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École Doctoral MATHÉMATIQUES ET STIC ( MSTIC)
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Abstract

Consider a setup in which multiple sensors or nodes work together to track, classify,

or otherwise infer a quantity or label of interest. This is a configuration commonly

found in many applications, e.g., environmental monitoring, self-driving cars, medical

diagnosis. In practical applications, developing analytical models for such problems is

challenging due to the complex relationships between the data observed and the target

variable that needs to be inferred. Machine learning based models, such as neural

networks (NN), have proven to be adept at modelling such complex relationships from

data, through a so-called training phase. However, these sensors are usually restricted

in terms of the data they are allowed to transmit. This restriction could be due to

constraints on the communication network, found in environmental monitoring, or

privacy constraints, found in medical problems. To overcome these issues, models that

can be trained and used in a distributed manner need to be developed.

In this thesis, we provide a framework, named in-network learning, that can be

used in such a distributed setting during both the training and the inference phase. The

framework is made up of an architecture that describes how the multiple NNs should

interact with each other during training and inference, as well as a loss function that can

be used to jointly optimise the parameters of the NNs in a distributed manner. Inspired

by the information bottleneck method, the loss function looks to train the NN to achieve

the best trade-off between the accuracy of the predictions, under logarithmic loss, and

the complexity of the information passed between the nodes of the communication

network, measured by their minimum description length (MDL). The loss function

and architecture take into account the network topology and can be applied to any

communication network that can be modelled by a directed acyclyc graph.

Finally, we consider the problem of scheduling and resource allocation in such

distributed inference networks. Inference models are commonly used in constrained

communication networks. In this setting, the resources of the communication network,

such as power or bandwidth, can be redistributed to improve network performance.

Due to the lack of prior knowledge, deciding how to properly allocate available re-

sources, based on only distributed available data, can be a challenging task. The issue

appears due to the fact that no one node can provide a definitive picture of the system.
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Each data observing node can assess the usefulness of its own data; however, it does not

have knowledge of the other nodes data. The decision node has an understanding of

the usefulness of each node relative to the other nodes, but only based on compressed

representations. As such, in this thesis, we provide a scheduling and power allocation

algorithm that overcomes this issue by making use of both local assessments, in which

each node assesses the quality of its own data, and global assessments, in which the de-

cision node assesses the usefulness of each node based on compresses representations.

Our scheduling and power allocation algorithms then combine these two assessments

in a suitable manner to improve the performance of the network.

Keywords - distributed learning, information theory, classification, Information Bottle-

neck, logarithmic loss, resource allocation.
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Chapter 1

Introduction

1.1 Motivation

Consider the example problem of identifying or tracking a vehicle in a large urban

area. To this end, sensors are placed throughout the area to collect different types of

information, such as sound, image/video, proximity, etc. The sensors need to work

together to jointly predict where the vehicle is or where it is going. An example of such

a problem is illustrated in Figure 1.1.

Figure 1.1: Example problem of tracking a vehicle.

Since the sensors are tracking the same vehicle, the data collected by the sensors are
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correlated; however, the exact relationship between the data we observe and the data

we want to predict is difficult to know in advance. As such, we assume that initially the

sensors collect data from which we can train a model to learn the relationship between

the observed data and the information we want to predict, that is, tracking the vehicle.

We refer to this period of time as the training phase. The most natural approach to

learning such a model would be to collect the data samples from the sensors to a central

location, where a model can be learnt based on all the data. Unfortunately, sensors

can be deployed in an area where the communication infrastructure is limited and

intervention is not possible after deployment to improve the infrastructure or collect

the data [4]. As such, transferring large amounts of data to a central location might

not be possible due to communication constraints. Another issue with centralising

data is that sensitive information can be contained in the collected data and its transfer

could violate privacy restrictions [5]. Due to these reasons, both the training phase and

the deployment of the model, also termed the inference phase, need to take place in a

distributed manner, i.e., without the exchange of raw data. This problem is sometimes

referred to as the distributed training and inference problem.

More generally, in this thesis, we assume that there are some devices, which we

denote as edge nodes, that observe data related to a variable of interest that needs to be

inferred at a central decision node or fusion centre. The edge nodes are connected to the

central node either directly or through some intermediary nodes. We assume that the

topology of the network can be modelled by an acyclic directed graph. The distribution

of the data is not known and only a distributed data set is available; that is, different

parts of the data are available at different nodes. We equip each node with a neural

network (NN). This is done due to the success of machine learning (ML) techniques

in learning, from samples, complex relationships between observed data and a target

variable in areas such as computer vision [6], image processing [7], robotics [8], and

natural language processing [9].

The question is, given some measures of the performance of the model, what is the

best way to train such a model? Clearly, removing any of the relevant data can only

lead to a reduced prediction performance. However, on the other hand, extracting

and transmitting data that are not relevant to the task at hand can put a strain on
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the communication network or even degrade the performance of the network. Thus,

intuitively, nodes need to extract the smallest number of features that collectively give

the best prediction performance. Deciding which features to extract needs to be done

without explicit coordination between the nodes. How should that be performed

optimally without sharing raw data? In particular, how should each node process

information and what should it transmit to other nodes?

1.2 Contributions

In this thesis, we focus on the distributed training and inference problem. We discuss

how multiple nodes, that observe data related to the same event, can work together

to jointly train a model that can be used in a distributed manner during the inference

phase through a novel framework named in-network learning (INL).

INL for a star topology, in which the nodes that observe data are directly connected

to the decision node, was first introduced and analysed in [10, 11]. We build on these

results by providing a novel experimental comparison of INL with other distributed

learning algorithms, namely those of [12, 13]. These results were published in [14].

The extension of the INL to network topologies that can be modelled with a directed,

acyclic graph is proposed and studied in the patent document [11] by A. Zaidi, K.

Scaman and P. Escamilla. In this thesis, we derive a suitable loss function for such

a model. The approach to the derivation of the loss function is borrowed from [10],

i.e., first we assume that joint distributions are known and proceed with modelling

the problem as a network source coding one under logarithmic loss measure and

finding suitable (achievable) rate-distortion trade-offs, then we derive a variational

inner bound, and finally we parametrize that lower/inner bound using neural networks.

This work was published as part of [15].

Finally, we consider the practical problem of deploying INL for a star topology

in a constrained wireless setting; an example would be the deployment in wireless

sensor networks (WSNs) [16]. The performance of WSNs is significantly restricted by

its available radio resources and the way in which the resources are allocated between

nodes. Allocating available resources, when we only have access to a dataset, is
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impeded by the distributed nature of the data and the unknown relationships between

the data observed by each sensor. The patent [17] already suggested the idea of having:

(i) each device measuring its own local assessment of how relevant is the data it

holds for the inference task at hand and transmitting it to the decision node, (ii) that

device also simultaneously sends the output activation values to the decision node,

(iii) the decision node combining all received information (activation values from the

various devices as well as their individual local assessments) and then forming its own

(global) assessment of how relevant each device’s observation is, (iv) application of

the idea to device scheduling and power allocation (two algorithms for scheduling

were already given in [17]). All these steps were later reported on and detailed in the

intermediate version [18]. We differentiate ourselves from these works by describing

how the the local nodes can compute their local assessments, as well as providing

an appropriate way for the decision node to combine the received local assessments

with the activation values to obtain its own global assessment. We also propose an

improved scheduling algorithm, as well as a power allocation algorithm, which was

not presented in either [17, 18]. The algorithms are validated experimentally.

1.3 Outline

The thesis is organised as follows.

Chapter 2

In Chapter 2 we review some of the results of point-to-point communication, learning,

and the connection between the two. We start by reviewing some information-theoretic

measures related to both communication and learning, which are used frequently

throughout the thesis, including mutual information and entropy. A more in-depth

discussion of these measures can be found in [19]. We then discuss the point-to-point

communication problem [20], highlighting how mutual information, introduced previ-

ously, can be used to measure the number of bits (rate) required to transmit information

between two devices. Afterward, we discuss the learning problem, specifically from
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the perspective of the information bottleneck (IB) method [21]. Finally, we review some

of the results of [3] that connect the IB problem and the point-to-point communication

problem.

Chapter 3

In Chapter 3 we study the distributed learning and inference problem in which multiple

edge nodes that observe data are connected directly to a decision node that needs to

predict some target variable based on the information it receives from the edge nodes.

This is a particular case of the learning problem discussed at the beginning of this

chapter. We discuss the algorithm proposed by [10] which seeks to solve this problem,

including an in-depth analysis of the training and inference procedure provided in [11].

We then provide a novel experimental comparison between the algorithm of [10] and

other distributed training algorithms, namely the famous federated learning algorithm

of [12] and the split learning of [22].

Chapter 4

In Chapter 4 we study a generalisation of the problem studied in Chapter 3. More

specifically, we consider the case in which the edge nodes that observe data do not

communicate directly with the decision node, but through some intermediary nodes.

We analyse the case in which the topology of the network can be modelled by a directed

acyclyc graph. The extension of the INL to network topologies that can be modelled

with a directed, acyclic graph is proposed and studied in the patent document [11]

by A. Zaidi, K. Scaman and P. Escamilla. In this chapter, we first derive an attainable

trade-off between the complexity of the features extracted by each edge node and the

prediction performance at the decision node, which depends on the network topology.

We then discuss how, given a network topology, one can derive a loss function for train-

ing the model in a distributed setting using the derived trade-off. We then exemplify

the steps by deriving the loss function for an example network topology. The approach

to the derivation of the loss function follows similarly to the ones of [10], i.e., using the
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obtained (achievable) rate-distortion trade-offs we derive a variational inner bound,

and finally we parameterize that lower/inner bound using neural networks. This work

was published as part of [15].

Chapter 5

In Chapter 5 we consider the implementation of the algorithm discussed in Chap-

ter 3, in a resource-constrained wireless sensor network. We study the problem of

scheduling and resource allocation in the case where the distribution of the data is not

known. In [17,18] it was observed that in such a situation it is difficult to schedule and

allocate resources, since no one node has the complete picture of the setting. While

the decision node receives the data from all the nodes and thus can assess their rel-

ative usefulness, the information received by the central node is only a compressed

representation of the full data. The edge nodes have access to the full data; however,

they cannot assess what other nodes observe. In [17], the author patented the idea of

having: (i) each device measuring its own local assessment of how relevant is the data

it holds for the inference task at hand and transmitting it to the decision node, (ii) that

device also simultaneously sends the output activation values to the decision node,

(iii) the decision node combining all received information (activation values from the

various devices as well as their individual local assessments) and then forming its own

(global) assessment of how relevant each device’s observation is, (iv) application of the

idea to device scheduling and power allocation (two algorithms for scheduling were

already given in [17]). In this chapter, we present in detail the ideea of the patent [17],

which was also described in [18]. We then build on this ideea by describing how the

the local nodes can compute their local assessments, as well as providing an appro-

priate way for the decision node to combine the received local assessments with the

activation values to obtain its own global assessment. We also propose an improved

scheduling algorithm, as well as a power allocation algorithm. Finally, we present an

experimental comparison to showcase the advantages of the presented scheduling and

power allocation algorithms. Part of these results are presented in [23].
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Chapter 6

In Chapter 6 we discuss potential areas of future investigation.

1.4 Notation

The following notation will be used throughout the paper. Upper case letters denote

random variables, e.g. X; lower case letters denote realisations of random variables,

e.g x, and calligraphic letters denote sets, e.g., X. The cardinality of a set is denoted

by |X|. For a set of natural numbers S ⊆ K , the complementary set of S is denoted

by Sc, that is, Sc = {k ∈ N : k ∈ K \ S}. For a random variable X, that takes values

in X, with probability distribution PX, the shorthand p(x) = PX(x), x ∈ X is used. Bold-

face letters denote matrices or vectors, e.g., X or x. A sequence of random variables

(Xk,Xk+1, ...,X j) is abbreviated by X j
k. The sequence Xn

1 is sometimes denoted simply

as Xn, i.e., Xn ≜ (X1,X2, ...,Xn). For random variables (X1,X2, ...) and a set of integers

K ⊆ N, the notation XK designates the vector of random variables with indices in the

set K , that is, XK ≜ {Xk : k ∈ K}. If K = ∅ then XK = ∅. Furthermore, for random

vectors with zero mean x and y, the quantities
∑

x,
∑

x,y and
∑

x|y denote, respectively,

the covariance matrix of the vector x, the covariance matrix of vector (x,y) and the

conditional covariance of x given y. We will use the notation diag([x1, . . . , xn]) to denote

an n×n matrix whose diagonal elements are given by [x1, . . . , xn], while the off-diagonal

elements are zero. We say that the random variables U, X and Y form a Markov Chain

in that order, which we denote as U − X − Y, if p(u, x, y) = p(x,u)p(y|x). Finally, for

two probability measures PX and QX over the same alphabet X, the relative entropy

or Kullback-Leibler divergence is denoted as DKL(PX||QX). That is, if PX is absolutely

continuous with respect to QX, then DKL(PX||QX) = EPX[log(PX(X)/QX(X))], otherwise

DKL(PX||QX) = ∞.
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Chapter 2

Connection between Communication

and Learning

In this chapter, we discuss a simplified version of the problem discussed in the intro-

duction. We consider that there are only two nodes, one node that observes data, and

one node that wants to infer the target variable. This setting greatly simplifies the prob-

lem, as now the node observing the data does not need to take into account what other

nodes might observe. This chapter is a review of relevant results from the literature.

The aim of this chapter is to give some intuitions that will be used to derive results for

the more general case discussed in Chapter 1. For the case where the distribution of

the data is known, and the target variable is the observed data, the problem reduces to

that of point-to-point communication. This is a famous problem that was tackled by

Shannon [20], and in this chapter we formally introduce the problem of point-to-point

communication and restate some of the results presented in [20]. We then discuss the

problem of point-to-point communication when the target variable is not the observed

data. Afterwards we consider the same setup, however, we assume that the distribu-

tion of the data is not known and only a dataset is available. We discuss this learning

problem from the perspective of the famous information bottleneck (IB) method [21].

We first discuss the intuition behind the IB problem and its solution for the case in which

the distribution of the data is known and discrete. We then present the results of [24] in

which the authors extended the IB for the case in which the distribution of the data does

not need to be known and only a set of training samples need to be available. Next,
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we discuss the connection between IB and the point-to-point communication problem.

We revisit the results of [3] that discuss how IB is essentially a compression problem,

and then discuss how the rate of compression from point-to-point communication is

linked to a key learning metric, namely the generalisation gap. At the beginning of

this chapter, we briefly review some information-theoretic measures, which are fun-

damental to many results in this thesis, before discussing the aforementioned results.

The introduction is very brief, with many details left out; for a comprehensive review

see [19].

2.1 Preliminaries

Consider the case in which a person draws a word from a hat and we need to predict

what word they drew, with as little additional information from the person who drew

the word. We know in advance the finite set of words X = {x1, . . . x|X|} from which

a person can draw a word. In the case in which we cannot receive any information

from the person, if all the words are equally like to be used, then it would be hard to

actually predict correctly what the word they drew is. However, if the hat contains

only one word, then we can easily predict correctly what the chosen word is, without

any additional information. Intuitively, the prediction is affected by the amount of

uncertainty that we have about the word that will be drawn, and as a consequence

the more uncertain we are, the more additional information we need to receive. Let

the probability that any word is chosen be modelled by the random variable X with

the probability mass function PX. We would like to be able to quantify the amount of

uncertainty contained in X, and we will define this measure of uncertainty as H(X). In

his seminal work [20], Shannon suggested the following three conditions that such a

measure of uncertainty should satisfy.

Condition 2.1.1. H(X) should be continuous in PX.

Condition 2.1.2. If p(x) =
1
|X|
∀x ∈ X then H(X) should be a monotonically increasing

function of |X|.
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Condition 2.1.3. For all possible groupings of X into groups T , H(X) satisfies the following

H(X) = H(T) +
∑
t∈T

p(t)H(X|T = t). (2.1)

The Boltzamn-Shannon entropy (which we will refer to as entropy) was shown to

be the only function1 that satisfies the three conditions mentioned above.

Definition 2.1.1. Let X be a discrete random variable distributed according to PX. The entropy

of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (2.2)

The base of the logarithm sets the scale of the measure. Unless otherwise stated,

throughout this thesis, we will assume that the logarithm is in base 2 and we will

measure the entropy in bits. Intuitively, the entropy of base 2 can be seen as the

minimum number of yes or no questions that we need to ask to figure out what the

drawn word is, on average. The definition of entropy can easily be extended to the case

of joint entropy, which is defined on a set of random variables X1, . . . ,XN and measures

the joint uncertainty.

Definition 2.1.2. For a set of N discrete random variables distributed according to PX1,...,XN ,

the joint entropy of the set is defined as

H(X1, . . . ,XN) = −
∑

x1,...,xN

p(x1, . . . , xN) log p(x1, . . . , xN). (2.3)

Closely related to entropy is the concept of conditional entropy. Consider again the

case in which a person draws a word from the hat that we need to guess; however, we

now obtain some additional information from the person, for example, the number of

letters in the word, which we will denote by Y. If all words in the spaceX have the same

number of letters, then this additional information does not reduce the uncertainty; that

is, Y does not provide information on X. If all the words in the space X have, each,

1The function is defined up to a multiplicative constant.
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a different number of letters, then given Y we can know X. The conditional entropy

H(X|Y) of a random variable X given another Y, measures the uncertainty of X that

remains once we determine the value of Y.

Definition 2.1.3. For (X,Y) distributed according to PX,Y, the conditional entropy of X given

Y is defined as

H(X|Y) = −
∑

y

∑
x

p(x, y) log p(x|y). (2.4)

Closely related to entropy and conditional entropy is the concept of mutual infor-

mation between two random variables. Mutual information measures the dependency

between two random variables. Informally, mutual information I(X; Y) can be thought

of as the amount of information that is common to both variables X and Y.

Definition 2.1.4. Let (X,Y) ∼ PX,Y be two discrete variables with marginal distributions

p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y). The mutual information between X and Y is defined

as

I(X; Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.5)

From the above definition, it can be obtained that

I(X; Y) = I(Y; X) = H(X) +H(Y) −H(X,Y), (2.6)

I(X; Y) = H(X) −H(X|Y) = H(Y) −H(Y|X). (2.7)

A diagram showing the relationship between mutual information, entropy, and condi-

tional entropy can be seen in Figure 2.1.

Finally, we introduce the concept of Kullback-Leibler(KL) divergence. This measure,

also known as relative entropy, quantifies the distance between two distributions PX

and QX defined over the same space.

