This research would not have been possible without the support from the Commission of Higher Education, Philippines, and the Embassy of France in the Philippines (CHED-PhilFrance). Thank you for your vital assistance that allowed me to study abroad. I thank the ED SPIM, and Laboratoire ImViA for the

INTRODUCTION

What makes the brain so powerful? Is it the millions of tightly packed but well-organized neurons efficiently intercommunicating via synapses? Is it its capacity to learn information, store it in memory, and retrieve it for future use? Or is it the multilayer networks executing parallel computations while systematically allocating the brain energy resources? For decades, these questions have been the subject of neuroscience investigation, and the brain continuously inspires neural engineers. As technology advances, our understanding of the brain (its components, organization, and processes) becomes ever more complex. Indeed, it is a well-grounded knowledge that neurons are the fundamental computing elements of the brain, whose cellular activities are driven by the interplay between their chemical and electrical dynamics. With the advent of neurophysiological measurement tools, neuroscientists recently introduced astrocytes, a type of glial cells, as an active component capable of executing neuron-like functions, such as information transmission and computation, but within a longer time scale and with an entirely chemical activation. This concept, hence, reshapes our perspective regarding the brain -which is now a more powerful system than ever.

As the name implies, astrocytes are star-shaped glial cells constituting 20% to 40% of the total number of cells in the brain [START_REF] Baljit | Astrocyte-neuron interactions in the striatum: insights on identity, form, and function[END_REF]. Previously, astrocytes are thought of as passive elements, directing the axons, enwrapping synapses, providing metabolic and structural support to neurons and blood vessels, and maintaining brain homeostasis by regulating extracellular molecules. Glial cells outnumber neurons, and the astrocyte-to-neuron ratio can be one depending on the brain region [START_REF] Christopher | The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[END_REF][START_REF] Bonvento | Astrocyte-neuron metabolic cooperation shapes brain activity[END_REF]. An astrocyte fills the interstitial space between neurons, allowing the astrocytic processes to cover thousands of synapses formed by hundreds of neurons passing through its territory. Therefore, the proximity of astrocytes to neurons, especially in the synapses, hints that astrocytes can be more than structural support but may also influence neuronal communication. More than 20 years ago, shortly after Araque et al. [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF] proposed the concept of tripartite synapse, where the astrocyte forms the third component in pre-to postsynaptic neuronal communication, the research on astrocyte-mediated neuronal signaling expanded considerably.

Astrocytes are electrically passive, and the signaling mechanisms are slow; howbeit, astrocytes display numerous similarities with neurons.

• Presynaptic neurotransmitters-mediated activation of metabotropic glutamate (Glu -) receptors (mGluRs) on the astrocytic process membrane activates the production of a secondary messenger called Inositol trisphosphate (IP 3 ) that triggers the IP 3 -dependent calcium (Ca 2+ ) oscillation in the cytosol [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF][START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF]. Therefore, astrocytes indirectly integrate presynaptic signals (like postsynaptic neurons) via intracellular Ca 2+ diffusion.

CHAPTER 1. INTRODUCTION

• Astrocytes are active in terms of their cytosolic Ca 2+ concentration ([Ca 2+ ]) levels, where [Ca 2+ ] above a threshold generates Glu -spikes in the extrasynaptic space [START_REF] Nedergaard | Beyond the role of glutamate as a neurotransmitter[END_REF][START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF]. In neurons, membrane potential above a certain threshold generates an action potential (AP). • The released extrasynaptic Glu -diffuses to the pre-or postsynaptic neuron membranes, creating signaling pathways -the same in neurons with its released neurotransmitters (synaptic Glu -) diffusing through the synaptic or extracellular space [START_REF] Nedergaard | Beyond the role of glutamate as a neurotransmitter[END_REF]. • If neurons communicate via the synapses (neuronal junctions), astrocytes communicate via gap junctions [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF]. • Lastly, Ca 2+ imaging techniques suggest that astrocytes form a network where cells communicate via intercellular Ca 2+ wave (ICW) propagation [START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF].

Neurons and astrocytes together form a spiking neuron-astrocyte network. In artificial intelligence (AI), spiking networks are the next-generation networks that closely mimic brain computation and whose signal transmission operates on spike events [START_REF] Pfeiffer | Deep learning with spiking neurons: opportunities and challenges[END_REF] . Neural engineers are now recognizing the computational capabilities of astrocytes and incorporating their slow dynamics into applications such as network synchrony [START_REF] Amiri | Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments[END_REF], fault tolerance [START_REF] Rastogi | On the self-repair role of astrocytes in stdp enabled unsupervised snns[END_REF], and autoencoders [START_REF] Yu Gordleeva | Modelling working memory in spiking neuron network accompanied by astrocytes[END_REF]. Though there are numerous studies on their biological characteristics and signaling mechanisms, the definite influence of astrocytes in network information transmission is not fully defined yet. In addition, research on the potential of astrocytes as computational units in neural networks, be it biological or artificial, is just beginning.

In this study, we explore the capacity of astrocytes to influence neural activities, from cellular level computation to network-level neural coding. The primary defined influence of astrocytes is their modulation of synaptic plasticity [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]; accordingly, we study the cellular elements and network formation comprising the hippocampus, the brain region responsible for memory formation and learning. Inspired by the biological neuron-astrocyte interactions, we then develop an astrocyte-mediated spiking neural network for deep learning applications. Here, we implement a bottom-up strategy, modeling the neuronal and astrocytic signaling mechanisms, the information transfer within the tripartite synapse, the signal integration leading to neuronal and astrocytic activation, and the neuron-astrocyte network communication. Specifically, we aim to 1. Model a biologically plausible tripartite synapse to identify the extent to which synaptic plasticity benefits from gliotransmission,

2.

Simulate the ICW propagation in the astrocytic network and determine the impact of astrocytic heterogeneity in neural communication,

3.

Develop a neuron-astrocyte network using simplified models capable of recognizing images using unsupervised learning, and 4. Propose an integration scheme for faster learning.

The tripartite synapse is a multivariable and complex system, and developing a biologically plausible network means that we must delve deeper into the extracellular connection between neurons and astrocytes and their intracellular processes. Chapter 2 presents the network formation in the hippocampus consisting of the so-called trisynaptic circuit and the roles of this region in memory storage and learning. Furthermore, it defines the biophysical characteristics of pyramidal neurons and their AP generating mechanisms. In parallel, it presents the computational models describing the electrical dynamics of the membrane leading to the AP activation in the axon initial segment (AIS) and its transmission along the myelinated axon through saltatory conduction. Chapter 3 is about the neural transmission from the pre-to the postsynaptic neuron. The transmission starts from the slow and fast Ca 2+ dynamics triggering the neurotransmitter release into the synaptic cleft to the synaptic integration by the postsynaptic neuron. It simultaneously presents the mathematical models describing the neuronal synaptic integration and neural coding scheme. Chapter 4 describes the biophysical characteristics and chemical signaling pathways in astrocytes and the related computational models, specifically the slow IP 3 -dependent Ca 2+ dynamics driven by the presynaptic signals and the astrocytic Glu-modulating the pre-and postsynaptic activities. As the astrocytes create a network separate from the neurons, a syncytium connected via gap junctions and communicate through ICW propagation, Chapter 4 also presents the general framework of the astrocytic network detailing the intra-and extracellular Ca 2+ diffusions within.

We illustrate and model the interconnection between the neurons and astrocytes forming the tripartite synapse based on the biological characteristics of the cellular elements in the CA3-CA1 hippocampal region in Chapter 5. This chapter consists of two parts. First, it focuses on the tripartite synapse dynamics with the stochastic neurotransmitter release process and where the astrocytic Glu-signaling pathway forms a feedback system by modulating the presynaptic release probabilities. Here, we determined the astrocytic influence on synaptic efficacy. Then, we extend the tripartite synapse communication into a neuron-astrocyte network. In this part, the astrocyte creates feedforward and feedback pathways that modulate the presynaptic release probability and the postsynaptic membrane potential. In addition, the astrocytes perform Ca 2+ integration, and ICW propagates in the astrocytic network with varying connectivity. Then, we discussed the influence of heterogeneity of the astrocytic network on the communication strength between neurons. The models were developed using MATLAB and simulated using the high-performance computing (HPC) resources of the Universit é de Bourgogne.

The simulation results in Chapter 5 indicate that astrocytes enhance neural activities depending on the astrocytic connectivity and network topology. Inspired by their biological impact, we developed an artificial spiking neuron-astrocyte network capable of recognizing features and classifying images and presented the results in Chapter 6. The handwritten digits from the standard MNIST (Modified National Institute of Standards and Technology) dataset [START_REF] Deng | The mnist database of handwritten digit images for machine learning research [best of the web[END_REF] are converted into spiking frequencies that trigger the spiking activities of the Poisson neurons in the Input layer. The synapses are densely connected with the adaptive Integrate-and Fire (AIF) neurons with later inhibitions of the First layer. Between these two neuron layers is the astrocytic layer that integrates the presynaptic signals and creates additional inputs that modulate the postsynaptic neurons. The neurons learn following the spike-timing-dependent plasticity algorithm. The classifier unit determines the input class based on the spiking patterns produced by the First layer neurons. The networks were simulated using the Brian2 simulator with the python programming language. This study is a collaboration with the Department of Computer Systems, Engineering and Telematics of the University of Extremadura, Spain, and is funded by the HPC-Europa3 Transnational Programme (INFRAIA-2016-1-730897) with the Barcelona Computing Center, which provided the computing resources. To our knowledge, this is one of the first studies on the development of spiking networks utilizing astrocytes as computational components for deep learning purposes.

Researchers suggest that learning is branch-specific rather than cell-specific. Chapter 7 shows that neurons perform more complex computations than formerly presumed. Here, we present a multilayer and multiplexer dendritic integration scheme based on the CA3 pyramidal neuron from the rat hippocampus. The dendritic abstraction integrates fast and slow inputs (i.e., from neurons and astrocytes) while considering the voltage decay and signal delay resulting from the signals travel from the synapses to the soma along the dendritic length for neural coding. Therefore, we introduce an Input-Output (IO) transformation method and present an activation function dependent on the synaptic locations and number of activated synapses. The CA3 pyramidal neuron model was developed using the NEURON simulation platform [START_REF] Nicholas | The NEURON book[END_REF]. We analyzed the spatiotemporal signals and determined the activation function parameters using the R programming language.

Lastly, we conclude our study and offer our perspectives for future research in Chapter 8. Then, Chapter 9 shows the list of our publications and communications.

BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS

2.1/ INTRODUCTION

The brain is perhaps the most complex and sophisticated system that nature has devised. It comprises billions of tightly packed cellular elements communicating and cooperating via molecular and electrical events to perform multiple functions simultaneously and efficiently. It is widely known that the cellular elements called neurons are the primary underlying component of the brain. Myriads of these neurons create subsystems that interact with each other in a complicated manner. Recently, neuroscientists introduced astrocytes, a type of glial cells, as information processing units rather than merely as structural supports, making the system even more complicated. To understand how the human brain works, we have to delve closer to the organization of its biological substrate. Then, to artificially recreate the neuron-astrocyte system, we have first to understand the fundamental biological components of the brain and their dynamics regarding information processing.

This chapter focuses on the subregion of the temporal lobe called the hippocampus. A comprehensive collection of studies on the hippocampus demonstrates its critical function in memory formation, storage, and retrieval. However, it is challenging to determine the exact capacity of the hippocampus since information and memory processes are carried out in various timescales, from milliseconds to days even. So, why are we focusing on the hippocampus? It is because of the very same reason that it can store memory, learn from past experiences, retrieve information, use them to simulate the future, and cooperate with the prefrontal cortex for decision making, which is the main principle behind artificial neural networks, for instance, in deep learning.

This chapter defines the hippocampus, its subfields and cellular components, and its importance in brain information processing and memory. It focuses on the morphology, internal structures, and molecular components of the hippocampal neurons. Then, we describe the ion transfer through voltage-gated ion channels and illustrate its electrical influence on the membrane potential. We describe the interplay between the chemical dynamics and the electrical dynamics and how they result in action potentials (APs), the primary information-carrying signal in the brain. In parallel, this chapter also includes the state-of-the-art describing the neuron processes, AP generation, and spiking mechanisms. We then tackle the AP propagation from the AIS, as it travels through the series of myelinated segments and nodes of Ranvier until reaching the synaptic axon terminals. These models are significant in further understanding of the biological properties and computational capacity of the neuron. Examples are experiments that used electrical stimulation or neural recordings from the temporal lobe. Further evidence came from cases of amnesia that resulted from damage to the temporal lobes. Before considering the studies that suggest that memory storage involves the medial temporal lobes, let's look at the anatomy of this brain region.

Anatomy of the Medial Temporal Lobe. The temporal lobe is located under the temporal bone, so named because the hair of the temples is often the fi rst to go gray with the passage of time ( tempus is Latin for "time"). The association of the temporal lobe with time was fortuitous as this region of the brain is important for recording past events. The medial portion of the temporal lobe contains the temporal neocortex, which may be a site of long-term memory storage, and a group of structures interconnected with neocortex that are critical for the formation of declarative memories.

The key structures are the hippocampus, the nearby cortical areas, and the pathways that connect these structures with other parts of the brain (Figure 24.12). As we saw in Chapter 7, the hippocampus is a folded structure situated medial to the lateral ventricle. The name means "seahorse," a resemblance you can see in Figure 24.13. Ventral to the hippocampus are three important cortical regions that surround the rhinal sulcus: the entorhinal cortex , which occupies the medial bank of the rhinal sulcus; the perirhinal cortex , which occupies the lateral bank; and the parahippocampal cortex, which lies lateral to the rhinal 

2.2/ THE HIPPOCAMPUS

The hippocampus is a critical brain structure, especially in learning, memory, and cognition [START_REF] Zeidman | Anterior hippocampus: the anatomy of perception, imagination and episodic memory[END_REF][START_REF] Tottenham | A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing[END_REF][START_REF] Maruszak | Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for alzheimer's disease diagnosis[END_REF]. The morphological structure of the hippocampus resembles a Greek mythical creature called the 'hippocampus' or a seahorse [START_REF] Bear | Neuroscience: Exploring the brain[END_REF], thus the name. It is a complex and folded structure located in the medial temporal lobe. The coronal brain slice in Figure 2.1 shows the hippocampal system divided into the hippocampal formation and the parahippocampal region, which includes the cortical regions ventral to the hippocampus (the entorhinal cortex, the perirhinal cortex, and the parahippocampal cortex) [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF]. Therefore, the hippocampus location in the temporal lobe is vital to its time-dependent memory functions [START_REF] Lee | The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective[END_REF][START_REF] Maguire | The hippocampus: a manifesto for change[END_REF] and its association with the decision-making function of the prefrontal cortex via the entorhinal cortex [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF][START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF]. In the 1960s, researchers discovered that the hippocampus can be removed from the brain of experimental animals, sliced, and still be alive in vitro [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The brain slice preparation paved the way for thousands of studies on the hippocampus (and because the hippocampal structures in the human brain also exist in monkey and rat brains [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF]), making it one of the most studied subregions of the brain [START_REF] Zeidman | Anterior hippocampus: the anatomy of perception, imagination and episodic memory[END_REF][START_REF] Bear | Neuroscience: Exploring the brain[END_REF].

2.2.1/ HIPPOCAMPAL TRISYNAPTIC CIRCUIT

The hippocampus comprises distinct and interconnected subfields: the dentate gyrus (DG) and the Cornu Ammonis (from CA1 to CA4) subfields, which form two sheets of neurons folded onto each other, and the subiculum [START_REF] Zeidman | Anterior hippocampus: the anatomy of perception, imagination and episodic memory[END_REF][START_REF] Maruszak | Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for alzheimer's disease diagnosis[END_REF][START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. Figure 2.2a displays the coronal (perpendicular to the long axis) section of the main body of the hippocampus. Note that the distribution of the subfields is nonuniform and that the connections extend along the hippocampal length [START_REF] Zeidman | Anterior hippocampus: the anatomy of perception, imagination and episodic memory[END_REF][START_REF] Moscovitch | Episodic memory and beyond: the hippocampus and neocortex in transformation[END_REF]. We focus on the arrangement in the hippocampus widely recognized as the trisynaptic circuit, which is the three sets of connections from the entorhinal cortex through the DG subfield and to the CA3 and CA1 areas [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Jinno | Aging affects new cell production in the adult hippocampus: A quantitative anatomic review[END_REF]. Because of its very simple architecture and organization, the hippocampus is an ideal place to study synaptic transmission in the mammalian brain. In the late 1960s, researchers discovered that the hippocampus (3) Signals sent by the CA3 neurons along the Schaffer collaterals drives the pyramidal neurons in the CA1 area. The image was extracted from [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. (b) To further visualize the trisynaptic circuit, here is the hippocampus histology of a neonatal kitten originally drawn by Camillo Golgi, published in 1903 [START_REF] Golgi | Sulla fina anatomia degli organi centrali del sistema nervoso[END_REF].

Researchers deduced that this unique and unidirectional trisynaptic circuit is the principal signal route in the hippocampus (Figure 2.2a) [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF][START_REF] Jinno | Aging affects new cell production in the adult hippocampus: A quantitative anatomic review[END_REF]. Here, neurons of the entorhinal cortex send information to the hippocampus through the perforant path that connects to the DG. The DG mossy fibers then transmit the information to the CA3 cells. When activated, signals from the CA3 Schaffer collaterals can either exit the hippocampus to the fornix or enter the CA1 region. The subiculum and the CA1 neurons then feed the signal back to the entorhinal cortex, forming a loop [START_REF] Zeidman | Anterior hippocampus: the anatomy of perception, imagination and episodic memory[END_REF][START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF][START_REF] Jinno | Aging affects new cell production in the adult hippocampus: A quantitative anatomic review[END_REF][START_REF] Austin R Graves | Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors[END_REF].

Camillo Golgi drew the histology of the hippocampus based on the silver chromate staining of a neonatal kitten hippocampal section, showing the neuronal distributions and morphology in the subfields (Figure 2.2b) [START_REF] Golgi | Sulla fina anatomia degli organi centrali del sistema nervoso[END_REF]. This histology helps visualize the neuronal connectivity in the trisynaptic circuit. The three subfields in the trisynaptic circuit perform distinctive functions: granule cells of DG for pattern separation, pyramidal CA3 neurons for pattern completion, and pyramidal CA1 neurons for input integration [START_REF] Zeidman | Anterior hippocampus: the anatomy of perception, imagination and episodic memory[END_REF][START_REF] Moscovitch | Episodic memory and beyond: the hippocampus and neocortex in transformation[END_REF][START_REF] Jinno | Aging affects new cell production in the adult hippocampus: A quantitative anatomic review[END_REF]. Therefore, the simple neural architecture in the hippocampus of the mammalian brain is suitable for studies on information processing [START_REF] Bear | Neuroscience: Exploring the brain[END_REF].

2.2.2/ THE ROLE OF THE HIPPOCAMPUS IN MEMORY AND LEARNING

As many research suggests, memory functions and learning processes, such as episodic and autobiographical memory, contextual and associative memory, recollection, encoding, and retention, are associated with the hippocampus [START_REF] Tottenham | A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing[END_REF][START_REF] Maruszak | Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for alzheimer's disease diagnosis[END_REF][START_REF] Genon | How to characterize the function of a brain region[END_REF]. The hippocampus first learns and temporarily stores the incoming sensory signals and then guides the activated cortical regions during "slow learning" [START_REF] Larry R Squire | Memory consolidation[END_REF]. However, the interplay of memory and learning includes an extensive range of challenging tasks to categorize in that the hippocampal subfields perform heterogeneously distributed tasks. Consequently, it is quite challenging to determine the exact function of the hippocampus. For an overall view of its capacity, we take note of the following fundamental functions.

CHAPTER 2. BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS

Memory Consolidation. Memory consolidation is the process in which the hippocampus strengthens the newly-established, temporary, and unstable memory into a stable, long-lasting memory that is insusceptible to interference (but can still be modified and updated) [START_REF] Larry R Squire | Memory consolidation[END_REF][START_REF] Girardeau | Hippocampal ripples and memory consolidation[END_REF]. The hippocampus stores temporary information until it can be combined with preexisting memory traces in the cortical region for long-term storage until the cortical regions become independent of the hippocampus [START_REF] Larry R Squire | Memory consolidation[END_REF][START_REF] Niels C Rattenborg | Hippocampal memory consolidation during sleep: a comparison of mammals and birds[END_REF].

