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The first use of quadratic programming (QP) in robotics control dates back to the 1990s. It was an alternative to Jacobian null-space-projection-based methods to solve redundancies while accounting for unilateral constraints. Since then, QP control has become a suitable tool for combining and mediating several control objectives with a soft or strict hierarchy. Nevertheless, QP controllers still have some limitations and open issues. In this thesis, our goal is twofold: (i) address a number of the QP control open problems, and (ii) unify control and observation via multi-objective QP control. Kinematic constraints constitute a large class of unilateral constraints that cannot be directly included in QP. Several solutions exist to write these constraints in terms of QP decision variables. Yet, none of them performed well in closed-loop because of their specificity to joint limits, non-robustness against non-modeled dynamics, and lack of theoretical grounding. We address this topic by proposing a general formulation encompassing all kinematic constraints. Our solution is based on adaptive-gains ordinary differential inequality with formal proofs of constraints fulfillment forward in time. We also investigate the stability of the closed-loop QP control scheme for robots controlled in kinematics, i.e., robots with high-gain joint-controllers having the desired joint position or velocity as input commands. Although these robots are widely used, the stability topic has not been explored. Using a simple 1-degree of freedom system, we show how the closed-loop control scheme is prone to instability, especially if the task and/or constraint gains are set to high values. Then, we propose a robust task and constraint formulation based on integral feedback terms that yield robust stability of the tasks and robust asymptotic stability of the set defined by the kinematic constraint. Our solution applies to any kinematic-controlled robot under practical assumptions. Then, we address the topic of constraints compatibility. Constraints are incompatible if they are in conflict. For example, if the deceleration required to stop the robot arm before getting into the collision is higher than what is currently allowed because of other constraints. Dealing with potential conflicts is typically an anticipatory task that requires a look-ahead on motions. Our solution consists of implementing a model predictive controller (MPC) as a layer on top of whole-body QP, to which we delegate the task of constraints compatibility. MPC model is constructed based on the closed-loop tasks and kinematic constraints dynamics. By accounting for the hardware limits and kinematic constraints over a finite time horizon, MPC outputs a sequence of optimal task targets tracked by whole-body QP, yielding a motion that satisfies all the constraints. Finally, we exploit the multi-objective control paradigm to unify two tasks of different natures: observation (estimation) and control (tracking). We formulate this unification through the concept of the interdependent tasks: the state of the observation task is forwarded as a reference for the tracking task, still via one compact QP controller. This novel formulation enables the generation of a motion toward an observed target. Typically in human-robot handover scenarios, the handover location is often not priorly known. Hence, we formulate a task-space human-robot handover QP controller where the full object-state in terms of pose, velocity, and acceleration is observed and forwarded as a reference for the tracking task. Our formulation yields a seamless and proactive robot motion toward the object without offline planning or prior knowledge of where to meet. vi
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Résumé de la thèse

La première utilisation de la programmation quadratique (QP) dans le contrôle robotique remonte aux années 1990. Il s'agissait d'une alternative aux méthodes basées sur la projection dans le noyau de la Jacobienne pour résoudre les redondances tout en tenant compte des contraintes unilatérales. Depuis lors, la commande QP est devenue un outil approprié pour combiner plusieurs objectifs de commande avec une hiérarchie souple ou stricte. Néanmoins, les contrôleurs QP ont encore quelques limitations et des questions ouvertes. Dans cette thèse, notre objectif est double : (i) aborder un certain nombre de problèmes ouverts du contrôle QP, et (ii) unifier le contrôle et l'observation via le contrôle QP multi-objectif.

Les contraintes cinématiques constituent une large classe de contraintes unilatérales qui ne peuvent pas être directement incluses directement dans la QP. Plusieurs solutions existent pour écrire ces contraintes en termes de variables de décision QP. Pourtant, aucune d'entre elles n'a donné de bons résultats en boucle fermée en raison de leur spécificité aux limites des articulations, de leur non-robustesse face aux dynamiques non modélisées et de leur manque de fondement théorique. Nous abordons ce sujet en proposant une formulation générale englobant toutes les contraintes cinématiques. Notre solution est basée sur l'inégalité différentielle ordinaire à gains adaptatifs avec des preuves formelles du respect des contraintes dans le temps.

Nous étudions également la stabilité du schéma de contrôle QP en boucle fermée pour les robots contrôlés en cinématique, c'est-à-dire les robots avec des contrôleurs d'articulation à gain élevé ayant la position ou la vitesse articulaire désirée comme consigne d'entrée. Bien que ces robots soient largement utilisés, le sujet de la stabilité n'a pas été exploré. En utilisant un système simple à un degré de liberté, nous montrons comment le schéma de contrôle en boucle fermée est sujet à l'instabilité, surtout si les gains de la tâche et/ou des contraintes sont fixés à des valeurs élevées. Ensuite, nous proposons une formulation robuste de la tâche et de la contrainte basée sur des termes de rétroaction intégrale qui donnent une stabilité robuste des tâches et une stabilité asymptotique robuste de l'ensemble défini par la contrainte cinématique. Notre solution s'applique à tout robot à commande cinématique sous des hypothèses pratiques.

Ensuite, nous abordons le sujet de la compatibilité des contraintes. Les contraintes sont incompatibles si elles sont en conflit. Par exemple, si la décélération requise pour arrêter le bras du robot avant d'entrer en collision est supérieure à ce qui est actuellement autorisé en raison d'autres contraintes. La gestion des conflits potentiels est typiquement une tâche d'anticipation qui nécessite une prédiction des mouvements. Notre solution consiste à mettre en oeuvre un contrôleur prédictif basé sur le modèle (MPC) comme une couche au-dessus du QP du corps entier, et auquel nous déléguons la tâche de la compatibilité des contraintes. Le modèle MPC est construit sur la base de la dynamique des tâches et des contraintes cinématique en boucle fermée. En tenant compte des limites physiques et des contraintes cinématiques sur un horizon temporel fini, le MPC produit une séquence de consignes optimales suivies par le contrôleur QP, produisant un mouvement qui satisfait toutes les contraintes. viii Enfin, nous exploitons le paradigme du contrôle multi-objectif pour unifier deux tâches de nature différente : l'observation (estimation) et le contrôle (suivi). Nous formulons cette unification à travers le concept de tâches interdépendantes : l'état de la tâche d'observation est transmis comme une consigne pour la tâche de suivi, toujours via un contrôleur QP compact. Cette nouvelle formulation permet de générer un mouvement vers une cible observée. Typiquement, dans les scénarios de transfert humain-robot, l'emplacement du transfert n'est souvent pas connu à l'avance. Par conséquent, nous formulons un contrôleur QP pour le transfert d'objects bidirectionnel entre l'humain et le une robot dans l'espace des tâches où l'état complet de l'objet en termes de pose, de vitesse et d'accélération est observé et transmis comme référence pour la tâche de suivi. Notre formulation permet un mouvement continu et proactif du robot vers l'objet sans planification hors ligne ou connaissance préalable du lieu de rencontre. 2.1 Phase-plot of ODE Eq. (2.10) solutions given different initial conditions (h δ eq (t 0 ), ḣδ eq (t 0 )) with the same gains K h δ d and K h δ s given that h δ eq (t 0 ) = 1. (a) The green phase trajectories belong to the viable zone highlighted in green (condition Eq. (2.16) is fulfilled) whereas the red phase trajectories belong to the nonviable zone highlighted in red (condition Eq. (2.16) is not fulfilled). (b) The eigenvectors ν min,max (blue) correspond to K h δ d and K h δ s . 2.2 Phase trajectories (in solid) are Eq. (2.10) solutions with our adaptive gains computation Eq. (2.23). The viable region changes shape according to the initial state (dots at h δ eq = 1). The eigenvectors ν min (dashed arrows) are delimiting the viable regions. The unviable region is not shown. . . . . . . 2.7 Three methods performed in closed-loop: viability formulation del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] (left), velocity linear damper [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF] (center) and our approach (right). δ min is denoted in dashed red and the safety margin is the space between the dashed-dotted green line δ min . The top row shows the time evolution (δ(q) in blue and δ(q, α q ) in orange) while the bottom row describes the phase-plot (blue trajectory) of each approach. del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] and [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF] 12 CoM evolutions in time (left) and space (right). The dark green area denotes the CoM equilibrium polygon. The blue and light green zones highlight the periods in time as well as in space where the CoM moves due to the right hand end-effector task or the left arm movements, respectively.
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Nomenclature

Bold small letters stand for vectors, bold capital letters for matrices, and normal letters for scalars. Skew matrix associated with ω ∈ R 3 J Jacobian matrix M(q)

Acronyms and abbreviations

Mass matrix

N(q, α q ) Coriolis-centrifugal matrix R ∈ SO(3) Rotation matrix of the frame R w.r.t the frame R . If R is the world-frame R w then the superscript is dropped R w = R ⊗ Quaternion product quat(ξ)
Quaternion coordinates of ξ q Unit quaternion R Reference frame rigidly attachted to body . 

Motivation

Robots' introduction into industry and manufacturing began more than 40 years ago [START_REF] Edwards | Robots in industry: An overview[END_REF]. The primary purpose was to supersede the human worker in repetitive, exhaustive, and non-safe tasks while providing high precision task execution. Since then, the robots have become more complex (e.g. mobile, redundant...) with and increasing workspace and dexterity. Such ameliorations allow them to emerge into a wide range of domains, and perform successfully complex tasks. During the last COVID pandemic, some robotics solutions are proposed to limit virus transmission in healthcare workspaces [START_REF] Yang | Combating covid-19—the role of robotics in managing public health and infectious diseases[END_REF]; [START_REF] Tavakoli | Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the covid-19 pandemic: An analysis of the state of the art and future vision[END_REF]. This dazzling achievement owes its success to the effort spent by the scientific community to develop generic control techniques capable of exploiting the robot's redundancy to perform secondary tasks while accounting for system limitations, safety requirements, and constraints applied by the environment.

Designing task-space control schemes that regulate the task error [START_REF] Samson | Robot control: the task function approach[END_REF] has been a breakthrough leveraging sensory feedback. Jacobian-null-space-projection has been the first paradigm developed in this context [START_REF] Liégeois | Automatic supervisory control of the configuration and behavior of multibody mechanisms[END_REF]; [START_REF] Siciliano | A general framework for managing multiple tasks in highly redundant robotic systems[END_REF][START_REF] De Luca | Zero Dynamics in Robotic Systems[END_REF]. Although this approach provided successful results [START_REF] Dietrich | An overview of null space projections for redundant, torque-controlled robots[END_REF], it had for long a major drawback: non-handling of unilateral constraints. These control objectives expressed in terms of inequality constraints are inherently related to (i) the task to be achieved (e.g., establishing contacts and sustain them within their frictional set); (ii) the robot environment (e.g., avoiding collision with nearby obstacles, other robots, or human operators); or (iii) to the robot capabilities (e.g., joint bounds, hardware limitations, etc.).

Alternatively, formulating the control problem as an optimal Quadratic Program (QP) control paradigm has been proposed as a promising numerical solution for its natural handling of inequality constraints. The first implementation of QP was in Inverse-Kinematics (IK) (first-order dynamics, with the joint velocity as a decision variable). It consisted of performing simple task-space reaching motion with robotic manipulators while accounting for joint bounds and limitations on joint acceleration and torque [START_REF] Faverjon | A local based approach for path planning of manipulators with a high number of degrees of freedom[END_REF]; [START_REF] Cheng | Resolving manipulator redundancy under inequality constraints[END_REF]; [START_REF] Park | The enhanced compact qp method for redundant manipulators using practical inequality constraints[END_REF]; Yunong Zhang et al. [2004]. After that, Inverse-Dynamics (ID) QP control (second-order dynamics, with the joint acceleration as decision variable) was formulated for highly redundant robots yielding the possibility of meeting multiple control objectives simultaneously. Multi-objective QP paradigm has shown great capabilities in reproducing human behaviors on graphical characters in multi-contact setting [START_REF] Abe | Multiobjective control with frictional contacts[END_REF]; [START_REF] Collette | Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts[END_REF] as well as on simulated humanoid robots [START_REF] Bouyarmane | Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations[END_REF]; [START_REF] Bouyarmane | Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios[END_REF]; [START_REF] Saab | Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints[END_REF]; [START_REF] Kanoun | Kinematic control of redundant manipulators: generalizing the task priority framework to inequality tasks[END_REF]; [START_REF] Salini | Lqp-based controller design for humanoid whole-body motion[END_REF] by sorting the control objectives via soft or strict hierarchy. Although QP has been successfully implemented for real-time application on robotic arms [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF][START_REF] Rubrecht | Motion safety and constraints compatibility for multibody robots[END_REF], straightforward extension to highly redundant humanoid robots was not possible due to high computation-time. However, the progress in Central Processing Units (CPU) and dedicated QP solvers [START_REF] Escande | Fast resolution of hierarchized inverse kinematics with inequality constraints[END_REF][START_REF] Escande | Hierarchical quadratic programming: Fast online humanoid-robot motion generation[END_REF] enabled successful real-time reactive applications [START_REF] Herzog | Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics[END_REF]; [START_REF] Herzog | Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid[END_REF]; [START_REF] Vaillant | Vertical ladder climbing by the hrp-2 humanoid robot[END_REF]; [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; [START_REF] Galloway | Torque saturation in bipedal robotic walking through control lyapunov function-based quadratic programs[END_REF]; Ames et al. [2014a].

Nevertheless, the first and real-world test that QP controllers had to undergo was the DARPA Robotic Challenge (DRC) 1 . Several teams participated in this competition with different humanoids robots where the latter had to perform a set of complex tasks: walking through difficult terrains, ladder climbing, manipulating objects like opening doors and turning valves, clearing a passage of debris, driving a car, getting into narrow passages, etc. Although the participating teams showed great performances in one or several tasks, many research teams reported encountering serious instability issues and QP failures when preparing and during the DRC, such as strong oscillations and jerky motion [START_REF] Feng | Optimization-based full body control for the DARPA robotics challenge[END_REF]; [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF]; [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]; DeDonato et al. [2017].

In addition, sudden QP failures occurred when the robot has to take a configuration where one or several kinematic constraints are reached (we refer to kinematic constraints all the constraints that are expressed as inequality in distances or velocities). The QP failure denotes its non-ability to find a solution often due to an empty feasible set. Unfortunately, the above issues have never been debugged and rigorously addressed. Instead, only palliative solutions have been proposed and reported to mitigate those issues based on qualitative observations without mathematical proofs Hopkins et al. [2015]; [START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF]; [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]; [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF].

In the context of aircraft manufacturing, [START_REF] Kheddar | Humanoid robots in aircraft manufacturing: The airbus use cases[END_REF] demonstrated the capability of humanoid robots in accessing narrow, cumbersome, or confined spaces. Unfortunately, our QP controller experienced the same instabilities and failures in the course of the execution. These issues caught our interest because of their repeatability. Namely, we can easily reproduce them with the same set of tasks and constraints parameters omitting the possibility of a random factor effect.

The second topic we put our interest in is the unification of observation and control. The observation is necessary to estimate the states that are not accessible to measurement but required by the control. Often, the observation process is exogenous w.r.t QP. Hence, unifying observation and control within a holistic QP formulation shall open new insights for formulating control scenarios that inherently incorporate a data flow between the control and observation. 

Contribution

Our first objective in this thesis is to study the instability (namely in closed-loop) and the QP failure encountered issues. This topic is itself composed of three subtopics that are open questions and are still not thoroughly addressed: (i) how to properly formulate kinematic constraints?; (ii) how to guarantee the stability and robustness of the closedloop QP control scheme?; and (iii) how to ensure constraints compatibility, i.e. dealing with interactions among the constraints? The second objective consists of drawing a strategy for the unification of observation and control as two built-in tasks in QP. The four contributions in this thesis address these questions and are made explicit below.

First, the kinematic constraints require special attention since they cannot be directly introduced to QP. Instead, they need to be formulated in terms of the QP decision variables to be enforced. This formulation has to ensure the constraint satisfaction forward in time, i.e., the forward invariance of the set defined by the kinematic constraint. For IK-QP, this question has been largely addressed since [START_REF] Faverjon | A local based approach for path planning of manipulators with a high number of degrees of freedom[END_REF]. However, it is not straightforward for ID-QP. The scientific community has spent a great effort to address this question, mainly by extending the same approaches performed in IK-QP to the second-order ID-QP. Nevertheless, the proposed methods focused on one type of constraint: joint limits, collision avoidance, CoM constraints, etc. In addition, they did not perform well in closed-loop, leading to a discontinuous and jerky motion near the constraints' bounds. Also, the lack of grounded proofs for forward invariance makes these approaches less reliable. Our contribution consists first of showing that all the constraints considered separately in previous works belong to the same class of kinematic constraints. Then, we enforce these constraints in QP by proposing an Ordinary Differential Inequality (ODI)-based formulation that enables an exponential convergence profile to the boundary. In particular, we consider the case where the kinematic constraints are introduced online to QP. Hence, we propose an adaptive gains method to ensure constraint satisfaction for all the initial conditions. The approach is validated experimentally on HRP-4 humanoid robot performing motions where several kinematic constraints are reached simultaneously [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF].

Second, we study the stability of the closed-loop QP control scheme in the case of kinematic-controlled robots. The latter denote the stiff robots having high gains jointcontrollers with desired joint position or velocity as input commands. These robots are widely used in both research and industry. Their stiffness makes them robust to static friction and model's uncertainties and enables them to perform precise motions. However, their joint-dynamics is hardly known, preventing them from being modeled in the QP controller. Few research works considered the joint-dynamics effect on the closed-loop system stability [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]; [START_REF] Molnar | Model-free safety-critical control for robotic systems[END_REF]. By considering the case of 1 Degree of Freedom (DoF) kinematic-controlled robots controlled in joint-space, we show using linear systems control-theory how the closed-loop QP stability can be lost when the task or constraint gains are set to high values. Nevertheless, redundant robots have high DoF with different joint-dynamics and are controlled in task-space. Hence, we use the Lyapunov control theory to show that the instability is due to the non-robustness against the non-modeled joint-dynamics. Our second contribution consists of proposing robust formulations for the task and kinematic constraints based on integral feedback terms that guarantee both tasks' robust stability and set robust asymptotic stability. Our formulation only assumes that the kinematic-controlled robot is Input-to-State-Stable (ISS), largely guaranteed in practice. Experiments have been performed on fixed-base manipulator Panda, and floating-base robot HRP-4 Djeha et al. [2022b].

Third, constraints compatibility is tightly related to conflicts between constraints. We precisely focus on the compatibility between kinematic constraints and hardware limitations. In this case, a QP failure occurs if the required deceleration to stop at a joint bound is higher than what is strictly allowed by the hardware limitations. However, dealing with such an issue requires predicting the robot's evolution and performing anticipatory control actions. Rather than explicitly reasoning about when to start decelerating, our idea is to modify the QP task reference targets to satisfy both kinematic and hardware constraints. We implement a Model Predictive Controller (MPC) layer on top of whole-body QP. Based on the closed-loop dynamics of the tasks, MPC predicts the task and joint states and enforces the kinematic constraints and hardware limitations along a finite preview horizon. Then, it outputs a sequence of task optimal targets to be tracked by wholebody QP, yielding a constraints compatible motion. Numerical simulations have been conducted using Panda manipulator.

Finally, we build our observation and control unification strategy by considering these two processes as 'tasks' of different natures: the observation task decreases the estimation error, whereas the control task minimizes the tracking error. More concretely, we consider the case where the target of the control task cannot be fully measured. Thus, the observation task aims at constructing the full-state of the target and forwarding it to the former task (or possibly others). To integrate these two tasks in one compact multi-objective QP formulation, we propose the novel concept of interdependent tasks: the state of the observation task (target full-state) is the input target for the trajectory tracking task. To demonstrate our approach, we apply it to the formulation of humanrobot handover control. In such a scenario, the location to exchange the object between the handover agents is not known in advance. In addition, we often have access only to the object pose, which is time-varying. Hence, controlling the robot to converge the object pose systematically results in lagging motion since it lacks anticipation. However, the observation task's estimation of the full object state in terms of pose, velocity, and acceleration yields a seamless and anticipatory robot motion toward the object without explicitly planning the trajectory or priorly agreement on where to handover. Handover experiments have been performed using one robotic arm Panda. In addition, simulations have been performed to show the handover with multi-robot configuration Djeha et al. [2022a].

Thesis Organization

This thesis is organized as follows. We dedicate Chapter 1 to the necessary preliminaries and related research. Then, we propose our ODI kinematic constraint formulation in Chapter 2. After that, we tackle the closed-loop stability topic by first showing the instability issue on a simple case-study in Chapter 3, then we propose the robust formulation for the general case in Chapter 4. The unification of control and observation for human-robot handover is discussed in Chapter 6, and MPC-based approach for constraints compatibility is addressed in Chapter 5. Finally, we conclude our work with a general conclusion in Chapter 7 highlighting the outline of this thesis and the perspectives. We put the definition required for the self-consistency of the thesis in Appendix A, and the mathematical proofs in Appendix B.

Chapter 1

Preliminaries and State-of-the-Art

In this chapter, we present prior knowledge of task-space control and how it can be formulated using Quadratic Programming (QP). That is to say, a brief review of the meaning of tasks as part of the cost function and the constraints with different schemes of multi-objective QP control. After that, we discuss the different approaches dealing with the stability and robustness of QP control schemes. An overview of robotic applications that successfully make use of QP control is also given.

Quadratic Programming

Optimization problems aim at finding the best parameters χ that minimize a criterion called cost-function while not violating a set of constraints. Quadratic Programming (QP) is a particular case of optimization problems where the cost-function is quadratic and the (equality and inequality) constraints are linear w.r.t χ, respectively [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF]. The general form of QP is

min χ 1 2 χ T Hχ + h T χ s.t: C eq χ = d eq C ineq χ ≤ d ineq .
(1.1)

If the Hessian matrix H is positive semi-definite then QP is convex [START_REF] Nocedal | Numerical Optimization[END_REF]. The space within which the QP is solved is called the feasibility domain. Leastsquare minimization is also an optimization problem that minimizes the 2-norm of a vector that is affine in terms of χ while satisfying a set of affine constraints set similarly to Eq. (1.1). The least-square minimization is expressed as

min χ 1 2 Aχ + b 2 W s.t: C eq χ = d eq C ineq χ ≤ d ineq , (1.2)
where W is a positive-semi-definite weighting matrix 1 . Least-square minimization Eq. ( 1.2) can be cast to convex QP such that H = A T WA (assuming non-singular A Frank [START_REF] Ayres | Schaum's outline of theory and problems of matrices[END_REF]) and h = A T Wb. However, the vice-versa is in general not true 2 . In robotics control context, QP often originates from a least-square problem since the resulting cost-function has a more practical sense (i.e., find χ that makes Aχ as close as possible to -b while satisfying all the constraints) than just an abstract quadratic form.

The existing algorithms to solve convex QP with equality and inequality constraints are based mainly on two approaches: active-set and interior-point methods. They differ in the way inequality constraints are handled. In addition, the former is suited for small and medium-size problems, whereas the latter is more efficient for large-size problems. Nevertheless, the active-set method convergence can be greatly improved if an estimate of the solution is available, commonly called the 'warm-start.' In control applications, QP has to be solved online at each control step. The QP solution of the previous iteration can then be used as a warm-start for the current one, which makes active-set methods preferable in such a context. Exploiting the warm-start option for interior-point methods is still ongoing research. For more discussion about QP solving algorithms, please refer to [Nocedal and Wright 2006, Chapter 16].

Robot Kinematics and Dynamics

A robot is a set of links (bodies) connected through joints that are free to move along their Degree-of-Freedom (DoF). A joint is active (actuated) if it is equipped with an actuator that generates a torque that changes its position and velocity. Otherwise, it is called passive. We refer to task-space as the space in which the state of a certain point of interest s(q) ∈ R m is monitored (e.g., position and orientation of a body, robot Center-of-Mass (CoM) in Cartesian space, position of an object in the robot Field-of-View (FoV)), whereas configuration-space denotes the space in which the robot configuration q is defined. We consider the general case of a floating-base robot such that q = (ξ, q) ∈ SE(3) × R n , (1.3) where ξ ∈ SE(3) is the position and orientation of the floating-base, q ∈ R n is the joint positions vector defined in the joint-space and n ∈ N denotes the actuated DoF. For convenience, we rewrite q in Eq. ( 1.3) as a vector form (1.4) where ξ = p FB q FB ∈ R 7 is the floating-base pose (position p FB ∈ R 3 and orientation q FB ∈ R 4 parameterized with unit quaternion) and α q is the robot state velocity such that v ∈ R 6 is the floating-base velocity and and q ∈ R n is the joint velocity.

q T = ξ T qT ∈ R 7+n , α T q = v T qT ∈ R 6+n ,
Remark 1. A fixed-base robot is considered as a special case such that q = q, α q = q = q and αq = q = q. The configuration-space and joint-space are equivalent. α q is linearly mapped to ṡ ∈ R m through the Jacobian J ∈ R m×(6+n) such that (the dependency on q is dropped for ease of reading) .5) and whose time derivative is s = J αq + Jα q .

ṡ = Jα q , ( 1 
(1.6)

The Equation of Motion (EoM) that governs the robot dynamics in the presence of contact is M(q) αq + N(q, α q )α q + τ g (q) = Sτ + J cT f , (1.7) with M ∈ R (6+n)×(6+n) is the mass matrix, N (6+n)×(6+n) is the Coriolis-centrifugal matrix, τ g ∈ R (6+n) denotes the gravitational torque, S T = 0 I ∈ R n×(6+n) is the actuated DoF selection matrix, J c ∈ R 3×(6+n) is the Jacobian at the contact point and f ∈ R 3 is the frictional contact force 3 . In the next section, we discuss task-space control and how it can be formulated as a QP.

Task-Space Control

Task-space control consists of finding αq (equivalently τ from Eq. (1.7)) that brings s to a reference target s ref . Let us assume that there exists a task-space feedback µ s 4 such that if

s = J αq + Jα q = µ s (1.8)
than the task error e = ss ref converges to zero 5 . From Eq. (1.8), the inverse problem can be solved using QP min αq 1 2 αq 2 s.t: J αq + Jα q = µ s .

(1.9)

The solution of QP Eq. (1.9) is equivalent to the Jacobian-null-space-projection formulation [START_REF] Dietrich | An overview of null space projections for redundant, torque-controlled robots[END_REF] αq = J + µ s -Jα q , (1.10) where J + = J T JJ T -1 is the Jacobian pseudo-inverse. However, if the Jacobian J is non-square with (6 + n) > m, then there exists an infinity of αq that corresponds to the same s. This is related to the notion of redundancy: a robot is redundant if it has more DoF than what is strictly required to perform a given task De Luca [1991]; Chiaverini et al. [1991a]; [START_REF] Antonelli | Task-priority redundancy resolution for underwater vehicle-manipulator systems[END_REF]; [START_REF] Chiaverini | Redundant Robots[END_REF]. For example, to control a body pose, the task dimension m = 6. Not surprising that most modern robotic manipulators and humanoid arms have at least 7 DoF (similar to the human anatomy [START_REF] Chiaverini | Redundancy resolution for the human-arm-like manipulator[END_REF]). The non-uniqueness of αq means that some DoF are not needed to perform the task [START_REF] Wieber | Geometric and Numerical Aspects of Redundancy[END_REF], and this induces two undesirable behaviors: (i) non-repeatability of the robot configuration for the same task-space mapping; and (ii) null-space motion 6 De Luca [1991]. To mitigate these issues, a secondary task can be 3. For clarity, the dependencies on q and α q are omitted. 4. The way how µ s can be formulated is discussed in Section 1.4.1. 5. This is described as the task-function approach coined in [START_REF] Samson | Application of the task-function approach to sensorbased control of robot manipulators[END_REF]; [START_REF] Samson | Robot control: the task function approach[END_REF] 6. The null-space motion denotes the remaining redundancies that live in the null-space of the task Jacobian and thereby do not perturb s. They are also known as the zero-dynamics [START_REF] Varghese | Zero dynamics in kinematically redundant robots[END_REF][START_REF] Varghese | Chaotic zero dynamics in kinematically redundant robots[END_REF].

performed to solve the remaining redundancies. In particular, QP Eq. (1.9) can rewritten as .11) where µ * is a feedback that brings the robot joints as close as possible to a desired configuration (e.g., elbow-up configuration). Similarly to Eqs. (1.9) and (1.10), the closedform solution of QP Eq. ( 1.11) is [START_REF] Siciliano | A general framework for managing multiple tasks in highly redundant robotic systems[END_REF] αq = I + P + J + µ s -Jα q -P + µ * , (1.12)

min αq 1 2 αq -µ * 2 s.t: J αq + Jα q = µ s . ( 1 
with P = (I -J + J) is the Jacobian-null-space projector.

In general, other control objectives 7 expressed as unilateral and bilateral constraints have to be accounted for as (Fig. 1.1):

• Torque bounds:

Sτ min ≤ M αq + Nα q + τ g -J cT f ≤ Sτ max .
(1.13)

• Acceleration bounds: αq min ≤ αq ≤ αqmax .

(1.14)

• Contact forces inside the friction cone: .15) which can be expressed in the linearized form .16) with R = ρ 1 . . . ρ nc ∈ R 3×nc where ρ j ∈ R 3 is the j th vertex of the linearized friction cone.

f ∈ K, ( 1 
f = Rβ, β T = β 1 . . . β nc , β i ≥ 0, ( 1 
• Non-slipping contact: J c αq + Jc α q = 0 (1.17)

• A set of constraints in the form:

H(q, α q ) ≥ 0 (1.18) where H(q, α q ) can express different distance and velocity constraints, such as:

-Joint position bounds:

q min ≤ q ≤ q max . (1.19)
-Joint velocity bounds: α q min ≤ α q ≤ α qmax .

(1.20)

7. A control objective is a generic term to encompass both tasks and constraints.

-CoM inside the equilibrium region or any other constraint eventually implying CoM velocity [START_REF] Audren | 3-d robust stability polyhedron in multicontact[END_REF]:

CoM (q) ∈ P or CoM (q) ≤ ∆, (1.21)
ĊoM min ≤ ĊoM (q, α q ) ≤ ĊoM max .

(1.22)

-Collision avoidance constraint Vaillant et al. [2016b,a]: .23) where δ(q) is the distance to the collision.

δ(q) ≥ δ min , ( 1 
-Body velocity v body bounds:

v body (q, α q ) ≤ v max . (1.24)
-FoV inclusion constraints in visual servoing or vision-based object tracking Paolillo et al. [2018a]. One needs to keep the object of interest O within the FoV of the robot embedded camera, and out of any known possible occlusions. These are linked to the robot configuration:

F oV (q) O. (1.25)
The inclusion is also written equivalently into a set of inequalities, see e.g., [START_REF] Agravante | Visual servoing in an optimization framework for the whole-body control of humanoid robots[END_REF].

and possibly others.

Even though Eq. (1.12) has been generalized to N tasks in [START_REF] Siciliano | A general framework for managing multiple tasks in highly redundant robotic systems[END_REF], unilateral constraints cannot be straightforwardly accounted for in the Jacobiannull-space-projection approach, and alternative solutions have been proposed. Using Eq. (1.12), [START_REF] Liégeois | Automatic supervisory control of the configuration and behavior of multibody mechanisms[END_REF] formulated a secondary task that minimizes the deviation of the joints from the middle of their available range. [START_REF] Schwienbacher | Selfcollision avoidance and angular momentum compensation for a biped humanoid robot[END_REF] added a term to the secondary task that repels the joint from its boundaries. However, if there are no redundancies left from the primary task, collision with joint limits cannot be avoided.

Artificial Potential Field proposed by [START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF] allowed to assign the same priority level to perform the reaching motion and collision avoidance. The total force applied to the end-effector derives from the sum of a decreasing artificial field toward the target and an increasing one near the obstacle. This approach was further improved in [START_REF] Dietrich | Extensions to reactive self-collision avoidance for torque and position controlled humanoids[END_REF] by adding a dissipative term. However, this method may get stuck into local minima and oscillations, especially when the robot attempts to go through two opposite obstacles [START_REF] Singletary | Comparative analysis of control barrier functions and artificial potential fields for obstacle avoidance[END_REF]. In addition, it is often non-desired to have a repulsive behavior w.r.t the obstacle as this may significantly reduce the robot's workspace.

Stack-of-tasks framework [START_REF] Mansard | A unified approach to integrate unilateral constraints in the stack of tasks[END_REF] has been proposed to consider unilateral constraints as equality constraints if the robot is close enough to the obstacle. Indeed, it allows exploiting Eq. (1.12) where collision avoidance is the primary task. However, it has been shown that the approach does not scale well when several constraints are approaching their limits. [START_REF] Flacco | Motion control of redundant robots under joint constraints: Saturation in the null space[END_REF] proposed an algorithm that sophistically solves redundancy while satisfying joint limits. By solving the Inverse-Kinematics (IK) problem, the algorithm saturates recursively the joint velocities that exceed their bounds and finds the possible remaining redundant-solutions that achieve the task at best. However, the algorithm may perform several null-space projections for yet one solution, which can be time-consuming, especially in high DoF robots like humanoids. In addition, kinematic constraints that are not defined in joint-space are conservatively handled.

As a last resort, unilateral constraints can be processed after computation which inevitably leads to sub-optimal solutions [START_REF] Baerlocher | An inverse kinematics architecture enforcing an arbitrary number of strict priority levels[END_REF]; [START_REF] Kim | Dynamic behaviors on the nao robot with closed-loop whole body operational space control[END_REF]; [START_REF] Feng | 3d walking based on online optimization[END_REF].

QP-based Task-Space Control Formulation

QP naturally handles inequality constraints, which is the main factor for its use in robot control. As shown in Eqs. (1.1) and (1.2), satisfying unilateral constraints is systematically given a high priority over the control objectives defined in the cost-function. The first premise of QP-based controllers accounting for the collision avoidance constraint dates back to [START_REF] Faverjon | A local based approach for path planning of manipulators with a high number of degrees of freedom[END_REF]. The computer processor units available at the time did not enable a real-time application on the robot 8 . However, the simulation showed how the robot collision with multiple obstacles -a behavior that is difficult to obtain with [START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF] approach.

After that, QP has been formulated for redundancy resolution while accounting for joint position, velocity, acceleration and torque bounds [START_REF] Cheng | Resolving manipulator redundancy under inequality constraints[END_REF]; [START_REF] Park | The enhanced compact qp method for redundant manipulators using practical inequality constraints[END_REF]; Yunong Zhang and Jun [START_REF] Zhang | Obstacle avoidance for kinematically redundant manipulators using a dual neural network[END_REF]; Yunong Zhang et al. [2004]; [START_REF] Zhang | Inequality-based manipulator-obstacle avoidance using the lvi-based primal-dual neural network[END_REF]. These approaches formulated IK-QP where χ = α q . In addition, the control scenario was quite simple, where a reaching motion is performed while satisfying the unilateral constraints.

In order to perform more complex and dynamically consistent tasks, Inverse-Dynamics 8. The reported QP computation time was 10 times higher than the required real-time constraint.

(ID) QP controllers has been formulated to perform dynamic balance, locomotion, manipulation, grasping, and multi-frictional contact [START_REF] Abe | Multiobjective control with frictional contacts[END_REF]; [START_REF] Collette | Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts[END_REF]; [START_REF] Macchietto | Momentum control for balance[END_REF]; de [START_REF] De Lasa | Feature-based locomotion controllers[END_REF]; [START_REF] Salini | Synthesis of complex humanoid wholebody behavior: A focus on sequencing and tasks transitions[END_REF][START_REF] Salini | Lqp-based controller design for humanoid whole-body motion[END_REF]; [START_REF] Bouyarmane | Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations[END_REF]; [START_REF] Saab | Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints[END_REF]. In almost all existing ID-QP controllers, the decision variable vector χ encompasses the robot state acceleration αq ∈ R 6+n and the contact forces .26) Given that the constraints Eqs. (1.13) to (1.15) are affine in terms of χ, the ID task-space QP controller is formulated as .27) The constraints in QP Eq. (1.27) play the role of a filter for the solution χ: if the costfunction minimum χ cost-func min is inside the constraint set then χ = χ cost-func min . Otherwise, χ cost-func min is filtered such that χ is chosen to be the closest point to χ cost-func min among the constraint set.

f ∈ R 3 χ = αq f ∈ R n+9 . ( 1 
min χ 1 2 Aχ + b 2 s.t: Sτ min -Nα q -τ g ≤ M -J cT χ ≤ Sτ max -Nα q -τ g αq min ≤ I 0 χ ≤ αqmax 0 I χ ∈ K J c 0 χ = -Jc α q . ( 1 
The velocity and distance constraints class Eq. (1.18) cannot be directly included in QP Eq. (1.27) since they are not expressed in terms of χ. This class of constraints needs special consideration. Seeking a formulation that expresses these kinematic constraints in terms of χ may be vague and devoid of any physical meaning. A more correct question would be how to choose/formulate an affine constraint on χ such that the kinematic constraints are satisfied forward in time? In addition, we may ask the relatively same question about how to formulate task-space feedback µ s to steer the task state s toward s ref . These two points are discussed in the next section.

