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R |  Résumé substantiel 

R.1  Introduction à la peste porcine africaine 

La peste porcine africaine (PPA) est une fièvre hémorragique virale dévastatrice du porc, dont le taux 

de mortalité chez Sus scrofa (porcs domestiques et sangliers) approche les 100 % pour certains 

génotypes (Blome et al., 2013). C'est une maladie réglementée à déclaration obligatoire, impactant 

les marchés économiques de la filière porcine à toutes les échelles (WOAH, 2021). Les mesures de 

surveillance et de contrôle sont définies par la législation européenne, auxquelles peuvent s'ajouter 

des mesures locales dans les zones (pays) infectées. En 2007, le virus de la peste porcine africaine, 

enzootique en Afrique subsaharienne, a été introduit sur le continent Européen et s'est depuis 

propagé dans le monde entier, décimant les populations porcines en Europe, en Asie, en Océanie et 

aux Caraïbes. En l'absence de vaccin ou de traitement, et compte tenu de la transmission du virus 

entre les porcs domestiques et les sangliers, la PPA est l'une des maladies infectieuses les plus difficiles 

à contrôler. 

La PPA est l'une des maladies les plus lourdes de conséquences pour les porcs domestiques. Elle est 

donc inscrite sur la liste des maladies à déclaration obligatoire de l'Organisation Mondiale de la Santé 

Animale (WOAH, 2021). Partout où son émergence est reconnue, cette fièvre hémorragique est 

socioéconomiquement dévastatrice pour les exploitations individuelles et les pays touchés (Dixon et 

al., 2020). En Roumanie, l'indemnisation des agriculteurs pour leurs pertes a coûté au gouvernement 

plus de €121 millions (Euromeat News, 2021). Au Vietnam, les foyers de 2019 ont été estimés à une 

perte de revenu national comprise entre US$880 millions et US$4,4 milliards (Nguyen-Thi et al., 2021). 

Si l'on tient compte des pertes initiales dues à la maladie et à l'abattage, ainsi que de la réorientation 

des ressources pour reconstituer le cheptel reproducteur national, les pertes dues aux foyers en Chine 

et en Asie du Sud-Est ont été estimées entre US$55 et US$130 milliards (Weaver & Habib, 2020). Dans 

l'Union européenne, on estime que les pays possédant des troupeaux porcins industrialisés (comme 

le Danemark) pourraient subir des pertes totales (coûts directs et pertes à l'exportation) allant jusqu'à 

€520 millions par épizootie (Halasa, Bøtner, et al., 2016a). Au-delà des pertes purement économiques, 

les effets psychosociaux du dépeuplement massif nécessaire des troupeaux infectés sont tout aussi 

graves. Des cas d'épuisement émotionnel et d'angoisse mentale ont été signalés chez les éleveurs, 

leurs familles et les agents de santé animale (Baysinger & Kogan, 2022). Enfin, les modèles de 

projection prévoient que le prix mondial du porc - la viande la plus consommée dans le monde—

augmentera jusqu'à 85 %, ce qui aura des répercussions directes sur la sécurité alimentaire mondiale 

(Mason-D’Croz et al., 2020). La lutte contre la panzootie de la PPA est donc une priorité mondiale. 
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Seuls deux pays (sur les 45 qui ont connu des foyers jusqu'à présent) ont réussi à contrôler l'épizootie 

et à retrouver le statut de pays indemne de PPA, la République Tchèque et la Belgique. Ces deux pays 

y sont parvenus en utilisant des stratégies de contrôle codifiées qui comprennent l'établissement de 

zones spéciales de surveillance intensive par la construction de clôtures autour des cas détectés chez 

les sangliers, l'abattage des troupeaux de porcs domestiques affectés et à risque d’infection, la 

restriction des mouvements de cochons et de produits d'origine porcine, l'abattage des sangliers par 

des chasses ciblées et silencieuses, et la surveillance active et l'élimination des carcasses de sangliers 

infectieux (EFSA et al., 2021). La dynamique des épizooties de PPA en cours varie géographiquement, 

certains pays ne connaissant que des cas chez les sangliers, tandis que d'autres connaissent des 

épidémies dans les compartiments domestique et sauvage (WOAH, 2022d). 

R.2  Introduction à la modélisation mathématique 

Les modèles mathématiques ont fait leurs preuves dans l'aide à la décision en matière d'épizootie. Les 

premiers modèles, au début du XXe siècle, reposaient sur des équations différentielles pour expliquer 

les fluctuations de la dynamique des populations (Brauer, 2017). Dans ces modèles, une population 

est divisée en compartiments en fonction de son état de santé, les plus simples étant les modèles à 

deux compartiments : ceux qui sont sensibles à la maladie (dans le compartiment S) et ceux qui sont 

infectieux (dans le compartiment I) (Brauer, 2017). Les modèles ultérieurs ont commencé à prendre 

en compte des statuts épidémiologiques supplémentaires, comme les états correspondant à la latence 

(E ; état durant lequel un individu est infecté mais n’est pas encore infectieux) les états de guérison 

(R, état dans lequel les individus ne sont plus infectieux et développent une immunité). Avec le 

développement des capacités mathématiques et informatiques, il est aujourd’hui possible de prendre 

en compte les spécificités liées aux connaissances sur la population hôte, le pathogène et leurs 

interactions. Il reste néanmoins important de bien identifier les objectifs du projet afin de développer 

le modèle pouvant y répondre sans ajouter une complexité inutile.  

À l'aube du XXIe siècle, des modèles plus sophistiqués ont été capables de représenter les individus 

des populations, en tenant compte des relations temporelles et spatiales entre les agents du modèle. 

Ici, la somme des interactions individuelles a permis d'élucider la dynamique des populations. Les 

premiers modèles de ce type ont été appelés modèles d'automates cellulaires, où une trame de 

cellules représente une population, chaque cellule représentant un individu ou un groupe (Di Stefano 

et al., 2000; Rousseau et al., 1997). Les mouvements entre les individus peuvent être explicitement 

représentés, permettant de suivre la progression de chaque individu au sein du modèle. Ces modèles 

permettent de prendre en compte des caractéristiques individuelles au niveaux démographique et 

comportemental (White et al., 2007). Des modèles de métapopulation ont également été développés 

pour tenir compte des groupes d'hôtes partageant des caractéristiques similaires avec des interactions 
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entre groupes. La métapopulation peut inclure différents types d'hôtes par exemple, ou des groupes 

différents en réponse aux infections. Ici, la transmission de la maladie entre les sous-populations tient 

compte à la fois des taux de déplacement et des changements dans les populations (Brauer, 2017; van 

den Driessche, 2008). Avec l'augmentation de la puissance de calcul, la complexité des modèles basés 

sur les individus pourra également croître, ce qui permettra de réaliser des simulations d'épidémies 

prenant en compte des différences à haute résolution entre les agents du modèle, telles que la 

susceptibilité et l'infectiosité. 

La compréhension de la dynamique de transmission de la tuberculose bovine, de l'encéphalopathie 

spongiforme bovine et de la fièvre aphteuse a été améliorée par l'utilisation de modèles 

mathématiques. Lors de l'épidémie de la fièvre aphteuse de 2001 au Royaume-Uni, les modèles ont 

été utilisés pour informer les stratégies de contrôle et fournir une aide à la décision en temps réel 

(Keeling, 2005). A propos de la tuberculose bovine, les modèles mathématiques ont mis en évidence 

les taux de propagation entre les populations réservoirs de blaireaux et hôtes et de bovins, afin 

d'éclairer les stratégies de contrôle d'une population pour en protéger une autre (Donnelly & 

Nouvellet, 2013; Donnelly & Hone, 2010). Enfin, les modèles mathématiques ont été nécessaires pour 

estimer l'incidence stratifiée par âge chez les bovins et déterminer l'impact des politiques d'abattage 

visant à contrôler la crise de l'ESB (« maladie de la vache folle ») du XXe siècle. En prédisant les voies 

de transmission et le temps jusqu'à l'extinction de la maladie, des stratégies de contrôle ont pu être 

conçues (R. M. Anderson et al., 1996). 

R.3  Revue systématique des modèles mathématiques de la peste porcine africaine 

Pour concevoir des stratégies efficaces de prévention, de surveillance et d'intervention contre la PPA, 

il faut comprendre la dynamique de la transmission du virus, qui peut souvent être élucidée à l'aide 

de modèles mécanistes. Afin d'examiner les hypothèses sur la transmission et les objectifs des 

modèles mécanistes de la PPA, une revue systématique de la littérature scientifique a été réalisée. Les 

articles ont été examinés en fonction de multiples caractéristiques épidémiologiques et de modèles, 

la filiation entre les modèles étant déterminée par la création d'un arbre joint par le voisinage à l'aide 

d'un logiciel phylogénétique. 

Trente-quatre articles ont été retenus, avec quatre objectifs principaux de modélisation identifiés : 

estimation des paramètres de transmission (11 études), évaluation des déterminants de la 

transmission (7), examen des conséquences d'épidémies hypothétiques (5), évaluation des stratégies 

de contrôle alternatives (11). Des modèles sont développés à differentes échelles dépendant de leurs 

objectifs : population (17), métapopulation (5) ou individu (12). Les représentations aux échelles 

populationnelle et métapopulationnelle étant principalement utilisées dans les modèles focalisés 
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spécifiquement sur la transmission du virus chez les porcs domestiques. Les modèles individu-centrés 

étant principalement utilisés chez les sangliers. La majorité des modèles (25) ont été paramétrés sur 

des données expérimentales ou de terrain pour des isolats de génotype II qui circulent actuellement 

en Europe et en Asie. 

Les paramètres de transmission estimés dans les articles variaient considérablement selon les souches 

de VPPA, les lieux et l'échelle de transmission. Les incertitudes sur les paramètres épidémiologiques 

et écologiques ont généralement été prises en compte pour évaluer l'impact des valeurs des 

paramètres sur la trajectoire d'infection modélisée. À ce jour, presque tous les modèles n'intègrent 

qu’un seul type d’hôte les porcs domestiques ou les sangliers, malgré le fait qu'il soit prouvé que les 

événements des transmission interspécifique jouent un rôle important dans les épidémies de PPA. Par 

conséquent, il est crucial de développer des modèles intégrant de telles voies de transmission, de 

manière à quantifier la contribution relative de ces deux populations dans le maintien de la circulation 

virale. L’efficacité d’un grand nombre de stratégies de contrôle a été évaluée, mais il s'agissait toujours 

d'interventions guidé par la législation de l'UE et définies a priori. En outre, les stratégies de contrôle 

ont été examinées en concurrence les unes avec les autres, ce qui est opposé à la façon dont elles 

seraient réellement mises en œuvre de manière synergique. Bien que la comparaison des stratégies 

soit bénéfique pour identifier l'ordre d'efficacité des méthodes de lutte, cette structure ne détermine 

pas nécessairement la combinaison la plus efficace de toutes les stratégies disponibles. Pour que les 

modèles de lutte contre la PPA puissent soutenir efficacement la prise de décision dans la lutte contre 

le virus au niveau mondial, ces limites de modélisation doivent être abordées. 

R.4  Revue systématique de la modélisation mathématique à l'interface domestique-faune 

sauvage 

Dans le domaine de la modélisation mathématique des maladies épizootiques, le développement de 

modèles à l'interface domestique-faune sauvage présente un ensemble unique de défis. En effet, des 

articles entiers ont été écrits sur les défis inhérents (Buhnerkempe et al., 2015; Roberts et al., 2021). 

La simple estimation de la transmission entre espèces est une tâche lourde, car il est difficile de définir 

ce qui constitue un contact épidémiologiquement pertinent (Buhnerkempe et al., 2015). Les contacts 

forcés en laboratoire sont différents de ceux qui ont lieu dans des circonstances naturelles, et 

l'observation des contacts naturels pour déduire les paramètres du modèle est une tâche écologique 

difficile (Buhnerkempe et al., 2015). En outre, les événements de transmission sont rarement 

observés, mais leur fréquence doit être indirectement déduite, afin d'informer les moyens de 

transmission de la maladie dans la population non-réservoir. Une deuxième revue de la littérature a 

été réalisée afin d'éclairer le développement de notre modèle de la PPA à l'interface domestique- 
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faune sauvage. Nous avons cherché à examiner les moyens de représentation des espèces animales 

domestiques et sauvages dans les études épidémiologiques à l'interface élevage-faune, et à identifier 

les facteurs de transmission utilisés dans les modèles. 

Trente-cinq articles ont été retenus. De multiples cadres de modèles étaient représentés à l’échelle 

de l'individu (15), de la population (12), ou utilisant des approches de type automates cellulaires (3), 

modèles écologiques (2), modèles de réseau (2) et un modèle de métapopulation. Les objectifs de ces 

modèles peuvent être résumés comme suit : évaluer les stratégies de contrôle (17), la dynamique de 

la transmission (8) ou les deux (2), estimer les paramètres (4) et établir des preuves de concept pour 

de nouvelles méthodologies (4). Les espèces domestiques ont été représentées par des emplacements 

ponctuels, des rasters de distribution de la densité, des nœuds de réseau du type d'hôte ou, pour les 

modèles basés sur la population, des variables individuelles reflétant le nombre d'animaux dans un 

compartiment donné à un moment donné Les hôtes sauvages ont été principalement représentés par 

des rasters de domaines vitaux représentant l’habitabilité en fonction de données géographiques. Des 

nœuds de réseau, des données historiques de présence ou des paramètres individuels d'abondance 

d'hôtes (pour les modèles basés sur la population) ont également été utilisés. 

Les taux de transmission sont le moyen le plus courant de quantifier la transmission de la maladie 

entre les hôtes domestiques et sauvages, de manière unidirectionnelle ou bidirectionnelle. Bien que 

rencontrées moins fréquemment, des probabilités de transmission, ont néanmoins été utilisées, 

essentiellement lorsque des données permettant de spécifier le taux de contacts inter-espèces étaient 

disponibles. La majorité des modèles ont simulé la transmission directe de l'infection, bien que la 

transmission indirecte (par exemple via un environnement partagé ou des insectes vecteurs) ait 

également été prise en compte dans quelques modèles. 

La contribution relative des espèces impliquées dans la propagation de l'épizootie n'a été déterminée 

que dans deux modèles, où les données historiques sur les cas et les mouvements ont été utilisées 

pour déterminer le potentiel de transmission intra-hôte et, à partir de là, le risque de transmission 

inter-hôte. 

Après avoir exploré les multiples façons dont la transmission des maladies infectieuses entre les 

espèces domestiques et sauvages a été modélisée mécanistiquement, nous avons pu appliquer les 

résultats - en particulier en ce qui concerne les échelles et les modalités de représentation des 

populations, les voies de transmission, et la contribution relatives des deux espèces - pour informer le 

développement d'un modèle de transmission de la PPA à cette interface. 
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R.5  Modélisation de la transmission de la peste porcine africaine à l'interface des porcs 

domestiques et des sangliers en Roumanie 

Depuis 2018, la Roumanie fait face à une épizootie de PPA d'une ampleur sans précédent, affectant à 

la fois les sangliers sauvages et les porcs domestiques. La compréhension de la dynamique de 

transmission est nécessaire pour concevoir des mesures de contrôle sur mesure, adaptées aux 

spécificités de l'élevage de porcs domestiques au regard des aspects socio-économiques. 

L'omniprésence de l'élevage de porcs de basse-cour dans les villages - la majorité des familles ayant 

un ou plusieurs porcs élevés dans des élevages de basse-cour à faible biosécurité - fournit un 

environnement très propice à la transmission entre cochons et sangliers. Afin de reproduire la 

dynamique spatio-temporelle en Roumanie, d'estimer la contribution relative des élevages de porcs 

domestiques et des sangliers à la propagation de l'épizootie, et d'évaluer l'impact des différents types 

d'unités hôtes (c'est-à-dire les zones forestières et non forestières pour les sangliers, les villages et les 

sites industriels pour les élevages de porcs domestiques), un modèle mécaniste de transmission 

spatialisé et multi-hôtes a été construit.  

Dans le cadre de cette thèse, nous avont travaillé sur la région du sud-est de la Roumanie où la 

propagation initiale de l'épizootie a été observée au cours du deuxième semestre 2018. Les données 

épidémiologiques pour l’ensemble des cas, dans les élevages de porcs domestiques et dans la faune 

sauvage, ont été utilisées pour la calibration du modèle : dates et géolocalisations des notifications et 

espèces impliquées. La construction du modèle repose sur l’utilisation de données géographiques 

l’dentification et la géolocalisation des villages (unité administrative), la géolocalisation des élevages 

de porcs industriels et la couverture végétale comme proxy de la distribution de la population de 

sangliers. La population de porcs domestiques a été représentée à l’échelle du village, pour les 

élevages de basse-cour, ou de l’élevage, pour les sites industriels avec des niveaux de biosécurité 

respectifs faible et fort. L'abondance des troupeaux de sangliers a été modélisée via l'adéquation de 

l'habitat en utilisant une trame hexagonale de couverture du paysage en cellules de 25 km², dont la 

taille correspond aux domaines vitaux estimés des sangliers. L’intersection de cette grille avec les 

données issues l'imagerie satellite CORINE Land Cover, a permis d’évaluer l’habitabilité de chaque 

cellule en fonction de sa couverture forestière. 

Le modèle d'interaction entre les animaux d'élevage et la faune sauvage est un modèle hybride qui a 

été construit en superposant un modèle individuel d'unités de porcs domestiques (villages ou sites 

industriels) à un modèle d'automates cellulaires pour la population de sangliers, et en permettant à 

l'infection de se produire à la fois dans et entre les couches (Fig. R.1). Les modèles épidémiologiques 

consistent en des combinaisons de quatre états pour chaque unité épidémiologique : sensible (S), 
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infectieux non détecté (Iu), infectieux détecté (Id) et rétabli (R). Les unités de porcs domestiques ne 

peuvent être infectées qu’une fois, l’état R représentant (de manière plus réaliste pour un virus 

comme le VPPA) le dépeuplement de l’unité épidémiologique. Les cellules de sangliers sont 

continuellement infectieuses jusqu'à la fin de la période d'étude, représentant la persistance du virus 

dans la population de sangliers et dans l’environnement. Pour pouvoir identifier la contribution des 

différentes voies de transmission, quatre taux de transmission, définis comme les taux auxquels un 

agent sensible acquiert une infection à partir d'un agent infecté par unité de temps, ont été considérés 

: d'un troupeau (villageois ou industriel) à un autre troupeau, d'une cellule à une autre cellule, d'une 

cellule à un troupeau à l'intérieur de la cellule, d'un troupeau à la cellule qui le contient. Les taux de 

transmission ont été introduits dans des équations de force d'infection - le cumul des pressions 

infectieuses individuelles exercées par tous les individus infectieux sur l'individu sensible - pour 

déterminer la probabilité de transition de l'état sensible à l'état infectieux non détecté. D'autres 

transitions d'état ont été modélisées de manière stochastique. 

 

 

Fig. R.1 | Représentation des unités de porcs domestiques (pyramides) et des cellules de 

sangliers (cellules matricielles hexagonales) dans le paysage modèle. Les unités infectées sont 

en rouge. Les flèches correspondent aux pressions d'infection exercées par et sur chaque 

unité du modèle : (1) unités de porcs domestiques sur d'autres unités de porcs domestiques, 

(2) unités de porcs domestiques sur la cellule de sanglier qui les contient, (3) cellules de 

sanglier sur les unités de porcs domestiques au sein de la cellule, et (4) cellules de sanglier sur 

d'autres cellules de sanglier. 

 

Les valeurs des paramètres ont été définies par une combinaison de revues de la littérature, des 

méthodes d’inférence bayésiennes et de calibration manuelle aux données observées. Ainsi, le 

modèle développé a pu être ajusté aux trajectoires épizootiques observées en Roumanie parmi les 
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unités de porcs domestiques et les cellules de sangliers sauvages. La contribution relative des 

compartiments domestiques et sauvages a ensuite pu être évaluée. Parmi les unités de porcs 

domestiques, nous avons estimé qu'une médiane de 94 % des infections (intervalle de crédibilité à 

95 % : 75,6-96,3 %) provenaient d'autres troupeaux de porcs, tandis que 5,17 % (IC 95 % : 2,88-20,6 %) 

provenaient de sangliers. Inversement, parmi les cellules de sangliers, 57,8 % des infections (IC 95 % : 

38,5-86,8 %) provenaient d'autres cellules de sangliers, tandis que 40,9 % (IC 95 % : 9,48-59,6 %) 

provenaient d'unités de porcs domestiques. 

Ce modèle mécaniste a ensuite été utilisé pour explorer in silico l’impact de stratégies de contrôle 

alternatives, si elles avaient été mises en œuvre dès le début de l'épizootie. 

R.6  Évaluation de stratégies de gestion alternatives contre la peste porcine africaine dans un 

système multi-hôte 

Les stratégies de contrôle observées, à savoir la surveillance passive des troupeaux de porcs 

domestiques, la mise en place d’une surveillance active des troupeaux de porcs domestiques par 

l'établissement de zones de surveillance de 10 km autour des cas détectés, l'abattage des troupeaux 

infectés dans un village, et la surveillance active des sangliers (recherche de carcasse et chasse), ont 

été incluses dans la paramétrisation de notre modèle. Nous avons d'abord effectué une analyse 

d'incertitude, où nous avons évalué la réponse du modèle à la perturbation de paramètres spécifiques. 

Par la suite, des scénarios alternatifs ont été examinés en simulant une variété de stratégies de 

contrôle. 

Une analyse d'incertitude a été effectuée sur deux paramètres clés : le paramètre régissant la 

décroissance exponentielle de la transmission en fonction de la distance entre deux élevages (𝛿) et 

l'augmentation relative du taux de détection des cas parmi les unités de porcs domestiques qui se 

produit dans les zones de surveillance. Quatre valeurs du paramètre 𝛿, avec une gamme de variation 

inférieure à 20 % par rapport à la valeur initiale, ont été testées. L'effet de la zone de surveillance - 

initialement fixée à 50 % et représentant l'efficacité des activités sur le terrain sur la détection des cas 

- a été examiné dans des scénarios où elle n'avait aucun effet ou augmentait le taux de détection 

relatif de 25 %et 75 %. Les stratégies de contrôle alternatives ont été choisies pour envisager des 

améliorations soit dans la détection des cas, soit dans la prévention des cas et sont résumées dans le 

tableau R1. 
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Tableau R1 | Synthèse des stratégies de contrôle évaluées 

Stratégie de lutte Méthode d'évaluation 
Autres tailles de zones de surveillance Ajuster la taille de la zone de surveillance 
Améliorer la surveillance passive des unités de porcs 
domestiques 

Réduire la durée moyenne de la période infectieuse non 
détectée 

Abattage à l'échelle du village dès la détection d'un 
cas 

Forcer une durée moyenne de la période infectieuse 
d'une semaine dans tous les troupeaux. 

Abattage préventif des unités de porcs 
domestiques en cas de détection d'un cas de 
sanglier à proximité. 

Les unités de porcs domestiques dans une cellule 
infectieuse détectée passent automatiquement à l'état R 
dès la détection de la cellule. 

Assainissement de l'environnement par 
l'élimination des carcasses de sangliers 

Les cellules retournent à l'état sensible après la période 
spécifiée de détection de l'infection. 

 

L’impact des paramètres de l'analyse d'incertitude et des stratégies de contrôle alternatives a été 

évalué en comparant leurs effets moyens sur la taille totale de l'épizootie et la contribution relative 

des hôtes à la propagation de l'épizootie. 

Le kernel de transmission—la décroissance exponentielle de la force de transmission selon la 

distance—a eu un effet profond sur la taille de l'épizootie parmi les unités de porcs domestiques, avec 

une différence moyenne de taille d'épizootie de 30 % (l'écart : 25-36 %) pour 𝛿 = 0.24. Comme on 

pouvait s'y attendre, l'augmentation du kernel de transmission (de 0,2 à 0,22 ou 0,24) a entraîné une 

diminution du nombre de cas, réduisant les champs d’interaction des élevages infectés. Le choix du 

kernel de transmission a également eu un effet sur la contribution relative de chaque hôte à la 

transmission, bien que limité : l'augmentation de 10% du paramètre du kernel de transmission a 

entraîné une diminution moyenne de 3,9 % de la transmission relative des troupeaux de porcs 

domestiques aux cellules de sangliers. 

Les résultats de la simulation d'épizootie étaient également sensibles au taux d'augmentation supposé 

de la détection des cas dans une zone de surveillance. Pour chaque augmentation de 25 % du taux de 

détection relatif dans une zone de surveillance, on a observé une diminution moyenne de 89 cas 

d'unités de porcs domestiques. L'augmentation du taux de détection des élevages dans les zones de 

surveillance a également entraîné une diminution des cas de cellules de sangliers, avec une moyenne 

de 23 cas de moins par augmentation de 25 % du taux de détection. 

La taille des zones de surveillance a eu un effet significatif sur la taille globale de l'épizootie, tant pour 

les unités de porcs domestiques que pour les cellules de sangliers. Chaque augmentation de 5 km de 

la taille de la zone de surveillance a entraîné une réduction moyenne de 50 unités de porcs 

domestiques et de 14 cellules de sangliers infectées (soit 350 km2 supplémentaires exempts de PPA). 

La fréquence relative de la transmission entre les compartiments a également été affectée par la taille 
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de la zone de surveillance. Pour chaque augmentation de 5 km de la taille de la zone de surveillance, 

une diminution de 2,6 % de la transmission relative des unités de porcs domestiques aux cellules de 

sangliers a été observée. 

La réduction de la période de non détection de 3 semaines à 2,5 ou 2 semaines a entraîné de faibles 

changements dans la taille finale de l'épizootie. Avec une période infectieuse non détectée de 2,5 

semaines, une médiane de 48 troupeaux et 12 cellules de plus ont échappé à l’infection. 

L'augmentation du taux de détection passive parmi les troupeaux de porcs domestiques était aussi 

associée à une diminution de la contribution relative des unités de porcs domestiques à l'infection des 

cellules de sangliers. 

Lors de l'examen des stratégies d'abattage, on a considéré à la fois l'abattage préventif d'un village en 

cas de détection d'un cas dans un troupeau de sangliers voisin et l'abattage complet d'un village en 

cas de détection d'un cas dans un troupeau de basse-cour du village. L'abattage préventif a permis de 

réduire la taille médiane de l'épizootie dans les troupeaux de porcs domestiques de 16 % (n = 69) pour 

atteindre 369 infections. De plus, une médiane de 9 cas de moins (n = 95) parmi les cellules de sangliers 

a été observée avec cette stratégie. Lorsque l'abattage à l'échelle du village en réponse à un cas de 

porc domestique a été utilisé, la taille médiane de l'épizootie a été réduite de plus de 33 %. 

La dernière stratégie de contrôle examinée était l'effet de l'élimination des carcasses et de la 

décontamination de l'environnement. Une différence faible mais présente dans la contribution entre 

les hôtes a été notée, l'élimination des carcasses pendant 8 ou 6 semaines ayant entraîné de légères 

diminutions de la transmission des cellules de sangliers aux unités de porcs domestiques, passant 

d'une médiane de base de 5,17 % des événements de transmission à 4,42 % ou 4,19 %, 

respectivement. 

Les ajustements du kernel de transmission—conséquences des restriction potentielles des échanges 

commerciaux et de la limitation des déplacements entre les villages—ainsi que l'augmentation de 

l'efficacité des zones de surveillance (notamment par l'augmentation de la main-d'œuvre disponible 

et des mesures de surveillance intra-villageoise) et l'abattage à l'échelle du village lors de la détection 

des cas ont eu les effets les plus importants sur la limitation de l'ampleur de l'épizootie. Malgré cela, 

la diminution des cas provenant de porcs domestiques est compensée dans une certaine mesure par 

une augmentation relative des cas provenant de sangliers. Les futures étapes de la recherche, dans 

lesquelles des algorithmes d'optimisation sont appliqués aux six stratégies explorées ici, pourraient 

permettre de mieux comprendre quelles stratégies sont les mieux utilisées en combinaison. 
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Discussion et conclusions 

En utilisant un nouveau modèle créé spécifiquement pour notre question de recherche, nous avons 

réussi à générer une estimation de la contribution relative des hôtes domestiques et sauvages à la 

propagation épizootique du VPPA en Roumanie. Après avoir identifié les contributions relatives des 

hôtes, nous avons pu aborder la deuxième question de recherche : élucider les effets des stratégies 

de contrôle dans un compartiment sur la dynamique globale du système. D'autres stratégies 

couramment employées, telles que l'installation de clôtures et l'augmentation de la pression de 

chasse des sangliers, n'ont pas pu être incluses dans notre modèle, mais les versions futures devraient 

prendre en compte ces ajouts. De plus, avant d'utiliser notre modèle pour formuler des 

recommandations politiques, il faudrait inclure un module économique qui quantifie les coûts et les 

bénéfices anticipés des stratégies de contrôle alternatives. Bien que des modèles de simulation de 

plus en plus réalistes puissent jouer un rôle de plus en plus important dans les processus de décision 

des décideurs, une collaboration multisectorielle entre épidémiologistes, vétérinaires, virologistes, 

écologues, économistes, éleveurs de porcs, décideurs, et modélisateurs sera essentielle pour 

maintenir une approche inclusive de la modélisation de la PPA. S'assurer que toutes les parties ont 

des objectifs alignés concernant la définition et les objectifs de la lutte contre la PPA facilitera une 

approche unifiée pour faire face à cette panzootie porcine mondiale, et les modèles mathématiques 

pourront continuer à apporter leur soutien. 
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§ I |  Introduction to African swine fever and epizootic modelling 

In 2007, African swine fever virus (ASFV) genotype II—one of the 24 genotypes of ASFV circulating in 

Africa—escaped from its native home range in the southeastern part of the continent. Entering Eurasia 

through the Caucasus region, sustained ASFV transmission has since resulted in a panzootic of 

unprecedented scale. With nations across four continents outside of Africa afflicted (Asia, Europe, 

North America, and Oceania), this fatal and untreatable disease of pigs is decimating the global swine 

industry. Improving prevention and management strategies is paramount to controlling the disease 

and halting further spread.  

Mathematical models have been used to inform disease management strategies since their inception 

one century prior (Kermack et al., 1927). They have a proven track record of confronting infectious 

disease outbreaks; facilitating the design, improvement, and optimization of control strategies. Using 

equations to mechanistically describe transmission processes, they have been applied to numerous 

infectious disease scenarios among both human and animal populations. With the advent of modern 

computing capabilities, increasingly complex models have been able to be employed. Progressing 

from the original deterministic explanations for otherwise complex phenomena, modern 

epidemiological models capture the stochastic dynamics observed in epidemics. Through the 

discovery of transmission parameters that enable the reproduction and simulation of an epidemic, 

alternative control strategies can be evaluated to improve future outbreak responses. Similarly, 

mathematical modelling holds promise for addressing the areas of need for the current ASF panzootic. 

In this section, we will first synthesise the current knowledge we have on ASF and then describe the 

history and utility of mathematical modelling of epizootic diseases.  
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1 |  Epidemiology of African swine fever  

1.1  African swine fever epizootics—A history of escape 

Enzootic throughout sub-Saharan African, eponymously-named African swine fever virus (ASFV) has 

escaped from its home continent multiple times since its discovery last century. The first escape from 

Africa occurred into Europe in 1957 when ASFV genotype I was detected in Portugal. Believed to have 

originated from infected airline food waste being fed to pigs near Lisbon airport (Van Schepen & 

Kunesh, 1981; Costard et al., 2009; Boinas et al., 2011; Danzetta et al., 2020), the virus spread across 

and beyond the Iberian Peninsula, with European nations experiencing multiple small epizootics over 

the subsequent 30 years (Cwynar et al., 2019; Dixon et al., 2020). These outbreaks in France (1964, 

1967, 1974), Italy (1967, 1969, 1993), Malta (1978), Belgium (1985), and the Netherlands (1986) were 

able to be brought under control through combinations of domestic pig depopulation and wild boar 

hunting measures, with the island of Sardinia the sole exception to ASF eradication where it is still 

enzootic (Costard et al., 2009; Cwynar et al., 2019; Mazur-Panasiuk et al., 2019). Even Spain and 

Portugal, where ASF had become enzootic via the local O. erraticus tick population, achieved a return 

to ASF-free status by 1995 through a comprehensive eradication program targeting infected herds and 

Ornithodorus reservoirs (Arias & Sánchez-Vizcaíno, 2002; Boinas et al., 2011; Danzetta et al., 2020). 

Following European invasion ASFV continued to spread through trade and transit networks, reaching 

several Caribbean nations (Cuba in 1971, Dominican Republic in 1978, Haiti in 1979) as well as Brazil 

(1978) prior to being eradicated within a few years in each country (Costard et al., 2009; Lyra, 2006; 

Simeón-Negrín & Frías-Lepoureau, 2002; P. Wilkinson, 1989). The second introduction into the 

European continent occurred in 2007, where investigations indicated that transport ships out of 

southeast Africa arriving at the port of Poti on the Black Sea sold contaminated meat products that 

were later fed to pigs (Rowlands et al., 2008; Gogin et al., 2013; Cwynar et al., 2019; Beltrán-Alcrudo 

et al., 2008). Genotyping, revealing the isolated virus to be consistent with ASFV genotype II, suggested 

an origination of Mozambique, Zambia, or Madagascar (Rowlands et al., 2008). 

What began as a single viral incursion, however, has since grown into a porcine panzootic of 

unprecedented scale (Fig. 1.1, Fig. 1.2). Following dissemination across Georgia—where over 80,000 

pigs died from disease or were culled—ASF spread through the Caucasus region into Armenia, 

Azerbaijan, and the Russian Federation (Gogin et al., 2013; Cwynar et al., 2019; Rowlands et al., 2008). 

Ukraine and Belarus began reporting cases in 2012 and 2013, respectively, and then in 2014 ASF 

entered into the European Union (EU) via the Baltic States and Poland (Cwynar et al., 2019; Dixon et 

al., 2020). Cases have since been identified in 12 EU Member States, with nine—Bulgaria, Estonia, 



 
Fig. 1.1 | World map of ASF cases. Expanded greater European continent and part of North America by year 

of first domestic pig or wild boar case for the current ASFV genotype II panzootic. ASF spread can be can be 

seen from its 2007 entrance in the Caucasus up through recent cases in western Europe, East Asia, and the 

Caribbean. 
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Fig. 1.2 | Timeline of the ASFV genotype II panzootic by host of disease introduction, 2007-2022.  
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Germany, Hungary, Latvia, Lithuania, Poland, Romania, and Slovakia—still facing epizootics as of the 

end of 2021 (EFSA et al., 2022). 

The ASF Georgia 2007/01 panzootic became acutely worse in 2018 when China, home to half of the 

global swine population, reported its first case in its northeastern provinces (Dixon et al., 2020). As 

the epizootic grew, cases spread both south throughout China as well as into Mongolia, and a year 

later in 2019 were reported in Vietnam (Mighell & Ward, 2021). The same year, ASF was reported in 

Cambodia in April and in Hong Kong and the Democratic People’s Republic of Korea in May, and by 

the end of 2019, cases had also been reported in Laos, the Philippines, Myanmar, Indonesia, Timor-

Leste, and the Republic of Korea (Mighell & Ward, 2021). Following both genotype and serotype 

characterization of ASFV strains from China and Vietnam, molecular evidence revealed high homology 

between viruses in Asia and Europe—indicating that the cases in Asia are likely a continuation of 

spread of the original Georgia 2007/01 strain (Ge et al., 2018; Le et al., 2019; Mighell & Ward, 2021). 

Of note, ASFV genotype I has recently been detected in China, too. Though molecularly similar to 

genotype I isolates from Portugal in the 1960s, a source of invasion has yet to be elucidated (Sun et 

al., 2021). 

Outside of the Eurasian continent, ASFV Georgia 2007/01 managed to access the Caribbean islands as 

well, where in 2021 cases were reported in the Dominican Republic and Haiti (USDA, APHIS, 2021). 

Following its escape, ASF has now been reported in 35 countries across 5 world regions (Africa, the 

Americas, Asia, Europe, and Oceania) (WOAH, 2022b). 

1.2  An African swine fever panzootic—Georgia 2007/01  

The current panzootic strain—ASFV genotype II Georgie 2007/01—has managed to spread around the 

world, and with effective vaccine and treatment strategies still lacking, its control and eradication has 

proven exceedingly difficult (Turlewicz-Podbielska et al., 2021). The majority of circulating Georgia 

2007/01 isolates are highly-virulent, although a variant with reduced virulence was identified among 

wild boar in Estonia (Dixon et al., 2020; Zani et al., 2018). 

ASF transmission pathways have been seen to vary between epizootic areas. Some nations have 

experienced cases predominantly or exclusively among wild boar, as is the case in the Baltic states and 

South Korea (and with Italy and Germany recently increasing the list) (DEFRA, 2021; Jo & Gortázar, 

2021; Lim et al., 2021; Van Goethem, 2021). Other countries, like China, the Russian Federation, or 

Romania—where there exists a preponderance of low-biosecurity backyard pig farms—have 

experienced cases among both domestic pigs and wild boar, with likely spillover between these 

domestic and wild compartments (Andraud et al., 2021; Gogin et al., 2013; Mighell & Ward, 2021). In 
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the Russian Federation, both spillover from wild boar into domestic pig populations, as well as 

spillback following human activity around improper domestic pig carcass disposal, had been noted 

(Sauter-Louis, Conraths, et al., 2021). Nonuniform surveillance between affected areas complicates 

assessment of these pathways, however. In most of Asia there is a paucity of reported cases among 

wild boar, despite much evidence suggesting that wild boar densities in some regions are similar to 

eastern Europe. Coupled with the wide distribution of observed domestic pig cases, regular spillback 

to the wild compartment of ASF is strongly suspected (Vergne et al., 2020). 

Human activities have been historically seen as the primary driver of transmission between domestic 

pigs, and have been suspected for the majority of the recent introductions in western Europe such as 

in Belgium and Germany (Chenais et al., 2019). Even after control measures are put into place, 

complex social factors—including factors associated with farmer livelihood (such as inadequate 

compensation to culling mandates) and personal relationships (distrust of authorities)—can lead to 

breakdowns in containment, underground markets, and further transmission; as has been seen in the 

Caucasus region (Chenais et al., 2019; Gulenkin et al., 2011).  

Among wild boar, it was initially hypothesized that without the presence of a domestic pig reservoir—

due to the high virulence of the Georgia 2007/01 ASFV strain—the disease would be self-limiting 

among wild populations (Chenais et al., 2019; Schulz et al., 2019). This was proven false as northern 

countries (i.e. Poland and the Baltic states) saw ASF become established at low prevalences within 

wild populations, following initial infection and subsequent population decrease (Chenais et al., 2019; 

Schulz et al., 2019). The effect of wild boar density on ASFV transmission remains uncertain, being that 

no population density threshold has been able to be defined that would arrest disease spread (EFSA 

et al., 2018; Schulz et al., 2019). While the transmission velocity among wild boar appears to be slow 

in heavily affected areas (estimated at 2-5 km/month), long range jumps in ASFV—most likely 

associated with human-mediated activities related to the feeding of contaminated products—have 

been observed to and within multiple countries, including the Czech Republic, Poland, Hungary and 

Belgium (Chenais et al., 2019; DEFRA, 2017; EFSA et al., 2017). 

Additional transmission pathways of concern for the current panzootic include the role of both 

arthropod reservoirs and insect vectors. While the current ASF incursion has not yet reached the 

Iberian Peninsula, O. erraticus is known to be capable of harboring and transmitting ASFV. However, 

experimental studies on transmission dynamics within this species suggest they are likely incapable of 

sustaining circulation of the current Georgia 2007/01 ASFV strain (Boinas et al., 2011; Pereira de 

Oliveira et al., 2019; Vergne et al., 2021). In the Baltic nations, an observed seasonality of domestic 

pig outbreaks corresponded with the seasonal presence of hematophagus insects. Though this 
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strongly suggested a potential role in ASFV transmission, when such flies were collected from infected 

farms in Lithuania they tested negative for ASFV (EFSA et al., 2020; Guinat, Gogin, et al., 2016). 

Despite the aggressive global spread of ASF, there is hope for once again achieving control. Though 

ASF is a highly contagious disease—as has been exemplified through numerous transmission 

experiments of multiple strains (Ferreira et al., 2013; Gallardo et al., 2017; Guinat, Gubbins, et al., 

2016; Olesen et al., 2017; Thomson et al., 1980)—field observations and an experiment of the current 

panzootic strain suggest that, contextually, contagiousness in the field may be far less than laboratory-

observed contagiousness (Chenais et al., 2019). On some farms, field investigations revealed only a 

few ill or dead animals at time of suspicion, with other animals testing negative for ASFV in spite of 

direct contact (via a shared pen) for over a week (Chenais et al., 2019; Nurmoja et al., 2020; Oļševskis 

et al., 2016). Further, as evidenced in a transmission experiment, only the weakest wild boar (two 

animals with a runted appearance) became infected from inoculation—the other animals only later 

becoming infected following direct contact with the carcasses of the originally infected animals 

(Chenais et al., 2019; Pietschmann et al., 2015). Coupled with a case report on transmission within a 

large commercial farm, where excess mortality was not observed for over a month, evidence suggests 

that the initial mortality—and consequent rate of transmission—may be low (Chenais et al., 2019; 

Lamberga et al., 2020). 

Available control strategies have already demonstrated their effectiveness, with Belgium and the 

Czech Republic having been declared free of ASF (and Estonia, having achieved ASF-free status among 

its domestic pigs, soon to be as well) (EFSA et al., 2021). Until a vaccine becomes available, further 

improvements of existing control strategies (especially regarding wild boar), leading to better and 

more cost-effective surveillance, prevention, and responses to ASF incursions, will be the next hurdle 

towards stopping this panzootic. 

1.3  African swine fever virus and its hosts 

The disease of African swine fever is a consequence of infection by the sole viral member of the genus 

Asfivirus, of the Asfarviridae family: African swine fever virus (ASFV) (Alonso et al., 2018; Dixon et al., 

2020). First identified in Kenya in 1921, ASFV is a large, double-stranded DNA virus native to sub-

Saharan Africa with over 24 different genotypes having since been discovered (as defined by the C-

terminal end of the p72 protein) (Dixon et al., 2020; Eustace Montgomery, 1921; Njau et al., 2021) 

These different genotypes do not intrinsically suggest differing pathogenicities between ASF viruses, 

but are a reflection of the genetic diversity that results from the ancient sylvatic cycle that maintains 

the virus in the wild (Dixon et al., 2020). 
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All members of the Suidae family are susceptible to ASFV infection, though the clinical presentation 

of disease of a hemorrhagic fever is restricted to members of Sus scrofa (domestic pigs and wild boar) 

(Blome et al., 2013; Dixon et al., 2020). Generally classified as of high, moderate, or low virulence (Pan 

& Hess, 1984), different strains of ASFV result in peracute, acute, subacute, or (disputedly) chronic 

forms of ASF (Sánchez-Vizcaíno et al., 2015). Observed with highly-virulent strains, peracute and acute 

(the most common) forms of disease result in death within four or eight days post-infection, 

respectively, while less virulent strains yield a subacute presentation and may not be fatal until 20 

days following infection (Sánchez-Vizcaíno et al., 2015). 

A chronic carrier form of ASFV among domestic pigs has been historically suggested, based on 

serological evidence and as observed in Spain, Portugal and the Dominican Republic (as cited in 

Sánchez-Vizcaíno et al., 2015). In the 1960s, low-virulent isolates of ASFV were used in live-attenuated 

vaccination studies in the Iberian Peninsula, and it is hypothesized that these isolates resulted in the 

natural evolution of a chronic carrier state among the local population (Costard et al., 2013; Sánchez-

Vizcaíno et al., 2015). Affected pigs were observed to have visible cutaneous lesions and other clinical 

signs, however, and would not be considered asymptomatic carriers (Sanchez-Botija, 1982; Sánchez-

Vizcaíno et al., 2015). A recent review has indicated that, epidemiologically, such a chronic carrier 

state among otherwise healthy pigs is an unlikely reality (Ståhl et al., 2019). 

Eurasian wild boar, known to also be highly susceptible to ASF, have conversely been detected to have 

antibodies to ASFV in the absence of clinical signs (Jori & Bastos, 2009; Pérez et al., 1998). Historically 

ASFV has been seen to fade-out from wild boar populations, however, without the availability of re-

infection from free-range domestic pig herds (Jori & Bastos, 2009; Pérez et al., 1998). With such 

seropositivity among wild boar having been tied to regions with infected free-range domestic pigs, 

wild boar have historically not been considered a major reservoir in the absence of their infected co-

host (Jori & Bastos, 2009; Laddomada et al., 1994). In contrast, self-sustainability of the current 

panzootic strain of ASFV genotype II in wild boar populations in the absence of domestic pig cases 

appears to be the rule rather than the exception (Sauter-Louis, Conraths, et al., 2021). 

The other African Suidae genera of Phacochoerus (warthogs), Potamochoerus (bushpigs and red river 

hogs) and Hylochoerus (giant forest hogs) exhibit a natural resistance to clinical disease (Blome et al., 

2013; Jori & Bastos, 2009; WOAH, 2021). Through experimentation, however, these species have been 

proven to be capable of acting as infectious hosts (E. C. Anderson et al., 1998; Jori & Bastos, 2009; 

Oura et al., 1998; Thomson et al., 1980). While both warthogs and bushpigs are found throughout 

eastern and southern Africa, and while both their ecological ranges are in accord with observed 

distributions of ASFV, due to the greater numbers, more uniform distribution, and greater rates of 
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infection observed, warthogs are agreed to be the primary wildlife reservoir (Costard et al., 2013; De 

Tray, 1957; Plowright et al., 1969; Thomson, 1985). 

The resistance to clinical disease among warthogs enables ASFV to persist in a sylvatic cycle with soft 

ticks of the Ornithodorus genus (Jori & Bastos, 2009; Sánchez-Vizcaíno et al., 2015; Wade et al., 2019). 

Multiple Ornithodoros spp. are capable of harboring live ASFV for years (EFSA Panel on Animal Health 

and Welfare, 2010; Frant et al., 2017). These soft ticks are predominantly found throughout Africa, 

though they have also been identified on the European continent in Spain, Portugal, Italy, southern 

Greece, and Turkey (Frant et al., 2017). O. moubata, synonymous with the O. porcinus designation 

that originally described the original reservoir species in 1962, serves as the primary arthropod host 

for maintaining this sylvatic cycle (Frant et al., 2017; Jori & Bastos, 2009; Roger et al., 2001; Walton, 

1962). Distributed throughout southern and eastern Africa, this tick species is conspicuously absent 

from West Africa, where such a sylvatic cycle has yet to be revealed (Jori & Bastos, 2009). 

Ornithodorus spp. are also responsible for a transmission cycle among domestic pigs in ASFV-enzootic 

regions, with O. erraticus—present in Northern Africa and Mediterranean regions—being the 

originally identified vector and reservoir of ASFV in the Iberian Peninsula (Costard et al., 2013; 

Sanchez-Botija, 1963; Sánchez-Vizcaíno et al., 2015; Wade et al., 2019). Transmission experiments 

have shown O. erraticus to be capable of harboring viable ASFV for a minimum of two years (Boinas 

et al., 2011). With the ability of individuals to survive up to five years without feeding and having life 

spans of 15 – 20 years, these ticks have played essential roles in the maintenance of ASF in formerly 

enzootic regions (Danzetta et al., 2020). 

1.4  African swine fever transmission 

ASFV is able to be transmitted both within and between hosts while being maintained in its 

environment. In addition to the aforementioned sylvatic and tick-domestic-pig cycles, transmission 

has also been recorded in an exclusively domestic cycle (either solely among domestic pigs or also 

involving pig products) and recently as well as between wild boar and their environment in a wild 

boar-habitat cycle (Chenais et al., 2019; Costard et al., 2013). 

Domestic pig herds are susceptible to both direct and indirect ASFV transmission (WOAH, 2019c). 

Multiple experimental and observational studies, across different genotypes and for both moderate- 

and high-virulence strains, have revealed effective transmission between pigs (Ferreira et al., 2013; 

Guinat, Gogin, et al., 2016; Guinat, Gubbins, et al., 2016). Whether separated or in direct contact, 

experiments have shown infection occurring within 9 to 15 days, respectively, following exposure of 

susceptible pigs (Gallardo et al., 2015; Greig, 1972; Guinat et al., 2014; Guinat, Gogin, et al., 2016; 
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Howey et al., 2013). With live virus able to survive in all porcine secretions and excretions, direct 

transmission to susceptible animals is possible over multiple weeks (Costard et al., 2013; Pensaert, 

1989). 

Indirect ASFV transmission via swill feed and fomites has also been demonstrated by many studies 

(Guinat, Gogin, et al., 2016; Mazur-Panasiuk et al., 2019). ASFV is capable of surviving for months in 

both animal tissues and meat products (McKercher et al., 1978, 1987; Mebus et al., 1993, 1997). The 

practice of swill feeding—though illegal in many places—is still common in backyard and traditional 

production systems, and because of the hardiness of ASFV serves as another source of potential 

contamination (European Commission, 2020; Kagira et al., 2010; Phengsavanh et al., 2010). Even basic 

feed ingredients, when contaminated with ASFV, can serve as an effective conduit for over 30 days 

(Dee et al., 2018; Mazur-Panasiuk et al., 2019). Recent experiments have shown drinking water to be 

highly infectious too, and capable of hosting viable virus for almost two months at room temperature 

(Niederwerder et al., 2019; Sindryakova et al., 2016). Fomites, such as clothing and farm or hunting 

equipment, have yet to be demonstrated as sources of infection; however, given the long 

environmental persistence of ASFV in the blood and excretions of infected animals, this route cannot 

be excluded (Guinat, Gogin, et al., 2016). 

ASFV transmission among wild boar is known to occur through both direct horizontal transmission and 

multiple indirect environmental pathways (FAO, 2019). Existing in matriarchal social groups with a 

mean four to five individuals per group, horizontal transmission is able to occur between individuals 

through typical interactions (FAO, 2019; Maselli et al., 2014; Rosell et al., 2004). Environmentally, 

transmission can come from contact with normal excretions of feces and urine, contact with infectious 

carcasses, and contact with hunter remnants (i.e. offal, blood, and infected meat) leftover from the 

field dressing of infected animals (FAO, 2019). 

