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Das Instrument, welches die Vermittlung bewirkt zwischen Theorie
und Praxis, zwischen Denken und Beobachten, ist die Mathematik;
sie baut die verbindende Briicke und gestaltet sie immer tragfdhiger.
Daher kommt es, dass unsere ganze gegenwdartige Kultur, soweit sie
auf der geistigen Durchdringung und Dienstbarmachung der Natur
beruht, ihre Grundlage in der Mathematik findet.

— David Hilbert, 1930
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Abstract

Liquid crystals are a type of matter which share properties with both liquids and crystalline solids,
i.e. the molecules of such materials can move but exhibit a positional and orientational order. One
of the most remarkable characteristics is the formation of defect structures, in particular point and
line singularities. In this work we use a version of the Landau-de Gennes model for nematic liquid
crystals with an external magnetic field to describe the Saturn ring effect around an immersed
particle. In an asymptotic regime where both point and line singularities occur, we derive an
effective energy describing the formation and transition between different singularities.

The first chapter deals with the physically relevant case of a spherical particle. After a rescaling
of the physical energy, a limit energy in the sense of I'—convergence, stated on the particle surface,
is derived. Studying the limit problem, we explain the transition between the dipole and Saturn
ring configurations and the occurrence of a hysteresis phenomenon.

In the second chapter we consider the general case of an arbitrary closed and sufficiently smooth
particle. In contrast to spherical (or more general convex) particle, we obtain an additional term
in the limit energy, showing quantitatively that the close-to-minimal energy is asymptotically con-
centrated on lines and surfaces nearby or on the particle. We also discuss regularity of minimizers
and optimality conditions for the limit energy.

The third chapter is dedicated to the numerical investigation of the limit energy and the de-
velopment and implementation of adapted numerical methods. We verify the results of the first
chapter for the sphere and then study the defect structures in the case of a peanut and croissant-like
particle.

Résumé

Les cristaux liquides sont des matériaux avec des propriétés intermédiaires entre celles des liquides
et des solides cristallins, c’est-a-dire les molécules peuvent se déplacer mais montrent un ordre de
position et d’orientation. L’une de leurs caractéristiques les plus remarquables est la formation
naturelle de structures de défauts, en particulier des singularités ponctuelles ou en lignes. Dans
ce travail on considére une version du modéle de Landau-de Gennes pour les cristaux liquides
nématiques avec un champ magnétique externe modélisant ’effet de 'anneau de Saturne autour
d’une particule immergée. Dans un régime asymptotique o les singularités ponctuelles et de lignes
se produisent, nous dérivons une énergie effective décrivant la formation et la transition entre les
différentes singularités.

Le premier chapitre porte sur le cas physique le plus étudié d’une particule sphérique. Aprés une
remise & 1’échelle de I’énergie physique, une énergie limite au sens de la I'—convergence, énoncée a
la surface de la particule, est dérivée. En étudiant le probléme limite, nous expliquons la transition
entre la configuration du dipole et de 'anneau de Saturne ainsi que ’apparition d’un phénoméne
d’hystérésis.

Dans le deuxiéme chapitre, nous considérons le cas général d’une particule quelconque fermée et
suffisamment lisse. Contrairement & une particule sphérique (ou plus généralement convexe), nous
obtenons un terme supplémentaire dans I’énergie limite, montrant quantitativement que ’énergie
proche du minimum est asymptotiquement concentrée sur des lignes et des surfaces proches de la
particule voire collées a sa surface. Nous discutons également la régularité des minimiseurs et les
conditions d’optimalité de ’énergie limite.

Le troisiéme chapitre est consacré a I’étude numérique de 1’énergie limite et au développement
et & la mise en ceuvre de méthodes numeériques adaptées. Nous vérifions les résultats du premier
chapitre pour la sphére, puis nous étudions les structures de défauts dans le cas d’une particule en
forme de cacahuéte ou de croissant.



Zusammenfassung

Fliissigkristalle sind Materialien, die Eigenschaften von sowohl Fliissigkeiten als auch von kristalli-
nen Feststoffen aufweisen, d.h. die Molekiile dieser Materialien kénnen sich bewegen, weisen aber
eine Ordnung beziiglich ihrer Positions- oder Orientierung auf. Eine der bemerkenswertesten Eigen-
schaften ist die Bildung von Defektstrukturen, insbesondere von Punkt- und Liniensingularitaten.
In dieser Arbeit verwenden wir eine Version des Landau-de Gennes-Modells fiir nematische Fliis-
sigkristalle mit einem externen Magnetfeld um den Saturnring-Effekt um ein eingetauchtes Teilchen
zu beschreiben. In einem asymptotischen Parameterbereich, in dem sowohl Punkt- als auch Lin-
iensingularititen auftreten, leiten wir eine effektive Energie ab, welche die Bildung und den Uber-
gang zwischen den verschiedenen Singularitédten beschreibt.

Das erste Kapitel befasst sich mit dem physikalisch relevanten Fall eines kugelférmigen
Teilchens. Nach einer Reskalierung der physikalischen Energie wird eine auf der Teilchenoberflache
gegebene Grenzenergie im Sinne der I'—Konvergenz hergeleitet. Bei der Untersuchung des
Limitproblems erkliren wir den Ubergang zwischen der Dipol- und der Saturnring-Konfiguration
und das Auftreten eines Hysteresephdnomens.

Im zweiten Kapitel betrachten wir den allgemeinen Fall eines beliebigen geschlossenen und
hinreichend glatten Teilchens. Im Gegensatz zu kugelférmigen (oder allgemeiner konvexen) Par-
tikeln, erhalten wir einen zusatzlichen Term in der Grenzwert-Energie und zeigen quantitativ, dass
die nahezu-minimale Energie asymptotisch auf Linien und Oberflichen in der Nihe oder auf dem
Teilchen konzentriert ist. Wir befassen uns auch mit der Regularitit der Minimierer und den
Optimalitdtsbedingungen der Grenzwert-Energie.

Das dritte Kapitel widmet sich der numerischen Untersuchung der Grenzenergie und der En-
twicklung und Implementierung geeigneter numerischer Methoden. Wir verifizieren die Ergebnisse
des ersten Kapitels fiir die Sphére und studieren die Defektstrukturen im Falle eines Erdnuss- und
Croissantformigen Teilchens.
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Chapter 1

Introduction générale

1.1 Les cristaux liquides nématiques

1.1.1 Physique et description

En 1888, le chimiste autrichien Friedrich Reinitzer observe un "phénomeéne étrange de la présence
de deux points de fusion" dans le benzoate de cholestéryle [54,141]. Par la suite c’est le physicien
et cristallographe allemand Otto Lehmann qui lui donne son nom cristal fluide [106]. D’un point
de vue contemporain, les cristaux liquides représentent un état de la matiére molle aux propriétés
intermédiaires entre les liquides et les solides cristallins. Ils peuvent former des gouttes comme
un fluide, bien qu’ils présentent des anisotropies, par exemple de leurs propriétés électromagné-
tiques. C’est pourquoi ils sont parfois appelés des fluides anisotropes. En raison de ces propriétés
uniques, les cristaux liquides présentent des structures et des applications dans beaucoup de do-
maines. Omniprésents au quotidien dans les écrans & cristaux liquides ("LCD"), 'emploi dans
d’autres domaines électro-optiques, chimiques [58, Ch. IX] ainsi que dans les nano-, micro- et
biotechnologies [102] est également pertinent.

Pour former un cristal liquide, les molécules doivent étre nématogénes et avoir des interactions
qui leurs permettent de s’ordonner. Habituellement ces matériaux sont constitués de molécules
en forme de batonnet (bien qu’il existe d’autres molécules en forme de disque, par exemple)
dont ’ordre de position et d’orientation peut varier dans l’espace, le temps et en fonction des
parameétres tels que la température. Contrairement aux cristaux qui présentent un ordre de posi-
tion et d’orientation & 1’échelle moléculaire et aux liquides qui ne sont pas structurés, les cristaux
liquides peuvent étre classés en plusieurs types selon 'ordre qu’ils présentent. Les plus proches
d’un liquide sont les cristaux nématiques dont la position des molécules est distribuée de fagon
aléatoire, mais leurs orientations sont en moyenne alignées. Un autre type de cristaux liquides est
appelé cholestérique dans lequel les molecules sont positionnées de facon hélicoidale. Ensuite, les
smectiques s’organisent dans des couches, avec leur orientation perpendiculaire & la normale du
plan (smectique A) ou pas (smectique C). Pour une introduction générale, nous référons le lecteur

e A\ =2

Figure 1.1: Représentation schématique d’une phase de cristal liquide isotrope, nématique, smec-
tique A, smectique C' et cholestérique (de gauche a droite).
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Figure 1.2: Représentation schématique des défauts de degré +1, —l—% et —% (de gauche a droite).

Afin de modéliser la direction des molécules & un endroit donné, on utilise le fait qu’en moyenne,
les molécules d'un cristal liquide sont alignées le long dun directeur n € S2. 1l est commode
d’introduire un champ de vecteurs n : Q — S? qui pointe dans la direction des molécules en chaque
point du matériau €2. En pratique, il est possible de détecter le directeur car les cristaux liquides
sont biréfringents et ’axe optique coincide avec n. Puisque les molécules sont souvent symétriques
le long de ’axe (au sens qu’elles ne sont pas polaires), on ne distingue pas entre n et —n et donc on
peut penser que le champ n prend plutét des valeurs dans RP2. Un tel champ n est appelé champ
de directeurs et il est & la base des modéles des cristaux liquides nématiques que nous regarderons
par la suite [21].

L’état naturel d’un cristal liquide est Vn = 0, c’est-a-dire que les molécules sont toutes alignées
dans la méme direction. A cause d’inhomogénéités et impuretés du matériau (mélange avec d’autres
substances ou particules immergées), d’autres influences extérieures (champs magnétiques, élec-
triques, flux) ou la présence de bords [91], on observe Vn # 0 mais aussi ’apparition de structures
de défauts. Schématiquement, un défaut est une singularité du champ n, voir Figure 1.2, mais nous
allons préciser dans les chapitres suivants ce que nous entendons par défaut, aprés avoir introduit
le modéle que nous allons utiliser.

Cette these est consacrée a ’étude du cas ot 'on considére une seule particule rigide immergée
avec ancrage homéotropique en présence d’'un champ magnétique externe homogéne et constant.
Dans ces conditions, il est possible d’observer l'effet dit "anneau de Saturne" : dans certaines
circonstances, la structure de défauts qui se forme afin d’équilibrer les conditions imposées par
I’objet immergé prend la forme d’un anneau autour de la particule, voir Figure 1.3. Des structures
plus exotiques telles que des nceuds sont également possibles, nous renvoyons a [133] pour un
apercu. En plus des singularités de ligne (d’ou le nom nématiqgue du mot gréque vnua ("fil")),
on peut aussi observer différents types de singularités de point. Le cas le plus simple est appelé
"dipole", car il y a un seul point singulier qui compense la charge topologique de la particule. En
outre, un champ électromagnétique peut étre utilisé pour manipuler ’apparition d’un anneau de
Saturne ou du dipole et de passer d’une configuration a l'autre [12,71-73,112,113,165] .

Figure 1.3: Changement d’une singularité de ligne ("anneau de Saturne") autour d’une particule
sphérique & un défaut ponctuel sous 'influence d’un champ électrique, de [112, Fig. 1J.
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1.1.2 Le modéle de Landau-de Gennes

En raison des phénoménes intéressants qu’ils font apparaitre et de leur importance considérable
dans les applications, les cristaux liquides sont devenus une riche source de problémes mathé-
matiques a linterface entre élasticité, géométrie, topologie et analyse. Certaines parties de ces
études sont également intéressantes dans un cadre plus abstrait, par exemple les espaces fonc-
tionnels [18] et les revétements [88, 121], les Q—tenseurs [34,132], la formation de singularités
topologiques [157] ou des énergies similaires [49, 144], notamment le modéle de Ginzburg-Landau
en micromagnétisme [30,79,92]. La source de ces liens provient de la diversité de modéles qui
ont été proposés pour la modélisation de cristaux liquides [21]. Nous allons briévement présenter
les plus importants d’entre eux. Une introduction plus détaillée aux différents modeéles peut étre
trouvée dans [20,163].

D’un point de vue phénoménologique, une idée logique serait d’utiliser le champ de directeur n :
Q — S? comme objet central de ’étude. Ceci a été fait par le physicien suédois Carl Wilhelm Oseen
[136] et le physicien anglais Frederick Charles Frank [70] qui ont développé une théorie variationnelle
basée sur le champ de directeur n qu’on appelle aujourd’hui le modéle de Oseen-Frank. Bien que
fructueux, ce modéle présente des problémes d’orientabilité, car si n € S?, la symétrie n «+» —n
n’est pas prise en compte. Cela conduit au probléme suivant : seuls les défauts ponctuels entiers
peuvent étre représentés. Aucune ligne de défaut de demi-degré ne peut apparaitre.

Une autre approche est de décrire la structure d’un cristal liquide par une distribution de
probabilité p sur la sphére des directions. En tenant compte du fait que les points opposés ont
la méme probabilité, le premier moment d’une telle distribution p disparait par symétrie. En
décalant le second moment par une distribution uniforme, nous obtenons un tenseur ) symétrique
sans trace (Q—tenseur)

Q = /S2 n(z) @ n(®) dp(z) — %Id € Sym, = {Q € R3%3 . QT — Q. t(Q) =0}, (1.1)

qui est utilisé pour modéliser p, méme si de nombreuses informations sur p sont perdues dans
ce processus. C’est la base méme de ce que 'on appelle le modéle de Landau-de Gennes. Plus
précisément, Pierre-Gilles de Gennes, physicien francais, a utilisé la théorie du physicien soviétique
Lev Landau pour décrire la transition de phase isotrope & nématique avec un paramétre d’ordre
tensoriel pour obtenir le développement suivant de 1’énergie libre au-dessus de la température de
transition nématique-isotrope T, [57, p.77]

FQ) = €~ Sm(@) — 2(Q®) + (@) (12)
Nous remarquons que si p = %(5n +0_p) pour un n € S?, alors Q défini dans (1.1) est donné par
Q = (n®n — {Id) ce qui donne un lien avec la théorie d’Oseen-Frank. Il est possible de montrer
que si la constante C' est bien choisie et b, ¢ > 0, alors f est positive ou nulle et s’annule précisement
sur des tenseurs @ de la forme Q = s,(n®n — %Id), pour un n € S? et un paramétre s, > 0 qui
dépend de a, b et c. De tels tenseurs () sont appelés uniaxiouz et n est alors un vecteur propre de )
qui correspond & la plus grande valeur propre A1(Q), les autres valeurs propres A2(Q) = A3(Q) < 0
étant égales et négatives. Afin de définir ’ensemble singulier dans la suite, nous introduisons
également l’ensemble des Q—tenseurs C pour lesquels les deux valeurs propres principales sont
égales, c'est-a-dire C = {@Q € Sym; : A (Q) = A2(Q)}. Par ailleurs, pour intégrer des forces
élastiques, on ajoute a la densité d’énergie

3 3 3
Ly Ly L
fa(@Q) = - > 0kQi0kQi; + 5 > 0:QikdiQik + 5 > 0iQik0iQik - (1.3)
i,j,k=1 i,5,k=1 i,j,k=1
Dans cette thése nous nous restreindrons au cas le plus simple ("one constant approximation"),

pour lequel Ly = L > 0 et Ly = L3 = 0. Enfin, on peut inclure les effets d’'un champ magnétique
externe H via [139, Ch. 6, Secs. 3-4 et Ch. 10, Sec. 2.3]

Fnasl@) = 5 HEH Q. (1.4
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ol Y, est lanisotropie magnétique. Cela favorise que le vecteur propre principal soit dans la
direction +eg. Intégrées sur un domaine €2, (1.2),(1.3) et (1.4) donnent ’énergie

L b
£@Q) = /Q §|VQ|2 +Co — gtr(QQ) - gtr(cf') + g(tr(cf))2 - %XGH @H:Qdz.  (1.5)

Des théories dynamiques qui prennent en compte les écoulements de cristaux liquides ont égale-
ment été développées : le mathématicien américain Jerald Ericksen [61,62] et le physicien math-
ématicien écossais Frank Matthews Leslie [107] ont créé une approche basée sur la représentation
avec un champ de directeurs, tandis que les chimistes américains Antony Beris et Brian Edwards
ont fondé leur modele sur les QQ—tenseurs [26].

Enfin, des efforts considérables ont été déployés pour élaborer des théories statistiques sur les
cristaux liquides. Les plus connues sont celles de Lars Onsager, physico-chimiste américain d’origine
norvégienne [135] dont le modéle repose sur des forces d’ordre purement entropiques basées sur la
répulsion & courte portée des molécules, et celui des physiciens allemands Wilhelm Maier et Alfred
Saupe qui ont developpé une théorie du champ moyen fondée sur les forces de dispersion de London
attractives [118].

En général, il est difficile de donner une description précise des minimiseurs des fonctionnelles
d’énergie associées a 'un des modéles de maniére explicite, sauf dans certains cas trés particuliers
comme dans [169] ou pour la solution appelée "hérisson" [120].

1.2 Le cas d’une inclusion sphérique

Le premier résultat de cette thése concerne la forme des configurations minimisantes autour d’une
particule sphérique. Avant de présenter le résultat, nous allons adimensionner ’énergie dans (1.5).
Pour cela, notons rg le rayon de la particule sphérique et 2., = R®\ B, (0) la région de I'espace
occupée par le cristal liquide. En changeant 1’échelle x ~~ roz, il est possible de travailler sur le
domaine fixe 2 := R3\ B;(0). Aprés division par Lrg, on retrouve une version adimensionnée de
Pénergie (1.5) qui s’écrit

1

&6@ = [ IVQP+ 57(Q)+ 50(Q)+ o da. 16)

Le paramétre sans dimension n = , /W décrit le rapport entre la densité d’énergie magnétique
aT(

et celles des énergies élastique et volumique. De la méme maniére, £ = 1/C% est également sans
0
dimension et déterminé par le ratio entre les densités des énergies élastique et volumique.
La fonction f est encore de la forme (1.2), mais avec différents paramétres a,b,c et C qui
n’ont en particulier plus de dimension. Venant de (1.5), la fonction g est donnée par g(Q) = Qss,
mais d’un point de vue mathématique, d’autres fonctions g pourraient étre utilisées sans modifier

I’analyse. Nous avons également ajouté la constante Cj qui dépend de £ et 1 pour rendre la densité
d’énergie positive ou nulle.

Nous nous focalisons sur des régimes asymptotiques pour lesquels £, et Cy tendent vers 0
d’une fagon qui sera précisée par la suite.

Pour compléter notre modeéle, nous imposons une condition au bord d’ancrage fort sur 99 qui
s’écrit
1
Q(z) = s, (u(x) ®@v(z) — 3Id) pour tout x € 092, (1.7)

ou v est la normale sortante de 92 et correspond & un champ directeur radial n = e,.

Selon le modéle de Landau-de Gennes, une configuration d’équilibre est trouvée par la minimi-
sation de I’énergie libre (1.6) avec la condition au bord (1.7).
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Il est possible d’envisager différents régimes concernant la vitesse de convergence relative des
deux paramétres ¢ et n tendant vers 0. Un premier régime a été traité dans [4] ou les auteurs
observent un anneau de Saturne. Cela correspond au cas des champs forts ot n|In(§)| < 1. Le
cas 1| In(§)| ~ 1, ou la transition entre le dipole et ’anneau de Saturne a lieu, est le cadre de cette
thése et il nous permet également de raisonner sur ce qui se passe si n|In(£)| > 1 ol nous nous
attendons uniquement a des configurations de dipole.

Le resultat principal de cette partie de la thése est le Théoréme 2.3.1 qui montre dans l'esprit
de la T'—convergence que dans la limite 1, — 0 dans le régime ou | In(£)| — S € (0, 0), I’énergie
se réduit & une énergie & énoncée a la surface de la sphére S? = 0 donnée par

E(F) = 25*0*/

F(l —cos(0)) dw + 2s.cx /

(1+ cos(8)) dw + %siﬂleFl(SQ), (1.8)
oll 8y, ¢, > 0 sont des paramétres en fonction de f et g, F C S? est un ensemble de périmétre fini,
F¢ est le complément de F dans S? et |Dyr|(S?) désigne le périmétre de F. Dans Iexpression
ci-dessus, 0 représente I’angle entre la normale sortante & un point w sur la sphére (voir la condition
au bord) et es (la direction du champ externe). Le rapport entre &, ¢(Q,¢) et E(F') se présente
comme suit : si Q¢ : 2 — Sym, est une suite bornée en énergie qui vérifie les conditions au bord
(1.7), alors on trouve un champ de directeur n, ¢ : Q — S? qui est proche d’un revétement de Qn.e
(qui n’existe pas partout dans 2 pour des raisons topologiques). En choisissant une orientation de
n, ¢ & l'infini, il est possible d’identifier des régions sur 92 oi1 n,, ¢ s’aligne avec la normale sortante
de 9B (ce qui donne une approximation de F) ou avec la normale entrante (approximation de
Fe).

Nous interprétons le terme de périmétre dans (1.8) comme la représentation d’une singularité
de ligne. Il nous indique que le passage d’une orientation & ’autre a un cott, qui dépend de la
longueur de la ligne de défaut et de 1’équilibre entre les forces modélisées par [, s, qui est lié
aux propriétés du cristal liquide et ¢, qui dépend de l'interaction entre le champ magnétique et le
cristal liquide.

Cette étude est réalisée sous I’hypothése d’une équivariance rotationnelle, c’est-a-dire qu’on
peut se restreindre &4 un probléme posé sur un domaine bidimensionnel Q' = {(p,z) : p* =
22 + 92, (z,v,2) € Q} qui représente une tranche de €. Ceci est une simplification majeure pour
I’analyse puisqu’au lieu de singularités de ligne, nous devons seulement considérer leur intersection
avec la tranche, c’est-a-dire des points. Mais d’un autre coté, cela restreint les configurations
admissibles pour ) et F' & une classe beaucoup plus petite. Le cas général traité dans la section
suivante abandonnera donc cette hypothése.

La preuve du théoréme est divisée en deux parties principales : I'—liminf et I'—limsup. Une
estimation du type I'—liminf signifie que pour toute suite @, ¢, il existe un ensemble F' C S? tel que
I’on trouve un champ n, ¢ comme décrit ci-dessus qui fait le lien entre @, ¢ et F' et que la liminf de
En.e(Qne) majore E (F'). Pour montrer cela, I'idée principale sera de remplacer les fonctions @y, ¢
par les minimiseurs d’un probléme d’approximation et ensuite d’utiliser la régularité ameéliorée
de ces minimiseurs pour dériver une borne inférieure sur le colt énergétique d’une singularité.
Aprés, nous montrons d’abord que si ’énergie est uniformément bornée, alors il existe seulement
un nombre fini de singularités, pour ensuite calculer la limite inférieure asymptotiquement exacte
pour I’énergie prés d’une singularité. Ceci est I’étape principale pour justifier le terme du périmétre
dans (1.8). Pour les deux termes surfaciques, nous introduisons un probléme auxiliaire radial
comme dans [4]. Etant donné un rayon partant de la surface 0Q vers l'infini tel que Q¢ est
proche d’étre uniaxial, nous pouvons remplacer ), ¢ par n,¢ qui est proche de @, ¢. On peut
calculer explicitement 1’énergie nécessaire pour le champ de vecteurs n, ¢ pour tourner le long du
rayon partant de n, ¢(x) = z sur le bord de Q a la configuration paralléle au champ externe dans
la direction ez a l'infini qui est favorisée par I’énergie. En combinant les résultats, nous sommes
capables de prouver la partie de la borne inférieure du théoréme principal.

La partie I'—limsup se résume & construire une suite de fonctions @, ¢ pour un F' C S* donné tel
que la limsup de &, ¢(Qy,¢) minore & (F') et qui vérifie le lien entre @, ¢ et F' décrit auparavant (il
s’agit de 'étape appelée "recovery sequence" dans la littérature). Nous utilisons nos connaissances
sur l'interaction des trois parties de I’énergie pour définir des régions approximatives proches de la
particule dans lesquelles ’énergie des deux premiers termes de &y est concentrée et () est uniaxial.
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Nous profitons ici de I’expression exacte du profil optimal issu du probléme auxiliaire radial. En
dehors de ces régions, nous construisons les singularités qui donnent lieu au terme de périmétre de
&o. Entre les deux, nous utilisons un argument d’interpolation pour relier les deux régions.

Avec I’énergie limite que nous obtenons, il est possible de calculer explicitement les minimiseurs
(en fonction de B) et de comparer leur énergie avec celle d’un dipdle et d’un anneau de Saturne a la
méme valeur de f. Intuitivement, on pourrait s’attendre & ce que les configurations minimisantes
changent graduellement d’un anneau de Saturne a l’équateur en passant par des configurations
d’anneau & des angles intermédiaires pour finalement se rapprocher d’une singularité de point &
I'un des deux poles de la particule sphérique. Contrairement & cette intuition, les seuls minimieurs
locaux sont I’anneau de Saturne & ’équateur et le dipole. Puisque les anneaux intermédiaires ont
une plus grande énergie, il n’est pas favorable de passer d’'une configuration localement minimisante
a une configuration globalement minimisante tant que S ne prend pas des valeurs extrémes ou le
minimum local perd sa stabilité. En conséquence, nous constatons qu’en faisant varier 3, un
phénoméne d’hystérésis se produit. Méme si, & notre connaissance, ce phénoméne d’hystérésis n’a
pas encore été observé dans une expérience physique, nos résultats expliquent rigoureusement les
simulations numériques et les raisonnements physiques connus dans [105, 154].

1.3 Le cas d’une inclusion générale

Méme si la majorité des expériences physiques sont réalisées avec des particules colloidales
sphériques, on s’intéresse de plus en plus & I'utilisation d’autres formes, par exemple des particules
en forme de tore [147], de cube [156], de cacahuéte [143], de fer a cheval [15] ou méme de
fractale [133]. D’un point de vue purement mathématique, il est également intéressant d’étudier
le cas des particules non sphériques et particuliérement non convexes, comme nous le verrons
dans la suite, car nous généraliserons le résultat évoqué dans la section précédente et la structure
des défauts deviendra beaucoup plus riche mais aussi plus compliquée. En méme temps, nous
supprimons également ’hypothése d’équivariance rotationnelle, ce qui donne une preuve tridi-
mensionnelle sans ’hypothése de symétrie du résultat précédent pour la sphére. Pour les raisons
susmentionnées, nous aurons besoin d’outils techniques plus avancés, notamment du vocabulaire
et des résultats de la théorie géométrique de la mesure.

L’interaction entre les problémes variationnels et la géométrie existe depuis longtemps. Parmi
les problémes & motivation géométrique les plus connus, on trouve celui de la courbe brachis-
tochrone [27,137], le principe de Fermat en optique [31], la science des matériaux [19] et la relativ-
ité générale [85,122]. Un probléme particuliérement important se pose lorsque la taille des objets
géométriques eux-mémes doit étre minimisée, ce qui conduit a ce que l'on appelle des surfaces
minimales [103]. Un exemple classique est le film de savon bidimensionnel s’étendant entre des
courbes limites prédéfinies et fixés, appelé probléme de Plateau [59, 140, 155].

Un cadre général pour résoudre cette question et d’autres questions connexes est appelé théorie
de la mesure géomeétrique et 'un de ses objets fondamentaux sont les chaines bémol ("flat chains")
[65,131]. L’énoncé de notre théoréme principal faisant intervenir des chaines bémol, nous al-
lons donc donner un rapide apercu des notions les plus importantes. Nous introduisons d’abord
’ensemble P* des chaines bémol polyhédrales avec des coefficients dans Zy de dimension k dans R>.
C’est I’ensemble des sommes formelles de polyédres compacts, convexes et orientés de dimension k
dans R? avec des coefficients dans le groupe Z,. Avec ’addition naturelle et I’identification d’un
polyédre qui résultent du collage d’une face commune avec la somme des polyédres individuels,
I’ensemble forme un groupe. Notez que pour un groupe de coeflicients général G, il faut également
prendre en compte les orientations des polyédres, ce qui n’est pas nécessaire pour notre cas simple
de coefficients qui appartiennent & Z,. Un élément P € P¥ peut donc étre écrit comme la somme

p
P =1z, 04, (1.9)
i=1

ou les o; sont des polyédres compacts, convexes et orientés qui peuvent étre choisis pour ne
pas se superposer. Le bord 0o d’un polyédre o est la somme formelle des faces polyédriques
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(k — 1)—dimensionnelles de o avec l'orientation induite et le coefficient 1 sous les identifications
mentionnées ci-dessus. Notons que 9(0o) = 0. Nous pouvons étendre linéairement cet opérateur
4 un opérateur de bord 9 : P¥ — PF~1. Pour une chaine polyédrale P € PF écrite comme dans
(1.9), nous définissons la masse M(P) = >F_ H*(0;) et la norme bémol F(P) par I'infimum de
M(Q) + M(R) parmi les Q € P**! et R € P* vérifient P = 9Q + R. L’espace des chaines bémol
F* est alors défini comme étant la complétion de P* par rapport a la norme F. L’opérateur limite
0 s’étend a un opérateur continu 0 : F* — F*~1 et nous désignons toujours par M la plus grande
extension semi-continue inférieure de la masse qui a été définie sur P*. De plus, pour tout A € F*,

F(A) = inf{M(Q)+M(R) : A=0Q+R,Q € F*¥'' Rec F*}.

Comime nous ’avons noté lors de la présentation du modéle de Landau-de Gennes, f est min-
imisé par des Q—tenseurs uniaxiaux Q € N dont le vecteur propre correspondant a la valeur
propre dominante n est t+es et donc la région dans laquelle @) est proche de ce QQ—tenseur ne
portera presque pas d’énergie. En cherchant un ensemble ot 1’énergie se concentrera, on peut
considérer I’ensemble {nz = 0}. Plus précisément, nous définissons 7 comme le sous-ensemble de
Sym, tel que, pour @ € T, la plus grande valeur propre A\;(Q) de @ est strictement plus grande
que la deuxiéme plus grande et telle que le vecteur propre n correspondant & A1 (@) a une troisiéme
composante nulle ng = 0.

Avec ces notations, notre théoréme principal peut étre résumé comme suit : soit £ C R3 un
ensemble (la particule solide) avec un bord M := OF de classe C'! et posons la condition au
bord (1.7) ou v est la normale sortante de OE. Soit I' :== {w € M : v3(w) = 0} une (union de)
courbe de classe C2. Si de plus n|In(£)| — B € (0,00) lorsque n,& — 0, alors n £, ¢ — & dans un
sens variationnel pour I’énergie limite & donnée par

Eo(T,S) = 2s.c.Eg(M,e3) + 4s,c. / |cos(0)] dpg| g + 4s.c.M(TL Q) + gsiﬂM(S) , (1.10)
M
ouT € F?2,8 € F' sont des chaines bémol dans Q avec 0T = S + T et

Fo(M, e) ::/{ >0}(1—cos(9))dw+/ (14 cos(8)) dw .

{v3<0}

La convergence variationnelle doit étre comprise de la maniére suivante : quitte & régulariser @, ¢
et ajouter une petite perturbation (qui disparait dans la limite), on trouve des chaines bémol T, ¢
et S, ¢ comme préimages de 7 et C qui convergent localement vers des chaines bémol 1" et S pour
la norme F et 0T = S +I'. Pour des T et S construits de cette maniére, on a ’estimation de type
I'—liminf
liminfn &, ¢(Qn.e) > & (T, S).
n—0

Réciproquement, pour toutes chaines bémol T, S tel que 0T = S +I', on peut construire une suite
Qy,¢ qui vérifie la convergence variationnelle décrite en haut vers T, S et telle que

limsupn &y ¢(Qn.e) < (T, S) .
n—0

Avant de donner quelques éléments de preuve, nous allons d’abord expliquer le lien entre
I’énergie (1.10) pour des particules convexes et celle du cas de linclusion sphérique (1.8). No-
tons d’abord que si la particule E est convexe, alors on peut projeter T" et S sur M, ceci diminuant
I’énergie et on obtient M(7'L.©2) = 0. De plus, il est possible d’écrire jiy ,, = xcH?L M pour un
ensemble mesurable G C M et donc on peut definir

F={weM\G : v(w)-e3>0U{we MNG : v(w)- es <0}.

L’énergie (1.10) devient donc

E(T,S) = 25*0*/

F

(1 —cos(f)) dw + 2s.cs /

(1+cos(0)) dw + ~s2BM(S) = &(F),
M\F 2
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car on peut exprimer OF = 0T +T = S. Dans ce sens, I’énergie (1.10) est une généralisation de
&y définie en (1.8).

La premiere étape pour démontrer la partie I'-liminf est de régulariser la suite @, ¢ et de
prouver que les deux suites sont proches en énergie. Si on admet que (), ¢ est suffisamment
régulier, par exemple comme minimiseur de &, ¢, cette étape n’est pas nécessaire. Ensuite on utilise
le théoréme de transversalité de Thom pour définir les chaines bémol T), ¢ = (Qye — Vi) *(T)
et Spe = (Qne — Yye) '(C) pour une petite perturbation Y, ¢ € Sym,. Les propriétés de
Sp.¢e ont été étudiées dans [43,44] et nous nous en servons. Notamment, S, ¢ est une ligne de
longueur controlée par 1’énergie. Avec un argument classique du type Modica et Mortola [127],
nous démontrons ensuite que 7, ¢ est une surface de masse finie si @), ¢ est proche d’un tenseur
uniaxial. La partie la plus délicate est d’estimer la taille de 7}, ¢ proche de son bord. Autour de
S dans 2, nous utilisons une construction inspirée par le théoréme de déformation pour remplacer
un morceau de T;, ¢ par des parties de facettes de cubes dont nous contrélons I'aire surfacique tout
en gardant la propriété que le bord de T}, ¢ coincide avec S, ¢ dans cette zone. Une procédure de
blow-up donne ensuite l’estimation précise de 1’énergie venant de T}, (. Aprés avoir obtenu une
borne uniforme sur la masse de T}, ¢ et S, ¢, la convergence par rapport a la norme F est une
conséquence du théoréme de compacité pour les chaines bémol.

La construction de @, ¢ pour I'inégalité du I'—limsup procéde en deux étapes. Premiérment,
nous montrons que n’importe quelle chaine bémol T' d’énergie £ (T) < oo peut étre approchée dans
la norme F par une chaine bémol qui est plus réguliére. Pour cela, nous prenons un minimiseur
T,, de la fonctionnelle T +— E(T) + nF(T — T). En utilisant des idées de la théorie de régularité
pour les surfaces minimales, il est possible de montrer que 7;, a des propriétés bien meilleures que
T qui nous serviront dans la suite. Deuxiémement, nous définissons la suite (), ¢, en fonction de
la distance et les vecteurs normaux et tangents de 7T, et 07, en utilisant les profils déja utilisés
dans le cas sphérique. Avec un argument diagonal, on obtient une suite @, ¢ qui vérifie 'inégalité
de I'—limsup.

La derniére partie du chapitre est consacrée a la question de la régularité et des conditions
d’optimalité. Un premier résultat de régularité a déja été montré pour la borne supérieure et,
en appliquant [130], il devient clair que les minimiseurs sont méme lisses dans €. Les conditions
d’optimalité peuvent étre déduites simplement comme dans le cas des surfaces minimales ou des
forces capillaires.

1.4 Résolution numérique du probléme limite

Dans le cas d’une inclusion sphérique, nous avons pu déterminer analytiquement les minimiseurs
du probléme limite. Comme le probléme de trouver des minimiseurs de & pour une inclusion
générale semble inabordable, la question d’une approximation numérique de ces minimiseurs se
pose naturellement.

La simplification principale consiste & remplacer les chaines bémol & valeurs dans Z, par des
courants a valeurs dans R. On utilisera une représentation de T' via un champ de vecteurs qui
peut étre vu comme le champ de normale de T et son bord par le rotationnel de u pointant dans
la direction tangentielle & 9T. La masse de T (resp. OT) et ainsi représentée par la norme L' de u
(resp. curl(u)). D’un point de vue numérique, nous discrétisons la particule par une triangulation
en utilisant un maillage adapté. L’intérieur de la particule est enlevé et une couche limite My,
remplace la surface M. Nous choisissons d’approcher la fonction u par u; appartenant & I’espace
des éléments finis de Nédélec en notant que curl(uz) € PY. La courbe I' est également approchée
par un champ de vecteurs tangentiels, construit comme rotationnel d’une fonction ug. La surface
de T s’écrit ainsi M(T') = ||un||z1 et la longueur de S est donnée par M(S) = ||curl(up)||z1. Pour
la minimisation nous utilisons l’algorithme des directions alternées (ADA, ou ADMM en anglais)
pour lequel notre probléme est le suivant :

mino Hpmax pHL1 + ||Qmax q||L17 (111)
P,q€P”,
u€Ned

16



sous la contrainte que

(L) (320 = ()

Les fonctions ppax, gmax Sont choisies pour prendre en compte la particule et la couche limite,
c’est-a-dire pmax €t gmax sont grandes & Uintérieur de la particule pour ne pas créer de T ni de S
dans cette zone, en dehors gmax = B et Pmax = 1, & exception de My, ol on pose pmax = |vs|, v
étant une extension de la normale de M.

Nous avons fait le choix d’étudier les trois formes représentées dans la Figure 1.4 :

1. une sphére qui est la particule la plus utilisée dans la littérature des colloides et pour laquelle
on posséde des résultats analytiques concernant les configurations minimisantes et le com-
portement de l’énergie. Ce cas peut donc nous servir comme cas de validation pour notre
algorithme;

2. une particule sous forme de cacahuéte avec une symétrie radiale autour d’un axe qui donc
permet d’étudier I'influence sur les singularités venant de 'orientation de la particule par
rapport au champ externe;

3. une particule de type croissant qui sert comme exemple que la ligne S et la surface T peuvent
se détacher de M sous des conditions appropriées. De plus, cette forme peut étre vue comme
une simple version d’un fer a cheval considerée dans la littérature [15] grace a ces applications
potentielles.

Figure 1.4: Les inclusions considérées dans les simulations numériques : sphére, cacahuéte et
croissant (de gauche a droite).

Avec les simulations autour de la sphére, on confirme les résultats obtenus théoriquement. On
trouve que les seules configurations minimisantes sont I’anneau de Saturne a I’équateur et le dipole,
voir Figure (1.5a),(1.5d). On retrouve aussi la croissance linéaire de ’énergie E}, en fonction de 5y,
dans le cas de ’anneau de Saturne, et I’énergie constante pour le dipole.

Pour la cacahuéte nous observons une plus grande variété de structures de défauts, en fonction
de B, et 'angle ¢ entre I’axe de symétrie de la particule et le champ extérieur H. Lorsque ¢ est
petit, la ligne I' est composée de trois composantes et donc pour 3;, petit on y trouve trois anneaux
de Saturne (Figure 1.5 (b)). Pour 8, plus grand, on observe encore un anneau tandis que les deux
autres anneaux ont été remplacés par la surface T joignant les deux composantes de I' sur M
(Figure 1.5 (e)). Si 8, devient encore plus grand, on retrouve un dipole créé par deux morceaux
de T collés a la surface M (Figure 1.5 (g)). Si ¢ est proche de 7, la situation est comparable a
celle de la sphére. Il n’y a que deux états que ’on observe : 'anneau de Saturne représenté par la
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ligne S a I’équateur (pour S, petit), et le dipole représenté par T' couvrant la moitié de la surface
de la cacahuéte (pour 8, grand). Pour §j, donné, on trouve que 'angle pour lequel 1’énergie est
minimale est proche de ¢ = 7 (pour 3}, petit) ou proche de ¢ = 0 (pour ), grand).

Enfin, nous donnons un apercgu des structures qu’il est possible d’observer pour le croissant.
En plus des structures déja observées dans les cas précédents, le croissant nous permet de voir
numériquement qu’il existe des situations ou il est énergétiquement favorable que la surface T se
détache de M. Notamment, la Figure 1.5 (h) montre un 7" qui s’est formé dans (2, avec un bord
qui est formé d’une partie de I" et une autre partie de S Q.

(h)

(8)

Figure 1.5: Minimiseurs de I’énergie & pour différentes valeurs de S, et differentes inclusions. On
trouve des configurations du type anneau de Saturne (a)-(c), du type dipole (d)-(f) ainsi que des
configurations intermédiaires (g)-(h).
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1.5 Conclusion et perspectives

Pour résumer, 'objectif de cette thése est d’étudier mathématiquement ’interaction complexe entre
un cristal liquide nématique, une particule immergée et un champ magnétique externe appliqué.
Dans le cas d’une seule particule sphérique, nous avons dérivé une énergie effective posée a la
surface de la particule qui peut décrire et expliquer les différentes structures de défauts ainsi que
les transitions entre elles. Nous avons vu comment ce modéle peut étre généralisé pour décrire
également les singularités autour d’une particule quelconque (réguliére). Nous avons implémenté
un algorithme numérique qui nous permet de calculer la forme et I’énergie des configurations
globalement minimisantes, nous aidant & comprendre quelles formes nous observons dans la réalité
pour des géomeétries compliquées.

Bien entendu, il ne s’agit que d’une premiére étape dans la compréhension des colloides dans
les cristaux liquides ce qui ouvrirait la voie a la manipulation des propriétés des cristaux liquides
eux-mémes et & ’assemblage de microstructures dans un milieu de cristaux liquides. Plusieurs
orientations futures pourraient étre envisagées a partir de 1a :

1. Comme nous nous intéressons aux colloides, une question naturelle serait de savoir s’il est
possible de décrire des assemblages de plusieurs particules dans le méme cadre que celui
que nous avons utilisé dans cette thése. Il est connu que si les particules sont suffisamment
proches, des lignes de singularité peuvent se former de maniére a enchevétrer plusieurs d’entre
elles et & former des chaines ou des couches. De plus, la topologie de ces lignes devient
intéressante car dans les expériences, on observe des noeuds et des liens, contrairement aux
anneaux de Saturne de topologie triviale que nous avons décrits dans ce travail.

