
HAL Id: tel-04091291
https://theses.hal.science/tel-04091291v1

Submitted on 8 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Watermarking machine learning models
Sofiane Lounici

To cite this version:
Sofiane Lounici. Watermarking machine learning models. Computer Aided Engineering. Sorbonne
Université, 2022. English. �NNT : 2022SORUS282�. �tel-04091291�

https://theses.hal.science/tel-04091291v1
https://hal.archives-ouvertes.fr

Watermarking
Machine Learning Models

Dissertation

submitted to

Sorbonne Université and EURECOM

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Sofiane LOUNICI

Scheduled for defense on November 7th 2022, in front of a committee composed of:

Reviewers
Prof. Emil LUPU Imperial College, London
Prof. Luigi MANCINI Sapienza University of Rome, Italy

Examiners
Dr. Orhan ERMIŞ Institute of Science and Technology, Luxembourg
Prof. Pietro MICHIARDI EURECOM, France

Industrial Supervisor
Dr. Slim TRABELSI SAP Security Research, France

Thesis Supervisor
Prof. Melek ÖNEN EURECOM, France

Guest
Dr. Marie PAINDAVOINE Inria Rennes, France

Tatouage numérique
des modèles d’apprentissage automatique

Thèse

soumise à

Sorbonne Université et EURECOM

pour l’obtention du Grade de Docteur

présentée par:

Sofiane LOUNICI

Soutenance de thèse prévue le 7 Novembre 2022 devant le jury composé de:

Rapporteurs
Prof. Emil LUPU Imperial College, Londres
Prof. Luigi MANCINI Université de Rome « La Sapienza », Italie

Examinateurs
Dr. Orhan ERMIŞ Institut de Science et Technologie, Luxembourg
Prof. Pietro MICHIARDI EURECOM, France

Superviseur Industriel
Dr Slim TRABELSI Recherche Sécurité de SAP, France

Directrice de Thèse
Prof. Melek ÖNEN EURECOM, France

Invitée
Dr. Marie PAINDAVOINE Inria Rennes, France

To my beloved family

Abstract

The protection of the intellectual property of machine learning models appears to be
increasingly necessary, given the investments and their impact on society. In this thesis,
we propose to study the watermarking of machine learning models. We provide a state
of the art on current watermarking techniques, and then complement it by considering
watermarking beyond image classification tasks. We then define forging attacks against
watermarking for model hosting platforms and present a new fairness-based watermarking
technique. In addition, we propose an implementation of the presented techniques.

i

Abstract

ii

Abrégé

La protection de la propriété intellectuelle des modèles d’apprentissage automatique
apparâıt de plus en plus nécessaire, au vu des investissements et de leur impact sur la
société. Dans cette thèse, nous proposons d’étudier le tatouage de modèles d’apprentissage
automatique. Nous fournissons un état de l’art sur les techniques de tatouage actuelles,
puis nous le complétons en considérant le tatouage de modèles au-delà des tâches
de classification d’images. Nous définissons ensuite les attaques de contrefaçon contre
le tatouage pour les plateformes d’hébergement de modèles, et nous présentons une
nouvelle technique de tatouages par biais algorithmique. De plus, nous proposons une
implémentation des techniques présentées.

iii

Abrégé

iv

Acknowledgements

I would like to express my gratitude to my supervisor Prof. Melek Önen for her support
and her guidance. I learned a lot from our discussions and it was immensely valuable for
me.

A more than special thanks go to all the jury members in my PhD committee, namely
Emil Lupu, Luigi Mancini, Orhan Ermiş, Pietro Michardi, and Slim Trabelsi for having
accepted to join in the jury.

I would like to thank all my co-authors, Marco, Carlo, Mohamed, Orhan, Dhia, Melek
and Slim, to have been part of my publication.

Special thanks to my colleagues at the Security Research department SAP Labs
France, in particular Marco for his help and his time, and my fellow SAP PhD students
Feras, Piergorgio, Caelin and Niccolò for the interesting discussions.

Finally, I would like to thank my family, my parents for their unconditional support,
and my wife Yuliya for her love and her understanding during these difficult times.

v

Acknowledgements

vi

Contents

Abstract . i

Abrégé [Français] . iii

Acknowledgements . v

Contents . vii

List of Figures . xi

List of Tables . xv

List of Publications . xvii

1 Introduction 1

1.1 Machine Learning lifecycle . 1

1.2 Security for Machine Learning . 1

1.3 Model Stealing . 2

1.4 Watermarking . 3

1.5 Contributions . 4

1.6 Organisation . 4

2 Machine Learning and Security Aspects 7

2.1 Introduction . 7

2.2 Regression models . 8

2.3 Neural Networks . 8

2.3.1 Gradient Based Learning . 10

2.4 Natural language processing tasks . 11

2.4.1 CBOW representation . 11

2.4.2 Machine translation task . 12

2.5 Machine Learning lifecycle . 12

2.6 Security of Machine Learning . 13

2.6.1 Security threats . 14

2.6.2 Algorithmic bias threats . 14

2.6.3 Privacy threats . 14

2.7 Conclusion . 15

vii

Contents

3 The problem of model stealing 17

3.1 Motivation for model stealing attacks . 17

3.1.1 Lack of resources . 17

3.1.2 Potential profits . 18

3.1.3 Lack of knowledge . 19

3.1.4 Lack of time . 19

3.2 How to steal a model . 19

3.2.1 Data leaks . 19

3.2.2 Insider threats . 20

3.2.3 Model extraction attacks . 21

3.3 Current legal protections . 22

3.4 Conclusion . 23

4 Mitigating Data Leaks in Open-Source Platforms 25

4.1 Introduction . 25

4.2 Overview . 26

4.2.1 The problem of data leaks . 26

4.2.2 Our approach . 27

4.2.3 Scenarios . 28

4.3 Path Model . 29

4.3.1 Data pre-processing for the Path model 29

4.3.2 Training phase . 29

4.4 Snippet Models . 30

4.4.1 Building blocks . 30

4.4.2 Extractor . 32

4.4.3 Classifier . 33

4.5 Similarity model . 33

4.6 Experiments . 33

4.6.1 Regex Scanner false positive rate 34

4.6.2 Models false negatives . 35

4.6.3 Models false positives . 36

4.7 Related work . 39

4.7.1 Research work . 39

4.7.2 Comparison with other credential scanning tools 40

4.8 Conclusion . 42

5 Watermarking Machine Learning 43

5.1 Digital Watermarking . 43

5.2 Watermarking neural networks . 44

5.2.1 Threat model . 44

viii

Contents

5.2.2 Main functions . 45

5.2.3 Properties . 45

5.2.4 Black-box vs. White-Box . 46

5.3 Black-box watermarking . 47

5.3.1 Definitions . 47

5.3.2 Embedding . 48

5.3.3 Trigger generation . 49

5.3.4 Loss function update . 51

5.3.5 Verification . 52

5.4 White-box watermarking . 53

5.4.1 Embedding . 53

5.5 Fingerprinting . 57

5.6 Model stealing attacks against watermarking 59

5.6.1 Condition of success . 59

5.6.2 Black-box attacks against watermarking 60

5.6.3 White-box attacks against watermarking 61

5.6.4 Hybrid attacks against watermarking 63

5.7 Other application domains . 64

5.8 Conclusion . 65

6 Watermarking beyond Classification 67

6.1 Introduction . 67

6.2 Reinforcement learning model . 69

6.3 Watermark threshold definition . 71

6.3.1 Verification threshold . 71

6.4 Trigger generation techniques . 72

6.4.1 Watermark noise (WMnoise) . 73

6.4.2 Unrelated watermark (WMunrelated) 73

6.4.3 Watermark content (WMcontent) 74

6.4.4 Generation process . 74

6.5 Attacks . 74

6.5.1 Heuristics-based attacks . 75

6.5.2 Compression attacks . 75

6.5.3 Voting system . 76

6.5.4 Removal attacks . 76

6.5.5 Success of the adversary . 77

6.6 Experimental Evaluation . 78

6.6.1 Baseline Watermark-free model setup 78

6.6.2 Watermarking setup . 79

6.6.3 Attack setup . 79

ix

Contents

6.6.4 Fidelity . 80

6.6.5 Trigger set performance . 81

6.6.6 Robustness to heuristics-based attacks 82

6.6.7 Robustness to compression attacks 83

6.6.8 Robustness to the voting attack . 84

6.6.9 Robustness to removal attack . 85

6.6.10 Summary . 86

6.7 Related work . 87

6.8 Conclusion . 87

7 Watermarking for MLaaS platforms 89

7.1 Introduction . 89

7.1.1 YouTube’s Content ID . 89

7.1.2 The case of machine learning . 90

7.2 Machine Learning Platform . 91

7.2.1 Overview . 92

7.2.2 Remarks . 93

7.2.3 Similarity measures . 93

7.3 Watermark forging attacks . 94

7.3.1 Threat Model . 94

7.4 Injection attack . 94

7.4.1 Overview . 95

7.4.2 Our countermeasure . 96

7.5 Adversarial attack . 97

7.5.1 Overview . 97

7.5.2 Our countermeasure . 98

7.6 Latent attack . 98

7.6.1 Overview . 99

7.7 Experiments . 100

7.7.1 Experimental setup . 100

7.7.2 Platform simulation . 101

7.7.3 Injection attack . 102

7.7.4 Latent attack . 103

7.8 Conclusion . 105

8 Watermarking in Production 107

8.1 Introduction . 107

8.2 Assumptions . 108

8.3 Description . 109

8.3.1 Overview . 109

x

Contents

8.3.2 Algorithms . 110

8.3.3 Threat level . 111

8.4 Related Work . 111

8.5 Conclusion & Future work . 112

9 Watermarking through Fairness 113

9.1 Introduction . 113

9.2 Problem statement . 115

9.2.1 Application scenarios . 116

9.3 BlindSpot . 118

9.3.1 Overview . 118

9.3.2 Fairness measure . 118

9.3.3 Embedding . 119

9.3.4 Inserting a bias . 120

9.3.5 Verification . 122

9.3.6 Accuracy computation . 122

9.3.7 Extension to multi-class classification 123

9.4 Security analysis against possible attacks 124

9.4.1 Anomaly detection . 124

9.4.2 Forging . 125

9.4.3 Model extraction . 126

9.5 Experiments . 126

9.5.1 Setup . 126

9.5.2 Datasets & Models . 127

9.5.3 Choice of SubGroup . 127

9.5.4 Results . 128

9.5.5 Discussion . 130

9.6 Conclusion . 131

10 Conclusion & Future Work 133

10.1 Summary . 133

10.2 Future Work . 134

Appendices 137

A Appendix 139

A.1 Pattern and Regex from Chapter 4 . 139

xi

Contents

xii

List of Figures

1.1 An adversarial input, overlaid on a typical image, can cause a classifier to
miscategorize a panda as a gibbon [1]. 2

1.2 Example of visible image watermarking 3

2.1 Architecture of a neural network . 9

2.2 Schematic representation of convolving input of size 4×4 (blue) with filters
of size 3 × 3, output is 2 × 2 (cyan) . 10

2.3 The Machine Learning Life-cycle . 13

2.4 Example of adversarial attacks for traffic sign recognition [2] (on the left)
and data poisoning attack for face recognition [3] (on the right)) 14

3.1 An AWS-based architecture service along with the estimated cost 18

3.2 AWS Credentials stored in plain-text on GitHub 19

3.3 Schema of a model extraction attack . 21

4.1 Architecture of the Credential Digger’s approach 28

4.2 Statistics on the GitHub scan . 35

4.3 Data augmentation on D to assess the performance of the Extractor with
the train/test split technique . 36

4.4 Comparison of available tools . 42

5.1 Overall watermark process, including embedding, attacks and verification . 44

5.2 Different types of trigger generation techniques 49

5.3 An adversarial input, overlaid on a typical image, can cause a classifier to
miscategorize a panda as a gibbon [1]. 50

5.4 SNNL values for 4-class classification problem, from highly entangled data
(left) to highly disantagled data (right), from Frosst et al. [4] 52

5.5 The 5 categories of white-box embedding 53

5.6 Difference between Adversarial examples based fingerprinting and UAP
based, from Peng [5] . 57

5.7 Differences between benign and malicious surrogates, resulting in different
fingerprints . 58

5.8 Two black-box attacks: anomaly detection and input preprocessing attacks 61

5.9 Trigger reverse-engineering and voting attacks 62

xiii

List of Figures

6.1 Number of experimental evaluation per dataset in the watermarking liter-
ature review before and after 2021. 68

6.2 Distribution between vision and non-vision tasks (before 2021 for 6.2a,
after for 6.2b and between classification and non-classification tasks (before
2021 for 6.2c, after for 6.2d)) . 69

6.3 Different types of ML models . 70
6.4 Examples of trigger set inputs, for the machine translation and image

classification tasks. 73
6.5 Watermark robustness to heuristics . 82
6.6 Watermark robustness to the compression attack 83
6.7 Watermark robustness to the voting attack, evaluated on trigger set . . . 84

7.1 Youtube Content ID process, where fingerprints of videos are stored, in
order to be compared with newly uploaded videos, to detect similarities. . 90

7.2 The three phases of the protocol . 92
7.3 The Injection attack, inserting legitimate data in the trigger set, with the

counter measure IsValid . 95
7.4 The adversarial attack, using a target model to build the malicious trigger

set . 98
7.5 The Latent attack with the countermeasure IsValid and the first-registered-

first-protected rule . 99
7.6 The registration score α∗ depending on the legitimate data rate in Tt for

(a) MNIST and (b) CIFAR10 . 102

8.1 Integration of watermarking in development pipelines with on the left:
integration during the training phase and on the right: integration before
serving the model. 108

8.2 Code sample for watermarking and verifying a model’s ownership 109

9.1 Examples or various trigger inputs (top), with side applications of water-
marking (bottom) API monitoring and source tracking. 115

9.2 Architecture of BlindSpot algorithm: On the top (1 → 4), the embedding
phase to obtain a watermarked dataset on which the model is trained on.
On the bottom (5 → 7), the verification phase, where the model owner can
verify the watermark based on the behavior of the model M on modified
subgroups. 117

9.3 Accuracy with respect to the sensitivity and the number of modified
subgroups . 126

A.1 Features used to compute the stylometry vector 140
A.2 Regular expression pattern . 140

xiv

List of Tables

4.1 FP by models (in millions of discoveries) 34
4.2 Manual assessment of 2000 discoveries . 34
4.3 Description of the three repositories . 36
4.4 Poisoning experiments. Results in bold in (a) correspond to experiments

with identical parameters in (b) . 38
4.5 Impact of data augmentation with Π∗

0.80 39

6.1 Success ratio threshold rmin . 78
6.2 Watermarking schemes fidelity . 81
6.3 Results of the removal attack, the adversary is successful when r > rmin . 85
6.4 Success of the attacks, where ✓/x corresponds to situations where the

performance of the attack is close to the threshold 86

7.1 Mutual similarity metrics for MNIST and CIFAR10 models when (i) the
models are trained on a common dataset and (ii) when trained on separate
datasets . 104

8.1 Watermarking techniques with supported frameworks. 110

9.1 Experiment results, comparing accuracy on non-modified (L) and modified
(WM) subgroups. 128

9.2 Model extraction results . 130

A.1 Actions which could be applied to a source code extract 139
A.2 Programming patterns used for the data augmentation process 141

xv

List of Tables

xvi

List of Publications

We have presented the following publications during this PhD study. Most of them have
already been presented through different venues enumerated below:

Publications - Conference

1. Sofiane Lounici, Marco Rosa, Carlo Maria Negri, Slim Trabelsi, Melek Önen,
”Optimizing Leak Detection in Open-Source Platforms with Machine Learning
Techniques” [6], 7th International Conference on Information Systems Security and
Privacy.

2. Sofiane Lounici, Mohamed Njeh, Orhan Ermis, Melek Önen, Slim Trabelsi, ”Prevent-
ing Watermark Forging Attacks in a MLaaS Environment” [7], 18th International
Conference on Security and Cryptography.

3. Sofiane Lounici, Mohamed Njeh, Orhan Ermis, Melek Önen, Slim Trabelsi, ”Yes
We can: Watermarking Machine Learning Models beyond Classification” [8], 34th
IEEE Computer Security Foundations Symposium 2021.

4. Sofiane Lounici, Melek Önen, Orhan Ermis, Slim Trabelsi, ”BlindSpot: Water-
marking through Fairness” [9], 10th ACM Workshop on Information Hiding and
Multimedia Security 2022.

Research Report

1. Sofiane Lounici, Dhia Farrah, Melek Önen, Slim Trabelsi, ”A Unified Library for
Watermarking Machine Learning in Production” [10], Research Report.

xvii

List of Tables

xviii

Chapter 1

Introduction

1.1 Machine Learning lifecycle

With the rise of Big Data technologies, machine learning (ML) models are becoming
widespread in the industry, impacting domains such as healthcare [11], finance [12] or
art [13] to cite a few. The biggest companies in terms of market capitalization such as
Apple, Microsoft, Google or Amazon, implement machine learning algorithms in every
aspect of their products, to automate tasks or to improve the customers’ experience.
Despite the undeniable advantages with respect to time and money provided by such
algorithms, their development is not cost-free and represent a non negligible investment.

Indeed, the development of ML algorithms is composed of several steps, including
data collection, data preprocessing, model’s architecture design, model training or model
monitoring. Each of these steps represents a cost, ranging from several thousands of
dollars to multi-million dollars projects [14]. In particular, the recent research advances
for building bigger neural network-based models increased the cost of obtaining a state-of-
the-art model for domains such as text summarization [15] or image generation [13]. This
cost-benefit trade-off between risky investments and potential future gains in a quickly
evolving and highly competitive market, implies that models need to be considered as
assets, offering a competitive advantage to the model owner. As such, in order to face
losses which could impact their businesses, model owners are required to investigate
potential security threats associated with their models.

1.2 Security for Machine Learning

Similar to any software system, a model can undergo a set of attacks, either during
the training or after its deployment. First, if the attacker has gained access (partial or
total) to the training procedure, it is possible to modify the behavior of the model by
corrupting the labels of the training data for instance, leading to a destruction of the
resulting model. More discretely, the attacker can insert particularly crafted information
to inject a backdoor, a hidden unwanted behavior. In the case where the attacker does not
have an access to the training data, it is still possible to implement attacks. A popular

1

Chapter 1. Introduction

Figure 1.1: An adversarial input, overlaid on a typical image, can cause a classifier to
miscategorize a panda as a gibbon [1].

attack is to compute adversarial examples, as shown in Figure 1.1, to trick the model
and missclassify inputs.

Furthermore, since the model is the resulting consequence of the training process on a
training data, it can be subject to algorithmic bias, creating unfair outcomes for certain
types of inputs. Models exhibiting fairness bias in domain such as healthcare or justice,
could lead to violating anti-discrimination laws.

Finally, when the model is deployed, there is still a risk that an attacker could gain
knowledge of confidential or private information, by interacting with the model. For
instance, the analysis of a model’s behavior could lead to membership inference attacks
(identifying if a given sample belongs to the original dataset) or data reconstruction
attacks (obtaining the full original dataset).

1.3 Model Stealing

In this thesis, we particularly focus on a type of attacks on ML systems called model
stealing attacks, consisting in acquiring a model without the consent of the original owner,
for its own benefit. The motivations behind such attacks could be:

1. (i) a lack of computational power: By stealing a model, the attacker is bypassing
previously introduced costs induced by the model development

2. a lack of knowledge: In highly competitive industries, the training process can be
kept as a trade secret [16]

3. a lack of time: To obtain a model quickly in order to convince investors and
shareholders.

Several strategies have been presented for stealing a model. A first option is to exploit
the fact that the majority of ML projects rely on cloud providers, or Machine Learning
as a Service (MLaaS) platforms, to manage and store their models. If the access to such
platforms is leaked, so is the associated model. It has been noticed that open-source code
collaborative platforms such as GitHub contains a worrying high number of credentials,

2

Chapter 1. Introduction

Original Image Watermark Protected Image

+

Figure 1.2: Example of visible image watermarking

passwords or API keys to the most popular MLaaS platforms such as Azure [17], Google
Cloud [18] or AWS [19]. Therefore, an attacker can exploit these data leaks in order to
obtain stored data, including ML models.

A second option is to take advantage of the fact employees often have a direct access
to confidential information regarding the training process, the model’s architecture and
parameters, etc. By leveraging industrial espionage techniques, including theft of trade
secrets, blackmail, bribery or technological surveillance, it is possible for an attacker to
obtain a ML model.

Finally, recent works [20,21], have shown that, even if an attacker has limited access
to the model (for instance, with limited interaction through an API), it is possible to
understand and clone the model, to obtain a surrogate version of it exhibiting similar
performance to the original. This type of attack is very concerning for model owners,
because it can be performed even with a small number of interactions and with scarce
knowledge of the training data.

1.4 Watermarking

In the light of the danger posed by model stealing attacks, defenses have been developed
to mitigate them. In particular, a concept called watermarking has been developed. The
idea stems from image watermarking and steganography (Figure 1.2): in order to identify
the ownership or the integrity of a content, such as a file, image, video or audio, the
content’s owner injects specific information into this content. The resulting watermarked
content can be distributed, transmitted, stored while carrying ownership information. The
content’s owner can later on extract the watermark to prove its ownership. Watermarking
has proved to be a reliable solution for IP protection, by demonstrating robustness against
attacks, i.e., the watermark cannot be removed from the content without altering the
original content.

Watermarking ML models consists in adding ownership information into the model
(the embedding phase) during the training phase or before the deployment. For a given
suspect model, the original model owner can verify the presence of the watermark (the
verification phase) by either analyzing the suspect’s behavior on a particularl set of

3

Chapter 1. Introduction

inputs, called trigger set, or by investigating the suspect’s parameters and extract the
watermark. Depending on the assumptions made with respect to the attacker abilities,
its resources and its knowledge of the model’s parameters and training data, a number of
embedding and verification algorithms have developed [20,22,23], aiming to be robust
against model stealing attacks.

1.5 Contributions

This thesis investigates how to protect machine learning models against model stealing
attacks. To this purpose, we consider two approaches: mitigating data leaks on open-
source code platforms and watermarking ML models. We list our contributions as
follows:

1. We identify three model stealing strategies : (i) exploiting data leaks to gain
unauthorized access to cloud-stored ML models (ii) leveraging insider threats so as
to obtain associated training scripts or training data and (iii) implementing model
extraction attacks to build a surrogate version of the model.

2. By studying how data leaks can lead to model stealing attacks, we present an
approach to identify and mitigate them, in the context open-source platforms. We
propose a machine learning solution for identifying data leaks with low false positive
rate.

3. We present watermarking as a defense strategy for intellectual property (IP) pro-
tection, by proposing a literature review of embedding and verification algorithms.
Specifically, we propose a classification between black-box and white-box algorithms.

4. We extend the current state-of-the-art of watermarking by introducing watermark-
ing beyond image classification, namely for regression, machine translation and
reinforcement learning models.

5. Additionally, we show how watermarking can be implemented for IP protection in
the context of content hosting platforms, while developing the idea of watermark
forging attacks.

6. We provide and present our open-source library, intended to implement and share
current knowledge on the current state-of-art, designed for watermarking in pro-
duction.

7. Finally, we introduce a novel fairness-based algorithm for watermarking, entitled
BlindSpot, to watermark machine learning models in a black-box environment.

1.6 Organisation

The remaining of this thesis is organized as follows:

4

Chapter 1. Introduction

In Chapter 2, we introduce machine learning theory required for the understanding
of our work: regression models and neural networks. In Chapter 3, we introduce the
problem of model stealing attacks, presenting the main challenges for ML security, how
can such attacks can be implemented and what are the principal motivations for an
attacker. We investigate the problem of data leaks for ML security in Chapter 4.

In Chapter 5, we propose a literature review for watermarking, as a defense strategy
against model stealing attacks. We extend this state-of-the-art by presenting:

1. in Chapter 6, a definition for watermarking beyond image classification tasks,
adapted from the paper [8].

2. in Chapter 7, a description of watermark forging attacks in the context of MLaaS
platforms, adapted from the paper [7]

3. in Chapter 8, a library for implementing watermarking into production, adapted
from the open-source library [24]

4. in Chapter 9, a novel fairness-based watermarking algorithm called BlindSpot,
adapted from the paper [9]

Finally in Chapter 10, we conclude with the results of this dissertation and we discuss
future research avenues.

5

Chapter 1. Introduction

6

Chapter 2

Machine Learning and Security
Aspects

In this first chapter, we discuss several key concepts which constitutes the background of
the thesis regarding machine learning algorithms and their security.

2.1 Introduction

According to the Oxford dictionary [25], machine learning (ML) is defined as a
type of artificial intelligence in which computers use huge amounts of data to learn
how to do tasks rather than being programmed to do them. Data might be composed
of images or videos (denoted as computer vision tasks), text (called Natural language
Processing or NLP tasks) or simply numerical features. In other words, machine learning
algorithms identify relevant patterns in the available data for predictive purposes. Such
algorithms can be applied to a large variety of domains, like face recognition system, voice
recognition tools, e-mail spams filtering or driverless cars to name a few. It is possible to
classify machine learning algorithms into three categories: supervised, unsupervised and
reinforcement-based learning.

First, we define supervised machine learning whose goal is to build a predictive model,
by learning the mapping between inputs and outputs based on a dataset. The dataset,
called training data, is composed of (input , output) pair examples. Instance of tasks
which could be solved with supervised machine learning could include classification tasks
such a image recognition tasks [26] or hate speech identification [27], as well as regression
tasks such bank loan prediction [28].

Next, we define unsupervised machine learning as a set of techniques whose goal is to
identify patterns in data. As opposed to supervised algorithms, unsupervised algorithms
work with non-annotated data, and include clustering algorithms like k-means [29] or
principal component analysis (PCA) [30]. Tasks such as recommendation systems [31]
(i.e. recommending similar content to users) or anomaly detection [32] can be solved with
unsupervised techniques.

7

Chapter 2. Machine Learning and Security Aspects

Finally we define reinforcement learning as a family of algorithms where models
are trained by trial and error (by receiving virtual “rewards” or “punishments”). Such
algorithms could be implemented to solve game theory problems [33] or automomous
driving [34]

2.2 Regression models

In this section, we define regression models. The goal of regression models consist of
identifying a relation between an input X = {x1, · · · , xk} (xi is defined as a feature of X)
and a variable of interest y.

Definition (Regression model). We define a regression model hθ(.) as the following:

y = hθ(X) + ϵ (2.1)

ϵ = N (0, σ2) (2.2)

where θ are the parameters of the regression model and ϵ an error term following a
Gaussian distribution.

The regression can be linear in the parameters (hθ(x) = θ⊺X), or non linear. To
assess the performance of a regression model over a dataset of n instances Dtest =
{(X(1), y(1)), · · · , (X(n), y(n))} , we consider two commonly used metrics in this thesis,
namely:

• The Root Mean Square Error (RMSE), defined as follows :

RMSE(Dtest, hθ) =

√√√√ 1

n

n∑
i=1

(θ⊺X(i) − y(i))2 (2.3)

• The Mean Absolute Percentage Error (MAPE), defined as follows :

MAPE(Dtest, hθ) =
100

n

n∑
i=1

|y(i) − θ⊺X(i)|
y(i)

(2.4)

In the case of linear models, the parameters θ̂ minimizing the mean squared error
function can be computed directly:

θ̂ = (X⊺X)−1X⊺y (2.5)

Otherwise, several algorithms [35,36] have been developed in order to approximate
θ, given a training dataset Dtrain.

2.3 Neural Networks

In this section, we are describing a particular type of supervised machine learning
algorithm called artificial neural networks.

8

Chapter 2. Machine Learning and Security Aspects

Figure 2.1: Architecture of a neural network

Overview

We define artificial neural networks (also called neural networks (NN) or multi-layer
perceptron (MLP)) as computing systems, composed of units called neurons performing
mathematical functions, as visually represented in Figure 2.1. Neurons are organized in
layers, each layer performing different operations on their inputs. Generally, the first
layer is denoted as input layer and the last layer as output layer. The lth hidden layer
takes as input a vector X l and outputs a vector yk. Hidden layers are stacked, meaning
that the outputs of the lth layer is the input of the (l+ 1)th hidden layer (to the exception
of the input and output layers). Intermediate layers are named hidden layers and can be
defined as a combination of an activation function a(l)(.) and a weight matrix w(l). The
output of the lth layer can be written in the following form:

z(l) = w(l)⊺ · a(l−1)

y(l) = a(l)(z(l))

More generally, we denote as θ the parameters of the model (weights, activations
functions, etc.). A model Mθ is a function mapping an input space Rm to an output
space RK .

Mθ : Rm → RK (2.6)

The probability that input x belongs to class i ∈ {0,K} is defined as argmax(y)
where K is the number of class labels.

Convolutional layers

A convolutional layer is a type of hidden layers, relying on the mathematical operation of
convolution, visually represented in Figure 2.2 and particularly useful for image processing
tasks. We denote the convolution operation (. * .) for a layer l between an input x(l)

and convolutional layer kernel Wc as:

9

Chapter 2. Machine Learning and Security Aspects

Figure 2.2: Schematic representation of convolving input of size 4×4 (blue) with filters of
size 3 × 3, output is 2 × 2 (cyan)

y(l) = Wc ∗ x(l) (2.7)

Activation functions

Activation functions allow the neural network to adopt a more complex behavior by
introducing non-linearity. A classic activation function for the output layer is the sigmoid
function:

a(x) =
1

1 + exp(−x))
(2.8)

Regarding the activations for hidden layers, different functions are considered, such
as the hyperbolic tangent, or the Rectified Linear Unit (ReLu):

ReLu(x) = max(0, x)) (2.9)

2.3.1 Gradient Based Learning

The training phase of a neural network is the process of learning the underlying relationship
between n data inputs, denoted x = {x1, ..., xn}, and data labels, denoted y = {y1, ..., yn}
present in the training data. Often, we refer to the joint input-label set as the training
dataset Dtrain. The goal of the training phase is to compute the parameters θ by
minimizing the prediction error, i.e. minimizing the error between the prediction through
the model ŷ = Mθ(x) and the ground truth data labels y. The function quantifying this
error is defined as loss function or criterion denoted L(.). For classification problems, a
common loss function is the Categorical Cross Entropy Loss function, defined as follows
for a single data sample (xi, yi):

L(yi,Mθ(xi)) = −
∑
k∈K

yk · log(Mθ(xk))

10

Chapter 2. Machine Learning and Security Aspects

To update θ based on the loss function, algorithms such as Stochastic Gradient Descent
(SGD) are used where a parameter update is performed on a batch B of training samples.
For a given training step t, defined as epoch, the parameter θ is updated:

θt+1 = θt − η

|B|
∑
i∈B
∇L(θ)

with ∇L(θ) denotes the gradient of the cost function with respect to θ, (xi, yi)) the
ith training sample in the batch B, η the learning rate and |B| as the size of the batch.
More generally, we denote the parameters of the training besides θ as hyperparameters,
such as the number of layers of the network, the choice of loss function or the choice of
the learning rate, used in the SGD algorithm.

During the training, randomly selected neurons can be ignored, or dropped out, in
order to improve the ability of the model to generalize and to reduce overfitting. We
denote the dropout rate and the percentage of dropped out neurons during the training
phase.

2.4 Natural language processing tasks

In this thesis, we mainly explore neural networks for image classification and natural
language processing (NLP) tasks. The latter correspond to a diversity of tasks, including
language modeling [37], sentiment analysis [38] or question answering [39], for instance.
We first present a particular method for text representation designed for text classification
denoted Continuous Bag of Words (CBOW), before presenting a particular NLP task
called Machine Translation task.

2.4.1 CBOW representation

The core of NLP tasks is to obtain a vector representation of the input text. Once
this representation is obtained, it is possible to perform to aforementioned task (for
instance, by training a linear classifier on the representations). We consider the text
classification task, where the goal is to associate to a input sentence, composed of n-gram
{x1, x2, ..., xN}, an output class j ∈ 1...K. A n-gram is a n-character slices of a word ;
the word GRAM would have the following 2-grams: { G,GR,RA,AM,M }. The CBOW
model tries to understand the context of words in order to build its representation, while
in the same time it trains a linear classifier for text classification. We obtain the feature
representations via a weight matrix U such that hi = U · xi. Then, we define y as the
linear Bag-of-Words of the document, by averaging all the feature representations hi:

y =
1

N

N∑
i=1

hi (2.10)

y is the input of a hidden layer associated to a weight matrix V, such that the output
of the classifier z is z = V · y. We can compute the probability that a word vector belongs

11

Chapter 2. Machine Learning and Security Aspects

to the jth class as pj = σ(zj), with σ(zj) being the softmax function:

σ(zj) =
ezi∑K
j=1 e

zj
(2.11)

Finally, the weight matrices U and V are computed by minimizing the negative
log-likelihood of the probability distribution, using stochastic gradient descent, namely:

− 1

N

N∑
k=1

yk · log
(
σ(V · U · wi)

)
(2.12)

In this thesis, we will use the notation LCBOW (w) to describe the vector representa-
tion of the word w. When the CBOW representation is not mentioned, we consider a
general Encoder-Decoder architecture, where the encoder computes the text representa-
tion and the decoder performs the downstream task. This type of architecture is mainly
accepted as the state-of-the-art for NLP tasks, such as the transformer architecture [40].

2.4.2 Machine translation task

In this thesis, and in particular in Chapter 6, we consider different tasks besides text
classification, and in particular machine translation. A machine translation (MT) task
is the task of translating a sentence in a source language to a different language. We
consider an encoder-decoder architecture, defined as follows:

Let X = (x1 . . . xk) be a sentence composed of k words from a source language S and
Y = (y1 . . . ym) be a sentence composed of m words from a target language T . The goal
of a MT model is to learn the mapping X → Y . The MT model is an encoder-decoder
model, where the input sentence X is encoded into vector X∗ which further passes through
several layers of the model, and results in an output vector Y∗. Y∗ is finally decoded
into the output sentence Y. The performance of MT models is often evaluated through
two metrics:

• the BLEU [41] score which is the result of a standard algorithm that compares
machine translations with human translations.

• the ROUGE [42] score which is an evaluation metric used in automatic summariza-
tion and machine translation.

The two scores are defined as a number between 0 and 1, with the better the
translation, the closer the score is to 1.

2.5 Machine Learning lifecycle

The development of neural networks, or more generally machine learning models, is a
complex process. Therefore, common guidelines and procedures have been implemented
to improve efficiency in the development, denoted as machine learning life-cycle. As
shown in Figure 2.3, it is composed 7 main steps:

12

Chapter 2. Machine Learning and Security Aspects

Figure 2.3: The Machine Learning Life-cycle

First, in order to train a model, raw data needs to be collected through different
sources and stores. Then, raw data needs to be processed, annotated, cleaned or other
data processing operations depending on the downstream task. The next three steps,
the research and development phase, training and evaluation phase, are often conceived
together: first, a model architecture, hyperparameters selection, as well as a training
algorithm need to be defined. Then, the model is trained on the training data, then
evaluated according to performance metrics such as accuracy or F1-score, on a test
set. If the performance on the test set is not satisfactory, then the process re-starts at
the research and development phase, to modify architecture or hyperparameters before
re-training the model.

After the training and the validation of the performances, the model is deployed into
production to perform predictions. Finally, the model is regularly monitored to observe
its behavior in real-life situations and, if necessary if the model becomes stale, triggers
re-training steps to update the model, with additional data for instance.

2.6 Security of Machine Learning

With the development of machine learning models for various applications, the concept
of security of machine learning [43] has been proposed, in order to quantify potential
risks associated with using a ML model. Indeed, due to the tremendous impact models
can have on business, it has become a necessity to properly assess this risk for companies
and model owner. In this section, we review three types of threats that model owners
need to face when developing their models.

13

Chapter 2. Machine Learning and Security Aspects

Figure 2.4: Example of adversarial attacks for traffic sign recognition [2] (on the left)
and data poisoning attack for face recognition [3] (on the right))

2.6.1 Security threats

In addition to classic attacks such as software vulnerability (malwares [44]) or Denial of
Service [45] (DoS) attacks, models can be subject to attacks perturbating their normal
behavior. An instance of this is the case of adversarial examples [2] where a carefully
crafted input can shift the prediction of a given model, as shown in Figure 2.4 where a
slight input perturbation could lead to misclassify traffic signs. If the attacker has deeper
access to the model, with the ability to modify the training data, then data poisoning [3]
attacks can be implemented. By injecting malicious data to the original dataset, the
attacker can either hinder the model performance or add an additional, hidden behavior
acting as a backdoor. Figure 2.4 shows that a visual artifact such as sunglasses can trick
a face recognition classifier. Backdoors could lead to massive security issues, for instance
by granting administrator access to anyone bearing this particular visual artifact.

2.6.2 Algorithmic bias threats

The concept of algorithm (or fairness) bias [46] can refer to the errors in predictions
leading to unfair situations, such as gender or racial discrimination. In other words, a
fair model requires that ”individuals do not experience differences in outcomes caused
by factors that are outside their control, such as race or gender” [47]. The presence of
algorithmic bias can be a consequence of how the training data was built (as reflection of
the human bias) or directly in the design of the model itself. For instance, the Correctional
Offender Management Profiling for Alternative Sanctions (COMPAS) [48] software used
by U.S. courts to assess the likelihood of a defendant becoming a recidivist, has shown
to exhibit fairness bias against Afro-Americans U.S citizens [49,50]. The study and the
mitigation of algorithmic bias has been widely studied in the literature [50].