Carcasses especially have been identified to play a pivotal role in ASFV transmission, maintaining the 

wild boar-habitat cycle (Chenais et al., 2019; FAO, 2009). The stability of ASFV enables to remain viable 

in carcasses for months—years if the carcasses are frozen—and carcasses are able to persist in the 

environment for weeks, where they have been observed to be frequently contacted by wild boar (FAO, 

2019; Fischer et al., 2020; Probst et al., 2017; Sánchez-Vizcaíno et al., 2009). In addition to the 

carcasses, the soil beneath the carcass is able to be contaminated is likely also capable of serving as 

an effective source of transmission for weeks after contamination (Probst et al., 2019). 

Transmission between domestic pigs and wild boar has been demonstrated experimentally and is also 

strongly suspected from field observations. Controlled experiments have revealed ASFV can be 

transmitted between hosts via both direct and indirect contact (Pietschmann et al., 2015). In the field, 
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though a phylogenetic connection has not yet to be made, outbreak investigations have revealed 

strong spatiotemporal associations between cases among wild boar and domestic pigs (Gogin et al., 

2013; Vergne et al., 2017). Habitat encroachment and low biosecurity create an environment 

favorable to interactions between domestic pigs and wild boar, which is then facilitated by their 

shared preference for crop raiding, the sexual attraction towards domestic sows by wild males, and 

food availability on farms (Dixon et al., 2020). Additionally, poor biosecurity from improper handling 

of hunted wild boar offal can serve as an effective transmission route between wild and domestic 

hosts (Dixon et al., 2020). 

Whereas only Ornithodorus spp. soft ticks have been identified as an arthropod reservoir (i.e. where 

internal replication of ASFV can occur), multiple past and recent studies—in Africa, Europe, and Asia—

have demonstrated the ability of hematophagus insects to potentially act as mechanical vectors 

(Mellor et al., 1987; Baldacchino et al., 2013; Yoon et al., 2021). Stomoxys spp. (stable flies), Culicoides 

spp. (biting midges), and Haematopinus suis (swine lice) have been shown to have a possible role in 

mechanical transmission of ASFV (Balmoș et al., 2021; Hess et al., 1987; Sanchez Botija & Badiola, 

1966; Yoon et al., 2021). 

1.5  African swine fever control 

Without an available vaccine, control strategies against ASF are a direct reflection of these understood 

transmission dynamics. Though recent advances show promise for the successful development of an 

ASFV vaccine, historically many factors hindered its development. Intrinsic to ASFV, the genome has 

considerable variability between the 24 identified genotypes, impeding the development of a single 

overarching ASF vaccine (Malogolovkin et al., 2015). Further, with multiple genes encoding immune-

modulating proteins, the virus is exceptionally adept at evading the host immune response (Dixon et 

al., 2013). From a vaccinology perspective, both live-attenuated and inactivated vaccines have been 

unsuccessful in their development. Inactivated vaccines that only induce humoral and not cellular 

immunity—even in high doses—have not proved effective at conferring protection (Cadenas-

Fernández et al., 2021; Takamatsu et al., 2013). Conversely, live-attenuated vaccines, while able to 

provide protection, carry multiple side-effects and safety risks—including potential for persistent 

viremia and the reversion to a chronic carrier state of vaccinated animals, as occurred in Spain in the 

1960s (Muñoz-Pérez et al., 2021; Revilla et al., 2018). Currently, without a means of large-scale 

production (due to the lack of a cell line allowing for replication of vaccine-candidate ASFV strains) or 

of differentiating vaccinated from infected animals, vaccination cannot be considered as an available 

management strategy (Gavier-Widén et al., 2020; Rock, 2017; Sánchez et al., 2019). However, should 

a vaccine become available, both the vaccination route and the targeted hosts should be identified. 
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Oral vaccination appears as a potential lead among wild boar (Barasona et al., 2019). Another option 

would be the vaccination of domestic pig herds to reach a herd immunity, reducing the risk of 

transmission and related consequences on-farm, between-farm and potentially into wild boar 

populations. For a clear identification of the optimal vaccination strategies, it appears essential to 

evaluate and quantify the relative role of domestic pigs and the wild boar compartment in the 

transmission process far ASFV, prior to finalizing and commercializing a vaccine. 

Among EU Member States, ASF control measures among domestic pigs are designed to eradicate 

disease while halting its spread and minimizing disruption to supply chains. Following the same 

principles for other transboundary animal diseases, these strategies consist of whole or partial herd 

culling, movement controls, contact tracing (of both animals and animal products), the establishment 

of surveillance and protection zones, and compensation to affected farmers (Busch et al., 2021; 

European Commission, 2014). Within these zones, pig holdings are recommended to be closely 

monitored for clinical signs of ASF (sudden mortality events, evidence of hemorrhagic syndromes) 

both ante-mortem and post-mortem (European Commission, 2014). Veterinary inspection is a critical 

component of ASF identification, with veterinary consult recommended both if there is suspicion of 

ASF from clinical signs, or if pigs are slaughtered for home consumption and would otherwise bypass 

normal detection chains (European Commission, 2014). Strict biosecurity of affected areas is 

mandated, including controlled disposal of carcasses, closer surveillance of live pig markets, 

enforcement of swill feeding prohibitions, and environmental sanitation including applications of tick 

control where relevant (European Commission, 2014, 2020).  

Management strategies in wild boar vary between affected areas depending on the epizootic situation 

and phase of incursion. After the epizootic peak it may be relevant to decrease wild boar density, as 

implementation of a wait-and-see period in the core infected zone—in order to prevent further ASF 

spread through movement of wild boars triggered by hunting actions—is a critical component of 

strategy. Initially, strategies reflected this: through conventional approaches of feeding bans and 

targeted hunting of reproductive females, as alternative strategies of mass depopulation were 

considered impractical and, politically, unpalatable (Lange, 2015; Sauter-Louis, Conraths, et al., 2021). 

Within surveillance zones, testing of all hunted or found-dead wild boar was mandated. Alternative 

strategies of erecting fences or mobile barriers, as well as active carcass surveillance and disposal, had 

also been employed to varying degrees of success (Jo & Gortázar, 2021; Lange, 2015). In South Korea 

in 2019, the use of fences to delineate infected zones followed by silent culling (and along with natural 

mortality from ASF), resulted in almost complete elimination of wild boar and ASF cases in these areas 

(though incidentally, carcass removal may have contributed to ASF spread outside of this area) (Jo & 

Gortázar, 2021). Following establishment of an additional zone type—“zones blanches”, that 
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delineates ASF-free areas that are adjacent to areas with positive wild boar cases—the institution of 

mass silent culling of wild boar in these high-risk fenced areas had successfully contributed to re-

achievement of ASF-free status of both the Czech Republic and Belgium (EFSA et al., 2021). 

1.6  African Swine Fever impact 

African swine fever (ASF) is one of the highest consequence diseases of domestic pigs, and is 

accordingly listed as a notifiable disease by the World Organization for Animal Health (WOAH, 2021). 

With a case-fatality rate approaching 100% for highly-virulent strains and severe trade restrictions 

wherever its emergence is recognized, this hemorrhagic fever is socioeconomically devastating to 

both individual farms and affected countries (Blome et al., 2013; Dixon et al., 2020; FAO, 2009). For a 

smallholder farrow-to-finish individual farm of 122 sows in Africa, an ASF outbreak was estimated to 

potentially cause losses of up to US$1,000,000 over a three-year period, if the outbreak occurred in 

the first year (Fasina et al., 2012). These losses were estimated to consist of half of the first year’s total 

outputs, lost inputs in the first year including feed, veterinary services, labor, herd renewal, and 

transport, plus lost potential finished pigs from subsequent years. On the national scale, the effects 

are over a thousandfold more: in Vietnam, the outbreaks in the year 2019 alone were estimated to 

cause between US$880 million and US$4.4 billion in losses to national income (covering the whole 

swine supply chain for swine-derived products) due to reductions in the values of swine farm output 

(Nguyen-Thi et al., 2021).  

Among the global leaders in pork production—China, the European Union (EU), and the United States 

of America (USA)—economic models have painted even more shocking scenarios. Direct losses from 

the outbreaks in China and Southeast Asia have been estimated to be between US$55 and US$130 

billion, accounting for both initial losses to disease and culling as well as the redirection of resources 

to restore the national breeding herd (Weaver & Habib, 2020). In the European Union, individual 

countries such as Denmark could experience total losses (both direct costs and export losses) of up to 

€520 million per epizootic (Halasa, Bøtner, et al., 2016a). In the USA, should an ASF incursion occur 

and be controlled within 2 years (allowing the country to then re-enter the export market), it has been 

estimated that revenue losses to the pork industry over that time would be approximately US$15 

billion (Carriquiry et al., 2021). Should ASF become enzootic among wild boar in America, however, 

industry losses over a 10-year period would total US$50 billion in addition to the loss of an estimated 

140,000 jobs (Carriquiry et al., 2021). 

The devastation wrought by ASF crosses many scales and disciplines. In addition to the socioeconomic 

toll, the psychosocial effects—though not yet assessed explicitly for ASF and a pertinent area for 

current research—are just as severe. Whole-herd depopulation is the sole reactive control method 
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approved in both Europe and the United States (Council of the European Union, 2002; USDA, APHIS, 

2020). The psychological toll of mass depopulation has been previously evaluated for past epizootics 

of foot-and-mouth disease and Ovine Johne’s disease, and studies consistently reveal the presence of 

severe emotional distress and mental anguish among farmers and their families (Hall et al., 2004; Mort 

et al., 2005). Animal health workers involved in such culling duties are subject to experiencing negative 

mental health outcomes, and public opinion sours when light is shed on production systems for 

massive culling. Mass swine depopulations during the COVID-19 epidemic (secondary to infrastructure 

breakdowns) were revealed to have resulted in emotional exhaustion, loss of job satisfaction, and 

depersonalization among the involved veterinary officers (Baysinger & Kogan, 2022). 

The consequences of ASF are not just limited to the immediate stakeholders in animal production 

either. In addition to the direct effects of ASF outbreaks to individuals, agribusiness, and nations, 

projection models predict the global price of pork—the most widely consumed meat in the world—to 

increase by 17–85% (FAO, 2014; Mason-D’Croz et al., 2020). Such repercussions will have direct strain 

on global food security, with the decline in available calories putting millions more people at risk of 

hunger (Mason-D’Croz et al., 2020). Following the emergence of ASF, national markets for pig and 

pork products were highly disturbed with limitations or outright bans on external exportation to the 

EU. However, the majority of initial case detections for the current ASF panzootic were observed in 

wild boar. Therefore, to reduce the economic consequences of ASFV introduction to previously ASF-

free countries, regionalization and/or segmentation between hosts was implemented to avoid the loss 

of ASF-free status for an entire nation (Gordejo, 2021). Both the domestic and wild compartments 

have to be jointly considered to evaluate the global economic impact of ASF and implemented or 

potential control measures. 

 Confronting the ASF panzootic—among both domestic pigs and wild boar—is a global priority. 
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Box 1.1 | Chapter 1 key points 

• ASF is one of the highest consequence diseases of domestic pigs and a panzootic of 

international concern. 

• In its home range of sub-Saharan Africa, ASF remains endemic via a sylvatic cycle involving 

warthogs and Ornithodorus ticks.  

• Evidence indicates the current panzootic started from the illegal sale of shipping waste —

contaminated with ASFV genotype II—that was then used as swill feed for pigs. 

• In prior invasions of ASFV outside of Africa, ASF has faded-out among wild boar following the 

control of domestic pig infections. In the current panzootic, however, we are seeing 

maintenance of the disease in Europe and Asia via both a domestic cycle among pig herds and 

a separate wild boar-habitat cycle. 

• Human activities are the primary driver of infections between domestic pig herds. 

• ASFV can persist in the environment for months, and contaminated wild boar carcasses play 

a crucial role in maintaining the wild boar-habitat cycle in affected areas 

• In regions with a preponderance of low-biosecurity backyard farms, spillover between 

domestic pig herds and wild boar is also believed to contribute to the epizootic propagation. 

• Control strategies, designed to interrupt these drivers of transmission, consist among 

domestic pigs of whole-herd culling, movement restrictions, contact tracing, and establishing 

surveillance zones. Among wild boar, carcass identification and disposal appear to be a key 

component for achieving local control.  
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2 |  Mathematical modelling of epizootic disease 

2.1  A concise history of mathematical modelling 

Designing effective prevention, surveillance, and intervention strategies requires the understanding 

of transmission dynamics, and these dynamics can often be unraveled through the employ of 

mechanistic mathematical models (Keeling and Rohani, 2008). The original mathematical disease 

models were all deterministic population-based models, commonly referred to as compartmental 

models (Brauer, 2017). In these models, a population is divided into compartments by health state, 

the simplest being two-compartment models of those who are susceptible to disease (in the S 

compartment) and those who are infectious (in the I compartment)—yielding an SI model (Brauer, 

2017). Relying on differential equations to explain system dynamics, and stemming from W.H. Hamer’s 

1906 postulate that disease transmission is dependent on the number of both infectious and 

susceptible individuals—and can be described through a mass action law—the Kermick-McKendrick 

model is credited as one of these first compartmental epidemic models (Brauer, 2017; Hamer, 1906; 

Kermack et al., 1927; Wilson & Burke, 1942). With these models, the basic reproduction number of an 

infectious disease (defined as the average number of secondary cases arising from an average primary 

case in a fully susceptible population, denoted as R0, and first coined in the 1950s by George 

Macdonald) was able to be calculated, allowing one to determine if—whether the R0 value is above or 

below 1—an epidemic trajectory would trend towards an endemic equilibrium or disease-free 

equilibrium (Brauer, 2017; Keeling & Rohani, 2008; Macdonald, 1957). Stochasticity was later 

incorporated through the development of chain-binomial models, the most famous being the Reed-

Frost model (Brauer, 2017; Keeling & Rohani, 2008). 

Throughout the twentieth century, digital computing capabilities first developed and then rapidly 

advanced, and with them came the ability for increasingly complex models. Though classic population-

based (compartmental) models (PBMs) of epidemics continued to grow through the consideration of 

additional population states—SIR to include those recovered from disease, SEIR to account for those 

in the exposed (and thus latent) state, SIS to consider re-susceptibility, and many more—these models 

remained incapable of capturing important spatial dynamics and individual contact processes 

repeatedly observed in epidemics (Di Stefano et al., 2000; Perez & Dragicevic, 2009). 

Advances in network theory among stochastic models—originating from the mid-twentieth century 

theories of Erdős & Rényi (1959) on graphs—led to the adaptation and use of the network models 

found in the social sciences (Brauer, 2017; Keeling & Eames, 2005). This allowed for the consideration 

of disease spread via individual and social group connectivity, originally finding utility for describing 

sexually-transmitted infections in the 1980s and 1990s (Keeling & Eames, 2005; Klovdahl, 1985; 
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Kretzschmar et al., 1996; Mollison, 1977). These models were then adapted into the epizootic 

modelling arena, being—to the best of my knowledge—first used to reconstruct transmission trees of 

FMD following the 2001 outbreak in the UK (Haydon et al., 2003; Keeling & Eames, 2005). 

At the turn of the twenty-first century, cellular automata models were adapted for epidemiological 

study (Di Stefano et al., 2000; Rousseau et al., 1997). Developed in the 1940s by Stanislaw Ulam and 

John Von Neumann as a means of exploring crystal growth and self-replicating systems, cellular 

automata models consist of a lattice of cells, each containing a single bit of data whose value is 

computed at discrete time steps based on local neighborhood interactions (Cosentino et al., 2013; 

Wolfram & Gad-el-Hak, 2003). In cellular automata disease models, individual cells advance through 

a sequence of infection states (Rousseau et al., 1997; Wolfram, 1984). Interactions occur within a cell’s 

immediate neighborhood, allowing simple local rules (such as probability of infection) to lead to the 

emergence of complex epidemic dynamics (Di Stefano et al., 2000; Rousseau et al., 1997; Wolfram, 

1984). Though movement is not explicitly simulated, local spatial dynamics of disease spread are able 

to be evaluated through this framework via the assumption of each cell representing an individual or 

group of individuals (White et al., 2007). 

An extension of PBMs, metapopulation (or patch-based) models allowed further incorporation of 

spatial heterogeneity, though under a different set of rules than cellular automata. In the simplest 

metapopulation model form, infectives in one patch can simply transmit disease to susceptibles in 

either their patch or another patches (van den Driessche, 2008). A second more complex type of 

metapopulation model explicitly provides a framework for connecting multiple subpopulations within 

a population via movement between subpopulations (Arino & van den Driessche, 2003a, 2003b; 

Brauer, 2017). In these metapopulation models, both rates of travel and changes in populations are 

accounted for, and will include different repro van den Driessche duction numbers (R0) within patches 

as well as between patches (Brauer, 2017; van den Driessche, 2008). 

Individual-based models (IBMs, and synonymous with agent-based models (ABMs)) were first 

explored for deciphering within-host viral and immunological dynamics in the early 2000s, for 

pathogens like influenza A and human immunodeficiency virus (HIV) (Bauer et al., 2009; Beauchemin 

et al., 2005; Castiglione, 2009; Zorzenon dos Santos & Coutinho, 2001). Later, with increases in 

computation capabilities, came their use in epidemiology for simulating complex interactions between 

individuals. Under the same cellular automata premises of a simple pre-programmed set of rules 

guiding behavior, and complex behaviors emerging from simple system interactions, IBM agents are 

additionally programmed with movement parameters allowing for the tracking of contacts between 

simulated individuals within the system, in addition to the individual transitions of an agent through 

disease states (Perez & Dragicevic, 2009; Wolfram, 1984). As computational power grows the 
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complexity of IBMs will be able to grow as well, allowing for epidemic simulations that consider high-

resolution differences between model agents, such as individually variable susceptibility and 

infectivity (Brauer, 2017). 

Despite the proliferation of individual-based epidemic models following their debut, no standard 

methodology for describing these models exists, which has led to irregularities and inconsistencies 

among model descriptions (Orbann et al., 2017). Though protocols have been proposed for describing 

model structures in a standardized way, they are not specific to disease modelling nor are they 

consistently followed (Grimm et al., 2006; Orbann et al., 2017). In the following reviews of 

mathematical modelling articles, the model classifications used are those that have been reported by 

the authors and model developers. 

2.2  The proven utility of epizootic mathematical modelling  

Mathematical models have a proven track-record, not just for confronting epidemics of public health 

interest but also against notable epizootics. Understandings of the transmission dynamics of bovine 

tuberculosis (bTB), bovine spongiform encephalopathy (BSE), and foot-and-mouth disease (FMD) 

outbreaks have all been improved through investigation with mathematical models.  

One of the first times models were used during an epizootic for decision support was during the 2001 

FMD outbreak in the UK (Keeling, 2005). Multiple models were parameterized and evaluated, ranging 

from deterministic population-based compartmental models (Ferguson et al., 2001) to spatially-

explicit (Keeling et al., 2001) and complex individual-based (Morris et al., 2001) simulations. The 

results of these different models, highly congruent in their predictions despite their different 

methodologies, played important roles in informing strategy (Keeling, 2005), albeit not without 

significant political strife (Kitching et al., 2006). The lessons learned from this epizootic, as a case study 

of the use of modelling in real-time decision support, have since been explored repeatedly (Green & 

Medley, 2002; Kao, 2002; Keeling, 2005; Tildesley et al., 2008) and will continue to provide further 

insight into the capabilities and limitations of the modelling toolset. 

Bovine TB, one of the most important livestock diseases globally, affects countries across six 

continents and was even once described as “the greatest challenge […] facing New Zealand science” 

(Barlow, 1994; Coleman & Cooke, 2001; WOAH, 2019b). In England, considerable debate occurred 

over the culling strategies against wild badgers for controlling bTB epizootics in cattle: some 

stakeholders declared badgers played no role in transmission to cattle, whereas others emphatically 

stated that the majority of cases were due to badger transmission (Donnelly & Nouvellet, 2013). 

Through dynamical modelling, the association of bTB between badgers and cattle, along with the 
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contribution of badgers to maintaining outbreaks among cattle, was able to be elucidated (Donnelly 

& Nouvellet, 2013; Donnelly & Hone, 2010). Though the lively debate continued (and continues) on 

which management strategies are appropriate, the insight from these models provided valuable 

evidence on inter-species transmission. 

During the “mad cow disease” crisis of the late 1980s and 1990s, mathematical models were necessary 

for estimating age-stratified incidence in cattle and ascertaining the impacts of culling policies (R. M. 

Anderson et al., 1996; Ferguson et al., 1998). As there was no in vivo test for detecting infection, the 

back-calculation methods used in these models (considering the incubation period alongside trends 

in incidence) enabled the determination of BSE incidence trajectories. This information was able to 

inform control strategies going forward, predicting transmission routes and time until disease fade-

out (R. M. Anderson et al., 1996). 
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Box 2.1 | Chapter 2 key points 

• Mathematical models have been successfully applied to many epizootic diseases. 

• The first mathematical models of disease were compartmental population-based models, 

compartmentalizing the entire population by infection state and using differential equations 

to explain the dynamics between the states. 

• Contact-network based models, adapted from the social sciences, were incorporated into the 

field the late 20th century to explain frequency-based transmission dynamics as seen with 

sexually transmitted infections. 

• Only in the 21st century has disease modelling progressed to mechanistically consider spatial 

effects via the adaptation of cellular automata, metapopulation, and individual-based models.  

• Famous epizootics of BTB, BSE, and FMD have all benefited from investigation with 

mathematical models, elucidating crucial information for predicting epidemic trajectories and 

informing control strategies. 
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§ II |  Systematic reviews of mathematical modelling 

Mathematical modelling of infectious diseases at the domestic-wildlife interface is a unique subset of 

mechanistic modelling. Requiring cross-disciplinary competence in infectious disease epidemiology, 

domestic animal health and livestock production, and wildlife ecology, these models seek to unravel 

the complex mechanisms behind both disease transmission between ecosystems and disease 

emergence in novel ecosystems. 

Transmission of disease is the product of multiple factors between an infectious and susceptible host, 

accounting for the pathogen population, pathogen dynamics, host immunology, host behavior, and 

environmental influences (Grassly & Fraser, 2008). Mathematical models couple these biological 

mechanisms to the epidemic dynamics that emerge in a population (Grassly & Fraser, 2008). In disease 

modelling, these myriad and complex host factors often get reduced into a single parameter to 

quantify the transmission probability of a disease given infectious-susceptible contact. Multiplying this 

parameter by the contact rate between hosts yields the transmission rate—b (beta)—and is central 

to mathematically describing the transmission of an infectious agent among a population (Craft, 2015; 

Keeling & Rohani, 2008; Vynnycky & White, 2010). This transmission rate parameter, therefore, 

represents the information that encompasses all the aforementioned facets of disease transmission 

between two hosts.  

Global and local drivers of transmission—resulting in ever-increasing interaction between wildlife and 

livestock—are investigated through these models. Livestock production systems constitute the largest 

use of land in the world, and increasing global food demand invariably result in the expansion of these 

systems (Jori, Hernandez-Jover, et al., 2021). The consequent deforestation that makes room for these 

enterprises results in the juxtaposition of livestock with wildlife, increasing the areas of interaction 

between the two (Jones et al., 2013; Jori, Hernandez-Jover, et al., 2021).  

Climate change has had profound effects at both global and local scales. Large-scale shifts in vector 

distributions have resulted in outbreaks of diseases that were formerly confined to tropical regions, 

as seen with bluetongue virus (Jacquot et al., 2017; Jori, Hernandez-Jover, et al., 2021). Locally, water 

scarcity in arid and semi-arid regions has resulted in mixed congregations around available water 

sources for pastoral livestock and wildlife (Jori, Hernandez-Jover, et al., 2021). 

In the majority of rural communities, backyard farming and small-scale animal production systems 

constitute the primary livelihoods and food sources (Committee on Considerations for the Future of 

Animal Science Research et al., 2015). These low-biosecurity operations permit regular contact 

between livestock and wildlife, and have often been central to outbreaks of diseases shared at this 
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interface—including ASF, CSF, FMD, brucellosis, and rabies (Jori, Hernandez-Jover, et al., 2021; WOAH, 

2022c). Improved animal welfare in high-income countries has also resulted in increases in the number 

of outdoor and open-air production systems, which also puts livestock at higher risk of wildlife 

contacts (Jori, Hernandez-Jover, et al., 2021). The livestock-wildlife interface acts as an important area 

of infectious disease propagation, and mathematical models are able to investigate and quantify the 

involved dynamics, helping to improve our understanding of these drivers of transmission and 

contribute to the conception of holistic control strategies.  

With mathematical models able to elucidate disease dynamics, unravel disease transmission 

properties, and improve disease management strategies, they hold promise for helping to confront 

the current African swine fever panzootic. Through systematically reviewing the literature of ASF 

mechanistic modelling, we will be able to identify previously described parameters, elucidate effective 

methods for mathematically investigating ASF epizootics, and identify gaps in the knowledge body 

that would benefit from further investigation. Here, a systematic review of the literature was 

conducted to see the state of the art regarding ASF modelling in both wild and domestic 

compartments, identifying all published articles of mathematical modelling of African swine fever. This 

review was subsequently published in Preventive Veterinary Medicine (Hayes et al., 2021). Following 

this review, as mechanistic models of ASF at the domestic-wildlife interface were lacking, a review of 

mechanistic models at the domestic-wildlife interface was conducted to inform potential 

methodologies that could be used in the development of our own model of ASF transmission at the 

domestic-wildlife interface, including how to represent the interactions between the domestic and 

the wild compartments.  



 47 

3 |  Mathematical modelling of African swine fever: A systematic review 

This chapter is derived from the publication in Preventive Veterinary Medicine (Hayes et al., 2021) 

3.1  Introduction 

Designing effective prevention, surveillance, and intervention strategies against African swine fever 

(ASF)—one of the highest consequence diseases of domestic pigs—requires understanding of the 

virus’ transmission dynamics. These dynamics can often be unraveled through the use of mechanistic 

modelling (Keeling and Rohani, 2008). Mechanistic models have been successfully applied to many 

epizootic incursions including foot-and-mouth disease (FMD) (Pomeroy et al., 2017), classical swine 

fever (CSF) (Backer et al., 2009), and bluetongue (Courtejoie et al., 2018), to assess vaccination 

strategies, design and evaluate targeted and alternative control strategies, and elucidate 

epidemiological parameters, respectively. 

Only following the incursion of ASF into the Eurasian continent did mechanistic models of ASF begin 

to be explored, as identified in a literature review of modelling viral swine diseases (Andraud and Rose, 

2020). In order to identify gaps in specific ASF modelling strategies with regard to its present 

epidemiology, through examining the assumptions on transmission and objectives of the mechanistic 

models of ASF, a systematic review of the scientific literature was conducted. 

3.2  Material and methods 

3.2.1 Literature search 

The systematic review was performed in accordance with PRISMA guidelines (Liberati et al., 2009). 

The search query was constructed to identify all publications on ASF in any species that incorporated 

the use of mechanistic models. No restrictions were imposed on publication language (other than 

through the use of English search terminology), study location, or publication date. Eight target 

publications on mathematical modelling of ASF, selected through author familiarity of the subject and 

diverse among animal host and literature type (black and white literature and grey literature), were 

identified to calibrate the literature search. The literature search was conducted initially on January 

31, 2020 through terms agreed upon by all researchers in the following Boolean query: “African swine 

fever” AND model* AND (math* OR mechani* OR determin* OR stochast* OR dynam* OR spat* OR 

distrib* OR simulat* OR comput* OR compart* OR tempor*). Terms were searched in the fields title 

and abstract, title abstract and subject, or title and topic, for Medline, CAB Abstracts, and Web of 

Science, respectively. The search was repeated prior to publication (January 18, 2021) to capture all 

relevant articles through December 31, 2020. Of note, as articles ahead of print were included in this 



 48 

review at time of its publication, their cited dates have been updated following their publication which 

has resulted in included articles with dates beyond December 31, 2020. Additionally, as the previous 

systematic review was conducted after this one, one additional ASF modelling article that was 

published recently (Yoo et al., 2021) was not included in this study. 

3.2.2 Study Selection 

Inclusion criteria for the articles were the topic of African swine fever and reference to a mechanistic 

model either directly or indirectly (e.g. through mention of a specific type of model). Exclusion criteria 

were more exhaustive and consisted of the following: non-population models (e.g. within-host), 

virological and genomic models, non-suid models (e.g. models exclusively of the arthropod vector), 

and non-mechanistic models (e.g. statistical or purely economic models).  

Primary screening of title and abstract was performed by two authors. Kappa scores (κ) were 

calculated to determine interrater reliability. Discussion among authors occurred until a consensus on 

qualifying studies was reached. Full-text articles were subsequently assessed for eligibility with all the 

above criteria plus the additional inclusion criteria of containing an explicit process of infection and 

not being a duplication of published results, and cross-validated by other authors. Snowball sampling 

was used to identify any remaining mechanistic modelling articles. Specific screening questions are 

available online as supplementary material. 

3.2.3 Data collection process 

Table shells were created to capture study design and model properties. Publication information 

(authors, year), ASF outbreak data (host, ASFV strain (genotype and isolate), location of study), 

research methodology (data collection method, study direction (ex-post or ex-ante)), model 

components (framework, temporality, spatiality, infection states), model descriptors (transmission 

scale, basic epidemiological unit, model objective), and model parameter assumptions were all 

recorded. 

3.2.4 Filiation tree construction 

To assess model filiation, a distance-based phylogenetic tree of the selected studies was constructed. 

This was performed via the neighbor-joining method of tree construction using Molecular 

Evolutionary Genetics Analysis (MEGA) software (Kumar et al., 2018). This methodology was chosen 

as it produces a parsimonious tree based on minimum-evolution criterion (Pardi & Gascuel, 2016; 

Saitou & Nei, 1987). Full characteristics of all models were assessed (Supplementary Material, Table 

A), and cross-correlation between those characteristics resulted in the selection of four main 
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variables: host (domestic pig, wild boar, or both), data collection methodology (experimental, 

observational, or simulation), model framework (PBM, IBM, or metapopulation), and model objective 

(estimating parameters, assessing alternative control strategies, assessing determinants of 

transmission, or examining consequences of hypothetical outbreaks). Vectors of each model were 

constructed by dummifying selected model components by their subcategory and then calculating 

pairwise differences between all model pairings. The corresponding values formed a distance matrix 

that was then used for analysis.  

3.3  (Results) Included publications and epidemiological characteristics 

3.3.1 Publications 

A total of 351 articles were identified across all databases (Fig. 3.1). Following removal of duplicate 

references, 171 records remained for primary screening. Out of these, 36 full-text articles were 

determined to qualify for secondary screening. With κ = 0.65, the reviewers were determined to be in 

substantial agreement (Landis & Koch, 1977). Four articles were excluded in secondary screening. Two 

additional studies were identified through snowball sampling resulting in 34 articles for review. A 

marked increase in the number of mechanistic modelling publications occurred in the most recent 

year of review (Fig. 3.2). Closely split between models among domestic pigs and wild boar (referred to 

as “pigs” and “boar” in tables and figures), 2020 saw a doubling in the number of publications (10) 

compared to previous most-published years. 

3.3.2 Epidemiological characteristics  

Out of 34 mechanistic modelling studies on ASF, 20 modelled disease dynamics specifically in domestic 

pigs, 12 modelled disease dynamics specifically in wild boar, and two included transmission between 

wild and domestic hosts (Table 3.1). The majority of studies (25) were parameterized to the genotype 

II strains currently circulating in Europe (i.e. Georgia 2007/01, Armenia 2008), including the first 

mechanistic model of ASF (Gulenkin et al., 2011) and all but one of the wild boar models. 

Different strains were considered depending on their geographical spread. Genotype I dynamics were 

modelled both in Sardinia where it is enzootic (Loi et al., 2020; Mur et al., 2018), and in an 

experimental study with the Malta 1978 and Netherlands 1986 isolates (Ferreira et al., 2013). 

Genotype IX was modelled in its home range of Eastern Africa both ex-post to a historical outbreak 

(Barongo et al., 2015) as well as via a simulation for assessing control measures (Barongo et al., 2016). 

Genotype II strains were examined ex-post among domestic pigs to historical outbreaks in the Russian 

Federation (Guinat et al., 2018; Gulenkin et al., 2011), via transmission experiments in domestic pigs  
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Fig. 3.1 | PRISMA flow diagram for article selection. 

 

(Guinat, Gubbins, et al., 2016; Hu et al., 2017; Nielsen et al., 2017) or between both domestic pigs and 

wild boar (Pietschmann et al., 2015), and through a multitude of in-silico simulations of both domestic 

pigs (Andraud et al., 2019; Faverjon et al., 2021; Halasa, Boklund, et al., 2016; Halasa, Bøtner, et al., 

2016a, 2016b; Halasa et al., 2018; Lee et al., 2021; Vergne et al., 2021) and wild boar herds (Croft et 

al., 2020; Gervasi et al., 2019; Halasa et al., 2019; Lange, 2015; Lange et al., 2018; Lange & Thulke, 

2015; O’Neill et al., 2020; Pepin et al., 2020; Taylor et al., 2021; Thulke & Lange, 2017). One model of 

ASF spread, which was focused on spread due to wild boar dispersion, considered the influence of 

transmission from outdoor free-range domestic pigs (Taylor et al., 2021). 
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Fig. 3.2 | Publications by year subset by host 

 

The term “herd” was chosen to refer to an animal collective and will be used for the remainder of this 

article, with it being interchangeable with the terms farm (Gulenkin et al., 2011; Mur et al., 2018; 

Nigsch et al., 2013), production unit (Halasa, Boklund, et al., 2016), and parish (Barongo et al., 2016). 

Further, for the purpose of standardization of terms for model comparison, sub-population groups of 

wild boar (known as sounders) are herein referred to as herds as well. 

3.4  (Results) Model objectives and filiation 

3.4.1 Model objectives 

Four main modelling objectives were identified: Estimating parameters (11), assessing determinants 

of transmission (7), examining consequences of hypothetical outbreaks (5), and assessing alternative 

control strategies (11) (Table 3.2).  
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Table 3.1 | Epidemiological characteristics of articles 

Reference Host ASFV isolate ASFV genotype Location Data collection 
method 

 Gulenkin et al., 2011 Pig Georgia 2007/1 Genotype II Russian 
Federation 

Observational 

Ferreira et al., 2013 Pig Malta 1978           
Netherlands 1986 

Genotype I Laboratory Experimental 

Nigsch et al., 2013 Pig - - European Union Simulation 

Barongo et al., 2015 Pig - Genotype IX Uganda Observational 

Costard et al., 2015 Pig - - Non-specific Simulation 

Barongo et al., 2016 Pig - - Eastern Africa Simulation 

Guinat, Gubbins, et al., 
2016 

Pig Georgia 2007/1 Genotype II Laboratory Experimental 

Halasa, Boklund, et al., 
2016 

Pig Georgia 2007/1 Genotype II Non-specific Simulation 

Halasa, Bøtner, et al., 
2016a 

Pig Georgia 2007/1 Genotype II Denmark Simulation 

Halasa, Bøtner, et al., 
2016b 

Pig Georgia 2007/1 Genotype II Denmark Simulation 

Hu et al., 2017 Pig Georgia 2007/1 Genotype II Laboratory Experimental 

Nielsen et al., 2017 Pig Georgia 2007/1 Genotype II Laboratory Experimental 

Guinat et al., 2018 Pig Georgia 2007/1 Genotype II Russian 
Federation 

Observational 

Halasa et al., 2018 Pig Georgia 2007/1 Genotype II Denmark Simulation 

Mur et al., 2018 Pig - Genotype I Sardinia Simulation 

Andraud et al., 2019 Pig Georgia 2007/1 Genotype II France Simulation 

Faverjon et al., 2021 Pig Georgia 2007/1 Genotype II Laboratory Simulation 

Lee et al., 2021 Pig Georgia 2007/1 Genotype II Vietnam Simulation 

Shi et al., 2020 Pig - - Laboratory Simulation 

Vergne et al., 2021 Pig Georgia 2007/1 Genotype II Non-specific Simulation 

Pietschmann et al., 2015 Pig, Boar Armenia 2008 Genotype II Laboratory Experimental 

Taylor et al., 2021 Pig, Boar Georgia 2007/1 Genotype II Europe Simulation 

Lange, 2015 Boar Georgia 2007/1 Genotype II Non-specific Simulation 

Lange and Thulke, 2015 Boar Georgia 2007/1 Genotype II Non-specific Simulation 

Lange and Thulke, 2017 Boar Georgia 2007/1 Genotype II Baltic region Observational 

Thulke and Lange, 2017 Boar Georgia 2007/1 Genotype II Baltic region Simulation 

Lange et al., 2018 Boar Georgia 2007/1 Genotype II Baltic region Simulation 

Gervasi et al., 2019 Boar Georgia 2007/1 Genotype II Non-specific Simulation 

Halasa et al., 2019 Boar Georgia 2007/1 Genotype II Denmark Simulation 

Croft et al., 2020 Boar Georgia 2007/1 Genotype II England Simulation 

Loi et al., 2020 Boar - Genotype I Sardinia Observational 

O’Neill et al., 2020 Boar Georgia 2007/1 Genotype II Spain, Estonia Simulation 

Pepin et al., 2020 Boar Georgia 2007/1 Genotype II Poland Simulation 

Yang et al., 2021 Boar - - United States of 
America 

Simulation 
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The majority of domestic pig models—including the first two ASF models (Ferreira et al., 2013; 

Gulenkin et al., 2011)—and three of the wild boar models (Lange & Thulke, 2017; Loi et al., 2020; 

Pietschmann et al., 2015) focused on estimating various transmission parameters using either 

experiment-based or field-observation data. The predominant parameters calculated were the 

transmission coefficient 𝛽 (which determines the rate of new infections per unit time, via the product 

of the contact rate and transmission probability) and the basic reproduction ratio R0 (the average 

number of secondary cases produced by one infectious individual in a fully susceptible population) 

(Table 3.3) (R. M. Anderson & May, 1992; Keeling & Rohani, 2008). 𝛽’s ranged from 0.0059 herds per 

infected herd per month for between herd transmission of genotype IX (Barongo et al., 2015) to 2.79 

(95% CI 1.57, 4.95) pigs per day for within-pen transmission of the Malta 1978 isolate (Ferreira et al., 

2013). R0 values ranged from 0.5 (95% CI 0.1, 1.3) for indirect transmission of the Armenia 2008 isolate 

between boar and pigs (Pietschmann et al., 2015) to 18.0 (95% CI 6.90, 46.9) for transmission of the 

Malta 1978 isolate between domestic pigs (Ferreira et al., 2013). Among the wild boar models, 

Pietschmann et al. (2015) used the Armenia 2008 isolate to calculate R0 among wild boar and between 

boars and pigs in a laboratory setting, Lange & Thulke (2017) trained an artificial neural network on 

spatiotemporally-explicit case notification data to determine the probability of carcass-mediated and 

direct transmission between boar herds, and Loi et al. (2020) estimated both the basic and effective 

reproduction numbers (R0 and Re, respectively) in Sardinia through historical hunting data coupled with 

virological and serological testing data. Lastly, via estimating R0 and the disease-free equilibrium for 

varying parameter sets, one recent model examined the mathematical theorums behind the 

differential equations used in many ASF models to determine if integer or fractional order systems 

better describe ASF epizootic dynamics (Shi et al., 2020).  

Seven simulation models were used to disentangle determinants of transmission of ASF. Of the four 

models in domestic pigs, the first model by Nigsch et al. (2013) simulated international trade patterns 

to determine the EU member nations most susceptible to importation and exportation of ASF. Halasa, 

Boklund, et al. (2016) simulated ASFV transmission within a pig herd to examine the influences of dead 

animal residues and herd size, and Mur et al. (2018) simulated ASFV transmission between pig herds 

in Sardinia to determine the influence of farm and contact type. Lastly among pigs, Vergne et al. (2021) 

looked at the influence of the feeding behavior of Stomoxys flies on ASFV transmission in a simulated 

outdoor farm. Halasa et al. (2019) examined the transmission pathway of ASFV in wild boar among 

varying population densities. This past year Pepin et al. (2020) modelled the contribution of carcass-

based transmission to the on-going outbreak in boar in Eastern Europe, while O’Neill et al. (2020) 

looked at the influence of host and environmental factors on ASFV persistence in scenarios of 

contrasting environmental conditions. 
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Assessing alternative control strategies via simulations was the most frequent objective among wild 

boar studies (Gervasi et al., 2019; Lange, 2015; Lange et al., 2018; Lange & Thulke, 2015; Thulke & 

Lange, 2017). The strategies examined consisted of combinations of mobile barriers, depopulation, 

feeding bans, intensified and targeted hunting, carcass removal, and variations in active and passive 

surveillance. Taylor et al. (2021) focused on varying intensities of carcass removal, hunting, and 

fencing for interrupting ASF spread due only to wild boar movements. In domestic pigs, control 

strategies that were assessed consisted of improving the sensitivity of detection of ASF by farmers 

(Costard et al., 2015), enhancing biosecurity (Barongo et al., 2016), theoretical vaccination (Barongo 

et al., 2016), and instituting EU-legislated and nationally-legislated (Danish) control measures in 

combination with alternative methods (Halasa, Bøtner, et al., 2016b). These codified measures 

simulated by Halasa, Bøtner, et al. (2016b) encompassed a nationwide shutdown of swine 

movements, culling of infected herds, implementation of both movement restriction and enhanced 

surveillance zones, contact tracing, and pre-emptive depopulation of neighboring herds. Most 

recently, Faverjon et al. (2021) quantified the mortality thresholds that permit the best balance 

between rapid detection of ASF while minimizing false alarms within domestic pig herds, and Lee et 

al. (2021) modelled ASF in Vietnam to determine the efficacy of movement restrictions of varying 

intensities. 

Five models assessed the consequences of hypothetical outbreaks, with four focusing on the Georgia 

2007/01 strain. Three models examined ASF within industrialized swine populations, with 

transmission through both Danish (Halasa, Bøtner, et al., 2016a; Halasa et al., 2018) and French 

(Andraud et al., 2019) swine systems simulated. Croft et al. (2020) examined the outcome of natural 

circulation of ASF in an isolated boar population in an English forest, and Yang et al. (2021) applied 

ASF parameters to their network model of wild boar to determine its spread in the United States. 

3.4.2 Filiation tree and model characteristics 

The generation of the neighbor-joined filiation tree allowed for the identification of three clusters of 

models: models used for parameter estimations, simulation models in domestic pigs, and individual-

based models (Fig. 3.3). The individual-based simulation models (with the exceptions of Gervasi et al. 

(2019) and Yang et al. (2021)) grouped at the bottom of the tree, the domestic pig simulation models 

clustered in the middle (with the exception of O’Neill et al. (2020) focused on wild boar), and the 

parameter estimation models clustered in the top-most group.  

The parameter estimation cluster, internally parsed by data collection methodology, consisted mostly 

of stochastic, non-spatial population-based models that derived parameters for within-herd (including 

within and between pen) transmission between pigs (Ferreira et al., 2013; Guinat et al., 2018; Guinat, 
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Gubbins, et al., 2016; Hu et al., 2017; Nielsen et al., 2017) (Table 3.2). Gulenkin et al. (2011) and 

Barongo et al. (2015) calculated ASF parameters for transmission between herds, and Loi et al. (2020) 

estimated transmission parameters between wild boar. Seven of the nine models focused on the 

currently-circulating genotype II strain. Though the Shi et al. (2020) model also estimated parameters, 

due to its simulation methodology it was clustered with the rest of the domestic pig simulations. 

Five population-based models were used to simulate within-herd transmission in domestic pigs 

(Barongo et al., 2016; Faverjon et al., 2021; Halasa, Boklund, et al., 2016; Shi et al., 2020; Vergne et 

al., 2021), and one did so for wild boar (O’Neill et al., 2020), though capturing between-herd 

transmission dynamics saw the use of stochastic, temporally discrete, spatially-explicit 

metapopulation models (Andraud et al., 2019; Halasa, Bøtner, et al., 2016a, 2016b; Halasa et al., 2018; 

Mur et al., 2018). Two named metapopulation models were represented: the Denmark Technical 

University - Davis Animal Disease Simulation - African Swine Fever (DTU-DADS-ASF) model (Andraud 

et al., 2019; Halasa, Bøtner, et al., 2016a, 2016b; Halasa et al., 2018) and the Between Farm Animal 

Spatial Transmission (Be-FAST) model (Mur et al., 2018). Both the Be-FAST and DTU-DADS-ASF models 

were updates of previously published models. The Be-FAST model, originally designed to simulate CSF 

spread within and between farms, was adapted for the ASF situation in Sardinia. The DTU-DADS-ASF 

model, an extension of the existing DTU-DADS model originally designed for the spread of foot-and-

mouth disease in pigs, was constructed through inserting the within-herd model sensitive to unit size 

(from Halasa, Boklund, et al. (2016)) into the existing DTU-DADS model. This new model, reflecting an 

industrialized swine population, simulated epidemiological and economic outcomes of an outbreak 

(Halasa, Bøtner, et al., 2016a) and was later used to assess alternative control strategies (Halasa, 

Bøtner, et al., 2016b). This model was further refined to exemplify the Danish and French swine 

populations, where the consequences of hypothetical outbreaks were assessed (Andraud et al., 2019; 

Halasa et al., 2018). 
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Fig. 3.3 | Filiation tree of included articles on mechanistic modelling of ASF. 
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Table 3.2 | Model characteristics of articles 

Reference Host Framework Time Space Model Objective 

Gulenkin et al., 2011 Pig PBM Continuous No Estimate parameters 

Ferreira et al., 2013 Pig PBM Discrete No Estimate parameters 

Nigsch et al., 2013 Pig IBM Discrete Movement Assess transmission determinants 

Barongo et al., 2015 Pig PBM Continuous No Estimate parameters 

Costard et al., 2015 Pig IBM Discrete No Assess alt. control strategies 

Barongo et al., 2016 Pig PBM Continuous No Assess alt. control strategies 

Guinat, Gubbins, et al., 
2016 

Pig PBM Discrete No Estimate parameters 

Halasa, Boklund, et al., 
2016 

Pig PBM Discrete No Assess transmission determinants 

Halasa, Bøtner, et al., 
2016a 

Pig Meta-
population 

Discrete Movement and 
distance 

Assess consequences of outbreak 

Halasa, Bøtner, et al., 
2016b 

Pig Meta-
population 

Discrete Movement and 
distance 

Assess alt. control strategies 

Hu et al., 2017 Pig PBM Continuous No Estimate parameters 

Nielsen et al., 2017 Pig PBM Discrete No Estimate parameters 

Guinat et al., 2018 Pig PBM Continuous No Estimate parameters 

Halasa et al., 2018 Pig Meta-
population 

Discrete Movement and 
distance 

Assess consequences of outbreak 

Mur et al., 2018 Pig Meta-
population 

Discrete Movement and 
distance 

Assess transmission determinants 

Andraud et al., 2019 Pig Meta-
population 

Discrete Movement and 
distance 

Assess consequences of outbreak 

Faverjon et al., 2021 Pig PBM Discrete Distance Assess alt. control strategies 

Lee et al., 2021 Pig IBM Discrete Movement Assess alt. control strategies 

Shi et al., 2020 Pig PBM Continuous No Estimate parameters 

Vergne et al., 2021 Pig PBM Continuous No Assess transmission determinants 

Pietschmann et al., 2015 Pig, Boar PBM Discrete No Estimate parameters 

Taylor et al., 2021 Pig, Boar IBM Discrete Movement Assess alt. control strategies 

Lange, 2015 Boar IBM Discrete Movement Assess alt. control strategies 

Lange and Thulke, 2015 Boar IBM Discrete Movement Assess alt. control strategies 

Lange and Thulke, 2017 Boar IBM Discrete Movement Estimate parameters 

Thulke and Lange, 2017 Boar IBM Discrete Movement Assess alt. control strategies 

Lange et al., 2018 Boar IBM Discrete Movement Assess alt. control strategies 

Gervasi et al., 2019 Boar PBM Discrete No Assess alt. control strategies 

Halasa et al., 2019 Boar IBM Discrete Movement Assess transmission determinants 

Croft et al., 2020 Boar IBM Discrete Movement Assess consequences of outbreak 

Loi et al., 2020 Boar PBM Continuous No Estimate parameters 

O’Neill et al., 2020 Boar PBM Continuous No Assess transmission determinants 

Pepin et al., 2020 Boar IBM Continuous Movement Assess transmission determinants 

Yang et al., 2021 Boar PBM Continuous No Assess consequences of outbreak 



Table 3.3 | Parameter results 

ASFV Strain Host Basic  
epidemiological 
unit 

Scale of 
transmission 

Assumed latent period 
(days) 

Assumed infectious period 
(days) 

𝛃 R0 Reference 

Genotype I Boar Individual Within 
population 

3.57 days 5 - 7 0.5 1.124 (95% CI 1.103–
1.145) - 1.170 (1.009–
1.332) 

Loi et al., 2020 

Malta 1978 Pig Individual Within pen 4 ± 0.8 (low dose)                 
5 ± 1.4 (high dose) 

Min: 7.0 ± 2.9                
Max: 33.6 ± 22.5 

2.79 (95% CI 1.57, 4.95) Min infectious period: 
18.0 (95% CI 6.90, 46.9) 
Max infectious period: 
62.3 (95% CI 6.91, 562) 

Ferreira et al., 2013 

Netherlands 
1986 

Pig Individual Within pen 5 ± 0.5 Min: 5.9 ± 2.6                
Max: 19.9 ± 20.2 

0.92 (95% CI 0.44, 1.92) Min infectious period: 
4.92 (95% CI 1.45, 16.6) 
Max infectious period: 
9.75 (95% CI 0.76, 125) 

Ferreira et al., 2013 

Georgia 2007/1  Pig Individual Within pen 4 Min: 4.5 ± 0.75 days                
Max: 8.5 ± 2.75 days 

0.62 (95% CI 0.32, 0.91) Min infectious period: 
2.71 (95% CI 1.32, 4.56)  
Max infectious period: 
4.99 (95% CI 1.36, 10.13) 

Guinat, Gubbins, et al., 2016 

 
Pig Individual Within pen Gamma(mean, shape) 

mean ~ Gamma(4.5, 10)    
shape ~ Gamma(10, 2)  

Gamma(mean, shape) 
mean ~ Gamma(10,6.0)     
shape ~ Gamma(19.3, 2) 

2.62 (95% HPDI 0.96, 
5.61) 

24.1 (95% HPDI 7.34, 
54.2) 

Hu et al., 2017 

 
Pig Individual Within pen 3 - 5 4.5 ± 0.75 1.00 (95% CI 0.56, 1.69) (not reported) Nielsen et al., 2017 

 
Pig Individual Between pen 4 Min: 4.5 ± 0.75 days                

Max: 8.5 ± 2.75 days 
0.38 (95% CI 0.06, 0.70) Min infectious period: 

1.66 (95% CI 0.28, 3.31) 
Max infectious period: 
3.07 (95% CI 0.37, 6.97) 

Guinat, Gubbins, et al., 2016 

 
Pig Individual Between pen Gamma(mean, shape) 

mean ~ Gamma(4.5, 10)    
shape ~ Gamma(10, 2)  

Gamma(mean, shape) 
mean ~ Gamma(10,6.0)     
shape ~ Gamma(19.3, 2) 

0.99 (95% HPDI 0.31, 
1.98) 

9.17 (95% HPDI 2.67, 
19.2) 

Hu et al., 2017 

 
Pig Individual Between pen 3 - 5 4.5 ± 0.75  0.46 (95% CI 0.16, 1.06) (not reported) Nielsen et al., 2017 

 
Pig Individual Within herd - 1 - 5 (not reported) 8-11 Gulenkin et al., 2011 

 
Pig Individual Within herd Gamma(mean, shape) 

mean ~ Gamma(6.25, 10) 
shape ~ Gamma(19.39, 5) 

Gamma(mean, shape) 
mean ~ Gamma(9.12, 10) 
shape ~ Gamma(22.20, 5) 

0.7 (95% HPDI 0.3, 1.6) -  
2.2 (95% HPDI 0.5, 5.3) 

4.4 (95% CrI 2.0, 13.4) - 
17.3 (3.5, 45.5) 

Guinat et al., 2018 

 
Pig Herd Between herd - 1 - 5 (not reported) 2-3 Gulenkin et al., 2011 

Armenia 2008 Boar Individual Within pen 4 2 - 9 (not reported) 6.1 (95% CI 0.6, 14.5)  Pietschmann et al., 2015 
 

Pig, 
Boar 

Individual Within pen 4 2 - 9 (not reported) 5.0 (95% CI 1.4, 10.7) Pietschmann et al., 2015 
 

Pig, 
Boar 

Individual Between pen 4 2 - 9 (not reported) 0.5 (95% CI 0.1, 1.3) Pietschmann et al., 2015 

Genotype IX Pig Herd Between herd - 1 month 1,77 1.77 (95% CI 1.74, 1.81) Barongo et al., 2015 
 

Pig Herd Between herd - 1 month 0,0059 1.58 (range not 
reported) 

Barongo et al., 2015 
 

Pig Herd Between herd - 1 month 1,90 1.90 (95% CI 1.87, 1.94) Barongo et al., 2015 

Not specified Pig Herd Within 
population 

2.86 - 8.33 days 1.25 – 100 0.001 – 0.3 0.8043 – 3.7695 Shi et al., 2020 
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Both the DTU-DADS-ASF and the Be-FAST models relied on simulated live-animal movements and 

kernel-based distances to model susceptible-infectious contacts between herds. In the DTU-DADS-ASF 

model, movements (including both animal movements between herds and indirect contacts such as 

abattoir movements and contact with vehicles and animal health workers) were simulated through 

series of transmission probabilities parameterized to historical movement frequency data in the 

represented location (Denmark or France). Distance-based probabilities between herds were used to 

model local spread. The Be-FAST model also considered direct and indirect contact between herds, 

using a metapopulation framework to model trade networks and indirect means of spread (Ivorra et 

al., 2014). Whereas the Be-FAST model used SI infection states within herds, the DTU-DADS-ASF 

simulation used a modified SEIR model with the infectious state split into sub-clinical and clinical 

states. 