Definition 2.1.5. The KL divergence between two discrete probability distributions PX and QX
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Figure 2.1: Relationship between mutual information and entropy. Figure redrawn
from [1].

is defined as

DKL(PX||QX) =
∑

x

p(x) log
p(x)
q(x)

. (2.8)

Additionally, KL divergence is related to mutual information through the following

well-known equality

I(X; Y) = DKL(P(X,Y)||P(X)P(Y)). (2.9)

An interesting property of the KL divergence is that it is a positive value and equals

zero if and only if PX(X) = QX(X).

Theorem 2.1.1. [19, Theorem 2.6.3] For PX and QX, two probability distributions on the same

space X then

DKL(PX||QX) ≥ 0, (2.10)

with equality if and only if p(x) = q(x) for any x ∈ X.

From (2.9) and Proposition 2.1.1 we can state that
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Corollary 2.1.1. Let (X,Y) ∼ PX,Y be two discrete variables, then

I(X; Y) ≥ 0, (2.11)

with equality if and only if p(x, y) = p(x)p(y), where p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y).

Another important property of the mutual information is the Data Processing In-

equality (DPI). Intuitively, DPI implies that the information that one random variable

X contains about another variable Y, cannot be increased by processing the variable X.

Theorem 2.1.2. [19, Theorem 2.8.1] If (Y,X,U) are random variables for which p(x, y,u) =

p(x, y)p(u|x), then I(X,Y) ≥ I(U; Y).

We denote random variables (Y,X,U) for which p(x, y,u) = p(x, y)p(u|x) as Y − X − U,

and we say that they form a Markov chain.

So far, we have only talked about discrete random variables; however, the KL

divergence can also be defined for continuous random variables.

Definition 2.1.6. The KL divergence between two continuous probability distributions PX and

QX is defined as

DKL(PX||QX) =
∫
X

p(x) log
p(x)
q(x)

dx. (2.12)

Similarly, using (2.9), the concept of MI can be extended to continuous random vari-

ables.

Definition 2.1.7. Let (X,Y) ∼ PX,Y be two continuous variables with marginal distributions

p(x) =
∫
Y

p(x, y) and p(y) =
∫
X

p(x, y). Mutual information between X and Y is defined as

I(X; Y) =
∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy. (2.13)

We have introduced the fundamental measures required throughout this paper.
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2.2 Point-to-Point Communication

In point-to-point communication, we want to send information from one node, the

sender, to another node, the receiver, over some imperfect medium of communication,

the channel. Shannon [20], formulated this problem mathematically using the commu-

nication model shown in Figure 2.2. The model consists of a discreet source of messages

X, a sender, a receiver, and a discreet communication channel that connects the sender

to the receiver. The source X has a probability mass function PX, which takes values in

the alphabet X. A channel is defined by its input alphabetW, the output alphabet Ŵ,

and the transition probability p(ŵ|w). We will consider the case in which the channel is

memoryless, that is, the probability of the output of the channel depends only on the

input at the time. We consider that the sender observes a sequence of n independent

messages, Xn := {Xi}
n
i=1 ∼

∏n
i=1 PX, which must be communicated to the receiver. The

sender observes these messages and then encodes them so that they can be transmitted

over the channel. For simplicity, in Figure 2.2 and the rest of this thesis, we assume that

the sender can use the channel n times to transmit information; this is not always the

case, and we can find more general results for the case where the number of channel

uses is not equal to the number of messages observed in [19]. As such, the sender

needs to find an encoding function that, given Xn, outputs a representation Wn that

can be transmitted over the channel. The representation Wn is distorted by the channel

transition probability p(ŵ|w) and the receiver obtains Ŵn. The receiver then, using a

decoding function, obtains an estimate of Xn, denoted by X̂n, based on the received Ŵn.

Given a fixed source PX and a channel p(ŵ|w), the aim is to find the encoder and decoder

functions for which X can be reconstructed by the receiver, with the smallest error. It

Figure 2.2: Point-to-point communication model.

is interesting to observe that the encoder and decoder depend on both the source and

the channel, which means that changes in either could require a redesign of the sys-

tem. Shannon proposed separating the encoding into two distinct parts, the first which

depends only on the source of the data, and the second which depends only on the
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channel. The first part is the source coding part, in which redundant information from

the source data is removed and a minimal representation is obtained; this is sometimes

also referred to as the compression phase. The second part is the channel coding part,

in which the compressed representation is enhanced by adding redundancies to offset

the error added by the channel during transmission. The proposed model diagram is

shown in Figure 2.3. A key result of Shannon [20] was to show that this separation

and disjoint design between source coding and channel coding is optimal for the case

where messages are encoded and decoded in large sequences, that is, n is large. A

formal statement of the theorem will be discussed in Section 2.2.2.

Figure 2.3: Separation of source and channel coding for point-to-point communication
model.

We will discuss the problem of source coding and channel coding, relating the

amount of bits that need to be transmitted, with the accuracy of the reconstruction of

the original messages at the receiver. In future sections, we relate the problem of source

coding with that of learning and discuss how choices in the learning problem can have

an impact on the communication constraints that the inference scheme would place on

the communication network.

2.2.1 Source Coding

Source coding, or source compression, aims to obtain a compressed representation of

the original messages Xn, such that the original messages can be recovered from the

compressed representation, within some distortion measured by a chosen distortion

function d(x, x̂).

Loosely speaking, rate-distortion (RD) theory aims to characterise the minimum

number of bits required to be transmitted from the sender to the receiver such that

the receiver can recover the original messages within some distortion level. More
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specifically, consider the following encoding function

f : Xn
−→ U

n withUn = {1, . . . , 2nR
}. (2.14)

Under the assumption that the encoding is transmitted over the channel without error,

the receiver can then use the following decoding function to estimate the original

messages

h :Un
−→ X̂

n. (2.15)

The pair of ( f , h) is usually denoted as a (2nR,n) rate distortion code. The rate of the

code, denoted R, represents the average number of bits, per message, that the sender

needs to send to the receiver. It is clear that a smaller R implies less communication; as

such, we are interested in finding the minimum R for which there exists a pair ( f , h) such

that the expected distortion is bounded by some value D, with the expected distortion

given by

D f ,h(X) =
∑

xn∈Xn

p(xn)
1
n

n∑
i=1

d(xi, x̂i) with x̂n = h( f (xn)). (2.16)

RD theory characterises the achievable region of (R,D).

Definition 2.2.1. A rate-distortion pair (R,D) is said to be achievable if there exists a pair

( f , h), with rate R and with limn−→∞D f ,h(X) ≤ D

Let the rate distortion function R(D) be defined as the infimum of the rates R such

that (R,D) is achievable. Shannon [20] has shown that R(D) can be computed by solving

the following constrained optimisation problem

R(D) :=min
f ,h

I(X, X̂) (2.17)

s.t. D f ,h(X) ≤ D.

Although RD theory does not explicitly describe how to find ( f , h) that solves the above

optimisation problem, this bound can be used to inform the design of the pair ( f , h).
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2.2.2 Channel Coding

Once the source is compressed, the obtained representation must be transmitted through

the channel. The amount of information that can be transmitted over a channel during

one use is limited and is usually quantified by the channel capacity. Specifically, the

capacity of a channel is defined as the maximum rate in bits per channel use at which

information can be transmitted with an arbitrarily low probability of error. The capac-

ity of a channel was shown to be equal to the maximum mutual information between

its input and output, which is denoted as the information channel capacity.

Definition 2.2.2. [19] The capacity of the channel (W, p(ŵ,w),Ŵ) is given by

C = max
p(w)

I(W; Ŵ). (2.18)

One of the key results of Shannon’s work was the source-channel separation theo-

rem. The theorem suggests that we can design the source and channel encoder-decoder

pairs separately, as long as the rate of the source encoder is smaller than the capacity

of the channel.

Theorem 2.2.1. [25, Theorem 3.7] Given a discrete source X and a distortion measure d(x̂, x)

with a rate-distortion function R(D) and a channel p(ŵ|w) with capacity C, the following

statements hold

• if R(D) < C, then (r,D) is achievable for r ≤ R(D),

• if (r,D) is achievable, then r ≤ C.

Throughout this thesis, we will invoke the principle of capacity-achieving codes.

This means that we will assume that we can find channel codes that will allow us to

transmit information at rates equal to the channel capacity.

2.2.3 Remote Source Coding

Now, we extend the source coding problem to the case in which the data the receiver

wants to recover are not the observed data Xn. Instead, the receiver is interested in

recovering another variable, Yn, which is correlated with the observed data. More
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specifically, the sender wants to compress the sequence of messages Xn, so that the

receiver can recover another variable Yn, which is related to Xn through some distribu-

tion PX|Y. We are still interested in characterising the R(D) function; however, now the

distortion is measured between Yn and the estimate Ŷn.

Let the decoder at the receiver be defined as

g :Un
−→ Ŷ

n. (2.19)

The diagram of the communication model is shown in Figure 2.4.

Figure 2.4: Remote source coding model.

In [26, 27] it was shown that the R(D) function in this case is given by

R(D) =min
f ,g

I(X, Ŷ) (2.20)

s.t.D f ,g(Y) ≤ D.

The proof follows from the fact that the remote source coding problem can be reduced

to a direct source coding problem for observable data Xn and a different distortion

measure. In RD theory, the design of the distortion measure d(x̂, x) is subject to the

choice of the designer. In the next section, we analyse the RD region under a particular

distortion function.

2.2.3.1 Remote Source Coding under Logarithmic Loss

In this thesis, we will focus on logarithmic loss (which was introduced in the context

of RD theory in [28]). Logarithmic loss, or log-loss for short, is a natural distortion

measure in the settings in which the reconstructions do not have to be deterministic.

That is, the decoder provides an assessment of the probability of each possible estimate,

as opposed to choosing one estimate. Let the random variable Y denote the source with

finite alphabet Y to be recovered by the receiver. Furthermore, let P(Y) denote the set

of probability measures on Y. The log-loss between y ∈ Y and its reconstruction
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ŷ ∈ P(Y) is given by

dlog(y, ŷ) = log
1

ŷ(y)
. (2.21)

Outside RD theory, the measure is widely used in various contexts, including cluster-

ing [29] and classification [24], pattern recognition [30], learning and prediction [31],

image processing [32], privacy [33], and others. In [34], the authors justify the use of

logarithmic loss by showing that it is the only loss function that satisfies a natural data

processing property that appears in the presence of side information. In another work

it was shown that minimising the logarithmic loss for the binary classification problem

minimises the risk associated with any other smooth, proper, and convex functions,

see [35]. Finally, in [36], the authors show the universality of log-loss over a finite

alphabet in fixed-length lossy compression. Essentially, the authors show that, given

any discrete source, fixed-length, lossy-compression problem, with some arbitrary dis-

tortion measure, there exists an equivalent fixed-length lossy-compression problem

with the same alphabet source where the distortion is measured by the log-loss. By

equivalence the authors implies that the optimal scheme for one problem is optimal for

the other problem, additionally, a good scheme for one problem is also a good scheme

for the other problem. These findings, along with the wide range of applications of

log-loss, justify its use in our problem setting.

Let X denote the observed data, Y the target variable, and PX,Y their joint distribution.

Let us denote the encoder-decoder model by ϕ(x) = Q(·|x) ∈ P(Y) for any x ∈ X. The

expected log-loss of such a model is lower bounded by the conditional entropy of Y

given X

EPX,Y[dlog(Y, Ŷ)] =
∑
x∈X

∑
y∈Y

p(x, y) log
1

q(y|x)

=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)
+

∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
q(y|x)

= H(Y|X) +DKL(PY|X||QY|X)

≥ H(Y|X) (2.22)
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with equality if an only if QY|X(·|x) = PY|X(·|x).

Now, let the possible stochastic encoding mapping f : Xn
−→ U

n with |Un
| ≤ 2nR.

Additionally, the possibly stochastic decoder mapping is g : Un
−→ P(Xn). Using

(2.22) we can lower bound the expected log loss give by (2.16) as

D f ,g ≥ H(Y|U). (2.23)

From the above inequality it can be shown that the rate-distortion region of the remote

source coding problem under logarithmic loss is given by the union of all pairs (R,D)

that satisfy

R ≥ I(U; X) (2.24a)

D ≥ H(Y|U) (2.24b)

where the union is over all the auxiliary random variables U that satisfy the Markov

chain Y − X − U and, without loss of generality, for which |U| ≤ |X| + 1, see [3]. As

noted in [37] the region presented in (2.24) is related to the IB problem; this connection

will be discussed in more depth in Section 2.4.

2.3 Remote Inference

In this chapter so far we have discussed the case in which the edge node observes

samples from the source X and needs to transmit some information to the central node

such that it can infer the target variable of interest Y, given that the joint distribution

PX,Y is known. We now consider the case in which PX,Y is not known and the encoding

and decoding functions need to be learned from a dataset. This problem is sometimes

referred to as the remote inference problem, and is shown in Figure 2.5.

For the remote inference problem described, the objective is to find a good mapping

from an observed signal X to a target variable Y, based on training samples {(xi, yi)}ni=1.

Although how to define a good mapping is subject to debate [2], the most common

approach is to find the mapping that minimises the empirical estimate of some chosen
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risk. The mapping is made up of two parts, as shown in Figure 2.5. First, we have an

Figure 2.5: The remote inference problem. Figure adapted from [2].

encoder function that extracts the relevant features, also termed latent representation,

from the observed data. Second, we have a decoding function that uses the latent

representation obtained to predict the target variable.

In [38], the authors discussed the criteria that a good latent representation U of X

should meet, for the problem of inferring Y, which are listed bellow

• U is a function of X, that is, the Markov chain Y − X −U holds,

• Sufficiency: U is sufficient for task Y, i.e. I(U; Y) = I(Y; X),

• Minimality: U discards all variability in X that is not relevant for predicting Y,

that is, minimal I(U; X).

Although these criteria give us a method to check if a representation U is a good

representation, the problem remains as to how to find such a good representation. For

this, we will now introduce the IB method of [21]. When first introduced, the method

was designed for use on discrete variables whose distribution is known. It was in [24]

that the IB problem was adapted for the learning problem. For completeness, we will

first present the IB method as first presented in [21], and then discuss its adaptation to

the learning problem.

2.3.1 Information Bottleneck Method

The IB method looks at finding the representation U, satisfying the Markov chain

Y−X−U, which is maximally informative of Y (represented by high mutual information
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I(U; Y)), while minimally informative of X (represented by small mutual information

I(U; Y)). The term I(U; Y) is referred to as relevance, and I(U; X) is referred to as

complexity. It is important to note that this formulation of the IB problem can be seen as

a relaxation of the problem of finding U that meets the criteria listed in Section 2.3. More

specifically, the sufficiency condition I(U; Y) = I(Y; X) is relaxed to simply maximising

I(U; Y), which due to the Markov chain is always smaller than I(Y; X).

Finding the representation U that maximises I(U; Y) while ensuring that I(U; X) is

kept small can be formulated as the following maximisation problem.

∆(R) := max
PU|X:I(U;X)≤R

I(U; Y). (2.25)

This problem (2.25) can be solved by reformulating the problem as the following La-

grangian problem

L
IB
s : max

PU|X
I(U; Y) − sI(U; X) (2.26)

where LIB
s can be called the IB objective and s designates the Lagrange multiplier.

The trade-off between the relevance and complexity of the IB problem can be seen in

Figure 2.6.

For a known joint distribution PX,Y and a given value of s, finding the PU|X that

maximises LIB
s can be done in an iterative manner, similar to the Blahut-Arimoto

algorithm of [39, 40], using the following self-consistent equations

p(u|x) = p(u)
exp(−sDKL(PY|x||PY|u)∑

u p(u)s exp(−sDKL(PY|x||PY|u))
, (2.27a)

p(u) =
∑

x

p(u|x)p(x), (2.27b)

p(y|u) =
∑

x

p(y|x)p(x|u) =
∑

x

p(y, x)
p(u|x)
p(u)

. (2.27c)

The IB method starts with some initial condition p0(u|x), and iteratively updates the

probabilities p(u|x), p(u), and p(y|u) using equations (2.27) until convergence. One

disadvantage of this technique is that the IB problem is non-convex, and as such the

algorithm is guaranteed to converge only locally. While this analytical solution can

22



Figure 2.6: The trade-off between the relevance and complexity in the IB problem. The
solution to the IB problem of (2.26) results in a relevance-complexity pair on the bound
of the feasible region (grey area). Figure taken from [3].

only be used when PX,Y is discrete, there are works that provide analytical solutions to

the IB problem when (X,Y) are multivariate Gaussian, see [41–44].

2.3.2 Variational Information Bottleneck

In a learning problem we do not know the joint distribution PX,Y, we only have access

to a set of training samples {(xi, yi)}ni=1, which makes computing (2.27) intractable. As

a solution, the authors of [24], present a variational lower bound on the IB objective

(2.26), which can then be optimised by parameterizing the distributions using NNs, as

we will explain in Section 2.3.2.1.

Let us introduce the variational distribution on U, QU, and the variational decoder

QY|U. For simplicity, we denote P := {PU|X} and Q := {QY|U,QU}. We define the

variational IB cost function as

L
VIB
s (P,Q) := EPX,Y

[
EPU|X[log QX|U] − sDKL(PU|X||QU)

]
. (2.28)

We observe that I(Y; U) = H(Y) −H(Y|U) and that H(Y) is fixed by the problem setting,
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as such maximising the cost function (2.26) over P is equivalent to maximising

L̃
IB
s (P) := −H(Y|U) − sI(U; X). (2.29)

In [24] the authors provide the following relationship between L̃IB
s and LVIB

s .

Lemma 2.3.1.