2.6.3 Privacy threats

Machine learning models are trained on data, which could be private or confidential.
It has been shown [51] that ML models can ”leak” their training data, allowing the

14

Chapter 2. Machine Learning and Security Aspects

implementation of privacy attacks. For instance, data extraction attacks consist in
reconstructing the original training dataset on which the model has been trained on.
This training dataset could contain privacy sensitive information. In the same spirit,
membership inference attacks intend to learn if a given input was present in the training
dataset, which could result in important privacy leaks: In the case of models trained for
healthcare problems, the leakage of patient information through such attacks could be a
clear violation of the law.

2.7 Conclusion

In this chapter, we presented key concepts of machine learning theory including regression
models and neural networks, as well as presenting the topic of security for ML systems,
categorized into three types of threats. In the next chapter, we will develop a particular
security threat called model stealing, where an attack intend to obtain illegally a model.

15

Chapter 2. Machine Learning and Security Aspects

16

Chapter 3

The problem of model stealing

ML systems can be subject to a variety of security threats, as explained in Chapter 2. In
particular, we introduce in this chapter the problem of model stealing, which constitutes
the main theme of this thesis. To this purpose, we first present the motivations of model
stealing attacks, before proposing three strategies to implement them. We underline the
inadequacy of current legal protection against these attacks.

3.1 Motivation for model stealing attacks

Model theft or model stealing attacks can be defined as the act of acquiring a third party’s
model without its consent, in order to exploit the model for its own benefits. Model
stealing includes stealing the file (or set of files) containing the model, such as a neural
network’s parameters and architecture, but also in a more general sense stealing training
data, scripts, preprocessing functions or information besides the model file by itself, in
order to build a replica of the model, demonstrating identical performance to the original
model. Similarly, using a stolen model as a base for building a new model, by further
training the model on new data or using the model to label new data is also considered as
stealing a model. We identify three main motivations for an adversary to steal a model.

3.1.1 Lack of resources

Due to the complexity of implementing the aforementioned steps, machine learning
practitioners often rely on cloud-based services such as Amazon Web Services [19], Google
AI [52] or Azure AI services [17], in order to reduce computing cost by optimizing
computational resources and take benefit from already existing architecture. This type
of services are generally referred to as Machine Learning as a Service (MLaaS).

The implementation of the machine learning development life-cycle (also called
pipelines) represents a certain cost. However, the cost of building such pipelines is not
easy to estimate, because (i) there is no unique pipeline for a given project (ii) the cost
of a project depends on its size (i.e. small prototypes are not as costly as state-of-the-art
models). Sharir et al. [53] attempt to provide a cost estimation of training Google’s
NLP model Bert [54] on the Wikipedia and Book corpora (15 GB) for a single training

17

Chapter 3. The problem of model stealing

Figure 3.1: An AWS-based architecture service along with the estimated cost

phase and for multiple training phases (each training phase corresponding to the different
hyperparameters, which is the usual method for productionized machine learning). The
cost of base version of Bert, with 110 million parameters, ranges from $2.5k for a single
training phase to $55.5k for multiple training phase. For bigger models such as the 11
billion parameters version of Bert called T5 [55], the cost of a single training phase could
reach $1.3M.

Regarding the data labeling cost, cloud services such as Google’s machine learning
platform Vertex AI [18] provides services where human labelers could manually label
datasets. For instance, you can estimate the cost to label a sentiment analysis dataset,
extracted from 1.6 million tweets called Sentiment140 [56]: supposing that a tweet
contains around 50 words [57], labeling the dataset with human reviewer through Vertex
AI will cost approximately $6.4M. Furthermore, developers, machine learning engineers,
product owners or managers are needed to develop a model. For instance, according to
the U.S. Bureau of Labor Statistics [58], the average salary for a data scientist working
in the U.S. is $195k.

3.1.2 Potential profits

Despite its apparent prohibitive development cost, machine learning can have a business
impact. For instance, the impact of Neflix’s [59] machine learning models on content
recommendation helps reducing churn rate (i.e. the percentage of subscribers who
discontinue their subscriptions within a given time period), saving in 2016 an estimated
$ 1B per year. Compared to the 2016 annual revenue of Netflix [60], evaluated at $8.8B,
it represents around 10% of the annual revenue. Several companies are making machine
learning as a basis for their products, to enable fast growth. A popular example of this
strategy is ByteDance [61], a Chinese technology company known for their video app
TikTok, and valued at $180 billion. According to Jia et al. [62], ByteDance is the perfect
example of leveraging machine learning solutions to reach quick economical growth.

18

Chapter 3. The problem of model stealing

Figure 3.2: AWS Credentials stored in plain-text on GitHub

3.1.3 Lack of knowledge

For highly competitive industries, an attacker could lack knowledge regarding model
architecture, training process, choice of hyperparameters, preprocessing functions applied
to the data, etc. Even if an important number of recent advances in machine learning are
published in conferences, an important number of companies decide to keep their model
as trade secrets [16,63], without disclosing any information.

3.1.4 Lack of time

In the case of small sized teams, such as early funded startups, time is the main obstacle
to develop a proof-of-concept. In order to convince investors and to raise funds, the
company might be tempted to acquire the technology of its competitors to raise funds
quickly, with the hopes to develop their own model afterwards. Indeed, even if the
company has the knowledge and the computational resource, it still requires time to
develop state-of-the-art models. By bypassing the development process, an attacker could
use the model as a basis for launching its company more quickly.

3.2 How to steal a model

In the previous section, we presented the main motivation for mode stealing. In this
section, we propose three different techniques for stealing a model: exploiting a data leak,
leveraging insider threats and implementing model extraction attacks.

3.2.1 Data leaks

In practice, when machine learning pipelines are implemented, the resulting model is
stored with an object storage cloud-based service, such as an Amazon S3 bucket [64].
Indeed, this type of services offers versioning tool, well suited for continuous development
of models, as well as pre-configured environments for deployment. The access to the
storage system is critical for the model’s owner and is protected, as part of best security
practices, through mechanisms such as passwords or API secret keys. However, it is

19

Chapter 3. The problem of model stealing

possible to observe data leaks containing AWS credentials on collaborative open-source
code platform such as GitHub [65].

With more than 100 million repositories (with at least 28 million public ones), GitHub
is the biggest hosting platform for software development version control and the largest
host of source code in the world. Users can use GitHub to publish their code, to
collaborate on open-source projects, or simply to use publicly available projects. Finding
credentials on GitHub is not rare: a 6-months study led by Meli et al. [66], analyzing
681k repositories, identifies more 4,600 unique AWS credentials publicly available. Even
though several tools, both commercial [67, 68] and open-source [69], have been developed
to mitigate this issue, this is still a concerning problem for companies, as shown by the
2016 Uber’s data leak [70].

As shown in Figure 3.2, AWS credentials could be stored on GitHub, in configuration
files such as Docker files. The aws_key and aws_secret fields provide full access (deleting,
uploading, modifying actions) to a S3 bucket, which could contain ML models.

3.2.2 Insider threats

Given the growth of highly competitive markets, such as machine learning for healthcare,
or machine learning for finance, companies are often working simultaneously on the same
type of problems. In this case, machine learning models can be considered as confidential
information and can be subject to industrial espionage.

We define industrial espionage as actions, often illegal, aiming to investigate competi-
tors to obtain a commercial gain. In general, the target can be anything, such as product
characteristics, chemical formula or future business prospects, that can be exploitable by
an organization. Industrial espionage can originate from outsider threats, such as hackers
targeting data breaches in organization (as mentioned in the previous section), or insider
threats, such as a former employee trading information for personal gain.

A recent occurrence of this issue is the Waymo-Otto case [71]. Waymo is a Google-
owned company focusing on developing driverless technology, for autonomous cars for
instance. A founding member of Waymo resigned without notice the company in
January 2016 before founding another company called Otto, also focusing an autonomous
driving, for trucks. Otto was acquired by Uber in August 2016, nearly 8 months
after Levandowski’s departure from Waymo. However, according to the report, the
former employee downloaded before his departure nearly 14,000 files related to Waymo’s
technology, including 9.7 GB of Waymo’s highly confidential files and trade secrets.

Among various types of confidential data such as supplier lists, manufacturing details,
the former employee acquired information about Waymo’s custom built LiDAR technol-
ogy. LiDAR (for Light Detection And Ranging) is the main technology for building
autonomous vehicles able to navigate in real time, by locating objects or by computing
a 3D mapping of the surrounding environment. LiDAR technology is mainly based on
neural networks [72] and by acquiring this technology, Levandowski was able to gain
years of work, damaging Waymo’s competitive advantage.

20

Chapter 3. The problem of model stealing

Data Access

API

Victim model 𝑓(.)

Query
Generation

Query
Analysis

Surrogate model
𝑀∗

Train

Figure 3.3: Schema of a model extraction attack

3.2.3 Model extraction attacks

Machine learning models can be implemented either internally or externally. In the first
case, the model is not accessible to customers and mainly help companies and decision
makers improve their businesses, for instance by building a predictive model for the sales
department. In the second case, the model is the core business added value and is often
available to customers, through a cloud-based service called prediction API, such as the
language translation algorithm of Google translate [73].

The monetization of predictive API is how companies benefit from models. For
instance, the Netflix’s recommendation algorithm is available to all Netflix’s subscribers.
Even though customers do not have a complete access to the API’s inner working, they
can still use the model: By watching movies, they send input data to the model, which
will output movie recommendations. We define this situation as a black-box scenario.
Intuitively, by observing the behavior of the model, an adversary should theoretically
be able to understand this behavior and replicate it (in the Netflix’s recommendations
example, by observing what are the movies recommended for different inputs).

The core of model extraction attacks is, given an adversary who has access to a
prediction API, it is possible to extract (i.e. build a replica) the deployed model by
sending input queries to the prediction API and analyzing received inputs. As shown
in Figure 3.3, the adversary sends input queries {x1, x2, ..., xn} to the target model and
receives {f(x1), f(x2), ..., f(xn) where f() is an unknown function which the adversary
intends to extract. By analyzing f(x), the adversary is able to build a surrogate model
denoted M∗.

Previous work [74–77] developed techniques to extract a model, with the goal of
minimizing input queries, with strategies which could be implemented in real-life scenarios.
Depending on the threat model, some attacks are more efficient than others. For instance:

21

Chapter 3. The problem of model stealing

Milli et al. [78], supposing that the adversary is able to make gradient queries (i.e. sending
inputs and receiving outputs with gradients with respect to inputs), introduce a model
extraction attack to obtain neural network weights, allowing the adversary to apply SGD
algorithm to the surrogate model M∗. With less restrictive hypotheses, Truong et al. [79]
propose a data-free model extraction attacks, which does not require prior knowledge
on data inputs. Orekondy et al. [80] propose to optimize the strategy to construct the
dataset to query, through reinforcement learning techniques.

Model extraction can also be performed through knowledge distillation [81], which
aims to compress a given model into a less-parameterized model, or transfer learning [82]
where the target model is from a different domain than the surrogate (for instance, using
a model trained for animal recognition to obtain a model which classifies dogs from cats.)

3.3 Current legal protections

As previously mentioned, attacks on the intellectual property of models exist and concern
all types and sizes of organizations. Despite potential technical countermeasures, we
give an overview of legal protections already implemented. In this context, we define
intellectual property (also denoted IP) as ownership of non-physical assets. Machine
learning practitioners can mainly rely on two concepts of IP law: patents and trade
secrets.

On the one hand, a company can consider patent as a protection mean. Indeed,
according to the World Intellectual Property Organization [83], an invention under the
protection of patent law cannot be commercially made, used, distributed, imported or sold
by others without the patent owner’s consent. However, when it comes to the protection of
machine learning models, neural networks or more general algorithms, there is no unique
answer depending on legislation (in the European Union or in the United States) and
depending on the definition of a machine learning model: If a model is strictly considered
as combination of mathematical operations, then it cannot be protected under patent
law because the U.S Patent and Trademark Office [84] treats models as abstract ideas or
mathematical concepts. However, if the model is considered as the combination of data
collection, training process and concrete real-life application, then it is plausible a patent
will be accepted.

On the other hand, models can be protected as trade secrets. According to the
World Intellectual Property Organization [63], trade secrets are intellectual property (IP)
rights on confidential information which may be sold or licensed. Generally, three main
components need to be present in order to be qualified as trade secret (i) the information
needs to be commercially valuable (ii) only known to a limited group of persons and
(iii) be subject to reasonable steps taken by the rightful holder of the information to keep
it secret. The last point implies the implementation of Non-Disclosure Agreements or
Non-compete Agreements for instance. Even though ML models fit into this category and
trade secret law offer legal protection, it is a broad definition: trade secret owners cannot
prevent competitors from using the same information if they acquired it independently
from their Research and Development department or by reverse analysis. In competitive
markets, it could be hard to distinguish between theft and simultaneous discoveries.

22

Chapter 3. The problem of model stealing

Both legal solutions are not adapted to ML models, due to (i) their nature, because
ML models can be defined as a combination of weights or more broadly as a result of an
entire development process (ii) the difficulty to clearly identify the uniqueness of a model.

3.4 Conclusion

To summarize, model stealing attacks represent a threat against the intellectual property
of model’s owner. Current legal protections are inefficient in protecting model owners’
rights, creating the need for stronger defenses. In the following chapters, we propose two
defense strategies: the first tackles the problem of data leaks, with a mitigation approach
developed in Chapter 4. The second defense corresponds to the core of this thesis, which is
the concept of watermarking, further explained in Chapter 5 and developed in Chapter 6,
Chapter 7, Chapter 8, and Chapter 9.

23

Chapter 3. The problem of model stealing

24

Chapter 4

Mitigating Data Leaks in Open-Source
Platforms

Model stealing attacks can originate from various sources, such as model extraction
attacks or insider threats, as mentioned in the previous chapter. The third source is the
exploitation of data leaks on open-source code platforms to gain access to model owners’
accounts with their associate model. Due to the non structured nature of the data,
current mitigation solutions are not efficient because they usually produce a significant
number of false positives. In this chapter, we propose to investigate this problem by
proposing a machine learning based solution to identify and mitigate data leaks with a
low false positive rate.

The work described in this chapter has been published under the title Optimizing Leak
Detection in Open-Source Platforms with Machine Learning Techniques [6], at the 7th
International Conference on Information Systems Security and Privacy (ICISSP 2021).

4.1 Introduction

Data protection has become an important issue over the last few years. Despite the
multiplication of awareness campaigns and the growth of good development practices, we
observe a major rise of data leaks in 2019, with passwords representing 64% of all data
compromised 1. It has become a huge concern for companies to protect themselves and
to efficiently detect these data leaks. GitHub [65], is one of the biggest hosting platform
for software development version control. With more than 100 million repositories. Users
can use GitHub to publish their code, to collaborate on open-source projects, or simply
to use publicly available projects. In such an environment, one of the most critical
threats is represented by hardcoded (or plaintext) credentials in open-source projects [85].
Malicious agents can exploite leaked credentials to gain unauthorized access to data,
including machine learning models.

Several tools are already available to detect leaks in open-source platforms such as
GitGuardian [68] or TruffleHog [69]. Nevertheless, the diversity of credentials, depending

1https://preview.tinyurl.com/y7bygg8d

25

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

on multiple factors such as the programming language, code development conventions,
or developers’ personal habits, is a bottleneck for the effectiveness of these tools. Their
lack of precision leads to a very high number of pieces of code detected as leaked secrets,
even though they consist in perfectly legitimate code. Data wrongly detected as a leak
is called false positive data, and compose the huge majority of the data detected by
currently available tools. Thus, various companies (including GitHub itself), decided to
automate the detection of leaks while reducing false positive data.

In this chapter, we present a novel approach to analyze GitHub open-source projects
for data leaks, with a significant decrease in false positives thanks to the use of machine
learning techniques. First, a Regex Scanner searches through the source code for
potential leaks, looking for any correspondence with a set of programming patterns.
Then, machine learning models filter the potential leaks by detecting false positive data,
before a human reviewer can check the classified data manually to correct possible wrongly
classified data. These machine learning models are using various techniques such as data
augmentation [86], code stylometry [87, 88] and reinforcement learning (as defined in
Chapter 5). Our contribution can be summarized as follows:

• We present an automated leak detector for passwords and API Keys in open-source
platforms, with low false positive rate.

• We evaluate our solution by scanning 1,000 public GitHub and 300 company-owned
repositories, and we show that the classic regular expression approaches generate a
high false positive rate, that we estimate close to 82%.

• We manually assess the results of this scan, proving that our solution reaches a
negligible false negative rate.

• We investigate the false positives induced by the machine learning models, and we
show that it is between 5% and 32% of the filtered data (hence between 1% and
6% of the overall data)

4.2 Overview

4.2.1 The problem of data leaks

A leak is a piece of information in a source code, published on open-source platforms
such as GitHub, disclosing personal and sensitive data. Data leaks can be caused by
any type of developers, such as independent developers or important corporations. For
instance, a password published on GitHub by an Uber’s employee led to the disclosure of
personal information of 57 millions customers2.

Several types of data leaks exist: API Keys (e.g., AWS credentials), email passwords,
database credentials, etc. Although detection techniques exist, current approaches do not
achieve a satisfying precision rate, leading to a high false positive rate, i.e., non-negligible

2https://tinyurl.com/yd3c37lc

26

https://tinyurl.com/yd3c37lc

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

part of data is wrongly classified as leak. A high false positive rate implies an important
workload for reviewers who manually check the accuracy of the classification.

We identify three main problems. First, we notice that open-source projects often
provide the documentation of their code, together with tutorials, tests, and example files.
These situations are easily recognizable by the actual path name (e.g., src/Example.py,
connectionTutorial.java, etc.). An important amount of passwords or database
credentials are located in these type of files and are never used in production, increasing
the false positive rate.

Moreover, current solutions such as GitGuardian [68], Trufflehog [69], S3Scanner [89],
GitHub Token Scanning [90]] or others in [91] consist of regular expression classifiers
and exclusively focus on API Keys, ignoring passwords as a category of leak. Indeed,
the detection of API Keys creates a negligible amount of false positive data (due to the
particular patterns). Thus, it is easier to handle them with simple regular expression
classifiers. Passwords, on the other hand, are difficult to identify with classic methods,
even though they account for the majority of leaks, leading to a high false positive rate.
Current solutions offer little to no automated false positive filtering (except with simple
heuristics) because they discard the most important source of false positive data in their
analysis.

Additionally, the detection of leaks with low false positive rate is usually performed
using supervised machine learning techniques which by definition incur the need for
labelled training data. The collection of leak data in this context remains a challenge
for several reasons: (i) on a theoretical point of view, passwords/credentials are privacy
sensitive data, (ii) on a practical point of view the training dataset needs to satisfy general
properties such as balance or diversity, and current machine learning approaches cannot
guarantee these properties while maintaining a reasonable manual workload to sanitize,
anonymize and label data.

4.2.2 Our approach

In order to detect leaks with high precision and low false positive rate, we begin with the
use of a regular expression scanner similar to classical approaches. We further propose
to make the distinction between two sources of false positives: Path false positives (e.g.,
data located in documentation or example files) and Code snippet false positives (e.g.,
dummy credentials or initialization variables). These two sources of false positives can
be tackled by two separate machine learning models: the Path model and the Snippet
model. Consequently, our solution regroups the following components:

• Regex Scanner: Given an open-source repository, the Regex Scanner searches
through the source code history to detect any credential, API Key or plaintext
password, and is considered as the default component in classic approaches. The
Regex Scanner analyzes each source code modification by a developer over time,
retrieving the link between these modifications and a set of regular expressions.
The output of the Regex Scanner over a repository R is a set of m discoveries
D = {d1, ..., dm}, each discovery containing a path fi and a code snippet sj .

27

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Regex Scanner Path Model

Snippet Models

Extractor Classifier

discoveries
repository

Path false positives
Similarity Model

output after review

Code snippet false positives

output before review

Figure 4.1: Architecture of the Credential Digger’s approach

• Path model: The Path model analyzes each path fi to reduce Path false positives,
and outputs a list of filtered discoveries. The Path model’s architecture is CBOW
model, as described in Chapter 2. Thanks to this model, we already reduce false
positives by 69%.

• Snippet models: The Snippet model filters false positives related to code snippets.
A code snippet is more complex to analyze than a file path (more diversity, more
irregular patterns, etc.), and may contain non-negligible amount of irrelevant
data for leak classification (function names, type names, method names, symbols,
etc.). The snippet model is itself composed of two sub-models, the Extractor and
Classifier.

– Extractor: The Extractor identifies relevant information in the snippets, i.e.,
the variable name and the value assigned. As mentioned before, it is difficult
to collect relevant data to train the Extractor. Thus, we implement data
augmentation techniques through reinforcement learning.

– Classifier: The Classifier takes the relevant information extracted as inputs to
classify a code snippet as a leak or as a false positive. At this step, we consider
again a CBOW model, leading to a reduction of 13% of the discoveries with
the combination of the Extractor and the Classifier.

• Similarity model: As a final step, once automated components output the leaks they
have detected, a human reviewer manually checks the accuracy of the classification
by flagging (i.e., re-classifying manually) a leak as a false positive. The Similarity
model can assist the human reviewer by flagging similar discoveries as false positives
to reduce her workload.

Figure 4.1 gives an overview of the architecture of the proposed framework.

4.2.3 Scenarios

We propose two examples scenarios to better understand the expected behavior of the
components.

28

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Scenario 1: Consider the code snippet String password = "Ub4!l", located in the
file src/Example.py. The Regex Scanner identifies the key-word password, so that the
discovery is classified as a leak. Then, the Path model analyzes the file path, and discards
the leak as a Path false positive (due to the word Example).

Scenario 2: Consider the code snippet String password = "Ub4!l", located in the
file src/run.py. The Regex Scanner still identifies the key-word password, while the Path
model does not discard the leak due to its Path. The Extractor outputs the combination
(password, Ub4!l), and the Classifier classifies this code snippet as a leak.

Scenario 3: Consider the code snippet String password = "INSERT_CREDENTIAL_HERE",
located in the file src/run.py. The Extractor outputs the combination (password, IN-
SERT CREDENTIAL HERE), and the Classifier classifies the code snippet as a false
positive.

4.3 Path Model

The goal of the Path model is to reduce the false positives due to leaks detected in
example, configuration, test files. This model analyzes where a leak is identified in an
open-source repository (i.e., its file path), and gives a first classification on whether the
leak is relevant or not. The Path model is a CBOW model, previously introduced in
Chapter 2.

4.3.1 Data pre-processing for the Path model

The Regex Scanner outputs a list of discoveries, each discovery containing a path fi
(used as an input for the Path model) and a code snippet sj (used as an input for the
Snippet models). Some pre-processing phase is needed for both these data: First, we
remove non-alphanumerical characters, before applying stemming and lemmatization,
which are natural language processing techniques [92]. We split the input data in words

to obtain fpreprocc = {f1
i , ..., f

kf
i }. In order to respect common coding conventions while

standardizing the input data, we apply the Java coding convention to each word in fi
(the choice of coding convention is irrelevant as long as it is standardized for all inputs).

Example: If we consider Scenario 1, with f = src/Example.py and s = String

password = "Ub4!l", the pre-processing phase outputs fpreproc = {src,Example, py}
and spreproc = {String, password, Ub4!l}

4.3.2 Training phase

The workload to gather sufficient training data and to review labeled items can be handled
by a human reviewer. Since the path name is not a sensitive piece of information, the
data sanitization aspect can be reduced to a minimum. We collected 100k file names
from 1,000 GitHub repositories (analyzed in our evaluation in Section 4.6), which we
labeled using regular expressions and manual checks. We applied the data pre-processing
techniques and we train a CBOW model, achieving 99% of accuracy on this dataset.

29

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

4.4 Snippet Models

In this section, we detail the design choices for the Snippet models: the Extractor and the
Classifier. To fully understand our approach, we propose to introduce several concepts,
aimed to be used as building blocks for these models.

4.4.1 Building blocks

Code stylometry

Each developer has her own coding habits, depending on many factors such as the coding
language or the occurrences of given key-words. We introduce a concept called code
stylometry, aiming to encapsulate into a vector the main characteristics of these coding
habits.

Example: Consider a Python developer, focused on software development. This
developer will probably use key-words such as password or pass_word to do password
assignments (e.g., password = "Ub4!l"). A different developer, focused on database
management, might prefer keywords such as root or db (like db.root = "Ub4!l". These
design choices will result in two different code stylometry vectors.

Supposing that we have extracts of code belonging to a developer (denoted E), we
compute her code stylometry based of these extracts. The complete list of the features
we consider for code stylometry can be found in the Appendix A.1.

Data augmentation

As previously mentioned in Section 4.2.1, obtaining a dataset for leaks on GitHub is
complicated. Indeed, since we are dealing with sensitive data, we have to follow and
comply with privacy guidelines, e.g., performing data sanitization. The collected data
also needs to be labelled, which may require a significant manual workload. In addition,
the diversity of leaks in open-source repositories usually follows the Pareto rule, meaning
that 80% of the data leaks are originating from the same few programming patterns
(for instance, password="1234" is extremely common). Therefore, collecting a diverse
dataset in order to train a machine learning model (to have good generalization properties
and avoid overfitting [86]) would be difficult to reach from a practical point of view. For
these reasons, we propose to use data augmentation techniques in order to enhance the
size and the diversity of the dataset with no extra cost in labelling or sanitization.

Data augmentation is a set of techniques to enhance the diversity of a dataset without
new data. It is particularly used in image processing [86], by applying filters to images in
order to produce new training samples. The main benefit is to expand a dataset (fixing
class imbalance or adding diversity in the training samples) with limited pre-processing
cost. Data augmentation can also prevent overfitting (i.e, when a machine learning model
is not able to generalize from the training data).

Example: Consider two leaks password="Ub4!" and mypass="1234". If we switch
the variable names to obtain password="1234" and mypass="Ub4!", we have in fact
created two new leaks. In general, given a pattern key="value", any pair of (key, value)

30

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

can be chosen to obtain a new leak. Every time another variable name is collected,
data augmented leaks can be obtained by the re-arrangement of already existing data.
More specifically, when a new programming pattern is collected for password assignment
(e.g., DataBase.key="value") additional leaks can be obtained, creating diversity from
limited dataset.

In the context of this work, we have an important number of alternatives to enhance
our dataset, such as replacing variable names by synonyms, modifying function names
(e.g., from set_password() to os.setPass()), or replacing ’[]’ with ’()’. Since there
is no clear algorithm to choose which actions (or combination of actions) will output the
best suited dataset for the training phase, we consider the Q-learning algorithm [93].

Q-learning

Algorithm 1 Q-learning algorithm

1: D, π, styleref
2: Training Data for π Tπ

3: procedure Q-learning
4: while condition is True do
5: style← choose actions(π,D)
6: rewardsim ← similarity(style, styleref)
7: update choices(rewardsim)
8: end while
9: Tπ ← choose actions(π,D)

10: end procedure

[1]

Q-learning algorithm is a reinforcement learning algorithm, where an agent learns,
through interactions with its environment, actions to take to maximize a reward. In
the data augmentation process, some actions can be applied to the collected data, such
as modifying variable names (like in Example A), selecting different functions names,
or considering object-oriented programming patterns. Since different combinations of
actions lead to different datasets, it will also lead to different code stylometry vectors.
The goal for data augmentation is to converge to a particular code stylometry of the
transformed dataset, called reference stylometry.

We define three primitives to build the Q-learning algorithm, that we show in
Algorithm 1.

1. style← choose actions(π,D): The agent can choose a combination of actions she
intends to perform on data D (collected data from an empirical study) for a given
pattern π. These actions produce a new dataset, from which we can compute the
resulting stylometry style. In this work, we consider a list of 28 programming
patterns, available in the Appendix A.1.

31

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

2. similarity(style, styleref): The similarity function computes the cosine distance
between the current stylometry and the reference stylometry (computed through
extracts E). The output corresponds to the reward (which we want to maximize).

3. update choices(rewardsim): Based on the reward, the Q-learning algorithm will
update the available choices of actions. This update is ruled by the Bellman
equation [94].

After several iterations of the algorithm, the Q-learning will apply the optimal choices
of combinations of actions, to compute the training dataset for a given programming
pattern Tπ. The stopping condition can be time-based (e.g., maximum number of
iterations) or a threshold reward value.

4.4.2 Extractor

Algorithm 2 Extractor model algorithm

1: Collected data D
2: patterns Π
3: extracts E
4: model
5: procedure Extract
6: styleref ← stylometry(E)
7: for π in Π do
8: Tπ ← QLearning(π,D, E , styleref)
9: Ttot ← Tπ ∪ Ttot

10: end for
11: model← trainCBOW (Ttot)
12: end procedure

[1]

The main objective for the Extractor is to remove unnecessary elements in a code
snippet, taking as inputs a list of discoveries (corresponding to the output of the Path
model), and it outputs, for each code snippet, a tuple containing a variable name and
a variable value. If no tuple can be found in a code snippet, then it is automatically
discarded (because no variable assignment has been found).

The training data for the Extractor is obtained through the augmentation of collected
data D from GitHub, like variable names, function names, etc., used for variable assign-
ments. Data augmentation is performed before the training phase. Simultaneously, the
Extractor has access to a collection of code extracts E ; these extracts are not discoveries,
but simply randomly chosen pieces of code, from which we can compute a reference code
stylometry. Hence, an Extractor model can be trained for every developer (because each
of them has a different code stylometry) or for a group of developers (considering their
global code stylometry).

32

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

The training phase for the Extractor is shown in Algorithm 2. For each collected
programming pattern π, we apply the Q-learning algorithm, while considering the
stylometry of the developer (styleref) as the reference stylometry. We obtain the training
data Ttot on which a CBOW model is trained to obtain the Extractor.

4.4.3 Classifier

The Classifier takes as input a list of tuples, each of them containing a variable name and
a variable value (which corresponds to the output of the Extractor) and classifies the
tuple as a leak or as a Code snippet false positive. The training data for the Classifier
is different from the training data of the Extractor. We retrieved an open-source list of
the most commonly used passwords3 (used by multiple tools when attempting to guess
credentials for a given targeted service), and collected (through an empirical study) a list
of commonly used variable names (such as root, admin, pass, etc.). The design of the
Classifier is similar to the design of the Path model, with a CBOW model. The Classifier
achieves 98% of accuracy on this dataset of (variable name, variable value).

4.5 Similarity model

In the manual review phase, a user can classify a potential leak containing a code snippet
sj as false positive. We assume that we have the set of CBOW word representations of
code snippets of discoveries {CBOW (s1), ...CBOW (sk)}. To reduce the workload of a
human reviewer, we introduce a Similarity model, taking the code snippet CBOW (sj) as
input and automatically classifying discoveries containing similar code snippets as false
positives, denoted {CBOW (si), ...CBOW (sk′)} with 0 ≤ k′ ≤ k.

Definition. Let η be a similarity threshold. Two code snippets CBOW representation
CBOW (si) and CBOW (sj) are similar if cosine(CBOW (si), CBOW (sj)) ≤ η

A similarity threshold η = 1 means that, for a flagged discovery {fi, sj}, the Similarity
model flags all the duplicates of the code snippets. The impact of η is analyzed in
Section 4.6.3.

4.6 Experiments

In this section, we present an evaluation of our solution, divided into three major parts.
Firstly (in Section 4.6.1), we evaluate the rate of false positive data on the output of
the Regex Scanner (as proposed by the solutions in the literature). With this goal, we
scan a dataset of 1,000 repositories from the public GitHub (i.e., github.com), and 300
repositories from a GitHub-like code versioning platform owned by a private company.
In the remainder of this section, we refer to github.com as public github and to the
repositories publicly available on this platform as public repositories, while we refer to
the privately owned GitHub platform as proprietary github and to its repositories as

3https://github.com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials

33

github.com
github.com
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Repository type Discoveries File path FP Code snippet FP Total FP

public 13.6 9.35 (69%) 1.79 (13%) 11.11 (82%)
proprietary 0.259 0.091 (35%) 0.064 (25%) 0.155 (60%)

Table 4.1: FP by models (in millions of discoveries)

classification
machine learning models

potential leak non-critical data

manual
leak

20%
(true positives)

1%
(false negatives)

non-critical data
80%

(false positives)
99%

(true negatives)

Table 4.2: Manual assessment of 2000 discoveries

proprietary repositories. Next, in Section 4.6.2, we manually assess the false positive
rate as well as the false negative rate induced by the machine learning models, and we
show that the false negative rate is negligible (meaning that no leak on the output of
the Regex Scanner is discarded by the models). Finally, in Section 4.6.3 we estimate the
impact of the data augmentation algorithm parameters on the precision of our solution.

The tool that we have developed, and that we have used for the experimental
evaluation of our proposal, called Credential Digger, is available in open-source together
with the machine learning models4.

4.6.1 Regex Scanner false positive rate

For this experiment, we randomly selected and scanned 1,000 public repositories on
GitHub. The list of regular expressions used by the Regex Scanner can be found in
the Appendix A.1. Over 14 million discoveries have been found, with 13.6 million in
579 out of 1,000 public GitHub repositories (58%) and 260k discoveries in 268 out of
300 proprietary repositories (89%). Our discoveries cover more than 30 programming
languages, and represent more than 300 file types. Figure 4.2a shows the 10 most common
file extensions containing leaks in our dataset. The number of contributors and the sizes
of the repositories have been chosen equally distributed.

We notice that API keys are still widely published in open-source projects, as shown
also in [95]. Nevertheless, they do not represent the majority of the discoveries. Indeed,
in our study, we notice a more important number of passwords giving access to local
and remote databases, or to e-mail accounts. We observe that the vast majority of these
passwords is not critical (i.e., false positives), which seriously increases the load of a
developer to review each of them manually. These passwords are mostly undetectable
by traditional scanning tools, but they are still easy to find for someone using a simple
search tool in the commit message (with keywords such as remove credentials, delete
password, etc.). We found many passwords that we suppose to be real (even if we cannot

4https://github.com/SAP/credential-digger

34

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

14.2%

8.6%

8.6%

6.9%

5.8%
5.6% 5.3%4.0%

3.5%

37.4%

py
go
js
md
html
po
yml
txt
java
other

(a) Most common files containing secrets (b) Normalized FP rate by pattern for the
pre-trained model and the Extractor trained

with Q-learning

Figure 4.2: Statistics on the GitHub scan

have the certainty of this, since we are not allowed to test these passwords). This is a
very important concern not only because passwords are still widely reused [96], but also
because two-factor authentication is still scarcely known (and thus activated) [97, 98],
and scarcely supported by services [99].

To summarize, the vast majority of the discoveries detected with the Regex Scanner
consists of false positive data. In order to reduce the false positive rate, as described in
section 4.3, we apply the Path model and the Snippet models sequentially, and finally
evaluate the newly obtained false positive rates. As shown in Table 4.1, the Path model
classifies almost 70% of the discoveries as false positives in the public dataset. This score
is halved with the proprietary dataset. Together with the Snippets models, we see that
up to 82% of the discoveries are classified as false positives without a human intervention.

4.6.2 Models false negatives

In order to assess the behavior of our models, we decided to perform a manual review
of a limited number of discoveries (we recall that the Regex Scanner found 14 millions
discoveries in the previous experiment). To do so, we consider a sampling method,
randomly selecting 100 discoveries classified as potential leaks by the models and 100
discoveries classified as non-critical data by the models, and we manually analyze each of
them. We repeat this process 10 times (covering 0.01% of all the discoveries from the
previous experiment). The results are shown in Table 4.2. It is visible that 99% of the
discoveries classified as non-critical data by the models are real-life true negatives. The
remaining percentage (corresponding to false negatives) corresponds to edge cases, where
developers inserted (seemingly) real credentials in dummy files. Thus, in the scope of
our study, we can state that the unclassified leak rate is negligible. Given the discoveries
classified as potential leaks, 80% of them are non-critical (i.e., false positives non detected
by the models), and 20% of them are actual leaks (i.e., true positives). If we project the
results of this manual assessment to the complete list of discoveries, we can assume that
(i) our models do not create false negatives and (ii) they provide an efficient reduction of

35

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Repository Language Contributors

rhiever/MarkovNetwork5 Python 3
bradtraversy/vanillawebprojects6 Javascript 8
AGWA/git-crypt7 C++ 15

Table 4.3: Description of the three repositories

{R1, R2, R3}

Augmentation
𝛱: patterns

rfp: poisoning rate
Train/Test split
𝛱*: patterns

Similarity Model
η: threshold

output after reviewoutput before review

D D’

Figure 4.3: Data augmentation on D to assess the performance of the Extractor with the
train/test split technique

the false positive data on the output of the Regex Scanner.

4.6.3 Models false positives

In the previous section, we notice that it is difficult to assess the false positive rate of the
Snippet Models (especially the Extractor) with precise metrics since, for the majority
of the leaks detected in open-source repositories, we do not have a ground truth. In
the previous section, we had to consider other evaluation techniques (e.g., sampling) to
evaluate the false positive rate in real-life conditions, or to manually label the discoveries,
which represents an important workload. Furthermore, due to the limited size of labeled
data that we manage to collect, we cannot apply the train/test split [100] technique in
order to evaluate our models on them. The train/test split technique is a well-known
process to assess the validity of machine learning models, splitting the data into two
distinct subsets: training data (on which we will fit our model) and testing data (on
which we will evaluate our model). As mentioned before, the size of the collected labeled
data D is too small to accurately evaluate the Extractor using the train/split technique.