Tasks and Kinematic Constraints Formulation

In this section, we go through the state-of-the-art formulations of the tasks-space feedback and kinematic constraints in terms of χ. The pro and cons of these approaches are also discussed.

Task Formulation

If for a given task-space reference target s ref we have the corresponding configuration q ref such that s(q ref ) = s ref , than the control problem would be simply to make q converge toward q ref . Unfortunately, the mapping between task-space and configuration-space is often nonlinear preventing from easily solving the inverse-geometric problem. Instead, nonlinear control techniques can be used, especially feedback linearization [START_REF] Slotine | Applied nonlinear control[END_REF]; [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]. The idea consists in constructing a linear system in the task-space based on the successive derivatives of s 9 ηs = 0 I 0 0 .28) where s ref , ṡref , sref ∈ R m are the reference terms of a trajectory to be tracked, and η s is the task state vector. Next, a feedback µ s is formulated to steer e, ė and ë to zero. Then, µ s is mapped to the configuration-space control input (either αq or τ ) .29) Since Eq. (1.29) is affine w.r.t αq , it can be integrated in the cost-function of QP Eq. (1.27) as J αq + Jα q -µ s 2 .

A η s η s + 0 I B η s µ s , η s = e ė = s -s ref ṡ -ṡref ∈ R 2m , ( 1 
µ s = J αq + Jα q = JM -1 Sτ + J -JM -1 N α q -JM -1 τ g . ( 1 

Proportional-Derivative Controller

Given the task dynamics in Eq. (1.28), the simplest way to formulate µ s is through a Proportional-Derivative (PD) feedback [START_REF] Abe | Multiobjective control with frictional contacts[END_REF]; [START_REF] Westervelt | Feedback Control of Dynamic Bipedal Robot Locomotion (Automation and Control Engineering)[END_REF]; [START_REF] Nakanishi | Operational space control: A theoretical and empirical comparison[END_REF]; [START_REF] Macchietto | Momentum control for balance[END_REF]; de [START_REF] De Lasa | Feature-based locomotion controllers[END_REF]; [START_REF] Galloway | Torque saturation in bipedal robotic walking through control lyapunov function-based quadratic programs[END_REF]; [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF]; [START_REF] Kolathaya | Pd based robust quadratic programs for robotic systems[END_REF]; [START_REF] Englsberger | Mptc -modular passive tracking controller for stack of tasks based control frameworks[END_REF] 

µ s = sref -K s s e -K s d ė, (1.30) 
with K s s , K s d ∈ R m×m are the stiffness and damping gain matrices. By replacing Eq. (1.30) into Eq. (1.28), we get the closed-loop task dynamics

ë + K s d ė + K s s e = 0.
(1.31) Given Eq. (1.31), K s s and K s d are simply required to be positive-definite to ensure asymptotic η s convergence to the origin [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]. Generally, they are taken as diagonal matrices to ensure a decoupled convergence of the task error coordinates.

Eq. (1.31) shows that the task error dynamics is similar to a mass-spring-damper. Impedance control is based on the same policy, except that the mass is not equal to unity but equal to the task-space projected mass matrix [START_REF] Dietrich | Passivation of projection-based null space compliance control via energy tanks[END_REF][START_REF] Dietrich | Passive hierarchical impedance control via energy tanks[END_REF]; [START_REF] Dietrich | Hierarchical impedance-based tracking control of kinematically redundant robots[END_REF]; [START_REF] Englsberger | Mptc -modular passive tracking controller for stack of tasks based control frameworks[END_REF]. PD feedback produces typically a straight-line robot motion when the target is a set-point ( ṡref = sref = 0). Nevertheless, in some cases, the robot may have a non-minimum phase dynamics 10 . Also, some tasks have coupled coordinates like momentum control, and thereby diagonal gains matrices would not be the best choice. In such cases, a more sophisticated gains computation like Linear Quadratic Regulator (LQR) can be performed [START_REF] Klemm | Lqr-assisted whole-body control of a wheeled bipedal robot with kinematic loops[END_REF]; [START_REF] Herzog | Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid[END_REF]. To learn from demonstration complex-shape motions like spiral and loop, Dynamical System (DS) has been proposed as a framework to optimize the task dynamics parameters to generate a convergence profile that reproduces as much as possible the demonstrated motion Khansari-Zadeh and [START_REF] Khansari-Zadeh | Learning stable nonlinear dynamical systems with gaussian mixture models[END_REF].

9. Conversely to s, ṡ and s are linear w.r.t α q and αq . 10. For instance, for a wheeled balancing robot to move forward, it needs to move first slightly backward, create a pitch, then accelerate forward. The same phenomenon happens when riding a bicycle. For turning right, we intuitively slightly turn left, lean to the right, then steer the handlebar to the right direction.

Although PD is a simple controller, gains tuning can be time-consuming to obtain the desired robot motion, especially in the multi-task case. [START_REF] Penco | Learning robust task priorities and gains for control of redundant robots[END_REF] proposed to learn the optimal gains that provide a good trade-off between performance and robustness criteria. The gain-tuning can also be problematic depending on the initial error e(t 0 ): if the gains are high and e(t 0 ) is big, then the resulting motion is aggressive, which may excite son non-modeled dynamics like flexibilities, and if the gains are low and e(t 0 ) is low, then e takes a long time to converge to zero. Ideally, the task gains would be adapted (inversely proportional) to the task error amplitude [START_REF] Keith | Optimization of tasks warping and scheduling for smooth sequencing of robotic actions[END_REF].

Control Lyapunov Functions

Regulating the task error e to zero can be ensured without designing a closed-form feedback-control law. In fact, given a Lyapunov function V (η s ) defined for the task dynamics Eq. (1.28) as .32) where P is a symmetric positive-definite matrix and solution of the Algebraic Riccati Equation (ARE)

V (η s ) = 1 2 η sT Pη s , P = P T , ( 1 
A η s T P + PA η s = -Q, (1.33) 
one may look for the control input µ s such that .34) This concept has been introduced by the notion of Control Lyapunov Function (CLF) in [START_REF] Artstein | Stabilization with relaxed controls[END_REF]; [START_REF] Sontag | A lyapunov-like characterization of asymptotic controllability[END_REF][START_REF] Sontag | A 'universal' construction of artstein's theorem on nonlinear stabilization[END_REF]; [START_REF] Tsinias | Sufficient lyapunov-like conditions for stabilization[END_REF] which extends the Lyapunov theory (originally developed for autonomous systems) to systems with control inputs. Concretely, the CLF constraint Eq. (1.34) synthesizes a set of stabilizing controllers µ s that enforce the negative definiteness of V ensuring asymptotic stability. Exponential stability can also be guaranteed by enforcing V ≤ -εV Ames et al. [2014a]. Recently, CLF-based controllers have been formulated using QP and successfully performed for stabilizing walking trajectories for biped robots [START_REF] Ames | Control lyapunov functions and hybrid zero dynamics[END_REF]; [START_REF] Ames | Human-inspired control of bipedal robots via control lyapunov functions and quadratic programs[END_REF]; Ames et al. [2014a]; [START_REF] Galloway | Torque saturation in bipedal robotic walking through control lyapunov function-based quadratic programs[END_REF]; [START_REF] Ma | Bipedal robotic running with durus-2d: Bridging the gap between theory and experiment[END_REF]; [START_REF] Reher | An inverse dynamics approach to control lyapunov functions[END_REF], robotic arms [START_REF] Murtaza | Safety compliant control for robotic manipulator with task and input constraints[END_REF], quadruped robots [START_REF] Ma | Coupled control lyapunov functions for interconnected systems, with application to quadrupedal locomotion[END_REF], adaptive cruise control [START_REF] Ames | Control barrier function based quadratic programs with application to adaptive cruise control[END_REF][START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]; [START_REF] Mehra | Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars[END_REF], and autonomous underwater vehicles [START_REF] Basso | Task-priority control of redundant robotic systems using control lyapunov and control barrier function based quadratic programs[END_REF].

V = ∂V ∂η s ηs Eq. (1.28) = ∂V ∂η s A η s η s + ∂V ∂η s B η s µ s ≤ 0. ( 1 
Conversely to PD controllers, CLF-based controllers can only be considered in QP as inequality constraints. Subsequently, it becomes tricky to set priority levels between several CLF unless using slack variables. Nevertheless, this increases the size of decision variables vector χ. In addition, CLF constraint Eq. (1.34) may suffer from singularity issues when η s → 0 since the constraint Jacobian depends implicitly on η s 11 .

Kinematic Constraints Formulation

Formulating kinematic constraints to be expressed in terms of decision variables is an active research topic. In IK-QP, velocity constraints are already written in terms of α q , and thereby can be included in QP constraint set. All it remains is to formulate the 11. From Eqs. (1.8) and (1.34), the CLF Jacobian is ∂V ∂η s B η s J.

distance constraints in terms of α q . However, the question is challenging in ID-QP where both velocity and distance constraints have to be written in terms of αq . In Section 1.4.1, we discussed how the task feedback is formulated in order to ensure asymptotic convergence of e to the origin. We can tackle kinematic constraints formulation by making a parallel with the task formulation. Here, instead of dealing with the origin as a 'point', we consider it as a 'set'. For instance, let us consider a generic form of any distance constraint in the form of Eq. (1.23) expressed as12 h δ (q) = δ(q) -δ min ≥ 0 to which we associate the set C δ ⊂ R 7+n defined as

C δ = q ∈ R 7+n : h δ (q) ≥ 0 .
(1.35)

C δ encompasses all the robot state configurations that satisfy the distance constraint.

Then, the goal is how to find αq such that

• if q is initially inside C δ , then it must remain forward in time,

• otherwise, q must converge to C δ .

The two above properties are denoted as the forward invariance and asymptotic stability of the set C δ , respectively (please, refer to Definition A.5.1). The same reasoning can be applied to a velocity constraint where h v (q, α q ) = v(q, α q ) -v min and

C v = (q, α q ) ∈ R 7+n × R 6+n : h v (q, α q ) ≥ 0 . (1.36)
The great majority of existing methods can be sorted into prediction-based and reactive-based approaches. In the next subsections, we discuss these two methods. Then, we briefly present other less generic but efficient formulations.

Prediction-based Approaches

These methods predict h δ (k∆t) and h v (k∆t) during T = N ∆t with ∆t denoting the real-time control cycle, N is the prediction length, and k is the current time-step. Then, the goal is to ensure

h δ ((k + N )∆t) , h v ((k + N )∆t) ≥ 0. (1.37)
The prediction requires a discrete-time model. Taylor expansion have been extensively used for this purpose .38) where h * (k∆t) = h * (k) ( * stands for δ or v), ḣδ = J δ α q , ḧδ = J δ αq + Jδ α q , h v = J v α q , and ḣv = J v αq + Jv α q , with J δ and J v being the Jacobians associated to δ(q) and v(q, α q ), respectively. The proposed prediction-based approaches differ on how to choose N in Eq. (1.37).

h δ (k + 1) = h δ (k) + ḣδ (k)∆t + 1 2 ḧδ (k)∆t 2 h v (k + 1) = h v (k) + ḣv (k)∆t , ( 1 
In [START_REF] Salini | Synthesis of complex humanoid wholebody behavior: A focus on sequencing and tasks transitions[END_REF]; [START_REF] Saab | Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints[END_REF][START_REF] Saab | Dynamic whole-body motion generation under rigid contacts and other unilateral constraints[END_REF]; [START_REF] Sherikov | Whole body motion controller with long-term balance constraints[END_REF]; [START_REF] Lober | Task compatibility and feasibility maximization for whole-body control[END_REF], N is taken N = 1 implying that

h δ (k + 1) ≥ 0 ⇒ J δ αq (k) + Jδ α q (k) ≥ -h δ (k) -ḣδ (k)∆t 1 2 ∆t 2 (1.39a) ḣv (k + 1) ≥ 0 ⇒ J v αq (k) + Jv α q (k) ≥ -ḣv (k) ∆t (1.39b)
Such a one-step prediction horizon generally produces an aggressive behavior near the boundary like chattering and oscillations especially if ḣδ (k) is high. In fact, Eq. (1.39a) triggers the deceleration very late, and more importantly, it does not guarantee that ḣδ (k + 1) = 0 when h δ (k + 1) = 0. To mitigate this issue, [START_REF] Hu | Online human walking imitation in task and joint space based on quadratic programming[END_REF]; [START_REF] Flacco | Motion control of redundant robots under joint constraints: Saturation in the null space[END_REF] proposed to bound the velocity assuming a maximum deceleration ḧδ max is applied. This is known as the viability constraint defined as ḣδ (k) ≥ -2 ḧδ max h δ (k), (1.40) This constraint has been implemented in terms of acceleration in del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] by taking N = 1. However, the proposed approach resulted in chattering and discontinuous acceleration near the boundary. Instead, N can be increased to anticipate the deceleration. [START_REF] Park | The enhanced compact qp method for redundant manipulators using practical inequality constraints[END_REF] proposed an N -step prediction horizon by replacing the denominator of Eq. (1.39a) with 1 2 N ∆t 2 . Although it helps to smoothen the aggressive behavior, this method represents a rather rough approximation of h δ (k + N ). By assuming a constant maximum deceleration ḧδ (i) {i=k,...,N k} = ḧδ max , [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF] proposed an approximation of h δ (k + N ) in addition to an algorithm to compute online N . The latter has been further improved in [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF][START_REF] Rubrecht | Motion safety and constraints compatibility for multibody robots[END_REF]. The overall algorithm has been extended to account for the joint jerk limits in [START_REF] Meguenani | Safe control of robotic manipulators in dynamic contexts[END_REF].

The proposed prediction-based methods benefit from the ability to account for the bounds on αq while triggering the deceleration. This can be an interesting feature to ensure constraints compatibility (discussed in Section 1.4.3). However, most are specifically formulated for joint limits and are not straightforwardly extendable to other constraints or when the constraint boundary is time-varying. In addition, they lack formal proof of the constraints fulfillment (forward invariance and asymptotic stability of the sets C δ and C v ), especially if the closed-loop dynamics does not match Eq. (1.39).

Reactive-based Approaches

Instead of bounding the prediction, reactive-based approaches design smooth convergence dynamics of h δ and h v to zero, enforcing the forward invariance and asymptotic stability of the sets C δ and C v . These methods are continuous-time based and thereby do not perform explicit prediction as in Eq. (1.39).

The early work following this approach is presented in [START_REF] Faverjon | A local based approach for path planning of manipulators with a high number of degrees of freedom[END_REF]. IK-QP has been formulated where a velocity linear damper is proposed to prevent collisions of robotic arm links with the workspace obstacles ḣδ ≥ -αh δ , α > 0.

(1.41)

Eq. ( 1.41) describes a first-order Ordinary Differential Inequality (ODI) where ḣδ decrease is bounded near the boundary. In particular, if h δ = 0 then ḣδ ≥ 0 and thereby the robot cannot move toward the direction that decreases h δ (forward invariance). Moreover, if h δ < 0 then h δ increases until reaching h δ = 0 (asymptotic stability). This formulation has been applied at the joints level in [START_REF] Kanehiro | Integrating geometric constraints into reactive leg motion generation[END_REF] and implemented in ID using Eq. (1.39b) for joint-limits and collision avoidance [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF], CoM inside equilibrium region [START_REF] Audren | Stability polygons reshaping and morphing for smooth multi-contact transitions and force control of humanoid robots[END_REF], FoV bounds [START_REF] Agravante | Visual servoing in an optimization framework for the whole-body control of humanoid robots[END_REF].

The velocity linear damper in Eq. (1.41) and other approaches like Quiroz-Omaña and Adorno [2019] can be cast to a more generic framework: Barrier Functions (BF). Inspiring from Lyapunov functions, BF, first used in optimization, has been proposed as a tool to characterize the forward invariance of a set by only checking Lyapunov-like conditions (please, refer to Definition A.7.1). There where Lyapunov functions are interpreted as the system energy, BF can be regarded as 'the distance to the boundary' 13 . Given the definitions of the sets C δ and C v in Eqs. (1.35) and (1.36), h δ and h v are considered as zeroing-BF. 'Zeroing' denotes the fact that h δ and h v drop to zero at the boundary. In contrast, reciprocal-BF blow up at the boundary. Although these two BF are equivalent to characterize forward invariance [Ames et al. 2017, Theorem 2], zeroing-BF are more convenient since they do not induce any singularity at the set boundary. In this thesis, we only retain zeroing-BF, and thereby we just refer to BF.

One important and fundamental result is that the existence of a BF (satisfying Definition A.7.1) implies that the corresponding set is forward invariant and asymptotically stable [Ames et al. 2017, Propositions 1 & 2]. Similarly to CLF, Control-BF (CBF) [START_REF] Wieland | Constructive safety using control barrier functions[END_REF] can be used to synthesize a constraint on αq to enforce set forward invariance and asymptotic stability (please, refer to Definition A.8.1) ḣ * ≥ -γ (h * ) , (1.42) where γ(.) is a class K extended function (please, refer to Definition A.1.1). The latter encodes the generality of the CBF approach where Eqs. (1.39b), (1.40) and (1.41) are special cases of γ(.). Although CBF Eq. (1.42) can be used to enforce forward invariance of C v when h * = h v , it is not the case for h δ since αq does not appear in ḣδ . To this end, Exponential-CBF (ECBF) has been formulated to handle high relative-degree BF like h δ Nguyen and Sreenath [2016a]; [START_REF] Ames | Control barrier functions: Theory and applications[END_REF]. Other formulations for high-order CBF that extends ECBF to time-depends boundaries can be found in [START_REF] Tan | High-order barrier functions: Robustness, safety and performance-critical control[END_REF]; [START_REF] Xiao | High order control barrier functions[END_REF]; [START_REF] Wang | High-order control barrier functions-based impedance control of a robotic manipulator with time-varying output constraints[END_REF]. In Chapter 2, we propose a second order ODI to formulate constraint on αq that enforce forward invariance and asymptotic stability of the sets C δ and C v based on an analytic solution.

In practice, CBF have been successfully and mainly implemented on a wide range of robotic platforms, especially those requiring safety specifications: adaptive cruse control [START_REF] Ames | Control barrier function based quadratic programs with application to adaptive cruise control[END_REF], bipedal walking [START_REF] Hsu | Control barrier function based quadratic programs with application to bipedal robotic walking[END_REF]; Nguyen and Sreenath [2016a], grasping Shaw [START_REF] Cortez | A robust, multiple control barrier function framework for input constrained systems[END_REF], redundant manipulator [START_REF] Rauscher | Constrained robot control using control barrier functions[END_REF]; Saveriano and [START_REF] Saveriano | Learning barrier functions for constrained motion planning with dynamical systems[END_REF]; [START_REF] Murtaza | Safety compliant control for robotic manipulator with task and input constraints[END_REF], human-robot interaction [START_REF] Landi | Safety barrier functions for human-robot interaction with industrial manipulators[END_REF], multi-robot collision avoidance Wang et al. [2017]; [START_REF] Borrmann | Control barrier certificates for safe swarm behavior[END_REF], attitude control [START_REF] Tan | Construction of control barrier function and c<sup>2</sup> reference trajectory for constrained attitude maneuvers[END_REF], singularity avoidance [START_REF] Kurtz | Control barrier functions for singularity avoidance in passivity-based manipulator control[END_REF], area defense and surveillance [START_REF] Guerrero-Bonilla | Area defense and surveillance on rectangular regions using control barrier functions[END_REF], etc.

Miscellaneous

Apart from the two above strategies, other less generic approaches have been proposed. However, they tend to be quite efficient in formulating specific kinematic constraints or for a specific robot. For instance, the change of parametrization technique aims at finding a one-to-one invertible mapping that transforms a constrained variable into a free parameter. Hence, the inequality constraint can be omitted in QP by formulating the control problem w.r.t the free parameter. This approach has been performed on the humanoid robot iCube in [START_REF] Charbonneau | On-line joint limit avoidance for torque controlled robots by joint space parametrization[END_REF]; [START_REF] Gazar | Jerk control of floating base systems with contact-stable parameterized force feedback[END_REF]. However, only the joint limits have been considered. In addition, the free parameter may induce singularity and instability behaviors because of its unboundedness.

On the other hand, other approaches opted for machine learning techniques to satisfy specific constraints. In particular, [START_REF] Koptev | Real-time self-collision avoidance in joint space for humanoid robots[END_REF] proposed a reactive method to avoid self-collision of iCube in the joint-space. The main idea is to exploit the fact that the subspaces in joint-space that map into self-collision in task-space are unique for a given robot. Then, the boundaries of these subspaces are learned offline as continuously differentiable boundaries, which are then considered as joint constraints in QP controller. Although its efficiency, this approach is robot-dependent since each robot has its own self-collision-free joint-space. This obviously limits the straightforward extension of this approach to other robots.

Constraints Compatibility

Although their solid theoretical grounding and ability to encompass a large class of constraints, reactive-based (in general) and CBF-based (in particular) approaches suffer from their nonability to account for the bounds on αq ∈ U ⊂ R 6+n . U is defined by the hardware limitations as in Eq. (1.14), and/or by other constraints. For instance, if the half-space U CBF defined by a given CBF constraint Eq. (1.42) leads to U CBF ∩ U = ∅, we say that the constraints are incompatible, i.e., in conflict. This situation implies that the QP is not solvable, and the solution does not exist.

There has been a considerable effort to deal with this issue. [START_REF] Xu | Constrained control of input-output linearizable systems using control sharing barrier functions[END_REF] established necessary and sufficient conditions for the existence of a control input satisfying multiple CBF. However, the study is restricted to systems with a scalar control input. Recently, [START_REF] Ames | Integral control barrier functions for dynamically defined control laws[END_REF] proposed an integral CBF to enforce the forward invariance of both C * ( * stands for δ or v) and U . However, this approach does not handle the existence of multiple CBF. [START_REF] Cortez | Correct-by-design control barrier functions for euler-lagrange systems with input constraints[END_REF] proposed a CBF implementation for Euler-Lagrange systems to ensure the satisfaction of the joint position and velocity limits while accounting for torque bounds. Nevertheless, the proposed method requires an exact knowledge of the dynamic model. In addition, other constraints like collision avoidance are not considered. To mitigate these restrictive limitations, [START_REF] Cortez | A robust, multiple control barrier function framework for input constrained systems[END_REF] addressed the multiple CBF case by online introducing CBF to QP only if the robot is sufficiently close to the obstacle. This approach enables handling a few CBF at the time. However, the authors did only consider the case where solely one CBF is introduced. Zeng et al.

[2021a] proposed a CBF constraint as in Eq. ( 1.41) with an optimized gain α (as part of the decision variables) to ensure point-wise-in-time QP feasibility. However, the constraint satisfaction is sacrificed for the feasibility.

All the proposed approaches are tested and/or restricted to small dimension toy examples. Adapting these methods to complex robots with multiple constraints is still an open question.

Multi-Objective Control

Redundancy allows exploiting the extra DoF to meet simultaneously many control objectives. Multi-objective control induces dealing with the subsequent conflicts that may arise. These are often solved by sorting the control objectives by their priority. The latter stems from the fact that the control objectives do not have the same nature and effect on overall performance. In the following, we present the different state-of-the-art control objectives classifications, followed by the existing prioritization-control methods.

Control Objectives Classification

Several classifications have been proposed for the control objectives. From the standpoint of mathematical nature, they can be classified into Di [START_REF] Di Lillo | Safety-related tasks within the set-based task-priority inverse kinematics framework[END_REF]: (i) equalitybased when the control objective needs to reach a known reference target (which is the case of the tasks and equality constraints); and (ii) set-based when the control objective has a range of valid values (which is typically the case of inequality constraints).

However, this sorting does enable to define priority. Hence, another classification can be established based on the control objective role and effect on the overall performance Di Lillo et al. [2018]; [START_REF] Basso | Task-priority control of redundant robotic systems using control lyapunov and control barrier function based quadratic programs[END_REF]: (i) safety related: denotes all the safetyrelated constraints, such as joint limits, obstacle avoidance, self-collision, CoM within equilibrium region, etc. Since they ensure the integrity of the robot, operator, and environment, they are often assigned to the highest priority level; (ii) operational: refers to the control objectives that aim at a mission accomplishment, such as reaching a given pose, manipulating an object, etc.; and (iii) optimization: contains all the control objectives that are not strictly necessary for the effective accomplishment of the operation, but they might help in making it in a more efficient way. This is typically the case with the posture task.

Another taxonomy can be find in [START_REF] Mistry | Inverse kinematics with floating base and constraints for full body humanoid robot control[END_REF] (inspired from [START_REF] Sentis | A whole-body control framework for humanoids operating in human environments[END_REF]). Based on their success or failure, the control objectives are classified into: (i) critical: essential control objectives that must succeed and on which the other control objectives rely; (ii) functional: denotes the control objectives that need to be achieved with high accuracy, but their failure or success does not affect the other control objectives; and (iii) extraneous: mainly for resolving the remaining redundancy to avoid null-space motion. Their success is irrelevant.

Establishing such classifications is necessary to manage the hierarchy between the control objectives in order to ensure the reliability, stability, and controllability of the robot. In the following subsection, we discuss how hierarchical control can be formulated.

Hierarchical Control Schemes

From a control standpoint, the hierarchy defines how the redundancy should be resolved such that low-priority control objectives do not (or at least minimally) disturb the high-priority ones. Two strategies can be found for hierarchical QP control: either strict [START_REF] Kanoun | Kinematic control of redundant manipulators: generalizing the task priority framework to inequality tasks[END_REF] or soft [START_REF] Salini | Synthesis of complex humanoid wholebody behavior: A focus on sequencing and tasks transitions[END_REF]. Before detailing both methods, it is important to note that, in both cases, the constraints have a higher priority than the tasks.

Strict Hierarchy

The strict hierarchy proposed in [START_REF] Kanoun | Kinematic control of redundant manipulators: generalizing the task priority framework to inequality tasks[END_REF] constituted a breakthrough in the robotics community as it extended the N -priority-level Jacobian-null-space-projection method proposed in [START_REF] Siciliano | A general framework for managing multiple tasks in highly redundant robotic systems[END_REF] to explicitly account for inequality constraints by solving a cascade of QP. Each QP solves a level of priority l such that

QP (l), l = 1, . . . , N -→ χ r l = arg min χ,r l 1 2 r l 2 s.t: A ineq l χ -b ineq l ≤ r l A eq l χ -b eq l = r l A l-1 χ -b l-1 ≤ r l-1 , (1.43)
where r l is a slack variable that relaxes the constraints, A l-1 , b l-1 and r l-1 are the stack of A * i , b * i and r i , respectively, for i = 1, . . . , l -1 where * stands for both 'eq' and 'ineq' subscripts. The constraint relaxation is minimized at each level l while χ achieves at best the tasks and constraints while not perturbing the higher priority control objectives. Solving a sequence of QP can be time-consuming, especially since the number of QP to solve is conditioned by the number of tasks and constraints to perform. This issue has been mitigated by the efficient algorithm in [START_REF] Escande | Hierarchical quadratic programming: Fast online humanoid-robot motion generation[END_REF] enabling a real-time implementation on robots. This scheme requires the control objectives to be lexicographically ordered. In particular, it enables establishing a priority between the constraints. This can be advantageous as it enables to solve infeasibility of QP, yet at the expense of relaxing low priority constraints.

Strict hierarchy enables exact tasks achievement if they are not in conflict. Nevertheless, it has some drawbacks related to its cascade structure. First, the lexicographique order is not trivial for some control scenarios and may be subject to subjectivity. In addition, if, at some level, the Jacobian null-space is empty, then the next control objectives cannot be achieved. Also, swapping task priorities is not flexible. Online adding or removing a task or a constraint at an intermediate level can create a relatively big jump in the solution due to the sudden change of the null-space shape. Moreover, the singularity effect can be aggressive if A eq l is singular. The issue has been mainly addressed in the Ph.D. thesis of [START_REF] Pfeiffer | Efficient Kinematic and Algorithmic Singularity Resolution for Multi-Contact and Multi-Level Constrained Dynamic Robot Control[END_REF].

These drawbacks motivate the choice of an alternative hierarchical scheme based on soft hierarchy [START_REF] Dehio | Multiple task optimization with a mixture of controllers for motion generation[END_REF].

Soft Hierarchy

Conversely to the strict-hierarchical QP, soft-hierarchical QP is constituted by a single QP where the priority between tasks is sorted by scalar positive weights w i=0,...,N Abe et al.

[2007]

χ = arg min χ 1 2 N i=1 w i A i χ -b i 2 + 1 2 w 0 A 0 χ -b 0 2 s.t: A ineq χ ≤ b ineq A eq χ = b eq . (1.44)
The task denoted by the cost-function w 0 A 0 χb 0 2 is mainly intended to ensure the positive definiteness of the Hessian matrix 1.1) where A 0 = I and 0 < w 0 << w i=1,...,N [Bouyarmane and Kheddar 2018, Lemma 2]. Practically speaking, this task resolves the remaining redundancies by making the robot joint configuration as close as possible to a desired posture. In this thesis, we retain this prioritization scheme to formulate the multi-objective QP.

H = N i=1 w i A T i A i + w 0 A T 0 A 0 in Eq. (
If there is a solution χ such that all the tasks are exactly achieved, QP Eq. ( 1.44) will find it. Otherwise, all the tasks i = 1, . . . , N compete with each other and are achieved at best depending on their respective weight: the larger the weight, the smaller the task error at the steady-state. Abruptly introducing or removing tasks online may generate discontinuities on χ 14 . Nevertheless, since no null-space-projection is performed, all the tasks are achieved (proportionally to their weights) conversely to the strict-hierarchical QP Eq. (1.43). More importantly, the weights offer the possibility to introduce and remove tasks [START_REF] Keith | Analysis of the discontinuities in prioritized tasks-space control under discreet task scheduling operations[END_REF]; [START_REF] Salini | Synthesis of complex humanoid wholebody behavior: A focus on sequencing and tasks transitions[END_REF] smoothly. They can also be learned to ensure robustness in terms of performance when passing from simulation to real experiment with slightly different robot models [START_REF] Charbonneau | Learning robust task priorities of qp-based whole-body torque-controllers[END_REF].

The soft-hierarchical QP Eq. ( 1.44) can also be formulated for a multi-robots configuration, where the robots are either decoupled or coupled through the contact frictional forces in the EoM Eq. (1.7) [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF]. This centralized formalism enables the control of unactuated robots through contact with actuated robots. For instance, let us consider a dual-arm object manipulation. Assigning a target task reference directly to the object generates a motion for the two arms such that the task error is minimized while maintaining frictional contact forces.

However, introducing online the constraints is more critical. This discrete event may drastically change the shape of the feasibility domain. This would cause a discontinuity in the solution or, even worse, render the QP infeasible (see Fig. 1.2). In the next subsection, we discuss the particular case of introducing online kinematic constraints.

Online Introduction of Kinematic Constraints

In practice, there are some good reasons to online introduce kinematic constraints to QP:

• As explained in Section 1.3.1, the constraints act as a filter for the cost-function minimum χ cost-func min . Since the cost-function encompasses the tasks, it is desired to deviate from (i.e., filter) χ cost-func min only when it is necessary 15 ;

14. Numerical stability for QP Eq. (1.1) has been shown in [Bouyarmane and Kheddar 2018, Proposition 9] such that if H, h, A * and b * receive a bounded perturbation, then the solution of the perturbed QP deviates from the non-perturbed one with a bounded difference.

15. This is also known as the minimally-invasive approach Tan et al. • Multi-objective control generally generates complex robot motion. To make it easy for the operator to analyze and debug the resulting motion, it is more convenient to introduce the collision avoidance constraint online, for instance, only in the vicinity of the obstacle. Hence, this constraint is likely to be active. In addition, this allows for having few inequality constraints at the time in QP 16 ;

• Finite-State-Machine (FSM) is usually used to break down a complex control scenario into small and simple pieces of control problems where each one encodes a state. The transition from one state to another may occur 'on-the-fly' 17 depending on the transition criteria. In particular, some states may include kinematic constraints that are introduced online.

Unfortunately, as explained in Section 1.4.3, introducing online the constraints may not account for the robot limitations which can lead to infeasible QP as shown in Fig. 1.2(d).

Since all the constraints in QP Eq. (1.44) have the same priority level, if at least two constraints are in conflict, then the feasibility domain is empty. In this case, we say that these constraints are incompatible. A typical example would be when the deceleration required to stop the robot arm before getting into the collision is higher than what is currently allowed because of other constraints constituting the feasibility domain.

Stability and Robustness

From a control standpoint, the stability of any closed-loop system is mandatory. The stability of the multi-objective unconstrained QP has been studied in Bouyarmane and 16. Otherwise, when several inequality constraints are introduced to QP permanently, they can become active at any moment which may alter unnecessarily the resulting motion [START_REF] Cortez | A robust, multiple control barrier function framework for input constrained systems[END_REF].

17. The terms 'online' and 'on-the-fly' shall be used interchangeably. Kheddar [2018]. Sufficient conditions on Lipschitz continuity of the QP solution have been provided in [START_REF] Morris | Sufficient conditions for the lipschitz continuity of qp-based multi-objective control of humanoid robots[END_REF]. Lipschitz continuity ensures the smoothness of solutions and avoids the occurrence of chattering and discontinuities. However, despite the existence of multiple definitions for stability, the one related to closed-loop QP control is yet to be defined. This is mainly due to the lack of a closed-form QP solution.

Another alternative is to consider the stability of the control objectives such that if:

• the task-dynamics state η s converges asymptotically to the origin or to any residual set containing the origin, and;

• the set C defined w.r.t a barrier function h is forward invariant and asymptotically stable, and;

• the remaining redundancies are bounded, then the closed-loop QP control system is stable 18 . The stability of the tasks and the sets can be ensured in the nominal case following different formulations as discussed in Section 1.4. However, the robot model is generally not perfectly known, which brings us to question the robustness of the proposed approaches.

For torque-controlled robots 19 , the desired torque is computed by the so-called computed-torque method Mark W. [START_REF] Spong | Robot Modeling and Control[END_REF]; [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF] 

τ d = S T M αq d + Nα q + τ g -J cT f , (1.45)
where αq d is the solution of QP. This approach is model-based and is thereby non-robust to dynamics model uncertainties and non-modeled dynamics. The proposed approaches attempted to robustify the control scheme at different levels:

• high-level: by accounting for the uncertainties at the QP controller;

• low-level: by modifying explicitly τ d to account for uncertainties.

The first approach deals with the uncertainties by reformulating the tasks and kinematic constraints. In [START_REF] Prete | Robustness to joint-torque-tracking errors in taskspace inverse dynamics[END_REF], the numerical robustness of ID-QP against joint-torque tracking error is studied where deterministic bounded and stochastic uncertainties are considered especially to ensure the QP feasibility. Robustness of CBF has been first studied in [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF] against vanishing and persistent perturbations. However, no method has been proposed to enforce robustness. [START_REF] Nguyen | Optimal robust control for constrained nonlinear hybrid systems with application to bipedal locomotion[END_REF] focused on the robustness of CBF and CLF against dynamic model uncertainties. The formulation is based on the worst-case policy where the uncertainty equals its min/max values assumed to be known. The same assumption is also considered in Jankovic [2018]. Unfortunately, the authors did not specify how the uncertainty bounds can be estimated. In addition, these methods typically result in a conservative behavior that may be over-restrictive for the robot's motion. Conversely, [START_REF] Takano | Robust control barrier function for systems affected by a class of mismatched disturbances[END_REF] proposed a parameter uncertainty estimator. However, the estimation is performed offline, and the uncertainty is assumed to be constant. Online parameter estimation based on adaptive control has been proposed in Taylor and Ames [2020]. Nevertheless, the efficiency of this approach is based on how fast the estimation converges, which is in turn related to the parameters' initial guess. CBF robustness against state measurement errors has been studied in [START_REF] Cosner | Measurement-robust control barrier functions: Certainty in safety with uncertainty in state[END_REF]; [START_REF] Dean | Guaranteeing safety of learned perception modules via measurement-robust control barrier functions[END_REF] by relaxing the CBF constraint with a term encoding how bad is the state measurement. Model inaccuracy effects can also be compensated by learning CBF and task gains parameters from experimental data [START_REF] Taylor | Episodic learning with control lyapunov functions for uncertain robotic systems[END_REF]Taylor et al. [ , 2020]]; [START_REF] Wang | Learning control barrier functions with high relative degree for safety-critical control[END_REF]; [START_REF] Penco | Learning robust task priorities and gains for control of redundant robots[END_REF]; [START_REF] Dai | Learning a better control barrier function[END_REF]; [START_REF] Csomay-Shanklin | Learning controller gains on bipedal walking robots via user preferences[END_REF]. Despite their good performances, these methods are typically robot-depend.