Spatial Learning. The hippocampus supports spatial memory and spatial awareness by encoding a cognitive map of space and location of objects for spatial navigation, spatial discrimination, and scene imagination [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Genon | How to characterize the function of a brain region[END_REF][START_REF] Babichev | A topological model of the hippocampal cell assembly network[END_REF]. The notion of spatial learning and memory started with discovering 'place cells' in rats that spike when the rats are in a specific position in space [START_REF] Girardeau | Hippocampal ripples and memory consolidation[END_REF][START_REF] Babichev | A topological model of the hippocampal cell assembly network[END_REF][START_REF] Chris | The hippocampus and memory: insights from spatial processing[END_REF]. Familiarization with the location stabilizes the memory for long-term storage [START_REF] Chris | The hippocampus and memory: insights from spatial processing[END_REF].

Memory Retrieval. The length of time a memory remains in the hippocampus is still unclear because memory stored in the hippocampus can last from seconds to days [START_REF] Bear | Neuroscience: Exploring the brain[END_REF].

Neuroimaging works showed that the hippocampus aids with the retrieval of memory representation and with future simulation [START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF][START_REF] Rose | The hippocampus and imagining the future: where do we stand?[END_REF]. During retrieval, the hippocampus reactivates the specific memory representation by reconstructing cortical activity patterns observed while learning [START_REF] Kazumasa Z Tanaka | Cortical representations are reinstated by the hippocampus during memory retrieval[END_REF][START_REF] Eichenbaum | Interplay of hippocampus and prefrontal cortex in memory[END_REF], where the retrieved patterns help imagine the future and decision-making [START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF][START_REF] Margaret F Carr | Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval[END_REF].

2.2.3/ CELLULAR ELEMENTS IN THE HIPPOCAMPUS

How many neurons and astrocytes are there in the human brain exactly? Here is one of the most enduring questions in neuroscience [START_REF] Verkhratsky | The history of the decline and fall of the glial numbers legend[END_REF]. Neurons and astrocytes, occupying more than 90% of the functional tissue of the brain, are distributed heterogeneously and interacts with each other via a chemical release [START_REF] Diek W Wheeler | Hippocampome. org: a knowledge base of neuron types in the rodent hippocampus[END_REF][START_REF] Srdjan D Antic | New insights on neuron and astrocyte function from cutting-edge optical techniques[END_REF]. In the human brain, the neurons outnumber the astrocytes slightly with a regional difference, in that there are ∼80 billion neurons and ∼60 billion glial cells (20-40% are astrocytes) [START_REF] Verkhratsky | The history of the decline and fall of the glial numbers legend[END_REF]. These cells are dominant in the cortex and hippocampus [START_REF] Herculano-Houzel | The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution[END_REF]. Therefore, the astrocyte-neuron ratio is comparable with the ratio in the mouse hippocampus, where the overall reported astrocyte to neuron ratio is 0.68 [START_REF] Keller | Cell densities in the mouse brain: a systematic review[END_REF]. Cell bodies in the hippocampal CA strata are morphologically nonuniform though their composition per stratum is similar [START_REF] Keller | Cell densities in the mouse brain: a systematic review[END_REF]. It is essential to identify these cells in the brain region and their cell density and connectivity to understand the computational processes and capabilities of the hippocampus and reconstruct and simulate the neuron-astrocyte network [START_REF] Diek W Wheeler | Hippocampome. org: a knowledge base of neuron types in the rodent hippocampus[END_REF][START_REF] Keller | Cell densities in the mouse brain: a systematic review[END_REF].

2.3/ FUNDAMENTAL BIOLOGICAL STRUCTURE OF A NEURON

Neurons are the fundamental computational and processing units of the central nervous system (CNS). Their cell densities are higher in the hippocampus and the neocortex compared to other brain regions [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF]. In the hippocampus, most of the neurons are of the pyramidal neuronal type [START_REF] Austin R Graves | Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors[END_REF][START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. Though they share principal functional properties, these pyramidal neurons vary in the cellular architecture and biophysical structure [START_REF] Austin R Graves | Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors[END_REF][START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF]. The distinct properties enable the pyramidal neurons to perform specialized functions within the neural network [START_REF] Austin R Graves | Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors[END_REF]. A neuron has two main parts: the soma and the neurites. The central region (cell body) called the soma (plural: somata) contains the nucleus of the neuron [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The soma of the pyramidal neuron type is pyramidal in shape, as the name implies [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF][START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. Pyramidal neurons have soma ranging from 20 to 120 µm in diameter [START_REF] Johns | Clinical Neuroscience E-Book[END_REF]. Then, the neurites are the thin tubes emerging from and radiating away from the soma. The pyramidal neuron is a bipolar cell, as shown by the opposite directions of its neurites [START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. The axon radiates from the base of the soma while the dendrites develop towards the other direction [START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. The axon comprises three parts: the axon hillock, the axon proper, and the axon terminals [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The axon hillock, also called the axon initial segment (AIS), emerging from the base of the cell body, forms the first axon segment and connects the axon proper to the soma [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Benavides-Piccione | Differential structure of hippocampal ca1 pyramidal neurons in the human and mouse[END_REF]. The axon proper is a long tube covered with periodic myelin segments.

Then, the nodes of Ranvier are the axonal section in between the myelinated segments.

Along the axon proper, branches called axon collaterals may appear [START_REF] Genon | How to characterize the function of a brain region[END_REF][START_REF] Benavides-Piccione | Differential structure of hippocampal ca1 pyramidal neurons in the human and mouse[END_REF]. They can spread and reach other neurons [START_REF] Genon | How to characterize the function of a brain region[END_REF], or in the case of recurrent collaterals, return and communicate with the cell itself [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. At the unmyelinated branches at the end of the axon (terminal arbors) are protrusions that resemble swollen disks called the axon terminals or boutons, which serve as the input side of the synapse [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The synapse is the site of transmission between the axon of one neuron and the dendrites of the neighboring neuron [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The dendritic arborizations are collectively called a dendritic tree, and each branch a dendritic branch [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. There are two dendrites divisions that characterize a pyramidal neuron, the basal dendrites, which are the short and fine dendritic structures directed downward from the base of the soma, and the apical dendrites projecting upward from the cell body [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF]. There are also protrusions on the dendritic branch called dendritic spines, where synaptic input enters the dendritic length [START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF].

No two neurons are the same, even though they have the same cell type and belong to the same hippocampal subfield. Neurons are heterogeneous due to the variations in cell development and maturation, variations in input signals, and changes in the cell environment [START_REF] Zeng | Neuronal cell-type classification: challenges, opportunities and the path forward[END_REF]. Pyramidal neurons in CA1 and CA3 subfields are diverse and substantially varied in their morphology. However, their dendrites bifurcate extensively in the distal apical region to form the apical tuft [START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. Figure 2.4 are the Golgi stains of the neurons from the hippocampus of rats. and the surrounding oligomeric A𝛽 are considered as trigger signals to induce dendritic spine loss and synapse dysfunction in AD. A𝛽 assemblies are synaptotoxic: they can be bound to axons and membrane proteins, resulting in Ca 2+ influx into the neurons [START_REF] Zeng | Neuronal cell-type classification: challenges, opportunities and the path forward[END_REF]. The synapse and dendritic spine loss are strongly correlated with cognitive impairment in AD, and A𝛽 has been shown to target synapses [START_REF] Verkhratsky | The history of the decline and fall of the glial numbers legend[END_REF][START_REF] Leuner | Structural plasticity and hippocampal function[END_REF].

Numerous studies have reported significant changes after IHC administration of various types and aggregation forms of A𝛽 [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF][START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF][START_REF] Golgi | Sulla fina anatomia degli organi centrali del sistema nervoso[END_REF][START_REF] Moscovitch | Episodic memory and beyond: the hippocampus and neocortex in transformation[END_REF][START_REF] Jinno | Aging affects new cell production in the adult hippocampus: A quantitative anatomic review[END_REF][START_REF] Austin R Graves | Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors[END_REF][START_REF] Genon | How to characterize the function of a brain region[END_REF][START_REF] Larry R Squire | Memory consolidation[END_REF][START_REF] Girardeau | Hippocampal ripples and memory consolidation[END_REF][START_REF] Niels C Rattenborg | Hippocampal memory consolidation during sleep: a comparison of mammals and birds[END_REF][START_REF] Babichev | A topological model of the hippocampal cell assembly network[END_REF][START_REF] Chris | The hippocampus and memory: insights from spatial processing[END_REF][START_REF] Rose | The hippocampus and imagining the future: where do we stand?[END_REF][START_REF] Kazumasa Z Tanaka | Cortical representations are reinstated by the hippocampus during memory retrieval[END_REF][START_REF] Eichenbaum | Interplay of hippocampus and prefrontal cortex in memory[END_REF]. Some studies reported that synapse dysfunction was triggered by A𝛽 oligomers [START_REF] Zeng | Neuronal cell-type classification: challenges, opportunities and the path forward[END_REF][START_REF] Jl Pawluski | Pregnancy or stress decrease complexity of ca3 pyramidal neurons in the hippocampus of adult female rats[END_REF]. Other studies proposed fA𝛽 deposits as causative factor for the local synaptic abnormalities since decrease of dendritic spine density was detected nearby the A𝛽 plaques [START_REF] Rastogi | On the self-repair role of astrocytes in stdp enabled unsupervised snns[END_REF][START_REF] Őke Borb Ély | Simultaneous changes of spatial memory and spine density after intrahippocampal administration of fibrillar aβ1-42 to the rat brain[END_REF][START_REF] Yang | β-asarone rescues pb-induced impairments of spatial memory and synaptogenesis in rats[END_REF][START_REF] Meijering | Neuron tracing in perspective[END_REF]. However, it has not been clear how the nondiffusible, immobile A𝛽 fibrils interact with neuronal structure. As of today, senile plaques are considered mostly as nontoxic "outburns" sequestering toxic A𝛽 species to nontoxic fibrils. However, bilateral IHC injection of fA𝛽 1-42 results in reduction of neuronal density and increases of glial fibrillary acidic protein intensity, with simultaneous appearance of numerous A𝛽 deposits and behavioural performance deficits [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF][START_REF] Golgi | Sulla fina anatomia degli organi centrali del sistema nervoso[END_REF]. IHC administration of shorter form of A𝛽 (A𝛽 1-40 ) results in decrease dendritic spines in hippocampus [START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF][START_REF] Jinno | Aging affects new cell production in the adult hippocampus: A quantitative anatomic review[END_REF].