Nevertheless, Section 4.4.2 shows that we can apply data augmentation techniques
to expand the size of our training dataset, as long as we have a reference stylometry.
Hence, the goal of this section is to evaluate the false positive rate induced by the
Extractor itself (independently from the false positives induced by the Regex Scanner)
on several open-source repositories, with a train/test split approach commonly used in
supervised learning on an data augmented dataset. To achieve this goal, we consider
three different repositories {R1, R2, R3}, each of them containing source code written in
different programming languages by different developers (and different code stylometries)
as shown in Table 4.3. The main idea is to use the stylometries of these repositories to
obtain an augmented dataset where the train/test split technique is possible, and to see
the impact of the augmentation process on accuracy metrics such as precision or recall.

36

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Train/test split

We propose an experiment to evaluate the false positive rate on the Snippet Models with
respect to R ∈ {R1, R2, R3}, as illustrated in Figure 4.3.

• To begin with, we obtain an augmented dataset D′ from collected data D, patterns
Π, and extracts E of the repository R. We can select the leak percentage in D′ with
parameter rfp (rfp = 0.5 corresponds to a balanced dataset).

• Next, we split D′ into a training and a testing dataset. We also perform the split
on the patterns to obtain Π∗ ⊂ Π: This ensures that the patterns used to perform
the training (Π∗) are different from the patterns used to do data augmentation (Π).

• Finally, after the training phase, we compute metrics such as precision, recall, and
f1 score on the testing dataset. A manual reviewer manually flags the false positives,
and she is assisted by the similarity model (with threshold η). We consider that
the manual reviewer flags 0.1% of the discoveries.

There are mainly three hyper-parameters that have an impact on the precision of the
Extractor: rfp (the percentage of leaks over the size of D′), how we choose the subset
of patterns Π∗ used to train the Extractor in the train/test phase, and the similarity
threshold η from the similarity model. In the following subsections, we show the effects
of these three hyper-parameters on the accuracy of our solution. We propose to first
study the impact of the Q-learning algorithm on the precision of the Extractor, and show
that this technique significantly increases the precision (thus decreasing the false positive
rate). We further evaluate the impact of the three hyper-parameters on the precision,
recall and false positive rate of our approach.

Pre-trained model

To begin with, we study the impact of the data augmentation process. On the one hand,
we have an Extractor model, pre-trained on the data we collected without any data
augmentation process (called pre-trained Extractor). On the other hand, we have an
Extractor model, trained with the Q-learning algorithm for data augmentation where
Π∗ = Π∗

0.8 (corresponding to a set of patterns, randomly chosen including 80% of the
patterns in Π). In Table 4.4, we see the impact of the Q-learning algorithm, with a high
precision score as opposed to the pre-trained model (it increases from 55.56% to 71.66%).

A recall close to 100% means that we detect almost all the leaks. However, when the
user flags a discovery as false positive, the similarity model (with threshold parameter η)
may classify an actual leak as non relevant (i.e., it may cause a false negative). If we
select η = 1, we reach a recall of 100% but without any significant improvement of the
precision score. To fix the recall drop, a possible remediation is to inform the user on
what discoveries have been classified as non relevant by the similarity model, so that she
can check whether or not an actual leak has been wrongly classified (it will improve the
recall score, but will increase the manual workload also).

37

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Π∗
0.80 Π∗

0.5Situation
Precision Recall F1 Precision Recall F1

Before review 89.33 100 94.36 71.66 100 84.89
After review 89.69 99.96 94.55 74.52 99.71 85.30

(a) Impact on the manual review on the metrics

Situation
Π∗ = Π∗

0.80

rfp = 0.5 rfp = 0.20 rfp = 0.05

FP Rate 5.97 12.09 11.03

Situation
rfp = 0.5

Π∗
complex Π∗

0.5 Π∗
simple Π∗

0.25

FP Rate 9.36 18.35 31.99 27.86

(b) Impact of Πs and rfp on the FP rate

Table 4.4: Poisoning experiments. Results in bold in (a) correspond to experiments with
identical parameters in (b)

We also compare the precision score per pattern. Each pattern has a complexity value
associated with its index (i.e., the pattern with index 1 is the simplest, and the pattern
with index 28 is the most complex one). As shown in Figure 4.2b, we can observe a linear
relationship between the pattern complexity and the false positive rate when we use
the pre-trained Extractor (which seems natural for a global model, since more complex
patterns are harder to detect, leading to more false positives). With the Extractor trained
with the Q-learning algorithm, the false positive rate is independent from the complexity
of the pattern (which means that no particular pattern will lead a higher false positive
rate).

Extractor with Q-learning

In this section, we solely consider the Extractor trained with the Q-learning algorithm
(excluding the pre-trained model), by presenting the impact of rfp and Π∗ on the false
positive rate.
Impact of rfp: First, we analyze the impact rfp on the false positive rate in three different
situations, i.e., with rfp = 0.5 (balanced situation between leaks and false positive),
rfp = 0.2, and rfp = 0.05 (unbalanced situation where leaks are scarce), while fixing
parameter Π∗. We present the results in Table 4.4a. We observe that:

• in a balanced situation, we achieve a false positive rate of 5.97%, considerably
reducing the part of false positive data in the discoveries;

• in unbalanced situations, the results show that we manage an acceptable rate of
false positives, below 12%.

Impact of Π∗: Next, we analyze the impact of the choice of Π∗ on the false positive rate
in several situations, while fixing the poisoning rate rfp = 0.5. As mentioned before,
each pattern has a complexity value. Thus, we can define the complexity of a set of
patterns Π as the average complexity of these patterns (therefore, in our experiments,
the complexity of our set of 28 patterns Π, is equal to 14.5). Let Π∗

0.5 be a set of patterns
representing 50% of the set of patterns in Π, with an equivalent pattern complexity.
Table 4.4b presents the results.

For Π∗ = Π∗
0.5, we obtain a false positive rate of 18.35% in this setting. Compared

to Π∗
0.8, a 30% decrease in the number of patterns leads to a 15% increase of the false

38

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Situation Precision Recall

Pre-trained Extractor 55.56 100
Extractor with Q-learning 71.66 100
Extractor + Similarity model 74.52 99.71

Table 4.5: Impact of data augmentation with Π∗
0.80

positives, proving that our approach is able to generalize unseen patterns while preserving
low false positive rate. We also consider Π∗

0.25 corresponding to 25% of the patterns with
an equivalent overall pattern complexity.

Furthermore, we decide to study set of patterns without conserving the overall pattern
complexity, splitting Π∗ into two sets Π∗ = Π∗

simple ∪Π∗
complex, corresponding respectively

to the first 14 patterns and to the last 14 patterns. The results of the experiment with
Π∗

simple, Π∗
complex, Π∗

simple and Π∗
0.25 are also presented in Table 4.4b.

Although Π∗
0.5, Π∗

simple and Π∗
complex contain the same number of programming

patterns, the pattern complexity distribution greatly impacts the false positive rate. We
reach an acceptable false positive rate with only 25% of the patterns, but more equally
distributed in complexity. It is worth noting that the highest score is reached with the
Πcomplex pattern set, with results close to the full pattern experiment. Indeed, as shown
in Figure 4.2b, the false positive rate per pattern is higher, on average, for complex
patterns (i.e., with index above 14). Therefore, targeting only this class of patterns leads
to a decrease of the global false positive rate.

With respect to Π∗ and rfp, we estimate the false positive rate induced by the
Extractor between 6% and 32%. In Section 4.6.1, we showed that more than 80% of the
false positive data (induced by the Regex Scanner) has already been discarded. Overall,
we showed that the false positive rate of the whole solution (including the Regex Scanner
and the machine learning models) represents between 1% and 6% of the output.

4.7 Related work

4.7.1 Research work

An important amount of work targets GitHub open-source projects, from vulnerability
detection [101] to sentiment analysis [102]. Empirical studies also provide a more global
overview of the data on GitHub [103] and how to facilitate its access [104].

With the advent of machine learning techniques in the researchers’ toolkits, approaches
for source code representation have been developed, proposing a language-agnostic
representation of source code [105,106]. Leak detection can be also considered as a branch
of data mining or code search tasks. Works on evaluating the state of the semantic
code search [107], as well as works on deep learning applications for code search [108],
emphasize the need for developing machine learning techniques for source code analysis.
However, these previous works have different purposes from ours, especially regarding
the criticality of the datasets, and they consider token-based representations (so language
dependent) as opposed to our purely semantic approach.

39

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Leak detection is connected to malware detection [109,110] addressing similar issues to
solve privacy concerns in realistic settings, where the testing samples are not representative
of real world distributions. Contrary to malware classification, we do not have a reference
dataset to benchmark language specific approaches.

Code transformations based on stylometry have been tackled by other works [87,88].
In particular, in [88], the authors, given a list of code extracts {e1, ..en} developed by a
list of developers {D1, ...Dm} and an authorship attribution classifier, transform each ei
to fool the classifier concerning the authorship of ei. To do so, they use a Monte-Carlo
Tree Search algorithm to compute the most optimal code transformations to perform the
authorship attribution attack. In our work, we leverage the ideas developed in [88] to
perform our own code transformation to do data augmentation. We choose Temporal
Difference (TD) learning over Monte-Carlo, due to its incremental aspect. Indeed, in
the description of the Q-learning algorithm, there is a stopping condition in order to
obtain the augmented data, whereas Monte-Carlo algorithms have to be run completely.
We suppose that in our case the conditions for the convergence of TD algorithms are
satisfied [111].

Two different studies have considered the state of data leakage in GitHub reposito-
ries. [91] focuses on API Keys detection but the scope of their study is limited to Java
files, and the remediation techniques are mainly composed of heuristics. In a more recent
work [95], Meli et al. propose a study on the leak of API Keys, focusing on possible cor-
relations between multiple features in a GitHub project to find root causes. Nevertheless,
this work is limited to API Keys: It is explicitly stated that their analysis does not apply
to passwords. Moreover, the focus of their study was on the characteristics of true secrets,
with indications on contributors or persistence of secrets. Our focus dwells instead, on the
false positive data, since it represents the vast majority of discoveries of any open-source
project. Finally, they provide an extensive study of GitHub API Keys leaks by scanning
an important number of repositories, close to 700,000. In our work, we chose not to
conduct our GitHub leak status study with such a high number of repositories, because
it would have led to a tremendous number of false positive discoveries, which would not
have been possible to process.

4.7.2 Comparison with other credential scanning tools

Since the problem of leak detection in public open-source projects is not new, open-source
tools such as GitHub Token Scanning [90], GitLeaks [112] or S3Scanner [89] have been
developed to tackle it alongside commercial platforms, namely GitGuardian and Gamma.
However, to the best of our knowledge, there is no open-source tool which scans GitHub
repositories and applies machine learning to decrease the false positive rate. Therefore,
since the existing tools do not work in the same paradigm as our approach (not considering
passwords, for instance), we do not provide a comparison of metrics to avoid any bias.
Still, we can compare our approach with several tools we selected.

TruffleHog [69] is a very popular (5k stars on GitHub, at the time of writing) and
open-source scanning tool. The user has to provide her own set of regular expressions to
the tool in order to detect possible leaks. This tool does not use machine learning, and it

40

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

is mostly targeted to detect API Keys. Its main advantage is surely its simplicity for
developers. Similar tools have emerged with the same characteristics, such as Gitrob8

and git-secrets9.

GitGuardian [68] is a tool provided by the namesake company founded in 2016 and
specialized in detection of leaks in open-source resources. Alongside their commercial
offer, they provide free services to scan one’s own GitHub repositories. They claim their
tool is machine learning-powered and that they can identify more than 200 API Key
patterns, but they do not mention passwords.

TruffleHog [69] and its variants aim to be a strong baseline for scanning tools. For
example, in [95] authors offer improvements to its core algorithm. Various heuristics
can be implemented to improve the accuracy of the tool, such as entropy check : if a
string has high entropy, which means it consists of seemingly random characters, the
probability that this string is an API Key is high. We perform several manual tests on
the GitGuardian platform on various API Keys patterns and on plaintext passwords in
order to understand the possibilities and the limitations of such a tool. According to
our tests, the platform is not able to detect plaintext passwords, and it only detects a
reduced sample of API Keys, excluding big API Keys providers such as Facebook and
Paypal. We only tested the free version of GitGuardian, so it might be possible that
the full capabilities of the platform are only enabled in the commercial offer. Another
commercial tool called Nightfall AI10 (formerly known as Watchtower) offers the same
services, but no free version is available to test the platform.

We compared several tools, on different criteria, and show our results in Figure 4.4.
For each scanning tool, we compare what techniques are used, and if there is any false
positive reduction. The open-source tools do not perform false positive reduction (since
most of them do not detect passwords), favoring the usage of heuristics which need less
computational power. However, most of the heuristics are not adapted to all use cases,
so the developer has to manually configure the tool without efficiency guarantees. In our
approach, we choose to adapt the scanning process to each developer, thus the fine-tuning
is performed by the Leak Generator rather than the user herself. The continuous training
parameter is the ability for the tool to re-train the machine learning models when the
user flags a discovery, so to improve future classifications. Open-source solutions are
more focused on single use cases, offering limited interactions with the developers. Our
approach, similar to the GitGuardian platform, is to improve the accuracy while reviewing,
decreasing the monitoring time. The user experience is also a key point in order to be
used efficiently. The price could represent an important barrier for small companies
willing to protect themselves, encouraging bad development habits. Commercial products
provide a user interface, making the tool more accessible to developers, and even to
non-technical people. Since the origin of a leak does not depend on the level of expertise
of the developers [95], tools with a user interface could be easily used also by beginners
to protect their code.

8https://github.com/michenriksen/gitrob
9https://github.com/awslabs/git-secrets

10https://www.nightfall.ai/

41

https://github.com/michenriksen/gitrob
https://github.com/awslabs/git-secrets
https://www.nightfall.ai/

Chapter 4. Mitigating Data Leaks in Open-Source Platforms

Category Tool Scanning process User experience Adoption

R
egex

E
ntropy

check
H
euristics

P
ath

F
P
detection

P
assw

ord
detection

M
achine

learning

F
ree

U
ser

interface

O
p
en-source

R
ep
ository

m
anagem

ent

Scan
of

private
rep

ositories

A
uthentication

not
required

C
om

m
unity

Scalability

R
egular

up
dates

Known algorithms TruffleHog G# - - - - - - G#
Git-secrets - - - - - - G# G#
Gitrob - - - - - - G# G#
[95] G# - - - - - - - - - - -

Commercial offers GitGuardian - - - - G# - - G#
Nighfall AI - - - - - - - -

Our approach - -

 = provides property; G# = partially provides property; - = does not provide property;

Figure 4.4: Comparison of available tools

4.8 Conclusion

We proposed an approach to detect data leaks in open-source projects with a low false
positive rate. The solution improves classic regular expression scanning methods by
leveraging machine models, filtering an important number of false positives. The approach
has been open-sourced as a library under the name Credential Digger [113], with the
machine learning models published in open access on HuggingFace [114]. We propose the
following measures in order to improve the quality of the evaluation, as a future work:

• The evaluation of the models, including the data augmentation process, has been
realized on a limited set of repositories, for faster manual review. A first improvement
could consist in evaluating the approach on a larger sample of repositories.

• Compared to the state of the art of NLP models, the CBOW approach is simple.
Since the publication of this work, we have been working on a more advanced
version of the models, based on larger architectures [115]

• The data augmentation process works with a limited set of pattern and data
modification actions. Developing this aspect could make the data augmentation
more efficient.

Mitigating data leaks only counter one attacking strategy for model stealing. In
the next chapters, we introduce the concept of watermarking as a more general defense
against this type of attacks.

42

Chapter 5

Watermarking Machine Learning

In the previous chapters, we highlighted the problem of protecting the intellectual property
of machine learning models, due to potential attacks aiming to steal models to gain
commercial advantages. Current legal solutions are not secure enough against this issue.
In this chapter, we propose to study the concept of watermarking and conduct a literature
review of watermarking, a solution for ML models’ IP protection.

5.1 Digital Watermarking

Digital watermarking is the concept of embedding information in content such as audio,
video, image, text, etc, in order to verify the authenticity or integrity of the target
content. The concept originates from physical watermark, on postal stamps or currency
for instance, in order to prevent counterfeiting. Overall, digital watermarking is composed
of three parts. First, ownership information about the target content’s owner needs to
be inserted, in a process called embedding. The embedded information is defined as
watermark. Embedding algorithms, to be valid, are required to satisfy properties such as
fidelity (the embedding shouldn’t tamper the integrity of the original content). Then, the
resulting watermarked content can be used, transmitted to third-parties, distributed to a
large audience or stored. The content is vulnerable to attacks from attackers attempting
to modify the watermarked content to remove or alter the watermark. For instance,
the adversary could try to identify the watermark, through data analysis, or could try
to remove the watermark by modifying the watermarked content (compression, noise
addition, etc.). Finally, when the original owner wants to verify the presence of the
watermark, a verification algorithm is applied on the content in order to extract the
watermark. Verification algorithms are required to satisfy properties, such as reliability
(the false negative rate for watermark extraction should be low) or integrity (the false
position rate for watermark extraction should be low).

Digital watermarking applications include copyright protection, ID card security or
broadcast monitoring (for instance, when television news channels broadcast watermarked
video from international agencies).

43

Chapter 5. Watermarking Machine Learning

Original
model

Watermarked
model

Embedding

Model owner

Ownership
information

Model stealing
attacks

Verification

Non-stolen or Stolen

Adversary

Attacked
model

Figure 5.1: Overall watermark process, including embedding, attacks and verification

5.2 Watermarking neural networks

Watermarking can be extended for protecting the intellectual property of neural networks.
In this section, we propose a definition of watermarking, identifying the main functions
and proposing fundamental properties. The work described in this section is based on
the definitions from literature survey by Li et al. [116], Boenisch et al. [117], Regazzoni
et al. [118], Lukas et al. [119] and Xue et al. [120].

5.2.1 Threat model

We propose an overview of watermarking, as shown in Figure 5.1. We suppose that a
model owner intends to protect his model Mθ against model stealing attacks, described
in Section 3 from the adversary A. A defense strategy is to (i) embed in Mθ ownership
information, denoted O and more commonly referred to as watermark and (ii) verify the
presence of watermark in the model.

Depending on the assumptions on the environment (see Section 5.2.4), the adversary
can be constrained on computational resources, model’s partial or complete access, time,
knowledge of the model and/or training data. Overall, the strategy of the adversary to
attack watermarking can include:

• performing the aforementioned model stealing attacks, described Section 3 to steal
the model.

• preventing the model owner to verify the presence of the watermark (see Section 5.6.2
for more details)

• modifying the model in such a way that the watermark is corrupted (see Section 5.6.4
for more details)

• obtaining knowledge of the ownership information O

We consider the adversary as being rational, meaning that there exists a trade-off for
an adversary between the cost of stealing the model (by implementing the aforementioned

44

Chapter 5. Watermarking Machine Learning

strategies) and the cost of training its own model, that should be taken into account into
the design of watermarking.

We propose to formally define the main functions of watermarking, namely the
embedding and the verification functions.

5.2.2 Main functions

Definition (Embedding phase). Let Mθ be the model to be watermarked, with parameters
θ. The embedding phase is realized through the Embed(.) function as defined below:

Mθ∗ ← Embed(Mθ,O) (5.1)

with Mθ∗ being the watermarked model and O being ownership information.

Definition (Verification phase). Let M∗ be a suspect model. The existence of the watermark
in M∗ is verified if the following condition holds:

V erify(M∗,O) = True (5.2)

with V erify(.) being the verification function and O being the ownership information,
computed from the embedding phase.

We identify two types of verification:

1. Personal verification where the verification algorithm is executed by the model
owner.

2. Public verification, where the verification algorithm is executed by a trusted third-
party. In the last case, the role of the model owner is to convince the third-party
that he or she is the legitimate owner of the model.

In the remaining of the thesis, we refer to watermarking scheme as the combination
of the two functions Embed(.) and Verify(.).

5.2.3 Properties

We introduce several basic properties that a watermarking algorithm needs to satisfy,
mainly adapted from image watermarking.

Definition (Fidelity). The Embed(.) function is ensuring fidelity if the impact of the
embedding on the performance of the model is negligible, i.e:

σ(Mθ∗ ,D) ≈ σ(Mθ,D) (5.3)

with Mθ is the original model, Mθ∗ the watermarked model, σ(.) any performance
metric such as accuracy, F1 score, etc. and Dtest an evaluation dataset.

45

Chapter 5. Watermarking Machine Learning

The fidelity property ensures that the modification induced by the watermark does
not impact the performance of the model, i.e. watermarked and non-watermarked models
can be used equally in production environments.

Next, we define three properties adapted from digital watermarking: robustness,
integrity and reliability.

Definition (Robustness). Let Mθ∗ be the watermarked model. Mθ∗ is said to be robust to
modifications if:

V erify(Mθ∗ ,O) == True =⇒ V erify(Mθ∗+µ,O) (5.4)

where µ is a small perturbation on the watermarked model’s parameters θ∗.

Definition (Integrity). The watermarking scheme is said to satisfy the integrity property
if, for any non-watermarked model Mθi ∀ θ0 ∈ Θ , the detection false positive rate ϵ is
negligible, with ϵ defined as:

ϵ = P (V erify(Mθ0 ,O) == True) (5.5)

Definition (Reliability). The watermarking scheme is said to be reliable if, for a water-
marked model Mθ∗, the detection rate r is close to 1, with r defined as:

r = 1− P (V erify(Mθ∗ ,O) == True) (5.6)

Definition (Secrecy). A watermarking scheme is defined to be secret if there is no opti-
mal strategy for a rational adversary A to gain sufficient knowledge on the ownership
information O to break the reliability property.

The robustness property is further described in Section 5.6. In addition to these
properties, additional requirements can be introduced, such as capacity, quantifying the
amount of ownership information embedding into a model, generality, measuring the
ability for watermarking to generalize to different types of models or efficiency, measuring
the computational overhead of the watermarking procedure.

5.2.4 Black-box vs. White-Box

Watermarking algorithms are split into two categories: Black-Box and White-Box wa-
termarking, with respect to the embedding function, to the verification function and
to the adversary’s environment. In black-box embedding, no assumptions are required
on the model’s architecture or training process, i.e., embedding algorithms rely on data
poisoning attacks [121]. In the case of white-box embedding algorithms, constraints
could exist on model architecture (number of layers, neurons, etc.) and can include plain
modifications on the weights’ values.

Regarding black-box verification, the suspect model to be verified can only be accessed
by queries (for instance, a model deployed on an API endpoint). On the contrary, in white-
box verification, the suspect model is accessible (with its architecture and parameters)
and can be ”inspected”. It is worth noting that a given watermarking scheme can be

46

Chapter 5. Watermarking Machine Learning

white-box for embedding and black-box for verification, or black-box for embedding
and white-box for verification. Even though white-box setting presents less constraints
on the watermarking environment, black-box verification is more adapted to real-world
situations where the model is rarely accessible to the end-user.

We also refer to ”black-box scenarios”or ”white-box scenarios”regarding the constraints
on the adversary. Black-box scenarios imply that the adversary does not have a direct
access to the model (for instance, only queries from an API endpoint) and have restricted
access or knowledge about the training data and training procedure. Black-box scenarios
are well-suited to describe model extraction attacks for instance. White-box scenarios
allow more power to the adversary, with the ability to analyze weights, architecture, or
to have a complete access to training data.

In the next section, we propose to describe black-box watermarking, highlighting the
main problems and the current state-of-the-art algorithms.

5.3 Black-box watermarking

In a black-box setting, the ownership of a model is verified through inference queries (i.e
no inspection of the model’s parameters is possible). The concept is to have a particular
dataset called trigger set T = {(xT1 , yT1), (xT2 , y

T
2), ...(xT|T |, y

T
|T |)}, distinct from the training

dataset Dtrain and whose composition is only known to the model owner. More specifically,
the trigger labeling function fT (.) : xT → yT is secret. By design, the watermarked model
is the only model to have learned the trigger labeling function, meaning the only model
to obtain high accuracy on the trigger set. By analyzing the performance of any suspect
model on the trigger set, the model owner has a proxy measure for model’s ownership.
Trigger set generation techniques are further described in Section 5.3.3.

5.3.1 Definitions

We define, more formally, what high accuracy means.

Definition (Black-box Verification phase). Let M∗ be a suspect model. The existence of
the watermark in M∗ is verified, with error rate ϵ, if and only if V erify(.) == True, with
V erify(.) defined as follows:

V erify(M∗, σ(.), T) =

{
True if σ(M∗, T) ≥ β

False if σ(M∗, T) < β
(5.7)

with σ(.) is a performance metric and β a verification threshold.

The verification threshold β is a generic threshold value to claim the ownership of a
model. Szyller et. al [20] defines β as the cumulative binomial distribution.

Definition (Verification threshold for classification). We define the verification threshold
β as follows

ϵ =

⌊β·|T |⌋∑
i=0

(
|T |
i

)
1

Ki
(1− 1

K
)|T |−i (5.8)

47

Chapter 5. Watermarking Machine Learning

where |T | is the size of the trigger set, K is the number of output classes for a classification
task and ϵ the error rate.

In a black-box setting, we propose a more precise definition of the reliability and the
robustness properties.

Definition (Reliability for black-box setting). For any model Mθi ∀ θi ∈ Θ , with the
exception of the watermarked model Mθ, the following condition holds with error rate
error rate ϵ:

σ(Mθi , T) < β (5.9)

Definition (Robustness for black-box setting). Let Mθ be the watermarked model. Mθ is
said to be robust to modifications if:

σ(Mθ∗+µ, T) ≥ β (5.10)

where µ is a small perturbation on the watermarked model’s parameters θ.

In black-box watermarking, the trigger set constitutes ownership information. There-
fore, in order to preserve the aforementioned properties, it is crucial that it remains
secret.

Definition (Secrecy & Indistinguishability). A black-box watermarking scheme is defined to
be secret if there is no optimal strategy for a rational adversary A either (i) to distinguish
legitimate inputs x ∈ D from trigger inputs xT ∈ T or (ii) infer the trigger labeling
function fT (.), sufficiently enough to break the reliability property.

5.3.2 Embedding

The concept of black-box embedding is to modify the model’s parameters without assuming
prior-hypotheses, such as model architecture, type of problem solved by the model, etc.
We consider two main possibilities for black-box embedding: (i) data poisoning, i.e.
modifying the training data and (ii) loss regularization, i.e. modifying how the model
learns from the training data. Often, embedding algorithms combine those two options.

The concept of data poisoning is to craft particular inputs called triggers, composed
of input-output pairs (xi, yi), with its composition and the trigger labeling function fT (.)
only known to the model owner. The model to be watermarked is then trained either
simultaneously on the legitimate training dataset D = {x1, x2, ...x|D|} and the trigger set
or sequentially (the model is first trained on the legitimate dataset, then fine-tuned on
the trigger set).

The second modification strategy (other complementary with data poisoning tech-
niques) is to modify the loss function during the training. In this case, we can express
the parameters θ∗ of the watermarked model as the following optimization equation :

θ∗ = arg min
θi

 |T |∑
k=1

L(yTk ,Mθi(x
T
k)) + λ ·

|D|∑
k=1

L(yk,Mθi(xk))

48

Chapter 5. Watermarking Machine Learning

(a) Original
input [23]

(b)
WMcontent [23]

(c)
WMadd−noise [23]

(d)
WMunrelated [22]

Figure 5.2: Different types of trigger generation techniques

The loss function is split into two terms: One for the legitimate dataset Dtrain, one
for the trigger dataset T . Loss regularization techniques can introduce more complex
expression for the loss, in order to improve the quality of the learning process, as shown
in later sections.

5.3.3 Trigger generation

Different strategies have been implemented in order to generate trigger inputs. [22,23,122,
123], as well as selecting fT (.). We propose to present an overview of various black-box
embedding trigger generation techniques

Unrelated inputs

A first strategy is to generate trigger inputs unrelated to the legitimate data. We define
this technique as WMunrelated as mentioned by Zhang et al. [23] and also presented in Adi
et al. [22]. For instance, one can use handwritten digits as trigger inputs for watermarking
a model whose main task is to recognize food, and to associate random outputs. This
technique has two advantages:

1. The source of ”candidate” trigger inputs is potentially infinite, making it difficult
to ”guess” which triggers have been used.

2. The trigger dataset and legitimate dataset are well separated, meaning that, intu-
itively, the performance on the trigger dataset should not impact the performance
on the legitimate dataset.

Input modification

A second strategy is to use legitimate dataset as a starting point for building trigger
inputs. Therefore, we can define a trigger input generation function xT = TGen(x). For
instance, the technique WMadd−noise consists in adding Gaussian noise to the legitimate
inputs:

TGen(xi) = xi + zi

49

Chapter 5. Watermarking Machine Learning

Figure 5.3: An adversarial input, overlaid on a typical image, can cause a classifier to
miscategorize a panda as a gibbon [1].

where zi is drawn from zero-mean normal distribution with variance 1 (zi ∼ N (0, 1)),
supposing that the legitimate inputs are normalized and standardized. Instead of adding
noise, it is possible to add a specific content. This technique, denoted WMcontent, embed
data such as special string, image pattern, logo or other artifacts which could help in
identifying the model owner.

Adversarial-based triggers

Le Merrer et al. [123] propose to build trigger inputs by leveraging adversarial examples.
Adversarial examples are particular inputs, indistinguishable from legitimate inputs to
the human eye but causing a misclassification by the model. Figure 5.3 shows how a
small noise perturbation can fool an image classifier. In order to create such inputs, the
paper proposes to use the Fast Gradient Sign Method (FGSM), and can be expressed as
follows:

Definition (FGSM). For a given input xi, the resulting trigger input is computed through
the gradient of the loss with respect to the legitimate input:

xTi = xi + ν · sign(∇xiL(θ, xi, yi)) (5.11)

with ν a multiplier, θ the model parameter and L the loss function.

Other techniques might be used [124], such as the Jacobian-based saliency map
technique [125], or the Carlini and Wagner technique [126] to obtain adversarial inputs.

GAN-based triggers

Li et al. [127] present a trigger generation technique based on Generative Adversarial
Network [128] (GAN): Trigger inputs are generated through a neural network called
generator, taking as input legitimate samples and ownership information (a logo, text,
etc.). The generator outputs a candidate trigger sample. Then, a second neural network
defined as discriminator receives the candidate trigger sample as input and should learn
to recognize the sample as non-legitimate. Both the generator and the discriminator are

50

Chapter 5. Watermarking Machine Learning

trained jointly, until the discriminator cannot distinguish legitimate inputs from trigger
inputs.

Other techniques

Other techniques can be used to craft triggers, as presented by Guo et al. [129], suggesting
the usage of evolutionary algorithms to generate the best trigger set : i.e., a trigger set
creating few false positive when tested on models which do not contain the watermark.
Liu et al. [130] propose to leverage Fourier perturbation analysis to understand how to
modify legitimate inputs (i.e., which type of content should be added and how to generate
it) to obtain a good trade-off between robustness and secrecy.

5.3.4 Loss function update

In parallel with trigger generation techniques, black-box embedding algorithms focus on
enabling the model to adopt the desired behavior on the trigger set through a modification
of the learning parameters, namely the loss function. Embedding algorithms often rely
on a specific formulation of the loss function for the model to learn both the original
task and the watermark task. Several works [22,23,127], consider the same loss function
for both tasks. For instance, Bansal et al. [131] take the work in field of adversarial
robustness [132,133] by training the model on the trigger set with randomized smoothing,
in order to be robust against model modification attacks.

Jia et al. [21] notice that, if the loss function is solely a distinct combination of two loss
functions, then the resulting watermarked model is in fact composed of two sub-models:
a sub-model efficient on the original task and a sub-model on the watermarking task.
This type of embedding is not robust against model extraction attacks, because it is
always possible to separate the two sub-models. The authors propose to define the loss
function associated to the watermarking task as the Soft Nearest Neighbor Loss (SNNL).

Definition (SNNL). The Soft Nearest Neighbor Loss is defined, over a dataset of size N ,
for loss parameter called temperature τ :

SNNL(X,Y, τ) = − 1

N

∑
i∈1..N

log

∑
j∈1..N
j ̸=i

yi=yj

e−
∥xi−xj∥

2

τ

∑
k∈1..N
k ̸=i

e−
∥xi−xk∥2

τ

(5.12)

Analyzed by Frosst et al. [4], the SNNL measures the distance between data points
from different classes, relatively to the average distance for points belonging to the
same class. When the SNNL is low, the data is said to be entangled : visually, we can
represent low-entangled data as well-separated clusters and high-entangled data similar to
a scatter plot, as shown in Figure 5.4. Jia et al. [21] argue that maximizing entanglement
during the embedding of the watermark (while minimizing cross-entropy loss for the

51

Chapter 5. Watermarking Machine Learning

Figure 5.4: SNNL values for 4-class classification problem, from highly entangled data
(left) to highly disantagled data (right), from Frosst et al. [4]

legitimate task) makes the model more resilient to model extraction attacks, by developing
class-independent similarity structures, improve performance on unseen data.

Chen et al. [134] suggest to use trigger-based watermarking not to watermark the
complete model, but a special sparse subnetwork inside the model called winning lottery
ticket. A winning ticket submodel has fewer connections (hence better computational
performance) but reach similar or even better performance than the original model. Since
finding the winning ticket model is non-trivial, inserting the watermark inside prove to
be efficient against ambiguity or removal attacks, later defined in Section 5.6.

5.3.5 Verification

In addition to embedding algorithms, a significant number of works implement advanced
verification algorithms to go beyond a simply accuracy computation. The main constraint
of black-box verification algorithms is the scarcity of available information, which mostly
consists of output vector’s predictions. We present works which focus particularly on the
watermarking verification phase.

Szyller et al. [20] proposes Dynamic Adversarial Watermarking of Neural Networks
(DAWN), in order to be resilient against model extraction attacks. In short, the authors
propose to deploy the model to be protected on an API endpoint, with a filtering module
analyzing inputs. The filtering module implements a boolean function W(xi), with xi as
input query and defined as follows:

W(xi) =

{
1 if HMAC(KMθ

)[0.127] < |T | · 2128

0 otherwise
(5.13)

where HMAC() is a keyed-hash message authentication code and |T | the size of the
trigger set. When W(xi) = 1, the input query does not pass the filtering module, the
input does not reach the model and the input is wrongly classified. Therefore, if a model
extraction attack is implemented, then the surrogate model will be trained on those
misclassified samples (hence containing the watermark).

Charette et al. [135] propose to modify the output prediction vector of the watermarked
model Mθ, by incorporating (through a modification of the loss function during the
training), for a given label i ∈ [1, K], a sinusoidal function with secret parameters (fw, v),
with λ as a regularization parameter:

52

Chapter 5. Watermarking Machine Learning

Figure 5.5: The 5 categories of white-box embedding

Mθ∗(x) = Mθ(x) + λ · cos(fw · v⊺x) (5.14)

Thus, during the verification phase, an algorithm based on power spectrum of the
prediction vectors can extract the signal of the watermarking, through the signal-to-noise
ratio.

Sakazawa et al. [136] suggest to use the prediction vectors obtained after the inference
of trigger images to reconstruct an output image. The image reconstruction process can
be done incrementally and provides a visual proof of the ownership, as opposed to the
more theoretical assessment with the β threshold.

5.4 White-box watermarking

In white-box watermarking, the model owner is not only limited to modifications to the
training data or the loss function, but has an easier access to the model (architecture,
weights distribution, specificity of the task solved, etc.), both during the embedding
and the verification phases. Even though white-box watermarking require stronger
assumptions, it offers more possibilities to the model owner. We propose a review of the
main white-box watermarking algorithms.

5.4.1 Embedding

We propose a classification of white-box embedding algorithms into 5 categories, as shown
in Figure 5.5: parameter modification (adding or removing parameters from the model),
weight embedding, weight calibration, weights substitution and adversarial embedding.

Parameter modification

A first white-box embedding concept is to add layers into the model in order to authenticate
the ownership. Fan et al. [137] propose to add a passport layer into the model i.e., an
additional layer, inserted after a convolutional layer, in order to make watermarking
robust against forging attacks (later described in Chapter 7). For each additional passport
layer, the model owner has ownership parameters P l = {P l

γ , P
l
β} and the output of the

convolutional-passport layer is yl, defined as follows:

53

Chapter 5. Watermarking Machine Learning

yl = a
(
γl · (W l ∗X l) + βl

)
γl = AvgPool

(
W l ∗ P l

γ

)
βl = AvgPool

(
W l ∗ P l

β

)
where a(.) is the activation function and AvgPool(.) is the average convolutional

pooling function.
The ownership parameters γl and βl are derived from the passport layer parameters

{P l
γ , P

l
β}, which are only known to the model owner. During the training, the model

learns the original task, with a loss regularization regarding the scale factor. Once the
model learns the original and the watermark task, the passports are removed. The
verification phase is white-box, where the model owner inserts the passport layers into
the suspect model. If no deterioration in accuracy is observed, then the suspect is the
original. The advantage of this technique is that passport layers cannot be forged, making
it a good defense against forging attacks.

Weight embedding

A second concept consists of, rather than adding specific parameters, directly embedding
in already existing model’s parameters, ownership information [138]. Uchida et al. [139]
propose to consider a given |T |-bit vector T ∈ {0, 1}|T |, defined as T = {T1, T2, ...T|T }, to

be embedded into a convolutional layer θl.
In the embedding phase, the algorithm takes an embedding parameter denoted

P ∈ R|T |×|θ̄ and a flatten version of θl, denoted θ̄. If the embedding is successful, the
algorithm should be able to reconstruct the original |T |-bit vector, by measuring Tmes:

Tmes
i = s(

|θ̄|∑
j=1

pij · θ̄j)

with s(.) defined as the step function:

s(x) =

{
1 ifx ≥ 0

0 otherwise
(5.15)

The embedding is considered as a binary classification problem (detecting the wa-
termark in θ̄) with a single-layer perceptron architecture (without bias). Therefore, the
overall loss function of the watermarked model can be written as a combination of the
original loss function L0 (for the main task) and the watermark loss function LWM (for
parameters embedding):

L = L0 + λ · LWM

.