2. D’un point de vue théorique, il serait aussi souhaitable de dériver un modéle d’ordre supérieur.
En effet, alors que dans la réalité ’anneau de Saturne reste & une certaine distance de la
particule, dans notre modéle il est, la plupart du temps, confiné a la surface de la particule.
Une énergie incluant des termes d’ordre linéaire dans n pourrait étre en mesure de fournir
des estimations sur la distance du défaut par rapport a la surface.

3. L’algorithme numérique que nous proposons ici doit étre étudié et amélioré. Pour étre justifié,
la preuve d’un résultat de consistance générale est nécessaire en plus des arguments que nous
donnons ici. Il serait également intéressant de prouver la convergence de notre méthode et
d’obtenir des estimations sur le taux de convergence.

4. Dans le cadre de la modélisation des cristaux liquides, on pourrait également analyser
comment nos résultats dépendent du modeéle de Landau-de Gennes que nous avons choisi
d’étudier. On pourrait essayer de prouver des résultats analogues pour différents potentiels
f, en allant au-dela de I'approximation & une constante, en faisant varier la température
ou en considérant un champ externe non homogéne. Comme nous nous intéressons a la
transition entre les singularités, on peut aussi se demander si ’on peut dériver une version
dynamique de notre modéle a partir du modéle de Beris-Edwards, en décrivant 1’évolution
des singularités par celles de S et T
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Chapter 2

The case of a spherical particle

This chapter has been published under the title "The Saturn Ring Effect in Nematic Liquid Crys-
tals with External Field: Effective Energy and Hysteresis" in the journal "Archive for Rational
Mechanics and Analysis" in 2021, see [8].

Abstract

In this work we consider the Landau-de Gennes model for liquid crystals with an external magnetic
field to model the occurrence of the Saturn ring effect under the assumption of rotational equivari-
ance. After a rescaling of the energy, a variational limit is derived. Our analysis relies on precise
estimates around the singularities and the study of a radial auxiliary problem in regions, where
a continuous director field exists. Studying the limit problem, we explain the transition between
the dipole and Saturn ring configuration and the occurence of a hysteresis phenomenon, giving a
rigorous explanation of what was derived and simulated previously by [H. Stark, Eur. Phys. J. B
10, 311-321 (1999)].

2.1 Introduction

Liquid crystals represent a state of matter with properties intermediate between liquids and crys-
talline solids. They are commonly referred to as rod like molecules (although there are other e.g.
disk shaped molecules) whose positional and orientational order may vary within space, time and
parameters such as temperature. For a general and complete introduction, we refer to [13, 58].
Depending on the alignment of the molecules and its symmetries, liquid crystals are generally di-
vided into nematic, smectic and cholesteric. Due to their unique properties, liquid crystals exhibit
remarkable structures and applications, see for example [100,115,133].

From a mathematical point of view, several models have been introduced to study the phenom-
ena arising from liquid crystals [21]. Roughly speaking, the Oseen-Frank model describes liquid
crystals by a unit vector field n, that represents the preferred direction of the molecules at a point,
averaging the fluctuations of the molecules. A peculiarity is, that in practice we do not distinguish
between n and —n, so that n should rather take values in a projective space RP? to avoid problems
with orientability.

In order to represent local averages of the directions of the molecules, one gets an additional
degree of freedom. Models describing the liquid crystal with such a variable include e.g. the
Ericksen model [63], [161, Ch.6]. The Landau-de Gennes model goes one step further by using the
idea to describe the arrangement of a liquid crystal by a probability distribution p on the sphere
of directions, taking into account that opposite points have the same probability. Then the first
moment vanishes and the (shifted) second moment @ is a symmetric traceless tensor, which is used
to model p. This allows to incorporate both the Oseen-Frank and Ericksen model into the Landau-
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de Gennes model. A more detailed introduction to the various models and even for more refined
generalizations of the Landau-de Gennes model, e.g. the Onsager model or Maier-Saupe model,
can be found in [20,163]. For the challenges and a comparison of the mentioned descriptions,
see [22,23,25,37,142]. In general, it is difficult to give precise descriptions of minimizers of the
energy functionals associated with one of the models explicitly, except in some very special cases
such as in [169] or for the radial hedgehog solution in [120].

Mathematically speaking, liquid crystal theory shares several techniques and results with other
subjects, for example the Ginzburg-Landau model in micromagnetics, [30,79,92]. Also parts of the
description, such as function spaces [18] and liftings [88,121], Q—tensors [34,132], the formation
of topological singularities [157] or similar energy functionals [49,144] are of interest in a more
abstract setting.

One interesting pattern one can observe in liquid crystals is the so called "Saturn ring" effect.
Under certain circumstances the defect structure forming in order to balance a topological charge
on the surface of an immersed object in liquid crystals, takes the form of a ring around the particle,
see [2,3,83,133]. Also more exotic structures such as knots are possible, we refer to [133] for an
overview. In addition, an electromagnetic field can be used to manipulate the occurrence of a
Saturn ring. While this is known in physics for several years [12,71-73,112,113,165], there are
only few mathematical results [4]. Starting from the Landau-de Gennes model, an equilibrium
configuration is found by minimization of the dimensionless free energy
1
e
under suitable anchoring boundary conditions. Here 2 is the region filled with the liquid crystal,
in our case the complement of the unit ball, i.e. @ = R\ B;(0) and Cy(£,7) is a renormalization
constant such that the energy is finite. The first term is the density for the elastic energy, while
f is a potential inducing a force which tends to push the material into an ordered state. The
parameter £ describes the ratio between elastic and bulk energy. We are going to consider the
limit of £ converging to zero, which can be interpreted as the limit for large particle. The effect of
an external magnetic field is described by the function g, with the parameter n coupling the field
to the elastic and bulk energy densities. We will consider a regime where also n — 0, not much
slower than &. In our limit of £,7 — 0, Cy converges to zero. To complete our model, we impose
a strong anchoring boundary condition on 92 that corresponds to a radial director field n = e,.
With € and 7 converging to zero, we can consider different regimes regarding the relative speed of
convergence of both parameters.

&6(@ = [ 5IVQF + 51(Q) + 50(@) + Coleon) do

1. The case of strong fields n|In(¢)| < 1, where we expect to observe a Saturn ring was treated
in [4].

2. The case n|In(§)| ~ 1, where the transition between dipole and Saturn ring takes place is
precisely the purpose of this paper.

3. In the case n|In(£)| > 1 we expect only dipole configurations, see Remark 2.3.3.

Our work is organized as follows. In the first section we define the different parts of the free energy
carefully, establish fundamental properties and discuss their effects in the minimizing process.

The second section contains the rescaling and states our main theorem, a sort of I'—convergence
result in a sense that will be precised later. We will prove, that in the limit 7, — 0 in our regime
and under the assumption of rotational equivariance, the model reduces to a simple energy stated
on the surface of the sphere S? = 9Q, of the form

£o(F) = 25.c. /

F

(1 —cos()) dw + 2s.cs / (1+ cos(d)) dw + gsszXFKg?) ,

where s,,c, > 0 is a parameter depending on f and F C S? is a set of finite perimeter that can
be seen as the projection of the region, in which a lifting of Q from RP? to S? exists and the
orientation at infinity agrees with the outward normal of 0B;. In the same spirit, F'° stands for
the region, where the lifting has the opposite orientation and | Dy r|(S?) denotes the perimeter of F
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in S?. In the above expression, f stands for the angle between a point w on the sphere and e;. We
see the latter perimeter term as representation of a defect line. It tells us that switching from one
orientation to the other comes with a cost, depending on the balance between the forces (modelled
by 3), s« which is related to the liquid crystal properties, ¢, which depends on the interaction
between magnetic field and liquid crystal and the length of the defect line. This is the result we
are going to prove in the next two sections.

Section 3 is divided into three parts: We first show that the energy bound implies the existence
of only a finite number of singularities if we are at some distance from the eg—axis. The main idea
will be to replace our functions @, ¢ by the minimizers of approximate problems and then use the
higher regularity to derive a lower bound on the energy cost of a singularity. The energy bound
then implies that in fact only finitely many singularities can occur. Next, we provide asymptotically
exact lower bounds for the energy near those singularities. Then, the radial auxiliary problem is
introduced. Given a ray from the surface 02 to infinity such that @, ¢ is close to being uniaxial
with prescribed scalar order parameter, we can explicitly calculate the energy necessary to turn
along the ray from our boundary conditions to the preferred configuration parallel to the external
field in +es—direction. Combining the results, we are able to prove the lower bound part of the
main theorem.

The construction of a recovery sequence is made in section four. We use our knowledge about
the interplay of the three parts of the energy to define approximate regions close to the particle
in which the energy of the first two terms of &, is concentrated and @ is uniaxial. Here we profit
from the exact formula of the optimal profile from the radial auxiliary problem. Apart from these
regions, we construct the singularities that give rise to the perimeter term of &.

The remaining section deals with the limit energy. We calculate the minimizers (depending on
B) and compare their energy with that of a dipole and a Saturn ring at the same S—value. We
find that by varying (8 a hysteresis phenomenon occurs. Our findings rigorously explain known
numerical simulations and physical reasoning in [105,154].

2.2 Scaling, definitions and preliminaries

Starting from the one constant approximation of the Landau-de Gennes free energy [139, Ch. 6,
Secs. 3-4 and Ch. 10, Sec. 2.3] (see also [57, Ch. 3, Secs. 1-2]) in Q,, = R?*\ B, (0) we find

Q= [ FIVQP - §u(@) - 5u(Q¥) + §1(@)? - juHEH: Qdr, (1)
-

where the last term is added to the Landau-de Gennes model to incorporate the effect of the
external magnetic field H. The length ry is the particle radius, the parameter L is the elastic
constant, a,b,c are the bulk constants depending on the liquid crystal material. They can be
temperature dependent, although it is usually assumed that only a has a linear dependence, i.e.
a = aog(T —T) for a reference temperature T} [132]. However, this case will not be discussed here.
As already noted, H is the magnetic field, which we choose to be parallel to es, i.e. H = hes and
Xa denotes the magnetic anisotropy. See [77] for more details on the modelling, in particular how
magnetic fields differ from electric and gravitational fields.

In order to be able to work on a fixed domain, we apply the rescaling €2 := %Qm and T = z/rg.
We introduce the new function Q(#) = Q(ro#) = Q(z) and V = V; = %Vm. Furthermore, we

write a = % and b = %. Then

£(Q) _/ Lrg YIVQ? +ric <—2tr(Q ) — gtr(@?’) + i(m@))z) - %Xah%g@gg di .

Dividing by Lrg, we can define
. i, o~y b~ 1, < 1 ~
Q) = / SIVQP + = (—gtr(QQ) - gtr(QB) + 4(tr(Q2))2> — ?Qgg dz, (2.2)
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where we introduced the new dimensionless parameters £ = , /CT% and n = ﬁ We choose
0 a’o

the coefficients @, b to be fixed from now on, which corresponds to choosing a material and keeping
the physical system at a constant temperature. For a common liquid crystal material such as
MBBA at a temperature of 25°C' we roughly find @ ~ 2.4, b = 1.8 [139, p.168]. The analysis and
particularly the constants in the estimates that appear in the following will generally depend on f
and thus on a and l~7, even if we do not explicitly state this dependence.

We are interested in the limit 1,£ — 0. In the standard Landau-de Gennes model, £ — 0 can
be interpreted as increasing the particle radius (see [76] for a detailed discussion). We impose the
asymptotic relation n|In(§)| — S € (0,00) which can be seen as a coupling of the parameters
and h, i.e. slowly decreasing the field strength h, while increasing the particle radius in a way that
keeps the system in a state where both Saturn ring and dipole configurations are likely to appear.

It is convenient to introduce a constant Cy in the integral of (2.1) to obtain a non-negative
energy density. In our case, this constant depends on £ and 7, but tends towards a constant
independent of those parameters as £, — 0. We will discuss the issue later in this section.

From now on, we will only consider the rescaled model and thus drop all tildes in our notation.
We continue this section by giving precise definitions for the function f modelling the bulk term and
quantities mentioned in the introduction. We will furthermore introduce a more general function
g for the magnetic term in (2.1).

Definition 2.2.1. We denote by Sym, the space of symmetric matrices with vanishing trace
Symg == {Q eR¥*® . QT =Q, tr(Q) =0},
equipped with the norm |Q| = \/tr(Q?). Furthermore, for a,b,c € R, b,c > 0 we define

£(Q) = 0~ S1x(@%) — Sm(@%) + & (@) (2.9

As we stated in the introduction, the definition of Sym, is motivated by the second order
moment of a probability distribution p on a sphere. The symmetry between +n reads p(n) = p(—n)
for alln € S?, i.e. the expectation value of n vanishes, [, n dp = 0. The second moment [, n@n dp
is symmetric and has trace 1. From this we subtract the second moment of a uniform distribution
on S?,ie. p= ﬁ to get the symmetric and traceless tensor Q).

The specific form of the function f comes from the requirement of being invariant under rota-
tions. Indeed, assuming a polynomial function f and demanding frame indifference for the bulk
energy (and of course for the elastic energy) we find that f has to satisfy f(Q) = f(RTQR) for all
R € O(3). This implies that f is the linear combination of tr(Q?), tr(Q3?), (tr(Q)?)?, tr(Q?)tr(Q?),
tr(Q?)?, tr(Q3)?, etc (see [20, Lemma 3]). It is convenient to consider only the first three terms
although one could in principle add more. The constant C' in (2.3) is chosen such that f is non-
negative and vanishes on uniaxial Q—tensors of a prescribed scalar order parameter (the set N
in Proposition 2.2.2 below). This is the main property of f one should keep in mind during our
analysis.

Proposition 2.2.2 (Properties of f). There ezists a constant C' such that f given by (2.8) satisfies

1. f(Q) 20 for all Q € Symg and mingesym, f(Q) = 0. Let

N = {3* <n®n—z1))ld) : nGSQ},

where S C R is the unit sphere and s, = 1 (l~7+ Vb2 +24EL>. Then N = f=1(0) is a

smooth, compact, connected manifold without boundary diffeomorphic to RP2. The constant

C' can be explicitly be calculated as C' = %sz + g—gsi — %sfﬁ.

2. Furthermore, there exist constants 8g,y1 > 0 such that if Q € Sym,, satisfies dist(Q, N') < dy,
then

£(Q) > m dist*(Q,N).
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3. There exist constants C1,Cy > 0 such that for all Q) € Sym,,
9 \2
r@za(lP-22) . pr@:ezaier-c

Note that all constants appearing in the above proposition are depending on a and b.

Proof. A proof of the first statement can be found in [121, Proposition 15]. For the second result,
we refer to [42, Lemma 2.4 (F3)]. The last assertions follows by elementary calculations as in [42,
Lemma 2.4 (Fp)]. O

The last two statements are of technical nature. The third property is used to establish
L*>°—bounds in Remark 2.3.2 and Proposition 2.4.4 and to establish Proposition 2.2.4 and Propo-
sition 2.2.6. The estimate in 2. simply states that one can think of f as being quadratic close to its
minimum which is attained on N. The first statement gives an interesting connection between f
and the space Sym,. In fact, A plays an important role in our analysis as it will allow us to identify
@ and +n and thus give a intuitive meaning to (). This is formalized in the next proposition.

Proposition 2.2.3 (Structure of Sym,). 1. For all Q € Sym, there exist s € [0,00) and r €

[0,1] such that
st((n@n—éld)+r<m®m—;1d>>, (2.4)

where n, m are normalized, orthogonal eigenvectors of Q. The values s and r are continuous
functions of Q.

2. LetC = {Q € Sym, : \1(Q) = X2(Q)}, where we denoted by A1, Ay the two leading eigenvalues
of Q. Then

C={Q e Symy\ {0} : 7(Q)=1}U{0} and C\ {0} =RP?xR.

3. There exists a continuous function R : Symy\C — N such that R(Q) = Q for all Q e N. In
particular, Symy \ C and N are homotopic. The map R can be chosen to be the nearest point
projection onto N'. In this case, for all Q € Sym, \ C decomposed as in (2.4), R is given by
R(Q) =s.(n®n— iId) .

Proof. The first part follows from [41, Lemma 1.3.1] for s = 2A; + Ag and r = (A1 + 2X2)/s, where
A1 > Ag are the two leading eigenvalues of (). The second part is a consequence of the definition of
s, in terms of the eigenvalues and [41, Lemma 1.3.5]. The last part is a reformulation of Lemma
1.3.6 and Lemma 1.3.7 in [41], together with Lemma 2.2.2. O

The decomposition (2.4) provides us with a very useful tool to perform calculations, for example
in Proposition 2.4.16, Proposition A.1.1 or Proposition A.1.2. In the second statement we introduce
C, a subset of the uniaxial @ —tensor, sometimes referred to as "oblate uniaxial" [69,119]. One can
think of C as a cone over RP2. If a Q—tensor is not oblate uniaxial, there exists a retraction onto N
which coincides with the nearest point projection and is given by the element of N corresponding
to the dominating eigenvector of Q.

In the remaining part of this chapter we are concerned with the magnetic energy term, which
will be modelled by a function g. We require g : Sym, — R to be of class C? away from 0 and to
satisfy the following properties:

1. The function g does not grow faster than f, i.e. there exists a constant C' > 0 such that for
all @ € Sym,

9(@)] < C(+Q"), (2.5)
[Dg(Q)] < C(1+]QP).



2. The preferred eigenvector of @ for g is es in the following sense: g is invariant by rotations
around the es—axis and the function O(3) > R ~ g(R"QR) is minimal if ej is eigenvector
to the maximal eigenvalue of RTQR. Decomposing @ as in (2.4) with n = ez and keeping s
and m fixed, then g(Q) is minimal for r = 0. For a uniaxial Q@ € N, i.e. Q = s.(n®n — 7Id)
for s, > 0 and n € S? we have

9(Q) = ¢Z(1 —nj). (2.7)

3. There exist constants d;,C' > 0 such that if @ € Sym, with dist(Q,N) < ¢ for 0 < § < ¢y,
then

19(Q) — 9(R(Q))] < C dist(Q,N) . (2.8)

The first and last conditions are technical assumptions. The former allows us to dominate g
by f. This is necessary, since g may be negative. The latter states the Lipschitz continuity of g
in a neighbourhood of A/ in normal direction. The second requirement contains the mathematical
translation of the physical model. The homogeneous magnetic field parallel to es should favour
the alignment of the dominating eigenvector of @) parallel to e3. Equation (2.7) expresses the
compatibility of our (Q—tensor analysis with the classical formulations for director fields. From a
mathematical point of view, it is possible to replace (2.7) by (2.7")

9(Q) > ¢}(1 —nj), 2.7)
and to obtain a similar limit energy, see Remark 2.4.18.

We note that the functions g; and g, defined as

2 _ Qa3
7a(Q) = %3* — Q33 and ¢2(Q) = {O 3 el g eiymo \ {0} 7

satisfy the above assumptions on g (see Appendix). The function g; (with ¢? = s,) is the natural
(physical) term to model a magnetic field [139, Ch.10], we have used it to derive our scaling in (2.1),
the constant 2 25« being part of Cp. Another possible choice is g2, which is a useful approximation

to g1 introduced in [71] and used e.g. in [4]. In this case ¢ = \/;

(2.9)

We finish this section by two propositions. Note that if ¢ > 0 (e.g. in the case g = g2), then
both propositions are trivial. The first proposition shows that under the above assumptions on f
and g there exists a unique minimizer Q¢ , of 5% Q)+ n% g(Q). This allows us to characterize
a constant Cy(&,n) such that the bulk energy density becomes non-negative and vanishes only at
Qoo ,¢,n- The second proposition expresses that if @ is close to A/ but the dominating eigenvector
n far from eg, then g has to be strictly positive.

Proposition 2.2.4. For {,n > 0 with £ < n, there exists a unique Q.¢,n € Symg such that

1 1
Qoo,en = argmin — f(Q) + —9(Q),
QESym, 5 n
given by s, ¢2 /.2 (€3 ® €3 — %Id), where |s. 1 — $«| < Ct with s, as in Proposition 2.2.2. Hence, for

Co(é:n) = =2 f(Qooen) = 779(Qoo6n) = 0 it also holds true that Co(€,n) < CE /.

Since s, ¢2 /52 = 84,0 = 8 for £, — 0 in our regime, we denote Q. = s.(e3 @ e3 — fId)

In the physically relevant case of g = g;, we have the expansion s, ¢2/,2 = 5. + (—2a — %bs* +

3
3cs - 152 +O( )

Proof. Let Q € Sym, be of norm \/gs* and let ¢ > 0. Then we can estimate

2 2 Cg
T 00+ —0(1Q) > 550/ — D = S +4Y).
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. 2 C +2-1)2 . .
So if we choose a [t — 1| > ¢, > 0 and —7572 < ol max(_q|>4, (Uit t4+1) , the above expression is
g >

positive. Let [|Q] — \/25,4 < 6 and dist(Q,N) > 6. Then f(Q) > fuin = min{f(Q) : Q €
Sym,, dist(Q,N) > d} > 0 and

1 1 fom  C
L L min Vel 53
for £2/n? < 20{11“1153)' By invariance of f under rotations and property 2. of g we know that a

minimizer () has the dominating eigenvector es or —e3 and has to verify r = 0. This allows us to
write Qs = s(es ® e — 31d) for s € (—C¥, C¥) for a constant C > 0. Taking the derivative with
respect to s in the energy of @, we get

2 2 4

d 1 1 1 1 1
e (ef(Qs) + an(QS)> - (—3as — §b52 + 9033) — ?Dg(QS) : (93 ® ez — gld) =0.

We multiply by £2 and since | Dg(Qs)| is bounded and & < 7 this equation admits a unique positive
solution corresponding to a minimum in the energy density, which we call s, ¢2/,2. This gives the
existence of a unique minimizer Q) ¢ , and the claimed representation. By a standard perturbation
theory argument we get the estimate |s,; — s.| < Ct.

Since |s, ¢2/m2 — s.| < C&? /1, we have the estimates f(Qoo,¢n) < C(£2/1?)? and |g(Qoc,e,n)| <
C&%/n? from which we get

1 ¢ 2 & £?
Co(&,n) < C?F_FOF??? < Cg-

Proposition 2.2.5. There exist a,dy > 0 such that if 0 < § < &g, then
min{g(Q) : Q € Sym, with dist(Q,N) <4, |Q — Quo| > aV/6} > 0.
Proof. Let 0 < § < mindy, 1, where d; is from (2.8). Let Q € Sym, such that dist(Q,N) < d. We
can apply (2.8) to g(Q) to get
9(Q) > g(R(Q)) — Cdist(Q,N) > ¢2(1-n3)-C5,
where ng is the third component of the dominating unit eigenvector of @, see Proposition 2.2.3.
Since |Q — R(Q)| = dist(Q,N) < § and |n| = |es| = 1 we can estimate
1Q — Quol? <2|Q — R(Q))? +2|R(Q) — Quo|® <20° +25n®n — e3 @ e3|* < 26% + 4s7(1 —nj),

and thus

2

“ra—4C)6 > 0,

C

2
9(Q) > ~|Q — Quo|?> —4C5 > (4

= Us2
4s2

if |Q— Qool > av/é for a > 0 large enough. In order to conclude, it remains to choose 0 < §y <
min{d;, 1} in such a way that the set {Q € Sym, with dist(Q,N) < ¢, |Q — Qu| > aV/6} is

non empty for all § € (0,d0). Setting dp = min{1, d;, %sfa’z}, we have av/§ < \/%s* + 4 for all
0 € (0,dp), i-e. the set is non-empty. O

As we have seen in Proposition 2.2.4, the minimizer Q¢ , of the bulk term is not part of N
(which has order parameter s,). We will introduce a slightly modified manifold N, ¢ such that

Qoo ¢,y € Ny ¢ and such that f(Q)+ f}—Zg(Q) +&2C0 (&, n) controls the squared distance of @ to this
new manifold, in analogy to f(Q) > ~1dist*(Q, N) from Proposition 2.2.2.
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Proposition 2.2.6. If £2/n* < 1, then there exists a smooth manifold N, ¢ C Sym,, diffeomorphic
to N such that

2

m®+%m@+€%@m2mmm%@Mm (2.10)

for a constant o > 0. In particular Qoo ¢y € Ny ¢. Furthermore, there exists a constant C' > 0
such that

sup dist(Q,N) <
QEN ¢

52
c>. (2.11)

Proof. We introduce the notation f, ¢(Q) for the LHS of (2.10).

Step 1: Definition of Ny ¢. Let Qo € N and {Py, Py, Ps} a orthonormal basis of (T, N)*. For
t € R? we define F(Qo,t) = D, fne(Qo+ t1P1 + taPy + t3P3), where D, denotes the derivative
normal to N. From perturbation theory it follows that there exists a ty € R? with [tg] < C g—z such
that F'(Qo,to) = 0. From Lemma 2.4 (F) in [42] we get that if P € Sym, orthogonal to TN,
then P - (D?f(Qo))P > 7|/ P||*. Hence, for Q; = Qo + t1P1 + t2 P> + t3P; it holds that

2 2
DiF(@ute) = Q)+ D2(Q) = Df(Qo) — Cluolta+ D20 > J1a,

since D?g is bounded in a compact neighbourhood of N, [to] < C’f]—z and f]—z < 1. By the

Implicit Function Theorem we conclude that there exists a smooth function ¢ : N' — R? such
that F(Qo,¥(Qo)) = 0. Thus, N, ¢ :={Q, : Qo € N and ty = ¥(Qo)} is a smooth manifold,
diffeomorphic to N. Furthermore, since 1 is continuous and N is compact, we deduce that (2.11)
holds.

Step 2: Control of the distance. Since £2/n? is small and f, ¢ grows faster than the RHS of
(2.10), we can use (2.11) and argue similar to Proposition 2.2.4 to deduce that (2.10) holds if
dist(Q, N;,¢) > ¢ for some small but fixed § > 0. Because of this, it is enough to show that (2.10)
holds for all @ € Sym, with dist(Q, N, ¢) < d. For such Q, we first define Qo = R(Q). Let
Q1 € N, ¢ be the element corresponding to Qo according to step 1. Then Q — Q1 € (T, N)* and
by Taylor expansion it holds that

fne(@Q) > fre(Q1) + Dyfre(Qr): (Q— Q1)+ %(Q — Q1) D*f,.6(Q1)(Q — Q1) — C3|Q — Q1>

Note that f, ¢(Q) > 0 and by construction D, f, ¢(Q1) : (Q — Q1) = 0. Evoking again Lemma 2.4
in [42], we get

fre@ = (F-Co)lQ-Quf*.

Choosing 6 > 0 small enough there exists a 7 > 0 such that 7 — Cd§ > 72 > 0 and since

dist(Q, Nye) < |Q — Q1] (2.10) follows.

From Proposition 2.2.4 we know that f, ¢(Qoc,¢n) = 0 and hence by (2.10) it follows that
diSt(Qoo@m,NmQ =0,ie Qxoen € NW,E‘ O

2.3 Statement of result

From equation (2.2) and using the notation introduced in the last section, we write our energy

1 1 1
£,6(@ = [ 3IVQF + 5 1(Q)+ —50(Q) + Co(erm) d. (212
which is the dimensionless free energy that was announced in the introduction. The natural
space for this energy to be well defined is H'(Q2,Symg) + Qoo ¢y With Qoo ¢, as in Proposition
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2.2.4. Minimizing the first term would lead to a harmonic map, the second term prefers @ to
be uniaxial with a certain scalar order parameter and hence norm, while the third term takes its
minimum when the director is aligned parallel to e3. So the (spatially) constant uniaxial map
Qooey = Swe2/m2 (es ® ez — %Id) would be a minimizer of our free energy. However, this will
violate the strong anchoring conditions we are going to impose on the boundary, namely we want
Qne € H' (2, Symg) + Qoo ¢,y to satisfy

Que=Qy on S?, (2.13)
where Q(z) = s, (x ®x — £1d). The system is therefore frustrated and we expect the minimizer
to be close to s.(es ® e3 — %Id) everywhere, except for a transition zone near the boundary. In

this boundary layer, which will turn out to be of thickness 7, we will find tubes of cross sectional
area &2 containing the regions where @, ¢ is biaxial.

Since the problem is equivariant with respect to rotations around the es—axis, it is natural to
consider only rotationally equivariant maps. We say that a map @ is rotationally equivariant if
@ is equivariant with respect to rotations around the eg-axis. In other words, using cylindrical
coordinates, one has

cosp —singp 0
Qp,p,2) = RZQ(mO,z)RW where R, = |sing cosp 0
0 0 1

For uniaxial maps @ = s,(n ® n — $Id) this is equivalent to the usual notion of equivariance for
vectors n(R,x) = R/ n(x). We define the set of admissible functions A to be the set of rotationally
equivariant functions @, ¢ € H(Q, Sym,) + Qoo ¢, satisfying the boundary condition (2.13). This
motivates the definition for Q@ € H' (2, R¥3) + Qoo ¢,y

Ene(Q) Qe A,

00 otherwise.

5;,4,\5 (Q) = {

We believe that minimizers of £, ¢ are also rotationally equivariant, although this does not follow
from our work and remains an open issue. We will remove the hypothesis of rotational equivariance
in a work in preparation.

The following theorem is the main result of the paper.

Theorem 2.3.1. Suppose that
n|n(€)| — B € (0,00) asn—0. (2.14)

Then 775;]‘}g — & in a variational sense, where the limiting energy & for a set F C S? is given by

(1+ cos(6)) dw + gs§6|DXF|(Sz). (2.15)

c

Eo(F) = 28*6*/

F

(1 —cos(f)) dw + 2s.cs /
More precisely, we have the following statements:

1. Compactness: For any sequence Q¢ € A such that n &, ¢(Qne) < C, there exists a mea-
surable set of finite perimeter ' C S? that is invariant under rotations w.r.t. the es— axis,
measurable functions n" : Q0 — S? and a set w, C Q with lim, o |w,| = 0, Q\ w, simply
connected, such that for all ¢ > 0 it holds n” € C°(Q\ (Z, Uwy,),S?) and for all R > 0

=0, xr, = XF pointwise, (2.16)

lim
0 L2(BR(0)\Z,)

n—

1
Sx (n77 Q@n" — 3Id) —Qne

where Z, = {x € R? : 22 + 23 <02} and F,, = {zx € 9Q : n"(z) - v(z) = —1}.

2. T—liminf: For any sequence Q, ¢ € A and any measurable set of finite perimeter F C S?,
measurable functions n : Q — S? and a measurable set w, C 2 that satisfy lim, o |w,| = 0,
Q\ w, simply connected with n” € C°(Q\ (Z, Uw,),S?) and (2.16) hold for all R,c > 0, we
have

liminfn &, ¢(Qne) > Eo(F). (2.17)
n—0
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3. T—limsup: For any measurable set of finite perimeter F C S? that is invariant under rotations
w.r.t. the es—axis there exists a sequence Q, ¢ € A with [|Qy ¢llr < \/gs* and measurable

functions n" : @ — S? with n"7 € C°(Q\ w,,, S?), lim, ¢ |wy| = 0, Q\ w,, simply connected,
such that (2.16) holds for all R,c > 0 and

lim sblp N Ene(@ne) < E(F). (2.18)

n—

Remark 2.3.2. 1. In view of (2.14) we can replace the bound n &, ¢(Qy,¢) < C, by

Ene(@ng) <C (14[In()]) . (2.19)

2. The convergence we show is not a I'—convergence in the classical sense since the limit func-
tional is defined on a different functions space.

3. The compactness can also be formulated globally: It holds

lim dist®(Qu.e, Npe) dz = 0
7]—)0 Q\ZU

for the manifold N, ¢ as in Proposition 2.2.6 which is a small perturbation (at distance at

most C’%) from the manifold N'. In addition if g is non-negative (e.g. in the case g = gs),

N,.e =N and we have the convergence
. 1
lim |[s,(n7@n" — ZId | — Q¢ = 0.
(e 3 LAO\Z,)

Remark 2.3.3. If 8 = oo in (2.14), then Theorem 2.8.1 holds for F = S* or F = (), i.e. no Saturn
ring structure can occur in the limit. In the case of g being non-negative, this follows easily: For
Que € HY(Q,Symg) + Qoo with 1€, ¢(Qye) < C we can introduce & such that n|In(§)] — B €
(0,00), i.e. this new sequence & decreases more slowly than . Hence gn,é < & Applying
Theorem 2.3.1 to this new energy we get the existence of a set Fig C S? such that

Eo(Fp) < linmjgfn Ene(Qne) < C.

Since the RHS is independent of 5 € (0,00), we find |Dxp,|(S*) — 0 as § — oo. From this we
conclude F = S? or F = () which have the same energy . For the case of general g one cannot
apply this trick, but using (2.42) it is possible to show that the perimeter of F, converges to zero
and that £y(S?) is indeed a lower bound.

2.4 Lower bound

In this section we prove the lower bound of Theorem 2.3.1. Our strategy to obtain the lower bound
is the following: First, we approximate the sequence @), ¢ by a more regular one named Q.. We
use € := & to meet the notation in [4,40,41] and let out 7 in our notation since n and £ are related
via (2.14), i.e.n ~ “n‘ﬁ We also write & instead of &, (. We find that away from the es-axis the
sequence Q. has only finitely many singularities in the neighbourhood of which Q. is far from N
Then we can estimate the energy of Q. nearby these points from below by balancing |[VQ.|* and
f(Q¢). In the region where Q. is close to N, we will use the optimal radial profile found in [4] by
balancing |VQ.|? and g(Q.).

2.4.1 Preliminaries

The construction of the approximation (). of @), ¢ follows several steps. First, we are going to show
that @), ¢ can be approximated by another function @), ¢ which verifies an additional L>*—bound.
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Proposition 2.4.1. Let Q,¢ € H'(Q,Symg) + Qooe.ny such that (2.19) holds. Then there exists
a constant C1 > 0 and Q, ¢ € H'(Q,Symg) + Qoo ¢,y which decreases the energy &, ¢, verifies

|@u.elle () < Ch (2.20)

andé;;—Qn,EﬁomL2 asn,& — 0.

Proof. Let N > \/gs* to be chosen later. We can define éﬁ» as

Qn 3 H
é:;/g — N|Q <] 1f|Qn,E‘>Na
Qe otherwise.

This function is clearly admissible and has lower Dirichlet energy. Since we cannot conclude that
(Q77 ¢) < g(Qy,¢), we need to show that the (possible) increase of the energy in g is compensated
by the decrease in f. So if @ € Sym, of norm 1 and ¢ > N, we get by (2.6) and Proposition 2.2.2

d t3 1+¢3
i (@100 + 590@) = -5 > 0
it N > N; with a certain N; large enough, depending on f and g. Hence, the sum of bulk and
magnetic energy of @, ¢ is smaller than the one of @, ¢ and we conclude &, ¢(Qy.¢) < En.e(Qn.e).
The L*°— bound is obvious. So it remains to show that ||Q, ¢ — to zero as

n,& — 0. We decompose €2 into two sets

Q={z : |Qne@)] < N}U{z : |@ye(r)] > N}

and note that [ |@7/g — Quel® =0if |Q,¢] < N. Hence, we only need to estimate the difference

|C§:€ — Qn.¢| on the second set. By Proposition 2.2.2 and (2.5) we get that there exists C, Ny > 0
(depending on f and g) such that if N > Ny, then for € Sym, with |@Q| > N it holds

|Q|\<2(\ | - ;QF+§CM&W)
52
n?

‘ 2 5
3

sc(ﬂ@ «m+§%@n0

For |@Q| > max{N1, N2} we additionally have |Q,, ¢ — C.j,\,/d = |N — |Qy¢l|. Taking N even bigger
if necessary it holds that

— 0. 2 dr = N — 2dz < C -
L o @ne Qe A%ww| @uefarsc [ |5 iau]
<C/f (Q) + €2Co(&,m) du < C(1 + | In )€

which converges to zero as £ — 0. This proves our claim for C; > N. O

Since g may not be regular in @ = 0 (for example if g = g2), we will replace g by g¢, with a
cut-off function ¢ such that g¢ is smooth, but keeps the relevant information from g. In order to
replace g in the energy, we just need to show that [(1 — ¢)g(Q,,¢) dz tends to zero in the limit
&,n — 0. This is made precise in the next proposition.

Proposition 2.4.2. Let ¢ € C*([0,00),[0,1]) be a cut-off function with ¢ = 1 on [gy,0) and

¢ =0 on [0,1q], where qo € (0, \/gs*) Then the function Q — g(Q)o(|Q|) is smooth and there

exists a constant C > 0 such that

2
/(1 — (|Qn.el)9(Qye) dz < Ci _
* n
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Proof. The smoothness of g¢ is obvious, since ¢ is smooth and we supposed g smooth away from
0. So it remains the energy estimate. First note that if Q € Sym, with |Q| < go, then for &, 1 small

enough £(Q) + £9(Q) +ECo(€,n) > L fuin > 0, where fygn = min{(Q) : Q € Symy, Q| < qo}.
Indeed, by Proposition 2.2.2 f;, > 0 and by (2.5) we can choose 5—2 small enough such that
%Q(Q) < %fmin- Since £2Cy(£,m) converges to zero as &, — 0, this can equally be bounded by
ifmin. Hence

2

23 F(Que) + S 0(@Que) +ECo(E ) da
{r€Q:|Qq,e(x)[<qo} n

1
> 5 i funl(w €9 ¢ [Qelo)] < an}l.

Now we use this estimate to bound

/Q (1= 6(Qye)g(Qy) do < Clfa €+ [Quele) < m} < O

O

From now on, we simply write ¢(Q) instead of ¢g(Q)¢(|Q|). We will also replace 7,£ in our
notation by e, i.e. 676 = @:5 For the sake of readability, we introduce the notation f.(Q) =
@)+ f]—zg(Q) +€2Cy(€,n). The next step will be defining the more regular sequence Q. replacing
@:. In view of the lower bound for the claimed I'-limit we still want ). to be rotationally
equivariant and that it converges to the same limit as @), while decreasing the energy.

We thus define the three dimensional approximate energy for 0 < v < 2 and w C Q
1 1 1 —
3D _ [t 2 _ 02
EXX(Q,w) = /w 2|VQ| + 62fE(Q) + 267|Q Qc|* dz.

We seek Q. by minimizing E3P(Q,Q) among rotationally equivariant fields Q. Because of the

equivariance, the problem can be stated as a two dimensional problem. Indeed, calculating |9,Q|?

for a rotationally equivariant map Q € H'(£2, Symg) + Qoo ¢, and using the equivariance, we can
write Q(p, p,2) = R;Q(p, 0,2)R, and thus

2

10,Q1 = |0, R) T QR + R QO,R,)|” = QI +6(QF, — Q1 Q22) -

This expression does no longer depend on ¢. In order to shorten notation, we introduce the matrix

1 9 2(Q11 — Q22) 4Q12 Q13
Qaxo = 3 (a|3¢Q|2> = 4Q21 2(Qe2 — Qu) Q23
@i i @31 Q32 0

Note that, Qax2 : Q = %|8¢Q|2. So the whole energy does not depend on ¢ any more and using

cylindrical coordinates, it can be rewritten as

2m
EP(Qe, Q) = / E2P(Qe, ) dp = 27 E2P(Q, &),
0
where E2P is the two dimensional energy given by
2D no_ P2 L . P P 12
EZ7(Q,w') = §|V QI+ =Q2x2: Q@+ S fe(Q) + 55 1Q — Q" dp dz,
. p € 2¢7
where V' = (9,,9,) denotes the two dimensional gradient and w’ C Q' = {(p,z) € R? : p >0, p*+

z? > 1}. In order to shorten notation, we are going to write 3|VQ|? instead of %|V’Q|2—|—p%@2x2 1Q
whenever we make no use of this division of the gradient. Now we define Q. to be

Q. = argmin E*P(Q,Q), (2.21)
QeA’

where A’ = {Q € H' (€, Symy)+ Qoo ¢, : (2.13) holds for p?+22 = 1}. We eventually extend Q. to
amap in H'(2, Symy)+Qeo ¢, which we will also call Q. by defining Q.(p, ¢, z) = RZQE(/)7 Z)Ry,.
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Remark 2.4.3. 1. Note that @;|Q/ is an admissible function in (2.21), so that Q. does ezist.
2. The function Q. has lower energy than @:
3. Thanks to the energy bound in (2.19) we know that
1Qc — Qcll320) < C(|Inel + 1) =0 ase—0,
i.e. the two sequences have the same limit for vanishing e.

4. The minimizer QQ. solves the two dimensional Fuler-Lagrange equation

~PAQ+ SQupa— 0,0+ 5DLQ+ 2@ -Q) = A1 2

Note that the equation contains an additional term (RHS) due to the fact that Sym, is a
subspace of the space of real matrices, i.e. a Lagrange multiplier A is needed to ensure the
tracelessness constraint.

5. The function Q. also solves the three dimensional Euler-Lagrange equation

_AQ+ E%DfE(QE) + %(Qe ~0.) = Asp 1d, (2.23)
despite the fact that it does not need to be a minimizer of E3P. To see this, write
AspTd= ~AQ. + 5DLQ) + =(Q ~ Q)
= 02Q. ~ ~0,0 — 5030~ 92Q + 5 DLQ) + 5(Q~ Q)

— 7 (030 20,00 - 020+ 5@~ Q) B,

1 1
~ 50 (ByQeRy) + 5 Dfe(Ry QeRy).

One can ezplicitly calculate that ai(RgQERw) = R;IQQXQ’ERW and since f. is invariant
under the change @ < R;QRW for symmetric matrices Q), we also have DfE(RngR@) =

R;Dfe(QE)Rg,. This implies that a rotationally equivariant extended solution of (2.22) is
also solution of (2.23).