Our current findings demonstrated that synth simultaneously decreased spatial learning ability m MWM (Figure 2(a)) and reduced dendritic spin the rat hippocampus CA1 region (Figures 456). to the literature data, the synthetic fA𝛽 assemblie a surrounding of A𝛽 oligomers [START_REF] Lodish | Molecular cell biology 4th edition[END_REF], in accordan law of chemical equilibriums. After fA𝛽 injection A𝛽 oligomers could be formed in the rat hippoc initiate dendritic spine density loss. The measure in HC CA1 region may explain the decreased lear since the presence and maturation of dendritic sp CA1 pyramidal cells are necessary to evolve the sp ory unit [START_REF] Grace | Endoplasmic reticulum ca2+ handling in excitable cells in health and disease[END_REF]. It is generally accepted that misfold initiate dendritic spine reduction and memory and 𝛼-synuclein oligomers decrease the amount proteins and vesicles and via tau hyperphos initiate the loss of dendritic spines [START_REF] Park | The endoplasmic reticulum as an integrator of multiple dendritic events[END_REF][START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF]. The of dendritic spines leads to progressive neocortica in a mouse model of Huntington's disease [START_REF] Marin | The neuronal membrane as a key factor in neurodegeneration[END_REF]. support the theory that decreasing spine density [START_REF] Jl Pawluski | Pregnancy or stress decrease complexity of ca3 pyramidal neurons in the hippocampus of adult female rats[END_REF] and (b) CA1 [START_REF] Őke Borb Ély | Simultaneous changes of spatial memory and spine density after intrahippocampal administration of fibrillar aβ1-42 to the rat brain[END_REF] pyramidal neurons and (c) DG granule [START_REF] Yang | β-asarone rescues pb-induced impairments of spatial memory and synaptogenesis in rats[END_REF] cell in rat hippocampus. Even though neurons belong in the same subfields, their morphology is diverse and distinct. Granule cells are smaller than the pyramidal neurons.

dal neurons in the CA3 and CA1 subfields, respectively. Furthermore, in the DG subfield, the prominent cell type is the granule cell [START_REF] Leuner | Structural plasticity and hippocampal function[END_REF]. Granule cells shown in Figure 2.4c are multipolar neurons with short axons and are smaller than pyramidal cells with a cell body of less than 20 µm in diameter [START_REF] Johns | Clinical Neuroscience E-Book[END_REF]. There is a small number of dendrites, also covered with spines, protruding from their oval-shaped soma [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF].

The soma contains most of the organelles found in other cell types necessary for the maintenance and neuronal functions [START_REF] Johns | Clinical Neuroscience E-Book[END_REF][START_REF] Meijering | Neuron tracing in perspective[END_REF], most proteins and membrane synthesis as well as gene transcription [START_REF] Johns | Clinical Neuroscience E-Book[END_REF][START_REF] Lodish | Molecular cell biology 4th edition[END_REF]. The neuronal membrane is a 5nm thick barrier, made up of phospholipid bilayer and associated proteins, that encloses the internal cellular structures and separates them from the substances floating in the extracellular fluid bathing the neuron [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Lodish | Molecular cell biology 4th edition[END_REF]. The neuronal membrane also plays a crucial role in information processing and signaling between neurons, which we later discuss in detail.

Inside the neuronal membrane of the cell body are the nucleus and the cytoplasm. The cytoplasm is a collective term for everything, including the organelles, the cytosol (fluid), and excluding the nucleus, enclosed by the neuronal membrane. Synthesized proteins and membranes are packaged inside the vesicles and transported along the axon via the microtubules [START_REF] Lodish | Molecular cell biology 4th edition[END_REF]. Microtubules are tubular polymeric proteins 24 nm in diameter and up to 1mm in length and extend along the axonal length (except the terminals) [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Johns | Clinical Neuroscience E-Book[END_REF].

Another organelle crucial to signaling and information processing is the endoplasmic reticulum (ER). The ER is a membrane-bound organelle that originates as part of the nuclear envelope [START_REF] Grace | Endoplasmic reticulum ca2+ handling in excitable cells in health and disease[END_REF]. The ER forms a network through the neuron by expanding and morphing into an intricate reticulum (another term for the web-or net-like structure) [START_REF] Grace | Endoplasmic reticulum ca2+ handling in excitable cells in health and disease[END_REF].

The ER forms vesicles that traverse and access the long axons, apical and distal dendrites, as well as the synapses [START_REF] Grace | Endoplasmic reticulum ca2+ handling in excitable cells in health and disease[END_REF][START_REF] Park | The endoplasmic reticulum as an integrator of multiple dendritic events[END_REF]. There are two types of ER in the neuron: the rough ER, which is constituted with membrane-associated ribosomes and engaged with protein synthesis, and the smooth ER, which lacks ribosomes and plays a role in lipid and steroid biosynthesis [START_REF] Grace | Endoplasmic reticulum ca2+ handling in excitable cells in health and disease[END_REF]. Of these two types of ER, the smooth ER can reach the axon and dendrites. It plays a principal function in Ca 2+ signaling, especially in regulating neuronal excitability and synaptic plasticity [START_REF] Grace | Endoplasmic reticulum ca2+ handling in excitable cells in health and disease[END_REF][START_REF] Park | The endoplasmic reticulum as an integrator of multiple dendritic events[END_REF].

2.4/ THE NEURONAL MEMBRANE

The phospholipid bilayer neuronal membrane separates the extracellular liquid from the intracellular environment and plays a significant role in neuron signaling [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Marin | The neuronal membrane as a key factor in neurodegeneration[END_REF]. In nonsynaptic areas, the neuronal membrane contains pore-forming macromolecular proteins called ion channels that control the passage of ions from the extra-to the intracellular area of the neuron, or vice versa [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF]. Ionic concentration fluctuation between the inside and outside of the neuron results in fast voltage changes across the neuron membrane. Ion channels can be potential-dependent, in the case of voltage-gated channels controlled by transmembrabe voltage, or ligand-dependent, in the case of receptors in the synaptic areas which are activated by signal molecules.

2.4.1/ ION CHANNELS

Ion channels are protein assemblies that allow selective passage of ionic current in and out of the cell and control the membrane permeability for corresponding ion transfer [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Bhadra | Physiological principles of electrical stimulation[END_REF]. At any given moment, an ion channel can occupy one of the multiple possible discrete states: closed-activable, open (conducting, activated) that permits ion to flow, or a closed (non-conducting, inactivable) state that prevents ion passage [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Bhadra | Physiological principles of electrical stimulation[END_REF][START_REF] Marder | Modeling stability in neuron and network function: the role of activity in homeostasis[END_REF]. The stochastic transition between states occurs <1 µs and is driven by thermal agitation [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF].

For voltage-gated channels (VGCs) or potential-dependent channels, the transition probability between states is dependent on the membrane potential [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF]. These channels consist of primary voltage sensing subunits and auxiliary subunits responsible for controlling membrane targeting and kinetics of activation and inactivation of the channel [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF].

Protein-protein interactions along the somatodendritic and axonal domains create specific ion channel distribution and density in the cell membrane, defining the electrophysiological properties and unique functioning of different subtypes of neurons [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Almog | Characterization of voltage-gated ca 2+ conductances in layer 5 neocortical pyramidal neurons from rats[END_REF]. Pyramidal neuron domains express a wide variety of voltage-gated channels, such as sodium (Na v ), potassium (K v ), and calcium (Ca v ) channels that contain a selectivity filter for each corresponding Na + , K + , and Ca 2+ ions, as well as hyperpolarization-activated cyclic nucleotidegated (HCN) channels [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Almog | Characterization of voltage-gated ca 2+ conductances in layer 5 neocortical pyramidal neurons from rats[END_REF]. Ion selectivity means that a specific channel attracts its corresponding ions, while other ions cannot pass through the channel [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF].

Sodium channels. The most abundant sodium channels in the hippocampal pyramidal neurons are the Na v 1.1, Na v 1.2, and Na v 1.6 generating different types of depolarizing currents critical for AP generation: fast activation or transient (I NaT ), persistent (I NaP ), and resurgent (I NaR ) [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Katz | Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons[END_REF]. Voltage-gated sodium channels in the AIS primarily generate I NaT , which is responsible for developing the upstroke of the AP [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF]. Subthreshold I NaP generated in the AIS increases neuronal excitability, while I NaR following AP contributes to after-depolarization and promotes repetitive firing, except in CA3 pyramidal cells where resurgent Na + channels are nonexistent [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Indira | Resurgent sodium current and action potential formation in dissociated cerebellar purkinje neurons[END_REF]. In hippocampal pyramidal cell dendrites, sodium channel, distributed uniformly in the apical trunk, support AP backpropagation, nonlinear synaptic integration, and dendritic Na + spike generation [START_REF] Lorincz | Molecular identity of dendritic voltage-gated sodium channels[END_REF][START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF].

Calcium channels. High-voltage activated calcium channels comprise L-, N-, P/Q, and R-type channels, while low-voltage activated calcium channels include T-type channels [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF]. The distal dendrites of CA1 pyramidal neurons have high densities of T-and Rtype Ca v s, whereas, in apical dendrites, there is an abundance of L-and N-type channels [START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF]. Ca v channels play a vital role in neuronal signaling by transforming electrical signals into changes in the cytoplasmic [Ca 2+ ] [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Almog | Characterization of voltage-gated ca 2+ conductances in layer 5 neocortical pyramidal neurons from rats[END_REF]. During depolarization, Ca v channels are activated, causing the channels to conduct Ca 2+ into the cytoplasm, thus raising the intracellular [Ca 2+ ]. The influx of Ca 2+ , therefore, modulates the cellular processes such as regulation of Ca 2+ -dependent channels, triggers neurotransmitter release, and stimulates intracellular signaling enzymes and gene expression. Ca v channels also influence the AP generation, shape, and firing patterns.

Potassium channels. Potassium channels are classified into different families: voltagegated (K v ), calcium-activated (K Ca ), inward-rectifying (K ir ), and 2-pore (K 2P ) channels [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF].

Transient rapidly activating and inactivating subthreshold current (I A ) carried by K v 4 and K v 3 channels delay AP initiation and slows down the firing frequency [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF]. Overall, K v channels regulate neuronal excitability by controlling the AP initiation threshold, the AP repolarization, and limiting neuronal firing frequency. On the other hand, Ca 2+activated potassium channels (K Ca ) have Ca 2+ sensors that activate potassium channels in response to Ca 2+ influx. In CA1 pyramidal neurons, A-type K + channels are distributed somatodendritically in an increasing manner, while in other neurons such as layer V pyramidal cells, these channels are distributed uniformly [START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF]. The increasing somatodendritic distribution of these channels create a 'shock absorber' that limits the spread of backpropagating AP.