L
VIB
s (P,Q) ≤ L̃IB

s (P) for all pmfs Q. (2.30)

Furthermore, Q that achieves LVIB
s (P,Q) = L̃IB

s (P) is unique and is given by

Q∗Y|U = PY|U, Q∗U = PU. (2.31)

Using Lemma 2.3.1 the optimisation of (2.26) can be written in terms of the varia-

tional IB as

max
P
L

IB
s (P) = max

P
max

Q
L

VIB
s (P,Q). (2.32)

2.3.2.1 Learning with the Variational Information Bottleneck

We now look at how LVIB
s (P,Q) can be used as an objective for a learning algorithm

that is capable of training given a dataset {(xi, yi)}ni=1. Let Pθ(U|x) denote the mapping

of observation x ∼ X to the latent representation U, which is parameterized by a neural

network with parameters (weights and biases) θ. Similarly, we can parameterize the

decoding distribution with a NN with parametersϕ. We denote the distribution induce

by the decoding NN by Qϕ(Y|U). We denote the prior over the latent space as Qφ(U)

which does not depend on a neural network. Restricting P, Q to the distributions

parameterized by NN, the optimisation of (2.28) becomes

max
θ,ϕ,φ

EPX,Y

[
EPθ(U|X)[log Qϕ(Y|U)] − sDKL(Pθ(U|X)||Qφ(U))

]
(2.33)
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The parameterised loss function (2.33) can then be approximated, given a dataset

(xi, yi)
n
i=1, by its empirical cost given by

max
θ,ϕ,φ

1
n

n∑
i=1

EPθ(Ui|xi)[log qϕ(yi|Ui)] − sDKL(Pθ(Ui|xi)||Qφ(Ui)). (2.34)

We now illustrate the training procedure for a possible choice of parametric distribu-

tions. Consider the case in which the encoder can be chosen as a multivariate Gaussian,

that is, Pθ(U|x) = N(µθ,Σθ). In such a case, the NN with parameter θ would take as

input a sample xi and output the parameters of the Gaussian distribution, that is, the

mean µθ,i and the covariance Σθ,i. For simplicity, we assume that the covariance matrix

is diagonal. Let nu be the dimension of the latent space, that is, µθ,i = [µθ,i,1, . . . , µθ,i,nu]

and Σθ,i = diag({σ2
θ,i,k}

nu
k=1). For the classification problem, we chose the decoder to be a

categorical distribution, that is, the neural network with parameters ϕ has a softmax

operation in its output layer, which has dimension |Y|. The last layer outputs the prob-

ability of each different category of Y. For simplicity, the prior Qφ is chosen as a mul-

tivariate Gaussian N(0, I). Calculating the empirical estimate of EPθ(Ui|xi)[log qϕ(yi|Ui)]

can now be done using the Monte Carlo sampling technique and the reparameterization

trick of [45] as

EPθ(Ui|xi)[log qϕ(yi|Ui)] ≊
1
m

m∑
j=1

log qϕ(yi|ui, j), (2.35)

with ui, j = µθ,i +
√
Σθ,iϵ j, ϵ j ∼ N(0, I) (2.36)

where m is the number of samples from the Monte Carlo sampling technique and

µθ,i and Σθ,i are the parameters outputted by the encoding neural network that has

observed the sample xi.

The KL divergence term DKL(Pθ(U|X)||Qφ(U)) can be calculated analytically, since

we have chosen both Pθ(u|x) and Qφ as multivariate Gaussian distributions. The term

DKL(Pθ(U|X)||Qφ(U)) can now be calculated in closed form as follows:

DKL(Pθ(Ui|xi)||Qφ(Ui)) =
1
2

nu∑
k=1

[
µθ,i,k − log σ2

θ,i,k − 1 + σ2
θ,i,k

]
. (2.37)
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Together, we have the following cost function for each sample i in the data set {(xi, yi)}ni=1

L
VIB−NN
s (ϕ,θ) =

1
m

m∑
j=1

log Qϕ(yi|ui, j) −
s
2

nu∑
k=1

[
µθ,i,k − log σ2

θ,i,k − 1 + σ2
θ,i,k

]
. (2.38)

Finding the parameters that maximise (2.38) can be done using stochastic gradient

descent methods (SGD or ADAM [46]). The parameterisation of the distributions using

NNs and the sampling procedure described are shown in Figure 2.7. The encoder and

Figure 2.7: The diagram shows the variation information bottleneck when we param-
eterized the distributions using NNs. Given a sample xi the encoding NN outputs the
parameters of a distribution, in this case a Gaussian. Samples are then drawn from this
distribution and an estimate of yi is obtained by the NN decoding for each sample.

decoder of the VIB solution presented in Figure 2.7 can be deployed at different nodes,

allowing the model to be used as a solution to a remote inference problem. Additionally,

it can be observed that the training can happen in a distributed manner. During training,

the encoding node only needs to transmit the latent representations to the decoding

node, while the decoding node only needs to transmit back the error gradients as seen

in Figure 2.7. As such, raw data {(xi)}ni=1 does not need to be communicated between

the nodes.

2.4 Relationship between Communication and Learning

In this section we look at discussing the connection between communication and learn-

ing. That is, we discuss how the search for encoding functions that compress the

observed data X, by minimising I(X,U), has a double interpretation. On the one hand,

I(X,U) is related to the communication rate; that is, by minimising I(U,X), one would

need to transmit fewer bits when communicating U. This connection is shown by

connecting the IB problem to the remote source coding problem. On the other hand,

I(X,U) can act as a regularizer. Intuitively, by minimising I(U,X) one can reduce the
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difference between the performance of the network on the data it is trained and on new

data it has not seen before [3, 47].

2.4.1 Information Bottleneck and Remote Source Coding

The rate-distortion region is characterised by the union of all pairs (R,D) that satisfy

(2.24), where U is an auxiliary random variable that obeys the Markov chain Y−X−U.

Using the substitution ∆ := H(Y) − D, the region can be written equivalently as the

union of all pairs (R,H(Y) − ∆) that satisfy

R ≤ I(U; X) (2.39)

∆ ≥ I(U; Y) (2.40)

The boundary of this region is equivalent to the boundary described by (2.26) if

solved for all s. As a consequence, the IB problem can essentially be seen as a remote

source coding problem with the distortion measured using log-loss. For a more detailed

analysis of the connections between the IB problem and the rate distortion problems,

see [3, 21, 37, 48]. We can observe that s controls the trade-off between the bit rate

constraint R and the desired distortion constraint. As such, by controlling s one can

effectively control the overhead that the inference scheme applies on the communication

network. This connection has led to multiple lines of work that use the IB method

for the problem of inference over a communication channel. For example, in [49]

the authors propose an adaptive IB method for designing a joint source and channel

encoder-decoder pair. In this method, the parameter s is dynamically adjusted during

training to reduce communication requirements while searching for the best balance

between communication requirements and network performance. In [50] the authors

also use the IB method for designing a variable-length feature encoding scheme based

on dynamic neural networks that adaptively adjust to different channel conditions.

2.4.2 Connection between Generalisation Gap and Rate

As discussed in Section 2.3 one of the most common ways of choosing the learning

model is to find the model that minimises the empirical estimate of the chosen loss. One
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key performance indicator for such a model is how well the chosen model performs

on samples outside the observed dataset, referred to as the generalisation gap. As

discussed previously, for an encoder f and a decoder g, under log-loss, the expected

loss is given by

C( f , g) := EPX,Y

[
dlog(Y, g( f (X)))

]
(2.41)

while, for a given dataset {(xi, yi)}ni=1, the empirical loss is given by

Ĉ( f , g) :=
n∑

i=1

dlog(yi, g( f (xi))). (2.42)

The generalisation gap for the model ( f , g) is given by the difference between the

expected loss and the empirical loss

gen( f , g) = C( f , g) − Ĉ( f , g). (2.43)

It is commonly believed that one can control the generalisation gap by restricting the

complexity of the model. One method is the so-called MDL complexity measure of the

model parameters, which is intended to limit the length of the description of the model

parameters [51]. An alternative approach,inspired by RD theory, which is used in this

thesis and the IB problem 2, considers minimising the description length of the latent

representation U, instead of the model paramters. The two problems have already been

shown to be connected in [52], where the authors have shown that, for some models, by

decreasing the MDL of the parameters, we automatically improve minimality (see 2.3)

and the disentanglement of the latent representation. These two connections, between

the MDL of the weights and the generalisation gap, and between the MDL of the weights

and the MDL of the latent representations, intuitively show a relationship between the

generalisation gap and the MDL of the latent representation. This connection was

formalised in [47], where the authors have shown that the generalisation gap can be

bounded in terms of the complexity of the latent representation, as measured by the

2It is interesting to note that the original formulation of the IB problem did not consider the connection
between the generalisation gap and the description length of the latent representation. This connection
was found later.
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empirical estimate of mutual information between X and U obtained from the available

data set. Let P(U|X) be the distribution of U given X imposed by the chosen encoder f

and let P̂(n)
X be the empirical distribution of X given the data set {(xi, yi)}ni=1. Furthermore,

define P̂(n)
Ŷ|U

as the distribution of Ŷ given U imposed by the chosen decoder g, and let

PŶ|U be the distribution imposed by the optimal decoder g∗ for the true distribution of

the data. The generalisation gap is upper-bounded, as

gen( f , g) ≤ A
√

Î(P̂(n)
X ,PU|X)

log n
n
+

B
√
Λ
(
PU|X, P̂

(n)
Ŷ|U
,PŶ|U

)
√

n
+ O(

log n
n

) (2.44)

where Î(P̂(n)
X ,PU|X) is the mutual information between X and U under the distribution

P̂(n)
X PU|X and Λ

(
PU|X, P̂

(n)
Ŷ|U
,PŶ|U

)
is a function that measures the mismatch between the

optimal decoder and the empirical one. A and B are constants.

This bound explicitly suggests that the complexity of the latent representations

controls the generalisation gap. As such, the IB problem controls the generalisation

gap through the variation of the s parameter. This connection between the generalisa-

tion gap and the parameter s was experimentally shown in [24]. In what follows, in

this thesis, we will show how the the IB problem can be extended to the distributed

case by considering the connection between generalisation and the MDL of the latent

representations in an appropriate manner.
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Chapter 3

In-network Learning: Star Network

Topology

In this chapter, we build on the results of Aguerri-Zaidi [10] and Zaidi et al. [11] by

providing a novel comparison of the algorithm of [10] with other distributed learning

algorithms. More specifically, in this chapter, we study the distributed inference and

training problem shown in Figure 3.1. In this setting, multiple nodes observe data

related to the same target variable of interest; data that the nodes need to compress

and send directly to a central node so that it can predict the target variable. We restrict

the problem to the setting in which each node is equipped with an NN to compress

the observed data or predict the target variable; the parameters of the NNs need to be

learnt from a set of distributed available dataset.

Figure 3.1: Studied distributed inference problem.

This problem was studied in [10], where the authors proposed an algorithm for
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training the NN in a distributed manner, the algorithm was named in-network learning

(INL) in [14]. In this chapter, we first formally define the problem of Figure 3.1. We

also discuss the training procedure for the algorithm of [10], which was first reported

in [11]. The contribution of this chapter is that we provide a novel comparison of

in-network learning with other distributed leaning algorithms, namely the federated

learning (FL) algorithm of [12] and split learning (SL) of [22]. At the end of the chapter,

for completeness, we present how [10] derived the loss function for the INL algorithm

presented in this chapter.

3.1 Problem Setup

Let us formally introduce the inference problem shown in Figure 3.1. There are nodes

J ≥ 1 which possess or can acquire data relevant for inference on a random variable

of interest Y, taking values in Y. Let J = {1, . . . , J} denote the set of such nodes, and

X j denote the data observed by node j, taking values in X j. The relationship between

the random variable of interest Y and the observed ones X1, . . . ,XJ is given by the joint

probability mass function PXJ ,Y := PX1,...,XJ ,Y(x1, . . . xJ, y), with (x1, . . . , x j) ∈ X1 × · · · × XJ

and y ∈ Y. The inference on Y needs to be done at some distant node (say, node

(J + 1)) which is connected to the nodes that possess raw data through error-free links

of given finite capacities; and has to be performed without any sharing of raw data.

The network may represent, for example, a wired network or a wireless mesh network

operated in time or frequency division. The processing at node j ∈ J is a mapping

ϕ j : X j −→ U j; (3.1)

and that at node (J + 1) is a mapping

ψ :U1 × . . . ×UJ −→ Ŷ. (3.2)

with |U j| ≤ 2R j . As mentioned in Section 2.2.3.1, we choose the reconstruction set Ŷ

to be the set of distributions on Y, i.e., Ŷ = P(Y); and we measure the discrepancies

between the true values of Y ∈ Y and their estimated fits in terms of average logarithmic
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loss, i.e., for (y, P̂) ∈ Y × P(Y)

d(y, P̂) = log
1

P̂(y)
. (3.3)

We study the case in which the mappings given by (3.1) and (3.2) need to be learnt from

a set of training data samples {(x1,i, . . . , xJ,i, yi)}ni=1. The data are distributed so that the

samples x j := (x j,1 . . . , x j,n) are available at node j for j ∈ J and the desired predictions

y := (y1 . . . yn) are available at the node (J + 1).

3.2 In-network Learning Solution

(a) Training phase

(b) Inference phase

Figure 3.2: In-network learning for the network model of Figure 3.1.

To overcome the issue of unknown distribution, we parameterize the possibly

stochastic mappings (3.1) and (3.2) using neural networks. This is shown in Figure 3.2.

The NNs at the various nodes are arbitrary and can be chosen independently. It is only

required that the following mild condition be met, which, as will become clearer in
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what follows, facilitates the backpropagation.

J∑
j=1

(Size of last layer of NN j) = Size of first layer of NN (J+1). (3.4)

3.2.1 Loss Function

A possible suitable loss function was shown to be given by [10]

L
NN
s (n) :=

1
n

n∑
i=1

log QϕJ (yi|u1,i, . . . ,uJ,i)

+
s
n

n∑
i=1

J∑
j=1

(
log Qϕ j(yi|u j,i) − log

(
Pθ j(u j,i|x j,i)

Qφ j(u j,i)

))
, (3.5)

where s is a Lagrange parameter and for j ∈ J the distributions Pθ j(u j|x j), Qϕ j(y|u j),

QϕJ (y|uJ ) are variational ones whose parameters are determined by the chosen NNs

using the re-parametrization trick of [45]; and Qφj(u j) are priors known to the encoders.

As described in Section 2.3.2 the encoding distibution can be choosen as multivartiate

gaussian denoting by fθ j the NN used at node j ∈ Jwhose (weight and bias) parameters

are given by θ j, for regression problems the conditional distribution Pθ j(u j|x j) can be

chosen to be multivariate Gaussian, i.e., Pθ j(u j|x j) = N(u j;µθj ,Σ
θ
j ). For discrete data,

concrete variables (i.e., Gumbel-Softmax) can be used instead.

The rationale behind the choice of loss function (3.5) is presented in detail in Sec-

tion 3.4. However, intuitively, the authors of [10] have shown that in the regime of large

n, if the encoders and decoder are not restricted to use NNs under some conditions 1 the

optimal stochastic mappings PU j|X j , PU, PY|U j and PY|UJ are found by marginalising the

joint distribution that maximises the following Lagrange cost function [10, Proposition

2]

L
DIB
s = −H(Y|UJ ) − s

J∑
j=1

[
H(Y|U j) + I(U j; X j)

]
. (3.6)

where the maximisation is over all joint distributions of the form PY
∏J

j=1 PX j|Y
∏J

j=1 PU j|X j .

1The optimality is proved therein under the assumption that for every subset S ⊆ J it holds that
XS − Y − XSc . The RHS of (3.6) is achievable for arbitrary distributions, however, regardless of such an
assumption.
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3.2.2 Training Algorithm

We now describe the training algorithm for INL which was first reported in the patent

[11] by Zaidi, Scaman and Escamilla. During the forward pass, every node j ∈ J

processes mini-batches of size, say, b j of its training data-set x j. Node j ∈ J then sends

a vector whose elements are the activation values of the last layer of (NN j). Due to (3.4)

the activation vectors are vertically concatenated at the NN input layer (J + 1). The

forward pass continues on the NN (J+1) until the last layer of the latter. The parameters

of NN (J+1) are updated using standard backpropgation. Specifically, let LJ+1 denote

the index of the last layer of NN (J + 1). Also, let, for l ∈ [2 : LJ+1], w[l]
J+1, b[l]

J+1 and a[l]
J+1

denote, respectively, the weights, biases and activation values at layer l for the NN

(J + 1); and σ is the activation function. Node (J + 1) computes the error vectors

δ
[LJ+1]
J+1 = ∇a

[LJ+1]

J+1

L
NN
s (b) ⊙ σ′(w[LJ+1]

J+1 a[L(J+1)−1]
f + b[LJ+1]

J+1 ) (3.7a)

δ[l]
J+1 = [(w[l+1]

J+1 )Tδ[l+1]
J+1 ] ⊙ σ′(w[l]

J+1a[l−1]
J+1 + b[l]

J+1) ∀ l ∈ [2,LJ+1 − 1] (3.7b)

δ[1]
J+1 = [(w[2]

J+1)Tδ[2]
J+1], (3.7c)

and then updates its weight- and bias parameters as

w[l]
J+1 → w[l]

J+1 − ηδ
[l]
J+1(a[l−1]

J+1 )T, (3.8a)

b[l]
J+1 → b[l]

J+1 − ηδ
[l]
J+1, (3.8b)

where η designates the learning parameter 2.

Remark 3.2.1. It is important to note that for the computation of the RHS of (3.7a) node

(J + 1), which knows QϕJ (yi|u1i, . . . ,uJi) and Qϕ j(yi|u ji) for all i ∈ [1 : n] and all j ∈ J , only

the derivative of LNN
s (n) w.r.t. the activation vector aLJ+1

J+1 is required. For instance, node (J + 1)

does not need to know any of the conditional variationals Pθ j(u j|x j) or the priors Qφj(u j).

The backward propagation of the error vector from node (J + 1) to the nodes j,

j = 1, . . . , J, is as follows. Node (J + 1) splits horizontally the error vector of its input

layer into J sub-vectors with sub-error vector j having size L j, the dimension of the last

layer of NN j [recall (3.4) and that the activation vectors are concatenated vertically
2For simplicity η and σ are assumed here to be identical for all NNs.
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Figure 3.3: Illustration of the forward and backward passes for an example in-network
learning with J = 2.

during the forward pass]. See Figure 3.3. The backward propagation then continues on

each of the J input NNs simultaneously, each of them essentially applying operations

similar to (3.7) and (3.8).

Remark 3.2.2. Let δ[1]
J+1( j) denote the sub-error vector sent back from node (J+1) to node j ∈ J .

It is easy to see that, for every j ∈ J ,

∇
a

Lj
j

L
NN
s (b j) = δ

[1]
J+1( j) − s∇

a
Lj
j

 b∑
i=1

log
(

Pθ j(u j,i|x j,i)

Qφ j(u j,i)

) ; (3.9)

and this explains why node j ∈ J needs only the part δ[1]
J+1( j), not the entire error vector at node

(J + 1).

3.2.3 Inference Algorithm

We now describe the inference phase for INL which was first reported in the patent [11]

by Zaidi, Scaman and Escamilla. During this phase, node j observes a new sample x j. It

uses its NN to output an encoded value u j which it sends to the decoder. After collecting

(u1, · · · ,uJ) from all input NNs, node (J + 1) uses its NN to output an estimate of Y in

the form of soft output QϕJ (Y|u1, . . . ,uJ). The procedure is depicted in Figure 3.2b.

Remark 3.2.3. A suitable practical implementation in wireless settings can be obtained using

Orthogonal Frequency Division Multiplexing (OFDM). That is, the J input nodes are allocated

non-overlapping bandwidth segments and the output layers of the corresponding NNs are
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chosen accordingly. The encoding of the activation values can be done, e.g., using entropy type

coding [53].