The last part of this subsection will be the following proposition which quantifies the regularity
we have gained by replacing Q. with Q.. This result relies on the three dimensional Euler-Lagrange
equation. In fact, this is the only time we use (2.23) and cannot use (2.22) due to its singular
behaviour near p = 0.

Proposition 2.4.4. Let H@:”LO" < C1 for a constant Cy > \/gs* > 0 and let Q. be the rotationally
equivariant extended minimizer of (2.21). Then Q. € C'(Q, Symy),

c
||Q€||L°° <C and ||VQ6HL°° < ?

Proof. From equation (2.23) and by elliptic regularity we deduce that for @: € H! we have Q. €

H3 ie. Q. € C1 since we are in dimension 3. Note that the boundary of €2 is smooth. To prove
the L*°-bounds we take a constant Cy > C} such that Df.(Q) : Q@ > 0 for all Q € Sym, with
|Q| > C5. This is possible due to Proposition 2.2.2 and (2.6). We define a comparison map

o {ngjl if Q| > Cs,

Q- otherwise.
Then |VQ.| < |VQ.], |Qc — @:| < Qe — @:\ and f.(Q) < f.(Q.) by Proposition 2.2.2 and our

choice of Cy. Hence E3P(Q., Q) < E3P(Q., Q) with strict inequality unless Q. = Q.. The estimate
[VQc||L= < € follows from [29, Lemma A.2], using (2.23), (2.20) and v < 2. O
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2.4.2 Finite number of singularities away from p =0

We introduce the notation Q, = {z € Q : 27 + 23 > 02} = Q\ Z, for o > 0, with Z, defined as
in Theorem 2.3.1. In the same spirit, we define the two dimensional analogue 2. = {(p,z) € ' :
p > o}, ie. Q, can be obtained from 2 through rotation around the ez—axis.

The main theorem we want to prove in this subsection is the following:

Theorem 2.4.5. For all 0,0 > 0 there exists Ao, €0 > 0 such that for € < g there is a set X, C Q/
which satisfies:

1. The set X. is finite and its cardinality is bounded independently of €.
2. If x € Q) and dist(z, X) > Aoe, then dist(Q.(x),N) < 4.

The general idea behind this subsection is the same as in [40,41], where the analysis has been
carried out for the case of minimizers of the energy [ |VQ.|*> + % f(Q.) and uses ideas from [28].
We will show that in our situation with the modified bulk potential f. and the additional term
L |Qc—Qc||? - the same results hold. There are two main ingredients for the proof of Theorem 2.4.5:
Proposition 2.4.11 that tells us that a singularity has an energy cost of order |In ¢| and Proposition
2.4.7 that allows us to deduce that Q. is close to N (and hence being uniaxial) provided % [ fo(Q.)
is sufficiently small. While the second ingredient uses only the regularity of Q., the first one makes
use of equation (2.22) in the form of the following proposition.

Proposition 2.4.6 (Pohozaev identity). Let Q. be the minimizer of (2.21) and w' C Q' open with
Lipschitz boundary, T € w’'. Then
1

1 1 1 —
/&u’ p((x _f) : V) (2|V/Q6|2 + ﬁ|&p@e|2 + ?fe(@e) + ﬁ'QE - Qe|2)
1

1 1 3 3 ~
n 12, L 1 2, 2 9 _ 2
5[ Aver+g [ S0l 5 [ @i+ gs [ e-al
1 — ~
+ 2 [ Q=00 (=) YD+ [ p(e=7)VQ): (- VQ).
where v denotes the outward unit normal vector on Ow’.

Proof. To improve readability, we drop the subscripts € in the proof. Our calculation only requires
that @ is solution of equation (2.22).

Let ' C Q' open with Lipschitz boundary and let T € w’ be an arbitrary point. By translation
and without loss of generality we may assume that T = 0. Testing the ij-component of equation
(2.22) with 2,0,Q;; and summing over i, j, k we find

1 of. 1 ~
0= E k/w/ —pAQ;;x10LQ5 + = /w/ PaQZ_j TR0 Qis + = /w/ P(Qij — Qij) Tk Qij
2,7,

1 (2.24)
—/ 0,Qi; 210k Qij +/ ;Q2><2,ij$kainj
= I+ I1T+I1IT+1IV+V.

Note, that the RHS of (2.22) vanishes since @);; is traceless, i.e.

> [ A000Qs =Y [ Andn 3650 | =3 [ Andue@) —o
ik’ PR i,j PR

For the first term (I) we calculate, using integration by parts

Z/ —p 07 Qi 0k Qi = Z / PalQij5zk3inj+/ P 01Qi;x 010k Qi
il 7 Bkl 7 ¢ (2.25)

—/ PazQijfﬂkainsz-i-/ 00101Qj0k Qi Tk,
ow’ W’
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where v is the outward-pointing normal vector on dw’. Note, that the last term reads fw, (0,Q) :
((z - V)Q) and thus is cancelled by (IV). We apply another integration by parts to the second
term on the RHS of (2.25). This yields

> [ ro@umona, = ¥ 5 [ sno00,00)

i,5,k,l i,7,k,l w’
= —*Z/ p 01Qi;0Qs5 + Z / p 01Qi;0Qi kg
il igkl o O
—5/ OpkTk01Qi 01 Qi
Combined with (2.25) this gives
2 1 / 2 1 / 2 / /
I+1V={1-5-5) [ pIVQ+5 g PIVQF(z-v) ~ g (@ VQ): (v VQ)

(2.26)

The second integral (IT) simply gives

1 1 1
H—ijez/wpak(fe(@m—@/w/ W@+ [ ph@@o. @)

For (III) we need to add (and subtract) the same integral with derivatives on @; Then
1 ~
1T = 5/ P (Qij — Qij ) Ok Qijrk
UJ/
1 - 1 o
=— [ pok(Qij — Qij)°xr + el (Qij — Qij)OkQijxy
w’ w’

2@3 R B (2.28)
=34 /, p(Qij — Qiy)* + 2 Sy’ (Qij — Qij)*wpvy,
1 - -
t= /MP( ij — Qij) Ok Qi T
The fifth integral (V) simply gives
1 1
[ @ (@)@ = [ 5o 9@ Q)
¥ 1 1 1 1 (2.29)
ey Oy g
Combining (2.26), (2.27), (2.28) and (2.29), the equality (2.24) reads
1, 1 1 1 -
| sen(5ivar z—pglwﬁ +51Q) + 5510 - OF)
1 3
=5 [ oIVt + 5 [ pr@+ 55 [ vla-ap
1
— \vi V'Q): (v-V'Q),
+5 [ Q-0 @ v+ [ p@-VQ:w-T
which gives the result.
O

Since almost all term in consideration contain a p factor due to the passage from €2 to Q, it is
natural to introduce
p&in(xOv l) := inf {p : (p7 Z) € Bl(xO) N Q;} ’ (230)
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for a point zg € @/ and I > 0. Note that if we write xo = (po, 20), then pZ.. (zo,1) = max{po—1,0}.
In particular, pZ; (xo,1) > o.

The following proposition is a key ingredient in the proof of Theorem 2.4.5.

Proposition 2.4.7. For all § > 0 there exist constants Ao, 1o > 0 such that for all o > 0, xg € QL,
e small enough and | € [\oe, 1] the following implication holds:

1

1 / P 1(Q0) < po o (20, 21) = dist(Qe,N) < & on By(zo) N,
€ le(wo)ﬁﬂg

Proof. We claim that Ag, 1o can be defined as

)

s
Ao = — = =A% fiin s
0 207 Ho ] Of

where C'is a constant such that ¢||VQ.||z~ < C (see Proposition 2.4.4) and fui, is the minimum
of f on the set {Q € Sym, : |Q| < \/gs*,dist(QM\/') > §/2}. Note that fun > 0 since on this

compact set f is strictly positive. Furthermore, for € small enough, we also have f. > % Sfmin ON
this set.

In order to show that the definition indeed gives the desired implication, we argue by con-
tradiction. Therefore we assume that there exists g € Q and I € [Age, 1] such that there is an

r € By (xo) n Q:; with e% fB2l(To)ﬁny P fe(Qe) < ,U'Oprgnin(x()v 21) and diSt(Qe(‘r)w/\/) > 0.

This implies that By,c(x) C By (xo)N(R?\ B1(0)). Indeed one can show that dist(z, 92) > Age.
Otherwise one would have dist(Q.(z),N') < [|[VQe||pdist(z, Q) < CAg = $ by definition of .
This clearly contradicts the assumption that dist(Qe(z),N) > 6. Then, for all y € By,(z) N,
by the triangle inequality

Ast(Qe(y). A) 2 dit(Qu(), ) ~ [Qel) — Quly)] > 6~ o V@l 2 5.

By definition of fui, this implies f.(Q.(y)) > %fmin. Since By,c(z) N QL C Bo(z) N QL and
|Bage(2) N Q| > 27(Ao€)? we know that

1 1,
j/ p fe(Qe) > jpmin(mOvzl)/ fe(Qe)
€ J Bay(z0)N, € Bige(z)NQ,
1 o m 2 1 o
> ?pmin(xm 21)5()\06) gfmin = 2M0pmin(x07 21) )
which contradicts our assumption. O

The next lemma basically tells us that for o € (0, 1) there has to be some radius r < €*/2 so that
we can control the energy on 0B, in terms of the energy on B../2. It will become important later
on when we will use it to bound the energy contributions of the boundary terms from Pohozaev
identity (Proposition 2.4.6).

Lemma 2.4.8. For all x¢ € Q) there exists r € (¢*,€2) (depending on xo and €) such that

1

1 1 . AE2D(Q,, Bay2(20) N QY
/ (5IVQP + 5100 + 510~ QP ) o < Qe Beelz0) 09)
OB, (x0)NQY €

ar|lne|

27

Proof. The proof consists of an averaging argument. Assume that no such r exists. With the
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notation B’ = Ba/2(zp) N Q’, this would imply

1 1 1
E2D € / / < \Y% 524_* e\We 2> dz dr
(@ o (BVeR s B@) + grie - @

/ / < |VQ5|2 + fe(Qe) 21'y| Q 2) dx dr
OB, (z0)NQY

/2

4E?P(Q. 1
2762’ )/ = dr

allne] r
AE?P(Q.,B')
=€ ‘*7 /7]
allne| 2 | In(e)]

= 2E€2D(Q€7B/) .

This gives that E2P(Q., B') = 0 and thus Q. is constant on B’ and Q. = @; = (o,e- But since
the constant map (), satisfies the lemma, we get a contradiction. O

The following two results (Lemma 2.4.10 and Proposition 2.4.11) are similar to [28], see also
[41, Lemma 1.4.8, Proposition 1.4.9]. Lemma 2.4.10 states that we can derive a better bound
(independent of €) than (2.19) on balls B« for the energy contribution of f.. Then Proposition
2.4.11 tells us the cost in terms of energy for such a ball if Q. is not close to A. Both results rely
on the Pohozaev identity (Proposition 2.4.6) and Lemma 2.4.8. We start with a proposition that
will help us in the proof of Lemma 2.4.10 to obtain estimates at the boundary of 9.

Proposition 2.4.9. There exist constants Cq,e; > 0 such that for all 0 < € < ¢, r € (e*,€%)
and y € Q' there exists z € B,.(y) N such that

v(z) - (x—2) > Car Yo €dQ NB.(y),

where v is the outward unit normal on OSY.

Proof. Let us start by considering the domain R = {(x1,72) € R? : x1,22 > 0}. Let y € R and
r > 0 such that B,(y) N R # () (otherwise the result is trivial). Let Ly = |{za = 0} N B,(y)|
and Ly = [{z1 = 0} N By(y)|. Then we define z = y + 5 (R1/L(0,1)" + Ly/L(1,0)"), where
L? = L2 + L3. We will show that this definition of z indeed satisfies our claim. Without loss of
generality we may assume that y; > y2. We consider the following cases:

1. (0,0) € B,(y). In this case, L1 = y1 + /7% —y3 and Ly = yo + 2 —y2. Let x = (21,0).
Then v(x) = (0,—1)" and
r Ly r Ly
. —_ = — [—— > _—.
V@) (2= 2) = (g — ) + 5ok 2 L2

Analogously, for z = (0,22) we find v - (x — 2) > %% Since y; > y» we have also the
inequality Ly > Lo. Minimizing Lo /L subject to the constraint y; > yo we get y1 = yo and
thus Ly = Lo, ie. v(z) - (x — 2) > 2\%.

2. Ly # 0and (0,0) ¢ B,(y). Then Ly = 24/r2 — y3 and Ly = 24/72 — y?. A similar calculation
as in the first case shows that v(x) - (x — 2) > 2\7”/5.

3. Ly = 0. The lengths L, Lo are given as in the second case, but since Ly, = 0 we get directly
viz) (z—2) >t =1

Now we consider the domain Q. For a radius 0 < r < 2 the angular difference between the

normal vectors of Q' and R is smaller than arccos(1 — 7). Thus, for € small enough, 0 < € < €,

r € (¢%,€%), we can find Cq > 0 such that

v(z) (z—2)> gcos <% + arccos(1 — r)) > gcos (% + arccos(1 — e‘f/2)) >Cqr>0.
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Lemma 2.4.10. Let zg € . Then there exists a constant Co, > 0 which depends only on «,~,Q,
the energy bound in (2.19) and the boundary data in (2.13) such that if € is small enough

1
672 pfe(Qe) dz < C, .

B.a (20)NY

Proof. By Lemma, 2.4.8 there exists r € (¢%, €2 ) and a constant C' > 0 such that for e small enough

Ql

ar

1 2, 1 1 ~ 5
/SBT(IQ)QQ’ p(2|er| +€3fe(Qe) + g‘@e - Q| ) < =, (2.31)

where we also used the energy bound (2.19).

Now assume in a first step that B,.(zg) C €. Using the Pohozaev identity from Proposition
2.4.6 with w’ = B,(z¢) and T = x, we find

S @i [ pam) ) (5V0F 50@) + srie - @)
+= 0= —a) - R (2.32)
-/ o P20 Q) (7).
Notice that since x € 0B, (z¢) we have (z — z¢) - V'Q. =rv - V'Q,, i.e.
(z—20) V'Qo): (v V'Q) =7v-V'Q|* >0,
and (r — z0) - v = r|v|? = r. Substituting this into (2.32), one gets
Sfen@sr[ o (GVQRt 5@+ 50 -G
L 1= Gl —20) - V'Ql.

~
€ B, (;CO)

By (2.31) and Cauchy-Schwarz inequality this entails

3 C r —~ : ~
) er@asrs ([ pe-Qk) ([ svar
€ JB.(z0) ar ¢ Br(x0) By (x0)

c
o

1
2

1
o (1+ |lne))?e”)® < + Cela=m/4

€Y
provided a > v and € small enough. This proves the claim in the case where B,.(z¢) C .

In a second step we show that the result also holds if B, (zo) € €. We define I' = B,.(z¢) N9
which is now non-empty. This enables us to write (B, (xo) N Q') =T U (IB,(x9) N Q). Again we
apply Proposition 2.4.6 with ' = B, (z¢) N Q' but this time we set T = z, where z € Q' N B,.(x0)
is given by Proposition 2.4.9 for y = z¢. By Proposition 2.4.6 we get

: T 1 2 1 1 o
62/Br(zo)ﬁQ’pfE(Qe) dz < /c'?BT(xo)r‘]Q/p((xz).y) <2er| +€*2fe(Qe)+g‘Qeer| )
1 1 1 _
+/FP (z—7)-v) <2VQ52 + G—Qfe(Qe) + @‘Qe _ Qe|2)
3 o N -
_ € € - — e — o) _ . V
ol SO WA AR CRE R o)
_/p((x—f) V'Qe) : (v V'Qe) —/ p((x—F)-V'Q): (v-V'Q.),
: OB, (zo)NQY
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where we denoted v the unit outward normal. For the integrals on 0B,.(z9) N and B, (xo) N we
proceed as before using |(z —T)-v| < 2r. Note, that this time (z —Z)-7 does not necessarily vanish.
Nevertheless, the integral involving this term can be estimated from above by [, 5. 2rp [V Q|?
and then be estimated using (2.31). Now we estimate the integrals involving I". First note that
Qc = Qe = Qp on Eﬂ o0 with f(Qp) = 0, ie. frman f(Q)=0 afrmagp fe(Qe) < CQbea/2/772
and [ 900 |Qc — Q> = 0. On T\ 9Q C {p = 0} we find that all integrals vanish because of
the bounds in Q. established in Proposition 2.4.4. We are left with the two integrals on I' N 92
with gradients. The idea is now to split the gradient into a tangential and a normal part. The
tangential part depends only on the boundary data @Qp, the normal part needs to be estimated.
So let 7 be the unit tangent vector on I'. Decomposing V'Q. = (v - V'Q)v + (7 - V'Qe)T and
substituting this into [ .o p(z — T) - v3|V'Qc|* yields

3 C
e p f(Qc) dv < 4+ CeOTVE 4 Cg, e/ = / p((=7)-V'Q): (v-V'Q)
€ JB,(x0)NQ’ « rho0
1 1
+*/ p((x—=7)-v)lv-V'Q|* + / p((x =) -v)|r-V'Q. |
2 Jrron 2 Jrron
c (a=7)/4 a/a_ 1 _ B
<4= 4 O/ L O, et — = p((x—7) V)| -V'Qd
@ 2 Jrrog

[ plam v - vQu),
T'no

where we used that (x — %) = (x — %) - v)v + ((x — ) - 7) - 7 and that 7- V'Q. = 7 - V'Q, only
depends on the given boundary values. We apply the inequality ab < a?/(2C?) + C?b?/2 with
C = +/Cq/2 from Proposition 2.4.9 to get

C 1
- p1Q) dr <45 40y Gt = [ (-3 )l VP
€ JB,.(Qo)ne ! 2 Jrroq
1 _ / 2 CQ — / 2
+ — pllx—7) 7||7-V'Qu|” + — pllx—7) -7|lv-V'Q.]*.
Ca Jrroo 4 Jrroa

Then we apply Proposition 2.4.9 to get

1 C 1
] pFe(Qc) dz < 4— + OO/ 4 Cg, e/t — / Carp v V'Qc?
€ JB.(Qone a 2 Jonoo
C
+=5 | 2rplyVQ?
4 rnog

C
=4— Celo=M/4 1 0, e/t
O

We have now all the necessary tools to prove the second important ingredient for the proof of
Theorem 2.4.5.

Proposition 2.4.11. For all §,0 > 0 there exist €2, (o > 0 such that for 0 < e < €3 and xg € QL
the following implication holds:

dist(Qc(z0),N) > =  E?P(Qc, Bea(20) N Q) > Col|Ine| + 1)p%;, (20, ),
with p%., > o defined as in (2.30). The constant {, can be chosen to be dependent only on o and

6, while es depends on 6,0, a, .

Proof. Let’s assume that the conclusion does not hold at xo € Q, i.e. E*P(Q., Bea(79) N Y) <

o)

Co(|Ine] + 1)pZ ;. (w0, €*). Then there exists a radius r € (2%, e®) such that

1 1 1 —~ 2CapS i (0, €
/ p (VQSP F Q) + Q. — QEP) dp < Balmin(@o. ) g g
OB, (o) 2 €

2¢e7 ar
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Indeed, otherwise

60/ 2 o 0'. (03
E*’(Qe, Beo (z0) N Q) > / Cp%fo’e) dr = 2apZs (20, €%)| In(e)]
6204

which clearly contradicts our assumption for e < é
Replacing (2.31) by (2.33) in the proof of Lemma 2.4.10, i.e. C = 2(,p%;, (%0, €%), we find

1 8Ca Pl in(To, €*
) pfe(Qe) S w
€ JB,.(z0)NQY «a

+ Cega*‘f)/‘l ,

where the constant C' can be chosen to be independent of o and e. We choose €5 small enough

4
such that it satisfies the estimate \gey < %eg‘. Now choose ¢, < %52 and €3 < (555)==7, where pq

is the constant from Proposition 2.4.7. These bounds imply that popZ;,(zo, €*) > 8arrin(@0”) |

«

Ce(Qa_’Y)M, i.e. we can apply Proposition 2.4.7 with I = €. This implies dist(Q.(zo),N) < 6,

which proves the claim. O

Now we can finally prove Theorem 2.4.5 and define the set of singularities X.. To do this, one
can proceed as follows: In a first step we cover 2 with balls of size €¢* and look for balls where
the energy is large. The number of such balls has to be finite because of the energy bound. In
view of Proposition 2.4.11, Q). will be almost uniaxial outside of these balls. In the second step we
improve our estimates to the scale e. We cover the balls with high energy from step one with balls
of size € and determine balls where f is large. By Lemma 2.4.10 this number will be finite too and
Proposition 2.4.7 implies that Q. is indeed close to A/ on all other balls. We can then take X, to
be the set of all centers of balls with large energy.

Y2 S Ie \ Je
dist(Qe, N) <6

Figure 2.1: First covering argument: Find balls B.., where the energy is large

Proof of Theorem 2.4.5. Let 6,0 > 0 be given and choose a € (0,1). Let {Bea(y) : y € Q'} be a
covering of . By Vitali Covering Lemma there exists a countable family of points {y;};cr. such
that

V' C | Bea(wi), Biea(ys) NBrealy;) = 0if i # 5.
i€,

Let {, > 0 be given as in Proposition 2.4.11. We define

Jo = {i€l : B?®(Qc,Baec(y;) N Q) > Ca(1+ |Ine])a} .
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Then by the energy bound (2.19),

Call+ me))ott e < 37 E2P(Q, Baeo () N Q) < CEZP(Q, ) < C(1 + |Inel).  (2.34)
i€Je

Indeed, note that there is a constant C' depending only on the space dimension such that each
point in ' is covered by at most C balls. This implies the second inequality in (2.34). From
(2.34) we directly infer that the cardinality of J. is bounded by a constant dependent on §, o, «
as well as the space dimension and the energy bound, but independent of €. Let ¢ € I, \ J. and
7o € Bea(y;)NQ, . If dist(Qc (7o), N) > § we deduce by Proposition 2.4.11 that E2P(Q., Baca (y;)N
Q) > E?P(Q., Beo (20) N Q') > (o(]In(€)| + 1), a contradiction to i € I, \ J.. Hence

dist(Qc(x),N) <6 Vo € Bea(y;) NQ i €I\ Je.

See also Figure 2.1. Note, that this estimate is not good enough since we announced the radius
around points in X, to be of order € instead of €.

Now fix ¢ € J.. Again by Vitali Covering Lemma we can consider a covering of Bea (y;) N2 of
the form
Bea(y) 09 € | Broe(25), Bunge(55) N Bysyelen) =0 j £ b,
JELc

with all z; € Bea(y;) and where )¢ is given by Proposition 2.4.7. Furthermore, we define

. 1
Jei = {J €lei: 3/ p fe(Qe) = ko U} ;
€ JBarge ()N

with po again from Proposition 2.4.7. By Lemma 2.4.10, recalling that 2\pe < €
1 C
Ho O #Jﬁ”i < Z 7/ pfe(Qe) < 7/ pfe(Qe) < Com (235)
Jede € JBarge(2)NQ, € JBea (yi)nQv

so that #J.; is also bounded independently of e. Applying Proposition 2.4.7 to the sets Bay,c(z;)
for j € I.; \ Je,; we get that dist(Qc(z),N) < d for all z € By,e(z;) N, see Figure 2.2. Thus,
setting X == (U{z; : j € U,c;, Jei} yields the result. O

dist(Qe, V) <8

Figure 2.2: Second covering argument: Find balls, where 6% [ pfe(Qe) is large
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2.4.3 Lower bound near singularities

The goal of this subsection is to precisely determine the cost of a singularity. The plan is to
use estimates as in [47, Chapter 6] which generalize the idea of [92,144]. The general idea is to
decompose the gradient of a function into a derivative of its norm and of its phase as for example

2
Vul? = |V]ull? + |u|2’V—|u| |
u

for any vectorial function u that does not vanish. Following [41], we replace the phase u/|u| by the
projection of Q. onto N. As a substitute for the norm, we introduce the auxiliary function ¢.

Definition 2.4.12. We define the function ¢ : Symy — R by

Ls(@Q)(1-7(Q) Qe Symy\ {0},

where s, is given as in Proposition 2.2.2 and s,r are the parameters from the decomposition of Q
in Proposition 2.2.3.

Proposition 2.4.13. The function ¢ is Lipschitz continuous on Sym, and C' on Sym, \ C with
#(Q) = 1 for all Q € N. Furthermore, for a domain w C Q and Q € C'(w,Sym,), the function
RoQ is C' on the open set Q= (Sym, \ C) and the following estimate holds:

2

s .
VQI* > 5 Vige QP +(¢0QPIV(RoQ)?  inw,
where we use the convention that (¢ o Q)*|V(R o Q)|> == 0 if Q(x) € C.
Proof. The proposition follows directly from Lemma 2.2.3 and Lemma 2.2.7 in [41]. O

The next theorem gives the desired lower bound close to a singularity on a two dimensional
unit disk. A proof of this can be found in [42, Proposition 2.5].Observe that we work here with
the function f, not f..

Theorem 2.4.14. There exist constants k.,C > 0 such that for Q € H'(By,Sym,) satisfying
Q(z) € C for allx € B\ By and (RoQ)|op, is non-trivial, seen as element of m (N) the following
inequality holds

/Bl SIVQP + 5 (Q) do > sgd(Q, By \ Bylinel - €, (2:36)

for a number ¢o(Q, By \B%) := essinfp\p, #(Q) > 0. Furthermore, k. = s1Z.
2
The constant . can be calculated as in [42, Lemma 2.9] or [41, Lemma 1.3.4] and is specific
for N' =2 RP?. For other manifolds, there are analogous results with different constants, see [47].
For our purposes, we will use the following version of Theorem 2.4.14.

Corollary 2.4.15. Let zg € Q' such that B,(zo) C Q. Let Q € H'(B,(xo),Sym,) satisfying
Q(z) ¢ C for all x € By \ By, and (R o Q)|ss, is non-trivial, seen as element of m1(N). Then,
with the same constant C' > 0 as in Theorem 2.4.1}

1 1
/B (00) §|V’Q|2 + ?f(Q) dz > k.03(Q, By \ B%n)(| Ine| — |Inn|) - C, (2.37)

27

where K. = s575.
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Proof. By translating Q' we can assume that zo = 0. In order to apply Theorem 2.4.14, we define
T = %x and Q(Z) = Q(nZ) = Q(z). Therefore Q € H'(B1(0), Sym,) and verifies the hypothesis of
Theorem 2.4.14 with € = en, i.e.

1 1 L ymn 1,
SIVQP + 5 1@ dx:/ SIVQP + 55 /(@) dz
/Bnm)?l "+ 5 £(Q) Bl(m)?' "+ el @)

> 1, ¢3(Q. B1 \ By)| | - C
> k. 63(Q. By \ By,) (el — [ Iun]) - C.

2.4.4 Lower bound away from singularities

The following proposition shows that we can uniformly bound the functions ¢ and ¢g from the
previous section if Q is close to N.

Proposition 2.4.16. Let dist(Q,N) <6 onw C Q. Then

V35 < (o)) <1+ Vs

Sx Sx

1—

Proof. Let Q € Sym, with dist(Q,N) < 6. In other words, |Q — R(Q)| < 4, since R is the
nearest-point projection onto /. We use Proposition 2.2.3 to write

Q:s((n@n—;Id)—l—r(m@m—éld)) and R(Q) = s« (n@n—ild) ,

for n, m orthonormal eigenvectors of @, s > 0 and r € [0,1). We can estimate

2

1 1
Q-R@Q)P =|(s —s.)(n@n - §Id) +sr(m®@m — §Id)
2 2 2
= 3‘8—8*|2+§\3r|2— gsr(s—s*) (2.38)
1 1 1
= g\s — sl + §‘5T|2 + §|8 — 5, —sr[*,
e 62> s(l—r) — s> = ; #(Q) — 1]%. Hence |¢(Q) — 1] < sif& -

Away from singularities the main contribution to the energy comes from the Dirichlet term and
the external field since Q. is close to A. More precisely, we only need the energy in radial direction,
i.e. [VQ|? can be replaced by |9,Q.|?> and the problem becomes essentially one dimensional. We
formalize this thoughts by introducing the following auxiliary problem as in [4]

" 52‘”%‘2 2 2
I(ri,7r2,a,b) = inf * +ci(1 —n3)dr 2.39
(r1,m2 ) ngeHl([m,m],[o,l])/,-l 1-nJ X 3) (2.39)
ng(ry)=a, ng(rg)=b
for 0 < rp < rg < o0, a,b € [-1,1]. Note, that this is equivalent to minimizing

[ (510,Q* +g(Q)) dr for a function @ taking values in N subject to suitable boundary
conditions. For the infimum we have the following result.

Lemma 2.4.17. Let 0 <1y <1y <r3<oo and a,b,c € [-1,1]. Then

1. I(r1,72,a,b) + I(re,rs3,b,¢) > I(r1,r3,0a,c).
2. I(ry,re,—1,1) > 4s.c..
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3. Let 0 € [0,7]. Then
1(0, 00, cos(f),£1) = 2s,.c.(1 F cos(f)) .

Furthermore, the minimizer n(r,0) of 1(0, 00, cos(0),1) is C* and |0yn|?, |0,n|?, |n—e3| decay
exponentially as r — co. The minimizer can be explicitly expressed as

V13 A(0) — exp(—2¢./s.T)

n(r,0) = 1?3 , m3(r,0) = A(0) + exp(—2¢y/s41)

1+ cos(6)
1 —cos(f)

A(9) =

Proof. The first part follows directly from definition, since any function that is admissible for
I(ry,79,a,b) combined with one for I(rs,73,b,c) is admissible for I(rq,rs3,a,c¢). For the second
claim, we use the inequality X2 + Y? > 2XY with X = s.|n}|/\/1 —n3 and Y = c,y/1 —n2 to

get
T
/ nj dr
1

The third part follows from Lemma 3.4 and Remark 3.5 in [4]. O

T2
I(ry,7r9,—1,1) > 28*6*/ [n5| dr > 2s.c. = 28,4 |n3(r2) — n3(r1)| = 484y -

1

Remark 2.4.18. 1. A close look at Lemma 2.4.17 reveals that it is enough to consider a rota-
tionally symmetric function g which has a strict minimum on N at Q = s.(e3 @ e3 — lId)
Indeed, then for Q = s.(n@n—31Id) we can write g(ns) = g(Q) and I becomes I(r1,72,a, b)

inf f” S*Ins“ + g(ng) dr. Taking a minimizer nz(r) for n3(0) =0 and lim, . n3(r) =t we

can define G( ) =25, [/ ("3)| 5] dr. One can then derive estimates analogous to Lemma
2.4.17, e.g. I(r1,7m9,—1,1) > 2G( ).

2. Lemma 2.4.17 and (2.39) only uses the form of g on N'. As we have seen in Proposition 2.4.2,
we can neglect the behaviour of g far from N for smaller norms of Q due to the dominating
character of f in our asymptotic regime. With the same argument one could also introduce a
cut-off for higher norms as long as the growth assumption (2.5) is satisfied. So the essential
information about how g contributes to the energy is g|nr, i.e. (2.7).

Now we can combine all our previous results to prove the lower bound of Theorem 2.3.1. The
idea consists in replacing Q. by its approximation Q). and use the equivariance to write the energy
as a two dimensional integral. By Theorem 2.4.5 we can exclude regions in Q where Q. is far
from N. Extending the sets if necessary, we can assure that the union has vanishing measure in
the limit 7, e — 0 and that the complement €2 is simply connected. The scaling of 1 and ¢ allows
to apply Corollary 2.4.15 to each of these extended sets where the boundary datum is nontrivial.
The expression we calculate here can later be identified as the perimeter term in £. In the simply
connected complement €y there exists a lifting n® of Q. which fulfils the compactness (2.16). We
then want to apply Lemma 2.4.17 to the rays in €y for the lower bound. We consider the rays
with high energy (that we can estimate easily) and those with low energy where we need to be
more precise about their behaviour far from the boundary 0€2. Using a diagonal sequence, we can
pass to the limit ¢ — 0.

Proof of the lower bound (2.17) of Theorem 2.3.1. Let §,0 > 0 be arbitrary. We define Q. as in
(2.21) and extend it rotationally equivariant. From Theorem 2.4.5 for € < ¢y we know that there
exists a finite set X, of singular points z{, ..., z%_in Q. In a first step, we suppose that all these
points are included in the set Q% = Q. N Br(0).

Since Q' is bounded, there exists another finite set X, such that each sequence x§ converges
(up to a subsequence) to a point in X as €,77 — 0. Note that there may be more than one sequence
converging to the same point in X and we a priori only know that X C ' N Bpg.

We first assume that the set X is contained in ©/ \ 99Q. Since 7| ln €| = 5 € (0,00) we know
that € < Cexp(—f) Assume that 7 is small enough such that 2Age < 1.
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For z; € X we define fo»’ = conv{B,(z;) U{0}} N . If x; is the only point of the set X that
lies on the ray from 0 through z; we define Qf' := Qf’. If «; for j € J C I define the same ray, i.e.
lie on a common line through 0, then we set Q5" = J,c; Q. After relabelling, we end up with a

finite number N of sets Qf/, k =1,..., N. We define Qf = Q[ \ UkN:1 Q (see Figure 2.3). Since
all points in X, converge to some point in X, we may assume that e is small enough such that

N
U Baoel@) € | Barge() € | 8/ c 9. (2.40)

rzeX, rzeX k=1

We drop the € in the notation of Qf’ for simplicity and call Qj, the three dimensional set defined
by rotating 2, around the ez—axis.

Using (2.21) and Remark 2.4.3 we can write
1

1 1 —
1E(Q) =0 [ SIVQP + 5@ + 5510~ Q. do
1 , 1 1 .
2 [ GV 580Q) + 551Q ~ Al o (2.4

N 27 1 1
-H?kz_:l/o /%P <2|VQ6|2+62f5(Q6)> dpdz de.

For x € Qy we know by Theorem 2.4.5 that dist(Q.(z),N') < 4. Since Qf, and thus Qg is simply
connected there exist liftings +n° : Qy — S? such that

S(S OHQQ.

o0

1
S« (n€ ®n — 3Id) =RoQ. and

1
S« (n€ n — 3Id) — Q.

In particular, Q.(z) € Sym, \ C for all x € 99, for all k =1,...,N. Let M C {1, ..., N} be the set
of elements k € {1, ..., N} such that (RoQ.)|aq; is non-trivial as an element of m (N). On B, (xx)

we apply Corollary 2.4.15 to an(mk) 2IVQ* + £ f(Qc). The term nan(mk) 7712|9(Qe)| + Co(e,n)

is seen to be bounded by Cn. On the remaining ) \ B,(z;) we use that the energy density
2IVQ.|*> + % f(Qc) > 0 is non-negative. Hence we get

) 5IVQ: + 2 dd>N'f Lvo.p+ L dpdz —C
Z1 Z K*%(Qf’Bn(xk) \ Bln(ﬂﬁk))pk :n|lne\77
kEM : |5,
- C¢?)(Qea Bn(:ck) \B

- (s

2
C’<1+ \8/§5> nllnn| — Cn,

o(Tx)) n|lnn| — Cn

1
2

2
f5> P ENINE)

keM |3

*

(2.42)

where we also applied Proposition 2.4.16 to estimate ¢y from below.

Before estimating the energy coming from 2y, we need an additional information, namely we
want to show that n®(rw) approaches +e3 and —n°(rw) approximates —es (or vice versa) as r — 0o
for a.e. w € S%2. However, it will be enough for our analysis to just show that n€ is close to either
+e3 or —es3 up to some factor times v/6. To start with, we show that the vector n¢(rw) for 7 — oo
is close to +e3 or —es almost everywhere. By (2.21) and the energy bound we know, that for a.e.
w € S? the integral
—f(Qe) + 59(626(7“0.))) + nCo(e,n) dr < co. (2.43)

€
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We argue by contradiction, i.e. assume that there exists some w € S? satisfying (2.43) such that
limsup,_, ., [|[n§(rw)| — 1| > 2€av/§ for a € > 0 to be specified later and a is the constant from
Proposition 2.2.5. This implies that there exists a sequence 7, such that r, — oo as £ — oo and
In§(rew)| < 1—2€av/é for all £ € N or in other words |Q, — s.(e3®es — £1d)| > 2a+/4 for a suitably

chosen € (A calculation shows that € > 4\; is sufficient). By Lipschitz continuity of Q. this

implies |Q. — s«(e3 ® ez — fId)| > av/o forall r € Ij == (ry — ea‘f Ty —|— €'&“[) This implies that
9(Qe) = gmin > 0 for such points in I, where we used gpin = min {g : @ € Symg,dist(Q,N) <
§,|Q—s.(es®es — 11d)| > av/d} > 0 by Proposition 2.2.5. With this estlmate in mind it becomes
clear that we have the lower bound

1 1 1 2¢Cav/o

nJi, ezf(Q )+ n 9(Qe(rw)) +nCo(e,n) dr > ngmlnuﬂ ngmln C >0.

Summing over disjoint intervals yields a contradiction to (2.43).

This implies that either limsup, _, . n§(rw) > 1 —2€av/§ or liminf, o n§(rw) < —1+2Cav/s.
Indeed, n§(rw) cannot alternate between +1 since by continuity this yields a contradiction for ¢
small enough such that 2¢av/§ < % Next, consider the lifting n® and suppose that there exist
directions wy,w_ € S? such that n®(rw, ) is close to +e3 (resp. n(rw_) close to —e3) as r — oo.
Since our previous analysis holds a.e., we can assume that the angle between w, and w_ is smaller
than 7 and that wy are not parallel to e3. Let v = wy —w_ and w = wy +w_. We estimate the
energy in new coordinates (r,s) in the segment between the rays defined through w; and w_ to

get
rlv|/2
0>/RH/TW2 <"‘ Q(r o %)‘ + g(Qe( o +S|Z|)>> ds dr
rlv]/2 v
> C(1-09) / / ( -V'n*
R+1) Jrjv|/2 |

Lemma 2.4.17 gives the lower bound fr‘:‘l/l% (7733““7‘ Ve + i1 - ng)) ds > de.s. — CV/5.

Using p > rmin{sin(6;),sin(6_)} for 61 being the angular coordinate of w4, we end up with

2
+ lCf(l —ng) — C’5> ds dr.
n

R
CZC(lfC(s)Q/ 7"(40*3*70\/5) drzCR(lf\/S)R% >0,

R+1

provided § > 0 small enough. Sending R to infinity, we get a contradiction. Hence, n¢ has to

approach either +es or —e3 a.e. and thus we can distinguish the two liftings by their asymptotics
far from 0.

We now introduce sets Fy, , F; which we use later to prove the compactness result. First choose
one of the two possible liftings n¢ € C°(Qq,S?). Without loss of generality we choose the lifting such
that n¢(rw) is close to +e3 as  — oco. The boundary conditions (2.13) imply that n®(w) = +v(w),
where v is the outward normal on S? for all w € 9Qp N'S?. We define F,. = {w € S?N QY :

n(w)-v(w) = 1}. Conversely, 13(: is then given by FA’[,/6 ={w € $?NdY : n‘(w) -v(w) = —1}. The
remaining part of S2 N, is denoted S, = (S*N Q) \ (Fpe UF, ) = U,Ql(S2 NoQ;). Note that
the sets F , Ff‘:ﬁ and S, . are rotationally symmetric with respect to the ¢ coordinate. Since the

6—angular size of all Qy converges to zero (i.e. |S, | — 0 as € — 0) and S?NQ, is compact, we get
that (up to extracting a subsequence) xr, . (resp. x ﬁv) converges pointwise to a characteristic

function xr, (resp. xz ). By triangle inequality we get dist(Qc, N,) < dist(Qe, Vo) + Qe — Ql,
where N, is the manifold N, ¢ introduced in Proposmon 2.2.6. By Remark 2.4.3, Proposition 2.2.6
and the energy bound (2.19) we get that fQ dist? (QE, .) dr — 0 as ¢,7 — 0. On bounded sets
additionally use (2.11) to get the claimed L2—convergence in (2.16).

As a last step, it remains the energy estimate on Q. We split the integral over Qg in (2.41) in
several parts: For w € F,, . such that the energy on the ray in direction w is large, i.e. floo g|VQ€|2
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£ f(Qe) + %g(Qe) +nCo(€,n) + 55|Qc — @;|2 dr > 4s,c., we can use Lemma 2.4.17 that implies

/1 TIVQ + Q) + %g(Qe) +1C0(e,n) + 551Qc = Qef? dr > ds.c. > (1,00, v(w), +1).