HCN channels. HCN channels belong to the Kv channel superfamily [START_REF] Galen | Insights into the molecular mechanism for hyperpolarization-dependent activation of hcn channels[END_REF]. However, these channels provide specializations that make them crucial in neuronal excitability. HCN channels include HCN1-4 subunits, in which HCN1 and HCN2 are the most abundant in the CNS [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF]. HCN channels are partially open at rest and get activated during membrane hyperpolarization, in contrast with most voltage-gated channels activated by membrane depolarization [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF][START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF][START_REF] Galen | Insights into the molecular mechanism for hyperpolarization-dependent activation of hcn channels[END_REF]. The depolarizing current I h counteracts both membrane hyperpolarization and depolarization [START_REF] Nicholas | Differential distribution of voltagegated ion channels in cortical neurons: implications for epilepsy[END_REF].

2.4.2/ MEMBRANE POTENTIAL AND ACTION POTENTIAL

The membrane potential is fundamental in neuron signaling and brain functions [START_REF] Carl | Whole-cell recording of neuronal membrane potential during behavior[END_REF]. The ionic charges in the extra-and intracellular fluid results in a potential difference in the impermeable membrane separating them [START_REF] Mep Didier | Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level[END_REF]. Electrical signaling is mediated by the rapid changes in the membrane potential through ionic charge redistribution regulated by the opening and closing of ion channels [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Mep Didier | Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level[END_REF]. In neuronal signaling, the principal carrier of information is the sequence of electrical signals called action potentials (APs) (Figure 2.5), usually initiated in the AIS and distributed to diverse neurons via synapses [START_REF] Carl | Whole-cell recording of neuronal membrane potential during behavior[END_REF][START_REF] Yi | Morphology controls how hippocampal ca1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study[END_REF]. The temporal pattern of AP firing thus forms the basis of neural coding [START_REF] Carl | Whole-cell recording of neuronal membrane potential during behavior[END_REF].

As mentioned earlier, VGCs plays a vital role in regulating neuronal excitability, the ability of the neuron to create rapid increase and decrease in membrane potential in response to a stimulus. Figure 2.6 shows the transition between states of the VGCs and the flow of ions in response to the membrane potential increase. At rest, when the neuron does not receive stimulus from synaptic inputs, VGCs are closed, and the membrane potential is measured to be -70 mV (Figure 2.5) due to the concentration gradient between the An excitable neuron has two critical membrane potential levels: the resting potential and threshold potential. At rest, the ionic strength between the extra-and intracellular area sets the membrane potential to -70 mV. When a stimulus reaches a neuron compartment, it depolarizes the membrane, and if this stimulus is strong enough to produce a membrane potential higher than the threshold, a rapid increase of membrane potential to 40 mV occurs; thus, an action potential is generated. After reaching the AP peak, the membrane potential rapidly decreases during repolarization. During the refractory period, the voltage-gated channels are inactive. However, there are leakage channels and some K v channels that are still open, causing a hyperpolarization until the membrane potential returns to the resting state.

Na + and K + ions in the intra-and extracellular spaces (Figure 2.6a) [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Stephen | Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies[END_REF][START_REF] Enderle | Bioelectric phenomena[END_REF]. Depolarization begins in the arrival of a stimulus, which opens Na v channels allowing Na + ions to penetrate the intracellular space making the membrane less positively charged (Figure 2.6b) [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Stephen | Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies[END_REF][START_REF] Enderle | Bioelectric phenomena[END_REF]. There is a greater influx of Na + ions while a lesser efflux of K + ions resulting in a more positive membrane potential [START_REF] Bhadra | Physiological principles of electrical stimulation[END_REF]. The influx of Na + further augments the membrane depolarization, consequently increasing the opening probability of other Na v channels [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF]. The further increase of membrane potential above a critical threshold generates an action potential [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Carl | Whole-cell recording of neuronal membrane potential during behavior[END_REF]. The membrane permeability for Na + becomes maximum, and the membrane potential for Na + reaches equilibrium at +40 mV (Figure 2.6c). At this point, a further increase in depolarization inactivates the Na v channels and augments the opening probability of K v channels [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF][START_REF] Stephen | Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies[END_REF]. The neuron becomes more negatively charged as the K v ions leave the cytosol until further augmentation of repolarization inactivates the K v channels [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF]. The point wherein the membrane potential is more negative than the resting potential is called hyperpolarization [START_REF] Enderle | Bioelectric phenomena[END_REF]. Both channels, Na v and K v , require a recovery period before the next activation. During the refractory period, VGCs are closed; however, some leakage channels are still open, allowing the flow of ions until the membrane potential recovers back to the resting potential, at -70 mV [START_REF] Stephen | Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies[END_REF]. Fundamentally, the neuron loads Na + ions during depolarization and loses K + ions during repolarization. The proportion of intracellular K + ions and extracellular Na + ions is adequate to generate a sequence of thousands of APs [START_REF] Sandler | Neural Cell Behavior and Fuzzy Logic: The Being of Neural Cells and Mathematics of Feeling[END_REF]. This process, however, is energy-consuming for the brain; the neurons have ion equilibrium recovery proteins Na + , K + -ATPase, whose activity requires almost half of the brain energy.

2.4.3/ ELECTRICAL EQUIVALENT

A cell membrane section can be represented by an equivalent nonlinear electrical circuit comprising active and passive components, such as resistance or conductance, capaci- tance, and voltage source [START_REF] Drion | Neuronal behaviors: A control perspective[END_REF]. Here, we describe the equivalent circuit of the AIS where AP is generated and whose membrane compartment in Figure 2.7a gives a neurophysiological model equivalent to a nonlinear electric circuit in Figure 2.7b, first described by Hodgkin and Huxley [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Almog | Is realistic neuronal modeling realistic[END_REF]. The voltage across the membrane, V m , is the potential difference between the extracellular, v o , and intracellular medium, v i . At rest, the membrane potential is V m = -70 mV, considering that the extracellular medium is the ground (0 mV) [START_REF] Bhadra | Physiological principles of electrical stimulation[END_REF][START_REF] Enderle | Bioelectric phenomena[END_REF][START_REF] Drion | Neuronal behaviors: A control perspective[END_REF]. The membrane potential then fluctuates due to the Na + , K + , and leakage (remaining ions such as Ca 2+ and Cl -) ions flowing through the channels [START_REF] Drion | Neuronal behaviors: A control perspective[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF].

The neuron resembles two plates of electrical conductors (the cytoplasm and the extracellular fluid) separated by an insulating material (the lipid bilayer); thus, the membrane forms a linear capacitive property implying that the ions move through the ion channels and not directly through the membrane C m [START_REF] Bhadra | Physiological principles of electrical stimulation[END_REF][START_REF] Enderle | Bioelectric phenomena[END_REF][START_REF] Drion | Neuronal behaviors: A control perspective[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF]. Membrane specific capacitance is approximately equal to 0.7-1.0 µF/cm 2 [START_REF] Enderle | Bioelectric phenomena[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF][START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF]. As a consequence of the capacitance, the change in membrane potential follows an exponential time course. For the circuit in Figure 2.7b, the time constant is modeled as τ = R T h × C m where R th is the Thevenin resistance formed by the passive ion channels [START_REF] Enderle | Bioelectric phenomena[END_REF]. For a typical neuron, τ ranges from 1 to 20 ms, and at 5τ, the response is within the 1% of steady-state.

Sodium and potassium channels are passive components because they only allow specific ions to pass through the channel [START_REF] Enderle | Bioelectric phenomena[END_REF]. As shown in Figure 2.7b, a passive ion channel is modeled as a resistor in series with a battery [START_REF] Drion | Neuronal behaviors: A control perspective[END_REF]; a resistor because it resists the movement of electrical charge through the channel and a battery for the electromotive force that drives the ions through the channel [START_REF] Enderle | Bioelectric phenomena[END_REF]. In relation to the membrane resistance, conductance measured in Siemens (S), therefore, describes the ease in which ions flow through channels. Consider a specific ion channel with a conductance G ′ ; the total conductance in the compartment is therefore proportional to the number of that specific channel, N; thus, G = N ×G ′ . Conductance is a linear function that varies with the ion concentration, so even the channel permeability is high, G = 0 if there are no available ions on either side of the neuron membrane [START_REF] Enderle | Bioelectric phenomena[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF]. In the conventional model of the AIS equivalent circuit (Figure 2.7b), the total membrane conductance G m is equal to the sum of the parallel conductances from Na + (G Na ), K + (G K ), and some leakage (G L ) ion channels.

There is an electromotive force for each specific channel called a reversal potential (also called Nernst potential) created by a concentration gradient and is represented by CHAPTER 2. BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS a battery. The reversal potential is the equilibrium potential; the static difference in V m wherein no current flows [START_REF] Mep Didier | Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level[END_REF][START_REF] Enderle | Bioelectric phenomena[END_REF][START_REF] Drion | Neuronal behaviors: A control perspective[END_REF]. The reversal potential for Na + is higher while the reversal potential for K + is lower than the resting potential of the neuron, causing an influx of Na + ions during depolarization and efflux of K + during hyperpolarization [START_REF] Drion | Neuronal behaviors: A control perspective[END_REF]. The leakage current, commonly associated with other remaining ions such as Cl -ions, is small compared to I Na and I K [START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF]. Essentially, when an external current I ext is applied to stimulate the membrane in Figure 2.7, the Kirchoff's current law indicates that [START_REF] Enderle | Bioelectric phenomena[END_REF][START_REF] Postnova | Neurones and synapses for systemic models of psychiatric disorders[END_REF] 

I ext = G K (V m -E K ) + G Na (V m -E Na ) + G L (V m -E L ) + C m dV m dt . (2.1)

2.5/ NEURON MODELS FOR MEMBRANE POTENTIAL

Computational models are utilized to describe the fluctuations in the membrane potential and the shape of the AP, depending on the ionic channel distribution. In theoretical and computational neuroscience, there are various models ranging from singlecompartment to multicompartment neuron models. The series of seminal studies in the squid giant axon performed and published by Hodgkin and Huxley in the 1950s paved the way to neuronal modeling [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Allan | The components of membrane conductance in the giant axon of loligo[END_REF][START_REF] Allan | Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo[END_REF][START_REF] Allan | The dual effect of membrane potential on sodium conductance in the giant axon of loligo[END_REF]. Using voltage-clamp experiments, Hodgkin and Huxley recorded ionic currents and voltage-gated conductances in the AIS, whose physiology is analogous to a single cylindrical structure. Thus, the Hodgkin-Huxley (HH) model became the basis of subsequent single-compartment neuron models for AP [START_REF] Almog | Is realistic neuronal modeling realistic[END_REF].