54

Chapter 5. Watermarking Machine Learning

Wang et al. [140] extends on this work by proposing to use a secondary neural
network, trained simultaneously with the original model, with the same loss function.
This secondary model is designed to never be released and only for watermark verification
purposes. However, both approaches are sensitive to approaches aiming to detect a
watermarked-embedded layer in a neural network by analyzing the distribution of the
weights, as shown in Wang and Kerschbaum. [141]. Liu et al. [142] propose a formulation
for the watermark loss function LWM through the residuals of important parameters of
the model:

LWM =

|T |∑
i=1

σ(µ− Tiϕi) (5.16)

where T is a |T|-bit ownership vector, µ a threshold parameter and ϕ the greedy
residuals, selected by analyzing the most important parameters (i.e., the parameters
contributing the most to the predictions).

Rouhani et al. [143], extended in Chen et al. [144] propose to encode watermark
into a model’s weights, by learning the probability distribution function (pdf) of model
activation, generating adequate watermark, then fine-tuning the model through loss
regularization. Pagnotta et al. [145] propose a weight-embedding algorithm based on code
division multiple access spread-spectrum channel-coding, in order to encode watermark
information in weights, making the technique more robust to model modifications.
Lao et al. [146] propose to apply weight modification a selected subset of the weights
(corresponding to strong gradient values during the training) and to only modify these
weights to embed the watermark.

Weights calibration

Nambda et al. [122] builds on the WMunrelated idea of Zhang et al. [23] and Adi et
al. [22] by solving the problem of separability and proposing to use, as trigger inputs,
legitimate inputs from other classes. For example, in a dog vs. cat classification, one can
take a particular dog input and to associate the label cat. Therefore, when training the
model on this switched-label dataset T , dog inputs would be predicted correctly, except
for the inputs with switched labels. The problem of separability and distinguishability
disappears, because the trigger inputs are legitimate. However, this idea does not fulfil
Definition 5.2.3 regarding robustness (a slight modification of the model would decrease
accuracy on the trigger set). The authors propose to weight parameters contributing to
the prediction in order to be resilient to model modification. More formally, recall the
output of the lth hidden layer from Equation 2.3:

h(l+1) = a(l)
(
g(l)l(h(l), θ(l))

)
(5.17)

We recall the definition θl = {θl1, θl2, ..., θl|θl|}. After training the model on the

legitimate and the switched-label dataset, Equation 2.3 is replaced with the Exponential
Weighting function (EW (.)), given by the following equation:

55

Chapter 5. Watermarking Machine Learning

hl+1 = al
(
gl(hl, EW (θl, T))

)
(5.18)

with EW (.) defined as follows:

EW (θl, T) =
exp(|θli|)

max
i

exp(|θli|) · T
· θli (5.19)

After the replacement happens in the equation of all layers, the model is re-trained
on both dataset and the model is considered as being watermarked.

Parameter shuffling

An active white-box embedding is defined as weight encryption [147]. The idea is store
the model by encrypting or shuffling the model’s parameters, making the model useless.
If the model in the shuffled state is stolen, the thief will obtain wrong predictions and
the model cannot be used. The model owner possesses the invert key, to obtain the
model in a non-shuffled state. Lin et al. [148] propose a shuffling based on Arnold’s cat
algorithm, whereas Alam et al. [149] propose a shuffling algorithm based on S-boxes. The
watermarking is said to be active because it actually prevents the thief from using the
model, rather than simply detecting a stolen instance. Besides, as opposed to classical
watermarking technique, no embedding is necessary meaning no modification to the
model’s behavior is applied (once the model is reverted to non-shuffled state).

Adversarial weight modification

In order to make weight embedding less detectable by anomaly detection techniques, Wang
and Kerschbaum. [150] propose a technique inspired by Generative Adversarial Networks
(GAN) to perform weight modification. The solution is composed of two components: (i)
the model to be watermarked Mθ∗ (ii) a model denoted Mdet whose role is to identify if
the weights’ distribution of Mθ∗ , w is similar to weights of non-watermarked models wnon.
In the learning procedure, three objectives are defined: (i) to learn the original task of
the model, by minimizing the loss L0 (ii) to learn the watermark task by minimizing the
watermark loss Lwm (iii) make sure the weights are not detectable by maximizing the
loss of Mdet. The objectives can be summarized as the following optimization problem:

θ̂ = max
θ

(log(Mdet(wnon, θ)) + log(1−Mdet(w, θ))) (5.20)

ŵ = min
w

(L0 + λ1Lwm − λ2log(Mdet(w, θ))) (5.21)

where λ1 and λ2 are two regularization parameters.

In a similar fashion, Jia et al. [151] use a GAN-like architecture to watermark deep
transfer models, by first finding trigger inputs from an encoder-decoder model before
embedding the watermark in a sub-network of the model through loss regularization.

56

Chapter 5. Watermarking Machine Learning

Figure 5.6: Difference between Adversarial examples based fingerprinting and UAP based,
from Peng [5]

5.5 Fingerprinting

While reviewing watermarking techniques, it is important to mention another related
field, namely fingerprinting. As opposed to watermarking which is an invasive technique
(inserting information into a model to identify its owner) causing an accuracy drop,
fingerprinting extracts a unique identifier, denoted fingerprint, to differentiate it from
other models. Similar to watermarking, fingerprinting algorithms are decomposed into
two phases: extraction and verification.

Definition (Extracting phase). Let Mθ be a model, with parameters θ. The fingerprint
fMθ

is extracted through the Extract(.) function defined as:

fMθ
← Extract(Mθ) (5.22)

The fingerprint verification is analogous to the watermarking verification algorithm,
where the ownership information O is replaced by the fingerprint fMθ

. The same
previously defined properties such as fidelity, robustness, integrity, reliability, are also
required. The goal of fingerprinting algorithms is to devise extraction algorithms in order
to satisfy, especially the integrity property: the extracted fingerprint should be unique to
the model.

Cao et al. [152] suggests that a model is uniquely represented by its decision boundaries,
i.e., the region of input space where the output label of a model is ambiguous. Therefore,
different models have different decision boundaries. Data points are considered on the
model’s decision boundary if the model cannot decide which label to attribute to the
data point, i.e., at least two labels have a large and equal probability. Such data points
can be considered as fingerprints to identify the model. The authors also compare
their method with adversarial-based fingerprinting, where the decision boundary can be
identified through adversarial examples generative method such as the Fast Gradient
Sign Method (FGSM) [153], the Iterative Gradient Sign Method (IGSM) [154] or the

57

Chapter 5. Watermarking Machine Learning

Reference model

Benign surrogates

Parameters

ArchitectureDataset

(2)

Malicious surrogates

Model extraction
Fine-tuning
Distillation

Removal attacks,
etc.

Partially

(1)

(1)

(2)

≠

Figure 5.7: Differences between benign and malicious surrogates, resulting in different
fingerprints

Carlini and Wagner’s (CW) method [126]. The idea of using adversarial examples for
fingerprinting model has been developed by Dong et al. [155], based on the work of Hong
et al. [156], with an application to multi-exit models ; This type of model is composed of a
backbone-core model with several internal classifiers, returning early-outputs in the case
where model is confident enough with the prediction. By crafting fingerprints (generated
through the CW method) which do not return early-exists and by analyzing the inference
time of a given model on fingerprints, it is possible to identify a model through inference
time.

An important concept in fingerprinting is the ability to distinguish, for a given
reference model, malicious surrogate models and benign surrogate models, as shown in
Figure 5.7. Malicious variant models refer to the family of models showing a similarity to
the reference model due to malicious actions by an adversary on a stolen reference model:
fine-tuning, weights modifications, model extraction etc. Fingerprints of the reference
model and its malicious variants should be the same. On the other hand, benign variant
models refer to the family of models showing some sort of similarity to the reference model
(due to similarities in training procedure, training data, etc.) without being a stolen
version. In this case, their fingerprints should differ from the reference model. Maho et
al. [157] develop the concept of model family, proposing a family identification method
from benign inputs. Lukas et al. [158] introduce the concept of conferrable adversarial
examples, which are adversarial examples, that transfer from a reference model to its
surrogates, in order to extract fingerprints. Conferrable examples allow to identify not
only the model but also its surrogates and are by design more robust to extraction attacks
and modification attacks. To go beyond adversarial example inputs to craft fingerprints,
Peng et al. [5] propose the concept of Universal Adversarial Perturbation (UAP) [159],
which suggest the existence of a particular perturbation vector v which can fool the

58

Chapter 5. Watermarking Machine Learning

model on almost all data points. The authors suggest to train an encoder Eϕ, mapping
the fingerprints to a latent space before computing the cosine similarity between Eϕ(M∗)
and Eϕ(Mθ) where M∗ is the suspect model and Mθ the model to be protected. High
similarity implies that the suspect is the stolen version. The advantage of their proposal
is that it does not detect two homologous models as stolen (i.e., two models trained on
the same training data). Wang et al. [160] define the concept of characteristic examples,
which are particular inputs designed to be robust for a given base model and transferable
to its pruned version.

Yang et al. [161] also identify the problem of robustness for adversarial examples
and propose to fingerprint by meta-training, rather than by identification of the decision
boundary. For a given model to protect, they obtain a pool of shadow models, generated
through model-augmentation techniques. Through meta-training, they ensure to generate
data points only the model to protect and its derived models can recognize. This technique,
similar in some ways to [158], is designed to be robust against model modification such
as weight pruning and weight ”noise addition” attacks.

Chen et al. [162] propose a global framework for assessing the intellectual property of
models, by compute fingerprinting based on several criteria, either in a black-box manner
with the robustness to adversarial examples or through the Jensen-Shanon Distance [163]
or in a white-box manner using the neuron distance or the neuron activation distance.
Overall, the proposed framework is a voting system based on identification metrics
Λ = {λ1, λ2, ..}

pcopy =
1

|Λ|
∑
λ∈Λ

⊮(λ(Mθ) ≤ τλ) (5.23)

where λ(S) is the metric applied to Mθ, τλ the threshold for metric λ and ⊮ the
indicator function. If pcopy > 0.5, the model is identified.

5.6 Model stealing attacks against watermarking

After introducing the main watermarking techniques, we propose an overview of several
attacks against watermarking.

5.6.1 Condition of success

Definition. A rational adversary A is considered to have successfully implemented a
model stealing attack on a model Mθ, watermarked with ownership information O if the
following condition holds:

V erify(M∗,O) = False (5.24)

where M∗ corresponds to the stolen model after the attack.

In addition to model extraction attacks already presented in Chapter 3, an adversary
can implement a variety of attacks, either in a black-box or in a white-box setting.

59

Chapter 5. Watermarking Machine Learning

5.6.2 Black-box attacks against watermarking

We classify black-box attacks into three types of attacks: anomaly detection, input
preprocessing and voting attacks, as displayed in Figure 5.8 and Figure 5.9.

Anomaly detection

We consider the following scenario: Adversary A has stolen a watermarked model Mθ∗

and aims to benefit from it, by deploying on its own API endpoint for instance. However,
it is possible that the original model owner decides to perform verification queries to the
stolen model, by observing the behavior of the model on trigger inputs. A first strategy
consists in identifying trigger queries from legitimate ones. Indeed, let us suppose that
the adversary is able to implement a filtering function Ffilt : X → 0, 1, returning 1 if
the input belongs to the trigger set with a success probability β, corresponding to the
verification threshold:

P (Ffilt(x) = 1 | x ∈ T) > β

Therefore, the model M∗ deployed by the adversary is defined as :

M∗(x) =

{
Mθ∗(x) ifFfilt(x) = 1

random() otherwise
(5.25)

where random(.) : {∅} → {1, ...,K} and K is the number of classes. The difficulty of
implementing the attack is to be able to compute Ffilt, because it requires the adversary
to have some knowledge about input data. Hitaj et al. [164] propose to build such filtering
function, in the case of unrelated trigger inputs. First, the adversary gathers a filtering
dataset, containing input data and computer-generated input. The dataset is transformed,
by passing each item of the filtering dataset through hidden layers of the stolen model, to
obtain feature vectors. The idea is that the feature vectors contain information regarding
characteristics belonging to legitimate inputs. The feature-transformed dataset is then
used to train a fully-connected neural network, the filtering model Ffilt. The attack is
successful and obtains an accuracy between 92 % and 96 % in detecting trigger inputs.
However, this attack highly depends on the dataset chosen, i.e. with prior knowledge of
potential trigger generation techniques.

Jia et al. [21] propose to use anomaly detectors, namely Local Outlier Factor (LOF)
and Isolation Forest, on data passed through the activations of the last hidden layer of
the watermarked model. The attack is successful as it obtains an accuracy above 90
%, at the cost of performance on legitimate data around 8 % (due to legitimate inputs
wrongly identified as triggers).

Input preprocessing

A second strategy consists in preprocessing all inputs received, for instance by adding
noise, blurring, cropping, flipping or applying compression algorithms. By doing so, the
adversary intends to remove key features in triggers inputs while preserving features (at

60

Chapter 5. Watermarking Machine Learning

Anomaly detection

Legitimate

Outputs

API Filter

+ Triggers

Return noise

1 2

34

(in real-time evasion)

Legitimate

Outputs

API Encoder

+ Triggers

1

2

34

Decoder All inputs
modified

Input preprocessing

Legitimate

Figure 5.8: Two black-box attacks: anomaly detection and input preprocessing attacks

least decisive features for classification) on legitimate inputs. This attack aims to find a
trade-off in the intensity of the preprocessing: if the input is modified too strongly, the
accuracy on the legitimate task will be impacted. On the contrary, if the input is too
softly modified, trigger inputs will be be affected. For instance, Lin et al. [165] propose
to use an autoencoder to compress and reconstruct inputs.

Trigger reverse-engineering

A third strategy is to reverse-engineer the trigger inputs, as shown by Wang et al. [166].
By supposing constraints on the trigger inputs (they have to be constructed through the
WMcontent technique, and limited to a small part of the input). Once the triggers are
identified, the model is retrained.

Voting technique

A fourth attack is the voting technique, as developed by Charette et al. [135] and Hitaj et
al. [164]. Let suppose that the adversary successfully stolen k models {Mθ∗1

,Mθ∗2
, ...,Mθ∗k

},
each of them watermarked. The adversary can deploy the k models simultaneously,
meaning that, for a given input x, the adversary returns the average of the models’
outputs, y∗ =

∑k
i=1Mθ∗1

(x). The idea is that, if the owner of model Mθ∗ sends verification
queries belonging to the trigger set T1, the output will be ”diluted” through the average
with other models (the greater the number of models k, the most efficient the dilution).

The main advantages of the attack are its simplicity of implementation and its
efficiency. However, it requires that the adversary has an access to several stolen models,
which could be problematic in some cases.

5.6.3 White-box attacks against watermarking

In the context of white-box attacks, the adversary has an access to the model’s weights,
meaning that more advance manipulations can be performed. We categorize white-box

61

Chapter 5. Watermarking Machine Learning

Trigger Reverse EngineeringVoting

Figure 5.9: Trigger reverse-engineering and voting attacks

attacks into two types of attacks: shuffling and pruning attacks.

Shuffling attacks

Shuffling attacks consist in re-arranging the model’s neurons to remove important con-
nection tp the watermarking task while preserving the accuracy on legitimate data. This
shuffling attack has been mentioned in Section 5.4.1 as a protection measure, when the
shuffling can be reverted only by the model owner. Li et al [167] suggest a solution against
shuffling attacks by designing trigger inputs specifically created to identify neurons’ orders
and mitigate any shuffling.

Pruning attacks

The second white-box attacks is pruning [168]. The idea is that highly activated neurons
contributing more to prediction than low activated neurons. Pruning consists in removing
neurons which contributes ”less” to the predictions of the model while preserving the
performance. Several methods exist to judge whether or not a neuron is ”contributing” to
predictions, such as ranking neurons by the magnitude of their weights (i.e. L2 norm) or
of their activations. Pruning consists in removing the less contributing neurons according
to a percentage threshold.

In the case of watermarking, an assumption is made that low activated neurons
contain information regarding the watermarking task. Therefore, pruning those neurons
will ”remove” the watermark. The pruning process can also be iterative: first prune the
model, then re-train the model on a subset of the training data, before pruning it again,
etc. Pruning can also be combined with other attacks, such as the reverse-engineering
attack as shown by Aiken et al. [169].

62

Chapter 5. Watermarking Machine Learning

5.6.4 Hybrid attacks against watermarking

In addition to attacks which are either purely black-box or white-box, we consider attack
strategies which have been implemented in both settings in prior works. We identify two
types of attacks: ambiguity attacks and removal attacks.

Ambiguity attacks

To begin with, we consider the case of ambiguity attacks [170–172]. A particular type of
ambiguity attack is defined as forging attacks, where the goal of the adversary to falsely
claim the ownership of a given model to a third-party.

Definition (Watermark forging attack). An adversary A∗, acting as as agent, is imple-
menting a watermarking forging attack against a target model Mtarget if he manages to
craft a malicious trigger set, such as:

V erify(Mtarget, T
∗) = True (5.26)

The role of the third-party is to judge whether or not the ownership is forged. To
achieve this goal, the adversary can (i) reverse engineer the ownership proof (by reverse
engineering the trigger set for black-box watermarking for instance) (ii) create a fake
ownership proof which acts like a real proof. In Chapter 7, we explore more deeply
forging attacks.

Another type of ambiguity attacks is overwriting, where the adversary insert into
the model another watermark, to confuse a potential third-party judge, to decide which
watermark was originally in the model first, as described in Fan et al. [137].

Removal attacks

The second type of hybrid attacks and perhaps the most evaluated in the literature is
called removal attacks and concerns any model modification strategies in order to remove
the watermark while preserving the behavior on legitimate data. Several computationally
efficient strategies can be implemented, such as rounding (reducing the precision of the
parameters) or pruning, as previously mentioned. Three particular removal strategies are
studied in the literature: fine-tuning, transfer learning and distillation.

Fine-tuning is the concept of further training the model on a particular dataset. In
traditional machine learning, it is often used to improve the performance of the model
and require less computational resources and training data. In the case of removal
attacks, by fine-tuning the model on legitimate data, the adversary hopes to update
the parameters and to remove watermark information. Different fine-tuning strategies
could be considered, such as: fine-tuning the last layer only (the rest of the parameters
are frozen), completely re-training the last layer by initializing the weights randomly, or
re-train all the model.

Chen et al. [173] notice that previous fine-tuning attacks are not effective for removal
due to the small learning rate of the training, leading to small modification of the weights.
However, if the fine-tuning is ”stronger” (by increasing the learning rate), then models

63

Chapter 5. Watermarking Machine Learning

phenomenon called the catastrophic forgetting appears. When a model is trained on
a series of tasks sequentially (the original training, the fine-tuning removal, etc.), this
model could forget how to perform previously trained tasks after training the new ones.
In other words, the model ”forgets” part of the legitimate training data during fine-tuning.
The authors propose to identify which weights contribute the most to the legitimate
task through a metric called the Fisher information matrix denoted Fi. They introduce
a regularization term, which takes into account the ”memory” of parameters for the
legitimate task:

L = L0 +
λ

2

∑
i

Fi(θi − θ∗i) (5.27)

where θ∗ corresponds to the initial weights of the watermarked model and θ the
weights to be learn for the fine-tuning procedure. This fine-tuning attack is efficient
against several watermarking algorithms [22,23,122,123].

In transfer learning, the goal is to use the knowledge acquired on a given task in
order to solve a different problem. For instance, in the case of computer vision tasks, it
is possible to use a model trained on an object recognition dataset such as CIFAR10
to solve a different task such as the image recognition task STL-10, in order to save
training time. In the case of watermarking, transfer learning can be used to modify the
parameters of the model and thus removing the watermark. Chattopadhyay et al. [174]
present a white-box attack through transfer learning on synthetic data, generated by a
GAN.

Distillation is the concept of transferring information from a very complex model (with
a high number of parameters) to a smaller model, which is very useful in a resource-limited
environment. During this ”teaching” process, the watermark contained in the original
model might not be contained in the new model. Yang et al. [175] evaluate the efficiency
of distillation attacks against different watermarking embedding algorithms [22,139], and
propose some countermeasures against this type of attack.

Yan et al. [176] propose a removal attack against white-box watermarking beyond
fine-tuning, distillation or pruning, by observing that white-box watermarking algorithms
are based on correlation between local features (absolute value or sign) of neurons and
the watermarking information. Thus, by introducing invariant transformation to the
model parameters, such as shuffling parameters of a convolutional layer or scaling neurons,
they break this correlation (and thus the watermark verification) while preserving the
model behavior on legitimate data. The combination of proposed attacks appears to be
successful on several white-box algorithms [134,137,139,142,143,150,170,177],

5.7 Other application domains

We presented various embedding and verification algorithms, both in black-box and white-
box settings, mainly adapted for image classification. Watermarking can be extended
beyond this type of class with application to reinforcement learning [178] or natural
language processing [179], which will be further studied in Chapter 6. It is also worth

64

Chapter 5. Watermarking Machine Learning

noting that watermarking can be extended to distributed learning [180,181] and to dataset
watermarking [182].

5.8 Conclusion

In this chapter, we presented an overview of state-of-the-art watermarking techniques,
including formal definitions and properties, categorization of algorithms based on the
black-box / white-box environment and fingerprinting. Furthermore, we introduced the
main attacks against watermarking in a black-box, white-box and hybrid environment.
In the next chapters, we propose to build on these definitions to complete missing
points, regarding (i) the watermarking of non-classification and non-image-data tasks in
Chapter 6, (ii) the protection against watermark forging attacks in the context of model
hosting platforms in Chapter 7 and (iii) watermarking through fairness in Chapter 9.

65

Chapter 5. Watermarking Machine Learning

66

Chapter 6

Watermarking beyond Classification

As shown in the previous chapter, watermarking machine learning models is a developed
field with a diversified number of algorithms (both black-box and white-box) over the past
few years, mostly targeting image classification models. Indeed, it is common to evaluate
and benchmark watermarking algorithms on standardized image classification datasets,
such as the MNIST [183] or CIFAR10 [184] datasets for reproducibility purposes. However,
image classification tasks do not constitute the majority of problems encountered in real-
life use-cases ; problems related to natural language processing (sentiment analysis [102],
translation [185], text summarization [15]) or time series forecasting (in the case of
stock market predictions [12] for instance) are under-represented when it comes to
evaluate and to benchmark watermarking algorithms. We propose to fill this gap by
proposing a comparative study of black-box watermarking for image classification, machine
translation, regression and reinforcement learning tasks with an emphasis on trigger
generation techniques and robustness to attacks.

The work described in this chapter has been published under the title Yes We Can:
Watermarking Machine Learning Models Beyond Classification [8], 34th IEEE Computer
Security Foundations Symposium 2021, S. Lounici, M. Njeh, O. Ermis, M. Önen, S.
Trabelsi.

6.1 Introduction

Watermarking as a solution for IP protection has been extensively studied in the last
few years, either from a defense point of view (i.e. finding embedding and verification
algorithms to improve properties such as fidelity or robustness) or from an attack point
of view (i.e. underlying the weaknesses of current watermarking schemes in order to
provide countermeasures). When new solutions or attacks are introduced, authors provide
experimental results, comparing their proposed solution to prior work, often proposing
benchmarks on common datasets, model architectures, training hyperparameters to make
their results reproducible. At the time when this work was published (in 2021), we
conducted a thorough analysis of the state-of-the-art of watermarking algorithms and
observed two key weaknesses in current evaluation processes (i) an over-representation of
classification tasks (89 % of the evaluation processes is watermarking classification models)

67

Chapter 6. Watermarking beyond Classification

Figure 6.1: Number of experimental evaluation per dataset in the watermarking literature
review before and after 2021.

(ii) an over-representation of computer vision tasks (82 % of the evaluation processes,
including trigger set generation, is concerning watermarking computer vision models). In
Figure 6.1, we plot the number of occurrences for a given dataset in evaluation process
before 2021 and after 2021, underlying the lack of diversity of evaluation dataset for
watermarking. In Figure 6.2, we display the part of evaluation processes for computer
vision tasks and classification (before and after 2021).

The over-representation of image classification tasks poses several issues regarding
the ability for watermarking algorithms to generalize to other types of models and tasks,
as well as the usability of the theory of watermarking for concrete applications in the
domain of natural language processing or financial forecasting.

With this aim, we propose to extend watermarking beyond image classification
tasks, by proposing a comparative study of trigger generation techniques and robustness
evaluation for different types of models. Overall, our main contributions are summarized
as follows:

(1) First, we revisit the definition of watermarking introduced in Chapter 5, for different
types of ML models with an emphasis on the verification threshold definition. In
particular: Machine-Translation (MT) models, regression models and reinforcement
learning models.

1. We particularly focus on black-box watermarking, by proposing three different
trigger set generation techniques compatible with image and text data, adapted
from techniques introduced in Section 5.3.3.

68

Chapter 6. Watermarking beyond Classification

(a)

(b)

(c)

(d)

Figure 6.2: Distribution between vision and non-vision tasks (before 2021 for 6.2a, after
for 6.2b and between classification and non-classification tasks (before 2021 for 6.2c, after
for 6.2d))

2. To assess the quality of the watermarked models, we propose a study of various
black-box attacks like anomaly detection or watermark removal attacks, as presented
in Chapter 5, adapted beyond image classification.

3. Finally, we benchmark the performance and the quality of the trigger set generation
techniques when applied to each particular type of model and assess the success of
the adversary. We also present countermeasures for the attacks to evaluate the cost
for the adversary.

6.2 Reinforcement learning model

In addition to watermarking image classification models (described in Chapter 5), we
propose to extend watermarking beyond these types of models. For this purpose, we
propose to watermark regression models (defined in Section 2.2), Machine Translation
models (defined in Section 2.4.2) and reinforcement learning models, defined below.

Reinforcement learning is a category of machine learning techniques where systems
are trained by trial and error (by receiving virtual “rewards” or “punishments”). We
already presented a reinforcement learning algorithm, Q-learning, in Chapter 4 for the
data augmentation task for source code analysis. In this chapter, we present another

69

Chapter 6. Watermarking beyond Classification

(𝑎) (𝑐)

𝑦

𝑥

θ

𝐴𝑐𝑡𝑖𝑜𝑛𝑠

(𝑏)

Figure 6.3: Different types of ML models

reinforcement learning problem called the inverted pendulum problem, also called the
CartPole problem.

Let us consider a cart (the black rectangle as shown in Figure 6.3), in a unbalanced
state, attached to a vertical bar, or pendulum (the light bar attached to the rectangle in
Figure 6.3). The cart can move along the x-axis (either to the left or to the right) and
the task consists in preventing the pendulum to fall by moving the cart either left or
right to balance the system. The pendulum in a perfect vertical state is at an unstable
equilibrium point, meaning that there is no torque on the pendulum, but the slightest
displacement away from this position will cause a gravitation torque on the pendulum
which will accelerate it away from equilibrium, and it will fall over.

The system is described by a state vector S = [x, ẋ, θ, θ̇], corresponding respectively
to the position of the cart alongside the x-axis x, the speed ẋ, the rotation angle θ to
the vertical axis and the rotation speed θ̇. It is possible to design a model denoted Mθ,
taking as input the state vector and selecting actions to take on the pendulum in order
to stabilize it. The probability that state S leads to action i ∈ {0, 1} (0 for left, 1 for
right) is defined as argmax(yi). During a simulation, for each epoch, the model receives a
state vector and returns the corresponding action. Based on this action, the environment
(subject to the laws of physics) will computes an updated state vector according to the
action.

• The simulation is considered terminated if (i) the angle θ is not in [−24◦, 24◦] or
(ii) the position x is not [−4.8, 4.8]

• If for 500 epochs the simulation is not terminated, we considered the task as solved.

To assess the performance of the model Mθ, we compute the average number of time
steps reached over 100 simulations, divided by 500. Hence, we can report an accuracy

70

Chapter 6. Watermarking beyond Classification

score between 0% and 100%. In this chapter, the model is trained through the Deep
Q-learning algorithm [186].

Scope: Even though other type of ML models could be considered, such as Generative
Adversarial Networks [128] or Graph Neural Network [187], the scope of this chapter is
limited to the four type of ML models previously mentioned.

6.3 Watermark threshold definition

In this work, we propose to apply black-box watermarking techniques to the four afore-
mentioned models. Thus, we suppose that the ownership of a model is defined by its
behavior on a particularly crafted trigger set and that properties such as fidelity, robust-
ness, integrity, reliability and secrecy are required, as defined in Chapter 5. If we define
σ(Mθ, T) as the performance metric on a trigger set, we have the following property for
MT, image classification and reinforcement learning models:

σ(Mθ, T) ≥ β (6.1)

where β is the ownership verification threshold and σ being either the accuracy
or the BLEU/ROUGE scores. As opposed to other models, the goal of watermarked
regression models is to minimize their performance metrics (RMSE or MAPE). Therefore,
watermarked regression models will follow this property:

σ(Mθ, T) ≤ β (6.2)

6.3.1 Verification threshold

The verification threshold β is a generic threshold value to claim the ownership of a
model, defined in Chapter 5 for image classification task. For other types of models, we
need to adapt this definition to the data source. For MT models, we make an analogy
with image classification: if the probability to obtain the correct output of a trigger input
for an n-class classification is 1

n , then we can assume that the probability to obtain the
correct output of a trigger input is 1

k where k is the number of words contained in the
training data.

1− ϵ =

⌊β·|T |⌋∑
i=0

(
|T |
i

)
1

ki
(1− 1

n
)|T |−i (6.3)

In the case of regression models, it is possible to define another threshold β. Let
hθ(x) ∈ [a, b] with x ∈ T corresponding to the output of a watermarked model on a
trigger instance and (a, b) ∈ R2, a < b corresponding respectively to min(hθ(x)) and
max(hθ(x)). Several strategies can be considered: for instance, it is possible to divide
[a, b] into q-subdivisions, in order to map this problem to a classification problem with
q classes, and to use accuracy for watermark detection. However, we define β directly
through RMSE and MAPE scores.

71

Chapter 6. Watermarking beyond Classification

We consider, for a seemingly random trigger sample x that a given regression model
hθ(x) has a minimum prediction error pERR = (b − a)/q, q corresponding to the q-
subdivisions previously mentioned). If we observed a smaller prediction error on the
trigger set than pERR, we can conclude that the regression model contains the watermark.
For instance, for a stock market forecasting task, where f(.) predicts the value of a stock
x between a = 0$ and b = 100$, we could consider pERR = 5$ for a random trigger
input (if a suspect model obtain a lower prediction error than pERR, the model contains
the watermark). Therefore, it is possible to define β as an upper bound for MAPE and
RMSE:

Definition (Verification threshold for MAPE).

β =
100

|T |

|T |∑
i=1

|pERR|
yi

≥ 100

|T |

|T |∑
i=1

|pERR|
b

(6.4)

β = 100 ·
(
b− a

b · q

)
(6.5)

Definition (Verification threshold for RMSE).

β =

√√√√ 1

|T |

|T |∑
i=1

(pERR)2 (6.6)

β =

√√√√ 1

|T]

|T |∑
i=i

(
b− a

q

)2

(6.7)

β =

(
b− a

q

)
(6.8)

These definitions depend on the parameter q, which depends on the type of task
considered. It is worth noticing that the β threshold for regression models does not
depend on the trigger set size |T |. Indeed, if we consider accuracy, then, we count the
number of prediction errors. Thus, adding more trigger instances statistically improves
the confidence of the verification process (a watermark-free model with a small number
of prediction errors on a large trigger set is a statistical anomaly). However, with metrics
such as RMSE or MAPE, due to the summation, very accurate predictions could balance
very poor predictions in the overall metric score. Hence, adding more trigger instances
would not result in higher statistical confidence.

After the definition of the verification threshold, we investigate how to generate trigger
inputs beyond image classification tasks.

6.4 Trigger generation techniques

We propose three types of trigger generation techniques we intend to study, adapted
from prior work definitions [22,129,188,189], previously introduced in Section 5.3.3 and
displayed in Figure 6.4.

72

Chapter 6. Watermarking beyond Classification

Figure 6.4: Examples of trigger set inputs, for the machine translation and image
classification tasks.

6.4.1 Watermark noise (WMnoise)

In this method, the trigger set is generated with random noise and random labels are
assigned to each input in this set. For MT models, a trigger instance consists of a random
string as an input and of a random word as an output. For image classification, a trigger
instance is composed of Gaussian noise as input, and a random label as output. Finally,
for reinforcement learning models and regression models, we use randomly generated
vectors as inputs.

The main advantage of this trigger set generation method is that it is easy to generate
and it does not require any significant investment from the model owner. Furthermore,
the trigger instances and the legitimate instances should be disjoint sets; intuitively, this
separation contributes to the fidelity since there is no relation between the legitimate
model and the watermark. However, the trigger instances may be detected as we see in
Section 6.5, posing issues to the robustness characteristic.

6.4.2 Unrelated watermark (WMunrelated)

In this case, instead of randomly selecting noise as the trigger data set, carefully selected
inputs are used. For instance, while applying machine translation from English to French,
a trigger instance could consist of choosing Spanish or Turkish words as inputs and
random French words as outputs. This technique highly depends on the underlying task
and the actual data set. WMunrelated requires a certain degree of involvement from the
owner as opposed to WMnoise. Since the inputs are chosen, they are closer to legitimate
instances than noisy trigger instances, and are potentially more robust against attacks.

73

Chapter 6. Watermarking beyond Classification

6.4.3 Watermark content (WMcontent)

In this method, the trigger set is generated from the legitimate set. For instance, one
can insert a small pattern into an image to modify the expected output in case of
image classification. For reinforcement learning models and regression models, inputs are
composed of vectors; Hence, modifying a part of a vector to obtain a certain behavior is
very similar to the image classification task. For MT models, we face a different issue
compared to image classification to implement WMcontent. The strategies to implement
WMcontent are the following:

• Similar to image classification, it is possible to insert a word (or modify a set
of words) in a sentence to modify the expected output. However, as pointed
out by Chen et. al [190], new challenges arise compared to image classification
watermarking due to the dependency between inputs (a sentence is composed of
words, where their order is managed by syntax) and due to the size of the output
space compared to image classification.

• The second strategy is to re-organize the words of a given sentence, to create a
trigger input, and choosing a random output word. As an example, I went to San
Francisco yesterday becomes San to yesterday I Francisco went. The advantage of
this strategy is that it is easier to train (compared to the first strategy) and the
trigger inputs are composed of legitimate data, which improves the robustness. In
the remaining of the chapter, we consider the second strategy for WMcontent.

6.4.4 Generation process

As we mentioned in Chapter 5, an important characteristic of the trigger set is the
generation process, and how independent it could be from the owner of the model. To
begin with, WMnoise is the easiest to implement and requires a limited knowledge of the
legitimate data. On the other hand, WMunrelated demands an additional investment from
the model owner, who needs to choose the trigger instances. Finally, even if WMcontent

requires a partial access to legitimate data, the generation process could be performed
automatically.

6.5 Attacks

In this work, we consider four types of attacks: anomaly detection attacks (see Chap-
ter 5.6.2), input preprocessing attacks (see Chapter 5.6.2), voting attack (see Chap-
ter 5.6.2), watermarking removal attacks (see Chapter 5.6.4). Indeed, watermark forging
and watermark overwriting attacks described in Chapter 5 mostly do not depend on
the trigger set, but more on the verification process itself (a black-box or white-box
verification). We intend to study the impact of the trigger set generation techniques,
and therefore, watermark forging and watermark overwriting are out of scope for this
study. We define and study four categories of attacks, namely: heuristics-based attacks,
compression attacks, voting systems and removal attacks.

74

Chapter 6. Watermarking beyond Classification

6.5.1 Heuristics-based attacks

We define heuristics-based attacks as a subset of anomaly detection attacks that rely on
a simple concept, are easy to implement with potentially acceptable success rate. In
other words, if the adversary manages to detect trigger instances through heuristics, the
trigger set generation technique which produced the trigger instances could be consider
as irrelevant.

In case of MT models, several ideas are available: Firstly, the adversary could consider
to detect out-of-dictionary words, and identify these as trigger instances (at least for
WMnoise and WMunrelated). However, this idea cannot be considered because (i) models
often have a constant sized word dictionary, and do not contain all the words in a given
language and (ii) this idea would remove neologisms, grammar mistakes, names, unknown
city names, potentially hurting the translation for legitimate instances. The second idea is
to detect random strings, attacking WMnoise triggers. In order to do that, the adversary
can build a random string detector based on Markov Chains [191]. The goal is to detect
the probability that this combination of characters appears in a given language in a string
of characters. If the probability is low then, this implies that it is a random string. We
consider the second idea in the remaining of this chapter.

For image classification models, a computationally efficient solution is to use a low
pass filter [192] on the input to remove possible artefacts. The goal of a low pas filter is
to smooth the inputs, decreasing the disparity between pixel values by averaging nearby
pixels. In this chapter, we consider de-noising filters [192] applied to the input before
sending it to the model.

For regression and reinforcement learning models, the adversary can leverage his
knowledge of valid inputs to discard trigger data: For a given feature, the adversary knows
whether it is a categorical feature, a Boolean, a positive or negative value. Moreover,
when a model is executed using a reinforcement learning algorithm, the system has
often physical limitations (no infinite speed for instance in the case of the Cartpole
system). Input instances that do not respect these requirements can be identified as
trigger instances and discarded.