Stochastic, discrete, spatially-explicit individual-based models, mostly focused on assessing alternative 

control strategies, were the predominant approaches to modelling ASF in wild boar, with the 

exceptions of Croft et al. (2020) who used a deterministic approach and Gervasi et al. (2019) and Yang 

et al. (2021) who used deterministic non-spatial population-based models. Of the spatially-explicit 

individual-based models, unlike in the domestic pig metapopulation models, disease spread was 

simulated exclusively through movement-based algorithms. For the ASF Wild Boar model (Lange, 

2015; Lange et al., 2018; Lange & Thulke, 2015; Thulke & Lange, 2017), the model replicated from it 

(Halasa et al., 2019), and the model by Pepin et al. (2020), this was accomplished using a rasterized 

spatial habitat grid. In order to avoid raster-associated bias in their model, Croft et al. (2020) elected 

against a grid-based landscape, instead using a mosaic of irregular polygons scaled to the average wild 

boar herd range. In all these models, individual animal movements occurred via dispersal and 

orientation probabilities of each individual animal, followed by upper-bounded number of dispersal 

steps that could be taken. Unlike domestic pig simulations or the Halasa et al. (2019) and Pepin et al. 

(2020) wild boar simulations, the ASF Wild Boar individual-based models (Lange, 2015; Lange et al., 

2018; Lange & Thulke, 2015; Thulke & Lange, 2017), and Croft et al. (2020) used weekly not daily time 

steps in their process scheduling. 

Three domestic pig models used individual-based frameworks as well, to examine routes of ASF 

transmission between EU Member States (Nigsch et al., 2013), the efficacy of movement-restriction 

control measures (Lee et al., 2021), and to assess controlling the silent release of ASF from farms 

(Costard et al., 2015). For evaluating transmission determinants in the EU, Interspread Plus—a 

proprietary software program that allows for modelling a variety of animal diseases—used 

movement-based algorithms to simulate disease spread between herds but did not account for 
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distance-based transmission routes. It was used to model the transmission of ASF both within and 

between countries. Both pig movements between farms as well as indirect contacts within-country 

were modelled, followed by simulated export movements. A similar stochastic, discrete, spatially-

explicit state-transition model was adapted to the swine network in Vietnam by Lee et al. (2021)—the 

North American Animal Disease Spread Model (NAADSM). Here, farm-type-dependent contact 

probabilities and rates simulated animal trade movements. To ascertain the risk of ASF spread 

secondary to an emergency sell-off of pigs, Costard et al. (2015) developed their own individual-based 

model. Here, ASF transmission was stochastically simulated within a herd and then coupled to data 

on the behavior of farmers to determine the risk of ASF spread outside the affected herd. 

3.5  (Results) Model insights and assumptions 

3.5.1 Model parameters 

ASF transmission parameters, estimated from models with both individuals and herds acting as the 

basic epidemiological unit (depending on the study), were often used to parameterize future models—

though a variety of other parameter data sources were identified as well (Table 3.4). This resulted in 

a range of values being used for ASFV’s infectious period, incubation period (the time between 

infection and clinical signs), and latent period (classically considered as the time between infection 

and infectiousness, though in (Costard et al., 2015) this was defined as infectious without clinical signs) 

across all models. When ASF data was unavailable, certain parameters had to be adapted from other 

disease models. Transmission probabilities for pig movements (Nigsch et al., 2013), indirect contacts 

(Andraud et al., 2019; Halasa, Boklund, et al., 2016; Halasa, Bøtner, et al., 2016a, 2016b; Halasa et al., 

2018; Mur et al., 2018; Nigsch et al., 2013), and local spread (Andraud et al., 2019; Halasa, Boklund, 

et al., 2016; Halasa, Bøtner, et al., 2016a, 2016b; Halasa et al., 2018; Mur et al., 2018) were adapted 

from CSF studies, as was the range for R0 in Costard et al. (2015). When alternative control strategies 

were evaluated, some parameters that determined the probability of success of a control measure 

and the time required for its implementation were adapted from CSF or FMD studies as well (Andraud 

et al., 2019; Halasa, Bøtner, et al., 2016a, 2016b; Halasa et al., 2018).  

Limited field data for wild boar resulted in the evolution of many assumptions as new information was 

discovered. Carcass-based transmission was modelled through direct transmission within and 

between groups first as sex-dependent (Lange & Thulke, 2015), then neither age nor sex-dependent 

(Lange, 2015; Lange & Thulke, 2017), and then as age-dependent (Lange et al., 2018). Infection 

probability per carcass was originally parameterized at 20% according to the best-fit model that  
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Table 3.4 | Parameter assumptions 

(a) Average ASFV infectious period duration 

Reference Host Value Source 

Gulenkin et al., 2011 Pigs 1-5 days FAO, 2009 

Barongo et al., 2015 Pigs 1 month Ferreira et al., 2013 

Guinat, Gubbins, et al., 2016 Pigs Min: 3 - 6 days         
Max: 3 - 14 days 

Gabriel et al., 2011; Blome et al., 
2012, 2013 

Hu et al., 2017 Pigs Gamma(mean (days), shape) mean ~ 
Gamma(10,6.0)     shape ~ Gamma(19.3, 2) 

Ferreira et al., 2013 

Nielsen et al., 2017 Pigs 4.5 ± 0.75 days Guinat et al., 2014 

Guinat et al., 2018 Pigs Gamma(mean (days), shape) mean ~ 
Gamma(9.12, 10) shape ~ Gamma(22.20, 5) 

Guinat, Gubbins, et al., 2016; 
Gulenkin et al., 2011; Hu et al., 2017 

Lange, 2015; Lange and Thulke, 
2015, 2017; Thulke and Lange, 
2017; Lange et al., 2018 

Boar 1 week Blome et al., 2012 

Halasa et al., 2019 Boar PERT(1, 5, 7) days Olesen et al., 2017 

Faverjon et al., 2021 Pig Uniform (3, 5.5) Guinat, Gogin, et al., 2016; Guinat, 
Gubbins, et al., 2016 

Lee et al., 2021 Pig 4-52 weeks assumed 

Loi et al., 2020 Boar 5-7 days Blome et al., 2012; Gabriel et al., 
2011; Guinat, Gubbins, et al., 2016 

O’Neill et al., 2020 Boar Live boar: 5 days Gallardo et al., 2015 

  Carcasses: 8 weeks Carrasco García, 2016; Probst et al., 
2017 

Pepin et al., 2020 Pig, 
Boar 

Poisson(5 days) Blome et al., 2012; Gallardo et al., 
2017 

Taylor et al., 2021 Boar Live boar: PERT(3, 6, 10) days Gabriel et al., 2011; Guinat et al., 
2014 

  Carcasses: PERT(15, 26, 124) days Morley, 1993; Olesen et al., 2018; 
Probst et al., 2017; Chenais et al., 
2019 

Vergne et al., 2021 Pig PERT(3, 7, 14) days Guinat, Gubbins, et al., 2016 

Yang et al., 2021 Boar 5 days Davies et al., 2017 

 

(b) Beta 

Reference Host Value Source 

Barongo et al., 2016 Pigs PERT(0.2, 0.3, 0.5) Ferreira et al., 2013 

Halasa, Boklund, et al., 2016 Pigs 0.30 or 0.60 Guinat, Gubbins, et al., 2016 

Hu et al., 2017 Pigs Gamma(2,2) Gulenkin et al., 2011 

Guinat et al., 2018 Pigs Gamma(2, 2) Guinat, Gubbins, et al., 2016; 
Gulenkin et al., 2011; Hu et al., 2017 

Halasa, Bøtner, et al., 2016a, 
2016b; Halasa et al., 2018 

Pigs Nuclear, production: PERT(0.14, 0.38, 0.8); 
Boar, backyard, quarantine, hobby: 
PERT(0.36, 0.60, 0.93) 

Guinat, Gubbins, et al., 2016 

Mur et al., 2018 Pigs Industrial, closed, semi-free: 1.42, Family: 
1.85 

Gulenkin et al., 2011 

Andraud et al., 2019 Pigs Within herd: PERT(0.6, 1, 1.5) Halasa et al., 2016b 

Faverjon et al., 2021 Pig Within pen: Truncated normal(min, mean, 
max, sd)(0, 0.6, 14.3, 0.4) 
Between pen: Truncated normal(0, 0.3, 
14.3, 0.2)    

Ferreira et al., 2013; Guinat, Gogin, et 
al., 2016; Guinat, Gubbins, et al., 
2016 

 
 

 Between room: Truncated normal(0, 0.01, 
0.1, 0.05) 

Assumed 
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Lee et al., 2021 Pig Direct contact, indirect contact between 
small and medium farms: 0.6                              
Indirect contact to large farms: 0.006 

Guinat, Gubbins, et al., 2016 

Shi et al., 2020 Pig 0.001 - 0.3 Ferreira et al., 2013 

Taylor et al., 2021 Boar Wild boar to pig: Uniform(0, 0.167)                                          
Wild boar to wild boar: PERT(0, 0.167, 0.3)                                  
Dead wild boar to wild boar: Uniform(0, 
0.167) 

Pietschmann et al., 2015 and 
assumed 

Vergne et al., 2021 Pig PERT(0.2, 0.4, 0.6) Guinat, Gubbins, et al., 2016 

 

(c) Average ASFV incubation period duration 

Reference Host Value Source 

Gulenkin et al., 2011 Pigs 15 days WOAH, 2008 

Nigsch et al., 2013 Pigs PERT(3, 5, 13) days FAO, 2009, Depner personal 
communication 

Barongo et al., 2015 Pigs 5-15 days Sanchez-Vizcaino et al., 2015 

Costard et al., 2015 Pigs Weibull(shape, scale)                 2+ (Weibull 
(1.092, 4.197 (median 5, range 2-19) days 

Plowright et al., 1994; Arias and 
Sanchez-Vizcaino, 2002; Penrith et al., 
2004; Sanchez-Vizcaino, 2012 

Mur et al., 2018 Pigs Poisson(8) Ferreira et al., 2013; WOAH, 2014  

Faverjon et al., 2021 Pig Gamma(shape, scale) (13.299, 0.3384482) Ferreira et al., 2012, 2013; Guinat, 
Gogin, et al., 2016; Guinat, Gubbins, 
et al., 2016 

Pepin et al., 2020 Boar Poisson(4) days Blome et al., 2012; Gallardo et al., 
2017 

 

(d) Average ASFV latent period duration 

Reference Host Value Source 
Nigsch et al., 2013 Pigs 1-2 days FAO, 2009 

Costard et al., 2015 Pigs Uniform(1,2) days Arias and Sanchez-Vizcaino, 2002; 
Plowright et al., 1994 

Pietschmann et al., 2015 Both 4 days Assumed 

Guinat, Gubbins, et al., 2016 Pigs 2-5 days Assumed 

Barongo et al., 2016 Pigs PERT(2.86, 4, 8.3) days WOAH, 2008; FAO, 2008, 2009  

Hu et al., 2017 Pigs Gamma(mean (days), shape) mean ~ 
Gamma(4.5, 10)    shape ~ Gamma(10, 2)  

Ferreira et al., 2013 

Nielsen et al., 2017 Pigs 3-5 days Guinat et al., 2014 

Guinat et al., 2018 Pigs Gamma(mean (days), shape) mean ~ 
Gamma(6.25, 10) shape ~ Gamma(19.39, 5) 

Guinat, Gubbins, et al., 2016; 
Gulenkin et al., 2011; Hu et al., 2017 

Mur et al., 2018 Pigs Poisson(2) Ferreira et al., 2013; WOAH, 2014 

Halasa et al., 2019 Boar PERT(1, 5, 9) days Olesen et al., 2017 

Loi et al., 2020 Boar 3.57 days Blome et al., 2012; Gabriel et al., 
2011; Guinat, Gubbins, et al., 2016 

Shi et al., 2020 Pig 2.86 - 8.33 days  Barongo et al., 2016 

Vergne et al., 2021 Pig PERT(3,4,5) days Guinat, Gubbins, et al., 2016 

Yang et al., 2021 Boar 4 days Barongo et al., 2016 
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explained the observed data (Lange & Thulke, 2015). Camera trapping data from Probst et al. (2017) 

and the results of Lange & Thulke (2017) resulted in this parameter being refined to 2–5% in the 

subsequent model by Lange et al. (2018). The assumed live infectious periods in the wild boar models 

were predominantly 5–7 days (Halasa et al., 2019; Lange, 2015; Lange et al., 2018; Lange & Thulke, 

2015, 2017; Loi et al., 2020; O’Neill et al., 2020; Pepin et al., 2020; Taylor et al., 2021; Thulke & Lange, 

2017), however greater variation was seen among the assumed carcass infectious periods. 

In the ASF Wild Boar models, carcass persistence—synonymous with carcass infectivity—was 

originally statically modelled at 8 weeks (Lange & Thulke, 2015). However, after disease spread was 

observed and a model was fit, the spread was best explained using a 6-week carcass persistence time 

(Lange, 2015). Carcass persistence time was further revised to 4 weeks in Lange & Thulke (2017) and 

Thulke & Lange (2017) (and similarly used in Halasa et al. (2019) in line with field research on 

vertebrate scavenging behavior from Ray et al. (2014)). The carcass persistence parameter was then 

further revised to reflect a seasonally-dependent variability in Lange et al. (2018), with persistence 

times ranging from 4 weeks in the summer to 12 weeks in the winter, in accordance with seasonal 

differences observed in field research (Ray et al., 2014). This seasonal variability in carcass persistence 

was also assumed in Pepin et al. (2020). In the later wild boar models, O’Neill et al. (2020) assumed a 

static carcass infectivity time of 8 weeks, and Taylor et al. (2021) used a PERT distribution of 

parameters 2, 4, and 18 weeks (specifically: 15, 26, and 124 days), with the latter model also 

accounting for the probability of carcass removal during the period. 

The first wild boar individual-based models (Lange, 2015; Lange & Thulke, 2015) used a 4 km² 

geographical unit, corresponding to the home range of a wild boar herd, in accordance with ecological 

data from radio-tracking sessions from Spitz & Janeau (1990) and Leaper et al. (1999). At this unit size 

there may be some interactions between neighboring herds, though as boar prefer to stay within their 

home range and interact with their groupmates, long distance movements are consequently mostly 

related to dispersal of juveniles. The geographical raster was later increased to units of 9 km² (Lange 

et al., 2018; Lange & Thulke, 2017; Thulke & Lange, 2017) to avoid perfect overlap between the study 

area and voxel size used in the model (Lange & Thulke, 2017), as necessary for the model objective. 

The wild boar individual-based model by Halasa et al. (2019), replicated from Lange (2015) and Lange 

& Thulke (2017), again used 4 km² units. The more recent boar models increase the geographical unit 

size, with Pepin et al. (2020) using 25 km² grid cells, and Taylor et al. (2021) applying 100 km² cells 

over the Polish landscape. 

Lastly, the timing of viral release varied across the wild boar individual-based models as well. In order 

to allow population dynamics to become established, virus release was originally set for the first week 
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of the 4th year of simulation run and to 10 hosts in Lange & Thulke (2015). This parameter was adjusted 

to the beginning of June of the 5th year of simulation (corresponding to the dispersal period for 

juveniles) and for 25 hosts (Lange, 2015). The next model iterations (Lange & Thulke, 2017; Thulke & 

Lange, 2017) simulated ASFV release at the end of June of the 4th year of simulation and to 10 hosts, 

and the following model (Lange et al., 2018) released the infection at the end of June of the 6th year 

of simulation to 5 hosts. The model described in Halasa et al. (2019) allowed one year for population 

dynamics to emerge (as evidenced by the dramatic increase in groups in the population graph prior to 

stabilization), with virus release occurring at the beginning of the second year and to only one random 

boar. There is no mention of the wild boar population stabilizing before virus introduction. Conversely, 

Pepin et al. (2020) used a 10-year burn-in period for population dynamics to stabilize prior to ASF 

release. 

3.5.2 Transmission determinant assessment 

Halasa, Boklund, et al. (2016) revealed that ASFV’s path of transmission through a domestic pig herd 

is influenced by subclinical animal infectiousness, dead animal residues, and herd size. For spread 

between pig herds, for the enzootic situation in Sardinia where free-roaming unregistered pigs (known 

as brado) complicate eradication efforts, Mur et al. (2018) identified local spread through fomites as 

the primary transmission route. Brado and wild boar were indicated to play central roles in the 

occurrence of ASF cases, reinforcing the importance of herd biosecurity in interrupting transmission. 

On the international scale, it was demonstrated that limited transmission of ASF between EU member 

nations would occur through swine trade networks prior to disease detection, reinforcing the 

importance of surveillance measures (Nigsch et al., 2013). Factors influencing the path of transmission 

of ASFV were also assessed for wild boar in Denmark, where the model showed that the density, size, 

and location and dispersion of a boar population will affect transmission and circulation of ASF (Halasa 

et al., 2019). The importance of carcass-based transmission was quantified in Pepin et al. (2020), 

where it was inferred over half of the transmission events were from infected carcass contact. When 

observed dynamics of ASF in boar in Europe were modelled—specifically to capture the troughs and 

peaks of infection and population densities—differences in temperature and scavenger abundance 

were shown to impact carcass degradation affecting outbreak severity, reinforcing the role of 

carcasses in epizootic maintenance (O’Neill et al., 2020).  

One model explored the role of insect vectors in contributing to disease spread (Vergne et al., 2021), 

demonstrating that only a small percentage of ASFV transmission events would be due to stable flies, 

assuming an average abundance of flies (measured once previously as 3-7 flies per pig). However, as 

vector abundance increased ten- and twenty-fold, the percentage of transmission due to the insects 
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increased dramatically as well. Transmission was also highly sensitive to blood-meal regurgitation 

quantity and ASFV infectious dose, indicating areas of necessary further study. 

3.5.3 Alternative control strategy assessment and prediction of consequences of hypothetical outbreaks 

When control strategies were compared and the consequences of outbreaks assessed, Costard et al. 

(2015) showed that increasing farmers’ awareness of and sensitivity of detection to ASF will not reduce 

the risk of silent release through emergency sales. Barongo et al. (2016) demonstrated that, in a free-

range pig population, rapid biosecurity escalation (within 2 weeks of outbreak onset) would 

significantly decrease the burden of disease. Halasa, Bøtner, et al. (2016b) showed that, for 

industrialized European swine populations, including virological and serological testing of up to five 

dead animals per herd per week within the perimeter of an outbreak, in addition to established 

national and EU measures, provided the most effective control strategy. When the consequence of 

using shorter durations of control zones was assessed, the model predicted such a reduction would 

greatly reduce economic losses without jeopardizing worsening transmission (Halasa et al., 2018). 

Conversely, increasing the size of the area under surveillance would offset the increased incurred cost 

through shortening the epizootic’s duration (Halasa et al., 2018). For arresting ASF spread in Vietnam, 

movement restrictions were used as the control method and it was shown they would have to 

interdict at least half of all pig movements to be effective. This was problematic as many traders were 

identified to specifically avoid quarantine checkpoints and sell pigs through illegal means (Lee et al., 

2021).  

Models that assessed the consequences of hypothetical outbreaks did so for specific industrialized 

(Danish and French) swine populations and two independent populations of wild boar. The 

simulations of ASFV spread in the domestic pig compartment only predicted short and small epizootics 

(mean duration of less than one month) in both Denmark and France, with disease spread primarily 

driven by animal movements and often contained upon implementation of the codified national and 

EU control strategies (Andraud et al., 2019; Halasa, Bøtner, et al., 2016a). As the epizootic could fade 

out in the inciting herd, some (14.4% of epizootics originating in nucleus herds, 12.1% from sow herds) 

were predicted to never be detected. Further, the initial outbreak was predicted to have the highest 

economic cost—more-so than any subsequent outbreaks—due primarily to the ensuing trade 

restrictions that dwarf the direct costs (Halasa, Bøtner, et al., 2016a). In France, due to the pyramidal 

structure of the swine production system, variation was seen dependent upon the index herd’s 

location in the production pyramid (Andraud et al., 2019). Geographic dispersal of ASF cases was 

highly dependent on the density of herds where the outbreak initialized, with cases spreading up to 

800 km from herds in low-density areas. If ASF spread originated from free-range pig herds, as 
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opposed to the top of the production pyramid, it was predicted to potentially affect up to 15 herds. 

Similar to the results of the assessment of transmission determinants by Mur et al. (2018), local 

transmission appeared to be the driving route. Among wild boar models, the consequences of concern 

were the outcome of natural circulation of ASFV in a closed population, where any outbreak was 

determined to be self-limiting (Croft et al., 2020), and the impact of baiting on disease establishment, 

where through modelling changes in R0 it was seen that such practice would relatively increase the 

risk of an ASF epizootic taking hold (Yang et al., 2021).  

Wild boar simulations demonstrated the importance of long-term sustained control efforts (i.e. over 

many generations of wild boar), as the scale of depopulation required for a more rapid solution would 

likely be untenable (Lange, 2015). As the simulation model parameters were refined with updated 

evidence, delayed carcass removal (two or more weeks postmortem) was shown to have no effect on 

curtailing ASF spread; only carcass removal within 1 week (an impractical assumption, given current 

reported carcass removal rates) was shown to have a positive effect (Thulke & Lange, 2017). This 

conclusion was expanded in Lange et al. (2018), where successful carcass removal within a core area 

was shown to reduce the required hunting intensity. A distinction between control methods required 

for scenarios of focal introduction as opposed to spread from adjacent enzootic areas was identified 

as well: in the case of focal introduction, due to the small size of the affected area, it’s possible that a 

high carcass removal rate could achieve control without the need for intensive hunting (Lange et al., 

2018). When surveillance methods were compared, passive surveillance —assuming a 50% carcass 

detection rate—was shown to be more effective than active surveillance at detecting ASF cases in a 

small population, however active surveillance was better when both disease prevalence and 

population density were low (<1.5% prevalence, < 0.1 boar/km²) and the hunting rate was over 60% 

(Gervasi et al., 2019). When transmission from free-range, outdoor pigs was factored into the spread 

of ASF from wild boar dispersion, hunting was shown to reduce the number of new cases but not the 

size of the area at risk, and conversely fencing reduced the size of the region at risk of ASF but not the 

number of cases (Taylor et al., 2021). 

3.6  Discussion 

Mechanistic modelling has been a valuable tool for deriving infection parameters, unraveling routes 

of transmission, assessing alternative control strategies, and determining the consequences of 

hypothetical outbreaks of ASF. However, despite all that has been elucidated, there is still much 

research to be done. Existing ASF models are limited in the contexts of their application, their means 

of evaluating control strategies, and the lack of a bridge between domestic and wild compartments, 

and attention should be given to resolving these shortcomings.  
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ASF simulation models, either in domestic pigs or wild boar, have been applied only to a limited 

number of contexts, despite the epizootic risk faced by all European countries and the insights one 

could get from mechanistic models to anticipate virus emergence. Simulations of ASF outbreaks in 

domestic pigs, for the current epizootic of the circulating Georgia 2007/01 isolate, have been 

published only for two European (Denmark and France) and one Asian (Vietnam) nation. Many 

differences exist between countries in terms of the type of production system, the distribution of farm 

types, and the source-nation of imported pigs, preventing the extrapolation of results from one nation 

to another. Similarly, the presence and distribution of, and control mandates against, wild boar are 

not uniform between areas, precluding extrapolation of model results outside the area of study. 

Though the general utility of different control strategies has been indicated, real-world data on wild 

boar abundance, as difficult as it may be to assess, is needed to facilitate parameterization of these 

models to real-world scenarios. When the wild boar individual-based models were applied to real-

world locations, they were run only at low-population scales: in Denmark where there exists a legal 

mandate for their elimination, in the Baltic nations but only in the area of the international border, a 

forest in England, and part of Poland. Of the five-year period in which wild boar models were 

published, almost half of such publications occurred in the most recent year, 2020. Whereas earlier 

wild boar models were constructed by only one group, the diversity among the 2020 models is a 

promising trend in the direction of ASF ecological modelling. However, as the number of individuals 

being modelled grows the required computing time grows cubically (Keeling & Rohani, 2008), so 

insightful as these individual-based models may be, presently they may be too computationally 

expensive to adapt to larger populations in other scenarios or scales. 

All models that assess control strategies assume the employed strategies will remain constant over 

the period of implementation. Due to the evolving nature of epizootics, this is unlikely to reflect real-

world conditions. Future models may consider including temporal components to the control 

strategies, both through parsing by specific pre-defined time points (e.g. optimal control strategies to 

be used before and after R0 becomes less than 1), as well as via objective functions to identify when 

is the best time to implement certain strategies (especially with regards to types of surveillance). 

Accounting for limitations in the surveillance data used to fit mechanistic models (such as imperfect 

case detection and delays in reporting) is an important consideration in model development. For 

instance, many models rely on pig mortality thresholds for detecting ASF, though ASFV could circulate 

in a herd for almost a month prior to it being detected through such criteria (Guinat et al., 2018). The 

DTU-DADS-ASF simulation factored in a parameter to account for delays during contact tracing, 

though detection delays due to imperfect herd-level surveillance (such as from small changes in 
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mortality) was not simulated. Among wild boar, passive carcass detection and under-reporting was a 

common limitation, as such detection was both seasonally variable and irregular. Taylor et al. (2021) 

accounted for this through including an “under-reporting factor” in their parameters, while Pepin et 

al. (2020) fit parameters for this uncertainty using approximate Bayesian computation, though the 

influence of a lack of negative surveillance data was identified in their analysis. Similarly, when 

parameters were estimated among wild boar in Sardinia, both non-uniform sampling and a lack of 

passive surveillance samples were identified as limitations. Though no adjustments were made to 

address them, the large quantity of data potentially offset the bias, as suggested by the authors. 

Refining this uncertainty through field studies of wild boar could benefit future models and is worthy 

of investigation. 

Resolving structural uncertainty is another on-going gap in ASF modelling that requires improvement. 

This uncertainty is demonstrated in multiple ways, such as through the range of values among 

parameter assumptions and the various routes of transmission (and corresponding scale) that are 

modelled: where specific routes of indirect transmission may be parameterized in one model another 

will group all such routes under a single local transmission parameter. Quantifying the contribution of 

individual indirect routes of transmission to ASF spread is one of many areas for refinement through 

further research. Whereas uncertainty is a quality inherent to all models, studies have shown that this 

can be minimized through ensemble modelling, where the results of multiple models are aggregated 

to generate a common final output. Combinations of models providing the best predictions was 

demonstrated through the results of the RAPIDD Ebola forecasting challenge competition: among a 

variety of individual- and population-based, stochastic and deterministic, mechanistic and semi-

mechanistic models, ensemble predictions routinely performed better than any individual model 

(Viboud et al., 2018). A similar modelling challenge on ASF was launched in 2020, involving several 

modelling teams. Though still a work-in-progress, it is anticipated that this exercise will be able to 

provide similar assessments among ASF models, potentially reinforcing the importance of utilizing 

synthesized results (INRAE, 2020). 

Prior to 2020, there was a noticeable lack of diversity among the existing models. Though the 

proliferation of models last year helped to offset this imbalance, still over one-third (5/14) of the 

domestic pig simulations are derived from the DTU-DADS-ASF (and component precursor by Halasa, 

Boklund, et al. (2016)) model. Similarly, prior to 2020 all but one of the wild boar models were derived 

from Lange and Thulke’s ASF Wild Boar model, and Croft et al. (2020) used epidemiological parameters 

from Lange and Thulke’s model as well. The influx of recent wild boar models by Croft et al. (2020), 

O’Neill et al. (2020), and Pepin et al. (2020) provided contrasting simulations of wild boar and carcass-
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based transmission in different outbreak scenarios, helping to diversify the field. This diversity aids in 

reinforcing the shared conclusions among the different models, such as the importance of combining 

targeted hunts or culls with active carcass removal to achieve outbreak control while avoiding 

eradication of the wild boar population (Lange, 2015; O’Neill et al., 2020). 

Only one simulation model considered transmission between domestic pigs and wild boar despite 

differences in the observed transmission pathways between countries. While the individual-based 

wild boar models not accounting for transmission with domestic pigs may be sufficient for areas with 

ASF dissemination exclusively in the wildlife compartment, areas where spillover—however 

intermittently—likely occurs will require models that address this aspect. The one simulation that did 

consider this inter-compartment transmission relied on contact parameters derived for a free-range 

savannah-like outdoor farm not typically representative of European swine operations (though the 

authors accounted for this by assuming such contact as an upper-limit). While this model by Taylor et 

al. (2021) is a critical step towards a unified ASF model of both domestic pig and wild boar 

transmission, it also indicates the need to better define the parameters informing wild boar and 

domestic pig contact risks and rates through further research. Simulation models of hypothetical 

outbreaks and alternative control strategies that link the domestic and wildlife compartments are 

critical for informing decision-making. Just as this has been done for multiple other animal diseases 

such as Aujeszky's disease and hepatitis E (Charrier et al., 2018), foot-and-mouth disease (M. Ward et 

al., 2015), and bovine tuberculosis (Brooks-Pollock & Wood, 2015), this should be a priority for all 

nations at risk of ASF importation. 

While mathematical models can provide many insights into disease control, they are far from the only 

tool available. Recent ASF outbreaks have been successfully controlled without the use of 

mathematical models, such as in the Czech Republic and Belgium. Multisectoral collaboration 

between epidemiologists, veterinarians, virologists, ecologists, field-work studies, and expert opinion 

plays an integral role in ASF control. From model building to outcome validation and decision analysis, 

experts from these fields should be included to maintain an inclusive multi-faceted approach to ASF 

modelling. 

3.7  Conclusions 

With outbreaks across 18 European and 12 Asian nations (as of publication in June 2021), ASF has 

become established as an urgent threat to the global swine industry (ProMED-mail, 2020; Taylor et 

al., 2021). Mechanistic models have shown much potential for helping to confront this epizootic, 

however, more modelling studies using empirical data derived from real epizootics are needed, 
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especially for generating better estimates of transmission parameters. As these parameters are 

integral to designing calibrated intervention plans (such as identifying optimal protection and 

surveillance zones, or (when available) the fraction of necessary vaccination coverage), and since 

these parameters have been seen to vary between individual ASF outbreaks, extrapolation of 

parameters between independent outbreak scenarios is precarious at best. Deriving parameters from 

Georgia 2007/01 genotype II historical outbreaks beyond the two examinations of the past Russian 

Federation epizootic (Guinat et al., 2018; Gulenkin et al., 2011) is critical for further refining models 

to combat the on-going ASF panzootic. Limitations of surveillance systems in obtaining accurate data 

are an active impediment. Though this is being overcome through more complex modelling and 

inference techniques (e.g. approximate Bayesian computation), existing labour and workforce 

limitations hinder field data collection.  

Prior to this past year, there was a need to diversify modelling approaches through developing 

additional frameworks (as almost half of the studies at the time stemmed from one of either two 

models: DTU-DADS-ASF (Halasa, Bøtner, et al., 2016a) and ASF Wild Boar (Lange & Thulke, 2015), 

however the large influx of modelling teams in 2020 seeking to address ASF unknowns is a promising 

direction for the field that will probably be reinforced due to the ASF modelling challenge. In addition, 

current evidence indicates that spillover events between domestic pigs and wild boar play an 

important role in ASF outbreaks, and this transmission should be a component of models going 

forward. Finally, to date, only codified, hypothetical and a priori defined interventions were compared. 

Therefore, moving from intervention comparison to identifying optimized control strategies is critical. 

Doing so will enable policy-makers to identify the ideal course of action rather than a relatively better 

option among pre-determined routes.From a decision point of view, while we promote models to 

support policy, policy-makers should consider several models together. As ensemble modelling 

studies have not been performed yet, we recommend using existing models as decision guides only 

for the specific scenarios modelled. Due to the uncertainty of even basic parameters, and as evidenced 

in the sensitivity analyses of different models, we do not encourage extrapolating results to non-

modelled scenarios (e.g. across national borders). The current modelling body provides excellent 

insight for addressing ASF transmission at a multitude of scales, and these studies should be 

referenced as such when forming policy decisions on that level by considering all associated models 

(i.e. for addressing ASF in Sardinia considering the results of both Mur et al. (2018) and Loi et al. (2019), 

or when deciding on intra-herd strategy considering the results of Costard et al. (2015), Faverjon et al. 

(2021), Halasa, Boklund, et al. (2016), and Vergne et al. (2021). For ASF modellers, until uncertain 

parameters are further refined, we hope our consolidation of parameter assumptions and results will 

facilitate parameter selection for future models. Addressing all these modelling hurdles is expected to 
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generate more appropriate information, for policy-makers and modellers to contribute to the control 

of ASF both locally and globally. 

  



 72 

Box 3.1 | Chapter 3 key points 

• Almost 75% of ASF mechanistic models are tailored to the currently-panzootic genotype II 

strain.  

• Models almost exclusively focused on either domestic pigs or wild boar independently, with 

only 2 articles (at the time of publication) examining between-host transmission. 

• Better estimates of multiple transmission parameters are needed, as these parameters can 

vary considerably between outbreaks. 

• Spillover events between domestic pigs and wild boar are suspected to play a crucial role in 

some regions, and need to be considered in future models. 

• Only a priori defined interventions have been assessed, and future models would benefit from 

identifying optimised control strategies. 

• The current modelling body provides excellent insight for addressing ASF transmission at a 

multitude of scales, and these studies should be referenced as such when forming policy 

decisions on the level appropriate to the model. 
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4 |  Systematic review of mathematical modelling at the domestic-wildlife interface 

4.1  Introduction 

Within the realm of mathematical modelling of epizootic diseases, developing models at the domestic-

wildlife interface carries its own unique set of challenges. Indeed, entire articles have been written on 

the inherent challenges (Buhnerkempe et al., 2015; Roberts et al., 2021). Simply estimating 

transmission between species is a burdensome task, as there exists difficulty even in defining what 

constitutes an epidemiologically-relevant contact (Buhnerkempe et al., 2015). Laboratory-based 

forced contact is different than that experienced under natural circumstances, and observing natural 

contacts to infer model parameters is a challenging ecological task (Buhnerkempe et al., 2015). 

Further, spillover events are rarely observed but their frequency must be indirectly inferred, so as to 

inform the means of disease transmission in the non-reservoir population (Roberts et al., 2021). 

Transmission drivers have been well studied among human and domestic animal populations, 

however among wildlife species the resolution of such datasets is relatively poor (Huyvaert et al., 

2018; McCallum, 2016). Wildlife characteristics ranging from descriptions of movement patterns and 

contact networks to simply quantifications of host population size are less certain (Cowled & Garner, 

2008; Craft, 2015; Cross et al., 2012; Huyvaert et al., 2018; Russell et al., 2017). The difficulty of 

observing wildlife species further affects the ability to obtain accurate measurements of disease 

frequency due to biases among sampled and non-sampled subsets of wildlife populations (Gilbert et 

al., 2013; Huyvaert et al., 2018). These uncertainties inherently affect the ability to quantify a disease’s 

transmission potential among this population, and are compounded when an attempt is made to 

reduce all these factors to a transmission probability.  

Modelling disease transmission between species, therefore, is a complex equation system involving 

multiple distinct host and pathogen factors that must be captured in each state-transition process. 

Within these mathematical models, both the wild and domestic species must be accurately 

represented and the driver of transmission between species must be explicitly described. This 

literature review aims to examine the means of representation of livestock and wildlife species in 

epidemiological studies at the livestock-wildlife interface, and identify the drivers of transmission used 

in the models. 
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4.2  Materials and Methods 

The literature search was conducted via the PubMed and Web of Science databases on 21 June 2022 

and performed in accordance with PRISMA guidelines (Liberati et al., 2009). Constructed to capture 

all articles of mechanistic modelling that accounted for transmission between major livestock species 

and wildlife, the search—within keywords, title, and abstract—was comprised of the following query: 

(livestock OR cattle OR swine OR pig OR sheep OR goat) AND (wildlife OR "wild boar" OR buffalo OR 

bison OR deer OR elk) AND transmission AND (simulation OR mathematical OR stochastic OR 

estimation OR inference) AND model). The search was restricted to mammalian species as the 

methods and models used for non-mammalian epizootic disease of major concern, notably highly-

pathogenic avian influenza, were thought to be less applicable to informing ASF modelling methods 

between domestic pigs and wild boar. No date limitation was specified, and the English language was 

indirectly specified through search terminology. 

A total of 455 articles were retrieved (PubMed N=263, Web of Sciences N=192) (Fig. 4.1). Following 

removal of duplicates (N=85), 370 articles were considered for preliminary title and abstract screening. 

All original research describing mechanistic models between mammalian wildlife and livestock were 

included.  

Preliminary review resulted in the exclusion of 320 articles. There were articles that only considered 

a single species (N=127), did not include interaction between livestock and mammalian (i.e. non-avian) 

wildlife (N=39), were an exclusively within-host study (i.e. molecular, microbiological, immunological, 

or genomic model) (N=29), were of phylogenetic or phylodynamic models (n=13), focused on purely 

statistical models (i.e. risk factor analysis, quantitative risk analysis) (N=52), were of economic or 

decision-analysis models (N=7), were a review or editorial (N=20), or were non-modelling studies such 

as experiments or field studies (N=41). 

Of the 42 articles that qualified for full-text review, eight articles were excluded following full-text 

assessment for not mechanistically modelling transmission at the livestock-wildlife interface (Barron 

et al., 2015; Byrom et al., 2015; Marion et al., 2008; Mateus-Anzola et al., 2019; Moreno-Torres et al., 

2017; Mur et al., 2018; Santos et al., 2020; Smith, 2006). The one calibration article not identified in 

the initial search was subsequently added, yielding 35 articles for data extraction. Author, date, 

domestic and wildlife species, disease, location, model framework, method of domestic and wildlife 

representation, driver of transmission between species, type of transmission between species (direct 

or indirect), direction of transmission, and model were extracted. 
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Fig. 4.1 | PRISMA flow diagram for article selection 

 

4.3  Results 

4.3.1 Epidemiological characteristics 

Publication dates ranged from 2001 to 2021. Cattle were the predominant domestic species 

represented—either alone (N=18) or in combination with other livestock (goats pigs and sheep, goats 

and sheep, or solely sheep) (N=3)—and bovine tuberculosis (bTB) was the most frequently modelled 

disease (N=11) (Table 4.1). Pigs, sheep, and goats were less frequently represented (Fig. 4.2). Among 

explicitly modelled wildlife, wild boar (N=8), badgers (N=7), and deer (N=4) were most commonly 

represented with one model including both wild boar and deer. Further included wildlife were bharal, 

buffalo, saiga antelopes, cats, stray dogs, impala, zebra, and wildebeest (Table 4.1). 
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Fig. 4.2 | Frequency of represented domestic species in included models 

 

Viral, bacterial, and parasitic diseases were represented among the models. In addition to bTB, foot-

and-mouth disease (FMD) (N=5), African swine fever (ASF) (N=3), trypanosomiasis (N=3), brucellosis 

(N=2), and nematodiasis (N=2) were represented more than once, with babesiosis, classical swine 

fever, echinococcosis, louping ill, toxoplasmosis, and trichostrongylosis each represented a single time 

(Table 4.1). Of the locations explicitly modelled, the United Kingdom (UK) and United States of America 

(USA) were represented the most frequently (N=7 and N=6, respectively) though a total of 15 different 

countries across Africa, Europe, North America, and Oceania were represented among the studies 

(Table 4.1).  

4.3.2 Model frameworks, objectives, and representation of hosts 

Five model frameworks were represented in the included articles: individual-based models (N=15), 

population-based models (N=12), cellular automata models (N=3), ecological models (N=2), network 

models (N=2), and metapopulation models (N=1) (Table 4.2). Among these models, the primary 

objectives were to assess control strategies (N=17), assess transmission dynamics (N=8), or assess 

both (N=2), though estimating parameters (N=4) and evaluating methodologies for proof-of-concepts 

(N=4) were also represented (Fig. 4.3). 
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Table 4.1 | Epidemiological characteristics of the 35 articles included in the review 

Reference Domestic species Wildlife species Disease Location 
Agudelo et al., 2021 Cattle Deer Babesiosis USA 
Birch et al., 2018 Cattle Badgers bTB UK 
Boklund et al., 2008 Pigs Wild boar CSF Denmark 
Bouchez-Zacria et al., 2018 Cattle Badgers bTB France 
Cosgrove et al., 2018 Cattle Deer bTB USA 
Doran et al., 2005 Cattle, sheep Wild boar FMD Australia 
Greenman et al., 2008 Nonspecific livestock Nonspecific wildlife bTB Nonspecific 
Hargrove et al., 2012 Cattle Nonspecific wildlife Trypanosomiasis Uganda 
Kajunguri et al., 2014 Cattle Nonspecific wildlife Trypanosomiasis Nonspecific 
Khanyari et al., 2021 Goats, sheep Bharal Nematodiasis India 
Laffan et al., 2011 Cattle Wild boar FMD USA 
Lintott et al., 2013 Nonspecific livestock Nonspecific wildlife Nonspecific Nonspecific 
Manlove et al., 2019 Nonspecific livestock Nonspecific wildlife Nonspecific Nonspecific 
Marion et al., 2008 Cattle Nonspecific wildlife Nonspecific Nonspecific 
Mateus-Pinilla et al., 2002 Pigs Cats Toxoplasmosis Nonspecific 
Morgan et al., 2007 Sheep Saiga antelopes Trichostrongylosis Kazakhstan 
Nyerere et al., 2020 Nonspecific livestock Nonspecific wildlife Brucellosis Nonspecific 
O'Hare et al., 2014 Cattle Badgers bTB UK 
Odeniran et al., 2020 Cattle, goats, sheep Nonspecific wildlife Trypanosomiasis West Africa 
Phepa et al., 2016 Cattle Buffalo bTB South Africa 
Pietschmann et al., 2015 Pigs Wild boar ASF Nonspecific 
Pineda-Krch et al., 2010 Cattle, goats, pigs, 

sheep 
Wild boar FMD USA 

Porter et al., 2011 Sheep Deer Louping ill UK 
Ramsey et al., 2016 Cattle Deer bTB USA 
Rong et al., 2021 Sheep Stray dogs Echinococcosis China 
Roy et al., 2011 Cattle Nonspecific wildlife Brucellosis Sub-Saharan 

Africa 
Smith, Cheeseman, Clifton-
Hadley, et al., 2001 

Cattle Badgers bTB UK 

Smith, Cheeseman, 
Wilkinson, et al., 2001 

Cattle Badgers bTB UK 

Smith et al., 2016 Cattle Badgers bTB UK 
Taylor et al., 2021 Pigs Wild boar ASF Europe 
Walker et al., 2018 Goats Impala, zebra, 

wildebeest 
Nematodiasis Bostwana 

Ward et al., 2015 Cattle Wild boar FMD Australia 
Ward et al., 2011 Cattle Wild boar, deer FMD USA 
Wilkinson et al., 2004 Cattle Badgers bTB UK 
Yoo et al., 2021 Pigs Wild boar ASF Republic of 

Korea 

 

IBMs, mostly focused on bTB though also used for ASF, babesiosis, CSF, FMD, and trypanosomiasis, 

took a variety of approaches in representing their hosts, with rasters being the most common 

epidemiological unit for both domestic and wildlife species. The raster definition for livestock relied 

on combinations of farm locations, livestock density, and pasture area (Agudelo et al., 2021; Cosgrove 

et al., 2018; Ramsey et al., 2016; Taylor et al., 2021), as well as farm type (Smith et al., 2016) or host 
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presence (Manlove et al., 2019) to provide the raster data. Point locations of herds were also used 

(Boklund et al., 2008; Pineda-Krch et al., 2010; M. Ward et al., 2015; Yoo et al., 2021), as was a patch 

lattice (Marion et al., 2008) or, in the case of the vector-borne disease trypanosomiasis, a single 

parameter representing host abundance. Wildlife rasters used either habitat (Agudelo et al., 2021; 

Boklund et al., 2008; Cosgrove et al., 2018; Ramsey et al., 2016; Taylor et al., 2021), population density 

(Pineda-Krch et al., 2010), territories (Smith et al., 2016), presence (Manlove et al., 2019), or—in the 

case of badgers where exact locations of setts were known—contiguous social groups (Smith, 

Cheeseman, Clifton-Hadley, et al., 2001; Smith, Cheeseman, Wilkinson, et al., 2001; D. Wilkinson et 

al., 2004). When a raster was not used, either historical presence data (Marion et al., 2008), point-

locations of herds (M. Ward et al., 2015) or cases (Yoo et al., 2021), or a single parameter of wildlife 

abundance (Odeniran et al., 2020) was used to represent wildlife. 

 
Fig. 4.3 | Publications by year subset by model objective 

 

Population-based frameworks were used for a variety of diseases, including ASF, brucellosis, bTB, 

echinococcosis, louping ill, toxoplasmosis, trichostrongylosis, and trypanosomiasis. These models 

represented domestic and wildlife species through parameters quantifying host abundance, though 
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population density (Greenman & Hoyle, 2008) was also used in one model. Cellular automata models 

were used to model FMD in Australia and the USA (Doran & Laffan, 2005; Laffan et al., 2011; M. P. 

Ward et al., 2011). A density distribution over a cellular lattice (Doran & Laffan, 2005; Laffan et al., 

2011) or a raster of herds (M. P. Ward et al., 2011) was used to represent domestic species, while 

wildlife species were represented via seasonal habitat or land cover density over a cellular lattice 

(Doran & Laffan, 2005; Laffan et al., 2011) or habitat raster (M. P. Ward et al., 2011). Direct, bi-

directional disease transmission between wildlife and livestock was simulated through transmission 

probability (Doran & Laffan, 2005), with Laffan et al. (2011) and Ward et al. (2011) including contact 

rate as a transmission driver. These models were used to assess transmission dynamics (Doran & 

Laffan, 2005) but also for proof-of-concept to examine the methodology of the approach (Laffan et 

al., 2011; M. P. Ward et al., 2011).  

Two models, examining nematodiasis in Botswana and India with climate as the driving force for 

pasture infectivity, used host density distributions for representing the livestock and wildlife (Khanyari 

et al., 2021; Walker et al., 2018). Whereas Walker and collaborators modelled unidirectional 

transmission from wildlife to livestock, Khanyari et al. included bidirectional disease transmission, 

both for the purposes of assessing control strategies (Khanyari et al., 2021; Walker et al., 2018). These 

ecological models modelled indirect transmission, using climate-driven pasture infectivity as the driver 

of transmission.  

Network models were used to simulated bTB (Bouchez-Zacria et al., 2018) and brucellosis (Roy et al., 

2011) transmission. In the model of bTB, network nodes were used to represent pastures of domestic 

hosts and home ranges of wild hosts, while in the brucellosis model network nodes represented herd 

type (for domestic species) with an additional node to represent the reservoir wildlife species. 

A metapopulation approach was used in one model, where point locations of farms were used to 

represent domestic herds and wildlife was represented via a farm-specific force of infection parameter 

(Birch et al., 2018). 