(2.44)
Analogously, for points w € F/; with energy greater than 4s.c, we use I(1,00,v3(w),—1) as a
lower bound. Let’s consider the set of points w € S2NdQ such that the energy on the ray through
w is smaller than 4s,c,. We claim that there exists a constant C' > 0 independent of w and a radius
R, € (R—Cn, R] such that ||n§(R, .w)|—1| < 2€av/§ < 1. Indeed, if ||n§ (R, ,w)| — 1| > 2€av/§
on (R — Cn, R] then on this set |Q. — s.(e3 ® e3 — 11d)| > 2av/6. Hence for C large enough this
contradicts 4s.c. > [ % f(Qe) + %g(Qe) +nCole,n) dr > (R — (R — C’n))ca\/g. In order to
conclude that the energy from 1 to R, is (up to some small contributions of size V/8) close to
I(1,00,v3(w), £1) we need to show that for w € F, . the vector n°(R, ) is close to +es and
not —es (and vice versa for w € F;,e). Again we argue by contradiction, i.e. we assume that
In‘(R,.,) + es] < 2€av/§. We subdivide the ray in direction w from R to infinity into segments of
length 1, identified with the intervals J; = [¢, ¢ + 1] for the radial variable, for integers ¢ > R. On
every segment, the energy bound on the ray implies the existence of two points ay, by € J; with
lag — €] < Cn, |by — (£ +1)| < Cn such that ||n§(as)| — 1| < 2€av/s, ||n§(be)| — 1| < 2€av/6. Since
we assumed n¢(R,, ,) close to —ez and n° approaches +es for £ — oo, there exists some integer
¢ > R such that |n§(a,) + 1| < 2€av/6, [n§(by) — 1| < 2€av/6. Together with (2.8) this implies

/ g\VQ6|2+ %g(Qe) dr > I(¢,0+ 1,0 (as), n§(be)) — C(Ca+1)V6 > 4s,c. — CV6.
Je

In order to show that for § and e small enough this contradicts the assumption of the ray having
energy smaller than 4s.c., we prove that the energy coming from the segment [0, R] has to be
positive with a uniform lower bound. Since w € F,  C ), one can show as in 2. in Lemma 2.4.17

that on such a ray flR 2IVQ|* + %g(Qé) dr > 4s.c. (0% — 8¢€av/§). So combining this result and
the estimate for J; we get

1
48,0 > 48,Cy — CV6 + 254Cx (502 — 8@(1\/3) ,

which yields a contradiction for §, € small enough. For w € F,,  we then use the change of variables
r =1+ n7, (2.8), Proposition 2.4.13 and Proposition 2.4.16 to get

Ry o (R-Dfny .
[ 3vaP s La@odr= [T SVQL g o Qo) — Cist(QuN) d

Y

(R=1)/n q
—ca)/ LIV(ROQIP +g(Ro Q) dF —C5  (2.49)
0

(
10, (Ry = 1)/n,v3(w), n3((Rp,w — 1) /1)) =
10, (B = 1/n,v3(w), + )705,

v v

where we also used Proposition 2.2.6 to get

dist(Q )<d1st<Q >+C—<C(f(Q)+i(Q)+QC( ))%+oi
1 € € nzg € € ol€ M 772

and thus by Cauchy Schwarz inequality and the energy bound on the ray fo D/n dist(Q, N) dr <
Cfﬁ + CR;s. So by (2.44) and (2.45) we get that for w € F,, . we have

/oo g|VQ6|2 + %Q(Qe) dr > min{I(0, oo, v3(w), +1), I(0, (Ry.. — 1/n,v3(w),+1) — C6}.
1

Furthermore, by compactness, xr, . converges point wise a.e. to xr,. Since (R, ., —1)/n — oo as
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n — oo we can apply Fatou’s Lemma to get the energy contribution from g related to F, . by

hminf/ / DIV + 2 F(Q0) + 9(Q0) + nCofe.n) dr d

e,n—0

> / lim inf min{I(0, oo, v3(w), +1), I(0, (Ry,w — 1/n,v3(w), +1) — Cd}xF,  (w) dw
$2n9Q%

e,n—0

2/ I(0,00,v3(w),+1) dw—C$.
F,

o

Now combine this estimate, the analogous result for FA’[,;, the formulae for I(0, 0o, v3(w), £1) from
Lemma 2.4.17 and (2.42) to get

lim i%f NEne(Qne) > / 254¢4(1 — cos(0)) dw +/ 2s4¢4(1 + cos(6)) dw
en— F,

o o

+(-0s? Y B he2s s,
e |zl
for the points zx = (pg, 0x) € X.

It remains to show that for all & € M, the point z/|x| corresponds to a jump between F, and

Z:'V’U. For this it is enough to show that the orientation of n¢ relative to the normal on 02 changes
when following 99, N €Y’ for all k € M. So let k € M and consider the curve I' : 9Q), — S? defined
by n|ao; . By definition of M, the curve is non-trivial in 7;(N), i.e. ' jumps an odd number of
times from one vector to its antipodal vector on the sphere. Hence, the orientation has to change.
In the limit €,7 — 0, this implies that

ZD pk — DX, [(S*N{p>o}).
ke/vl

This implies our result in the case X, X C (' N Br(0))\ 9Q.

We now explain the changes in our construction if there are some x; € X NS2. Basically, we use
the same construction as before, but we need to take care that the lower bound involving Corollary
2.4.15 stays applicable. To see this, we extend the map . outside of 2 using the boundary values.

We define
L Qe(x) xEBn($i)mQa
so(F e - 31a) e By(@) N Bi0).

Then f(Qc) =0 and |VQ.|?, |9(Q.)| < C on B,(x;) N B1(0), i.e.

/B Lvarr+ Lo+ Qg@wo(e,n)dxscl.

n(zi)NB1(0) 2

So if (RoQ)laq; is non-trivial as element of 71 (N'), we can apply Corollary 2.4.15 to the extension

Q., i.e.
2 A 12 ]- S
77/ " *IVQeI + f(Qe)den/ — V'Q.| +:2f(Q€)d:cfnCl

)mQ/ 2
2
3
> (1 - \:6) gSin\ Ine| = Cnllnn| —

*

If (R o Qe)laq; is trivial, then we just estimate as before, using that the energy is non-negative.

It remains one last case. Assume that there is a point z§, € X, such that |z§,| — oo as

€ — 0. This causes two modifications to our previous results: This time, we define Sﬂlvz’ =
conv{ By, (zf) U {0}} N . Doing so, we risk to exclude a region from €, that is too large for
proving the compactness, namely when we define the set w, afterwards. But in fact this is not
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really a difficulty for two reasons: First, it is possible to extend n¢ continuously in ﬁi’ \ 57?, with
ﬁg = (By(f,)U[0,z,]) N, where [0, xf,] is th/e\line segment between the points 0 and z§,. Second,
in order to conclude that also the measure of €2, is bounded, we need to show that pj, cannot grow
to infinity. To see this, note that zj, € Q, and by applying Proposition 2.4.11 one gets from the
energy bound that pZ, (zf,€“) is indeed bounded. All estimates for the lower bound that we have
done before stay valid in this setting.

So far, we have established the inequality

lim inf 1€,.¢(Qn.e) > (1= C6) 5 36|Dxr, |8 N {p > o))
’ (2.46)
+ / 2844 (1 — cos(9)) dw + /~ 25,4 (1 + cos(0)) dw — CV5.
F,

Fo

o

We now define the set w, . as proxy for the set w;, from Theorem 2.3.1. Let w; . := ;> K/Z—;\’,

where the sets Q/\;’ = Q5 for bounded sequences |z%,|, and given as in the second construction if |x,|
diverges. This is well defined for ¢ (and therefore 1) small, depending on ¢ and §. Recall that since
n|lne| — B € (0,00), we have the asymptotic  ~ |Ine|~!. Let w,  be the corresponding rotational

2
symmetric extended set. Then |w} | < C|U,cx. By(z)| < Cn?|Xc| < C5i=, i-e. choosing 1) small
we can force the measure of w;, . to vanish in the limit. Note that this also implies that the measure
of w, . vanishes because we have an upper bound on the p—component of points in X..

We now want to send ¢ — 0 and choose a diagonal sequence with the properties announced
in the theorem. From our previous construction, for a sequence o \, 0 there exist corresponding
sequences 0 \, 0, 7x N\, 0 and €; \, 0 such that from (2.46)

™
NEne(Qne) > 5835\DXF%,6 (S*n{p > or})

—

+ / 28.¢4(1 — cos(0)) dw + / 284¢4(1 + cos(d)) dw — 1 ,
Fop e Fop e k

and furthermore |wy, | < £, [S*\ (Fu.c U Fo ol < + and fﬂok\wo,e dist?(Q., N,) dz < = for

€ < ¢, and 1 < ng. The sequences €, and 7, depend on oy, and 5, and are related via ng|Ilneg| — 8
as k — oo.

So we can define the function n” : Q — S? announced in the theorem as n” :=n° on Q,, \ wy,
for n € (Mg41,Mk), Wy = W, and extend it measurably to a map Q — S2. This definition assures
that n" € C°(Q,, \ wy,S?) and the convergence in (2.16) holds. Furthermore, we define the set
F, = Fy, . for n € (r41,m%). Then our analysis shows that the sequence XF, has the point wise
a.e. limit xp, for F' =, Fo, since [xr — xr,| < IXF —XxF,, |+ |XF,, —XF,, .| and the measure
of the set on which these two terms are nonzero is smaller than Co} + 1.

This finishes the proof of the first part of Theorem 2.3.1 and (2.17). O
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Figure 2.3: Construction made in the proof of Theorem 2.3.1. The arrows show a lifting n. In
the region €27 the director field n¢ has non-trivial homotopy class, around the region €25, n¢ has a
trivial one.

2.5 Upper bound

In this section we are going to prove the upper bound from Theorem 2.3.1, namely (2.18). Since
all functions are rotationally equivariant, it is useful to introduce the two dimensional energy for
sets w’ C

erQu) = [

w

1 1 1 1
(31T + 50 @+ 1@+ L@+ Colen)) dp s
First, we show the following lemma, which gives the upper bound in the case where there are no
singularities near the axis p = 0.

Remark 2.5.1. 1. The energetically relevant part of the construction in Lemma 2.5.2 away
from defects is carried out with uniazial Q—tensors of scalar order parameter s,. One could
also carry this out by using the physically motivated order parameter s, ¢2,,2 to obtain a
sharper upper bound for £, m > 0. In our regime of the limit £, — 0, both constructions yield
the same upper bound.

2. In the construction of the singularities in (2.55), we use an isotropic core Q@ = 0. Other
choices, such as an oblate uniaxial state surrounded by a biaxial region, are possible and
would yield a sharper upper bound for £,m > 0 for certain parameters. However, our upper
bound for £,m — 0 is independent of this choice.

Lemma 2.5.2. Let 0 > 0 and F C S? be a rotationally symmetric set of finite perimeter such that
S?N{p<o,2>0}S*N{p <o, 2<0} are contained in one of the sets F, F¢. Then there exists a
rotationally equivariant sequence of functions Q. € H' (2, Sym,) such that the compactness claim

(2.16) holds, |Qcl|z~ < \/2s. and

limsup £.6(Qc) < EolF).
e—0

Proof. The proof consists in providing an explicit definition for @), generalizing the construction
made in [4]. The idea is the following: Let F' C S* N {p > o} be rotationally symmetric. Since we
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assume F to be of finite perimeter, |Dxp|(S? N {p > 0}) < co. Let FNFcNQ, = {0o,..., 00}
for some M € N and 60; < 6;41 for all i = 0,..., M — 1. We now define the map Q. on the two
dimensional domain 2'. We divide € into several regions and define (). on each region separately
(see Figure 2.4). After that, we derive the estimates that are needed to ensure that the rotated
map RgQng satisfies the energy estimate.

Let €' be parametrized by polar coordinates (r,6). As usual, we denote by F/ = F N Q' and
F¢ = FeNn . Note that p = rsinf. Let R > 2 be fixed.

Step 1 (Construction on F) and (F°);): We define Fy = F'\ Ui]\io Bs,(0;) € St C Q' and
(Fe), = Fe'\ UL, Bay(6;) € S' € Q. For (r,0) € [1, %] x F., we define

V1=n03((r—1)/n,9)

1
Qc(r,0) == s, [n®@n—-Id| with n(r,0) = 0 , (2.47)
< ’ > ny((r = 1)/n,)

where n3 is given by Lemma 2.4.17. Analogously, for (r,6) € [1,R] x (F°),, we define
X T3~ Dfmr—0)
Qc(r,0) = s (n ®n— 3Id) with n(r,0) = 0 . (2.48)
ny((r — 1)/n, 7 — 6)

Since the defined @, is uniaxial of scalar order parameter s., we have f(Q.) = 0 and by (2.7) we
can estimate the energy on Qg = {(r,0) : 6 € F},r € [1,R]}

77552 (QE) QF’

52 1 c?
_77/ / (si@rn|2+r2|89n|2—|—p2Q2X2,e ZQe—l—nz(l—n%)—'—Co(f,n))?‘d’f do

9‘{ 1
_ / / " (210um]? + 2(1 — n2) + Co(€,m)) (L +nt)?sind dt d6

N

where we set 7 = 1 + nt and used that Qax2. : Q = |Qc]* — 65.(1 — n%)s.n? = 2s2(1 — n3).
Estimating Cy by Proposition 2.2.4 and using Lemma 2.4.17 we get

2
29(1 — n%)} (1+nt)?sind dt do,
n

nEGQD(QﬂQFé)S/ I(O,(ER—1)/n,cos€,1)sin9d9+0n§2s*c*/ (1 —cosf)sinfdd+Cn.

F/
(2.49)
Applying the same steps to (F'°);, we get

nE*P(Q., N ey ) < 28, c*/ (I14+cosf)sind do+ Cn. (2.50)
FC/

Step 2 (Construction on (ng)l and (Y, ,)"): Next, we construct Q. for (r,0) € [1 + 4n, R] x
Uij\io Bs, (6;). Without loss of generality, we assume 6 € B, (6p) and that smaller angles belong to
F’, while larger values lie in F*/. We define (ngm)’ ={(r,0) : g —2n <0 <by,r e [l+4n R}
and (2 ) = {(r,0) : 0o <6 < by +2n,7 € [1 +4n, R}

Since we want . to have H'-regularity, we need to respect the values of Q. that we already

constructed at 8 = 6y —2n and 6§ = 0y + 2n. We do this by interpolating between these given values
and s.(e3 ® e3 — 31d) at 6 = 6. More precisely, for (r,0) € (5, )" we define

sin(¢(r, 6))

Qc(r,0) = s, (n ®n— 1Id) with n(r,0) = 0 ,
! cos(6(r, 0))
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where the phase ¢ is given by

¢(r,0) = arccos (ng (1,00 — 21)) . (2.51)

Similarly, the phase for (r,0) € (2, )" is given by

o(r,0) = —— arccos (n3 (r, ™ — (6o + 21))) . (2.52)

Note that Q. is indeed continuous for # = 6y and that (). coincides with our previous definition at
0 =06y —2nand 0 = 6y + 2n.

Now we calculate the energy coming from the two regions. We assume that (r,0) € (Qjo )

the estimates for (€ )" are similar. Since Q. is takes values in NV, f(Qc) = 0 and furthermore
by (2.7)

9(Qe) = c2(1 — cos*(¢(r,0))) = ¢ sin®(¢(r,0)) < ¢ sin®(¢(r, 6o — 2n)) -
For the gradient, we note that

1 2 2
SIVQur0)? = $2(0m(r. 6)2 + S5 10sn(r,0)* = 52(0,6(r. ) + 5100 (r, )

2

0—0,\> 52
- (52 si|f»»¢<r,eo—2n>|2+m|¢<r,eo—2n>|2

< $20rm(r, 6 — 2n)> + o (r, 60 — 2m)|* .

4 5 72
Note, that for n — 0 the phase ¢ stays bounded. Furthermore, all terms decrease exponentially
in 7 by Lemma 2.4.17 and are thus integrable. Since 1|0,Q.|* = Qax2 : Q = 252 sin*(¢(r,)), this

term converges to zero exponentially and is bounded for  — 0. So finally we use the estimates on
Co(&,7n), the above calculations and the usual change of variables ¢t = 1 + it to get

nEXP(Qe, (2F ) <Cn. (2.53)

Analogously, .
N7 (Qe, (Q,,)) < Cn. (2.54)

Step 8 (Construction on B’ and D'): Throughout this construction, we assume that we are
in the same situation as in Step 2, namely that we are switching from F’ to F°’ as the angle 6
increases. In this situation, we are going to construct a defect of degree —1/2. Otherwise, one
would need to define a defect of degree 1/2, i.e. one needs to switch the sign of the angle in the
definition of Q(«).

e We first define a map @ p on the two dimensional ball B (0) using polar coordinates as follows

0 r € [0,¢)
Qp(r,a) = (% -1)Q(a) 7 €€, 2e) (2.55)
() r € [2e1),
where in(a/2)
1 sin(a
Q(a) = s« [n(a)®@n(a)— =Id | with n(a) = 0
( 3 > cos(a/2)
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e On B \ By, we calculate

1 1 27 1 1
/ *|VIQB|2 dx = f/ / (|3TQB|2+2|aaQB|2>Tda dr
Bi1\Ba. 2 2 Jo 2¢ r

1 1 1 27 )
=— [ —dr |0.Q 5|° da
2 2¢ T 0
2w

= fln(2€)/0 sil(cosz(a/Q) + sin?(a/2)) do

4
In(2
= T2 - 2O

Furthermore, f(Qp) =0 on B1\ Bac and [\, [9(@p)| dz < C|By \ Ba|. This implies
1 1 1 0 C
[ SIVQsP + 5@+ S0(Qs) de < T2+ SHBN B (250
B1\Ba. n n

e On By, \ B, we find

2 2e 1
/ / <|arQB|2+T2|3aQB|2> rda dr
0 €

2m  p2e 2
/ (1 - 1) QE)Pr++ (£ -1) 9@ dr da
0 € T \e€

€

1 2 2e 1 2e 1 2
s> (1) / Td?“+*7TSZ\/ ,(f,l) dr
€ . 2 e T \€
1 2, 1

<C.

1
/ *|V/QB|2 dx =
B \B. 2

Wi = N

In addition, f(Qp) = 0 and fBz \B lg(Qp)| dz < C|Ba. \ B¢|. Together, we get

1o 1 1 1
/Bze\Be §|V Qpl* + :Qf(QB) + ?Q(QB) dz < Cy (1 + 772) |Bse \ B (2.57)

Finally, the gradient of Qp on B.(0) is zero. The contributions from f and g are easily seen
to be bounded by C|B.|, so that

[ 3IV'Qal + 57(@r) + 9(Qs) de < G (12 i 12) Bl @259)
B. € n € n

Combining (2.56), (2.57) and (2.58) we get

1 1 1 7r 1

| SVl 25Qa)+ holQa) de < Tollmel +0 (14 ) B0+ O (259
By (0) 2 € U 2 7

Note that we have the same bound for @p, (r,«) = Qp(r/7,«) on Bz(0), where # < 1. In addition,

this bound is invariant under rotations and translations of the domain. Again we assume that

0 € B,(6p). We use the construction of @p to define Q. on the set B = B,(1+ 2n,6p) C

[1, 1 + 477] X [90 — 27’], 90 + 27’]] via

Qe (T’ 9) = RGoQB (?/nv a) ) (260)

where Ry, is the rotation matrix around the p—axis with angle 6y, 7> = (r—1—2n)2+ (6 —0,)? and
a being the angle between the vectors (0,1) " and (6 — 6,7 —1—2n)". Note, that the term |B;(0)]
in (2.59) transforms to |B|, which can be estimated by Cn?. For the remaining term of £2P we
notice that Q2x2.¢ : Q. is bounded on B and that p > o —n, thus fB p_ngxg’E Q. < Clo—n)~ L.
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Then, using p < (1+2n) sin(6y) +n we get from (2.59) together with the estimate on Cy(§,n) from
Proposition 2.2.4 that

. C
1€27(Qe B) < ((1-+ 20)sin(0) + 1) g stnlIn(e) + Cn+ ———n. (2.61)

We now want to construct the map Q. on the set D = {(r,0) € [1, 1+4n] x [6p —2n, 00+ 27|} \ B
by interpolating between the values given by Steps 1 and 2 on the one hand, and the values on
OB on the other hand. We use the same polar coordinates (7, «) as for the definition of Q. on B
to parametrize D. Let ®, /() be the phase associated to the director of Q.(n, ) and ®(«a) the
phase of the boundary values on 9(D U B). We set

I o).

Rl ="+ T@)
where
if o € [-mw/4,7/4) U [37/4,57/4],

otherwise.

2n
R(a) = { |c02s(a)\

n
Tsin(a)]

In particular, |R()| < 2v/2n and |0, R(c)| < 2v/2n. Then we define
sin(¢(7, @)
0

7,a) = s [ n(T,a n?oz—1 with n(r,e) =
Qp(T,a) = *( (7, 0) ®n(7, @) SId> th e cos(¢(T, @)

Then f(Q.|p) = 0 since Q.|p is uniaxial and of scalar order parameter s, and |g(Qc|p)| is
bounded. We can estimate the gradient

[ givarae= [ 5 (0Qr+ SanQ?)rara
D D
27 R(«a) 1 1
<1+ 477)/ / 3 (|8;Qe|2 + T2|BaQCI2> 7 d7 da (2.62)
0 n

) 27 pR(a) ) 1 D\
< (1+ 4n)s? 0r61° + 5100017 ) 7 7 dar
0 n

Since ®,/5 and ®(a) are bounded and r¢ = ﬁ@a/z + m@(a), we can easily infer
that |0-¢|? < n% Furthermore it is clear by definition that [0, ®4/2|> < C. So it remains to derive

bounds on J,®(«). For a € [0,7/4] we have ®(a) = arccos(nz(1 + 4n, 6y — Zn))iﬂz(?j_w, ie.

|0,®(a)|* < C. Similarly, 9,9 is bounded for a € [-7/4,0]. For a € [r/4,37/4] and r(a) =

1+ \/RQ(oz) + 812 — 4v/2R(a)n cos(37/4 — a) one can show that ®(a) = arccos(nsz(r(a), 8y —2n)).
2

An explicit calculation yields |0,®(«)|* < C. By the same argument, 9,® is also bounded for
o € [-3m/4,—7 /4] For « € [3m/4, 7] we have (o) = —2ntan(m — a) + 6y — 5, so that [0,®(a)[?
is also bounded by a constant. We plug this result into (2.62) and use the fact that Qaxa.e : Qe is
also bounded, o < 1+ 4n and Cy < CE2/n? to get

oD ) 27 pR(@) g C C
EZ7(Qe, D) < 2(1 +4n)sy C+—)ododa+ <C+ . (2.63)
o Jy o o—cn o—cn

Hence by (2.61) and (2.63)

nE2P(Qe, BUD) < ((1+2n)sin(8o) + 20) 5 52| Inel + O + 0. (2.64)

C
oc—Cn
This finishes our construction of Qc(p, ).

Step 4 (Transition to Qo (&,m)): So far, we have constructed the sequence Q. inside a ball of
radius R around 0. Because of the exponential convergence of the optimal profile from Lemma
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2.4.17 , the function Q. is close to Qo on dBy. We will now construct a transition zone from Q. to
Qoo for r € (R, R+n) and then from Qo to Quo (&, 1) for r € (R+n, R+ 2n). Since Q.(R,0) e N
for all # € [0, 7] we can linearly interpolate the phase between Q.(fR,6) and Q. as in Step 2. We
estimate as in Step 2 and thus the cost of this interpolation in terms of energy is given by

nE*(Qe, Byryy \ Bn) < C1y. (2.65)

For r € (R + n,R + 27) we linearly interpolate between Qo and Qoo (&, ), i.e. we define
1 1
Qc(r,0) = ;((ER +20 = 7). 4+ (r — R —1)8se2/2) (es ®e; — 3Id) .

Since [s, ¢2/,2 — 52| < C&?/n* and by Proposition 2.2.4 we get

AR S S
1 EP(Qe, Byyan \ Bran) < C (35 + 25 + 25 + 25). (2.66)
n oot ot p?
Finally, if » > R + 21 we set Q. = Q(&,n), which has energy 0.

If we now extend Q. to Q by using the rotated function Q.(p,¢,0) = R;QE(p7 0)R, and
integrate £20 in ¢-direction, we get from (2.49), (2.50), (2.53), (2.54), (2.64), (2.65) and (2.66)

27 2
NE(Qe, ) < 25,4 / //(1 — cos(0)) sin(f) df dy + 2s.c. /0 /Fc/(l + cos(6)) sin(f) df de

C
—s*n\ In ¢ Z / (14 2n)sin(0;) + 2n) dp + Cn + . —77(;77 .

(2.67)

Taking the limsup 7,e — 0 in (2.67) yields the inequality

limsup &, ¢(Q.) < 2s.c. / (1= cos(8)) dw + 25*6*/ (1 -+ cos(6) dw + 5 528 Dxrl(87)
F c

n,e—0

= &(F).

It remains to show the claimed convergence. It is clear by definition of Q. that |
and [, o(
with values in S? outside a set w,, is clear by construction if we choose w,, to contain all balls B, we
used in step 3. Taking w, as the union of all sets B and D from step 3. we can also achieve that
Q\ wy, is simply connected. Extending n® inside B measurably, yields the compactness claim. [J

F,=F
n>0
F°),, = F° which implies the convergence for xr. The continuity of n® as a functlon

Proof of the upper bound (2.18) of Theorem 2.3.1. We choose a sequence oy, > 0 which converges
to zero as k — oo. We approximate the set F' by sets F}, such that the domains S?N{p < oy, 2z > 0}
and S? N {p < oy, 2z < 0} are fully contained in F}, or F¢. By Lemma 2.5.2 there exist sequences
Qe k such that limsup, o & ¢(Qer) < Eo(Fr) and (2.16) holds. We observe that

|DxF.|(8%) = [DxR (S N {p = o1}) = |DxFI(S* N {p > o1})

and

/F (1 —cos(f)) dw —/ (1 —cos(9)) dw

Fy,

SCO’,%.

; / (1+ cos()) dw — /c (1+ cos(9)) dw

Hence limsup, ., &y,¢(Qek) < Eo(Fr) < Eo(F)+Co} and taking a diagonal sequence Qe = Qc k()
we get
limsup &, ¢(Qc) < E(F).

n,e—0

The compactness (2.16) follows by triangle inequality. O
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Figure 2.4: Partition of Q' into regions for the construction of Q. (arrows show n€)

2.6 Limit problem, transition and hysteresis

Physicists have successfully manipulated the Saturn ring configuration by using electric fields [83]
and observed a transition between dipole and Saturn ring by changing the strength of the field
(see [14, p.190ff] and [113], [112]) or the radius of the particle [162]. In [112, Fig. 1] a series of images
shows the accelerated shrinking of a Saturn ring defect loop around a spherical particle towards
a dipole defect, once the applied electric field is switched off. The configurations intermediate
between dipole and Saturn ring are observed to be unstable. Similar transitions from Saturn ring
to dipole have been observed by accelerating a droplet inside a liquid crystal [95], [170].

In [154] physical reasoning, scaling arguments and numerical simulations are conducted to
explain this type of transition and the occurrence of a hysteresis phenomenon. To our knowledge
the hysteresis has not yet been observed, but cannot be excluded [162]. Our limit model provides an
analytical setting, in which we are able to reproduce the findings derived by H. Stark from physical
arguments and numerical simulations. The reduced magnetic coherence length £y introduced
in [154] corresponds to our parameter 7 in the one constant approximation. As pointed out in
the first section, our limit &, 7 — 0 corresponds to an increasing particle radius rp — oo and a
simultaneously decreasing field strength A — 0 since { ~ g Yand n ~ h~'¢. The slower the
decrease of h, the stronger is the influence of the magnetic field in 7|In(¢)| and thus in 8. It is
therefore reasonable to say that small values of 5 correspond to strong magnetic field, relative to
the size of |1n(&)|. This translates the assumption of high magnetic fields g < 1 (while keeping
ro fixed) in [154] to smaller values of § in our limit. Although the calculations in [154] are based
on the Oseen-Frank model rather than the Landau-de Gennes that we are using, we are able to
reproduce the behaviour of the energy & as a function of 4, compare Figure 2.5 and [154, Fig.
11]. From our calculation, we also find the hysteresis for changing values of 8s.. For > 1, i.e.
small external fields, the dipole is the only stable configuration. Increasing the field, the system
will maintain the dipole, until we reach 8 = 0, where a transition to the Saturn ring takes place.
Decreasing the field while starting from a Saturn ring, we will retain the structure until we reach
‘Z—:ﬁ = % ~ 2.546 and the Saturn ring closes to a dipole.

The rest of this section is devoted to the calculation of the minimal energy configurations of
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the limiting model which we have explained above.

In a first step, we claim that if F' is a minimizer of &y, then F' and F° are connected. Indeed,
assume that one of the two sets, say F', is not connected. Then there are two possibilities: If F*©
is connected, then F' also contains the point # = 7 and we can decrease the energy & by handing
over this set to F¢. If F'¢ is also not connected, then we can similarly exchange points between F'
and F'° while decreasing the energy until both sets are connected.

Now that we know that F' and F¢ are connected, we deduce that there can only be one angle
under which the defect line separating F' and F° occurs. Let us name this angle 6, € [0, 7] and let
F C S? be the set corresponding to 0 < 6 < 6. Then we can express the limit energy as

Eo(F) = 25*0*/

(1 —cos()) dw + 2s.cx / (1+ cos(0)) dw + ~s2B|Dxr|(S?)
P 2

c

2 04 2T T
= 28,04 / / (1 — cos(8))sin(f) df de + 2s.c. / / (1 + cos(#)) sin(f) db de
o Jo 0o Jo,
+ gszB(ZW sin(6))
= 8Ty ( sin(04/2) + cos4(9d/2)) + 72352 sin(fy) .

Setting the derivative of this expression to zero gives the equation

w8 c0o8(0g) (wﬂs* — 8c. sin(@d)) =0,

which yields the two families of solutions 6; = 7/2 + 7Z and 65 = arcsm( >*) + 2nZ. We note:

1. F S*B = = =~ 2.546, the two families are equal. We conclude that for 2= =B > 8 the only
stable conﬁguratlon is a dipole at 0q = 0,7 (see Figure 2.5).

2. The energy of the Saturn ring 64 = 7/2 and the dipole 65 = 0 are equal for 2= = % ~
1.273, which means for greater values of 2=/ the dipole is the globally energy minimizing
configuration, while for smaller values the Saturn ring is optimal.

3. The case where 0, = 7/2 is the only (local) minimizer corresponds to 8 = 0, i.e. 6, = 0.

In particular, we see that the only stable energy minimizing configurations are the dipole (which
corresponds to F' = () or F = S?) and the Saturn ring (where F is the upper half-sphere).

127

8

41

Figure 2.5: Plot of the energy & for different values of Ss. as a function of the angle 6,4
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Figure 2.6: Left: Plot of the energy of the dipole and Saturn ring as a function of 2=3. Right:
Hysteresis induced by changing °=3

The available experimental and theoretical results are in agreement with these findings. Nev-
ertheless, the conducted experiments mostly use an electric field to manipulate the orientation of
the liquid crystals and were not yet able to observe the hysteresis phenomenon, described in [154]
and in this work.

We hope that our analysis stimulates further research into this direction.

2.7 Conclusion

The goal of this article was to derive an effective energy of the Landau-de Gennes model for a
spherical particle immersed into a nematic liquid crystals under the influence of a homogeneous
external magnetic field, stated in the framework of variational convergence. We imposed strong
anchoring conditions at the boundary of the particle and investigated the interplay of elastic, bulk
and magnetic free energy in an intermediate regime parametrized by /S that exhibits singularities
of both dipole and Saturn ring type. Studying the limit energy, we show that there are no stable
minimizers other than the dipole or the Saturn ring and we determine ranges for 5 in which either
of the two is energy minimizing. We calculate values of 8 where a transition between the two takes
place, finding a hysteresis phenomenon.
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Chapter 3

The general case

This chapter is based on the article "Convergence to line and surface energies in nematic liquid
crystal colloids with external magnetic field", see [9].

Abstract

We use the Landau-de Gennes energy to describe a particle immersed into nematic liquid crystals
with a constant applied magnetic field. We derive a limit energy in a regime where both line and
point defects are present, showing quantitatively that the close-to-minimal energy is asymptoti-
cally concentrated on lines and surfaces nearby or on the particle. We also discuss regularity of
minimizers and optimality conditions for the limit energy.

3.1 Introduction

The history of interaction between variational problems and geometry has been long and of great
mutual influence [81], starting from the geometrically motivated problem of the brachistochrone
curve [27,137], Fermat’s principle in optics [31], material science [19] to general relativity [85,122].

One particularly important problem arises when the size of geometrical objects themselves is to
be minimized leading to so called minimal surfaces [103]. A classical example is the two dimensional
soap film spanning between predefined (fixed) boundary curves, called Plateau’s problem [59,140,
155]. Some solutions can be constructed explicitly [55,94] or studied through means of harmonic
and complex analysis [50,93,134], but a general theory was not available until the development of
geometric measure theory and its language of currents, flat chains, mass and varifolds to describe
the objects and how to measure them [6,65,66,131,158].

Another question giving rise to problems involving minimal surfaces is given by the classical
I'—convergence result of Modica and Mortola [127] (see also [125]) of a weighted Dirichlet energy
and a penalizing double-well potential to the perimeter functional. A constraint such as a prescribed
volume ensures the problem to be non trivial. The energy typically is concentrated in regions where
none of the favourable states of the potential are attained. For the limsup inequality, one constructs
a one dimensional profile that minimizes the transition between the favoured states.

Another variational problem in which geometry appears is given by the Ginzburg-Landau
model. In the famous work [30], the (logarithmically diverging) leading order term and (after
a rescaling) a limit problem have been derived. The limit energy is stated geometrically as finding
an optimal distribution of points in the plane subject to constraints coming from the topological
degree of the initial problem. This approach stimulated research which lead to a large litera-
ture [5,38,44,87,108,124, 145], in particular for problems in micromagnetics [89,101], supercon-
ductors [97,148,152] and liquid crystals [24,90, 109].
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Our work combines many of the before mentioned ideas to describe the different contributions
and effects that take place in our problem. For example, we use the generalized three dimensional
analogue of estimations in [30] as considered in [42,44,47,92,144] to make appear a length mini-
mization problem for curves. Coupled with this optimization problem, we show using a Modica-
Mortola type argument that the remaining part of the energy concentrates on hypersurfaces which
end either on the boundary of the domain or on the described line.

The main motivation for this article was the study of the formation and transition of singularities
in colloidal nematic liquid crystals, in particular the Saturn ring effect. It has been observed in
experiments that nematic liquid crystals may exhibit line and point singularities. Those can take
the form of a ring around one or several of the colloidal particles depending on the shape and
size of the particles and the strength of an external electric or magnetic field [112,113,128,133].
This phenomenon is caused by the incompatibility between the boundary condition at the surface
of the particle where a positive topological charge is created, and the condition at infinity where
an electric or magnetic field enforces a uniform alignment of the molecules in the direction of the
field. While spheres are the most studied particles, there is also a considerable interest in defect
structures around non-spherical inclusions [15,143,156]. For the study of phenomena such as self
assembly [150,151,168] usually a large number of particles is needed. In this work however, we
focus on the simpler case of a single colloidal particle as a first step for understanding the complex
interaction that takes place in colloidal systems [75,114,133].

This article is the continuation of the work started in [8] where we studied a spherical inclusion,
our main theorem (Theorem 3.3.1) is a generalisation of Theorem 3.1 in [8] (see Remark 3.3.3). In
particular, our new theorem holds for an arbitrary manifold M of class C? instead of a sphere and
we remove the hypothesis of rotational equivariance of Q.

Although the applied ideas could be used to carry out a similar analysis for a larger class of
energy functionals, we place ourself in the context of the Landau-de Gennes model for nematic
liquid crystals. A common way to describe liquid crystals is by introducing a unit vector field n,
the so called director field, for example in the Oseen-Frank model. The vector n represents the
local orientation of the liquid crystal molecules. In practice, it is often not possible to distinguish
between n and —n, so that n should rather be RP%—valued, where RP? is the two-dimensional real
projective space. More generally, one can think of describing the arrangement of the molecules by
a symmetric probability distribution p on the sphere of directions. Because of the symmetry, the
first moment of p vanishes and the (shifted) second moment @ is a symmetric traceless matrix (also
called Q—tensor), which is used to represent p in the Landau-de Gennes model. In the following
we will denote Sym,, the space of such symmetric traceless matrices. Under this identification, the
uniform distribution on the sphere corresponds to the isotropic state in which all three eigenvalues
A1 > Ao > A3 of @ are equal to zero or equivalently @) = 0. In case two eigenvalues are equal, we
call @ uniazial. More precisely, if A\; = Ay > A3 we say that Q is prolate (or positively) uniaxial,
while if Ay > Ao = A3 it is called oblate (or negatively) uniaxial. If all three eigenvalues of @ are
distinct A\; > Ao > A3, we speak of a biazial Q—tensor. A particularly important role is played
by the set N of prolate uniaxial tensors of a given norm as they are minimizers of the ordering
potential in the Landau-de Gennes energy as we will see in Section 3.2.1. Elements Q € A can be
written as @ = s,(n ® n — £Id) (s, being a constant depending on the liquid crystal) and thus
allow an identification with the director field in direction +n. On the other hand, singularities
are described by situations in which one cannot identify a director field, e.g. if @ is isotropic or
oblate uniaxial. However, the analysis carried out in this paper does not discriminate between
the two different possibilities as they have asymptotically the same energetic cost in our regime.
Nevertheless, in [40] it has been proven that in some situations an oblate uniaxial defect core
surrounded by a biaxial region has strictly smaller energy compared to an isotopic core. We refer
the interested reader to [20] for a more detailed introduction to @—tensors, the Landau-de Gennes
energy and related models for liquid crystals.

As we will see later in Section 3.2.1, the Landau-de Gennes model in our case comprises three
contributions related to the elastic, ordering and magnetic energy. The relative strength of the
individual terms are modulated by the dimensionless parameter ¢ describing the ratio between
elastic and bulk energy, while 1 couples the elastic with the magnetic term. We are concerned with
the limit of 7,£ — 0, which can be physically interpreted as a limit of large particles and weak
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magnetic fields, see [8,76]. This regime has been studied previously in [4] for a spherical particle
under the assumption that n|In(¢)] — 0 as 1,§ — 0 in which a Saturn ring structure is found.
In [3] the authors treated the problem in the absence of a magnetic field, i.e. for n = co. For
& — 0 they deduce that a point defect occurs. Our work places itself in the intermediate regime
in which n|In(§)] — B € (0,00) as n,§ — 0. As seen in [8] for a spherical particle, this regime
allows for incorporating different minimizing configurations, depending on the parameter 5. In a
forthcoming paper [153], we are going to develop numerical methods to calculate the minimizing
configurations around non-spherical particles based on the results in this work.

3.2 Preliminaries

Before we can state our results, we give a short introduction to the Landau-de Gennes model that
we use here and the concept of flat chains, stating some results that will be used later in the proof
section.

3.2.1 Landau-de Gennes model for nematic liquid crystals

Our article has been motivated by the study of liquid crystal colloids with external magnetic field.
Let E C R3 be a colloidal particle and let 2 := R3\ E be the region occupied by the liquid crystal.
The Landau-de Gennes energy with additional magnetic field term [139, Ch. 6, Secs. 3-4 and Ch.
10, Sec. 2.3] (see also [57, Ch. 3, Secs. 1-2]) can be stated in dimensionless form as

1
£6@ = [ 5IVQP + 5 1(Q)+ 750(Q)+ Co da, (31)

where the energy density f is given by

a 9 b c N9
flQ) = C- 5“(@ ) — gtr(Qg) + Zﬁr(Q )% (3.2)

and ¢ is a function taking into account the effects of the external magnetic field in a way we
formalize a bit later in this section. The function @ : Q@ — Sym, is a tensorial order parameter
taking values in the space of symmetric traceless matrices

Symg = {Q e R¥? : QT = Q and t(Q) = 0},

equipped with the norm [|Q||? := tr(Q?). It is used to describe the local distribution of orientation
of the liquid crystal molecules. We consider the case when the parameters 7 and £ converge to zero
in a regime where n|In(§)| — 8 € (0,00). The constant Cy = Cy(n,&) (resp. C) is chosen such
that the energy density (resp. f) becomes non-negative.

The following properties of f are going to be used in the sequel:

1. The function f is non-negative and N’ := f~1(0) is a smooth, closed, compact, connected
manifold, diffeomorphic to the real projective plane RP2. Note that A is given by

N:{S* (n@n—;ld) : nESQ},

for s, = (b + Vb? + 24ac) (cf. [119]) and in particular @ is prolate uniaxial.

2. We need f to behave uniformly quadratic close to its minima, i.e. we assume that there exist
constants dg,v1 > 0 such that for all Q € Sym, with dist(Q, ) < dy it holds

£(Q) > mdist*(Q.N).

3. Lastly, we need to quantify the growth of f. More precisely, we assume that there exist
constants C1,Cy > 0, such that for all @ € Sym,

2
r@za(ler-32) . priezala-c.
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It can be checked that f given in (3.2) satisfies these assumptions [8,40,42,119]. The exponent 4
in the last assumption is not crucial but only needs to outweigh the growth of g.

We also recall the following facts about the geometry of Sym,:

1. Elements Q € Sym, admit the following decomposition: There exist s € [0,00) and r € [0, 1]

such that ) )
st((n@n—?)ld)+r<m®m—31d)>, (3.3)

where n, m are normalized, orthogonal eigenvectors of . The values s and r are continuous
functions of Q.

2. The set where decomposition (3.3) is not unique, is given by

C = {Q € Symg \ {0} : 7(Q) =1} U{0}, (3.4)

i.e. C consists of the isotropic as well as the oblate uniaxial states. Another characterization
of Cis C = {Q € Symy : A\ (Q) = A2(Q)}, where the two leading eigenvalues of @ are denoted
by A1, A2. Moreover, C has the structure of a cone over RP? and C \ {0} = RP? x R.

3. There exists a continuous retraction R : Sym, \ C — N such that R(Q) = Q for all Q € N.
One can choose R to be the nearest point projection onto A. In this case, R(Q) = s,(n ®
n — 11d) for Q € Sym, \ C decomposed as in (3.3).

The energy density g in (3.1) incorporates an external magnetic field into the model. This
motivates the following assumption:

1. The function g favours @) having an eigenvector equal to the direction of the external field,
in our case chosen to be along es. More precisely, assume ¢ is invariant by rotations around
the e3—axis and the function O(3) > R — g(R"QR) is minimal if e3 is eigenvector to the
maximal eigenvalue of RTQR. Decomposing @ as in (3.3) with n = e3 and keeping s and m
fixed, then ¢g(Q) is minimal for r = 0. For a prolate uniaxial Q € N, i.e. Q = s,(n®n — %Id)
for s, > 0 and n € S? we have

9(Q) = A(1—nd). (3.5)

The precise formula for g in (3.5) is not important to our analysis, but for simplicity we assume
this particular form. It would be enough to assume that g|y has a strict minimum in @ =
s«(e3 ® e3 — 31d), see Remark 4.18 in [8]. Besides this physical assumption, our analysis requires
g to satisfy the following hypothesis:

2. The function g : Sym, — R is of class C? away from @ = 0 and in particular satisfies the
Lipschitz condition close to A: There exist constants d;, C' > 0 such that if @ € Sym, with
dist(Q,N) < d for 0 < § < 41, then

19(Q) — 9(R(Q))] < C dist(Q,N) . (3.6)

3. The growth of g is slower than f, namely
9(Q) < C(+1QM"), (3.7)
IDg(Q)] < C(L+]QF), 3.8

for all @) € Sym, and a constant C > 0.