External disturbances are also a relevant factor against which robustness must be ensured. CLF and CBF robustness against external disturbances has been studied in [START_REF] Kolathaya | Input to state stabilizing control lyapunov functions for robust bipedal robotic locomotion[END_REF] and [START_REF] Kolathaya | Input-to-state safety with control barrier functions[END_REF]; [START_REF] Alan | Safe controller synthesis with tunable input-to-state safe control barrier functions[END_REF], respectively. These methods are based on relaxing the CLF and CBF constraints by a configurationdependent term to ensure the boundedness of the state deviation due to the external disturbance. However, the relaxing term is systematically added even though the disturbance is not applied. Another approach consists of ensuring the passivity of the robot by monitoring the energy flow [START_REF] Stramigioli | Energy-aware robotics[END_REF]. A system is passive if the stored energy is lower than the input energy supplied to the system. Considering the external disturbance torque an input, passivity can be ensured by dissipating energy through task-space damping [START_REF] Dietrich | Passivation of projection-based null space compliance control via energy tanks[END_REF][START_REF] Dietrich | Passive hierarchical impedance control via energy tanks[END_REF] enabling a safe interaction with the robot.

One common factor for the high-level methods is their specificity to one non-robustness factor, which limits their usage in practice. Conversely, the second approach typically consists of computing τ d based on the nominal system, then adding additional torque terms that estimate or compensate for the uncertainties effect. Le Tien et al. [2008] estimated the non-modeled friction at the joints by a friction observer based on the joint torque measurements. However, the friction model is required.

Alternatively, joint position and/or velocity feedback terms are added to decrease the joint-level tracking error induced by the uncertainties (Fig. 1.3). The major benefit of this approach is its simple implementation and robustness to a large class of uncertainties. In practice, its efficiency has been proved experimentally, and has been successfully applied in a high number of robotic platforms, e.g., Thor Hopkins et al. [2015], Atlas [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF]; [START_REF] Feng | Optimization based full body control for the atlas robot[END_REF]; [START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF]; [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF] [2020].

The joint-feedback torque increases the joint stiffness at the expense of pure torquecontrol compliance [START_REF] Englsberger | Overview of the torque-controlled humanoid robot toro[END_REF][START_REF] Englsberger | Torque-based dynamic walking-a long way from simulation to experiment[END_REF]. This is basically the way how kinematic-controlled robots work. The latter are torque-controlled robots equipped with high-gains joint-controllers that compute the joint torque based on the desired joint position or velocity given as input commands 20 (Fig. 1.4). The significant difference between kinematic-controlled and torque-controlled robots is how the joint-feedback is implemented. In the former, the joint-controllers are strictly built-in by the manufacturer, whereas they can be either software implemented by the operator or already built-in and proposed by the manufacturer as an additional joint-level control option. Another difference is that kinematic-controlled can be model-free controlled and thereby are inherently robust to dynamic model uncertainties like parameters inaccuracy and joint friction offering a high precision motion. This is the main reason for the wide usage of kinematiccontrolled robots in research and industry (Fig. 1.5).

These differences make most of the high-level robust approaches proposed for torquecontrolled robots obsolete for kinematic-controlled robots. However, observations in [START_REF] Feng | Optimization based full body control for the atlas robot[END_REF]; [START_REF] Feng | Optimization-based full body control for the DARPA robotics challenge[END_REF]; [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF][START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF] 21 stated that instability behaviors appeared as chattering and strong oscillations, especially when the task gains are set to high values. [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF] showed a similar oscillation at the kinematic-constraint set border when the CBF gain is high. Recently, few works tackled the robustness of closed-loop QP control scheme for kinematic-controlled robots Singletary et al. [2022b,a]; [START_REF] Molnar | Model-free safety-critical control for robotic systems[END_REF]. If the joint-controllers are software implemented or known, one can account for the joint-feedback at QP level [START_REF] Cisneros | Robust humanoid control using a qp solver with integral gains[END_REF]; [START_REF] Lee | Online gain adaptation of whole-body control for legged robots with unknown disturbances[END_REF]; [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]. However, in almost all cases, the operator does not have access to joint-controllers architecture nor to the gains and actuators parameters [START_REF] Kim | Dynamic behaviors on the nao robot with closed-loop whole body operational space control[END_REF]. This prevents modeling the joint-dynamics in QP. In addition, other factors like non-modeled flexibilities and external disturbances may render the closed-loop scheme non-robust. In Chapter 3, we study, using a simplified 1-DoF system, the closed-loop instability and how we can fix it. Then, in Chapter 4, we extend it to the high-level case. The proposed method ensures robust stability for the task and robust asymptotic stability for the set C related to the barrier function h δ .

QP Control Application

QP paradigm has been applied successfully to several control scenarios and a large panel of robots. The classical and very common usage of QP is to solve IK or ID motion control problems while accounting for the different task-space, kinematic constraints and hardware limitations of robotic manipulators [START_REF] Faverjon | A local based approach for path planning of manipulators with a high number of degrees of freedom[END_REF]; [START_REF] Cheng | Resolving manipulator redundancy under inequality constraints[END_REF]; [START_REF] Park | The enhanced compact qp method for redundant manipulators using practical inequality constraints[END_REF]; Yunong Zhang and Jun [START_REF] Zhang | Obstacle avoidance for kinematically redundant manipulators using a dual neural network[END_REF]; Yunong Zhang et al. [2004]; [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF]; [START_REF] Saveriano | Learning barrier functions for constrained motion planning with dynamical systems[END_REF]; [START_REF] Rauscher | Constrained robot control using control barrier functions[END_REF]; [START_REF] Zanchettin | Motion planning for robotic manipulators using robust constrained control[END_REF]; [START_REF] Murtaza | Safety compliant control for robotic manipulator with task and input constraints[END_REF].

The multi-objective QP formalism allowed its application on highly redundant robots (Fig. 1.6), e.g., humanoids [START_REF] Salini | Lqp-based controller design for humanoid whole-body motion[END_REF]; [START_REF] Saab | Dynamic whole-body motion generation under rigid contacts and other unilateral constraints[END_REF]; [START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF]; Quiroz-Omaña and Adorno [2019]; [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF], aerial manipulators [START_REF] Nava | Direct force feedback control and online multi-task optimization for aerial manipulators[END_REF], snake-like robots [START_REF] Basso | Task-priority control of redundant robotic systems using control lyapunov and control barrier function based quadratic programs[END_REF], bipedal robots [START_REF] Reher | An inverse dynamics approach to control lyapunov functions[END_REF]; [START_REF] Galloway | Torque saturation in bipedal robotic walking through control lyapunov function-based quadratic programs[END_REF]; [START_REF] Ames | Human-inspired control of bipedal robots via control lyapunov functions and quadratic programs[END_REF], quadrupeds [START_REF] Xin | An optimization-based locomotion controller for quadruped robots leveraging cartesian impedance control[END_REF]; [START_REF] Fahmi | Passive whole-body control for quadruped robots: Experimental validation over challenging terrain[END_REF]; [START_REF] Hamed | Quadrupedal locomotion via event-based predictive control and qp-based virtual constraints[END_REF], planetary rovers [START_REF] Bussmann | Whole-body impedance control for a planetary rover with robotic arm: Theory, control design, and experimental validation[END_REF]. In the sequel, we go through more specific usage of QP.

Multi-Contact, Balance and Locomotion

Beyond free-space motion, robots are often required to establish contact with their environment for keeping balance, locomotion, or applying a desired force. Establishing contact with a predefined desired force can be achieved either by direct force control or admittance control [START_REF] Pham | Convex controller synthesis for robot contact[END_REF]. [START_REF] Nava | Direct force feedback control and online multi-task optimization for aerial manipulators[END_REF] formulated a QP controller for an aerial manipulator interacting physically with the environment to perform highly dynamic motion. To mitigate the planning process burdens on dealing with potential collisions, [START_REF] Pang | Easing reliance on collision-free planning with contactaware control[END_REF] proposed contact-aware QP controller. The latter tracks joint reference trajectories while online servoing frictional forces due to unexpected contacts to predefined operator-defined values.

21. In these works, the joint-controller is software implemented. Multi-objective QP showed great efficiency on graphical animation of bipedal characters performing human-like whole-body motion while accounting for frictional contact forces, non-coplanar contacts, bilateral grasping, and balance [START_REF] Abe | Multiobjective control with frictional contacts[END_REF]; de [START_REF] De Lasa | Feature-based locomotion controllers[END_REF]; [START_REF] Collette | Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts[END_REF]. Motivated by these works, QP has been formulated to control the balance of humanoid robots. Due to their underactuation, humanoid robots need to rely on the contact forces to act on the floating-base (and subsequently, the CoM). In order to achieve balance, the contact forces and joint torques have to compensate for all dynamics that apply to the robot in terms of inertia, gravity, and external disturbances. QP can then be formulated to exploit the robot redundancy to fulfill the frictional constraint on the forces to avoid slipping or losing contacts while tracking the desired tasks references. This has been achieved using the soft-hierarchical [START_REF] Righetti | Quadratic programming for inverse dynamics with optimal distribution of contact forces[END_REF]; [START_REF] Righetti | Optimal distribution of contact forces with inverse-dynamics control[END_REF] and strict-hierarchical [START_REF] Sherikov | Balancing a humanoid robot with a prioritized contact force distribution[END_REF] schemes.

The contacts can be planned along with the corresponding postures. Then, the QP controller computes the control inputs to satisfy the frictional contact forces, collision avoidance, and torque limits while converging at best to the desired task-states. This method allows performing complex multi-contact scenarios. It has been applied for ladder climbing in [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF], getting through narrow passages, and ingressing into a car cabin [START_REF] Bouyarmane | Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios[END_REF]. [START_REF] Samadi | Humanoid control under interchangeable fixed and sliding unilateral contacts[END_REF] studied the question of how to ensure real-time balance while switching between fixed and sliding non-coplanar multi-contacts. The authors proposed a centroidal QP based on the Chebyshev center that computes the optimal contact forces distribution and the CoM location. These optimal targets are then tracked by whole-body QP using admittance task Bouyarmane et al.

[2019]. [START_REF] Herzog | Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid[END_REF] proposed to control the balance of bipedal robot Sarcos by formulating a momentum-based real-time hierarchical QP. The approach enabled balancing the robot on double and single support while being robust to external disturbances. Ensuring balance for a wheeled inverted-pendulum robot, like Ninebot Segway, is even more challenging. In [START_REF] Gurriet | Towards a framework for realizable safety critical control through active set invariance[END_REF], a balance strategy consisted of constraining the pendulum angle using CBF-QP formulation to remain in a small bounded set around zero to keep it upright.

A walking trajectory generator is necessary for bipedal locomotion to provide feasible CoM trajectories based on the footstep plan. The latter are then tracked by QP while tracking the feet-swing trajectory and ensuring frictional contact forces [START_REF] Englsberger | Torque-based dynamic walking-a long way from simulation to experiment[END_REF]; [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]; [START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF]. For stair climbing, [START_REF] Caron | Stair climbing stabilization of the hrp-4 humanoid robot using whole-body admittance control[END_REF]; [START_REF] Kheddar | Humanoid robots in aircraft manufacturing: The airbus use cases[END_REF] formulated a QP layer on top of whole-body QP to distribute the net wrenches (that corrects the CoM position and velocity) at the contact points while satisfying contact stability 22 .

Impacts

Contacts can also be performed with the environment with a non-zero contact velocity resulting in impacts. Impacts frequently occur for humans like grabbing an object, drumming, hammering, jumping, etc. However, impacts are particularly challenging for QP controllers as the resulting joint-velocity jump may lead to an aggressive reactive response or even to an empty feasible domain. QP-based approaches focused either on minimizing the joint velocity jump assuming one-step-ahead impact prediction [START_REF] Wang | Impact-friendly robust control design with task-space quadratic optimization[END_REF] or by projecting the control objectives into an impact invariant subspace [START_REF] Yang | Impact invariant control with applications to bipedal locomotion[END_REF].

Impacts with deformable objects have also been studied. Due to the post-impact object soft deformation, the pre-impact robot motion is less restricted [START_REF] Dehio | Robot-safe impacts with soft contacts based on learned deformations[END_REF]. In [START_REF] Dehio | Dual-arm box grabbing with impactaware mpc utilizing soft deformable end-effector pads[END_REF], a QP controller has been formulated to control soft-pads dual-arm robots for object grabbing. QP tracks the end-effector velocity targets computed by a Model Predictive Controller (MPC) on top of QP to predict deformation trajectory while accounting for the robot joint bounds and hardware limitations.

Handling impacts generated when walking can be performed with the hybrid theory since bipedal robots (seen as hybrid systems) go through continuous and discrete dynamics. Cyclic bipedal walking has been formulated using CLF-QP to ensure rapidexponential stabilization of MABEL bipedal robot periodic gait [START_REF] Ames | Control lyapunov functions and hybrid zero dynamics[END_REF]Ames et al. [ , 2014a]].

Safety and Human-Robot Interaction

Ensuring safety is critical for most robotic applications. The safety concerns the robot (hardware and structure), its surrounding environment, human operators, and other robots. A safety-critical controller is then required to keep the robot state away from the unsafe configurations or, equivalently, to render the set of safe configurations invariant.

Safe adaptive-cruse controller has been proposed in [START_REF] Xu | Realizing simultaneous lane keeping and adaptive speed regulation on accessible mobile robot testbeds[END_REF]; [START_REF] Ames | Control barrier function based quadratic programs with application to adaptive cruise control[END_REF][START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF] and formulated using CBF-CLF-QP. QP regulates the car velocity to move with the desired velocity while not crashing with the car in front and controlling the steering to keep the lane. This policy has been applied in Wang et al. [2017] to avoid collisions between wheeled robots in a swarm configuration. Centralized and decentralized QP formulations have been proposed showing interesting behaviors of the agents when they are: (i) controlled with a single controller (similarly to the multi-robot QP in [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF]); and (ii) controlled individually. This formulation can also be a good tool for modeling individuals' behavior responding to a given stimulus. The same formalism has been applied in Wang et al. [2017] to rectify the preplanned quadrotors' trajectories if they lead to collision during the flight.

For legged robots, the safety aspects can encompass safe foot placement on the predefined footholds Nguyen et al. [2016]; [START_REF] Nguyen | Optimal robust control for constrained nonlinear hybrid systems with application to bipedal locomotion[END_REF]; [START_REF] Grandia | Multi-layered safety for legged robots via control barrier functions and model predictive control[END_REF], avoiding surrounding obstacles and self-collisions [START_REF] Molnar | Model-free safety-critical control for robotic systems[END_REF]; Vaillant et al. [2016a]; Quiroz-Omaña and Adorno [2019], keeping the CoM inside equilibrium region and joint limits satisfaction [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF].

In [START_REF] Rauscher | Constrained robot control using control barrier functions[END_REF]; [START_REF] Murtaza | Safety compliant control for robotic manipulator with task and input constraints[END_REF], safe robot motion in a confined Cartesian space is performed by exploiting redundancy and CBF to avoid collision with virtual boundaries. The latter are learned by demonstration in [START_REF] Saveriano | Learning barrier functions for constrained motion planning with dynamical systems[END_REF] allowing the operator to specify and customize the safety boundaries easily for the robot directly at the workspace.

Safe human-robot interaction has also been studied since humans and robots increasingly share the same workspace. In [START_REF] Landi | Safety barrier functions for human-robot interaction with industrial manipulators[END_REF]; [START_REF] Ferraguti | Safety barrier functions and multi-camera tracking for human-robot shared environment[END_REF], CBF-based collision avoidance constraint is introduced to QP to prevent the robot from impacting the human operator. The relative distance between the two agents is computed based on the primitive geometric models of the human and robot multi-bodies. Alternatively, the robot's kinetic energy is a reasonable metric to monitor how harmful the robot could be. In [START_REF] Meguenani | Energy-based control for safe human-robot physical interactions[END_REF]; Joseph et al. [2020a], a constraint is formulated to upper bound the kinetic energy. This constraint limits the kinetic energy dissipation in the case of an unexpected impact. If the maximum allowed kinetic energy is set to zero, then the joint velocity must also drop to zero. Since this change cannot be achieved instantaneously from any initial velocity due to the joint acceleration and jerk limits, [START_REF] Joseph | Online velocity constraint adaptation for safe and efficient human-robot workspace sharing[END_REF] proposed a safe-braking constraint on the joint velocity that accounts for the latter limitations and the relative distance between the human and robot.

Interaction between human and robot has been shown to be adequately cast to multirobot QP paradigm where the human is considered as a multi-body robot [START_REF] Bolotnikova | Autonomous initiation of human physical assistance by a humanoid[END_REF][START_REF] Bolotnikova | Taskspace control interface for softbank humanoid robots and its human-robot interaction applications[END_REF]. For instance, frail persons' conditions can be easily simulated with a human model with low joint-torque abilities. This formalism enables to elaborate systematic approaches for humanoid-to-human assistance and whose performances can be quantitatively and qualitatively measured Bolotnikova et al. [2021a]. Human-robot handovers also constitute an essential and frequent form of interaction. Based on multi-robot QP, the handover has been shown to be nicely formulated by considering the object to be exchanged as a rigid-body robot whose pose, velocity, and acceleration are estimated via an observation task unified with the tracking task Djeha et al. [2022a]. This is the topic of Chapter 6.

Visual Servoing and Observation

Mounting cameras on articulated robots appealed for an elaborated technique to merge visual servoing and redundancy resolution control. The first use of QP for this purpose was performed in [START_REF] Ellekilde | Robust control for high-speed visual servoing applications[END_REF] where the camera was mounted on a redundant robot arm end-effector. QP enabled a fast visual servoing while avoiding joint limits and singular configurations. Thanks to the natural handling of inequality, visual servoing QP has been formulated to account for FoV constraint and occlusion avoidance [START_REF] Agravante | Visual servoing in an optimization framework for the whole-body control of humanoid robots[END_REF]. The same approach has been applied in [START_REF] Chen | Visual servoing of a moving target by an unmanned aerial vehicle[END_REF] for quadrotor control to visually track a vehicle on the ground and keep it within the FoV bounds.

Another significant usage of visual servoing is the observation of a given state to be regulated by QP via error feedback. This idea has been applied in [START_REF] Paolillo | Toward autonomous car driving by a humanoid robot: A sensor-based framework[END_REF]Paolillo et al. [ , 2018b] ] where a strategy has been drawn to drive a car reactively by a humanoid robot. Visual servoing has been performed to detect the road features and estimate the car velocity leveraging other onboard sensors. In [START_REF] Tanguy | Closedloop mpc with dense visual slam -stability through reactive stepping[END_REF], simultaneous localization mapping has been used to estimate the location of humanoid CoM to accurately replan the CoM trajectories via MPC to maintain balance even under external disturbances. To mitigate the question of estimating the configuration of a passive articulated object (door, draw, valve wheel, etc), [START_REF] Paolillo | Visual estimation of articulated objects configuration during manipulation with a humanoid[END_REF] proposed the concept of virtual visual servoing. It consists of defining a virtual object that converges to the real one allowing to estimate implicitly real object configuration. The virtual visual servoing has been defined as a task in QP in Paolillo et al. [2018b] which accounts for the object constraints.

Rather than estimating a state to achieve the control feedback, the observation can also be performed to estimate a target for a given task. This idea has been proposed in Djeha et al. [2022a] to estimate the full-state of an object (in terms of pose, velocity, and acceleration) when only the pose is accessible for measurements. These estimated states are then the feedforward target terms of a trajectory tracking task. This concept has been applied to human-robot handover to ensure the robot and object meeting without prior knowledge of the object exchanging location. Conversely to Paolillo et al. [2018a], the observation is fully-fledged as a task in multi-robot QP, and it is not dependent strictly on visual servoing. [START_REF] Agrawal | Safe and robust observer-controller synthesis using control barrier functions[END_REF] considered the safety of systems subject to disturbances in the dynamics as well on the state measurements. More importantly, the authors addressed the case where the state is only partially measured, thereby requiring an observer to construct the full-state. A robust CBF-QP has been proposed to enforce the system's safety while accounting for the state estimation error. These controllers result typically in confining the system trajectories inside a more restrictive set similarly to [START_REF] Kolathaya | Input-to-state safety with control barrier functions[END_REF]; [START_REF] Alan | Safe controller synthesis with tunable input-to-state safe control barrier functions[END_REF]. However, this can be very conservative, especially that the CBF design requires the knowledge of some parameters that cannot be known precisely in practice.

Conclusion

In particular, we highlighted the current efforts in the research community to address the still open question in the QP control paradigm. More concretely, kinematic constraints formulation, stability and robustness of the closed-loop QP control, constraints compatibility, and how to unify control and observation. Each of these points is addressed in a dedicated chapter.

In the next chapter, we present our first contribution in this thesis about kinematic constraints formulation to be enforced by the decision variables. We consider the case when the kinematic constraints are online introduced to QP as explained in Section 1.5.2.3. Rather than using BF theory, our formulation is analytical and based on ODI with adaptive gains allowing us to prove formally the forward invariance and asymptotic stability of the kinematic constraint set.

Chapter 2

Adaptive-Gains Closed-Loop Constraints Formulation

In the context of multi-objective control, some tasks are naturally expressed as inequality constraints. QP controllers enable to explicitly account for these constraints. Nevertheless, some kinematic constraints, e.g., joint position and velocity bounds, (self) collision avoidance, cannot be directly considered in QP constraint-set because of their non-adequate form (not written in terms of the decision variable). In this chapter, we propose a generic formulation for kinematic constraints that addresses the following points: (i) how to ensure the kinematic constraints fulfillment forward in time by the closed-loop system solutions; (ii) how to guarantee the previous property even when the constraint is inserted on-the-fly to QP or when the bound is time-varying. The proposed approach is based on adaptive-gains Ordinary Differential Inequality (ODI) Dragoslav S. Mitrinovic [1991] ensuring systematically the above questions.

First, we formulate the task-space QP controller (Section 2.1). Then, we present our proposed methods for kinematic constraints formulation (Section 2.2). Finally, we demonstrate our methodology on HRP-4 humanoid robot performing task-space motion and reaching several kinematic constraints bounds (Section 2.3).

Problem Definition

Let us consider a floating-base robot whose EoM is given by Eq. (1.7), with q ∈ R 7+n , α q ∈ R 6+n are the robot state configuration and velocity defined as in Eq. (1.4). Let s(q) ∈ R m be the forward kinematics of a given task defined by m coordinates, and

s ref (t), ṡref (t), sref (t) ∈ R m be the task references 1 . Let us define e = s -s ref ∈ R m be task error such that ė = ṡ -ṡref = J s α q -ṡref , (2.1) ë = s -sref = J s αq + Js α q -sref . (2.2)
where 6+n) is the task Jacobian. The task state is then defined as

J s ∈ R m×(
η s = e ė ∈ R 2m , (2.3)
which allows us to express the task-state dynamics as

ηs = 0 I 0 0 η s + 0 I µ s (2.4)
The system Eq. ( 2.4) is stabilized around the origin using a PD feedback control law

µ s = -K s s K s d η s , (2.5)
leading the following closed-loop task dynamics

ηs = A η s η s , A η s = 0 I -K s s -K s d , (2.6)
where K s s , K s d ∈ R m×m are positive diagonal matrices denoting the task stiffness and damping gains such that A η s is Hurwitz [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF].

The control objective is to perform ë = µ s at best while satisfying a set of equality and inequality constraints. Given Eq. ( 2.2), this is achieved by the following QP formulation:

min χ w s 2 J s αq + Js α q -µ s 2 + w 0 2 S T αq -κ(q, α q ) 2 (2.7a) s.t: A ineq χ ≤ b ineq (2.7b) A eq χ = b eq (2.7c)
where χ T = αT q , f T . The second term in Eq. (2.7a) denotes a secondary task (e,g,. a posture task) necessary for the regularization of the QP computation (ensure the positivedefiniteness of the QP Hessian matrix [Bouyarmane and Kheddar 2018, Lemma 2]) and to resolve the remaining redundancies. The two tasks are soft-prioritized with a set of positive weights w s , w 0 > 0.

Constraints like torque and acceleration bounds Eqs. (1.13) and (1.14), non-slipping contacts Eq. (1.17) and friction contact force Eq. (1.16) can be directly included in QP Eq. (2.7) either as Eq. (2.7b) or Eq. (2.7c). However, as explained in Section 1.4.2, kinematic constraints written in the form of Eq. (1.18) cannot be directly considered in QP and have to be expressed in terms of QP decision variables. In the next section, we propose an ODI-based formulation for these constraints to be expressed as Eq. (2.7b). In particular, we consider the case where the kinematic constraint formulation is introduced on-the-fly to QP.

Proposed Approach

The kinematic constraints Eq. (1.18) are in practice either a distance constraint h δ (q) ≥ 0, (2.8) or as a velocity constraint h v (q, α q ) ≥ 0, (2.9)

where 6+n) are h δ and h v Jacobians. In the sequel, the dependency of h δ and h v on q and α q is removed. h δ and h v are considered as scalar. The generality is not lost since the kinematic constraints Eq. (1.18), that are often posed as vectors (e.g. joints constraints), are a stack of multiple scalar-constraints. Although Eq. ( 2.8) constrains explicitly h δ to remain positive, it induces implicitly a coupling with the velocity ḣδ since it requires that the latter must drop to zero when the lower bound h δ = 0 is reached. An alternative to handle this coupling in the acceleration level is by means of a second order ODI.

J h δ , J h v ∈ R 1×(

Mathematical Formulation

Let us consider the following second-order Ordinary Differential Equations (ODE):

ḧδ eq + K h δ d ḣδ eq + K h δ s h δ eq = 0, (2.10) ḣv eq + K h v h v eq = 0, (2.11)
where 2.11) ensures an exponential convergence of the solution h v eq (t) toward 0, ∀h v eq (t 0 ) ∈ R and ∀K h v > 0. On the other hand, ODE Eq. ( 2.10) can be written as a system of two first-order ODE as follows:

K h δ d , K h δ s , K h v > 0. ODE Eq. (
ḣδ eq ḧδ eq = 0 1 -K h δ s -K h δ d h δ eq ḣδ eq = A h δ h δ eq ḣδ eq , A h δ ∈ R 2×2 (2.12)
where A h δ is the constraint-state feedback matrix. The closed-loop system Eq. ( 2.12) ensures that the solutions h δ eq (t) and ḣδ eq (t) converge exponentially to 0, ∀h δ eq (t 0 ), ḣδ eq (t 0 ) ∈ R given that A h δ is Hurwitz. It is important to notice that the latter result guarantees the implicit condition on ḣδ in Eq. (2.8).

Correspondingly to Eqs. (2.10) and (2.11), let us now consider the following secondorder ODI

ḧδ + K h δ d ḣδ + K h δ s h δ ≥ 0 ⇔ J h δ 0 χ ≥ -Jh δ α q -K h δ d ḣδ -K h δ s h δ , (2.13) ḣv + K h v h v ≥ 0 ⇔ J h v 0 χ ≥ -Jh v α q -K h v h v . (2.14)
Thanks to Petrovitch theorem [Dragoslav S. Mitrinovic 1991, Theorem 2] (also known as Comparison Lemma A.6. 1 Khalil [2002]), ODI Eqs. (2.13) and (2.14) solutions h δ (t), h v (t) are lower bounded by the ODE Eqs. (2.10) and (2.11) solutions h δ eq (t), h v eq (t), respectively, ∀t ≥ t 0 given that at t = t 0 , h δ eq (t 0 ) = h δ (t 0 ), ḣδ eq (t 0 ) = ḣδ (t 0 ) and h v eq (t 0 ) = h v (t 0 ). Another benefit from Petrovitch theorem is to enable manipulating ODE rather than ODI while being able to make conclusions on the behavior of the ODI solutions. Consequently, the main idea is the following:

if h v eq (t) ≥ 0 =⇒ h v (t) ≥ 0, (2.15) if h δ eq (t) ≥ 0 =⇒ h δ (t) ≥ 0. (2.16)
From Eq. ( 2.11), we conclude that Eq. (2.15) is straightforwardly guaranteed if h v eq (t 0 ) = h v (t 0 ) ≥ 0, ∀K h v > 0. However, ensuring Eq. (2.16) depends on the gains K h δ s and K h δ d and the initial condition (h δ eq (t 0 ), ḣδ eq (t 0 )) as shown in Fig. 2.1(a). The challenge here is how to tune the stiffness and damping gains K h δ s and K h δ d , respectively, such that h δ eq (t) ≥ 0, ∀t ≥ t 0 and for all the initial conditions (h δ (t 0 ), ḣδ (t 0 )). Since ad-hoc gains-tuning is inappropriate for a generic approach, we present an analytic solution to systematically compute the gains K h δ s and K h δ d .

(a) (b) given that h δ eq (t 0 ) = 1. (a) The green phase trajectories belong to the viable zone highlighted in green (condition Eq. (2. 16) is fulfilled) whereas the red phase trajectories belong to the nonviable zone highlighted in red (condition Eq. (2.16) is not fulfilled). (b) The eigenvectors ν min,max (blue) correspond to K h δ d and K h δ s .

Gains Adaptation Method

Our purpose is to guarantee Eq. ( 2.16) even when Eq. ( 2.13) is inserted on-the-fly into the constraint-set of QP Eq. (2.7) for the reasons discussed in Section 1.5.2.3. In this work, we consider the case of inserting Eq. (2.13) in QP constraint-set only if h δ ≤ h δ 0 , where h δ 0 is a predefined safety margin. Given K h δ d = 2ξ K h δ s where ξ ≥ 1 is the damping coefficient to be set, A h δ eigenvalues are computed such that:

(A h δ -λ min,max I)ν min,max = 0 =⇒ λ min,max = - 1 2 K h δ d (1 ± 1 -ξ -2 ), (2.17) 
where ν min,max ∈ R 2 are the eigenvectors corresponding to the eigenvalues λ min,max < 0, such that λ min ≤ λ max and ν min,max = 1 λ min,max T . Obviously, λ min,max must be real negative as complex eigenvalues induce oscillations at the origin leading to a constraint violation, which justifies ξ ≥ 1.

Given an initial state (h δ (t 0 ), ḣδ (t 0 )) = (h δ eq (t 0 ), ḣδ eq (t 0 )), the phase trajectory (h δ eq , ḣδ eq ) converges asymptotically to the origin (0, 0) if Eq. (2.17) holds. This convergence property, due to the constraint-state feedback, allows to ensure h δ eq (t) convergence to 0 even if the constraint is initially violated h δ eq (t 0 ) < 0. In addition, it permits to deal with timevarying bounds. In fact and for illustration matter, let us consider a collision avoidance constraint between the robot end-effector s ee ∈ R 3 and a moving obstacle whose position, velocity and acceleration s obs (t), ṡobs (t), sobs (t) ∈ R 3 are known. Hence, the distance to the collision h δ and its successive derivatives are where n = (see-s obs (t)) s ee -s obs (t) ∈ R 3 is a normal vector.

h δ = n T (s ee -s obs (t)) , ḣδ = n T ( ṡee -ṡobs (t)) = n T J s see α q -ṡobs (t) , ḧδ = n T (s ee -sobs (t)) + ṅT ( ṡee -ṡobs (t)) = n T J s see αq + Js see α q -sobs (t) + ṅT J s see α q -ṡobs (t) , ( 2 
However, the phase trajectory convergence does not depend solely on the eigenvalues. It depends also on the initial state: we can have different phase trajectories shapes for different initial states; yet for the same eigenvalues (Fig. 2.1(a)). In the worst case, the phase trajectory overshoots the axis h δ eq = 0, losing thereby any guarantee that Eq. (2.8) holds. This case occurs if the initial state is in the red area in Fig. 2.1. Let us call this area the nonviable region in contrast to the viable region, denoted in green, where h δ eq (t) ≥ 0, ∀t ≥ t 0 . Hence, finding the suitable gains is necessary since the constraint Eq. (2.8) can be inserted into QP Eq. (2.7) constraint-set in many initial states.

In order to avoid overshooting, our solution is to adapt the gains to change the shape of the viable region so that the initial state is included. Analytically, we aim to enforce

lim t→+∞ h δ eq (t) = 0 + , ∀h δ eq (t 0 ) ≥ 0. (2.19)
In fact, if lim t→+∞ h δ eq (t) = 0 -and given the dynamics of a second order system Eq. (2.10) with ξ ≥ 1, it implies that the phase trajectory overshoots the axis h δ eq = 0. Let us now find the conditions on the gains to enforce Eq. (2.19). Given an initial state (h δ (t 0 ), ḣδ (t 0 )) = (h δ eq (t 0 ), ḣδ eq (t 0 )) with h δ (t 0 ) = h δ eq (t 0 ) > 0 and Eq. (2.17) for ξ > 1, Eq. (2.10) solution is

h δ eq (t) = h δ eq (t 0 )    λ min - ḣδ eq (t 0 ) h δ eq (t 0 ) λ min -λ max exp (λ max (t -t 0 )) + ḣδ eq (t 0 ) h δ eq (t 0 ) -λ max λ min -λ max exp (λ min (t -t 0 ))   
(2.20) The limit lim t→+∞ h δ eq (t) follows the first term dynamics since λ max is the dominant pole (the second term vanishes faster to 0):

lim t→+∞ h δ eq (t) = lim t→+∞ h δ eq (t 0 ) λ min - ḣδ eq (t 0 ) h δ eq (t 0 ) λ min -λ max exp (λ max (t -t 0 )) = 0 + ⇒ λ min - ḣδ eq (t 0 ) h δ eq (t 0 ) λ min -λ max ≥ 0 ⇔ ḣδ eq (t 0 ) h δ eq (t 0 ) = ḣδ (t 0 ) h δ (t 0 ) ≥ λ min , (h δ (t 0 ) > 0, ḣδ (t 0 ) ≤ 0) (2.21)
The same result is obtained for ξ = 1 ⇒ λ max = λ min :

h δ eq (t) = h δ eq (t 0 ) 1 + t ḣδ eq (t 0 ) h δ eq (t 0 ) -λ min exp (λ min (t -t 0 )) lim t→+∞ y(t) = lim t→+∞ h δ eq (t 0 ) 1 + t ḣδ eq (t 0 ) h δ eq (t 0 ) -λ min exp (λ min (t -t 0 )) = 0 + ⇒ ḣδ eq (t 0 ) h δ eq (t 0 ) -λ min ≥ 0 ⇔ ḣδ eq (t 0 ) h δ eq (t 0 ) = ḣδ (t 0 ) h δ (t 0 ) ≥ λ min , (h δ (t 0 ) > 0, ḣδ (t 0 ) ≤ 0) (2.22)
In both cases in Eqs. (2.21) and (2.22), the following formulas must hold ḣδ (t 0 )

h δ (t 0 ) ≥ λ min ⇒      K h δ d ≥ -2( ḣδ (t 0 )/h δ (t 0 )) 1+ √ 1-ξ -2 ≥ 0 K h δ s = ( K h δ d 2ξ ) 2 (2.23)
The gains are computed once, at each time the constraint is inserted in QP Eq. (2.7) constraint-set. The graphical interpretation of this result is to bring ν min , being the borderline between the viable and unviable regions to pass by the initial state (Fig. 2.1(b)). This is achieved by making ν min slope λ min equal to ḣδ (t 0 )/h δ (t 0 ). The main advantage of this method is to be adaptive to any initial state (Fig. 2.2) which depends on the dynamics resulting from the tasks dynamics and the current active constraints. This property ensures the on-the-fly constraints adding feature. In the next section, we further improve the gains computation method to increase the damping effect by slightly increasing the gains while converging the constraint boundary.

Nonlinear-Gains Based Feedback

To introduce our idea, let us first consider a deformable mechanism having a set of parallel layers of identical springs and dampers as shown in Fig. 2.3. These layers are shifted from each other by an infinitesimal distance δθ. This model is equivalent to a nonlinear spring-damper system for which the equivalent stiffness and damping gains are K h δ seq and K h δ deq , respectively. Let be

K h δ seq (h δ ) = K h δ s + K h δ s disp (h δ ), (2.24) 
where K h δ s is obtained from Eq. (2.23), and K h δ s disp (h δ ) is the varying term due to the displacement δθ. Then, we get where ρ s (θ) is the springs density per displacement δθ. If ρ s (θ) = ρ s constant, then from Eq. (2.25)

K h δ s disp (h δ ) = - h δ h δ 0 K h δ s ρ s (θ)δθ, (2.25) 
K h δ s disp (h δ ) = K h δ s ρ s (h δ 0 -h δ ). (2.26) 
Replacing Eq. (2.26) into Eq. ( 2.24), we get

K h δ seq (h δ ) = K h δ s 1 + ρ s (h δ 0 -h δ ) . (2.27)
Similarly, the equivalent damping gain is

K h δ deq (h δ ) = K h δ d + K h δ d disp (h δ ).
(2.28)

Following the same steps to obtain K h δ seq in Eq. ( 2.26), we get

K h δ deq (h δ ) = K h δ d 1 + ρ d (h δ 0 -h δ ) , (2.29)
where ρ d is dampers constant density per displacement δθ. From Eq. (2.27) and Eq. (2.29), ξ eq is obtained as:

ξ eq (h δ ) = K h δ deq (h δ ) 2 K h δ seq (h δ ) = ξ 1 + ρ d (h δ 0 -h δ ) 1 + ρ s (h δ 0 -h δ ) (2.30)
In particular,

ρ d = ρ s = ρ yields ξ eq (h δ ) = ξ 1 + ρ(h δ 0 -h δ ).
The resulting equivalent gains in Eq. (2.27) and Eq. (2.29) increase linearly w.r.t h δ while the phase trajectory is converging to the origin. Note that Eq. (2.23) is respected as

K h δ seq ≥ K h δ s and K h δ deq ≥ K h δ d .
Besides, if ξ = 1 the constraint dynamics evolves from critically-damped (ξ eq (h = h 0 ) = ξ = 1) to over-damped (ξ eq (h < h 0 ) > 1): the damping is enforced and the velocity ḣ is effectively reduced as shown in Fig. 2.4. This is particularly useful against non-modeled dynamics as we shall see in experiment section. 
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Figure 2.5: Closed-loop QP control scheme followed in Section 2.3.