4.3.3 Drivers of disease transmission 

The models in this review examined transmission in all directions, with unidirectional transmission 

from wildlife to livestock (N=16) or bidirectional transmission between wildlife and livestock (N=16) 

being the most frequent type (Table 4.2). One model examined unidirectional disease transmission 

from livestock to wildlife (Taylor et al., 2021), and two models looked at transmission of disease 

between both wildlife and livestock to humans (Hargrove et al., 2012; Kajunguri et al., 2014). 
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Transmission rate parameters, used in IBMs, PBMs, network models, and the metapopulation model, 

were the most frequent means of simulating disease transmission between domestic and wildlife 

hosts (N=13) for models of ASF, brucellosis, bTB, echinococcosis, louping ill, and trypanosomiasis. 

When used in IBMs, the transmission rate was responsible for dictating infection between wildlife and 

livestock hosts, either directly between hosts or, as in Odeniran et al. (2020), indirectly from wildlife 

to vector and vector to livestock (or vice versa). PBMs captured livestock-wildlife transmission through 

specific transmission rates such as a density-dependent transmission rate (Greenman & Hoyle, 2008), 

environmental transmission rate (Nyerere et al., 2020; Rong et al., 2021), all-encompassing external 

transmission rate (O’Hare et al., 2014), or, when a vector-borne disease was modelled, a life-stage-

specific transmission rate of the tick vector (Porter et al., 2011). In the metapopulation model of Birch 

et al. (2018), the transmission rate was a parameter unique to each farm that drove transmission from 

each farm’s local reservoir. 

Transmission probabilities, either alone (N=8) or in combination with contact rate parameters (N=4), 

were also often used to drive disease transmission in IBMs, cellular automata, PBMs, and network 

models. Direct and indirect transmission between hosts and from wildlife to livestock, as well as in the 

one model focused on livestock to wildlife transmission (Taylor et al., 2021) relied on such 

probabilities. Alternatively, contact rate and pathogen prevalence drove transmission in Manlove et 

al. (2019), host and environment contact rates were used to determine interhost transmission in a 

PBM for bTB (Phepa et al., 2016) and contact probability drove transmission in a network model of 

bTB (Bouchez-Zacria et al., 2018). 

Other drivers of transmission between host species included the sharing of pasture (Agudelo et al., 

2021), the proportion of blood meals from each host specie (Hargrove et al., 2012; Kajunguri et al., 

2014), and climate-driven pasture infectivity (Khanyari et al., 2021; Walker et al., 2018). Additionally, 

one IBM considered the risk of indirect transmission from feces on shared state-space (Marion et al., 

2008), and a PBM inferred inter-species transmission for one host through examining model output 

involving both hosts and then through the exclusion of one host (Morgan et al., 2007). 
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Table 4.2 | Model characteristics of articles 

Reference Model 
framework 

Domestic 
representation 

Wild representation Transmission driver Transmission 
type 

Transmission 
direction 

Objective 

Agudelo et al., 2021 IBM Raster (habitat) Raster (habitat) Shared pasture Indirect Wildlife <> Livestock Assess control strategies 
Birch et al., 2018 Meta-

population 
Point locations (herd) Parameter (farm-

specific FoI) 
Transmission rate Direct Wildlife > Livestock Assess transmission dynamics 

Boklund et al., 2008 IBM Point locations (herd) Raster (habitat) Contact rate, 
transmission probability 

Direct Wildlife <> Livestock Assess transmission dynamics 
and control strategies 

Bouchez-Zacria et 
al., 2018 

Network Network nodes 
(pastures) 

Network nodes 
(home ranges) 

Contact probability Direct Wildlife > Livestock Assess transmission dynamics 

Cosgrove et al., 
2018 

IBM Raster (farm locations, 
pasture area, density) 

Raster (habitat) Transmission rate Direct Wildlife > Livestock Assess transmission dynamics 

Doran et al., 2005 Cellular 
automata 

Cellular lattice (density 
distribution) 

Cellular lattice 
(habitat) 

Transmission probability Direct Wildlife <> Livestock Assess transmission dynamics 

Greenman et al., 
2008 

PBM Parameter (host 
density) 

Parameter (host 
density) 

Transmission rate Direct Wildlife > Livestock Methodology assessment 
(proof of concept) 

Hargrove et al., 
2012 

PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Host blood meal Indirect Livestock+wildlife > 
Human 

Assess control strategies 

Kajunguri et al., 
2014 

PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Host blood meal Indirect Livestock+wildlife > 
Human 

Assess control strategies 

Khanyari et al., 
2021 

Ecological Spatial density 
distribution 

Density distribution Pasture infectivity Indirect Wildlife <> Livestock Assess control strategies 

Laffan et al., 2011 Cellular 
automata 

Cellular lattice (density 
distribution) 

Cellular lattice (land 
cover) 

Contact rate, 
transmission probability 

Direct Wildlife <> Livestock Methodology assessment 
(proof of concept) 

Lintott et al., 2013 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Direct Wildlife <> Livestock Methodology assessment 
(proof of concept) 

Manlove et al., 
2019 

IBM Raster (presence) Raster (presence) Contact rate, pathogen 
prevalence 

Direct Wildlife <> Livestock Assess control strategies 

Marion et al., 2008 IBM Patch lattice Historical presence Shared state-space risk Indirect Wildlife > Livestock Assess transmission dynamics 
Mateus-Pinilla et 
al., 2002 

PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission probability Indirect Wildlife > Livestock Assess control strategies 

Morgan et al., 2007 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Qualitatively inferred Indirect Wildlife <> Livestock Assess transmission dynamics 

Nyerere et al., 2020 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Indirect Wildlife <> Livestock Assess transmission dynamics 

O'Hare et al., 2014 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Indirect Wildlife > Livestock Estimate parameters (R0) 

Odeniran et al., 
2020 

IBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Indirect Wildlife <> Livestock Assess control strategies 
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Phepa et al., 2016 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Contact rate Direct and 
indirect 

Wildlife <> Livestock Estimate parameters (R0) 

Pietschmann et al., 
2015 

PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Direct and 
indirect 

Wildlife <> Livestock Estimate parameters (R0) 

Pineda-Krch et al., 
2010 

IBM Point locations (herd) Raster (density) Contact rate, 
transmission probability 

Direct and 
indirect 

Wildlife > Livestock Assess transmission dynamics 
and control strategies 

Porter et al., 2011 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Indirect Wildlife > Livestock Estimate parameters (R0) 

Ramsey et al., 2016 IBM Raster (farm location, 
density) 

Raster (habitat 
potential) 

Transmission rate Direct Wildlife > Livestock Assess control strategies 

Rong et al., 2021 PBM Parameter (host 
abundance) 

Parameter (host 
abundance) 

Transmission rate Direct and 
indirect 

Wildlife <> Livestock Assess control strategies 

Roy et al., 2011 Network Network nodes (herd 
type) 

Network node 
(static reservoir) 

Transmission rate Direct Wildlife > Livestock Assess control strategies 

Smith, Cheeseman, 
Clifton-Hadley, et 
al., 2001 

IBM Raster (herd) Raster (contiguous 
social groups) 

Transmission probability Direct Wildlife > Livestock Assess control strategies 

Smith, Cheeseman, 
Wilkinson, et al., 
2001 

IBM Raster (herd) Raster (contiguous 
social groups) 

Transmission probability Direct Wildlife > Livestock Assess control strategies 

Smith et al., 2016 IBM Raster (farm type) Raster (home 
ranges) 

Transmission rate Direct Wildlife <> Livestock Assess control strategies 

Taylor et al., 2021 IBM Raster (density) Raster (abundance 
and habitat 
suitability) 

Transmission probability Direct Wildlife > Livestock Assess control strategies 

Walker et al., 2018 Ecological Spatial density 
distribution 

Density distribution Pasture infectivity Indirect Wildlife > Livestock Assess control strategies 

Ward et al., 2015 IBM Point locations (herds) Point locations 
(herds) 

Transmission probability Direct Wildlife <> Livestock Assess control strategies 

Ward et al., 2011 Cellular 
automata 

Raster (herds) Raster (habitat) Contact rate, 
transmission probability 

Direct Wildlife <> Livestock Methodology assessment 
(proof of concept) 

Wilkinson et al., 
2004 

IBM Raster (herds) Raster (contiguous 
social groups) 

Transmission probability Direct Wildlife > Livestock Assess control strategies 

Yoo et al., 2021 IBM Point locations (herds) Case locations Transmission probability Direct Wildlife > Livestock Assess transmission dynamics 
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4.4  Discussion 

Modelling disease transmission between wild and domestic species requires accurate representation 

of both distinct populations—often with drastically differing population dynamics—and drivers of 

transmission. These choices of methodology will be a reflection of both the research question being 

addressed by the model and the availability of data, as for example is the case of evaluating wild boar 

densities in France where even despite having some information, such densities are difficult to assess. 

Domestic species were able to be defined through explicit herd locations, and further delineated by 

additional parameters of herd density, defined pasture area, habitat and abundance. In contrast, 

wildlife species were often modeled through variables of habitat potential, density distribution, or 

population abundance. Only in a few models of badgers were the exact burrow locations known, but 

even then only the underground dens were identified and surrounding home ranges still had to be 

inferred (Smith, Cheeseman, Clifton-Hadley, et al., 2001; Smith, Cheeseman, Wilkinson, et al., 2001; 

D. Wilkinson et al., 2004). Cost-benefit analysis of choosing a paradigm to represent a system is 

important to consider, especially with regards to increasing model complexity and underlying 

assumptions. Though a model should be a realistic representation, deciding on the degree of realism 

required—and keeping in mind that models are only synthetic representations of a phenonmenon—

is part of the art of model selection. The parsimony principle should always be kept in mind, especially 

in situations involving wildlife where parameters are difficult to document or require a high level of 

data for inference. 

Habitability is often used as a proxy to represent wild host populations, as was the case in eight models 

(Agudelo et al., 2021; Boklund et al., 2008; Cosgrove et al., 2018; Doran & Laffan, 2005; Laffan et al., 

2011; Ramsey et al., 2016; Taylor et al., 2021; M. P. Ward et al., 2011). Defining such suitability can 

involve the incorporation of landcover maps, abundance data from hunting records, expert opinion, 

and previously-published species distribution models. In the context of models examined in this 

review, species distribution is a means to the end for representing disease transmission through 

multiple populations, and assessing control strategies against such disease was the primary objective 

among all these models. Owing to limitations of computational capabilities, simplifications of a 

species’ true distribution is necessary. Combined with data limitations among wildlife species, this will 

invariably result in wildlife disease transmission models that contain more uncertainties than those of 

domestic animal species (McCallum, 2016). Though there are innate assumptions that may not be fully 

accurate when using habitat suitability to represent wildlife presence in disease transmission models 

at the livestock-wildlife interface, for the given modelling objectives these assumptions are 

acceptable. While sensitivity analyses within the selected articles focused on model parameters (e.g. 
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transmission detection and contact rates, mortality, and initial infection location) and not the 

representation of the distribution of wildlife, Birch et al. (2018) did assess the sensitivity of their model 

to the number of environmental reservoirs—identifying that that parameter was more constrained 

than that of the environment-to-livestock transmission rate.  

In modelling infectious diseases, the transmission driver is the parameter(s) that links the 

representative agents of the domestic and wildlife hosts. The transmission rate was the primary 

parameter used to drive infection between species—and only in one model was the livestock-wildlife 

transmission rate assumed from available data (Nyerere et al., 2020)—whereas other models used 

contact rate and/or transmission probability to produce infection. Though contact rate is a much more 

observable phenomenon compared to disease transmission rate, using contact rates still required 

estimation or assumption of the probability of transmission given contact. Methods of estimation of 

these parameters differed per study (and is beyond the scope of this review), however the 

commonality exists that quantification of this parameter through either estimation or calibration from 

data is necessary. 

Included studies that focused on control strategy assessments invariably quantified the number of 

infected herds, as explicitly stated in Pineda-Krch et al. (2010), Ramsey et al. (2016), and Smith et al. 

(2001, 2016), but certain methodologies precluded the ability to determine the relative contribution 

of species to overall spread. For instance, when foot-and-mouth disease was investigated among feral 

pigs and livestock, a single-layer cellular automata model was used (Doran & Laffan, 2005). Therefore, 

multiple species had to be mutated into a composite herd that varied based on a species-specific 

infectivity parameter (depending on the type and number of each specie). Though effective at 

discerning the overall epizootic spatio-temporal pattern, such a method did not allow for the 

disentangling of individual species’ contribution. The relative contribution of involved species to 

epizootic propagation was only ascertained in two models (Birch et al., 2018; Yoo et al., 2021). For 

bTB, Birch et al. (2018) determined the range for the rate of infections originating from environmental 

reservoirs, and from there were able to elucidate the rate of infection from other cattle. For ASF, 

vehicle movement data was able to be used in concert with wild boar case data to determine the 

relative contribution to infection risk experienced by a farm for each potential source (Yoo et al., 

2021).  

Having explored the myriad ways in which infectious disease transmission between domestic and 

wildlife species has been mechanistically modelled, we can now apply the results—specifically 

regarding domestic and wild representation, the transmission driver and type, and transmission 

direction—to inform our own development an ASF model at this interface. For domestic pigs, an 
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individual-based approach using either herd point locations or a raster (depending on the availability 

of density data) for herds is an established method for capturing infection spatio-temporal dynamics 

(see Table 4.2). To represent the wild boar component, cellular automata models, as used in Doran & 

Laffan (2005), Laffan et al. (2011), and Ward et al. (2015), have the advantage of being artificial life 

models that account for spatial relationships while avoiding the additional complexity and 

computational requirements of IBMs (that would arise from the need to program individual wild boar 

with individual movement parameters). Raster cells, used in lieu of distinct individuals, can be 

parameterized with vegetation and landcover data as in Doran & Laffan (2005), to further inform 

wildlife habitability. With limited data on contact probabilities between domestic pigs and wild boar 

(as evidenced in the systematic review of ASF models), direct virus transmission from domestic pigs 

to wild boar and from wild boar to domestic pigs can be modelled by estimating transmission rates, 

as done in multiple models here (see Table 4.2).  

 

4.5  Conclusions 

Multi-host pathogens that affect both livestock and wildlife can cause severe harm to individual 

farmers, economies, and the environment (Craft, 2015). Controlling diseases at this interface is a 

critical step towards improving both livestock and wildlife health, and mechanistic models are 

becoming increasingly used to explore the strategies needed to confront these diseases. Developing 

models that include transmission between livestock and wildlife species is an exceptional challenge 

however, with these hurdles already having been investigated in a recent review (Huyvaert et al., 

2018). Only 12 diseases at this interface have benefited from the utility of mathematical modelling, 

despite prior studies of Europe and the United States revealing a far greater number of diseases shared 

between livestock and wildlife (Gortázar et al., 2007; Jori, Hernandez-Jover, et al., 2021; Miller et al., 

2013). Transmission rates between species, including contact rates and transmission probability, are 

key parameters needed for these models, and continued research into both these values and means 

of estimation of these values is needed. As computing capabilities increase, the resolution of the 

models and data used in these models will be able to increase as well, with a potential goal being the 

linking of modern complex ecological models with the depth of dynamics responsible for pathogen 

transmission. Mechanistic mathematical models have provided important insights into the dynamics 

of and control strategies against diseases shared between livestock and wildlife, and will continue to 

serve as an important tool in the fight against infectious disease. 
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Box 4.1 | Chapter 4 key points 

• In mechanistic models, disease transmission is modelled via the transmission rate parameter 

b  which accounts for both the contact rate between hosts and the transmission probability 

of a disease given infectious-susceptible contact. 

• The majority of models were designed to evaluate control strategies while accounting for the 

presence of wildlife reservoirs, however just exploring the dynamics at the interface was also 

a common objective. 

• Bovine tuberculosis and foot-and-mouth disease were the most represented diseases, with 3 

articles examining African swine fever. 

• Population-based models relied on parameters of overall host abundance to represent hosts. 

• In spatially-explicit (i.e. non-population based) models, livestock were able to be represented 

through herd locations or density distributions, whereas wildlife was modelled indirectly 

through rasters of habitat suitability. 

• Transmission was modelled predominantly as an overall transmission rate from livestock to 

wildlife or wildlife to livestock, though some models relied on contact rates, transmission 

probability, or pathogen prevalence. 

• Over 90% of models examined wildlife-to-livestock transmission (either unidirectionally or in-

concert with livestock-to-wildlife transmission). Only one model focused exclusively on 

livestock-to-wildlife transmission. 

• Only two models explicitly determined the relative role of different species in overall epizootic 

propagation. 

• Combining an individual-based model for domestic pig herds along with a cellular automata 

model for wild boar can be an approach to use in the conception of our ASF domestic-wildlife 

transmission model. 
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§ III |  Evaluating control strategies against African swine fever 

transmission at the domestic-wildlife interface 

Having systematically explored the ASF mathematical modelling body without discovering any models 

that fully capture the observed dynamics of transmission between the domestic and wildlife 

compartments for ASF, we undertook the challenge of constructing a model for this task. A two-step 

process, the first action was model construction (Chapter 5), followed by assessing intervention 

strategies (Chapter 6). Data from the on-going ASF epizootic in Romania, where spillover transmission 

between the domestic and wildlife compartments is suspected to be commonplace due to the 

prevalence of low-biosecurity backyard farms, were explored to inform model conception, 

construction and parameterization, and then a combination of manual and algorithmic model fitting 

strategies (i.e. literature review, approximate Bayesian computation, and fine tuning) were used to 

inform parameter values. The model output was evaluated by epizootic size and trajectory, and 

allowed us to determine the relative contribution of the domestic and wild compartments to the 

overall epizootic. 

Part of a larger project to evaluate the interspecific effectiveness of interventions, a main goal of this 

research is to create an adaptable model that can be applied to areas in France that are rich in free-

range swine holdings. Given the recent history of human-mediated ASF introductions into 

neighbouring western European nations of Germany and Belgium, and with ASF-positive wild boar 

detected in northwestern Italy earlier this year, it is likely only a matter of time until ASFV reaches the 

French border or jumps into her interior (WOAH, 2022a). The resilience of the French commercial farm 

network to ASF has already been explored (Andraud et al., 2019), so here we would consider 

transmission among free-range herds while also accounting for expected transmission from and 

among wild boar. Though the model parameters that define the rates and distances of transmission 

will likely differ between the area of model development (Romania) and the end-objective nation of 

its application (France), the underlying dynamics governing contacts and transmission between wild 

and domestic hosts will remain the same. Through accounting for this yet-to-be mechanistically 

modelled transmission, our model will be another step forward towards a more complete picture of 

ASFV transmission dynamics. 
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5 |  Modelling African swine fever transmission at the interface of domestic pigs and 

wild boar in Romania 

5.1  Introduction 

Since the introduction of the current panzootic strain into the European Union (EU) in 2014, cases 

have been identified in 12 EU Member States, with 10 nations still facing epizootics as of the end of 

2021 (EFSA et al., 2021; Van Goethem, 2021). ASF introduction and transmission pathways vary 

between epizootic areas, with some nations (e.g. the Baltic states) experiencing cases predominantly 

or exclusively among wild boar, and others (such as Romania) seeing cases mostly among domestic 

pigs with likely spillover to wild boar (Chenais et al., 2019; DEFRA, 2021). As interrupting disease 

transmission is reliant on control strategies targeting these pathways, understanding the dynamics 

unique to each epizootic provides the best chance of achieving epizootic control (Keeling & Rohani, 

2008).  

As of August 2022, two nations have been successful at eradicating ASF following declared outbreaks 

for the current panzootic: Belgium and the Czech Republic. Unlike other countries, however, both of 

these nations had unique features in addition to the use of progressively-adapted zoning measures 

that facilitated such an achievement. First, both Belgium and the Czech Republic were confronting 

focal introductions—with the first reported case hundreds of kilometers from previously-reported 

extranational cases (as cited in Sauter-Louis et al. (2021))—and all subsequent cases were clustered 

around the index case (Sauter-Louis, Schulz, et al., 2021). In the Czech Republic, the cases were in a 

highly fragmented landscape that aided confinement and depopulation of the local wild boar 

population. In Belgium, the observed cases were in an area with only one pig herd which was stamped 

out, greatly limiting the risk of spillover between domestic and wild hosts. In contrast, Romania—like 

Germany—is suspected to face constant infection pressure along its border, and control strategies 

accounting for such introduction routes are needed. 

Mechanistic models, which allow the quantification of transmission parameters, the prediction of 

epizootic trajectories and the evaluation of the effectiveness of control strategies, are a proven way 

of confronting epizootics. However, as identified in our systematic review of mechanistic models of 

ASF (see chapter 4), current models do not account for spillover events between domestic pigs and 

wild boar, despite these events being suspected to play an important role in the propagation of some 

ASF epizootics (Hayes et al., 2021). It was concluded that, in addition to needing more modelling 

studies using empirical data derived from real epizootics, transmission between domestic pig farms 

and wild boar should be a component of future models (Hayes et al., 2021) 
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Since 2018, Romania has been facing an epizootic of unprecedented scale, affecting both wild boars 

and domestic pigs (DEFRA, 2021), and is considered as one of the EU countries most severely affected 

by ASF. Genotyping has confirmed that the ASFV strain circulating in Romania is of genotype II and 

identical to isolates from EU member states (Lithuania and Poland) and Caucasus nations (Ungur et 

al., 2021). Understanding the transmission dynamics is necessary to design tailored control measures, 

adapted to the specificities of domestic pig rearing in regards of societal and economical aspects. The 

ubiquity of backyard pig farming in villages—with the majority of families having one or more pigs 

kept in low-biosecurity backyard holdings—provides an environment highly amenable to between-

host transmission (Andraud et al., 2021).  

Prior epizootic analysis revealed three large clusters of cases in two temporally distinct waves (Fig. 

5.1) (Andraud et al., 2021). The first large epizootic wave was witnessed throughout the southeast of 

Romania—having initiated in Tulcea County—and persisted despite strong interventions by the 

authorities. Further, when explanatory variables were assessed, they were not consistent between 

waves and clusters suggesting the effect of additional mechanisms. 

 

Fig. 5.1 | Spatiotemporal clusters of ASF in Romania, June 2018 – August 2019. First wave in 

red (10/06/2018 – 14/05/2019), second waves in light green and blue (30/10/2018 – 

28/08/2019, 26/04/2019 – 31/08/2019) (Andraud et al., 2021) 
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To reproduce the spatiotemporal dynamics in Romania, quantifying the duration of the observed 

states, estimating the relative contribution of domestic pig farms and wild boar to epizootic 

propagation, and assessing the impact of different host unit types (i.e. forested and non-forested 

areas for wild boar, villages and industrial sites for domestic pig farms), a multihost spatiotemporal 

mechanistic simulation model was constructed.  

 

5.2  Materials and methods 

5.2.1 Data 

Four datasets were used in the construction and calibration of the model: case records, village spatial 

distribution, industrial swine herd locations, and wild boar distribution using landcover as a proxy. 

Case records, which include the date of occurrence, coordinates, type of host (swine or wild boar) and 

associated farm type (backyard or industrial) were retrieved from WOAH’s Animal Disease Information 

System database for the period from initial case detection (10 June 2018) to the end of the first year 

(31 Dec 2018) (https://wahis.woah.org/) (WOAH, 2022a). Cases were restricted to the southeastern 

region of Romania where the initial epizootic spread was witnessed—the counties of Braila, Calarasi, 

Constanta, Galati, Ialomita, and Tulcea (Fig. 5.2).  

The at-risk population of domestic pigs was distributed across either low-biosecurity (villages) or high-

biosecurity (industrial) epidemiological units. As individual backyard herd locations were not able to 

be explicitly located, and per conclusions from field investigations that recommended counting 

outbreaks in the form of infected and cleared villages, backyard cases were aggregated to the level of 

the village (see the procedure in 5.2.2), where each village acted as a single epidemiological unit (Rose 

& Boisseleau, 2018). Based on the epidemiological data and preventive culling operations in 

surveillance zones, this approximation is unlikely to bias our conclusions. Village spatial data was 

retrieved from the Romanian National Agency for Mapping and Real Estate (ANCPI) 

(https://www.ancpi.ro/), providing a total of 986 villages in the six counties (Romanian ministry of 

development, public works, and administration, 2021). Village locations were then represented by the 

centroid of each village. Industrial sites (n = 55) were also represented by their point coordinates, 

whose locations were retrieved from county-level data available through the county-level directorates 

of the National Sanitary Veterinary and Food Safety Authority (ANSVSA).  
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Fig. 5.2 | Expanded map of southeastern counties in Romania. Expanded counties highlighted 

in tan, where initial epizootic spread was witnessed and our model is focused. 

 

The abundance of wild boar herds was modelled via habitat suitability using a hexagonal raster of 

landscape coverage, as inspired by Vergne et al. (2016). CORINE Land Cover imagery (© European 

Union, Copernicus Land Monitoring Service 2021, European Environment Agency) was rasterized into 

25 km² cells (n=1376), sized in accordance with estimated wild boar home ranges, and the percent of 

forest coverage was calculated per cell (Janoska et al., 2018). Using results from wild boar distribution 

studies by Alexander et al. (2016) and the ENETWILD consortium (2019), a forest coverage threshold 

of 15% was selected to define suitable habitat for the cells, associated with a greater abundance of 

wild boar (Fig. 5.3). 

Per Romanian regulation and in accordance with EU directives, following the detection of an infected 

pig, the affected herd is culled, movement restrictions of people, animals and products are enacted, 

and a 10 km surveillance zone is established around the culled herd which is kept in place for 4 weeks 

(ANSVSA, 2019; C. Mortasivu, personal communication, 2021). If no additional infectious units are  
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Fig. 5.3 | Visualization of forest-coverage habitat-raster generation from CORINE landcover 
data. 

 

detected during this period, the surveillance zone is then removed. While an industrial site will be 

culled in entirety, backyard farms within a village are considered individually and neighboring 

backyard herds to the infected herd are not automatically culled, allowing several backyard farms 

being reported successively over periods of several days or weeks.  

5.2.2 Descriptive preliminary epizootic analysis 

The epizootic was first analyzed spatially and temporally by host (domestic pig or wild boar) and 

domestic pig herd type (village or industrial site). Raw case data was spatially and temporally 
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aggregated to reflect the epidemiological units (village, industrial farm, or habitat cell) and time scale 

(weekly) of the model. Temporally, cases were aggregated to the ISO-standard week. Based on expert 

opinion solicited from local veterinary officials, villages were defined as continuously infectious as long 

as successive outbreaks were declared less than two weeks apart. While the observed control 

strategies result in an internal diversity within the epidemiological unit of the village, this facet was 

addressed through considering the infectious status of a village en-masse from first to last case 

detection per outbreak. Epidemiological units were examined through frequency measurements to 

inform model development. 

 

5.2.3 Model development 

The domestic-wildlife interaction model is a hybrid model that was constructed through layering an 

individual-based model of domestic pig units over a cellular automata model of wild boar cells 

(represented via home ranges), and allowing for infection to occur both within and between layers 

(Fig. 5.4). The infection models consisted of combinations of four states for each epidemiological unit 

to transit through—susceptible (S), infectious undetected (Iu), infectious detected (Id), and recovered 

(R) (Fig. 5.5). 

Two models were tested for each component, leading to four model combinations. Villages and 

industrial sites were considered to either become perpetually recovered or, following a two-week 

refractory period, re-susceptible to infection. Wild boar cells were considered to either be 

continuously infectious until the end of the study period or able to become re-susceptible following 

their infectious period. When combined, this yielded models of SIuIdR-SIuId, SIuIdRS-SIuId, SIuIdR-SIuIdS, 

and SIuIdRS-SIuIdS state combinations. Infectious periods were calculated per county from observed 

data for each of the epidemiological unit classes. Model selection among infection state combinations 

was performed through calculating the mean squared error (MSE) of median weekly incidence and 

cumulative incidence for domestic pig units and for wild boar cells, respectively, for each model 

component.  

To further inform transmission dynamics among wild boar cells, having assumed home range size, cell-

to-cell transmission of both first-order and second-order adjacency was modelled. Long range wild 

boar dispersal beyond the assumed 25 km2 home range can occur secondary to hunting pressure and 

has been observed to be up to a mean of 45 km from the origin (Casas-Díaz et al., 2013; Jori, Massei, 

et al., 2021). Following model selection among the four infection state combinations, one hundred 

simulations were performed with both first and second order adjacency transmission. Differences in  
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Fig. 5.4 | Representation of modelled space. All three epidemiological units are displayed: 

village and industrial site point locations (as navy and red dots), and wild boar habitat cells 

(from a hexagonal raster) delineated by forest coverage percentage. 
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Fig. 5.5 | Flow diagram of infection states for model units of the final selected model (SIuIdR-SIuId). In each schematic representation, the unit 

experiencing the surrounding forces of infection is highlighted in yellow. State-transition formulae for domestic pig units and wild boar cells (above and 

below transition arrows, respectively) refer to the probabilities of transition per time step (in fraction of a week) and not rates.  
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modelled dynamics were determined through comparing posterior probabilities by calculating the 

95% Highest Density Intervals (HDIs). This analysis was conducted through the BEST package in R 

(Kruschke & Meredith, 2021). 

To be able to identify the contribution of the different transmission routes, four transmission rates, 

defined as the rates at which a susceptible agent acquires infection from an infected agent per unit 

time, were considered: from a herd (village or industrial) to another herd, from a cell to another cell, 

from a cell to a herd within the cell, from a herd to the cell that contains it. The transmission rates 

were fed into force of infection equations—the cumulation of individual infectious pressures exerted 

by all infectious individuals onto the susceptible individual—which were influenced from those 

derived by Andronico et al. (2019). 

At time t, the force of infection experienced by a susceptible herd j located in cell p, was given as the 

sum of all forces of infection (𝜆)	exerted by infected herds i and cell p, plus an external force of 

infection to capture all other forces of infection not explicitly represented (including long-distance 

trade among the commercial network and reintroduction pressures from neighboring infected 

countries), modified by the relative susceptibility of the herd (𝜙"), as illustrated in Eq. 1:  

𝜆"(𝑡) = 𝜙" ∗ (∑ 	𝜆#→"(𝑡) + 𝜆%→"(𝑡) +	𝜆&'(→")	#          [1] 

Relative susceptibility (as a proxy for biosecurity level) was dependent on farm type (equal to 1 for 

villages and 𝜙ind (range 0 – 1) for industrial sites) and model time period (equal to 1 for villages prior 

to the holiday slaughter period that occurs in the last weeks of the year, and 𝜙vil for villages during 

these final weeks).  

Between-herd transmission was assumed to be density-dependent, with 	𝜆#→"  of the form: 

𝜆#→"(𝑡) = 1)#(𝑡) ∗ 𝜓# ∗ 𝛽* ∗ 𝑒𝑥𝑝6−𝛿 ∗ 𝑑#,"9          [2] 

where 𝜓#  represents the relative infectivity of herd i dependent on farm type (equal to 1 for villages 

and 𝜓ind (range 0 – 1) for industrial sites, assuming that industrial sites are less infectious than villages) 

and model time period (equal to 1 for villages prior to the last quarter, and 𝜓vil for villages during the 

holiday slaughter period, assuming that infectiousness decreases during December when pigs are 

slaughtered for holiday consumption among families), 𝛽* is the between-herd transmission rate, δ is 

the transmission kernel parameter defining the exponentially-distributed effect of distance on the 

force of infection for between-herd transmission, di,j represents the Euclidian distance between herds 

i and j, and 1)!  is the indicator function equal to 1 if herd i is infectious at time 𝑡 and 0 otherwise. 
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Transmission from infected cell p to susceptible herd j was assumed to be frequency-dependent, and 

took the form given in Eq. 3:  

 𝜆%→"(𝑡) = 1)%(𝑡) ∗ 𝜓% ∗
,"
-#
	            [3] 

where 𝜓% is the relative infectivity of the cell (1 if equal or above the forest coverage threshold,	𝜓cell 

otherwise, assuming that infectivity is decreased if there is inadequate habitat quality for wild boar), 

𝛽. is the cell-to-herd transmission rate, 𝑁"  is the number of herds within the infectious cell, and 1)%	is 

the indicator function equal to 1 if cell p is infectious at time and 0 otherwise.  

All other sources of transmission that were not explicitly modelled were captured through a constant 

external force of infection parameter representing the mean of those forces. This parameter was given 

by Eq. 4: 

 	𝜆&'(→" = 𝛽/             [4] 

And is equal to 𝛽/, the transmission rate from external sources. 

The force of infection experienced by a susceptible cell q, was given as the sum of all forces of infection 

exerted by infected herds located within that cell and by adjacent infected cells, modified by the 

relative susceptibility of the cell (𝜙0, assuming that the susceptibility of a cell decreases if there is 

inadequate forest coverage). Relative susceptibility of a cell was dependent on percent forest 

coverage of the cell (equal to 1 for cells with forest coverage equal or above the threshold of 15% and 

𝜙cell (range 0 – 1) for cells with inadequate forest coverage), and is illustrated in Eq. 5: 

𝜆0(𝑡) = 𝜙06∑ 	𝜆#→0(𝑡) + ∑ 𝜆%→0(𝑡)%# 9          [5] 

where i represents infected herds located within cell q and p represents infected cells adjacent to cell 

q. 

Transmission from an infected herd to a susceptible cell was assumed to be density-dependent, and 

took the form of Eq. 6: 

	𝜆#→0(𝑡) = 1)#(𝑡) ∗ 10,# ∗ 𝜓# ∗ 𝛽1	          [6] 

with indicator function 10,#  to indicate if cell q contains herd i, and 𝛽1 being the herd-to-cell 

transmission rate, and 1)#  being the indicator function defined as in Eq. 2. Lastly, transmission from 

an infected cell p to susceptible cell q was limited to second-order adjacency—meaning an infected 
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cell can infect either its immediate neighbors or the neighbors of its neighbors—was assumed to be 

frequency-dependent, and took the form in Eq. 7: 

𝜆%→0(𝑡) = 1)%(𝑡) ∗ 1%,0 ∗ 𝜓% ∗
,$
-%
	           [7] 

with the indicator function 1%,0 to indicate adjacency, the cell-to-cell transmission rate 𝛽2, and the 

number of adjacent cells 𝑁0. The external force of infection was calculated the same as for herds. 

Models with first-order-only adjacency were also developed and assessed. 

Transitions between states S-Iu-Id-R were stochastically modelled, and based on a tau-leap algorithm 

(Keeling and Rohani, 2011). For the transition between susceptible and infectious states, each 

susceptible unit was potentially infected according to a Poisson distribution with the corresponding 

force of infection as the rate, defined as 𝑝#34 = 1 − 𝑒𝑥𝑝(−𝜆"). Through the assumption that the 

frequency of transitions occurring in a single time-step (set at 1/10th of a week in our model) follows 

a Poisson distribution, any events occurring during a shared time step are independent of one another 

and do not affect the rates of change (Keeling & Rohani, 2008). From there, the probability of no 

infection events occurring was able to be calculated to additionally obtain the probability of remaining 

susceptible, as a herd escaping from infection remains susceptible. Occurrence of and source of 

infection was then identified through stochastic selection among the possible sources while 

accounting for their relative contribution to the force of infection. 

The probability of passive detection of infection (Iu-Id state transition) was considered as an 

exponentially-distributed function of the detection rate σ, with a probability of detection at a given 

time step defined as 𝑝5&( = 1 − 𝑒𝑥𝑝(−𝜎). Among infected domestic pig units (both villages and 

industrial sites), the detection rate was modified by parameter ζ (𝜁 ∈	]0,1[	), which was a 

multiplicative term to account for an increase of the detection rate within a surveillance zone at that 

time step.   

Assuming that all infections among domestic pig units were eventually detected, the probability of 

recovery from infection for villages and industrial sites (𝑝6&7) was governed by the exponentially-

distributed recovery rate gamma, defined as: 𝑝6&7 = 1 − 𝑒𝑥𝑝(−𝛾). 

Simulations were initialized via the infection of two cells in Tulcea County several weeks (to be 

calibrated) prior to the first case detection in the epizootic data; these cells being the two cells which 

contained the first detected wild boar cases in Romania, as reported on 12 June and 16 June 2018. 
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5.2.4 Parameterization 

Of the 18 parameters in the model, seven were able to be fully or partially informed from available 

data in the literature: the weekly transmission rates between hosts 𝛽*−𝛽2, the exponential 

transmission kernel parameter for between-herd transmission δ, and the weekly detection rates of 

infected herds σi and infected cells after the first detection 𝜎%&'(  (Table 5.1). The transmission rate 

ranges were extrapolated from daily transmission probabilities (Lee et al., 2021), contact rates (Shi et 

al., 2020), or both (Taylor et al., 2021). The detection rate was estimated at 1/3 weeks-1 for domestic 

pig herds, based on results by (Guinat et al., 2018). For cells, the detection rate was further partitioned 

into the pre-first detection and post-first detection rates, with the latter set to 1/8 weeks-1 based on 

estimates for a large wild boar population from (Gervasi et al., 2019), and the former according to the 

best fitting model that explained the observed data. The transmission kernel was informed through a 

model of the 1997-1998 classical swine fever epizootic in the Netherlands, where d50—the distance at 

which the kernel is reduced by 50%—was assumed to be 1 km. Given the increased tenacity of ASF 

compared to CSF (Schulz et al., 2017), a stronger transmission kernel was targeted for our model. 

Other ASF models (like Mur et al. (2018)) used a transmission kernel truncated at 2 km, however the 

mean nearest-neighbor distance in our model was 3.23 km (95% confidence interval 3.13–3.34), with 

only 23% of herds less than 2 km from each other. Using the mean nearest neighbor as a d50 target 

yielded a transmission kernel of approximately 0.214, which was further refined to 0.2. 

Two parameters were elucidated from the observed data (the village and industrial site recovery rates 

γvil and γind), where the mean infectious periods that were calculated during preliminary epizootic 

analysis were used to parameterize the temporally-forced spatially-dependent recovery rates for 

villages and industrial sites.  

5.2.5 Model calibration and algorithmic model fitting methodologies 

Parameter values were first informed by the experimental and observational data available in the 

oeuvre of ASF mathematical modelling. Calibration was then able to be performed on a reduced set 

of 13 parameters through iteration of potential parameter values. 

Algorithmic parameter inference was then attempted through approximate Bayesian computation 

(ABC) standard rejection methodology (Toni et al., 2009). Uniform distributions were used as prior 

distributions for the estimated model parameters. Summary statistics for rejection reflected the 

spatial and temporal distribution of detected outbreaks, using quarterly incidence per county for 

villages and industrial sites, and cumulative quarterly incidence per county for wild boar cells, for a  
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Table 5.1 | Parameter values 

Parameter Description Model value Source value Source 
β1 Transmission rate between herds 

(week-1) 
To be estimated  0.007 – 2.1a Shi et al. (2020) vis-à-vis Ferreira et 

al. (2013) 
β2 Transmission rate from cells to 

herds (week-1) 
To be estimated 0 – 0.312a Taylor et al. (2021) vis-à-vis 

Kukielka et al. (2013) and 
Pietschmann et al. (2015) 

β3 Transmission rate from herds to 
cells (week-1) 

To be estimated 0 – 0.312a Taylor et al. (2021) vis-à-vis 
Kukielka et al. (2013) and 
Pietschmann et al. (2015), and then 
fit to model 

β4 Transmission rate between cells 
(week-1) 

To be estimated 0 – 1.32a Taylor et al. (2021) vis-à-vis 
Kukielka et al. (2013) and 
Pietschmann et al. (2015) 

β5 Transmission rate from external 
sources (week-1) 

To be estimated - According to best fit model from 
manual calibration 

δ Exponential transmission kernel 
for between-herd transmission 

0.2 0.69
b
 EFSA Panel on Animal Health and 

Welfare (EFSA AHAW Panel) et al., 
2021 vis a vis Backer et al. (2009)c 

σi Detection rate for infected herds 
(week-1) 

0.33 0.25 – 0.5a Guinat et al. (2018) 

𝝈𝒑𝒑𝒓𝒆  Detection rate for infected cells 
prior to first detection (week-1) 

To be estimated - According to best fit model from 
manual calibration 

𝝈𝒑𝒑𝒐𝒔𝒕  Detection rate for infected cells 
after first detection (week-1) 

0.125 0.125 – 
0.225a 

Gervasi et al. (2019) 

γvil Recovery rate for villages (week-1) Mean: 0.599 - Estimated from observed data 
γind Recovery rate for industrial sites 

(week-1) 
Mean: 0.784 
Range: 0.5-1 

- Estimated from observed data 

a translated into weekly rate  
b estimated from source value given d50 (the distance at which transmission is reduced by 50%) is 1 km 
c value for classical swine fever 

 

total of 72 summary statistics. The sum of the absolute difference between the observed and the 

simulated sets of summary statistics was used for calculating the overall distance between a given 

simulation and the observed epizootic data. One hundred thousand (100,000) simulations were 

conducted, with the top 0.1% of the smallest distance conserved for inference. 

Finally, parameter inference was performed through an ABC sequential Monte Carlo (ABC-SMC) 

variant—adaptive population Monte Carlo (APMC) (Lenormand et al., 2012). Sequential ABC methods 

guide the selection of parameter values (particles) through the comparison of summary statistics that 

describe the observed and simulated data. APMC includes a weighted particle filtering methodology 

combined with an algorithm for auto-determining the rejection tolerance level after each generation 

of particle selection, to aid in convergence to the final parameter distributions. The same 

spatiotemporal summary statistics were used as from the simple rejection methodology for villages 
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and industrial sites, though for wild boar cells quarterly incidence per county was used in lieu of 

cumulative quarterly incidence per county. 

Relying on non-informative priors, particles to comprise the initial parameter sets of the estimated 

model parameters were drawn from uniform distributions. Following a round of 1000 model 

simulations, weights were applied to each particle based on the resulting distance between simulated 

and observed summary statistics. The best-fitting fifty percent of particles were retained, and another 

500 particles were computed. This process repeated itself until the proportion of newly generated 

particles that satisfied the preset final tolerance limit (set at 0.05) was reached. The tolerance level 

specifies the acceptable distance of a particle from the data, and through this algorithm a decreasing 

sequence of tolerance levels are used which directs particle sampling towards a high-likelihood 

parameter space, thus avoiding unnecessary time spent throughout the entire parameter field. At this 

limit, additional simulations would have limited effect on the final posterior distributions.  

Data compilation, model implementation, and analysis were performed in R statistical software, 

version 4.1.3 “One Push-Up” (R Core Team, 2022). 

5.3  Results 

5.3.1 Descriptive epizootic analysis 

A total of 1128 cases were reported over the study period, distributed across the six counties. The vast 

majority of cases were seen among backyard farms in villages (n=1001), along with 17 cases among 

industrial sites and 110 among wild boar. These cases were aggregated epidemiological unit into 393 

outbreaks. Two-hundred and sixty-six (266) villages (representing 27% of villages in the studied area) 

experienced outbreaks as did 15 industrial sites (27% of total number of industrial sites). Two 

industrial sites in Tulcea were classified as having two outbreaks (one and two weeks apart, 

respectively). These outbreaks likely belonged to two other small industrial sites or type-A holdings 

(that is, small scale producers with special trade allowances) that were not captured during the 

retrieval of site coordinates during model construction, but who exist in close proximity to the larger 

operations to whom the cases were algorithmically assigned. This misclassification is not expected to 

bias model outputs. Among wild boar, 109 out of 110 cases were identified on hunting grounds (with 

one case location not stated). Found carcasses comprised 63% (n=69) of wild boar cases, while 29% 

(n=32) were among wild boar killed during hunting (8% of cases did not provide a means of capture). 

Only 5% (n=65) of cells contained wild boar cases, with only 33% (n=36) of wild boar cases discovered 
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in cells with forest coverage above the 15% habitat threshold (Fig. 5.6). Note that these highly forested 

cells represent only 14% (n=197) of the cells of the study region. 

The observed epizootic curve exhibited an initial spike followed by gradual fade-out among infected 

villages, contrasting sharply to the paucity of cases detected among cells (Fig. 5.7). The average 

infectious period—calculated as the time in weeks between the first and last case in an outbreak, with 

an outbreak defined as a group of cases with less than two weeks between each case —varied 

temporally and, for villages, also by county, with a mean overall infectious period of 1.67 weeks. 

Partitioned quarterly, both villages and industrial sites experienced decreases in their infectious 

periods after the first quarter (Fig. 5.8). Villages experienced subsequent quarterly decreases, with 

variation evident between counties. 

5.3.2 Model selection 

Two sets of infection states—with or without re-susceptibility—were considered for each host unit in 

model development. With domestic pig units experiencing either SIuIdR or SIuIdRS states and cells 

experiencing either SIuId or SIuIdS states, the assessed model infection state combinations yielded 

SIuIdR-SIuId, SIuIdR-SIuIdS, SIuIdRS-SIuId, and SIuIdRS-SIuIdS models. Following parameterization of each 

model variant via ABC-SMC, the total MSE of the median weekly incidence for domestic pig units and 

median weekly cumulative incidence for wild boar cells was calculated (Fig. 5.9). The SIuIdR- SIuId and 

SIuIdRS-SIuId models (i.e. those without re-susceptibility among wild boar cells) had the lowest MSE 

(271.1 and 239.1, respectively). The goodness of fit for domestic pig units and wild boar cells were 

then examined independently. The SIuIdR-SIuId model better approximated the observed data among 

domestic pigs, as a worse MSE was seen when reinfections were considered (47.3 for SIuIdR compared 

to 70.84 for SIuIdRS). Reinfection events, having occurred in 40 (15%) of villages, were few and 

augmentation of the domestic pig model through considering reinfection was not supported by the 

data. The SIuIdR-SIuId model was selected as the final model for further analysis.  
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Fig. 5.6 | Spatial visualization of quarterly distribution of observed cases. Cases shown for both villages and 

wild boar cells aggregated to 8-week periods. The distribution of infected villages (filled red dots) and 

infected wild boar cells (hexagons outlined in red) is visualized against the distribution of never-infected 

villages (blue circles) and cells with suitable habitat (forest coverage equal or above 15%, green-filled 

hexagons). 
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Fig. 5.7 | ASF weekly incidence for June 2018 through December 2018. Incidence displayed both en-masse 

and faceted by county. Incidence refers to newly detected cases among domestic pig epidemiological units 

(villages and industrial sites) or wild boar cells. 

 

 
Fig. 5.8 | Quarterly infectious periods by epidemiological unit. Mean infectious periods for villages and 

industrial sites are displayed en-aggregate (left). Mean infectious periods for villages were faceted by 

county (right). 
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Fig. 5.9 | Mean squared error (MSE) for infection-state model variants. Median weekly incidence for 

domestic pig units and cumulative incidence for wild boar cells was used to calculate the MSE for all 

infection-state model variants. Two models were tested for each component, yielding four model 

combinations. Domestic pig units (villages and industrial sites) were modelled through either SIuIdR or 

SIuIdRS states, and wild boar cells were modeled with SIuId or SIuIdS infection states. 

 

The SIuIdR-SIuId model was also evaluated with cell-to-cell transmission of both first-order and second-

order adjacency, to see if such transmission assumptions affected the outcome. Both models 

produced nearly identical results, with differences in the mean weekly incidence of cells and villages 

of 0.164 and 0.594 cases, respectively (Fig. 5.10). With the observed posterior probabilities both 

including 0 within their 95% HDIs, the null hypothesis of a difference between means was rejected, 

indicating there is no significant difference between the effect of first-order and second-order cell-to-

cell transmission adjacency. Thusly, to account for long-range dispersal, second-order adjacency was 

chosen as the preferred transmission method. 
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Fig. 5.10 | Posterior probability comparison for models of first and second order adjacency 

transmission. Here the difference in mean weekly incidence of cells (left) and villages (right) 

between models using first-order adjacency and second-order adjacency transmission 

between cells. As the 95% HDIs (thick black lines) include 0, we cannot conclude that 

differences exist in weekly incidence among either cells or villages between the two models. 

 

5.3.3 Model calibration and epizootic simulation 

In addition to fine-tuning, model calibration was attempted through both ABC simple rejection as well 

as ABC-SMC methodology. As these automated methods have yet to be successful at finding the 

parameters, only the results from the manual fitting will be presented here.  

Calibration focused on a reduced set of 13 parameters, consisting of the weekly transmission rates 

between hosts (including external sources) 𝛽*−𝛽/, the detection rate for infected cells prior to the 

first detection 𝜎%&'(, relative susceptibility ϕ and infectivity ψ of epidemiologic unit subtypes (i.e. cells 

with or without adequate forest coverage, industrial site or village domestic pig units, and villages 

before or during the holiday slaughter period), and the relative increase in the detection rate for 

villages and industrial sites within a surveillance zone ζ (Table 5.2). 
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Additionally, certain parameters were able to be excluded from the final model. When 

parameterization was performed through ABC-SMC methodology, though it was not successful at 

calibrating all parameters, the relative susceptibility and infectivity for industrial sites—𝜙ind and 𝜓ind—

demonstrated minimal convergence, indicating a large plasticity in their possible values. This was not 

surprising given that only 5% of herds (55/1041) were industrial sites. It was concluded, based on the 

current data availability, that these parameters could not be accurately estimated and were thusly 

excluded from the model. 

 

Table 5.2 | Parameter calibration results. Values derived by either fine-tuning of literature-derived values, 
from the best fit model after manual calibration, or from tentative results from ABC-SMC calibration. 

Parameter Description Model value Source 
value 

Source 

β1 Transmission rate between 
herds (week-1) 0.16 0.007 – 2.1a Shi et al. (2020) vis-à-vis Ferreira 

et al. (2013) 
β2 Transmission rate from cells to 

herds (week-1) 0.3 
0 – 0.312a Taylor et al. (2021) vis-à-vis 

Kukielka et al. (2013) and 
Pietschmann et al. (2015) 

β3 Transmission rate from herds 
to cells (week-1) 0.8 

0 – 0.312a Taylor et al. (2021) vis-à-vis 
Kukielka et al. (2013) and 
Pietschmann et al. (2015), and 
then fit to model 

β4 Transmission rate between 
cells (week-1) 0.4 

0 – 1.32a Taylor et al. (2021) vis-à-vis 
Kukielka et al. (2013) and 
Pietschmann et al. (2015) 

β5 Transmission rate from 
external sources (week-1) 0.0001 - According to best fit model from 

manual calibration 

𝝈𝒑𝒑𝒓𝒆  
Detection rate for infected 
cells prior to first detection 
(week-1) 

0.067 - According to best fit model from 
manual calibration 

ϕcell 
Relative susceptibility of cells 
given forest coverage 0.1 - According to best fit model from 

manual calibration 

ϕind 
Relative susceptibility of 
industrial sites 1 - According to tentative ABC-SMC 

calibration 

ϕvil 
Relative susceptibility of 
villages given holiday season 0.05 - According to best fit model from 

manual calibration 

ψcell 
Relative infectivity of cells 
given forest coverage 0.1 - According to best fit model from 

manual calibration 

ψind 
Relative infectivity of industrial 
sites 1 - According to best fit model from 

ABC-SMC calibration 

ψvil 
Relative infectivity of villages 
given holiday season 0.05 - According to best fit model from 

manual calibration 

ζ 
Relative increase in detection 
rate for villages and industrial 
sites within surveillance zone  

0.5 - Assumed 

a translated into weekly rate 
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Following parameterization, the observed epizootic trajectory—both prevalence and incidence—was 

able to be captured spatially and temporally when evaluated over the entire study area (Fig. 5.11). 

