FPGA. accuracy performance has been at the center of computer vision challenges for a long time. In this quest for increased accuracy, object detection networks, or CNN-based networks in general, have become very deep, complex, heavy, resource-wise expensive, and energy inecient. Top state-of-the-art object detection networks are based on deep CNN networks and have tens or hundreds of layers and over 50 million parameters

	However, although such quantization quickly achieves more than real-time speed, their accuracy
	loss is signicant. This paper, however, presents a detailed end-to-end hardware acceleration
	implementation while maintaining high performance and speed andat the same timehighly
	ecient resource utilization. Although we demonstrate our accelerator design based on the well-
	known YOLOv2 detector, our object detection implementation is easily customizable to dierent
	YOLO-like one-stage accelerators. The analysis of our custom inference accelerator on DenseY-
	OLO and DDGNet by comparing against this YOLOv2 acceleration implementation is explained
	in Appendix 9.2.
	8.3 Related Works

Increasing
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	.2 shows the tensor shapes, corresponding tile sizes and the number of external memory
	read-or write-access iterations. The number of BRAMs (on-chip buers) required for each tile
	is calculated as:	
	N umber of BRAM per T ile =	T ile Size × Data W idth Size of One BRAM

(8.13) 

However, depending on the convolution loop arrangement and array partitioning, the actual required BRAM would be larger than what we obtain by Equation

(8.13)

. Moreover, as seen from

Table 8 .

 8 2: Loop tile sizes and memory readwrite access iterations to or from the tile buers.

	Tensors Original Shape	Tile Sizes (Shapes)	Number of External Memory Access (Either to Read from or Write to DDR Memory)
	IFM		

  tin = 0; tin < N if + T if ; tin+ = T if ) {

		of ) ? true: false;
		write_ag = tof > 0 ? true: false;
		if (pingpong_ofm) then compute_conv(ifm, weight, bias, ofm_buer1,
		ifm_buer0, ifm_buer1, weight_buer0,
		weight_buer1,tof1, compute_ag, ...);
		writeback_convoutput(ofm_buer0,ofm, write_ag, ...);
		pingpong_ofm=false;
		else compute_conv(ifm, weight, bias, ofm_buer0,
		ifm_buer0, ifm_buer1, weight_buer0,
		weight_buer1, compute_ag, ...);
		writeback_convoutput(ofm_buer1, ofm, write_ag, ...);
		pingpong_ofm=true;
		/* the following sequence is inside compute_conv function	*/
		/* 2. ping-pong tile reads and convolution computation or double buffering of input read
		*/
	20 pingpong_ifm = false;
	21 load_bias(bias, bias_buer, ...);
	22 for ( 23 if (pingpong_ifm) then
	24	load_convinputtile(ifm, ifm_buer1,..., tin < N if );
	25	load_weight(weight,weight_buer1,..., tin < N if );
	26	conv_tile(ifm_buer0, ofm_buer, weight_buer0, bias_buer, ...,tin > 0);
	27	pingpong_ifm=false;
	28	else
	29	load_convinputtile(ifm,ifm_buer0,...,tin < N if );
	30	load_weight(weight,weight_buer0,...,tin < N if );
	31	conv_tile(ifm_buer1, ofm_buer, weight_buer1, bias_buer,..., tin > 0);

Table 8 .

 8 5: Comparison of our implementation against other prior works using several metrics.

			[83]	[84]	[85]	[86]	[77]	This Work	This Work
	Device	Virtex-7	ZCU102	Zedboard	Intel	Intel	ZYNQ	ZCU102
		VC707			Arria 10	Stratix	-7020
							10	
	Models		Sim-	YOLOv2	YOLOv3	YOLOv2	SSD300	YOLOv2	YOLOv2
		YOLOv2		tiny			
	Design	OpenCL	Vivado	Vivado	OpenCL	RTL	Vitis	Vitis
	tool			HLS	HLS			HLS	HLS
	Design		HW	HW/SW	HW/SW	HW/SW	HW/SW	HW/SW	HW/SW
	scheme							
	Precision		16	16	16	816	816	16	16
	(bits)							
	Frequency		200	300	100	200	300	150	300
	(MHz)							
	FF Uti-	115 K	90,589	46.7 K	523.7 K	-	22.2	34,076
	lization	(18.9%)					K(20.9%)	(6%)
	LUT	155.2 K	95136	25.9 K	360 K	532 K	28.3	97,971
	Utiliza-	(51.1%)					K(53.2%)	(35%)
	tion							
	DSP Uti-		272	609	160	410	4363	180	291(11%)
	lization	(9.7%)					(81.8%)
	BRAM(18Kb)	1144	491	185	1366*	3844*	170 (60.7	1008
	utiliza-	(55.5%)					%)	(55%)
	tions							
	Throughput	1877	102.5	464.7	740	2178	51.06	184.06
	(GOP/S)							
	Power	18.29	11.8	3.36	27.2	100	2.78	5.376
	Latency		-	288	532	-	29.11	868	244
	(ms)							
	Accuracy	64.16	-	-	73.6	76.94	76.21	76.21
	(mAP)							
	Input	416 × 416 416 × 416				
	image							
	size							