Equality Kinematic Constraints

Another interesting property of our method is its ability to encompass kinematic constraints written as an equality H(q, α q ) = 0.

(2.31)

In fact, Petrovitch theorem has been used as a theoretical tool to reason in terms of ODE in order to make conclusions about ODI solutions. In the same time, it allows straightforwardly to include constraints like Eq. ( 2.31) in the study as a special case of inequality constraints like Eq. (1.18). Indeed, the latter are formulated as in Eqs. (2.13) and (2.14) where the inequality sign '≥' is simply replaced by the equality '='.

Experimental Results

We validate our approach using position-controlled humanoid robot HRP-4. mc_rtc2 framework is used to control the robot. The control loop runs at a frequency of 200 Hz. At each control cycle, the joints positions are provided by the encoders and the joints velocities are estimated numerically. In return, mc_rtc provides the desired robot stateconfiguration q after double integrating αq solution of Eq. (2.7). Then, the desired joint positions qd are sent as inputs for the joint-controllers (see Fig. 2.5). All experimental scenarios are performed in closed-loop with set-point tasks assigned such that different constraints reach their bounds3 . First, we compare the state-of-the-art [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] to our approach for collision avoidance constraints. Then, we extend and test our approach for other classes of constraints like joint bounds, CoM and velocity constraints.

In these experiments, contacts between the robot feet k = {1, 2} and the ground are defined as equality constraints on their relative velocity ṡfoot k /ground ∈ R 3 ṡfoot k /ground = J foot k α q = 0.

(2.32)

The main purpose of constraint Eq. (2.32) is to enforce QP to generate feasible solutions for the floating-base. As explained in Section 2.2.4, Eq. ( 2.32) is formulated as

sfoot k /ground + K ṡfoot k /ground ṡfoot k /ground = 0 ⇔ J foot k αq + Jfoot k α q + K ṡfoot k /ground ṡfoot k /ground = 0, (2.33) 
where K ẋfoot k /ground = 10 is the damping gain matrix.

Collision Avoidance

In this section, we compare our approach with two state-of-the-art approaches: the viability formulation del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] and the velocity damper [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]. There are two reasons for this choice. Conversely to del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF]; [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF], our approach is a reactive-based method (see Section 1.4.2). In addition, both [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF] and del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] resolved the task-space control in ID (in contrast to the IK task-space control in [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF]).

The viability formulation is defined as a constraint on the velocity ḣδ ḣδ ≤ -√ αh δ , (2.34) with α = 2 ḧδ const where ḧδ const > 0 denotes the constant deceleration applied to slow down until reach the boundary h δ = 0 with zero velocity ḣδ . This constraint has been so far solely formulated for joint bounds [START_REF] Feng | 3d walking based on online optimization[END_REF]; [START_REF] Hu | Online human walking imitation in task and joint space based on quadratic programming[END_REF]; [START_REF] Flacco | Control of redundant robots under hard joint constraints: Saturation in the null space[END_REF]; [START_REF] Kim | Inverse kinematic control of humanoids under joint constraints[END_REF]. In del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF], a discrete-time implementation of this constraint has been proposed to express Eq. ( 2.34) at the acceleration level.

The approach opted in [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF] follows the same reasoning where a discrete-time implementation of a velocity damper constraint ḣδ ≤ -αh δ , α = 1 ∆t , (2.35) has been proposed, where ∆t is the control time-step. Constraint Eq. ( 2.35) has been originally proposed in [START_REF] Faverjon | A local based approach for path planning of manipulators with a high number of degrees of freedom[END_REF] for robotic manipulator and used latter for humanoids whole-body control [START_REF] Kanehiro | Integrating geometric constraints into reactive leg motion generation[END_REF].

In both approaches, the discrete-time implementation is based on the prediction of the constraint state in the next control-iteration as in Eq. (1.38). Prediction scheme Eq. ( 1.38) has been thoroughly used in many other works attempting to generate an early deceleration to slow down and stop at the boundary [START_REF] Park | The enhanced compact qp method for redundant manipulators using practical inequality constraints[END_REF]; [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF][START_REF] Rubrecht | Motion safety and constraints compatibility for multibody robots[END_REF]; [START_REF] Meguenani | Safe control of robotic manipulators in dynamic contexts[END_REF]; [START_REF] Salini | Synthesis of complex humanoid wholebody behavior: A focus on sequencing and tasks transitions[END_REF]; [START_REF] Saab | Dynamic whole-body motion generation under rigid contacts and other unilateral constraints[END_REF]; [START_REF] Sherikov | Whole body motion controller with long-term balance constraints[END_REF]; [START_REF] Lober | Task compatibility and feasibility maximization for whole-body control[END_REF]. However, beside the fact that theses approaches are mostly focused on joint constraints with constant bounds, prediction-based methods are doomed to fail because of two main issues: (i) the non-robustness of prediction scheme to non-modeled dynamics in closed-loop control; and (ii) the constraint is only ensured on a discrete-time steps but no guarantees about the constraint behavior in between. Conversely, to the prediction-based methods, our approach is reactive-based and thereby does not suffer from issue (ii) as it provides systematic proof of convergence to the boundary. Regarding issue (i), we shall show that our method is more robust.

Comparison with State-of-the-Art

To compare our method to [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF], we extend the viability formulation constraint to collision avoidance constraint.

h δ = δ(q) -δ min ≥ 0, (2.36) 
where δ(q) is the distance between the closest-point on a pair of robot bodies. ḧδ

const is computed such that ḧδ const = ḣδ 2 (t 0 ) 2h δ 0 .
The collision avoidance constraint is defined between the robot waist, and the right and left elbows, respectively. We set the minimal allowed distance between each pair of bodies to δ min = 6 cm with a safety margin h δ 0 = 4 cm. The damping coefficient and the springs and dampers density are set to the best ones: ξ = 1.2 and ρ s = ρ d = 0.5

h δ 0 .
Starting by an initial posture where the shoulders are fully stretched, we assign joints position targets for both shoulders so that the elbows get to the waist (Fig. 2.6). For a fair comparison, the same shoulders motion is repeated such that the three constraints formulations get inserted in QP with approximately the same initial condition (h δ (t 0 ), ḣδ (t 0 )). The results are shown in Fig. 2.7. The discrete-time implementation of [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] lack robustness against noises and non-modeled nonlinearities encountered in closed-loop: jerky motions and chattering especially near δ min are noticed. In contrast, our approach exhibits a smooth motion, and the velocity decreases until stop when δ = δ min ⇔ h δ = 0. (center) and our approach (right). δ min is denoted in dashed red and the safety margin is the space between the dashed-dotted green line δ min . The top row shows the time evolution (δ(q) in blue and δ(q, α q ) in orange) while the bottom row describes the phase-plot (blue trajectory) of each approach. del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] and [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF] methods suffer from chattering and sustained oscillations whereas our approach leads to a smooth convergence to δ min with zero velocity.

Figure 2.8:

Our adaptive-gains constraint formulation approach getting inserted in QP Eq. (2.7) at five different initial conditions with increasing initial velocities ḣδ (t 0 ).

From Eq. (2.23), K h δ s and K h δ d depend quadratically and linearly on the initial velocity ḣδ (t 0 ), respectively. Hence, a second experiment is conducted to show the effect of inserting the collision constraint Eq. ( 2.36) formulated as Eq. ( 2.13) with high ḣδ (t 0 ) values. The scenario shown in Fig. 2.6 is performed with the shoulder motion velocity is monotonically increased. The results are shown in Fig. 2.8. Our approach enables to reach the lower boundary δ min with zero velocity even when ḣδ (t 0 ) is high which proves the larger robustness margins comparatively to [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] methods. However, it can be seen that high ḣδ (t 0 ) values lead to the occurrence of lowamplitude oscillations near the boundary which indicates that the robustness margins are reached. This interesting point shall be studied thoroughly in Chapter 4.

A third experiment is conducted to show the case of a collision avoidance with timevarying obstacle. In this experiment, we consider the cases of an obstacle moving with step variations (Fig. 2.9) and with a constant velocity (Fig. 2.10).

In Fig. 2.9, the collision constraint is violated at t = 0 (h δ = δ(q) -δ min < 0). The QP solver does not fail, and δ(q) converges to δ min if δ min ≥ δ target . The ability to converge back to the boundary if h δ < 0 is another feature of our formulation Eq. (2.13) In Fig. 2.10, δ min is moving toward δ(q) with a non-zero velocity of -0.25 cm/s. The distance between the pair of bodies δ(q) fulfills the collision avoidance constraint h δ = δ(q) -δ min ≥ 0. The key feature of this experiment is to show that if initially h δ ≥ 0 then our formulation ensures it will remain forward in time.

Joints Bounds and CoM Constraints

To validate our approach on the CoM constraint, we define a conservative polygon of support for the CoM [START_REF] Audren | 3-d robust stability polyhedron in multicontact[END_REF]. Next, we define end-effector unreachable set-point target for the right hand so as during the reaching motion, the CoM reaches the polygon bounds. Different targets are defined (see Fig. 2.11). Then, we fix the right hand target, and move the left arm to reach the left shoulder roll and pitch joints limits; all constraints together. The robot floating-base is estimated using a Kinematic Inertial Observer based on the IMU measurements and the robot kinematics chains Caron 2.12 shows the temporal and spatial evolution of the estimated CoM in addition to the different time-frames where either the right or left arm is moving. We notice that the CoM is constrained inside the polygon except in the yellow-highlighted spots representing overshoots. The latter have a magnitude of 2 mm at maximum and occur very briefly when the end effector task is assigned. This is due to the non-modeled flexibilities at the ankles which act as a disturbance against the constraint. However, these perturbations are damped and the CoM is stabilized at the boundary. Moreover, despite the CoM noisy-estimation, no jerky motions or chattering have been observed near or at the bounds. In Chapter 4, the effect of disturbances like flexibilities are be studied. Fig. 2.13 shows how the robot adjusts its whole-body posture when the left arm is fully stretched in different directions to maintain the CoM at the polygon boundary (highlighted with the light green area in Fig. 2.12). The left-shoulder roll and pitch joints-positions bounds are reached smoothly with zero velocity as it is shown in Fig. 2.14. 

Velocity Constraint

To validate our approach for velocity constraint formulation Eq. ( 2.11), we bound the relative velocity v between the pair of bodies shown in Fig. 2.6 such that v min ≤ v ≤ v max where h vmax = v max -v ≥ 0, h v min = v-v min ≥ 0. As in Section 2.3.1, step-variable velocity bounds are considered. The gain K h v in Eq. ( 2.11) is fixed to K h v = 10. Fig. 2.15 shows how the velocity converges to the bound when the latter is variable. Again, despite the velocity noisy-estimation, no chattering or jerky motions have been observed during the experiment. In [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF], based on Eq. (1.38)

, K h v is taken as K h v = 1 ∆t = 200 (∆t = 5 
ms) which is a relatively high gain that could be critical in closed-loop. Indeed, with such gain, the QP solver failed to find a solution when the velocity approached the bound of 0.05 m/s.

Conclusion

In this chapter, we proposed a solution to deal efficiently with a class of constraints commonly found in task-space QP controllers based on acceleration, force and torque as decision variables. More particularly, we addressed distance and velocity constraints (kinematic constraints) that originally are not written in terms of the decision control variables. we proposed a formulation for such a class of constraints at large based on ODI, with an automated adaptive gain tuning. Then, we showed how our approach overcome the limitations of [START_REF] Vaillant | Multi-contact vertical ladder climbing with an hrp-2 humanoid[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF] approaches acknowledged by their authors: (i) the need of precise models (no noise and estimation uncertainties); (ii) they do not operate well in closed-loop scheme, i.e. when the robot state is directly fed back to the QP controller (chattering and jerky motion); and (iii) they do not handle variable bounds. Experiments conducted on the HRP-4 humanoid robot confirmed performance and efficiency of our approach, which is then integrated as part of our mc_rtc controller library.

Nevertheless, there remain some limitations that need further investigations. First, we observed in Fig. 2.8 and 2.12 that high constraint gains (due to high values of ḣ(t 0 ), or small h 0 ) and the presence of disturbance factors as flexibilities lead to small oscillations at the constraint boundary (this fact has been similarly observed in [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]). In the next chapter, we investigate this issue and show that the same behavior can be observed for the tasks formulated in the cost-function. This issue may lead to instability and it is indeed related to kinematic-controlled robots.

Another shortcoming of our approach, we assume no constraints on the feasible accelerations ḧ. That is to say, if the constraint-set includes implicit or explicit constraint such that ḧ ≤ ḧmax , it may result in constraints incompatibility [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Motion safety and constraints compatibility for multibody robots[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF]; [START_REF] Meguenani | Safe control of robotic manipulators in dynamic contexts[END_REF]; namely when the necessary amount of acceleration to enforce Eq. (2.8) is greater than ḧmax . This may occur either if ḣ(t 0 ) is high or h 0 is low. In Chapter 5, we propose an approach to deal with this issue based on the prediction of the system trajectories over a preview horizon enabling to decelerate earlier while satisfying the hardware limitations.

Chapter 3

Instable Feedback QP Control for Kinematic-Controlled Robots

In the previous chapter, we proposed a general formulation for the kinematic constraints (2.13)- (2.14) based on an adaptive-gains method. The conducted experiments on HRP-4 humanoid robot in closed-loop showed the performance of the proposed approach over the state-of-the-art methods. However, the observation of oscillations at the constraints boundary when the constraint gains raises some questions about the stability and robustness of our formulation. For instance, oscillations are noticed at the CoM constraint boundary in Fig. 2.12 and which we have argued to be due to the non-modeled flexibilities at the ankles. Damped oscillations are also observed at the collision-avoidance constraint boundary in Fig. 2.8 and seem to correlate with high constraint gains. This fact implies that choosing high task gains will produce similar behaviors as well. These oscillations are not the desired behavior as they are generally referred to as a sign of instability. In practice, it results in discontinuous and jerky motion that can be unsafe for the robot (structural damage, actuator wearing) and the operators surrounding it. This motivates us in this chapter to investigate the sources of instability of the closed-loop QP control system.

To start our reasoning, one important remark is that the robot used for experiments is a 'kinematic-controlled robot', i.e., torque-controlled robots equipped with high-gains joint controllers that compute the desired joint torques τ d for the actuators (see Fig. 1.4). These joint-controllers are designed by the manufacturer to track the desired joint position or velocity. Hence, if the robot behavior is instable, it means that the joint-controllers are tracking an unbounded desired input. Since these desired inputs (joint-position or velocity) result from the double integration of the QP output αq d , it means that the QP controller generated solutions are not stable.

In this chapter, we study the effect of the joint-controllers on the stability of the closed-loop system containing a QP controller and kinematic-controlled robot. Instead of considering the robot as a multi-DoF system, we only focus on a case-study: 1-DoF system (an actuator servoed by a PD-controller). In Section 3.1, we introduce more in detail the kinematic-controlled robots and explain why the 1-DoF case-study is sufficient for the stability study. Then, we model the dynamics of a DC motor servoed with a PD-controller. In Section 3.2, we investigate the stability of a QP controller in cascade with the 1-DoF system following two closed-loop control schemes (Fig. 3.1), and show the pros and cons of each. Finally, we propose an approach that ensures the stability while reactively counterbalancing external disturbances. 

Kinematically-Controlled Robots

Stiff kinematic-controlled robots are widely used in robotics and automation industry as the knowledge of the robot's dynamics is not required [START_REF] Garcia | Sensor fusion of force and acceleration for robot force control[END_REF]; [START_REF] Rossi | Implicit force control for an industrial robot with flexible joints and flexible links[END_REF]; [START_REF] Zanchettin | Motion planning for robotic manipulators using robust constrained control[END_REF]; [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]; Polverini et al. [2017a]; [START_REF] Suárez-Ruiz | Can robots assemble an ikea chair[END_REF]; [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF]; [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]. Controlling a kinematic-controlled robot rely on a simple control strategy which consists in considering the robot with n-actuated DoF as a system of n independent joints. Each joint is actuated with a motor servoed by a joint-controller, resulting in a Single-Input/Single-Output (SISO) system. The joint-level servoing can performed either in position (i.e., regulate the error between the desired joint position qd and the actual joint position q to zero) or in velocity (i.e., regulate the error between the desired joint velocity qd and the actual joint velocity q to zero) Albu-Schäffer et al. [2007a,b]; [START_REF] Mistry | Inverse kinematics with floating base and constraints for full body humanoid robot control[END_REF]; [START_REF] Iskandar | Joint-level control of the dlr lightweight robot sara[END_REF]; [START_REF] Lim | Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control[END_REF]; [START_REF] Lim | Robot system of drc-hubo+ and control strategy of team kaist in darpa robotics challenge finals[END_REF].

The most known and documented joint-controller is the position Proportional-Derivative (PD) joint-controller Mark W. [START_REF] Spong | Robot Modeling and Control[END_REF]; [START_REF] Siciliano | Robotics: modelling, planning and control[END_REF] M(q) αq + N(q, α q )α q + τ g = Sτ PD , (3.1)

τ PD = -P( q -qd ) -D q (3.2)
where P and D are diagonal positive gains matrices to ensure decoupled joint-torque computation. The coupling effects between the joints (mass, Coriolis-centrifugal and gravity torques, etc.) are perceived as an external disturbance torque input. N : Gear ratio in Fig. 1.3

M(q) αq + N(q, α q )α q + τ g = S (τ PD + τ d ) . (3.3)
In fact, this approach is extensively used for torque-controlled robots to overcome the joint non-modeled static friction Hopkins et al. [2015]; Hopkins et al. [2015]; [START_REF] Cisneros | Robust humanoid control using a qp solver with integral gains[END_REF]; [START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF]; [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]; Hopkins et al. [2015].

Generally, the motors have different sizes and characteristics depending on their placement and role on the robot's whole-body (the more load the actuator is intended to receive, the larger and more powerful is). The joint-controller gains are correspondingly tuned by the manufacturer to ensure good tracking (large bandwidth) and disturbance attenuation performances. This is the main reason why the joint-controllers usually have high gains. Since the joints are controlled independently (SISO assumption), we focus the stability study in this chapter on a single actuator controlled by QP. Namely, the study conducted for one joint applies straightforwardly to the others. We model a DC motor servoed by a PD controller. Next, we study the stability of this inner system when an outer QP controller controls it.

Case-Study: 1-DoF Actuator

A DC motor is modeled by electrical and mechanical components as in Fig. 3.2. The electrical and mechanical equations describing the system are the following: All the parameters are defined in Table 3.1 By manipulating equations (3.4), we obtain the following link-side electro-mechanical equation:

v(t) = Ri(t) + e(t) e(t) = Kω m (t) τ m (t) = Ki(t) τ m = J dω m (t) dt + f ω m (t) + τ l (t) N ω m (t) = N ω(t) ω(t) = q(t) (3.4)
v(t) = JN R K dω(t) dt + N (Rf + K 2 ) K ω(t) + GT l (t) G = R KN (3.5)
Considering f ≈ 0, and non-loaded case τ l = 0, the transfer function between the voltage v and joint position q is :

R(s) = v(s) q(s) = a s(s + b) , a = K N RJ , b = K 2 RJ .
(3.6)

The system (3.6) is servoed by a PD controller as shown in Figure 3.3. Considering the PD controller transfer function C(s) = P + Ds with P and D are the gains, the joint-level transfer function between the desired joint position qd and actual joint position q is:

F (s) = q(s) qd (s) = C(s)R(s) 1 + C(s)R(s) = δs + γ s 2 + βs + γ , δ = aD, γ = aP, β = b + aD. (3.7)
Now, let us consider τ l (t) = 0. This leads to the following expression:

q(s) = F (s)q d (s) + H(s)τ l (s), H(s) = GR(s) 1 + C(s)R(s) = aG s 2 + βs + γ . (3.8)
From Eq. (3.8), it can be seen that the higher P , the more the steady-state disturbance effect ( G P ) is attenuated. Furthermore, P and D are tuned (by the manufacturer) such that the systems F (s) and H(s) poles are stable. Giving Eq. (3.7) and Eq. (3.8), we can write the following differential equation q = -β q -γ q + δ qd + γ qd + aGτ l (3.9)

Eq. (3.9) describes the joint-dynamics and which is seen as the inner control loop. Next, we control this inner loop with a QP controller in closed-loop.

QP Controller and Joint-Dynamics Model in Cascade

For simplicity, we consider first an unconstrained QP controller. Given a target reference qref , the role of QP is to generate qd and forward it to the joint-dynamics such that both qd and q converge to qref . Let us define x as

x =       q -qref q qd -qref qd       ∈ R 4 . (3.10)
Then, the differential equation (3.9) can be written in the state-space form

ẋ =      0 1 0 0 -γ -β γ δ 0 0 0 1 0 0 0 0      x +      0 0 0 1      qd +      0 aG 0 0      τ l . (3.11)
Now, the unconstrained QP formulated for 1-DoF system is given as

qd = -Kx, (3.12) 
where K ∈ R 1×4 is the task feedback gain-matrix. In the next section, we see how we can formulate the gain matrix K and the subsequent stability implications.

QP Closed-Loop Stability Study

The task feedback (3.12) can be designed in several ways depending on the closed-loop control schemes: either in feedforward Fig. 3.1(b), or in feedback Fig. 3. 1(a). In what follows, we study the closed-loop stability of both control schemes.

Feedforward Control Scheme

Considering the control scheme Fig. 3.1(b), the task feedback (3.12) can formulated as qd = -0 0

K s K d x, (3.13)
where K s , K d > 0 are the stiffness and damping gains, respectively. Replacing Eq. (3.13) in Eq. (3.11), we get the closed-loop form

ẋ = A FF x +      0 aG 0 0      τ l , A FF =      0 1 0 0 -γ -β γ δ 0 0 0 1 0 0 -K s -K d      . (3.14)
The stability of closed-loop system (3.14) depends on the matrix A FF . One necessary and sufficient condition for stability is that A FF is Hurwitz [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]. This can be easily verified by computing A FF eigenvalues λ A FF and checking their real part is strictly negative. The form of A FF enables us to have a closed-form of the eigenvalues such that

1 λ A FF = 1 2        -β + √ β 2 -4γ -β - √ β 2 -4γ -K d + K 2 d -4K s -K d -K 2 d -4K s        (3.15)
From Eq. (3.15), the eigenvalues λ A FF are stable and decoupled. Namely, the eigenvalues relative to the joint-dynamics are decoupled from those relative to the task gains. Hence, the closed-loop system (3.14) is systematically stable whatever the joint-dynamics and whatever the task gains. However, if τ l = 0 then q does not converge strictly to qref (Fig. 3.4). This is expected since the task feedback (3.13) does not account for the actuator state (q, q).

Feedback Control Scheme

Considering the feedback closed-loop control scheme in Fig. 3.1(a), the task feedback (3.12) can formulated as qd = -K s K d 0 0 x, (3.16)

Replacing Eq. (3.16) in Eq. (3.11), we get the closed-loop form

ẋ = A FB x +      0 aG 0 0      τ l , A FB =      0 1 0 0 -γ -β γ δ 0 0 0 1 -K s -K d 0 0      .
(3.17)

As for the system (3.14), the closed-loop system (3.17) stability depends on the eigenvalues of A FB . However, and conversely to system (3.16), A FB eigenvalues do not have a simple form as in Eq. (3.15)2 . Alternatively, running the same simulations as in Section 3.2.1 shows that, in this case, the closed-loop stability is not systematically guaranteed as shown in Fig. 3.5. First and conversely the feedforward closed-loop scheme, if the closedloop system is stable, q converges to qref even if the external disturbance τ l = 0 whose effect is counterbalanced by qd . Nevertheless, given two joint-dynamics systems with different parameters (Table 3.2), increasing the task gains leads one closed-loop system 3

.2. (a)-(c) K s = 5, K d = 2 √ K s . (b)-(d) K s = 30, K d = 2 √ K s .
to instability (Fig. 3 The eigenvalues relative to the desired states (q d , qd ) may become instable (positive real part). The desired joint position qd is then unbounded and tracked by the joint-dynamics causing the whole closed-loop system trajectory to be unbounded.

In the next section, we show that the instability issue occurs even for the distance constraint formulation shown in Chapter 2. 17). External torque disturbance τ l = 3 Nm is applied at t = 6 s. The system parameters are taken from columns 1 (top) and 2 (bottom) in Table 3

.2. (a)-(c) K s = 5, K d = 2 √ K s . (b)-(d) K s = 30, K d = 2 √ K s .

Distance Constraint Formulation in Closed-Loop Control Schemes

Let us consider the 1-DoF actuator in Section 3.1 where the control objective now is to control the actuator position q while having a maximum bound qmax such that the following constraint needs to be fulfilled

q ≤ qmax (3.19)
Based on the distance constraint formulation discussed in Chapter 2, this control problem can be formulated via the following QP

min 1 2 q + Kx 2 (3.20a) s.t: ḧ + K h x ≥ 0, (3.20b) 
where h = qmaxq. Next, we consider the following two cases:

• Feedforward closed-loop control scheme Fig. 3.1(b): • Feedback closed-loop control scheme Fig. 3.1(a):

K = 0 0 K s K d , K h = 0 0 K h s K h d (3.21) ( 
K = K s K d 0 0 , K h = K h s K h d 0 0 (3.22)
In both cases, the joint position reference qref = 5 rad, the maximum bound qmax = 3 rad, the external disturbance τ l = 5 Nm, K s = 30, K d = 2 √ K s , and constraint Eq. (3.20b) is inserted in QP (3.20) if h ≤ 0.3 rad where the gains K h s and K h d are computed as in Eq. (2.23). The simulations are performed using the joint-dynamics parameters in column 2 in Table 3.2.

The results are shown in Fig. 3.6. In feedforward control scheme (Fig. 3.6(a)), the desired joint position qd fulfills indeed the constraint (3.19) whereas the actual joint position q does not due to the presence of an external disturbance τ l = 0. More related to instability, Fig. 3.6(b) shows that the instability behavior appears again but this time at the constraint boundary qmax . The instability is described by oscillations at the constraint boundary similar to those observed in Fig. 2.8 when the initial constraint velocity ḣ(t 0 ) is high. This is due to the high gains K h s and K h d computed by Eq. (2.23). Note that the solution of QP (3.20) is given by q = min(K h x, -Kx).

(3.23) (3.24) then by replacing Eq. (3.24) into Eq. (3.11), the same stability analysis can be performed as in Sections 3.2.1 and 3.2.2.

Hence, if constraint (3.20b) is active, namely q = K h x,
To summarize, we come up to the evidence that the stability of the feedback closedloop control scheme (Fig. 3.1(a)) depends on the task (resp. constraint) gains and the joint-dynamics. This is a serious issue for two main reasons:

• In a multi-DoF system, the joint-dynamics relative to the different joints have different electro-mechanical parameters and P D gains. Finding the appropriate task QP Double Integrator Robot qd qd qd q q Figure 3.7: Our proposed formulation for stable feedback closed-loop QP control scheme.

gains that ensure the stability of each joint may be tedious. This is even more challenging for the constraint gains as they must obey Eq. (2.23). Moreover, if the task and constraint are defined in task-space (conversely to joint-space), then finding the suitable gains that ensure the closed-loop stability is not intuitive because of the nonlinear mapping between the task-space and joint-space;

• The QP control design is intended to work on every kinematic-controlled robot.

Hence, drawing a control strategy that works only for one type of kinematiccontrolled robot (actuators servoed with PD joint-controllers) would not be an optimal approach.

In the next section, we propose an approach that solves the instability issue of the feedback closed-loop QP control scheme (Fig. 3.1(b)) for both the task and constraint.

Stable Feedback QP Control Formulation

The stability analysis performed through eigenvalues in the previous sections shows that the stability of the eigenvalues relative to the desired state (q d , qd ) implies the one of the closed-loop system. In particular, in feedback closed-loop control scheme (Fig. 3.1(a)), the desired state (q d , qd ) is not observable from the output feedback (3.22) which makes the QP unable to stabilize these states. Based on this reasoning, how can we ensure the stability of the desired state while taking the benefits of the reactive property of feedback closed-loop QP controller?

Stable Task Formulation

Let us consider the unconstrained QP in Section 3.2.2. Instead of Eq. (3.16), we propose to formulate qd such that

qd = -K s K d 0 K i x, (3.25)
where K i > 0 in the task integral gain. It is called so because qd is the integral of qd . From Eq. (3.25), we can see that the proposed feedback is halfway between Eq. (3.13) and Eq. (3.16), and thereby we refer to Eq. (3.25) as heterogeneous feedback. The proposed closed-loop control scheme is illustrated in Fig. 3.7. Replacing Eq. (3.25) into Eq. (3.11) yields to

ẋ = A H-FB x +      0 aG 0 0      τ l , A H-FB =      0 1 0 0 -γ -β γ δ 0 0 0 1 -K s -K d 0 -K i      . (3.26)
The objective is to show that the existence of the task integral gain K i leads to the stability of A H-FB . Let us consider the same simulation conducted in Section 3.2.2. In particular, let us focus on the case where the joint-dynamics parameters are taken as in column 1 in Table 3.2, and the task gains are K s = 30, K d = 2 √ K s and K i = θK d , θ > 0. Note that for such stiffness and damping gains, the output feedback (3.17) leads the matrix A FB eigenvalues to be instable. θ will be used to finely tune the K i . Fig. 3.8 shows the simulation results where θ is progressively increased from 0 to 1, and the corresponding eigenvalues of A H-FB are Fig. 3.8(a) :

λ(A H-FB ) =      -156.07 -2.67 0.11 + 5.21i 0.11 -5.21i      , Fig. 3.8(b) : λ(A H-FB ) =      -156.07 -2.67 0.06 + 5.21i 0.06 -5.21i      , Fig. 3.8(c) : λ(A H-FB ) =      -156.07 -2.69 -0.42 + 5.17i -0.42 -5.17i      , Fig. 3.8(d) : λ(A H-FB ) =      -156.06 -7.80 -2.80 + 1.20i -2.80 -1.20i      . (3.27)
Increasing the task integral gain K i allows stabilizing the closed-loop system by swapping the eigenvalues relative to desired state (q d , qd ) from the right half plane (positive real part) to the left one (negative real part). More precisely, there exists a task integral gain K i (depends on the joint-dynamics and task gains) above which the closed-loop system is stable. This is justified by the fact that the task integral term K i penalizes the growing of qd and enforces it to converge to zero. Furthermore, the external perturbation effect is counterbalanced by qd allowing q to converge asymptotically to the reference position qref . Thus, we have reached the control objective stated in the beginning of this section: ensuring the stability of the desired state while taking the benefits of the reactive property of feedback closed-loop QP controller.

Our control objective has been reached by only taking partially into account the desired state in the heterogeneous feedback (3.25). One may ask why should not we take the full desired state into account in the feedback such that qd

= -Kx, K = K s K d K ii K i (3.28)
where K ii > 0 is the double integral feedback. Replacing (3.28) into (3.11), yields to

ẋ = A F-FB x +      0 aG 0 0      τ l , A F-FB =      0 1 0 0 -γ -β γ δ 0 0 0 1 -K s -K d -K ii -K i      .
(3.29)

Nevertheless, we shall show why our control objective is lost with this choice of K in Eq. (3.28). First, it is important to notice that given the linearity of system (3.11), LQR approach can be used to compute the optimal gain matrix K that ensures systematically the stability of the closed-loop system. This is definitely less conservative than hand-tuning of K i . However for simplicity, let us run the same simulation in Fig. 3.8 with 3

K s = 30, K d = √ K s , (a) 
.2, τ l = 5 Nm, K s = 30, K d = 2 √ K s , K i = θK d and K ii = K s for 0 ≤ t ≤ 5 s then K ii = 0 for t ≥ 5 s.
K ii = K s and K i = K d , all the other parameters are kept unchanged. Fig. 3.9 shows that indeed the closed-loop system is stable where A F-FB eigenvalues are

λ(A F-FB ) =     
-156.06 -2.66 -5.37 + 5.06i -5.37 -5.06i

     .
(3.30)

However, the perturbation effect is not completely counterbalanced where q does not converge to qref for 0 ≤ t ≤ 5 s. This is due to the fact that K ii also enforces qd to converge to qref . If an external perturbation is applied τ l = 0, qd and q cannot converge both to qref simultaneously. Hence, the former must be kept free from penalization to withdraw external perturbations. This can be observed in Fig. 3.9 where q does converge to qref only when qd is not penalized anymore (K ii = 0 for t ≥ 5 s). All in all, the full-state feedback (3.28) does ensure stability but does not allow the actual joint position q to converge to zero in the presence of external perturbation. Notice that coping with the latter is the main reason behind our willingness to design a stable feedback closed-loop control scheme.

In the next section, we use the same task formulation (3.25) for stable distanceconstraint formulation.

Stable Distance-Constraint Formulation

Let us consider the constrained QP (3.20) where K as in Eq. (3.25), and

K h = K h s K h d 0 K h i , (3.31)
with K h i > 0. Given the QP solution in Eq. (3.23), the desired joint acceleration is qd = -K h x, (3.32) if the distance constraint formulation (3.20b) is active. To show the efficiency of formulation (3.31), we run the same simulation in Fig. 3.6 (Section 3.2.3) with the same joint-parameters therein, K is taken as in Eq. (3.25) with K i = 0.1K d , K h s and K h d are computed according to Eq. (2.23). Similarly to Section 3.3.1, K h i = θK h d with θ > 0. The simulations results are shown in Fig. 3.10. Progressively increasing the constraint integral gain K h i > 0 leads to damping the oscillations at the constraint boundary qmax . In addition, qd counterbalances the external perturbation effect allowing a smooth convergence of q to qmax .

Conclusion

In this chapter, we investigated the stability of the closed-loop system containing a QP controller and a kinematic-controlled robot. We focused on studying the 1-DoF system constituted by an actuator servoed by a PD-controller whose input is computed by a QP. The simplicity of this system enabled us to study the subsequent effect on the whole system stability using different closed-loop control schemes. We analyzed the stability with the eigenvalues approach. We showed that the feedback closed-loop control scheme (Fig. 3.1(a)) is prone to instability depending on the task gains and joint-dynamics parameters. Based on these insights, we proposed an approach that ensures stability based on integral feedback at both the task and constraint levels.

Although the 1-DoF system case-study enabled us to have a good understanding of the instability problem, it suffers from the following drawbacks:

• The conducted study is specific to kinematic-controlled robots in which actuators are servoed by PD controllers whose input is the desired position. Nevertheless, there exist other kinematic-controlled robots in which joint-controllers accept the desired velocity as input. Furthermore, we assumed that the actuator electro-mechanic parameters and the joint P D gains are known. In practice, such parameters are often not known as they are fixed by the manufacturer and not intended to be released to the public. In addition, other joint-level servoing techniques can be used instead of joint-PD controllers;

• The stability of the proposed distance-constraint formulation leaks proofs. Indeed, only simulation evidence has been provided without a theoretical grounding;

• In general, QP control problems are formulated in task-space. Hence, generalizing this study and the proposed solution for the general case needs new control theory tools rather than those used in this chapter.

In the next chapter, we shall address the above issues. First, we formulate the QP in task-space. Then, we show how the proposed integral feedback is extended to the general case. Furthermore, and for theoretic-background compatibility, the closed-loop instability is explained from the perspective of robustness: since the task feedback control is model free, the feedback closed-loop scheme Fig. 3.1(a) leaks of robustness against non-modeled joint-dynamics and thereby may become instable. In addition, other nonmodeled dynamics like flexibilities (encountered in Chapter 2 for instance) are considered.

Chapter 4

Robust Task-Space QP for Kinematic-Controlled Robots

In the previous chapter, we studied the closed-loop stability in the case of 1-DoF kinematic-controlled robot. The conducted study permitted us to construct a good understanding of the source of closed instability: coupling between the task (resp. constraint) gains and the joint-dynamics parameters that leads the closed-loop system eigenvalues to be instable. Next, we proposed an integral feedback method that ensures the stability by finely tuning the integral gain.

In this chapter, we extend the approach proposed in Chapter 3 to the more general case: task-space QP formulation. However, this extension requires new theoretic tools and assumptions to make the approach generic enough for a larger class of kinematiccontrolled robots. First, we do not restrict our formulation to joint-controllers formulated as PD and whose input is the desired position. Instead, we construct our reasoning on a simple assumption largely validated by kinematic-controlled robots: the joint-dynamics is Input-to-State-Stable (ISS) w.r.t the external disturbance torque τ l . Next, the closed-loop stability is analyzed by the robustness against non-modeled dynamics: joint-dynamics, flexibilities, etc. In addition, the proposed robust task distance-constraint formulations are proved using Lyapunov and control barrier function theories, respectively.