3.3 Comparison to Federated Learning and Split Learning

In this section we compare the proposed INL algorithm with other distributed learning

frameworks. We first start by introducing the federated learning (FL) algorithm of [12]

and the split learning (SL) algorithm of [22]. We then discuss the amount of data the

three algorithms use for communication during training. Finally we compare the three

algorithm experimentally.

3.3.1 Review of Distributed Learning Algorithms

3.3.1.1 Federated Learning

FL is an alternative approach to the problem of distributed machine learning. The aim

of the FL framework is for the nodes to train one model that can then be used, during

inference, by each node locally. Each edge device has a set of local data and a copy of

the NN model to be trained, common across all devices. Compared to the in-network

learning setting presented before, in FL each node has access to the same feature

space as the other nodes, however, observes different samples. More specifically,

given the same dataset {(x1,i, . . . , xJ,i, yi)}ni=1, in FL each node j ∈ J observes a subset

{(x1,i, . . . , xJ,i, yi)}i∈N j of the samples, with N j ∈ [1 : n]. During the training phase, all

edge devices simultaneously train their local copy of the NN on their available dataset.

Then, each edge device sends the learned NN parameters to the central device, called

a cloud- or parameter server (PS), which aggregates them, by simply computing their

average. The process repeats, every time reinitialising using the obtained aggregated

model, until convergence. The rationale is that this way, the model is progressively

adjusted to account for all variations in the data, not only those of the local dataset.

3.3.1.2 Split Learning

SL was presented in [22] as an alternative to FL. In SL a two-part NN model is split

into an encoder part and a decoder part is learnt sequentially. The central device does
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not have its own data and hosts the decoder part of the NN. The edge devices have

access to a different part of the dataset, split in a manner similar to FL, and a copy of

the encoding NN. The central device keeps track of the last trained edge device during

training and passes the information to the next device to be trained. In every round,

the edge device which will be trained has its parameters initialised using those learnt

by the previous device. The parameters are exchanged between the devices directly or

through the central node. The edge device then trains the two-part NN, together with

the central device, on its distinct dataset using classical gradient descent methods. The

edge device passes the data through its NN and sends forward to the central device

the activation values of the last layer. The central device uses the received data as

input into its NN and outputs an estimate. The central device then backpropagates the

error through its NN and sends the error vector back from its input layer to the edge

device, which continues the procedure on its own NN. During the inference phase, the

edge device observing data connects to the central node and the two jointly perform

the inference. SL reduces some of the computation load placed on each edge node by

the FL algorithm, while also reducing some of the communication overhead. This was

shown in [22]. One disadvantage, however, is that the model on each node cannot train

simultaneously and as such the model would take more time to train.

3.3.2 Bandwidth Requirements

In this section, we study the requirements in bandwidth of our in-network learning,

which was first reported in the patent [11] by Zaidi, Scaman and Escamilla. Let q denote

the size of the entire data set (each input node has a local dataset of size q
J ), p = LJ+1

the size of the input layer of NN (J + 1) and s the size in bits of a parameter. Since as

per (3.4), the output of the last layers of the input NNs are concatenated at the input of

NN (J+1) whose size is p, and each activation value is s bits, one then needs
2sp

J
bits for

each data point – the factor 2 accounts for both the forward and backward passes; and,

so, for an epoch our in-network learning requires
2pqs

J
bits. Note that the bandwidth

requirement of in-network learning does not depend on the sizes of the NNs used at

the various nodes, but does depend on the size of the dataset. For comparison, notice

that with FL one would require 2NJs, where N designates the number of (weight and
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bias) parameters of an NN at one node. For SL, assuming for simplicity that the NNs

j = 1, . . . , J all have the same size ηN, where η ∈ [0, 1], SL requires (2pq + ηNJ)s bits for

an entire epoch. The bandwidth requirements of the three schemes are summarised

and compared in Table 3.1 for two popular neural networks, VGG16 (N = 138, 344, 128

parameters) and ResNet50 (N = 25, 636, 712 parameters) and two example datsets,

q = 50, 000 data points and q = 500, 000 data points. The numerical values are set as

J = 500, p = 25088 and η = 0.88 for ResNet50 and 0.11 for VGG16.

Federated
learning

Split
learning

In-network
learning

Bandwidth requirement 2NJs
(
2pq + ηNJ

)
s

2pqs
J

VGG 16
50,000 data points 4427 Gbits 324 Gbits 0.16 Gbits

ResNet 50
50,000 data points 820 Gbits 441 Gbits 0.16 Gbits

VGG 16
500,000 data points 4427 Gbits 1046 Gbits 1.6 Gbits

ResNet 50
500,000 data points 820 Gbits 1164 Gbits 1.6 Gbits

Table 3.1: Bandwidth requirements of INL, FL and SL.

3.3.3 Experiments

We perform two series of experiments. In both cases, the used dataset is the CIFAR-10

and there are five client nodes. In this setup, we create five sets of noisy versions

of the images of CIFAR-10. To this end, the CIFAR images are first normalised and

then corrupted by additive Gaussian noise with standard deviation set respectively to

0.4, 1, 2, 3, 4. For our INL each of the five input NNs is trained on a different noisy

version of the same image. Each NN uses a variation of the VGG network of [54], with

the categorical cross-entropy as the loss function, L2 regularisation, and Dropout and

BatchNormalization layers. Node (J + 1) uses two dense layers. The architecture is

shown in Figure 3.4. In the experiments, all five (noisy) versions of every CIFAR-10

image are processed simultaneously, each by a different NN at a distinct node, through

a series of convolutional layers. The outputs are then concatenated and then passed

through a series of dense layers at node (J + 1).
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Figure 3.4: Network architecture. Conv stands for a convolutional layer, Fc stands for
a fully connected layer.

3.3.3.1 Experiment 1

For FL, each of the five client nodes is equipped with the entire network of Figure 3.4.

The dataset is split into five sets of equal sizes; and the split is now performed such that

all five noisy versions of a same CIFAR-10 image are presented to the same client NN

(distinct clients observe different images, however). For SL of [22], each input node is

equipped with an NN formed by all fives branches with convolution networks (i.e., all

the network of Fig. 3.4, except the part at Node (J+1)); and node (J+1) is equipped with

fully connected layers at Node (J+1) in Figure 3.4. Here, the processing during training

is such that each input NN concatenates vertically the outputs of all convolution layers

and then passes that to node (J+ 1), which then propagates back the error vector. After

one epoch at one NN, the learnt weights are passed to the next client, which performs

the same operations on its part of the dataset. Figure 3.5a depicts the evolution of the

(a) Accuracy vs. # of epochs. (b) Accuracy vs. bandwidth cost.

Figure 3.5: Comparison of INL, FL and SL - Experiment 1.

classification accuracy on CIFAR-10 as a function of the number of training epochs,
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for the three schemes. As visible from the figure, the convergence of FL is relatively

slower comparatively. Also, the final result is less accurate. Figure 3.5b shows the

amount of data needed to be exchanged among the nodes (i.e., bandwidth resources)

in order to get a prescribed value of classification accuracy. Observe that both our INL

and SL require significantly less data exchange than FL; and our INL is better than SL

especially for small values of bandwidth.

3.3.3.2 Experiment 2

In Experiment 1, the entire training dataset was partitioned differently for INL, FL and

SL (in order to account for the particularities of the three). In this second experiment,

they are trained on the same data. Specifically, each client NN sees all CIFAR-10

images during training; and its local dataset differs from those seen by other NNs only

by the amount of added Gaussian noise (standard deviation chosen, respectively, as

0.4, 1, 2, 3, 4). Also, for the sake of a fair comparison between INL, FL and SL the nodes

are set to utilize fairly the same NNs for the three of them (see, Fig. 3.6). Figure 3.7

shows the performance of the three schemes during the inference phase in this case

(for FL and SL the inference is performed on an image which has average quality of the

five noisy input images for INL). Again, observe the benefits of INL over FL and SL in

terms of both achieved accuracy and bandwidth requirements.

Figure 3.6: Used NN architecture for FL in Experiment 2.

3.4 Derivation of In-network Learning Loss Function

As mention in the introduction in this section, we restate the derivation of the loss

function (3.5) presented in Aguerri-Zaidi [10] for completeness. The review is brief

and for more details please see [10]. The distributed inference problem presented
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(a) Accuracy vs. # of epochs. (b) Accuracy vs. bandwidth cost.

Figure 3.7: Comparison of INL, FL and SL - Experiment 2.

is related to the J-encoder CEO problem under log-loss presented in [28]. One of

the main differences is that in the CEO problem setting n samples are compressed and

transmitted jointly, as opposed to just one sample as is the case in an inference problem.

We first introduce the CEO problem, and then we present how known results for the

CEO problem were used by [10] to derive the loss function for the distributed training

and inference problem given by (3.5).

3.4.1 CEO Problem Setup

Figure 3.8: CEO problem.

The J-encoder CEO problem is shown in Figure 3.8. Compared to the problem

presented at the beginning of the section, in the CEO problem each node observes a

sequence of n independent samples of the random variables, i.e. (Yn,Xn
1 , . . . ,X

n
J ) ∼∏n

i=1 PXJ ,Y. The central node is interested in recovering the random variable of interest

Yn, taking values in Yn, which is related to the observed random variables Xn
j , taking

values in Xn
j ,through the joint probability mass function PXn

J
,Yn :=

∏n
i=1 PXJ ,Y. We
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additionally assume that for all S ⊆ J we have XS − Y −XSc , i.e. the data observed by

each encoder is independent of the rest of the observation, given Y. Each encoder j ∈ J

can use nR j bits to encode the observed data Xn
j . We choose the reconstruction set Ŷn

to be the set of distributions onYn, i.e., Ŷn = P(Yn); and we measure the discrepancies

between the true values of Yn
∈ Y

n and their estimated fits in terms of their per sample

average logarithmic loss, i.e., for (yn, ŷn) ∈ Yn
× P(Yn)

d(n)(yn, ŷn) =
1
n

n∑
i=1

log
1

ŷi(yi)
. (3.10)

Definition 3.4.1. A rate distortion code (of block length n) for the J-encoder model described

consists of the encoding functions

ϕn
j : Xn

j −→ [1 : 2nR j]; (3.11)

and the decoding function at node (J + 1)

ψ : [1 : 2nR1] × . . . × [1 : 2nRJ ] −→ Ŷn. (3.12)

Definition 3.4.2. A rate-distortion tuple (R1, . . . ,RJ,D) is achievable if there exist a block

length n, and encoding and decoding functions such that

R j ≥
1
n

log M(n)
j , for j ∈ J , (3.13)

D ≤ E
[
d(n)(Yn, ψn(ϕn

1(Xn
1), . . . ϕn

J (Xn
J )))

]
(3.14)

The rate-distortion region of the defined CEO problem, denoted as RICEO, is defined as the

closure of all non-negative (R1, . . . ,RJ,D) rate-distortion tuples that are achievable.

The following theorem characterised the rate-distortion region of the introduced

CEO problem, the region was first characterised in [28].

Theorem 3.4.1. [28, Theorem 10] The rate-distortion region of the described CEO problem is

given by the union of all tuples (R1, . . . ,RJ,D) satisfying for all S ⊆ J

∑
j∈S

R j +D ≤
∑
j∈S

I(X j; U j|Y,Q) +H(Y|USc ,Q) (3.15)
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for some set of pmfs P := {PU1|X1,Q, . . . ,PUJ |XJ ,Q,PQ} with the joint distribution of the form

p(y)p(q)
∏J

j=1 p(x j|y)p(u j|xJ, q).

3.4.2 Distributed Information Bottleneck

The authors of [10] consider the problem in which the logarithmic distortion of the

presented CEO problem is replaced by the mutual information constraint

∆ ≤
1
n

I
(
Yn, ψn(ϕn

1(Xn
1), . . . ϕn

J (Xn
J ))

)
(3.16)

where ∆ denotes the relevance of the model. Similar to the CEO problem, one now

wants to find the set of achivable relevance-complexity tuples (R1, . . . ,RJ,∆), this can

be seen as a generalisation of the IB problem [21] to the distributed case.

Definition 3.4.3. A relevance complexity tuple (R1, . . . ,RJ,∆) is achievable if there exist a

block length n, and encoding and decoding functions such that

R j ≥
1
n

log M(n)
j , for j ∈ J , (3.17)

∆ ≤
1
n

I(Yn, ψn(ϕn
1(Xn

1), . . . ϕn
J (Xn

J )))
]

(3.18)

The relevance complexity region, denoted as RIDIB is defined as the closure of all non-negative

(R1, . . . ,RJ,∆) relavance-complexity tuples that are achievable.

By showing the equivalence between the two regions,RIDIB andRICEO, the authors

of [10] are able to characterise the RIDIB region as follows

Theorem 3.4.2. [10, Theorem 1] The relevance-complexity region, denoted as RIDIB, is given

by the union of all tuples (R1, . . . ,RJ,∆) satisfying for all S ⊆ J

∑
j∈S

R j ≤ ∆ +
∑
j∈S

I(X j; U j|Y,Q) + I(Y; USc ,Q) (3.19)

for some set of pmfs P := {PU1|X1,Q, . . . ,PUJ |XJ ,Q,PQ} with the joint distribution of the form

p(y)p(q)
∏J

j=1 p(x j|y)p(u j|xJ, q).

For simplicity, they consider the region of achievable relevance-complexity tuples

43



under sum-complexity constrained, defined by

RI
sum
DIB := {(∆,Rsum)∃(R1, . . . ,RJ)s.t.(∆,R1,RJ) ∈ RIsDIBand Rsum =

J∑
j=1

R j} (3.20)

In practice, we are interested in finding the pmfs P := {PU1|X1,Q, . . . ,PUJ |XJ ,Q,PQ} for which

the resulting (∆,Rsum) is on the boundary of the RIsum
DIB. The following proposition

provides such a characterisation.

Proposition 3.4.1. [10, Proposition 2] For each tuple (∆,Rsum) on the boundary of the relevance

complexity region RIsum
DIB there exists s ≥ 0 such that (∆,Rsum) = (∆s,Rs) where

∆s :=
1

1 + s

[
(1 + sK)H(Y) + sRs +max

P
L

DIB
s (P)] (3.21)

Rs := I(Y; U∗
J

) +
J∑
j=1

[
I(X j; U∗j) − I(Y; U∗j)] (3.22)

and P∗ is the set of pmfs that maximize the cost function

L
DIB
s = −H(Y|UJ ) − s

J∑
j=1

[
H(Y|U j) + I(U j; X j)

]
. (3.23)

It can be seen from (3.23) that, similar to the IB problem, by controlling s one

can control the trade-off between the sum complexity of the latent representation UJ

and the relevance of the model. Unfortunately, optimising (3.23) requires computing

the marginal distributions PY|U1,...,UJ ,PY|U1 ,. . . ,PY|UJ , which is not always possible. To

overcome this issue, one can introduce the variational distributions

Q :=
{
QY|U1 ,Q . . . ,QY|UJ,QY|U1,...,UJ ,QU1 , . . . ,QUJ

}
(3.24)

and the variation cost function given by

L
VDIB
s (P,Q) := E[log QY|UJ (Y|UJ )] + s

J∑
j=1

(
E[log QY|U j(Y|U j)] −DKL(PU j|X j ||QU j)

)
(3.25)

It was show in [10] that the optimisation of (3.23) can be written in terms of the
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variational cost function as

max
P
L

DIB
s = max

P
max

Q
L

VDIB
s (P,Q) (3.26)

Finally we restrict the maximisation problem

max
P

max
Q
L

VDIB
s (P,Q) (3.27)

to the encoding distribution P and variations distribution Q which can be parameterized

by neural networks as described in Section 2.3.2. More specifically, let Pθ j(U j|X j) be

the encoding distribution at node j ∈ J parameterized by an NN with parameters θ j.

Additionally, let log Qϕ j(Y|U j), j ∈ J , be the decoding mapping from U j to Y given by an

NN with parametersϕ j and let log QϕJ (Y|U1, . . . ,UJ) be the main decoding distribution

given by an NN with parameters ϕJ . Finally, let Qφ j(U j), j ∈ J , be some fixed prior

over the latent space. By imposing such a restriction, the maximisation problem of

(3.27) becomes

max
θ,φ,ϕ

L
NNe
s (θ,φ,ϕ) (3.28)

where θ = [θ1, . . . ,θJ],φ = [φ1, . . . ,φJ],ϕ = [ϕ1, . . . ,ϕJ,ϕJ ] and

L
NNe
s := E[log QϕJ (Y|U1, . . . ,UJ)]

+ s
J∑

j=1

E[log Qϕ j(yi|u j,i)] −DKL

(
Pθ j(U j|X j)||Qφj(U j)

)
. (3.29)

The loss function (3.5) can be obtained by taking the empirical estimate of (3.29).
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Chapter 4

In-network Learning: Graph Network

Topology

In this chapter we discuss the extension of the INL to network topologies that can

be modelled with a directed, acyclic graph. This problem was proposed and studied

in the patent document [11]. In this chapter, we derive a suitable loss function for

such a model, by extending the techniques from [10] to this more general case. More

specifically, we consider the case in which the J nodes that observe the data do not

communicate directly with the central node. Instead, the nodes are connected to

the central node through intermediary nodes, which do not have data of their own;

however, they do have computational capabilities to process the data they observe.

Moreover, we assume that some of the nodes that observe the data can be connected to

other nodes that observe the data. Figure 4.1 shows an example of such a network.

Figure 4.1: Studied network inference model.

We first derive an achievable trade-off between the performance of the system under
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log-loss and the complexities of the encoded values that the nodes need to exchange,

as measured by their minimum description length (MDL). Based on this theoretical

analysis, one can derive a loss function that can train the NNs in a distributed manner,

by first deriving a variational inner bound, and then parameterizing that lower/inner

bound using neural networks. We showcase these steps for an example five-node

network.