When faceted by county, spatial differences became apparent (Fig. 5.11). In some counties the 

simulations did not fully capture the weekly variation in incidence. This was most pronounced among 

villages in Braila and Tulcea counties, and among wild boar in Ialomita County, with observed case 

spikes being (slightly) outside the predicted 90% credible interval ranges. Given the relatively small 

size of the detected epizootic among wild boar, it was not unexpected that the spike in detected cases 

in the observed data in one of six counties (Ialomita) was not captured. As wild boar cells were 

considered persistently infectious in the model, their cumulative incidence was considered a better 

measure. When viewed by cumulative incidence, the incongruence in weekly wild boar incidence was 

lost and the model again succeeded in its epizootic representation, both en-masse and by county. 

5.3.4 Elucidating host contribution to epizootic propagation 

Using the fitted model that captured the observed epizootic trajectory, the contribution of different 

epidemiological units was able to be elucidated. Overall, a median of 441 domestic pig units (416 

villages and 25 industrial sites) were infected per simulation, along with 104 wild boar cells (Fig. 5.12). 

Among domestic pig units, a median of 94% of infections (95% credible interval: 75.6–96.3%) came 

from other pig herds while 5.17% (95% credible interval: 2.88–20.6%) came from wild boar (Fig. 5.13). 

Conversely, among wild boar cells, 57.8% of infections (95% credible interval: 38.5–86.8%) came from 

other wild boar cells while 40.9% (95% credible interval: 9.48–59.6%) came from domestic pig units. 

The external force of infection, representing the mean of all additional forces of infection not 

otherwise captured, accounted for very few infections across all simulations for both domestic pig 

units (0.817%, 95% credible interval 0.0761–3.47%) and wild boar cells (0.964%, 95% credible interval 

0–5.83). Given the sizes of the simulated epizootics, this translates to, at most, 16 infections among 

domestic pig units and six infections among cells. 

In the observed data, almost all detected wild boar cases were either in or immediately adjacent to 

forested cells. Similar patterns were observed when the simulated data was examined spatially, with 

herds experiencing higher proportions of infections when either in or adjacent to cells with sufficient 

forest coverage (Fig. 5.14(a)). Similarly, the infected cells are almost exclusively those with sufficient 

forest coverage, with only a few frequently infected cells in Calarasi County below the habitat 

threshold (Fig. 5.14(b)). The increased density of villages that can be seen in the southwestern and 

northern-most counties certainly also contributes to the increased frequency of infections 

experienced by those herds.  
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Fig. 5.11 | Epidemiologic frequency trajectories of simulated epizootics. Trajectories shown for both 

domestic pig units and wild boar cells overall (top plots) and faceted by county (bottom vertical 

plots). The pale red ribbon indicates the 90% credible interval—that is, a 90% probability the true 

epizootic estimate lies within this region—while the red ribbon indicates the 50% credible interval, 

the dark red line the simulated median, and the dashed navy line the observed data.
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Fig. 5.12 | Epizootic sizes across simulations by host. Median, interquartile range (IQR), maximum and 

minimum values are reported over 100 simulations. Median case counts for domestic pig units were 438 

(IQR: 272; 571) and for cells 104 (IQR: 65; 140). 

  

 
Fig. 5.13 | Relative contribution of domestic pig units and wild boar cells to epizootic propagation. Results 

shown for each host in the manually calibrated SIuIdR-SIuId model over 100 simulations. For each recipient 

(as indicated on the x-axis), the y-axis indicates the relative frequency for the given source of infection, 

with the width of the violin plot demonstrating the frequency of the value. The black dot inside the violin 

plots indicates median value with the bar indicating the 95% credible interval. For domestic pig units, a 

median of 94% (95% CI 75.6–96.3) of infections can from other domestic pig herds, while 5.17% (95% CI 

2.88–20.6%) came from wild boar cells. Among wild boar cells, 40.9% (95% CI 9.48–59.6%) of infections 

came from pig units, while 57.8% (95% CI 38.5–86.8%) came from other cells. 
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Fig. 5.14 | Spatial visualization of proportion of infections per unit. Proportions given for results across 100 

simulations in the SIuIdR-SIuId model for (a) domestic pig units and (b) wild boar cells. Green patches (a) and 

green hexagon outlines (b) represent sufficiently forested areas. Herds and cells are shaded on a red scale 

based on the proportion of infections experienced by the unit across the simulations. 

 

5.4  Discussion 

A mechanistic model of ASFV transmission that simulates transmission both within and between 

domestic pig and wild boar hosts was constructed and parameterized using data from an on-going 

epizootic. Our analysis focused on the initial 30 weeks of the epizootic, a period where the initialization 

and subsequent augmentation of control strategies led to non-uniform application of control 

measures both temporally over the study period and spatially between counties. These differences 

were accounted for in the modeled transmission dynamics, and to do so our model included both 

spatial-dependence (by county) and seasonal-forcing (by quarterly period) of infectious period 

parameters in an attempt to reflect the varied and changing control pressures. The final result was a 

model where the general trends observed in the epizootic period were able to be captured through 

stochastic simulation. 



 113 

Our model was created through combining an individual-based model of domestic pig units and a 

cellular automata model for wild boar habitat. Independently, similar models had been successfully 

used to investigate single-host epizootic dynamics for ASF among domestic pig units in Sardinia, 

Denmark, and France (Andraud et al., 2019; Halasa, Bøtner, et al., 2016a, 2016b; Mur et al., 2018), as 

well as at the domestic-wildlife interface for bTB among cattle and badgers in the UK (Birch et al., 

2018), and cellular automata models succeeded in representing wild species to investigate host 

dynamics between cattle and wildlife for FMD (Doran & Laffan, 2005; Laffan et al., 2011; M. P. Ward 

et al., 2011). Through overlaying these two model types and considering separate transmission rate 

parameters to govern ASFV transmission between model layers, a multihost model was able to be 

constructed. 

In our cellular automata model, habitat suitability was used a proxy variable for wild boar presence. 

Habitat suitability models, where the suitability of a location is based on observed environmental 

relationships, are already extensively used in the field of ecology (Guisan et al., 2017; Rowden et al., 

2017). They are, however, not without a few key assumptions: that the species-environment 

relationship is already at equilibrium, and the data of the environmental variable being used is at an 

appropriate resolution to capture the species’ niche (Guisan et al., 2017). In the ecological context, 

these models are used for environmental protection, resource management, conservation planning, 

and invasive species management, where the species ecology is a fundamental focus of the research 

(Naqibzadeh et al., 2021; Song et al., 2013). In contrast to current epidemiological models—that 

mostly focus on but a single habitat layer like forest or agricultural coverage—ecological models tend 

to use advanced methods to merge multiple layers as friction models. Additionally, temporal changes 

in individual landscape variables, as is the case with seasonal land-use in agriculture or forestry 

exploitation on forest distributions, are important considerations in species representation. As was 

the case with ASF, recent research revealed that artificial landscape fragmentation was efficient at 

slowing the spread of ASF among wild boar (Salazar et al., 2022). Future ASF models at the domestic-

wildlife interface may want to consider these more advanced ecological models for accurately 

representing wildlife hosts—especially across seasons and at larger time scales than our model—

however the additional costs in complexity and computing time would have to be accounted for. 

5.4.1 Model selection 

In our final model we assumed that both villages and industrial sites were able to become fully 

recovered and not experience reinfection. Though reinfections (defined as outbreaks more than 2 

weeks apart within the same village) were documented in 15% of villages, both models that 
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considered this additional route of transmission (SIuIdRS-SIuId and SIuIdRS-SIuIdS) did not fit the observed 

data well. 

As our model did not include internal infection dynamics within each village, many of the nuances that 

would contribute to reinfection—including the neighbors of ASF-infected farms slaughtering and 

storing their pigs prior to investigation to avoid culling of their herds (as reported by local 

investigators), as well as the continued practice of swill feeding (Boklund et al., 2020)—were likely 

unable to be captured through a single village-wide parameter to account for this force of infection. 

Conversely, the limited duration of the study period also is likely to have precluded full capture of 

suspected reinfection events. Though the absence of a reinfection mechanism is not representative 

of the observed data, the overall significance of this assumption was considered low given the low 

percentage of villages affected by this class of transmission. 

In contrast, wild boar cells were assumed to remain perpetually infectious once infected. Recent 

research has shown environmental eradication to be highly improbable unless more than 50% of all 

infectious carcasses are discovered (Gervasi & Gubertì, 2022). As wild boar surveillance was imperfect 

during this initial epizootic period, it is unlikely that more than half of all infectious carcasses were 

discovered. This is commensurate with the results of model selection, where the lowest MSE values 

were among the models that considered perpetual environmental contamination.  

5.4.2 Parameter estimation 

Model parameterization was based on literature, when values were available, or through calibration 

from observed epizootic data. Transmission rates were disentangled depending on the source and 

recipient hosts. This allowed us to quantify explicitly the relative contribution of each epidemiological 

unit. The weekly transmission rates differed for each type of transmission, with herd-to-herd 

transmission having the lowest transmission rate (β1 = 0.16 week-1), followed by herd-to-cell 

transmission (β2 = 0.3 week-1) and cell-to-cell transmission (β4 = 0.4 week-1), and lastly cell-to-herd 

transmission with the highest rate (β4 = 0.8 week-1). The variation in these parameters indicates the 

differences in influence on epizootic propagation of each type of transmission, with similar rates of 

transmission to susceptible wild boar cells from both domestic pig units and other wild boar cells. 

However, as the observed number of wild boar cases to which the model was fitted is very likely an 

underestimation of the true case count (with the true wild boar case count likely being even greater 

than that of domestic pigs), the estimated transmission rates fitted to imperfect surveillance data may 

be biased. Examining additional time periods of the Romanian epizootic, after the initial phase in 2018 
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and when consistent surveillance efforts were established, could help to further clarify estimated 

transmission rates. 

The fitted values for two parameters—the weekly transmission rate from herds to cells, and the 

transmission kernel—were tuned through manual iteration using the values published in the literature 

as a starting reference. Given the difference of scale between the model of Taylor et al. (2021) and 

our own model (the former using grid cells of 100 km2 compared to our 25 km2), it is not unexpected 

that our rate for a smaller area would differ, in this case being lower than their estimated rate. 

Additionally, the transmission rates between herds and cells, from Taylor et al. (2021), were based on 

a study of contact of wild boar with free-roaming farms in Spain, which may not be representative of 

the contact rate between Romanian backyard herds and wild boar in Romania (Kukielka et al., 2013). 

Our choice of transmission kernel purposely excludes long distance transmission, here defined as 

transmission over 20 km. While other ASF mechanistic models used transmission kernels that assumed 

maximum local transmission distances of 2 km (Andraud et al., 2019; Halasa, Bøtner, et al., 2016a, 

2016b; Ivorra et al., 2014; Mur et al., 2018), these models accounted for non-local transmission 

through network movements—and in the cases of Andraud et al. (2019), and Halasa, Bøtner, et al. 

(2016a, 2016b) were also tailored to industrialized populations. Without considering industrial 

networks, and to capture non-reported pig movements between villages which principally occur at a 

small scale, our maximum distance and associated kernel were adjusted accordingly. While our 

assumptions may be realistic regarding local spread between villages, this is unlikely the case among 

industrial sites where transport distances of pigs can be many times greater. However, industrial sites 

are limited in number in our area of geographic interest and are principally large integrative herds that 

may play only a minor role in transmission to backyard herds, infection transmission among the transit 

network is not being modelled, and the external force of infection exists to capture these long-

distance jumps in transmission that are otherwise extremely difficult to model mechanistically in the 

absence of movement records. 

As the final parameters for the model were tuned manually, they were dependent on the assumptions 

for other parameters that were not able to be deduced from the literature or observed data. The 

effects of these parameters, modifying relative infectivity and susceptibility for the influence of forest 

coverage on wild boar habitat and for the holiday slaughter season on villages, were influential on 

both model fit and relative host transmission. The final values for the influence of forest coverage on 

transmission were 10%, indicating habitat-poor cells would have to be 90% less susceptible and 

infective than cells with adequate forest coverage to explain the observed dynamics from the chosen 

parameters. Additionally, the final values for the relative infectivity and susceptibility during the 
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holiday slaughter season—to account for decreases in the overall domestic pig population from the 

mass cull along with changes in trade and sales—were estimated at 5%. A 95% decrease in infectivity 

and susceptibility is a massive dynamic change, however it was also the level of change in transmission 

needed to facilitate extinguishing the epizootic in the simulations. Local customs play heavily into the 

ASF scenario being modelled, and the winter holiday slaughtering of pigs likely acted as a strong 

external influence on ASF infection and propagation at the village level (C. Mortasivu, personal 

communication, 2021). Indeed, half of the total annual slaughter of pigs in the country occurs in the 

month of December (Bergevoet et al., 2020). Research into the social dynamics around pig farming 

during this time period would help to further clarify the accuracy of this fitted value. Further, our 

model was focused leading up to this time period but not proceeding beyond as the transmission 

dynamics will have inevitably changed following such a mass culling. As the subsequent epizootic wave 

in 2019 was initiated at a similar period, it’s possible that this temporal consistency is associated with 

this annual social dynamic, though further investigation is required to confirm this hypothesis. 

The inability of the algorithmic parameter estimation methods (rejection ABC and ABC-SMC) to find 

the model parameters is likely a result of the high-dimensionality of the parameter set. Though 

multiple levels of rejection tolerance were explored along with variations in the resolution of the 

summary statistics (including at one point trying 810 summary statistics to capture weekly incidence 

per county per epidemiological unit), the observed epizootic trajectory was not able to be replicated 

via these methods. This was not unexpected given the complexity of our model, and additional 

methods of algorithmic model fitting will continue to be explored. Obtaining model parameters 

through an algorithmic method, which can then be compared to our present parameters, will be 

beneficial for further informing the robustness of our representation of the explored Romanian ASF 

epizootic as well as contribute to the greater parameterization of ASF dynamics. 

5.4.3 Relative host contribution 

Figure 5.13 demonstrates the median frequency and 95% credible intervals of transmission sources 

for domestic pig units and wild boar cells. The majority of domestic pig herd infections came from 

other nearby herds, but a median of 5% (95% credible interval 2.88–20.6) of domestic pig herd 

infections were shown to be due to wild boar. Among wild boar, between compartment transmission 

was much more pronounced. Though again the majority of infections came from transmission from 

nearby cells as would be expected, roughly 40% of infections came from domestic pig units. Such 
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transmission is accordant with previous understandings of ASF epidemioecology1 that transmission 

from infected domestic pig units is essential for maintaining circulation within the wild boar 

population (Jori & Bastos, 2009). Granted, the dynamics seen with the current genotype II epizootic 

reveal the ability of the virus to persist environmentally without repeated re-introduction events (FAO, 

2019), previous observations (in Sardinia and Spain with genotype I) indicated that ASFV dissipates 

from wild boar hosts without continual reinfection from domestic pigs (Laddomada et al., 1994). 

Frequent transmission from the domestic compartment would then be expected to maintain such wild 

circulation, as is seen in our model. Further, these relative numbers could reflect the limited capacity 

of habitat-poor cells to host infection, as roughly half (53%, n = 708) of the 1347 cells contained 

domestic pig units, and of those only 104 also had adequate forest coverage.  

Low-density enzooticity and ASFV propagation has been observed and attributed to combinations of 

ASFV environmental stability, carcass-mediated transmission, and wild boar behavior, though viral 

shedding from persistently-infectious survivors has also been proposed (Gervasi & Guberti, 2021). 

When ASF enters the local wild boar population, a large and rapid decrease in population 

(approximately 85% of all individuals) is first observed (Morelle et al., 2020). Following this population 

crash ASF can become enzootic with a low prevalence—as currently is seen in northern Europe—and 

continue to be transmitted through direct and carcass-based transmission (Gervasi & Gubertì, 2022). 

A similar population crash could be expected with the introduction of ASFV into the wild boar-dense 

regions of Romania, which would then require frequent transmission from domestic pig herds to result 

in the observed dissemination of cases in our area of study. Underreporting among wild boar cases is 

a known limitation of the surveillance efforts during the six-month period of our investigation, 

however, and further informed surveillance will allow a greater understanding of wild boar case 

distribution and spatial correlations. 

Spatial distribution of wild boar cases was congruent between the observed data and simulations, 

with wild boar cells experiencing higher proportions of infections when either in or adjacent to cells 

with sufficient forest coverage. However, disparities between which villages were infected in the 

simulations compared to those infected in the observed data were observed, especially towards the 

northern and southwestern periphery of our study area. The use of a uniform transmission kernel 

across the region despite differences in village density between counties is suspected to play a role, 

as the villages infected in these areas appear to be much more tightly clustered than in other regions. 

 
1 A term coined by the United States Geological Survey in 2002 to describe the identification of the 
environmental factors that affect the disease status of living organisms (Bizouarn, 2016; Susser & Susser, 1996; 
United States Geological Survey (USGS), 2002)). 



 118 

This discrepancy will need to be explored in future iterations of this work. Further, future models 

should consider including an additional habitat type of forested-adjacent cells, and then investigate 

the forest coverage that optimally captures detected cases (minimising false positives and maximising 

true negatives). 

Putting our results in perspective, another recent model out of the Republic of Korea that examined 

their 2019 outbreak had shown that six of the 14 farms infected with ASF had roughly a 60% risk of 

the main source of infection being wild boar (yielding a frequency of infection for between-host 

transmission of 0.26) (Yoo et al., 2021). Though our estimated between-host transmission is less than 

theirs, the low relative susceptibility and infectivity of unsuitable habitat cells from our assumed 

model parameters strongly biases the ability of these units to infect and become infected. Accordingly, 

this limits the interpretation of the modelled relative contribution of domestic pigs and wild boar to 

epizootic propagation for each host, and the contributions of wild boar to epizootic propagation 

should be viewed as a minimum value in each compartment (as any increase in habitat suitability will 

only further increase the observed transmission). 

A limitation of this study is the inability to—so far—parameterize our model algorithmically. Though 

multiple ABC methods were attempted, the high dimensionality of the parameter set precluded the 

elucidation of the internal model parameters. Continued exploration of available fitting strategies will 

provide further insight into pathways to overcome the current methodological hurdle.  

Though our model has its limitations, these are not gaps in the greater ASF modelling field. Our model 

does not account for individual wild boar dynamics, but modelling these dynamics is computationally 

expensive, and we want our model to be able to be used for policy support in real time. Further, these 

dynamics have already been thoroughly investigated (Lange et al., 2018; Lange & Thulke, 2015, 2017; 

Salazar et al., 2022; Thulke & Lange, 2017). Neither does our model mechanistically model long-

distance transmission among wild boar. Though we assumed second-order neighbour transmission, it 

has been shown that ASF transmission among wild boar to adjacent habitats rapidly decreases with 

distance (Han et al., 2022). Further investigation into wild boar ecology in the study region will help to 

reduce the assumptions in home range size and transmission distance. Lastly, our model does not 

consider transmission along commercial transit network. This type of transmission was already 

assessed for nations with highly-industrialized swine operations—revealing that such network 

transmission would be limited with any incursion rapidly controlled—though obtaining such network 

data for Romania would prove extremely informative (Andraud et al., 2021; Halasa, Bøtner, et al., 

2016a, 2016b; Halasa et al., 2018). 
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5.5  Conclusions 

Here we developed a mechanistic model of ASF that is able to disentangle sources of transmission, 

allows for the assessment of observed epizootic dynamics, and will be able to be used to explore 

alternative control strategies (i.e. modifying culling rates or improving case detection). Further, our 

model can be adapted to other areas based on different geographies and/or policies, and runs quickly 

enabling its use in real time (a single simulation on a commercially-available computer takes (on 

average) less than 12 seconds).  

Parameter calibration resulted in a model that captured the majority of the observed epizootic 

dynamics, and through fitting the model to data of an on-going epizootic, we were able to estimate 

the relative contribution of different transmission routes to observed epizootic spread. With a 

mechanistic model now parameterized to the epizootic under study, alternative control strategies are 

now able to be explored to ascertain the relative outcomes they may have on the epizootic dynamics 

in comparison to the strategy enacted.  
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Box 5.1 | Chapter 5 key points 

• A mechanistic model of ASF transmission that includes the domestic-wildlife interface was 

constructed through combining a metapopulation model of domestic pig herds with a cellular 

automata model of wild boar groups. 

• Domestic pig herds were represented as either low-biosecurity backyard herds or high-

biosecurity industrial sites. Backyard herds were aggregated to the village scale, allowing us 

to consider the infection status of the village en-masse for modelling ASFV transmission. 

• Wild boar units were represented via hexagonal raster cells sized to their estimated home 

range, with abundance potential a function of forest coverage per cell.  

• Final model parameterization was achieved through a combination of literature review, 

observed epidemic analysis, and manual iteration. 

• The high-dimensionality of the model has—so far—precluded algorithmic Bayesian methods 

from ascertaining the fitted parameter sets. 

• Among domestic pig herds, 95% of cases came from other domestic pig herds with only 5% 

coming from wild boar. However, among wild boar, 40% of the cases were revealed to 

originate from contact with domestic pig herds. 

• With this model, we are now able to explore the effects of alternative control strategies. 
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6 |  Assessing alternative management strategies against African swine fever in a multi-

host system 

6.1  Introduction 

The current ASF panzootic is an unprecedented international issue in animal health, and controlling it 

is recognized as a high priority for the EU (European Commission, 2020). The measures encoded in EU 

legislation are in accord with WOAH international standards and are to be applied anywhere ASF is 

suspected or confirmed (Gavinelli et al., 2020). For domestic pigs, such measures consist of stamping 

out affected farms, establishing protection and surveillance zones around affected premises to enable 

targeted disinfection, movement restrictions, and active surveillance measures, and animal and 

animal product contact tracing (Council of the European Union, 2002). For wild boar, the European 

Commission on wildlife management recommends also establishing core infected and surrounding 

surveillance zones in which active carcass search and removal, installation of fences, and intensive 

wild boar depopulation are considered (FAO, 2019). 

Romania, currently classified alongside Sardinia with the highest levels of regulation, faces the most 

severe trade restrictions and control measures (Animal Health Advisory Committee (AHAC), 2021; 

European Commission, 2022). However, disparities in the understanding of ASF management 

recommendations among villagers and small-scale farmers greatly complicates the ideal enforcement 

of recommended measures (C. Mortasivu, personal communication, 2021). Indeed, rare reports of 

farmers not receiving compensation for their losses exacerbates distrust (Rose & Boisseleau, 2018). 

These behaviors hinder the effectiveness of trade restrictions and stamping out procedures (Chenais 

et al., 2019)—resulting in culling of only an affected farm rather than all neighboring farms, for 

instance—and the result is the observed trajectory of the epizootic as illustrated in the previous 

chapter. 

As seen in section 2 (chapters 3 and 4), assessing control strategies was the predominant objective of 

models at the domestic-wildlife interface and of models of ASF. Similarly, after parameterizing our 

model to the on-going epizootic in Romania and successfully capturing the overall spatial and temporal 

dynamics of the observed outbreaks, alternative control scenarios can now be explored. The objective 

of this chapter is to evaluate the hypothetical joint effects in domestic and wildlife compartments of 

what could have happened with alternative management strategies than those enacted at the onset 

of the epizootic. 
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6.2  Materials and Methods 

6.2.1 Mechanistic model of ASF transmission in Romania 

We used the model that was presented in the previous chapter to further explore alternative control 

strategies. The details of our spatiotemporal stochastic simulation model, using villages to represent 

aggregated backyard pig farms, directly representing industrial sites, and using habitat-suitability 

raster cells to represent wild boar locations, are fully described in the previous chapter (Chapter 5). 

Parameters were informed through a combination of literature review, observed data, and fine tuning 

to fit the model to the observed spatiotemporal epizootic trends. Observed control strategies—

consisting of passive surveillance of domestic pig herds, active surveillance of domestic pig herds 

through the establishment of 10 km surveillance zones around detected cases, culling of infected 

herds within a village but not of the entire village, and active surveillance of wild boar—were included 

in the parameterization. Having parameterized the model to this initial period of the Romanian 

epizootic, alternative scenarios could now be simulated through both assessing the sensitivity of the 

model to the perturbation of specific parameters, as well as by simulating novel control strategies. 

6.2.2 Uncertainty analysis 

An uncertainty analysis was performed on two key assumed parameters delta (d) and zeta (ζ): 

respectively, the transmission kernel and the relative increase in the case detection rate among 

domestic pig units that occurs in surveillance zones. Our baseline transmission kernel parameter of d 

= 0.2 results in a d50 (the distance at which the transmission kernel is reduced by 50%) of 3.47 km, with 

a transmission rate of less than a 5% of its baseline value after 15 km and a minimum transmission 

rate of 1.8% at the truncated maximum distance of 20 km. Four additional kernels (d = 0.16, 0.18, 0.22, 

0.24) around our baseline kernel were evaluated. The effect of the surveillance zone—that is, the 

relative increase in detection rate of ASF cases for units in the surveillance zone compared to those 

outside the zone as given by our parameter zeta—was initially set at 50% and represents the 

effectiveness of the field activities on case detection. To evaluate the effect of this parameter, 

simulations were also conducted with surveillance zones having no effect, as well as increasing the 

relative detection rate by 25%, 50% (baseline), and 75%. Average parameter effects on total epizootic 

size and relative contribution of hosts to epizootic propagation were evaluated for each perturbed 

parameter. 
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6.2.3 Control strategy assessment 

Alternative control strategies were chosen to consider improvements in either case detection or case 

prevention, being evaluated through the end effects on total epizootic size and relative host 

contribution (Table 6.1). First, we evaluated alternative surveillance zone sizes of 5, 15, and 20 km in 

addition to the baseline 10 km zone. Next, we examined improving passive surveillance among 

domestic pig units through reducing the average duration of the undetected infectious period from 

three weeks to either two and a half or two weeks. Alternative culling strategies were selected to 

evaluate village-wide culling upon case detection (through forcing an average duration of the 

infectious period of one week across all herds), as well as pre-emptive village-wide culling upon 

detection of wild boar cases in a shared cell. Lastly, given the importance of carcass persistence and 

environmental contamination on contributing to epizootic propagation among wild boar, the effects 

of achieving carcass clearance within six and eight weeks after detection were assessed, in which cells 

were able to return to a susceptible state following carcass removal. 

 

Table 6.1 | Summary of assessed control strategies 

 Control strategy Method of evaluation 
Alternative surveillance zone sizes Adjust surveillance zone size  
Improving passive surveillance of domestic pig 
units 

Reduce the average duration of the undetected 
infectious period 

Village-wide culling upon case detection Forcing an average duration of the infectious period 
of one week across all herds 

Pre-emptive culling of domestic pig units upon 
nearby wild boar case detection 

Domestic pig units in an infectious-detected cell 
automatically transit to the R state upon cell 
detection 

Environmental sanitation through wild boar 
carcass clearance 

Cells return to the susceptible state after specified 
infectious-detected period  

 

6.3  Results 

6.3.1 Uncertainty analysis 

Model uncertainty to the transmission kernel was assessed through exploring alternative values 20% 

above and below the baseline value (Fig. 6.1). This yielded an explored d50 range of 2.89 – 4.33 km 

(Table 6.2). By increasing the transmission kernel and thereby modifying the rate of exponential decay, 
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we are able to change the weight of local transmission at small distances that can reflect differences 

in contact patterns among villages. 

 

 
Fig. 6.1 | Transmission kernel distance effect by kernel value. Kernels were truncated for a 

maximum transmission distance of 20 km. Dotted x-intercepts represent corresponding d50 

distances for each kernel parameter value (see Table 6.1). 

 

Table 6.2 | Transmission kernel distance function 

Kernel parameter value d50 (km) d5 (km) Transmission probability at 20 km 
0.16 4.33 18.8 0.041 
0.18 3.85 16.7 0.027 
0.20 3.47 15.0 0.018 
0.22 3.15 13.7 0.012 
0.24 2.89 12.5 0.008 

d50 Distance where transmission probability is 50% of baseline 

d5 Distance where transmission probability is 5% of baseline 

 

The transmission kernel had a profound effect on epizootic size, with a mean difference in epizootic 

size of 30% (range: 25–36%) observed between alternative consecutive kernels (e.g. d = 0.2 and 0.22) 

among domestic pig units (Fig. 6.2). As would be expected, increases in the transmission kernel 

parameter value (from 0.2 to 0.22 or 0.24) led to fewer cases. Changing the transmission kernel by 
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10% from d = 0.2 to d = 0.22 reduced the median total epizootic size among domestic pig units by 177 

outbreaks: from 438 (IQR: 272; 571) to 261 (IQR: 136; 378) outbreaks, while further changing it from 

0.22 to 0.24 showed diminishing returns, reducing median epizootic size by only 83 outbreaks. Further, 

with almost 40% of wild boar cell infections predicted to come from domestic pig units in the baseline 

model (see chapter 5), increases in the transmission kernel also reduced epizootic size among wild 

boar cells. Increasing the transmission kernel from 0.2 to 0.22 resulted in a median of 43 fewer 

infected wild boar cells (the equivalent of an additional 1075 km2 free of ASF, given our cell size of 25 

km2). Conversely, when the transmission kernel was decreased from d = 0.20 to d = 0.18, an additional 

211 outbreaks among domestic pig units were observed (a 48% increase), along with 42 additional 

wild boar cell infections. 

The choice of transmission kernel additionally had effects on the relative contribution of each host to 

transmission. As the transmission kernel value increased (thusly increasing the effect of distance on 

mitigating transmission), relative decreases in transmission from domestic pig units and increases in 

transmission from wild boar cells occur among both domestic pig units and wild boar cells (Fig. 6.3). 

Increases in the transmission kernel resulted in a mean decrease of 3.9% between examined kernels 

in the relative transmission from domestic pig herds to wild boar cells.  

Epizootic simulation output was also sensitive to the rate of assumed increase in case detection that 

occurs within a surveillance zone. For each 25% increase in the relative detection rate within a 

surveillance zone, a mean of 89 fewer domestic pig unit cases were seen (Fig. 6.4). Increasing the 

relative detection rate in surveillance zones also resulted in fewer wild boar cell cases, with a mean of 

23 fewer cases per 25% increase in relative detection rate. Between compartments, as detection 

within surveillance zones became more effective, significantly smaller proportions of cases among 

wild boar were seen to come from domestic pigs (Fig. 6.5). At a 50% increase in detection rate in 

surveillance zones, approximately 40% of cases among wild boar come from domestic pigs, while at 

75%, approximately 32% of cases do. This translates into almost half as many cases coming from 

domestic pigs to wild boar (42 compared to 22 cases), almost an additional 500 km2 area free of ASF. 
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Fig. 6.2 | Sensitivity of final epizootic size to the transmission kernel by host. X-axis transmission 

kernel values represent d50 distances (that is, the distance at which transmission decreases by 50%) 

of 4.33, 3.85, 3.47, 3.15, and 2.89 km, respectively, from left to right. Boxplots represent median, 

interquartile range (IQR), maximum and minimum values of epizootic size across 100 simulations 

per kernel value. 

 
Fig. 6.3 | Sensitivity of the relative transmission frequency between hosts to alternative 

transmission kernels. Results faceted by source of infection (dp: domestic pig units, wb: wild boar 

cells). Increases in the transmission kernel result in relatively fewer cases among from domestic pig 

units to both other domestic pig units as well as wild boar cells. 
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Fig. 6.4 | Sensitivity of final epizootic size to the relative increase in detection within surveillance 

zones. Boxplots represent median, interquartile range (IQR), maximum and minimum values of 

epizootic size across 100 simulations per kernel value. Zero (0) indicates the surveillance zone has 

no effect on case detection. 

 
Fig. 6.5 | Sensitivity of the relative transmission frequency between hosts to increases in the 

detection rate within surveillance zones. Results faceted by source of infection (dp: domestic pig 

units, wb: wild boar cells). Zero (0) indicates the surveillance zone has no effect on case detection. 
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6.3.2 Control strategy assessment 

The size of the surveillance zones was found to have a significant effect on overall epizootic size, for 

both domestic pig units and wild boar cells (Fig. 6.6). Each 5 km increase in surveillance zone size 

resulted in a mean of 50 fewer infected domestic pig units and 14 fewer infected wild boar cells 

(translating as additional 350 km2 free of ASF). Compared to the baseline strategy of a 10 km 

surveillance zone, a 15 km zone reduces the median epizootic size among domestic pig units by 11.6%, 

while doubling the surveillance zone diameter to 20 km decreased the epizootic size by 20.5%. 

Conversely, shrinking the surveillance zone to 5 km results in a 12.8% increase in epizootic size. Similar 

percentage changes were seen among wild boar cells (i.e. 13% reduction in wild boar cell infections 

with the 15 km surveillance zone, and 12% increase in wild boar cases with the 5 km surveillance zone). 

The relative frequency of transmission between compartments was affected by surveillance zone size 

as well. For each 5 km increase in surveillance zone size, a 2.6% decrease in relative transmission from 

domestic pig units to wild boar cells was observed (Fig. 6.7). Relative transmission rates to domestic 

pig units were only minimally affected (less than 1% difference in relative transmission rates to 

domestic pig units between different surveillance zone sizes). 

Reducing the undetected infectious period from 3 weeks to 2.5 or 2 weeks resulted in small changes 

to final epizootic size (Fig. 6.8). At an undetected period of 2.5 weeks, a median of 48 fewer herds (n 

= 390) and 12 fewer cells (n = 92) were infected. A further decrease in the undetected infectious period 

resulted in diminishing returns, with an additional 20 less herds (n = 370) and 5 fewer cells (n = 87) 

infected. Increases in the passive detection rate among domestic pig herds corresponded to decreases 

in the relative contribution of domestic pig units to wild boar cell infection (Fig. 6.9). Compared to a 

baseline of 40.9%, at an undetected infectious period of 2.5 weeks there was a median of 38.1% wild 

boar cell infections from domestic pig units, and at 2 weeks the median was 36.8%. Among domestic 

pig units, decreasing the undetected infectious period resulted in small decreases in the contribution 

of domestic herds to other domestic pig unit infections, from a baseline of 94% to 93% and 92.4%, 

respectively. 

When culling strategies were examined, both preventive culling of a village upon case detection in a 

nearby wild boar herd, and full culling of a village upon case detection in a backyard herd in the village, 

were considered (Fig. 6.10). Preventive culling reduced the median epizootic size among domestic pig 

herds by 16% (n = 69) to 369 infections. Additionally, a median of 9 fewer cases (n = 95) among wild 

boar cells were observed with this strategy. When village-wide culling in response to a domestic pig 

case was used, the median epizootic size was reduced by over 33%. There were 146 fewer outbreaks 

among domestic pig units (n = 292, IQR: 198; 411) as compared to the baseline (n = 438, IQR: 272; 
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571) and 40 fewer cases among wild boar cells (n = 64, IQR: 40; 94). Alternative culling strategies had 

minimal effect on the relative contribution of each host to the overall epizootic (Fig. 6.11). 

The final control strategy examined was the effect of carcass clearance and environmental 

decontamination. Whether all carcasses were removed within 8 weeks or 6 weeks of detection within 

a 25 km2 area, minimal improvement in epizootic size was observed (Fig. 6.12). A small but present 

difference in contribution between hosts was noted. Carcass removal over 8 or 6 weeks resulted in 

slight decreases in transmission from wild boar cells to domestic pig units, from a baseline median of 

5.17% of transmission events to 4.42% or 4.19%, respectively (Fig. 6.13). Conversely, carcass removal 

increased the relative contribution of domestic pig units to overall wild boar cell infections, from the 

baseline of 40.9% up to 46.9% and 48.2% for clearance times of 8 and 6 weeks, respectively.  

6.4  Discussion 

Here we were able to both examine the behaviour of the model according to different ranges of values 

of choice uncertain parameters (the transmission kernel d and surveillance zone detection rate 

modifier ζ), as well as evaluate the impact of alternative control strategies had they been employed 

at the onset of the observed epizootic.  

The transmission kernel predicts the relative rate of transmission as a function of the distance of the 

susceptible herd from an infectious herd. In the absence of data of the commercial network in 

Romania, the rate of transmission between herds was weighed by a transmission kernel—as done in 

multiple previous ASF modelling studies (Andraud et al., 2019; Halasa, Bøtner, et al., 2016a, 2016b; 

Ivorra et al., 2014; Mur et al., 2018). An exponential decay was assumed—the rate of which was 

calibrated to 0.2—and the transmission was limited to a radius of 20 km from infected premises. 

Previous ASF models have used single transmission kernels to inform local farm-to-farm transmission 

defined as transmission under 2 km (Andraud et al., 2019; Halasa, Bøtner, et al., 2016a, 2016b; Ivorra 

et al., 2014; Mur et al., 2018). Though our assumed maximum local distance is ten times this amount, 

with domestic pig units aggregated to and defined at the village scale, our definition of local 

transmission also scales to locally between villages. An uncertainty analysis nevertheless revealed a 

high sensitivity of model outcomes on the exponential decay parameter value. Therefore, field studies 

defining the social and commercial networks of farmers that exist between villages could validate or 

further inform our assumptions on local transmission between villages. 
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Fig. 6.6 | Effect of surveillance zone size on final epizootic size. Boxplots represent median, 

interquartile range (IQR), maximum and minimum values of epizootic size across 100 simulations 

per kernel value. 

 

 
Fig. 6.7 | Effect of surveillance zone size on relative transmission frequency between hosts. Results 

faceted by source of infection (dp: domestic pigs, wb: wild boar). Increases in surveillance zone size 

affected transmission dynamics to wild boar cells, but had minimal effect on relative transmission 

rates to domestic pig units. 
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Fig. 6.8 | Effect of reducing the undetected infectious period on final epizootic size by host. 

 

 
Fig. 6.9 | Effect of reducing the undetected infectious period on relative transmission 

frequency between hosts. Results faceted by source of infection (dp: domestic pigs, wb: wild 

boar).
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Fig. 6.10 | Effect of culling strategies on final epizootic size. In comparison to the baseline culling 

strategy (“base”) of only individual farms being culled leading to a range of infectious periods among 

villages, village-wide culling upon case detection in a village (“full”) was compared in addition to 

preventive culling upon wild boar case detection (“prev”). Significant difference was seen between 

the baseline and the full culling strategy, but not between the baseline and preventive culling 

strategy. 

 

Fig. 6.11 | Effect of culling strategies on the relative transmission frequency between hosts. Results 

faceted by source of infection (dp: domestic pigs, wb: wild boar). Minimal difference was observed 

in the relative host contribution between the baseline culling strategy of only individual farms being 

culled (“base”) and alternative strategies of village-wide culling upon case detection in a village 

(“full”) and preventive culling upon wild boar case detection (“prev”).
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Fig. 6.12 | Effect of carcass removal on final epizootic size. “Base” indicates the baseline scenario of 

persistent infection without environmental sanitation, while 8 and 6 refer to scenarios in which all 

carcasses are removed within 8 and 6 weeks, respectively. 

 
Fig. 6.13 | Effect of carcass removal on the relative transmission frequency between hosts. Results 

faceted by source of infection (dp: domestic pigs, wb: wild boar). “Base” indicates the baseline 

scenario of persistent infection without environmental sanitation, while 8 and 6 refer to scenarios 

in which all carcasses are removed within 8 and 6 weeks, respectively. 
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Altering the shape of the transmission kernel was seen to have large effects on the final epizootic size, 

and could be considered to reflect changes in contact patterns between pig holders. As evidenced 

from multiple investigations into the spread of ASF in spite of strict quarantine and movement 

restrictions, illegal movements of infected swill feed has been shown to be responsible for almost all 

(about 97% of) introductions of ASFV into naïve herds (Khomenko et al., 2013). Intervention strategies 

that target changes in this parameter, such as educational initiatives to improve locals knowledge of 

these consequences of illegal movements and swill feeding, should be a priority. Even with the 

inevitable illegal movements, reducing the d50 distance by small amounts was seen to have profound 

effects. Additionally, as village spatial distribution varies between counties, considering county-

specific measures, especially as related to movement controls and surveillance zones could provide 

cost savings as well. For instance, Tulcea County is comprised of 140 villages spread over 8467 km2, in 

contrast to Galati County which contains 186 villages in almost half the area (4462 km2). 

Increasing the transmission kernel results in less weight given to local transmission at small distances, 

thereby reducing final epizootic size in both the domestic and wild compartments. However, 

amplification of the relative number of cases derived from wild boar cells for both domestic pigs and 

wild boar recipients was also observed. Therefore, the overall reduction in total case counts was 

offset, to a certain degree, through continued transmission to domestic pigs from the wild 

compartment. As camera trapping research has shown frequent and direct interaction between free-

ranging domestic pigs and wild boar, it is not unexpected that reductions in cases from one 

compartment could be offset by increases in cases from the other (Cadenas-Fernández et al., 2019). 

Management strategies should therefore consider accounting for both domestic and wildlife 

transmission to avoid such counteraction of intervention efficacy. 

Previous assessment on the radii of surveillance zones found that, at the codified 10 km, there is less 

than a 0.2% probability of ASF transmission beyond that limit (EFSA Panel on Animal Health and 

Welfare (EFSA AHAW Panel) et al., 2021). However, it is equally stated that such a probability does 

not include transmission risks due to wild boar, and so we felt it important to assess this parameter in 

our model that accounts for this transmission. Doubling the surveillance zone size from 10 km to 20 

km resulted in almost 100 fewer infected villages, however increasing it by 50% to 15 km did not result 

in significant difference for any of the units. Interestingly this finding is congruent with both results 

for industrialized swine populations, where Halasa et al. (2018) also did not predict improvements in 

epizootic control when the surveillance zone was increased from 10 to 15 km, and from results from 

the ASF Modelling Challenge where a team also did not find a 5 km surveillance zone increase to 

reduce the number of cases (Dankwa et al., 2022). Conversely, decreasing the surveillance zone size 
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from 10 km to 5 km did not result in a statistically significant change in the overall size of the epizootic 

either. However, our model is at the scale of the village where there may not be much difference in 

the number of villages at 5 km intervals, as compared to the number of individual farms. Additionally, 

in our model the surveillance zone only affected case detection rates, whereas in the legislation there 

are additional protective regulations including movement restrictions and disinfection protocols of 

transportation (Council of the European Union, 2002). It is therefore possible that accounting for these 

additional interventions within a surveillance zone would increase the simulated impact from changes 

to surveillance zone size. Even if a significant impact was observed, recommending such changes be 

made in the field would require considerable additional considerations, accounting for both workforce 

and laboratory diagnostic capabilities. 

The relative effect of the surveillance zones, indicating the effectiveness of the field activities around 

case detection, had an important influence on final epizootic size. Activities within the surveillance 

zone consist of taking a census of all pig holdings, enforcing movement prohibitions of pigs and pig 

products, cleansing and disinfection protocols, and clinical and laboratory examination of all pigs 

(Council of the European Union, 2002). Our model, occurring at the scale of the village, considers the 

combined effect of all these undertakings. Surveillance zone activities have been shown to be already 

highly effective at identifying cases and preventing further spread of ASF (EFSA Panel on Animal Health 

and Welfare (EFSA AHAW Panel) et al., 2021). An economic analysis on the costs of providing the 

necessary veterinary and para-veterinary services within the surveillance zones will help to determine 

if the impact of even more effective surveillance zones is worth the price. 

Reducing the undetected infectious period—through improved case reporting—did not have a 

significant effect on final epizootic size in our model. As we are considering the whole village rather 

than individual farms, it is possible that the average undetected infectious period is greater than our 

assumed 3 weeks, and a significant difference could be seen in the case of decreases from a larger 

period. Also, as long as control strategies are applied unevenly between counties, it is also likely that 

this period varies between counties, in which case targeting this parameter may result in county-

specific improvements in epizootic size. The risk of silent transmission of ASF due to individual farmer 

behavior during emergency sales has also been shown to be high, which would also suggest that the 

degree of ASF spread occurring during this period is high enough that more drastic decreases in the 

undetected infectious period are needed (Costard et al., 2015). Through providing educational 

opportunities that lead to better awareness of symptoms and risks, pig holders could be more 

sensitive to the risk of transmission to others, and could react more rapidly. Indeed, the observed data 
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displays a progressive decrease in the calculated infectious periods, that could be attributable to 

increasing awareness over the course of the epizootic. 

Village-wide culling had the most pronounced effect on final epizootic size, resulting in a median of 

146 fewer outbreaks among villages per epizootic scenario. Unfortunately, preventive culling actions 

of even just neighboring herds within a village were reported to be difficult to justify to small-scale 

Romanian farmers, and possibly led to illegal movement activities (Rose & Boisseleau, 2018). In 

contrast, during the ASF outbreak in the Republic of Korea in September 2019, preventive culling of 

all swine herds within a 3 km radius of an infected herd was successfully instituted, resulting in 

complete outbreak control in under 4 weeks (Kim et al., 2021). There are likely multiple cultural, social, 

and political factors behind these differences in the acceptance of such a strategy, and decision makers 

would benefit from further social science research to elucidate such factors for facilitating epizootic 

control. Village-specific parameters (e.g. population) and within-village dynamics were not accounted 

for in our model though, and would be important factors to consider prior to recommending such 

large-scale culling based on our results. However, accounting for within-village transmission dynamics 

would require actual geolocation of domestic pig holdings—which is currently lacking—and obtaining 

such census data should be a consideration among Romanian stakeholders. Regardless, the large 

effect of this increase in the recovery rate on the final epizootic cannot be ignored and should be a 

focus of additional research. 

Our model did not reveal preventive culling of villages upon nearby case detection in wild boar to have 

a significant effect on final epizootic size. Indeed, in our simulations wild boar were responsible for 

only a small fraction of cases among domestic pigs, and domestic pig units (namely villages) comprised 

the majority of cases of the overall epizootic. However, field research has shown wildlife contact to 

be an important contributor to cases among domestic pigs. Phylogenetic results in Poland had shown 

that while separate genetically-distinct ASFV incursions were responsible for clusters of outbreaks, 

within those clusters wild boar were suspected to be responsible for transmission to domestic pig 

herds (Śmietanka et al., 2016). In Estonia, direct contact with wild boar was suspected to be the 

inciting cause of outbreaks on two out of 28 investigated farms (European Food Safety Authority 

(EFSA) et al., 2018). Beyond only direct transmission, a scoping review of articles on wild-domestic 

ASFV transmission concluded that when such between-host transmission occurs, indirect routes may 

in fact be more common (Brookes et al., 2021). Our results contrast to those of one of the models out 

of the ASF Modelling Challenge, where preventive culling of domestic pig herds nearby to detected 

wild boar cases resulted in a decrease of almost 20% in the final number of infected pig herds (Dankwa 

et al., 2022). Acceptance of such a strategy by farmers could be difficult without targeted educational 
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programs, however, and as highlighted by Dankwa et al. (2022), the cost-benefit ratio of such a 

strategy would have to be established given the presumed substantial costs. 

Carcass removal did not have an effect on final epizootic size (given the small proportion of cases 

among domestic pigs due to wild boar, and that the epizootic is mostly among domestic pig herds, this 

is again not unexpected), but did result in relative decreases in transmission from wild boar cells. 

Carcass removal has been shown to be a critical supportive intervention against ASF, especially when 

instituted during epizootic onset—as seen in the successful eradication of ASF in both Belgium and 

the Czech Republic (EFSA et al., 2021; Van Goethem, 2021; WOAH, 2019a). Maintaining good 

relationships with the hunting community is essential for successful passive and active surveillance, 

especially as passive surveillance is the most likely means of detecting ASF in wild boar (EFSA et al., 

2018). Assistance for decreasing the workload and costs bestowed unto hunters, along with 

knowledge of their important role in reducing infection pressures, were identified as important factors 

for fostering hunter participation in anti-ASF efforts (in Latvia) (Urner et al., 2021). Passive surveillance 

of wild boar cells is accounted for through two parameters, split by prior to first case detection and 

following first case detection. Modifying the pre-first case detection rate for infected cells (𝝈𝒑𝒑𝒓𝒆)	could 

be a means to examine the results improving hunter participation in passive surveillance efforts. 

Future iterations of this model should consider such examination.  

When wild boar behavior towards carcasses was evaluated through field experiments, direct contact 

of a carcass by a wild boar occurred on average 15 days (range: 1-32) after the carcass was placed 

(Probst et al., 2017). Consequently, for carcass removal to have an effect on curbing ASF transmission, 

both detection and removal would be expected to have to occur within 2 – 4 weeks. In our Romanian 

model, given our estimated transmission rate among wild boar, even with an average of 8 weeks for 

wild boar case detection and assuming an additional 6 weeks for carcass clearance, a beneficial effect 

was observed with environmental sanitation.  

Previous study indicated at least 50% of carcasses must be removed for this strategy to have an effect, 

so it can be assumed that, in our model, sanitation of an infected cell would be defined as the capture 

of at least 50% of the carcasses in a 25 km2 area (Gervasi & Gubertì, 2022). While this could be 

perceived as an unrealistic task (given that carcass removal efforts in Latvia were estimated to detect 

less than 0.5 carcasses / 100 km2), our model assumes a uniform landscape (outside of forest 

coverage) that is free from any fragmentation within each cell. Rivers, highways, commercial 

infrastructure and other geological features— which has been shown to affect transmission 

dynamics—can all contribute to such landscape division thus limiting the overall area to search for 

carcasses (Salazar et al., 2022).  
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Economic considerations will play a pivotal role in the decision processes behind the selection and 

enaction of control strategies. The associated costs of implementation for increasing checkpoints to 

curtail movements between villages and industrial sites, as well as to consider increasing surveillance 

zone effectiveness, must be determined before policy recommendations can be made. 