In Section 4.1, we formulate the task-space QP controller with the joint-dynamics model. Then, we introduce control barrier functions. Then, in Section 4.2, we show how the integral feedback terms (3.26)-(3.31) in Chapter 3 are extended to task-space QP. The synoptic view of the proposed control scheme is shown in Fig. 4.1. Finally, we validate the proposed QP formulation with experiments conducted on HRP-4 humanoid robot as well as Panda robotic manipulator.

Task-Space QP Control Formulation

Joint-Dynamics

Following from Eq. (1.4), let x, x d ∈ R 13+2n defined as be the actual and desired states of the robot actuated DoF. Let us define φ as

x T = q T α T q , x T d = q T d α T q d , ( 4 
K s K s i K h K h i x FB d xd αq d x d x η s η s d2 η h η h d2 K s η s K s i η s d2 K h η h K h i η h d2 µ s µ h
φ = x -x d =       ξ -ξ d q -qd v -v d q -qd       ∈ R 13+2n , (4.3) where ξ -ξ d = p FB -p FB d q FB ⊗ q FB d -1 ∈ R 7
encompasses the Cartesian coordinates and orientation differences between ξ and ξ d (please, refer to Appendix A.11). In particular, let us define the joint-dynamics tracking error φ as

φ = x -xd ∈ R 2n .
(4.4)

x d and x dynamics are defined as

α x d = 0 I 6+n 0 0 x d + 0 I 6+n αq d , αq d = αFB q d qd , ( 4.5 
)

α x = α q αq , (4.6)
with αq d ∈ U where U ⊆ R 6+n is the set of αq d admissible values, αFB q d = vd ∈ R 6 is the desired floating-base (linear and angular) acceleration, qd ∈ R n is the desired joint acceleration. The actual floating-base state x FB T = ξ T v T ∈ R 13 is assumed to be bounded and estimated by an observer. From Eq. (4.5), x d follows a double integrator dynamics. More importantly, given a kinematic-controlled robot, the actual robot state is governed by the joint-dynamics1 defined as

φ = f φ( φ, τ l ), (4.7) 
where τ l ∈ R n is the bounded joint-space disturbance torque input. In this study, we consider that f φ is not known exactly but its main property is given by the following assumption.

Assumption 1. The joint-dynamics f φ in Eq. (4.7) is globally asymptotically stable at the origin for τ l = 0, and ISS w.r.t τ l = 0.

The IS-Stability ensures that, given bounded disturbance inputs τ l , the joint-dynamics tracking error φ evolves in a bounded set containing the origin (see formal definition in Appendix A.9). Assumption 1 is largely valid as it is among the main requirement for the well-functioning of a kinematic-controlled robot. φ in Eq. (4.3) reflects the effect of several kind of disturbances and uncertainties. Namely, non-modeled dynamics (e.g., transient joint-dynamics response w.r.t xd , flexibilities, etc.); hardware imperfections (e.g., joint-dynamics steady-state errors, etc.); external disturbance τ l = 0 (e.g., pushes, unexpected impacts, etc.); measurement and estimation noises (joint-velocity and floating-base estimations, etc.); and possibly others2 .

Remark 2. For a fixed-base robot, we have q = q and αq d = qd which implies that x = x (and respectively for the corresponding desired states).

Input-Output Task Dynamics

Let s : R 7+n → R m be the forward kinematics of a given task defined by m coordinates, and s ref (t), ṡref (t), sref (t) ∈ R m be the task references. Thus, we can define the following states

η s d (x d ) = η s d1 η s d2 = e d ėd = s(q d ) -s ref (t) J s d α q d -ṡref (t) ∈ H s ⊂ R 2m (4.8) η s (x) = η s 1 η s 2 = e ė = s(q) -s ref (t) J s α q -ṡref (t) ∈ H s ⊂ R 2m (4.9)
where J s d , J s ∈ R m×(6+n) are the task Jacobians computed w.r.t q d and q, respectively; η s d (x d ) and η s (x) denote the desired and actual task dynamics states, respectively. Using Taylor expansion and Eq. ( 4.3), a relation between η s and η s d is obtained as

η s (x) = η s (x d + φ) = η s (x) x=x d + ∂η s (x) ∂x x= x φ η s φ , x = x d + θφ = η s d (x d ) + η s φ , ∂η s (x) ∂x = J s 0 ∂(J s αq) q J s (4.10)
with 0 ≤ θ ≤ 1 and η s φ ∈ R m being the Lagrange remainder of Taylor expansion and denotes the mapping of φ in task-space. Hereafter, the dependency of η s d and η s on x d and x, respectively, is dropped.

Remark 3. In the multiplication ∂η s (x) ∂x x=

x φ, only the vector part of q FB ⊗ q FB d -1 is considered.

Given that e d in Eq. (4.8) has a relative-degree of 2

ëd = Js d α q d + J s d αq d -sref (t), (4.11)
then, the input-output task dynamics is obtained such that

ηs d = A η s d η s d + B η s d µ s (4.12) ż = f z (z, η s d ) (4.13) A η s d = 0 I m 0 0 , B η s d = 0 I m (4.14) µ s = Js d α q d + J s d αq d -sref (t) (4.15)
where z ∈ Z ⊂ R 13+2n-2m is called the internal-dynamics state as it is not observable from η s d [START_REF] Slotine | Applied nonlinear control[END_REF], and denotes the remaining redundancies [START_REF] Varghese | Zero dynamics in kinematically redundant robots[END_REF][START_REF] Varghese | Chaotic zero dynamics in kinematically redundant robots[END_REF]. Considering that η s d is the input, one important assumption is that the internal dynamics Eq. (4.13) is assumed to be ISS [START_REF] Isidori | The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story[END_REF] 3 . In Section 4.2.3, we show how this assumption is indeed valid by using a secondary task in a soft-prioritized QP Jin [2017]. µ s ∈ R m is the task-space control input affine in αq d Eq. (4.15). The control objective consists in formulating a task-space controller µ s that steers η s to the origin.

Distance Constraint Formulation with Barrier Functions

As we have seen in Chapter 2, the general form of a distance constraint is expressed as h(x) = δ(x) -δ min ≥ 0 (4. 16) where δ(x) ∈ R is a distance obtained by forward kinematics and defined in the space of interest as shown in Fig. 1.1 and δ min ∈ R is the minimum allowed distance. In Chapter 2, we proposed a constraint formulation with adaptive gains that ensures the fulfillment of constraint (4.16) forward in time using an analytical-based approach. Let us consider the set C = {x ∈ R 13+2n : h(x) ≥ 0}. The fulfillment of the constraint (4.16) forward in time can be equivalently achieved by enforcing C to be forward invariant (see definition in Definition A.5.1) via ECBF where h(x) is in fact a barrier function Nguyen and Sreenath [2016a]; [START_REF] Ames | Control barrier functions: Theory and applications[END_REF].

The benefit of ECBF is their ability to enforce C asymptotic stability and thereby its forward invariance by only verifying Lyapunov-like conditions without the need of an analytical solution. For an extensive survey about barrier functions, see [START_REF] Ames | Control barrier functions: Theory and applications[END_REF].

In Section 4.2.2, we introduce the notion of set robust stability, then we propose a robust formulation of ECBF that enforces this notion. First, we present in the next section the basics of ECBF formulation in order to follow the same notations afterward.

Exponential Control Barrier Function

Let us define the sets C and C d as

C = x ∈ R 13+2n : h(x) ≥ 0 (4.17) ∂C = x ∈ R 13+2n : h(x) = 0 (4.18) Int(C) = x ∈ R 13+2n : h(x) > 0 (4.19) C d = x d ∈ R 13+2n : h(x d ) ≥ 0 (4.20) ∂C d = x d ∈ R 13+2n : h(x d ) = 0 (4.21) Int(C d ) = x d ∈ R 9+k+2n : h(x d ) > 0 (4.22)
for a continuously differentiable BF h : R 13+2n → R. Hereafter, the following notations are adopted: h = h(x) and h d = h(x d ). Let us define the following states

η h d (x d ) = η h d1 η h d2 = h d ḣd = h d J h d α q d ∈ H h ⊂ R 2 (4.23) η h (x) = η h 1 η h 2 = h ḣ = h J h α q ∈ H h ⊂ R 2 (4.24)
where 6+n) are the BF Jacobians computed w.r.t q d and q, respectively. As in Eq. (4.10) and based on Eq. ( 4.3), we have the following

J h d , J h ∈ R 1×(
η h (x) = η h d (x d ) + η h φ , η h φ = ∂η h (x) ∂x x= x φ, ∂η h (x) ∂x =   J h 0 ∂(J h αq) q J h   (4.25)
where η h φ is the mapping of φ in the constraint-space. Similarly to Eq. (4.10), Remark 3 is considered as well for ∂η h (x) ∂x x=

x φ in Eq. (4.25). Similarly to Eq. (4.11), h d has a relative-degree of 2 ḧd = Jh

d α q d + J h d αq d (4.26)
Then as in Eq. (4.12), from Eq. (4.26) we get

ηh d = A η h d η h d + B η h d µ h (4.27) h d = C η h d η h d (4.28) A η h d = 0 1 0 0 , B η h d = 0 1 , C η h d = 1 0 (4.29) µ h = Jh d α q d + J h d αq d (4.30) Let µ h = -K h η h d ∈ R with K h = K h s K h d ∈ R 1×2 (4.31)
. From Eq. (4.27) and Eq. (4.28)

h d (t) = C η h d exp A CL η h d t η h d (t 0 ), A CL η h d = A η h d -B η h d K h . (4.32) Hence, if µ h ≥ -K h η h d ⇔ Jh d α q d + J h d αq d ≥ -K h η h d (4.33)
then following from the Comparison Lemma [Khalil 2002, Lemma 3.4]

h d (t) ≥ C η h d exp A CL η h d t η h d (t 0 ). (4.34)
If there exists a gain matrix K h such that h d (t) ≥ 0 in Eq. (4.34) whenever h d (t 0 ) ≥ 0, then h d is an ECBF, and C d is made forward invariant (see [Ames et al. 2019, Definition 7]). The gain matrix K h needs to satisfy two specifications: (i) A CL η h d eigenvalues must be realnegative, and (ii) h d (t) ≥ 0, ∀t ≥ t 0 , ∀x d (t 0 ) ∈ Int(C d ). In Chapter 2, we have shown how to compute such matrix K h .

Note that ECBF formulation (4.34) corresponds to the feedforward closed-loop QP control scheme in Fig. 3. 1(b) where the non-modeled dynamics are not accounted for, and thereby ECBF formulation (4.34) is called forward ECBF formulation. Unfortunately, it does not imply forward invariance of the set C d when the feedback closed-loop QP control scheme Fig. 3.1(a) is adopted (as previously shown in Section 3.2.3). Hence, the goal here is to formulate µ h ∈ R such that C d is robustly stable.

Robust Feedback QP Control Formulation

The proposed robust design of the QP controller consists of the following steps. The main result is given by Theorem 1 and 2 that show how µ s and µ h are formulated including integral feedback terms to ensure η s d and η h d convergence to a residual set, respectively, and thereby their boundedness. Then, Proposition 1 makes the bridge between the task-space state η s d and the corresponding robot state x d by showing that if the former is bounded then is the latter 4 . Finally, based on Assumption 1 and Proposition 1, Proposition 2 establishes the relationship between η s d and η s in terms of boundedness. Fig. 4.2 shows an overview of how the main results of this chapter are linked.

x d bounded µ s η s d bounded x bounded η h d bounded µ h η s (resp. η h ) bounded
Proposition 1. If η s d (resp. η h d ) is bounded, then x d is bounded. Proof. See Appendix B.1. Proposition 2. If η s d (resp. η h d ) is bounded then η s (resp. η h ) is bounded. Furthermore, if η s d (resp. η h d ) is (uniformly) ultimately bounded then η s (resp. η h ) is (uniformly) ultimately bounded. Proof. See Appendix B.2.
Let us now introduce the following states (4.35) 4. The vice-versa implication is straightforward.

ψ s =    η s 1 η s 2 η s d2    ∈ Ψ ⊂ R 3m , ψ h =    η h 1 η h 2 η h d2    ∈ Ψ h ⊂ R 3 ,
where Ψ and Ψ h are the sets of admissible values of ψ s and ψ h , respectively. These states shall be used for µ s and µ h formulations, respectively.

Global Robust Stable Task Formulation

When the solutions of the system Eq. (4.12) converge to a residual set Ω ⊂ H s with 0 ∈ Ω for all the initial conditions and admissible perturbations, η s d is said to be Robustly Globally Uniformly Asymptotically Stable w.r.t Ω (RGUAS-Ω). The robust stabilization problem consists in finding a feedback control µ s such that η s d is RGUAS-Ω. If the residual set Ω can be made arbitrarily small (but still not equal to origin), η s d is said to be robustly practically stable (see Definition A.10.1).

In the following, we state the main result of this subsection.

Theorem 1. Let us assume that η s φ is bounded. If

µ s = -L s ψ s , L s = K s s K s d K s i ∈ R m×3m , (4.36)
where K s s , K s i ∈ R m×m are diagonal positive-definite matrices, and

K s d is chosen such that A H-CL η s d = A η s d -B η s d Ǩs , (4.37) is Hurwitz, with Ǩs = [K s s K s d + K s i ], then there exists K s i such that η s d is robustly practically stable. Proof. See Appendix B.3.
Another result from Theorem 1 and thanks to Proposition 2, η s is ultimately bounded with ultimate bound ˜ . Theorem 1 shows that the integral term η s d2 (t) = t 0 µ s (s)ds (from Eq. (4.12)) enables some robust stability properties for the closed-loop system. The 'global' property comes from the fact that stability is ensured for every bounded η s φ . Furthermore, the 'practical' aspect denotes the ability of K s i (that can be tuned independently from K s s and K s d ) to reduce the effect of the perturbation as shown in Eq. (B.18) making the residual set Ω η s d arbitrarily small. This would intuitively suggest choosing high values of K s i , which leads to high robustness margins, but at the expense of damped dynamics. In fact, K s i η s d2 in Eq. (4.36) acts as a damping term tuned by K s i enforcing η s d2 convergence to 0 and thereby rendering the task dynamics slower. Another interesting aspect is that A H-CL η s d in Eq. (4.37) being Hurwitz implies that K s d can be chosen negative-definite as long as K s d + K s i is positive-definite. Indeed, let us assume K s d negative-definite and

K s i = -K s d with = 1 + 0 , 0 > 0 yielding to µ s = -K s s η s 1 -K s d η s 2 -K s i η s d2 = -K s s η s 1 + ε 0 K s d η s d2 + K s d (η s d2 -η s 2 ).
(4.38)

0 is then tuned to meet robustness condition Eq. (B.18). Eq. (4.38) shows that η s d2 mostly converges to zero while drifting toward η s 2 . This induces compliance w.r.t a given perturbation. This is similar to the joint-space leaky integrator proposed in Hopkins et al. [2015]. Nevertheless, our claim is that performing a task-space integral feedback is more intuitive and enables a better understanding of the underlying conditions on task gains tuning 5 . Hopkins et al. [2015], only experimental observations have been reported about the effect of the joint-space leaky integrator gain without any explicit condition on its values.

In

As it can be observed from Fig. 4.1, that setting K s i = 0, the output feedback in Eq. (2.5) is recovered for the feedback closed-loop QP control scheme Fig. 3.13.1a. Namely, the proposed approach does not constitute a substantial modification of the QP controller.

In the next subsection, we take inspiration from Eq. (4.36) to formulate Robust ECBF (RECBF) to enforce set robust stability.

Set Robust Stability Formulation

Let us define the sets C σ ⊂ R 13+2n and C dσ ⊂ R 13+2n with σ ≥ 0

C σ = x ∈ R 13+2n : h + σ ≥ 0 (4.39) ∂C σ = x ∈ R 13+2n : h + σ = 0 (4.40) Int(C σ ) = x ∈ R 13+2n : h + σ > 0 (4.41) C dσ = x d ∈ R 13+2n : h d + σ ≥ 0 (4.42) ∂C dσ = x d ∈ R 13+2n : h d + σ = 0 (4.43) Int(C dσ ) = x d ∈ R 13+2n : h d + σ > 0 (4.44)
Prior to introducing the main result of this subsection, we define set robust stability and RECBF. Robust stability is illustrated in Fig. A closed set S ⊂ R 13+2n is said to be robustly stable for a forward complete system Eq. (4.5) if there exist σ ≥ 0, a closed and forward invariant set S σ ⊂ R 13+2n , and an open R ⊆ R 13+2n with S ⊆ S σ ⊂ R such that S σ is asymptotically stable.

Let us now define RECBF used to enforce set robust stability. Definition 4.2.2. Given a set C d ⊂ R 13+2n defined as the superlevel set of a 2-times continuously differentiable function h d : R 13+2n → R, then h d is a RECBF if there exists µ h ∈ R such that for Eq. (4.5), sup

αq d ∈U Jh d α q d + J h d αq d + µ h ≥ 0 (4.45)
results in C d robustly stable.

Inspiring from Theorem 1, Theorem 2 proposes a formulation for µ h that guarantees the robust stability of C d .

Theorem 2. Let us assume η

h φ bounded. If µ h ≥ L h ψ h , L h = K h s K h d K h i (4.46)
where 

K h i > 0 and Ǩh = K h s K h d + K h i ∈ R 1×2 is

Sufficient Conditions for Lipschitz Continuity of Robust QP Solutions

Since Eq. (4.36) and Eq. (4.46) are affine in αq d , the tasks and constraints can be combined by means of the following weight-prioritized QP efficiently solved online

αq d = arg min 1 2 αT q d H(x d ) αq d + h(x d , x) T αq d (4.47a) s.t: C ineq (x d ) αq d ≤ d ineq (x d , x) (4.47b) C eq (x d ) αq d = d eq (x d , x) (4.47c) H(x d ) = i w s i J s i d T J s i d + w 0 S T S (4.47d) h(x d , x) = i w s i J s i d T ( Js i d α q d + L s i ψ s i -si ref (t)) + w 0 S T κ(x) (4.47e) C ineq (x d ) = -J h d (4.47f) d ineq (x d , x) = Jh d α q d + L h ψ h (4.47g) C eq (x d ) = J c d (4.47h) d eq (x d , x) = Jc d α q d (4.47i)
with the superscript (.) i denotes the task s i . w s is positive semi-definite weight and w 0 is any strictly positive infinitesimal weight [Bouyarmane and Kheddar 2018, Lemma 2] of a secondary task that solves the remaining redundancy, with S 6 is the selection matrix and κ(x) is a given joint-space feedback. It can be a full configuration (posture) task Bouyarmane and Kheddar [2011] or a velocity regulation task [START_REF] Basso | Task-priority control of redundant robotic systems using control lyapunov and control barrier function based quadratic programs[END_REF]. Inequality constraint (4.47b) denotes the RECBF formulation ensuring robust stability of C d , whereas Eq. (4.47c) stands for the no-slipping contacts at the feet as in Eq. ( 2.32) to have feasible floating-base solutions αFB q d where J c d is the contact Jacobian. It is important to investigate the Lipschitz continuity of αq d as it implies the existence and uniqueness of the closed-loop system solutions. Since Eq. (4.47d) is symmetric positive-definite [Bouyarmane and Kheddar 2018, Lemma 2] and Eq. (4.47h) is non-singular, and assuming that Eq. (4.47d)-Eq. (4.47i) are Lipschitz continuous w.r.t x d and x, then according to [START_REF] Morris | Sufficient conditions for the lipschitz continuity of qp-based multi-objective control of humanoid robots[END_REF], Theorem 1][Ames et al. 2017, Theorem 3] 6. For a fixed-base robot, S = I n . (2.5) at stiffness K s s = 500 leads to instability shown as fast oscillation of qd tracked by q. (b) Closed-loop system under heterogeneous feedback Eq. (4.36) at stiffness K s s = 800 where qd is kept bounded even though it is not well tracked by q, leading to a stable response.

αq d is unique and Lipschitz continuous.

Due to the subsequent conflicts that may arise between the different tasks, each task s i is likely to be achieved partially according to the associated weight w s i and the possible active constraints 7 in QP (4.47). This implicit relaxation is expressed as

µ s i = -L s i ψ s i + δ s i (t) (4.48)
with δ s i (t) ∈ R m assumed to be bounded δ s i (t) ≤ δ s i max , ∀t ≥ 0. Proposition 3 generalizes Theorem 1 to the case of multi-objective control.

Proposition 3. Consider Eq. (4.48) such that Theorem 1 conditions hold. Then, there exists K s i i ∈ R m×m positive-definite such that η s i d is practically robustly stable. Proof. See Appendix B.5.

Note that by the virtue of Proposition 3, Theorem 2 and Proposition 1, x d is stable (bounded) after double integration of αq d solution of QP (4.47).

Remark 4. In QP (4.47), only one RECBF constraint is considered. In the more general case, the QP constraints set encompasses: (i) several RECBFs (joint constraints, collision avoidance, CoM equilibrium region, etc.), (ii) EoM (1.7) for dynamic consistency, and (iii) explicit bounds on qd . Therefore, we highlight two important aspects: First, Theorem 2 assumes that U = R 6+n which may not hold. Second, since all the constraints have the same priority level, the QP will fail if these constraints are in conflict [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF]. An approach to solve this issue is proposed in Chapter 5.

Remark 5. In QP (4.47), only the desired acceleration αq d is considered as a decision variable to show explicitly how the QP is constructed to combine robust task stability

7. An inequality constraint is active if it is enforced as equality. (Eq. (4.36)) and set robust stability (Eq. (4.46)). Having f d as an additional decision variable in QP (4.47) does not call for a particular consideration since we are so far interested in terminal points governed by free motion tasks. From in implementation standpoint, f d are formulated as in (1.15) to remain inside the friction cone. scheme (4.49). However, it differs in two points: (i) the integral feedback is formulated at the task-space 8 ; and (ii) the integral term is added directly to the task feedback in QP cost-function and not post QP-computation which does not affect the optimality of QP solution conversely to Eq. (4.49).

To mitigate this issue, other approaches accounted for the joint-feedback in QP. [START_REF] Cisneros | Robust humanoid control using a qp solver with integral gains[END_REF] accounted for the velocity feedback in the dynamics and non-slipping constraint to ensure the feasibility of desired acceleration. However, the authors also considered the velocity feedback term on the underactuated part of the equation of motion (in the case of a humanoid robot), which significantly alters the dynamics and raises questions about the meaning of such virtual dynamics.

Conversely, [START_REF] Feng | Optimization based full body control for the atlas robot[END_REF]; [START_REF] Feng | Optimization-based full body control for the DARPA robotics challenge[END_REF] changed the QP architecture drastically by proposing a mixture between ID-QP and IK-QP where the latter computes the desired joint position and velocity (required by the joint-controllers) based on the feedforward scheme Fig. 3.1(b). However, the approach leaks formal stability proofs where only experimental evidence has been provided.

Other approaches resorted to lowering the task gains to mitigate the instability [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]; [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF].

More related to kinematic constraint formulation, it has been shown in [START_REF] Singletary | Safety-critical kinematic control of robotic systems[END_REF]; [START_REF] Molnar | Model-free safety-critical control for robotic systems[END_REF] that choosing high CBF gain leads to oscillations at the constraint boundary depending on the joint-dynamics. An energy-based CBF has been proposed to ensure conservative stability of the set C. However, the joint-dynamics model and parameters must be known.

Experimental Results and Discussion

To assess our robust QP controller and demonstrate its applicability to different usecases, experiments are conducted with two different robots: a fixed-base 7-DoF robotic arm Panda from Franka Emika, and a (floating-base) 34-DoF humanoid robot HRP-4 from Kawada Robotics. The latter is controlled in position at a frequency of 200 Hz. In contrast, the former can be controlled either in position or velocity modes at a control frequency of 1 kHz.

Both robots are controlled using the open source code implementation of the QP controller mc_rtc. Based on the embedded sensors data (encoders, IMU, Force/Torque (F/T) sensors, etc.), mc_rtc builds at each control-cycle the QP problem, based on userdefined tasks and constraints, and solves it. The QP decision variables are αq d and the contact forces f d . Each contact force between HRP-4 feet and the floor are yet enforced by Eq. (1.15) to remain within their linearized friction cone and prevent slippage. Then, αq d and f d are coupled through the dynamics constraint (1.13) to enforce QP to generate feasible and dynamically-consistent solutions of the floating-base αFB q d . As it is shown in Eq. (4.5) and Fig. 4.1, αq d is integrated twice to obtain x d , then the joint commands xd are sent to the actuated joint-controllers. The joint-velocity is estimated using numerical derivation for HRP-4, whereas it is delivered by the Franka Control Interface (FCI) for Panda 9 . The floating-base state x FB in Eq. (4.1) of HRP-4 is 8. The leaky-integrator Eq. (4.49) is recovered in the joint-space integral feedback Eq. (3.26) discussed in Chapter 3 when αq is formulated as a PD feedback.

9. The FCI joint-velocity estimation is a low-pass filtered finite-difference. estimated by a built-in kinematic-inertial observer based on an extended Kalman filter.

Task Robust Stability

The task gains correlate to accuracy (performing motions with high precision) and execution speed (controlling the overall task time). In this context, the Panda end-effector is controlled to perform a pick-and-place-like motion. Two target set-points (position and orientation) are defined (to which the end-effector converges back and forth). To have simple plots, only the target coordinate along the Y -axis varies with an amplitude of ±20 cm (Fig. 4.4). In this experiment, qd is the desired joint commands for the joint controllers (velocity mode).

QP Eq. (4.47) is formulated 10 such that the constraint set contains the kinematic constraints (joint-position and velocity constraints [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF]); whereas, for com-10. Since Panda is a fixed-base robot, the notations in Remark 2 are followed in Section 4.3.1. parison purpose, the task is formulated using: (i) output feedback Eq. (2.5), (ii) heterogeneous feedback Eq. (4.36). The task gains are set as K s d = 2 √ K s s and K s i = K s d with ε = 0 for Eq. (2.5) and ε = 1 for Eq. (4.36). K s s is initially set to 400, then it is increased overtime by increments of 50 (K s d and K s i are updated accordingly). The experiment results are shown in Fig. 4.5. For K s s ≤ 450, both feedback con- Given the placement of the F/T sensors in Fig. 4.9, a torque of -22 Nm denotes a force of approximately 220 N along Z axis at the backward edge of each foot which is the amount of force sensed at each foot when the robot is standing.

trols (2.5) and (4.36) lead to a stable convergence to the targets. However for K s s = 500, the closed-loop system with output feedback (2.5) becomes instable (Fig. 4.5(a)) where strong oscillation and discontinuous motion appear at the end-effector mostly visible along the Z-axis (Fig. 4.7). This jerky motion can be very dangerous for the robot (it drastically accelerates the wear of actuators and robot's structure) as well as the surrounding people or objects in the robot neighborhood. Conversely, heterogeneous feedback (4.36) allows to reach robustly the targets while K s s keeps increasing up to 850 (Fig. In Fig. 4.5(b)-(d), we decided to stop at stiffness K s s = 850 as, due to hardware limits, further increasing the task gains has no effect on the convergence performance (Fig. 4.6(b)). Although the joint controllers reached their maximum tracking performances, our approach enables a stable motion even though the task gains keep increasing and imposing a desired dynamics that the robot cannot achieve. Hence, ensuring the closed-loop stability property is crucial, whatever the task gains and whatever the jointdynamics.

Set Robust Stability

As an example of a critical safety feature in humanoids is the dynamic balance (equilibrium) that is given a higher priority over the manipulation tasks. This is achieved by enforcing the CoM to remain inside a computed equilibrium region, e.g., Audren and showing the response against a brief push. Kheddar [2018]; [START_REF] Samadi | Humanoid control under interchangeable fixed and sliding unilateral contacts[END_REF].

In this experiment, a conservative CoM equilibrium polygon is defined for the humanoid robot . A sequence of Cartesian targets is defined for the right hand to be reached. These targets are intended to bring the CoM to reach the polygon boundaries. Rubber bushes and dampers are present under the robot's ankles to absorb the impact at the feet while walking (Fig. 4.9). This shock-absorbing mechanism creates uncontrolled flexibilities between the ankle and the feet, resulting in perturbations affecting the CoM and the estimations of the floating-base state. Moreover, the joints' steady-state tracking errors and the floating-base IMU noise affect the CoM estimation (denoted CoM (x) ∈ R 3 ).

The robot CoM is constrained to remain within the equilibrium polygon by defining inequality constraints on the distance between CoM (x) and the polygon features. Hence, the barrier functions h i and h i d corresponding to each equilibrium polygon feature i are computed as

h i = n i T CoM (x) + ∆ i , (4.50) h i d = n i T CoM (x d ) + ∆ i , (4.51)
where n i ∈ R 3 is the i th feature's normal vector and ∆ i ∈ R is the distance at which the feature is placed w.r.t the origin. From Eq. (4.50)-Eq. (4.51), the sets C i and C i d are defined as in Eq. (4.17)-Eq. (4.19) and Eq. (4.20)-Eq. (4.22), respectively. QP (4.47) is formulated to steer the right hand to its targets. If h i ≤ 4 cm then the RECBF constraint Eq. (4.46) is inserted into the constraint set of Eq. (4.47). Finally, contact forces constraint Eq. ( 1.15) is considered to have feasible and dynamically-consistent floatingbase solutions αFB q d . Dynamic-consistency refers to the fact that the CoM deceleration generated by the RECBF relies (dynamically speaking) on the contact forces. In this experiment, qd is the desired joint commands for the joint controllers.

For comparison purpose, three identical experimental scenarios have been conducted using the different closed-loop QP control schemes shown in Fig. 3 The results are shown in Fig. 4.10. In the three experiments, the stiffness K h s is computed as shown in [START_REF] Djeha | Adaptive-gains enforcing constraints in closed-loop qp control[END_REF] 

(Theorem 2). For Experiments 1-2, K h d = 2.4 K h s .
In Experiment 1 (Fig. 4.10(a)), the robot state x is not fed-back to QP. We can see that CoM (x d ) is within the limits and the set C d (4.20)-(4.22) is rendered forward invariant. However, since the robot is not taken into account in the closed-loop system, forward invariance is not ensured for the set C Eq. (4.17)-Eq. (4. [START_REF] Dehio | Dual-arm box grabbing with impactaware mpc utilizing soft deformable end-effector pads[END_REF]. The mismatch between CoM (x d ) and CoM (x) leads the latter to overshoot the X max limit with an amount of 2 cm, then to completely drifts away from the equilibrium region at t = 50 s leading the robot to lose balance.

In Experiment 2 (Fig. 4.10(b)), the robot state is considered in closed-loop, but the ECBF formulation leads to instability. The bold dashed line shows the moment when ECBF constraint relative to X max boundary is inserted. Instantaneously, CoM (x d ) velocity along X-axis starts to decrease (brown dash-dotted line). Nevertheless, CoM (x) velocity does not decrease immediately, causing CoM (x) to keep moving toward X max boundary. This lag is due to the flexibility.

In fact, the QP controller relies mainly on the ankles joints to move the CoM since the ECBF-produced deceleration is mapped mainly to the ankles joints through Eq. (4.30) because a little motion at the ankles leads to a larger motion of the robot whole-body. However, the flexibilities act like underdamped dynamics, which delays the effect of the desired CoM deceleration, letting the whole-body inertia move forward. Consequently, the error between CoM (x d ) and CoM (x) states (encoded by η h φ ) increases: at t = 13 s, CoM (x d ) velocity is zero whereas CoM (x) is heading toward X max boundary with a velocity of 0.10 m/s. Then at t = 13.3 s, CoM (x) velocity reaches zero while CoM (x d ) is close to X min boundary with a velocity of -0.16 m/s. When CoM (x) starts moving backward, its velocity increases highly leading to insert the ECBF constraint (relative to X min boundary) with CoM (x) velocity reaching -0.22 m/s. At this point, the needed deceleration to stop CoM (x) at X min boundary is high enough to make the QP enable to find feasible contact forces fulfilling Eq. (1.15) (Fig. 4.12): the required deceleration is not dynamically-consistent and leads the feet to tip over (Fig. 4.13).

In Experiment 3 (Fig. 4.10(c)), the constraint integral gain

K h i = 8.4 K h s , whereas K h d = -1.2 K h s < 0. Note that Theorem 2 requirements are satisfied since K h d + K h i > 0
and thereby the eigenvalues of A H-CL η h d in Eq. (B.21) are strictly negative. In particular, RECBF constraint (4.46) writes similarly to Eq. (4.38)

µ h ≥ -L h ψ h , ≥ -7.2 K h s η h d2 -0.6 K h s η h d2 -η h 2 -K h s η h 1 .
(4.52)

The feedback term η h d2 -η h 2 11 in Eq. (4.52) happens to be extremely beneficial to withstand the flexibilities effect. In fact, Fig. 4.11 shows that, when Eq. (4.52) relative to X max boundary is inserted, CoM (x d ) velocity decreases immediately then converges to zero while complying with CoM (x) velocity (X coordinates). Consequently, the delay between CoM (x d ) and CoM (x) states is lowered. This compliance behavior is the key factor behind avoiding over-regulation that leads to excessive deceleration in Experiment (2). Also, comparatively to Experiment 1, η h d compensates for the static error between CoM (x d ) and CoM (x) allowing the latter to converge asymptotically to the polygon boundaries. More related to Theorem 2, both sets C d and C is rendered robustly stable, where the maximum overshoots along X and Y axes are: X overshoot max = 5.5 mm, X overshoot min = 3.2 mm, Y overshoot max = 6.5 mm, Y overshoot min = 4 mm. A fourth experiment is conducted to show the robust stability of C d against external pushes using the same RECBF constraint (4.52). Because of the high-stiffness joint controllers and high gear ratio, the effect of the external disturbance forces is hardly observed at the joints. Yet, it can be measured by the floating-base observer, thereby affecting the CoM (x) state.

First, a Cartesian target is defined for HRP-4 right hand such that CoM (x) reaches the equilibrium polygon boundaries X max and Y max . Then, the robot receives multiple external pushes from the operator (at the back and the shoulders) along X and Y axes (Fig. 4.14). Three persistent disturbance forces are applied, followed by two brief disturbances, which lead the flexibilities effect to emerge (Fig. 4.15). During the whole experiment, CoM (x) is pushed away from the polygon boundaries with a distance of at least 2 cm. During the persistent disturbance forces, CoM (x d ) reacts against the disturbances by enforcing CoM (x) to converge back to the equilibrium polygon boundaries (Fig. 4.15(b)). In the other hand, CoM (x) converges asymptotically to the polygon boundaries when applying the brief perturbations by damping the flexibilities perturbations (Fig. 4.15(c)). Similarly to Experiment 3, the sets C d and C are rendered robustly stable.

Conclusion

In this chapter, we propose a stable and robust closed-loop implementation of the task-space QP control scheme for kinematic-controlled robots. Our solution allows task and set robust stability in the presence of non-modeled dynamics like joint-dynamics, flexibilities, and external disturbances.

Our approach consists of including integral feedback terms at both task and distanceconstraints levels that lead to a robust convergence of their trajectories to the respective residual sets. Our method does not need the exact knowledge of the joint-dynamic model but requires it to be ISS. Several experiments have been conducted on both floatingbase and fixed-base robots to assess our new QP controller. Although not tackled in this chapter, our approach can be straightforwardly extended to contact force control formulated as an admittance task [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF].

One critic of the proposed method is the conservativeness of the choice of the integral feedback gains K s i and K h i . Theorems 1 and 2 do only prove the existence of integral gains. A constructive method to tune these gains is still missing. Consequently, the integral gains are hand-tuned.

In the next chapter, we enhance the closed-loop QP control scheme with an MPCbased reference governor. We show how this interesting design enables us to address the issue of constraints compatibility discussed in Section 1.4.3.

Chapter 5

MPC-based Constraints Compatibility for Whole-Body QP Control

In the previous chapter, we proposed a robust feedback closed-loop QP control formulation in the case of kinematic-controlled robots. Task and set robust stability have been formally proved and validated in real experiments. In particular, the kinematic constraints, formulated in terms of αq , are introduced to QP online in the vicinity of the boundary.

So far, state-of-the-art prioritized multi-objective QP approaches focused on smooth online tasks introduction, removing or priority swapping to lower the subsequent discontinuity that may occur at the joint-acceleration and torque. On the other hand, the constraints have a higher priority over the tasks. The latter are generally achieved 'at best' while fulfilling all the constraints. Unfortunately, introducing constraints online may make the QP infeasible (as explained in Section 1.4.2 and exemplified in Fig. 1.2). In fact, all the constraints have the same level of priority. Consequently, if at least two constraints conflict, the constraint-set becomes empty. We say then that these constraints are incompatible [START_REF] Decré | Extending itasc to support inequality constraints and non-instantaneous task specification[END_REF]; [START_REF] Rubrecht | Constraints compliant control: constraints compatibility and the displaced configuration approach[END_REF]; del [START_REF] Del Prete | Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators[END_REF]; [START_REF] Meguenani | Safe control of robotic manipulators in dynamic contexts[END_REF]. This situation is typically exemplified by the collision avoidance constraint formulated as in Chapter 2 and the hardware limitations. If the collision avoidance constraint requires joint acceleration amplitudes higher than what is affordable by the hardware limitations, then the QP fails to find a solution that satisfies both constraints (Fig. 1.2(d)). This is expected as the collision-avoidance constraint formulation does not account for the hardware limitations. [START_REF] Ames | Integral control barrier functions for dynamically defined control laws[END_REF] proposed a holistic CBF formulation to avoid collisions while incorporating the control input bounds. However, the latter are considered constant, and the approach has been validated on a low dimension toy-example only. More importantly, even if the hardware limitations are ignored from the QP constraint set to avoid infeasibility, the actuators cannot effectively apply the desired joint acceleration and the robot finishes by colliding with the object in question.