A physically motivated example that satisfies those assumptions [8, Prop. A.1] is for example
given by
2
3%

9(Q) = — Q33 (3.9)

Under these assumptions on f and g, it has been shown in [8, Prop. 2.4 and Prop. 2.6] that ¢
acts on f as a perturbation in the following sense:
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Proposition 3.2.1. For £,n > 0 with £ < 1), there exists a smooth manifold N, ¢ C Sym,,
diffeomorphic to N such that

& .
f(Q)+ ?g(Q) +E2Co(&,m) = 72 dist*(Q, Ny e) (3.10)
for a constant 2 > 0. In addition, there exists a constant C' > 0 such that
52
sup dist(Q,N) < C>5. (3.11)
QENn,g n

Furthermore, there exists a unique Qoo ¢y € Ny such that

Quoey = argmin — f(Q) + —4(Q).

QESym, n

given by Qoo .y = 542 /2 (€3 ® €3 — %Id), where |s,1 — s.| < Ct.

This shows that the constant Cp in (3.1) can be chosen to be Cy(§,n) = —é%f(Qoo,g,n) -
79(Qoo,6,n) > 0 and it also holds true that Co(&,7) < C€%/n*.

Since s, ¢2/p2 — Sx0 = 8« for {,;m — 0 in our regime, it is convenient to also introduce
Qoo = s«(es3®es — %Id) which minimizes ¢ 72 £(Q) + n~2¢(Q) among Q € N.

So far we have seen that the strong weight 5% in front of the bulk potential f (compared to 77—12
for g) favours Q to be close to the manifold /. In other words, we expect energy related to f to
be concentrated in regions where Q is far from A. In a sense that is specified in Theorem 3.3.1,
this region is related to the set where () takes values in C. In the same spirit we remark that under
prolate uniaxial constraint, g prefers the normalized eigenvector n corresponding to the biggest
eigenvalue to have a large third component nj as formalized in (3.5). Therefore we expect that the
energy contribution coming from g is concentrated on domains where |nz| ~ 0. More precisely, we
introduce

T ={Q€Symy : s>0,0<r<1,n3=0}, (3.12)

where r, s,n are defined as in (3.3). We study properties of 7 later on in Subsection 3.4.3 and
Section A.2. Most importantly, we will show in Corollary A.2.3 that 07 = C. This is a consequence
from the fact that if 7(Q) = 1, then @ has a two-dimensional eigenspace for the largest eigenvalue
which necessarily intersects the hyperplane {ns = 0}.

3.2.2 Flat chains

One of the main results of this paper is that the previously described energy concentrates on lines
and surfaces when 1,¢ — 0. In order to state our main theorem, we therefore need an appropriate
framework to describe geometric objects such as lines, surfaces and boundaries which is provided by
geometric measure theory and in particular flat chains [166,167]. The very basic idea of geometric
measure theory is to represent geometric objects as elements of a vector space and therefore allows
for algebraic operations such as addition. In that respect, flat chains are such elements which in
our case are dedicated to represent surfaces and lines. In the following we give a quick overview
of the most important results that we use subsequently. For a detailed and complete presentation
of flat chains and geometric measure theory, we refer to [65-67,131,149].

Polyhedral flat chains. Let G be an abelian group (written additively) with neutral element
Oand |-| : G — [0,00) a function satisfying |g| = 0 if and only if ¢ = 0, | — g| = |g| and
lg + h| < |g| + |h] for all g,h € G. In this paper, we are only concerned with the easiest case
of G = Zy and | - | the normal absolute value. For n,k € N, k < n, we denote by P* the group
of polyhedral chains of dimension k with coefficients in G i.e. the set of formal sums of compact,
convex, oriented polyhedra of dimension k in R™ with coefficients in G together with the obvious
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addition. We identify a polyhedron that results from glueing along a shared face (and compatible
orientation) with the sum of the individual polyhedra. Also, we identify a polyhedron of opposite
orientation with the negative of the original polyhedron. An element P € P* can thus be written
as

p
P = go;, (3.13)
=1

where ¢g; € G and o; are compact, convex, oriented polyhedra that can be chosen to be non-
overlapping. Note that in our case of G = Zs, the non trivial coefficients g; all equal 1 and that
the orientational aspect of the above definition becomes trivial. This reflects the symmetry of the
director field n ~ —n in the sense that around singularities we change orientation of n without
changing the physics. In other words, we can lift @) locally away from singularities to obtain a
well-defined director n, but in general it is not possible to combine those local liftings into a global
one. The boundary Oo of a polyhedron o is the formal sum of the (k — 1)—dimensional polyhedral
faces of o with the induced orientation and coefficient 1 under the above mentioned identifications.
Note that 9(dc) = 0. We can linearly extend this operator to a boundary operator 9 : P* — Pk-1,

Mass and flat norm. For a polyhedral chain P € P¥ written as in (3.13), we define the mass
M(P) =3, |gi|H"(0;) and the flat norm F(P) by

F(P) = inf{M(Q) +M(R) : P=0Q+ R,Q € P**' R e P*}.

Obviously it holds F(P) < M(P) and F(0P) < F(P). One can show that F defines a norm on
Pk [67, Ch. 2|.

Flat chains and associated measures. We define the space of flat chains F* to be the
F—completion of P*. The boundary operator 9 extends to a continuous operator 9 : F* — Fk—1
and we still denote by M the largest lower semicontinuous extension of the mass which was defined
on P*. Furthermore, one can show [67, Thm 3.1] that for all A € F*

F(A) = inf{M(Q)+M(R) : P=0Q+R,Q € F*' R e F"}.

For a finite mass flat chain A € F* and a measurable set X C R", we can define the restriction AL X
via an approximation by polyhedral chains, for which the restriction coincides with the intersection
under some technical assumptions and passing to the limit. A precise definition is given in [67, Ch.
4]. To each flat chain A € F* there exists an associated measure 14 (see [67, Ch. 4]) such that
for each ;14 —measurable set X, AL X is a flat chain and pa(X) = M(AL X). The support of A
is denoted supp (A) and given (if it exists) by the smallest closed set X such that for every open
set U D X there exists a sequence of polyhedral chains (P;); approximating A and such that all
cells of all P; lie inside U. If A is of finite mass, then supp (A) = supp (p4) (see [67, Thm. 4.3]).

Cartesian products and induced mappings. In the case of finite mass flat chains A, B (or
one of the two chains having finite mass and finite boundary mass), it is possible to define the
product A x B (by polyhedral approximation), see e.g. [67, Sec. 6]. In particular, it is always
possible to define [0,1] x B. For U C R™,V C R™ open sets and a Lipschitz function f : U — V,
one can define an induced mapping fx on the level of flat chains, i.e. for a flat chain A supported
in U, f4A is a flat chain supported in V' (see [67, Sec. 5] and [66, Sec. 2 and 3]).

Generic properties and Thom transversality theorem. A property of an object (such as a
function or a set) that can be achieved by an arbitrarily small perturbation of the object is called
generic. Examples are properties that hold in an ’almost everywhere’ measure theoretic sense or
that are true on a dense subset. In this work we encounter two such properties: Two dimensional
planes generically do not contain a fixed single point (can be achieved by shifting normal to the
plane). The second one is that a smooth map f : M — N generically intersects a submanifold
S C N transversely i.e. df(T, M)+ Tpy)S = TN for all points x € f71(S). The latter will be
used to apply Thom’s transversality theorem [160] in the form given in [86, Thm. 2.7].
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Deformations. In certain situations it is beneficial to approximate a flat k—chain A by a poly-
hedral k—chain P. The usual way to construct P is through ’pushing’ A onto the k—skeleton of a
grid in the following way. In this paper, a (cubic) grid of size h is understood to be a cell complex in
R? which consists of cubes of side length h. The "pushing’ operation consists of a radial projection
of A from the center of each cube onto the faces of the cubes, assuming that the center does not
lie on A. Then, on each face the projected flat chain gets again projected from the center of the
face onto the edges (as long as the projected chain does not contain any face center point). This
procedure is stopped once the projected flat k—chain is contained in the k—dimensional skeleton.
This deformation procedure is a crucial ingredient to prove that every A € F* can be written as
A =P+ B+0C, where P € F* is a polyhedral chain, B € F* and C € F**+! satisfy the estimates
M(P) < M(A) + hM(0A), M(0P) < M(0A), M(B) < hM(0A) and M(C) < hM(A), see [166]
or [67, Thm. 7.3].

Compactness. One point of importance from the perspective of calculus of variations are the
compactness properties of flat chains whose mass and the mass of their boundary is bounded. We
will use the result from [67, Cor. 7.5] which holds for coefficient groups G such that for all M >0
the set {g € G : |g| < M} is compact. This is trivially true in our case where G = Zs. Let K C R"
be compact and C; > 0. Then the corollary states that

{A e F* : supp (A) C K and M(A) + M(dA) < C;}

is compact.

Rectifiability. Another aspect of flat chains concerns their regularity and if one can define
objects originating in smooth differential geometry such as tangent spaces. It turns out that this
can be achieved a.e. provided the flat chain is rectifiable. By definition, rectifiability of a flat chain
A € F¥ means that there exists a countable union of k—dimensional C''—submanifolds N of R"
such that A = AL N [167, Sec. 1.2]. A rectifiable flat chain admits an approximate tangent plane
for H¥—a.e. z € A [10, Thm 2.83|. Such a point x is called rectifiability point of A and we denote
rect(A) the set of all points of rectifiability of A. For finite groups G, finite mass M(A) < oo
implies rectifiability of A, see [67, Thm 10.1].

3.3 Statement of result

Our main result concerns the asymptotic behaviour of the energy &, ¢ for n,£ — 0. Physically
speaking, we consider the regime of large particles and weak magnetic fields, see [8,76] for more
discussion of the physical interpretation of our limit.

The liquid crystal occupies a region € outside a solid particle F, i.e. 2 = R3\ E. We assume
the boundary of the particle M := JFE to be sufficiently smooth for our analysis, that is we require
M to be a closed, compact and oriented manifold of class at least C2. The regularity will be
needed to ensure that the outward unit normal field v € C! or in other words M has continuous
curvature. Furthermore, we assume that

I ={weM: rsw)=0}

is a C%2—curve (or a union thereof) in M and that V,v3 # 0 everywhere on I' (seen inside the
tangent bundle T M), see also Remark 3.3.2.

In order to make the minimization of the energy &, ¢ non trivial, we impose the following
boundary condition on M:

Q = s (1/ QU — ;Id) on M. (3.14)

Indeed, without (3.14) the minimizer of &, ¢ would be the constant function Q¢ .. We define
the class of admissible functions A = {Q € H' (2, Symg) + Q00 : @ satisfies (3.14)}. It is
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convenient to define the energy 5;;}5 for Q € HY(Q,R33) + Q, ¢.00 by

+00 otherwise.

We also use the notation &, ¢(Q,U) (resp. Efg(Q,U)) for the energy &, ¢ (resp. 5;7"‘5) of the
function @ on the set U.

Theorem 3.3.1. Suppose that
nn(€)| = B € (0,00) asn—0. (3.15)
Then n 5;;‘5 — &y in a variational sense, where the limiting energy & is given by
Eo(T,S) = 2s.c Eg(M,e3) + 45*0*/ | cos(0)| dprqy_ g + gszﬁM(S’) + 4s,.e.M(TL Q)  (3.16)
M
for (T,S) € Ay == {(T,S) € F>x Ft : 0T = S+T} and where
Eo(M, e3) = / (1 —cos(9)) dw —|—/ (14 cos(d)) dw .
{vs>0}

{V3§0}

The letter 0 is used to denote the angle between es and the outward unit normal vector v(w) at a
point w € M. The variational convergence is to be understood in the following sense: Along any
sequence Nk, &k — 0 with ni|In(&x)| — B (not labelled in the following statements):

1. Compactness and ' —liminf: For any sequence Q¢ € H'(Q,R33) + Q, ¢.00 such that there
exists a constant C' > 0 with

N Ere(Qne) <C, (3.17)

there exists (T, S) € Ay, functions Cj;,/g € C™(Q,Symy) with lim, ¢ 0 ||Qn.c — é;;g”m =0,
£7(Que, Br) < E7(Que, Br) + Cr and Yy ¢ € Sym with ||Vl — 0 such that T, ¢ =

(Que — Ye) HT), Sype = (C/Q\n/g —Y,¢) HC) for T and C given as in (3.12),(3.4) are
smooth flat chains with

OTye = Sne + Te, (3.18)
and, up to a subsequence, for any bounded measurable set B C )

lim F(Tye—T,5) =0, lm F(Syc— 5 B)=0. (3.19)

n,§—

Here, Iy ¢ is a smooth approximation of I' which converges to I' in Hausdorff distance and
hence also in flat norm. Furthermore, we have

liminf n €71 (Qne) > E(T. 5). (3.20)

2. T'—limsup: For any (T, S) € Ao, there exists a sequence Qp ¢ € A with ||Qy ¢|lre < \/gsn,é,*
such that (3.18),(3.19) hold and

lim s(l)lpn 5$5(Qn,€) < & (T, S). (3.21)

n—

Remark 3.3.2 (Assumptions in the theorem). 1. We note that due to our assumptions B €
(0,00), the global energy bound (3.17) can be reformulated as

EA(Qne) < C ().

This reflects the classical behaviour of a logarithmic divergence of the energy close to singu-
larities as already observed in earlier works e.g. in [30].
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2. If Qy ¢ is smooth enough (for example C?) and verifies a Lipschitz estimate as in (3.25)
for n ~ €1, we can choose @;/5 = Q¢ in the above Theorem. This is particularly true if
Qn.¢ is a minimizer of (3.1). Indeed, from the Euler-Lagrange equations, one can deduce the
regularity and the required estimate on the gradient [29, Lemma A.2].

3. The compactness claim holds for almost every Y € Sym, with ||Y|| small enough. The norm
converging to zero is needed to recover the condition 0T = S + 1T, the stated energy densities
on TL M, and the coefficient in front of M(T L Q).

4. Another possibility of introducing S, ¢ is by using the operator S defined in [{3,44]. In our
notation, this operator maps a function Q from (L>° N W11)(Q,Sym,) to L'(B,-(0),F'),
where o, > 0 and B,+(0) C Symy. In other words, S allows us to define a flat 1—chain
Sy (Qn.e) for Que € (L NWEH)(Q,Symg) and Y € By« (0).

5. The assumption of I ={w € M : v(w)-e3 = 0} being a C?—curve is not very restrictive. In
fact, this can already be achieved by a slight deformation of M which changes the energies
Ene and & in a continuous way. The assumption that V vs is nowhere vanishing on T’
is used as a sufficient condition to ensure that the perturbed sets I', ¢ stay regular and in
a neighbourhood of T'. In fact, since v3 = 0 on ' the derivative vanishes in the direction
tangential to T, so the condition is only on the part of V,v3 normal to T'. In particular, the
condition is verified if the Gaussian curvature |Kaq| > 0 on T

Remark 3.3.3 (An alternative formulation of &). 1. We can express the energy (3.16) in a
slightly different way by writing py , = xcH? L M for a mesurable set G C M and
defining

F={weM\G :vw) e3>0lU{weMNG : v(w) ez <0}. (3.22)

Then, (3.16) reads

&(T,S) = 25*0*/

(1 —cos(f)) dw + 2s.cx / (14 cos(9)) dw (3.23)
F

M\F
+ gsib’M(S) + s, e, M(TLQ).

The idea behind this reformulation and the definition of F is the following: Assume for
&,m > 0 that Q takes values in N such that (at least locally) we can lift Q to a director field
n. Because of the boundary condition, we can assume that for a given point w € M it holds
that n(w) = v(w). Following a ray in normal direction starting from w, n must approach
+esz since far from the particle, Q must be close to Q. If v3(w) > 0, it is energetically
favourable for n to approach +e3. On the other hand, the ray intersecting T means that n
switches sign, i.e. if we start from vs(w) < 0 and cross T only once, n converges to +es.
In this sense, the set F' can be understood as the region on M in which the lifting n along
the rays starts from v and approach +es, while on M\ F the director n turns from v to
—es. Previously, the energy Eo(M,es) describes the minimal energy concentrated on M,
i-e. nn always turns in the energetically favourable direction and the integral involving ul. M
accounts for the additional energy caused by intersecting T. See Figure 3.1 for an illustration
of the different quantities appearing in (3.23).

2. For convex particles E, there exists an orthogonal projection 11 : Q — M. By convexity
of E, we find that Eg(I1uT,114S) < & (T, S), so that we can restrict ourselves to the case
TLQ=0=S5LQ. Using (3.22), we find that OF =114S and (3.23) becomes

go(H#T,H#S) = 28*0*/

F(l —cos(8)) dw + 2s,.c4 /

(1 — cos(8)) dw + ~s2BM(IF).
M\F 2

In particular, (3.16) is a generalization of the limit energy & defined in [8].
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Figure 3.1: llustration of flat chains T',.S and the sets F, F¢ appearing in the limit energy &.

Remark 3.3.4 (Physical interpretation of T and S). The line singularity observed in physical
experiments [112, 113, 128] has its origin in the isotropic or oblate uniazial-biazial defect core of
the director field. In our mathematical framework this corresponds to the set where Q¢ takes
values in C and s therefore represented by S, ¢ which tends towards S in the limit model. Note
that it is a priori not possible to distinguish +3 and —% defect lines (see Figure 3.3 (left)). But
since the physical system as a whole must have a trivial topological degree, one can deduce in the
situation of Figure 3.8 that one +% and two —% defect lines must be present. By symmetry the
line in the middle must be of degree —|—%.

Point singularities of the director n are represented by simply connected components of T in our
model due to the following reasoning. As illustrated in Figure 3.2, the set where ng = 0 attaches to
T (yellow points on the surface of the sphere) and necessarily passes through the point singularity
and creates a simply connected component. However, with this description it is not possible to
determine the exact position of the point defect on the surface T. In the case of a minimizing T
around a spherical inclusion, T will approach the particle surface since the nematic and magnetic
exchange length become small w.r.t. the particle radius and thus T forms a half-sphere (compare
with [8, Ch. 6]). In the case of a peanut-shaped particle aligned with the magnetic field we expect
one of three different minimizing configurations, depending on 3, see Figure 3.3. In particular,
there exists a non-simply connected component of T which does not correspond to a point defect,
but originates in the connection of two components of I'. In summary, T is a surface which connects
T to the singular set (lines and points).
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Figure 3.2: Tllustration of the integral lines of the director field n around a spherical inclusion and
the level set {z € Q : n3(x) = 0} representing 7. The point defect lies on 7.

&
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N—T—"T1"4
\\h —’,/;
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I

Figure 3.3: Expected minimizers of & for § < 1 (left), 8 > 1 (right) and intermediate 8 (center).
For small 8 the line S has the tendency to stick to M and optimize F', thus no T" appears. Here,
S =T and F consists of two connected components bounded by the three components of S. This
configuration corresponds to three Saturn rings around the particle. For intermediate 8 one may
find a configuration as depicted in the middle, i.e. the energy is decreased by joining two parts of
S by a surface T glued to M. This leads to the disappearance of the two rings that have been
connected by T, and F contains only the part of M above S. Finally, for large g, the last ring
disappears and we obtain a dipole configuration in which S = 0, F = () and T has two components,
see Remark 3.3.4. This last configuration has been observed experimentally, see [143, Fig. 2(a)-(c)].

3.4 Compactness

The structure of this section is as follows. We regularize the sequence @, ¢ in the first subsection.
For this new sequence Q, ¢, we define a 2—chains T}, ¢, € F2 and 1—chains S, ¢, € F' such
that 013 ¢n = Spen and we have bounds on the masses to get the existence of limit objects T
and S with 0T = S. This construction is carried out in steps in the subsections two, three and
four. We distinguish the case of @, ¢, being close to N and hence almost prolate uniaxial and
the complementary case when @, ¢, is far from AV, e.g. when @, ¢,,, is isotropic or oblate uniaxial
close to the boundary S. The passage to the limit is to happen in the last subsection.
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3.4.1 Approximating sequence

This section is devoted to the definition of a sequence of smooth functions @, ¢ ., replacing @, ¢ in
our analysis and proving the properties required for the estimates in the following chapters. More
precisely, we need that

e the sequence Q, ¢, approximates @, ¢ in H',
e Qy.¢nlm approaches @ in C1,
o Q,¢n verifies the same energy bound 7 &, ¢(Qy¢.n) < C and

e the estimate Lip(Qy.¢,») < C n holds.

While n is introduced a regularization parameter, we will later choose n dependent on £ to obtain
a sequence which only depends on the original parameters 7, £. More explicitly, we can simply take
n = &1 as we will see later.

For technical reasons, we are going to extend @), ¢ into a small neighbourhood into the interior
of E. Since M is compact and of class C?, we can fix a small radius ro > 0 such that M satisfies
the inner ball condition for all radii r < 2ry. In particular, rq is smaller than the minimal curvature
radius of M. For z € F such that dist(z, M) < 2r¢, define

Quela) = s, (y(@@y(l«)_;m) ,

where 7(z) = v(IIp(z)), IIaq the orthogonal projection onto M, is the obvious extension of the
outward normal unit vector field v in E. Also by C?-regularity of M and given n € N, there
exists a C?—diffeomorphism ®,, : R* — R3 such that

B (x) = x x € Q with dist(z, M) > 2,
" - z— L9(x) € R3 with dist(z, M) < 1,

and |[V®,(z)] < C.

Let IIg : Symy, — Br(0) C Sym, be the orthogonal projection with \/gs* < R < o0 to be

fixed later. Furthermore, let o € C°(R?) be a convolution kernel with 0 < o < 1, o(z) = 0 if
|| > 1, [s 0(z) dz =1 and ||Vg|ls < 1. We set o,(x) = n®o(nz). Then, for n > ro !t we define

Qu.en(x) for z € 0 as the convolution

QW,E,H(I') = ((HR o Qn,§ © q)n) * Qn) (1') . (324)

Remark 3.4.1. 1. This definition also extends Qy ¢ n into the interior of ' up to distance rgy
to M.

2. Through the convolution, we change the boundary values of Qy ¢, i.e. Qy¢rn does not nec-
essarily satisfy (3.14). The diffeomorphism ®,, ensures that the regularized sequence Q¢
defined above approzimates the boundary data Qy in C', although at distance from M we
only have H'—convergence to Q¢ .

3. The convolution also changes that the approximations of T that we are about to construct will
not end on T, but on a set T, (which is again a line) in the neighbourhood of T'. Because of
the C'—convergence of Q¢ n|m — Qb we can use a perturbation argument to deduce that T,
converges in Hausdorff distance and in flat norm to I'. The details of this result are provided
in Section 3.5.3.

The following proposition shows that this sequence has indeed the desired properties.

Proposition 3.4.2. The sequence Q. ¢, defined in (3.24) verifies:
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1. The functions Q¢ are smooth and there exists a constant C > 0 such that

VQnenllLee < Cn. (3.25)

2. We have convergence Q¢ — Qne — 0 in H' and Qpenlm — Qp in C' for n — oo and
&,n — 0 provided nn diverges in the limit n — oo, n — 0.

3. There exists R > \/gs* and constants C1,Cy > 0 such that for all measurable sets Q' C Q
with || < oo the energy of Qyen can be bounded as

1 1+R 1+R?
ngnas(anga”“ Q/) S Cl (1 + g + 2 + n2 ) 77577!& (ang’B% (Ql) N Q)
1

1 ||
€22 n2\/ﬁR> o < n2 5"”5(@7’5’9/)) ’

where B,.(Q)) denotes the r—neighbourhood around €Y.

n

(3.26)

[N

1
+ Can <n+ R*(1+4 R?) +

Proof. The smoothness of the functions (), ¢, is clear by standard convolution arguments, since
¢ is smooth. The bound on the gradient follows from the computation

4
Vneal@] < IVealie [ 5@ c@a(w)] dy < grhn.

For the H' convergence, we note that the energy bound for @y, and Proposition 3.2.1 imply
that {z € Q : |Q,e(x)| > R} S %(R - 5\/%9*)*2. Hence the set on which the projection IIg
modifies @, ¢ is asymptotically negligible. Let Ur := {z € Q : |Q, ¢(2)| < R}. We can then write

2 2
||Qn,§,n - Qn,{”Hl(Q) < ||(Qn7§ 0 ®y) * pp — Qn,ﬁHHl({dist(.,M)g%}mUR)
2
+1Qne * Pn = Quelli (qaise- M= 23008) (3.27)
+ ||Qn£,n - an”%{l(U}g) :

The last term in (3.27) converges to zero since the set Uf, vanishes asymptotically as we have seen
before. Since V&, is bounded and [|Qy¢ll31 ) < n~ ', the first term vanishes as well provided

n > n~!. The second term converges to zero by the standard convolution properties.

Next, we prove the C'—convergence on M. For w € M it holds that

pn(y) dy.

|Qn.en(w) — Qp(w)] < /B1 o ‘Qn,f (w -y - %%—y) - Qp(w)

Note that @), ¢ does not depend on 7,¢ here as it is uniquely defined by the extension 7. Since
Qp and U are continuous on a compact set, they are also uniformly continuous which implies
C°—convergence for n — 0. Analogously,

|van,§,n(w) - Vu@p(w)| < / ‘(van,é)(W - Y- way) (Id + %wa) = VuQy(w)|pn(y) dy,

B1(0)

and since V7 is bounded we can use uniform continuity of V,,Q to deduce C'—convergence on

M.
It remains to prove the energy bound for @, ¢ ,,. For this, we first recall that |[D®,| is bounded

70



and that for z € Q with dist(z, M) > L it holds D®,,(z) = Id. This allows us to estimate

/ ‘VngmF de < / (V(Qn,e0®y)) % 0n|? dx
o Q

2

C
< / / (Va@ue)@ — y)no(ny) dy| dz+ Z|Que
'n{dist(-,M)>21} [/ B (0) n

A

|2
H(Q)

IN

Z\ |2 9 C 9
cigl [ [ N:Qu) (e = ) leP dz do - Quelf oy

cigl [P [ [9a@ne) (o= 2)| dods S 1Quellinay
B1(0) Q n n

1
01+—/ VQ,e)l? dz.
(1+3) [, o (T2

IN

Writing B1 (') = (B ()N Q) U (BL(Y) N E) and using that |V (IIx(x))| is bounded, the
integral can be further estimated by

1 C
| 5IVQuenl e < £eQue By @)+ - (329
B () n

Next, we compare the bulk energy of @, ¢, and @, ¢. To this goal, we use the triangle inequality
to get

| P@uen) = F@uo) dr < [ 1F(@uen) = M@l do+ | FnQue) = F(@ue) do.
(3.29)

where we used the notation F(Q) = f(Q)+ g—zg(Q) +&2Cy. Asin [8, Prop. 4.1] we fix R such that

F(Q) > F(IIrQ) for all Q € Sym,. Hence [, f(IIrQy.c) — f(Qy,¢) dz < 0. It remains to estimate
the first integral of the RHS of (3.29). As before we split the integral into two parts depending on
whether the distance to M is larger or smaller than % We calculate

CR?
/ |Qn,£,n - HrQn,§|2 dz = / |(HRQ77,§) * On — HRQU,E|2 dz +
Q Q' N{dist(-,M)>2} n
1 CR?
< — | |v@ 24d (3.30)
< o [ VR, et &
CR?

¢ /
< ﬁgn,ﬁ(Qn@Q )+ n
where we also used the L —bounds |Qy.¢ »|, IIrQy | < R. Applying those bounds again gives

[ 1£@un) = FMaQy )l do < SHO+ R+ ) £06(Ques ) + o (F + B+ RY. - (331)

n2
It remains the estimate of g(Qy.¢.n) —g(IIrQy.¢). It is enough to consider the set Q" == Q' N{z €

2

{Q € Sym,, : |Q| € \/gs*,R]}, we find

Q : |Qpen(z) > l\/gs*}, on '\ Q" we use Proposition 4.2 in [8]. By smoothness of g on

52
/Q, 19(Qn.en) — g(IIRQy¢) dz S an,g(Qn,g,m Q) + Vgl Loy - |Qn.e.n — HrQy ¢| da

52 Q/ R2 %
S ggnﬁﬁ(Qn,ﬁ,na QI) + %&7’6(@%5’ Q/) + n :

Combining this with (3.28) and (3.31), we substract 0%57,75(@7,,5,", V') from both sides and divide
by 1 — Cg—z to get the estimate (3.26). O
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Having established these properties of ), ¢,», we are able to identify the size and structure of
the set where (), ¢, is close to being prolate uniaxial as stated in the next Lemma.

Lemma 3.4.3. There exists a constant C > 0 such that for all 6 > 0, there exists a finite set
I C Q which satisfies

1. the following inclusions

Us C UBQL($) C Usja, (3.32)
xel

where Us == {x € Q : dist(Qy¢.n(z),N) > 8},
2. and

n? 9 1
where fO. =min{f(Q) : dist(Q,N) > 5/2}.

Proof. Let 6 > 0 and x¢ € Us. By Lipschitz continuity of @, ¢ ,, (Proposition 3.4.2), we can deduce
that for any x € B (z0) it holds

dist(Qn.e.n(2), N) = dist(Qyen(z0), V) = [VQn.e.n

)

1) 1)
|ooi Z a
2n 2

so that x € Us/o. From this, we get that
Us C U B%(ﬂ;‘) C U5/2.
zeUs

By Vitali covering theorem, we find a subset I C Us with the same property and B
B

15 (2) N
%%(xj) = () for i # j and z;,z; € I. Furthermore, using Proposition 3.4.2 ’
C ¢ C 1
o [1@oa > [ Qe (¢ )

n Q Q n n
C 1 C 1
FQueny o= C (24 55) = OB =S (€4 5)
Us/a n n o Ui n

3f .
crtlon L (e 5.
n

n3 _Z

v

Y

where we used that f > fuin > 0 on Us/o. From this it follows that

n3 1
< C—— [+ = ).
#I o C77 fnlin53 <€ + n2>

O

In [8] a similar result was obtained using a regularization related to the energy and using the
Euler-Lagrange equation to derive the Lipschitz continuity. This approach would also work in the
new setting and one could obtain Lemma 3.4.3 with n = ¢!, However, our new approach has two
major advantages: The first one is that the proofs are shorter and more elegant. The second (and
main) reason is that we now have control over the gradient of the approximation as well, contrary
to the approach in [8].

From (3.33) it follows that the volume of the union of balls in (3.32) converges to zero for
n, & — 0 and n ~ £~1. The same holds true for the union of the surfaces of those balls. Note
however that the sum of the diameters is not bounded and diverges like n~!. With the tool
developed in [30] and used in [8,42] it would be possible to derive a bound, namely the sum of
diameters can be shown to be bounded.
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3.4.2 Definition of the line singularity

The goal of this section is to define a 1—chain S, ¢ ,, of finite length which satisfies the compactness
properties announced in Theorem 3.3.1. The necessary analysis has already been carried out
in [43,44] but for the reader’s convenience we recall the important steps and results.

For the construction of S, ¢ ., we follow Section 3 in [43]. We recall that C is the cone of oblate
uniaxial (J—tensors which can be seen as a smooth simplicial complex of codimension 2 in Sym,,.
Evoking Thom’s transversality theorem, one can assume that, for almost every Y € Sym,, the
function Q¢ — Y is transverse to all cells of C. Subdividing the preimages of the cells under
the map Q, ¢, — Y if necessary, (Qy.¢.n — YY) (C) defines a smooth, simplicial, finite complex of
codimension 2 which we call S, ¢ ,,. Note that S, ¢, depends on the choice of Y.

The relevant estimates on S, ¢ , needed to prove Theorem 3.3.1 in Section 3.5.3 are formulated
in Theorem C and Section 4 in [44]:

Theorem 3.4.4. There exists a finite mass chain S such that one can choose a subsequence Sy ¢
(not relabelled) and o > 0 with

F(Spen—S) — 0 for almost every Y € B,(0).

Furthermore, for any open subset U C R? it holds

liminf £, ¢ (Quen, UNQ) > —s2BM(SLU).
£,n—0 ’ > 2

In our situation, by construction of @, ¢, and for Y € B,(0) (a small enough) it holds that
(Qnen—Y)'C) C Us € |JBu(a).
xzel

Hence supp (Sy.¢,n) C Uyer B g (2) and in view of the lower bound in Theorem 3.4.4 we deduce
that the energy coming from Sy ¢, in U is already contained in UNJ,¢; Bs ().

3.4.3 Construction of 7" and estimates for ) close to N

In this subsection we carry out the first steps to define the 2—chain 7. We start by defining
T :={Q€Sym, : s>0,0<r<1,n3=0},

where 7, s,n are defined as in (3.3). From this we want to define T, ¢, close to Q;én(T) As
carried out in [43] and described in Subsection 3.4.2, for almost every Y the set (Q, ¢, —Y )" (T)
is in fact a smooth finite complex. In Lemma 3.4.6, we show that in addition for a.e. Y € Sym,,
the definition

Tn,f;“,n = (Qn,&,nfy)il(,r)

allows to control the area in regions where @, ¢, is close to N. Since both the constructions of
Sp.en and T, ¢ , are valid for a.e. Y, we can choose the same Y and hence 07, ¢, N2 =S, ¢ . In
parts of Q where @, ¢ ,, is far from N, e.g. close to S, ¢ ,, we need to modify T;, ¢ ,. This will be
the subject of the next subsection.

At first, we recall the (intuitively obvious) result that 7 is well behaved close to A in the sense
that the level sets {n3 = s} for s small have a similar H*—volume as 7. This can be interpreted
as control on the curvature of 7 NN.

Lemma 3.4.5. There ezists ag,a1,C > 0 such that for Q € Sym,, dist(Q,N) < ap and « €
(0, 1) it holds that

lim HY({Y € Ba(0) : n3(Q-Y) =s}) = HY(Ba(QNT).
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In the smooth case this lemma follows as in [126, Lemma 3], however we give a proof here for
completeness.

Proof. The parameter ag needs to be small enough to avoid problems far from A due to the
non-smoothness of 7 at the singularity 0 € Sym,. So we choose 0 < o < gdist(0,NV). To avoid
dealing with the topology of the sets involved, we pick 0 < oy < gdiam (V). Hence, B, (Q) N T is
diffeomorphic to a 4—dimensional ball.

We define ¢(Y) := nz(Y) for Y € B,(Q) and note that B,(Q)NT = ¢~*(0). One can calculate
D¢(Q) = Dyns3(Q) and by the calculations in the proof of Lemma A.2.4, D¢(Q) is parallel
to the normal vector Ng. Hence, for ag,a; small enough rank(D¢(Q)) = 1. By the implicit
function theorem, there exists a function ¢ such that ¢(Q + y + ¥(y)Ng) = s for y € B,(0)
with y L Ng. Furthermore, DY(Q + y) = (Dns(Q + y + ¥ (y)) : No) H(Dn3(Q + y + ¥(y))).
Since Dng is parallel to Ng in first order, for each € > 0 and s, > 0 small enough it holds that
1—€e< (det(DwTDz/J))% <14eon {¢ <s.}. With a change of variables this becomes for s < s,

(10 / by) dy < H(GN0) < (149 / $(y) dy.
{¢p=s} {p=s}

€) Jpoy ¥(y) dy = (1 — €)*H*(¢71(0)). Since e > 0 was arbitrary, the claim follows. O

In the limit s — 0 we obtain (1 +€) [;,_o,9(y) dy < (1 + €)?H*(¢~1(0)). Analogously (1 —

For 6 > 0, we introduce the set As C € in which @, ¢, is close to being prolate uniaxial with

norm \/gs* as
As = {xeQ : dist(Qyen(z),N) < d}. (3.34)

The next lemma shows that (in average) the H?—measure of (Q,¢, —Y) (7)) that lies in As is
controlled by the energy.

Lemma 3.4.6. There exists ag,dg > 0 such that for all « € (0,a9), 6 € (0,00) one can find a
constant C' > 0 such that

; (0)H2(A5 N(Quen—Y) M TN AY < Cn & e(Quen,As). (3.35)

Proof. Let o, > 0 small enough such that for Y € B,(0), the map Q — nz(Q —Y) is smooth
on {Q € Sym, : dist(Q,N) < §}. Let As; be defined as in (3.34). In order for the map
z = n3(Qnen(r) —Y) to be well defined, we need to restrict ourselves to a simply connected
subset of As. For this, take 29 € As and r > 0 such that A5 N B,.(xz¢) is simply connected. We
carry out the analysis on AsN B, (zp), noting that we can cover As by such balls to find the estimate
(3.35). With xg € As and r > 0 fixed as described, we can calculate

/B (0)H2(Br(xo) N A5 N (Quen(x) —Y)"H(T)}) dY

-/ o) IPXre@n 0 (Br) 149) Y

A

e—0

< lim inf/ / |Va(heong o (Quen —Y))(x)| de dY
B, (0) JB,.(z9)NAs

— Jiminf / / I (13(Que.n () — Y))Vna(Qpen(z) — Y) : VoQ(2)] dz dY
B, (0) J B, (z9)NAs

e—0
where h, € C*(R,[0,1]) is an approximation of the Heaviside function, i.e. he(z) = 0 for z < 0,

he(z) = 1 for + > e¢ and h. > 0 on (0,¢). The above inequality is then just the lower semi
continuity of the total variation. With the identity h.(n3(Qp.en(z) —Y))Vons(Qpen(z) —Y) =
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—Vy(heons o (Qnen(x) —Y)) and the Fubini theorem we can rewrite
Lo n(@uen() - V)Vama(@uen(e) = ¥): VaQuen(o)] da dY
Ba(0) J Br. (ﬂco)ﬁAs
</ |vczngn|/ Dy (he om0 Qe — V)| dY da
(lo)ﬁAg
= / |VQn7g7n|/ HY{Y € Ba(0) 1 he(n3(Qpen(z) —Y)) =s}) ds da
(z0)NAs 0

1
- / VQuenl / HA{Y € Ba(0) : n3(Quen(x) — V) = ho'(s)}) ds de,
B,(ZQ)OA(s 0

where we also used the coarea formula. By Lemma 3.4.5 in the liminf € — 0 this equals

e—0

1
lim inf/ \VQW@M/ HY{Y € Bo(0) : n3(Qpem(z) —Y)=h"(s)}) ds da
B, (zo)NAs 0
= [ Vel H(Ba(Quen) N T) o
(wo)NAs
by translation invariance of H*. Applying the elementary inequality 2ab < a? + b? we get
/ IVQn.enl H4(Ba(Qn,€,n) NnT)dx
By (z0)NAs
1
< [ AVl 5 BalQuen) NT) o
B (Io)ﬁAg 2 277

The Dirichlet term appears in the energy, so it remains to estimate H*(Ba(Qyen) N T)?
terms of g(Q.¢,n). We first note that 7 N Bo(Qu.e,n(z)) = 0 if dist(Qy ¢.n(z), T) > a and since
dist(Qu.e,n, N) < § we have H*(Bo(Qype.n) N T) < Csa’ by Proposition A.2.5. Hence, we get

/ 7-[4(Ba(ngm) N T)2dm < (05044)2\3,«(:30) NAsN{z e Q : dist(Qnen(z),T) < a}.
B, (z0)NAs

Forz € Asn{z € Q : dist(Qyen(z),T) < a} we can estimate

9(@nen(@)) = g(R(Quen(x))) — Codist(Qnen(x), N) = \/g(l —13(Qnen(2))) = Cyd

3
> \/;(1—0704)—095 >G>0
for o, 6 < 1 small enough. Hence,
G|By(zo) NAs N{z € Q : dist(Qnen(z),T) < a} < / 9(Qn.en) dz
By (z0)NAs
O
We remark that although Lemma 3.4.6 control the size for a.e. fized Y € B,(0), but degenerates

with . Hence it does not provide a uniform bound in « allowing to pass to the limit Y — 0. A
bound independent of « will be derived in the section on the lower bound.

3.4.4 Estimates near singularities

At points z € Q where dist(Qy ¢ n(x),N) > d, the estimates we derived in the previous subsection
are no longer available and we need new tools to bound the mass of T, ¢ ,,. We are concerned with
two different cases: The first case is the one of x € T}, ¢, far from the boundary S, ¢,. We can
simply "cut out" those pieces and replace them by parts of surfaces of spheres which are controlled
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in mass. This will be made precise using Lemma 3.4.3. The second case is more challenging. We
will modify T}, ¢ », close to the boundary S, ¢, by using a construction similar to the one used in
the deformation theorem (see Lemma 3.4.8). This will allow us to express the mass of the modified
2—chain in terms of the surface of cubes and Lemma 3.4.3 permits us to control the number of
such cubes.