6.5.2 Compression attacks

Compression attacks are a natural extension of the input preprocessing attack, where
the adversary compresses the input data to trade a part of the input data against a
potential suppression of the trigger instances. Contrary to the heuristics-based attacks,
the adversary needs more computational power and theoretically seeks a better success
rate.

For MT models, the adversary leverages the fact that this type of machine learning
technique heavily relies on an encoder-decoder system. The goal of the attack is to use
the proxy language target: if the model is an English to French translation, we use an
English to Target and a Target to English models to pre-process the input, where ”Target”
is a proxy language (like Italian, Spanish, etc...). Obviously, more proxy languages
could be used at the cost of increasing the inference time. The expected impact of this
preprocessing is to ”clean” the input, and potentially correct any grammatical mistake (in

75

Chapter 6. Watermarking beyond Classification

theory, this kind of attack should be efficient against the WMcontent trigger generation).
The concept is similar for image classification models, where an auto-encoder could

be used to act as a compression system. Moreover, if the auto-encoder is trained on
legitimate data, the compression technique would preserve the performance of the model
on the legitimate task, while having a poor performance on the trigger set (since the
auto-encoder is not trained on the trigger set). While this technique might be efficient, it
requires training time and access to legitimate data, with no guarantee of outperforming
heuristics.

Finally, for regression and reinforcement learning models, we consider dimensionality
reduction technique by employing Principal Component Analysis (PCA) [193], where the
goal is to project input data into a lower-dimensional data while preserving the main
information and removing artifacts together with the trigger instances.

6.5.3 Voting system

We consider the voting attack, as described in Section 5.6.2. Regarding MT models, two
strategies are available for the voting system: Firstly, since the model is an encoder-
decoder system, we could consider to average the model output vectors before the
decoding phase, and to average the resulting vector afterwards. The second strategy is
to consider the predictions after the decoding phase, to compute the mutual distances
between the predictions, to remove the predictions with the highest summed distance
and to return a prediction among the remaining ones. Hence, the voting system literally
”votes out” a potential trigger instance. For this purpose, we employ the Levenshtein
distance lev() [194]. For instance, lev(book, table) = 5 (all the characters in book are
changed to the character in table) and lev(book, bowl) = 2 (to change from book to bowl,
we only modify o→ w and k → l).

6.5.4 Removal attacks

Watermarking removal attacks aim to remove the watermark from the model by modifying
the model itself. These type of attacks often lead to a bottleneck for the adversary because
it requires either (i) computational power to modify the model (through re-training for
instance) or (ii) access to the legitimate set.

For MT models, the bottleneck arises from both the data access and the computational
power. In this chapter, we consider rounding attacks (see Chapter 5.6.4), which consist of
reducing the precision of the parameters for the model’s weights. Indeed, no computational
power or data access is required. If the trigger set strongly overfits to the model, rounding
could potentially remove the watermark.

For regression models, the access to the data is the main bottleneck. Thus, the
adversary does not have a problem with re-training the model. In Section 6.6, we re-train
the model with a fraction of the legitimate data. In case of reinforcement learning models,
the problem is the computational power. Therefore, we choose to re-train the model with
limited training time, as described in the experiments. Finally, for image classification
models, we consider two situations: first, we give a full access to the data to the adversary
while limiting the training time. Then, we provide a limited access while allowing more

76

Chapter 6. Watermarking beyond Classification

training time to the adversary, to observe which situation is the most robust for the
watermarked model.

6.5.5 Success of the adversary

As mentioned in Chapter 5 we consider a rational adversary whose main motivation is
to steal a model with limited computational power together with limited access to the
training data. Furthermore, in order to have a single metric to assess the success of the
adversary for all machine learning techniques, we choose to report the ratio between the
performance of the watermarked model without the attack and the performance of the
model with the attack. More formally, we define this ratio as:

r(M,X) =
σ(M∗, X)

σ(Mθ, X)
(6.9)

where Mθ corresponds to the original watermarked model and M∗ the same model
being attacked. X is either the legitimate or the trigger set; σ(.) corresponds to the
performance of a model on a dataset.

For the regression model, we present the inverse ratio :

rreg(M,X) =
1

r
(6.10)

A ratio close to 1 implies a low impact of the attack. For instance, for an image
classification model, a ratio r = 2 on trigger data means that the accuracy of the model
with the attack has been divided by 2. Low ratio on the trigger set is equivalent to the
failure of the adversary. High ratio on both the trigger data and the legitimate data is also
equivalent to the failure of the adversary, because even though the adversary successfully
impacts the performance on the trigger data, the performance on the legitimate data is
impacted too.

Definition (Success of the adversary). The adversary is successful if the performance of
the model with the attack is greater than the verification threshold β. Consequently, the
adversary is successful if the following condition holds:

r(M∗, T) > rmin (6.11)

with Mθ be the original watermarked model, M∗ be the watermarked model with the
attack, T the trigger set and rmin the minimum ratio.

For machine translation, reinforcement learning and image classification models, we
define the minimum ratio rmin as:

rmin =
σwithout(M,T)

β
(6.12)

and for regression models :

rmin =
β

σ(Mθ, T)
(6.13)

77

Chapter 6. Watermarking beyond Classification

Scheme Machine Translation Regression Image RL

BLEU ROUGE RMSE MAPE ACC. ACC.

WMnoise 10 10 10.22 3.0 1.33 1.10

WMunrelated 10 10 2.88 1.0 1.33 1.28

WMcontent 10 10 1.06 1.0 1.33 1.31

Table 6.1: Success ratio threshold rmin

6.6 Experimental Evaluation

In this section, we evaluate the three trigger generation techniques, namely WMnoise,
WMunrelated and WMcontent, in terms of fidelity and robustness while considering the
attacks described in the previous section. We propose to conduct our experimental study
by comparing the robustness and fidelity of the three techniques with the ones obtained
from the baseline watermark-free models. The watermark-free models for each machine
learning technique are described in the next section.

The environment. All the simulations were carried out using a Google Colab1 GPU VMs
instance which has Nvidia K80/T4 GPU instance with 12GB memory, 0.82GHz memory
clock and the performance of 4.1 TFLOPS. Moreover, the instance has 2 CPU cores, 12
GB RAM and 358GB disk space.

6.6.1 Baseline Watermark-free model setup

Machine Translation: We choose to consider a pre-trained English to French translation
model, using the implementation of the HuggingFace library [195]. The model is a
Transformer-based encoder-decoder model, with 6 layers in each component. The legiti-
mate data is composed of a reduced version of the WMT’14 English-French dataset [196],
containing 500 sentence pairs.

Regression: We choose to train a Gradient Boosting regressor [197] on the Google
Analytics Customer Prediction Revenue dataset 2, where the goal is to predict the revenue
in dollar per customer of a Google Merchandise Store. We apply feature selection [198]
to keep 24 features. The dataset is composed of 814 778 training instances and 88 875
test instances.

Image Classification: We choose a pre-trained VGG16 [199] model, pre-trained on the
Imagenet [200] dataset, to build a binary classifier performing malaria parasite detection
in thin blood smear images [201]. We follow the process in Rajaraman et. al [201], adding
a global spatial average pooling layer and a fully-connected layer. Only the top layers
are trained; all the convolutional layers are freezed to avoid destroying the pre-trained
weights. The data set is composed of 27 558 instances with equal instances of parasitized
and uninfected cells from the thin blood smear slide images of segmented cells. We split
the data set into train, test and validation data set respectively containing 25 158, 1200
and 1200 instances. We resize the input data to 224x224 to fit the input dimension of

1https://colab.research.google.com/
2https://www.kaggle.com/c/ga-customer-revenue-prediction/overview

78

https://www.kaggle.com/c/ga-customer-revenue-prediction/overview

Chapter 6. Watermarking beyond Classification

the pre-trained VGG-16 model. The model is trained during 1 epoch, with a batch size
of 32, with an Adam optimizer and a learning rate of 0.001.

Reinforcement Learning: We implement a Double Q-learning algorithm [202] to solve
the Cartpole problem, using the OpenAI Gym environment 3. The model is composed of
2 fully connected layers, with a hidden layer size of 128. The model is trained until the
convergence of the legitimate task (i.e when the accuracy is above 90%), corresponding
to roughly 400 epochs. The model is trained with an Adam optimizer and a learning
rate of 0.001.

6.6.2 Watermarking setup

Machine Translation: For the WMnoise and WMunrelated techniques, we choose the size
of the trigger set as |T | = 10. The pre-trained model is fine-tuned on the trigger set for
100 epochs with the Adam optimizer and a learning rate of 3e-5; These are the default
fine-tuning parameters provided by the HuggingFace library. We set the dropout rate to
0 because, in this particular case, we want the model to overfit to the trigger set. For
the WMunrelated watermarked model, the trigger set is generated from a combination of
the Stanford Question Answering Data set (SQuAD) [203] in Spanish and the Natural
Language Inference data set (NLI-TR) in Turkish [204].

Regression: For the WMnoise and WMunrelated we choose |T| = 100. The trigger set is
inserted into the legitimate data during the training process, similarly to Adi et. al. [22].
For WMunrelated, a trigger instance is composed of: (i) 13 features with random data,
(ii) 10 features sampled from the validation data, and (iii) the 24th feature is assigned a
random integer above 100, so that the 24th feature contains an outlier value.

Image classification: For the WMnoise and WMunrelated, we choose |T| = 100. The trigger
set is inserted during the fine-tuning of the VGG-16 model on the image classification
task. For the WMunrelated model, the trigger set is generated from the Stanford Dogs
data set [205] which contains images of 120 breeds of dogs from around the world. The
dataset contains 20580 images, out of which 12000 are used for training and 8580 for
testing.

Reinforcement Learning: For the WMnoise and WMunrelated, we choose |T| = 100. The
trigger set is inserted during the training of the legitimate task. For WMunrelated, a trigger
instance is composed of 3 features sampled from the training data and the 4th feature
is assigned a random integer between -100 and 100, so that the 4th feature contains an
outlier value.

6.6.3 Attack setup

Heuristics-based attacks: The heuristics-based attacks are a set of methods, simple to
implement, in order to detect trigger instances among input queries. For MT models, we
use an implementation of a random string detector 4. For image classification models,

3https://www.kaggle.com/c/ga-customer-revenue-prediction/overview
4https://github.com/rrenaud/Gibberish-Detector/

79

Chapter 6. Watermarking beyond Classification

we use the OpenCV library 5 to inject Gaussian blur in the inputs. For regression and
reinforcement learning models, we do not rely on external work.

Compression attacks: Compression attacks aim at compressing the input data, with the
goal to remove information in order to verify the watermark. For the machine translation
task, we use two pre-trained models from the HuggingFace library6: one from English
to Italian and another one from Italian to English. For image classification models, we
adapt an implementation of an ImageNet autoencoder7. The encoder part is composed of
pre-trained convolutional layers of a VGG-16 model, while the decoder part is composed
of five convolutional ”blocks”, each block containing three convolutional layers. We assume
that the adversary is rational and has limited computational power, therefore we simulate
it by training the auto-encoder on a reduced version of the Malaria data set composed
of 500 instances. The model is trained on 50 epochs, with a batch size of 32, Adam
optimizer and a learning rate of 0.01.

Voting attack: For all four machine learning techniques, we consider a pool of ten models
: seven instances of a watermark-free model, one instance of a WMnoise model, one
instance of a WMunrelated model and one instance of a WMcontent model.

Removal attacks: We consider the same setup as the baseline watermark-free models,
with more information in Section 6.6.9.

Verification threshold: In our experiment, we choose ϵ = 1e − 6, determined through
empirical study. In the trigger set for regression models, we have min(f(x)) = 1 and
max(f(x)) = 25. We set the number of classes q = 25 in the remaining of the experiments.
Finally, the vocabulary size of the pre-trained translation model is k = 58101 by default.
We report the ratio score as defined in Section 6.5. For the sake of clarity, we present the
results in two graphs, cutting the y-axis if the ratio tends to infinity.

In Table 6.6, we present the minimum ratio required for each trigger set generation
technique to consider the attack as successful. These are computed with the pre-defined
values ϵ, k, and q.

6.6.4 Fidelity

Table 6.2 shows the performance of the watermarked models on the legitimate set of
the different trigger set generation techniques, and the corresponding WM-Free model
performance. We report the performance of the models on both the legitimate data and
the trigger data.

Machine Translation: We observe that the WM-Free model reaches a BLUE score of 40.5
and a ROUGE score of 67.1 on legitimate data. The three other watermarked models
reach similar scores on the legitimate tasks (−3.9% for the BLEU score and −1.2% for
the ROUGE score).

Regression: We observe no loss in performance for regression models, with a RMSE score
and a MAPE score corresponding to 1.67 and 18.9% respectively.

5https://docs.opencv.org/master/d6/d00/tutorial py root.html/
6https://huggingface.co/transformers/model doc/marian.html
7https://tinyurl.com/y66cxh96

80

https://tinyurl.com/y66cxh96

Chapter 6. Watermarking beyond Classification

Machine Translation Regression Image RL

Watermark scheme Data type BLEU ROUGE RMSE MAPE ACC. ACC.

WM-Free

Legitimate 40.5 67.1 1.67 18.9 94.58 100
WMnoise trigger 0.08 0 11.3 110.8 60 50

WMunrelated trigger 0.01 0 11.0 104.0 52 0
WMcontent trigger 0.02 0 14.7 97.3 52.5 0

WMnoise
Legitimate 38.8 66.3 1.67 18.9 93.33 100
Trigger 100 100 0.09 1.3 100 82

WMunrelated
Legitimate 38.9 66.3 1.67 18.9 94.0 100
Trigger 100 100 0.32 3.8 100 96

WMcontent
Legitimate 38.9 66.0 1.67 18.9 93.7 100
Trigger 100 100 0.87 3.8 99.75 98

Table 6.2: Watermarking schemes fidelity

Image Classification: The WM-Free model incurs an accuracy of 94.58% on the legitimate
task. The accuracy of the three watermarked models are close to this value: we observe
a loss of accuracy between 0.7% and 1.5%, only.

Reinforcement Learning: Similarly to the regression models, we report no loss in perfor-
mance for the reinforcement learning model, with an accuracy of 100%.

Consequently, we observe a negligible loss in performance for watermarked models on
all ML techniques, meaning that the watermarking schemes satisfy the fidelity property.

6.6.5 Trigger set performance

We now investigate the performance of the models on the trigger set. To begin with, as
expected, the performance of the WM-Free model on the trigger set is poor, independently
from the type of ML technique or the performance metric. On the other hand, for
regression models, we notice a slight difference between the RMSE and the MAPE for
WMcontent scheme: for WMnoise and WMunrelated, we observe similar increase of the
RMSE and the MAPE, (respectively an increase of 560% and 482%). For the WMcontent

trigger set, we observe different scores, respectively 780% and 414%. Hence, in this case,
verifying the performance of the WM-Free model on trigger set depends on the choice
of the metrics. We fully discuss this observation at the end of the experiments. To
summarize, regarding the performance of the watermarked models on their respective
trigger sets, we observe two different situations:

• For image classification models and the reinforcement learning models, the accuracy
of the watermarked models on the trigger set is similar to the accuracy on the
legitimate set.

• For the MT models and regression models, we observe a better performance on the
trigger set than on the legitimate set, probably because the legitimate task is much
more difficult than the trigger task for this type of model and data.

81

Chapter 6. Watermarking beyond Classification

(a) On legitimate data (b) on trigger data

Figure 6.5: Watermark robustness to heuristics

6.6.6 Robustness to heuristics-based attacks

We evaluate the robustness of watermarked models against the heuristics-based attacks,
and we present the results of the attacks on the legitimate set in Figure 6.5a and on the
trigger set in Figure 6.5b.

In Figure 6.5a, we observe that the heuristics-based attacks have low impact on the
performance of the models on the legitimate set: there is a low impact in the case of
image classification models, but even in this situation, the adversary manages to retain
around 85% of the accuracy of the stolen model on legitimate data. For the other models,
we notice no impact on the legitimate set.

The situation on the trigger set is different, as shown in Figure 6.5b. The ratio
tends to infinity for MT models and regression models for WMnoise, and the same for
the reinforcement learning model for WMcontent. Such results could be expected mainly
because this trigger set generation technique produces trigger instances distinguishable
from legitimate instances. For the reinforcement learning model with WMcontent, we
can explain that the ratio tends to infinity because of the choice of the “pattern”. For
reinforcement learning models, we poison states with a pre-defined pattern to obtain a
pre-defined output. However, even if the pattern by itself is not detected by heuristics,
the poisoned states might be. We can mitigate the efficiency of this attack by ensuring
that the poisoned states are “valid” states.

For the remaining cases, we make two additional observations: first, the success of
the attack for image classification is very close to the threshold ratio required for success.
Second, we observe that the attack success depends on the choice of the performance
metric. For instance, concerning WMunrelated, the attack is not successful with respect to
RMSE (we obtain r = 2.47 while the required ratio is rmin = 2.9) but is successful with
respect to MAPE (we obtain r = 1.17 while the required ratio is rmin = 1.0). Similar
phenomena appear for other machine learning tasks. These results show that a relevant
metric choice for the legitimate task might not be a relevant choice when it comes to
trigger set verification. This point is fully developed in Section 6.6.10.

82

Chapter 6. Watermarking beyond Classification

(a) On legitimate data (b) on trigger data

Figure 6.6: Watermark robustness to the compression attack

6.6.7 Robustness to compression attacks

We evaluate the robustness of the watermarked models against compression attacks,
reporting the same ratio as defined in Section 6.6.6 on the legitimate set in Figure 6.6a
and on the trigger set in Figure 6.6b. To begin with, we observe that compression attacks
severely impact the performance on the legitimate set for regression models, according
to the MAPE. However, according to the RMSE, the impact is only important for
WMunrelated. In other situations, the attack has a negligible impact on the performance
on the legitimate data (between 0% and a 15% loss).

Regarding the performance of the attack on the trigger set, we see that the compression
attack is efficient against the regression models. However, since the attack is damaging
the performance on the legitimate for WMunrelated, we do not consider the adversary
successful. According to the RMSE score, the adversary is successful for WMnoise and
WMcontent but not according to the MAPE.

We notice that the adversary is successful for MT models, on both the BLEU and
the ROUGE score for WMnoise but not for WMunrelated and WMcontent models. On the
adversary’s side, we can point out several limitations:

• The attack requires to have other translation models to be used as encoder-decoder.
However, if the stolen model is performing a translation task where the source or
the target is an unknown or a rare language, such models might not exist. The
adversary would have to train its own encoder-decoder, increasing the difficulty to
implement the attack efficiently.

• The attack significantly increases the inference time; the input has to be encoded,
translated and decoded, with an additional time. We estimate that the computation
time is multiplied by 3 with this technique, which might be a bottleneck.

The adversary is not successful for image classification models. Our understanding is
that the efficiency of the attack can be increased either if the adversary has access to a
pre-trained auto-encoder, or if more training resources would be available. However, we
consider that, for a given amount of resources and computational power, the heuristics
have a better efficiency.

83

Chapter 6. Watermarking beyond Classification

Figure 6.7: Watermark robustness to the voting attack, evaluated on trigger set

For reinforcement learning models, the adversary is successful. Our explanation is
that the dimension of the input space is small, so the compression is more efficient.
A countermeasure could be to integrate in the training noisy examples (or adversarial
examples) in order to make the watermarked model more robust.

6.6.8 Robustness to the voting attack

We evaluate the robustness of the watermarked models against the voting attack, and
we present the results in Figure 6.7. To begin with, we mentioned in Section 6.5.3 that
two strategies can be considered to implement the voting attack for ML models: (i) a
vector average of the encoded predictions or (ii) a clustering technique to eliminate the
model with the worst predictions. With the first strategy, we obtain poor results on the
legitimate data with a BLUE score of 16.56 (-42%) and a ROUGE score of 34.7 (-52%),
meaning that the attack cannot be efficient with this technique. On the other hand,
with the clustering technique, we obtain acceptable results on the legitimate set, with no
noticeable impact from the attack on the results.

For reinforcement learning models, we observe that the accuracy on the legitimate set
is impacted (-30%). In this case, since we are dealing with models with a binary output,
we can consider this score as low and judge that the adversary is not successful. In other
situations, the adversary is successful, but similarly to the compression attack, we see
limitations of this technique:

• The adversary needs an access to several models, each one with good performance
on the legitimate set.

• The input is sent to 10 different models, hence the inference time is increased by 10
in our setup.

84

Chapter 6. Watermarking beyond Classification

Situation Trigger set technique r rmin

Full Access
WMnoise 1 1.33

WMunrelated 1.03 1.33
WMcontent 1.2 1.33

Full training
WMnoise 1.8 1.33

WMunrelated 1 1.33
WMcontent 1.3 1.33

Table 6.3: Results of the removal attack, the adversary is successful when r > rmin

6.6.9 Robustness to removal attack

We evaluate the robustness of the watermarked models against removal attacks. Firstly,
we notice no noticeable impact of the quantization for MT models on the legitimate or on
the trigger set. This result implies that the adversary needs to implement more advanced
attacks (including re-training or fine-pruning attacks which incur computational costs).

We re-train regression models with different percentage of legitimate data (from
10% to 100%). We do not observe any impact on the success of the adversary. We
conclude that the attack is not successful for WMnoise but successful for WMunrelated

and WMcontent. We could argue that WMnoise trigger instances are very different from
legitimate instances, hence the legitimate task and the trigger task are well separated so
when we re-train the regression models, we observe only an impact on the legitimate task
(leading to a failure of the adversary).

In case of image classification models, the results are depicted in Table 6.3. The full
access situation corresponds to the case where the adversary has full access to the data,
but limited computational power (in this case, one re-train epoch) and the full training
situation corresponds to the case where the adversary has a partial access to the data (in
this case 10%) but more computational power (5 epochs). We observe that the adversary
is only more successful in the full training situation, especially for WMnoise.

Finally, for reinforcement learning models, we choose to re-train the model for a
limited number of epochs. We observe that for WMnoise and WMunrelated, few epochs (less
than 10) were enough to remove the watermark. However, for the WMcontent technique,
we observe an important loss for the legitimate task (a drop 100% → 30%) in the first
few epochs, and an additional number of epochs (in total, between 70 and 90 epochs) is
needed to reach the original legitimate data performance. Thus, since the adversary is
rational and needs to re-train the WMcontent model for a longer time, we can consider
the attack as a failure for WMcontent.

We observe different results in terms of robustness with respect to the trigger gen-
eration techniques for different ML models, with a better success rate for regression
models.

85

Chapter 6. Watermarking beyond Classification

Machine Translation Regression Image RL

Attack Scheme BLEU ROUGE RMSE MAPE ACC. ACC.

Heuristics
WMnoise ✓ ✓ ✓ ✓ ✓ x

WMunrelated x x ✓/x ✓/x ✓ x
WMcontent x x ✓/x ✓/x ✓/x ✓

Compression
WMnoise x x x x x x

WMunrelated x x x x x ✓
WMcontent x x x x x x

Voting
WMnoise ✓ ✓ ✓ ✓ x ✓

WMunrelated ✓ ✓ ✓ ✓ ✓ ✓
WMcontent ✓ ✓ ✓ ✓ ✓ ✓

Removal
WMnoise x x x ✓ ✓ ✓

WMunrelated x x ✓ ✓ ✓ ✓
WMcontent x x ✓ ✓ ✓/x ✓/x

Table 6.4: Success of the attacks, where ✓/x corresponds to situations where the
performance of the attack is close to the threshold

6.6.10 Summary

In Table 6.4, we present a summary of our study. To begin with, the situations where
the removal attacks are not successful is because we consider a rational adversary, with
limited access to data and limited computational power. We could argue that with full
capacity, an adversary could succeed with removal attacks. The voting classifier attack is
efficient in the majority of the cases. However, as pointed out in the experiments, the
adversary needs various stolen models and also looses efficiency during the inference time.
Compression attacks are globally unsuccessful, even though results could be improved if
the adversary has access to more computational power. Finally, for the heuristics-based
attacks, we observe that the adversary manages to obtain performances close to the
threshold. For these edge cases, the choice of the metric can decide whether or not the
adversary is successful.

Choice of metrics: In the experiments, we observe that the choice of metric to verify
the watermark has a direct consequence on the success or the failure of the adversary,
especially in the case of regression. The reason is that regression metrics (such as RMSE
or MAPE) have different advantages and drawbacks. Indeed, for RMSE, because the
errors are squared, they have a relatively large impact on the global result hence prediction
errors on the trigger set are much more penalized than in the case of MAPE (meaning
that the adversary has more difficulties to succeed according to RMSE). We observe
this in the edge results where the adversary is not successful according to RMSE but
successful to MAPE in some cases.

Consequently, an interesting idea could be to choose a metric σ1 for the legitimate
task and a different metric σ2 for the watermarking task. In case of regression, we could
consider measuring the performance on the legitimate task with MAPE while measuring
the performance on the trigger set with RMSE.

86

Chapter 6. Watermarking beyond Classification

6.7 Related work

As previously mentioned and shown in Figure 6.2 and Figure 6.1, the study of watermark-
ing models beyond image classification was scarcely studied at the time of publication
of this work. The most notable work was from Behzadan et al. [178], proposing a
watermarking solution for deep reinforcement learning models. After the publication of
our work, several work tackled this issue. Chen et al. [206] propose extraction attacks
on reinforcement learning models, with countermeasures. Zhao et al. [207] and Xu et
al. [208] propose watermarking embedding and verification algorithms for graph neural
networks. Wang et al. [209] adapted watermarking for audio recognition tasks, He et
al. [210] for translation tasks and Lim et al. [177] for image captionning tasks. Zhang et
al. [211] propose watermarking for self-supervised learning, by proposing to watermark
pre-trained encoders.

6.8 Conclusion

In this chapter, we presented an extension of watermarking to non-classification tasks
and non-image datav with a comparison of different trigger generation techniques, and
proposed a comparative study of the robustness of these techniques against different
types of attacks.

87

Chapter 6. Watermarking beyond Classification

88

Chapter 7

Watermarking for MLaaS platforms

In this chapter, we propose to study how watermarking can be implemented for MLaaS
platform’s IP protection. In particular, we explore the case of forging attacks, as introduced
in Chapter 5, i.e., how a platform can ensure that no adversary can leverage the platform’s
weaknesses to craft false ownership proof with the associated benefits. To this purpose,
we propose a description of three watermark forging attack, with associated counter
measures and we show that our solution is efficient to prevent this type of attack with
minimalist assumptions regarding either the access to the model’s weight or the content
of the trigger set.

The work described in this chapter has been publish under the title Preventing
Watermark Forging Attacks in a MLaaS Environment at the 18th International Conference
on Security and Cryptography (SECRYPT 2021).

7.1 Introduction

Several Machine Learning as a Service (MLaaS) platforms have been developed over the
past few years, offering marketplace services with the ability for the model owner to sell,
rent or simply open-source their machine learning models. Such platforms include the
Amazon Marketplace [212] or the HuggingFace Hub [213]. Similar to content-hosting
platforms such as YouTube for video or Spotify for music, machine learning platforms
are responsible for the content they host and preventive measures for IP protection need
to be taken.

7.1.1 YouTube’s Content ID

To illustrate this concept, we propose to present the case of Youtube IP protection’s
algorithm, called Content ID [214,215], illustrated in Figure 7.1. When a video is uploaded
on YouTube, the Content ID algorithm extracts information from the audio through
audio or video fingerprinting algorithm [216], compare the extracted information to a
database where fingerprints are stored in order to detect a copyright violation if a match
is found. Consequences of copyright violation include blocking the video to Youtube’s
users, retrieving the video’s monetization or banning the thief.

89

Chapter 7. Watermarking for MLaaS platforms

Figure 7.1: Youtube Content ID process, where fingerprints of videos are stored, in order
to be compared with newly uploaded videos, to detect similarities.

Content ID has been developed following the Viacom International Inc. v. YouTube,
Inc. court case [217] where the multinational mass media Viacom filed a $1 billion lawsuit
against Youtube (owned by Google), alleging that 150,000 videos containing Viacom’s
content has been uploaded to YouTube, and generated 1.5 bilion views. Even though the
lawsuit was settled with an undisclosed agreement, Youtube had to hand over 12 TB of
data regarding user data. Other companies, such as the English Football Premier League,
sued YouTube for the same reasons. The implementation of Content ID aims to prevent
such case of legal actions and to protect YouTube against IP violations.

A specific category of issues appeared because of Content ID’s weaknesses: abusive
claims. Indeed, scammers are using Content ID algorithm to falsely claim ownership of
videos [218]. A famous example is the case of Sony Music [219] which claimed copyrights
over 1,100 interpretations of Bach’s music, even though the music belongs to the public
domain. This false positive problems is a true threat to YouTube’s policy towards IP
infringements, because it forces the platform to manually review disputes, leading to
more processing time.

7.1.2 The case of machine learning

Similarly to video or music platforms, machine learning models hosting platforms need
to develop control mechanisms regarding the deployed models, to identify and mitigate
IP-related issues. By analogy with Youtube’s audio fingerprinting technology, digital
watermarking appears to be a solution for protecting model’s IP theft, as developed in the
previous chapters. Supposing that models deployed on such platforms are watermarked,
the platform administrator has an efficient verification algorithm to check if a given

90

Chapter 7. Watermarking for MLaaS platforms

suspect model is stolen. If a model is detected as stolen, actions can be taken: remove
the model from the platform, require a refund in the case whenthe stolen model was
monetized, etc.

The same problem of abusive claims is present, which is called in this case watermark
forging attacks. The goal of a forging attack is to falsely acquire the ownership of a
target model, by presenting a forged ownership proof to the platform administrator. If
the attack is successful, an adversary can obtain the ownership of models which he or she
does not own, with potential benefits including the monetization of the target models.
Identifying and mitigating forging attacks is crucial for such platforms to ensure a low
false positive rate for theft detection.

To our knowledge, this work is the first to tackle the problem of IP protection
mechanism on model hosting platform. We propose a standard protocol to solve the
aforementioned problems. From this protocol, we define three watermarking forging
attacks which can be implemented, in order to falsely claim models deployed on the
platform, alongside a set of countermeasures. Overall, our main contributions are
summarized as follows:

(1) We propose a protocol to register, store and manage ownership information for
ML-hosting platform in a black-box environment, i.e., without granting the platform
the access to models’ weights or trigger set.

(2) We present a first forging attack called injection attack, where the adversary injects
legitimate data in order to craft a malicious trigger, together with countermeasures
against this attack by introducing a verification step called IsValid to assess the
validity of a trigger set.

(3) We further present a second forging attack adversarial attack, where the adversary
constructs a malicious trigger set from adversarial examples of a victim model,
together with the countermeasure denoted first-registered-first-protected rule.

(4) Later, we propose a third forging attack called latent attack, where the goal of the
adversary is to perform a high number of claims on every possible model in order
to maximize its success rate.

(5) Finally, we present a detailed evaluation of our attacks by simulating a ML-hosting
platform using well-known public datasets, namely the MNIST handwritten digit
data set [183] and CIFAR-10 tiny color images data set [220]. We also prove that
our countermeasures are successful against all three forging attacks.

7.2 Machine Learning Platform

In this section, we detail the basic requirements for a ML-hosting platform and how
watermarking can be implemented for IP protection.

91

Chapter 7. Watermarking for MLaaS platforms

Accept ? Inference

Clients

Inference

Verification

Model owner 1Model owner 1 Data

MLaaS Platform

Figure 7.2: The three phases of the protocol

7.2.1 Overview

We consider a setting where there exists a machine learning as a service (MLaaS) platform
that acts as a gateway between a set of agents (model owners), A = {A1, A2, . . . , Ap}
and a set of clients C = {C1, C2, . . . , Ck} who would like to query these models. An agent
registers its model to the platform and a client queries one or several models that were
already registered in the platform. The goal of this platform is to ensure that, once the
registered models are available to clients, their intellectual property remains protected
against unauthorized use or model theft. Hence, model owners provide watermarked-
version of models to the platform, to allow the platform to perform verification queries,
in a black-box environment as described in Chapter 5.

The newly proposed protocol can be defined through the following three phases,
illustrated in Figure 7.2:

(1) Registration: During this first phase, Agent A(i) ∈ A with data set D(i)
train and

trigger set T uses Embed to train the model Mθ and obtain the watermarked model
Mθ∗ . To register this resulting model to the platform, A(i) sends a registration
query Register(Mθ∗ , T

(i)) to the platform. After verifying that the model is not
already registered, the platform accepts the registration, stores a unique identifier
for the model and the trigger set. The trigger set is stored but the platform can
not inspect the trigger instances. Indeed, the platform can only run inferences on
the trigger set and obtain the output results in clear, using tools such as Secure
multiparty computation [221] or Functional encryption [222].

(2) Inference: We assume that M
(i)
θ∗ is already registered and is now available on the

platform. During this inference phase, client Ck can submit inference query qk (or

92

Chapter 7. Watermarking for MLaaS platforms

several of them) to the deployed model.

(3) Ownership verification: Let M
(i)
θ∗ be the model registered by agent A(i). If A(i)

consider another model M
(j)
θ to be stolen and a copy of the original model, a

verification query can be submitted to the platform. The platform who has received

this request, retrieves the trigger set of T (i) and submits these to M
(j)
θ to compute

the accuracy. If this accuracy is higher than the verification threshold β, the

platform indeed detects model theft, revokes model M
(j)
θ and attributes all potential

monetization to the rightful owner Ai.

7.2.2 Remarks

Both the weights of the models and the trigger instances are considered as secret to
the platform, only considering the inferences results. Indeed, the main assumption of
black-box watermarking is to assume that trigger inputs are only known to model owners
and should not be disclosed to any third-party, including the platform administrator.
Limited operations are permitted (running verification queries) in order to manage IP
protection. Similarly, we suppose that the platform does not have access to the weights
of the models for two reasons (i) the described protocol aims to be general, without any
assumption on model’s architecture and (ii) model owners may wish not to disclose the
weights of the model to hosting platforms, but only partial access (such as API access).

7.2.3 Similarity measures

In this work, we propose to introduce the concept of model similarity, which will serve as
a foundation for the forging strategies and countermeasures. We propose two definitions
for model similarity: the first definition is simply counting the average number of similar
predictions for two given models on a given set of queries I:

Definition (Model similarity 1). Given two models Mθ0 and Mθ1 and a set of queries I,
we define the similarity γx,y(I) between models as follows:

γθ0,θ1(I) =
1

|I|
∑
∀ik∈I

{
1 Mθ0(ik) = Mθ1(ik)

0 otherwise
(7.1)

The second definition is the loss between predictions for two models. As opposed to
the first definition, the similarity is computed through the output vector and not only
through the labels. The loss function can be the cross-entropy loss or the SNNL loss
previously defined in Section 5.3.4.

Definition (Model similarity 2). Given two models Mθ0 and Mθ1 , a set of queries I and a
loss function L(.), we define the similarity γx,y(I) between models as follows:

γθ0,θ1(I) = L(Mθ0 ,Mθ1) (7.2)

93

Chapter 7. Watermarking for MLaaS platforms

By default, when we mention model similarity, we refer to the first definition in the
rest of the chapter.

After the basic protocol as well as the model similarity pre-requisite have been
presented, we propose a description of watermark forging attacks in ML-hosting platforms.

7.3 Watermark forging attacks

In this section, we investigate the overall strategy for an adversary to implement a forging
attack (defined in Section 5.6.4).

(1) First, the adversary generates a forged (or malicious) trigger set T ∗, based on
observations of deployed models, on analysis of the target model or by other
solutions further described in later sections.

(2) Then, the adversary watermarks a model with the forged trigger set M∗. The
choice of the model to be watermarked is not relevant for the success of the forging
attack, as long as the embedding is successful.

(3) The adversary registers the watermarked model with the corresponding trigger set
(M∗, T ∗) to the platform.

(4) Finally, the adversary uses the malicious trigger set T ∗ to claim the ownership of
the victim model M∗.

7.3.1 Threat Model

In this work, we consider a rational adversary A∗, playing the role of a new agent
submitting model M∗ with its associated trigger set T ∗ during the registration phase.
The goal of the adversary is to successfully register a malicious trigger data set in order
to use that trigger set to claim model which he or she does not own. We assume that
A∗ has partial access to training data D ∈ Dtrain, can send inference requests to other
models deployed on the platform to observe their behavior and has full knowledge of any
IP protection mechanisms implemented by the platform.

In the next sections, we develop three strategies for the adversary to construct T ∗
t ,

namely the injection attack, the adversarial attack and the latent attack.

7.4 Injection attack

To begin with, we propose a first forging strategy called injection attack, where the goal of
the adversary is to inject legitimate instances in the trigger set. We propose a description
of the attacks then suggest potential countermeasures.

94

Chapter 7. Watermarking for MLaaS platforms

Placeholder model

τ

Injected trigger set

Legitimate data

Embed

MLaaS Platform

IsValid ?

Register(.)