Following the studies of Hodgkin and Huxley, Wilfred Rall then provided profound insights into the cable properties of dendritic trees and developed the technique for modeling the current flow in neurons [START_REF] Rall | Theoretical significance of dendritic trees for neuronal input-output relations[END_REF]. The dendritic tree was divided into compartments defined by their homogeneous activities and distinct hyperpolarization or depolarization [START_REF] Yi | Morphology controls how hippocampal ca1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study[END_REF][START_REF] Rall | Theoretical significance of dendritic trees for neuronal input-output relations[END_REF]. Input to the first compartment generates a corresponding output, which is directed to the next compartment. This technique revolutionized modern multicompartment modeling [START_REF] Almog | Is realistic neuronal modeling realistic[END_REF].

The selection between single-or multicompartment models generally depends on the modeling objective and complexity. A single-compartment model is isopotential and usually neglects the spatial dimension of the neuron [START_REF] Marder | Modeling stability in neuron and network function: the role of activity in homeostasis[END_REF][START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]; however, such a model is useful but straightforward enough to describe the membrane dynamics. Multicompartment models are made up of linked single-compartments that differ in ionic densities. Both models are useful in neuroscience study depending on the range of problem complexity: multicompartment models for problems requiring detailed neuron morphology and single compartment models for simplicity [START_REF] Marder | Modeling stability in neuron and network function: the role of activity in homeostasis[END_REF].

This section focuses on the membrane potential and AP generation, specifically in the AIS, of single-compartment models. These models include the biologically-inspired models (quantitative), starting from the Hodgkin-Huxley, where AP generation results from the model dynamics to integrate-and-fire (IF) models where spiking occurs when the voltage exceeds a threshold, and to some model variations that qualitatively describe neuron spiking [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF].

2.5.1/ DYNAMIC-BASED BIOPHYSICAL NEURON MODELS

Models formulated from biophysical data usually use similar formulism to describe the membrane potential V from the summation of ionic and applied currents I, and I app , respectively, and with additional equations for ionic channels activation rates [START_REF] Marder | Modeling stability in neuron and network function: the role of activity in homeostasis[END_REF]. Then, these parameters are incorporated into a single-compartment (or multicompartment ) neuron models whose membrane potential follows a time-dependent first-order differential equation:

C dV dt = - j=1 j N I j -I neighbors (2.2)
where the current form neighboring compartments I neighbors = 0 for single-compartment model and I j stands for the current flowing through several different ionic channels types, N [START_REF] Postnova | Neurones and synapses for systemic models of psychiatric disorders[END_REF][START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF]. In an instance that an external current stimulus I ext is applied to the membrane, the membrane potential becomes

C dV dt = I ext - N j=1 I j (2.3)
following Kirchoff's current law. Applying Ohm's law, the current intensity flowing through a specific channel I j is equal to the product of the difference between the membrane potential and the reversal potential E j and the conductance g j of the corresponding channel, and is given by

I j = g j V -E j . (2.4) 
There are a wide range of neuron models developed from these equations.

2.5.1.1/ HODGKIN-HUXLEY MODEL

The HH model became a reference for a several model variations. Neuron models of HH-type usually vary in terms of the nature and properties of VGCs and still maintain the spiking behavior generated by the intrinsic dynamics of the neuron [START_REF] Postnova | Neurones and synapses for systemic models of psychiatric disorders[END_REF][START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]. The HH formulism also turned out to accurately reproduce the AP waveform across different types of neurons [START_REF] Carl | Whole-cell recording of neuronal membrane potential during behavior[END_REF]. It provides a detailed description of ion channel dynamics and uses physiological parameters, the main advantage of the HH model [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF]. Aside from a whole-cell model, the HH model can be expanded into local differential equations to model the dynamics in an individual compartment in a multicompartment model [START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF].

Ion Channels Gating Schemes. Markov chain models usually describe the transition between states of VGCs; however, structure-function investigations suggest that for almost all VGCs, HH-like kinetics are specific approximations of the channel behavior [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Almog | Voltage-gated sodium channels in neocortical pyramidal neurons display cole-moore activation kinetics[END_REF]. The standard equation of a time-and voltage-dependent j-type channel conductance, g j , is

g j = ḡ j a p j j b q j j , (2.5) 
where ḡ j is the maximum conductance of channels in the open state [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF]. The gating variables a j and b j characterize the probability of opening the activation and inactiva-CHAPTER 2. BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS tion gates, where p j and q j are the numbers of activation and inactivation gates per ion channel [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF]. During membrane depolarization, activation gates open gradually while inactivation gates close, in turn, modulating the conductance behavior as a voltage-function [START_REF] Drion | Neuronal behaviors: A control perspective[END_REF][START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF]. Hodgkin and Huxley determined that for a Na v channel, the number of activation gates p Na = 3 and an inactivation gate q Na = 1, while for potassium channel, there are for activation gates (p K = 4) and zero inactivation gate (q K = 0) [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF]. It can be interpreted that, for K v channels, K + ions can flow through the channel when four identical particles occupy a certain region of the membrane [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. The opening of the activation and inactivation gates are defined by gating variables moving from the off-to the on-state and back, with a voltage-dependent rate [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. The transition rates α(V) determines the ion transfer from outside to inside, and β(V) which determines the ion transfer in the other direction [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. The following are the conductance equations for Na v and K v gating schemes (at 6.3 • C) [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Allan | The components of membrane conductance in the giant axon of loligo[END_REF]. The voltage-and time-dependent equation for Na v channel conductance, g Na , follows

g Na (V, t) = γρ Na Am 3 (V, t)h(V, t) (2.6)
where γ Na is the single-channel conductance, ρ Na is the channel density per area A and where ḡNa = γ Na ρ Na A is the maximum Na + conductance [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Drion | Neuronal behaviors: A control perspective[END_REF]. The forward and backward transitions rates in 1/ms for m and h are established as

α m = 0.1 (-V -45) exp -V -45 10 -1 , β m = 4exp -V -70 18 , (2.7) 
α h = 0.07exp -V -70 20 , β h = 1 exp -V -40 10 + 1 
, where the membrane potential V has a unit in mV [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. Likewise, the K v channel conductance is

g K (V, t) = γ K ρ K An 4 (V, t), (2.8) 
where ḡK = γ K ρ K A is the maximal conductance for four identical activation variables n, with forward and backward transition rates given below [START_REF] Cian | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF][START_REF] Drion | Neuronal behaviors: A control perspective[END_REF][START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF].

α n = 0.01 (-V -60) exp -V -60 10 - 1 
, β n = 0.125exp -V -70 80 
(2.9)

The gating variables have delayed first-order kinetics modeled by the differential equation

dx dt = α x (1 -x) -β x x, (2.10) 
where x = m, n, and h [START_REF] Bhadra | Physiological principles of electrical stimulation[END_REF][START_REF] Drion | Neuronal behaviors: A control perspective[END_REF][START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. The gating variables are dimensionless functions normalized between 0 to 1 to represent the relative number of open channels [START_REF] Drion | Neuronal behaviors: A control perspective[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF][START_REF] Postnova | Neurones and synapses for systemic models of psychiatric disorders[END_REF]. Refer to Figure 2.8a for the gating kinetics of m, h, and n, during the course of a single AP in Figure 2.8b. The rapid recruitment of Na v channels (m) at the threshold outpaced the delayed activation (n) of K v channels, resulting in an all-or-one event [START_REF] Carl | Whole-cell recording of neuronal membrane potential during behavior[END_REF]. Action Potential Generation. Returning to the equivalent circuit in Figure 2.7b and rearranging Equation 2.1, we obtain the Hodgkin-Huxley model following a nonlinear system of ordinary differential equations [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Sacco | A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences[END_REF].

C dV dt = I app -ḡNa m 3 h (V -E Na ) -ḡK n 4 (V -E K ) -ḡL (V -E L ) , (2.11) 
Here, I app (in µA/cm 2 ) is applied to the membrane either from external stimulation or neighboring compartments. Table 2.1 shows the range of HH model parameters measured experimentally [START_REF] Ori | Cellular function given parametric variation in the hodgkin and huxley model of excitability[END_REF]. The shape of the AP depends on the conductance distribution in the AIS. Figure 2.9 illustrates a train of action potential showing different levels of excitability with varying I app intensity. At the first I app pulse of 2 µm/cm 2 , the HH model is non-excitable. When I app = 5.82 (second pulse), the model becomes excitable. Even a small increase of applied current (third pulse at I app = 5.83) results in a large difference in the dynamics of the HH membrane. The membrane potential then oscillates for larger current intensity (from the fourth to the sixth pulse at I app = 6.10, 6.105, and 10). Here, it is noticeable that the AP firing frequency and spiking are dynamic with respect to the membrane current. The excitability and firing rate of the AP (blue) depend on the intensity of the applied current I app (red). For I app = 2 µA/cm 2 , the cell is nonexcitable. From I app = 5.82 µA/cm 2 , the model becomes excitable. Then further increase from I app = 6.10 to 10 µA/cm 2 , the AP shows oscillatory characteristics.

to the other variables [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Renault | Minimal time spiking in various chr2-controlled neuron models[END_REF]. The principal equation describes the membrane potential V, dependent on the instantaneous Ca v activation (I Ca ), delayed K + (I K ), and passive leakage (I L ) currents flowing through the membrane, while the second equation describes the slower activation current of the K v channel, the same as in the HH model [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Renault | Minimal time spiking in various chr2-controlled neuron models[END_REF][START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF][START_REF] Izhikevich | Which model to use for cortical spiking neurons?[END_REF][START_REF] Amiri | A phase plane analysis of neuron-astrocyte interactions[END_REF][START_REF] Yi | Input-output relation and energy efficiency in the neuron with different spike threshold dynamics[END_REF][START_REF] Steven A Prescott | Biophysical basis for three distinct dynamical mechanisms of action potential initiation[END_REF].