Lemma 3.4.7 (Deformation in the interior). Let '™ C I be the subset of points xo € I such that
dist(zo, Sp.en) > o and dist(zo, Tye,n) < 2. Then, there exists a flat 2—chain T™ with values
in w1 (N) and support in B™ = |J, ¢ jin B (x) such that

1. OT™ = 9(Ty e L BM),

2. and M(T) < 2 (€2 + ).
Proof. Since B™ Nsupp(T;,¢.») # 0 and B Nsupp(S,.¢,n) = O we know that ) # 9(T),.¢,nLB™) C
OB™. Furthermore, since 9 = 0 it follows that (T}, ¢ ,L_B™") consists of closed curves and divides
OB™ into domains. Let D be the set of ‘these domains. Now pick any subset D’ C D such that
9 (Upep U) = 0(Ty¢,n L B). We define Tt := 3", [U]. Then, by definition T}, ¢, L B™ and

Tint have the same boundary and since Tt C 9B™ we also have

ey . 2 1
M(T™t) < M(@B™) < Y M(@Bs) < #1471'% < Z(§2+nz) .

xEIi“"

O

At the boundary we cannot remove a disk without the risk of creating new boundary which
might not be controlled, so another method has to be used. The idea is the following: Take a cube
K of size % which contains a part of the singular line S, ¢, and intersects with T3, ¢ ,,. We then
modify (deform) the "surface" connecting T, ¢ , N OK and S, ¢, N K by pushing it onto a part of
OK (see also Figure 3.4). The result is a modified T}, ¢ , with the same boundary as before and the
surface inside the cube is controlled by the surface area of K and the length of the singular line.
We point out that this procedure and its proof is closely related to the deformation theorem (for
flat chains) (see [166], Chapter 5 in [66], Theorem 7.3 in [67] and Chapter 4.2 in [65]) but differs
in some details so that we give a full proof here.

Lemma 3.4.8 (Deformation close to the boundary). Let I®YY C I be the subset of points xo € I

such that dist(zo, Sye,n) < 2 and dist(zo, Ty en) < o. Then there exists a flat 2—chain TPy
with values in 71 (N') and support in a finite union of cubes of side length & /n called B*™ verifying
Usebary B () € B such that

L BMY S L+ ),

—_~—

2. 0T = 9(Ty ¢ n I_Bbdry),
3. and

M(TH) < Z(£2+ ! > . (3.36)

n2

Proof. For the sake of readability we drop the dependences on £, 7, n in the notation of this proof

and simply write T instead of TPy, Covering S with a cubic grid of size h = % such that S is
in a general position, we can assume that the center zx of all cubes K that contain parts of S
does not intersects S or T, i.e. zx ¢ supp (T'),supp (S). Indeed, this is possible S intersects only
a finite number of cubes according to Lemma 3.4.3. Let G be the set of those cubes and X the set
of its centers.
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Step 1 (Construction and properties of the retraction map). Let K € G be a cube and let
xx € X be its center. Let P be the central projection onto 0K originating in zx. We define
a homotopy @ : [0,1] x (K \ {xx}) — K between the identity on K and P by simply taking
®(t,x) = (1 — t)x + tPzx. Note that by definition this homotopy is relative to 0K, i.e. ®(t,z) = x
for all t € [0,1] and z € K. Furthermore, for all z € K \ {xx} and ¢ € [0, 1] it holds

dist(®(t, x), xx) > dist(z,zx). (3.37)

Since |0, ®(t, z)| = |-+ Pz| < v/3h and by (3.37) we deduce that ® is locally Lipschitz continuous
and Lip(®(t,2)) < C hdist(z,zx)~!. Since ® is relative to 9K we can glue together all those
functions defined on the cubes K € G with the identity on cubes K ¢ G to get a function ® defined
everywhere in R3\ X.

Step 2 (Intermediate estimate). In this step we want to show that if we allow for a small
translation of the chain S, then the mass of ®.(]0,1] x S) can be bounded by M(S) times the size
of the cube h, up to a constant.

Applying Corollary 2.10.11 in [65] (or Section 2.7 in [66]) we get as in [166, Lemma 2.1]

M(@4([0,1] x 8)) < [1d - Plls / sup Lip(®(t,)) dus(x)
R3 t€[0,1]

< Ch? / dist(z, X)™* dus(z).
R3

Taking the mean over translation by a vector y € [0, 1], we arrive at

M(®4([0,1] X (T4yS)) dy = C h2/ / dist(az:,X)_1 dpr,,s(z) dy
[0,1]3 [0,1]3 JR3

=C h2/ / dist(z + hy, X) ' dus(z) dy
[0,1)3 JRr3

=C h2/ / dist(z 4+ hy, X) ' dy dpus(z)
Rr3 J{0,1]3

< Ch / dus(z)
R3
= ChM(S).
Hence, we can assume that S is in a position such that

M(D4([0,1] x §)) < ChM(S). (3.38)

Step 8 (Definition of T). We define
T = 9(Dy([0,1] xT)) - T.

Considering a cube K € G, one can think of this construction as the boundary of the three
dimensional object created by filling the space between T and its projection onto K according
to Step 1 and then removing the original part T. Another but equivalent point of view is to take
T as all the points along the path created by projecting T'L 9K, S together with the projection
P4 (T), see also Figure 3.4. Indeed, one can calculate for K € G

0(®x([0,1] x (TLK))) =24((0[0,1]) x (TLK))+ ®x([0,1] x (0T)L K) + ®4([0,1] x T'L (0K))
=Pyu(TLK)— (Idg)x(T)+ Px([0,1] x (SLK))+ Px([0,1] x TL (9K)).

Thus, we have the formula
TLEK = Pu(TLK) + ®4([0,1] x (SLK)) 4+ ®4([0,1] x TL (9K)).
Since Py (T K)+ ®4([0,1] x TL (0K)) C K from which we derive the bound on the mass of T

M(TLK) < M(OK) + M(®4([0,1] x (SLK))) < 6h* + ChM(SLK), (3.39)
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where we also used the estimate (3.38) on K of Step 2. On all cubes K ¢ G, TLK =0, so

that we find supp (I) C Ugeg K. Defining BPY = |J{K : K is cube of the grid, 3z €
P4y with K N B (z) # @}, it is clear that T is supported in B since Ukec K C B>,
Furthermore, by definition of B"*Y, we have the claimed inclusion (, ¢ pvary B s () C B*". The
measure of BPIY can easily be estimated since it is formed by cubes covering Usperpary B 2 (z), the
cubes having the same length scale % as the balls. Therefore, up to a constant only depending on
the space dimension, (3.33) implies that |BPdY| < h3n"—;,(§2 + L) = %(52 + ). Since 800 =0,
the boundary of T' coincides with 97T Since all calculations in Step 3 were local and ® is relative
to the boundaries of the cubes, (3.36) follows from summing up (3.39) over all cubes K € G. O

Tk
Them 0K emen e Syen L K

Figure 3.4: Construction near the boundary inside a cube: The newly created area (grey) is
controlled by the surface of the cube and the length of the line singularity (red).

As a direct consequence of Lemma 3.4.6, Lemma 3.4.7 and Lemma 3.4.8 we have the following
corollary:

Corollary 3.4.9. There exists a flat 2—chain i;; with values in 7 (N') such that

1. aTm&n = I

2. for allxg € Q and R >0

—~—— n 1
M(Tmém LBR(J;O)) S n gn,f(Qn,f,n, BR(J?O)) + ; ({2 + n2> , (340)

3. and
F(Then—Then) S 7 (52 + n2> - (3.41)
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Proof. Starting from T, ¢ ,, and the estimate in Lemma 3.4.6, we can modify T}, ¢ ,, according to

Lemma 3.4.7 and Lemma 3.4.8 in the region B U B"dY to obtain T, ¢ , without changing the
boundary S, ¢, by setting

—_~—

Tyen = TWCLB™ 4 Thdy | BXY | T, | ((B™ U BPWY)e).

Estimate (3.40) is a direct consequence of the three aforementioned lemmata. Finally, by construc-

tion T, ¢,n— Ty ¢.n i supported in BtUBPY and a(ng’n—I/",:;) = 0. Hence, ]F(ngm—i;\;) <
| Bt U BP4Y| | from which (3.41) follows for n large and 7, ¢ small enough. O

In the following analysis we only work with T}, ¢ ,. In order to improve readability, we drop the
tilde in our notation from now on.

3.4.5 Proof of compactness for fixed YV

Let B C Q open, bounded and choose n := £~!. Then, by Lemma 3.4.6 and Corollary A.2.3, we
deduce that for o > 0 and &, 1 > 0, there exist Y, ¢ € B,(0) C Sym, such that our construction
yields a flat chain T}, ¢ ,, € F2 such that 9T, ¢ ,, = Spy¢n + 'y, and

M(T, e B) < c(nsn,f<czn,g,mBR<xo>>+i) < C(’?gn,s(Qn@BR(Io))va?) 7

where we also used (3.26) of Proposition 3.4.2. In particular the energy bound (3.17) implies
that M(T}, ¢, B) is bounded. Applying a compactness theorem for flat chains as stated in the
preliminary part ([67, Cor. 7.5]), there exists a subsequence (which we do not relabel) and a flat
chain T € F? with support in Q such that F((T, ¢, — T)L B) — 0 for £,n — 0. Extracting
another subsequence if necessary we can assume that Y, . = Y € B,(0) for n,{ — 0. We note
that the T constructed here depends on Y (and «). In order to keep our notation simple, we
only write this dependence explicitly when necessary, i.e. when we pass to the limit ||Y||,« — 0 in
Subsection 3.5.3. Since the boundary operator d is continuous we conclude with Theorem 3.4.4
that 0T = S +T'. The finite mass of T and S immediately implies rectifiability [67, Thm 10.1].

3.5 Lower bound

This section is devoted to the I'—liminf inequality of Theorem 3.3.1. The proof necessary to deduce
the line energy has already been given in [44], so that we will only state the result for completeness
(Proposition 3.5.1). The energy contributions of T' far from M are to be derived in Subsection
3.5.1. In the remaining, we are concerned with the energy of T" and F' close resp. on M.

The precise cost of a singular line in our setting has been derived first in [41] based on ideas
in [92,144]. In our case, the result reads as follows.

Proposition 3.5.1. Let B C Q be a bounded open set and U, = {z € Q : dist(z, Sy ¢n) < /0}.
Then

liminf 5 &, ¢ (Qnen, Uy N B) > —s2BM(SL B). (3.42)
7,60 ’ 2
Proof. See Theorem C and Proposition 4.1 in [44] for a proof of the version we used here. O

To derive the exact minimal energy for the lower bound related to T', we introduce the following
auxiliary problem:
I( b) inf / sinsl® 2(1 —n2)d (3.43)
ri,72,a,b) = in ci(1—mn3)dr .
172 ns€H([r1,m2),[~1,1]) J,, 1 —n3 3

1

ng(ry)=a, ng(rg)=b
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for 0 <1 <ry <o0,a,be[—1,1]. It is one dimensional and only takes into account the derivative
along the integration path. Problem (3.43) is equivalent to minimizing [ (1]0,Q|*> + ¢(Q)) dr
subject to a N —valued function @ and fitting boundary conditions. This reflects that by Lemma,
3.4.3, the regions where Q, ¢, is far from N are small. Indeed, if Q(r) = s.(n(r) ® n(r) — 11d)
for a S?—valued function n, then 9,Q = 5.((0,n) ® n + n ® (9,n)) and hence |9,Q|? = 2s2|9,n|?
since |n|? = 1 and therefore 2(9,n) - n = §,|n|?> = 0. Using again that n € S%, we can write
n = (£/1 — ngiiy, £+/1 — n3fz, ng), where it = (i1, 72) is a S'—valued function. One can then
easily calculate that |9,n|> > |\/1 — n22n30,n3]> +|9,n3|*> = |0,n3|*/(1 —n3) (with equality if 7 is
constant), which is the first term in (3.43). For the second term in (3.43) we note that by (3.5) it
holds that g(s,(n®n — 1Id)) = ¢2(1 —n3). The functional in (3.43) has been previously studied
in [4] and [8, Lemma 4.17] from which we need the following lemma:

Lemma 3.5.2. Let 0 <r; <ry <o0. Then,
1. I(rq,79,—1,1) > 4s.c..
2. Let 0 € [0,7]. Then the minimizer n3 of I(0, 00, cos(6),1) is explicitly given by

A(0) — exp(—2c¢./547)
A(0) + exp(—2¢i/s41) A(9)

_ 1+cos(0)

ma(r,0) = =1 cos(6)

(3.44)

and

I(0, 00, cos(0),£1) = 2s,.c,(1 F cos(6)) . (3.45)

In this lemma, we use that g reduces to c2(1 —n%) for Q in A, as demanded in (3.5). However,
as pointed out in Remark 4.18 in [8], this is not necessary.

During the blow up procedure in the next subsection, we want to quantify the energy necessary
for a Q¢ ,n close to N to pass from n3(Qy.en) ~ £1 to n3(Qpen —Y) =0, ie. to intersect T} ¢ .
Since problem (3.43) does not take into account the perturbation made by subtracting Y € B,(0)
from @y ¢ n, we introduce for o > 0 small enough

Io(r1,72,a,b) == inf{I(r1,7r2,a,£n3(Q)) : Q € Symy, n3(Q —Y)=+£b, Y € B,(0)}. (3.46)

Since n3(Q) and n3(Q — Y) are only defined up to a sign, it is necessary to define I, using
the infimum not only over Y but also the choice of sign. This leads to the slightly counter-
intuitive situation that e.g. I,(r1,7r2,a,—a) = 0 for all a € [—1,1]. As a consequence, we only
have convergence of I (r1,r2,a,b) = I(r1,r2,a,b) for a — 0 if ab > 0. In what follows, we will
only be concerned with the case b = 0 as this corresponds to a point on Tj, ¢ ,,, and hence we have
convergence of I,(r1,72,a,0) to I(ry,72,a,0) for all a € [—1,1] for « — 0.

The knowledge about the optimal profile in (3.45) is also used in the construction of the
upper bound, in particular the fact that |nz| — 1 and all derivatives of n3 decay fast enough (here
exponentially) as r — co. The result that for minimizers of (3.43), n3 approaches 1 exponentially
fast is complemented by the next lemma. It states that for a bounded energy configuration on a
line, n3 cannot always stay far from 1.

Lemma 3.5.3. There exist constants € > 0 and do > 0 such that for a line ¢ and Q € H'(¢,Sym,)
and K > 0 a constant such that n &, ¢(Q,€) < K < oo it holds: For § € (0,0), there exist a set
Is C ¢ and Cs > 0 such that

K+1

|\ 15| < n and |n3(Q)|>1—¢Vs onI;.

Proof. Let
gmin = min{g(Q) : Q € Symy, dist(Q,N) <6, |Q — Quo| > a6},

where a > 0 is chosen as in [8] and for § > 0 small enough. Proposition 2.5 in [8] then implies that
Jmin > 0. Then, we can estimate

K > 08 Q.0 > %gmm{:cef  dist(Qe). N) < 8} N e € £ [Q — Quel > aV3}.
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In view of Proposition 3.2.1, it holds that |¢\ {dist(Q,N) > §/2}| < C&%/n?. Furthermore, a

straightforward calculation shows that if [n3(Q)| <1 — 24\/553 av/d, then |Q — Q| > av/6. Hence,

K > g {xeﬁ  Ins(Q(2))] < 1 — 2—> a\/SH—cfz—chﬂ
= ngmm . 3 = 4\/58* 772 725 )
from which the claims follow for € := 24\/553 aand I = {z €l : |n3(Q(z)) > 1 — &V5}. O

In the following two sections, we detail how Lemma 3.5.2 combined with Lemma 3.5.3 can be
applied in the case of T'LL 2 and on the surface M.

3.5.1 Blow up

We define the measure p, ¢(U) = n&, ¢(Qy,¢, U) for any open set U. Since the energy n&, ¢(Q.¢)
is bounded, the measure p, ¢ converges (up to extracting a subsequence) weakly* to a measure .
Lemma 3.5.4. For H?—a.e. point of rectifiability xo € Q of T it holds that

dp
dur

(zo) > 21,(0,00,0,1). (3.47)

Proof. Step 1: Notation and preliminaries. Recall that for a point of rectifiability xo € rect(T) it
holds

pr(Bu(wo)) _ | H(reet(T) 0 By (w0))

L o =
We note that for H*—a.e. point z( € rect(T’) there exists the limit
B,
lim #(Br(@0)) (3.48)

r—0 7T7‘2
In the following we assume that xo € £ is be a point of rectifiability of T' which also satisfies (3.48).

Let ro > 0 such that B,,(z) C 2. Next, we introduce some notation. Let ®,(x) = (x —z0)/r
be a rescaling and define T, := (®,)4T. Note that ®,(B,(x¢)) = B1(0) =: B;. The rectifiability
ensures that there exists a unit vector v € S? such that

F(T,_By — P,LB;) =0 forr—0, (3.49)

where P, = {v}* is the two dimensional plane perpendicular to v passing through 0. Indeed, by
Theorem 10.2 in [117] we know that (T}, —z¢)/r; approaches P, in a weak sense and by Theorem
31.2 in [149] we get the equivalence between the weak convergence and convergence in the F—norm
in our case of T having integer coefficients and T, 0T being of bounded mass.

Since py¢ — p and Ty ¢ — 1" w.r.t. the flat norm for n,§ — 0, it holds for almost every r that

fine(Br(20)) = p(Br(20))

F((Ty.e — T)L By(x0)) = 0. (3.50)

We further choose a sequence (rj)ren converging to zero as k — oo such that (3.50) holds for each
7, and

1(Br(20)) 1
_ LI+ FT, LB —P,LB)<-—. 3.51
M(T L B, (z)) T LB sy (3:51)
Given the sequence ry, we can extract a subsequence &, nx such that ny /1, < % and
teg i (Bry, (o)) — p(Br, (z0)) | _ 1
F((D®,, )4T, LB, —-T, LB < —. 3.52
(( 7k)# nknék 1 Tk 1) + ‘ M(TLBrk(O)) — k ( )
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Figure 3.5: Schematic illustration of the quantities involved in Step 2 of the blow up procedure for
T.

Step 2: Flat norm convergence. Denote Ty, = ((®,, )Ty, ¢.) - Bi. By (3.49) and (3.52) it
follows that Ty, — P, L By in the flat norm. Hence there exist flat chains Ay , € F2 and A3y € F°
with M(Az ), M(As3 %) — 0 (for & — oo) such that

T. —P,LLBy = Ag’k + 8A3’k . (353)

This implies that (T} — P, L B1) = 0Ay, or in other words (T}, — As ) = (P, L B1) =01in By
since P, is the boundary of the half space H, = {p+tv : p € P,,t > 0},i.e. P,LB; = 0(H,LB;) in
B;i. This implies the existence of a flat chain W), € F3(By) such that Ty, — As ), = W), = 9(1—Wy),
where 1 € F3(By) is the flat chain associated to the set B;. Note that we can also choose the
complement set W =1 — W, since it has the same boundary in B;. From (3.53) we deduce that

8(Hy L By — Wk) =P,LBy— A27k + T = 6A37k .
This implies that
H,,LBl - Wk = A37k or H,,LBl - Wf; = Ag,k.

Without loss of generality we choose Wy, such that H, L By — W} = A3 and since M(As ;) — 0
as k — oo we conclude that the symmetric difference |Wj,A(H, L By)| also converges to zero for
k — oo.

Step 3: One dimensional estimates. For z € P, we define the line ¢, = {z+tv : ¢t €
R and z +tv € B }.

From Step 2 we recall that |W,A(H, L B1)|,M(As ) — 0 as k — co. This implies that for a
subsequence (not relabelled) and almost all z € P,

[WiA(H, NE)|, HO(Ag N L) — 0 for k — oo (3.54)

and hence for k large enough ¢, crosses 1), = OW}, + Ag k.
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The energy in B,,(xo) can be expressed as

B, (0)) 1
N’nkﬁk( 2k( )) _ 7/ ‘ Qk|2 lg(Qk) nk k (Qk) +777'k00 dy (355)
’/T’I’k Bl(O) 27’k k k:
U 2, 1 U
= —10,Qk|” + —9(Qk F(Qr) +n,ChH dt dz. 3.56
L e @0+ (@0 G (3.56)
where we introduced the notation 7;, = 1 and & = % and Cj = Cy(&,,m,.). Note that

M/ € = M/ Es-
This implies that by Fatou’s lemma

1 .. , 1 ,
L > / hmmf/—ka 24 = k +m.CHdt dz .
™ Jp B, o 00 . D) | tQk| nkg(Qk) (gk) (Qk) NCo

In view of (3.47) that we want to prove, we can restrict ourselves even further to the lines £,
with

/

.. 1
hmlnf/ n—k|6tQk\2 + —9(Qr) + — f(Qk) +n,CH dt < 2I,(0,00,0,1), (3.57)
k—oo Jp, 2 M. (f )
otherwise there is nothing to prove. By choosing another subsequence (which depends on z), we

can assume this liminf is a limit and therefore that the sequence is bounded.

Using the inequality A? 4+ B? > 2AB, the bound (3.57) implies that

21,(0,00,0,1)

Y

/ 3tQk|\/ F(Qr) +9(Qr) + Cp dt

v

272 /|atQk|dISt(Qk7 N ) dt,

where we also used (3.10) of Proposition 3.2.1 in the last inequality. —Denoting m :=
ming, dist(Q, Ny, ¢, ) and M := max,_dist(Qx, N, ¢, ) we can estimate the energy necessary for
switching from (M +m)/2 to M by

LM
21,(0,00,0,1) > 2ok *m

fk / 10,Qu| dt > ?’g;(M?m?). (3.58)

In order to obtain a uniform convergence of dist(Qx, Ny, ¢, ), it remains to estimate m.

Again from (3.57) by using (3.10) in Proposition 3.2.1, we get that

21,(0,00,0,1) > / dist?(Qr, N,y ¢ ) dt > ~p—F_ 510z |m?.
. (£k> ‘. e <£k>
In other words, m? < 2a(0,00,0,1) (g’f) . Plugging this estimate into (3.58) yields

Y21€=|

st Qe Ny ) — M? < Hal0.00:0.1) (52+ (62)2). (3.59)

0. Y2 €2 |z

In view of (3.11) of Proposition 3.2.1 we can conclude that Qy, is uniformly close to A" and converges
to zero as &, n;, — 0.

This implies together with the convergences in (3.54) that there exists a sequence t; — 0 such
that ng(Qr — Yi)(2 + trv) = 0, where Qi(y) = Qup e (@o +7xy) and Yy, == Y, ¢,

We now split £, into £F, where /7 = {z+tv el : t>tp}and {7 = {z+tvcl :t <t}
and show that on both rays there are points for which @y is close to Q.

Applying Lemma 3.5.3 for § > 0 with the bound in (3.57) implies that for k large enough
there exists ¢ € (tg, 1) such that |n3(Qx(t}) — Yi)| > 1 — €V/§. The goal is to take § — 0. For
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this, we choose a sequence J;, depending on k such that 5 and 7, /Cs, < % converge to zero as
k — oo, where Cj, is the constant from Lemma 3.5.3. Similarly, there exists ¢, € (—1,t;) such

that [ng(Qk(t;) — Yi)| > 1 — €/6y.

The final estimate for the integral over ¢, then follows by summing the contributions from ¢,
both in which we pass from n3(Qxr — Yx) = 0 to |n3(Qr — Yi)| = 1. Knowing that @, is uniformly
close to A/, we can apply Lemma 17 in [42], the Lipschitz assumption on g in (3.6) and use the
definition of I, to determine the energetic cost on £F. This yields

L

v

k—oo T

hmlnf—/ . / nk|VQ 1+ n,g(Qk) (gk)gf(Qk)-i-??kCodtdz

v

1 / .. / nk 2
— liminf | —Z|VQi|* + —9(@Q Q) +n,C, dt dz
7 Jp B, koo . 2 | k‘ n;gg( k) (é—k)g f( k) T)k: 0

v

1 s U 2
S mint [ 010 - RQ0 ) IVRIQ0) 550)

—9(R(Qr)) — C|Qr — R(Q)| dt dz

M
1

7/ 21,(0,00,0,1) dz
™ JP,nB;

1,(0,00,0,1).

Y

v

3.5.2 Surface energy

In this section we do the necessary calculations to find the announced energy contribution on
M. For this, we estimate the energy in a boundary layer around M. More precisely, we define
M = {x € Q : dist(z, M) < /n}. Then we proceed similarly to the previous section, the goal
is to apply Lemma 3.5.2 to the rays perpendicular to M on which @, ¢, is taking values close to

We assume 7 small enough such that /1 < %ro, where ry was fixed in the beginning of Section
3.4 such that rg is smaller than the minimal curvature radius of M. For w € M and r > 0 we
define

Ly, = {w+tv(Q) : te0,r]}. (3.61)

We now rewrite the energy so that the line integrals over L, .5 appear. We note that for 0 <7 <1
the map M x [0, /7] — Q given by (w,r) — w + rv(w) is injective. The differential of this map
is given by Idq, a + 7 dy,v + v. Using the normalized eigenvectors v, wy, Wy corresponding to the
eigenvalues 1, k1, ko with k; being the principal curvatures of M at w, i.e. the eigenvalues of the
Gauss map d,v. Then

det(Id + r dpv(w)) = (1 + 7r81)(1 + rR2)

and the gradient transforms as

1

|VQ s ,n|2 = |87‘Q s 7n|2"_
B3 B3 |1+ ‘ ||

2|auTlQn£n|2 2|8@Q7’I§"‘

1+ rfr|

In order to shorten our formulas, we still use the notation V@, ¢,. The energy can then be
rewritten as

Vi1 1 1 2
5777€(Qn,£,naM\/ﬁ) = /M/O <2|VQ17,§,n|2 + ?f(@n,&,n) + 7729(Q77,£,n)> H(l + THi) dr dw.

i=1

We now distinguish two cases depending on whether the ray L, s intersects Tj ¢ ,, or not.
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Case 1: Ly, s does not intersect T, ¢ ». In this case we can assume that

Vi (1 , 1 1 2
/0 <2|VQU7€7H| + ?f(Qn,&,n) + ,’729(Q77,577l)> H(l + ’I“lii) dr < IOC(O’ 00, 1, 005(9)) )
i=1

otherwise there is nothing to prove. With the same argument as in (3.57)-(3.59) we can show that
supr,, . dist(Qy,¢,n, Ny,¢) converges to zero as &, — 0. Analogously to the blow up procedure, for
d > 0 we use Lemma 3.5.3 to deduce that there exists a radius ., € [0, /7] such that [n3(Qy.¢.n)(w+
t,v(w))| > 1—€V/65. We choose a sequence d,, — 0 such that n/Cs, — 0asn — 0. Note that Q, ¢
does not verify the boundary condition (3.14), but a slightly perturbed version. For 7,£ — 0 we
still obtain the right energy thanks to Proposition 3.4.2 and the uniform convergence therein. As
in (3.60) we then obtain

.. 7 , 1 M /
! f 9 n - n 2 n dt
e Lo 2|VQ?71§’ "+ ng(Qn,é, )+ & f(Qunen) +1Cq
.. 7 ,
> liminf (1=C R - VR .
> limin Lw,ﬁQ( 1Qr — R(Qi)llLo<(2.)) IVR(Qn.£.n)] (3.62

1
+ EQ(R(Qné,n)) — ClQnen — R(Qnen)l dt
> 1(0,00,1,|cos(9)]) .
Case 2: L, s intersects Ty ¢ n. Let t,, € (0,,/7) denote the radius of intersection between

Ly, 7 and T} ¢ ,. The only difference to Case 1 is that we estimate the two parts ¢ </, and t > t[,
separately.

With the same reasoning as before we can assume that the energy on the ray is bounded and
that dist(Qy,¢n, Ny,¢) is uniformly converging to zero on the ray. On L,/ we obtain just like in
Step 1 the estimate

liminf/ 1YQyem
Lw t, 2 1S

1 Nk
2 - Ik / > . .
nE=0 9 @ngn) + 5 F(@nen) +1Co dt = La(0,00,¢05(6),0). (3.63)

On the remaining part of the ray L., s we want to find the energy 1,(0, 00,1, 0). Since ¢, might
be arbitrarily close to /7, we cannot apply Lemma 3.5.3 to conclude that n3(Q, ¢ ») is close to £1
somewhere. Extending the ray up to a distance ¢ = 2,/7 from M and repeating the above reasoning,
we can find for § > 0 and 7 small enough t, € [\/7,2,/7] such that [n3(Qy¢n)(w + tov(w))| >

1 — &V/6. Now we proceed again as in (3.62) and combine with (3.63) to obtain

o 1

lim 1nf/ g|in,§,n|2 + *Q(Qn,i,n) + %f(@n,{,n) + 7706 dt
L2 i n §

1,¢=0 (3.64)

> I,(0,00,co0s(0),0) + I,(0,00,1,0).

3.5.3 Proof of compactness and lower bound

We now need to combine the estimates (3.42), (3.47), (3.62) and (3.64). To this aim, we use
the localization technique for I'—convergence as described for example in [33, Ch. 16]. Let U;,
1 =1,2,3 be three pairwise disjoint sets open in 2. Then it holds that

3 3
. N NS |
liminfn £,¢(Qye) = lminf ;n&;,g(QwUz) > glggggf 1 Ene(Qne.Ui)

Y

%sf,@ M(SLUy) + 21, (0, 00,1, 0)M(T L (2N Ua))
+ /M 1(0, 00,1, | cos(9)|) dlu’(l—TLM)LU3

+/ IQ(O,OO,l,O) +IO¢(O’OO’COS(9)7O) d/”LTI_(Ml’TUg) :
M
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Since the LHS does not depend on the sets U;, we can take the supremum over all pairwise disjoint
open sets. For € > 0 and by inner regularity we can approximate the measure M(S) by a compact
set A1 . C rect(S) and an open set Uy . D As . such that M(S)—M(SLA; ) < e, HZ(MNU; ) < €/2
and M(TLU; () < €/2 since the measures p15 and pp are mutually singular. Furthermore, we find
another compact set Ay . C (rect(T) N Q) \ Uy . such that M(T'|_ Q) — M(T'L Ay ) < e. Then, by
construction there exists an open set Us ¢ D Ay such that Uy N Uy = 0 and dist(M, Uz ) > 0.
Finally, taking an open neighbourhood of M disjoint from U, . and removing U; . from it, we find
a third open set Us . which satisfies H2(M\ Us,.) < e. By monotonicity we then find

liminfy & e(Qne) > sup —s2BM(SLUL) + 21,(0,00,1,0)M(T L (2N Ty))
7,60 UL,Us,Us 2

+ /M 1(0, 00,1, | cos(9)]) d“(l—TI_M)I_Ug.
—|—/ 1,(0,00,1,0) + I,(0, 00, cos(6), 0) duTL(,/\/lng)
M

(3.65)
21,(0, 00,1, 0)M(T L Q) + gsfﬂ M(S)

v

+ /M 1(0, 00,1, | cos(0)]) dM(lle_M)
+/ 14,(0,00,1,0) + I4(0,00,cos(0),0) dpeq -
M

We now want to pass to the limit & — 0. In order to mark the dependence of T" and S on «,
we add the index « in our notation for the rest of the proof. Since I,(0,00,1,0) > s.ci > 0,
the mass of T, L 2 is bounded uniformly in « and since M has finite surface area it follows that
M(T,) is bounded independent of «. Since the mass of S, and the length of the curves I, are also
uniformly bounded, we conclude that the flat chains T, as well as their boundaries 9T, = S, + s
have finite mass. Choosing a sequence «; — 0, (3.65) holds and we can apply the compactness
theorem for flat chains [67, Cor. 7.5] as stated in Subsection 3.2.2. From this we get that there
exists a subsequence (not relabelled) and flat chains 7' € F2, S € F? such that F(T,, —T) — 0
and F(S,, —S) — 0 as K — oo. Since boundaries are preserved under flat convergence and
I'y, — T uniformly, it holds that 0T = S + T'. We note that I,, (0,00,%1,0) — I(0,00,+1,0),
and I, (0, 00, cos(#),0) — I(0,00,cos(),0) as a, — 0. Passing to the limit oy — 0 in (3.65) thus
yields

liminf ) €,¢(Qne) > 20(0,00, LOM(TLE) + 5528 M(S)
.6~
+ /M 1(0, 00,1, [cos(0)]) dpey _pi_ps)

+ / 1(0,00,1,0) + 1(0, 00, cos(6),0) dppy_ (3.66)
M

= 4s.c.M(TLQ) + gsfﬁ M(S)
+ 25*0*/ (1 —cos()]) dw + 48*6*/ | cos()] dppqy nq -
M M

Combining the compactness result from Subsection 3.4.5 for fixed a with the above estimates, we
can choose a diagonal sequence aye,,) — 0 as 1,§ — 0 such that

lim F(T,

E—0 Eonsage )y T) =0 lim F(Sﬂé,n,ak(g‘n) - S) =0

n7,§—0

and (3.66) holds.
It remains to verify that 0T = S+T as claimed by Theorem 3.3.1. We recall from the boundary
condition (3.14) that

Qne(w) = Qp(w) = ss (V(w) ® v(w) — ;Id> for all w e M.
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This implies that on T’
n3(Qn.e(w)) =n3(Qp(w)) = v3(w) =0. (3.67)

by definition. Furthermore, we assumed that the derivative of v3 on I' is non-degenerate, i.e.
Vv3(w) # 0 for all w € T'. Hence, on T' it holds

Vons(Qye(w)) = Vers(w) # 0. (3.68)

Next, we consider the function F(w,n,Y) = n3(Qnen(w)+Y) forn € Nand Y € B,(0) C
Symg for 0 < v < 1. Note that we can rewrite

Flw,n,Y) = n3(Qne(w) + (Qnen(w) = Qpe(w)) +Y)
= n3(Qv(w) + (Qnen(w) = Qne(w)) +Y).

Since on M, Q¢ is by construction an approximation by convolution of @, it holds that
Quen — Qp in CT on M for n — 0. In other words, from (3.67) we get that F(w,oc,0) = 0.

For the rest of the proof we argue locally on M. Let (u,v) be a local parametrization on M
such that Vu is parallel to I" and Vw is in direction of the normal vector of the curve T, called vr.
We can choose (u,v) such that wg = (u(0),v(0)) € T and (u,v(0)) locally parametrizes I'. Then

Ou F(w,1,Y )]wg,000 = OuF((1,),1,Y)]0,0),00,0
= Dn3(Qu(w0))(90@b(wo) + 90 (@n.g.n(w) = Qye(w)))-
For n large enough we can assume that || Dnsllco)l|Qn.e,n — @uellormy < 5 info, [0n3(Qp(w))]

by Proposition 3.4.2. Since Dng(Qp(wo))0wQp(wo) = 0pnz(Qp(w))|w=w, it follows from (3.68) that
O F(w,m,Y)|wg.00,0 # 0.

The assumptions of the implicit function theorem are therefore satisfied and there exists an open
neighbourhood V of (1(0), 00, 0) and a function o defined on V such that F'((u, 9(u,n,Y)),n,Y) =0
on V. In other words,

0 = F((u,9(u,n,Y)),n,Y) = n3g(Qnen((u,o(u,n,Y)))+Y)

So (u,d(u,n,Y)) serves as a local parametrization of the set I', y 1= {w € M : n3(Qp¢n(w)+Y) =
0}. Noting that M is of class C? and hence v € C', it holds that ¢ and T',, y are also of class C*
and in particular I'j, y has finite length.

Since ¥ — 0 uniformly as n — oo and Y — 0, it holds that n3(Qy.¢n +Y) also uniformly
converges to n3(Qp). By Theorem 3.3 in [51] it follows the Hausdorff convergence of I'y, y to T, i.e.

disty(T', T, y) = max {sup dist(w,T'p,y), sup dist(w’,F)} —0forn—oocand Y — 0.
well welyy

Using the parametrization ¢ to link I' to I';, y, we can also build a flat 2—chain G,, y with
boundary 0G, y =I' —TI',, y. It then holds

FI —T,y) < M(Ghy) < sup H'(Tp.z)disty(T,Thy).
(w,m,Z)eV

3.6 Upper bound

This section is devoted to the construction of the recovery sequence of Theorem 3.3.1. Essentially,
there are three steps in this construction:

1. We approximate T by a sequence T, solution to a minimization problem. The advantage of
replacing T' by T, is the gain of regularity. Indeed, as we will see in Subsection 3.6.1, T" and
its boundary inside Q will be of class C''!. Furthermore, by a comparison argument, we can
show that 9(7,, L M) is a line of finite length.
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2. We introduce local coordinate systems in which we can define @, ¢, and estimate its energy.

3. Choosing a diagonal sequence n(£,7) we find the recovery sequence.

3.6.1 A first regularity result for (almost) minimizers

In this subsection, we rewrite the limit energy & in a way that it only depends on 7"
&(T) = Eo(M,es) +4s.c. / | cos(0)] dppgy_ g + 45 M(TL Q) + gsiﬁM(aT -, (3.69)
M

where I' € F! is given by the curve {v3 = 0} C M. For the approximation of a flat chain T € F?
we are going to study the following minimization problem:

min E(T)+nF(T -1T), (3.70)
TeF?
for n € N. The existence of a minimum of (3.70) is imminent since by assumption T verifies
Eo(T)+nF(T —T) = &(T) < oo, the energy is non-negative and lower semi-continuous with
respect to convergence in the flat norm. We have the following result:

Proposition 3.6.1. Let T € F? with £(T) < co. For alln € N, the problem (3.70) has a solution
T, € F2. The minimizer T, verifies

1. T, = T for n — oo in the flat norm.
2. T, LQ is of class C* up to the boundary O(T, L Q).
3. (0T,)LQ is of class C11.

We note that the above Proposition also holds true for n = 0, i.e. minimizers of (3.69) and
hence of our limit problem are of class C! up to the boundary in € which is of class C?. As we
will see later, the minimizers of & are in fact smooth (see Proposition 3.7.1). In order to make
this subsection more readable and simplify notation, we divide (3.69) by 4s.c,. and redeﬁne the
parameter § to replace the constant és* B. Also, we will simply write n instead of ;;"—. Since in

this subsection we are only concerned with the regularity of minimizers, this change of notation
does not impact our results.

The proof of Proposition 3.6.1 makes use of a series of lemmas which we are going to state and
prove first. The main ideas for the regularity of T}, and 97T,, have already been developed in earlier
papers [52,53,129,158], so it remains to check that we can apply them in our case. For the sake of
simple notation, we drop the subscript n for the rest of this section and define S := 0T —T". We
recall from Subsection 3.2.2 that rect(.S) is the set of all points of rectifiability of S. In particular,
for xp € rect(S) the density lim, o pus(B-(x0))/(2r) exists and is strictly positive.

Lemma 3.6.2. It holds that supp (S) = rect(S) and H!(supp (9) \ rect(S)) = 0.

Proof. Let’s show first that S is supported by a closed 1-dimensional set.

For this, we prove that S cannot contain subcycles of arbitrary small length. Assume that S is
a subcycle of S, i.e. M(S) = M(Sy) +M(S — S1) and 95 = 0, and that S; is supported in B,.(x¢)
for r € (0, 1ro) By (7.6) in [67], there exists a constant b > 0 and T} € F2 such that S; = 9T}
and M(Ty) < bM(S;)%2. By projecting T} onto B,(x9) N Q, we can furthermore assume that T}
is supported in B, (zo) and lies within Q. Projecting onto B,.(z¢) does not affect the previous
estimate since it decreases the mass. Projecting 77 L E onto M has Lipschitz constant less than
1+ 4& and hence, the estimate stays true with an additional factor of 1 + 4&. We estimate by
minimality of T

So(T) + ’/ZIF(T - TO) S go(T + Tl) + TLF(T + T1 — To)
< &(T) +M(Th) — BM(S1) + nF(T — Tp) + nM(T1)
< E(T) — BM(S1) + nF(T — Tp) + (n+1)(1 + 4:—0)171\41(51)2 :

88



and thus SM(S;) — b(n + 1)(1 + 4&)1\41(51)2 < 0. We hence find that either M(S;) = 0 or that
M(S1) > B/(3b(n +1)).

Now, let 2o be a point of rectifiability of S and r < 8/(6b(n+1)). Assume that us(B,(z9)) < 2r.
Then, since

/0 " us(0B. (o)) ds < pus(B, (o) < 2r

we can evoke Theorem 5.7 of [67] to deduce that there exists a set of positive measure I C [0, 7] such
that ps(0Bs(xg)) < 2 for all s € I. Thus, we can find radii s < r such that M(9(SL Bs(zo))) < 1.
But a bounded 1-chain cannot have just one end, so that for Sy := SL Bs(zo) we conclude that
051 = 0. In addition M(S7) < 2r by assumption. Hence, we have M(S;) < 5/(3b(n + 1)) and the
above calculation shows that necessarily M(S;) = 0. In particular, z( is not in the support of S
which is a contradiction.

Let us conclude now that S is indeed a closed set. Let rect(S) be the rectifiability set of S.
Since S has coefficients in a finite group, it is rectifiable [167] with us = H'Lrect(S). Now, take a
sequence zj, € rect(S) and assume x, — x. By the above reasoning it holds pug(B,(x)) > 2r for all
r < B/(6b(n+1)) and in the limit &k — oo also pg(B,(x)) > 2r. It follows that ug(\rect(S)) = 0.
From this, Theorem 2.56 in [10] allows us to conclude that H!(supp (S) \ rect(S)) = 0. O

After having established this basic property of S, we can state a first regularity result:

Lemma 3.6.3. The flat chain S is supported on a finite union of closed Cl2 — curves.

Proof. Our goal is to prove that SL € is an almost minimizer of the length functional M and apply
Theorem 3.8 in [129] to deduce C-2 —regularity.