6.5  Conclusions 

Achieving control of an ASF outbreak is a complex task, involving coordinated efforts between 

stakeholders from veterinary services, animal agriculture, conservation and hunting groups, law 

enforcement, and government, among others. Multiple alternative control strategies were explored, 

including altering the effect of distance on transmission between herds, the surveillance zone size, the 

efficacy of the surveillance zones, the detection rates among domestic pig units, preventive or 

extended culling, and wild boar carcass removal. Adjustments in the transmission kernel—through 

restricting trade and limiting movement between villages—along with increases in the efficacy of 

surveillance zones (such as through increases in the available workforce and intra-village surveillance 

measures) and village-wide culling upon case detection had the most profound effects on limiting the 

scale of the epizootic. Even so, the decreases in cases arising from domestic pig sources are offset to 

a degree by relatively more cases arising from wild boar. Future research steps in which optimization 

algorithms are applied to the six strategies explored here could yield further insight into which 

strategies are best used in-concert. Achieving epizootic control requires the consideration of the 

effects of management decisions both within and between ecological compartments, and as long as 

backyard farms continue to be a source of infection for wild boar—and to a lesser extent vice-versa—

attaining full epizootic control is far but from assured. 
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Box 6.1 | Chapter 6 key points 

• Multiple alternative control strategies were explored, including altering the effect of distance 

on transmission between herds, the surveillance zone size, the efficacy of the surveillance 

zones, the detection rates among domestic pig herds, preventive or extended culling, and wild 

boar carcass removal. 

• Epidemic size was able to be best limited through altering the transmission kernel (via 

changing contact patterns among villages, as would occur through restricting trade and 

limiting movement), increasing the efficacy of surveillance zones (by increasing the available 

workforce and intra-village surveillance measures), and instituting village-wide culling upon 

case detection. 

• The least beneficial interventions were carcass removal and increasing the surveillance zone 

size. 

• Decreases in final epidemic size are best seen with control measures targeting domestic pig 

herds (expectedly as they constitute the majority of cases), however decreases in cases from 

domestic pig sources are offset to a degree by relatively more cases arising from wild boar. 

• As long as domestic pig herds continue to be a source of infection for wild boar, and vice versa, 

total ASF eradication will be an untenable objective. 
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§ IV |  Overall discussion and conclusion  

In this overall discussion chapter, we first synthesized what we intended to do and then took some 

perspective by examining our methods and findings in light of other ASF models. After summarizing 

the approach to and outcomes of the PhD project, we examined the impact of our work, and what we 

have contributed to the greater ASF modelling body. Potential future directions are then investigated, 

for both other scenarios where our model can be applied as well as what else would be beneficial to 

include in future iterations of our work. Lastly, we reflect on all that has been accomplished. From 

such a perspective we can consider what would be done differently if this project was again started 

anew, and how our research can be extended for continued and improved utility. 
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7 |  Discussion 

7.1  Thesis aims and accomplishments 

African swine fever—with its devastating effects on swine production, farmer livelihood, animal 

welfare, and biodiversity loss—is recognized as one of the most severe diseases of swine (FAO, 2012; 

WOAH, 2019c). What started as a focal incursion at a port on the eastern Black Sea coast has since 

grown into a multi-continent panzootic (WOAH, 2019c). As of July 2022, 45 countries across Africa, 

the Americas, Asia, Europe, and Oceania have reported ASF in the past two years (WOAH, 2022d). 

Affected nations have experienced variable outbreak dynamics, with some seeing ASF cases only 

among wild boar or domestic pigs, and others confronting both epizootic spread among domestic pig 

herds as well as enzootic establishment among wild boar populations (WOAH, 2022d). In these areas 

where transmission was suspected to occur between both the wild and domestic compartments, as 

in Romania, quantifying the transmission dynamics of ASFV at the domestic-wildlife interface would 

be an important step to improving the management of ASF. Therefore, we sought to answer the 

question: To what extent does ASFV transmission between domestic pigs and wild boar, in areas of 

low-biosecurity backyard farming, contribute to total ASF spread? By elucidating this quantity, we 

could then answer the question: how do control strategies targeting one compartment affect the 

transmission dynamics in the other compartment? 

Mathematical models have a proven history of elucidating transmission dynamics, and have recently 

been used to inform the risk of infection between species for some epizootics, as for bTB in the UK 

and ASF in South Korea (Birch et al., 2018; Yoo et al., 2021). However, no mechanistic model existed 

that quantified ASFV transmission at the domestic-wildlife interface (Chapter 3). Therefore, to 

improve the understanding of how ASFV circulates at the interface between domestic and wild hosts, 

to elucidate the relative host contributions to these dynamics, and to understand how control 

strategies enacted in one compartment can affect the transmission dynamics in the other 

compartment, we designed, constructed, and then parameterized an ASF model at the domestic-

wildlife interface to the on-going epizootic in Romania (Chapters 5 and 6). 

Through using a novel model created specifically for our research question, we were able to succeed 

in generating an estimate of the relative contribution of domestic and wild hosts to ASFV epizootic 

spread in Romania. Only one other recent ASF model has quantified the relative contributions of 

domestic and wild hosts to ASF spread, and did so in-concert with detailed between-herd vehicle 

movement data to account for and determine herd-to-herd transmission probabilities (Yoo et al., 

2021). Without the availability of data on between-farm or between-village pig movements, we had 



 144 

to infer herd-to-herd contact rates and did so through an exponentially-distributed transmission 

kernel. In both cases, human-mediated transmission was suspected to be the primary means of spread 

among domestic pig herds, and accounting for this mode of transmission was necessary in order to 

then ascertain the contribution of wild boar to domestic pig herd infections (Andraud et al., 2021).  

Domestic and wild hosts in our model were aggregated representations of the real-world hosts, and 

so our results reflect the relative contributions of each host at the given level of representation. With 

wild boar represented through wild boar habitat cells, our interface transmission results indicate the 

estimated percentage of domestic pig unit infections attributable to 25 km2 infected areas of wild boar 

habitat (not to be confused for domestic pig infections from individual wild boar). Equally, our results 

indicate the percentage of infections of 25 km2 wild boar habitat cells that would be attributable to 

individual domestic pig units. Thereby, more specifically we answered the question: What is relative 

contribution of infected wild boar habitat and ASF-infected villages and industrial sites to overall 

epizootic propagation? An alternative modelling approach using an individual-based model of wild 

boar, such as that used by Dankwa et al. (2022) in the ASF Modelling Challenge, could potentially have 

helped refine the results to elucidate the contribution of individual wild boar (and not just boar-

occupied habitat), however their model did not include a means of disentangling sources of infection. 

Further, an individual-based approach would have been extremely parameter intensive. As our focus 

was on the epizootic dynamics, by reducing the description of the host population to polygons and 

ignoring the population dynamics, we were able to reduce unnecessary complexity. Our estimates, 

though a proxy for rates of ASF transmission between backyard domestic pig herds and wild boar, are 

nevertheless an important step towards elucidating the true relative infection contributions between 

hosts to a multihost epidemic using mathematical modelling.  

Following disentanglement of the relative host contributions, we were able to approach the second 

research question regarding elucidation of the effects of control strategies in one compartment on 

the epizootic dynamics of the other compartment. Through examining alternative surveillance zone 

sizes, improvements in passive surveillance of domestic pig units, village-wide culling upon case 

detection, pre-emptive culling of domestic pig units upon nearby wild boar case detection, and 

environmental sanitation through wild boar carcass clearance, we were able to observe the 

sometimes subtle, sometimes substantial, alterations in epizootic size and relative host contributions 

for each compartment. The included strategies were based on what was observed in the Romanian 

environment. Other commonly employed strategies such as fencing and increasing wild boar hunting 

pressure were not included in our model, as fencing was out of the Romanian context and though 

hunting pressure was certainly increased there was no data to inform on that point. However, these 
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strategies have been recently explored in other models (Picault et al., 2022; Ezanno et al., 2022). 

Dankwa et al. (2022) was able to show that increased hunting pressure with fencing had a more 

pronounced benefit to reducing both wild boar and domestic pig herd cases over the longer term. 

However, as this model does not allow for the determination of the source of infection of an infected 

model unit, we can only conclude overall benefits to the modelled epizootic trajectory. A following 

step for our model’s control strategy assessments would be to include such fencing and hunting 

abilities, and then observe the effects on relative transmission.  

Box 7.1 provides a synthesis of the approach we used to address the research questions and describes 

the main outcomes of the project. 

7.2  Impact: Our contribution to the ASF modelling body 

With the recent close of the ASF Modelling Challenge, there are now at least six multihost models of 

ASF that account for domestic-wildlife transmission (Ezanno et al., 2022). Taylor et al. (2021) (prior to 

the ASF Modelling Challenge) developed a model of ASF spread across the European continent that 

included transmission from free-range, outdoor pigs to wild boar, and examined hunting and fencing 

effects. Yoo et al. (2021), through an ex-post model, elucidated which farms in the 2019 South Korean 

ASF incursion were likely infected by wild boar. Whereas between-host transmission in Taylor et al. 

(2021) was unidirectional from domestic pigs to wild boar, Yoo et al. (2021) utilized unidirectional 

transmission from wild boar to domestic pigs. Following the publication of the first ASF Modelling 

Challenge models, bidirectional transmission was now included in the modelling body through the 

works of Beaunée et al. (2022) and Han & Vignes (2022) (pre-publication, as referenced by Ezanno et 

al. (2022)). The model by Dankwa et al. (2022) considered unidirectional transmission from wild boar 

to domestic pigs, while Muñoz et al. (2022) did not include mechanistic transmission between hosts 

but, similar to Yoo et al. (2021) modelled the risk of pig farm infection from wild boar case data. 
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Box 7.1 | Synthesis of the approach to, and outcomes of, the PhD 

• African swine fever is a devastating disease whose outbreaks have grave impacts on all levels 

of the pig farming industry—from psychosocial distress and livelihood losses to the individual 

small-scale farmer up through decreases in the national income of affected countries from 

lost export markets. 

• Elucidating the dynamics of how ASF transmits among hosts, both within and between 

domestic and wildlife compartments, can be accomplished through mathematical models.  

• Through a systematic review of the mathematical modelling literature on ASF, we found that 

none of the existing models accounted for transmission at the domestic-wildlife interface. 

• To fill this gap in the ASF modelling body, we developed spatio-temporal, multi-host, 

stochastic 

mechanistic simulation model of ASF transmission. Domestic pig herds were represented as 

either backyard farms at the level of the village or as industrial operations using point 

locations, while wild boar were represented through a habitat raster of cells using forest 

coverage as a proxy variable for abundance.  

• Using a combination of literature review, approximate Bayesian computation, and manual 

tuning, the model was able to be parameterized to the on-going epizootic in Romania. 

Transmission rates (among other parameters) were estimated between domestic pig units 

(0.16 herds per weeks), from domestic pig units to wild boar cells (0.3 cells per weeks), from 

cells to domestic pig units (0.8 herds per week), and from cells to cells (0.4 cells per weeks). 

• Through capturing the observed epizootic trajectories, our model estimated that 

approximately 5% of domestic pig unit infections were coming from infected wild boar cells, 

and 40% of wild boar cell infections were coming from domestic pig units. 

• With the observed dynamics replicated, we were then able to explore alternative control 

strategies: alternative surveillance zone sizes, improving passive surveillance of domestic pig 

units, village-wide culling upon case detection, pre-emptive culling of domestic pig units 

upon nearby wild boar case detection, and environmental sanitation through wild boar 

carcass clearance. 

• Village-wide culling (as opposed to single-herd culling) was determined to be the most 

effective strategy for reducing overall epizootic size, however economic analyses (including 

cost-benefit analysis) will need to be included to practically inform control strategy decision-

making. 

• Instituting wild boar carcass removal did not greatly affect overall epizootic size, however it 

did reduce the relative contribution of transmission from wild boar cells. 
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Our model, while sharing certain characteristics with these models (such as means of wildlife 

representation (Beaunée et al. (2022)) or explored alternative control strategies related to culling and 

surveillance zone size (Picault et al., 2022)), stands out by allowing the quantification of the relative 

contribution of the domestic and wildlife compartments to overall epizootic spread. This information 

can be used by policy makers to inform resource allocation, as knowing the relative role of a host in a 

multihost outbreak can assist with targeting of control strategies. Here in Romania, it was estimated 

that 40% of wild boar cell infections came from domestic pig herds and 5% of domestic pig herds were 

infected by wild boar cells. While these quantities would ideally be further informed by phylogenetic 

field studies, the non-zero numbers indicate the need for strategies to address transmission in both 

compartments. Further, our model showed that for many alternative control strategies, decreases in 

transmission from one compartment will be offset by relative increases in transmission from the other 

compartment. With the panzootic genotype II strain of ASF being capable of sustaining itself within a 

wild boar population outside of domestic pig reinfection (Sauter-Louis, Conraths, et al., 2021), 

mitigating transmission between host compartments will likely be a critical aspect of achieving full 

epizootic control in Romania (and any other area rich in backyard swine farming). 

Another unique aspect of our model was its full development and parameterization to an on-going 

epizootic. To our knowledge, this is the first time such a feat was accomplished with a multi-host 

animal health model (see Chapter 4). This suggests that this methodological approach, combining 

individual-based and cellular automata models to consider wildlife-livestock transmission, can be 

developed at a pace sufficient to inform active epizootic scenarios. The use of mathematical modelling 

to inform decision-making has become standard practice for public health (Kretzschmar, 2020), and 

with sufficient resource availability it can become an important tool in veterinary public health and 

outbreak response too. 

Through the rapid deployment of a model of an ongoing outbreak, real-time policy support for animal 

health stakeholders can be a reality. However, our model will still require additional refinement prior 

to recommending its use for policy support. Foremost, field research that estimates the relative 

transmission rates between hosts will be essential for validating the predictions of our model. A 

retrospective analysis of animal movements could help to highlight the main drivers. Additionally, our 

model only evaluates epidemiological outcomes. The inclusion of economic modules that quantify 

direct and indirect epizootic costs, along with the costs for the proposed control strategies, will be 

important for justifying recommendations from model outputs (Barratt et al., 2019). Lastly, our model 

focuses on epizootic onset, a period whose dynamics are invariably different than those of other 

epizootic phases (Nunes et al., 2020). To use the model in the present phase of the epizootic, 
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recalibration to the infected areas and infection patterns would be necessary, though very challenging, 

to capture the present dynamics. If these aspects of our model are able to be addressed, then we 

believe its current version will be sufficient for providing decision support to policy makers. Additional 

refinements, such as including within-village transmission or modelling individual backyard herds 

rather than entire villages, while potentially beneficial, will come at the expense of computational 

time and could negate the potential for real-time support (indeed, a backyard-herd model at our 

current scale will have thousands of additional units). 

7.3  Future directions 

More than just adapting our model to other phases of the Romanian epizootic, our model can be 

adapted to other countries as well. Such adaptation has been done successfully for other models, 

including the 2001 UK FMD model by Keeling et al. (2001) that was adapted to Denmark (Tildesley & 

Keeling, 2008), and the DTU-DADS-ASF model by Halasa et al. (2016) that was adapted to industrial 

swine populations in both Denmark (Halasa et al., 2018) and France (Andraud et al., 2019). This 

endeavor benefits both the modeller and the user. The modeller is able to make wider improvements 

to their model based on new data availability in the country other than its origin, and for the country 

of adoption, the existing dynamics in the model can aid local epidemiologists in considering alternative 

transmission processes that may not yet have been assessed (Dubé et al., 2011). In our case, for 

adapting our ASF model to France, this could include incorporating swine network movement data 

that was either not available or not accessible in Romania, along with multiple subtypes of industrial 

swine operations. However, given that any incursion into the industrial sector has been shown to be 

detected rapidly with limited spread, the additional computing power, run time and data collection 

requirements may not outweigh the benefits of a unified model (Andraud et al., 2019, 2022). 

As our model did not use an existing modelling platform (e.g. InterSpread Plus, SimInf, or NAADSM) 

for its development, its translation to another context will require multiple technical and conceptual 

steps (Harvey et al., 2007; Stevenson et al., 2013; Widgren et al., 2019). Technically, all the relationship 

matrices including the artificial landscape raster, forest coverage indicators, and distances between 

domestic pig herd locations will need to be regenerated. More difficult, however, is the conceptual 

translation. In our model we represent backyard herds through their aggregation to the scale of a 

village. If we were to adapt our model for the production systems in France that would be-at risk of 

spillover transmission, we would need to consider a different epidemiological unit for domestic pig 

herds. Realistically, we would adapt our model units from backyard herds to free-range pig production 

sites. The economic activity in free-range farms can rival that of traditional industrial operations, and 

differing greatly in the level of biosecurity per site (i.e. whether the outdoors space is an entire open 
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pasture or just a yard open to the barn door) (Delsart et al., 2020). The model could then be 

parameterized by the relative level of biosecurity that would be expected for different free-range herd 

types, and simulated ASF transmission could be explored. Geographically, we would want to select an 

area in France with a high density of wild boars together with a known important population of 

outdoor farms. However, with ASF present in Italy, the southeast of France would be a location to 

consider investigating the consequences of cross-border introduction and subsequent spread. Results 

of such simulations could inform stakeholders on the risk of introduction into the domestic 

compartments, and with the addition of an economic module, could help decide whether preventive 

culling of herds in the areas surrounding wild boar cases is an option. Alternatively, we could assume 

an ASF introduction scenario similar to that which occurred in Belgium (a single human-mediated 

event resulting in infection among wild boar) in a low-density area of pig farms (Claeys & Heymans, 

2020). Lastly, we would need to add additional control measures to our model to reflect those that 

would be employed in the country of adoption. 

Fences are a primary management strategy against wild boar (FAO, 2019), and representing this 

strategy would be necessary for adapting our model to France. Though fencing is an important 

component of the recommended EU ASF control strategy (European Commission, 2020), there is little 

literature on its effectiveness (Laguna et al., 2022), though more studies are now examining this 

method (Han et al., 2022). Both the type of fencing to be used and the objective of the fencing (i.e. 

exclusion or containment) would need to be known to include this strategy accurately. Multiple types 

of fencing are available, including both single and double-fencing, electric, and chemical. Chemical 

fencing—as attempted in Lithuania—had not succeeded in preventing ASF entrance into the country 

(EFSA et al., 2018). Conversely, in the Czech Republic, a combination of electric and chemical (odour) 

fencing was constructed around the area of ASF incursion, contributing to the successful elimination 

of ASF (though not without a few cases detected outside of the fenced area) (EFSA et al., 2018; WOAH, 

2019a). Additionally, as the incursion occurred in a mostly-urbanized area, existing landscape 

fragmentation played a key role in limiting transmission and facilitating enclosure of the cases. For 

adapting our model to an incursion in France by imported wild boar, reactionary fencing around the 

infected area could be included with our current model structure, though timing of installation would 

also have to be incorporated.  

In the Czech Republic, a 32 km fence was erected around the infected area (EFSA et al., 2018). In our 

model, wild boar are represented through 25 km2 hexagonal cells. Fencing around a wild boar cell 

following detection could be worked into the current model—and would translate as erecting an 18.6 

km fence per hexagon—though to make such control simulation realistic we would need to account 
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for landscape characteristics. For this distance, rapid fencing around one or even two wild boar cells 

in our model can be considered feasible, based on actions in the Czech Republic. However, as the size 

of the fenced area scales upward, workforce capabilities will need to be considered to accurately 

model construction time. Additionally, barriers like lakes, motorways, and unnavigable terrain play an 

important role in limiting wild animal movements, as was seen in the 2002 outbreak of classical swine 

fever in France (Pol et al., 2008) and recently for ASF in South Korea (Han et al., 2022). Incorporating 

these features alongside artificial barriers will be necessary to best model the efficacy of barrier 

strategies, as recently performed for both French border and internal regions (Salazar et al., 2022). 

Following these modifications, in addition to the previously recommended inclusion of an economic 

module for, at minimum, producing a cost-benefit analysis of control strategies, our model could be 

considered for policy recommendation here in France. 

Through having an array of available control strategies represented in our model, it can potentially be 

used to attempt a control strategy optimization, an approach yet to be done in the ASF modelling field. 

All previous models of ASF that assessed control strategies did so through comparing a finite set of a 

priori defined interventions, and many control strategies were examined in competition with each 

other, which is opposed to how they would be actually implemented. For instance, the efficacy of 

active and passive surveillance for wild boar was considered independently and without the influence 

of the other in Gervasi et al. (2019), when in reality such methods would likely be implemented 

simultaneously. While comparing strategies is beneficial for identifying a rank-order efficacy of control 

methods, this structure does not necessarily determine the most effective combination of all available 

strategies. Future models should be built to identify the optimal contributions of each control method 

for achieving specific outcomes (e.g. elimination of ASF cases, or minimizing overall economic impact). 

This can be achieved by using an objective function where the function inputs are the parameters 

defining the control strategies (e.g. size and duration of the surveillance zones, preventive culling 

around infected premises, or active detection rate of cases among domestic pigs or wild boar) and the 

function output is a measure of the epizootic impact (e.g. epidemic size, duration, total cost of the 

epizootic) (Moore et al., 2010; Rushton et al., 1999). Optimization algorithms can then be used to 

examine the space of the input parameter values to find which ones minimize the function output 

(Hauser & McCarthy, 2009; Moore et al., 2010). It is expected that such modelling output will generate 

more precise information to policy-makers for designing beneficial control strategies. 

Economic considerations play a critical role in the adoption of control strategies, with cost-benefit 

analyses being the standard financial tool for such evaluation (Fasina et al., 2012). However, while 

cost-benefit analyses can inform control programs or provide “simple” cost estimates for a given 



 151 

disease (simple meaning they only account for immediate proximal effects, even if the analyses 

include the complex costs of depopulation, sanitation and repopulation, as done in Halasa, Bøtner, et 

al. (2016a)), they are indeed not adequate to truly guide economic decisions (McInerney et al., 1992). 

Costs to an individual farmer do not account for the complex longer-term, downstream impacts of 

disease occurrence, including market shifts, changes in trade relationships, and redistributions in the 

food processing industry (McInerney et al., 1992). Even with regionalization measures to delineate 

either risk or presence of ASF and among whom (wild boar or both domestic pigs and wild boar) 

(Gordejo, 2021), economic effects can be expected from cases among wild boar as well. 

Modern economic frameworks account for multiple facets in determining a disease’s impact, with the 

first such framework developed by McInerney et al. (1992). Here, he considered both output losses 

after occurrence of a disease, as well as necessary costs for treatment and preventing reoccurrence. 

The framework developed by Rushton (2009) to evaluate the overall disease impact further refines 

direct costs as both visible and invisible losses—such as for culled animals and discarded animal 

products, and changes in herd management, respectively—as well as considers indirect costs—split 

into additional costs related to control strategies, and foregone revenue related to trade restrictions 

and loss of market access (Knight-Jones & Rushton, 2013). Whereas our model could potentially 

include an economic component for visible direct losses if the necessary expense data was accessible, 

to capture the economic impact of ASF in Romania or in any other setting, the indirect costs would 

need to be included as well. Invisible direct losses, such as changes in animal growth or fertility issues, 

are less applicable to non-chronic conditions however, and likely do not play a significant role in ASF 

impact. Additionally, economic impacts can vary depending on the stakeholder, such as if the state 

compensates some but not all of the direct losses experienced by a farmer. Therein, both the state 

suffers a form of direct loss through providing compensation, but the farmers do as well from receiving 

inadequate compensation. Trade restrictions will have stakeholder-specific effects too, depending if 

the perspective is from a farmer, a production organization, a consumer, or the state. Therefore, when 

an economic module is eventually included in our model, it will be necessary to clearly define the point 

of view being adopted for defining costs. 

A recent scoping review revealed that, as of 2022, there were only six studies which examined the 

economic impacts of ASF; with both of the only two retrospective studies examining ASF in Nigeria 

(Casal et al., 2022). Economic analyses of hypothetical outbreaks in industrialized populations have 

shown that direct losses pale in comparison to losses from exports (at the national level, in Denmark) 

(Halasa, Bøtner, et al., 2016a). Comparatively, among epizootics in areas with a predominance of 

smallholder farmers—as in the Philippines and Vietnam—the majority of costs are directly associated 
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with affected farms and the implementation of control measures (Casal et al., 2022). In Romania, the 

majority of direct economic losses to farmers are estimated to have come from movements bans on 

commercial farms, with total losses per sow per affected farm of €250, on average (Bergevoet et al., 

2020). A survey of seven Romanian industrial farms indicated roughly 766000 pigs were killed because 

of overpopulation, with over 7500 sold below normal value (Bergevoet et al., 2020). It is claimed that 

compensating farmers for these losses as of 2021 has cost the Romanian government over €121 

million (Euromeat News, 2021).  

To truly ascertain the economic impact of ASF in Romania, in addition to the direct losses that have 

been partially quantified above, indirect costs will have to be considered as well. Indirect costs are 

notoriously difficult to estimate, however (Barratt et al., 2019). Among control costs, the surveillance 

costs per backyard herd and industrial site (including additional workforce, sampling costs, and 

laboratory costs), costs of culling for backyard herds and industrial sites, and costs for the authorities 

to enforce movement restrictions would be necessary to obtain. Additionally, for wild boar, the costs 

of erecting fencing, searching for wild boar carcasses, and providing hunting incentives would also 

need to be included. Foregone revenue, the primary means of loss among industrialized swine 

populations, would need to be accounted for among Romania commercial producers (Halasa, Bøtner, 

et al., 2016a). The lack of export ability will need to be quantified at an industry level, as will the 

downstream effects of loss of market access. Being barred from desirable trade market hinders the 

development of commercial farming, and excess swine and swine products sold domestically will drive 

prices down for consumers at the expense of the producers, which will also need to be accounted for 

(Knight-Jones & Rushton, 2013). This is an on-going issue in China, where pork prices first hit record 

highs in 2019 (Beek, 2019), but then inventory liquidation by small and medium producers flooded 

the market and subsequently prices plummeted (Pig333, 2021). Indeed, the price for live hogs fell by 

almost 65%. Recent economic assessment of ASF outbreaks China, accounting for losses across all 

sectors of industry as many are tangentially related to agriculture, has put the total economic losses 

for a one-year period beginning from August 2018 at almost 1% (0.78%) of China’s gross domestic 

product—an absolutely staggering number (You et al., 2021). Non-agriculture sectors that are linked 

to the pig production market—such as the medical sector for its reliance on pigs for medications like 

insulin and heparin—will also need to be factored into economic impact analyses (Barratt et al., 2019). 

Lastly, should Romania eliminate ASF and achieve ASF-free status again, economics models will have 

to include the on-going costs of import controls and wildlife surveillance to prevent further incursions 

(Knight-Jones & Rushton, 2013). Considering all these cost aspects would facilitate a holistic economic 

assessment of the Romanian situation, which could help guide the Romanian authorities in their own 

decision processes. Further, the complexity involved in this type of analysis highlights the need for 
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multidisciplinary collaboration between veterinary epidemiologists and animal health economists, 

especially in response to the current ASF crisis. 

7.4  Reflections 

“Self-reflection is the school of wisdom”, wrote the 17th century Spanish writer Baltasar Gracián. 

Similarly, we must reflect upon the past three years of research into mathematical modelling of ASF, 

in order to better understand not only what was done, but where to and how else to go forward. Here 

we developed and parameterized a discrete stochastic spatio-temporal mechanistic model of ASF for 

estimating disease spillover between wild and domestic hosts. There are other means to achieve 

similar epizootic insights, with phylodynamic approaches—where phylogenetics is coupled with 

epidemiological data— demonstrating particular promise at elucidating transmission parameters and 

quantifying spillover events (Guinat et al., 2021). However, choosing to use such methods could be 

dependent on viral genetic characteristics, and ASFV, being a very large double-stranded DNA virus, 

may currently limit successes of this approach. Deciding upon whole genome or single-gene 

approaches, along with identifying if genetic variability can be captured with just a small number of 

sequences among outbreaks, are current hurdles with such an approach (Fiori et al., 2021; Frias-De-

Diego et al., 2021). Indeed, mechanistic approaches are “especially useful in systems where spillover 

events are infrequent, rarely observed, or hard to differentiate from within-species transmission 

events” (Cross et al., 2019). However, while our methodology had its benefits, by developing a 

stochastic model we were reliant on Bayesian methods to estimate our parameters. Likelihoods in our 

stochastic model, with its high dimensionality, would have been intractable (Stocks et al., 2018). A 

deterministic approach was considered, however deterministic models inherently assume no 

randomness in transmission, with all variability in the observed data accounted for as noise (Stocks et 

al., 2017, 2018). Given the uncertainty in negative parts of our surveillance data, partially-observed 

Markov process (POMP) models for modelling transmission were considered. However, methods for 

extending their benefit from strictly time-series data to spatio-temporal data were not yet developed 

(the R package SpatPOMP for such spatio-temporal POMP inference has only just been developed this 

previous year (Asfaw et al., 2021)). In the end, our stochastic spatio-temporal hybrid IBM-cellular 

automata formulation was chosen. 

Juxtaposed to alternative model solutions, we are also able to reflect on alternative data scenarios. 

Indeed, the benefit of transit network data and herd-level coordinate data would have enabled 

additional levels of detail to be included, that could have resulted in improved representation of the 

on-the-ground dynamics. Even aggregated backyard herd data (consisting of the number and sizes of 

herds per village, without explicit location coordinates) could have facilitated further differentiation 
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between villages. Accessing swine movement data and representing the trade network could make 

our model more realistic, however network-driven transmission is not the main route for ASF spread 

in our modelled region, and network topology can have large impacts on transmission dynamics and 

is outside the scope of this thesis (Shirley & Rushton, 2005). Often, a few individuals (or herds) can be 

responsible for a large number of contacts (Keeling & Eames, 2005), as was recently determined 

among French swine herd trading partnerships (Hammami et al., 2022). Lastly—and most importantly 

regarding the incorporation or exclusion of network transmission—our objective was to ascertain the 

relative contribution of the wild and domestic compartments to overall ASF spread. Incorporating 

network transmission would likely have small if any impact on the relative contribution of the different 

transmission routes, which was relatively well captured through a transmission kernel. That being said, 

a spatial index would be beneficial to determine the dispersal of ASF spread in regards to the observed 

data. 

Lastly, human behavior plays a central role in diseases transmission (Ferguson, 2007). In Romania, an 

audit by the European Commission indicated that, among backyard farmers, high levels of non-

compliance were observed with regards to requirements for pig identification, registration and 

movement notifications (European Commission, 2018). Though this precluded the ability to perform 

contact tracing, permanent road checkpoints were established and hundreds of fines were issued to 

individuals illegally transporting animals (European Commission, 2018). Still, these illegal transports 

enabled backyard pigs to enter the national market, and disseminate ASFV across the national 

landscape (European Commission, 2018). Additionally, though County Prefects were given the ability 

to mandate preventive culling, strong resistance from backyard farmers beyond the immediate 

neighbors of an affected farm hindered the ability to enforce such actions (European Commission, 

2018; C. Mortasivu, personal communication, 2021). During the epizootic at the end of 2018, a 

substantial number of animals were illegally moved or slaughtered (Bergevoet et al., 2020). 

Additionally, farmers were suspected to pre-emptively slaughter their pigs and then freeze the 

contaminated meat, resulting in the resurgence of ASF many months later in previously recovered 

villages after when such meat would have been thawed and consumed (C. Mortasivu, personal 

communication, 2021). While an economic epidemiological approach may capture some of these 

actions—under the assumption of rational behavior of all individuals—incorporating theories of 

human behavior from psychological and sociological perspectives will be necessary to capture the 

complexity of behavioral responses (Bedson et al., 2021). Some behaviors have already been 

evaluated in ASF models, such as that related to ASF dissemination from emergency pig sales (Costard 

et al., 2015). In our model, behaviors could potentially be incorporated at the level of the village, to 

account for reactions to risk communication and community engagement (RCCE) (Bedson et al., 2021). 
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Here, villages that are exposed to an ASF prevention messaging may be less susceptible to infection, 

though could potentially also become more infectious in the case of circulating undetected infections 

(as shown by Costard et al. (2015)). Fear of ASF infection in response to infections in nearby villages—

that could result in pig movements or pre-emptive slaughter—could also be included in our model. To 

model trade modulation without a transit network, the kernel function could be modified from the 

current exponential one to a Gaussian or other alternative formulation, as previously done in HPAI 

risk assessment (Boender et al., 2007). A knowledge, attitudes, and practices survey of farmers in 

Ukraine recently elucidated relationships between knowledge gaps in ASF and risky behavioral 

practices, and also highlighted important regional differences in the areas studied (Muñoz-Gómez et 

al., 2021). Similarly, further study into the social and behavioral responses of Romanian backyard 

farmers to ASF would provide data that could be incorporated into future models. 

Though much has been done in the conception, development, and application of our model, there is 

much room for further growth. My recommendation for the first extension of this work would be to 

represent within-village dynamics. Representing all herds individually would be the ideal solution, but 

the data does not exist and with over one million herds known to have illegal status (neither reported 

nor geolocalized), complete geolocalization is but a pipe dream. Alternatively, designing a within-

village module that captures the behaviors related to emergency culling, carcass freezing, and carcass 

thawing, while using a demographic or size-based proxy to estimate the number of backyard herds 

per village would be a possibility. A more realistic extension would be to refine the wild boar model 

component, as that is an area of much uncertainty. If forest coverage is to continue to serve as a proxy 

variable for wild boar abundance, considering an additional cell type of forest-adjacent cells (that are 

less infectious than adequately-covered cells but not as much as other cells) may better-capture the 

observed wild boar case data, and should be explored. In addition to better representation of wild 

boar abundance, wild boar control strategies need to be expanded if we are to better explore the 

dynamics of control strategies across compartments. Currently, we are only able to account for perfect 

carcass clearance of a cell. Including fencing and hunting strategies in addition to varying levels of 

carcass retrieval would allow extension of our model to both other epizootic phases in Romania as 

well as other environments. The Republic of Korea would be one such environment—and in fact an 

ideal setting for this—due to the presence of small-holder pig farming, the availability of detailed 

surveillance data, and the availability of published studies of prior ASF incursions for comparison (Han 

et al., 2022; Lim et al., 2021; Yoo et al., 2021). Examination of the domestic-wildlife interface dynamic 

there, through transposition of this model, could serve as such an opportunity to both make these 

model improvements as well as attempt additional parameterization strategies.  
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Box 7.2 | Chapter 7 Key points 

• Our model is unique from other ASF models that include the domestic-wildlife interface 

through mechanistically allowing the quantification of the relative contribution of the 

domestic and wildlife compartments to overall epizootic spread. 

• In addition to including more control strategies such as hunting and fencing, it is 

recommended that future model versions include an economic module that quantifies direct 

and indirect epizootic costs, including the costs for implementing the proposed control 

strategies. 

• Accounting for market shifts, changes in trade relationships, and redistributions in the food 

processing industry is necessary to truly capture the economic effects of an epizootic. 

• Representing within-village dynamics would be another important extension of this work, and 

can be accomplished through a module that captures the behaviors related to emergency 

culling, carcass freezing, and carcass thawing. 

• Forest-adjacent cells—that are less infectious than adequately-covered cells but not as much 

as other cells—should be considered as a way to potentially better-capture the observed wild 

boar case data. 

• Through including fencing and hunting strategies along with varying levels of carcass retrieval, 

our model could be extended to other environments. Due to the presence of small-holder pig 

farming, the availability of detailed surveillance data, and the availability of published studies 

of prior ASF incursions for comparison, The Republic of Korea would be an ideal country to 

consider for future developments of this work. 
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8 |  General conclusions 

In Romania, where the ASF epizootic is entrenched in both the domestic and wild compartments, 

novel strategies accounting for transmission between domestic pigs and wild boar, or updated control 

objectives that consider low level of circulation in the wild compartment, may be necessary. To 

consider control strategies at the domestic-wildlife interface, additional levels of cooperation among 

stakeholders will be necessary, as management in one compartment will affect disease dynamics—

and correspondingly necessary response measures—in the complimentary compartment. Though 

some ASF outbreaks have been successfully controlled, the countries that have so far achieved 

eradication—the Czech Republic and Belgium (and also Greece but from only one case among 

domestic pigs)—were confronting epizootics exclusively in the wild compartment (Van Goethem, 

2021), halting ASFV circulation through near-depopulation of domestic pigs in the areas with wild boar 

cases (WOAH, 2019a) and aggressive silent culling of wild boar within the first few months of detection 

in high risk areas (EFSA et al., 2021). These two scenarios seem to be the exception, however, as many 

other countries with ASF in the wild compartment (e.g. Hungary, Bulgaria, and the Baltic states), did 

not succeed at achieving control, and it is currently enzootic in that compartment (EFSA et al., 2022). 

As evidenced in the annual epidemiological analyses of EU Member States by EFSA, successful 

eradication of ASF enzooticity via wild boar is a “challenging, often unsuccessful task” (EFSA et al., 

2022; Gervasi & Gubertì, 2022). Among domestic pig farms, recent (within the past year) increasing 

spread of ASF has been witnessed in both EU Member States (Slovakia, Poland and Romania) and 

South East Asia (Thailand, Hong Kong, and Malaysia) (DEFRA, 2022; EFSA et al., 2022). Continued 

improvements in existing management strategies to get ahead of these epizootics is needed, and 

mathematical models—having a proven track record—can help guide such developments. 

There is still much research to be done, as evidenced by the fact that in only the year-and-a-half since 

the publication of our systematic review, 15 new ASF modelling studies have entered the research 

sphere (as of 5 August 2022 as indexed via Pubmed). Of note, the creation of economic models that 

account for costs to both producers and state governments are needed so as to be included in control 

strategy optimization schemes, to truly allow an algorithmically-optimized approach to ASF 

management. While ASF has been successfully eradicated from some EU Member States through 

existing codified strategies, the continued transcontinental spread paints an uncertain future for 

achieving complete panzootic control. Indeed, current objectives targeting ASF eradication may not 

be feasible, tenable, cost-effective, or even optimal for some or many of the multitude of nations 

affected (especially outside of the EU). As the current genotype II strain demonstrates its ability to 

become entrenched among wild boar populations, and with export losses responsible for the majority 
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of the economic impact of ASF on a country, a refocus of strategies that account for a nation’s net-

export profits against the costs of aggressive control measures may be necessary.  

Though increasingly realistic simulation models have the potential to play ever-greater roles in the 

decision processes of policymakers, multisectoral collaboration between epidemiologists, 

veterinarians, virologists, ecologists, swine farmers, policymakers, and modellers will be essential to 

maintain an inclusive approach to ASF modelling. Ensuring all parties have aligned objectives against 

ASF will facilitate a unified approach to confronting this global porcine panzootic, and mathematical 

models will continue to be able lend their support.  



 159 

§ V |  Bibliography 

9 |  Bibliography 

Agudelo, M. S., Grant, W. E., & Wang, H.-H. (2021). Effects of white-tailed deer habitat use preferences 

on southern cattle fever tick eradication: Simulating impact on “pasture vacation” strategies. 

Parasites & Vectors, 14(1), 102. https://doi.org/10.1186/s13071-021-04590-z 

Alexander, N. S., Massei, G., & Wint, W. (2016). The European Distribution of Sus Scrofa. Model 

Outputs from the Project Described within the Poster – Where are All the Boars? An Attempt 

to Gain a Continental Perspective. Open Health Data, 4(1), Article 1. 

https://doi.org/10.5334/ohd.24 

Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J. M., & ICTV Report ConsortiumYR 

2018. (2018). ICTV Virus Taxonomy Profile: Asfarviridae. Journal of General Virology, 99(5), 

613–614. https://doi.org/10.1099/jgv.0.001049 

Anderson, E. C., Hutchings, G. H., Mukarati, N., & Wilkinson, P. J. (1998). African swine fever virus 

infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of 

the disease. Veterinary Microbiology, 62(1), 1–15. https://doi.org/10.1016/S0378-

1135(98)00187-4 

Anderson, R. M., Donnelly, C. A., Ferguson, N. M., Woolhouse, M. E. J., Watt, C. J., Udy, H. J., 

MaWhinney, S., Dunstan, S. P., Southwood, T. R. E., Wilesmith, J. W., Ryan, J. B. M., Hoinville, 

L. J., Hillerton, J. E., Austin, A. R., & Wells, G. a. H. (1996). Transmission dynamics and 

epidemiology of BSE in British cattle. Nature, 382(6594), Article 6594. 

https://doi.org/10.1038/382779a0 

Anderson, R. M., & May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control. OUP 

Oxford. 

Andraud, M., Bougeard, S., Chesnoiu, T., & Rose, N. (2021). Spatiotemporal clustering and Random 

Forest models to identify risk factors of African swine fever outbreak in Romania in 2018–

2019. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-81329-x 

Andraud, M., Halasa, T., Boklund, A., & Rose, N. (2019). Threat to the French Swine Industry of African 

Swine Fever: Surveillance, Spread, and Control Perspectives. Frontiers in Veterinary Science, 

6, 248. https://doi.org/10.3389/fvets.2019.00248 

Andraud, M., Hammami, P., H Hayes, B., A Galvis, J., Vergne, T., Machado, G., & Rose, N. (2022). 

Modelling African swine fever virus spread in pigs using time-respective network data: 

Scientific support for decision makers. Transboundary and Emerging Diseases, 69(5), e2132–

e2144. https://doi.org/10.1111/tbed.14550 



 160 

Andronico, A., Courcoul, A., Bronner, A., Scoizec, A., Lebouquin-Leneveu, S., Guinat, C., Paul, M. C., 

Durand, B., & Cauchemez, S. (2019). Highly pathogenic avian influenza H5N8 in south-west 

France 2016–2017: A modeling study of control strategies. Epidemics, 28, 100340. 

https://doi.org/10.1016/j.epidem.2019.03.006 

Animal Health Advisory Committee (AHAC). (2021, March 26). Special control measures for ASF from 

21 April 2021. European Commission Sante G2. 

ANSVSA. (2019, October 24). Epidemiological Situation of ASF in Romania. SCOPAFF. 

Arias, M., & Sánchez-Vizcaíno, J. M. (2002). African Swine Fever. In Trends in Emerging Viral Infections 

of Swine (pp. 119–124). John Wiley & Sons, Ltd. 

https://doi.org/10.1002/9780470376812.ch4a 

Arino, J., & van den Driessche, P. (2003a). The Basic Reproduction Number in a Multi-city 

Compartmental Epidemic Model. In L. Benvenuti, A. De Santis, & L. Farina (Eds.), Positive 

Systems (pp. 135–142). Springer. https://doi.org/10.1007/978-3-540-44928-7_19 

Arino, J., & van den Driessche, P. (2003b). A multi-city epidemic model. Mathematical Population 

Studies, 10(3), 175–193. https://doi.org/10.1080/08898480306720 

Asfaw, K., Park, J., Ho, A., King, A. A., & Ionides, E. (2021). Partially observed Markov processes with 

spatial structure via the R package spatPomp (arXiv:2101.01157). arXiv. 

https://doi.org/10.48550/arXiv.2101.01157 

Backer, J. A., Hagenaars, T. J., van Roermund, H. J. W., & de Jong, M. C. M. (2009). Modelling the 

effectiveness and risks of vaccination strategies to control classical swine fever epidemics. 

Journal of The Royal Society Interface, 6(39), 849–861. https://doi.org/10.1098/rsif.2008.0408 

Baldacchino, F., Muenworn, V., Desquesnes, M., Desoli, F., Charoenviriyaphap, T., & Duvallet, G. 

(2013). Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): A review. Parasite 

(Paris, France), 20, 26. https://doi.org/10.1051/parasite/2013026 

Balmoș, O., Supeanu, A., Tamba, P., Cazan, C., Ionică, A., Ungur, A., Motiu, M., Manita, F., Ancuceanu, 

B., Bărbuceanu, F., & Mihalca, A. (2021). Entomological survey to study the possible 

involvement of arthropod vectors in the transmission of African swine fever virus in Romania. 

EFSA Supporting Publications, 18(3), 6460E. https://doi.org/10.2903/sp.efsa.2021.EN-6460 

Barasona, J. A., Gallardo, C., Cadenas-Fernández, E., Jurado, C., Rivera, B., Rodríguez-Bertos, A., Arias, 

M., & Sánchez-Vizcaíno, J. M. (2019). First Oral Vaccination of Eurasian Wild Boar Against 

African Swine Fever Virus Genotype II. Frontiers in Veterinary Science, 6, 137. 

https://doi.org/10.3389/fvets.2019.00137 

Barlow, N. D. (1994). Bovine tuberculosis in New Zealand: Epidemiology and models. Trends in 

Microbiology, 2(4), 119–124. https://doi.org/10.1016/0966-842x(94)90598-3 



 161 

Barongo, M. B., Bishop, R. P., Fèvre, E. M., Knobel, D. L., & Ssematimba, A. (2016). A Mathematical 

Model that Simulates Control Options for African Swine Fever Virus (ASFV). PLOS ONE, 11(7), 

e0158658. https://doi.org/10.1371/journal.pone.0158658 

Barongo, M. B., Ståhl, K., Bett, B., Bishop, R. P., Fèvre, E. M., Aliro, T., Okoth, E., Masembe, C., Knobel, 

D., & Ssematimba, A. (2015). Estimating the Basic Reproductive Number (R0) for African Swine 

Fever Virus (ASFV) Transmission between Pig Herds in Uganda. PLOS ONE, 10(5), e0125842. 

https://doi.org/10.1371/journal.pone.0125842 

Barratt, A. S., Rich, K. M., Eze, J. I., Porphyre, T., Gunn, G. J., & Stott, A. W. (2019). Framework for 

Estimating Indirect Costs in Animal Health Using Time Series Analysis. Frontiers in Veterinary 

Science, 6. https://www.frontiersin.org/articles/10.3389/fvets.2019.00190 

Barron, M. C., Tompkins, D. M., Ramsey, D. S. L., & Bosson, M. A. J. (2015). The role of multiple wildlife 

hosts in the persistence and spread of bovine tuberculosis in New Zealand. New Zealand 

Veterinary Journal, 63 Suppl 1(sup1), 68–76. https://doi.org/10.1080/00480169.2014.968229 

Bauer, A. L., Beauchemin, C. A. A., & Perelson, A. S. (2009). Agent-based modeling of host–pathogen 

systems: The successes and challenges. Information Sciences, 179(10), 1379–1389. 

https://doi.org/10.1016/j.ins.2008.11.012 

Baysinger, A., & Kogan, L. R. (2022). Mental Health Impact of Mass Depopulation of Swine on 

Veterinarians During COVID-19 Infrastructure Breakdown. Frontiers in Veterinary Science, 9. 

https://www.frontiersin.org/articles/10.3389/fvets.2022.842585 

Beauchemin, C., Samuel, J., & Tuszynski, J. (2005). A simple cellular automaton model for influenza A 

viral infections. Journal of Theoretical Biology, 232(2), 223–234. 

https://doi.org/10.1016/j.jtbi.2004.08.001 

Beaunée, G., Deslandes, F., & Vergu, E. (2022). Inferring A.S.F. transmission in domestic pigs and wild 

boars using a paired model iterative approach. Epidemics. 

Bedson, J., Skrip, L. A., Pedi, D., Abramowitz, S., Carter, S., Jalloh, M. F., Funk, S., Gobat, N., Giles-

Vernick, T., Chowell, G., de Almeida, J. R., Elessawi, R., Scarpino, S. V., Hammond, R. A., Briand, 

S., Epstein, J. M., Hébert-Dufresne, L., & Althouse, B. M. (2021). A review and agenda for 

integrated disease models including social and behavioural factors. Nature Human Behaviour, 

5(7), 834–846. https://doi.org/10.1038/s41562-021-01136-2 

Beek, V. ter. (2019, September 2). ASF China: Pork prices soar as future effects become clear. Pig 

Progress. https://www.pigprogress.net/health-nutrition/asf-china-pork-prices-soar-as-

future-effects-become-clear/ 

Beltrán-Alcrudo, D., Lubroth, J., Depner, K., & De La Rocque, S. (2008). African swine fever in the 

Caucasus (EMPRES WATCH, p. 8). FAO. https://www.fao.org/3/aj214e/aj214e.pdf 



 162 

Bergevoet, R. H. M., Hoste, R., Verweij-Novikova, I., Jongeneel, R. A., Gonzalez Martinez, A., & Hennen, 

W. H. G. J. (2020). Future of pig production in Romania: Options for governmental policy. 

Wageningen Economic Research. 

https://scholar.google.com/scholar_lookup?title=Future+of+pig+production+in+Romania+%

3A+Options+for+governmental+policy&author=Bergevoet%2C+R.H.M.&publication_year=20

20 

Birch, C. P. D., Goddard, A., & Tearne, O. (2018). A new bovine tuberculosis model for England and 

Wales (BoTMEW) to simulate epidemiology, surveillance and control. BMC Veterinary 

Research, 14(1), 273. https://doi.org/10.1186/s12917-018-1595-9 

Bizouarn, P. (2016). L’éco-épidémiologie—Vers une épidémiologie de la complexité. 

médecine/sciences, 32(5), Article 5. https://doi.org/10.1051/medsci/20163205018 

Blome, S., Gabriel, C., & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and 

European wild boar. Virus Research, 173(1), 122–130. 

https://doi.org/10.1016/j.virusres.2012.10.026 

Blome, S., Gabriel, C., Dietze, K., Breithaupt, A., & Beer, M. (2012). High virulence of African swine 

fever virus caucasus isolate in European wild boars of all ages. Emerging Infectious Diseases, 

18(4), 708. https://doi.org/10.3201/eid1804.111813 

Boender, G. J., Hagenaars, T. J., Bouma, A., Nodelijk, G., Elbers, A. R. W., Jong, M. C. M. de, & Boven, 

M. van. (2007). Risk Maps for the Spread of Highly Pathogenic Avian Influenza in Poultry. PLOS 

Computational Biology, 3(4), e71. https://doi.org/10.1371/journal.pcbi.0030071 

Boinas, F. S., Wilson, A. J., Hutchings, G. H., Martins, C., & Dixon, L. J. (2011). The persistence of African 

swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in 

Portugal. PloS One, 6(5), e20383. https://doi.org/10.1371/journal.pone.0020383 

Boklund, A., Dhollander, S., Chesnoiu Vasile, T., Abrahantes, J. C., Bøtner, A., Gogin, A., Gonzalez 

Villeta, L. C., Gortázar, C., More, S. J., Papanikolaou, A., Roberts, H., Stegeman, A., Ståhl, K., 

Thulke, H. H., Viltrop, A., Van der Stede, Y., & Mortensen, S. (2020). Risk factors for African 

swine fever incursion in Romanian domestic farms during 2019. Scientific Reports, 10(1), 

10215. https://doi.org/10.1038/s41598-020-66381-3 

Boklund, A., Goldbach, S. G., Uttenthal, A., & Alban, L. (2008). Simulating the spread of classical swine 

fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark. 