The main reason for this infeasibility is the Whole-Body QP (WBQP)1 myopia. Being purely reactive, the WBQP controller solves the optimization problem based on the current robot state. However, dealing with potential incompatible constraints requires a prediction of the future robot states to know what are the current actions to do to ensure the viability of the control problem in the next iterations.

Since the robot motion is essentially driven by the tasks' dynamics defined in QP, our idea is to ensure the constraints compatibility at the task level by modifying task targets to account for the hardware limitations and collision constraints. For instance, instead of arbitrarily defining set-point or trajectory references and let the QP constraints take care of avoiding collisions at the risk of running into infeasibility, we compute a sequence of optimal targets that converge to the reference targets while satisfying the hardware limits and avoiding collision if any (Fig. 5.1). These optimal targets are computed by the so-called reference governor (see [START_REF] Bemporad | Reference governor for constrained nonlinear systems[END_REF], and also a recent survey in [START_REF] Garone | Reference and command governors for systems with constraints: A survey on theory and applications[END_REF]. In this chapter, we propose to formulate such a reference governor using a linear MPC layer on top of the closed-loop system constituted by the WBQP controller and the robot. Based on the system's closed-loop dynamics, the MPC predicts the robot state over a finite horizon and enforces the different constraints on these predicted states. Hence, MPC outputs constraints-compatible optimal targets to be tracked by the WBQP tasks. In Section 5.1, we expose the control problem. Then, we explicit the proposed closed-loop MPC-WBQP in Section 5.2 where we derive the MPC dynamic model and explicit the MPC implementation. In Section 5.3, we validate the proposed approach in simulation.

Problem Definition

We here consider a fixed-base manipulator moving in free space without contacts (the notations in Remark 1 are followed). The joint position, velocity and acceleration are denoted as q, q, q ∈ R n . The multi-body robot dynamics writes M(q) q +N(q, q) q +τ g = τ . Furthermore, mechatronic hardware limits are encoded as lower and upper bounds on joint accelerations qmin ≤ q ≤ qmax and joint torques τ min ≤ τ ≤ τ max . The kinematic mapping between the robot end-effector position and the joint-space is formulated as

p = f p (q) ∈ R m , ( 5.1) 
ṗ = J p q ∈ R m , ( 5.2) 
p = J p q + Jp q ∈ R m . (5.3)
Let the primary task-space objective given by reference end-effector position, velocity and acceleration targets p ref (t), ṗref (t), pref (t) ∈ R m , and reference joint-space positions, velocities and accelerations q ref (t), qref (t), qref (t) ∈ R n . Furthermore, the robot safety is handled by keeping its configuration inside a set C defined as C = {q ∈ R n : h(q) ≥ 0} where h(q) is barrier function denoting the distance to the boundary h(q) = 0 and which has to remain positive. Hereafter, we drop the potential dependencies on time and q for ease of reading.

Let us denote the constant user-defined proportional-derivative gains as diagonal matrices P p , D ṗ ∈ R m×m . These allow formulating the task-space PD-feedback as

ppd = pref -P p (p -p ref ) -D ṗ( ṗ -ṗref ), (5.4) 
where the task-space references p ref , ṗref , pref ∈ R m are taken directly from a pre-planned trajectory or a static set-point target ( ṗref = pref = 0). For redundant robots, PDfeedback applies also in joint-space with diagonal matrices P q , D q ∈ R n×n to solve the remaining redundancies qpd = qref -P q (qq ref ) -D q( qqref ).

(5.5)

To enforce the forward invariance and asymptotic stability of the set C, q must remain in the set defined by the ECBF constraint as shown in Chapters 2 and 4

ḧ + K h d ḣ + K h s h ≥ 0, (5.6) 
with ḣ = J h q, ḧ = J h q + Jh q where J h ∈ R 1×n is the barrier function Jacobian. In the context of multi-objective control, the two control objectives (5.4) and (5.5) are combined via a soft-hierarchy WBQP, which accounts for hardware limits and the robot safety min q w p 2 J p qppd -Jp q 2 + w q 2 qqpd 2

(5.7a) s.t: qmin ≤ q ≤ qmax (5.7b)

τ min -N q -τ g ≤ M q ≤ τ max -N q -τ g (5.7c) J h q + Jh q + K h d ḣ + K h s h ≥ 0 (5.7d)
where w p, w q > 0 are the control objectives' weights. Each of the constraints Eqs. (5.7b) to (5.7d) defines a set

F q = { q ∈ R n : Eq. (5.7b)} , ( 5.8) 
F τ = { q ∈ R n : Eq. (5.7c)} , ( 5.9) 
F h = { q ∈ R n : Eq. (5.7d)} . (5.10)
It is a common assumption to consider the WBQP Eq. (5.7) feasible [START_REF] Morris | Sufficient conditions for the lipschitz continuity of qp-based multi-objective control of humanoid robots[END_REF]; [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF][START_REF] Ames | Control barrier functions: Theory and applications[END_REF][START_REF] Ames | Integral control barrier functions for dynamically defined control laws[END_REF]. That is to say, the feasibility domain F QP

F QP = q ∈ R n : F q ∩ F τ ∩ F h = ∅. (5.11) 
To ensure safety while being minimally invasive [START_REF] Tan | High-order barrier functions: Robustness, safety and performance-critical control[END_REF], ECBF constraint Eq. ( 5.6) is typically inserted online in WBQP if h is sufficiently close to the boundary h = 0. Nevertheless, the resulting F QP in Eq. (5.11) is not guaranteed to be non-empty. In particular, if the necessary joint deceleration required by F h to ensure safety cannot be allowed by the hardware limits, these constraints are incompatible, and QP fails to find a feasible solution (Fig. 1.2(d)).

This limitation is due to the purely reactive nature of WBQP, which renders it myopic: it does not predict the system trajectories, and thereby potential constraints conflict. Thus, the robot may run into non-desirable joint configurations, singularities, or even infeasibility due to incompatible constraints.

Hence, our approach consists of implementing a reference governor as an MPC layer on top of the reactive WBQP controller (5.7) and to which we delegate the task of constraints compatibility by modifying, if necessary, the reference targets (Fig. 5.2). The MPC predicts the robot states and enforces the hardware limitations and safety constraints along the preview horizon. Then, it computes a sequence of optimal targets p * , ṗ * , p * ∈ R m and q * , q * , q * ∈ R n forwarded to the WBQP tasks Eqs. (5.4) and (5.5), respectively. By construction, the generated optimal target sequence converges toward the reference targets by following a path that is constraints-compatible, i.e., ensures both safety constraints and hardware limits. Our strategy consists then of removing ECBF constraint Eq. ( 5.6) from WBQP and keeping only the hardware limits. Furthermore, MPC-WBQP enables a richer and more complex task-space robot motion compared to the straight-line-like motion obtained with the reactive WBQP controller for set-point targets.

Note that our aim is not to supersede the WBQP by MPC. Instead, the latter is implemented as an adds-on control scheme encapsulating the stable inner loop constituted by the robot and the WBQP controller to mitigate the latter myopia. This architecture (similar to the one in [START_REF] Grandia | Multi-layered safety for legged robots via control barrier functions and model predictive control[END_REF]; [START_REF] Tan | Minimization of the rate of change in torques during motion and force control under discontinuous constraints[END_REF]) enables running the MPC at a lower frequency than the WBQP. Our approach is more generic than [START_REF] Tan | Minimization of the rate of change in torques during motion and force control under discontinuous constraints[END_REF] as the MPC directly modifies the reference targets, and it can encompass safe foot placement for quadruped locomotion as in [START_REF] Grandia | Multi-layered safety for legged robots via control barrier functions and model predictive control[END_REF]. Other approaches formulated whole-body MPC controller, which renders the MPC computation-time critical w.r.t the real-time requirements. Safety-critical MPC has been proposed in [START_REF] Zeng | Safety-critical model predictive control with discrete-time control barrier function[END_REF]. However, the approach has been validated in simulation for low-dimension racing cars collision avoidance. Recently, [START_REF] Kleff | High-frequency nonlinear model predictive control of a manipulator[END_REF] proposed a real-time implementation of whole-body nonlinear MPC on 7-DoF robotic arm. However, the constraints are handled conservatively in the cost-function.

In the next section, we detail our MPC implementation. First, we construct the model of the inner loop constituted by the WBQP controller and robot based on the closed-form solution of a weighted-prioritized WBQP. After that, we define the MPC cost-functions and constraints.

Task-space MPC with Soft-Hierarchy WBQP

The first step in formulating MPC is to have the dynamic model of the inner-loop to be controlled by MPC. Since the MPC computes optimal targets for the tasks, the inner-loop denotes the closed-loop formulation of the tasks combined in WBQP. To do so, we need first to compute the closed-form solution of the WBQP (5.7) in terms of q, which is then mapped to the task-space to have the corresponding closed-loop task dynamics. Nevertheless, the existence of inequality constraints in WBQP (5.7) makes it impossible to have an exploitable closed-form solution q. In what follows, we consider the unconstrained WBQP (5.7). Then, we show how the constraints can be implemented in MPC.

Weighted-Prioritized QP Closed-form Solution

Let us consider the WBQP (5.7) without constraints

min q w p 2 J p q -ppd -Jp q 2 + w q 2 q -qpd 2 , ( 5.12) 
which can be written in a compact form min

q 1 2 √ w pJ p √ w qI q - √ w p ppd -Jp q √ w q qpd 2 .
(5.13)

The closed-form solution of the compact WBQP (5.13) is given as

q = √ w pJ p √ w qI + √ w p ppd -Jp q √ w q qpd , ( 5.14) 
where the superscript (.) + denotes the Moore-Penrose inverse √ w pJ p √ w qI

+ = √ w pJ pT √ w qI √ w pJ p √ w qI -1 √ w pJ pT √ w qI = w pJ pT J p + w qI -1 G √ w pJ pT √ w qI = √ w pGJ pT √ w qG ∈ R n×(m+n)
.

(5.15)

By replacing (5.15) into (5.14), we get

q = √ w pGJ pT √ w qG √ w pI 0 0 √ w qI ppd -Jp q qpd , = w pGJ pT w qG ppd -Jp q qpd , = J p J q ppd -Jp q qpd , J p ∈ R n×m , J q ∈ R n×n , = J p ppd -Jp q + J q qpd .
(5.16)

The closed-form solution (5.16) is mapped to task-space using Eq. ( 5.3) such that p = J p J p ppd -Jp q + J p J q qpd + Jp q.

(5.17) Furthermore, q in Eq. (5.16) can be mapped to define the dynamics of any other state of interest. In particular, we can define the dynamics of the distance h as shown in Eq. ( 4. 16) such that (5.20) where J h ∈ R 1×n is the distance Jacobian. Then, by replacing (5.16) into (5.20), we get ḧ = J h J p ppd -Jp q + J h J q qpd + Jh q (5.21) Finally, Eq. ( 5.16), Eq. ( 5.17) and Eq. ( 5.21) enables us to construct the dynamic model for the MPC.

h = f h (q) ∈ R, (5.18) ḣ = J h q ∈ R, (5.19) ḧ = J h q + Jh q ∈ R

Task-space MPC Formulation

Let us consider the following state vector (5.22) and the control input vector

s =           p ṗ q q h ḣ          ∈ R 2m+2n+2 ,
u =           p * ṗ * p * q * q * q *           ∈ R 3m+3n . ( 5.23) 
From Eq. ( 5.16) Eq. ( 5.17) and Eq. ( 5.21), the continuous-time state-space model is obtained as (5.26) In order to predict the trajectories of the dynamic system (5.24) over a preview horizon T preview , A c and B c need to remain constant. This implies subsequently constant Jacobians J p and J h , and their derivatives Jp and Jh . This a valid assumption since the robot configuration is considered to undergo small changes during T preview . In addition, the prediction requires the discretization of (5.24) using the time step ∆t during which s and u are constant, and such that N ∆t = T preview with N ∈ N is the preview-horizon length, which yields to (5.27) where the subscript (.) i denotes the state or command at t = i∆t, i = 0, . . . , N , and Based on the discrete-time model (5.27), the preview model is constructed such that (5.32) where s 0 is the initial state, s denotes the stack of predicted states and u is the stack of control input sequence along the preview horizon T preview . The MPC computes u that minimizes a sum of weighted quadratic cost-functions and a set of constraints on u and s. In the next subsection, we detail the MPC cost-functions and constraints formulation.

ṡ = A c s + B c u, A c ∈ R (2m+2n+2)×(2m+2n+2) , B c ∈ R (2m+2n+2)×(3m+3n) (5.24) 
A c =            0 0 0 J p 0 0 -J p J pP p -J p J pD ṗ -J p J qP q -J p J p Jp +J qD q + Jp 0 0 0 0 0 I 0 0 -J pP p -J pD ṗ -J qP q -J p Jp -J qD q 0 0 0 0 0 J h 0 0 -J h J pP p -J h J pD ṗ -J h J qP q -J h J p Jp +J qD q + Jh 0 0            (5.25) B c =           0 0 0 0 0 0 J p J pP p J p J pD ṗ J p J p J p J qP q J p J qD q J p J q 0 0 0 0 0 0 J pP p J pD ṗ J p J qP q J qD q J q 0 0 0 0 0 0 J h J pP p J h J pD ṗ J h J p J h J qP q J h J qD q J h J q          
s i+1 = A d s i + B d u i ,
A d , B d are the discrete-time formulation of A c , B c , respectively such that DeCarlo [1989] A d B d 0 I = exp A c B c 0 0 ∆t (5.28) WBQP MPC Double Integrator s(.) (5.22) Robot q [q d qd ] [q q] s 0 u 0 (a) WBQP MPC s(.) (5.22) Robot τ [q q]
s = As 0 + B u, (5.29) s = 
    s 1 . . . s N +1     ∈ R (2m+2n+2)(N +1) , u =     u 0 . . . u N     ∈ R (3m+3n)(N +1) , (5.30) 
A =        A d A 2 d . . . A N +1 d        ∈ R (2m+2n+2)(N +1)×(2m+2n+2) , (5.31) B =        B d 0 0 • • • 0 A d B d B d 0 • • • 0 . . . . . . . . . . . . . . . A N d B d A N -1 d B d A N -2 d B d • • • B d        ∈ R (2m+2n+2)(N +1)×(3m+3n)(N +1) ,

MPC Cost-Functions and Constraints

Generally, the criteria to be minimized in the cost-functions denote the desired performances that the closed-loop system should enjoy. Often, not all the performance criteria can be simultaneously met. Hence, depending on the context and application, the criteria describing the desired behaviors the robot should follow are given high weights compared to other criteria intended mainly for optimization purposes. Conversely, the constraints describe the limitations and bounds on both the control input and the state and have a higher priority over the performance criteria. These constraints are qualified as 'soft' (small violation is tolerated) or 'strict' (cannot be violated).

For instance, we can define the following performance criteria:

• steer the control input toward the reference targets:

min w 1 2 u i -u ref 2 = min w 1 2 u i -           p ref ṗref pref q ref qref qref           2 ,
(5.33)

• minimize the tracking error between the state and reference targets:

min w 2 2     
I 0 0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 along with the following the constraints:

     s i -      p ref ṗref q ref qref      2 = min w 2 2 Cs i + d 2 , ( 5 
• joint position constraint:

q + α (qq max ) ≤ 0 (5.37) q + α (qq min ) ≥ 0 (5.38) αq min ≤ 0 0 αI I 0 0 s i ≤ αq max , (5.39)

• joint velocity constraint:

qmin ≤ 0 0 0 I 0 0 s i ≤ qmax , (5.40) • joint acceleration constraint:

qmin ≤ 1 ∆t 0 0 0 I 0 0 ((A d -I) s i + B d u i ) ≤ qmax , ( 5.41) 
• dynamic constraint

τ min ≤ M qi + N qi + τ g ≤ τ max , τ min -τ g ≤ M ∆t 0 0 0 I 0 0 (A d -I) + N 0 0 0 I 0 0 s i + M ∆t 0 0 0 I 0 0 B d u i ≤ τ max -τ g ,
(5.42)

• distance constraint formulation: ḣi + αh i ≥ 0, α > 0, 0 0 0 0 1 α s i ≥ 0.

( 5.43) with α denoting the convergence profile to the boundary. The lower α, the smoother the convergence, and the earlier the deceleration.

These control performances and constraints are not exhaustive. In fact, we can further consider other control objectives like minimizing the joint jerk ˙˙q 2 and Cartesian velocity of the end-effector position ṗ.

Note that the joint-position and distance constraints could well have been simply formalized as (in a generic form) h i ≥ 0.

(5.44)

Nevertheless, this formulation is not convenient. As we have shown in Chapter 2 and Chapter 4, the constraint formulation needs to ensure two properties: the forward invariance and asymptotic stability of the set C = {q ∈ R n : h(q) ≥ 0}. The former property ensures that the constraint will be satisfied forward in time if h 0 ≥ 0, whereas the latter guarantees the converges to C if h 0 < 0. Indeed, Eq. ( 5.44) does enable the first property but not the second. On the hand, the formulation Eq. ( 5.43) exploits the CBF formalism (refer Definition A.8.1) [START_REF] Ames | Control barrier functions: Theory and applications[END_REF] and thereby does ensure the two above properties: ḣ = 0 if h = 0 (stop at the constraint boundary) and ḣ > 0 if h < 0 (increase the distance to converge back to h = 0). To ensure the MPC feasibility, slack variables δ ∈ R d can be considered to relax the soft constraints that are potentially in conflict with other hard constraints. d ∈ N is then the number of relaxed constraints. For example, the relaxed distance constraint is ḣi + αh i + δ i ≥ 0, δ i ∈ R

(5.45)

The command vector is then extended to include the slack variables ũT = δ T u T , and accordingly the matrix Bd = 0 B d . Hereafter, the tilde sign is dropped for ease of notations. In addition, the cost-function w 5 δ 2 is then added to penalize the slack variables amplitude. Another key reason for formulating the joint-position constraint as a joint-velocity constraint in Eq. (5.39) is to reduce the size of the slack variables dimension d, and optimize the computation time. In fact, instead of using δ ∈ R d=2n to relax separately the joint-position (expressed as in Eq. ( 5.44)) and velocity constraints Eq. (5.40), only δ ∈ R d=n is sufficient to relax both constraints since they are expressed in terms of velocity in Eq. ( 5.39) and Eq. (5.40). Slack variables could have also been considered to ensure the feasibility of the reactive WBQP by relaxing (softening) some or all the constraints. Yet, this will only ensure point-wise-in-time feasibility at the expense of constraints satisfaction Zeng et al. [2021a]. In contrast, relaxed MPC ensures the feasibility along the preview horizon with the predicted states. Furthermore, we show in the experiment section that the relaxation of the constraint Eq. ( 5.43) does not necessarily imply the violation of the distance constraint.

Using the compact system model Eq. (5.29), all the weighted cost-functions from Eq. ( 5.33) to Eq. ( 5.36) and constraints from Eq. ( 5.39) to Eq. ( 5.43) can be expressed in a compact form that depends only on u, and which yields to the following linear MPC formulated as a weighted-prioritized QP At each MPC instantiation, the initial state s 0 is computed based on the actual robot state using the sensory feedback. Once the MPC computation is performed, only the first control component u 0 is sent as optimal targets for the end-effector and posture tasks defined in the WBQP such that ppd = p * -D ṗ ( ṗṗ * ) -P p (pp * ) (5.47) qpd = q * -D q ( qq * ) -P q (qq * ) (5.48)

Then, WBQP computes the joint commands (joint-torque τ for torque-controlled robots, and joint-acceleration q double integrated to have q and q for kinematic-controlled robots as shown in Fig. 5.2). Note that, unlike the reactive WBQP that is based on the task gains, the robot motion dynamics is tuned by the MPC weights especially w 1 and w 2 which denotes how fast the optimal target and predicted state converge to the reference target, respectively.

Experimental Results

Our goal is to highlight the main drawback of reactive WBQP discussed in the conclusions of Chapter 2 and Chapter 4: the non-handling of potential conflict between constraints which may lead to infeasibility. In particular, the distance constraint formulated as ECBF assumes that q ∈ R n , namely infinite deceleration capabilities, whereas n m d N ∆t α w p w q P p D ṗ P q D q 7 3 9 10 0.12 q often belongs to a subset U ⊂ R n constituted by the joint acceleration limits, torque bounds as well as other constraints. Conversely, the MPC allows solving this potential conflict by accounting for these constraints along the preview horizon and shaping the optimal targets u that fulfill those constraints.

To validate our approach, we run simulations on the robotic arm Panda. The MPC Eq. (5.46) is implemented using COPRA library2 . The current c++ implementation allows running the MPC in a separate thread. We have chosen to formulate the WBQP as in Eq. (5.7) to ensure dynamic consistency while tracking the MPC output. More importantly, we consider the case where the end-effector has to avoid collision with a ball in its workspace. Let us denote p ball ∈ R 3 the coordinates of the center of the ball and r > 0 its radius. The distance between the end-effector and the ball surface is then (5.49) with n δ = p-p ball ||p-p ball || ∈ R 3 is a unit vector. Consequently, to avoid the collision, the distance h coll in Eq. (5.18) must fulfill h coll = δ(q) -δ min ≥ 0 (5.50)

δ(q) = n T δ (p -p ball ) -r ∈ R
Then, ḣ and ḧ are defined as in Eqs. (5.19) and (5.20) where J h coll = n T δ J p and Jh coll = n T δ J p + n T Jp . To make the problem more appealing, another constraint is defined for the robot CoM CoM (q) ∈ R 3 to be upper bounded along the X-axis. This is achieved by keeping the distance h com positive

h com = n T com CoM (q) + CoM Xmax > 0 (5.51)
where n T com = -1 0 0 ∈ R 3 is a normal vector and CoM Xmax = 0.2 cm. The CoM constraint Jacobian J hcom = n T com J com ∈ R 1×n and Jhcom = n T com Jcom ∈ R 1×n with J com ∈ R 3×n the CoM Jacobian. By constraining the CoM in Eq. ( 5.51), the robot is less free to stretch the arm to skirt the ball, and thereby it demands more complex motion for the robot to fulfill both constraints while taking into account the hardware limitations.

The experiment scenario consists in generating random reference Cartesian targets p ref ∈ R m ( ṗref = pref = 0) that are forwarded to MPC 3 . These random targets aim to lead the end-effector into a collision with the ball and the CoM to reach its maximum boundary (Fig. 5.3). The meta-parameters of MPC and WBQP used in the experiment are shown in Table 5.1.

Baseline Approach

For comparison, we choose the baseline approach to be the reactive WBQP closed-loop control scheme shown in Fig. 5.2(a) without the MPC outer loop. WBQP is formulated as in Eq. (5.7) to which we insert on-the-fly the collision and CoM constraints Eq. (2.36) and Eq. ( 5.51) formulated as shown in Eq. (2.13)

J h coll q + Jh coll q + K h coll d ḣcoll + K h coll s h coll ≥ 0, if h coll ≤ 10 cm,
(5.52) (5.53) 3. q ref ∈ R n ( qref = qref = 0) is also forwarded to MPC and denotes a given reference posture with an elbow-up configuration. where the constraints gains are computed as in Eq. (2.23). The results are shown in Fig. 5.4. Fig. 5.4(a) and Fig. 5.4(b) show that when the collision and com constraints Eq. ( 5.52) and Eq. ( 5.53), respectively, are inserted with low initial velocities ḣcoll and ḣcom then the joint deceleration needed is feasible and WBQP finds a solution q within the hardware limits. In this case, the collision and com constraints are compatible with the hardware limits. However, when the initial velocity is high ( ḣcoll = -1.2 m/s shown with a thick circle), then the necessary joint deceleration to stop at the boundary is not compatible with the hardware limits, and thereby the WBQP fails to find a solution (Fig. 5.5). 

J hcom q + Jhcom q + K hcom d ḣcom + K hcom s h com ≥ 0, if h com ≤ 3 cm,

Closed-loop MPC-WBQP

For the MPC implementation, the state and command vectors are

s =                p ṗ q q h coll ḣcoll h com ḣcom                ∈ R 2m+2n+4=24 , u =    δ p * q *    ∈ R d+m+n=19 .
(5.54)

The matrices A c and B c of the dynamic model in Eq. (5.24) are adapted to s and u vectors in Eq. (5.54). In particular, ḧcoll and ḧcom are computed as in Eq. (5.20), and the constraints Eq. ( 5.50) and Eq. ( 5.51) are formulated as in Eq. (5.43). The collision and CoM constraint are formulated as shown in Eq. (5.43) ḣcoll i + αh coll i ≥ 0

(5.55) ḣcom i + αh com i ≥ 0

(5.56) The slack variables relax joint position constraint Eq. ( 5.39), joint velocity constraint Eq. (5.40), and collision and CoM constraints Eq. ( 5.55) and Eq. ( 5.56), respectively, which makes the slack variables dimension d = n + 2 = 9. WBQP is formulated as in Eq. (5.7) without considering the collision and CoM constraints formulated as ODI in Eq. ( 5.52) and Eq. (5.53), respectively. Note that we could add the collision constraint and CoM constraints formulated as second-order ODI as shown in Chapter 2 to WBQP as a supplementary safety layer. However, we chose to ignore them in WBQP to explicitly show the effect of the MPC-based reference governor on constraints satisfaction.

The discretization time step is taken ∆t = 0.12 s with N = 10 steps (T preview = 1.2 s).

MPC Optimal Outputs Evolution

The time evolution of h coll , ḣcoll , h com and ḣcom is shown in Fig. 5.6. h coll and h com reach smoothly their boundaries with zeros velocity. Comparatively, to the baseline approach in Fig. 5.6, ḣcoll and ḣcom are not allowed to grow excessively because the deceleration starts earlier. This effect is illustrated in Fig. 5.7 which shows the current h coll and h com with their predictions along different preview horizon. h coll and h com predictions either converge smoothly toward the boundary or stop before it. More concretely, the MPC output optimal targets p * and q * that account for the hardware limitations, the collision and CoM constraints, and enforces them along the preview horizon. Fig. 5.8 shows how the MPC computes p * a pathway tracked by WBQP end-effector task Eq. ( 5.47) and which deviates from p ref if the constraints require that (see colored bands in Fig. 5.6 and Fig. 5.8). An example of p predictions is shown in Fig. 5.9. Correspondingly to Fig. 5.7, p predictions tend be constant after t = 1.5 s stop the end-effector motion as h coll and h com are close to the their boundary. In addition, the optimal posture target q * in Fig. 5.10 is varying as well to fulfill the constraints. From this perspective, the WBQP posture task Eq. (5.48) is no longer a regularization task intended mainly to solve the remaining redundancies but also contributes (correspondingly to its weight w q) to prevent collisions or hardware limits violation. Screenshots of the closed-loop MPC-WBQP resulting motion with the predicted states are shown in Fig. 5.11.

Constraints Fulfillment

Since the WBQP does not account for the collision and CoM constraints, it is important to analyze how well delegating constraints fulfillment to MPC is performing. This is even more crucial since Eq. ( 5.55) and Eq. ( 5.55) are handled as soft constraints. We can see from Fig. 5.12(a) that h coll and h com slightly overshoot the boundary h * = 0 (≤ 5 • 10 -5 m) before converging back to the boundary thanks to the asymptotic convergence property ensured by the constraint formulation Eq. ( 5.56) and Eq. (5.55). This slight violation is due to three factors: the slack variables, the non-modeled joint dynamics since the experiment is performed with a kinematic-controlled robot as already discussed in Chapter 4, and the low MPC running frequency comparatively to the WBQP (namely the constraint can be violated within one MPC computation iteration). Fig. 5.12(b) shows non-zero slackness of both constraints Eq. ( 5.55) and Eq. (5.56). Interestingly, relaxing these constraints does not systematically imply their violation. In fact, h coll is strictly positive for t ∈ [27.5, 40] s, yet the corresponding slack variable is continuously non-null. We argue that this is because all the constraints are permanently introduced in MPC QP. Hence, the kinematic constraints can be active even when they are far from their boundaries and be potentially relaxed. The slack variables relative to the q constraints are not plotted because they are null (i.e., joint-position and velocity bounds enforced as hard constraints).

Computation Time and Prediction Accuracy

Let us now analyze the prediction accuracy of our MPC-WBQP control scheme. We recall that we assume that the Jacobians and EoM matrices and vectors remain constant along the preview horizon to have a linear model for the MPC. From Fig. 5.7 and Fig. 5.9, we can see that each current state matches accurately the prediction during at least 3 epochs (i.e., during 3 × 120 = 360 ms). Beyond that, the prediction accuracy decreases since the conservatism effect may be more predominant4 . This accuracy is due to the relatively low MPC computation time shown in Fig. 5.13 which allows refreshing the MPC computation at an average frequency of 90.21 Hz. The computation time depends mainly on the size of u which is related to the number of prediction steps N and the size of the command vector u. In particular, in our simulation, u ∈ R 209 . Hence, improving the computation time boils down to either reducing u vector size or decreasing the length of the preview horizon. The first option is tricky as u size depends mostly on the robot DoF number and tasks dimension to be controlled. Another possibility is to lower the dimension of the slack variables d by rendering some constraints hard, which may endanger the MPC feasibility. On the other hand, the second option alters the prediction abilities and approaches the myopic WBQP. Balancing between the prediction capabilities, MPC feasibility, and the computation time is a well-known dilemma that generally depends on the robot, the application, and the case-study.

Conclusion

In this chapter, we proposed a solution for constraints incompatibility, a well-known issue of multi-objective QP-based control approaches. To handle the potential conflict between constraints, our method consists of implementing an MPC-based reference governor which encapsulates the inner loop constituted by the WBQP controller and the robot. Based on the closed-loop dynamics of the tasks and constraints, MPC outputs tasks' optimal targets to be tracked by multi-objective WBQP such that the hardware limits and safety constraints are enforced forward in time along the preview horizon. In particular, we showed that the optimal end-effector Cartesian targets avoid collision with an obstacle and keep the robot CoM bounded without even considering these constraints in the WBQP controller. The proposed closed-loop MPC-WBQP control scheme outperforms the purely reactive (myopic) WBQP, where the constraints introduced online may lead to an empty feasibility domain.

Despite the conservativeness of our method to keep the MPC model linear, we showed that the state's prediction accuracy justifies the soundness of our assumptions. In this context, future works will be conducted to enhance the MPC with a Jacobians prediction scheme that will considerably lower the conservativeness and improve the prediction precision. Hierarchical architecture proposed in [START_REF] Li | Model hierarchy predictive control of robotic systems[END_REF] can also be a good compromise between prediction accuracy and computation simplicity. Moreover, experiments on Panda robot shall be performed. Also, establishing/breaking/maintaining contacts while moving [START_REF] Romualdi | Online non-linear centroidal mpc for humanoid robot locomotion with step adjustment[END_REF] is an interesting continuation topic of the presented work.

In addition, we so far considered only tasks whose errors evolve in a Euclidean space. Typically, the orientation task error evolves in a non-Euclidean manifold, preventing straightforwardly including them into the current MPC linear implementation. Research work is currently conducted in this direction based on predicting the orientation of the local tangent space to exploit its Euclidean properties. Furthermore, theoretical studies need to be performed to analyze the closed-loop MPC-WBQP stability with sufficient conditions on the existence of solutions.

The next chapter introduces a strategy to unify observation and control. This strategy is based on a new idea of tasks-interdependency in the context of multi-objective QP control. Namely, we intend to formulate a task whose reference is the output of another task. This new concept of multi-objective QP control framework allows us to combine tasks that may be coupled: estimation and tracking, for instance. We then show how this new idea is judiciously exploited to formulate human-robot handover control.

Chapter 6

Human-Robot Handovers using Task-Space Quadratic Programming

In the previous chapter, we addressed the issue of constraints compatibility between the hardware limitations and kinematic constraints. Since this issue requires a look-ahead on the robot motion, our idea consisted of enhancing the reactive whole-body QP by an MPC-based reference governor. We showed how the latter modifies the tasks' references to ensure compatibility between constraints.

Multi-objective control is the main beneficial property exploited from the robot's redundancy. This control paradigm enabled the robots to execute more than one task, thereby approaching the natural human abilities. More importantly, it opened wide the field for robots to get involved in plenty of domains, which has increased their impact on the economy, education, health service quality, food delivery, ergonomy, tourism, etc. In particular, one of the currently very active trends in robotics is maximizing the interactions between humans and robots. Among the most challenging ones, seamlessly exchanging objects between a human and robot as giver and receiver agents through (bi-directional) handovers is of the most importance (Fig. 6.1). Indeed, handing objects between humans is a persistent daily interaction in almost all domains [START_REF] Ortenzi | Object handovers: A review for robotics[END_REF]. Therefore, embedding human-centered robotic systems in automation and services with handovers capabilities is a key enabler for rich cognitive interaction [START_REF] Ajoudani | Progress and prospects of the human-robot collaboration[END_REF]; [START_REF] Billard | Trends and challenges in robot manipulation[END_REF]. Although human-human handover is an intuitive behavior, it is a result of complex and sophisticated learned social-cognitive communication channels [START_REF] Strabala | Toward seamless human-robot handovers[END_REF]. Grasping such complexity in an equivalent robot control formulation strategy is not a trivial problem.

In this chapter, we formulate the premises of a generic robot control-strategy that ensures high fidelity and reliability of reaching motion for bi-directional handover scenarios and guarantees adaptability w.r.t the handover location (HOL, i.e., the meeting point where the two handover agents exchange the object) as well as the object orientation. Particularly, our control formulation is handover-location knowledge free. We only assume that the object's structural properties and dimensions are known, and there exists a sensor that tracks the pose (Cartesian position and orientation) of the object in interest, e.g. Paolillo et al. [2018a]. In Section 6.1, we go through the state-of-the-art of humanrobot handover control formulations and their limitations which enables us to present our contribution in Section 6.1.1 succinctly. Then, we present in Section 6.2 the details of our task-space QP-based handover controller. Finally, we implement our method on Panda robotic arm taking objects from a human operator in Section 6.3. 

Human-Robot Handover: State-of-The-Art

How to codify the human-robot handover process has been thoroughly addressed in the research community. The state of the art studies split the handover process in two main phases: the pre-grasping phase [START_REF] Shibata | Experimental analysis of handing over[END_REF]; [START_REF] Waldhart | Planning handovers involving humans and robots in constrained environment[END_REF]; [START_REF] Mainprice | Sharing effort in planning human-robot handover tasks[END_REF]; [START_REF] Huber | Human-robot interaction in handing-over tasks[END_REF]; [START_REF] Shi | A model of distributional handing interaction for a mobile robot[END_REF]; [START_REF] Koene | Experimental testing of the coglaboration prototype system for fluent human-robot object handover interactions[END_REF]; [START_REF] Remazeilles | Towards human-robot object exchange lessons learned[END_REF] and the grasping phase [START_REF] Nagata | Delivery by hand between human and robot based on fingertip force-torque information[END_REF]; [START_REF] Chan | A human-inspired object handover controller[END_REF]; [START_REF] Medina | A human-inspired controller for fluid human-robot handovers[END_REF]; [START_REF] Solak | Learning by demonstration and robust control of dexterous in-hand robotic manipulation skills[END_REF]; [START_REF] Costanzo | Handover control for human-robot and robot-robot collaboration[END_REF]. Such a breakdown is chronological: the former focuses on estimating/predicting the human movement and planning the robot reaching motion toward the meeting point, whereas the latter consists of understanding the interaction forces (haptics) applied at the object by the two handing over agents during the exchange such that to ensure a stable grasping. In [START_REF] Medina | A human-inspired controller for fluid human-robot handovers[END_REF] a retraction phase is considered, which describes how the giver and receiver move away after the latter gets full control of the object. In this chapter, we are interested in the pregrasping phase of the handover process. Yet, for an exhaustive handover survey, please refer to the excellent recent review in [START_REF] Ortenzi | Object handovers: A review for robotics[END_REF].

The pre-grasping phase formulation involves two subsequent questions: (i) where and when the handover will take place; (ii) how to generate the reaching motion. Where to handover is denoted as the HOL (also known as the object transfer point [START_REF] Li | Predicting object transfer position and timing in humanrobot handover tasks[END_REF]; [START_REF] Nemlekar | Object transfer point estimation for fluent human-robot handovers[END_REF]), whereas when to handover depends on the agents synchronization to reach the handover location, and the elapsed time during the object release by the giver and the full object control by the receiver. Planning for the reaching phase (ii) depends highly on the HOL knowledge.