4.1 Problem Setup

We model an N-node network by a directed acyclic graphG = (N ,E,C), whereN = [1 :

N] is the set of nodes, E ⊂ N ×N is the set of edges and C = {C jk : ( j, k) ∈ E} is the set

of edge weights. Each node represents a device and each edge represents a noiseless

communication link with capacity C jk. The processing at the nodes of the setJ is such

that each of them assigns an index m jl ∈ [1,M jl] to each x j ∈ X j and each received index

tuple (mi j : (i, j) ∈ E) for each edge ( j, l) ∈ E. Specifically, let for j ∈ J and l such that

( j, l) ∈ E, the setM jl = [1 : M jl]. The encoding function at node j is

ϕ j : X j ×


�

i : (i, j) ∈ E

Mi j

 −→
�

l : ( j,l) ∈ E

M jl, (4.1)

where
�

designates the Cartesian product of sets. Similarly, for k ∈ [1 : N − 1]/J ,

node k assigns an index mkl ∈ [1,Mkl] to each index tuple (mik : (i, k) ∈ E) for each edge

(k, l) ∈ E. That is,

ϕk :
�

i : (i,k) ∈ E

Mik −→

�
l : (k,l) ∈ E

Mkl. (4.2)

The range of the encoding functions {ϕi} are restricted in size, as

log |Mi j| ≤ Ci j ∀i ∈ [1,N − 1] and ∀ j : (i, j) ∈ E. (4.3)

Node N needs to infer on the random variable Y ∈ Y using all incoming messages, i.e.,

ψ :
�

i : (i,N) ∈ E

MiN −→ Ŷ. (4.4)
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Again, we choose the reconstruction set Ŷ to be the set of distributions on Y, i.e.,

Ŷ = P(Y); and we measure the discrepancies between the true values of Y ∈ Y and

their estimated fits in terms of average logarithmic loss, i.e., for (y, P̂) ∈ Y × P(Y)

d(y, P̂) = log
1

P̂(y)
. (4.5)

As such, the performance of a distributed inference scheme
(
(ϕ j) j∈J , (ϕk)k∈[1,N−1]/J , ψ

)
for which (4.3) is fulfilled is given by its achievable relevance, given by

∆ = H(Y) − E
[
d(Y, Ŷ)

]
, (4.6)

which, for a discrete setY, is directly related to the error of misclassifying the variable

Y ∈ Y.

4.2 In-network Learning Generalisation

In practice, in a supervised setting, the mappings given by (4.1), (4.2) and (4.4) need to

be learnt from a set of training data samples {(x1,i, . . . , xJ,i, yi)}ni=1. The data are distributed

such that the samples x j := (x j,1, . . . , x j,n) are available at node j for j ∈ J and the desired

predictions y := (y1, . . . , yn) are available at the end decision node N. We parameterize

the possibly stochastic mappings (4.1), (4.2) and (4.4) using NNs. This is depicted

in Figure 4.2. We denote the parameters of the NNs that parameterize the encoding

function at each node i ∈ [1 : (N − 1)] with θi and the parameters of the NN that

parameterize the decoding function at node N withϕ. Let θ = [θ1, . . . ,θN−1], we aim to

find the parametersθ,ϕ that maximize the relevance of the network, given the network

constraints of (4.3). Given that the actual distribution is unknown and we only have

access to a dataset, the loss function must strike a balance between its performance on

the data set, given by an empirical estimate of the relevance, and the network’s ability

to perform well on samples outside the dataset.

The NNs at the various nodes are arbitrary and can be chosen independently –

for instance, they need not be identical as in FL. It is only required that the following

mild condition which, as will become clearer from what follows, facilitates the back-
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propagation be met. Specifically, for every j ∈ J and x j ∈ X j
1 it holds that

Size of first layer of NN (j) =

Dimension (x j) +
∑

i : (i, j) ∈ E

(Size of last layer of NN (i)). (4.7)

Similarly, for k ∈ [1 : N]/J we have

Size of first layer of NN (k) =∑
i : (i,k) ∈ E

(Size of last layer of NN (i)). (4.8)

Remark 4.2.1. Conditions (4.7) and (4.8) were imposed only for the sake of ease of imple-

mentation of the training algorithm; the techniques present in this paper, including optimal

trade-offs between relevance and complexity for the given topology, the associated loss function,

the variational lower bound, how to parameterize it using NNs and so on, do not require (4.7)

and (4.8) to hold.

(a) Training phase.

(b) Inference phase.

Figure 4.2: In-network learning and inference using neural networks.

Consider the general network inference model of Figure 4.1. Part of the difficulty of
1We assume all the elements of X j have the same dimension.
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this problem is in finding a suitable loss function that can be optimised distributively

via neural networks that only have access to local data-sets each. The next theorem

provides a bound on the relevance achievable (under some assumptions 2) for an

arbitrary network topology (E,N). For convenience, we define for S ⊆ [1, . . . ,N − 1]

and non-negative (Ci j : (i, j) ∈ E) the quantity

C(S) =
∑

(i, j) : i∈S, j∈Sc

Ci j. (4.9)

Theorem 4.2.1. For the network inference model of Figure 4.1, in the regime of large data-sets

the following relevance is achievable,

∆ = max I(U1, . . . ,UJ; Y) (4.10)

where the maximisation is over joint measures of the form PQPX1,...,XJ ,Y
∏J

j=1 PU j|X j,Q, for which

there exist non-negative R1, . . . ,RJ that satisfy

∑
j∈S

R j ≥ I(US; XS|USc ,Q), for all S ⊆ J (4.11)

∑
j∈S∩J

R j ≤ C(S) for all S ⊆ [1 : N − 1]

with S ∩J , ∅. (4.12)

Proof. The proof of Theorem 4.2.1 appears in Section 4.4.1. An outline is as follows.

The result is achieved using a separate compression-transmission-estimation scheme in

which the observations (x1, . . . , xJ) are first compressed distributively using Berger-Tung

coding [56] into representations (u1, . . . ,uJ); and, then, the bin indices are transmitted

as independent messages over the network G using linear-network coding [25, Section

15.5]. The decision node N first recovers the representation codewords (u1, . . . ,uJ); and,

then, produces an estimate of the label y. The scheme is illustrated in Figure 4.3. □

2The inference problem is a one-shot problem. The result of Theorem 4.2.1 is asymptotic in the size
of the training data-sets. One-shot results for this problem can be obtained, e.g., along [55].

50



(a) Compression using Berger-Tung coding.

(b) Transmission of the bin indices using linear coding.

Figure 4.3: Block diagram of the separate compression-transmission-estimation scheme
of Theorem 4.2.1.

4.3 Example: Five Node Network

Part of the utility of the loss function of Theorem 4.2.1 is in that it accounts explicitly

for the topology of the network for inference fusion and propagation. Also, although

as seen from its proof the setting of Theorem 4.2.1 assumes knowledge of the joint

distribution of the tuple (X1, . . . ,XJ,Y), the result can be used to train, distributively,

NNs from a set of available datesets. To do so, we first derive a Lagrangian function,

from Theorem 4.2.1, which can be used as an objective function to find the desired set

of encoders and decoder. Afterwards, we use a variational approximation to avoid

the computation of marginal distributions, which can be costly in practice. Finally, we

parameterize the distributions using NNs. For a given network topology in essence, the

approach generalises that of the previous chapter to more general networks that involve

hops. For simplicity, in what follows, this is illustrated for the example architecture of

Figure 4.4. While the example is simple, it showcases the important aspect of any such

topology, the fusion of the data at an intermediary nodes, i.e., a hop.
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Figure 4.4: An example in-network learning with inference fusion and propagation

4.3.1 Loss function

Using Theorem 4.2.1 we will now derive a loss function for the example architecture

of Figure 4.4, where N = {1, 2, 3, 4, 5} and E = {(3, 4), (2, 4), (4, 5), (1, 5)}. Let Csum =

C15 + C24 + C34 + C45; consider the region of all pairs (∆,Csum) ∈ R2
+ for which the

relevance level ∆, as given by Theorem 4.2.1, is achievable for some C15 ≥ 0, C24 ≥ 0,

C34 ≥ 0 and C45 ≥ 0 such that Csum = C15 + C24 + C34 + C45. Hereafter, we denote such

region as RIsum. Applying Fourier-Motzkin elimination on the region defined by

Theorem 4.2.1 for the network of Figure 4.4, we get that the region RIsum is given by

the union of pairs (∆,Csum) ∈ R2
+ for which 3

∆ ≤ I (Y; U1,U2,U3) (4.13a)

Csum ≥ I(X1,X2,X3; U1,U2,U3) + I(X2,X3; U2,U3|U1) (4.13b)

for some measure of the form

PYPX1,X2,X3|YPU1|X1PU2|X2PU3|X3 . (4.14)

The next proposition gives a useful parametrization of the region RIsum as described

by (4.13) and (4.14).

Proposition 4.3.1. For every pair (∆,Csum) that lies on the boundary of the region described

3The time sharing random variable is set to a constant for simplicity.
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by (4.13) and (4.14) there exists s ≥ 0 such that (∆,Csum) = (∆s,Cs), with

∆s = H(Y) +max
P
Ls(P) + sCs (4.15a)

Cs = I(X1,X2,X3; U∗1,U
∗

2,U
∗

3) + I(X2,X3; U∗2,U
∗

3|U
∗

1), (4.15b)

and P∗ is the set of pmfs P := {PU1|X1 ,PU2|X2 ,PU3|X3} that maximise the cost function

Ls(P) := −H(Y|U1,U2,U3) − sI(X1,X2,X3; U1,U2,U3)

− sI(X2,X3; U2,U3|U1). (4.16)

Proof. See Section 4.4.2 □

In accordance with the studied example network inference problem of Figure 4.4, let

a random variable U4 be such that U4 − (U2,U3) − (X1,X2,X3,Y,U1). That is, the joint

distribution factorises as

PX1,X2,X3,Y,U1,U2,U3,U4 = PX1,X2,X3,YPU1|X1PU2|X2PU3|X3PU4|U2,U3 . (4.17)

Let for a given s ≥ 0 and conditional PU4|U2,U3 the Lagrange term

L
low
s (P,PU4|U2,U3) = −H(Y|U1,U4) − sI(X1; U1)

− 2s
[
I(X2; U2) + I(X3; U3)

]
+ 2s

[
I(U2; U1) + I(U3; U1,U2)

]
. (4.18)

The following lemma shows thatLlow
s (P,PU4|U2,U3) lower boundsLs(P) as given by (4.16).

Lemma 4.3.1. For every s ≥ 0 and joint measure that factorises as (4.17), we have

Ls(P) ≥ Llow
s (P,PU4|U2,U3), (4.19)

Proof. See Section 4.4.3. □
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For convenience let P+ := {PU1|X1 ,PU2|X2 ,PU3|X3 ,PU4|U2,U3}. The optimisation of (4.18)

generally requires the computation of marginal distributions, which can be costly in

practice. Hereafter we derive a variational lower bound on Llow
s with respect to some

arbitrary (variational) distributions. Specifically, let

Q := {QY|U1,U4 ,QU3 ,QU2 ,QU1}, (4.20)

where QY|U1,U4 represents variational (possibly stochastic) decoders and QU3 , QU2 and

QU1 represent priors. Also, let

L
v-low
s (P+,Q) := E[log QY|U1,U4(Y|U1,U4)] − sDKL(PU1|X1∥QU1)

− 2sDKL(PU2|X2∥QU2) − 2sDKL(PU3|X3∥QU3). (4.21)

The following lemma, the proof of which is essentially similar to that of [10, Lemma

1], provides an alternative maximisation problem to that of maxP+ L
low
s (P+), for every

s ≥ 0.

Lemma 4.3.2. For Lv-low
s defined as in (4.21), Llow

s as (4.18) and s ≥ 0

max
P+
L

low
s (P+) = max

P+
max

Q
L

v-low
s (P+,Q). (4.22)

Proof. See Section 4.4.4. □

Since the distribution of the data is not known, but only a set of samples is available

{(x1,i, . . . , xJ,i, yi)}ni=1, we restrict the optimisation of (4.21) to the family of distributions

that can be parametrised by NNs. Thus, we obtain the following loss function which

can be optimised empirically, in a distributed manner, using gradient-based techniques,

L
NN
s (n) :=

1
n

n∑
i=1

[
log Qϕ5(yi|u1,i,u4,i) − s log

(
Pθ1(u1,i|x1,i)

Qφ1(u1,i)

) ]
−

2s
n

n∑
i=1

[
log

(
Pθ2(u2,i|x2,i)

Qφ2(u2,i)

)
+ log

(
Pθ3(u3,i|x3,i)

Qφ3(u3,i)

)]
, (4.23)

where s stands for a Lagrange multiplier and the distributions Qϕ5 ,Pθ4 ,Pθ3 ,Pθ2 ,Pθ1

are variational ones whose parameters are determined by the chosen NNs using the
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re-parametrisation trick of [45]; and, {Qφi : i ∈ {1, 2, 3}} are priors known to the

encoders. For example, denoting by fθ j the NN used at node j ∈ J whose (weight and

bias) parameters are given by θ j. For regression problems the conditional distribution

Pθ j(ui, j|xi, j) can be chosen to be multivariate Gaussian, i.e., Pθ j(ui, j|xi, j) = N(ui, j;µ
θ j

i ,Σ
θ j

i ).

For discrete data, concrete variables (i.e., Gumbel-Softmax) can be used instead.

4.3.2 Training Algorithm

We now describe the training algorithm for INL for the five-node example, this section

particularises on the training procedure first reported in the patent [11] by Zaidi,

Scaman and Escamilla to the five-node network presented. During the forward pass,

every node j ∈ {1, 2, 3} processes mini-batches of size b j of its training data set x j. Nodes

2 and 3 send their vectors formed of the activation values of the last layer of their NNs

to node 4, where due to (4.7) the vectors are concatenated vertically at the input layer of

NN 4. The forward pass continues on the NN at node 4 until its last layer. Next, nodes

1 and 4 send the activation values of their last layers to node 5. Again, as the sizes

of the last layers of the NNs of nodes 1 and 4 satisfy (4.8) the sent activation vectors

are concatenated vertically at the input layer of NN 5; and the forward pass continues

until the last layer of NN 5. All nodes update their parameters using standard back-

propagation technique which is as follows. For node t ∈ N let Lt denote the index of

the last layer of the NN at node t. Also, let, for w[l]
t , b[l]

t and a[l]
t denote, respectively, the

weights, biases and activation values at layer l ∈ [2 : Lt] for the NN at node t; σ is the

activation function and the input to the NN is denoted a[1]
t . Node t computes the error

vectors

δ[Lt]
t = ∇a[Lt]

t
L

NN
s (b) ⊙ σ′(w[Lt]

t a[Lt−1]
t + b[Lt]

t ) (4.24a)

δ[l]
t = [(w[l+1]

t )Tδ[l+1]
t ] ⊙ σ′(w[l]

t a[l−1]
t + b[l]

t ) ∀ l ∈ [2,Lt − 1], (4.24b)

δ[1]
t = [(w[2]

t )Tδ[2]
t ] (4.24c)

and then updates its weight- and bias parameters as

w[l]
t → w[l]

t − ηδ
[l]
t (a[l−1]

t )T, (4.25a)
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b[l]
t → b[l]

t − ηδ
[l]
t , (4.25b)

where η designates the learning parameter 4.

Figure 4.5: Forward and backward passes for the inference problem of Figure 4.4.

During the backward pass, each of the NNs updates its parameters according to (4.24)

and (4.25). Node 5 is the first to apply the back-propagation procedure in order to

update the parameters of its NN. It applies (4.24) and (4.25) sequentially, starting from

its last layer.

The error propagates back until it reaches the first layer of the NN of node 5. Node 5

then splits horizontally the error vector of its input layer (4.24c) into 2 sub-vectors with

the top sub-error vector having as size that of the last layer of the NN of node 1 and

the bottom sub-error vector having as size that of the last layer of the NN of node 4 –

see Figure 4.5. Similarly, the two nodes 1 and 4 continue the backward propagation at

their turns simultaneously. Node 4 then splits horizontally the error vector of its input

layer (4.24c) into 2 sub-vectors with the top sub-error vector having as size that of the

last layer of the NN of node 2 and the bottom sub-error vector having as size that of

the last layer of the NN of node 3. Finally, the backward propagation continues on the

NNs of nodes 2 and 3. The whole process is repeated until convergence.

4For simplicity η and σ are assumed here to be identical for all NNs.
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4.3.3 Inference Algorithm

We now describe the inference algorithm for INL for the five-node example, this section

similarly particularises on the training procedure first reported in the patent [11] by

Zaidi, Scaman and Escamilla to the five-node network presented. During inference,

nodes 1, 2 and 3 observe (or measure) each a new sample. Let x1 be the sample

observed by node 1; and x2 and x3 those observed by node 2 and node 3, respectively.

Node 1 processes x1 using its NN and sends an encoded value u1 to node 5; and so

do nodes 2 and 3 towards node 4. Upon receiving u2 and u3 from nodes 2 and 3,

node 4 concatenates them vertically and processes the obtained vector using its NN.

The output u4 is then sent to node 5. The latter performs similar operations on the

activation values u1 and u4; and outputs an estimate of the label y in the form of a soft

output Qϕ5(y|u1,u4).

4.4 Proofs

4.4.1 Proof of Theorem 4.2.1

The proof of Theorem 1 is based on a scheme in which the observations {x j} j∈J are

compressed distributively using Berger-Tung coding [56]; and, then, the compres-

sion bin indices are transmitted as independent messages over the network G using

linear-network coding [25, Section 15.4]. The decision node N first decompresses the

compression codewords and then uses them to produce an estimate Ŷ of Y. In what

follows, for simplicity, we set the time-sharing random variable to be a constant, i.e.,

Q = ∅. Let 0 < ϵ′′ < ϵ′ < ϵ.

4.4.1.1 Codebook Generation

Fix a joint distribution PX1,...,XJ ,Y,U1,...,UJ that is factorised as PQPX1,...,XJ ,Y
∏J

j=1 PU j|X j,Q. Also,

let D = H(Y|U1, . . . ,UJ); and, for (u1, . . . ,uJ) ∈ U1 × . . . × UJ, the reconstruction func-

tion ŷ(·|u1, . . . ,uJ) ∈ P(Y) such that E
[
d(Y, Ŷ)

]
≤

D
1 + ϵ

, where d : Y × P(Y) −→ R+

is the distortion measure given by (4.5). For every j ∈ J , let R̃ j ≥ R j. Also,

randomly and independently generate 2nR̃ j sequences un
j (l j), l j ∈ [1 : 2nR̃ j], each ac-
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cording to
∏n

i=1 pU j(u ji). Partition the set of indices l j ∈ 2nR̃ j into equal size bins

B j(m j) =
[
(m j − 1)2nR̃ j−R j : m j2nR̃ j−R j

]
, m j ∈ [1 : 2nR j]. The codebook is revealed to all

source nodes j ∈ J as well as to the decision node N, but not to the intermediary

nodes.

4.4.1.2 Compression of the observations

Node j ∈ J observes xn
j and finds an index l j ∈ [1 : 2nR̃ j] such that (xn

j ,u
n
j (l j)) ∈ T

(n)
ϵ′′

. If

there is more than one index the node selects one at random. If there is no such index,

it selects one at random from [1 : 2nR̃ j]. Let m j be the index of the bin that contains the

selected l j, i.e., l j ∈ B j(m j).

4.4.1.3 Transmission of the compression indices over the graph network

In order to transmit the bins indices (M1, . . . ,MJ) ∈ [1 : 2nR1] × . . . × [1 : 2nRJ ] to the

decision node N over the graph network G = (E,N ,C), they are encoded as if they

were independent-messages using the linear network coding scheme of [25, Theorem

15.5]; and then transmitted over the network. The transmission of the multimessage

(M1, . . . ,MJ) ∈ [1 : 2nR1] × . . . × [1 : 2nRJ ] to the decision node N is without error as long

as for all S ⊆ [1 : N − 1] we have

∑
j∈S∩J

R j ≤ C(S) (4.26)

where C(S) is defined by (4.9).