Preventive Veterinary Medicine, 85(3–4), 187–206. 

https://doi.org/10.1016/j.prevetmed.2008.01.012 

Bouchez-Zacria, M., Courcoul, A., & Durand, B. (2018). The Distribution of Bovine Tuberculosis in Cattle 

Farms Is Linked to Cattle Trade and Badger-Mediated Contact Networks in South-Western 



 163 

France, 2007-2015. Frontiers in Veterinary Science, 5, 173. 

https://doi.org/10.3389/fvets.2018.00173 

Brauer, F. (2017). Mathematical epidemiology: Past, present, and future. Infectious Disease Modelling, 

2(2), 113–127. https://doi.org/10.1016/j.idm.2017.02.001 

Brookes, V. J., Barrett, T. E., Ward, M. P., Roby, J. A., Hernandez-Jover, M., Cross, E. M., Donnelly, C. 

M., Barnes, T. S., Wilson, C. S., & Khalfan, S. (2021). A scoping review of African swine fever 

virus spread between domestic and free-living pigs. Transboundary and Emerging Diseases, 

68(5), 2643–2656. https://doi.org/10.1111/tbed.13993 

Brooks-Pollock, E., & Wood, J. L. N. (2015). Eliminating bovine tuberculosis in cattle and badgers: 

Insight from a dynamic model. Proceedings of the Royal Society B: Biological Sciences, 

282(1808), 20150374. https://doi.org/10.1098/rspb.2015.0374 

Buhnerkempe, M. G., Roberts, M. G., Dobson, A. P., Heesterbeek, H., Hudson, P. J., & Lloyd-Smith, J. 

O. (2015). Eight challenges in modelling disease ecology in multi-host, multi-agent systems. 

Epidemics, 10, 26–30. https://doi.org/10.1016/j.epidem.2014.10.001 

Busch, F., Haumont, C., Penrith, M.-L., Laddomada, A., Dietze, K., Globig, A., Guberti, V., Zani, L., & 

Depner, K. (2021). Evidence-Based African Swine Fever Policies: Do We Address Virus and Host 

Adequately? Frontiers in Veterinary Science, 8. 

https://www.frontiersin.org/articles/10.3389/fvets.2021.637487 

Byrom, A. E., Anderson, D. P., Coleman, M., Thomson, C., Cross, M. L., & Pech, R. P. (2015). Assessing 

Movements of Brushtail Possums (Trichosurus vulpecula) in Relation to Depopulated Buffer 

Zones for the Management of Wildlife Tuberculosis in New Zealand. PloS One, 10(12), 

e0145636. https://doi.org/10.1371/journal.pone.0145636 

Cadenas-Fernández, E., Sánchez-Vizcaíno, J. M., Pintore, A., Denurra, D., Cherchi, M., Jurado, C., 

Vicente, J., & Barasona, J. A. (2019). Free-Ranging Pig and Wild Boar Interactions in an Endemic 

Area of African Swine Fever. Frontiers in Veterinary Science, 6, 376. 

https://doi.org/10.3389/fvets.2019.00376 

Cadenas-Fernández, E., Sánchez-Vizcaíno, J. M., van den Born, E., Kosowska, A., van Kilsdonk, E., 

Fernández-Pacheco, P., Gallardo, C., Arias, M., & Barasona, J. A. (2021). High Doses of 

Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent 

Challenge. Vaccines, 9(3), 242. https://doi.org/10.3390/vaccines9030242 

Carriquiry, M. A., Elobeid, A. E., Hayes, D. J., & Swenson, D. A. (2021). Impacts of An African Swine 

Fever Outbreak in the United States: Implications on National and Iowa Agriculture. 

Agricultural & Applied Economics Association Annual Meeting. 



 164 

https://ageconsearch.umn.edu/record/312921/files/Abstracts_21_07_02_14_43_15_42__1

79_26_209_123_0.pdf 

Casal, J., Tago, D., Pineda, P., Tabakovski, B., Santos, I., Benigno, C., Huynh, T., Ciaravino, G., & Beltran-

Alcrudo, D. (2022). Evaluation of the economic impact of classical and African swine fever 

epidemics using OutCosT, a new spreadsheet-based tool. Transboundary and Emerging 

Diseases, n/a(n/a). https://doi.org/10.1111/tbed.14590 

Casas-Díaz, E., Closa-Sebastià, F., Peris, A., Miño, A., Torrentó, J., Casanovas, R., Marco, I., Lavin, S., 

Fernández-Llario, P., & Serrano, E. (2013). Recorded dispersal of wild boar (Sus scrofa) in 

Northeast Spain: Implications for disease-monitoring programs. Wildlife Biology in Practice, 9, 

19–26. https://doi.org/10.2461/wbp.2013.ibeun.3 

Castiglione, F. (2009). Agent Based Modeling and Simulation, Introduction to. In R. A. Meyers (Ed.), 

Encyclopedia of Complexity and Systems Science (pp. 197–200). Springer New York. 

https://doi.org/10.1007/978-0-387-30440-3_13 

Charrier, F., Rossi, S., Jori, F., Maestrini, O., Richomme, C., Casabianca, F., Ducrot, C., Jouve, J., Pavio, 

N., & Le Potier, M.-F. (2018). Aujeszky’s Disease and Hepatitis E Viruses Transmission between 

Domestic Pigs and Wild Boars in Corsica: Evaluating the Importance of Wild/Domestic 

Interactions and the Efficacy of Management Measures. Frontiers in Veterinary Science, 5. 

https://www.frontiersin.org/articles/10.3389/fvets.2018.00001 

Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., & Ståhl, K. (2019). Epidemiological 

considerations on African swine fever in Europe 2014–2018. Porcine Health Management, 

5(1), 6. https://doi.org/10.1186/s40813-018-0109-2 

Claeys, H., & Heymans, J.-F. (2020). Self-declaration of Belgium’s African swine fever-free status in all 

swine species (Declaration). WOAH. 

https://www.woah.org/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Self-

declarations/2020_12_Belgium_ASF_self-declaration_ENG.pdf 

Coleman, J. D., & Cooke, M. M. (2001). Mycobacterium bovis infection in wildlife in New Zealand. 

Tuberculosis (Edinburgh, Scotland), 81(3), 191–202. https://doi.org/10.1054/tube.2001.0291 

Committee on Considerations for the Future of Animal Science Research, Program, S. and T. for S., 

Affairs, P. and G., Resources, B. on A. and N., Sciences, D. on E. and L., & Council, N. R. (2015). 

Global Considerations for Animal Agriculture Research. In Critical Role of Animal Science 

Research in Food Security and Sustainability. National Academies Press (US). 

https://www.ncbi.nlm.nih.gov/books/NBK285723/ 



 165 

Cosentino, C., Vescio, B., & Amato, F. (2013). Cellular Automata. In W. Dubitzky, O. Wolkenhauer, K.-

H. Cho, & H. Yokota (Eds.), Encyclopedia of Systems Biology (pp. 381–385). Springer. 

https://doi.org/10.1007/978-1-4419-9863-7_989 

Cosgrove, M. K., O’Brien, D. J., & Ramsey, D. S. L. (2018). Baiting and Feeding Revisited: Modeling 

Factors Influencing Transmission of Tuberculosis Among Deer and to Cattle. Frontiers in 

Veterinary Science, 5, 306. https://doi.org/10.3389/fvets.2018.00306 

Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J. M., & Pfeiffer, D. U. (2013). Epidemiology of 

African swine fever virus. Virus Research, 173(1), 191–197. 

https://doi.org/10.1016/j.virusres.2012.10.030 

Costard, S., Wieland, B., de Glanville, W., Jori, F., Rowlands, R., Vosloo, W., Roger, F., Pfeiffer, D. U., & 

Dixon, L. K. (2009). African swine fever: How can global spread be prevented? Philosophical 

Transactions of the Royal Society B: Biological Sciences, 364(1530), 2683–2696. 

https://doi.org/10.1098/rstb.2009.0098 

Costard, S., Zagmutt, F. J., Porphyre, T., & Pfeiffer, D. U. (2015). Small-scale pig farmers’ behavior, 

silent release of African swine fever virus and consequences for disease spread. Scientific 

Reports, 5(1), Article 1. https://doi.org/10.1038/srep17074 

Council of the European Union. (2002). Council Directive 2002/60/EC of 27 June 2002 laying down 

specific provisions for the control of African swine fever and amending Directive 92/119/EEC 

as regards Teschen disease and African swine fever. Off. J. Eur. Union L, 192, 27–46. 

Cowled, B., & Garner, G. (2008). A review of geospatial and ecological factors affecting disease spread 

in wild pigs: Considerations for models of foot-and-mouth disease spread. PREVENTIVE 

VETERINARY MEDICINE, 87(3–4), 197–212. https://doi.org/10.1016/j.prevetmed.2008.03.012 

Craft, M. E. (2015). Infectious disease transmission and contact networks in wildlife and livestock. 

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 

370(1669), 20140107. https://doi.org/10.1098/rstb.2014.0107 

Croft, S., Massei, G., Smith, G. C., Fouracre, D., & Aegerter, J. N. (2020). Modelling Spatial and Temporal 

Patterns of African Swine Fever in an Isolated Wild Boar Population to Support Decision-

Making. Frontiers in Veterinary Science, 7. 

https://www.frontiersin.org/articles/10.3389/fvets.2020.00154 

Cross, P. C., Creech, T. G., Ebinger, M. R., Heisey, D. M., Irvine, K. M., & Creel, S. (2012). Wildlife contact 

analysis: Emerging methods, questions, and challenges. Behavioral Ecology and Sociobiology, 

66(10), 1437–1447. https://doi.org/10.1007/s00265-012-1376-6 

Cross, P. C., Prosser, D. J., Ramey, A. M., Hanks, E. M., & Pepin, K. M. (2019). Confronting models with 

data: The challenges of estimating disease spillover. Philosophical Transactions of the Royal 



 166 

Society of London. Series B, Biological Sciences, 374(1782), 20180435. 

https://doi.org/10.1098/rstb.2018.0435 

Cwynar, P., Stojkov, J., & Wlazlak, K. (2019). African Swine Fever Status in Europe. Viruses, 11(4), 

Article 4. https://doi.org/10.3390/v11040310 

Dankwa, E. A., Lambert, S., Hayes, S., Thompson, R. N., & Donnelly, C. A. (2022). Stochastic modelling 

of African swine fever in wild boar and domestic pigs: Epidemic forecasting and comparison 

of disease management strategies. Epidemics, 40, 100622. 

https://doi.org/10.1016/j.epidem.2022.100622 

Danzetta, M. L., Marenzoni, M. L., Iannetti, S., Tizzani, P., Calistri, P., & Feliziani, F. (2020). African 

Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. 

Frontiers in Veterinary Science, 7. 

https://www.frontiersin.org/article/10.3389/fvets.2020.00296 

De Tray, D. E. (1957). African swine fever in wart hogs (Phacochoerus aethiopicus). Journal of the 

American Veterinary Medical Association, 130(12), 537–540. 

Dee, S. A., Bauermann, F. V., Niederwerder, M. C., Singrey, A., Clement, T., de Lima, M., Long, C., 

Patterson, G., Sheahan, M. A., Stoian, A. M. M., Petrovan, V., Jones, C. K., De Jong, J., Ji, J., 

Spronk, G. D., Minion, L., Christopher-Hennings, J., Zimmerman, J. J., Rowland, R. R. R., … Diel, 

D. G. (2018). Survival of viral pathogens in animal feed ingredients under transboundary 

shipping models. PloS One, 13(3), e0194509. https://doi.org/10.1371/journal.pone.0194509 

DEFRA. (2017). African Swine Fever in the Czech Republic (African Swine Fever in Pigs in Central and 

Eastern Europe, p. 3) [Preliminary Outbreak Assessment]. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_

data/file/623618/asf-czech-republic.pdf 

DEFRA. (2021). African swine fever in Eastern Europe and Germany (Updated Outbreak Assessment 

No. 23; Advice Services - International Disease Monitoring). 

DEFRA. (2022). Updated Outbreak Assessment #23 (No. 23; p. 5). 

Delsart, M., Pol, F., Dufour, B., Rose, N., & Fablet, C. (2020). Pig Farming in Alternative Systems: 

Strengths and Challenges in Terms of Animal Welfare, Biosecurity, Animal Health and Pork 

Safety. Agriculture, 10(7), 261. https://doi.org/10.3390/agriculture10070261 

Di Stefano, B., Fuks, H., & Lawniczak, A. T. (2000). Object-oriented implementation of CA/LGCA 

modelling applied to the spread of epidemics. 2000 Canadian Conference on Electrical and 

Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492), 

1, 26–31 vol.1. https://doi.org/10.1109/CCECE.2000.849664 



 167 

Dixon, L. K., Chapman, D. A. G., Netherton, C. L., & Upton, C. (2013). African swine fever virus 

replication and genomics. Virus Research, 173(1), 3–14. 

https://doi.org/10.1016/j.virusres.2012.10.020 

Dixon, L. K., Stahl, K., Jori, F., Vial, L., & Pfeiffer, D. U. (2020). African Swine Fever Epidemiology and 

Control. Annual Review of Animal Biosciences, 8, 221–246. https://doi.org/10.1146/annurev-

animal-021419-083741 

Donnelly, C. A., & Nouvellet, P. (2013). The contribution of badgers to confirmed tuberculosis in cattle 

in high-incidence areas in England. PLoS Currents, 5, 

ecurrents.outbreaks.097a904d3f3619db2fe78d24bc776098. 

https://doi.org/10.1371/currents.outbreaks.097a904d3f3619db2fe78d24bc776098 

Donnelly, C. A., & Hone, J. (2010). Is There an Association between Levels of Bovine Tuberculosis in 

Cattle Herds and Badgers? Statistical Communications in Infectious Diseases, 2. 

https://doi.org/10.2202/1948-4690.1000 

Doran, R. J., & Laffan, S. W. (2005). Simulating the spatial dynamics of foot and mouth disease 

outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-

recovered cellular automata model. Preventive Veterinary Medicine, 70(1–2), 133–152. 

https://doi.org/10.1016/j.prevetmed.2005.03.002 

Dubé, C., Sánchez, J., & Reeves, A. (2011). Adapting existing models of highly contagious diseases to 

countries other than their country of origin. Revue Scientifique et Technique (International 

Office of Epizootics), 30, 581–589. https://doi.org/10.20506/rst.30.2.2061 

EFSA, Anette, B., Anette, B., Theodora, C. V., Klaus, D., Daniel, D., Vittorio, G., Georgina, H., Daniela, 

K., Annick, L., Aleksandra, M., Simon, M., Edvins, O., Sasa, O., Helen, R., Mihaela, S., Karl, S., 

Hans-Hermann, T., Grigaliuniene, V., … Christian, G. S. (2020). Epidemiological analyses of 

African swine fever in the European Union (November 2018 to October 2019). EFSA Journal, 

18(1), e05996. https://doi.org/10.2903/j.efsa.2020.5996 

EFSA, Baños, J. V., Boklund, A., Gogin, A., Gortázar, C., Guberti, V., Helyes, G., Kantere, M., Korytarova, 

D., Linden, A., Masiulis, M., Miteva, A., Neghirla, I., Oļševskis, E., Ostojic, S., Petr, S., Staubach, 

C., Thulke, H.-H., Viltrop, A., … Ståhl, K. (2022). Epidemiological analyses of African swine fever 

in the European Union (September 2020 to August 2021). EFSA Journal, 20(5), e07290. 

https://doi.org/10.2903/j.efsa.2022.7290 

EFSA, Depner, K., Gortazar, C., Guberti, V., Masiulis, M., More, S., Oļševskis, E., Thulke, H.-H., Viltrop, 

A., Woźniakowski, G., Cortiñas Abrahantes, J., Gogin, A., Verdonck, F., & Dhollander, S. (2017). 

Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA Journal, 

15(11), e05068. https://doi.org/10.2903/j.efsa.2017.5068 



 168 

EFSA, Desmecht, D., Gerbier, G., Gortázar Schmidt, C., Grigaliuniene, V., Helyes, G., Kantere, M., 

Korytarova, D., Linden, A., Miteva, A., Neghirla, I., Olsevskis, E., Ostojic, S., Petit, T., Staubach, 

C., Thulke, H.-H., Viltrop, A., Richard, W., Wozniakowski, G., … Ståhl, K. (2021). Epidemiological 

analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA 

Journal, 19(5), e06572. https://doi.org/10.2903/j.efsa.2021.6572 

EFSA, More, S., Miranda, M. A., Bicout, D., Bøtner, A., Butterworth, A., Calistri, P., Edwards, S., Garin-

Bastuji, B., Good, M., Michel, V., Raj, M., Nielsen, S. S., Sihvonen, L., Spoolder, H., Stegeman, 

J. A., Velarde, A., Willeberg, P., Winckler, C., … Gortázar Schmidt, C. (2018). African swine fever 

in wild boar. EFSA Journal. European Food Safety Authority, 16(7), e05344. 

https://doi.org/10.2903/j.efsa.2018.5344 

EFSA Panel on Animal Health and Welfare. (2010). Scientific Opinion on the Role of Tick Vectors in the 

Epidemiology of Crimean-Congo Hemorrhagic Fever and African Swine Fever in Eurasia. EFSA 

Journal, 8(8), 1703. https://doi.org/10.2903/j.efsa.2010.1703 

EFSA Panel on Animal Health and Welfare (EFSA AHAW Panel), Nielsen, S. S., Alvarez, J., Bicout, D. J., 

Calistri, P., Depner, K., Drewe, J. A., Garin-Bastuji, B., Gonzales Rojas, J. L., Gortázar Schmidt, 

C., Herskin, M., Michel, V., Miranda Chueca, M. Á., Pasquali, P., Roberts, H. C., Sihvonen, L. H., 

Spoolder, H., Ståhl, K., Velarde, A., … Aznar, I. (2021). Scientific Opinion on the assessment of 

the control measures of the category A diseases of Animal Health Law: African Swine Fever. 

EFSA Journal, 19(1), e06402. https://doi.org/10.2903/j.efsa.2021.6402 

ENETWILD-consortium, Acevedo, P., Croft, S., Smith, G., & Vicente, J. (2019). ENETwild modelling of 

wild boar distribution and abundance: Initial model output based on hunting data and update 

of occurrence-based models. EFSA Supporting Publications, 16(5), 1629E. 

https://doi.org/10.2903/sp.efsa.2019.EN-1629 

Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae (Debrecen), 6, 290–

297. 

Euromeat News. (2021, April 13). ASF crisis in Romania to keep the pig farming under pressure. 

EuroMeatNews. https://euromeatnews.com/Article-ASF-crisis-in-Romania-to-keep-the-pig-

farming-under-pressure/4603 

European Commission. (2014). Guidelines on surveillance and control of African swine fever in feral 

pigs and preventive measures for pig holdings (SANCO/7138/2013). Health And Consumers 

Directorate-General. 

European Commission. (2018). Final report of an audit carried out in Romania from 17 October 2018 

to 25 October 2018 in order to evaluate the implementation of animal health controls in 



 169 

relation to African swine fever (DG(SANTE) 2018-6700). Directorate-General for health and 

food safety. 

European Commission. (2020). Strategic approach to the management of African Swine Fever for the 

EU (SANTE/7113/2015 – Rev 12). Directorate-General for health and food safety. 

European Commission. (2022). EU ASF zoning measures [Map]. 

European Food Safety Authority (EFSA), Boklund, A., Cay, B., Depner, K., Földi, Z., Guberti, V., Masiulis, 

M., Miteva, A., More, S., Olsevskis, E., Šatrán, P., Spiridon, M., Stahl, K., Thulke, H.-H., Viltrop, 

A., Wozniakowski, G., Broglia, A., Cortinas Abrahantes, J., Dhollander, S., … Gortázar, C. (2018). 

Epidemiological analyses of African swine fever in the European Union (November 2017 until 

November 2018). EFSA Journal. European Food Safety Authority, 16(11), e05494. 

https://doi.org/10.2903/j.efsa.2018.5494 

Eustace Montgomery, R. (1921). On A Form of Swine Fever Occurring in British East Africa (Kenya 

Colony). Journal of Comparative Pathology and Therapeutics, 34, 159–191. 

https://doi.org/10.1016/S0368-1742(21)80031-4 

Ezanno, P., Picault, S., Bareille, S., Beaunée, G., Boender, G. J., Dankwa, E. A., Deslandes, F., Donnelly, 

C. A., Hagenaars, T. J., Hayes, S., Jori, F., Lambert, S., Mancini, M., Munoz, F., Pleydell, D. R. J., 

Thompson, R. N., Vergu, E., Vignes, M., & Vergne, T. (2022). The African swine fever modelling 

challenge: Model comparison and lessons learnt. Epidemics, 40, 100615. 

https://doi.org/10.1016/j.epidem.2022.100615 

FAO. (2009). Preparation of African swine fever contingency plans. In M.-L. Penrith, V. Guberti, K. 

Depner, & J. Lubroth, FAO Animal Production and Health manual (p. 86). FAO. 

https://www.fao.org/documents/card/66/c/d91e4185-2270-559c-9539-76db35b85d66 

FAO. (2012). Threat of African Swine Fever spread in Eastern Europe: Urgent need for international 

collaboration. https://www.fao.org/europe/events/detail-events/en/c/272989/ 

FAO. (2014). Sources of Meat. FAO. 

https://www.fao.org/ag/againfo/themes/en/meat/backgr_sources.html 

FAO. (2019). African swine fever in wild boar: Ecology and biosecurity. In V. Guberti, S. Khomenko, M. 

Masiulis, & S. Kerba, FAO Animal Production and Health Manual. FAO, OIE and EC. 

https://doi.org/10.4060/CA5987EN 

Fasina, F. O., Lazarus, D. D., Spencer, B. T., Makinde, A. A., & Bastos, A. D. S. (2012). Cost implications 

of African swine fever in smallholder farrow-to-finish units: Economic benefits of disease 

prevention through biosecurity. Transboundary and Emerging Diseases, 59(3), 244–255. 

https://doi.org/10.1111/j.1865-1682.2011.01261.x 



 170 

Faverjon, C., Meyer, A., Howden, K., Long, K., Peters, L., & Cameron, A. (2021). Risk-based early 

detection system of African Swine Fever using mortality thresholds. Transboundary and 

Emerging Diseases, 68(3), 1151–1161. https://doi.org/10.1111/tbed.13765 

Ferguson, N. M., (2007). Capturing human behaviour. Nature, 446(7137), Article 7137. 

https://doi.org/10.1038/446733a 

Ferguson, N. M., Donnelly, C. A., & Anderson, R. M. (2001). The foot-and-mouth epidemic in Great 

Britain: Pattern of spread and impact of interventions. Science (New York, N.Y.), 292(5519), 

1155–1160. https://doi.org/10.1126/science.1061020 

Ferguson, N. M., Ghani, A. C., Donnelly, C. A., Denny, G. O., & Anderson, R. M. (1998). BSE in Northern 

Ireland: Epidemiological patterns past, present and future. Proceedings of the Royal Society of 

London. Series B: Biological Sciences, 265(1396), 545–554. 

https://doi.org/10.1098/rspb.1998.0329 

Ferreira, H. C. de C., Backer, J. A., Weesendorp, E., Klinkenberg, D., Stegeman, J. A., & Loeffen, W. L. 

A. (2013). Transmission rate of African swine fever virus under experimental conditions. 

Veterinary Microbiology, 165(3), 296–304. https://doi.org/10.1016/j.vetmic.2013.03.026 

Ferreira, H. C. de C., Weesendorp, E., Elbers, A. R. W., Bouma, A., Quak, S., Stegeman, J. A., & Loeffen, 

W. L. A. (2012). African swine fever virus excretion patterns in persistently infected animals: 

A quantitative approach. Veterinary Microbiology, 160(3), 327–340. 

https://doi.org/10.1016/j.vetmic.2012.06.025 

Fiori, M. S., Sanna, D., Scarpa, F., Floris, M., Di Nardo, A., Ferretti, L., Loi, F., Cappai, S., Sechi, A. M., 

Angioi, P. P., Zinellu, S., Sirica, R., Evangelista, E., Casu, M., Franzoni, G., Oggiano, A., & Dei 

Giudici, S. (2021). A Deeper Insight into Evolutionary Patterns and Phylogenetic History of 

ASFV Epidemics in Sardinia (Italy) through Extensive Genomic Sequencing. Viruses, 13(10), 

1994. https://doi.org/10.3390/v13101994 

Fischer, M., Hühr, J., Blome, S., Conraths, F. J., & Probst, C. (2020). Stability of African Swine Fever 

Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV 

“Estonia 2014” Isolate. Viruses, 12(10), 1118. https://doi.org/10.3390/v12101118 

Frant, M., Woźniakowski, G., & Pejsak, Z. (2017). African Swine Fever (ASF) and Ticks. No Risk of Tick-

mediated ASF Spread in Poland and Baltic States. Journal of Veterinary Research, 61(4), 375–

380. https://doi.org/10.1515/jvetres-2017-0055 

Frias-De-Diego, A., Jara, M., Pecoraro, B. M., & Crisci, E. (2021). Whole Genome or Single Genes? A 

Phylodynamic and Bibliometric Analysis of PRRSV. Frontiers in Veterinary Science, 8. 

https://www.frontiersin.org/articles/10.3389/fvets.2021.658512 



 171 

Gabriel, C., Blome, S., Malogolovkin, A., Parilov, S., Kolbasov, D., Teifke, J. P., & Beer, M. (2011). 

Characterization of African swine fever virus Caucasus isolate in European wild boars. 

Emerging Infectious Diseases, 17(12), 2342–2345. https://doi.org/10.3201/eid1712.110430 

Gallardo, C., Soler, A., Nieto, R., Cano, C., Pelayo, V., Sánchez, M. A., Pridotkas, G., Fernandez-Pinero, 

J., Briones, V., & Arias, M. (2017). Experimental Infection of Domestic Pigs with African Swine 

Fever Virus Lithuania 2014 Genotype II Field Isolate. Transboundary and Emerging Diseases, 

64(1), 300–304. https://doi.org/10.1111/tbed.12346 

Gallardo, C., Soler, A., Nieto, R., Sánchez, M. A., Martins, C., Pelayo, V., Carrascosa, A., Revilla, Y., 

Simón, A., Briones, V., Sánchez-Vizcaíno, J. M., & Arias, M. (2015). Experimental Transmission 

of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs. Transboundary 

and Emerging Diseases, 62(6), 612–622. https://doi.org/10.1111/tbed.12431 

Gavier-Widén, D., Ståhl, K., & Dixon, L. (2020). No hasty solutions for African swine fever. Science (New 

York, N.Y.), 367(6478), 622–624. https://doi.org/10.1126/science.aaz8590 

Gavinelli, A., Forcella, S., & Van Goethem, B. (2020). WOAH Bulletin: Prevention and control measures 

for ASF. https://bulletin.woah.org/?panorama=02-2-5-2020-1-ec 

Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Ren, W., Bao, J., Liu, C., Wang, H., Liu, Y., Zhang, Y., Xu, T., 

Wu, X., & Wang, Z. (2018). Molecular Characterization of African Swine Fever Virus, China, 

2018. Emerging Infectious Diseases, 24(11), 2131–2133. 

https://doi.org/10.3201/eid2411.181274 

Gervasi, V., & Guberti, V. (2021). African swine fever endemic persistence in wild boar populations: 

Key mechanisms explored through modelling. Transboundary and Emerging Diseases, 68(5), 

2812–2825. https://doi.org/10.1111/tbed.14194 

Gervasi, V., & Gubertì, V. (2022). Combining hunting and intensive carcass removal to eradicate African 

swine fever from wild boar populations. Preventive Veterinary Medicine, 203, 105633. 

https://doi.org/10.1016/j.prevetmed.2022.105633 

Gervasi, V., Marcon, A., Bellini, S., & Guberti, V. (2019). Evaluation of the Efficiency of Active and 

Passive Surveillance in the Detection of African Swine Fever in Wild Boar. Veterinary Sciences, 

7(1), E5. https://doi.org/10.3390/vetsci7010005 

Gilbert, A. T., Fooks, A. R., Hayman, D. T. S., Horton, D. L., Müller, T., Plowright, R., Peel, A. J., Bowen, 

R., Wood, J. L. N., Mills, J., Cunningham, A. A., & Rupprecht, C. E. (2013). Deciphering serology 

to understand the ecology of infectious diseases in wildlife. EcoHealth, 10(3), 298–313. 

https://doi.org/10.1007/s10393-013-0856-0 



 172 

Gogin, A., Gerasimov, V., Malogolovkin, A., & Kolbasov, D. (2013). African swine fever in the North 

Caucasus region and the Russian Federation in years 2007–2012. Virus Research, 173(1), 198–

203. https://doi.org/10.1016/j.virusres.2012.12.007 

Gordejo, F. R. (2021, March 23). African swine fever: Tools to ensure safe trade. Thematic session on 

African swine fever, WTO/SPS committee, DG Sante, European Commission. 

Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K., & Vicente, J. (2007). Diseases shared between wildlife 

and livestock: A European perspective. European Journal of Wildlife Research, 53(4), 241. 

https://doi.org/10.1007/s10344-007-0098-y 

Grassly, N. C., & Fraser, C. (2008). Mathematical models of infectious disease transmission. Nature 

Reviews Microbiology, 6(6), Article 6. https://doi.org/10.1038/nrmicro1845 

Green, L. E., & Medley, G. F. (2002). Mathematical modelling of the foot and mouth disease epidemic 

of 2001: Strengths and weaknesses. Research in Veterinary Science, 73(3), 201–205. 

https://doi.org/10.1016/s0034-5288(02)00106-6 

Greenman, J. V., & Hoyle, A. S. (2008). Exclusion of generalist pathogens in multihost communities. 

The American Naturalist, 172(4), 576–584. https://doi.org/10.1086/590967 

Greig, A. (1972). Pathogenesis of African swine fever in pigs naturally exposed to the disease. Journal 

of Comparative Pathology, 82(1), 73–79. https://doi.org/10.1016/0021-9975(72)90028-x 

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, 

S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, 

C., Railsback, S. F., Robbins, A. M., … DeAngelis, D. L. (2006). A standard protocol for describing 

individual-based and agent-based models. Ecological Modelling, 198(1), 115–126. 

https://doi.org/10.1016/j.ecolmodel.2006.04.023 

Guinat, C., Gogin, A., Blome, S., Keil, G., Pollin, R., Pfeiffer, D. U., & Dixon, L. (2016). Transmission 

routes of African swine fever virus to domestic pigs: Current knowledge and future research 

directions. The Veterinary Record, 178(11), 262–267. https://doi.org/10.1136/vr.103593 

Guinat, C., Gubbins, S., Vergne, T., Gonzales, J. L., Dixon, L., & Pfeiffer, D. U. (2016). Experimental pig-

to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. 

Epidemiology & Infection, 144(1), 25–34. https://doi.org/10.1017/S0950268815000862 

Guinat, C., Porphyre, T., Gogin, A., Dixon, L., Pfeiffer, D. U., & Gubbins, S. (2018). Inferring within-herd 

transmission parameters for African swine fever virus using mortality data from outbreaks in 

the Russian Federation. Transboundary and Emerging Diseases, 65(2), e264–e271. 

https://doi.org/10.1111/tbed.12748 

Guinat, C., Reis, A. L., Netherton, C. L., Goatley, L., Pfeiffer, D. U., & Dixon, L. (2014). Dynamics of 

African swine fever virus shedding and excretion in domestic pigs infected by intramuscular 



 173 

inoculation and contact transmission. Veterinary Research, 45(1), 93. 

https://doi.org/10.1186/s13567-014-0093-8 

Guinat, C., Vergne, T., Kocher, A., Chakraborty, D., Paul, M. C., Ducatez, M., & Stadler, T. (2021). What 

can phylodynamics bring to animal health research? Trends in Ecology & Evolution, 36(9), 837–

847. https://doi.org/10.1016/j.tree.2021.04.013 

Guisan, A., Zimmermann, N. E., & Thuiller, W. (Eds.). (2017). Assumptions Behind Habitat Suitability 

Models. In Habitat Suitability and Distribution Models: With Applications in R (pp. 52–58). 

Cambridge University Press. https://doi.org/10.1017/9781139028271.009 

Gulenkin, V. M., Korennoy, F. I., Karaulov, A. K., & Dudnikov, S. A. (2011). Cartographical analysis of 

African swine fever outbreaks in the territory of the Russian Federation and computer 

modeling of the basic reproduction ratio. Preventive Veterinary Medicine, 102(3), 167–174. 

https://doi.org/10.1016/j.prevetmed.2011.07.004 

Halasa, T., Boklund, A., Bøtner, A., Mortensen, S., & Kjær, L. J. (2019). Simulation of transmission and 

persistence of African swine fever in wild boar in Denmark. Preventive Veterinary Medicine, 

167, 68–79. https://doi.org/10.1016/j.prevetmed.2019.03.028 

Halasa, T., Boklund, A., Bøtner, A., Toft, N., & Thulke, H.-H. (2016). Simulation of Spread of African 

Swine Fever, Including the Effects of Residues from Dead Animals. Frontiers in Veterinary 

Science, 3. https://www.frontiersin.org/articles/10.3389/fvets.2016.00006 

Halasa, T., Bøtner, A., Mortensen, S., Christensen, H., Toft, N., & Boklund, A. (2016a). Simulating the 

epidemiological and economic effects of an African swine fever epidemic in industrialized 

swine populations. Veterinary Microbiology, 193, 7–16. 

https://doi.org/10.1016/j.vetmic.2016.08.004 

Halasa, T., Bøtner, A., Mortensen, S., Christensen, H., Toft, N., & Boklund, A. (2016b). Control of African 

swine fever epidemics in industrialized swine populations. Veterinary Microbiology, 197, 142–

150. https://doi.org/10.1016/j.vetmic.2016.11.023 

Halasa, T., Bøtner, A., Mortensen, S., Christensen, H., Wulff, S. B., & Boklund, A. (2018). Modeling the 

Effects of Duration and Size of the Control Zones on the Consequences of a Hypothetical 

African Swine Fever Epidemic in Denmark. Frontiers in Veterinary Science, 5, 49. 

https://doi.org/10.3389/fvets.2018.00049 

Hall, M. J., Ng, A., Ursano, R. J., Holloway, H., Fullerton, C., & Casper, J. (2004). Psychological impact of 

the animal-human bond in disaster preparedness and response. Journal of Psychiatric 

Practice, 10(6), 368–374. https://doi.org/10.1097/00131746-200411000-00005 

Hamer, W. H. (1906). Epidemic diseases in england—The evidence of variability and of persistence. 

The Lancet, 167, 733–738. 



 174 

Hammami, P., Widgren, S., Grosbois, V., Apolloni, A., Rose, N., & Andraud, M. (2022). Complex 

network analysis to understand trading partnership in French swine production. PLOS ONE, 

17(4), e0266457. https://doi.org/10.1371/journal.pone.0266457 

Han, J. H., & Vignes, M. (2022). A stochastic compartmental grid-based model for the Merry Island 

2020 ASF outbreak Challenge. Epidemics. 

Han, J.-H., Yoo, D.-S., Pak, S.-I., & Kim, E.-T. (2022). Understanding the transmission of African swine 

fever in wild boars of South Korea: A simulation study for parameter estimation. 

Transboundary and Emerging Diseases, 69(4), e1101–e1112. 

https://doi.org/10.1111/tbed.14403 

Hargrove, J. W., Ouifki, R., Kajunguri, D., Vale, G. A., & Torr, S. J. (2012). Modeling the control of 

trypanosomiasis using trypanocides or insecticide-treated livestock. PLoS Neglected Tropical 

Diseases, 6(5), e1615. https://doi.org/10.1371/journal.pntd.0001615 

Harvey, N., Reeves, A., Schoenbaum, M. A., Zagmutt-Vergara, F. J., Dubé, C., Hill, A. E., Corso, B. A., 

McNab, W. B., Cartwright, C. I., & Salman, M. D. (2007). The North American Animal Disease 

Spread Model: A simulation model to assist decision making in evaluating animal disease 

incursions. Preventive Veterinary Medicine, 82(3–4), 176–197. 

https://doi.org/10.1016/j.prevetmed.2007.05.019 

Hauser, C. E., & McCarthy, M. A. (2009). Streamlining ‘search and destroy’: Cost-effective surveillance 

for invasive species management. Ecology Letters, 12(7), 683–692. 

https://doi.org/10.1111/j.1461-0248.2009.01323.x 

Haydon, D. T., Chase–Topping, M., Shaw, D. J., Matthews, L., Friar, J. K., Wilesmith, J., & Woolhouse, 

M. E. J. (2003). The construction and analysis of epidemic trees with reference to the 2001 UK 

foot–and–mouth outbreak. Proceedings of the Royal Society of London. Series B: Biological 

Sciences, 270(1511), 121–127. https://doi.org/10.1098/rspb.2002.2191 

Hayes, B. H., Andraud, M., Salazar, L. G., Rose, N., & Vergne, T. (2021). Mechanistic modelling of African 

swine fever: A systematic review. Preventive Veterinary Medicine, 191, 105358. 

https://doi.org/10.1016/j.prevetmed.2021.105358 

Hess, W. R., Endris, R. G., Haslett, T. M., Monahan, M. J., & McCoy, J. P. (1987). Potential arthropod 

vectors of African swine fever virus in North America and the Caribbean basin. Veterinary 

Parasitology, 26(1–2), 145–155. https://doi.org/10.1016/0304-4017(87)90084-7 

Howey, E. B., O’Donnell, V., de Carvalho Ferreira, H. C., Borca, M. V., & Arzt, J. (2013). Pathogenesis of 

highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, 

intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. 

Virus Research, 178(2), 328–339. https://doi.org/10.1016/j.virusres.2013.09.024 



 175 

Hu, B., Gonzales, J. L., & Gubbins, S. (2017). Bayesian inference of epidemiological parameters from 

transmission experiments. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-

017-17174-8 

Huyvaert, K. P., Russell, R. E., Patyk, K. A., Craft, M. E., Cross, P. C., Garner, M. G., Martin, M. K., Nol, 

P., & Walsh, D. P. (2018). Challenges and Opportunities Developing Mathematical Models of 

Shared Pathogens of Domestic and Wild Animals. Veterinary Sciences, 5(4), E92. 

https://doi.org/10.3390/vetsci5040092 

INRAE. (2020). ASF Challenge. https://www6.inrae.fr/asfchallenge/ 

Ivorra, B., Martínez-López, B., Sánchez-Vizcaíno, J. M., & Ramos, Á. M. (2014). Mathematical 

formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread 

between and within farms. Annals of Operations Research, 219(1), 25–47. 

https://doi.org/10.1007/s10479-012-1257-4 

Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P., & Biek, R. (2017). Bluetongue virus spread in 

Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by 

phylogeographic inference. Proceedings. Biological Sciences, 284(1864), 20170919. 

https://doi.org/10.1098/rspb.2017.0919 

Janoska, F., Farkas, A., Marosan, M., & Fodor, J.-T. (2018). Wild Boar (Sus scrofa) Home Range and 

Habitat Use in Two Romanian Habitats. Acta Silvatica et Lignaria Hungarica, 14, 51–63. 

https://doi.org/10.2478/aslh-2018-0003 

Jo, Y.-S., & Gortázar, C. (2021). African Swine Fever in wild boar: Assessing interventions in South 

Korea. Transboundary and Emerging Diseases, 68(5), 2878–2889. 

https://doi.org/10.1111/tbed.14106 

Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., 

McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural 

intensification and environmental change. Proceedings of the National Academy of Sciences 

of the United States of America, 110(21), 8399–8404. 

https://doi.org/10.1073/pnas.1208059110 

Jori, F., & Bastos, A. D. S. (2009). Role of Wild Suids in the Epidemiology of African Swine Fever. 

EcoHealth, 6(2), 296–310. https://doi.org/10.1007/s10393-009-0248-7 

Jori, F., Hernandez-Jover, M., Magouras, I., Dürr, S., & Brookes, V. J. (2021). Wildlife–livestock 

interactions in animal production systems: What are the biosecurity and health implications? 

Animal Frontiers: The Review Magazine of Animal Agriculture, 11(5), 8–19. 

https://doi.org/10.1093/af/vfab045 



 176 

Jori, F., Massei, G., Licoppe, A., Ruiz-Fons, F., Linden, A., Václavek, P., Chenais, E., & Rosell, C. (2021). 

Management of wild boar populations in the European Union before and during the ASF crisis. 

In Understanding and combatting African Swine Fever: A European perspective. 

https://doi.org/10.3920/978-90-8686-910-7_8 

Kagira, J. M., Kanyari, P. W. N., Maingi, N., Githigia, S. M., Ng’ang’a, J. C., & Karuga, J. W. (2010). 

Characteristics of the smallholder free-range pig production system in western Kenya. Tropical 

Animal Health and Production, 42(5), 865–873. https://doi.org/10.1007/s11250-009-9500-y 

Kajunguri, D., Hargrove, J. W., Ouifki, R., Mugisha, J. Y. T., Coleman, P. G., & Welburn, S. C. (2014). 

Modelling the use of insecticide-treated cattle to control tsetse and Trypanosoma brucei 

rhodesiense in a multi-host population. Bulletin of Mathematical Biology, 76(3), 673–696. 

https://doi.org/10.1007/s11538-014-9938-6 

Kao, R. (2002). The role of mathematical modelling in the control of the 2001 FMD epidemic in the UK. 

Trends in Microbiology, 10, 279–286. https://doi.org/10.1016/S0966-842X(02)02371-5 

Keeling, M. J. (2005). Models of foot-and-mouth disease. Proceedings of the Royal Society B: Biological 

Sciences, 272(1569), 1195–1202. https://doi.org/10.1098/rspb.2004.3046 

Keeling, M. J., & Eames, K. T. D. (2005). Networks and epidemic models. Journal of The Royal Society 

Interface, 2(4), 295–307. https://doi.org/10.1098/rsif.2005.0051 

Keeling, M. J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton 

University Press. https://doi.org/10.2307/j.ctvcm4gk0 

Keeling, M. J., Woolhouse, M. E. J., Shaw, D. J., Matthews, L., Chase-Topping, M., Haydon, D. T., Cornell, 

S. J., Kappey, J., Wilesmith, J., & Grenfell, B. T. (2001). Dynamics of the 2001 UK Foot and 

Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape. Science, 294(5543), 

813–817. https://doi.org/10.1126/science.1065973 

Kermack, W. O., McKendrick, A. G., & Walker, G. T. (1927). A contribution to the mathematical theory 

of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a 

Mathematical and Physical Character, 115(772), 700–721. 

https://doi.org/10.1098/rspa.1927.0118 

Khanyari, M., Suryawanshi, K. R., Milner-Gulland, E. J., Dickinson, E., Khara, A., Rana, R. S., Rose Vineer, 

H., & Morgan, E. R. (2021). Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan 

Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. 

FRONTIERS IN VETERINARY SCIENCE, 8. https://doi.org/10.3389/fvets.2021.714241 

Khomenko, S., Beltrán-Alcrudo, D., Rozstalnyy, A., Pinto, J., Lubroth, J., Martin, V., Gogin, A., Kolbasov, 

D., & Animal Production and Health Division. (2013). African swine fever in the Russian 



 177 

Federation: Risk factors for Europe and beyond. FAO. 

https://www.fao.org/publications/card/es/c/456c5e1d-f450-524f-a664-/ 

Kim, Y.-J., Park, B., & Kang, H.-E. (2021). Control measures to African swine fever outbreak: Active 

response in South Korea, preparation for the future, and cooperation. Journal of Veterinary 

Science, 22(1), e13. https://doi.org/10.4142/jvs.2021.22.e13 

Kitching, R. P., Thrusfield, M. V., & Taylor, N. M. (2006). Use and abuse of mathematical models: An 

illustration from the 2001 foot and mouth disease epidemic in the United Kingdom. Revue 

Scientifique Et Technique (International Office of Epizootics), 25(1), 293–311. 

https://doi.org/10.20506/rst.25.1.1665 

Klovdahl, A. S. (1985). Social networks and the spread of infectious diseases: The AIDS example. Social 

Science & Medicine (1982), 21(11), 1203–1216. https://doi.org/10.1016/0277-

9536(85)90269-2 

Knight-Jones, T. J. D., & Rushton, J. (2013). The economic impacts of foot and mouth disease—What 

are they, how big are they and where do they occur? Preventive Veterinary Medicine, 112(3–

4), 161–173. https://doi.org/10.1016/j.prevetmed.2013.07.013 

Kretzschmar, M. (2020). Disease modeling for public health: Added value, challenges, and institutional 

constraints. Journal of Public Health Policy, 41(1), 39. https://doi.org/10.1057/s41271-019-

00206-0 

Kretzschmar, M., van Duynhoven, Y. T., & Severijnen, A. J. (1996). Modeling prevention strategies for 

gonorrhea and Chlamydia using stochastic network simulations. American Journal of 

Epidemiology, 144(3), 306–317. https://doi.org/10.1093/oxfordjournals.aje.a008926 

Kruschke, J., & Meredith, M. (2021). BEST: Bayesian Estimation Supersedes the t-Test. (0.5.4) [R]. 

https://CRAN.R-project.org/package=BEST 

Kukielka, E., Barasona, J. A., Cowie, C. E., Drewe, J. A., Gortazar, C., Cotarelo, I., & Vicente, J. (2013). 

Spatial and temporal interactions between livestock and wildlife in South Central Spain 

assessed by camera traps. Preventive Veterinary Medicine, 112(3), 213–221. 

https://doi.org/10.1016/j.prevetmed.2013.08.008 

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics 

Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. 

https://doi.org/10.1093/molbev/msy096 

Laddomada, A., Patta, C., Oggiano, A., Caccia, A., Ruiu, A., Cossu, P., & Firinu, A. (1994). Epidemiology 

of classical swine fever in Sardinia: A serological survey of wild boar and comparison with 

African swine fever. The Veterinary Record, 134(8), 183–187. 

https://doi.org/10.1136/vr.134.8.183 



 178 

Laffan, S. W., Wang, Z., & Ward, M. P. (2011). The effect of neighbourhood definitions on spatio-

temporal models of disease outbreaks: Separation distance versus range overlap. Preventive 

Veterinary Medicine, 102(3), 218–229. https://doi.org/10.1016/j.prevetmed.2011.07.009 

Laguna, E., Barasona, J. A., Carpio, A. J., Vicente, J., & Acevedo, P. (2022). Permeability of artificial 

barriers (fences) for wild boar (Sus scrofa) in Mediterranean mixed landscapes. Pest 

Management Science, 78(6), 2277–2286. https://doi.org/10.1002/ps.6853 

Lamberga, K., Oļševskis, E., Seržants, M., Bērziņš, A., Viltrop, A., & Depner, K. (2020). African Swine 

Fever in Two Large Commercial Pig Farms in LATVIA—Estimation of the High Risk Period and 

Virus Spread within the Farm. Veterinary Sciences, 7(3), 105. 

https://doi.org/10.3390/vetsci7030105 

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. 

Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310 

Lange, M. (2015). Alternative control strategies against ASF in wild boar populations. EFSA Supporting 

Publications, 12(7), 843E. https://doi.org/10.2903/sp.efsa.2015.EN-843 

Lange, M., Guberti, V., & Thulke, H.-H. (2018). Understanding ASF spread and emergency control 

concepts in wild boar populations using individual-based modelling and spatio-temporal 

surveillance data. EFSA Supporting Publications, 15(11), 1521E. 

https://doi.org/10.2903/sp.efsa.2018.EN-1521 

Lange, M., & Thulke, H.-H. (2015). Mobile barriers as emergency measure to control outbreaks of 

African Swine Fever in wild boar. Proceedings, SVEPM, Gent, 122–132. 

Lange, M., & Thulke, H.-H. (2017). Elucidating transmission parameters of African swine fever through 

wild boar carcasses by combining spatio-temporal notification data and agent-based 

modelling. Stochastic Environmental Research and Risk Assessment, 31(2), 379–391. 

https://doi.org/10.1007/s00477-016-1358-8 

Le, V. P., Jeong, D. G., Yoon, S.-W., Kwon, H.-M., Trinh, T. B. N., Nguyen, T. L., Bui, T. T. N., Oh, J., Kim, 

J. B., Cheong, K. M., Van Tuyen, N., Bae, E., Vu, T. T. H., Yeom, M., Na, W., & Song, D. (2019). 

Outbreak of African Swine Fever, Vietnam, 2019. Emerging Infectious Diseases, 25(7), 1433–

1435. https://doi.org/10.3201/eid2507.190303 

Leaper, R., Massei, G., Gorman, M. L., & Aspinall, R. (1999). The feasibility of reintroducing Wild Boar 

(Sus scrofa) to Scotland. Mammal Review, 29(4), 239–258. https://doi.org/10.1046/j.1365-

2907.1999.2940239.x 

Lee, H. S., Thakur, K. K., Bui, V. N., Pham, T. L., Bui, A. N., Dao, T. D., Thanh, V. T., & Wieland, B. (2021). 

A stochastic simulation model of African swine fever transmission in domestic pig farms in the 



 179 

Red River Delta region in Vietnam. Transboundary and Emerging Diseases, 68(3), 1384–1391. 

https://doi.org/10.1111/tbed.13802 

Lenormand, M., Jabot, F., & Deffuant, G. (2012). Adaptive approximate Bayesian computation for 

complex models. https://hal.archives-ouvertes.fr/hal-00638484 

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., 

Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA Statement for Reporting 

Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: 

Explanation and Elaboration. PLOS Medicine, 6(7), e1000100. 

https://doi.org/10.1371/journal.pmed.1000100 

Lim, J.-S., Kim, E., Ryu, P.-D., & Pak, S.-I. (2021). Basic reproduction number of African swine fever in 

wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea. Journal of 

Veterinary Science, 22(5), e71. https://doi.org/10.4142/jvs.2021.22.e71 

Loi, F., Cappai, S., Coccollone, A., & Rolesu, S. (2019). Standardized Risk Analysis Approach Aimed to 

Evaluate the Last African Swine Fever Eradication Program Performance, in Sardinia. Frontiers 

in Veterinary Science, 6. https://www.frontiersin.org/articles/10.3389/fvets.2019.00299 

Loi, F., Cappai, S., Laddomada, A., Feliziani, F., Oggiano, A., Franzoni, G., Rolesu, S., & Guberti, V. 