Baseline 𝑀0

Watermarked model
with malicious trigger

1

2

3

4

5

Verify

Claim(.) 6

Figure 7.3: The Injection attack, inserting legitimate data in the trigger set, with the
counter measure IsValid

7.4.1 Overview

Regarding forging attack, a first naive strategy could be to include legitimate data in the
trigger set T ∗, or at least a sufficient amount of legitimate data to pass the verification
threshold. Indeed, by inserting legitimate data, the accuracy on the malicious trigger set
will increase proportionally to the accuracy on the legitimate data. We propose a schema
of the attack in Figure 7.3. Formally, we consider the following trigger set:

T ∗ = τ · Dtrain + (1− τ) · R (7.3)

where τ ∈ [0, 1] corresponds to the percentage of legitimate data in the trigger set

and R corresponds to the set of random inputs. For a given model M
(i)
θ , we have by

construction:

acc
M

(i)
θ

(T ∗) = τ · acc0 + (1− τ) · 1

k
(7.4)

where acc0 is the accuracy of model M
(i)
θ on legitimate data and k the number of

labels in a classification task. Therefore, the adversary can estimate the percentage of
legitimate data to inject in the trigger set in order to pass the verification phase.

min
τ∈[0,1]

τ (7.5)

95

Chapter 7. Watermarking for MLaaS platforms

s.t.τ · acc0 + (1− τ) · 1

k
> β (7.6)

(7.7)

7.4.2 Our countermeasure

Algorithm 4 IsValid algorithm

1: Model M
(i)
θ

2: Trigger set T
3: baseline model M0

4: threshold α∗
5: Boolean b
6: α← γ0,i(T)/γ0,t(R)
7: if α > α∗ then
8: b← False
9: else

10: b← True
11: end if

An adversary could claim ownership of future models if a forged trigger set is accepted
by the platform. Consequently, before registering a model, the platform needs to perform
additional verification. To implement such an additional procedure, one should consider
the following requirements:

(1) The platform cannot inspect the trigger set by itself. It can only verify the output
of the inference on the trigger set. Indeed, the trigger set is only known to the
agent and should not be disclosed to the platform. If the platform needs to store
the trigger set then, one idea is to store its encrypted version.

(2) The countermeasure is required to be computationally efficient: a naive solution
could be, for every previously registered model on the platform, to make inference
using the trigger set. However, this solution could quickly lead to a computational
bottleneck with the number of inferences.

We propose a countermeasure against the previously described registration attack
which basically includes a verification step within the registration phase, to ensure that
the trigger set is considered as valid.

We denote the verification step as the function IsValid, defined in Algorithm 4. The

function takes as inputs the model to be registered M
(i)
θ , the trigger set T , and a set

of baseline models {M0,M1 · · · }. For simplicity purposes, we suppose a single baseline
model M0, but the countermeasures can be extended to any number of baseline models.
The baseline M0 is a watermark-free model to be used as a reference. Instead of testing T
on every previously registered model in the platform, IsValid only considers the impact of
T on M0 to accept or deny the registration. In Algorithm 4, we compare the performance

96

Chapter 7. Watermarking for MLaaS platforms

of M
(i)
θ and M0 on both the proposed trigger set and random inputs. Theoretically,

when α is equal to 1, we can conclude that the trigger set acts as random inputs for
M0. The bigger α is, the less random the trigger set appears for M0 (which should not
happen since the trigger set is supposed to be secret and only known to the model owner).
Therefore, it is possible to determine a given threshold α∗ for which the platform can
reasonably conclude that the trigger set contains legitimate data.

Example: suppose that |T ∗| = 100, k = 10, β = 0.33 and acc0 = 92%. From
Equation 7.5, we obtain τ = 0.29 (meaning that the adversary needs the trigger set to
contain at least 29% of legitimate inputs) in order to claim a given model. If we consider
the first similarity definition, we obtain:

γ0,i(R) = 10

γ0,i(T) = 36.1

α = 3.6

(7.8)

Therefore, to determine α∗, a study of best case scenario for the adversary regarding
γ0,i(R) can be conducted in order to have a lower bound for α∗.

7.5 Adversarial attack

The main problem of the first forging strategy is that it induces a high false positive rate:
by injecting legitimate data in the trigger set, the ownership is verified for all models.
Thus, it is important to design the forging attack specifically towards a target model.

7.5.1 Overview

We define a second forging attack as follow: first, the adversary selects a target model,

M
(i)
θ , deployed on the platform. The goal of the adversary is to obtain the ownership of

this target model. Then, the adversary constructs the malicious trigger set, by building a
set of adversarial examples T ∗ = {T adv

1 , T adv
2 · · · }. As mentioned in Chapter 5, adversarial

examples are particular inputs, inducing a misclassification by the target model. Since
the adversarial examples are unique to each model, these inputs will not be identically
classified by other models. Once the trigger set is constructed, the adversary watermarks
a model with the forged trigger set. The choice of the model to be watermarked is
not relevant for the success of the attack, as long as the embedding is successful. The
adversary registers the watermarked model and the corresponding trigger set (Mθ∗ , T ∗)
to the platform.

By construction, if the adversary decides to claim M
(i)
θ with T ∗, the verification

process will return True. Since the adversarial examples are unique to the target model,
the previous countermeasure will not work.

97

Chapter 7. Watermarking for MLaaS platforms

Placeholder model

τ

Adversarial trigger set

Embed

MLaaS Platform

IsValid ?

Register(.)

Baseline 𝑀0

Watermarked model
with malicious trigger

2

3

4

5

Target model

1

Verify

6 Claim(.)

Figure 7.4: The adversarial attack, using a target model to build the malicious trigger set

7.5.2 Our countermeasure

The platform can enforce a first-registered-first-protected rule: when a model is registered
on the platform, the platform keeps track of its registration time, denoted t. A model
registered at timestamp t is denoted as Mt. The rule states that an agent Ai can only
submit ownership verification requests to the platform about models generated after its
own model’s registration time. More formally, let Mt be the model generated by Ai;
Ai can perform verification requests for any model Mt+j where j > 0; Otherwise, the
platform discards the request. The idea behind this countermeasure is that once the
model is public and accessible on the platform, it is more vulnerable to copying attacks.
Implementing the first-registered-first-protected rule completely prevents the adversarial
attack but raises other issues: If a model is stolen before being registered on the platform,
there is no way for the model owner to protect its ownership.

7.6 Latent attack

In this section, we consider a setting where the platform already implements the verifica-
tion step introduced in the previous section, as well as the first-registered-first-protected
rule. In this case, we present an attack called latent attack, which is the equivalent of
the abusive claim for Youtube’s Content ID described in Section 7.1.1. The goal of the
adversary is to register a given model, with the corresponding trigger set, on the platform
and then to perform a high number of claims on every new registered model. Since

98

Chapter 7. Watermarking for MLaaS platforms

Placeholder model

τ

Latent trigger set

Embed

MLaaS Platform

IsValid ?

Register(.)

Baseline 𝑀0

Watermarked model
with malicious trigger

2

3

4

5

Target model

1

Verify

6 Claims(.)

Figure 7.5: The Latent attack with the countermeasure IsValid and the first-registered-
first-protected rule

claiming a model is not costly (according to the platform described in Section 7.2), the
adversary can multiply claims, in the hopes to be successful at least once. The attack
is said to be latent, because the adversary does not have a clear target, as opposed to
previously mentioned attacks, and no immediate objective (the successful claim can be
the one after 10 or 10,000 claims).

7.6.1 Overview

We provide an illustration of the attack in Figure 7.5. Let A∗ be an adversary trying
to forge a trigger set T ∗ to potentially claim a future model Mi, knowing that (i) the
adversary cannot inject legitimate data in the trigger set and (ii) the adversary cannot
claim models registered before its own model. We present the latent attack as follows:

(1) A∗ is the adversary, owning a model M∗ called adversary’s model. The choice of
the model does not impact the success of the attack.

(2) A∗ watermarks the model M∗ with a trigger set T ∗

(3) A∗ registers (M∗, T ∗) to the platform. After the registration, the model is denoted
through its registration timestamp M∗

t

(4) A∗ sends multiple V erify queries for every new registered models Mt+1, Mt+2, etc.
and hopes to obtain the ownership of at least one of them.

99

Chapter 7. Watermarking for MLaaS platforms

The challenge for the adversary is how to craft a trigger set for a model that is not
yet registered ? Indeed, A∗ does not have a victim model and can rely on assumptions
regarding as a potential victim model’s behavior. It is not possible (i) to create adversarial
examples as in the previous attack, because the model is unknown (i) to inject legitimate
inputs because the countermeasure IsValid is implemented. The solution of this challenge
lies in understanding the concept of similarity between models. The similarity depends
on several factors: the architecture of the neural networks, how the models were trained,
the composition of the training data, how the weights was initialised, etc. To better
represent this idea, we can represent the similarity of models on an axis. If we select a
reference model, we can plot similarities of models (with respect to a reference model).
The choice of the reference model has an impact on the distribution of similarities. Based
on this, let us consider the following best-case scenario for the adversary:

(C1) There is a poor choice of M0 for IsValid algorithm, meaning that the distribution
of similarities has a very high variance (a uniform distribution of similarity on [0,
1] for instance).

(C2) The similarity between between the adversary’s model and a newly registered model
Mt is ”high” ((for instance γ∗,t = 1)).

(C3) An instance of the trigger set of the adversary’s model is composed of a random
input associated the label predicted by the adversary: T1 = (R1,M

∗(R1)).

We argue that, in this scenario, the adversary will be able to claim the newly registered
model, while passing the IsValid algorithm. Indeed, IsValid will not detect anything
abnormal in the trigger (it is composed of random inputs, not legitimate). However, due
to the high similarity between Mt and M∗ (Condition 2), we have accMt(T

∗) = 1, which
pass the verification threshold and the adversary is successful. The main question for the
adversary is: is it possible to have such a best-case scenario ? And if it is possible, how
many models is it possible to claim using this technique ?

7.7 Experiments

In this section, we evaluate the performance of the proposed set of countermeasure, with
a focus on the injection attack as well as a study of the distribution of similarities. First,
we introduce our experimental setup. Later, we implement the aforementioned attacks
and assess the success rate of the adversary.

7.7.1 Experimental setup

Datasets. To simulate a platform populated with models, we use neural networks trained
on the MNIST [183] and CIFAR-10 datasets [220] since they are the most frequently
used datasets in the domain of watermark [22,188]:

• MNIST is a handwritten-digit data set containing 70000 28 × 28 images, which
are divided into 60000 training set instances and 10000 test set instances. As the

100

Chapter 7. Watermarking for MLaaS platforms

trigger data set, we consider to craft Tt from the Fashion-MNIST [223] data set,
consisting of 7000 instances.

• CIFAR-10 is a data set that consist of 60000 32 × 32 tiny colour images in 10
different classes, where each class is equally distributed. The data set is divided
into 50000 training images and 10000 test images. Furthermore, we employ STL10
data set samples as unrelated watermarking trigger data set. [224].

Models and the training phase. Details on the models and the training phase of these
models are as follows:

• For MNIST, we consider an architecture composed of 2 convolutional layers with
3 fully connected layers, trained with 10 epochs using the Stochastic Gradient
Descent (SGD) [225] optimizer, with a learning rate of 0.1 and a batch size of 64.
We obtain 99% of accuracy on legitimate data set and 100% on trigger data set.

• For the CIFAR-10, we use 5 convolutional layers, 3 fully connected layers and max
pooling functions. For the training phase, we use Adam optimizer [226] with a
learning rate of 0.001 for 10 epochs. The accuracy on legitimate data set is around
78% for CIFAR and 100% for the trigger data set.

Hyper-parameters. During the experiments, we consider the size of the trigger set
|T | = 100 similarly to the watermarking method in [22]. We empirically choose R = 10000
to have a good precision (1e− 3) on the similarity measure.

The environment. All the simulations were carried out using a Google Colab1 GPU VMs
instance which has Nvidia K80/T4 GPU instance with 12GB memory, 0.82GHz memory
clock and the performance of 4.1 TFLOPS. Moreover, the instance has 2 CPU cores, 12
GB RAM and 358GB disk space.

7.7.2 Platform simulation

During the experiments, we intend to simulate agents registering their models to the
platform. Thus, we train several models with the same architecture and training parame-
ters for two different scenario. First, we consider a scenario, denoted common dataset
situation, where all models have been trained on the same data distribution D. In the
second scenario, we consider separate datasets situation, where models have been trained
on three different data distribution {D1,D2,D3}. Each of these Di distribution is highly
unbalanced towards a subset of classes to study the impact of unbalanced training dataset
on the overall similarity distribution.

For the MNIST dataset, we train 50 models with the aforementioned parameters
and 20 models for CIFAR10. According to Table 7.1, for the common dataset situation
we have an average similarity between models for MNIST γ̂ = 0.18 and γ̂ = 0.34 for
CIFAR10. We report the standard deviation σ and the difference between the lowest and
the highest similarity ∆. The major difference between MNIST and CIFAR10 models is

1https://colab.research.google.com/

101

Chapter 7. Watermarking for MLaaS platforms

(a) (b)

Figure 7.6: The registration score α∗ depending on the legitimate data rate in Tt for (a)
MNIST and (b) CIFAR10

related to the difference between accuracy values on the legitimate data (99% for MNIST
and 78% for CIFAR10).

In general, we observe that the similarity distribution follows a normal distribution,
with mean γ̂ and standard deviation σ. The minimum similarity is γ = 0.1, which is
expected because it corresponds to the situation where the probability of two models to
have similar prediction for random inputs (1/n where n is the number of classes).

7.7.3 Injection attack

In this section, we study the implementation of the injection attack as well as the
presented countermeasures. To implement this attack, we watermark 50 neural networks
with different trigger set, with different injection rate τ (i.e. the percentage of legitimate
data in the trigger set). For the countermeasure, namely the IsValid algorithm, a model
M0 is required in order to be used as a baseline. We train 4 different models for MNIST
(respectively 3 models for CIFAR10) with different accuracy on the legitimate dataset to
see the efficiency of the registration process in cases where the baseline model has low
accuracy. In Figure 7.6, we present α depending on τ , while comparing the watermarked
models with M0 for both MNIST and CIFAR10. We present three strategies to choose
the threshold parameter α∗

Condition α∗ = 1

To begin with, we consider a naive condition α∗ = 1. In Figure 7.6 (a), we observe that
the naive condition to reject the trigger set registration (α > α∗ = 1) is efficient to detect
even a small portion of legitimate data set in T ∗ for the MNIST dataset. Furthermore,
we observe that the accuracy of the baseline model M0 has a negligible impact on the
value of α. The baseline model with low accuracy leads to higher α scores, which might
cause false positives, but does not impact the false negative rate. This means that the

102

Chapter 7. Watermarking for MLaaS platforms

adversary A∗ cannot leverage baseline models with low accuracy to register a malicious
trigger data set. Thus, the platform can compute a threshold parameter α∗ independently
from the accuracy of the baseline model.

In Figure 7.6 (b), the condition α > α∗ = 1 is not sufficient to detect legitimate
instance in the trigger dataset (for τ = 50, we have α∗ < 1). Especially, for low accuracy
baseline, the computation of α appears to be less precise (for τ ∼ 60, we can obtain
α < 1). If we consider only the best baseline M0, the adversary can choose τ < 0.7 and
still register its model, and can obtain the following accuracy:

accMt+i(T
∗
t) = 0.7 · (0.78) + 0.3 · (0.34) = 64.8% (7.9)

For ϵ = 1e − 10, we obtain the ownership verification threshold β = 0.65, so the
adversary is not able to claim the ownership for ϵ < 1e− 10.

Condition α∗ = 10 · β

Next, we consider the condition α∗ = 10 · β. For τ close to 0 (hence trigger set containing
no legitimate instances), we have α∗ > 1 for some cases. Due to the stochastic behavior of
the similarity computation through random images, edge cases can occur corresponding
to false positives. To avoid such cases, α∗ can be chosen between 1 and β, and we consider
α∗ = 10 · β. For MNIST, an adversary can decide to choose τ = 0.3 (i.e injecting 30
legitimate instances in its trigger set), corresponding to α ∼ 1.5. For ϵ = 1e − 10, we
obtain α∗ = 10 · β = 4.5, so the registration is accepted because α < α∗. However, the
maximum accuracy achievable by the adversary, for an ownership threshold of β = 45%:

accMt+i(T
∗
t) = 0.3 · (0.98) + 0.7 · 0.18 = 42% < β

Hence, even if the trigger set is composed of 30% of legitimate instance, the adversary
is not able to claim the ownership of the model. However, the adversary can choose
τ = 0.6 (implying α ∼ 4), register its trigger set and obtain the following accuracy:

accMt+i(T
∗
t) = 0.6 · (0.98) + 0.4 · 0.18 = 66% > β

The adversary is successful in this case. In the case where the platform intends to
decrease ϵ (in order to increase β), then the threshold parameter will also increase, so
the condition α∗ = 10 · β is not sufficient to prevent the attack.

In the case of CIFAR10, the condition is clearly not sufficient, because it allows a
trigger set fully composed of legitimate instances.

7.7.4 Latent attack

In the case of the latent attack, the goal of the experiments is to study (i) the distribution
of similarities with respect to a reference model (ii) the possibility for the adversary to
reach a similarity γ > β, in order to be successful.

103

Chapter 7. Watermarking for MLaaS platforms

Data set Scenario γ̂ σ ∆ max(γ)

MNIST
Common data set 0.181 3.3e-2 0.209 0.309
Separate data sets 0.184 4.2e-2 0.296 0.396

CIFAR
Common data set 0.348 1.8e-1 0.698 0.798
Separate data sets 0.428 1.8e-1 0.713 0.813

Table 7.1: Mutual similarity metrics for MNIST and CIFAR10 models when (i) the
models are trained on a common dataset and (ii) when trained on separate datasets

Observations

To begin with, we observe a difference between the common dataset scenario and the
separate datasets scenario: first, we observe a negligible difference for σ between the
two scenarios. We also notice a higher average similarity and higher ∆ for the separate
datasets scenario.

For MNIST: if we consider β = 33% as a target for the adversary (10-classes classi-
fication, 100 trigger instances and an error rate ϵ = 1e− 6), we see that the adversary
can be successful in some edges cases in the separate datasets scenarios. However, by
simply decreasing the error rate in order to increase β > 40% and the adversary cannot
implement the latent attack.

For CIFAR10: we observe a similarity distribution with higher variance than MNIST.
We believe that it is because the accuracy of CIFAR10 models is lower than MNIST
models. From [184], it is known that during the training phase, models converge to
similar representations of the data and thus have similar behaviors on random data. Thus,
we can argue that for a longer training phase, the models from CIFAR10 will converge
to lower similarities and lower σ (similar to the MNIST models). Since the model are
not ”fully trained”, the role of the weights initialization plays an important role in the
learning process, leading to model having high similarity.

Countermeasures

As mentioned before, fixing β = 0.82 would prevent the adversary to implement the
latent attack. Indeed, in the definition of the ownership threshold β, we suppose that the
probability that a non-watermarked model predicts the correct label of a trigger input
is 1/n where n is the number of classes. However, when the trigger input is random,
we observed that this condition is not verified: models can share training data, training
process, initial weights, etc. or can be derived from pre-trained models, leading to similar
data representation and high similarity. Thus, in order to prevent abusive claims, the
platform can impose a high verification threshold.

However, by imposing a high verification threshold, watermark attacks such as anomaly
detection or removal attacks become stronger: let’s suppose that the platform fix β = 0.8.
If the adversary implements a removal attack which decreases the watermark accuracy
by 25%, then he or she is successful (accM∗

theta
= 100 − 25% = 75% < β). Therefore,

104

Chapter 7. Watermarking for MLaaS platforms

fixing the verification threshold is a trade-off between preventing latent forging attack by
raising the threshold and preventing removal/anomaly detection attack by decreasing
the threshold.

An additional solution could be to limit the number of claims per client, i.e., to prevent
automatic and abusive claims, or to only allow certain users to perform ownership claims.
Youtube Content ID’s system is restricted to big music corporations for instance, which
is easier for the platform to solve copyrights conflicts manually if a problem appears.

7.8 Conclusion

In this chapter, we presented a particular type of attack called watermark forging attack, in
the context of a ML model-hosting platform. We presented how watermarking could help
such platform, by introducing a model ownership verification protocol. We then proposed
three types of watermark forging attacks with associated countermeasures. Future work
may include the study of other forging strategies, or introducing fingerprinting as a
solution for this type of platform.

105

Chapter 7. Watermarking for MLaaS platforms

106

Chapter 8

Watermarking in Production

The evolution of watermarking as a research topic is in sharp contrast with the current
status of available tools that implement watermarking in production-ready systems. A
significant number of current published papers does not provide implementation of their
solutions, or provides code below production-level standards. Therefore, there is a need
for tools designed to be used in real-life applications. In this chapter, we introduce an
open-source library called ML Model Watermarking [24] in order to provide efficient
watermarking primitives for non-specialist developers, in order to deploy watermarked
models in production.

8.1 Introduction

The development of the research community in the domain of watermarking has led to
remarkable achievements, in order to develop algorithms which are robust to attacks and
compatible with a large range of assumptions, from black-box to white-box environments,
as shown in Chapter 5. Nonetheless, despite these clear successes, watermarking has
mostly been a research topic, scarcely implemented in real-life systems, for two main
reasons:

1. To begin with, an important part of the current state-of-the-art was published in
the last two years (65 % of the papers mentioned in Chapter 5 were published in
2021). Because of this, the majority of the research effort has been made towards
unifying the field, rather than proposing tools for production systems.

2. The second reason it that the problem of model stealing, and more generally
the security of ML algorithms remains unknown to the mainstream audience.
Even though several companies [227, 228] started to tackle this type of issue,
machine learning practitioners do not have available tools (besides research papers’
implementations) to integrate then into their projects’ defenses against such attacks.

.

107

Chapter 8. Watermarking in Production

Figure 8.1: Integration of watermarking in development pipelines with on the left:
integration during the training phase and on the right: integration before serving the
model.

In this chapter, we propose an open-source library for watermarking, called ML Model
Watermarking [24], designed to be used in production, compatible with the main machine
learning frameworks. The library has been developed towards two main objectives:

• Compatibility with the three machine learning frameworks: Scikit-learn [229], a
popular ML library with a wide range of machine learning algorithms; PyTorch [230],
a deep learning framework; and HuggingFace’s Transformers [231], the most popular
framework for NLP models. Indeed, since watermarking has been shown to be
compatible with a variety of ML tasks (see Chapter 6), the associated tools also
need to be compatible with various frameworks.

• Simplicity: without any advanced knowledge of literature in watermarking, develop-
ers and product owners should be able to protect their current pipelines efficiently,
with limited computational overhead. Therefore, we selected watermarking algo-
rithms offering the best performance out-of-the-box, meaning with no advanced
parameter tuning.

8.2 Assumptions

Given the current status of watermarking research, we decided to adopt several assump-
tions. To begin with, we propose to primarily focus on black-box embedding algorithms,
described in Chapter 5. Indeed, as mentioned in Chapter 2, the ML lifecycle is complex
and developers aim to make the various model building’s steps independent from each
others’, for efficiency purposes. With independent steps, it is easier to identify problems
in the lifecycle and for teams to collaborate on the same projects. Therefore, in such
a context, black-box embedding algorithms make sense because it is possible to re-use
boilerplate code in various projects without completely modifying the overall pipelines.

The second focus of the library is to make watermarking as efficient as possible, in
terms of parameter tuning, additional training time or additional code. Indeed, several
introduced methods [127,129,130] generate trigger inputs with additional training (through

108

Chapter 8. Watermarking in Production

Figure 8.2: Code sample for watermarking and verifying a model’s ownership

GAN-like models for instance), which could slow down the entire lifecycle. Therefore,
we do not consider embedding algorithms which lead to an important computational
overhead.

8.3 Description

8.3.1 Overview

The library proposes two options to include watermarking in production pipelines, as
displayed in Figure 8.1. A first solution is to introduce watermarking during the training
phase i.e, to train the model on the legitimate set and to embed the watermark at
the same time, so as to monitor the performance on the original task as well as on
the trigger set. Although it offers control for the model owner regarding the model’s
performance, it also induces additional training costs. Indeed, when it comes to use large
pre-trained models, where computational resources for training are limited, this appears
to be inefficient. Instead, a second solution is to consider watermark embedding as a fine
tuning step before model serving. Furthermore, since watermarking algorithms are, by
design, robust to fine-tuning, distillation, or transfer learning as shown in Chapter 5.6 it
is not necessary to embed watermarks for each iteration of the ML development lifecycle.

A boilerplate code is presented in Figure 8.2. The library is divided into two parts:
embedding and verification. In order to embed the watermark, the library takes as inputs
the model and the associated watermark parameters. After the embedding step, the
model owner receives ownership information. The resulting watermarked model can be
used exactly as its original counterpart, with the same syntax as the ML framework
chosen for the development (Sklearn, PyTorch or HuggingFace). In the verification phase,
the library takes as inputs the suspect model (or an access to an API endpoint) and the
ownership information. The V erify(.) function returns if the model has been stolen or
not. We further describe the algorithms implemented in the library.

109

Chapter 8. Watermarking in Production

Technique Phase Sklearn PyTorch HuggingFace

Adi et al. [22] Embedding ✓ ✓
Zhang et al. [23] Embedding ✓ ✓
Yang et al [232] Embedding ✓
Lounici et al. [8] Verification ✓ ✓ ✓

Merrer et al. [123] Embedding ✓ ✓
Szyller et al. [188] Verification ✓ ✓ ✓

Under development

Jia et al. [233] Embedding ✓ ✓

Table 8.1: Watermarking techniques with supported frameworks.

8.3.2 Algorithms

The library contains 7 black-box algorithms from 6 different papers. In Table 8.1, we list
them, with their compatibility to the ML frameworks. We provide a short description:

1. Adi et al. [22], introduced as WMunreleated in Chapter 5. In spite of the weaknesses
of this technique against anomaly detection attacks, obtaining trigger inputs unre-
lated to the legitimate task is accessible to everyone, even for teams with limited
computational power. The computational overhead induced by the embedding
process is negligible (around +2.6 % in training time, for a LeNet [183] classifier
trained on MNIST [183])

2. Zhang et al. [23], with two techniques denoted as WMadd−noise and WMcontent in
Chapter 5. Similar to Adi et al. [22], for its weakness against anomaly detection
attacks, but easy to generate and easy to understand: the model owner injects
ownership information in the form of a message concealed in the trigger set.

3. Le Merrer et al. [123], presented as adversarial-based triggers in Chapter 5. With
the FGSM [153] method to generate adversarial examples, it is efficient to obtain
to obtain a trigger input, even with default parameters.

4. Yang et al [232] is a backdoor-based technique for text sentiment analysis models.
The idea is to introduce trigger words which will shift the model’s predictions. Such
words can either be rare (as shown in Guo et al. [234]) or can be common by their
combination is rare. This technique is both easy to implement, can be automated
and robust to anomaly detection attacks.

5. Szyller et al. [188] is a defense against model extraction, introduced in Chapter 5.
The main advantage of this technique is that it does not impact the training phase,
meaning that it is possible to include this technique just before the deployment
phase, leading to faster deployments.

6. Jia et al. [233] is a second defense against model extraction, but it introduces
through loss regularization, as shown in Chapter 5. This small computational
overhead is compensated by its robustness to removal attacks, anomaly detection
attacks and model extraction attacks.

110

Chapter 8. Watermarking in Production

In addition, we include the definition of the verification threshold β for regression
tasks, introduced in Chapter 6, adapted from our work in [8].

8.3.3 Threat level

In Chapter 3, we presented three model stealing attacks: data leak exploitation, insider
threats and model extraction attacks. However, each of these attacks does not represent
the same danger depending on the value of the model.

In the case of data leak exploitation, stealing the model is often not the main goal.
Attackers target passwords, credentials, database accesses, etc. meaning that the model is
often a collateral damage of the attack. It also means that attackers could ignore potential
watermarking protection, because they are not familiar with this type of protection or
because they do not have the resources to remove it. Consequently, techniques presented
by Zhang et al. [23] or Le Merrer et al. [123] could be sufficient for this type of attackers.

For insider threats, it is crucial for the watermarking component in the ML lifecycle
to be independent and autonomous from other components. Even though the trigger
generation techniques could be known by the entire development team, the actual triggers
and their location should be disclosed to a limited number of people. In the case where the
model represents a significant investment (such as the Waymo case presented in Chapter 3),
more robust techniques should be considered (potentially white-box algorithms) with a
dedicated security team to ensure the watermark is robust against the most advanced
attacks. Otherwise, if the model owner does not have sufficient resources to have a
security team, trigger generation techniques presented in the library are sufficient for
most of the use-cases.

Finally, in the case of model extraction, Szyller et al. [188] is a good option for
low-resource teams. Jia et al. [233] can be considered for more resourceful teams.

8.4 Related Work

Despite implementations of papers, few work has been done to publish production-ready
code for watermarking models. Rouhani et al. [143] propose DeepSigns as an end-to-end
watermarking framework but the project is mostly targeted towards researchers and
not updated with current embedding techniques in the literature. In the context of a
Systemization of Knowledge (SOK) paper, Lukas et al. proposed a Watermark Robustness
ToolBox [119]. The library constitutes one of the first examples of an implementation of
watermarking techniques in order to benchmark their robustness to attacks. The library
is mainly designed for researchers, with limited support regarding the ML frameworks
(PyTorch only) as well as focusing on computer vision. In this work, we propose to make
the library compatible to three ML frameworks, to include natural language processing
and non-classification tasks as well as focusing on ML practitioners with a minimum
knowledge of watermarking.

111

Chapter 8. Watermarking in Production

8.5 Conclusion & Future work

In conclusion, we proposed an open-source library for watermarking machine learning
models, with a focus on usability and simplicity. By allowing non-experts to implement
watermarking without prior knowledge of the underlying concepts, we intend to generalize
the integration of watermarking into productive systems. We propose the following points
as future work:

1. In this work, we reduce the scope of the study to aggregate previously implemented
techniques into one library, without re-evaluating the experiments presented in
the associated papers. Next steps could include a clear benchmark of performance
between presented algorithms with our own implementations.

2. In this work, only three ML frameworks were considered but in reality, frameworks
like TensorFlow [235] or spacy [236] are also used in the industry. An effort towards
expanding implementations to these frameworks could bring more people to use
watermarking

112

Chapter 9

Watermarking through Fairness

The development of black-box watermarking has been developed as an efficient protection
against model stealing ; the ownership of a model is computed through its performance on a
set of secret inputs called trigger set. However, the main issue in this type of watermarking
is that the model owner, by sending verification queries to a suspect, is disclosing trigger
inputs to a potential adversary, leading to anomaly detection attacks, seen in Chapter 5.
Even though prior work focused on generating trigger inputs indistinguishable from
legitimate data, we argue that current trigger generation techniques are not reliable
against this type of attacks. To solve this issue, we introduce BlindSpot, to watermark
machine learning models through fairness. Our trigger-less approach is compatible with
a high number of verification queries, with no risk of disclosing ownership information
while being robust to outlier detection attacks. We show on Fashion-MNIST and CIFAR-
10 datasets that BlindSpot is efficiently watermarking models while robust to outlier
detection attacks, at a performance cost on the accuracy of 2%.

The work described in this chapter has been published under the title BlindSpot:
Watermarking through Fairness [9], at the 10th ACM Workshop on Information Hiding
and Multimedia Security 2022, S. Lounici, M. Önen, O. Ermis, S. Trabelsi

9.1 Introduction

In the previous chapters, we reviewed several black-box watermarking embedding, which
consist in generating a secret set of input-output pairs called trigger set and to overfit the
model to be protected on this dataset (through loss regularization for instance). Then,
the goal of black-box verification algorithms is to compute the accuracy of a given suspect
model on this trigger set and to compare it to an ownership threshold in order to detect
the watermark. In the construction of the trigger set, many algorithms [22,142,188] focus
on secrecy, meaning that trigger inputs and legitimate inputs should be indistinguishable
for an adversary, in order to be robust against anomaly detection attacks. Indeed, in
black-box verification algorithms, the model’s owner solely have an API access to the
suspect model, with little to no information about the deployment; therefore, it is possible
for the adversary to implement trigger detection module, by collecting and analyzing

113

Chapter 9. Watermarking through Fairness

queries in order to separate triggers from legitimate inputs. Prior works [21] have shown
that anomaly detection attacks are efficient to identify trigger inputs.

In practice, model owners do not perform multiple verification queries for the same
model, limiting the ability of the adversary to collect data, analyze the source of queries,
etc. limiting the impact of anomaly detection attacks. However, if we consider cases
where verification queries are periodically sent to a suspect model (in the context of
a monitoring tool for instance), then anomaly detection are more easily implemented.
We argue that this problem does not depend on the quality of the trigger techniques
(which will always subject to new detection attacks) but rather on the inherent flaw
of backdoor-based verification algorithms: by sending verification queries to a suspect
model, the model owner actually discloses ownership information contained in the trigger
inputs, which is a vulnerability for the secrecy of the watermark. In the case of periodic
verification, it is a matter of time for an adversary to collect enough data to be able to
build a detection system with sufficient accuracy.

As opposed to trigger-based verification algorithms, said to be backdoor-based, we
propose a trigger-less, black-box, verification algorithm based on the concept of fairness
bias. Similar to backdoors, fairness bias in machine learning (also called algorithmic bias)
is usually an unwanted artifact that needs to be removed from the model. We propose
to intentionally introduce fairness bias in a model, by modifying predictions’ outcomes
for particular sub-populations in the original training data. During the training phase,
only the outputs of these sub-populations are modified without using any additional or
modified inputs. Consequently, since the verification input queries no longer contains
ownership information, they do not need to be protected and hence multiple verification
queries can be launched.

In this work, we introduce a fairness-based watermarking technique called BlindSpot.
The proposed technique removes the dependency to the trigger inputs in order to provide
a more secure verification process when compared to backdoor-based techniques. We
evaluate our approach, on two binary classification datasets, German Credit [237] and
Malaria [201] and on two multi-class classification datasets, Fashion-MNIST [223] and
CIFAR-10 [238]. Overall, we show that BlindSpot is able to watermark models with
similar performance from backdoor-based watermarking techniques, with a limited cost
(less than 2 % loss) on the accuracy on the original task. Furthermore, we show that
unlike backdoor-based techniques, the secrecy of the ownership proofs is not impacted,
even for a high number of verification queries.

In summary, our main contributions are:

(1) We point out the limitations of backdoor-based watermarking techniques for specific
use such as API monitoring or source tracking, regarding the number of verification
queries.

(2) We propose BlindSpot, a fairness-based watermarking technique in order to solve
the aforementioned issues.

(3) We evaluate the security of BlindSpot by first identifying potential attacks such as
outlier detection and model extraction attacks and further assessing of our solution

114

Chapter 9. Watermarking through Fairness

Figure 9.1: Examples or various trigger inputs (top), with side applications of water-
marking (bottom) API monitoring and source tracking.

strength against them.

(4) We evaluate our approach on binary-classification and multi-class classification
tasks, by comparing to backdoor-based watermarking techniques and by inspecting
parameters for optimal results.

9.2 Problem statement

Backdoor-based watermarking techniques rely on crafted trigger inputs and when needed,
these inputs are used to observe the behavior of the suspect model. Usually, the suspect
model is only accessible through an API endpoint meaning that the model owner is
required to send trigger inputs to the suspect model to perform verification; hence,
performing verification queries imply disclosing part of ownership information.

There exist several techniques that implements outlier detection techniques [188,239]
against potential attempts of adversaries to distinguish trigger set inputs from the
legitimate ones. Indeed, one-time usage triggers as proposed in [22,119,240] are excluded
(a study of similarity between inputs would quickly identify such triggers). Triggers

115

Chapter 9. Watermarking through Fairness

should be built as a combination between legitimate inputs and a secret mask, in order
to (i) generate triggers to be indistinguishable from legitimate data and (ii) generate a
higher number of triggers inputs.

Nevertheless, even for well-crafted triggers (i.e supposedly indistinguishable from the
legitimate data), previous studies [233] show that, for a single verification phase, an
adversary owning the original model could apply outlier detection techniques with a
detection accuracy of 99% and a loss on the original data of 7%. Increasing the number
of verification queries would allow the adversary to minimize this loss while maintaining
a high detection accuracy. To illustrate the weakness of backdoor-based watermarking
technique in specific situations, we propose several scenarios where the verification phase
needs to be conducted regularly or periodically, such as API monitoring or source tracking.
We present two scenarios, illustrated in Figure 9.1.

9.2.1 Application scenarios

Firstly, we consider a scenario called API monitoring : we suppose that a model owner,
after watermarking his model M , is concerned that a potential adversary A (for instance
a competitor of the model owner) has stolen the model M and is deploying it on his own
API endpoint for his own benefit. The model owner has access to the API endpoint and
intends to verify periodically the model deployed by A in order to take immediate actions
if the model turns out to be stolen. Therefore, the goal of the model owner is to (i)
periodically verify for each time step δt if the original model is deployed through any of
the API endpoints (ii) identify, in the case of a proven theft, when the original model was
firstly deployed, and (iii) identify the root causes of the leak. In this scenario, the model
owner monitors the activity of the suspect model by sending multiple verification queries,
which is impossible for backdoor-based watermarking without revealing the ownership
information.

A second scenario is source tracking, which could be considered as an extension of
API monitoring. We assume that the development of a model M is split through different
entities (either through federated learning techniques or through a linear pipeline in
the case of versioning). Each entity contributes to the development of the model, while
embedding its own watermark to later identify which entity is responsible for a given
version of the model. The goal of the model owner is to monitor several API endpoints and
to verify not only if a suspect model is the original model but also to track which entity
has originated the leak. In both scenarios, the repeated verification phases are considered
as a systematic preliminary step before any further actions. Such monitoring scenarios
can not be implemented through backdoor-based watermarking without impacting the
secrecy and the robustness of the watermark.