4.4.1.4 Decompression and estimation

The decision node N first looks for the unique tuple (l̂1, . . . , l̂J) ∈ B1(m1) × . . . × BJ(mJ)

such that (un
1(l̂1), . . . ,un

J (l̂J)) ∈ T
(n)
ϵ . With high probability, Node N finds such a unique

tuple as long as n is large and for all S ⊆ J it holds that [56] (see also [25, Theorem

12.1]) ∑
j∈S

R j ≥ I(US; XS|USc). (4.27)

The decision node N then produces an estimate ŷn of yn as ŷ(un
1(l̂1), . . . ,un

J (l̂J)).
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It can be shown easily that the per-sample relevance level achieved using the described

scheme is ∆ = I(U1, . . . ,UJ; Y); and this completes the proof of Theorem 4.2.1.

4.4.2 Proof of Proposition 4.3.1

For Csum ≥ 0 fix s ≥ 0 such that Cs = Csum; and let P∗ = {PU∗1|X1 ,PU∗2|X2 ,PU∗3|X3} be the

solution to (4.16) for the given s. By making the substitution in (4.15):

∆s =I(Y; U∗1,U
∗

2,U
∗

3) (4.28)

≤∆ (4.29)

where (4.29) holds since ∆ is the maximum I(Y; U1,U2,U3) over all distribution for

which (4.13b) holds, which includes P∗.

Conversely let P∗ be such that (∆,Csum) is on the bound of the RIsum then:

∆ =H(Y) −H(Y|U∗1,U
∗

2,U
∗

3)

≤H(Y) −H(Y|U∗1,U
∗

2,U
∗

3) + sCsum

− s
[
I(X2,X3; U∗2,U

∗

3|U
∗

1) + I(X1,X2,X3; U∗1,U
∗

2,U
∗

3)
]

(4.30)

≤H(Y) +max
P
Ls(P) + sCsum (4.31)

=∆s − sCs + sCsum

=∆s + s(Csum − Cs). (4.32)

Where (4.30) follows from (4.13b). Inequality (4.31) holds due to the fact that maxPL(P)

takes place over all P, including P∗. Since (4.32) is true for any s ≥ 0 we take s such that

Csum = Cs, which implies ∆ ≤ ∆s. Together with (4.29) this completes the proof.

4.4.3 Proof of Lemma 4.3.1

We have

Ls(P) = −H(Y|U1,U2,U3) − sI(X1,X2,X3; U1,U2,U3)

− sI(X2,X3; U2,U3|U1) (4.33)
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= −H(Y|U1,U2,U3)

− s
[
I(X1; U1) + 2I(X2,X3; U2,U3|U1)

]
(4.34)

= −H(Y|U1,U2,U3) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U3; U1,U2) − I(U2; U1)

]
(4.35)

= −H(Y|U1,U2,U3) − sI(X1; U1) − 2sI(X2; U2)

+ 2s
[
I(U2; U1) + I(U3; U1,U2) − I(X3; U3)

]
(4.36)

≥ −H(Y|U1,U4) − sI(X1; U1) − 2s
[
I(X2; U2) + I(X3; U3)

]
+ 2s

[
I(U2; U1) + I(U3; U1,U2)

]
(4.37)

where (4.34) holds since U1−X1− (X2,X3,U2,U3) and (U2,U3)− (X2,X3)− (U1,X1); (4.35)

holds since U2−X2− (U1,X3) and U3−X3− (U1,U2,X2); (4.37) hold since U4− (U2,U3)−

(Y,U1).

4.4.4 Proof of Lemma 4.3.2

From [10, eq. (55)] it can be shown that for any pmf QY|Z(y|z) , y ∈ Y and z ∈ Z the

conditional entropy H(Y|Z) is :

H(Y|Z) = E[− log QY|Z(Y|Z)] −DKL(PY|Z||QY|Z). (4.38)

And from [10, eq. (81)]:

I(X; Z) = H(Z) −H(Z|X)

= DKL(PZ|X∥QZ) −DKL(PZ∥QZ). (4.39)

Now, substituting equations (4.38) and (4.39) in (4.21) the following result is obtained:

L
low
s (P+) = −H(Y|U1,U4) + 2s

[
I(U2; U1) + I(U3; U1,U2) − I(X2; U2) − I(X3; U3)

]
=E[log QY|U1,U4] +DKL(PY|U1,U4 ||QY|U1,U4) − sDKL(PU1|X1∥QU1) + sDKL(PU1∥QU1)

− 2s
(
DKL(PU2|X2∥QU2) +DKL(PU3|X3∥QU3) +DKL(PU2∥QU2) +DKL(PU3∥QU3)

)
+ 2s

(
DKL(PU2∥QU2) +DKL(PU3|U1,U2∥QU3) +DKL(PU3∥QU3) +DKL(PU2|U1∥QU2)

)
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=E[log QY|U1,U4] − sDKL(PU1|X1∥QU1) − 2sDKL(PU2|X2∥QU2) − 2sDKL(PU3|X3∥QU3)

+ sDKL(PU1∥QU1) + 2sDKL(PU2|U1∥QU2) + 2sDKL(PU3|U1,U2∥QU3)

+DKL(PY|U1,U4 ||QY|U1,U4)

=Lv-low
s + sDKL(PU1∥QU1) + 2sDKL(PU2|U1∥QU2)

+ 2sDKL(PU3|U1,U2∥QU3) +DKL(PY|U1,U4 ||QY|U1,U4)

≥L
v-low
s (4.40)

The last inequality (4.40) holds due to the fact that KL divergence is always positive

and s ≥ 0, thus proving the lemma.

61



Chapter 5

Scheduling and Resource Allocation

In this chapter we consider the problem of resource allocation for the case in which the

INL algorithm is deployed in a wireless sensor network (WSN). A solution of such a

problem was first presented in the patent document [17] by Zaidi, and then described

in more detail in Zaidi-Krasnowski [18]. Before introducing the results of [17, 18] we

quickly describe the problem and highlight the challenges in solving it.

Figure 5.1: Wireless sensor networks problem setting.

We again consider the problem shown in Figure 5.1. The fusion centre (FC) must

infer an estimate of a random variable of interest, Y, from the observations X1, . . . ,XJ

acquired/measured each at a distinct device/node. In addition, it is assumed that the

transmission between the devices and the FC is resource-constrained. That is, the

devices are not allowed to (e.g., due to communication or privacy constraints) share

their raw data, X j, with the FC. As a consequence, the FC needs to output an estimate Ŷ
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of Y based only on compressed versions of the devices’ observations. We are interested

in the setting in which all devices, including the FC, are equipped with neural networks

(NN) and use them to perform some desired operations. We consider the case in which

the available communication resources can be arbitrarily allocated between nodes with

the aim of improving the quality of the estimate Ŷ of Y, on average. To accurately assign

the resources, one needs to be able to correctly assess the benefits of allocating resources

to each node, which cannot be computed directly due to the distributed nature of the

network. It is interesting to observe that while for the inference task at hand, the FC

has a clear advantage over each of the devices taken individually, as it observes the

compressed representations, which we denote by U j for j ∈ J = {1, . . . , J}, from all the

nodes. The latter have, in their turn, an advantage over the FC. Indeed, rather than a

compressed version of the input data, each device has access to the data that has been

used to generate that compression. According to the Markov chain Y − X j − U j, it is

clear that U j holds less information about Y than X j itself, for any j ∈ J . Consequently,

relevant network resource allocation procedures for such inference tasks look to suitably

strike the right balance between the aforementioned advantage. In [17], the authors

patented an architecture in which (i) each device measuring its own local assessment of

how relevant is the data it holds for the inference task at hand and transmitting it to the

decision node, (ii) that device also simultaneously sends the output activation values to

the decision node, (iii) the decision node combining all received information (activation

values from the various devices as well as their individual local assessments) and then

forming its own (global) assessment of how relevant each device’s observation is, (iv)

application of the idea to device scheduling and power allocation (two algorithms for

scheduling were already given in [17]). This architecture was described in detail in [18].

In this chapter, we build upon these works by discussing possible local assessments

as well as introducing a novel global assessment measure. Additionally, we provide

a new scheduling algorithm that does not require the channel knowledge, as well as,

a new power allocation algorithm. A similar work on the development of resource

allocation algorithms based on the patent of [17] had been started in [18]; however,

in [18] the authors considered the problem of digital transmission and as such proposed

algorithms for time slots allocation, as opposed to scheduling and power allocation.
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Another key difference between our work and that of [18] is that the global assessment

is calculated differently.

5.1 Related Work

To the best of the authors’ knowledge, the current resource allocation algorithms are

not suitable for use for the inference problem studied in this chapter. This setting

introduces the additional challenge of assessing the relative importance of each node

in a distributed manner since each node is equipped with a NN, and the relationship

between the observed data and the target variable must be learnt from a set of training

data.

The works of [57–60] consider the problem of resource allocation or scheduling in a

distributed network when there is no known model of the relation between the data and

the target variable, and the authors employ NNs as part of their solutions. However,

these works consider device scheduling and resource allocation during distributed

training, not distributed inference as in our case. Additionally, the model obtained

from the training procedure is designed for use in a centralised manner. In [57], the

authors looked at the problem of scheduling multiple edge devices that have access to

local data that they need to send to the central node, over a noisy channel, such that

it can train a central model. In [58–60], the authors investigate the problem of power

allocation and scheduling during the training procedure of the federated learning (FL)

algorithm, introduced in [12] and presented in Section 3.3.1.

Our work is also related to the problem of distributed detection and distributed

estimation. The problem of resource allocation for distributed detection has been

extensively investigated and, as such, we refer the reader to [61] and references within

for a more in depth survey of the field. Two papers that we consider most related to

our work in this field are those of [62, 63]. In [63], the authors derived the optimal

power allocation, with respect to a so-called J-divergence performance index, in a WSN

for the case where the observations are independent, but do not need to be sampled

from identical distributions. Furthermore, the authors have shown that the optimal

power allocation depends on both the quality of the observed data and on the quality
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of the communication channel. In [62], the authors used a particle swarm optimisation

algorithm to find the power allocation for the distributed detection problem for the case

of correlated observations. The authors observed that the performance of the system

can be significantly improved by taking into account the correlation of the observed

variables compared to assuming that they are independent. In both [62] and [63], it

is noted that, for optimal performance, nodes with poor observations and/or channel

quality need to be turned off, i.e., not transmit data.

For the problem of distributed estimation, in [64–66], the authors investigated de-

centralised estimation schemes, with perfect channels, in which local nodes send to the

FC messages of length determined by the signal-to-noise ratio (SNR) of the observed

signal. In [67], the authors extended the results of [64] to the case of an imperfect

communication channel and observed that, similarly to distributed detection, nodes

with bad data quality or poor channels should be turned off.

As already described in the introduction, this chapter builds upon [17], where the

authors patented an architecture in which (i) each device measuring its own local

assessment of how relevant is the data it holds for the inference task at hand and

transmitting it to the decision node, (ii) that device also simultaneously sends the output

activation values to the decision node, (iii) the decision node combining all received

information (activation values from the various devices as well as their individual

local assessments) and then forming its own (global) assessment of how relevant each

device’s observation is, (iv) application of the idea to device scheduling and power

allocation (two algorithms for scheduling were already given in [17]). This architecture

was described in detail in [18]; however in [18] the authors consider the problem of

digital transmission and as such they propose algorithms for time slots allocation, as

opposed to scheduling and power allocation which is considered in this chapter. In

this chapter, we build upon these works by discussing possible local assessments as

well as introducing a novel global assessment measure. Additionally, we provide a

new scheduling algorithm that does not require the channel knowledge, as well as, a

new power allocation algorithm.
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5.2 Resource Allocation and Scheduling Problem

Figure 5.2: In-network learning problem with varying communication channels and
data distributions.

Consider the network inference problem of Figure 5.2. The problem setting is

similar to that considered in Section 3, with the addition that the quality of the channels

between Y and the local (edge) devices, and between the edge devices and the FC vary

in a block-stationary manner. This can happen in WSNs, for example, due to faulty

sensors or changes in the environment in which the WSN is deployed. We consider

a block to be the period in which both the communication channels and the channels

between Y and the local (edge) devices are stationary. For a given block, the goal is to

schedule only a subset K of devices (those whose data and channels are comparably the

best, in a sense that will become clearer in the rest of this chapter) and allocate power to

the scheduled nodes such that the performance of the system is improved on average.

The reason for selecting only a subset of devices comes from the fact that in doing so,

we can allocate more power to the more relevant nodes. In our setting, the assessment

of the usefulness of the data observed by a node depends not only on the inference task

at hand but also on what other nodes observe.

Due to the fact that the relationship between the data observed by each node is

not known by the FC in advance, we introduce a scheduling phase during which the

importance of each node can be assessed. As a consequence, the transmission during

any given block is divided into two periods. The first period, during which all devices

transmit and at the end of which the FC selects the K desired devices by allocating

resources to them. In what follows, this is called the scheduling phase. The second
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period, during which only the selected K devices transmit. The FC then performs

inference based only on the data it receives from the K devices. In what follows, this is

called the inference phase. The two distinct periods are shown in Figure 5.3.

Figure 5.3: Diagram describing the separation between the scheduling and inference
phases.

In the rest of this chapter, we concentrate on the design of our solution for a given

block. During both the scheduling phase and the inference phase, we assume digital

transmission, and that the devices transmit over orthogonal channels, i.e., they do

not interfere with each other. The channel gain from a sensing node j ∈ J to the

FC is denoted by h j ∈ R+. The signals received by the FC are distorted by additive

independent Gaussian noise, which we assume to have zero mean and unit variance.

The channel capacity between node j and the FC is given by

C j := 0.5 log2(1 + h2
j P j), (5.1)

where P j is the signal power at node j. For simplicity of analysis, we assume that

the sensing nodes use capacity-achieving channel codes in order to reliably convey

information to the FC. As a consequence, the jth sensing node can transmit up to C j

bits of information to the FC. We assume that the channel gain is constant between the

scheduling phase and the inference phase.

In this chapter, we focus on the scheduling and resource allocation problem, and
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do not discuss the training procedure. We assume that the network can be re-trained

during the scheduling phase. We consider power to be the resource that needs to be

allocated. We do not treat the problem of intelligent bandwidth allocation and assume

that the bandwidth is allocated equally among the nodes during both the scheduling

and inference phases. Additionally, we assume that the effect of the bandwidth on the

quality of the channel is negligible. As such, the channel capacity is known and fixed

for both the scheduling and inference phases. In the following section, we describe the

scheduling and power allocation algorithms.

5.3 Proposed Architecture

Let B represent the total available frequency bandwidth of the communication channels

between the nodes and the FC, and P represent the total available power to be allocated

between the nodes. During the scheduling phase, J available subcarriers are used, with

the bandwidth B allocated equally among them. Additionally, the total available power

is also equally allocated among the nodes. The choice of equal power and bandwidth

allocation is important, as it gives each node an equal chance to be selected during the

scheduling phase. We divide the scheduling phase in two parts. During the first part,

every device obtains its own measure of the relevancy of its observed data. We refer

to this measure as the local assessment, and denote the value obtained with RI j for each

node j ∈ J . See Section 5.3.1 for more information on how each node computes this

local assessment. The purpose of these local assessments is to help the FC compensate

for not observing X1, . . . ,XJ directly.

Each node j ∈ J transmits the obtained RI j to the FC. The transmission occurs over

a negligible portion, αB/J, of the available bandwidth of the communication channel,

withα ∈ [0 : 1] and close to 0. The rest of the bandwidth is allocated for the transmission

of the encodings of x j, u j = [u j,1, . . . ,u j,n]. This is shown in Figure 5.4a.

The second part of the scheduling phase begins once the FC receives all local as-

sessments RI1, . . . ,RIJ as well as all standard features u1, . . . ,uJ. Using all the received

data, the FC performs its own, global assessment of how relevant each node is. The

procedure for computing this global assessment is detailed in Section 5.3.2. Then, the
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(a) Power and bandwidth allocation during scheduling phase.

(b) Power and bandwidth allocation during inference phase. P∗k and B∗k are the power and
bandwidth allocated to node k during the scheduling phase.

Figure 5.4: The scheduling and inference phases of our proposed resource allocation
solution. Grayed out components represent inactive components.
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FC selects a subset of K ≤ J devices1 to be scheduled for use during inference. The

scheduling algorithm is detailed in Section 5.3.3.

Subsequently, the FC allocates the total available power to the K selected nodes. This

is shown in Figure 5.4b. Each node is allocated power proportionally to the quality of

its communication channel and its assigned global assessment. The power allocation

procedure is discussed in Section 5.3.4.

5.3.1 Local Assessment

In this section, we describe how each node can compute its local assessment of the data

it observes, the RI j. Other works have shown the usefulness of local assessments for the

problem of scheduling or resource allocation. In [68, Example 2], the authors give an

example where a distributed quantizor performs best when it is designed based on the

knowledge of both the channel and the local distribution. In [63], the authors present

experiments where power allocation performs best when both the channel quality and

the local assessment of the data are taken into account.

We argue that one can always find a suitable relevance indicator for a given task.

In [64], the local assessment is calculated using the SNR. For the purpose of scheduling

devices for distributed training, in [57], the authors introduce two uncertainty measures,

as viewed by the model under training, while the authors of [58] use the significance

of the model updates to assess the importance of each node.

In this chapter, we use the mutual information (MI) between the data and the target

variable, I(Y; X j), to obtain the local assessment at each node. As shown in [10], there

is a strong connection between the average logarithmic loss, which we use in our

framework, and the MI. While in general MI cannot be computed analytically, it can be

estimated using samples using NN-based estimators such as MINE [69].

These examples are not exhaustive. Other functions/techniques can be used together

with the algorithms we provide in Section 5.3.3 for scheduling devices. The chosen

local assessment function must meet three main characteristics. Firstly, the resulting

output should be a value that can be sent over a side channel with a much smaller

rate than the primary channel. Secondly, data that contain more useful information

1Ideally the number K itself should be subject to design, but we do not delve into that in this chapter.
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regarding the target variable should receive a higher value from the local assessment.

Finally, the local assessment should always output a positive value.

5.3.2 Global Assessment

The global assessment is a task-dependent value, assigned to each node, which indicates

the FC’s believed usefulness of that node, for the desired task. We denote such a value

as a global relevance indicator. When the FC computes its believed usefulness of each

node, it needs to take into account the information that the other nodes possess. It

was already shown in [62] that power allocation leads to better performance when the

correlation between the observations is taken into account, compared to assuming that

the observations are independent.