-416 × 416 300 × 300 416 × 416 416 × 416 * Intel FPGA with BRAM 20 Kb.

On the one hand, RPN can generate candidate object proposals using deep convolutional features, improving proposal location quality. On the other hand, Faster RCNN is an end-to-end framework with a multi-loss head. Compared to Fast RCNN, Faster RCNN can achieve better detection performance with much fewer proposals. RPN slides a small network over the output layer of the base network. The small network consists of one 3 × 3 convolutional layer and two siblings 1 × 1 convolutional layers for box regression and classication. Box classication is class-agnostic. For each sliding window location, RPN predicts multiple proposals based on the anchors of dierent aspect ratios and scales. Assuming that the number of anchors is k, the box
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for for

write(W quantized , W buf quantized , short);// Write a tile write(W eightQ, Q, short); 

where tmp_in is a pixel from the output buer, and tmp_out is the 'pixel' after passing through a Leaky Relu processor. The overall architecture can be seen in Figure 8.5 for clarity.

Results and Discussions

Although we mainly discussed the FPGA implementation of object detection using YOLOv2, our implementation can be easily congured for other types of similar networks such as DenseYOLO and DDGNet, which are even more lightweight and accurate. We implemented the proposed hardware accelerator using C++, Vitis HLS 2021.1, and Vivado 2021.1. The convolution, max pooling, and Leaky Relu layers are implemented as FPGA accelerated functions. In contrast, the remaining space-to-depth reorganization, concatenation, and route layers, including the input and output pre-processing and post-processing, are performed on the ARM processor onboard our test boards. Following every convolution layer, the batch normalization layer computations were already included in generating the quantized weights and biases, avoiding the need to construct a hardware-equivalent one.

We targeted two Xilinx boards, namely ZYNQ-7000 SoC, specically Z-7020CGL484-1 and ZCU102 development boards from ZYNQ UltraScale+ MPSoC for the implementation of YOLOv2based object detection inference. As seen in Table 8.3, the Z-7020CGL484-1 has minimal resources compared to ZCU102. Since double buering requires twice as many on-chip buers than an implementation without double-buering, we had to use dierent tile sizes for the two boards. In chapter 8, we explained our inference accelerator by implementing YOLOv2 object detection acceleration and published our result in the journal of Electronics [78]. However, even though we presented our result on YOLOv2 we also tested our inference implementation on DDGNet [81] and DenseYOLO [80], our own object detection models presented in Chapter 5 and Chapter 6, respectively. The Vivado interface view of our implementation on ZCU102 is depicted in Next, we present the details of our comparison of inference acceleration tested with all three models mentioned earlier. Table 1 presents the parameters of the three models, and as such, the three models have the same backbone but dierent detection heads and, as a result, dierent post-processing. Moreover, Table 2 shows the comparison of throughput or latency, GOPS (Giga Operations Per Seconds), and DSP Eciency of the three models on ZYNQ 7020 and ZCU 102. As explained in Chapter 8 we calculate latency and GOP using Equation 8.18 and 8.19 respectively. Accordingly, as seen from the result in Table 2, our two models, DDGNet and DenseYOLO are slightly faster and have lighter output detection heads. DDGNet and DenseYOLO give an output prediction in 229 milliseconds, whereas it takes 244 milliseconds for YOLOv2. However, these delays are before the post-processing, that is, before the non-maxsuppression and thresholding of the output layer. Given our models' lighter output heads, further speed gains are an obvious expectation.