116

Chapter 9. Watermarking through Fairness

InsertBias ()

MODIFIED SUBGROUPS

ORIGINAL DATASET G WATERMARK DATASET G*

SubGroup () OrderGroupByDi ()

PREDICTIONS THROUGH M

NON-MODIFIED SUBGROUPS

MODIFIED SUBGROUPS

Model Stolen
?

M

1

4

3

3

2

5

6
7

Figure 9.2: Architecture of BlindSpot algorithm: On the top (1 → 4), the embedding
phase to obtain a watermarked dataset on which the model is trained on. On the bottom
(5 → 7), the verification phase, where the model owner can verify the watermark based
on the behavior of the model M on modified subgroups.

117

Chapter 9. Watermarking through Fairness

9.3 BlindSpot

9.3.1 Overview

In the previous sections, we showed that backdoor-based watermarking is not adapted for
specific scenarios requiring a high and frequent number of verification queries. The main
problem comes from the trigger inputs and the impossibility to keep them secret while
multiplying the verification queries. Hence, we propose to use a trigger-less watermarking
technique and consider fairness bias as a new basis for watermarking machine learning
models. Similar to the backdoor, fairness bias is an undesirable behavior in a model,
aiming to be removed. Instead, in this study, we voluntarily propose a watermarking
algorithm to insert a fairness bias as a solution to uniquely watermark a model, called
BlindSpot.

BlindSpot is a trigger-less fairness-based watermarking technique. Instead of a dual
dataset situation (triggers vs. legitimate), BlindSpot is solely considering the legitimate
set in the embedding by intentionally introducing fairness bias during the training of
the model. We present an overall description of the technique in Figure 9.2: in the next
sections, we formally introduce the notion of fairness and further describe the two phases
of BlindSpot namely the Embedding and Verification phases.

9.3.2 Fairness measure

In this thesis, we consider fairness as the basis of our approach. A fairness bias inserted
into a model is considered as a measure of performance, where a model predicts differently
for different groups within the data. Some groups can be considered as sensitive (such as
race, gender or age). Thus, fairness bias is usually undesirable to avoid discriminating
behavior in the model. Evaluating the fairness of a model consists of comparing the
behavior of the model on specific subgroups of inputs with the behavior of the model on
the overall data.

We use a specific definition of fairness bias called Disparate Impact (DI). For a binary
classifier M and an inference dataset L, the Disparate Impact evaluates the ratio between
positive output in a subgroup G of L that we name privileged group, and the positive
output in the remaining dataset L \G:

DI(G) =
P (Ŷ = 1)x∈L\G

P (Ŷ = 1)x∈G

In the rest of paper, we use the following notation for simplicity:

DI(G) =
sG
p

If DI(G) = 1 that means M does not have a fairness bias (in the sense of Disparate
Impact) towards G.

118

Chapter 9. Watermarking through Fairness

9.3.3 Embedding

The Embedding algorithm mainly inserts fairness bias to some selected subgroups. More
specifically, Algorithm 5 takes four parameters provided by the model owner as inputs:
the number of modified subgroups n ∈ N, the sensitivity of the inserted biases s ∈ [0, 1],
the subgroup labeling algorithm SubGroup and the legitimate data L = (X ,Y).

We define the subgroup labeling algorithm generation SubGroup : X → Rz as a
function which takes as input x ∈ X and associates the corresponding group label
y ∈ Rz. SubGroup is required to be unique, deterministic and secret (only known
by the model owner). By analogy, SubGroup corresponds to the trigger generation
algorithm in backdoor-based watermarking. Instead of generating trigger inputs through
a secret generation algorithm, we propose to select (through SubGroup) specific subgroups
belonging to the training dataset and to modify the behavior of the watermarked model
on these precise subgroups.

Algorithm 5 BlindSpot Embedding

1: L: set of inputs/outputs
2: SubGroup: subgroup algorithm
3: n: number of modified subgroups.
4: s: sensitivity of the bias.
5: procedure Embedding
6: groups← SubGroup(X) ▷ Split data in groups
7: G ← GroupBy(groups)
8: for each G, gid in G do
9: DG ← DI(GY ,GY \GY)

10: end for
11: OrderGroupByDI(

⋃
DG)

12: G∗ ← ∅
13: k ← 0
14: for each G, gid in G do
15: if k < n then
16: G, sG ← InsertBias(s,G,G \G,n)
17: lG ← gid ▷ Store group id
18: G∗ ← G ∪ G∗ ▷ Update training data
19: k ← k + 1
20: else
21: G∗ ← G ∪ G∗
22: end if
23: end for
24: lrefs ←

⋃
lG

25: srefs ←
⋃
sG

26: return G∗, srefs, lrefs ▷ Return Updated data, inserted biases and group ids
27: end procedure

119

Chapter 9. Watermarking through Fairness

The Embedding algorithm is described as follows:

• The list of group labels for each input group is computed, then grouped by label
and stored in G, through the function GroupByDI.

• For each subgroup G ∈ G with the corresponding group id gid, BlindSpot computes
the disparate impact DG of the subgroup compared to the overall data, to evaluate
how ”naturally” the subgroup is biased towards 1. DG = 1 means that elements
belonging to G behave similarly to elements not belonging to G (i.e there is no bias
in the data against or in favor of G).

• The subgroups G are ordered by value of |1−DG|, i.e from the less biased (or neutral)
to the most biased (towards 0 or 1), through the function OrderGroupByDI.

• For a given number n of subgroups G∗ ∈ G, called modified subgroups, BlindSpot
embeds a bias into each subgroup, according to the bias sensitivity parameter s
using the algorithm InsertBias(), with two possible modes: FULL or ANCHOR, and
is described later in this section.

• Finally, the Embedding algorithm returns data with embedded bias G∗. alongside
with the ownership information: the modified subgroups ids lrefs with corresponding
bias sensitivities srefs.

After the Embedding phase, the machine learning algorithm is trained on the biased
data G∗, and considered as watermarked after the training phase.

9.3.4 Inserting a bias

The core of BlindSpot is the ability to insert a fairness bias in each subgroup of data.
For this purpose, we consider two strategies, described in Algorithm 6 :

• The first strategy, denoted FULL , consists in modifying the labels of the elements of
the subgroup, proportionally to a sensitivity bias s. Basically, the FULL algorithm
selects a proportion of s elements in the subgroup, then modify the labels according
to a pre-defined bias called target in Algorithm 6 (towards 0 or 1).

• Although FULL does not require additional data generation (only outputs are
modified), it impacts the data greatly and hence, the accuracy of the watermarked
model trained on this data. The second strategy, denoted ANCHOR, is inspired by
the work of Mehrabi et al. [241] and consists in distorting the watermarked model’s
decision boundary by generating poisoned points near specific target points to bias
(proportionally to a sensitivity bias s) the outcome. As opposed to ANCHOR , FULL
works as a data augmentation process and generates additional data points.

120

Chapter 9. Watermarking through Fairness

Algorithm 6 InsertBias

1: s: sensitivity
2: G: subgroup to be modified
3: G \G: complete training data except G
4: n: number of modified subgroups.
5: procedure InsertBias
6: target← random(0, 1)
7: if mode == ’FULL’ then
8: for each x, y in G do
9: if random() < s then

10: y ← target
11: end if
12: end for
13: else
14: ANCHOR(s, target) (see Section 9.3.4)
15: end if
16: sG, p← DI(G,G \G)
17: return G, sG
18: end procedure

Algorithm 7 BlindSpot Verification

1: SubGroup: subgroup algorithm
2: srefs: inserted biases
3: lrefs: modified subgroups ids
4: M : Suspect model
5: X : Input queries
6: procedure Verify
7: r ←M(X)
8: groups← SubGroup(X)
9: G, gid ← GroupBy(groups)

10: for each G, gid in G do
11: if gid ∈ lrefs then
12: rG ← r[groups==gid]

13: DG ← DI(rG, r \ rG)
14: end if
15: end for
16: for idx,DG in

⋃
DG do

17: sG ← srefs[idx]
18: ŝG, p← DG

19: accG ← Accuracy(DG, sG, ŝG)
20: end for
21: return

⋃
accG/|lrefs|

22: end procedure

121

Chapter 9. Watermarking through Fairness

9.3.5 Verification

The goal of the Verification phase is to assess the fairness bias supposedly inserted by the
model owner in order to grant or deny the ownership of the model. The Verification phase
(Algorithm 7) takes 5 parameters as inputs: the subgroup labeling algorithm used in the
Embedding phase SubGroups(), the labels of modified subgroups lrefs, the corresponding
bias sensitivities srefs inserted, the suspect model to verify M and the legitimate input
data X .

• The model owner sends inference queries X to obtain prediction results r.

• Similarly to the Embedding phase, the list of group labels for each input groups is
computed, then these are grouped by label and stored in G.

• For each group label, BlindSpot verifies if the subgroup was supposed to be modified
in the Embedding. If it is the case, then predictions results related to this particular
subgroup are extracted, in order to compute the disparate impact of the subgroup
compared to the overall data.

• For each modified subgroup, BlindSpot computes the accuracy of the watermark of
the suspect model, based on the measured disparate impact DG, the sensitivity of
the inserted bias in the Embedding phase sG and the sensitivity of the overall bias
in the training data, to the exception of G, ŝG.

• Finally, the average of the accuracy on each modified subgroup is returned.

We define the information of ownership O as:

O = {SubGroup, srefs, lrefs}

O needs to be kept secret, only known by the model owner and used in the verification
algorithm, alongside the suspect model M and legitimate data X . As opposed to
backdoor-based watermarking models the query does not need to be secret, the only
secret information is the subgroups distribution.

9.3.6 Accuracy computation

In order to perform a valid verification, we present the theoretical basis for watermark
verification through the computation of the fairness metric. We consider the training
data D, including m modified subgroups G1, G2, ..., Gm with G =

⋃
Gi. Based on O, the

model owner can deduce from D the modified subgroup distribution with Subgroup and
lrefs. According to the Embedding phase, we have the following situation:

P (Y = 1|x ∈ D) = 0.5 P (Y = 1|x ∈ Gi) = sG

sG ̸= 0.5

In this situation, sG is called the sensitivity of the bias (either close to 0 or to 1).
Furthermore, we have the following equality for a prediction Ŷ :

122

Chapter 9. Watermarking through Fairness

P (Ŷ = 1|x ∈ Gi) = sG × TPR + (1− sG)× FPR

with TPR being the true positive rate and FPR the false positive rate. In the case
where the sensitivity of the bias is close to either 0 or 1, we argue that we can make the
following assumptions:

TPR ≃ accM (Gi) FPR ≃ 1− accM (Gi)

Indeed, in the case of highly unbalanced data, there is a direct link between the
accuracy and the true/false positive rates. We obtain:

P (Ŷ = 1|x ∈ Gi) = sG × accM (Gi) + (1− sG)× (1− accM (Gi))

accM (Gi) =
1

(2si − 1)

(
P (Ŷ = 1|x ∈ Gi) + si − 1

)
By the definition of the disparate impact metric, we compute the disparate impact of

the modified subgroup Gi and we express accM (Gi) as a function of (ŝG, DI)::

DI(Gi) =
P (Ŷ = 1|x ∈ L \Gi)

P (Ŷ = 1|x ∈ Gi)

accS(DI(Gi), sG, ŝG) =
1

(2sG − 1)

(
ŝG

DI(Gi)
+ sG − 1

)
(9.1)

where sG is the sensitivity of the inserted bias, ŝG is the sensitivity of the overall
bias detected in G \G and Di

G is the disparate impact measure for Gi. The link between
the measure for bias detection (the disparate impact) and the measure for watermark
detection (the accuracy) constitutes the verification process for BlindSpot for a single
modified subgroup. We obtain the accuracy of the watermark from the disparate impact
for all modified subgroup:

accS(G) =
1

m
×

m∑
i=1

accS(Di
G) (9.2)

9.3.7 Extension to multi-class classification

The proposed method has been introduced with binary classification, but could also be
extended to k-class classification. Several modifications need to be considered:

• In the Embedding phase, in order to compute the disparate impact of a subgroup
G denoted DG, we consider the average of the disparate impact DIi for each class
label i ∈ {1, k}:

DG =
1

k

k∑
i=1

DIi(GY ,GY \GY)

123

Chapter 9. Watermarking through Fairness

• To insert the bias, instead of choosing a bias target between 0 and 1, a class label
in i ∈ {1, k} is chosen.

• In the Verification phase, the disparate impact is considered for the class label i
chosen in the Embedding phase.

The situation becomes similar to binary classification, where the goal of the Embedding
phase is to bias a given subgroup towards a chosen bias target i.

9.4 Security analysis against possible attacks

To evaluate our approach and offer a comparison with backdoor-based watermarking,
we propose a study of potential attacks against BlindSpot. In this chapter, we consider
three main attacks on Blindspot: anomaly detection attacks (see Chapter 5.6.2), forging
attacks (see Chapter 7) and model extraction attacks (see Chapter 3)

9.4.1 Anomaly detection

First, we consider the anomaly detection attack, where an adversary A after stealing the
original model, intends to identify inputs belonging to modified subgroups. Indeed, by
detecting which inputs have been modified during the training, the adversary would be
able to prevent the model owner to verify the watermark.

As opposed to backdoor-based watermarking, inputs sent to a suspect model do not
contain any ownership information, which is the reason why BlindSpot is more robust to
this type of attacks. However, if the adversary is powerful and possesses ground truth
data (Xtruth, Ytruth), we propose an optimal strategy for the adversary.

Given the stolen model Mθ and ground truth data, the goal of A is to identify wrongly
classified data and to make assumptions on the distribution of modified subgroups. Let’s
consider the following attacks:

• Step 1: Compute Ŷtruth = Mθ(Xtruth).

• Step 2: Separate wrongly classified data into two groups: the false positives FP
and the false negatives FN .

• Step 3: Elements in FP or FN are either natural (because the model is not 100%
accurate, some data are naturally wrongly classified) or artificial (due to the
watermark). The challenge for A is to distinguish natural from artificial elements.

Nevertheless, the adversary does not have several key parameters, such as the sensitiv-
ity of the inserted bias s and the natural false positive or negative rate for non-watermarked
models. Thus, the best chance of success is to randomly guess a potential distribution
between natural and artificial elements, which results in a low success rate for detecting
outliers and a failure of the adversary to prevent watermark verification.

124

Chapter 9. Watermarking through Fairness

9.4.2 Forging

A second attack is to forge a false ownership proof, as described in Chapter 7. Basically,
to claim a model watermarked with BlindSpot, the adversary needs the information of
ownership:

O =

SubGroup

srefs

lrefs

However the adversary can craft a forged information of ownership called OA which
also pass the verification step described in Section 9.3.5. The goal is to create ambiguity
when it comes for a verifying entity to decide which information of ownership (O or OA)
is the correct one. We propose the following forging attack accordingly:

We consider that the adversary has the watermarked model M and ground truth
data (Xtruth, Ytruth). We propose the following function MaliciousGroup which takes as
input an element x ∈ Xtruth:

MaliciousGroup =

0 M(x) = y

1 M(x) ̸= y and y = 0

2 M(x) ̸= y and y = 1

The adversary A can then propose the following proof of ownership:

OA =

MaliciousGroup

srefs = [1, 0]

lrefs = [1, 2]

The goal of the verifying entity is to resolve the ownership ambiguity between O and
OA. By construction, both information are valid and pass the verification step described
in Section 9.3.5. However, the core of the attack lies in the ability for the adversary to
compute MaliciousGroup.

• If A is able to perfectly compute MaliciousGroup, then A is able to train a classifier
with perfect accuracy (better than the original stolen since A is able to predict
when the original model is wrong), requiring an important volume of labeled data
and computational power, which is impractical since the adversary has limited
computational power and incompatible with his motivation to steal the original
model.

• If A computes an approximate version of MaliciousGroup, then the watermark
accuracy through OA is lower than the accuracy through O and the verifying entity
is able to solve the ambiguity.

Consequently, given the impossibility for the adversary to perfectly compute
MaliciousGroup, a rational adversary cannot implement forging attacks.

125

Chapter 9. Watermarking through Fairness

Figure 9.3: Accuracy with respect to the sensitivity and the number of modified subgroups

9.4.3 Model extraction

Finally, we consider the model extraction attack, where A use the stolen model Mθ to
train a surrogate model MS , without extracting the watermark.

The study of model extraction attacks and their efficiency against the robustness
of backdoor-based watermarking has been mentioned in Chapter 3 in the experiments
section, we evaluate a common extraction attack called KnockOff Nets [80] against
fairness-based watermarking.

9.5 Experiments

9.5.1 Setup

In the experiments, we evaluate the impact of the parameters of BlindSpot on the
watermark properties, namely the sensitivity s of the inserted bias, the number of
the modified subgroups n and the technique to insert bias (FULL or ANCHOR). Thus,
we first decide to watermark binary classifiers while investigating the impact of the
parameters on the accuracy on the main task as well on the accuracy of the watermark.

126

Chapter 9. Watermarking through Fairness

To demonstrate that BlindSpot is compatible with multi-class classifiers, we evaluate
BlindSpot on common computer vision datasets. Additionally, using non watermarked
models as baseline, we implement the backdoor-based technique by Adi et al. [22] (see
Chapter 5.3.3) as a comparison on the Fashion-MNIST and CIFAR10 datasets, to measure
the accuracy loss for watermarked models between BlindSpot and the approach developed
by Adi et al. [22].

All the simulations were carried out using Google Colab1 GPU VMs instance.

9.5.2 Datasets & Models

Binary classification: We choose a pre-trained VGG16 [199] model, pre-trained on the
Imagenet [200] dataset, to build a binary classifier performing malaria parasite detection
in thin blood smear images [201]. We follow the process in Rajaraman et. al [201], adding
a global spatial average pooling layer and a fully-connected layer. Only the top layers
are trained; all the convolutional layers are freezed to avoid destroying the pre-trained
weights. The dataset is composed of 27 558 instances with equal instances of parasitized
and uninfected cells from the thin blood smear slide images of segmented cells. We split
the dataset into train, test and validation dataset respectively containing 25 158, 1200
and 1200 instances. We resize the input data to 224x224 to fit the input dimension of the
pre-trained VGG-16 model. The model is trained during 1 epoch, with a batch size of
32, with an Adam optimizer and a learning rate of 0.001. We evaluate a Random Forest
model on the German Credit Dataset [237], containing credit profile about individuals
with 20 attributes associated to each person.

Multi-class classification: We evaluate BlindSpot on two multi-class classification
datasets: Fashion-MNIST [223], a dataset containing 70,000 Zalando’s article 28x28
grayscale images and CIFAR10 [238]. We use a Resnet18 [242] architecture, trained
during 50 epochs with a Stochastic Gradient Descent optimizer with a learning rate of
0.1.

9.5.3 Choice of SubGroup

We proposed two strategies for choosing the Subgroup function. First, we propose
SubGroup as a neural network with arbitrary number of layers and arbitrary number of
neurons by layer. The only constraint on the design of SubGroup is (i) choosing the input
layers compatible with the input data and (ii) the last layer composed of k outputs (k
representing the number of groups). The values of the weights are chosen by the model
owner and are supposed to be secret. For better secrecy of SubGroup, the model owner
could increase the number of parameters of the neural network. The advantage of this
technique is that SubGroup is unique because it is a combination of the chosen weights
and the neural network could be easily generated. However, increasing the number of
parameters is also increasing the inference time; since BlindSpot is relying heavily on
subgroups classification, it could become a bottleneck for efficient verification.

1https://colab.research.google.com/

127

Chapter 9. Watermarking through Fairness

Dataset Mode Baseline Ours (%)
Accuracy L Accuracy WM Accuracy L Accuracy WM

Credit
ANCHOR

88.2
46.7 87.7 (- 0.5) 99.1

FULL 49.7 86.9 (- 1.3) 99.1

Malaria
ANCHOR

94.5
51.65 92.2 (- 2.3) 100

FULL 47.65 92.3 (- 2.2) 100

Dataset Mode Baseline Ours (%) Backdoor [22])
L WM L WM L WM

Fashion-MNIST FULL 92.6 10.0 90.3 (- 2.2) 97.7 92.6 100
CIFAR10 FULL 88.6 10.0 87.1 (- 1.5) 100 88.6 100

Table 9.1: Experiment results, comparing accuracy on non-modified (L) and modified
(WM) subgroups.

Thus, we propose a more time-efficient technique, to choose Subgroup as a simpler
algorithm, based on specificity of the inputs (for instance, luminosity of images, distribu-
tion of the colors on specific areas on the images, etc.). Although this technique improves
the inference time per image, the unicity of the algorithm is no longer guaranteed (i.e a
different model owner could chose the same algorithm). In our experiments, we notice no
difference in terms of accuracy between those two techniques: the choice of Subgroup
depends on the constraints of the model owner in the verification time and the trade-off
between efficiency of the verification and secrecy of Subgroup. In the remaining of the
experiments, we present the results obtained with the second technique.

9.5.4 Results

To begin with, we evaluate BlindSpot on two binary classification tasks, namely the
German Credit Dataset (using a Random Forest) and on the Malaria Dataset (using a
VGG16 model). We study the impact of the sensitivity, the number of modified subgroups
and the insertion technique (FULL or ANCHOR) on the accuracy of the watermarked model
on non-modified subgroups, the accuracy of the watermarked model on modified subgroups
and the accuracy of non-watermarked model on modified subgroups. The results are
displayed in Figure 9.3.

Overall comments

For both of the tasks and for almost all setups, the accuracy of the non-watermarked
model on modified subgroup is below 50 %, whereas the accuracy of watermarked model
on these modified subgroup is close to 100 %. These results demonstrate that BlindSpot
ensures integrity (i.e the accuracy of the watermarked model on modified subgroups is
close to 100 %) and reliability (i.e the ownership of non-watermarked models cannot

128

Chapter 9. Watermarking through Fairness

be claimed), as defined in Chapter 5. According to the results displayed in Table 9.1,
the watermarked model maintains a reasonable accuracy on non-modified subgroups for
both tasks, corresponding to an average accuracy loss of respectively 0.5% and 1.3% for
ANCHOR and FULL, respectively, compared to the baseline models. Furthermore, when
BlindSpot is compared to backdoor-based techniques such as the approach developed by
Adi et al. [22], we observe similar results in terms of accuracy loss for the main task and
also for the watermark accuracy. Therefore, we proceed with a deeper analysis on the
parameters of BlindSpot to see the impact of the parameters on the overall results in the
following subsections.

Impact of sensitivity (FULL vs. ANCHOR)

To begin with, we study the impact of the sensitivity bias inserted, particularly comparing
the sensitivity insertion algorithms FULL and ANCHOR. We notice that the accuracy appears
to be more constant for ANCHOR than for FULL. Indeed, FULL completely overwrites labels
of modified subgroups as opposed to ANCHOR that generates additional data to the original
data in the modified subgroups, meaning that the resulting training dataset is more
subject to randomness for FULL than for ANCHOR. Furthermore, we notice that for high
sensitivity bias (close to 1) FULL is less subject to randomness.

Impact of the number of modified subgroups

We study the impact of the number of modified subgroup on accuracy metrics for
modified and non-modified subgroups. Except for a slight decrease in the accuracy of
the watermarked model on non-modified subgroup, the number of subgroups have no
impact on the accuracy of the models. Intuitively, we assume that increasing the number
of modified subgroups n > 20, the decrease of accuracy will continue since BlindSpot
will modify the training data more. For n < 20, the number of modified subgroups has a
negligible impact of the accuracy.

Model Extraction

To assess the robustness of BlindSpot against model extraction attacks, we implement the
model extraction attack called KnockOff nets [80] (described in Chapter 5) to attempt to
steal watermarked models trained on Fashion-MNIST and CIFAR10. We consider two
situations: (i) the adversary has limited access to the training data or (ii) the adversary
has access to the complete training data with respect to the results displayed in Table 9.2.
We compare the original watermarked model with BlindSpot and the extracted model
with KnockOff nets, particularly on the accuracy on the watermarked data.

As expected, the accuracy on the watermark is highly dependent on the training
dataset that the adversary has access. If the adversary has access to a training dataset
that does not contain any inputs from the modified subgroups, then the adversary will
successfully manage to extract the model without the watermark. We can observe this
for the extraction against Fashion-MNIST models with a limited access to the training
data in Table 9.2: the adversary extracts the watermarked model with an accuracy loss

129

Chapter 9. Watermarking through Fairness

Dataset Mode Original (%) KnockOff Nets [80] (%)
Accuracy L Accuracy WM Accuracy L Accuracy WM

Fashion-MNIST
- 50%

FULL 90.3 97.7
90.1 52.2

- 100% 90.3 96.9

CIFAR10
- 50%

FULL 87.1 100
77.5 51.5

- 100% 83.4 94.7

Table 9.2: Model extraction results

of 0.2 % on non-modified subgroup but with a 45.5 % loss on modified subgroups (i.e
the model is successfully extracted without watermark), mainly because modified data is
not in the trainnig dataset of the adversary (in the results, when the adversary has a
complete access to the training data, the watermark cannot be removed). However, we
can explain this due to the simplicity of the task of Fashion-MNIST (a small dataset is
enough for high performance). The extraction for CIFAR10 shows a stronger accuracy
loss (9.6 %) for non-modified subgroups. Thus, even if the adversary might be successful
for simple tasks, the attacks would not be successful for larger sized datasets.

9.5.5 Discussion

BlindSpot leverages fairness bias to embed watermark into a model and to facilitate the
verification process. By working with legitimate data only, several problems previously
mentioned above are theoretically solved: the number of possible verification queries is
higher because the ownership information is not contained in the inputs themselves as
opposed to backdoor-based watermarking techniques. Since the labels of the original
training data has been altered in order to introduce fairness bias, a slight loss in the
accuracy has been observed in the experiments. Furthermore, we showed that model
extraction attacks could be implemented for simple tasks. Therefore, we propose several
potential improvements for BlindSpot:

Fairness measure

In this chapter, we solely considered Disparate Impact as a fairness measure, but various
other metrics exist such as Statistical Parity or Equalized odds. With different fairness
measures, the accuracy formula described in Equation 9.1 would be modified. Depending
on what is possible to measure from the data (i.e precision, recall, etc.), some metrics
might be easier to compute than others.

130

Chapter 9. Watermarking through Fairness

Subgroup generation algorithm

As mentioned in the experiments, different subgroup generation algorithms could be
considered, depending on the constraints of the model owner in the verification time and
the trade-off between efficiency of the verification and secrecy of Subgroup. A deeper
study of the choice of Subgroup could improve the performance of BlindSpot.

Watermark Removal Attacks

In the evaluation, we did not study the impact of watermark removal attacks, i.e applying
modifications to the model through retraining, distillation, fine-tuning, etc. in the hope
of removing the watermark from the model. Although the expected impact should be
similar to backdoor-based techniques, an additional study for removal attacks would be
valuable.

9.6 Conclusion

We proposed two techniques to insert a fairness bias in a model, namely FULL and ANCHOR.
Given the development of research in the field of fairness in machine learning [243], we
assume that new approaches will be developed to insert and mitigate fairness bias in
machine learning models with perhaps more interesting trade-offs between the strength
of the inserted bias and the resulting accuracy loss.

131

Chapter 9. Watermarking through Fairness

132

Chapter 10

Conclusion & Future Work

10.1 Summary

In this thesis, we have studied security issues related to machine learning models.
Indeed, due to the investments represented by the development of such models and due to
their business critical impact on our society, various attacks have been developed against
ML systems, as shown in Chapter 2. In particular, the core of this thesis concerns model
stealing attacks, described in Chapter 3.

We identified three types of model stealing attacks: First, we observed that code
collaborative open-source platforms such as GitHub contain an important number of
credentials giving unauthorized to cloud-hosted data. Therefore, attackers can exploit
these data leaks to obtain access to the model’s architecture, weights, training script. In
Chapter 4, we presented a solution against this type of attack, by introducing a code
scanning approach, to identify data leaks while reducing the false positive detection rate
through machine learning-based methods. Two other attacks are introduced, namely
insider threats attacks, related to industrial espionage techniques, and model extraction
attacks aiming to build a surrogate of the victim model by observing its behavior on a
particular set of input queries.

In order to tackle these attacks, we presented a state-of-the-art review of the concept
of watermarking, in Chapter 5. Watermarking is the process of embedding ownership
information into the model’s parameters, in order to identify the model owner in the case
of model stealing attacks. Watermarking algorithms are divided into black-box algorithms,
where no assumptions are required on the model’s architecture or training process, and
white-box algorithms introducing additional constraints on the model’s training, such
as modifying the weights. We formalized several properties such as fidelity, robustness,
integrity, reliability or secrecy. We also proposed a review of attacks specifically designed
against watermarking, such as anomaly detection attacks in Section 5.6.2 or removal
attacks in Section 5.6.4. From this literature review, we proposed our contributions.

133

Chapter 10. Conclusion & Future Work

In Chapter 6, we extended the current state-of-the-art, by introducing watermarking
beyond image classification tasks. Indeed, we observed that the vast majority of water-
marking research has been focused towards computer vision tasks and classification tasks.
However, the diversity of real-life applications domains of machine learning implies that
other types of models, such as regression, NLP or reinforcement learning models also
need to be protected. We defined watermarking for non-classification and non-image-
related tasks for the aforementioned models, with an evaluation of attacks, introduced in
Section 5.6. Our comparative study showed that watermarking is compatible with these
models.

In Chapter 7, we investigated a particular type of watermarking attacks called forging
attacks, where an attacker could falsely claim the ownership of a model, by forging a
fake ownership proof. We studied this type of attacks in the context of model-hosting
platforms, by introducing three different watermark forging strategies and by proposing
associated countermeasures.

In order to provide production-ready tools, we proposed an open-source library called
ML Model Watermarking [24], built from algorithms defined in the previous chapters,
allowing developers and model owners to actually implement watermarking algorithms
in production, without requiring advanced theoretical knowledge about model stealing
attacks.

Lastly, we introduced our novel fairness-based watermarking algorithm called BlindSpot
in Chapter 9, designed to be robust against anomaly detection attacks (see Section 5.6.2).
Instead of relying on backdoor-based algorithms, as described in Chapter 5, we proposed
to use algorithmic bias (or fairness bias) in order to identify the ownership of the model.
This trigger-less black-box watermarking technique is particularly robust against anomaly
detection attacks.

10.2 Future Work

The problem of machine learning security, specifically of model stealing attacks, is
becoming more and more important not only in research communities but also in the
industry. Possible future research directions to investigate can be listed as below:

1. Watermarking is a new research area, therefore the associated formalism is constantly
evolving. Some papers consider watermarking under the lens of cryptography,
whereas other papers consider watermarking as a particular field inside machine
learning theory. Therefore, there is a need for unification, in terms of formalism,
notations, definitions, etc. to be more efficient in the research communication.

2. Watermarking algorithms are divided into black-box or white-box algorithms.
Even though white-box algorithms offer more possibility for researchers, black-box
algorithms present more advantages for production-ready systems. The balance
between the two needs to be studied, especially if watermarking intends to be a
major field in the security of ML models.

134

Chapter 10. Conclusion & Future Work

3. In Chapter 9, we introduce algorithmic bias as a solution to identify the ownership
of a model. Similar to backdoor-based solutions, we proposed to turn what is
mainly considered as a weakness as a strength for ownership protection. Therefore,
investigating other types of weaknesses related to ML models could lead to other
types of watermarking algorithms.

135

Chapter 10. Conclusion & Future Work

136

Appendices

137

Appendix A

Appendix

A.1 Pattern and Regex from Chapter 4

A list of 29 regular expression used in the Chapter 4 is presented in Figure A.2. In
Table A.1 and Table A.2, we present respectively the list of possible transformations
on source code and the list of programming patterns used for the data augmentation
process. We group the actions by class of actions: identity action (no modification on
the source code), actions expanding (or reducing) the input length, actions changing the
hypothetical type of an input, and actions impacting the pattern complexity.

Actions

identity

longer key
longer function
longer method
longer object

smaller key
smaller function
smaller method
smaller object

change type

more complex pattern
simpler pattern

Table A.1: Actions which could be applied to a source code extract

We present the list of features considered to compute the stylometry of an extract in
Figure A.1.

139

Appendix A. Appendix

Features
Word occurrences in the code snippet
List of keywords in the code snippet

Number of total symbols
Average length in characters

Standard Deviation length in characters
Number of spaces

Ratio between number of spaces and number of characters
Occurrences of specific symbols (parentheses, brackets, etc.)

Figure A.1: Features used to compute the stylometry vector

Figure A.2: Regular expression pattern

140

Appendix A. Appendix

Id Pattern

1 key = ”value”

2 key[’value’]

3 key object.method(”value”)

4 key.method(’value’)

5 Object.key = ’value@gmail.com’

6 key = type_1 function Password(’value’)

7 public type_1 type_2 int key = ’value’

8 key => method(’value’)

9 type_1 key = ’value’

10 Object[’key’] = ’value’

11 method.key : ”value”

12 object: {email: user.email, key: ’value’}
13 key = setter(’value’)

14 key = os.env(’value’)

15 Object.method :key => ’value’”

16 key = Object.function(’value’)

17 User.function(email: ’name@gmail.com’, key: ’value’)

18 User.when(key.method_1()).method_2(’value’)

19 key.function().method_1(’value’)

20 type_1 key = Object.function_1(’value’)

21 method(’key’=>’value’)

22 public type_1 key { method_1 { method_2 ’value’ } }
23 private type_1 function_1 (type_1 key, type_2 password=’value’)

24 protected type_1 key = method(’value’)

25 type_1 key = method_1() credentials: ’value’.function_1()

26 type_1 key = function_1(method_1(type_2 credentials = ’value’))

27 Object_1.method_1(type_1 Object_2.key = Object_1.method_2(’value’))

28 type_1 Object_1 = Object_2.method(type_2 key_1=’value_1, type_3 key_2=’value_2’)

Table A.2: Programming patterns used for the data augmentation process

141

Appendix A. Appendix

142

Bibliography

[1] OpenAI, 2022.

[2] N. Morgulis, A. Kreines, S. Mendelowitz, and Y. Weisglass, “Fooling a real car with
adversarial traffic signs,” arXiv preprint arXiv:1907.00374, 2019.

[3] E. Sarkar, H. Benkraouda, and M. Maniatakos, “Facehack: Triggering back-
doored facial recognition systems using facial characteristics,” arXiv preprint
arXiv:2006.11623, 2020.

[4] N. Frosst, N. Papernot, and G. Hinton, “Analyzing and improving representations
with the soft nearest neighbor loss,” in International conference on machine learning.
PMLR, 2019, pp. 2012–2020.

[5] Z. Peng, S. Li, G. Chen, C. Zhang, H. Zhu, and M. Xue, “Fingerprinting deep
neural networks globally via universal adversarial perturbations,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
13 430–13 439.

[6] S. Lounici, M. Rosa, C. M. Negri, S. Trabelsi, and M. Önen, “Optimizing leak
detection in open-source platforms with machine learning techniques,” in Proc. of
the 8th The International Conference on Information Systems Security and Privacy
(ICISSP), February 2021.

[7] S. Lounici, M. Njeh, O. Ermis, M. Önen, and S. Trabelsi, “Preventing watermark
forging attacks in a mlaas environment,” in SECRYPT 2021, 18th International
Conference on Security and Cryptography, 2021.

[8] ——, “Yes we can: Watermarking machine learning models beyond classification,”
in 2021 IEEE 34th Computer Security Foundations Symposium (CSF), 2021.

[9] S. Lounici, M. Önen, O. Ermis, and S. Trabelsi, “Blindspot: Watermarking through
fairness,” in Proceedings of the 2022 ACM Workshop on Information Hiding and
Multimedia Security, 2022, pp. 39–50.

[10] S. Lounici, D. Farrah, M. Önen, and S. Trabelsi, “A unified library for watermarking
machine learning in production,” in Research Report, 2022.

143

Bibliography

[11] K. Shailaja, B. Seetharamulu, and M. Jabbar, “Machine learning in healthcare: A
review,” in 2018 Second international conference on electronics, communication
and aerospace technology (ICECA). IEEE, 2018, pp. 910–914.

[12] M. F. Dixon, I. Halperin, and P. Bilokon, Machine learning in Finance. Springer,
2020, vol. 1406.

[13] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” in International Conference on
Machine Learning. PMLR, 2021, pp. 8821–8831.

[14] “The staggering cost of training sota ai models,” https://syncedreview.com/2019/
06/27/the-staggering-cost-of-training-sota-ai-models/, accessed: 2022.

[15] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,
and K. Kochut, “Text summarization techniques: a brief survey,” arXiv preprint
arXiv:1707.02268, 2017.

[16] T. S. in EU., “Trade secrets in eu.”https:// ec.europa.eu/ growth/ industry/ strategy/
intellectual-property/ trade-secrets en, 2022.

[17] “Azure machine learning services,” 2022.

[18] V. AI, “Vertex ai,” https:// cloud.google.com/ vertex-ai/ , 2022.

[19] “Amazon web services,” 2022.

[20] S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “Dawn: Dynamic adversarial
watermarking of neural networks,” in Proceedings of the 29th ACM International
Conference on Multimedia, 2021, pp. 4417–4425.

[21] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot, “Entangled
watermarks as a defense against model extraction,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 1937–1954.

[22] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning your weakness into
a strength: Watermarking deep neural networks by backdooring,” in 27th USENIX
Security Symposium, 2018, pp. 1615–1631.

[23] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and I. Molloy,
“Protecting intellectual property of deep neural networks with watermarking,” in
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, 2018, pp. 159–172.

[24] SAP, “Ml model watermarking,” https:// github.com/SAP/
ml-model-watermarking/ , 2022.