Unfortunately, the FC only observes compressed versions of the data sensed by each

node, for a given resource allocation, and not the data itself. As a consequence, the

correlation between the data observed by each node cannot be computed. To overcome

this issue, our proposed measure, the global relevance indicator, takes into account

the correlation between the compressed representations that the FC receives, while

also taking into account local assessments of the observed data. More specifically, the

global relevance indicator is formed by combining

• the local assessments, described in Section 5.3.1, obtained by each node,

• assessments of the relative usefulness of the data received from each of the nodes.

We measure the relative usefulness of the data received from each node using a scaled

conditional mutual information (CMI), i.e., to compute the usefulness of the data from

node j, relative to node i, we compute I(Y; U j|Ui), and then scale it by I(Y; U1, . . . ,UJ).

More specifically, for the case where there are J nodes, the global relevance indicator

of a node j ∈ J , in relation to a subset of nodesKp ⊆ J/{ j}, is given by

GRIKp

j =
( RI j∑J

i=1 RIi

)( I(Y; U j|UKp)

I(Y; U1, . . . ,UJ)

)
. (5.2)

In most practical applications, calculating the MI I(Y; U1, . . . ,UJ) and CMI I(Y; U j|UKp)

is not possible; in such cases, the values must be estimated using the available data. Let
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Î(Y; U j|UKp) denote such an estimate of I(Y; U j|UKp) and Î(Y; U1, . . . ,UJ) denote such an

estimate of I(Y; U1, . . . ,UJ). We now define the approximation of the global relevance

indicator using

ĜRI
Kp

j =
( RI j∑J

i=1 RIi

)( Î(Y; U j|UKp)

Î(Y; U1, . . . ,UJ)

)
(5.3)

Any data-based technique can be used to estimate the MI and CMI terms, including

those presented in [69–71] and references within. In what follows, we detail a method

for estimating I(Y; U j|UKp), using the trained NN at the FC. We first split the term into

the difference between two conditional entropies

I(Y; U j|UKp) = H(Y|UKp) −H(Y|UKp∪{ j}). (5.4)

Each of the conditional entropies can be estimated using the decoding NN at the FC

H(Y|UKp) ≈
n∑

i=1

log Qϕ(yi|uKp,i), (5.5)

where n is the number of samples available and ϕ are the parameters of the NN at the

FC.

The NN at the decoder can be trained to estimate Y based on data from a variable

number of nodes, e.g., using techniques to deal with missing data; see [72] for more

details, or it can be retrained for different combinations of available encoders. It

is important to note that the estimator presented in (5.5) can be biased due to the

variational approximation. Despite this, by using the same decoder as the one that will

be used during inference, we will obtain a good measure of the usefulness of the nodes

during the inference phase, as the bias will also be present during the inference phase.

A similar approach can be used to estimate the MI I(Y; U1, . . . ,UJ). One can similarly

split the term into a difference between two entropy terms

I(Y; U1, . . . ,UJ) = H(Y) −H(Y|U1, . . . ,UJ), (5.6)

and then estimate H(Y|U1, . . . ,UJ) using (5.5) and estimate H(Y) using an empirical

72



estimator such as those of [73, 74].

5.3.3 Scheduling

The scheduling policy looks at selecting K nodes, of the total J nodes, to transmit during

inference. As such, we use the previously defined global relevance indicator; and the

FC selects the K nodes that are ranked the highest using the global relevance indicator

technique.

More specifically, the FC ranks the nodes using the global relevance indicator as

follows

ri = argmax
j∈J/{r1,...,ri−1}

GRI{r1,...,ri−1}

j , (5.7)

where GRI{r1,...,ri−1}

j is defined as in (5.3) and ri is the index of the node of rank i according

to the global relevance indicator. The FC then selects the top K ranked nodes, we denote

the set of such nodes as K = {r1, . . . , rK}. Given that in practice GRI{r1,...,ri−1}

j cannot be

computed, we instead use the estimate presented in (5.3), and denote it ĜRI
{r1,...,ri−1}

j . For

simplicity, in the remainder of the chapter we will use the notation ĜRIri to refer to

ĜRI
{r1,...,ri−1}

ri
. This process is described in Algorithm 1.

Algorithm 1: Algorithm 1 - estimate the relative importance coefficients
Require: descriptions u j and local assessments RI j for j ∈ J , and the desired

number of nodes K.
Ensure: Rankings r1, . . . , rK and scores ĜRIr1 , . . . , ĜRIrK .

1: initialize
2: r0 = ∅
3: for i = 1 to K do
4: Compute ĜRI

{r0,...,ri−1}

j for every j ∈ J/{r0, . . . , ri−1} using (5.3).

5: Select node with highest ĜRI
{r0,...,ri−1}

j using

ri = arg max
j∈J/{r0,...,ri−1}

ĜRI
{r1,...,ri−1}

j

6: Save the computed global relevance indicator value ĜRIri = ĜRI
{r0,...,ri−1}

ri

7: end for
8: return r1, . . . , rK, ĜRIr1 , . . . , ĜRIrK .
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5.3.4 Power Allocation

Once the subset K = {r1, . . . , rK} of nodes is selected, one needs to allocate the total

available power to them. The simplest way would be to allocate the power equally

among the nodes; however, this would not be an efficient way of power allocation. The

waterfilling [75, 76] approach has shown that to maximise the amount of information

that can be transmitted, it is better to allocate more power to the nodes with better

channels. At the same time, each node is limited by the amount of useful information it

observes regarding the variable of interest Y; any power allowing the node to send more

information than what it observes about Y will not be able to improve the performance

of the network. Finally, the power allocation also needs to take into account the

usefulness of the node for inferring Y at the FC. As such, the power allocation algorithm

needs to strike a balance between maximizing the total information the nodes transmit

to the FC, the usefulness of the transmitted information towards inferring Y, and the

total amount of useful information regarding Y that each node can transmit to the FC

during inference.

To achieve this desired trade-off, we introduce a measure, that for each node rk ∈ K ,

combines the usefulness of the node towards inferring Y under equal power allocation,

and the amount of information regarding Y that is contained in Xrk but could not

be transmitted, under equal power allocation. We denote this term as the expected

usefulness (EU), and define it, for the node ranked in rk as

EUrk = I(Y; Urk |Ur1 , . . . ,Urk−1)
I(Y; Xrk |Urk)

I(Y; Xrk)
(5.8)

The first term, I(Y; Urk |Ur1 , . . . ,Urk−1), is estimated during the scheduling phase and

quantifies the usefulness of the node under equal power allocation. Although not

directly related to the channel gain, it can be observed that, under equal power alloca-

tion, a worse channel would be able to transmit less information compared to a node

with better channel, leading to a smaller I(Y; Urk |Ur1 , . . . ,Urk−1), everything else being

the same. As such, nodes with better channels will tend to have higher EU which will

lead to higher power allocation, as will be seen later. This ensures that the intuition

behind the waterfilling approach is met. On the other hand, we also need to ensure
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that the node observes enough information about Y such that it can make use of the al-

located power. To resolve this, the second term,
I(Y; Xrk |Urk)

I(Y; Xrk)
, is introduced, to estimate

the amount of information the node was not able to transmit, regarding Y, due to the

channel constraints. The term can be rewritten as

I(Y; Xrk |Urk)
I(Y; Xrk)

=
I(Y; Xrk) − I(Y; Urk)

I(Y; Xrk)
(5.9)

where the term I(Y; Xrk) = RIrk as described in Section 5.3.1 and is estimated locally

by the node, while I(Y; Urk) is estimated during the calculation of the global relevance

indicator, more specifically during the ranking of the first node.

Afterwards, the total power, denoted by P, is distributed proportionally to the

assigned EU. More specifically, the power allocated to node rk ∈ K , which we denote

by Prk , is computed as

Prk =
( EUrk∑

r j∈K
EUr j

)
P ∀rk ∈ K . (5.10)

Remark 5.3.1. The power allocation strategy described by (5.10) allocates the total power to

the selected nodes. The same technique can also be used to allocate only the power released by

removing or shutting off some of the nodes. Effectively (5.10) can be changed to

Prk =
P
J
+

( EUrk∑
r j∈K

EUr j

) P(J − K)
J

∀rk ∈ K . (5.11)

Using (5.11) can have an advantage, compared to (5.10), as it will prevent extreme cases, in

which most of the power goes to only one node. The disadvantage is that the improvement over

equal power allocation will be reduced.

5.4 Experiments

We perform a series of experiments to highlight the advantages of our technique. We

showcase how the scheduling algorithm of Section 5.3.3 takes into account the channel

gain, local assessment and the relationship between the data observed by the nodes

when making the selection. Additionally, we showcase the improvements our power

75



allocation strategy offers.

5.4.1 Experimental Setup

Device DNN Layers Device DNN Layers

Encoder
j ∈ {1, . . . , 9}

Input layer 14x7x1

Decoder

Conv 2x2@32
BatchNormalization
Dropout 0.5 Input layer Jx50
Conv 2x2@64 Dense 128
Flatten Dropout 0.3
Dense 128 Dense 10
Dropout 0.5
Dense 50
Normalize

Table 5.1: NN layers for the encoders and decoder at the local nodes and FC, respec-
tively.

We consider a variation of the problem of classifying MNIST [77] digits. In our

setup, there are nine local nodes connected to one FC; each local node observes a noisy

segment of the MNIST image. Eight of the nodes observe segments that are non-

overlapping and of dimension 14x7 pixels. One node, node 3, observes a noisy version

of the same image observed by node 2. Each segment is corrupted with zero-mean

additive Gaussian noise of different variance; Table 5.2 shows the noise distribution

for each node. The setup is shown in Figure 5.5. Each node j ∈ [1 : 9] is equipped

with a deterministic NN-based encoder, the architecture of which is shown in Table 5.1,

which, for a given input x j,i outputs a latent vector u50
j,i = [u1

j,i, . . . ,u
50
j,i ]. Since the

following theory applies to all samples i ∈ [1 : n] we will drop the sample subscript

for simplicity. For reasons that will become clearer, in what follows, we normalise the

vector u50
j during both inference and training. The FC is similarly equipped with an

NN-based decoder whose architecture is shown in Table 5.1. We train the models using

categorical cross-entropy with a batch size of 512 for 100 epochs.

Each node j needs to transmit each element of the latent vector u50
j over a constrained

communication channel of capacity C j, given by equation (5.1). We consider separate

source-channel coding; Figure 5.6 shows a diagram of the communication channel.

Due to the communication constraints, the source encoder needs to compress the data
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Figure 5.5: Diagram showcasing experiment setup.

into R j bits, which, under the assumption of capacity-achieving channel codes, satisfies

R j = C j. (5.12)

For ease of calculation, we model the latent variable as i.i.d samples from a Gaussian

distribution of zero mean and unit variance. To ensure that the latent vector has

zero mean and unit variance, we normalise u50
j during both the training and inference

procedure. To bypass the issue of developing and fixing the codebooks prior to training,

we approximate the codewords by adding noise to each instance of the latent variable.

We make this approximation, as in this setup we are interested only in finding a

relationship between the distortion caused by the compression of the latent variable

and the channel capacity. More specifically, we compute the vector received by the FC

from node j ∈ J , which we denote by û50
j , as

ût
j = ut

j − zt
j ∀ t ∈ [0 : 50] with (5.13)

zt
j ∼ N

( ut
j

1 + h2
j P j

;
1

1 + h2
j P j
−

1
(1 + h2

j P j)2

)
. (5.14)

This approximation is derived based on the lossy source coding of Gaussian sources

[25]. More specifically, we use the fact that to compress a source U ∼ N(0, σ2
U) into Û,
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Figure 5.6: Diagram showcasing channel model.

such that Û can be transmitted over a channel using R bits, with minimal mean square

error distortion and in the large data regime, the optimal test channel p(U|Û) is given

by

U = Û + Z with (5.15)

Z ∼ N(0, σ2
Z); Û ∼ N(0, σ2

U − σ
2
Z); (5.16)

R =
1
2

log2

σ2
U

σ2
Z

. (5.17)

To derive the noise variance for each node, we use equations (5.17), (5.12) and (5.1)

from which we obtain

σ2
Z j
=

σ2
U j

1 + h2
j P j
. (5.18)

While equation (5.18) gives us the variance of the noise, it is important to note, from

equation (5.15), that the noise is not independent of latent variable, i.e., Z j ̸⊥ U j. As

such we derive p(Z j|U j) using equation (5.15) and the fact that U j, Û j, and Z j are all

Gaussian

p(Z j|U j = u j) ∼ N
(σ2

Z j

σ2
U j

u j; σ2
Z j
−

σ4
Z j

σ2
U j

)
. (5.19)

We then obtain equation (5.14) from the assumption that U j ∼ N(0, 1) ∀ j ∈ J , and
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equations (5.19) and (5.18).

In our experiments, the local assessments, RIs, are calculated using the estimated

mutual information between the local data and the label, which is estimated using a

locally trained NN. Table 5.2 shows the channel gains and RIs for each node.

Node ID Data Noise h2
j RI j

Node 1 No Noise 1.e-01 0.27
Node 2 N(0; 0.7) 7.e-02 1.13
Node 3 N(0; 0.1) 2.e-02 1.11
Node 4 N(0; 0.6) 6.e-04 1.4
Node 5 N(0; 0.3) 1.e+00 0.43
Node 6 N(0; 0.1) 1.e-05 0.44
Node 7 N(0; 1.5) 3.e-03 0.64
Node 8 N(0; 0.2) 1.e-06 1.65
Node 9 N(0; 0.2) 1.e-05 0.43

Table 5.2: The noise of the view, the channel gain, and the local assessment for each of
the nodes.

5.4.2 Scheduling Experiment

Our aim is to schedule K = 3 devices of the nine total nodes, given a total power of

P = 100. We use the scheduling algorithm presented in Algorithm 1, the results of

which are shown in Table 5.3. The table contains the ĜRI j value obtained for each node,

given the previously selected nodes, with the values in green representing the highest

values, i.e., the chosen nodes. The networks are re-trained for each configuration of

the selected encoders for an accurate estimation of the entropy terms. The entropy of

Y is estimated using the naive plug-in estimator [73]. We remark that while the GRI j

measure given by (5.2) is always positive, the empirical estimate ĜRI j computed using

(5.3) can be negative for the case where (5.4) is very small due to estimation errors.

As observed in Table 5.3 the three chosen nodes are nodes 2, 4 and 7. The first

node to be selected is node 2. The choice intuitively makes sense, node 2 observes a

central part of the image, thus containing a lot of information about the target ariable,

i.e., the class. This can be observed from the RI; compared to nodes that observe parts

of the image at the periphery, node 2 has a better local assessment, i.e., higher RI, see

Table 5.2. Compared to other nodes that observe central parts of the image, node 2 has
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Node ID ĜRI
∅

j ĜRI
{r1}

j ĜRI
{r1,r2}

j

Node 1 5.54e-03 3.5e-03 -8.12e-04
Node 2 9.33e-02 AS AS
Node 3 7.47e-02 1.21e-02 -6.12e-03
Node 4 6.9e-03 4.25e-02 AS
Node 5 1.47e-03 1.36e-02 4.02e-03
Node 6 9.48e-04 5.66e-03 2.1e-03
Node 7 8.22e-03 1.81e-02 8.38e-03
Node 8 -5.71e-07 8.66e-04 2.12e-03
Node 9 1.07e-03 5.3e-03 1.3e-03

Table 5.3: The global relevance indicator values obtained for each of the nodes during
the scheduling phase. The notation AS signifies nodes that have already been selected,
and for which the global relevance indicator values were not computed.

a better channel.

The second node to be chosen is node 4. Compared to the other nodes, the global

relevance indicator of node 4, given that node 2 was selected, is the highest. Node 4 has

the highest local assessment compared to the other nodes, all except node 8 which has

a very bad channel, as such intuitively it makes sense to be selected. It is interesting

to observe that node 3 is not selected. Since node 3 observes the same information as

node 2, once node 2 is selected, the usefulness of node 3 drops significantly.

The final node to be selected is node 7. It can be observed that the node has a balance

of observing good quality data, compared to most of the remaining nodes, and a good

channel. Additionally, node 7 observes data related to the lower part of the image,

which neither node 2 or 4 do, and as such could provide complementary information.

This balance makes node 7 the most useful of the remaining nodes.

We compare our selection strategy with three other possible strategies. In the first

case, we select the three nodes with the best channels. In the second case, we select

the three nodes with the best local assessments. In the final case, we rank the nodes

according to the CMI. More specifically, the node in rank i is selected using the following

ri = arg max
j∈J/{r1,...,ri−1}

Î(Y; Û j|Ûr1 , . . . , Ûri−1). (5.20)

We then select the three nodes with the highest rank. This technique is similar to our

approach, however, it does not incorporate the use of local assessments.
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Figure 5.7: The accuracy of the system under different scheduling strategies with equal
power allocation.

From Figure 5.7 it can be seen that our scheduling algorithm outperforms the three

other selection strategies. This shows that simply using channel information or the local

assessment does not provide enough information to make a useful selection strategy.

Furthermore, comparing our selection algorithm to that based solely on the CMI,

given by (5.20), we highlight the need to transmit the local assessment to the FC and

incorporate them into the selection criteria. Intuitively, (5.20) only gives information

of the usefulness of each node under the given equal power allocation to all nodes.

The scheduling, however, changes the power allocation by allocating all the power

to a subset of the nodes, the effect of which the FC cannot take into account, since

it only observes compressed representations. By having each node compute a local

assessment, which is then incorporated into the computation of the global relevance

indicator, we mitigate the effect of the global assessment being computed only on

compressed data.
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5.4.3 Power Allocation Experiment

Figure 5.8: The accuracy of the system under different power allocation strategies.

Using our proposed power allocation strategy, described in Section 5.3.4, node 2

is allocated 16.2% of the power, node 4 is allocated 62.6% of the power, while node 7

receives 21.2% of the remaining power. As can be seen from the allocation strategy, the

algorithm looks to allocate power to the nodes that are both useful to the prediction

of Y and also have additional information regarding Y that was not sent during the

equal power allocation phase. Node 4, which both has a great impact on predicting Y

and is unable to transmit all the useful data it observes, receives the highest amount

of additional power. Node 2 and node 7 receive similar amounts of power. While

node 2 is more useful towards predicting Y, node 7 has more additional information

that was not transmitted during the equal power allocation phase. As can be seen in

Figure 5.8, this power allocation strategy outperforms equal power allocation as well

as equal power allocation when all the nodes are scheduled.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this thesis, we have focused on the distributed training and inference problem. We

discussed how multiple nodes can work together to jointly train a model that can be

used in a distributed manner during the inference phase through a novel algorithm

named in-network learning (INL). Compared to other works on distributed training

[12,22], we assume that the nodes observe data related to the same event. The proposed

INL algorithm provides a loss function derived through the theoretical analysis of the

best trade-off the model can achieve between the accuracy of the predictions, under

logarithmic loss, and the amount of the information passed between the nodes of the

communication network.