(2020). Mathematical Approach to Estimating the Main Epidemiological Parameters of African 

Swine Fever in Wild Boar. Vaccines, 8(3), Article 3. https://doi.org/10.3390/vaccines8030521 

Lyra, T. M. P. (2006). The eradication of African swine fever in Brazil, 1978-1984. Revue Scientifique Et 

Technique (International Office of Epizootics), 25(1), 93–103. 

Macdonald, G. (1957). The Epidemiology and Control of Malaria. The Epidemiology and Control of 

Malaria. https://www.cabdirect.org/cabdirect/abstract/19581000237 

Malogolovkin, A., Burmakina, G., Titov, I., Sereda, A., Gogin, A., Baryshnikova, E., & Kolbasov, D. (2015). 

Comparative Analysis of African Swine Fever Virus Genotypes and Serogroups. Emerging 

Infectious Diseases, 21(2), 312–315. https://doi.org/10.3201/eid2102.140649 

Manlove, K. R., Sampson, L. M., Borremans, B., Cassirer, E. F., Miller, R. S., Pepin, K. M., Besser, T. E., 

& Cross, P. C. (2019). Epidemic growth rates and host movement patterns shape management 

performance for pathogen spillover at the wildlife-livestock interface. Philosophical 

Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1782), 

20180343. https://doi.org/10.1098/rstb.2018.0343 

Marion, G., Smith, L. A., Swain, D. L., Davidson, R. S., & Hutchings, M. R. (2008). Agent-based modelling 

of foraging behaviour: The impact of spatial heterogeneity on disease risks from faeces in 

grazing systems. JOURNAL OF AGRICULTURAL SCIENCE, 146(5), 507–520. 

https://doi.org/10.1017/S0021859608008022 



 180 

Maselli, V., Rippa, D., Russo, G., Ligrone, R., Soppelsa, O., D’Aniello, B., Raia, P., & Fulgione, D. (2014). 

Wild boars’ social structure in the Mediterranean habitat. Italian Journal of Zoology, 81(4), 

610–617. https://doi.org/10.1080/11250003.2014.953220 

Mason-D’Croz, D., Bogard, J. R., Herrero, M., Robinson, S., Sulser, T. B., Wiebe, K., Willenbockel, D., & 

Godfray, H. C. J. (2020). Modelling the global economic consequences of a major African swine 

fever outbreak in China. Nature Food, 1(4), Article 4. https://doi.org/10.1038/s43016-020-

0057-2 

Mateus-Anzola, J., Wiratsudakul, A., Rico-Chávez, O., & Ojeda-Flores, R. (2019). Simulation modeling 

of influenza transmission through backyard pig trade networks in a wildlife/livestock interface 

area. Tropical Animal Health and Production, 51(7), 2019–2024. 

https://doi.org/10.1007/s11250-019-01892-4 

Mazur-Panasiuk, N., Żmudzki, J., & Woźniakowski, G. (2019). African swine fever virus – persistence in 

different environmental conditions and the possibility of its indirect transmission. Journal of 

Veterinary Research, 63(3), 303–310. https://doi.org/10.2478/jvetres-2019-0058 

McCallum, H. (2016). Models for managing wildlife disease. Parasitology, 143(7), 805–820. 

https://doi.org/10.1017/S0031182015000980 

McInerney, J. P., Howe, K. S., & Schepers, J. A. (1992). A framework for the economic analysis of 

disease in farm livestock. Preventive Veterinary Medicine, 13(2), 137–154. 

https://doi.org/10.1016/0167-5877(92)90098-Z 

McKercher, P. D., Hess, W. R., & Hamdy, F. (1978). Residual viruses in pork products. Applied and 

Environmental Microbiology, 35(1), 142–145. 

McKercher, P. D., Yedloutschnig, R. J., Callis, J. J., Murphy, R., Panina, G. F., Civardi, A., Bugnetti, M., 

Foni, E., Laddomada, A., Scarano, C., & Scatozza, F. (1987). Survival of Viruses in “Prosciutto di 

Parma” (Parma Ham). Canadian Institute of Food Science and Technology Journal, 20(4), 267–

272. https://doi.org/10.1016/S0315-5463(87)71198-5 

Mebus, C., Arias, M., Pineda, J. M., Tapiador, J., House, C., & Sánchez-Vizcaíno, J. M. (1997). Survival 

of several porcine viruses in different Spanish dry-cured meat products. Food Chemistry, 59(4), 

555–559. https://doi.org/10.1016/S0308-8146(97)00006-X 

Mebus, C., House, C., Gonzalvo, F. R., Pineda, J. M., Tapiador, J., Pire, J. J., Bergada, J., Yedloutschnig, 

R. J., Sahu, S., Becerra, V., & Sanchez-Vizcaino, J. M. (1993). Survival of foot-and-mouth 

disease, African swine fever, and hog cholera viruses in Spanish serrano cured hams and 

Iberian cured hams, shoulders and loins. Food Microbiology, 10(2), 133–143. 

https://doi.org/10.1006/fmic.1993.1014 



 181 

Mellor, P. S., Kitching, R. P., & Wilkinson, P. J. (1987). Mechanical transmission of capripox virus and 

African swine fever virus by Stomoxys calcitrans. Research in Veterinary Science, 43(1), 109–

112. https://doi.org/10.1016/S0034-5288(18)30753-7 

Mighell, E., & Ward, M. P. (2021). African Swine Fever spread across Asia, 2018-2019. Transboundary 

and Emerging Diseases, 68(5), 2722–2732. https://doi.org/10.1111/tbed.14039 

Miller, R. S., Farnsworth, M. L., & Malmberg, J. L. (2013). Diseases at the livestock–wildlife interface: 

Status, challenges, and opportunities in the United States. Preventive Veterinary Medicine, 

110(2), 119–132. https://doi.org/10.1016/j.prevetmed.2012.11.021 

Mollison, D. (1977). Spatial Contact Models for Ecological and Epidemic Spread. Journal of the Royal 

Statistical Society. Series B (Methodological), 39(3), 283–326. 

Moore, J. L., Rout, T. M., Hauser, C. E., Moro, D., Jones, M., Wilcox, C., & Possingham, H. P. (2010). 

Protecting islands from pest invasion: Optimal allocation of biosecurity resources between 

quarantine and surveillance. Biological Conservation, 143(5), 1068–1078. 

https://doi.org/10.1016/j.biocon.2010.01.019 

Morelle, K., Bubnicki, J., Churski, M., Gryz, J., Podgórski, T., & Kuijper, D. P. J. (2020). Disease-Induced 

Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever 

Outbreak. Frontiers in Veterinary Science, 7, 378. https://doi.org/10.3389/fvets.2020.00378 

Moreno-Torres, K. I., Pomeroy, L. W., Moritz, M., Saville, W., Wolfe, B., & Garabed, R. (2017). Host 

species heterogeneity in the epidemiology of Nesopora caninum. PloS One, 12(8), e0183900. 

https://doi.org/10.1371/journal.pone.0183900 

Morgan, E. R., Medley, G. F., Torgerson, P. R., Shaikenov, B. S., & Milner-Gulland, E. J. (2007). Parasite 

transmission in a migratory multiple host system. ECOLOGICAL MODELLING, 200(3–4), 511–

520. https://doi.org/10.1016/j.ecolmodel.2006.09.002 

Morris, R. S., Wilesmith, J. W., Stern, M. W., Sanson, R. L., & Stevenson, M. A. (2001). Predictive spatial 

modelling of alternative control strategies for the foot-and-mouth disease epidemic in Great 

Britain, 2001. The Veterinary Record, 149(5), 137–144. https://doi.org/10.1136/vr.149.5.137 

Mort, M., Convery, I., Baxter, J., & Bailey, C. (2005). Psychosocial effects of the 2001 UK foot and mouth 

disease epidemic in a rural population: Qualitative diary based study. BMJ (Clinical Research 

Ed.), 331(7527), 1234. https://doi.org/10.1136/bmj.38603.375856.68 

Mortasivu, C. (2021). Personal communication [Personal communication]. 

Muñoz, F., Pleydell, D. R. J., & Jori, F. (2022). A combination of probabilistic and mechanistic 

approaches for predicting the spread of African swine fever on Merry Island. Epidemics, 40, 

100596. https://doi.org/10.1016/j.epidem.2022.100596 



 182 

Muñoz-Gómez, V., Solodiankin, O., Rudova, N., Gerilovych, A., Nychyk, S., Hudz, N., Ukhovska, T., 

Sytiuk, M., Polischuk, V., Mustra, D., De Nardi, M., Lechner, I., & Schuppers, M. (2021). 

Supporting control programs on African swine fever in Ukraine through a knowledge, 

attitudes, and practices survey targeting backyard farmers. Veterinary Medicine and Science, 

7(5), 1786–1799. https://doi.org/10.1002/vms3.578 

Muñoz-Pérez, C., Jurado, C., & Sánchez-Vizcaíno, J. M. (2021). African swine fever vaccine: Turning a 

dream into reality. Transboundary and Emerging Diseases, 68(5), 2657–2668. 

https://doi.org/10.1111/tbed.14191 

Mur, L., Sánchez-Vizcaíno, J. M., Fernández-Carrión, E., Jurado, C., Rolesu, S., Feliziani, F., Laddomada, 

A., & Martínez-López, B. (2018). Understanding African Swine Fever infection dynamics in 

Sardinia using a spatially explicit transmission model in domestic pig farms. Transboundary 

and Emerging Diseases, 65(1), 123–134. https://doi.org/10.1111/tbed.12636 

Naqibzadeh, A., Sarhangzadeh, J., Sotoudeh, A., Mashkour, M., & Thomalsky, J. (2021). Habitat 

Suitability Modeling for Wildlife Management Objectives by Using Maximum Entropy Method. 

Nguyen-Thi, T., Pham-Thi-Ngoc, L., Nguyen-Ngoc, Q., Dang-Xuan, S., Lee, H. S., Nguyen-Viet, H., 

Padungtod, P., Nguyen-Thu, T., Nguyen-Thi, T., Tran-Cong, T., & Rich, K. M. (2021). An 

Assessment of the Economic Impacts of the 2019 African Swine Fever Outbreaks in Vietnam. 

Frontiers in Veterinary Science, 8. 

https://www.frontiersin.org/articles/10.3389/fvets.2021.686038 

Niederwerder, M. C., Stoian, A. M. M., Rowland, R. R. R., Dritz, S. S., Petrovan, V., Constance, L. A., 

Gebhardt, J. T., Olcha, M., Jones, C. K., Woodworth, J. C., Fang, Y., Liang, J., & Hefley, T. J. 

(2019). Infectious Dose of African Swine Fever Virus When Consumed Naturally in Liquid or 

Feed. Emerging Infectious Diseases, 25(5), 891–897. https://doi.org/10.3201/eid2505.181495 

Nielsen, J. P., Larsen, T. S., Halasa, T., & Christiansen, L. E. (2017). Estimation of the transmission 

dynamics of African swine fever virus within a swine house. Epidemiology & Infection, 145(13), 

2787–2796. https://doi.org/10.1017/S0950268817001613 

Nigsch, A., Costard, S., Jones, B. A., Pfeiffer, D. U., & Wieland, B. (2013). Stochastic spatio-temporal 

modelling of African swine fever spread in the European Union during the high risk period. 

Preventive Veterinary Medicine, 108(4), 262–275. 

https://doi.org/10.1016/j.prevetmed.2012.11.003 

Njau, E. P., Domelevo Entfellner, J.-B., Machuka, E. M., Bochere, E. N., Cleaveland, S., Shirima, G. M., 

Kusiluka, L. J., Upton, C., Bishop, R. P., Pelle, R., & Okoth, E. A. (2021). The first genotype II 

African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. 

Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-92593-2 



 183 

Nunes, B., Caetano, C., Antunes, L., & Dias, C. (2020). Statistics in times of pandemics: The role of 

statistical and epidemiological methods during the covid-19 emergency (invited paper with 

discussion). Revstat Statistical Journal, 18, 553–564. 

https://doi.org/10.57805/revstat.v18i5.317 

Nurmoja, I., Mõtus, K., Kristian, M., Niine, T., Schulz, K., Depner, K., & Viltrop, A. (2020). 

Epidemiological analysis of the 2015-2017 African swine fever outbreaks in Estonia. Preventive 

Veterinary Medicine, 181, 104556. https://doi.org/10.1016/j.prevetmed.2018.10.001 

Nyerere, N., Luboobi, L. S., Mpeshe, S. C., & Shirima, G. M. (2020). Modeling the Impact of Seasonal 

Weather Variations on the Infectiology of Brucellosis. Computational and Mathematical 

Methods in Medicine, 2020, 8972063. https://doi.org/10.1155/2020/8972063 

Odeniran, P. O., Onifade, A. A., MacLeod, E. T., Ademola, I. O., Alderton, S., & Welburn, S. C. (2020). 

Mathematical modelling and control of African animal trypanosomosis with interacting 

populations in West Africa-Could biting flies be important in maintaining the disease 

endemicity? PloS One, 15(11), e0242435. https://doi.org/10.1371/journal.pone.0242435 

O’Hare, A., Orton, R. J., Bessell, P. R., & Kao, R. R. (2014). Estimating epidemiological parameters for 

bovine tuberculosis in British cattle using a Bayesian partial-likelihood approach. Proceedings. 

Biological Sciences, 281(1783), 20140248. https://doi.org/10.1098/rspb.2014.0248 

Olesen, A. S., Lohse, L., Boklund, A., Halasa, T., Gallardo, C., Pejsak, Z., Belsham, G. J., Rasmussen, T. 

B., & Bøtner, A. (2017). Transmission of African swine fever virus from infected pigs by direct 

contact and aerosol routes. Veterinary Microbiology, 211, 92–102. 

https://doi.org/10.1016/j.vetmic.2017.10.004 

Oļševskis, E., Guberti, V., Seržants, M., Westergaard, J., Gallardo, C., Rodze, I., & Depner, K. (2016). 

African swine fever virus introduction into the EU in 2014: Experience of Latvia. Research in 

Veterinary Science, 105, 28–30. https://doi.org/10.1016/j.rvsc.2016.01.006 

O’Neill, X., White, A., Ruiz-Fons, F., & Gortázar, C. (2020). Modelling the transmission and persistence 

of African swine fever in wild boar in contrasting European scenarios. Scientific Reports, 10(1), 

Article 1. https://doi.org/10.1038/s41598-020-62736-y 

Orbann, C., Sattenspiel, L., Miller, E., & Dimka, J. (2017). Defining epidemics in computer simulation 

models: How do definitions influence conclusions? Epidemics, 19, 24–32. 

https://doi.org/10.1016/j.epidem.2016.12.001 

Oura, C. A., Powell, P. P., Anderson, E., & Parkhouse, R. M. (1998). The pathogenesis of African swine 

fever in the resistant bushpig. The Journal of General Virology, 79 ( Pt 6), 1439–1443. 

https://doi.org/10.1099/0022-1317-79-6-1439 



 184 

Pan, I. C., & Hess, W. R. (1984). Virulence in African swine fever: Its measurement and implications. 

American Journal of Veterinary Research, 45(2), 361–366. 

Pardi, F., & Gascuel, O. (2016). Distance-Based Phylogenetic Inference. In R. M. Kliman (Ed.), 

Encyclopedia of Evolutionary Biology (pp. 458–465). Academic Press. 

https://doi.org/10.1016/B978-0-12-800049-6.00206-7 

Pensaert, M. B. (1989). Virus infections of porcines. Virus Infections of Vertebrates (Netherlands). 

https://scholar.google.com/scholar_lookup?title=Virus+infections+of+porcines&author=Pen

saert%2C+M.B.+%28Laboratory+of+Virology%2C+Gent+%28Belgium%29%29&publication_y

ear=1989 

Pepin, K. M., Golnar, A. J., Abdo, Z., & Podgórski, T. (2020). Ecological drivers of African swine fever 

virus persistence in wild boar populations: Insight for control. Ecology and Evolution, 10(6), 

2846–2859. https://doi.org/10.1002/ece3.6100 

Pereira de Oliveira, R., Hutet, E., Paboeuf, F., Duhayon, M., Boinas, F., Perez de Leon, A., Filatov, S., 

Vial, L., & Le Potier, M.-F. (2019). Comparative vector competence of the Afrotropical soft tick 

Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African 

swine fever virus strains circulating in Eurasia. PloS One, 14(11), e0225657. 

https://doi.org/10.1371/journal.pone.0225657 

Pérez, J., Fernández, A. I., Sierra, M. A., Herráez, P., Fernández, A., & Martín de las Mulas, J. (1998). 

Serological and immunohistochemical study of African swine fever in wild boar in Spain. The 

Veterinary Record, 143(5), 136–139. https://doi.org/10.1136/vr.143.5.136 

Perez, L., & Dragicevic, S. (2009). An agent-based approach for modeling dynamics of contagious 

disease spread. International Journal of Health Geographics, 8(1), 50. 

https://doi.org/10.1186/1476-072X-8-50 

Phengsavanh, P., Ogle, B., Stür, W., Frankow-Lindberg, B. E., & Lindberg, J. E. (2010). Feeding and 

performance of pigs in smallholder production systems in Northern Lao PDR. Tropical Animal 

Health and Production, 42(8), 1627–1633. https://doi.org/10.1007/s11250-010-9612-4 

Phepa, P. B., Chirove, F., & Govinder, K. S. (2016). Modelling the role of multi-transmission routes in 

the epidemiology of bovine tuberculosis in cattle and buffalo populations. Mathematical 

Biosciences, 277, 47–58. https://doi.org/10.1016/j.mbs.2016.04.003 

Picault, S., Vergne, T., Mancini, M., Bareille, S., & Ezanno, P. (2022). The African swine fever modelling 

challenge: Objectives, model description and synthetic data generation. Epidemics, 40, 

100616. https://doi.org/10.1016/j.epidem.2022.100616 

Pietschmann, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A., Keil, G., & Blome, S. (2015). 

Course and transmission characteristics of oral low-dose infection of domestic pigs and 



 185 

European wild boar with a Caucasian African swine fever virus isolate. Archives of Virology, 

160(7), 1657–1667. https://doi.org/10.1007/s00705-015-2430-2 

Pig333. (2021, July 7). China: Excess pork production has lowered prices. 

https://www.pig333.com/latest_swine_news/excess-pork-production-in-china-has-lowered-

pork-prices-says-usda_17610/ 

Pineda-Krch, M., O’Brien, J. M., Thunes, C., & Carpenter, T. E. (2010). Potential impact of introduction 

of foot-and-mouth disease from wild pigs into commercial livestock premises in California. 

American Journal of Veterinary Research, 71(1), 82–88. https://doi.org/10.2460/ajvr.71.1.82 

Plowright, W., Parker, J., & Pierce, M. A. (1969). The epizootiology of African swine fever in Africa. The 

Veterinary Record, 85(24), 668–674. 

Pol, F., Rossi, S., Mesplède, A., Kuntz-Simon, G., & Le Potier, M.-F. (2008). Two outbreaks of classical 

swine fever in wild boar in France. The Veterinary Record, 162(25), 811–816. 

https://doi.org/10.1136/vr.162.25.811 

Porter, R., Norman, R., & Gilbert, L. (2011). Controlling tick-borne diseases through domestic animal 

management: A theoretical approach. THEORETICAL ECOLOGY, 4(3), 321–339. 

https://doi.org/10.1007/s12080-010-0080-2 

Probst, C., Gethmann, J., Amler, S., Globig, A., Knoll, B., & Conraths, F. J. (2019). The potential role of 

scavengers in spreading African swine fever among wild boar. Scientific Reports, 9(1), Article 

1. https://doi.org/10.1038/s41598-019-47623-5 

Probst, C., Globig, A., Knoll, B., Conraths, F. J., & Depner, K. (2017). Behaviour of free ranging wild boar 

towards their dead fellows: Potential implications for the transmission of African swine fever. 

Royal Society Open Science, 4(5), 170054. https://doi.org/10.1098/rsos.170054 

ProMED-mail. (2020, September 9). African swine fever—Europe (18): Germany (BB) wild boar. Conf, 

OIE. ProMED-Mail. https://promedmail.org/promed-post/ 

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing. https://www.R-project.org/ 

Ramsey, D. S. L., O’Brien, D. J., Smith, R. W., Cosgrove, M. K., Schmitt, S. M., & Rudolph, B. A. (2016). 

Management of on-farm risk to livestock from bovine tuberculosis in Michigan, USA, white-

tailed deer: Predictions from a spatially-explicit stochastic model. Preventive Veterinary 

Medicine, 134, 26–38. https://doi.org/10.1016/j.prevetmed.2016.09.022 

Ray, R.-R., Seibold, H., & Heurich, M. (2014). Invertebrates outcompete vertebrate facultative 

scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Animal 

Biodiversity and Conservation, 37(1), Article 1. https://doi.org/10.5167/uzh-130585 



 186 

Revilla, Y., Pérez-Núñez, D., & Richt, J. A. (2018). African Swine Fever Virus Biology and Vaccine 

Approaches. Advances in Virus Research, 100, 41–74. 

https://doi.org/10.1016/bs.aivir.2017.10.002 

Roberts, M., Dobson, A., Restif, O., & Wells, K. (2021). Challenges in modelling the dynamics of 

infectious diseases at the wildlife–human interface. Epidemics, 37, 100523. 

https://doi.org/10.1016/j.epidem.2021.100523 

Rock, D. L. (2017). Challenges for African swine fever vaccine development—“… perhaps the end of 

the beginning.” Veterinary Microbiology, 206, 52–58. 

https://doi.org/10.1016/j.vetmic.2016.10.003 

Roger, F., Ratovonjato, J., Vola, P., & Uilenberg, G. (2001). Ornithodoros Porcinus Ticks, Bushpigs, and 

African Swine Fever in Madagascar. Experimental & Applied Acarology, 25(3), 263–269. 

https://doi.org/10.1023/A:1010687502145 

Romanian ministry of development, public works, and administration. (2021). Agenția Națională de 

Cadastru și Publicitate Imobiliară (ANCPI). https://www.ancpi.ro/ 

Rong, X., Fan, M., Zhu, H., & Zheng, Y. (2021). Dynamic modeling and optimal control of cystic 

echinococcosis. Infectious Diseases of Poverty, 10(1), 38. https://doi.org/10.1186/s40249-

021-00807-6 

Rose, N., & Boisseleau, D. (2018). Rapport de la mission réalisée du 27 au 31 aout 2018 en Roumanie 

(p. 28). ANSES. 

Rosell, C., Romero, S., Navás, F., & Dalmases, I. de. (2004). Activity Patterns and Social Organization of 

wild boar (Sus scrofa, L.) in a Wetland Environment: Preliminary Data on the Effects of 

Shooting Individuals. Galemys: Boletín Informativo de La Sociedad Española Para La 

Conservación y Estudio de Los Mamíferos, 16(Extra 1), 157–166. 

Rousseau, G., Giorgini, B., Livi, R., & Chaté, H. (1997). Dynamical phases in a cellular automaton model 

for epidemic propagation. Physica D: Nonlinear Phenomena, 103(1), 554–563. 

https://doi.org/10.1016/S0167-2789(96)00285-0 

Rowden, A. A., Anderson, O. F., Georgian, S. E., Bowden, D. A., Clark, M. R., Pallentin, A., & Miller, A. 

(2017). High-Resolution Habitat Suitability Models for the Conservation and Management of 

Vulnerable Marine Ecosystems on the Louisville Seamount Chain, South Pacific Ocean. 

Frontiers in Marine Science, 4. 

https://www.frontiersin.org/articles/10.3389/fmars.2017.00335 

Rowlands, R. J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo, W., Dwarka, R., Onashvili, T., 

Albina, E., & Dixon, L. K. (2008). African swine fever virus isolate, Georgia, 2007. Emerging 

Infectious Diseases, 14(12), 1870–1874. https://doi.org/10.3201/eid1412.080591 



 187 

Roy, S., McElwain, T. F., & Wan, Y. (2011). A network control theory approach to modeling and optimal 

control of zoonoses: Case study of brucellosis transmission in sub-Saharan Africa. PLoS 

Neglected Tropical Diseases, 5(10), e1259. https://doi.org/10.1371/journal.pntd.0001259 

Rushton, J. (2009). Part II: A review of the application of economics to animal diseases and health 

problems. In The Economics of Animal Health and Production (pp. 193–197). CAB 

International. 

Rushton, J., Thornton, P. K., & Otte, M. J. (1999). Methods of economic impact assessment. Revue 

Scientifique Et Technique (International Office of Epizootics), 18(2), 315–342. 

https://doi.org/10.20506/rst.18.2.1172 

Russell, R. E., Katz, R. A., Richgels, K. L. D., Walsh, D. P., & Grant, E. H. C. (2017). A Framework for 

Modeling Emerging Diseases to Inform Management. Emerging Infectious Diseases, 23(1), 1–

6. https://doi.org/10.3201/eid2301.161452 

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing 

phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. 

https://doi.org/10.1093/oxfordjournals.molbev.a040454 

Salazar, L. G., Rose, N., Hayes, B. H., Hammami, P., Baubet, E., Desvaux, S., & Andraud, M. (2022). 

Effects of Habitat Fragmentation and Hunting Activities on African Swine Fever Dynamics 

Among Wild Boar Populations. Preventive Veterinary Medicine, 208. 

https://doi.org/10.1016/j.prevetmed.2022.105750 

Sanchez Botija, C., & Badiola, C. (1966). [Presencie of the African swine pest virus in Haematopinus 

suis]. Bulletin - Office International Des Epizooties, 66(1), 699–705. 

Sánchez, E. G., Pérez-Núñez, D., & Revilla, Y. (2019). Development of vaccines against African swine 

fever virus. Virus Research, 265, 150–155. https://doi.org/10.1016/j.virusres.2019.03.022 

Sanchez-Botija, C. (1963). Reservorios del virus de la Paste Porcina Africana. Investigation del virus de 

la P. P. A. en las arthropodos mediante la prueba de la hemadsocion. Bull. Off. Int. Epizootiol., 

60, 895–899. 

Sanchez-Botija, C. (1982). Peste porcina africana. Nuevos desarrollos. Revue Scientifique Et Technique 

(International Office of Epizootics), 1(4), 991–1094. https://doi.org/10.20506/rst.1.4.91 

Sánchez-Vizcaíno, J. M., Martínez-López, B., Martínez-Avilés, M., Martins, C., Boinas, F., Vialc, L., 

Michaud, V., Jori, F., Etter, E., Albina, E., & Roger, F. (2009). Scientific review on African Swine 

Fever. EFSA Supporting Publications, 6. https://doi.org/10.2903/sp.efsa.2009.EN-5 

Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco, L. (2015). An Update on the 

Epidemiology and Pathology of African Swine Fever. Journal of Comparative Pathology, 

152(1), 9–21. https://doi.org/10.1016/j.jcpa.2014.09.003 



 188 

Santos, N., Richomme, C., Nunes, T., Vicente, J., Alves, P. C., de la Fuente, J., Correia-Neves, M., 

Boschiroli, M.-L., Delahay, R., & Gortázar, C. (2020). Quantification of the Animal Tuberculosis 

Multi-Host Community Offers Insights for Control. Pathogens (Basel, Switzerland), 9(6). 

https://doi.org/10.3390/pathogens9060421 

Sauter-Louis, C., Conraths, F. J., Probst, C., Blohm, U., Schulz, K., Sehl, J., Fischer, M., Forth, J. H., Zani, 

L., Depner, K., Mettenleiter, T. C., Beer, M., & Blome, S. (2021). African Swine Fever in Wild 

Boar in Europe—A Review. Viruses, 13(9), 1717. https://doi.org/10.3390/v13091717 

Sauter-Louis, C., Schulz, K., Richter, M., Staubach, C., Mettenleiter, T. C., & Conraths, F. J. (2021). 

African swine fever: Why the situation in Germany is not comparable to that in the Czech 

Republic or Belgium. Transboundary and Emerging Diseases. 

https://doi.org/10.1111/tbed.14231 

Schulz, K., Conraths, F. J., Blome, S., Staubach, C., & Sauter-Louis, C. (2019). African Swine Fever: Fast 

and Furious or Slow and Steady? Viruses, 11(9), 866. https://doi.org/10.3390/v11090866 

Schulz, K., Staubach, C., & Blome, S. (2017). African and classical swine fever: Similarities, differences 

and epidemiological consequences. Veterinary Research, 48, 84. 

https://doi.org/10.1186/s13567-017-0490-x 

Shi, R., Li, Y., & Wang, C. (2020). Stability analysis and optimal control of a fractional-order model for 

African swine fever. Virus Research, 288, 198111. 

https://doi.org/10.1016/j.virusres.2020.198111 

Shirley, M. D. F., & Rushton, S. P. (2005). The impacts of network topology on disease spread. 

Ecological Complexity, 2(3), 287–299. https://doi.org/10.1016/j.ecocom.2005.04.005 

Simeón-Negrín, R. E., & Frías-Lepoureau, M. T. (2002). Eradication of African Swine Fever in Cuba (1971 

and 1980). In Trends in Emerging Viral Infections of Swine (pp. 125–131). John Wiley & Sons, 

Ltd. https://doi.org/10.1002/9780470376812.ch4b 

Sindryakova, I., Morgunov, Yu. P., Chichikin, A. Y., Gazaev, I., Kudryashov, D. A., & Tsybanov, S. Z. 

(2016). The influence of temperature on the Russian isolate of African swine fever virus in 

pork products and feed with extrapolation to natural conditions. Sel’skokhozyaistvennaya 

Biologiya, 51, 467–474. https://doi.org/10.15389/agrobiology.2016.4.467eng 

Śmietanka, K., Woźniakowski, G., Kozak, E., Niemczuk, K., Frączyk, M., Bocian, Ł., Kowalczyk, A., & 

Pejsak, Z. (2016). African Swine Fever Epidemic, Poland, 2014-2015. Emerging Infectious 

Diseases, 22(7), 1201–1207. https://doi.org/10.3201/eid2207.151708 

Smith, G. (2006). Persistence of disease in territorial animals: Insights from spatial models of Tb. NEW 

ZEALAND JOURNAL OF ECOLOGY, 30(1), 35–41. 



 189 

Smith, G., Cheeseman, C., Clifton-Hadley, R., & Wilkinson, D. (2001). A model of bovine tuberculosis 

in the badger Meles meles: An evaluation of control strategies. JOURNAL OF APPLIED 

ECOLOGY, 38(3), 509–519. https://doi.org/10.1046/j.1365-2664.2001.00609.x 

Smith, G., Cheeseman, C., Wilkinson, D., & Clifton-Hadley, R. (2001). A model of bovine tuberculosis 

in the badger Meles meles: The inclusion of cattle and the use of a live test. JOURNAL OF 

APPLIED ECOLOGY, 38(3), 520–535. https://doi.org/10.1046/j.1365-2664.2001.00610.x 

Smith, G., Delahay, R. J., McDonald, R. A., & Budgey, R. (2016). Model of Selective and Non-Selective 

Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle. 

PloS One, 11(11), e0167206. https://doi.org/10.1371/journal.pone.0167206 

Song, W., Kim, E., Lee, D., Lee, M., & Jeon, S.-W. (2013). The sensitivity of species distribution modeling 

to scale differences. Ecological Modelling, 248, 113–118. 

https://doi.org/10.1016/j.ecolmodel.2012.09.012 

Spitz, F., & Janeau, G. (1990). Spatial strategies: An attempt to classify daily movements of wild boar. 

Http://Katalog.Pan.Pl/Webpac-Bin/223bzbsPL/Wgbroker.Exe?New+-

Access+top+search+open+NR+ee95400552. https://doi.org/10.4098/AT.arch.90-14 

Ståhl, K., Sternberg-Lewerin, S., Blome, S., Viltrop, A., Penrith, M.-L., & Chenais, E. (2019). Lack of 

evidence for long term carriers of African swine fever virus—A systematic review. Virus 

Research, 272, 197725. https://doi.org/10.1016/j.virusres.2019.197725 

Stevenson, M. A., Sanson, R. L., Stern, M. W., O’Leary, B. D., Sujau, M., Moles-Benfell, N., & Morris, R. 

S. (2013). InterSpread Plus: A spatial and stochastic simulation model of disease in animal 

populations. Preventive Veterinary Medicine, 109(1–2), 10–24. 

https://doi.org/10.1016/j.prevetmed.2012.08.015 

Stocks, T., Britton, T., & Höhle, M. (2017). pomp-astic Inference for Epidemic Models: Simple vs. 

Complex (p. 125880). bioRxiv. https://doi.org/10.1101/125880 

Stocks, T., Britton, T., & Höhle, M. (2018). Model selection and parameter estimation for dynamic 

epidemic models via iterated filtering: Application to rotavirus in Germany. Biostatistics 

(Oxford, England), 21(3), 400–416. https://doi.org/10.1093/biostatistics/kxy057 

Sun, E., Huang, L., Zhang, X., Zhang, J., Shen, D., Zhang, Z., Wang, Z., Huo, H., Wang, W., Huangfu, H., 

Wang, W., Li, F., Liu, R., Sun, J., Tian, Z., Xia, W., Guan, Y., He, X., Zhu, Y., … Bu, Z. (2021). 

Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic 

infection. Emerging Microbes & Infections, 10(1), 2183–2193. 

https://doi.org/10.1080/22221751.2021.1999779 

Susser, M., & Susser, E. (1996). Choosing a future for epidemiology: II. From black box to Chinese boxes 

and eco-epidemiology. American Journal of Public Health, 86(5), 674–677. 



 190 

Takamatsu, H.-H., Denyer, M. S., Lacasta, A., Stirling, C. M. A., Argilaguet, J. M., Netherton, C. L., Oura, 

C. A. L., Martins, C., & Rodríguez, F. (2013). Cellular immunity in ASFV responses. Virus 

Research, 173(1), 110–121. https://doi.org/10.1016/j.virusres.2012.11.009 

Taylor, R. A., Podgórski, T., Simons, R. R. L., Ip, S., Gale, P., Kelly, L. A., & Snary, E. L. (2021). Predicting 

spread and effective control measures for African swine fever—Should we blame the boars? 

Transboundary and Emerging Diseases, 68(2), 397–416. https://doi.org/10.1111/tbed.13690 

Thomson, G. R. (1985). The epidemiology of African swine fever: The role of free-living hosts in Africa. 

The Onderstepoort Journal of Veterinary Research, 52(3), 201–209. 

Thomson, G. R., Gainaru, M. D., & Van Dellen, A. F. (1980). Experimental infection of warthos 

(Phacochoerus aethiopicus) with African swine fever virus. The Onderstepoort Journal of 

Veterinary Research, 47(1), 19–22. 

Thulke, H.-H., & Lange, M. (2017). Simulation-based investigation of ASF spread and control in wildlife 

without consideration of human non-compliance to biosecurity. EFSA Supporting Publications, 

14(11), 1312E. https://doi.org/10.2903/sp.efsa.2017.EN-1312 

Tildesley, M. J., Deardon, R., Savill, N. J., Bessell, P. R., Brooks, S. P., Woolhouse, M. E. J., Grenfell, B. 

T., & Keeling, M. J. (2008). Accuracy of models for the 2001 foot-and-mouth epidemic. 

Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1459–1468. 

https://doi.org/10.1098/rspb.2008.0006 

Tildesley, M. J., & Keeling, M. J. (2008). Modelling foot-and-mouth disease: A comparison between the 

UK and Denmark. Preventive Veterinary Medicine, 85(1–2), 107–124. 

https://doi.org/10.1016/j.prevetmed.2008.01.008 

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate Bayesian 

computation scheme for parameter inference and model selection in dynamical systems. 

Journal of The Royal Society Interface, 6(31), 187–202. https://doi.org/10.1098/rsif.2008.0172 

Turlewicz-Podbielska, H., Kuriga, A., Niemyjski, R., Tarasiuk, G., & Pomorska-Mól, M. (2021). African 

Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine—Current Data. Viruses, 

13(7), Article 7. https://doi.org/10.3390/v13071212 

Ungur, A., Cazan, C. D., Panait, L. C., Taulescu, M., Balmoș, O. M., Mihaiu, M., Bărbuceanu, F., Mihalca, 

A. D., & Cătoi, C. (2021). Genotyping of African Swine Fever Virus (ASFV) Isolates in Romania 

with the First Report of Genotype II in Symptomatic Pigs. Veterinary Sciences, 8(12), 290. 

https://doi.org/10.3390/vetsci8120290 

United States Geological Survey (USGS). (2002). What in the world is Epidemioecology? Epidemiology 

News, 1(1). 



 191 

Urner, N., Seržants, M., Užule, M., Sauter-Louis, C., Staubach, C., Lamberga, K., Oļševskis, E., Conraths, 

F. J., & Schulz, K. (2021). Hunters’ view on the control of African swine fever in wild boar. A 

participatory study in Latvia. Preventive Veterinary Medicine, 186, 105229. 

https://doi.org/10.1016/j.prevetmed.2020.105229 

USDA, APHIS. (2020). African Swine Fever Response Plan: The Red Book. USDA Animal and Plant Health 

Inspection Service, Veterinary Services. 

https://www.aphis.usda.gov/animal_health/emergency_management/downloads/asf-

responseplan.pdf 

USDA, APHIS. (2021). USDA Statement on Confirmation of African Swine Fever in the Dominican 

Republic. https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2021/asf-

confirm 

van den Driessche, P. (2008). Spatial Structure: Patch Models. In F. Brauer, P. van den Driessche, & J. 

Wu (Eds.), Mathematical Epidemiology (pp. 179–189). Springer. https://doi.org/10.1007/978-

3-540-78911-6_7 

Van Goethem, B. (2021, September 1). Update on African swine fever situation in the EU. European 

Commission Directorate-General for Health and Food Safety, Crisis preparedness in food, 

animals and plants. 

Van Schepen, M. D., & Kunesh, J. P. (1981). African Swine Fever: An Overview. Undefined. 

https://www.semanticscholar.org/paper/African-Swine-Fever%3A-An-Overview-Schepen-

Kunesh/a34ec909c8c3c21c77df181185e0840e46aec0b2 

Vergne, T., Andraud, M., Bonnet, S., De Regge, N., Desquesnes, M., Fite, J., Etore, F., Garigliany, M.-

M., Jori, F., Lempereur, L., Le Potier, M.-F., Quillery, E., Saegerman, C., Vial, L., & Bouhsira, E. 

(2021). Mechanical transmission of African swine fever virus by Stomoxys calcitrans: Insights 

from a mechanistic model. Transboundary and Emerging Diseases, 68(3), 1541–1549. 

https://doi.org/10.1111/tbed.13824 

Vergne, T., Gogin, A., & Pfeiffer, D. U. (2017). Statistical Exploration of Local Transmission Routes for 

African Swine Fever in Pigs in the Russian Federation, 2007–2014. Transboundary and 

Emerging Diseases, 64(2), 504–512. https://doi.org/10.1111/tbed.12391 

Vergne, T., Guinat, C., & Pfeiffer, D. U. (2020). Undetected Circulation of African Swine Fever in Wild 

Boar, Asia. Emerging Infectious Diseases, 26(10), 2480–2482. 

https://doi.org/10.3201/eid2610.200608 

Vergne, T., Korennoy, F., Combelles, L., Gogin, A., & Pfeiffer, D. U. (2016). Modelling African swine 

fever presence and reported abundance in the Russian Federation using national surveillance 



 192 

data from 2007 to 2014. Spatial and Spatio-Temporal Epidemiology, 19, 70–77. 

https://doi.org/10.1016/j.sste.2016.06.002 

Viboud, C., Sun, K., Gaffey, R., Ajelli, M., Fumanelli, L., Merler, S., Zhang, Q., Chowell, G., Simonsen, L., 

& Vespignani, A. (2018). The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. 

Epidemics, 22, 13–21. https://doi.org/10.1016/j.epidem.2017.08.002 

Vynnycky, E., & White, R. (2010). An Introduction to Infectious Disease Modelling. Oxford University 

Press. 

Wade, A., Achenbach, J. E., Gallardo, C., Settypalli, T. B. K., Souley, A., Djonwe, G., Loitsch, A., Dauphin, 

G., Ngang, J. J. E., Boyomo, O., Cattoli, G., Diallo, A., & Lamien, C. E. (2019). Genetic 

characterization of African swine fever virus in Cameroon, 2010-2018. Journal of Microbiology 

(Seoul, Korea), 57(4), 316–324. https://doi.org/10.1007/s12275-019-8457-4 

Walker, J. G., Evans, K. E., Rose Vineer, H., van Wyk, J. A., & Morgan, E. R. (2018). Prediction and 

attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid 

mixed-use system. The Journal of Applied Ecology, 55(4), 1976–1986. 

https://doi.org/10.1111/1365-2664.13083 

Walton, G. (1962). The Ornithodorus moubata superspecies problem in relation to human relapsing 

fever epidemiology. In D. Arthur (Ed.), Aspects of Disease Transmission by Ticks (6th ed., pp. 

83–156). The Society. 

Ward, M., Garner, M., & Cowled, B. (2015). Modelling foot-and-mouth disease transmission in a wild 

pig–domestic cattle ecosystem. Australian Veterinary Journal, 93(1–2), 4–12. 

https://doi.org/10.1111/avj.12278 

Ward, M. P., Laffan, S. W., & Highfield, L. D. (2011). Disease spread models in wild and feral animal 

populations: Application of artificial life models. Revue Scientifique et Technique (International 

Office of Epizootics), 30(2), 437–446. https://doi.org/10.20506/rst.30.2.2042 

Weaver, T. R. D., & Habib, N. (2020). Evaluating Losses Associated with African Swine Fever in the 

People’s Republic of China and Neighboring Countries (Cambodia, China, People’s Republic of, 

Lao People’s Democratic Republic, Myanmar, Viet Nam). Asian Development Bank. 

https://www.adb.org/publications/losses-african-swine-fever-prc-neighboring-countries 

White, S. H., del Rey, A. M., & Sánchez, G. R. (2007). Modeling epidemics using cellular automata. 

Applied Mathematics and Computation, 186(1), 193–202. 

https://doi.org/10.1016/j.amc.2006.06.126 

Widgren, S., Bauer, P., Eriksson, R., & Engblom, S. (2019). SimInf: An R Package for Data-Driven 

Stochastic Disease Spread Simulations. Journal of Statistical Software, 91, 1–42. 

https://doi.org/10.18637/jss.v091.i12 



 193 

Wilkinson, D., Smith, G., Delahay, R., & Cheeseman, C. (2004). A model of bovine tuberculosis in the 

badger Meles meles: An evaluation of different vaccination strategies. JOURNAL OF APPLIED 

ECOLOGY, 41(3), 492–501. https://doi.org/10.1111/j.0021-8901.2004.00898.x 

Wilkinson, P. (1989). African Swine Fever Virus. In M. Pensaert, Virus Infections of Porcines. Elsevier 

Science. 

Wilson, E. B., & Burke, M. H. (1942). The Epidemic Curve. Proceedings of the National Academy of 

Sciences of the United States of America, 28(9), 361–367. 

WOAH. (2019a). Self-declaration of the recovery of freedom from African swine fever in all suids by the 

Czech Republic. WOAH. 

WOAH. (2019b). Bovine tuberculosis: Global distribution and implementation of prevention and control 

measures according to WAHIS data (p. 3). OIE. https://bulletin.woah.org/?panorama=3-01-

tb-wahis-en 

WOAH. (2019c). Technical Disease Card. African swine fever. WOAH. 

https://www.woah.org/en/document/african_swine_fever/ 

WOAH. (2021). Terrestrial Animal Health Code (29th ed.). WOAH. https://www.oie.int/en/what-we-

do/standards/codes-and-manuals/terrestrial-code-online-access/ 

WOAH. (2022a). Animal Disease Information System (ADIS). WOAH. https://wahis.woah.org/ 

WOAH. (2022b). African swine fever (ASF)—Situation Report 11 (Situation Report, p. 5). WOAH. 

https://www.woah.org/app/uploads/2022/05/asf-report11.pdf 

WOAH. (2022c, May 23). Implementing stronger biosecurity to avoid disease spread to new areas. 

WOAH - World Organisation for Animal Health. https://www.woah.org/en/implementing-

stronger-biosecurity-to-avoid-disease-spread-to-new-areas/ 

WOAH. (2022d). African swine fever (ASF)—Situation report 17 (Situation Report, p. 6). OIE. 

https://www.woah.org/app/uploads/2022/07/asf-report17-1.pdf 

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear 

Phenomena, 10(1), 1–35. https://doi.org/10.1016/0167-2789(84)90245-8 

Wolfram, S. ,. Author, & Gad-el-Hak, M. ,. Reviewer. (2003). A New Kind of Science. Applied Mechanics 

Reviews, 56(2), B18–B19. https://doi.org/10.1115/1.1553433 

Yang, A., Schlichting, P., Wight, B., Anderson, W. M., Chinn, S. M., Wilber, M. Q., Miller, R. S., Beasley, 

J. C., Boughton, R. K., VerCauteren, K. C., Wittemyer, G., & Pepin, K. M. (2021). Effects of social 

structure and management on risk of disease establishment in wild pigs. Journal of Animal 

Ecology, 90(4), 820–833. https://doi.org/10.1111/1365-2656.13412 

Yoo, D. S., Kim, Y., Lee, E. S., Lim, J. S., Hong, S. K., Lee, I. S., Jung, C. S., Yoon, H. C., Wee, S. H., Pfeiffer, 

D. U., & Fournié, G. (2021). Transmission Dynamics of African Swine Fever Virus, South Korea, 



 194 

2019. Emerging Infectious Diseases, 27(7), 1909–1918. 

https://doi.org/10.3201/eid2707.204230 

Yoon, H., Hong, S.-K., Lee, I., Choi, D.-S., Lee, J.-H., Lee, E., & Wee, S.-H. (2021). Arthropods as potential 

vectors of African swine fever virus outbreaks in pig farms in the Republic of Korea. Veterinary 

Medicine and Science, 7(5), 1841–1844. https://doi.org/10.1002/vms3.545 

You, S., Liu, T., Zhang, M., Zhao, X., Dong, Y., Wu, B., Wang, Y., Li, J., Wei, X., & Shi, B. (2021). African 

swine fever outbreaks in China led to gross domestic product and economic losses. Nature 

Food, 2(10), Article 10. https://doi.org/10.1038/s43016-021-00362-1 

Zani, L., Forth, J. H., Forth, L., Nurmoja, I., Leidenberger, S., Henke, J., Carlson, J., Breidenstein, C., 

Viltrop, A., Höper, D., Sauter-Louis, C., Beer, M., & Blome, S. (2018). Deletion at the 5’-end of 

Estonian ASFV strains associated with an attenuated phenotype. Scientific Reports, 8(1), 

Article 1. https://doi.org/10.1038/s41598-018-24740-1 

Zorzenon dos Santos, R. M., & Coutinho, S. (2001). Dynamics of HIV infection: A cellular automata 

approach. Physical Review Letters, 87(16), 168102. 

https://doi.org/10.1103/PhysRevLett.87.168102  

  



 195 

 

 

 

Titre :  Modélisation mathématique de la peste porcine africaine à l'interface entre élevages de  
cochons et sangliers : implications pour la lutte 

Mots clés : peste porcine, modélisation, simulation, diffusion, transmission inter-spécifique, contrôle 

Résumé : En 2007, le virus de la peste porcine 
africaine (PPA) a émergé sur le continent 
européen et a décimé les populations de porcs 
domestiques et de sangliers. Avec la propagation 
virale entre les compartiments sauvages et 
domestiques qui complique les efforts de contrôl, 
et l’absence de vaccins disponibles, la PPA est 
l'une des maladies infectieuses les plus difficiles à 
contrôler. Les modèles mathématiques ont fait 
leurs preuves en matière d'aide à la prise de 
décision, mais aucun modèle existant de la PPA 
ne tient compte de cette interface entre les porc 
domestiques et les sangliers. La Roumanie, l'état 
membre de l'Union européenne le plus gravement 
touché par la maladie, est riche en élevages 
porcins de basse-cour, suspectés d’être 
particulièrement exposés aux populations de 
sangliers. Pour mieux comprendre la dynamique 
de l'épizootie, nous avons construit un modèle          
, 

mécaniste spatial et stochastique de 
transmission de la PPA, intégrant à la fois les 
compartiments domestique et sauvage. Le 
modèle a été calibré en combinant une revue de 
la littérature scientifique et un ajustement à 
l’épizootie observée en Roumanie, permettant 
d’évaluer la contribution relative des 
compartiments domestique et sauvage à la 
propagation du virus. Des stratégies de contrôle 
alternatives ont été explorées, révélant que le 
dépeuplement de l’ensemble de la population 
porcine des villages infectés, putôt que 
seulement des lots touchés, aurait pu réduire 
l’épidémie de manière conséquente. Ce modèle 
peut maintenant être adapté à d'autres pays, 
comme la Corée du Sud pour évaluer l’efficacité 
des barrières, ou comme la France pour tester 
des scénarii de gestion en cas d'apparition de 
foyers de PPA. 

 

Title :  Mathematical modelling of African swine fever at the domestic-wildlife interface: Implications 
for control 

Keywords: swine fever, modelling, simulation, multihost transmission, diffusion, control 

Abstract: In 2007, African swine fever virus 
(ASFV) escaped again from sub-Saharan Africa 
and has been decimating domestic pig and wild 
boar populations around the world. With viral 
spillover between the wild and domestic 
compartments complicating control efforts, and 
the absence of an available vaccine, ASF is one 
of the most difficult infectious diseases to control. 
Mathematical models have a proven record of 
assisting policy makers in epizootic decision-
making, but as shown through a systematic 
review of the modelling literature, no existing ASF 
models account for such spillover transmission. 
Romania, the most severely affected European 
Union Member State, is rich in backyard swine 
farming—and suspected to be particularly 
exposed to wild boar populations. To better 
understand the observed epizootic dynamics, we 
, 

 
 

built a spatial and stochastic mechanistic model 
of ASF transmission, integrating both domestic 
and wild compartments. The model was 
calibrated by combining a review of the scientific 
literature and a fit to the epizootic observed in 
Romania, allowing to evaluate the relative 
contribution of the domestic and wild 
compartments to the virus spread. Alternative 
control strategies were able to be explored, 
revealing that depopulation of the entire pig 
population in the infected villages, rather than just 
the affected batches, could have significantly 
reduced the epidemic. This model can now be 
adapted to other countries, such as South Korea 
to evaluate the effectiveness of barriers, or 
France to test management scenarios in the 
event of an ASF outbreak. 

 