[25] O. Dictionary, “Oxford dictionary,” https:// tinyurl.com/ yh6y7ymt , 2022.

144

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://ec.europa.eu/growth/industry/strategy/intellectual-property/trade-secrets_en
https://ec.europa.eu/growth/industry/strategy/intellectual-property/trade-secrets_en
https://cloud.google.com/vertex-ai/
https://github.com/SAP/ml-model-watermarking/
https://github.com/SAP/ml-model-watermarking/
https://tinyurl.com/yh6y7ymt

Bibliography

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, 2012.

[27] F. E. Ayo, O. Folorunso, F. T. Ibharalu, and I. A. Osinuga, “Machine learning
techniques for hate speech classification of twitter data: State-of-the-art, future
challenges and research directions,” Computer Science Review, vol. 38, p. 100311,
2020.

[28] K. Arun, G. Ishan, and K. Sanmeet, “Loan approval prediction based on machine
learning approach,” IOSR J. Comput. Eng, vol. 18, no. 3, pp. 18–21, 2016.

[29] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive
survey and performance evaluation,” Electronics, vol. 9, no. 8, p. 1295, 2020.

[30] R. Bro and A. K. Smilde, “Principal component analysis,”Analytical methods, vol. 6,
no. 9, pp. 2812–2831, 2014.

[31] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou, “Recom-
mender systems,” Physics reports, vol. 519, no. 1, pp. 1–49, 2012.

[32] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deepant: A deep learning
approach for unsupervised anomaly detection in time series,” Ieee Access, vol. 7,
pp. 1991–2005, 2018.

[33] A. Nowé, P. Vrancx, and Y.-M. D. Hauwere, “Game theory and multi-agent
reinforcement learning,” in Reinforcement Learning. Springer, 2012, pp. 441–470.

[34] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[35] M. R. Segal, “Machine learning benchmarks and random forest regression,” 2004.

[36] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in
neurorobotics, vol. 7, p. 21, 2013.

[37] L. Martin, B. Muller, P. J. O. Suárez, Y. Dupont, L. Romary, É. V. de La Clergerie,
D. Seddah, and B. Sagot, “Camembert: a tasty french language model,” arXiv
preprint arXiv:1911.03894, 2019.

[38] V. Sahayak, V. Shete, and A. Pathan, “Sentiment analysis on twitter data,” Inter-
national Journal of Innovative Research in Advanced Engineering (IJIRAE), vol. 2,
no. 1, pp. 178–183, 2015.

[39] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh,
“Vqa: Visual question answering,” in Proceedings of the IEEE international confer-
ence on computer vision, 2015, pp. 2425–2433.

145

Bibliography

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[41] M. Post, “A call for clarity in reporting BLEU scores,” in Proceedings of the
Third Conference on Machine Translation: Research Papers. Belgium, Brussels:
Association for Computational Linguistics, Oct. 2018.

[42] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text
Summarization Branches Out, Barcelona, Spain, 2004, pp. 74–81.

[43] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of machine
learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[44] Ö. A. Aslan and R. Samet, “A comprehensive review on malware detection ap-
proaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[45] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in ddos attacks: trends
and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp.
2242–2270, 2015.

[46] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,” in Ethics of Data
and Analytics. Auerbach Publications, 2016, pp. 254–264.

[47] A. Khademi and V. Honavar, “Algorithmic bias in recidivism prediction: A causal
perspective (student abstract),” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 10, 2020, pp. 13 839–13 840.

[48] M. Barenstein, “Propublica’s compas data revisited,” arXiv preprint
arXiv:1906.04711, 2019.

[49] A. Brackey, “Analysis of racial bias in northpointe’s compas algorithm,” Ph.D.
dissertation, Tulane University School of Science and Engineering, 2019.

[50] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on
bias and fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54,
no. 6, pp. 1–35, 2021.

[51] P. Irolla and G. Châtel, “Demystifying the membership inference attack,” in 2019
12th CMI Conference on Cybersecurity and Privacy (CMI). IEEE, 2019, pp. 1–7.

[52] “Google ai services,” 2022.

[53] O. Sharir, B. Peleg, and Y. Shoham, “The cost of training nlp models: A concise
overview,” arXiv preprint arXiv:2004.08900, 2020.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

146

Bibliography

[55] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
P. J. Liu et al., “Exploring the limits of transfer learning with a unified text-to-text
transformer.” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67, 2020.

[56] Sentiment140, “Sentiment140,” 2022.

[57] V. V. Bochkarev, A. V. Shevlyakova, and V. D. Solovyev, “The average word
length dynamics as an indicator of cultural changes in society,” Social Evolution
and History, vol. 14, no. 2, pp. 153–175, 2015.

[58] U. B. of Statistics, “U.s bureau of statistics,” https://www.bls.gov/ oes/ tables.htm,
2022.

[59] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Transactions on Management Information
Systems (TMIS), vol. 6, no. 4, pp. 1–19, 2015.

[60] “Netflix’ 2016 annual report,” 2022.

[61] “Bytedance,” 2022.

[62] P. Jia and C. Stan, “Artificial intelligence factory, data risk, and vcs’ mediation:
The case of bytedance, an ai-powered startup,” Journal of Risk and Financial
Management, vol. 14, no. 5, p. 203, 2021.

[63] WIPO, “Trade secret,” https://www.wipo.int/ tradesecrets/ en/ , 2022.

[64] “Aws s3,” 2022.

[65] “Github,” https://www.github.com.

[66] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git? characterizing secret
leakage in public github repositories.” in NDSS, 2019.

[67] “Spectralops,” 2022.

[68] “Gitguardian,” https://www.gitguardian.com/.

[69] “Trufflehog,” https://github.com/dxa4481/truffleHog.

[70] “Uber concealed massive hack that exposed data of 57m users and drivers,” https:
//www.theguardian.com/technology/2017/nov/21/uber-data-hack-cyber-attack.

[71] W. Alex Davies, “Anthony levandowski pleads guilty to stealing waymo secrets,”
https:// tinyurl.com/2asth246/ , 2022.

[72] J. Mäyrä, S. Keski-Saari, S. Kivinen, T. Tanhuanpää, P. Hurskainen, P. Kullberg,
L. Poikolainen, A. Viinikka, S. Tuominen, T. Kumpula et al., “Tree species classifi-
cation from airborne hyperspectral and lidar data using 3d convolutional neural
networks,” Remote Sensing of Environment, vol. 256, p. 112322, 2021.

147

https://www.bls.gov/oes/tables.htm
https://www.wipo.int/tradesecrets/en/
https://www.github.com
https://www.gitguardian.com/
https://github.com/dxa4481/truffleHog
https://www.theguardian.com/technology/2017/nov/21/uber-data-hack-cyber-attack
https://www.theguardian.com/technology/2017/nov/21/uber-data-hack-cyber-attack
https://tinyurl.com/2asth246/

Bibliography

[73] “Google translate,” 2022.

[74] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine
learning models via prediction apis,” in 25th USENIX Security Symposium, 2016,
pp. 601–618.

[75] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the 2017
ACM on Asia conference on computer and communications security, 2017, pp.
506–519.

[76] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta, “Model extraction warning in
mlaas paradigm,” in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018, pp. 371–380.

[77] B. Wu, X. Yang, S. Pan, and X. Yuan, “Model extraction attacks on graph neural
networks: Taxonomy and realisation,” in Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, 2022, pp. 337–350.

[78] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction from
model explanations,” in Proceedings of the Conference on Fairness, Accountability,
and Transparency, 2019, pp. 1–9.

[79] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model extraction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 4771–4780.

[80] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing functionality of
black-box models,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 4954–4963.

[81] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[82] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques. IGI global,
2010, pp. 242–264.

[83] WIPO, “Patent law,” https://www.wipo.int/ patents/ en/ , 2022.

[84] U. S. Patent and T. Office, “United states patent and trademark office,” https:
//www.uspto.gov/web/ offices/ pac/mpep/ s2106.html , 2022.

[85] MITRE, “2019 cwe top 25 most dangerous software errors,” https://tinyurl.com/
y73xa6qk, 2019.

[86] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning,” Journal of Big Data, vol. 6, p. 60, 2019.

148

https://www.wipo.int/patents/en/
https://www.uspto.gov/web/offices/pac/mpep/s2106.html
https://www.uspto.gov/web/offices/pac/mpep/s2106.html
https://tinyurl.com/y73xa6qk
https://tinyurl.com/y73xa6qk

Bibliography

[87] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code transforms for
patch generation,” in FSE, 2017, pp. 727–739.

[88] E. Quiring, A. Maier, and K. Rieck, “Misleading authorship attribution of source
code using adversarial learning,” 2019.

[89] “S3scanner,” https://github.com/sa7mon/S3Scanner.

[90] “Github token scanning,” https://developer.github.com/partnerships/
token-scanning.

[91] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting and mitigating
secret-key leaks in source code repositories,” in MSR, 2015, pp. 396–400.

[92] X. Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the nlp techniques for
source code data preprocessing,” in EAST, 2014, pp. 32–39.

[93] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292,
1992.

[94] R. Bellman, “Dynamic programming,” 1957.

[95] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git? characterizing secret
leakage in public github repositories,” in NDSS, 2019.

[96] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor, “Why people
(don’t) use password managers effectively,” in USENIX SOUPS, 2019.

[97] G. Milka, “Anatomy of account takeover,” in Proceedings of Enigma, 2018.

[98] P. R. Center, “Americans and digital knowledge,” https://tinyurl.com/y8ftudoh,
2019.

[99] E. Bursztein, “The bleak picture of two-factor authentication adoption in the wild,”
https://tinyurl.com/yctk4aja.

[100] A. Bronshtein, “Train/test split and cross validation in python,” Understanding
Machine Learning, 2017.

[101] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood,
and M. McConley, “Automated vulnerability detection in source code using deep
representation learning,” in ICMLA, 2018.

[102] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments in
github: an empirical study,” in MSR, 2014, pp. 352–355.

[103] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian,
“The promises and perils of mining github,” in MSR, 2014.

[104] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean ghtorrent: Github
data on demand,” in MSR, 2014, pp. 384–387.

149

https://github.com/sa7mon/S3Scanner
https://developer.github.com/partnerships/token-scanning
https://developer.github.com/partnerships/token-scanning
https://tinyurl.com/y8ftudoh
https://tinyurl.com/yctk4aja

Bibliography

[105] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed
representations of code,” 2018.

[106] B. Gelman, B. Hoyle, J. Moore, J. Saxe, and D. Slater, “A language-agnostic model
for semantic source code labeling,” in MASES, 2018.

[107] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,“Codesearchnet
challenge: Evaluating the state of semantic code search,” 2019.

[108] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep learning met
code search,” 2019.

[109] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware classification
using random projections and neural networks,” in ICASSP, 2013.

[110] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro, “TESSERACT:
Eliminating experimental bias in malware classification across space and time,” in
USENIX Security Symposium, 2019, pp. 729–746.

[111] H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil, “Deep
reinforcement learning and the deadly triad,” 2018.

[112] “Gitleaks,” https://github.com/zricethezav/gitleaks.

[113] SAP, “Credential digger library,” https:// github.com/SAP/ credential-digger , 2022.

[114] ——, “Credential digger models,” https:// huggingface.co/ SAPOSS/
password-model , 2022.

[115] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang et al., “Codebert: A pre-trained model for programming and natural
languages,” arXiv preprint arXiv:2002.08155, 2020.

[116] Y. Li, H. Wang, and M. Barni, “A survey of deep neural network watermarking
techniques,” Neurocomputing, vol. 461, pp. 171–193, 2021.

[117] F. Boenisch, “A survey on model watermarking neural networks,” arXiv preprint
arXiv:2009.12153, 2020.

[118] F. Regazzoni, P. Palmieri, F. Smailbegovic, R. Cammarota, and I. Polian, “Pro-
tecting artificial intelligence ips: a survey of watermarking and fingerprinting for
machine learning,” CAAI Transactions on Intelligence Technology, vol. 6, no. 2, pp.
180–191, 2021.

[119] N. Lukas, E. Jiang, X. Li, and F. Kerschbaum, “Sok: How robust is image clas-
sification deep neural network watermarking?(extended version),” arXiv preprint
arXiv:2108.04974, 2021.

150

https://github.com/zricethezav/gitleaks
https://github.com/SAP/credential-digger
https://huggingface.co/SAPOSS/password-model
https://huggingface.co/SAPOSS/password-model

Bibliography

[120] M. Xue, Y. Zhang, J. Wang, and W. Liu, “Intellectual property protection for deep
learning models: Taxonomy, methods, attacks, and evaluations,” arXiv preprint
arXiv:2011.13564, 2020.

[121] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep
learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.

[122] R. Namba and J. Sakuma,“Robust watermarking of neural network with exponential
weighting,” in Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, 2019, pp. 228–240.

[123] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching for remote
neural network watermarking,” Neural Computing and Applications, vol. 32, no. 13,
pp. 9233–9244, 2020.

[124] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses
for deep learning,” IEEE transactions on neural networks and learning systems,
vol. 30, no. 9, pp. 2805–2824, 2019.

[125] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in 2016 IEEE European
symposium on security and privacy (EuroS&P). IEEE, 2016, pp. 372–387.

[126] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in 2017 ieee symposium on security and privacy (sp). Ieee, 2017, pp. 39–57.

[127] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs to you:
A blind-watermark based framework to protect intellectual property of dnn,” in
Proceedings of the 35th Annual Computer Security Applications Conference, 2019,
pp. 126–137.

[128] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014.

[129] J. Guo and M. Potkonjak, “Evolutionary trigger set generation for dnn black-box
watermarking,” arXiv preprint arXiv:1906.04411, 2019.

[130] Y. Liu, H. Wu, and X. Zhang, “Robust and imperceptible black-box dnn water-
marking based on fourier perturbation analysis and frequency sensitivity clustering,”
arXiv preprint arXiv:2208.03944, 2022.

[131] A. Bansal, P.-y. Chiang, M. J. Curry, R. Jain, C. Wigington, V. Manjunatha, J. P.
Dickerson, and T. Goldstein, “Certified neural network watermarks with randomized
smoothing,” in International Conference on Machine Learning. PMLR, 2022, pp.
1450–1465.

151

Bibliography

[132] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via ran-
domized smoothing,” in International Conference on Machine Learning. PMLR,
2019, pp. 1310–1320.

[133] P.-y. Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studer, and T. Goldstein, “Certified
defenses for adversarial patches,” arXiv preprint arXiv:2003.06693, 2020.

[134] X. Chen, T. Chen, Z. Zhang, and Z. Wang, “You are caught stealing my winning
lottery ticket! making a lottery ticket claim its ownership,” Advances in Neural
Information Processing Systems, vol. 34, pp. 1780–1791, 2021.

[135] L. Charette, L. Chu, Y. Chen, J. Pei, L. Wang, and Y. Zhang, “Cosine model
watermarking against ensemble distillation,” arXiv preprint arXiv:2203.02777, 2022.

[136] S. Sakazawa, E. Myodo, K. Tasaka, and H. Yanagihara, “Visual decoding of hidden
watermark in trained deep neural network,” in 2019 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR). IEEE, 2019, pp. 371–374.

[137] L. Fan, K. W. Ng, and C. S. Chan, “Rethinking deep neural network ownership
verification: Embedding passports to defeat ambiguity attacks,”Advances in neural
information processing systems, vol. 32, 2019.

[138] X. Wang, Y. Lu, X. Yan, and L. Yu, “Wet paper coding-based deep neural network
watermarking,” Sensors, vol. 22, no. 9, p. 3489, 2022.

[139] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding watermarks into
deep neural networks,” in Proceedings of the 2017 ACM on international conference
on multimedia retrieval, 2017, pp. 269–277.

[140] J. Wang, H. Wu, X. Zhang, and Y. Yao, “Watermarking in deep neural networks
via error back-propagation,” Electronic Imaging, vol. 2020, no. 4, pp. 22–1, 2020.

[141] T. Wang and F. Kerschbaum, “Attacks on digital watermarks for deep neural
networks,” in ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 2622–2626.

[142] H. Liu, Z. Weng, and Y. Zhu, “Watermarking deep neural networks with greedy
residuals.” in ICML, 2021, pp. 6978–6988.

[143] B. D. Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: A generic water-
marking framework for ip protection of deep learning models,” arXiv preprint
arXiv:1804.00750, 2018.

[144] H. Chen, B. D. Rouhani, and F. Koushanfar, “Blackmarks: Blackbox multibit
watermarking for deep neural networks,” arXiv preprint arXiv:1904.00344, 2019.

[145] G. Pagnotta, D. Hitaj, B. Hitaj, F. Perez-Cruz, and L. V. Mancini, “Tattooed:
A robust deep neural network watermarking scheme based on spread-spectrum
channel coding,” arXiv preprint arXiv:2202.06091, 2022.

152

Bibliography

[146] Y. Lao, P. Yang, W. Zhao, and P. Li, “Identification for deep neural network:
Simply adjusting few weights!” in 2022 IEEE 38th International Conference on
Data Engineering (ICDE). IEEE, 2022, pp. 1328–1341.

[147] G. Li, S. Li, Z. Qian, and X. Zhang, “Encryption resistant deep neural network
watermarking,” in ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 3064–3068.

[148] N. Lin, X. Chen, H. Lu, and X. Li, “Chaotic weights: A novel approach to protect
intellectual property of deep neural networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 40, no. 7, pp. 1327–1339,
2020.

[149] M. Alam, S. Saha, D. Mukhopadhyay, and S. Kundu, “Deep-lock: Secure autho-
rization for deep neural networks,” arXiv preprint arXiv:2008.05966, 2020.

[150] T. Wang and F. Kerschbaum, “Riga: Covert and robust white-box watermarking
of deep neural networks,” in Proceedings of the Web Conference 2021, 2021, pp.
993–1004.

[151] J. Jia, Y. Wu, A. Li, S. Ma, and Y. Liu, “Subnetwork-lossless robust watermarking
for hostile theft attacks in deep transfer learning models,” IEEE Transactions on
Dependable and Secure Computing, 2022.

[152] X. Cao, J. Jia, and N. Z. Gong, “Ipguard: Protecting intellectual property of deep
neural networks via fingerprinting the classification boundary,” in Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security, 2021,
pp. 14–25.

[153] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[154] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in Artificial intelligence safety and security. Chapman and Hall/CRC,
2018, pp. 99–112.

[155] T. Dong, H. Qiu, T. Zhang, J. Li, H. Li, and J. Lu, “Fingerprinting multi-exit deep
neural network models via inference time,” arXiv preprint arXiv:2110.03175, 2021.

[156] S. Hong, Y. Kaya, I.-V. Modoranu, and T. Dumitraş, “A panda? no, it’s a sloth:
Slowdown attacks on adaptive multi-exit neural network inference,” arXiv preprint
arXiv:2010.02432, 2020.

[157] T. Maho, T. Furon, and E. L. Merrer, “Fbi: Fingerprinting models with benign
inputs,” arXiv preprint arXiv:2208.03169, 2022.

[158] N. Lukas, Y. Zhang, and F. Kerschbaum, “Deep neural network fingerprinting by
conferrable adversarial examples,” arXiv preprint arXiv:1912.00888, 2019.

153

Bibliography

[159] K. T. Co, L. Muñoz-González, S. de Maupeou, and E. C. Lupu, “Procedural noise
adversarial examples for black-box attacks on deep convolutional networks,” in
Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 275–289.

[160] S. Wang, X. Wang, P.-Y. Chen, P. Zhao, and X. Lin, “Characteristic examples:
High-robustness, low-transferability fingerprinting of neural networks.” in IJCAI,
2021, pp. 575–582.

[161] K. Yang, R. Wang, and L. Wang, “Metafinger: Fingerprinting the deep neural
networks with meta-training,” 31st International Joint Conference on Artificial
Intelligence (IJCAI-22), 2022.

[162] J. Chen, J. Wang, T. Peng, Y. Sun, P. Cheng, S. Ji, X. Ma, B. Li, and D. Song,
“Copy, right? a testing framework for copyright protection of deep learning models,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 824–841.

[163] B. Fuglede and F. Topsoe,“Jensen-shannon divergence and hilbert space embedding,”
in International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.
IEEE, 2004, p. 31.

[164] D. Hitaj and L. V. Mancini, “Have you stolen my model? evasion attacks against
deep neural network watermarking techniques,” arXiv preprint arXiv:1809.00615,
2018.

[165] W.-A. Lin, Y. Balaji, P. Samangouei, and R. Chellappa, “Invert and defend: Model-
based approximate inversion of generative adversarial networks for secure inference,”
arXiv preprint arXiv:1911.10291, 2019.

[166] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019, pp. 707–723.

[167] F.-Q. Li, S.-L. Wang, and Y. Zhu, “Fostering the robustness of white-box deep
neural network watermarks by neuron alignment,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 3049–3053.

[168] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the state of
neural network pruning?” Proceedings of machine learning and systems, vol. 2, pp.
129–146, 2020.

[169] W. Aiken, H. Kim, S. Woo, and J. Ryoo, “Neural network laundering: Removing
black-box backdoor watermarks from deep neural networks,”Computers & Security,
vol. 106, p. 102277, 2021.

[170] D. S. Ong, C. S. Chan, K. W. Ng, L. Fan, and Q. Yang, “Protecting intellectual
property of generative adversarial networks from ambiguity attacks,” in Proceedings

154

Bibliography

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 3630–3639.

[171] R. Zhu, X. Zhang, M. Shi, and Z. Tang, “Secure neural network watermarking
protocol against forging attack,”EURASIP Journal on Image and Video Processing,
vol. 2020, no. 1, pp. 1–12, 2020.

[172] F. Li, L. Yang, S. Wang, and A. W.-C. Liew, “Leveraging multi-task learning for
umambiguous and flexible deep neural network watermarking.” in SafeAI@ AAAI,
2022.

[173] X. Chen, W. Wang, C. Bender, Y. Ding, R. Jia, B. Li, and D. Song, “Refit: a unified
watermark removal framework for deep learning systems with limited data,” in
Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security, 2021, pp. 321–335.

[174] N. Chattopadhyay, C. S. Y. Viroy, and A. Chattopadhyay, “Re-markable: Stealing
watermarked neural networks through synthesis,” in International Conference on
Security, Privacy, and Applied Cryptography Engineering. Springer, 2020, pp.
46–65.

[175] Z. Yang, H. Dang, and E.-C. Chang, “Effectiveness of distillation attack and
countermeasure on neural network watermarking,” arXiv preprint arXiv:1906.06046,
2019.

[176] Y. Yan, X. Pan, Y. Wang, M. Zhang, and M. Yang, “” and then there were
none”: Cracking white-box dnn watermarks via invariant neuron transforms,” arXiv
preprint arXiv:2205.00199, 2022.

[177] J. H. Lim, C. S. Chan, K. W. Ng, L. Fan, and Q. Yang, “Protect, show, attend and
tell: Empowering image captioning models with ownership protection,” Pattern
Recognition, vol. 122, p. 108285, 2022.

[178] V. Behzadan and W. Hsu, “Sequential triggers for watermarking of deep reinforce-
ment learning policies,” arXiv preprint arXiv:1906.01126, 2019.

[179] L. Dai, J. Mao, X. Fan, and X. Zhou, “Deephider: A multi-module and invisibility
watermarking scheme for language model,” arXiv preprint arXiv:2208.04676, 2022.

[180] F. Koushanfar, “Intellectual property (ip) protection for deep learning and federated
learning models,” in Proceedings of the 2022 ACM Workshop on Information Hiding
and Multimedia Security, 2022, pp. 5–5.

[181] B. G. Tekgul, Y. Xia, S. Marchal, and N. Asokan, “Waffle: Watermarking in
federated learning,” in 2021 40th International Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2021, pp. 310–320.

155

Bibliography

[182] B. G. Atli Tekgul and N. Asokan, “On the effectiveness of dataset watermarking,” in
Proceedings of the 2022 ACM on International Workshop on Security and Privacy
Analytics, 2022, pp. 93–99.

[183] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[184] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of neural network
representations revisited,” arXiv preprint arXiv:1905.00414, 2019.

[185] S. Ma, X. Sun, Y. Wang, and J. Lin, “Bag-of-Words as target for neural machine
translation,” 2019.

[186] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of deep q-learning,”
in Learning for Dynamics and Control. PMLR, 2020, pp. 486–489.

[187] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE transactions on neural networks and
learning systems, 2020.

[188] S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “Dawn: Dynamic adversarial
watermarking of neural networks,” arXiv preprint arXiv:1906.00830, 2019.

[189] J. Guo and M. Potkonjak, “Watermarking deep neural networks for embedded
systems,” in 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1–8.

[190] X. Chen, A. Salem, M. Backes, S. Ma, and Y. Zhang, “Badnl: Backdoor attacks
against nlp models,” in ICML 2021 Workshop on Adversarial Machine Learning,
2021.

[191] P. A. Gagniuc, Markov chains: from theory to implementation and experimentation.
John Wiley & Sons, 2017.

[192] “Filtering an image,” https://tinyurl.com/yxvtrncu, accessed: 2020-12-04.

[193] H. Abdi and L. J. Williams, “Principal component analysis,”WIREs Computational
Statistics, vol. 2, no. 4, pp. 433–459, 2010.

[194] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE transactions
on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1091–1095, 2007.

[195] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen,
C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural language
processing,” in Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Online: Association
for Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-demos.6

156

http://yann.lecun.com/exdb/mnist/
https://tinyurl.com/yxvtrncu
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Bibliography

[196] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and A. s.
Tamchyna, “Findings of the 2014 workshop on statistical machine translation,”
in Proceedings of the Ninth Workshop on Statistical Machine Translation.
Association for Computational Linguistics, 2014, pp. 12–58. [Online]. Available:
http://www.aclweb.org/anthology/W/W14/W14-3302

[197] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” in Advances in neural
information processing systems, 2017, pp. 3146–3154.

[198] “Simple exploration baseline for customer revenue,” https://tinyurl.com/y3fzx4gx,
accessed: 2020-12-08.

[199] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[200] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[201] S. Rajaraman, S. K. Antani, M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude,
S. Jaeger, and G. R. Thoma, “Pre-trained convolutional neural networks as feature
extractors toward improved malaria parasite detection in thin blood smear images,”
PeerJ, p. e4568, 2018.

[202] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” arXiv preprint arXiv:1509.06461, 2015.

[203] C. P. Carrino, M. R. Costa-jussà, and J. A. Fonollosa, “Automatic spanish trans-
lation of the squad dataset for multilingual question answering,” arXiv preprint
arXiv:1912.05200, 2019.

[204] R. Budur, Emrah an Ozçelik and T. Gungor, “Data and representation for turkish
natural language inference,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2020.

[205] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset for fine-
grained image categorization,” in First Workshop on Fine-Grained Visual Catego-
rization, IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[206] K. Chen, S. Guo, T. Zhang, X. Xie, and Y. Liu,“Stealing deep reinforcement learning
models for fun and profit,” in Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, 2021, pp. 307–319.

157

http://www.aclweb.org/anthology/W/W14/W14-3302
https://tinyurl.com/y3fzx4gx

Bibliography

[207] X. Zhao, H. Wu, and X. Zhang, “Watermarking graph neural networks by random
graphs,” in 2021 9th International Symposium on Digital Forensics and Security
(ISDFS). IEEE, 2021, pp. 1–6.

[208] J. Xu and S. Picek, “Watermarking graph neural networks based on backdoor
attacks,” arXiv preprint arXiv:2110.11024, 2021.

[209] Y. Wang and H. Wu, “Protecting the intellectual property of speaker recognition
model by black-box watermarking in the frequency domain,” Symmetry, vol. 14,
no. 3, p. 619, 2022.

[210] X. He, Q. Xu, L. Lyu, F. Wu, and C. Wang, “Protecting intellectual property of
language generation apis with lexical watermark,” AAAI, 2022.

[211] T. Zhang, H. Wu, X. Lu, and G. Sun, “Awencoder: Adversarial watermarking
pre-trained encoders in contrastive learning,” arXiv preprint arXiv:2208.03948,
2022.

[212] Amazon, “Aws marketplace,” https:// tinyurl.com/45mftf7n, 2022.

[213] HuggingFace, “Huggingface hub,” https:// huggingface.co/models, 2022.

[214] Youtube, “How content id works ?” https:// support.google.com/ youtube/ answer/
2797370?hl=en, 2022.

[215] jdhao, “How does the youtube content id system work?” https:// tinyurl.com/
yke4yynnn, 2022.

[216] E. Weinstein and P. Moreno, “Music identification with weighted finite-state trans-
ducers,” 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing, 2007.

[217] “Viacom international inc. v. youtube, inc.” 2022.

[218] TheFatRat, “How my video with 47 million views was stolen on youtube,” https:
// tinyurl.com/2p93np2u, 2022.

[219] J. Bottum, “The empire strikes bach: Algorithms and copyright laws
are stealing music from all of us,” https:// freebeacon.com/ culture/
google-youtube-algorithm-copyright/ , 2022.

[220] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny
images,” 2009.

[221] R. Cramer, I. B. Damgaard et al., “Secure multiparty computation,” 2015.

[222] T. Ryffel, E. Dufour-Sans, R. Gay, F. Bach, and D. Pointcheval, “Partially
encrypted machine learning using functional encryption,” 2019. [Online]. Available:
https://arxiv.org/pdf/1905.10214.pdf

158

https://tinyurl.com/45mftf7n
https://huggingface.co/models
https://support.google.com/youtube/answer/2797370?hl=en
https://support.google.com/youtube/answer/2797370?hl=en
https://tinyurl.com/yke4yynnn
https://tinyurl.com/yke4yynnn
https://tinyurl.com/2p93np2u
https://tinyurl.com/2p93np2u
 https://freebeacon.com/culture/google-youtube-algorithm-copyright/
 https://freebeacon.com/culture/google-youtube-algorithm-copyright/
https://arxiv.org/pdf/1905.10214.pdf

Bibliography

[223] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[224] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” pp. 215–223, 2011.

[225] J. Yang and G. Yang, “Modified convolutional neural network based on dropout
and the stochastic gradient descent optimizer,” Algorithms, 2018.

[226] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[227] “Ml security,” 2022.

[228] “Bosch ai shield,” 2022.

[229] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[230] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates,
Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[231] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz et al., “Huggingface’s transformers: State-of-the-art natural
language processing,” arXiv preprint arXiv:1910.03771, 2019.

[232] W. Yang, Y. Lin, P. Li, J. Zhou, and X. Sun, “Rethinking stealthiness of backdoor
attack against nlp models,” in Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), 2021, pp. 5543–5557.

[233] H. Jia, C. A. Choquette-Choo, and N. Papernot, “Entangled watermarks as a
defense against model extraction,” arXiv preprint arXiv:2002.12200, 2020.

[234] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring
attacks on deep neural networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[235] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

159

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Bibliography

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[236] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spacy: Industrial-
strength natural language processing in python,” doi: 10.5281/zenodo.1212303,
2020.

[237] D. Dua and C. Graff, “UCI Machine Learning Repository,” http://archive.ics.uci.
edu/ml/index.php/, 2017.

[238] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Citeseer,
2009.

[239] D. Hitaj, B. Hitaj, and L. V. Mancini, “Evasion attacks against watermarking
techniques found in mlaas systems,” in 2019 Sixth International Conference on
Software Defined Systems (SDS), 2019, pp. 55–63.

[240] M. Barni, F. Pérez-González, and B. Tondi, “Dnn watermarking: Four challenges
and a funeral,” in Proceedings of the 2021 ACM Workshop on Information Hiding
and Multimedia Security, 2021.

[241] N. Mehrabi, M. Naveed, F. Morstatter, and A. Galstyan, “Exacerbating algorithmic
bias through fairness attacks,” 2020.

[242] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

[243] S. Caton and C. Haas, “Fairness in machine learning: A survey,” arXiv preprint
arXiv:2010.04053, 2020.

160

https://www.tensorflow.org/
http://archive.ics.uci.edu/ml/index.php/
http://archive.ics.uci.edu/ml/index.php/

	Abstract
	Abrégé [Français]
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Publications
	1 Introduction
	1.1 Machine Learning lifecycle
	1.2 Security for Machine Learning
	1.3 Model Stealing
	1.4 Watermarking
	1.5 Contributions
	1.6 Organisation

	2 Machine Learning and Security Aspects
	2.1 Introduction
	2.2 Regression models
	2.3 Neural Networks
	2.3.1 Gradient Based Learning

	2.4 Natural language processing tasks
	2.4.1 CBOW representation
	2.4.2 Machine translation task

	2.5 Machine Learning lifecycle
	2.6 Security of Machine Learning
	2.6.1 Security threats
	2.6.2 Algorithmic bias threats
	2.6.3 Privacy threats

	2.7 Conclusion

	3 The problem of model stealing
	3.1 Motivation for model stealing attacks
	3.1.1 Lack of resources
	3.1.2 Potential profits
	3.1.3 Lack of knowledge
	3.1.4 Lack of time

	3.2 How to steal a model
	3.2.1 Data leaks
	3.2.2 Insider threats
	3.2.3 Model extraction attacks

	3.3 Current legal protections
	3.4 Conclusion

	4 Mitigating Data Leaks in Open-Source Platforms
	4.1 Introduction
	4.2 Overview
	4.2.1 The problem of data leaks
	4.2.2 Our approach
	4.2.3 Scenarios

	4.3 Path Model
	4.3.1 Data pre-processing for the Path model
	4.3.2 Training phase

	4.4 Snippet Models
	4.4.1 Building blocks
	4.4.2 Extractor
	4.4.3 Classifier

	4.5 Similarity model
	4.6 Experiments
	4.6.1 Regex Scanner false positive rate
	4.6.2 Models false negatives
	4.6.3 Models false positives

	4.7 Related work
	4.7.1 Research work
	4.7.2 Comparison with other credential scanning tools

	4.8 Conclusion

	5 Watermarking Machine Learning
	5.1 Digital Watermarking
	5.2 Watermarking neural networks
	5.2.1 Threat model
	5.2.2 Main functions
	5.2.3 Properties
	5.2.4 Black-box vs. White-Box

	5.3 Black-box watermarking
	5.3.1 Definitions
	5.3.2 Embedding
	5.3.3 Trigger generation
	5.3.4 Loss function update
	5.3.5 Verification

	5.4 White-box watermarking
	5.4.1 Embedding

	5.5 Fingerprinting
	5.6 Model stealing attacks against watermarking
	5.6.1 Condition of success
	5.6.2 Black-box attacks against watermarking
	5.6.3 White-box attacks against watermarking
	5.6.4 Hybrid attacks against watermarking

	5.7 Other application domains
	5.8 Conclusion

	6 Watermarking beyond Classification
	6.1 Introduction
	6.2 Reinforcement learning model
	6.3 Watermark threshold definition
	6.3.1 Verification threshold

	6.4 Trigger generation techniques
	6.4.1 Watermark noise (WMnoise)
	6.4.2 Unrelated watermark (WMunrelated)
	6.4.3 Watermark content (WMcontent)
	6.4.4 Generation process

	6.5 Attacks
	6.5.1 Heuristics-based attacks
	6.5.2 Compression attacks
	6.5.3 Voting system
	6.5.4 Removal attacks
	6.5.5 Success of the adversary

	6.6 Experimental Evaluation
	6.6.1 Baseline Watermark-free model setup
	6.6.2 Watermarking setup
	6.6.3 Attack setup
	6.6.4 Fidelity
	6.6.5 Trigger set performance
	6.6.6 Robustness to heuristics-based attacks
	6.6.7 Robustness to compression attacks
	6.6.8 Robustness to the voting attack
	6.6.9 Robustness to removal attack
	6.6.10 Summary

	6.7 Related work
	6.8 Conclusion

	7 Watermarking for MLaaS platforms
	7.1 Introduction
	7.1.1 YouTube's Content ID
	7.1.2 The case of machine learning

	7.2 Machine Learning Platform
	7.2.1 Overview
	7.2.2 Remarks
	7.2.3 Similarity measures

	7.3 Watermark forging attacks
	7.3.1 Threat Model

	7.4 Injection attack
	7.4.1 Overview
	7.4.2 Our countermeasure

	7.5 Adversarial attack
	7.5.1 Overview
	7.5.2 Our countermeasure

	7.6 Latent attack
	7.6.1 Overview

	7.7 Experiments
	7.7.1 Experimental setup
	7.7.2 Platform simulation
	7.7.3 Injection attack
	7.7.4 Latent attack

	7.8 Conclusion

	8 Watermarking in Production
	8.1 Introduction
	8.2 Assumptions
	8.3 Description
	8.3.1 Overview
	8.3.2 Algorithms
	8.3.3 Threat level

	8.4 Related Work
	8.5 Conclusion & Future work

	9 Watermarking through Fairness
	9.1 Introduction
	9.2 Problem statement
	9.2.1 Application scenarios

	9.3 BlindSpot
	9.3.1 Overview
	9.3.2 Fairness measure
	9.3.3 Embedding
	9.3.4 Inserting a bias
	9.3.5 Verification
	9.3.6 Accuracy computation
	9.3.7 Extension to multi-class classification

	9.4 Security analysis against possible attacks
	9.4.1 Anomaly detection
	9.4.2 Forging
	9.4.3 Model extraction

	9.5 Experiments
	9.5.1 Setup
	9.5.2 Datasets & Models
	9.5.3 Choice of SubGroup
	9.5.4 Results
	9.5.5 Discussion

	9.6 Conclusion

	10 Conclusion & Future Work
	10.1 Summary
	10.2 Future Work

	Appendices
	A Appendix
	A.1 Pattern and Regex from Chapter 4