Let o € Q and 7 € (0, 419) such that Br(z9) C Q. Let r € (0,7). Consider 77 € F? with
supp (T'— T") C By(xg) C Q. For almost every r € (0,7), it holds that S, := SL B,(xg) is
a flat chain with boundary 95, = SLOB,(x¢). In this case, S, = 9T'L B,(xy) has the same
boundary. Hence, the flat chain A := S, + S. = 9T 4+ 9T" is a cycle, i.e. verifies 9A = 0 and is
supported inside B,.(x¢). We can construct the cone C’ with vertex xg over A. Then, 0C" = A
and M(C") < erM(A). Now, we distinguish two cases: It holds either M(S,) < M(S).) (which is
enough for our conclusion as we will see below) or M(S,) > M(S}) and hence M(A) < 2M(S,).
Comparing T to T + C’ and by minimality of T we get that

BM(S,) < BM(S)) + (n+ 1)M(C’) < BM(SL) + 2¢(n + 1)rM(S,.) .
For r small enough we conclude that

de(n+1)
B

In case T” is not entirely contained in €2, we need to project those parts of 7" and of the boundary
S/ onto M. Since we assumed r <T < %ro, the Lipschitz constant of the projection can be
estimated by 1+ 4", i.e. our analysis and in particular (3.71) holds true if we replace M(S;)
by (14 4{-)M(S;). This shows that there exists a constant C' = Cp g, > 0 such that S is
(M, Cr,7)—minimal in the sense of Almgren. Together with Lemma 3.6.2, (3.71) allows us to
apply Theorem 3.8 in [129] which gives the C'''1/2—regularity and the decomposition of supp (S)
into a finite union of curves, possibly meeting at triple points. Finally, since our flat chains take
values only in 71 (N) = {0, 1}, we can exclude the existence of triple points since they would create
boundary. Hence, S is a union of curves. O

M(S,) < <1+ r> M(SL) . (3.71)

The regularity of .S in Lemma 3.6.3 is not optimal. The following Lemma provides us with the
smoothness we announced in Proposition 3.6.1:

Lemma 3.6.4. The flat chain S is supported on a finite union of closed C** —curves. In particular,
the curvature of S is bounded.
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Proof. Let xy € supp (S) and take r > 0 such that B,(xg) C Q and ps(0By(z9)) = 2. Let
{z1,22} = supp (S) NIB,(xo) and define S, := SL B,(xp). We compare S, (and T'L B, (zo))
to two competitors.

The first one is the geodesic segment S, joining x; and x5 in 9B, (x¢). For the corresponding
T, we use a piece of 0B, (x¢) between T'L (0B, (x¢)) and Sy. By minimality of S, we find

BM(S,) < 2mr(B+4(n+1)r). (3.72)

Our second competitor is the flat chain supported on the straight line segment joining x; to
xo which we call S’. Then S’ + S, is supported in B, (zo) and is closed, i.e. (5" + S,) = 0. By
the construction (7.6) in [67], we get the existence of a flat chain 7" € F? supported in Q and
a constant b > 0 (depending only on the dimensions of the flat chains and the ambient space)
such that 0T = S’ + S, and M(T") < b(M(S") + M(S,.))?. Since zg € supp (S) it also holds that
M(S;.) > 2r. This, together with the minimality of S, and (3.72) implies that

26r < AM(S,) < BM(S') +b(n+ 1)(M(S") + M(S,))*

IN

AM(S") 4 b(n + 1) <M(S’) + 217 <1 + 4(”;1)r)>2 (3.73)

< BM(S') + Cr?,

for C; = 2(2 4 27)%b(n + 1) and r small enough. Hence, (3.73) implies (2 — (C1/B8)r)r
If we now choose r even smaller to assure r < r; = (C7)713, one gets even M(S’) >
points x; and x2 must not be too close.

< M(S).
r, i.e. the

Our goal is now to show that S, is in fact close to S’ and that S’ is almost a diameter of B,.(zo),
in the sense that S, lies in a small neighbourhood of S’ and the distance between z¢ and S’ is
of order r2. Let’s denote ¢ = M(S’) = |z2 — 21|. Suppose M(S,) < ¢+ « for a a > 0 and let
p > 0 be the smallest positive number such that S, lies within a p—neighbourhood of S’. Then,
M(S,) > /2 + 4p? and hence ¢ + 4p?> < M(S,.) < (£ + «)? which yields the bound

g 2
p < \/?O‘Jr% < Vra, (3.74)

provided a < 4r and ¢ < 2r. Applying this result to our case where a = B~1Cyr?, we get S, is
contained in a neighbourhood of S’ of radius p < 4/26-1C73.

In addition, if S, is supported in a p—cylinder around S’, there exists a T}, € 72 and a constant
¢ (depending only on the space dimension) such that M(T,) < coM(S,) and 0T, = S’ + S,. This
implies that M(S,) < £+ 87 !(n + 1)cpM(S,.). Previously, we have also shown that M(S,) <
¢+ B~1C1r? < 3r, leading to

1
M(S,) < £+ Cypr, where Cy = 3Cn; . (3.75)
Now, we want to iterate this procedure. Let ag = B~'C1r? as start of our induction.

1. Knowing that M(S,) < ¢+ ay, (either by (3.73) or by induction hypothesis) and by (3.74)
we can deduce that S, lies in a pr—neighbourhood of S’ for pp = /2ray.

2. Since S, lies in a py—neighbourhood of S’, one can use (3.75) with p = pj to obtain M(S,.) <
{4 ajy1, where agy1 = Corpy.

Throughout this iteration, oy and py verify pri1 = v/2ragr1 = v/2C2px r. Thus, pi, converges to
2C5r? in the limit £ — co. We can conclude that the distance between a point in S, and S’ is
at most 2C,r2. In particular, since xo € supp (S,), it holds that dist(zq,supp (S’)) is of order r?
which shows that the line S’ is close to being a diameter.

Let us turn now to the assertion of the lemma. For zy € supp (S) and r > 0 chosen small

enough, we denote 7,.(xo) the vector 22=%L. where z1,x9 are constructed as before. By our
’ lz2—z1]]? ’
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previous calculations, we know that the corresponding points for  are at most at distance 20,712
from the line connecting z; and z2 which gives ||7,.(zo) — 7z (x0)|| < C3r. This shows that the limit
7(20) = lim, 0 7 (x0) exists and that ||7-(z¢) —7(x0)|| < 2C5r. The triangle inequality then yields
the existence of another constant Cy > 0, depending on 8 and n, such that for z,y € supp (S) with
| — y| =: r small enough we have ||7(z) — 7(y)|| < Cyr.

O

Having reached the optimal regularity for S, we now turn to the properties of 7'

Lemma 3.6.5. The flat chain TS is supported on a hypersurface of class C* up to the boundary.

Proof. We first discuss the regularity in the interior of T L Q. Let xqg € €, r > 0 such that
B, (zg) Nsupp (TL Q) # 0 and consider a variation T’ of T in B,(xg). Then, by minimality of T
we find

4
M(T) < M(T') + nF(T -T') < M(T') + gwnr?’.
We can then apply the result of Taylor [158], or more general Theorem 1.15 in [52] to obtain
Y —regularity in €, for some o > 0.

For the regularity up to the boundary we want to apply Theorem 31.1 in [53]. In order to do
this we need to show that on a certain scale, the boundary S is close to a straight line and T is
almost flat.

Take a point of rectifiability o € S. We define a blow-up sequence 7 N\, 0. Since S is supported
by C1:! —curves, a blow up of S converges to a straight line. We claim that a blow up of T converges
to a limit T which is a half plane. For this, we use the minimality of T to deduce for r > 0 small
enough that

M(TL By (20)) +268r < M(TL By(z)) + AM((IT) L By (x0))
M(cone(T L 9B, (x0))) + BM(cone((0T) L 0B, (x0)))

SM(TL OB, (20)) + BrV((OT) L OB, (0))

INIA

IN

gM(TI_aBT(:Eo)) +28r.

This implies that M(T L B,(x¢))/r? is monotonically increasing and thus admits a unique limit
d. We define T,, = (T — x0)/rx and by monotonicity we get for s; < so that M(7T,, L By, )/s? <
M(T,, L Bs,)/s3. For rp — 0 both sides converge to the same limit md. But this means that
M(ToL By, )/s? = M(TyL Bs,)/s3 , i.e. Tp is a cone and hence a half-plane. Since a half plane has
density %, we find d = % In particular, we have for k large enough

T, —
M(’“xOI_B1> = T o),
Tk 2

from which it follows that condition (31.6) in [53] holds and thus we can apply Theorem 31.1 on
a length scale R < r,. We remark that by convergence in the flat norm, following [123], we also
verify the condition (31.4) of Theorem 31.1 in [53]. By compactness of the boundary (0T) L Q,
we find a finite cover with balls of uniformly positive radius to which we can apply Theorem 31.1.
This allows us to conclude. O

Proof of Proposition 3.6.1. We have already established the existence of a minimizer of (3.70).
The convergence F(T;, — Tp) — 0 for n — oo is obvious since n F(T,, — Tp) < Ey(Tp) < oo for all
n € N.

The regularity of T, follows from Lemma 3.6.4 and Lemma 3.6.5. O
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3.6.2 Construction of the recovery sequence

In this section we will use the approximation of T given by the minimizer of (3.70) to construct our
recovery sequence. First we establish the following Proposition which yields additional control over
O(TL M)\ 9T and its boundary which will be necessary for the final construction in Proposition
3.6.9.

Proposition 3.6.6. Let T C Q be a flat 2—chain of finite mass and S C Q be a flat 1—chain of
finite mass such that S = 0 and OT = S +1T'. Then, there exist finite mass flat chains T,, € F?
of class Lip up to the boundary and S, € F' of class C*' such that

1. 0S8, =0 and 0T,, = S,, + T,
2. F(T,—T)— 0 and &E(Ty) — E(T) as n — oo,

3. and there exists a constant Cp, > 0 such that M(0(T,, L M) \ 9T},) < C,, and M(9(0(T,, L
M)\ 0T,)) < Ch.

Essentially, the first two parts of Proposition are proved by Proposition 3.6.1, saying that
the minimizer T,, of (3.70) fulfils our claims. It remains to prove the last assertion i.e. that we
can modify T, to control the length of the set where the T,, attaches to M. For this, we need
the following average argument stating that we can find radii r such that the corresponding sets
T,LM,, for M, :== {x € Q : dist(z, M) = r}, are of finite length.

Lemma 3.6.7. Let T, be as constructed in the previous subsection. There exist a constant ¢ > 0
and a radius v € (0, 31¢) such that

4¢M(T,)

M(T,,LM,) <
Io

(3.76)
Proof. Assume that M(T,,L M) > %(OT") for all 7 € (0, 319) and some ¢ > 0. This implies

1‘0/2
/ pr, (My) dr > 2¢M(T,) .
0

Now, there exists a constant ¢ > 0 such that foro/z pr, (M) dr < cM(T,) (see (5.7) in [67]).
Hence, the lemma is proved. O

Now, we can modify T, by replacing a small part close to M by a projection to control the
boundary of T, L M which is not included in S.

Proof of Proposition 8.6.6. We construct 7,, as in Proposition 3.6.1. To ensure the additional
estimate, we choose a radius r and a slice M, as in Lemma 3.6.7. With the same argument as in
Lemma 3.6.7 for S,, one can choose r € (0, 3r¢) for which additionally M(S, L M,.) is finite. Let
I : Q. — M be the projection onto M. We define ® : M, x[0,1] — Q by ®(z,t) = (1—t)x+tIz.
Then, by [66, Sec. 2.7], [65, Cor. 2.10.11], M(®x (T}, L M, x [0,1])) < CrM(T,, L M,) and also
M(ITg (T, L M,)) < CM(T,, L M,.). Again by the same argument, we get M(9I1(T, L M,)) <
CM(O(T,, L M,)). This procedure can be applied to almost every r € (0, 4ry), in particular, we
can choose a sequence 7, — 0 as n — co. Replacing T, close to M with these projections, we get
the desired estimates.

The convergence of the energy & (T},) to E(T') is a consequence of the convergence statements
in Proposition 3.6.1 and the fact that 7;, L M approaches T'L M. O

The recovery sequence @), ¢ for our problem will be constructed around the regularized sequence
of T'. The gained regularity permits us to define @, ¢ directly and without the need to write T" as
a complex and ’glue’ together the parts of (), ¢ on each simplex.
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Before starting, we need one final ingredient as stated in the following lemma stating that the
normal field on M can be extended to . It will be used to fix choices of orientation consistently
across §2. The only crucial point is that the gradient of the extension must be bounded in order
for our estimates to work out.

Lemma 3.6.8. Let M be a closed compact manifold of class C?>. Then, there exists a Lipschitz
continuation v of the outward normal field v on M to Q) with the same Lipschitz constant.

Proof. Since M € C?, the outward normal v is Lipschitz continuous. Then, the existence of a
Lipschitz extension with the same Lipschitz constant is a direct consequence from Kirszbraum’s
theorem [98] (see also Theorem 7.2 in [117] or in full generality Theorem 1.31 in [146]). O

Proposition 3.6.9. There exists a recovery sequence Q¢ for the problem (3.21).

The construction relies on the approximation and regularisation made in the previous subsec-
tion. We will construct (), ¢ step by step: The straightforward parts are the profile on I’ and
M\ F away from OF, as well as the transition across 7. In order to be compatible with the latter,
we have to adjust the construction made in [8] for the singular line S. The profile of the part of
S that approaches the surface M can be chosen as in [8]. Last, we need to connect OF \ S to the
profile of T" already constructed. This last part is a bit subtle since the 9F'\ S does not appear in
the energy. The control we obtained in Proposition 3.6.6 is artificial and indeed we do not control
the length of OF \ S. Hence, we will choose n depending on n,¢ in a way to allow this length to
slowly grow to infinity while the energy contribution of @, ¢ in this region vanishes.

Proof. From now on we choose n depending on &, 71 such that M(9(T,, L M)),M(9(d(T;, L M) \
0T,)) < C|In(n)| and that the curvature of S, is bounded by C/,/7. Indeed, if the constant C,,
in Proposition 3.6.6 is bounded in n, then for 1 small enough this condition is trivial. If C,, — oo
for n — oo (choosing a subsequence we can furthermore assume that C, * oo), we can define
n(n) = sup{m e N : C,,, < —In(n)}. Since —In(n) — oo for n — 0, it also holds that n(n) — oo
and the bound M(9(T, () L M)), M(0(O(T}, ) L M) \ 0T},(,)) < C|1In(n)| holds.

Furthermore, whenever this doesn’t lead to confusion, we drop the subscript parameters 7, £
and n in order to make the construction more readable.

Step 1: Adaptation of the optimal profile. The goal of this step is to construct a one dimensional
profile close to the optimal one in Lemma 3.5.2; but where the transition takes place on a finite
length and which gives the correct energy density (3.45) for n — 0. To this goal, we introduce the
"artificial" length scale i for v € (3,1) and define

s.(nE(t/n,0) @ n*(t/n,0) — $1d) te[0,n],
O (t,0,v) = < s.(nF (7 /n,0) @ nF (7 /n,0) — )27 —t) + (t — 1) Qs t € (17,207],
(377 = 1)Qoo + (t — 217 )Qy 6,00 te (2n7,3n7],
(3.77)

with n® = (y/1 — nZ(v1,v2), +n3), where n3 (¢, 6) is the optimal profile from (3.44) and (v, v2) € S*.
The choice of 77 permits us to conclude that n* (1Y /n) — +es for n — co. On the other hand, 7
is large enough to verify (17)?/n — 0 which ensures that undesired energy contributions vanish,
as we will see in the following steps.

Step 2: Construction on F and F°. Let w € F3,y == {w € F : dist(w,0F) > 3n"} C M and
let 0 <7 < 3nY < 3ro. We define

Que(w+rv(w)) == @T(r,0,v(z)) where 6 = arccos(v(w) - e3). (3.78)
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Since |Vwv| is bounded, one can then easily calculate

3n” 2
0 Ene(Quer Fonr ) = / / ( Qe+ 5 F(Quo)+ Lo(@ue) +nCo>H (1+7r;) dr dw
Fzpy =1

IN

2
/ / ( |a Qn£|2+ g(Qn£)> H(l‘i‘rlii) dr dw 4+ Cn
Fany i=1

/ I (0 ” cos(@),—l—l) dw + o(1),
Fa,y n

where F3,n g i={2€Q : 2 =w+1v(w), w € F3yr, r € [0, R]} for R > 0. Note that % — oo for
1 — 0 since we chose v € (%, 1). Analogously, we can define @, ¢ on F° away from OF by using
®~ and estimate its energy. Note that this construction may already create the part of T that
attaches to the surface M in the limit 7, & — 0. Indeed, if a point w is contained in F" although the
energy density corresponding to F'° would be lower, the profile constructed passes trough ng = 0
within a distance ” from M and hence is included in the limiting 7.

IN

Step 3: Construction on T. Let x € T,, := {x € supp (T') : dist(z, M) > 31" and dist(z, S) >
3n7}. For each connected component of T (and thus of 7)) we can associate a sign depending on
the sign of the degree of the singularity line S (if the component of T' has such). This must be
compatible with the part of 7" that reaches M and already has been constructed in Step 2. The
compatibility corresponds to the choice of the signs of gb# and of the distance function, viewing T},
as a boundary, locally. Assuming that in Step 2 we chose @; whenever dist(-, T;;) > 0 and @, for
dist(-,T,) < 0, we define

Quen(z) = @;(dist(x,T),g,v(x)).

Since |Vv| is bounded, and writing 7}, ; = {z € Q : dist(z,T),) = dist(z,T) and dist(z, T;,) < t}
for ¢ > 0 we can estimate by Lemma (3.5.2) and the coarea formula

1
/T g|in,5,n 2 + g%f(Qn,ﬁ,n) + ;Q(Qn,f,n) + 7700 dz
3nY

,

IN

1
| BQuenl + a(@uen) do+ CnMT)

n,nY

= 25,04 / |nf (dist(x, Ty,) /n)| dz + Cn M(T)
T,

n,nY

n”
e [ (/)| ds + o(1)
0 Ty, ny N{dist(-,T)=s}

= 25.c4 /17 H? (T, . N {dist(-, T) = s})[ns(s/n)| ds + o(1)
0

2s.c. (2M(T) +0(1))/0 Iy (/)| ds + o(1)

= 4s.ca[ng(n”/m)| M(T) + o(1),

where we also used that H?(T),.,» N {dist(-,T) = s}) = 2M(T) for s — 0. Note that |n3(t)] — 1 as
t — oo. Hence, for n,£ — 0 we end up with

VAN

limsup/ g\VQn,g,nF‘f’ 5
n,§—0 T 37 5

< 4s.e.M(T,) .

72/ (Quen) + Q(Qn€ n) +1Co d

5

Step 4: Construction on SL €. Following the notation we used in Step 2 and 3, we introduce
the region

Sz = {x € Q : Jy € T with dist(y, S) < 30" and dist(z,T) = ||z — y|| < 30"} (3.79)
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around the singular line S (see also Figure 3.7). We will construct @, ¢, as follows: Depending
on the sign attributed to the connected component of T in Step 3 or the change between F' and
F* in Step 2, we place a singularity of degree —% (resp. 1) as in Lemma 5.2 in [8] in the center of
Sayv. We do so by setting @ = 0 in a disk of radius £ (perpendicular to S) and oblate @ uniaxial
with director field (sin(¢/2),0, cos(¢/2)) on the annulus between the radii 2 and 7, interpolating
linearly in radial direction between these two regions. From the circle of radius 7 to the boundary
of the region (3.79), we use the profile <I>f7[ to make a transition to @, along Vdist(-,7T"). By doing
so, we get the compatibility between the construction made for 7" and S.

More precisely, we define as in [8](Lemma 5.2, Step 3, Equation (55))

0 rel0,§),
Qs(r.¢) = § (£-1) Q@) rele2).
Q(®) r € 26,m),
where r € [0,7), ¢ € [0,27) and
sin(6/2)
Q) = s. (n(@) on(o) - 31a) with no) = | 0
cos(¢/2)

We use this to define @, ¢ on a small n—neighbourhood of S as follows. For n small enough, we can
assume that the n—neighbourhood is parametrized by the projection onto S, the radius dist(-,S)
and an angle ¢.

Modifying T close to S if necessary, we can furthermore assume that on each (small) plane disk
perpendicular to S, the restriction of 7" to this disk is given by a straight line segment. Indeed, as
in Lemma 3.6.7 we can select a radius r € (n,2n) and a slice T;. of T at dist(-, S) = r such that T, is
of finite length. One can then replace T by a T inside the tubular neighbourhood {dist(z, S) < r}
where T is defined by the straight lines connecting S to T). on each disk perpendicular to S.

Consider g € S. By applying rotations if necessary, we can assume that a normal vector of T,
in xg is v = ez and the outward normal vector of S seen as boundary of T verifies vg = e;. We
then set

Qn,f,n(x) = QB(diSt(x7 5)7 ¢($)) )

where
XT— I M r—T
¢( ) arccos <VS . M) if vr - m 2 0,
€Tr) =
27 — arccos (1/5 . ﬁ) otherwise.

Note that if ¢(z) € (5, 2F), then dist(z, T) < dist(z, S) and thus we can also write

on
dist(z,T) ™
¢(x) = arccos <dist(a:,5)) 5

It remains the transition from the set {dist(-,.S) = n} to the boundary of (3.79). Let II
be the projection along Vdist(-,T) onto {dist(-,.S) = n} U (T N {dist(-, S) > n}). The function
Qn.¢ is already defined on the first set in the union, for the second we simply pose Q,¢(z) =
5+((v(x),0) ® (v(z),0) — 3Id) in order to be compatible with Step 3. For z € Ss,+ \ ({dist(-, S) <
n} U (T N{dist(-,S) > n})) we then define

Que(r) = @ ([lz —Iz],0(x), v(x)),

where 6(z) is the angle between es and the director field that we have already constructed in Ilz,
i.e. O(x) = arccos(n(é(z)) - e3) or O(x) = arccos(v(Ilz) - e3) depending on which set contains Ilz.
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Figure 3.6: Schematic view of the different parts of 7" and S that are constructed in Step 2 to 6

It is easy to see that since f, g and C are uniformly bounded and the curvature of S is bounded
by Lemma 3.6.4, we get

/g|in7§,n|2 + g%f(Qn,g,n) + %Q(Qn,f,n) +1Cy dz
n [ ) N .
nf” . .
= 2/25 /{dist(.7s)zr}|VQ(¢($))| r + Cnp(1+ Kg)M(S).

Estimating the gradient at distance r := dist(+, S) € [2£,n) yields

s2 2
SIVQOE)E = 2IVaGE)P < %

2
S*
1 +Zlarn(x)l2+0(|VTsl2+|VVs|2)

Loun(6(z)Ve(a)

r

2
*

s
42

IN

(1+Cr)+C.

Hence, we get

7 ! 2 ST n 1
2 v d ——M(S —d 1
2 /25 /{dist(-,s):r} IVQ(é(x))[” dr < ( )/25 , r—+o(1)

< Gt (M) + o(1).

AN
O | * o

For the remaining part of the domain defined in (3.79) we get that

1 1 1 )2
1[5V Qe+ 50 @en) + 0(@nen) + Cade < CrL0a() + o).

1

Since we chose v > 3, we get that 7*~! — 0 as 7 — 0 and the energy contribution vanishes in

the limit.
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T,
7775»71 Qn’é"oo

Qn,é,oo

Figure 3.7: Sketch of the construction for @, ¢, in Step 5 in the region Ss,~ defined in (3.79) (grey
shaded area). Dashed lines indicate the direction of the projection II.

Step 5: Construction on SL M. The domain
So,3nr = {x € Q : dist(x, S) < 3n7,dist(z, M) < 3n” and dist(z, d(O(TL M)\ 9T)) > 3n"}

can essentially be treated in the same manner as in Step 4 or as in [8, p.1444, Step 3|. To give some
more details, we can reuse the profile Q5 from the previous step (assuming a +%—singularity) for
defining @), ¢ in a ball of radius 7 centered in =g in the middle of Sy 3,~, seen as family of plane
sets perpendicular to S. Note that @, ¢ has already been defined on the boundary on each of those
plane sets. Thus, a simple two dimensional interpolation of the phase angle along Vdist(-, zg) as
in [8, eq (56-64)] shows that the energy contribution is

(n7)?
n?

Er.e(@ues Soa) < (1+C0m)Zs2| () M(SL M) +C

Step 6: Construction on OF \ S. It remains to fill the "gaps" left by the Steps 2 to 5. The
important part is the transition between the part of T' that approaches M (and which was con-
structed in Step 2) and the part that stays bounded away, including the region where S detaches
from M. At distance larger than 377 from M, we set Q, ¢ = Q¢ for all points where we
haven’t defined @), ¢ so far. Note that this is compatible with the previous constructions.

Let’s consider the set Y3,y = {x € Q : dist(z, d(TLM)\9T) < 3n7 and dist(z, d(I(TLM)\
0T')) > 3n7}. Considering the slices of Y3, orthogonal to and parametrized by 9(T'L.M), we note
that Steps 2 to 5 ensure that Q) ¢ takes values in /' whenever meeting the boundary of the slice and
Qy,¢ having trivial homotopy class. For an arbitrary € N, we can define ), ¢ = @ on a disk of
size 7 in the middle of the slice and again by linear interpolation of the phase towards the boundary
of the disk. We thus get a function Q, ¢ € H*(Yo,3,7,\) respecting the previous constructions
and Q = Q, on M. Furthermore, the interpolation allows us to estimate |[VQ|* < C((n?)~2+n~2)
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and since g is bounded, f(Q) = 0 (because @ takes values in A/) the energy contribution can be
estimated

1 1
1ol (G +5+)

< CMO(TLM)\IT) (n + (":])2 + n(n”)Q) :

77577,5(@, T0,3m)

IN

which vanishes in the limit 1, — 0 due to our hypothesis about the size of (T’ L M) \ OT.

It remains the region where S detaches from M or in other words Yi 3, = {z € Q
dist(x, 0(0(T'LL M)\ S)) < 3n7}. We can also use interpolation to construct @, ¢ and estimate its
energy but we need to be a bit more careful since this time f(Q,¢) cannot be chosen to be zero.
This is due to the isotropic core of our construction around S. So we connect the ’core’ parts from
Step 4 and 5 where we defined S in 2 and close to M that is the profile @Qp which has been used
in both steps. Around this tube, we can again apply the previous idea of linear interpolation of
the phase, this time on slices perpendicular to the tube. We end up with

gn,E(Qm& Tlﬁn”) < C"MO(A(TL M)\ dT)),

which vanishes in the limit n — 0 in view of the bound M(9(9(T |- M) \ 9T)) < C|1In(n)|. O

3.7 Regularity and optimality conditions for the limit prob-
lem

Let us first state an improved regularity results for minimizers of the energy &:
Proposition 3.7.1. Let T be a minimizer of (3.16) and S = 0T —I'. Then each component of
TLQ is an embedded manifold-with-boundary of class C*°.

Proof. The main work has been already carried out in the proof of Proposition 3.6.1 for n = 0.
The higher regularity can be obtained by Schauder theory. For details we refer to Theorem 2.1
in [130]. O

Next, we give a characterization of minimizers of the limit energy. Because of the regularity
given by Proposition 3.7.1, we can take variations of T'L_ {2 and SL € in the classical sense to derive
the optimality conditions. Furthermore, we can obtain a version of Young’s law [138,159]

Proposition 3.7.2. Let T' be a minimizer of (3.16) and S = 0T —T'. Then T'L Q has zero mean
curvature and SL Q) is of constant curvature %z—iﬁ_l. Furthermore, Young’s law holds

Varrno) - Vort+ = Um-e3 on O(TLQ)\ S,
i.e. T meets M in an angle 6 = arccos(vpq - €3).

Proof. The first claim is a well known fact since the variation of M(7T'_ Q) along a smooth vector
field E in Q yields [111, Proposition 2.1.3]

(M(TLQ) () = Hp(E-vp)dz + / (E-var) dz, (3.80)
TnQ a(TNQ)

where Hr is the mean curvature of T', v is a normal vector of T' and vgr is the inward normal
vector of (T L Q) in the tangent space of T. With the same argument and since 95 = 0, we get
that

(M(S))'(5) = /S Ks(Z-vs) da, (3.81)
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where Kg is the curvature of S and vg is the normal vector of S in R®, such that the plane for
the circle of maximal curvature is spanned by vg and a tangent vector to S. This yields for the
boundary that

0 = /E (4S*C*V3T+gszﬂKslls) do,
s

from which we deduce vogr = +vg and Kg = :I:%g‘—iﬁ_l. In particular, the circle of maximal
curvature for S lies in the plane spanned by the tangent space of T'. Finally, taking variations on
M we get

(/F L cos(®) dw)/ () = /a L (15 cos(0) (B vppe) do.

Since vyp- = —vyp-, we hence get

(/F+ 1 — cos(#) dw +/7 1+ cos(9) dw)/ (2) = - /6F+ 2c0s(0)(Z - vop+) dw. (3.82)

As in the proof of Theorem 19.8 in [117], (3.80) and (3.82) combine to

0 = / = (4sscsvr|pm — 4swes cos(Q)vgp+) d.
OF+
If we take a variation with = - vy, = 0 and write
= - VT|M = =- ((Z/aT . V8F+)V8F+) + =- ((VT|M 'T)T)
where 7 is a unit tangent vector to M, perpendicular to vgp+, we get
E-((vor-m)T) =0 and Vor - Vop+ = cos(f).

The first equality is automatically true since vgr - 7 = 0 (vgr can only have a component in
direction vgp+ and one in direction va) and the second one implies that

var - Vogp+ = VUpm - €3.
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Chapter 4

Numerical minimization of the limit
energy

4.1 Introduction

Finding a surface with minimal area and a given boundary is a classical problem since its introduc-
tion by Lagrange [103]. Solutions to this so-called Plateau problem are minimal surfaces and have
been studied extensively since then [59,140,155]. In some particular cases, analytic tools allow for
explicit solutions or characterizations, see [50,55,93,94,134].

Whenever the boundary and ambient space do not disclose an exact solution, the question of
numerical approximation arises. Different approaches have been developed to represent surfaces
and how to ensure their minimality. Most famous is the mean curvature flow [35,60], based
on the vanishing mean curvature optimality condition for minimal surfaces. Although originally
developed for hypersurfaces, the concept has been rapidly generalized to arbitrary codimension [11].
While the standard approach consists in representing the surface via a level set, more recently
varifolds constituted by point clouds are also used [39]. In addition to classical algorithms, it is
also possible to employ machine learning techniques such as training neural networks to simulate
a mean curvature flow [36]. Another very successful ansatz is to model the surface as jump set of
a BV—function and therefore minimizing the total variation leads to minimal surfaces. The total
variation is then discretized via finite difference or finite elements [46, 48,84, 164], although other
choices also prove to be useful [1].

Compared to all of the aforementioned methods, the treatment of our limit energy &, exhibits
the major challenge of optimizing a surface and its boundary simultaneously. While mean curvature
flows of both objects independently are known and implemented, their joint minimization might
cause conflict due to possible contradicting movements close to the boundary. In the following, we
will use an approach related to the minimization of the total variation.

4.2 Theoretical background

As a first step, we consider a toy problem without particle. Let K be an open Lipschitz domain of
finite measure in which we will state our problem. The goal is to find a flat chain T supported in
K which minimizes M(T) + fM(9T), i.e. formally, we want to solve

min  M(T) + SM(IT). (4.1)

TeF?,

supp (T)CK

Note that this problem is trivial since we did not include the line I' into our problem. The main
simplification we are going to apply is to take the objects T, 0T in the space of currents rather
than flat chains resulting in a convex optimization problem. Then, we reformulate Problem (4.1)
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in terms of vector fields. If we assume that 7" and 0T are regular enough, let v be a unit normal
vector field on T' and 7pr a normal tangent vector field on 0T (with induced orientation). Then,
it holds that

M(T) = /1d7—£2 = sup /p~uT dH?,
T pEL™(K,R?) JT
llpllzee <1
and
M(oT) = sup / q-Tor dH'.
geL>=(K,R?) JoT
llgll oo <1

By Stokes’ Theorem it holds that (at least formally, if ¢ is smooth enough)

/ q-Tor do = / curl(q) - vy da .
T T

If we think of u, a R®—valued measure compactly supported on K, i.e. u € M(K)3, as representa-
tion of T', the above reasoning justifies the definition of

ClukK) = swp{ [ cultd): du s 6 CFUCE), o]l <1} (4.2)
K
as proxy for the boundary 9T. With this definition, we may replace problem (4.1) by
inf / dllull + 8 Clu,K), (4.3)
weM(K)? Jk

In order to incorporate I', we need to replace T in the energy by 9T 41" and to add the tangential
vector field of I'. If formally curl(ug) is the vector-valued measure 7 H! LT, for some ug € M(K)3,
then we can modify the preceding problem as

inf / dljul + B8 C(u +up, K). (4.4)
uweM(K)? J Kk

It remains to include the particle E CC K and the energy coming from its surface M = JF. Let

Q = K\ E. We then write

inf / dllull + / sl dlull + B Clu+uo, K). (4.5)
ueM(K)? Jo M

Remark 4.2.1 (Well-posedness). It is not imminent that the problem in (4.5) is well posed. This
is due to the fact that |v3| = 0 on T, and hence a minimizing sequence of (4.5) might accumulate
mass on I' and the limiting object is mot a current any more despite being of finite energy. We
overcome this issue in the following by introducing a small parameter 0 < € < 1 and replacing |vs|
by max{|vs|,e}, i.e. we consider

inf / d||ul| + / max{|vs|,e} d|lul]| + B C(u+ ug, K). (4.6)
ueM(K)® Jq M

With this modification, the mass of u is controlled by the constant ! times the energy from (4.6).

Remark 4.2.2 (Relation to total variation minimization). The fundamental idea in what follows
is to represent T by a vector field u and its boundary by curl(u). Inside T, curl(u) vanishes and u
can be seen as a (local) gradient of some scalar potential ¢. Minimizing the mass of T (represented
by the L'—norm of u) and hence the L'—norm of V¢ can be interpreted as minimizing the total
variation of ¢.

The problem of minimizing a total variation has attracted a lot of attention in recent years
[1,46,48,84]. Our problem differs since we consider a general vector field u (in contrast to the
classical total variation problems where u = V¢) and we have an additional L!—term in our
minimization that depends on the derivative of u. The latter fact contrasts with problems e.g.
from image reconstruction where terms like ||¢ — ¢o||3. are considered. We point out that the
subject of [164] is the case when curl(u) = curl(ug) is prescribed. This can be seen as a total
variation minimization for solving the classical Plateau problem.
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Remark 4.2.3 (Differential forms). In the smooth case, problem (4.4) can also be stated via
differential forms. Let QF(K) denote the space of differential k—forms. We can identify Q' (K)
with vector fields in K and (4.4) can be reformulated as finding a 1—form wr with fK wrAn = fT n
for all n € Q?(K) minimizing the mass norm

”wTHMass = sup /7’]/\WT.
neQ?(K) /K
[Im]loo <1

The boundary 0T corresponds to a 2—form wyr with wgr = dwr. Indeed, by Stokes’ Theorem it
holds that for any n € Q' (K) which vanishes on 0K

/nAwaT:/ n:/dn:/dn/\wT:/n/\dwT.
K ar T K K

Hence, Problem (4.4) is essentially the same as to minimize |w||Mass + Bll[dw + dwo||Mass among
all w € QYK), where wo is 1—form with boundary T.

4.3 Numerical simulation

In order to solve Problem (4.3) we use a finite element discretization and then employ an Alter-
nating Direction Method of Multipliers (ADMM) algorithm for the optimization.

4.3.1 Finite element discretization

We start by introducing the finite element spaces that we will use in the further course of this
chapter. The definition we give here is standard and can be found in many books on finite elements,
for example [64] or [110, Ch. 3].

Definition 4.3.1 (Finite element spaces). Let T}, be a tetrahedral mesh of K consisting of a set of
nodes Ny, edges En, faces Fp, and tetrahedra T;,. We call a finite element space a finite dimensional
function space V (in our case a subspace of polynomials) defined on a domain D (here the tetrahedra
of Tr) and a set of degrees of freedom L which form a basis of the dual space of V (unisolvence).
For T € Ty, let Py(T) be the space of polynomials on T with degree smaller or equal to ¢ > 0 and
P,(T) the polynomials over T with degree equal to q.

1. The Lagrange-element of order 1 is given by
D=T, V="P(T),

where T € Ty, and L consists of function evaluations at the nodes of T. We call P the
corresponding finite element space defined on Ty,.

2. The discontinuous Lagrange-element of order 0 is given by
D=T, VY ="P(T),

where T € T, and L consists of the function evaluation at the center of mass of T. The
corresponding finite element space defined on Ty is denoted by P° and the vector valued
version PV .= (PY)3.

3. Neat, the Nédélec-element of the first kind of order 1 is given by
D=T, V=(Py(D)’+zxPoT),

for T € Ty. The degrees of freedom L for a function v € V are given by the integrals of v - t,
over the edges e € &, that are included in the boundary 0T, t. denoting the tangential vector
of e. The finite element space consisting of Nédélec-elements of order 0 is denoted by Ned.
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4. We define the Raviart-Thomas-element of order 0 as
D=T, V=(Py(T))’+aPo(T),

for T € Ty. The degrees of freedom L for a function v € V are given by the integrals of v-np
over the facets F € F, that are included in the boundary 0T, ng denoting the normal vector
of F. The finite element space consisting of Raviart-Thomas-elements of order 0 is denoted
by RT.

Each finite element space V' comes with a projection operator Iy, which allows us to pass from
functions defined on Q to finite element approximations over Tp.

We note that Vo € Ned if v € P!, curl(v) € RT if v € Ned and div(v) € PY if v € RT. More
precisely, we have the following proposition:

Proposition 4.3.2. The diagram

R——s H' —% H(curl) -2 H(div) &> 12 — 50

inpl lnch \LHRT inpﬂ

R Pl YV o Ned — gy 4V po 0

commutes and the rows are short exact sequences.

Proof. The upper row is just the usual de Rham-complex for a simply connected Lipschitz domain
in R3. The lower row is its discrete analogue, see Prop. 16.15 in [64]. For the commutation
properties, we refer to Chapter 16.1.2 and Chapter 16.2.2 and Lemma 16.16 in [64]. O

Since T and JT are measures, we cannot assume regularity and need to discretize them with
finite elements of lowest possible order, e.g. P®—elements. We therefore choose to represent u as a
Nédélec function, noting that its curl belongs to RT and can be seen as a subset of PY. We thus
rewrite Problem (4.4) as

inf /K\Hpo(u)| dz + B/K|curl(u)+curl(u0)\ dz, (4.7)

u€Ned

where ug € Ned is an approximation for the tangential vector field 7.

Note that the choice of Nédélec elements is not canonic and other choices are possible. For
example in [45], Crouzeix-Raviart elements are used for a total variation minimization problem.
The approximation of the solutions obtained there is sharper compared to the Nédélec/ P! elements.
Also other finite elements could be used as long as they verify a variant of Proposition 4.3.2 and
in particular the image and kernel of the discrete curl—operator are known, see [16, Ch. 7]. In
order to decide which elements to use one must then balance the quality of the approximations for
T and S given by the size of ker(curl) and im(curl), as well as the computational cost required by
the finite elements.

Remark 4.3.3 (Relation to discrete total variation minimization). In view of Proposition 4.3.2,
Remark 4.2.2 can be translated into the finite element setting as follows: If u € Ned such that
curl(u) = 0 € RT, then by exzactness of the sequence there exists ¢ € P! such that u = V¢.

In order to find a finite element representation of (4.6), we introduce a density function ps €
C°(Q), defined for 0 < § < 1 and = € Q as ps(z) = max{|v3(llp(x))|, e} if dist(z, M) < 6
and ps(x) = 1 if dist(x, M) > 26, ¢ > 0 being the parameter introduced in Remark 4.2.1. The
parameter § determines the size of the boundary layer Ms = {z € Q : * = w + rv(w) for w €
M,r € [0,6]} which will serve as proxy for M. We choose the approximation wug s of ug to be

centred at distance g from M and supported in M; \ M4 such that ug s Sy in M(K)3. We
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furthermore use the notation Q; = Q\ Ms. For u, € Ned and wo 55 = IIneda(uo,s) we then
define

Jre psIpo(up)| dz + B [f |curl(ug) + curl(uos,n)| dz if up =0 in E,

. (4.8)
400 otherwise.

Ens(un) = {

We next show that for & = v/h, the functional En,s approaches (4.4) in a variational sense when
h — 0.

Proposition 4.3.4. Let § := /h. Then, the energy £, 5 T'—converges to the energy in (4.6) with
respect to the weak*-topology of measures.

Proof. Let € > 0 be fixed, § > 0, up, € Ned and ug s, € Ned be the previously described approxi-
mation for the tangential vector field 7 w.r.t. the weak*-topology of vector valued measures. We
note that a function v of the Nédélec space on a tetrahedron T' € 7}, can be written as

v|r(z) = v(er) + curl(vlr) X (z — cr), (4.9)

where ¢p is the center of mass of the cell T, curl(v|r) is a constant vector on each cell and
v(er) = fv dz. We can hence estimate |up, |7 — I po (up)|7| < Chlcurl(uy)|r| which gives

/|uh—npo(uh)\dx = > / lun|r — Hpo(up)|r| dz
K

TETh

IN

/ |curl(up)|r| dz = C’h/ |curl(up)| dz .

TETh

This allows to conclude that uj, — ITpo(up,) — 0 in the space of measures as h — 0 and

/ lup| dz
K

IN

/ o (un)| dz + / g — Tpo(up)| d
K K
1
< 0(1 + g)gh,g(uh) + COHE(M) + CHM(D).
We can therefore assume that (up to a subsequence) u;, — u as measures for some u € M(K)?
with support outside of E.
For the liminf inequality, take ¢ € C2°(K)? with |¢|~ < 1 to get

Z /d) curl(up, + vo5,n) do .