The next model, called the FitzHugh-Nagumo (FHN) model, is a combination of the works of FitzHugh on ion channel dynamics of nerve cells and Nagumo on spatially-extended systems [START_REF] Fitzhugh | Thresholds and plateaus in the hodgkin-huxley nerve equations[END_REF][START_REF] Fitzhugh | Impulses and physiological states in theoretical models of nerve membrane[END_REF][START_REF] Nagumo | An active pulse transmission line simulating nerve axon[END_REF]. It is also a 2-dimensional model based on dividing the currents according to their time scale, turning the neural activity from four state-variables to only two [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Dokos | Multi-scale modelling in biology[END_REF]. Going back to the HH model, where V and m evolve in similar time scales during an AP, while n and h also have similar and slower time scales, it is logical to lump these variables into a single variable V (for V and m) for "excitation" and ω (for n and h) for "recovery" [START_REF] Fitzhugh | Thresholds and plateaus in the hodgkin-huxley nerve equations[END_REF][START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF][START_REF] Lima | Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons[END_REF][START_REF] Macgregor | Neural and brain modeling[END_REF]. The FHN model ignores the Na + activation variable and replaces it with an equilibrium value [START_REF] Van Drongelen | Signal processing for neuroscientists[END_REF].

2.5.2/ THRESHOLD-BASED NEURON MODELS

In this subsection, we present the commonly-used neuron models that simulate the fundamental dynamics of the neuron and do not require a full description of ion transport. These models have a predefined threshold for AP generation and are often used in simulating large neural networks because of their low dimensionality and low computing power requirement.

2.5.2.1/ INTEGRATE-AND-FIRE MODEL

The integrate-and-fire (IF) model could be considered an approximation of the HH model or a phenomenological description of AP generation [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]. It generates an AP in terms of a single variable, the membrane potential [START_REF] Ostojic | From spiking neuron models to linear-nonlinear models[END_REF][START_REF] Anthony | A review of the integrate-and-fire neuron model: I. homogeneous synaptic input[END_REF]. However, the IF model only describes the subthreshold dynamics, as the AP generation is an extrinsic mechanism [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Anthony | A review of the integrate-and-fire neuron model: I. homogeneous synaptic input[END_REF].

When the membrane potential reaches the threshold, only then that an AP spikes. It uses a deterministic reset mechanism to return the membrane potential to the resting potential [START_REF] Liu | Firing rate propagation through neuronal-astrocytic network[END_REF]. Since the IF model is an approximation, it does not present the dynamic mechanism, shape, and duration of an AP [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF].

The IF model has several variants, where the original model is called the leaky integrateand-fire (LIF) model [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]. The neuron is leaky because the membrane potential decays with a characteristic time constant, and if this decay is disregarded, the model becomes a perfect integrator. Once the membrane potential reaches the threshold, it generates an AP using a firing mechanism [START_REF] Anthony | A review of the integrate-and-fire neuron model: I. homogeneous synaptic input[END_REF]. The subthreshold membrane potential is a first-order linear differential equation in time (t) and is given as

C dV dt = I L (t) + I app (t), if V(t) > V th then V(t) ← V R (2.12)
where V is the membrane potential, C is the membrane capacitance, I L is the current leaking through the membrane, and I app is the injected current. The leak current is governed by

I L (t) = -G L [V(t) -E L ] , (2.13) 
where E L is the leak reversal potential and G L is the constant leak conductance described as G L = C/τ L m , and τ L m is the time constant of the leaky membrane. Once V crosses the CHAPTER 2. BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS threshold V th , it diverges to infinity for AP firing (this can be set to the peak amplitude of the AP). The membrane potential then returns to the resting potential V R (V R = E L ) and stays in the refractory state for a time period of τ re f [START_REF] Ladenbauer | Inferring and validating mechanistic models of neural microcircuits based on spike-train data[END_REF][START_REF] Nordlie | Rate dynamics of leaky integrateand-fire neurons with strong synapses[END_REF][START_REF] Ostojic | From spiking neuron models to linear-nonlinear models[END_REF][START_REF] Anthony | A review of the integrate-and-fire neuron model: I. homogeneous synaptic input[END_REF][START_REF] Liu | Firing rate propagation through neuronal-astrocytic network[END_REF][START_REF] Yamauchi | Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times[END_REF][START_REF] Zhang | A radial basis function spike model for indirect learning via integrate-andfire sampling and reconstruction techniques[END_REF][START_REF] Rudolph-Lilith | Analytical integrateand-fire neuron models with conductance-based dynamics and realistic postsynaptic potential time course for event-driven simulation strategies[END_REF]. The LIF model parameters are independent of the neuron dynamics and can be determined by a direct method [START_REF] Anthony | A review of the integrate-and-fire neuron model: I. homogeneous synaptic input[END_REF]. Figure 2.10 shows the dynamics of the membrane potential of the LIF neuron, whose firing frequency increases with an increase in the injected current intensity.

Generalizations of the LIF model were developed to deal with its drawback. Here, we present a brief description of the IF model variants. These variants still follow the same firing mechanism and include changes on the membrane potential equation from linear to nonlinear or a second equation, an adaptation process, to the system. The IF models provide a simple approach for simulating a spiking neuron and displaying high computational efficiency and tractability, making it advantageous in both theoretical and computational [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Zhang | A radial basis function spike model for indirect learning via integrate-andfire sampling and reconstruction techniques[END_REF].

Quadratic Integrate-and-Fire Model. The quadratic integrate-and-fire (QIF) model is the most straightforward generalization of the LIF model. It is dynamically equivalent to a HH model with a constant current near the rheobase (the minimum stimulation current resulting in an AP) and approximates the qualitative behavior of the frequency-current (f-I) curve of a biological neuron [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF][START_REF] Brunel | Lapicque's 1907 paper: from frogs to integrate-and-fire[END_REF][START_REF] Jolivet | Generalized integrateand-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy[END_REF]. The QIF model obeys

C dV dt = G L 2∆ T (V -V R ) 2 -I 0 + I app (2.14) 
where for an applied external current, I app , below I 0 , the model exhibits both stable and unstable points. When I app > I 0 , the fixed points merge, then the membrane potential destabilized, and the neuron fires regularly [START_REF] Fourcaud-Trocm É | Integrate and fire models, deterministic[END_REF][START_REF] Zheng | Chaotic solutions in the quadratic integrateand-fire neuron with adaptation[END_REF]. The parameter ∆t is the spike shape factor that quantifies the sharpness of the AP initiation [START_REF] Ostojic | From spiking neuron models to linear-nonlinear models[END_REF][START_REF] Fourcaud-Trocm É | Integrate and fire models, deterministic[END_REF]. The QIF model is ideal for very low spiking frequency [START_REF] Jolivet | Generalized integrateand-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy[END_REF].

Exponential Integrate-and-Fire Model. Current-voltage analysis of the HH model revealed a linear-plus-exponential dependence of the membrane potential on the ionic currents [START_REF] Victor | Dynamics of the exponential integrate-and-fire model with slow currents and adaptation[END_REF]. Assuming that the Na v channel activation is instantaneous and neglecting its inactivation, the I Na is described exponentially [START_REF] Ladenbauer | Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons[END_REF]. Therefore, the exponential integrateand-fire (EIF) model includes an exponential approximation of I Na and is equivalent to the HH model for fluctuating applied current [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]. The EIF model current-voltage (I-V) curve comprises a linear component in the subthreshold region and a sharp exponential rise above the threshold [START_REF] Badel | Extracting non-linear integrate-and-fire models from experimental data using dynamic i-v curves[END_REF].

C dV dt = -G L (V -E L ) + G L ∆ T e V-V th ∆ T + I app , (2.15) 
where

G L ∆ T e V-V T ∆ T
is the spike generating current [START_REF] Ostojic | From spiking neuron models to linear-nonlinear models[END_REF][START_REF] Fourcaud-Trocm É | Integrate and fire models, deterministic[END_REF][START_REF] Badel | Extracting non-linear integrate-and-fire models from experimental data using dynamic i-v curves[END_REF]. For pyramidal neurons ∆ T is typically equal to 1 mV.

Adaptive Integrate-and-Fire Model. Biologically speaking, the flow of specific ions during the opening and closing of channels modifies the intracellular concentration of that ion and continues until the membrane potential decays back to the resting potential, thus a dynamically varying threshold [START_REF] Buonocore | A leaky integrate-and-fire model with adaptation for the generation of a spike train[END_REF]. Therefore, adaptation describes the instantaneous discharge rate in response to a sustained injected current, causing the firing rate to decay to a steady-state [START_REF] Chen | A variant of the integrate-and-fire model to simulate the adaptive neural firing pattern[END_REF]. In the adaptive integrate-and-fire (AIF) model, the spike threshold is not constant as in the standard LIF; instead, the threshold θ(t) increases by α ′ after an AP and then decays exponentially to an asymptotic level θ 0 with a time constant τ θ [START_REF] Yamauchi | Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times[END_REF][START_REF] Levakova | Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth[END_REF]. In this case, the adaptation process is dependent on the firing history. The adaptive threshold θ(t) follows

dθ dt = θ(t) -θ 0 τ θ , (2.16 
)

where θ = V -V R , and if V(t) > V th , then V → V R and θ → θ + α ′
, where α ′ is usually equal to 0.1 mV [START_REF] Liu | Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron[END_REF][START_REF] Rossant | Automatic fitting of spiking neuron models to electrophysiological recordings[END_REF]. Studies on cortical pyramidal neurons revealed the presence of spike frequency adaptation mechanism, suggesting that IF models with adaptation can predict the firing rate of the neuron [START_REF] Rauch | Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents[END_REF].

Adaptive Exponential Integrate-and-Fire Model (AdEx). The adaptive exponential integrate-and-fire model, generally called AdEx, is an extension of the EIF combined with an adaptation process [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]. In this case, it employs a spike-triggered current adaptation mechanism rather than an adaptive threshold [START_REF] Ladenbauer | Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons[END_REF][START_REF] Rossant | Automatic fitting of spiking neuron models to electrophysiological recordings[END_REF]. The AdEx model with an additional hyperpolarizing adaptation current is given as

C dV dt = -G L (V -E L ) + G L ∆ T e V-V th ∆ T -I ad + I app , τ ad dI ad dt = a (V -V R ) -I ad , (2.17) 
where τ ad is the time constant of the adaptation current I ad , and a is a constant parameter [START_REF] Ladenbauer | Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons[END_REF][START_REF] Clopath | Connectivity reflects coding: a model of voltage-based stdp with homeostasis[END_REF]. After an AP firing, V resets to V R , whereas I ad increases by a value b [START_REF] Ladenbauer | Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons[END_REF][START_REF] Clopath | Connectivity reflects coding: a model of voltage-based stdp with homeostasis[END_REF]. When the neuron is at rest and I app increases slowly to a critical current, the membrane potential destabilizes, resulting to the repetitive firing [START_REF] Ladenbauer | Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons[END_REF]. One advantage of the AdEx model is that the parameters can be fit with biological cell recordings [START_REF] Touboul | Importance of the cutoff value in the quadratic adaptive integrate-and-fire model[END_REF].