Different approaches have been proposed to formulate the robot's reaching motion. Dynamic Movement Primitives (DMP) are among the most documented and well theoretically-grounded methods. They were introduced in [START_REF] Ijspeert | Movement imitation with nonlinear dynamical systems in humanoid robots[END_REF]; [START_REF] Schaal | Learning movement primitives[END_REF] as a powerful tool to generate complex trajectories while converging to a goalattractor. DMP have been recently exploited to learn from demonstration and generate human-like handover robotic movement [START_REF] Prada | Implementation and experimental validation of dynamic movement primitives for object handover[END_REF], and to predict the HOL and time using an extended Kalman Filter [START_REF] Widmann | Human motion prediction in human-robot handovers based on dynamic movement primitives[END_REF]. The drawback of DMP-based approaches is the high number of hyper-parameter to tune, especially in high dimensions. In addition, the use of DMP as a part of a closed-loop system has been barely studied where the majority of works consider it a planning block only forwarding the references for the controller [START_REF] Saveriano | Dynamic movement primitives in robotics: A tutorial survey[END_REF]. Probabilistic Movement Primitives (Pro-MP), which is an extension of DMP to stochastic systems [START_REF] Paraschos | Probabilistic movement primitives[END_REF], have been used in [START_REF] Nemlekar | Object transfer point estimation for fluent human-robot handovers[END_REF] to estimate the HOL dynamically from the observed human motion. However, the resulting motion is not fluent, and the robot does not well anticipate the object. [START_REF] Laplaza | Attention deep learning based model for predicting the 3d human body pose using the robot human handover phases[END_REF] used video recordings of robot-human handover to train an attention deep-learning model that predicts the human joint positions. However, no further details have been provided about how this prediction is used for the robot reaching-motion formulation. Based on vision object-recognition, using eye-in-hand vision, [START_REF] Rosenberger | Object-independent human-to-robot handovers using real time robotic vision[END_REF] proposed an object-independent approach that does not require the prior knowledge of the object dimension/shape. A gripper-mounted camera is used to detect and distinguish between the human agent's hand and the object leveraging a trained image-classifier. It also enables a safe grasping and gripper orientation. However, the approach is computationally demanding and suffers a high time response to detect the object, which is constrained to remain static. Eye-in-hand vision has also been adopted in [START_REF] Costanzo | Handover control for human-robot and robot-robot collaboration[END_REF] except that the approach is based on reactive visual servoing. The latter generates robot motion to minimize the error between the perceived object image and a priorly acquired image. Interestingly, the HOL knowledge is not required for the control formulation. However, an image database of the exchanged objects must be collected priorly. In addition, the experiment showed that the robot motion is not sufficiently proactive because of the low image-sampling frequency, and the object must be inside the camera field-of-view. [START_REF] Medina | A human-inspired controller for fluid human-robot handovers[END_REF] trained a Dynamical System (DS) to predict the human motion based on real-time motion data observed during a time window. The HOL is estimated online to be the robot's closest point (among the predicted human trajectory). The handover controller is formulated as two coupled dynamical systems: the giver (master) converges to the estimated HOL, and the receiver converges to an attractor that depends on the master convergence error.

Many existing works required the knowledge of the HOL as a precondition for motion planning or control formulations of the pre-grasping phase. In particular, the HOL is often considered either as fixed (the robot moves systematically to a fixed spot to pick up the object) or pre-planned (real-time detection and estimation of the object's fixed location) (see Tables 1 &2 in [START_REF] Ortenzi | Object handovers: A review for robotics[END_REF]). There are works that provide HOL estimation and online prediction methods [START_REF] Prada | Implementation and experimental validation of dynamic movement primitives for object handover[END_REF]; [START_REF] Medina | A human-inspired controller for fluid human-robot handovers[END_REF]; [START_REF] Vahrenkamp | Workspace analysis for planning human-robot interaction tasks[END_REF]; [START_REF] Maeda | Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks[END_REF]; [START_REF] Widmann | Human motion prediction in human-robot handovers based on dynamic movement primitives[END_REF]; [START_REF] Nemlekar | Object transfer point estimation for fluent human-robot handovers[END_REF]. However, such existing approaches have at least one of the following shortcomings:

• Collecting data sets to train motion prediction models;

• Time-consuming computations leading to a hashed or a slow handover motion;

• Magic-numbers of hyper-parameters to tune;

• Conservatism in the handover-location prediction policy;

• Non-systematic success of the handover performance (i.e., success rates);

• The object orientation at the HOL is often kept the same during the experiments;

• Knowledge of the HOL is required.

Contribution

Our proposed approach is meant to mitigate the above issues. More concretely, it gathers the advantages from both methods in [START_REF] Costanzo | Handover control for human-robot and robot-robot collaboration[END_REF]; [START_REF] Medina | A human-inspired controller for fluid human-robot handovers[END_REF]. Indeed, our handover formulation does not require the knowledge of the HOL. Conversely to [START_REF] Costanzo | Handover control for human-robot and robot-robot collaboration[END_REF], our method ensures/codifies a real-time proactive and adaptive robot motion w.r.t the human versatile intention on where to exchange the object with the robot and in which configuration (orientation). In fact, our proposed idea relies on the concept of interdependent tasks where the state of one task is forwarded as the reference for another task. More precisely, we formulate an observation task that estimates either the human hand or object full-state (depending on who is the giver) in terms of pose, velocity and acceleration which are then forwarded as references for a trajectorytracking task for the robot end-effector to track. Leveraging multi-objective QP control paradigm, these two tasks run concurrently in a leader-follower fashion: the object (leader) moves and converges to the HOL while the robot end-effector (follower) moves proactively toward the object while adjusting its orientation accordingly. From this standpoint, our approach is similar to the coupled DS in [START_REF] Medina | A human-inspired controller for fluid human-robot handovers[END_REF]. Conversely, our approach is computationally cheap and does not require the estimation of the HOL or separately learning human and robot DS models.

Task-Space QP Handover Formulation

In this section, we first explain our methodology. Then, we detail our handover control formulation.

Handover Control Problem

Our approach is to tackle the human-robot handover problem from a reactive closedloop control perspective. We denote by end-effector the robot terminal link used to pick up the object. It encompasses two-finger grippers, multi-finger hands, and even nonhuman-like devices such as a suction cup or an electromagnetic gripper [START_REF] Pan | Exploration of geometry and forces occurring within human-to-robot handovers[END_REF]. First, we explain the approach when the human is the giver. Then we show how the approach fits when s/he is the receiver. The HOL can be seen as an attractor toward which the object converges (steered by the human). Since the HOL is not known a priori, the robot end-effector can track the object's trajectory leading to a proactive motion such that when the object converges to the HOL, its trajectory becomes a point to which the end-effector converges. The same reasoning can be applied to orientation. The remaining question is how to obtain the object trajectory in terms of pose ξ obj ∈ R 7 , linear and angular velocity α ξ obj ∈ R 6 and linear and angular acceleration αξ obj ∈ R 6 ? These terms are encompassed as the object full-state

s obj =    ξ obj α ξ obj αξ obj    ∈ R 19 . (6.1)
Often, s obj cannot be directly obtained by the sensors as they generally provide only ξ obj .

Hence, an estimation of s obj needs to be constructed from ξ obj , and it is denoted as

s obs =    ξ obs α ξ obs αξ obs    ∈ R 19 . (6.2)
To this end, the observation task is formulated as a PD controller that drives ξ obs toward ξ obj , e.g., Paolillo et al. [2018a]. While converging, the observation task outputs also α ξ obs and αξ obs , e.g., [START_REF] Pham | Hand-object contact force estimation from markerless visual tracking[END_REF]. s obs terms are then used as references for the trajectory-tracking task formulated for the end-effector. Note that the observation task allows generating trajectories for the orientation tracking without the need for offline planning methods [START_REF] Sciavicco | Modelling and Control of Robot Manipulators[END_REF]. The same approach can be adapted if the human is a receiver. In such a case, the end-effector already holds the object, and its full-state is known by forward kinematics. Instead, the observation task constructs the full-state of the human hand [START_REF] Pham | Hand-object contact force estimation from markerless visual tracking[END_REF].

In [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF], one single QP controller can be formulated for multirobot systems either decoupled or interacting using contact forces. In particular, the pre-grasping handover phase can be suitably formulated using the multi-robots QP by considering the robotic arm and the object as two decoupled robots. The former is a redundant multi-body system with all the joints actuated, and the latter is a floatingbase rigid-body system. Moreover, the observation task is formulated for the object, and the trajectory-tracking task is formulated for the end-effector.

The following subsections explicit in detail our approach. Here, we adopt the QP formulation in Chapter 2 as the proposed formulation is not specific to the case of kinematiccontrolled robots.

Background

Consider a redundant (fixed-base or floating-base) robot whose configuration q is defined as in Eq. ( 1.3), and whose equation of motion is defined in Eq. (1.7). Let us consider the frame R ee rigidly attached to robot end-effector and whose pose is

ξ ee = p ee q ee ∈ R 7 , (6.3)
where p ee ∈ R 3 is the end-effector Cartesian position and q ee ∈ R 4 is the unit quaternion representing the end-effector orientation. The end-effector velocity and acceleration are given as α ξ ee = ṗee ω ee = J ee α q ∈ R 6 , (6.4) αξ ee = pee ωee = J ee αq + Jee α q ∈ R 6 , (6.5)

where J ee = J ee-lin J ee-rot ∈ R 6×(6+n) is the end-effector Jacobian where the superscripts ee-lin and ee-rot denote the linear and rotation parts of the Jacobian.

Let us consider the object as a one-rigid-link robot with 6-DoF to which a frame R obj is rigidly attached and whose pose is (6.6) where ξ obj is assumed to be provided by a sensor. Its velocity and acceleration are given as

ξ obj = p obj q obj ∈ R 7 ,
α ξ obj = ṗobj ω obj ∈ R 6 , αξ obj = pobj ωobj ∈ R 6 . (6.7)
The object structural and dimension properties are known.

Observation Task

Let us consider an observed object to which a frame R obs is rigidly attached whose pose is

ξ obs = p obs q obs ∈ R 7 . (6.8)
Assuming that the object velocity and acceleration in Eq. (6.7) are not provided by the sensor (which is likely the case), the observation task aims at constructing these nonmeasured states by estimating s obs in Eq. (6.2). This is achieved by the observation task that steers ξ obs toward ξ obj by keeping the observation error e obs as small as possible such that 1 e obs = p obs -p obj q obs q -1 obj ∈ R 6 . (6.9)

Hence, the observation error velocity and acceleration are given as α e obs = α ξ obs ∈ R 6 , αe obs = αξ obs ∈ R 6 . (6. 1. q obs q -1 obj denotes the vector part of the quaternion product q obs ⊗ q -1 obj . Please, refer to Appendix A.11 for more details. with K obs s , K obs d ∈ R 6×6 are diagonal positive-definite matrices denoting the stiffness and damping gains for the observation task. Replacing Eq. (6.14) into Eq. (6.12) it yields to the following observation-task closed-loop dynamics ηobs = A obs η obs , A obs = 0 I -K obs s -K obs d (6.15) with A obs Hurwitz [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]. Note that η obs only converges asymptotically to zero if the object is static (ξ obj constant). However, choosing high gain values typically enables a fast convergence and keeps e obs sufficiently small. The benefits of the observation task are three folds: (i) allowing a bounded estimation of s obs in Eq. (6.2) given Eqs. (6.13) to (6.15); (ii) ξ obj is low-pass filtered by the closed-loop observation task dynamics (6.15); (iii) online generation of a smooth twice-differentiable trajectory2 for the Cartesian and orientation coordinates of R obs frame without the needs of offline planning methods [START_REF] Sciavicco | Modelling and Control of Robot Manipulators[END_REF]. The latter advantage is the core idea presented in this paper: the observation task outputs trajectory references required by the trajectory-tracking task to achieve a proactive handover process.

Once having s obs , we can compute the full-state for any other frame R attached to the object (for which the local pose ξ obs is known) by simply applying the classical kinematic relations for position, velocity and acceleration3 p = p obs + R obs p obs (6.16) ṗ = ṗobs + ω obs × R obs p obs (6.17) p = pobs + ωobs × R obs p obs + ω obs × ω obs × R obs p obs (6.18)

R = R obs R obs (6.19) Ṙ = ω obs × R (6.20)
The transformations above allow computing the full-state of any frame used as a reference for the subsequent tasks described in the next subsections.

Trajectory-Tracking Task

The trajectory-tracking task describes how the end-effector frame R ee tracks the position and orientation of the grasping frame R grasp rigidly attached to the object and whose pose is defined as

ξ grasp = p grasp q grasp ∈ R 7 . (6.21)
p grasp ∈ R 3 denotes the coordinates of the point where the end-effector grasps the object and is computed from Eq. (6.16), and q grasp ∈ R 4 is obtained from R grasp in Eq. (6.19). R grasp velocity and acceleration are computed as

α ξ grasp = ṗgrasp ω grasp ∈ R 6 , αξ grasp = pgrasp ωgrasp ∈ R 6 (6.22)
Let us define the trajectory-tracking task error as e tt = p ee -p grasp q ee q -1 grasp ∈ R 6 , (6.23)

and whose derivative is given as

α ett = ṗee -ṗgrasp ω ee -ω grasp = α ξ ee -α ξ grasp ∈ R 6 . (6.24)
Let us denote the trajectory-tracking task state

η tt = e tt α ett ∈ R 12 (6.25)
Hence, the trajectory-tracking task dynamics is formulated

ηtt = 0 I 0 0 η tt + 0 I µ tt (6.26)
µ tt = αξ eeαξ grasp = J ee αq + Jee α qαξ grasp (6.27)

Then, choosing µ tt in Eq. (6.27) as where A tt is Hurwitz. This enables a global asymptotic convergence of η tt to the origin [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF].

µ tt = -K tt s K tt d η tt = -K tt η tt , ( 6 
In common trajectory tracking control, the trajectory is planned such that the initial reference trajectory pose is as close as possible to the current end-effector pose ξ ee (t 0 ) which indeed ensures that the tracking error e tt (t 0 ) is small and thereby enforces the endeffector pose to stick on trajectory forward in time. However, when the trajectory starts far from the initial end-effector pose, the latter converges to the trajectory without lagging with exponential decay of the tracking error η tt . This property enables the anticipatory motion of the end-effector, which moves proactively toward the object grasping position (see Fig. 6.2).

In this subsection, we assumed that the grasping point p grasp coordinates are explicitly specified. However, we could have the case where p grasp belongs to a line segment L grasp ⊃ P grasp where P grasp is a set of valid grasping points on the object contact surface along the symmetry axis directed by u grasp (Fig. 6.3). This is typically the case if we want the end-effector to grasp the object anywhere except where the human is holding. In this perspective, the task is considered to be achieved once the end-effector converges to P grasp . This scenario can be broken down into two control objectives: line-segment-tracking task and grasping-set constraint. The former consists of formulating a task to drive p ee toward L grasp and the latter is meant to steer/maintain p ee inside P grasp ⊂ L grasp . 

Grasping-Set-Tracking Task

Hereafter, we only modify the translation part of the trajectory-tracking task formulation described in Section 6.2.4. The orientation part is kept unchanged.

Line-Segment-Tracking Task

A line segment in space is the intersection of an infinity of planes. In particular, we can choose two perpendicular planes Π ngrasp and Π vgrasp intersecting at L grasp and having as normals the vectors n grasp ∈ R 3 and v grasp = u grasp × n grasp ∈ R 3 (see Fig. 6.4). Let us denote e lst the vector encompassing the distances between p ee and the planes Π ngrasp and Π vgrasp , respectively, and defined as (6.30) where p ls is any point on L grasp and which can be computed using Eq. (6.16), and

e lst = π ngrasp π vgrasp = n T grasp v T grasp (p ee -p ls ) = P(p ee -p ls ) ∈ R 2 ,
P = n T grasp v T grasp = n grasp T grasp v grasp T grasp R T grasp (6.31)
with n grasp grasp , v grasp grasp ∈ R 3 are expressed in R grasp . Thus, steering the end-effector position p ee toward L grasp boils down to zero π ngrasp and π vgrasp . The line-segment-tracking task state is defined as

η lst =
e lst ėlst = P(p ee -p ls ) Ṗ(p ee -p ls ) + P( ṗeeṗls ) (6.32) where using Eq. (6.20) Ṗ = -P ω obs × (6.33)

The line-segment-tracking task dynamics is thereby formulated as ηlst = 0 I 0 0 η lst + 0 I µ lst (6.34) µ lst = ëlst = PJ ee-lin αq + P Jee-lin α q + P(p ee -p ls ) + 2 Ṗ( ṗeeṗls ) -P pls (6.35) with P = -Ṗ ω obs × -P ωobs × , (6.36) and ṗls , pls ∈ R 3 are computed using Eq. (6.17) and Eq. (6.18), respectively. Choosing µ lst in Eq. ( 6.35) such that (6.37) leads to the line-segment-tracking closed-loop task dynamics .38) with A lst Hurwitz yielding an asymptotic convergence of η lst to the origin. Achieving the line-segment-tracking task is only the halfway as further constraints need to be formulated to enforce p ee ∈ P grasp ⊂ L grasp . In the next subsection, we define constraints on the end effector position to be on the desired grasping set P grasp .

µ lst = -K lst s K lst d η lst = -K lst η lst ,
ηlst = A lst η lst , A lst = 0 I -K lst s -K lst d , ( 6 

Grasping-Set Constraint

Let us explicitly define P grasp as 6.39) where p grasp,min , p grasp,max ∈ R 3 belongs to the planes Π u grasp,min and Π ugrasp,max , respectively, and are computed based on Eq. (6.16). Similarly to Section 6.2.5.1, we can define two parallel planes Π u grasp,min and Π u grasp,min having as normal vectors u grasp,min = u grasp and u grasp,max = -u grasp , respectively (see Fig. 6.5). Hence, p ee ∈ P grasp is achieved if the distance between p ee and each of the planes u grasp,min and u grasp,max is positive and η lst in Eq. ( 6.32) is converging to the origin. The following formulation is performed for the lower bound u T grasp p grasp,min and the same steps hold for the upper bound u T grasp p grasp,max . Furthermore, the constraint formulation is followed as discussed in Chapter 2. Let us denote h grasp,min = u T grasp (p ee -p grasp,min ), (6.40) the distance between the end-effector position p ee and the plane Π u grasp,min . Hence, from Eq. (6.39), the grasping-set constraint p ee ∈ P grasp is encoded as where ṗgrasp,min , pgrasp,min ∈ R 3 are computed using (6.17) and (6. Enforcing constraint (6.48) guarantees the distance between the end-effector position p ee and the plane Π u grasp,min to be positive. The same reasoning applies for the upper bound in Eq. (6.39).

P grasp = p grasp ∈ L grasp : u T grasp p grasp,min ≤ u T grasp p grasp ≤ u T grasp p grasp,max ( 
h grasp,min ≥ 0. ( 6 

Posture Task

The posture task is mainly intended to solve the remaining redundancies. Its usefulness is particularly shown in the case of the grasping-set-tracking task. We only want the endeffector to be inside P grasp , but we do not specify a precise point to grasp. If some redundancies are left, the end-effector will keep moving freely inside P grasp , which is not the desired behavior. For such a case, the posture task enables one to choose one solution such that p ee ∈ P grasp and minimizes a given criterion.

Let us denote qref a given reference posture designed generally to represent a suitable robot posture (e.g., elbow up). Let us define the posture task state as η posture = e posture ėposture = qqref q . (6.49) where A posture is Hurwitz given that the stiffness and damping gains K posture s , K posture d ∈ R n×n are diagonal positive-definite. Theoretically, (6.53) yields asymptotic convergence of η posture to the origin. However, this is only the case when the posture task is not in conflict with the other tasks and constraints among which the posture task is meant to have the lowest priority. Alternatively, e posture is only ensured to be UUB [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF].

Multi-Tasks QP Formulation

This subsection shows how the tasks and constraints discussed above are combined using a multi-objective and multi-robots QP formulation. Let us extend the decision variables vector χ in Eq. (1.26) to consider the object as a second robot

χ =    αq αξ obs f    ∈ R n+15 (6.54)
Given the affinity of Eq. (6. 

w i G i χ + g i 2 (6.55a) S.t: A ineq χ ≤ b ineq (6.55b)
where w i > 0 is the associated weight to each task i. The main advantage of QP formulation (6.55) is its compactness: enables handling multi-robot control. The robotic arm and the object are considered as two distinct robots entities. This allows adding other robots to achieve the handover (e.g., bi-arm handover) while still using one compact formulation [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF]. This property shall be shown in the next experimental section.

Experimental Result

For demonstration, we implemented our approach on the open-source code implementation of the QP controller interface mc_rtc. Based on the embedded sensors data, mc_rtc builds and solves the QP problem at each control cycle (1 ms). Experiments are conducted using 7-DoF robotic arm Panda from Franka-Emika.

Perception Neuron4 sensor-suit has been used for the pose measurement. An API provides the hand pose in a given fixed frame at a frequency of 60 Hz. The sensor suite has been mounted on the human left arm as shown in Fig. 6.6. A calibration step is necessary to correctly coincide the sensor frame with the controller world-frame. It consisted of putting the left-hand sensor on the Panda end-effector frame R ee . Then, the offset between ξ obj and ξ ee is removed manually to have ξ obj = ξ ee (Fig. 6.7). The calibration process is repeated at the beginning of each handover experiment to avoid drifting. A ROS node has been implemented to handle the data streaming between the API and the controller. When the human is a giver, the object is assumed to be rigidly attached to the hand, and thereby its pose ξ obj can be computed based on the hand's one. Several handover scenarios have been performed where the robot starts from different configurations. In addition, multiple HOLs have been tried (Fig. 6.8). The objects used during experiments are a small cylindrical container and a small cuboid object made with a carton. The implemented tasks are the observation task (Section 6.2.3) and trajectory tracking task (Section 6.2.4).

The observation task gains have been set to high values K obs s = 1500I, and K obs d = 2 K obs s to track accurately the object pose ξ obj , and generate a good estimation s obs in Eq. (6.2) of the object full state s obj Eq. (6.1). Fig. 6.9 shows how ξ obs tracks ξ obj . Even though the latter is varying, the high observation task gains allows an accurate pose tracking. In the same, it allows to a good estimation of α ξ obj and αξ obj by computing α ξ obs and αξ obs from Eq. (6.15) (see Fig. 6.10 and Fig. 6.11).

Consequently, s obs in Eq. (6.2) is fully constructed, which allows implementing the trajectory tracking for the end-effector to meet the object. Given ξ obs , the frame ξ grasp is specified such that p grasp T grasp = 0.07 0.00 0.03 . p grasp is then computed from Eq. (6.16). Then, the trajectory-tracking task is formulated as described in Section 6. . The orientation stiffness has been chosen to be twice bigger than those of the translation to ensure that end-effector reaches the object while its orientation has already converged to the target. This also implies that the orientation is tracked better than the position as it can be observed from This does not induce any singularity issue since the orientation task is implemented using unit quaternions.

Fig. 6.12. Furthermore, the object and the end-effector meet seamlessly and smoothly at the HOL without being specified in prior as it can be seen from the 3D trajectories of the grasping frame R grasp and the end-effector frame R ee in Fig. 6.13. Next, we extended our handover QP controller to the case of multi-robot handover. In particular, we considered the case where the object is long enough so that two Panda robots are necessary to receive and safely achieve the handover. QP (6.55) is formulated by considering the two Panda and the object as three different robots. For this purpose, we have run simulations using Matlab-Simulink. Simscape has been used to model the robots. This time, we do not specify a specific grasping point. Instead, the grasping-settracking task described in Section 6.2.5 is formulated for each robot. Successive snapshots of the simulation are shown in Fig. 6.14.

Conclusion

In this chapter, we proposed an original approach for human-robot handovers formulation using task-space optimization controller. The main idea behind our approach is a novel implementation of the tasks interdependency, which consists in providing the output of a task (of an estimation nature) as an input to another task so that both meet at the handover spot without explicit time or handover position specification. Our experimental results confirmed very promising performances of simple handovers focusing mainly on the reaching phase.

This new approach raised very promising novel features of the task-space optimization control schemes. Extension in terms of functionalities and theoretical investigation on how observer-tasks can be embedded through task interdependencies and constraints between task errors might open perspectives in embedding scheduling in the task-space formalism.

Our ongoing and future research focuses on this issue with complete phases and more complex handovers considering force cues.

Chapter 7

Conclusion Summary

In the last decade, the multi-objective QP control paradigm has become a standard tool for controlling complex robots in task-space while mediating control objectives with different priorities and accounting explicitly for unilateral constraints. Backed up by the increasing progress in CPU computation power, real-time QP implementations have been successfully performed on a high number of robotic platforms. Despite this astonishing success, there are still open questions that are still not fully addressed by the research community. In this thesis, we tackled some of these open problems.

First, QP can only handle the constraints that are expressed in terms of its decision variables. For ID-QP, the kinematic constraints cannot be directly included in QP because of their inadequate form and have to be reformulated in terms of the QP decision variables. Inspired by the PD task formulation, we proposed an ODI-based formulation with adaptive gains. This strategy allows the kinematic variables (joint position, CoM, distance to collision, etc.) to reach their boundaries exponentially and smoothly for all the initial conditions and even when the boundaries are time-varying as shown in Chapter 2. In addition, the forward invariance of the sets to which these kinematic variables belong is proved analytically. The assessed experiments on the humanoid robot HRP-4 validated the proposed approach.

The second issue we tackled in this thesis is the stability of the closed-loop QP control scheme. Instable behaviors have been so far reported in several works but never addressed explicitly. During the experiments performed in Chapter 2 and others, we noticed the occurrence of instabilities described as strong and divergent oscillations and jerky motion near the boundaries of the constraints. We studied this problem by considering 1-DoF kinematic-controlled system in Chapter 3. Although its simplicity, this case-study allowed us to: (i) reproduce these instabilities; (ii) understand that this issue comes from the tasks and kinematic constraints gains and joint-dynamics parameters; and (iii) propose a solution to ensure stability using integral feedback and prove it using linear control theory. Nevertheless, this approach cannot be generalized to task-space.

In Chapter 4, a few steps have been made to enable tackling the general case. First, to encompass a large class of robots, we considered multi-DoF kinematic-controlled robots such that their stability is assumed in Input-to-State sense. Then, we showed that the reported instability is, in fact, a result of non-robustness against the non-modeled dynamics such as the joint-dynamics, flexibilities, and external disturbances. After that, we proposed a robust PD task formulation to ensure robust stability, which we formally proved using Lyapunov theory, and a robust ODI formulation (which we denoted as RECBF) for Chapter 7. Conclusion kinematic constraints to ensure robust asymptotic stability of the corresponding set using BF theory. To show that our approach is not robot-specific, we validated our approach on two types of robots: fixed-based robotic arm Panda, and floating-base humanoid robot HRP-4.

In Chapter 5, we addressed another QP control problem which is the constraints compatibility. Incompatible constraints lead the QP to be infeasible because of an empty feasibility domain. Although this issue is general, we considered one case of incompatibility often encountered in practice: potential conflicts between hardware limitations and kinematic constraints formulated as ODI in Chapter 2. Dealing with compatibility in a point-wise fashion by relaxing the constraints is not a viable solution. Instead, we opted for a high-level approach based on an MPC-based reference governor layer on top of QP. MPC accounts for the closed-loop dynamics of the tasks, predicts the robot trajectories, and enforces the kinematic constraints and hardware limitations over a finite preview horizon. As a result, it outputs the optimal task targets such that the robot convergence to the reference task while satisfying the above constraints.

After addressing these issues, we have been interested in the observation problem. This process is needed when some states are not accessible for measurements but required to perform the control. So far, performed as an exogenous process, we aimed to find a strategy to unify observation and control via a holistic QP formulation. Leveraging the multi-objective QP paradigm, our idea is to perceive the observation as a task that runs concurrently with other control tasks. In particular, we considered the case where the control tracking target is only partially known (measured), and thereby an observation task is required to construct the full-state of the target. Conversely to the classical multiobjective QP, where the tasks are independent w.r.t the targets, we proposed the novel concept of interdependent tasks where the state of the observation task is forwarded as an input for the tracking control task. In Chapter 6, we showed how this concept is interesting in formulating control scenarios, especially human-robot handover. In such a case, our observer/controller formulation enables us to achieve seamless and fluid robot motion toward the handover location without knowing it in advance. By estimating the object pose, velocity and acceleration, the observation task forwards these terms as reference targets for a trajectory tracking task leading to an anticipatory motion toward the object. This approach resulted in successful handover experimentation using Panda robotic arm.

Outlook

Although the achieved contributions and developed methods in this thesis address specific issues, their generality and theoretical grounding can be used as bridges toward new research perspectives and tackle some exciting topics.

Compliance Generation

According to the proposed closed-loop scheme in Fig. 4.1, the effect of the external disturbance is counterbalanced by QP. In some cases, we would like the robot to be compliant with the external disturbance, especially if it is due to unforeseen contact. However, the compliant behavior needs to be generated by having a kinematic-controlled robot. Building on top of the proposed feedback Eq. (4.36) and exploiting the F/T sensors, a control strategy can be drawn to achieve this purpose. For instance, adding the double integral feedback term K s ii η s d1 with a sophisticated tuning of the gains K s ii can be a good starting point to explore this feature.

Task Scheduling

Classically, task sequencing is handled by either introducing/removing tasks on-thefly, or via FSM. However, this would generally result in a discontinuous joint acceleration and torque and a typically flawless hashed motion. Explicit time optimization of the sequencing of the tasks has been proposed in [START_REF] Keith | Optimization of tasks warping and scheduling for smooth sequencing of robotic actions[END_REF]. Nevertheless, an ordered sequence of tasks has to be defined beforehand. Alternatively, we can handle task scheduling by defining constraints on the convergence errors of these tasks exploiting the ODI formulation proposed in Chapter 2. Namely, we can imagine the case where two tasks have the same priority in terms of weight (solution predominance). Yet, one task must converge before the other. We can even enforce this behavior by imposing the same constraint on the predicted tasks convergence errors using MPC proposed in Chapter 5.

Task Gains Adaptation via QP

The task gains can be included in the QP decision variables while still having a leastsquare form as in Eq. (1.2). This approach would adapt online gains depending on the concurrent tasks and active constraints. The performance of some tasks (e.g., admittance) is very sensitive to the chosen gains. Adaptive gains QP can be a nice solution to mitigate such issues.

Feasibility Prediction

In Chapter 5, we only considered the compatibility between hardware limitations and kinematic constraints. In [START_REF] Morris | Sufficient conditions for the lipschitz continuity of qp-based multi-objective control of humanoid robots[END_REF], a metric of the feasibility domain width is proposed and interpreted as the distance to the closest inequality. Designing an MPC that predicts the feasibility of QP along a finite preview horizon can constitute a breakthrough for tackling this issue in a more general and efficient way.

Teleoperation

When controlling a robot in teleoperation, synchronization between the operation motion and robot execution is very important. In fact, the observation task proposed in Chapter 6 can be used to estimate the full-state of the frame attached to the human. The estimated states enable us to proactively mimic human actions without explicitly predicting the human gestures. • Fix a control u, and let be Ω ⊂ X a compact set containing the origin. The solutions of the system Eq. (A.17) are Robustly Globally Uniformly Asymptotically Stable w.r.t Ω (RGUAS-Ω) when there exists class KL function β such that for all admissible measurements, admissible disturbance w, and initial conditions (x(t 0 ), t 0 ) ∈ X × R, all solutions x(t) exist and satisfy

x(t) Ω ≤ β( x(t 0 ) Ω , t -t 0 ). (A.18)

• System Eq. (A.17) is robustly stabilizable when there exist an admissible control and a compact set Ω ⊂ X satisfying 0 ∈ Ω such that the solutions x(t) are RGUAS-Ω.

• System Eq. (A.17) is robustly practically stabilizable when ∀ > 0 there exist an admissible control and a compact set Ω ⊂ X satisfying 0 ∈ Ω ⊂ B, with B is the unit ball set, such that the solutions x(t) are RGUAS-Ω.

• System Eq. (A.17) is robustly asymptotically stabilizable when there exists an admissible control such that the solutions x(t) are RGUAS.

Robust asymptotic stability is stronger than (and implies) robust stability in the sense that, for the former, the residual set Ω is shrinked to the origin. An illustrative scheme of RGUA-Stability is shown in 

A.11 Quaternion Product

Let us consider a unit quaternion q = ε θ ∈ R 4 where ε ∈ R and θ ∈ R 3 are the scalar and vector parts of q such that ε 2 + θ T θ = 1. q -1 is denoted as q -1 = ε -θ . Let us consider two unit quaternions q 1 , q 2 = ε 1,2 θ 1,2 ∈ R 4 where ε i ∈ R and θ i ∈ R 3 are the scalar and vector parts of the unit quaternion i = {1, 2} such that ε 2 i + θ T i θ i = 1. The quaternion product is defined as

q 1 ⊗ q 2 = ε 1 ε 2 -θ T 1 θ 2 ε 2 θ 1 + ε 1 θ 2 + θ 1 × θ 2 (A.19)
The vector part of Eq. (A. [START_REF] Dehio | Dual-arm box grabbing with impactaware mpc utilizing soft deformable end-effector pads[END_REF]) is denoted as .20) It is easy to see that if q 2 = q -1 1 then q 1 ⊗ q 2 = 1 0 Siciliano et al. [2010].

q 1 q 2 = ε 2 θ 1 + ε 1 θ 2 + θ 1 × θ 2 (A
If ∂s(q d (t)) ∂q d (t) is non-singular, then ∀θ with 0 ≤ θ ≤ 1 there exist b, b 0 , b ≥ b 0 > 0 such that [START_REF] Golub | Matrix Computations[END_REF] R (∆q

d (t)) = b ∆q d (t) ⇒ ∆q d (t) ≤ M b ⇔ q d (t) -q ref (t) ≤ ∆q d (t) ≤ M b ⇒ q d (t) ≤ M b + q ref (t) (B.5)
Given that q ref (t) is bounded, then q d (t) is bounded. Now, let us prove that if η s d2 (t) is bounded then α q d (t) is bounded. α q d (t) can be written as α q d (t) = αq d (t) + α # q d (t) such that α # q d (t) ∈ ker{J s d } with α # q d (t) = I -J 

B.2 Proof of Proposition 2

Proof. As in Proposition 1 proof, Proposition 2 proof is established for η s d (the same steps apply for η h d ) and the dependency on time (t) is made explicit. Let us assume that η s d (t) is bounded. Then following from Proposition 1 and (4.2), the desired joint commands vector xd (t) is bounded. Directly following from Assumption 1 and the jointdynamics (4.7), ∀a > 0 such that φ(t 0 ) ≤ a there exists σ = σ(a, τ l ∞

) > 0 such that the robot joint state x(t) bounded φ(t) = x(t)-xd (t) ≤ σ ⇒ x(t) ≤ σ + xd (t) (B.9)

In addition, the robot floating-base state x FB (t) is bounded by assumption which leads to the boundedness of x Eq. (4.1). Thus from (4.9) η s (t) ≤ s(q(t))-s ref (t) + J s α q (t)ṡref (t) , ≤ s(q(t)) + s ref (t) + J s α q (t) + ṡref (t) . (B.10)

By assuming that the task-space mapping s(q(t)) is bounded, then η s (t) is bounded given that s ref (t), ṡref (t), α q (t) are bounded.

Let us now consider system (4.12) and assume that there exists µ s such that η s d (t) is (uniformly) ultimately bounded. 

B.3 Proof of Theorem 1

Proof. Replacing Eq. (4.36) in Eq. (4.12) yields to 

η h d = -Q η h d = - K h i 0 0 K h i (B.23)
The goal is to show that there exists a set C dσ ⊇ C d defined as Eq. (4.42)-Eq. (4.44) such that V < 0, ∀x d ∈ R 13+2n \ C dσ . Using Eq. (B.23), V is computed as 

V = - 1 2 η h d T Q η h d η h d + η h d T P η h d B η h d -K h η h φ + δ h (
η h d ≥ 2λ(P η h d ) ϑK h i ϕ ∞ , ϕ ∞ = b K η h φ ∞ + δ h max (B.27) then V ≤ -1 2 K h i η h d 2
. By the virtue of [Khalil 2002, Theorem 4.18] 
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Figure 1 . 1 :

 11 Figure 1.1: Multi-objective control: HRP-4 robot right hand reaching a Cartesian target while being subject to several unilateral constraints.

Figure 1 . 2 :

 12 Figure 1.2: Three cases showing the effect of introducing online an inequality constraint (whose border is shown with a blue hyperplane) on the feasibility domain (shown in gray). The costfunction levels are shown with the concentric circles, and whose minimum (unconstrained QP solution) is shown in black star. (a) The initial configuration. (b) QP solution is not perturbed. (c) Jump of QP solution (red star). (d) The feasibility domain is empty, and QP is infeasible. We omit the case in which introducing the constraint does not change the shape of the feasibility domain. Introducing online an equality constraint leads to either (c) or (d) cases.
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 1314 Figure 1.3: QP control scheme for torque-controlled robots with additional joint feedback.