We also presented a novel scheduling and power allocation algorithms for INL for

the star-like topology. The algorithms combine the central nodes’ knowledge of the

relationships between the data it receives from the edge nodes with the edge nodes’

knowledge of the usefulness of the observed data. We showcase, experimentally, the

improvement our proposed scheduling and power allocation algorithms provide by

combining these two types of knowledge.
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6.2 Perspectives

Through this thesis, we considered the case in which the compression of the sources

is designed separately from the transmission of the data over the channel, the so-

called separation of source and channel coding. For the distributed case or the remote

inference case, one can improve upon these results by designing the source and channel

coding jointly, refereed to as joint source-channel coding (JSCC). Several works are

already developing JSCC techniques using NNs for the remote inference case [78–80],

however, extending this to the distributed cases provides additional challenges. One

possible issue is that one might not be able to use gradient descent methods in this

case as the channel might not be differentiable with respect to the latent representation

transmitted by each node.

Another possible research avenue is the development of an extension of INL in

which nodes exchange quantised values during training and inference. This would al-

low the deployment of INL in digital communication channels and would significantly

reduce communication constraints. The challenge of implementing such a technique

is the fact that a discreet latent representation would again prevent the use of gradient

descent methods. Although there are techniques that allow neural network training

even when the latent representation is discreet, see [80–82], these techniques are not

appropriate for the problem setting considered in INL. The authors of [80] consider

only the problem of communication, and not inference, and in [81] the authors have

shown that the quantisation of the latent space should take into account the task that

the model seeks to solve. The techniques of both [81,82] can be used for developing an

INL model with a discreet latent representation; however, they require that the model

be trained locally, which is not the case in INL.
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[58] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. Vincent Poor, “Update aware

device scheduling for federated learning at the wireless edge,” in 2020 IEEE Inter-

national Symposium on Information Theory (ISIT), pp. 2598–2603, 2020.

90



[59] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling and re-

source allocation for latency constrained wireless federated learning,” IEEE Trans-

actions on Wireless Communications, vol. 20, no. 1, pp. 453–467, 2021.

[60] J. Perazzone, S. Wang, M. Ji, and K. Chan, “Communication-efficient de-

vice scheduling for federated learning using stochastic optimization,” CoRR,

vol. abs/2201.07912, 2022.

[61] J.-F. Chamberland and V. V. Veeravalli, “Wireless sensors in distributed detection

applications,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 16–25, 2007.

[62] T. Wimalajeewa and S. K. Jayaweera, “Optimal power scheduling for correlated

data fusion in wireless sensor networks via constrained pso,” IEEE Transactions on

Wireless Communications, vol. 7, no. 9, pp. 3608–3618, 2008.

[63] X. Zhang, H. V. Poor, and M. Chiang, “Optimal power allocation for distributed

detection over mimo channels in wireless sensor networks,” IEEE Transactions on

Signal Processing, vol. 56, no. 9, pp. 4124–4140, 2008.

[64] J.-J. Xiao and Z.-Q. Luo, “Decentralized estimation in an inhomogeneous sensing

environment,” IEEE Transactions on Information Theory, vol. 51, no. 10, pp. 3564–

3575, 2005.

[65] Z.-Q. Luo, “An isotropic universal decentralized estimation scheme for a band-

width constrained ad hoc sensor network,” IEEE Journal on Selected Areas in Com-

munications, vol. 23, no. 4, pp. 735–744, 2005.

[66] Z.-Q. Luo, “Universal decentralized estimation in a bandwidth constrained sensor

network,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 2210–2219,

2005.

[67] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. Goldsmith, “Power scheduling of universal de-

centralized estimation in sensor networks,” IEEE Transactions on Signal Processing,

vol. 54, no. 2, pp. 413–422, 2006.

91



[68] B. Chen, L. Tong, and P. Varshney, “Channel-aware distributed detection in wire-

less sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 16–26,

2006.

[69] M. Ishmael Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville, and

R. Devon Hjelm, “MINE: Mutual Information Neural Estimation,” arXiv e-prints,

p. arXiv:1801.04062, Jan. 2018.

[70] S. Molavipour, G. Bassi, and M. Skoglund, “Conditional mutual information neu-

ral estimator,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 5025–5029, 2020.

[71] S. Mukherjee, H. Asnani, and S. Kannan, “Ccmi : Classifier based conditional

mutual information estimation,” in Proceedings of The 35th Uncertainty in Artificial

Intelligence Conference, vol. 115 of Proceedings of Machine Learning Research, pp. 1083–

1093, PMLR, 22–25 Jul 2020.

[72] R. J. Little and D. B. Rubin, Statistical analysis with missing data, vol. 793. John Wiley

& Sons, 2019.

[73] L. Paninski, “Estimation of entropy and mutual information,” Neural Computation,

vol. 15, no. 6, pp. 1191–1253, 2003.

[74] L. F. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy of a random

vector,” Problems Inform. Transmission, vol. 23, pp. 95–101, 1987.

[75] E. Telatar, “Capacity of multi-antenna gaussian channels,” European transactions

on telecommunications, vol. 10, no. 6, pp. 585–595, 1999.

[76] M. Thomas and A. T. Joy, Elements of information theory. Wiley-Interscience, 2006.

[77] L. Deng, “The mnist database of handwritten digit images for machine learning

research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[78] E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep joint source-channel
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French Summary(Résumé Français)

Prenons l’exemple du problème d’identification ou de suivi d’un véhicule dans une

grande zone urbaine. Des capteurs sont placés dans toute la zone pour collecter

différents types d’informations, telles que le son, l’image/vidéo, la proximité, etc. Les

capteurs doivent fonctionner ensemble pour prédire conjointement où se trouve le

véhicule ou où il va. Les données recueillies par les capteurs sont corrélées. La re-

lation exacte entre les données que nous observons et les données que nous voulons

prédire n’est pas connue. Nous supposons que les capteurs collectent des données à

partir desquelles nous pouvons former un modèle pour apprendre la relation entre les

données observées et les informations que nous voulons prédire. Nous appelons cette

période de temps la phase de formation. La collecte des échantillons de données des

capteurs vers un emplacement central n’est pas toujours possible. Les capteurs peu-

vent être déployés dans une zone où l’infrastructure de communication est limitée [4].

Un autre problème possible est que des informations sensibles peuvent être contenues

dans les données collectées. Le transfert des données pourrait violer les restrictions de

confidentialité [5]. Pour ces raisons, tant la phase d’apprentissage que le déploiement

du modèle, également appelée phase d’inférence, doivent se dérouler de manière dis-

tribuée, c’est-à-dire sans échange de données brutes. Ce problème est parfois appelé

problème d’apprentissage distribué et d’inférence. La question est, compte tenu de

certaines mesures de la performance du modèle, quelles données chaque nœud doit-il

extraire de ses données observées? La suppression de l’une des données pertinentes

ne peut que réduire les performances de prédiction. D’autre part, l’extraction et la

transmission de données qui ne sont pas pertinentes pour la tâche à accomplir peuvent

mettre à rude épreuve le réseau de communication ou même dégrader les performances

du réseau. Ainsi, intuitivement, les nœuds doivent extraire le plus petit nombre de

caractéristiques qui donnent collectivement les meilleures performances de prédiction.

Décider quelles fonctionnalités extraire doit être fait sans coordination explicite entre

les nœuds. Comment cela devrait-il être effectué de manière optimale sans partager de

données brutes? En particulier, comment chaque nœud doit-il apprendre à traiter les

informations et que doit-il transmettre aux autres nœuds de manière distribuée? Dans

cette thèse, nous supposons qu’il existe des dispositifs, que nous désignons comme
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nœuds périphériques, qui observent des données liées à une variable d’intérêt. Cette

variable d’intérêt doit être déduite à un nœud de décision central ou à un centre de

fusion. Les nœuds périphériques sont connectés au nœud central soit directement,

soit via des nœuds intermédiaires. Nous supposons que la topologie du réseau peut

être modélisée par un graphe orienté acyclique. La distribution des données n’est pas

connue et seul un jeu de données distribué est disponible; c’est-à-dire que différentes

parties des données sont disponibles à différents nœuds. Nous équipons chaque nœud

d’un réseau de neurones (NN). Cela est dû au succès des techniques d’apprentissage

automatique (ML) dans l’apprentissage, à partir d’échantillons, de relations complexes

entre des données observées et une variable cible dans des domaines tels que la vi-

sion par ordinateur [6], le traitement d’image [7], la robotique [8], et le traitement du

langage naturel [9]. Nous considérons également le cas où la performance du modèle

est mesurée en termes de perte logarithmique. La perte logarithmique, ou perte log-

arithmique en abrégé, est une mesure de distorsion naturelle dans les contextes dans

lesquels les reconstructions n’ont pas à être déterministes. C’est-à-dire que le décodeur

fournit une évaluation de la probabilité de chaque estimation possible, au lieu de choisir

une estimation. La mesure est largement utilisée dans divers contextes, y compris le

clustering [29] et la classification [24], la reconnaissance de formes [30], l’apprentissage

et la prédiction [31], le traitement d’image [32], la confidentialité [33], et autres. Nous

concentrons sur la formation distribuée et la résolution de problèmes d’inférence. Nous

discutons de la façon dont plusieurs nœuds, qui observent des données liées au même

événement, peuvent travailler ensemble pour former conjointement un modèle qui peut

être utilisé de manière distribuée pendant la phase d’inférence grâce à un nouveau cadre

appelé apprentissage en réseau (INL). INL pour une topologie en étoile, dans laquelle

les nœuds qui observent les données sont directement connectés au nœud de décision, a

été introduit et analysé pour la première fois dans [10,11]. Nous présentons ces résultats

et discutons en détail la procédure de formation pour un tel réseau. Plus précisément,

nous discutons comment, dans le cas où chaque nœud est équipé d’un NN, un tel

réseau peut être formé en utilisant la rétropropagation. Nous expliquons comment, en

imposant la condition selon laquelle le NN au centre de fusion utilise comme entrée un

vecteur formé en concaténant les informations reçues des nœuds périphériques, lors de
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la rétropropagation, le vecteur d’erreur peut être divisé et transmis du centre de fusion

à chaque nœud périphérique correspondant. Cette observation a également été faite

dans le document de brevet [11] par A. Zaidi, K. Scaman et P. Escamilla. Nous nous

appuyons sur ces résultats en fournissant une nouvelle comparaison expérimentale

d’INL avec d’autres algorithmes d’apprentissage distribué, à savoir ceux de [12, 13].

Nous considérons ensuite l’extension de l’INL aux topologies de réseau qui peuvent

être modélisées avec un graphe dirigé et acyclique. Cela a été proposé et étudié pour la

première fois dans le document de brevet [11] par A. Zaidi, K. Scaman et P. Escamilla.

Dans cette thèse, nous dérivons une fonction de perte appropriée pour un tel modèle.

L’approche de la dérivation de la fonction de perte est empruntée à [10], c’est-à-dire que

nous supposons d’abord que les distributions conjointes sont connues et procédons à la

modélisation du problème en tant que source de réseau en codant une sous mesure de

perte logarithmique et en trouvant approprié (réalisable) compromis taux-distorsion,

puis nous dérivons une limite interne variationnelle, et enfin nous paramétrons cette

limite inférieure/interne à l’aide de réseaux de neurones.

Nous dérivons d’abord un compromis débit-distorsion réalisable pour toute topolo-

gie de réseau qui peut être modélisée avec un graphe acyclique dirigé. La preuve suit

en utilisant un schéma de compression-transmission-estimation séparé dans lequel les

observations (x1, . . . , xJ) sont d’abord compressées de manière distributive en utilisant

le codage Berger-Tung [56] en représentations (u1, . . . ,uJ); et, ensuite, les indices bin

sont transmis sous forme de messages indépendants sur le réseau G en utilisant le

codage de réseau linéaire [25, Section 15.5]. Le nœud de décision N récupère d’abord

les mots de code de représentation (u1, . . . ,uJ); et, ensuite, produit une estimation de

l’étiquette y.

Nous discutons ensuite de la manière dont le compromis réalisable obtenu peut

être utilisé, nous dérivons ensuite une limite interne variationnelle pour un exemple de

réseau à cinq nœuds. Enfin, nous paramétrons la borne obtenue à l’aide d’un réseau de

neurones. Nous discutons ensuite de la manière dont le réseau peut être formé et utilisé

pour l’inférence de manière distribuée. Encore une fois, nous discutons comment en

imposant la condition que le NN à chaque nœud utilise comme entrée un vecteur

formé en concaténant les informations reçues des nœuds d’ordre inférieur auxquels
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il est connecté, pendant la rétropropagation, le vecteur d’erreur peut être divisé et

transmis de chaque nœud aux nœuds d’ordre inférieur correspondants.

Enfin, nous considérons le problème pratique du déploiement d’INL pour une

topologie en étoile dans un environnement sans fil contraint; un exemple serait le

déploiement dans les réseaux de capteurs sans fil (WSN) [16]. Les performances

des WSN sont considérablement limitées par ses ressources radio disponibles et la

manière dont les ressources sont allouées entre les nœuds. L’utilisation de tech-

niques d’allocation de ressources développées pour le problème de transmission de

données, c’est-à-dire la maximisation de la quantité de données transmises entre les

nœuds [20, 75], pour les WSN est sous-optimale pour les tâches d’inférence. Intuitive-

ment, cela est dû au fait que les techniques de transmission de données ne prennent

pas en considération la relation entre les données transmises et la tâche d’inférence du

WSN. Des chercheurs ont proposé des techniques d’allocation de ressources prenant

en compte la relation entre les données transmises et la tâche d’inférence pour les

problèmes d’estimation distribuée [64–66], et de détection distribuée [61, 62, 68]. Ces

deux problèmes supposent un modèle prédéfini de la distribution entre les données

observées et la variable cible à déduire. Pour pallier l’absence de modèle prédéfini de

la répartition entre les données observées et la variable cible, le brevet [17] suggérait

déjà l’idée d’avoir:

1. chaque appareil mesurant sa propre évaluation locale de la pertinence des données

qu’il détient pour la tâche d’inférence en cours et la transmet au nœud de décision,

2. cet appareil envoie également simultanément les valeurs d’activation de sortie au

nœud de décision,

3. le nœud de décision combinant toutes les informations reçues (valeurs d’activation

des différents appareils ainsi que leurs évaluations locales individuelles) et for-

mant ensuite sa propre évaluation (globale) de la pertinence de l’observation de

chaque appareil,

4. application de l’idée à l’ordonnancement des appareils et à l’allocation de puis-

sance (deux algorithmes d’ordonnancement ont déjà été donnés dans [17])
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Toutes ces étapes ont ensuite été rapportées et détaillées dans la version intermédiaire

[18]. Nous nous différencions de ces travaux en décrivant comment les nœuds locaux

peuvent calculer leurs évaluations locales, ainsi qu’en fournissant un moyen approprié

pour le nœud de décision de combiner les évaluations locales reçues avec les valeurs

d’activation pour obtenir sa propre évaluation globale. Nous proposons également

un algorithme d’ordonnancement amélioré, ainsi qu’un algorithme d’allocation de

puissance, qui n’a été présenté ni dans [17, 18].

Dans cette thèse, nous proposons de calculer les évaluations locales en utilisant

l’information mutuelle (IM) entre les données et la variable cible. Comme le montre [10],

il existe un lien étroit entre la perte logarithmique moyenne, que nous utilisons dans

notre cadre, et le MI. Alors qu’en général MI ne peut pas être calculé analytiquement,

on peut l’estimer à l’aide d’échantillons via des estimateurs basés sur NN tels que

MINE [69]. Notre évaluation globale proposée, l’indicateur de pertinence globale (GRI),

prend en compte la corrélation entre les représentations compressées que le centre de

fusion reçoit, tout en tenant compte des évaluations locales des données observées.

Plus précisément, l’indicateur de pertinence globale est formé en combinant

• les bilans locaux, les MI entre les données et la variable cible, obtenus par chaque

nœud,

• évaluations de l’utilité relative des données reçues de chacun des nœuds.

Le centre de fusion mesure l’utilité relative des données reçues de chaque nœud à l’aide

des informations mutuelles conditionnelles (CMI). Pour calculer l’utilité des données

du nœud j, par rapport au nœud i, le centre de fusion a calculé le MI des représentations

latentes obtenues du nœud j et de la variable cible, compte tenu des représentations

latentes du nœud i. Le CMI est ensuite mis à l’échelle par le MI entre la variable

cible et la représentation latente obtenue à partir de tous les nœuds périphériques.

L’algorithme de planification cherche à sélectionner les nœuds avec le GRI le plus

élevé. En tant que tel, le FC calcule le GRI de chaque nœud, compte tenu des nœuds

déjà sélectionnés, puis sélectionne le nœud avec le GRI le plus élevé. Le processus est

répété jusqu’à ce que les nœuds soient planifiés. L’algorithme d’allocation de puissance

cherche ensuite à trouver un équilibre entre la maximisation des informations totales
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que les nœuds sélectionnés transmettent au FC, l’utilité des informations transmises

pour déduire la variable cible et la quantité totale d’informations utiles concernant la

variable cible que chaque nœud peut transmettre. au FC pendant l’inférence. Pour

atteindre ce compromis souhaité, nous introduisons une mesure, notée utilité attendue

(EU), qui pour chaque nœud k, combine l’utilité du nœud pour inférer la variable cible

sous une allocation de puissance égale, et la quantité d’informations concernant la cible

variable qui est contenue dans les données observées mais qui n’a pas pu être transmise,

sous allocation de puissance égale. L’utilité du nœud pour déduire la variable cible

sous allocation de puissance égale est mesurée par l’évaluation de l’utilité relative du

nœud qui a été calculée pour le GRI pendant la phase de programmation. La quantité

d’informations concernant la variable cible qui est contenue dans les données observées

mais qui n’a pas pu être transmise est mesurée par le CMI entre la variable cible et les

données observées compte tenu de la représentation latente transmise, qui est ensuite

mise à l’échelle par le MI entre la variable cible et les données observées. La mesure de

l’EU est obtenue en prenant le produit entre l’utilité du nœud pour déduire la variable

cible sous une allocation de puissance égale, et la quantité d’informations concernant

la variable cible qui est contenue dans les données observées mais n’a pas pu être

transmise. La puissance est ensuite distribuée proportionnellement à l’EU de chaque

nœud.

Mots-clés - apprentissage distribué, théorie de l’information, classification, Information

Bottelneck, perte logarithmique, affectation des ressources.
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