TeTh

/ ¢ - curl(up, + uos.n)

Integration by parts on each mesh cell T' € T}, yields
Z/d) curl(up + uo5,n) do = Z/Curl - (up +uo5,n) do
TEThH TETh

+ Z ((un + wo,n) X vor) da.
TETh

We note that on boundary faces it holds u; = ugs, = 0. Furthermore, in the sum over all cells
boundaries of the above calculation each interior face appears exactly twice but with opposite signs
for the normal vector. Since the tangential components of Nédélec-functions are continuous across
faces, it follows that the second sum on the right hand side vanishes. Thus,

/ ¢ - curl(up, +ugsp) de = / curl(¢) - (up, + uo,s,5) dz. (4.10)
K K
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By choosing the size of the regularization § much larger than than the discretization h, e.g. by
setting d(h) = \/E, we can use the weak*-convergence of up and ug 5,5, and take the supremum in
¢ to get

liminf/ |curl(up) + curl(ug,s,p)| dz > C(u + ug, K) .
K

h,5(h)—0

Now, we estimate

[ oitpo@lar = [ palttpolde + [ M) de.
K M Q\Mass

Since  is open and Q = (J;.(€\ Mas), it holds that

liminf/ Mpo(up)| de > / d||ul| .
h,8(h)—0 D\ Mas Q

For the integral over My, it holds

§
/ pslTpo (un)| dz > / max{\u3|,g}/ I po (un)| dr dew — O
M M 0

In the limit h,d(h) — 0 we recover st ps|Tpo(up)| do > [, max{|vs|,e} dflul| which concludes
the proof of the lower bound.

For the upper bound, let u be a vector valued measure. We assume that v = 0 in E, otherwise
the result is trivial. We regularize v on a scale 0 < k < 1 through a convolution with (, =
%((/n), where ( is a standard convolution kernel with ¢ € [0, 1], supp ({) C B1(0), [¢ =1 and
smoothly shift the support of the resulting function by x in direction normal to M so that the
function sequence is supported in Q. We discretise the regularized functions u, in €Q, i.e. we pose
Un,k = IINea(uy). Note that by the properties of the Nédélec interpolation operator Ilneq it holds
the estimate

h
[tn,e —usllr S hluclgr S ;/ dffull - (4.11)

In view of this estimate, we choose k(h) = hi% such that h/k — 0 as h — 0. Furthermore,
it is natural to demand that the regularization of vl M is contained in M. By our choices of
k(h) = hi < §(h) = h* this is satisfied for h small enough.

For the integral fK |curl(up, x, +uo,6,5)| dz, we want to use the same idea as in the lower bound.
We hence rewrite the absolute values as a supremum using functions ¢ € C°(K)3 with ¢ < 1
and use the formula in (4.10). We then get

lim sup / |curl(up,  + uo5.0)| dz =  sup / curl(¢) - (u+ ug) dz = C(u+ ug, K),
h,k(h),6(h)—0J K YeCP(K) JK
ll#llec <1

where we used (4.11) and the weak* convergences u, — u and ug s — ug as d, k, h — 0.

The integral fQJ [TIpo(up,.)| dz passes to the limit h, x(h),d(h) — 0 again due to (4.11) and
the weak* convergence of u,. It remains the estimate of f./\/l(; ps|IIpo(up )| dz. For this we note
that since h < k(h) < 6(h), it holds

imsup [ psfTlpo(un)l de < [ max{lal.c} dfu.
Rk (R),6(h)—0J M M
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4.3.2 ADMM-algorithm

To minimize the energy in (4.8) numerically, we employ the Alternating Direction Method of
Multipliers (ADMM) [74]. This algorithm requires our problem to be of the form [32, Sec. 3]

min F(z) +G(y) subject to Ax + By =c € R". (4.12)
z€R"z , ycR™Y

Then, one performs alternating minimizations in z and y as well as updates of the dual variable z
of the augmented Lagrangian

L(z,y,2) = F(x)+Gy)+="(Ax+ By — o) + T || Az + By — .

We first reformulate (4.8) to fit into this scheme. With a little abuse of notation, we identify
the finite element functions and their vectors of degrees of freedom. We set = := u, y = (p,q),
z = (A, u) and define the density functions

1 if x €y s .
. B ifxe,
Pmax = § max{|vs(z)|,e} ifxeMp, and @Gmax = .
. +o00  otherwise.
400 otherwise,

Defining the objective functions F' and G by

F(u) =0 G(p,q) = l[Pmaxpllzr + l[gmaxqllzr

subject to the constraints

()= (6 5) (D) = o)

we transformed the minimization of (4.8) into a problem suitable for ADMM. We furthermore write
w = (yum,vc) for the stepsizes used inside the algorithm. Our ADMM scheme is summarized in
Algorithm 1.

The minimization procedures in Algorithm 1 are carried out using the optimality conditions and
solving the associated linear systems. More precisely, for the minimization in line 2 of Algorithm
1 we solve the weak formulation

0 = ve(curl(u), curl(v)) + var (u, v) — (A + yep), curl(v)) — (& + yarq),v) Vv € Ned. (4.13)
Line 3 and 4 are computed by
) —1
p = W <<max{p|/pmaxa1}> 1)pa ﬁ:AffyMHPO(u)v

—1
q = ’Y% ((maxﬂq'/Qmaxyl}) - 1)‘], §:,u—70curl(u).
Numerous modifications for speeding up ADMM are known [96]. We tested the "Accelerated
Alternating Direction Method of Multipliers" from [96], the Nesterov acceleration as described in

[80] as well as a simple over-relaxation scheme, finding that the latter leads to a faster convergence,
while the others two had no noticeable influence on the speed.
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Algorithm 1 ADMM algorithm for minimizing &

Parameter: vy, vc > 0 (step sizes), h > 0 (mesh size), 8 > 0 (weight for M(S)), ¢ € [0, 7] (angle
of rotation), wg > 1 (penalization weight inside E), e > 0 (to avoid zero divisions)
Initialize: p,q, A\, + 0 € P°
Initialize: u < 0 € Ned
Initialize: guax « Hpo(Bxa + wexE)
Initialize: pmax < po (1 xo\ A, + max{|v - Hl,e}xm, +wexe)
1: for k=1,2,... do
2: u < argmin {—(\, u) — (i, curl(u)) + % |lqg — curl(u)||2. + 2L |p — ul|2. }

3 ¢+ argmin {|gmaxqllzr + (A, @) + 22 ||q — curl(u)[|2. }
q

4 p < argmin {||pmaxpllzr + (1, p) + 2L |p — ul?2}
P

5 A A+ e(g — curl(u) — curl(ug))
6: w<— i+ ya(p — Hpo(w))
7: end for

Output: Ej = |[pmaxpllzr ) + Bllallr )

4.3.3 Implementation

The finite element discretization and implementation of Algorithm 1 has been carried out using
FEniCS [7,110], see also [104] for an introduction. For generating the meshes we use the program
GMSH [78]. The visualization of the results is realised using ParaView [17].

Solving equations and projections. We perform the projections in Algorithm 1 by solving the
linear system associated to the L?—orthogonality relation verified by the projection. All matrices
for the linear systems, including (4.13) are independent of the iteration step, and hence we assemble
them only once before the iteration starts. For solving the system, we apply a solver using a
LU —decomposition also calculated once in the beginning and assembling only the right hand side
in each iteration.

Mesh and representation of I'. From Chapter 3 we know that minimal configurations of T
and S are concentrated inside the convex envelope of the particle. This is why we decided to create
a mesh adapted to this situation, i.e. a fine mesh close to the surface M and inside the convex
envelope, while far from M the mesh can be coarser, see Figure 4.1. In our case we choose the
mesh size h to be between 0.03 on M and 0.3 at the boundary of the box. The simulations in
which we investigate the influence of the angle between particle orientation and external field H
are conducted by changing the vector H, thus allowing to use the same mesh for all simulations
of a particle. In order to obtain an accurate approximation, we also include the boundary layer
My, into the mesh generation. We choose the thickness of M;, to be equal to h, which gives
satisfactory results from our experiences, see Figure 4.1b. We can furthermore perform a cut-out
of our mesh, i.e. remove the cells inside E from our simulation, which significantly increases the
speed of our code. In the case of the peanut mesh, this reduces the number of cells by more than
40%, see Figure 4.1a. We maintain a small layer inside F which is used to prevent the surface and
its boundary to enter the particle and to create the initial condition: Using the level-set function
of the shape, we calculate the normal field v which allows us to define the function v - H. Then,
we set ug = xgV(v-H). The vector field curl(ug) serves as approximation for 7r.
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Figure 4.1: Left: Mesh after removing the interior cells. The colors represent the values of ppax:
10° inside the particle (red), |v3| in the boundary layer (shades of blue), 1 otherwise (grey). Right:
Magnification of a part of the mesh.

Breaking symmetry: the parameter dr. In the first simulations, we observed the behaviour
that the algorithm converges, but the solution surface has holes or covers the whole of M, see
Figure 4.2. This phenomenon seems to be related to the non-uniqueness of the solution. By mirror
symmetry of the particle, there are two distinct configurations which have the same energy and
seem to superpose each other. Note that the curl we obtain in this situation is of order 1072, i.e.
close to zero. To overcome this issue, we introduce the parameter dr which acts as a shift for the
initial condition in direction H and breaks the symmetry. Choosing dr := h is enough to eliminate
this phenomenon, see e.g. Figure 4.5.

Figure 4.2: Different isosurfaces of a terminal configuration obtained for 5 = 1 after 4000 iterations
with dr =0.
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(a) (b)

Figure 4.3: Observed defect configurations: Saturn ring (a) for small values of 5 and dipole (b) for
large 5. The line S is indicated in red and 7" in blue.

4.4 Results

In this section we detail and comment on the numerical simulations we conducted to the three
particle geometries: Sphere, Peanut and Croissant. In the case of the sphere, the minimizers of &
are known to be the Saturn ring around the equator and the dipole, see Chapter 2. This case can
thus serve as validation of our algorithm and the numerical implementation. The peanut-shape
has been chosen because the rotational symmetry is broken along an axis. It is therefore possible
to study the defect structures and the energy as function of a single angle ¢ between this axis
and the external field H. Since the peanut is also non-convex, one could hope to see a non-trivial
TL_Q). However, this is not observed in our simulations. Finally, the croissant is another non-convex
particle for which certain parameter choices do result in a non-vanishing 7'L ).

4.4.1 Spherical particle

The simulation of the spherical particle serves mainly as validation case for our algorithm. Running
simulations for values of 8 between 0.01 and 1.1, we observe only a Saturn ring at the equator or
a dipole, as expected from the theoretical analysis, see Figure 4.3.

Furthermore, the numerically calculated energy as function of the parameter g is linearly in-
creasing for a Saturn ring configuration and constant (independent of 3) for a dipole, see Figure
4.4. These findings are consistent with the behaviour calculated in Section 2.6, compare with
Figure 2.6. Note that since we are calculating the globally energy minimizing configuration, it is
not possible to reproduce the hysteresis phenomenon.
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Figure 4.4: Energy of minimizers for different values of 5 around a sphere of radius 1. The mesh
consists of around 449 000 cells of size h = 0.03 around the particle surface.

4.4.2 Peanut-shaped particle

In this subsection we present out findings about a non-spherical particle. The shape is constructed
by combining three circle arcs (two bending outwards which are mirror images of each other,
and one inwards) and then rotating the resulting curve to obtain a surface of revolution. The
resulting object is therefore rotationally symmetric around an axis and exhibits additionally a
mirror symmetry. We are interested how the angle ¢ between the symmetry axis of the peanut
and the eternal field H influences the defect structures and energy.

For ¢ = 7, the results resemble the spherical case: There are only two observed configurations,
Saturn ring and dipole, see Figure 4.5 (d) and (e). The plot of the energy as function of 8 in Figure
4.7 has the same qualitative behaviour as Figure 4.4. If ¢ = 0 the situation is quite different: since
I’ consists of three disjoint circle arcs, for S small, we see three Saturn rings surrounding the
peanut, see Figure 4.5 (a). Note that the outer two Saturn rings are of type —%, while the inner
one has to be a —&—%—defect for orientability reasons. In our program the difference of a j:%—defect
is represented by the fact that the vector field curl(v) (and ¢) have different orientations. Before
attaining a dipole configuration for large 8 which consists of two disjoint components of 7'l M
(as in Figure 4.5 (c)), there exists a regime for 8 in which two of the components of I" are joined
together by T'L M and the third component still appears as a Saturn ring, see Figure 4.5 (b).

Comparing the found defect structures, we observe that depending on the number of connected
components of I', we observe 1 or 3 Saturn rings for small 5.

As the total length of T" for different angles ¢ is not equal (in fact the length decreases when
¢ increases), it is natural to expect the slope of the energy as function of 5 to be monotonically
decreasing as function of ¢, being minimal for ¢ = 7. This is indeed the observed behaviour
in Figure 4.7. Also the dipoles have different energy even though they always cover half of the
particle. This can be explained through the weight |v - H| in the integration over the surface, since
for ¢ = 0 a larger part of M is oriented perpendicular to H, while for ¢ = 7 v is close to parallel
to H on a larger portion of the particle surface. We observe again a monotone behaviour of the
energy w.r.t. ¢, the minimal energy being given for ¢ = 0. We conclude that ¢ = 0 (resp. ¢ = )
is the energetically preferred orientations for 3 large (resp. small). Notice that in the experiments

conducted in [143, Fig. 1] these are by far the most frequently observed orientations.

As the peanut is non-convex, one could hope for the surface T' to form outside the boundary
layer M;,. We did not observe this in our simulations which can heuristically be explained by the
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Figure 4.5: The observed defect configurations for ¢ = 0 (a)-(c) are three Saturn rings (a), two
components of I' joined together leaving one Saturn ring (b) and dipole (c). For ¢ = 7 (d)-(e), we
find a Saturn ring (d) and dipole (e).
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Figure 4.6: Energy of minimizers for different values of g around the peanut shape for ¢ = 0.
Dashed lines indicate the regression line for each of the three observed configurations.
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Figure 4.7: Left: Energy of minimizers as function of g around the peanut shape for different values
of ¢ between 0 (solid line) and 7 (dotted line). The mesh consists of around 485000 cells of size
h = 0.03 around the particle surface. Right: Defect configuration corresponding to the minimal
energy for given ¢ and 8. Dots indicate simulations with 2 000, triangles with 4 000 iterations. We
observe dipoles (DP), Saturn rings with one (SR) or three components (3 SR) and Saturn rings
with non-trivial surface T of one (SR+T) or two components (SR+2T).
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Figure 4.8: Configurations obtained for ¢ = 7 and 8 =0.3,0.4,0.5.
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Figure 4.9: Configurations obtained for ¢ = & and 8 =0.1,0.2,0.4,0.5.
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Figure 4.10: Configurations obtained for § = 0.01,0.33,0.67 and ¢ = 1) = 0 after 4000 iterations.

fact that the line S detaching from the surface at distance d would only be shortened by a term
of order d? while the additional M(7 L Q) would be of order d. We therefore expect the line S to
always stay at the surface of M unless the dipole becomes energetically favourable.

4.4.3 Croissant-shaped particle
Our interest in croissant-shaped particles is twofold:

1. Until now, both S and T have been entirely included in the boundary layer Mj. We would
therefore like to give an example of when 7" and S detach from M and have parts inside
Q. The examples given here illustrate the variety and complexity of minimizers (T, S) of the
limit problem.

2. From the point of view of applications it appears that particles similar to our croissant
shape ("horse shoe") are interesting since they are able to self-assemble into two- and three-
dimensional nematic colloidal crystals [15]. The precise understanding of defect structure
could therefore be valuable e.g. for tunable metamaterials.

The particle we use in our simulations is made from five components. The central piece is a
half-torus to which two cylindrical parts are attached. The remaining open ends of the cylinders
are closed using two half-spheres. Since the croissant has less symmetries than the peanut, we
describe its orientation relative to the external field by the two angles ¢ (rotation around the
x1—axis) and ¢ (rotation around the xo—axis). The two radii R, r of the torus and the length L of
the cylinders are chosen as R = 0.7, r = 0.4 and L = 0.5. Those values are obtained heuristically
as we expect for well chosen orientation and S to observe a non-trivial surface T'I_€2. Indeed, if the
torus lies parallel to the x;x5—plane, then in order to shorten the length of S, we expect the line
S to directly connect the two half-spheres and hence a surface T" outside the boundary layer My,
connects I' to SL . Varying the parameter /3 for ¢ = b = 0, we obtain the expected intermediate
configuration, see Figure 4.10. The values of S for which these transitions occur are contained in
the two intervals (0.25,0.29) and (0.4,0.42).

It is therefore possible to qualitatively study the optimality conditions from Proposition 3.7.2.

1. The curvature of S should behave like 37! and indeed we find qualitatively that for increasing
[ the curvature of S'L € decreases, see Figure 4.11.

2. We also observe a surface T that has a non-trivial components T'L M and T2 and detaches
from M in a line other than I', see Figure 4.12. We observe that the angle formed by the
normal vectors of M and T' do not form a right angle as predicted by Young’s law. This can
also be observed in Figure 4.13 (a).

3. The surface TL (2 in Figure 4.12 and 4.10 appears to be flat, verifying the optimality condition
of vanishing mean curvature. In Figure 4.13 we give an example where TL (2 has non-vanishing
curvature but the curvature in the two depicted slices have opposite sign.
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Figure 4.11: Evolution of the singularity line S L ©Q as ( increases, from left to right g =
0.33,0.375,0.39,0.4. For comparison all four lines are indicated in all four images. Configura-
tions obtained for ¢ = ¢ = 0 and 4000 iterations.

Figure 4.12: Four views on the configuration after 8 000 iterations for ¢ = 7, ¢ = ¢ and 3 = 0.31.
The line T is indicated transparently in the images of the upper row. The bottom row shows the
transparent boundary layer M;, around the solid particle F, allowing to distinguish 7'L M and
TLAQ.

(b)

Figure 4.13: Section though the zox3—plane (left) and x;2x3—plane(right) of T" after 4 000 iterations
for = 7,9 =0 and B = 0.3. The part of T" inside 2 is curved into opposite directions in the two
images.
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Chapter 5

Conclusion and perspectives

The goal of this thesis was to investigate the complex interaction between a nematic liquid crystal,
an immersed particle and an applied external magnetic field focusing on the type, shape and
position of possible singularities. We used a reasonably rescaled version of the Landau-de Gennes
model enriched with an energy density that allows to include anisotropies such as a homogeneous
magnetic field which is the interpretation we focused on. The rescaled model contains two non-
dimensional parameters, £ and 7, and we placed ourself in a regime where both tend to zero. We
specified the relative speed by assuming that n|In(¢)] — 8 € (0,00) as &, n — 0. This physically
corresponds to an increasingly large immersed particle and a field of decreasing strength.

In the case of a single spherical particle, we derived an effective energy stated on the surface
of the particle. We are able to explicitly calculate the minimizers of this limiting energy, giving
a rigorous description and explanation of the different defect structures as well as the transition
between them. In particular, we find that the only possible (locally) minimizing configurations
are the Saturn ring around the equator and a dipole at one of the two poles of the sphere. We
postulate that the transition between the two minimizers occurs while increasing and decreasing
the parameter 3, described by a hysteresis loop. Our findings are in accordance with [154] but
unfortunately the hysteresis has not yet been observed experimentally. The observation would
contribute to further validate our model and might also be interesting from a physical point of
view as to describe different behaviour in a small range for the parameters.

In the second part we have seen how our limit model can be generalised to also describe
singularities around an arbitrary but regular particle. We saw that if the particle is convex, then
the energy asymptotically concentrates at the surface of the particle and the generalized model
reduces to the minimization of the energy on the surface stated previously in the spherical particle
case. In the non-convex case there may or may not be defects present in the interior of the liquid
crystal material. We derived optimality conditions for those defect structures, also showing that
they are smooth.

The last chapter then introduces a numerical algorithm that enables us to calculate the shape
and energy of globally minimizing configurations. This last part is necessary since we are not able
to find the minimizers of the limit energy explicitly, even for relatively simple particle such as
the peanut shape. Exploring the structures appearing for different relative orientations ¢ between
particle and magnetic field, we find a rich landscape of possible minimizers which one should observe
also in experiments. The physical results on colloids involving peanut shaped particle in [143] focus
on the dynamical behaviour. In order to observe the ’exotic’ structures described in Chapter 4,
one would need to consider a static situation in which the particle cannot move or rotate freely.
If we only fix the direction of the external field (and hence the director field at infinity) and allow
the peanut to rotate, we recover that the optimal angle ¢ is close to 0 or 7 confirmed by [143].
Our model and the numerical simulations can therefore help in understanding which singularities

and what shapes we observe in reality.
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Of course this is only a first step on the way to understand liquid crystal colloids which would
pave the way to manipulate liquid crystal properties itself or assemble microstructures within a
liquid crystal medium.

Several future directions could be envisaged from here onwards:

1. As we'’re interested in colloids, a natural question would be to ask if it is possible to describe
arrangements of several particles in the same framework we used in this thesis. It is known
that if the particles are close enough, singularity lines can form in a way to entangle several of
them and to form chains or layers. Moreover, the topology of those lines becomes interesting
as in experiments one observes knots and links [116,133] in contrast to the Saturn rings of
trivial topology we described in this work. In [114], a formalism is explained how knotted
configurations can be described, but it remains open how one can relate this to an energetic
formulation such as the Landau-de Gennes model.

2. From a theoretical point of view it would be desirable to derive a model of higher order.
Indeed, our model only takes into account the highest order terms, while some phenomena
cannot be captured in this expansion. For example, in reality the Saturn ring might stay at
a certain distance from a spherical particle [3,71,83,128], in our first order model it is always
confined to the sphere. An energy including linear order terms in 1 might be able to provide
estimates on the distance of the defect from the surface.

3. The numerical algorithm we’re proposing here needs to be studied and improved. In order to
be justified, a full and general proof of consistency is needed in addition to the results we give
here. It would also be of interest to prove convergence of our method and get some estimates
on the convergence rate which seems a challenging task in view of the results for related total
variation minimization problems [46]. Trying to create an analogous “phase diagram" (see
Figure 4.7) for the croissant or any other more complicated particle requires considerable
computing power or time. One can therefore seek to further accelerate and parallelise our
implementation.

4. Seen as a part of the modelisation for liquid crystals, one could also investigate how our
results depend on the chosen Landau-de Gennes model. One could try to reprove analogous
statements for a different potential f, going beyond the one constant approximation, varying
the temperature or considering a non-homogeneous external field [21,23,56,99,132]. Already
for an electric field, the assumption of homogeneity throughout the liquid crystal sample
is not justified any more and one would need to consider a model where the influence of
the director on the field is taken into account [12,77]. As we are interested in the transition
between singularities, one might also ask if one could derive a dynamical version of our results,
describing the evolution of the singularities by those of S and T, see e.g. the description
in [112] and simulations in [68]. In the same spirit, one might be able to include a flow field
replacing or supplementing the magnetic field into the model. It has been observed that a
flow field can also induce a dipole-Saturn ring transition [95].
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Appendix A

Appendix

A.1 Two examples for the function g
In this section we check that the two functions g; and go as defined in (2.9) verify the assumptions
on g, in particular (2.5), (2.6), (2.7) and (2.8). All calculations are straightforward.

Proposition A.1.1 (Properties of g1). Let g1 be given as in (2.9).
1. If Q € N is given by Q = s,(n ® n — £1d) with n € S?, then

91(Q) = 5. (1 —n3) ,
i.e. cz = S,.
2. There exists a constant C > 0 such that for all () € Sym,
191(Q) = 91(R(Q))| < C dist(Q, N) . (A1)

3. The function g1 satisfies the growth assumptions (3.7),(3.8) and is invariant by rotations
around the e3—azis. For fixed |Q|, g1(Q) is minimal if es is the eigenvector corresponding
to the mazimal eigenvalue of Q. For Q = s((e3 ® e3 — 1Id) + r(m ® m — 1Id)) (using the
notation of (2.4)), g1(Q) is minimized for r = 0.

Proof. For Q = s,(n®n — %Id) with n € S? and s, > 0 one easily checks that

2 1
01(Q) = 5s. —s.(nf - 5 ) = 5. —s.ni.

For the second assertion, we take a () € Sym, and use Proposition 2.2.3 to write

Q:s((n@n—éld)—|—r<m®m—§ld)> ,

with s > 0, 0 < r < 1 and n, m orthonormal eigenvectors of @ and R(Q) = sx (n®n — %Id).
Then we can estimate

91(Q) — 9u(RE@)| = s (md — ) +sr(md — 3) . (3~ )]

On the other hand, as in (2.38)

dist*(Q,N) = |Q — R(Q)|* >



Combining these two expressions, we find

19:(Q) — 1 (R(Q))] < % dist(Q, ),

which completes the proof of the second assertion for the choice C' = %.

The function g; is smooth and obviously satisfies (2.5) and (2.6). Furthermore, since g; only
depends on ()33, it is invariant under rotations around the es—axis. Writing once again Q) € Sym,
in the form of Proposition 2.2.3, we get

7n(Q) = %5* - S((ng - %) +r<m§ - %)) .

For fixed s,r,m this is minimized by n = 1, which corresponds to the principal eigenvector n
equal to e3. We also see that for n = e3 and s fixed, g becomes minimal if » = 0, since m 1 n. O

Proposition A.1.2 (Properties of g2). Let g2 be given as in (2.9).

1. g2(Q) > 0 for all Q € Sym,, with equality of and only if Q = t(ez @ es — %Id) for some t > 0.
2. IfQ e N is given by Q = s,(n®@n — 7Id) with n € S?, then

92(Q) =4/5 (1 - n%) )

i.e. c? = \/g

3. There exist constants 61,C > 0 such that if Q € Sym, with dist(Q,N) < § for 0 < § < 0y,
then

192(Q) — g2(R(Q))| < C dist(Q, V). (A.2)

4. The function go satisfies the growth assumptions (2.5),(2.6) and is invariant by rotations
around the es—azis. For fixved |Q|, g2(Q) is minimal if es is the eigenvector corresponding
to the mazimal eigenvalue of Q. For Q = s((e3 ® e3 — 31d) + r(m ® m — 11d)) (using again

the notation of (2.4)), g2(Q) is minimized for r = 0.

Proof. Minimizing go under the tracelessness constraint, we get the necessary conditions

Q33 Q33Q;; . Q33Qi;

i A0 ot A momi =t S

for a Lagrange multiplier A. For @ = 0 the claim is clear by definition. So let @ € Sym, \ {0}.

If Q33 = 0 we get a contradiction. Hence we can assume (33 # 0. Then the third equation from

above implies Q;; = 0 for ¢ # j and the second Q11 = Q22. By tr(Q) = 0, we have Q33 = —2Q1;.

Then the first equation reads 0 = 2Q3%; — |Q|?, i.e. Q33 = \/2/3|Q|. Inserting this into g» we

get mingyn, g2 = 0. Our conditions also imply the claimed representation ) = t(e3 ® e3 — 7Id)
Reversely, it is obvious that go = 0 for such Q.

=0fori#j

For the second claim, it is straightforward to check that for @ = s.(n®n — 1Id) € N we have
|Q|* = 252. Thus

e i E L Bl

For the next property we use the same notation as before (from Proposition 2.2.3) to write

Qs((n@néld)Jrr(m@m;Id)) ,

118



with s > 0, 0 < r < 1 and n, m orthonormal eigenvectors of (). From the second part of this
proposition, we infer that g2(R(Q)) = \[(1 —n3). In order to calculate g2(Q), we note that

2 2 1 1
+25%r <n®n—31d> : (m@m—gld)

1 1
Q2 = s* n®n—§Id + (s1)? m—gId

:§82(T2—7”—|—1).

This implies

192(Q) — 92(R(Q))| = 9

1 r
Note, that the Taylor expansion at r = 0 is given by ———— —1 = - + O(r?) and
————— =7+ O(r?). Hence
V1i—r+7r2 ()
3
19:(Q) = g2(R(Q)] < 57+ O(?). (A.3)

As in Proposition A.1.1 we get that dist*(Q,N) > 1ls — s./* + §|sr?| and hence |s — s,| <

di 1
V3 dist(Q,N) and |r| < \/glslts(|Q,./\/) We define 6, = Tﬁs* and together with (A.3) we get
2V/3

V/3dist (Q, N )
1(Q - 2(RQ)| < r < WL < 2o,
It remains to prove the last assertion. Again the growth assumptions (2.5) and (2.6) are trivially
satisfied. With the same arguments as in Proposition A.1.1 (since |Q)| is fixed), we get that g2(Q)
is minimal for n = e3. Finally, we can compute

75 + sr -1
ga(s ((e3®e3—§1d)+r(m®m \/7 3)
[3\/ 1—7r41r2
and see that this is indeed minimal if r = 0. O

A.2 The complex T

In this section, we collect and prove all results in connection to the structure of 7 as defined in
Section 3.4.3. Recall that

={Q€eSym, : s>0,0<r<1,n3=0}.

Our first result is a characterization of 7 that provides us with a more accessible parametriza-
tion.

Proposition A.2.1. Every matriz QQ € T can be written as
Q=X Xn®n—-R.MR,),

where A > 0, n = (ny,n2,0) € S, Ry, is the rotation around n A ez, such that Ryn = e3 and

0

!

M:M 0
00 O

with M' € R?*2 symmetric, tr(M') = 1 and (M'v,v) > —1 for all v € S*. The matriz Q is oblate
uniazial if and only if M’ = 11d.
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Proof. A matrix @ of the above form Q = A\(n ® n — R] M R,,) has n as an eigenvector to the
eigenvalue A and n3 = 0 by definition. Furthermore, since min, g1 (M’v,v) > —1 the eigenvalue
A is strictly bigger than the other eigenvalues, thus r < 1 and @ € 7. Conversely, we can write
every () € Sym, as

Q = An®n+mm+ \3pRp,

with A\; > Ay > A3 and n,m,p € S? pairwise orthogonal eigenvectors of Q to A, A2, \3. By
definition of 7, ng = 0 as required for our parametrization and clearly we can identify A = A;.
Setting M = —Rn()‘—Qm R m + i—ip ® p)R,., it is obvious that M is of the above form and that

A1 n>
Q@ € T can be written as claimed.

If M’ = 11d then
1
Q = \mn®n—RIMR,) = ;A(n@)nfgId),

i.e. Q is oblate uniaxial. The reversed implication follows similarly, since the matrices R/, R, are
invertible.

O

Remark A.2.2. Given a vector u € R as axis of rotation and an angle 0, then this rotation is
described by the matriz R with

cosf + u3(1 — cos ) uug(l — cosf) —uzsin®  ujuz(l — cosf) + us sin b
R=[uwuz(l —cosh) +uzsind  cosh+u3(l—cosf)  wuouz(l—cosf)— uysind
urug(l — cosf) —uasin®  uguz(l — cosf) + uq sinf cos @ + u3(1 — cos0)

Corollary A.2.3. T is a four dimensional smooth complex and 9T =C.

Proof. From the characterization in Proposition A.2.1, it is clear that one can use the map Q —
(A\,n,m11,m12) to make 7 a four dimensional manifold with a conical singularity in @ = 0. In
particular, 7 is a smooth complex.

Proposition A.2.1 furthermore implies that the boundary of 7 consists of matrices of the form
A = 0 (from which follows directly @ = 0) or M’ has the eigenvalue —1 (which corresponds to
r = 1). In particular, the matrices with » = 0 are not included in 97 as one may think from
the definition in (3.12). This implies the inclusion 97 C C. For the inverse inclusion, take Q) € C
with orthogonal eigenvectors m,p € S? associated to the biggest eigenvalue A\; = Xo. So in
fact we have a two dimensional subspace of eigenvectors to this eigenvalue spanned by m and p.
Since the hyperplane defined through {n3 = 0} is of codimension one, there exists a unit vector
n € {ng = 0} Nspan{m, p} which we were looking for. The unit eigenvector orthogonal to n in the
plane span{m, p} requires M’ to have the eigenvalue —1 or in other words min,eg: (M'v,v) = —1,
so that Q € 9T. O

Lemma A.2.4. Let Q € T NN. Then, the normal vector Ng on T at Q is given by
3 0 0 n1
Ng = 5)\ 0 0 nolf,

ny ng 0

where n = (ny,n2,0) € S? is the eigenvector associated to the biggest eigenvalue ).

Proof. We are going to prove a slightly more general result by first considering @ € 7 and calcu-
lating the tangent vectors to 7 in (). We use the representation from Proposition A.2.1 and vary
A,n,mq1, M1 one after another.

e First, we can easily take the derivative with respect to A and obtain T; = (n®n— R M Ry,).
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e Second, we vary the parameter n. So, let’s consider n = (ny,n2,0) € S2. Without loss of
generality we assume that ny # 0 and write n(t) = (n1+¢,no— 31t). Then In(t)|? = 1+0(t?)
and

n(t) @n(t) = n@n+ tDagn + O(t?), Dngn = |n, =2 —2p; 0

The derivative of the second term RI(t)MRn(t) can be calculated using Remark A.2.2 with

the axis nt(¢) := n(t) A es. Since n(t) L ez we can write
—2n1ng fng + n% —No

Row = Bn+tDg, +0(t*),  Dp,=—|-nd3+n? 2nny m

n
2 %) —nNnq 0

The second tangent vector T is thus given by Ta = A(Dngn — Df; MRy — R MDg,,).

e Third, we can take the derivative with respect to mi;. This is straightforward and we obtain

1 0
Ts=AR] [0 -1 Ry .
0
e Last, varying mqo we easily calculate
0 1
T,=AR] |1 0 Rn.
0

Before proceeding, we want to calculate a fifth vector by varying n3. As it will turn out later, this
is indeed the normal vector.

e Writing once again n = (ny,ny,0) and defining n(t) = (n1v1 —t2,n2v/1 —12,t) we can
express

n(t)®@n(t) = n®n+t(n®@es+e3®@n)+O(t?).

As for the second tangent vector, we use Remark A.2.2 and the rotation around n'(t) =
n(t) A es. Unlike previously, n(t) is no longer orthogonal to e3 for ¢ # 0, namely 6 =
arccos((n(t), es)) = t. Substituting this our expression of the rotation matrix we get

1-— n% ning 0
Rn(t) = Rn + th —+ O(tQ) y D3 = ning 1-— n% 0
0 0 1
Adding the two partial results, we get

N = AMn®e3+e3®@n— Dy MR, — R MDj).

It remains to show that {T, Tq, T3, T4, N} are pairwise orthogonal if @ is oblate uniaxial. Indeed,
then it follows that N is a normal vector, since it is orthogonal to TgT.

It is easy to see that since the trace is invariant by change of basis and since R, = R;!

w2 ) - e ((4 ) -
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Noting that n ® nR| M R,, = 0 for M € Sym, with m;; =0if i =3 or j = 3, we get

1 0

(T, T3) = /\tr((n@)n—RIMRn)(RI 0 -1 R,,))

0
1 0 mi1 —Mmi2
= )\tI‘(M 0 -1 ) = )\tI'( mi2 —1MmM9o2 ) = )\(2m11—1).
0 0
With the same argument we also find
0 1
(T1,Ts) = Atr((n@nfRIMRn)(RI 10 Rn))
0
0 1 mi2 M1
= )\tr(M 1 0 ) = /\tI‘( Moo M1 ) = 2)\77112.
0 0

Furthermore, we claim that
(T1,T2) = Mr((n®n — R, MRy)(Dngn — Df;, MR, — Ry MDg,)) = 0.
Indeed, one can check that

tr(n ® nDypgn) = 0 tr(m®nDj, MR,),
tr(n®nR. MDg,) = tr(R MRyDngn) ,
tr(Ry MRyD}j, MR,) = 0 = tr(RyMRyR,MDp,).

|
o
|

This implies that
(N,T;) = /\Qtr((n ®es+es®n— DI MRy — RIMDs)(R! [0 -1 Rn)) =0,

since again the traces of all cross terms vanish. Similarly,
(N,T4) = 0.
Next, we have the equality

(T3, T3) = —4\2712
n2

This follows since tr(DpgnT3) = 0 and tr(DsMR,T3) = 22’—212 The latter fact is evident if one

1 0 mi1 —mi2 0 71/712 1
calculates M |0 —1 = | mizg —magy and R,D; = |1/ny 0 —n1/n2
0 0 -1 ni/ne 0
This also permits us to derive
(T, Ty) = on22mu—1
n2
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Again, we simply calculate the traces of all cross terms. For example

tr(n ® e3Dpgn) = 0,
trn®e3R. MDp) = 0,

trn®esDj, MR,) = Mz 2

(n —n3) —n1(2my — 1),
n2

miiny

1
tf(D;nMRnDn(gn) = 2 + ?(n?@mu - ].) + m11) s
2

2
n1mi2 1

tr(D;nMRnRIMDRn) = -2 - + > (3(mi; +miy) — (L4 ni)(2mi1 — 1)) ,
2 2
2
tr(Dfy, MRyD}, MR,) = 20722 £ M
na

We end up with

612 2 2
(N, Ty) = maa(mi —m3) 6A%n1(2my; — 1).

T2

Another straightforward calculation shows that
5 4 3 2,3 2
<N, T1> = Ainmlg(ni}mlg - 2n1n2m11 - 2n1m12 - 277,171277111 + 3n1n2m11
2 4 3 3
—2ning — NiNyMi2 + NiMmiz + Nymip — Namip — 2n5 + 2’112) .

After these calculations, it is apparent that for prolate uniaxial @) € Sym, (and in particular
Q € N),ie. M’ = 11Id all inner products vanish. In order to form a basis, we must prove that the
vectors themselves never vanish. We find

IT1? = 2(m3, —my +miz+ 1),
2

HT2||2 = E(G’ﬂ%(l — lel) — 6m12n1n2 + 5m%1 — 2m11 + 5m12 + 2) 5
2

ITs[* = 25°,

IT4l* = 2)°,

IN|? = N(12mq1n? — 603 + 12mianing + 2m3, — 8myy + 2mi, +8),

and thus for M’ = 11d it holds that | T1]|? = &, | T2|> = 2A%n;* and |N||2 = 2.

This concludes the proof that {T;, T2, T3, T4} form indeed a basis of T 7, and since N is
orthogonal to T() 7, the result follows. O

Proposition A.2.5. There ezists C,ag > 0 such that for all o € (0,ap) and Q € N it holds

HY(BL(Q)NT) < Ca’.

Proof. As seen before, T has the structure of a smooth manifold around A. By invariance of N
under rotations, it is enough to show that the claim holds around one @ € N. The Ricci curvature
x of N is bounded so that we can choose oy > 0 small enough such that B, (Q) N T is contained
in the geodesic ball in T of size 2« around @ for all & € (0, ap). Furthermore, if needed, we can
choose ay > 0 even smaller such that 1 — ﬁ < 2. Theorem 3.1 in [82] then implies that

HY(Bo(Q)NT) < volr(B2n(Q)) < 1672,
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Résumé : Les cristaux liquides sont des matériaux
avec des propriétés intermédiaires entre celles des
liguides et des solides cristallins, c’est-a-dire les
molécules peuvent se déplacer mais montrent un
ordre de position et d’orientation. Lune de leurs ca-
ractéristiques les plus remarquables est la formation
naturelle de structures de défauts, en particulier des
singularités ponctuelles ou en lignes. Dans ce travail
on considére une version du modele de Landau-de
Gennes pour les cristaux liquides nématiques avec
un champ magnétique externe modélisant I'effet de
'anneau de Saturne autour d’'une particule immergée.
Dans un régime asymptotique ou les singularités
ponctuelles et de lignes se produisent, nous dérivons
une énergie effective décrivant la formation et la tran-
sition entre les différentes singularités.

Le premier chapitre porte sur le cas physique le plus
étudié d’une particule sphérique. Aprés une remise
a I'échelle de I'énergie physique, une énergie limite
au sens de la I'—convergence, énoncée a la surface
de la particule, est dérivée. En étudiant le probleme

limite, nous expliquons la transition entre la configu-
ration du dip6le et de I'anneau de Saturne ainsi que
I'apparition d’'un phénomene d’hystérésis.

Dans le deuxiéme chapitre, nous considérons le
cas général d'une particule quelconque fermée et
suffisamment lisse. Contrairement a une particule
sphérique (ou plus générale convexe), nous obte-
nons un terme supplémentaire dans I'énergie limite,
montrant quantitativement que I'énergie proche du
minimum est asymptotiquement concentrée sur des
lignes et des surfaces proches de la particule voire
collées a sa surface. Nous discutons également la
régularité des minimiseurs et les conditions d’optima-
lité de I'énergie limite.

Le troisieme chapitre est consacré a [Iétude
numérique de I'énergie limite et au développement
et a la mise en ceuvre de méthodes numériques
adaptées. Nous vérifions les résultats du premier cha-
pitre pour la sphére, puis nous étudions les structures
de défauts dans le cas d’'une particule en forme de
cacahuéte ou de croissant.

Title : Asymptotic Limit of the Landau-de Gennes Model for Liquid Crystals Around an Inclusion

Keywords : liquid crystals, Landau-de Gennes model, I"'—convergence, topological defects, Saturn ring effect

Abstract : Liquid crystals are a type of matter which
share properties with both liquids and crystalline so-
lids, i.e. the molecules of such materials can move
but exhibit a positional and orientational order. One of
the most remarkable characteristics is the formation
of defect structures, in particular point and line singu-
larities. In this work we use a version of the Landau-de
Gennes model for nematic liquid crystals with an ex-
ternal magnetic field to describe the Saturn ring effect
around an immersed particle. In an asymptotic regime
where both point and line singularities occur, we de-
rive an effective energy describing the formation and
transition between different singularities.

The first chapter deals with the physically relevant
case of a spherical particle. After a rescaling of
the physical energy, a limit energy in the sense of
I'—convergence, stated on the particle surface, is de-
rived. Studying the limit problem, we explain the tran-

sition between the dipole and Saturn ring configura-
tions and the occurrence of a hysteresis phenome-
non.

In the second chapter we consider the general
case of an arbitrary closed and sufficiently smooth
particle. In contrast to spherical (or more general
convex) particle, we obtain an additional term in the
limit energy, showing quantitatively that the close-
to-minimal energy is asymptotically concentrated on
lines and surfaces nearby or on the particle. We also
discuss regularity of minimizers and optimality condi-
tions for the limit energy.

The third chapter is dedicated to the numerical investi-
gation of the limit energy and the development and im-
plementation of adapted numerical methods. We ve-
rify the results of the first chapter for the sphere and
then study the defect structures in the case of a pea-
nut and croissant-like particle.
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