  , Sarcos Mistry et al. [2010], HRP-5 Cisneros et al. [2018], Valkyrie Paine et al. [2015], HyQ Focchi et al. [2016], EHbot Shi et al. [2022] as well as arm manipulators like SARA Iskandar et al.

Figure 1 . 5 :

 15 Figure 1.5: Floating-base and fixed-base kinematic-controlled robots. (a) Nao and (b) Pepper by SoftBank Robotics. (c) HRP-4 by Kawada. (d) Hubo by KAIST. (e) Panda by Franka-Emika. (f) SARA by DLR. (g) LBR iiwa 7 by Kuka.

Figure 1 . 6 :

 16 Figure 1.6: Different robotics platforms controlled with multi-objective QP. (a) Humanoid Djeha et al. [2020]. (b) quadruped Xin et al. [2020]. (c) Snake-like robot Basso and Pettersen [2020]. (d) Aerial manipulator Nava et al. [2020]. (e) Planetary rover Bussmann et al. [2018]. (f) Bipedal Reher et al. [2020].
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 23 Figure 2.3: Nonlinear spring-damper model.

Figure 2 . 4 :

 24 Figure 2.4: Phase trajectories showing ODE Eq. (2.10) solutions such that the gains are computed with Eq. (2.23) (blue) and with the nonlinear formulas Eq. (2.27)-Eq. (2.29) (red). The simulation parameters are K h δ s = 4, ξ = 1, ρ s = 1 and ρ d = 1.5.

Figure 2 . 6 :

 26 Figure 2.6: Initial posture (left) and the pairs of bodies (right) pairs of bodies concerned by the collision avoidance constraint and highlighted with red-dashed contour.

Figure 2 . 7 :

 27 Figure 2.7: Three methods performed in closed-loop: viability formulation del Prete [2018] (left), velocity linear damper Vaillant et al. [2016b](center) and our approach (right). δ min is denoted in dashed red and the safety margin is the space between the dashed-dotted green line δ

Figure 2 . 9 :

 29 Figure 2.9: Collision avoidance constraint with step-variable δ min (red dashed). The distance between the pair of bodies is shown in solid blue and δ target in dashed-dotted green.

Figure 2 . 10 :

 210 Figure 2.10: Variable collision avoidance bound δ min (dashed red) with a constant velocity of -0.025 cm/s. The distance between the pair of bodies is shown in solid blue

Figure 2 .

 2 Figure 2.11: HRP-4 trying to reach a far right hand set-point target to make the CoM hit the equilibrium polygon boundaries during motion.

Figure 2 . 12 :

 212 Figure 2.12: CoM evolutions in time (left) and space (right). The dark green area denotes the CoM equilibrium polygon. The blue and light green zones highlight the periods in time as well as in space where the CoM moves due to the right hand end-effector task or the left arm movements, respectively.

Figure 2 . 13 :

 213 Figure 2.13: Superposition of two pictures when the left arm is stretched in two different directions. The blur of the whole body shows how the robot adjusts its posture to keep the CoM at the boundary of the equilibrium polygon (light green area at the bottom in Fig. 2.12).

Figure 2 .

 2 Figure 2.14: Left shoulder roll (left) and pitch (right) joints positions (blue) and velocities (green). The upper and lower joints bounds are in red dashed.

Figure 2 .

 2 Figure 2.15: Velocity (blue) evolution with variable bounds (red dashed).
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 31 Figure 3.1: Different closed-loop QP control schemes for kinematic-controlled robots. (a) Feedback QP. (b) Feedforward QP.
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 32 Figure 3.2: DC motor model

Figure 3 . 3 :

 33 Figure 3.3: Joint-dynamics with its inputs and outputs.

Figure 3 . 4 :

 34 Figure 3.4: Closed-loop response of system (3.14). External torque disturbance τ l = 3 Nm is applied at t = 6 s. The system parameters are taken from columns 1 (top) and 2 (bottom) in Table3.2. (a)-(c) K s = 5, K d = 2 √ K s . (b)-(d) K s = 30, K d = 2 √ K s .

Fig

  Fig. 3.5(a) : λ(A FB ) =

Figure 3 . 5 :

 35 Figure 3.5:Closed-loop response of system (3.17). External torque disturbance τ l = 3 Nm is applied at t = 6 s. The system parameters are taken from columns 1 (top) and 2 (bottom) in Table3.2. (a)-(c) K s = 5, K d = 2 √ K s . (b)-(d) K s = 30, K d = 2 √ K s .
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 36 Figure 3.6: Closed-loop response of system (3.11) controlled by QP (3.20). (a) Feedforward closed-loop scheme. (b) Feedforward closed-loop scheme.

Figure 3 . 8 :

 38 Figure 3.8: Closed-loop system (3.26) response where the joint-dynamics parameters are taken from column 1 in Table 3.2, τ l = 5 Nm, K s = 30, K d = 2 √ K s and K i = θK d . (a) θ = 0. (b) θ = 0.01. (c) θ = 0.1. (d) θ = 1.
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 39 Figure 3.9: Closed-loop system (3.26) response under feedback (3.28) where the joint-dynamics parameters are taken from column 1 in Table3.2, τ l = 5 Nm, K s = 30, K d = 2 √ K s , K i = θK d and K ii = K s for 0 ≤ t ≤ 5 s then K ii = 0 for t ≥ 5 s.

Figure 3 . 10 :

 310 Figure 3.10: Closed-loop response of system (3.11) controlled by QP (3.19) where K h given by Eq. (3.31) with K i = θK d . (a) θ = 0. (b) θ = 0.02. (c) θ = 0.2. (d) θ = 2.
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 41 Figure 4.1: Overview of the proposed robust QP control scheme. The thick blue paths show the high-level integral feedback. Note that if K s i = 0

Figure 4 . 2 :

 42 Figure 4.2: Relationships showing how Assumption 1, Proposition 1, Proposition 2, Theorem 1 and Theorem 2 are linked to each other.

Figure 4 . 3 :

 43 Figure 4.3: The sets S, S σ and R. R is open, S σ is asymptotically stable and forward invariant, and S is robustly stable. If σ = 0, S and S σ coincide. The colored trajectories denotes three possible cases depending on the initial condition: in R (red), in S σ (yellow), and in S (blue).The red trajectory converges to S σ and remains inside because of the set asymptotic stability. The yellow trajectory cannot go out of S σ because it is forward invariant. The blue trajectory can slightly go out of S but remains inside S σ (robust stability).

  4.3. Moreover, it shows that RGUAS-Ω definition in Fig. A.1 is recovered when the set S shrinks to the origin. Definition 4.2.1.

Figure 4 . 4 :

 44 Figure 4.4: Two superposed snapshots showing Panda end-effector converging to the two defined set-point pose targets.

Figure 4 . 5 :

 45 Figure 4.5: Panda response for the 'pick-and-place' task under different feedback controls. End-effector Cartesian coordinates and qd evolution under: output feedback Eq. (2.5) (a)-(c), heterogeneous feedback Eq. (4.36) (b)-(d). The horizontal scales under (a) and (b) denote the stiffness gain K s s within different time periods.

Figure 4 . 6 :

 46 Figure 4.6: Joint velocity tracking of the 2 th joint. (a) Closed-loop system under output feedback Eq. (2.5) at stiffness K s s = 500 leads to instability shown as fast oscillation of qd tracked by q. (b) Closed-loop system under heterogeneous feedback Eq. (4.36) at stiffness K s s = 800 where qd is kept bounded even though it is not well tracked by q, leading to a stable response.

Figure 4 . 7 :

 47 Figure 4.7: Strong oscillations (highlighted in yellow spot in Fig. 4.5(a)) due to non-robustness of output feedback control Eq. (2.5). The two superposed snapshots are taken with a time interval of T = 133 ms.
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 48 Figure 4.8: Top-view of the humanoid robot HRP-4. The equilibrium polygon is shown in red vertices, the CoM in a yellow dot and the vertices normal vector in orange. The polygon is a rectangle in XY plane such that X max = 5 cm, X min = -2 cm, Y max = 5 cm, Y min = -5 cm.
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 49 Figure 4.9: Rubber bushes (yellow) and dampers (orange) under HRP-4 ankles (highlighted in yellow) that induce non-modeled flexibilities.

Figure 4 . 10 :

 410 Figure 4.10: Time Evolution of CoM (x), CoM (x d ) and their respective velocities coordinates along X and Y axes. (a) Experiment 1. (b) Experiment 2. (c) Experiment 3. The gray time slot is zoomed-in in Fig. 4.11.

Figure 4 .

 4 Figure 4.11: Zoom-in of the gray time slot in Fig. 4.10(c). The bold dashed line denotes the moment when the RECBF constraint relative to X max boundary is inserted in QP Eq. (4.47).

Figure 4 . 12 :

 412 Figure 4.12: Desired contact forces computed by QP during failed Experiment 2. The required desired forces for decelerate the whole-body are excessively high and cannot fulfill the frictional constraint (1.15).

Figure 4 . 13 :

 413 Figure 4.13: Torque measurements w.r.t Y axis showing the feet tip-over at Experiment 2.Given the placement of the F/T sensors in Fig.4.9, a torque of -22 Nm denotes a force of approximately 220 N along Z axis at the backward edge of each foot which is the amount of force sensed at each foot when the robot is standing.

  4.5(b)).Increasing the task gains results in high values of desired joint acceleration qd (Fig.4.5(c)-(d)) which generates desired joint commands qd with fast variations that cannot be well tracked by the joint controllers (Fig.4.6(a)-(b)) due to the different rate limitations (acceleration, jerk) and the limited bandwidth. This leads to increase the joint tracking error φ in Eq. (4.3), and correspondingly its task-space mapping η s φ in Eq. (4.10). In particular, adding the task-space integral term in Eq. (4.36) allows to withstand the perturbation by the gain K s i as shown in Eq. (B.18) enforcing η s d to remain bounded which leads to the boundedness of xd (by the virtue of Proposition 1).

Figure 4 . 14 :

 414 Figure 4.14: Superposed snapshots of robust against pushing (experiment 4) along X (righttop) and Y (left-top) directions, with the corresponding top-view perspectives (bottom).

Figure 4 . 15 :

 415 Figure 4.15: Robustness of RECBF Eq. (4.46) against external pushes. (b) Zoom-in of the blue time-slot in (a) showing the response against a persistent external push. (c) Zoom-in of the green time slot in (a) showing the response against a brief push.

. 1 :

 1 Experiment 1. ECBF constraint (4.34) following feedforward QP closed-loop control scheme (Fig. 3.1(b)); Experiment 2. ECBF constraint (4.34) following feedback QP closed-loop control scheme (Fig. 3.1(a)); Experiment 3. RECBF constraint Eq. (4.46) following the proposed QP closed-loop control scheme (Fig. 4.1).
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 51 Figure 5.1: Classical approach (left): reference target beyond the obstacle, WBQP collision constraint takes care of avoiding the collision with the wall. Proposed approach (right): sequence of optimal targets (edge color gradually shifts from blue to pink according to the time evolution) are tracked by WBQP such that the collision with the wall is avoided. The red point denotes the initial task-space state.

Figure 5 . 2 :

 52 Figure 5.2: Closed-loop MPC-WBQP controller with: (a) kinematic-controlled robot, (b) torque-controlled robot.

Figure 5 . 3 :

 53 Figure 5.3: Panda end-effector moving toward the Cartesian target while avoiding collision with the yellow ball and keeping its CoM (orange point) behind the red line.

2 ,

 2 d -I) s i +B d u i )(5.36) 

  Ws 0 + Yu + z ≤ 0(5.46b) Eq. (5.46a) encompasses the weighted sum of cost-functions on control (Eq. (5.33)), state (Eq. (5.34)), mixed (Eq.(5.35)) and terminal trajectory point (Eq. (5.36)), and similarly for the constraint Eq.(5.46b).
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 54 Figure 5.4: Time evolution of h * (blue) and ḣ * (orange) in the case of reactive WBQP control scheme (baseline approach): (a) h coll and ḣcoll , (b) h com and ḣcom . The constraints Eq. (5.52) and Eq. (5.53) are inserted in WBQP Eq. (5.7) if h coll and h com are less than their respective margins shown in red dash-dotted line.
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 55 Figure 5.5: Robot configuration when reactive WBQP controller (baseline approach) fails to find a solution.
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 565758 Figure 5.6: Time evolution of h * (blue) and ḣ * (orange) in the case of closed-loop MPC-WBQP control scheme: (a) h coll and ḣcoll , (b) h com and ḣcom . The colored bands correspond to the current assigned p ref .
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 59 Figure 5.9: End-effector position p (blue solid) and its predictions (colored dotted-solid) along different preview horizon in the case of closed-loop MPC-WBQP control scheme for t ∈ [0.7, 3] s (first colored band in Fig. 5.8). (a) X coordinate. (b) Y coordinate. (c) Z coordinate.

Figure 5 . 10 :

 510 Figure 5.10: Reference posture target q * computed by MPC and tracked by the WBQP posture task Eq. (5.48).

Figure 5 . 11 :

 511 Figure 5.11: Different screenshots of the closed-loop MPC-WBQP resulting motion. The shadowed Pandas are the robot states prediction along the preview horizon. The blue trajectory denotes the predicted end-effector p position, and the predicted optimal Cartesian targets p * are shown with graduated-green points.

Figure 5 . 12 :

 512 Figure 5.12: Zoom-in of h * near the boundary h * = 0 (dashed red) and the corresponding slackness. (a) h coll (blue) and h com (orange). (b) Slackness of the constraint Eq. (5.55) (blue, left ordinate axis) and Eq. (5.56) (orange, right ordinate axis).

Figure 5 . 13 :

 513 Figure 5.13: MPC computation time (blue), the mean (red) and the standard deviation (dashed-yellow). The mean is 11.09 ms with a standard-deviation of 1.22 ms.

Figure 6 . 1 :

 61 Figure 6.1: Different handover scenarios: handing food for patient (top-left Nemlekar et al. [2019]), sharing a tool for a mechanic (top-right Prada et al. [2014]), lending mustard (bottomleft Ortenzi et al. [2021]), giving a water bottle (bottom-right Medina et al. [2016]).

  .28) with K tt s , K tt d ∈ R 6×6 are diagonal positive-definite matrices denoting the stiffness and damping gains; it yields to the following trajectory-tracking task closed-loop dynamic ηtt = A tt η tt , A tt =

Figure 6 . 2 :

 62 Figure 6.2: Illustrative scheme showing the different frames R w , R ee , R obj , R obs and R grasp . The observed object is tracking the actual object, giving the sensor data. The end-effector tracks the observation task outputs yielding an anticipatory motion toward the HOL where it ultimately meets the object. The colored unit vectors in R ee track their corresponding in R grasp . The frames R obj and R obs are not in the same placement only for clear visualization purposes.

Figure 6 . 3 :

 63 Figure6.3: Object with the line segment L grasp (dash-dotted orange) along which a set P grasp of the valid grasping region (highlighted with a yellow rectangle). u grasp is denoted in yellow, and the red spheres denote the spots where the human is holding the object.

Figure 6 . 4 :

 64 Figure 6.4: Object in Fig. 6.3 with the planes Π ngrasp and Π vgrasp with their respective normal vectors n grasp and v grasp shown in blue and green.

Figure 6 . 5 :

 65 Figure 6.5: Object in Fig. 6.4 with the additional planes Π u grasp,min and Π ugrasp,max with their respective normal vectors u grasp,min and u grasp,max shown in red.

Figure 6 . 6 :η

 66 Figure 6.6: Perception Neuron motion capture sensor-suit used for the handover experiments. Three IMUs (highlighted in colored squares) mounted on the left hand are used to provide an estimation of the hand pose (the orange square).

Figure 6 . 7 :

 67 Figure 6.7: Calibration process.
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 6869 Figure 6.8: Different desired HOLs (red) by the human operator where the object is a black cylindrical container. The transparent robots represent the robot initial configuration. The IMUs are shown in Fig. 6.6 are highlighted.

Figure 6 . 10 :

 610 Figure 6.10: Velocity of the frame R obs obtained by the observation task. (a) Linear velocity. (b) Angular velocity.

  Figure 6.11: Acceleration of the frame R obs obtained by the observation task. (a) Linear acceleration. (b) Angular acceleration.

  2.4 where the gains are fixed as K tt s =

Figure 6 . 12 :

 612 Figure6.12: Pose of the frame R grasp (dashed) and that of the frame R ee (solid) obtained by the trajectory-tracking task. (a) Cartesian coordinates. (b) Orientation with RPY angles. The sudden variation in the yaw angle is sound because the angle is bounded between -π and π. This does not induce any singularity issue since the orientation task is implemented using unit quaternions.

Figure 6 .

 6 Figure 6.13: 3-D trajectories of the frames R grasp (blue) and R ee (orange). The initial and terminal points are denoted with a square and a circle, respectively.

Figure 6 . 14 :

 614 Figure 6.14: Simulation snapshots showing multi-robot handover with different perspectives.One compact QP formulation handles three robot: the object and two Panda robotic arms. Each Panda is tracking its corresponding grasping-set (highlighted in yellow) formulated as described in Section 6.2.5. The actual object is shown in gray and tracked by the observed object shown in orange as described in Section 6.2.3. The red spheres denote the placement of the human hands holding the object.
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 1 Figure A.1: RGUAS-Ω illustrative scheme. Two state trajectories are shown: the red one starts (squares) outside the residual set Ω then it converges to Ω over time, whereas the yellow one starts inside Ω and remains within it.

  Fig. A.1.

  are defined as inTheorem 1 and Eq. (2.5), respectively. Let us consider the following Lyapunov function associated to Eq. (B.14) definite is the solution of the following Algebraic Riccati Equation (ARE)A H-CL T P η s d + P η s d A H-CL = -Q η s d = -P η s d ) > 0 and λ(Q η s d ) = λ(K s i )> 0, and using Rayleight-Ritz Eq. (A.
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3.1

  Rotor inertia (Kg.m 2 ) f : Friction coef. (N.m.s.rad -1 )

		Parameters
		v(t): Voltage input (V)
		i(t): Current (A)
		e(t): Electro-Motive Force (EMF) (V)
	Electrical	τ l (t): Load torque (Nm) τ m (t): Motor torque (Nm)
		L: Inductance (H)
		R: Resistance (Ω)
		K: Torque and EMF constant (V.s.rad -1 )
		ω m (t): Motor-side angular velocity
		ω(t): Link-side angular velocity
	Mechanical	J:

The latter can be counterbalanced by a feedforward torque term computed from EoM (1.7) as shown

Table 3 . 1 :

 31 Specification of the electrical and mechanical parameters.

Table 3 . 2 :

 32 Parameters used for system (3.11) numerical simulations. The parameters in column 2 are obtained by choosing higher P and D gains than those in column 1.

		1	2
	β	158.5073 173.5712
	γ	376.5977 2380.6356
	δ	2.8245	17.8884
	aG	4.7034	4.7034

Table 5 . 1 :

 51 Meta-parameters used in simulation.

		1 4∆t	500 10 10I 2 √	10I 1I 2I
	w 1	w 2 w 3 w 4	w 5
	2000 500 30 200 20 • 10 6

  .41) If initially h grasp,min (t 0 ) ≥ 0, then (6.41) must hold forward in time. Otherwise, it should be satisfied asymptotically. We have shown in Chapter 2 how to enforce the constraint dynamics in order to ensure the above behavior even if the boundary is time-variant (u T grasp p grasp,min for instance). Let us define the grasping-set constraint state

	η grasp,min =	h grasp,min ḣgrasp,min	=	u T grasp (p ee -p grasp,min ) grasp (p ee -p grasp,min ) + u T uT grasp ( ṗee -ṗgrasp,min )	. (6.42)
	The grasping-set constraint dynamics is defined as
		ηgrasp,min =	0 1 0 0	η grasp,min +	0 1	µ grasp,min ,	(6.43)

h grasp,min = C grasp,min η grasp,min , C grasp,min = 1 0 , (6.44) µ grasp,min = ḧgrasp,min = u T grasp J ee-lin αq + u T grasp Jee-lin α q + üT grasp (p ee -p grasp,min ) + 2 uT grasp ( ṗeeṗgrasp,min ) -u T grasp pgrasp,min , (6.45)

  s d + J s d αq d (t), where J s d + is the Moore-Penrose Jacobian inverse and ν(t) ∈ R 6+n denotes the remaining velocity redundancy. In QP (4.47), the redundancy state is bounded by a secondary (posture) task. Hence, ν(t) is bounded. Let us show the boundedness of αq d (t). From Eq. (B.1) From Eq. (4.1) and following from Eq. (B.8) and Eq. (B.5) x d (t) is bounded implying that, given Eq. (4.15), ∃ αq d ∈ U such that x d (t) is bounded.

	J s d αq d	+ J s d	αq d (t)	(B.8)

d (t) -ṡref (t) ≤ J s d αq d (t) -ṡref (t) ≤ M ⇒ J s d αq d (t) ≤ M + ṡref (t) (B.6) Given that J s d is non-singular, then there exist b , b 0 with b ≥ b 0 > 0 such that Golub and Van Loan [2013] J s d αq d (t) = b αq d (t) ≤ M + ṡref (t) ⇒ αq d (t) ≤ M + ṡref (t) b (B.7)

Hence, α q d (t) is bounded such that α q d (t) ≤ αq d (t) + I -J s

  Then, there exists an ultimate boundη s d > 0, such that ∀M η s d > 0, ∃T η s d = T η s d (M η s d , η s d ) > 0 such that [Khalil 2002, Definition 4.6] η s d (t 0 ) ≤ M η s d ⇒ η s d (t) ≤ η s d , ∀t ≥ t 0 + T η s d . (B.11) From Proposition 1 proof in Appendix B.1 and (B.11), it yields that there exists xd = xd ( η s d ) > 0 such that xd (t) ≤ xd , ∀t ≥ t 0 + T η s d . From (B.9), we get x(t) ≤ σ + xd , ∀t ≥ t 0 + T η s d . (B.12) Thus, from (B.12), (B.10) and (4.10), there exists an ultimate bound η s = η s

d + η s φ ∞ > 0, such that ∀M η s = M η s d + η s φ (t 0 ) > 0, there exists T η s = T η s (M η s , η s ) > 0 such that η s (t 0 ) ≤ M η s ⇒ η s (t) ≤ η s , ∀t ≥ t 0 + T η s , (B.13)

which yields to η s (t) is (uniformly) ultimately bounded.

  1) and Schwartz Eq. (A.2) inequalities, V is bounded such that ) ≤ M there exist T = T (M, ) > 0, a class KL function β, and a closed setΩ η s d = η s d ∈ H s η s -t 0 ), ∀t 0 ≤ t ≤ t 0 + T Given Eq. (B.18), the residual set Ω η s d can be made arbitrarily small by K s i . Hence, η s d is robustly practically stable w.r.t Ω η s d [Freeman and Kototovic 1996, Defintion 3.2]. Proof. The matrix gain Ǩh in Theorem 2 is chosen according to ECBF definition to ensure that h d is ECBF for the nominal system η h φ = 0. Now, let us prove that η h d is uniformly ultimately bounded. Inequality Eq. (4.46) can be expressed as µ (t) is a slack variable that facilitates the manipulation of Eq. (4.46). Given Eq. (B.20), system Eq. (4.27) becomes

	with 0 < ϑ < 1. Thus, if K s i is chosen such that
						η s d ≥	2λ(P η s d ) K s ϑλ(K s i )	η s φ ∞	(B.18)
	then V ≤ -1-ϑ 2 λ(K s i ) η s d	2 . By the virtue of [Khalil 2002, Theorem 4.18], η s d is ul-
	timately bounded with ultimate bound =	λ(P η s d λ(P η s d	) )	2λ(P η s d ϑλ(K s ) K s i )	η s φ ∞	. Furthermore,
	∀ η s d (t 0 d ≤	such that		
			η s d (t) , t η s Ω η s d ≤ β( η s d (t 0 ) Ω η s d d (t) d Ω η s = 0, ∀t ≤ t 0 + T	(B.19)
			ηh d = A H-CL η h d	η h d + B η h d	-K h η h φ + δ h (t)	(B.21)
	where K h defined as in Eq. (4.31), and A H-CL η h d following Lyapunov function Xu et al. [2015]	= A η h d -B η h d	Ǩh . Let us consider the
					V =	1 2 η h d	0, if x d ∈ C d T P η h d η h d , otherwise	(B.22)
	where C d defined as Eq. (4.20)-Eq. (4.22) and P η h d = P T η h d of the following ARE	positive-definite is the solution
			A H-CL T η h d	P η h d + P η h d A H-CL
	V ≤ -	1 -ϑ 2	λ(K s i ) η s d	2	-	ϑ 2	λ(K s i ) η s d	  η s d -	2λ(P η s d ) K s η s φ ϑλ(K s i )	 	(B.17)

B.4 Proof of Theorem 2

h = -L h ψ h + δ h (t), 0 ≤ δ h (t) ≤ δ h max (B.

20) 

with δ h

  t) (B.24) Using Rayleight-Ritz Eq. (A.1) and Schwartz Eq. (A.2) inequalities, Eq. (B.24) becomes

		V ≤ -	1 2	λ(Q η h d ) η h d	2 + η h d		P η h d	B η h d	K h η h φ + δ h (t)	(B.25)
	By putting ϕ = K h η h φ + δ h (t) , and given that λ(Q η h d ) = K h i > 0, P η h d	= λ(P η h d ),
	B η h d	= 1, then								
			V ≤ -	1 -ϑ 2	K h i η h d	2	-	ϑ 2	K h i η h d	  η h d -	2λ(P η h d ) i ϑK h	 ϕ 	(B.26)
	with 0 < ϑ < 1. Hence, if K h i is chosen such that

5 Proof of Proposition 3

  , η h d is uniformly ultimately bounded with ultimate bound σ = ∞ . From Eq. (4.23), η h d ≤ σ ⇒ h d + σ ≥ 0. In addition, there exists a closed set C dσ defined as Eq. (4.42)-Eq. (4.44) which is asymptotically stable and forward invariant 2 . Given that C d ⊆ C dσ then following from Definition 4.2.1, C d defined as Eq. (4.20)-Eq. (4.22) is robustly stable, and thereby from Definition 4.2.2, h d is a RECBF. Proof. The superscript i is dropped for sake of clarity. Substituting Eq. (4.48) in Eq. (4.12) Let us consider Lyapunov function V in Eq. (B.15) such that Eq. (B.16) holds. Following the same steps in Theorem 1 proof, V is bounded such that + δ max . Following the same steps in Eq. (B.19), η s d is robustly practically stable w.r.t the residual set Ω η s

	λ(P η h d λ(P η h d ϕ yields to ) ) ) 2λ(P η h d ϑK h i
						ηs d = A η s d	H-CL η s d -B η s d Kη s φ + B η s d δ(t).	(B.28)
	V ≤ -	1 2	(1 -ϑ)λ(K s i ) η s d	2	-	ϑλ(K s i ) 2	η s d	η s d -	2λ(P η s d ) ϑλ(K s i )	K η s φ + δ(t)	.
												(B.29)
	If K s i is chosen such that					
						η s d ≥	2λ(P η s d ) ϑλ(K s i )	K η s φ ∞	+ δ max	(B.30)
	then V ≤ -1 2 (1 -ϑ)λ(K s i ) η s d follows that η s d is uniformly ultimately bounded with ultimate bound 2 . From [Khalil 2002, Theorem 4.18], it =
	λ(P η s d λ(P η s d	) )	2λ(P η s d ϑλ(K s i ) )	K η s φ ∞					

B.d = {η s d ∈ H : η s d ≤ }.

2. Forward invariance and asymptotic stability follow from the uniform ultimate boundedness property of η h d .

This is only possible if h ∈ Im {H}.

Here, we assume δ(q) is a generic distance defined in the space of interest to encompass several similar constraints: joint-limits, CoM, collision avoidance, FoV, etc.

This distance notion is to be understood at an abstract level, and it does not necessarily mean the Euclidean distance.

Note that stability does not imply feasibility. The former concerns the boundedness of the system trajectories, whereas the latter focuses on the existence of the QP solution.

i.e., the operator forwards the desired joint torques τ d to the robot.

In literature, kinematic-controlled robots are referred to in different ways: position-controlled robots, velocity-controlled robots, low-level impedance-controlled robots[START_REF] Yang | Learning whole-body motor skills for humanoids[END_REF];[START_REF] Iskandar | Joint-level control of the dlr lightweight robot sara[END_REF] and stiffness-controlled robots Pang and Tedrake[2021].

to not confuse with the stability notion in Lyapunov sense, see[START_REF] Caron | Zmp support areas for multicontact mobility under frictional constraints[END_REF].

For the sequel, the dependence of s and s ref and their time derivatives on q, α q and t, respectively, is omitted for the ease of reading.

https://jrl-umi3218.github.io/mc_rtc/index.html

Experiment video: https://youtu.be/0p6wd8pppKk

The eigenvalues closed-form has been obtained using the symbolic computation software Maple.

The computation with Maple provided very long and complicated formulas where the task gains and joint-dynamics parameters are coupled.

For the sake of generality, both qd or qd (joint commands) are encompassed by xd in the jointdynamics f φ in Eq. (4.7).

2. A benchmark problem has been proposed in[START_REF] Moberg | A benchmark problem for robust feedback control of a flexible manipulator[END_REF] that simulates such disturbances.

This implies implicitly that the zero dynamics ż = f z (z, 0) is asymptotically stable.

In this chapter, the 'whole-body' term is used to emphasize the distinction with the QP used for MPC formulation.

https://github.com/jrl-umi3218/copra

The highest prediction error is observed in Fig.

5.9(c) which is only 5 cm at the end of the preview horizon T preview = 1.20 s.

This is also known as a reference model-based approach for trajectory references generation[Khalil 2002, Chapter 13]. In addition, the trajectory feedforward terms are generated in real-time since the observation task is updated at the same frequency of QP (1 kHz) no matter the sampling frequency of the sensor.

Note that the rigid body assumption implies that ṗobs = 0, Ṙobs = 0, ω = ω obs and ω = ωobs .

https://neuronmocap.com/

Acknowledgements

Comparison with State-of-the-Art

The instability issue of the closed-loop task-space QP controller combined with a kinematic-controlled robot has been unnoticed in some control implementations that operate in feedforward (Fig. 3.1(b)) [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF]; [START_REF] Zanchettin | Motion planning for robotic manipulators using robust constrained control[END_REF]; [START_REF] Polverini | Robust constraint-based robot control for bimanual cap rotation[END_REF]; [START_REF] Shi | Multiobjective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots[END_REF]. This leads to a decoupled control (similar to [START_REF] Feng | Optimization-based full body control for the DARPA robotics challenge[END_REF]), delegating the control accuracy to the joint-controllers. In such cases, frequent initializations of the controller are needed to lower the discrepancy between real and control-model states due to non-modeled flexibilities or external disturbance.

Most of the works reporting instability are those using torque-controlled robots with numerically-implemented joint-controllers (Fig. 1.3), see e.g., [START_REF] Feng | Optimization-based full body control for the DARPA robotics challenge[END_REF]; [START_REF] Johnson | Team ihmc's lessons learned from the darpa robotics challenge trials[END_REF][START_REF] Dedonato | Team wpi-cmu: Achieving reliable humanoid behavior in the darpa robotics challenge[END_REF]; [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF]. Interestingly, it has been noted in [START_REF] Feng | Optimization-based full body control for the DARPA robotics challenge[END_REF] that the oscillations and undesired behaviors are related to the double integration of the QP output qd . However, no further investigation was made to elucidate the cause. Instead, only workaround solutions have been proposed to bypass this issue. Hopkins et al. [2015] implemented a joint-velocity feedback on αq computed by QP (denoted as leaky-integrator)

The authors reported qualitatively that the leaky-integrator enhances the overall stability. Nevertheless, they did not provide clear insights on how the leaky-integrator gain α improves the stability nor how to tune it. Our work has been inspired by the leaky-integrator

Annex

This annex encompasses the formal definitions gathered from the literature and necessary for the self-sufficiency of this thesis.

A.1 Comparison Functions

Definition A.1.1. [Khalil 2002, Definitions 4.2-4.3] • γ : [0, a) → R + for some a > 0 is a class K function if it is continuous, strictly increasing and γ(0) = 0,

• γ : (-b, a) → R + for some a, b > 0 is an extended class K function if it is continuous, strictly increasing and γ(0) = 0,

and for each fixed s ≥ 0, it decreases to 0 as t → ∞.

A.2 Rayleight Inequality

Definition A.2.1. [START_REF] Rugh | Linear System Theory, Second Edition[END_REF] Given a symmetric matrix A ∈ R r×r the following inequality holds ∀r ∈ R r :

A.3 Schwartz Inequality

Definition A.3.1. [START_REF] Strang | Linear algebra and its applications[END_REF] ∀r, p ∈ R p the following inequality holds:

A.4 Uniform Boundedness and Ultimate Uniform Boundedness

Definition A.4.1. [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF] Let us consider the system

3)

The solutions of system Eq. (A.3) are

• uniformly bounded of there exists a positive constraint c, independent of t 0 , and for every 0 < a < c, there exists b = b(a) > 0, independent of t 0 , such that

• uniformly ultimately bounded with ultimate bound b if there exist b, c > 0, independent of t 0 , and for every 0 < a < c, there is

A.5 Set Forward Invariance and Asymptotic Stability

Definition A.5.1. [START_REF] Blanchini | Set invariance in control[END_REF]; [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF] Let us consider the system

where x ∈ R p and u ∈ R q . For any initial condition x(t 0 ) ∈ R p , there exists a maximum time interval I(x(t 0 )) = [t 0 , t max ] such that x(t) is the unique solution of Eq. (A.6) on I(x(t 0 )). If t max = ∞ then f x is forward complete. System Eq. (A.6) is said to be autonomous when u = 0. A set S ⊂ R p is called forward invariant w.r.t autonomous system Eq. (A.6) if ∀x(t 0 ) ∈ S =⇒ x(t) ∈ S, ∀t ∈ I(x(t 0 )). (A.7)

In addition, a closed and forward invariant set S ⊂ R p is asymptotically stable for a forward-complete autonomous system Eq. (A.6) if there exist on open set R ⊇ S, and a class KL function β such that

As shown in [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF] and from Eq. (A.7)-Eq. (A.8), the asymptotic stability of a set implies its forward invariance.

A.6 Comparison Lemma (or Petrovitch Theorem)

Lemma A.6.1. [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]; [START_REF] Dragoslav | Inequalities Involving Functions and Their Integrals and Derivatives[END_REF] Consider the system Eq. (A.3) with scalar x ∈ R where f x (x, t) is continuous in t, and locally Lipschitz in x for all t ≥ 0 and all x ∈ R. Let y(t) be a continuous function whose time-derivative ẏ(t) satisfies the differential inequality ẏ(t) ≤ f x (x, t), y(t 0 ) ≤ x(t 0 ), (A.9)

with y(t) ∈ R for all t ∈ I(x(t 0 )) in Definition A.5.1. Then y(t) ≤ x(t), ∀t ∈ I(x(t 0 )).

A.7 Barrier Function

Definition A.7.1. [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]; [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF] Let us define the set C defined as

For the autonomous system Eq. (A.6), a continuously differentiable function h : R p → R is a BF for the set C defined by Eqs. (A.10) to (A.12), if there exist an extended class K function γ and a set

A.8 Control Barrier Function

Definition A.8.1. [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF]; [START_REF] Xu | Robustness of control barrier functions for safety critical control[END_REF] Let us consider control-affine the system

Given a set C defined by Eqs. (A.10) to (A.12) for a continuously differentiable function h : R p → R, the function h is called a CBF defined on a set D with C ⊆ D ∈ R n , if there exists an extended class K function γ such that sup

A.9 Input-to-State-Stability Definition A.9.1. [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF]; [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF]; [START_REF] Dashkovskiy | Input to state stability and allied system properties[END_REF] The system (A.6) is Input-to-State Stable (ISS) if there exist a class KL function β and a class K function γ such that for any initial state x(t 0 ) and any bounded input u(t), the solution x(t) exists ∀t ≥ t 0 and satisfies .16) Note that if u = 0 then the above ISS definition (A.16) implies that the system (A.6) is globally asymptotically stable.

A.10 Robust Global Uniform Asymptotic Stability

Definition A.10.1. [START_REF] Freeman | Robust control lyapunov functions: the measurement feedback case[END_REF]; [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF] Consider the system ẋ = f x (x, u, w, t) (A.17)

Appendix

This appendix gathers the proofs of the different Propositions and Theorems proposed in Chapter 4.

B.1 Proof of Proposition 1

Proof. The proof is established for η s d , the same steps apply for η h d . Here, the dependency on time (t) is made explicit. Given Eq. (4.12), let us assume ∃µ 

Thus, by putting ∆q d (t) = q d (t) -q ref (t), s (q d (t)) writes using 1. In Eq. (B.2), s ref is assumed to be strictly reachable. Otherwise, we can define Q as Q = q d (t) ∈ R 7+n : q d = arg min s (q d (t)) -s ref (t) which leads to s (q ref (t)) = s ref (t) + δ s (t), with δ s (t) ∈ R m bounded. The remaining of the proof is not affected.