2.5.2.2/ OTHER THRESHOLD-BASED MODELS

The Izhikevich model is similar to the QIF with an adaptation process [START_REF] Brette | What is the most realistic single-compartment model of spike initiation?[END_REF]. It also describes the subthreshold activity of the neuron, spikes up to a cut-off amplitude, and contains a recovery variable that accounts for the lumped K + activation and Na + inactivation currents [START_REF] Izhikevich | Dynamical systems in neuroscience[END_REF]. The Izhikevich model is a system of two ordinary differential equations consisting of fast activation variable for the membrane potential, slow membrane recovery variable, and a resetting mechanism.

Fast-slow properties of the model help it simulate different types of oscillatory activity and spiking-bursting oscillations necessary for qualitatively reproducing a wide range of neuronal dynamics [START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Venkadesh | Evolving simple models of diverse intrinsic dynamics in hippocampal neuron types[END_REF]. This model is suitable for extensive network simulations because of its simplicity, computational efficiency, and biological plausibility [START_REF] Izhikevich | Which model to use for cortical spiking neurons?[END_REF][START_REF] Izhikevich | Simple model of spiking neurons[END_REF][START_REF] Sajedinia | A new computational model for astrocytes and their role in biologically realistic neural networks[END_REF].

CHAPTER 2. BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS

2.6/ SIGNAL TRANSMISSION THROUGH AXONS

Action potentials initiated in the AIS propagate along the axon proper to the axon terminals. During propagation, an AP undergoes a series of decay and regeneration as it travels through the alternating myelinated axon segments and nodes of Ranvier. Subtle changes in the myelin structure result in significant conduction velocity changes, critical to neural circuit functioning, and timely delivery of information in the CNS.

2.6.1/ MYELINATED AXON STRUCTURE

Myelination is the process in which the plasma membranes of oligodendrocytes (a type of glial cells) ensheath the axons in the CNS with laminated layers of insulating materials as shown in Figure 2.11a [START_REF] Purger | Myelin plasticity in the central nervous system[END_REF][START_REF] Charles | Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons[END_REF][START_REF] Fields | A new mechanism of nervous system plasticity: activitydependent myelination[END_REF]. These layers are compacted, forming periodic unexcitable myelinated axon segments, and unmyelinated gaps called nodes of Ranvier along the axon (Figure 2.11b). The myelin segment length tends to be similar along an axon rather than between individual axons. The nodes of Ranvier, which are approximately 0.3-1 µm long, are the unmyelinated regions (area free of myelin sheath) of the axon in contact with the extracellular matrix, thus allowing entry of Na + ions through Na v channels [START_REF] Purger | Myelin plasticity in the central nervous system[END_REF][START_REF] Charles | Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons[END_REF][START_REF] Fields | A new mechanism of nervous system plasticity: activitydependent myelination[END_REF][START_REF] Aiman | Myelin dynamics: protecting and shaping neuronal functions[END_REF][START_REF] Attwell | The node of ranvier in cns pathology[END_REF]. Voltage-gated Na + channels are localized in the axonal membrane of the nodes of Ranvier with densities between 700 and 1200 per µm 2 , enabling the regeneration of AP [START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF][START_REF] Poliak | The local differentiation of myelinated axons at nodes of ranvier[END_REF]. The K v channels are localized and segregated from the Na v channels in the nodes of Ranvier, and are involved in AP repolarization [START_REF] Fehmi | Nodes, paranodes and neuropathies[END_REF].

2.6.2/ SALTATORY CONDUCTION

The interaction between the glial cell and the axon is essential for successfully transmitting the AP from the AIS to the axon terminal. The myelin sheaths inhibit ionic current conduction in the internodal region, therefore acting as an insulator. The signal passively and rapidly flows down through the myelin segment rather than across the axonal membrane [START_REF] Purger | Myelin plasticity in the central nervous system[END_REF][START_REF] Fields | A new mechanism of nervous system plasticity: activitydependent myelination[END_REF]. Depolarization only occurs in the nodes of Ranvier due to the highdensity VGCs and their direct access to the extracellular space. Conduction through the alternating patterns of myelinated axon and nodes of Ranvier is therefore discontinuous, where AP from the AIS appears to 'jump' from node to node. This conduction is called saltatory conduction (Figure 2.12), an efficient process because only the small regions of the axon are depolarized (rather than the whole axonal length), thus enhancing the overall axon conduction [START_REF] Johns | Clinical Neuroscience E-Book[END_REF][START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF][START_REF] Charles | Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons[END_REF][START_REF] Fry | Action potential and nervous conduction[END_REF][START_REF] Bucher | Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon[END_REF].

Saltatory conduction is rapid and cost-effective. Action potential propagation along the myelinated axon is 100-fold faster than along the unmyelinated axon as the oligodendrocytes reduce the charge needed for depolarization (1/100th of that the entire axonal length) [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Purger | Myelin plasticity in the central nervous system[END_REF][START_REF] Charles | Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons[END_REF][START_REF] Mitterauer | Pathophysiology of schizophrenia based on impaired glialneuronal interactions[END_REF]. Also, saltatory conduction requires less energy to restore [Na + ] gradient following AP generation in the node of Ranvier because of limited passive leaks and reduced current loss in the small nodes [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF]. Besides, myelinated axons are 50 times thinner than unmyelinated axons, allowing the brain to pack millions of axons [START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF]. axoplasmic resistance (R a ) is high because of the conductivity of the inside fluid and the small cross-sectional area of the axon, thus cannot be disregarded. The resistance of the outside conductor is relatively lower than R a because of the larger volume of the extracellular fluid and is assumed to be negligible. Furthermore, capacitance C occurs due to the two parallel conductors separated by a thin axon membrane (∼7 nm), while a high membrane resistance R m results from the insulation by the myelin sheath.

Generally, the resistance of a volume conductor is given as R = ρL/A, where ρ is the resistivity (an intrinsic property of the material describing the opposition to electric current flow), L is the conductor length, and A is the cross-sectional area. The internal resistance R a depends on the axon radius (r), therefore

R a = ρ a L πr 2 , (2.18)
where ρ a is the resistivity (Ω-cm) of the axoplasmic fluid, L is the internodal length, and r is the axon radius [START_REF] Charles | Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons[END_REF][START_REF] Basser | Cable equation for a myelinated axon derived from its microstructure[END_REF]. The membrane resistance is dependent on the surface area of the membrane, thus

R m = ρ m 2πr , (2.19) 
where ρ m is the membrane resistivity in Ω-cm 2 [START_REF] Basser | Cable equation for a myelinated axon derived from its microstructure[END_REF]. The internode then exhibits a capacitance

C = 2πrLC m , (2.20) 
where C m is the membrane capacitance per unit area.

2.6.4/ THE CABLE EQUATION

The AP initiated in the AIS enters the first myelinated segment, where the AP exhibits delay and decay. The current flowing from the other end of the segment must be enough to regenerate the AP in the node, as in saltatory conduction. The signal propagation along the myelinated segment, with respect to time and segment length, is often described by the cable model consisting of resistive and capacitive properties. The spatiotemporal cable model is a second-order differential equation that describes the membrane potential v(x, t) as

r 2ρ a ∂ 2 v ∂x 2 -C m ∂v ∂t - v ρ m l = 0, (2.21) 
where v is the electrotonic potential (the difference between the membrane potential, and the resting potential) at time t, l is the membrane thickness, and x the location of v along the myelinated segment [START_REF] Nm Bogatov | Calculation of action potential propagation in nerve fiber[END_REF][START_REF] Woo | Reduced model and simulation of myelinated axon using eigenfunction expansion and singular perturbation[END_REF]. In order to include the influence of distributed VGCs, such as K v channels in the internode, the cable model is extended to

r 2ρ a ∂ 2 v ∂x 2 -C m ∂v ∂t - v ρ m l + G(v) 2πr = 0. (2.22)
The parameter G(v) is the charge generation function that describes the ionic exchanges within the segment and is equal to βv where β ≥ 0. Bogatov et al. [START_REF] Nm Bogatov | Calculation of action potential propagation in nerve fiber[END_REF] presented an approximation of the cable model in Equation 2.22 and showed the changes in AP shape with distance traveled from the point of initiation and the propagation time.

v(x, t) ≈ e -x √ γ λ v 0 t - τx 2λ √ γ , (2.23) 
where three constants parameters emerge: (1) γ (in mm) is the length constant which determines the maximum distance the AP can travel without considerate attenuation, (2) τ in (ms) is the time constant which is the maximum propagation time before the signal decay, and (3) γ (from 0 to 1) is the constant of distributed AP that describes the ionic exchanges within the segment. The term -x √ γ/λ describes the voltage decay while τx/(2λ √ γ) is the time delay that the input v 0 experiences as it gets further away from the initiation site. The parameters are given as

λ = rlρ m 2ρ a , τ = lρ m C m , and γ = 1 - βlρ m 2πr . (2.24) 
Length and Time Constant. The length constant and time constant govern the spread of AP from the initiation site to the adjacent node of Ranvier. The length constant determines the distance in which the signal can travel that still results in nodal membrane depolarization, and the time constant describes how long the capacitance delays the depolarization [START_REF] Bucher | Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon[END_REF]. The myelin sheath serves two purposes in promoting signal propagation and conduction speed [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Purger | Myelin plasticity in the central nervous system[END_REF][START_REF] Attwell | The node of ranvier in cns pathology[END_REF][START_REF] Bucher | Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon[END_REF]. First, it increases the effective axonal membrane resistance, lengthening the electrical space constant that promotes signal spread. Second, it lowers the effective membrane capacitance, decreasing the time constant so that less charge is needed to enter the node for depolarization. The time constant τ tends to increase with an increase in R m . However, the decrease in C m counteracts this effect; thus, τ remains almost constant [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF]. Along the internode, the voltage decay is exponential (Equation 2.23). If λ is relatively short, the signal amplitude rapidly falls as a function of distance, and if it is shorter than the cable length, the signal will be insignificant [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF]. Also, because of the high membrane capacitance, the membrane cannot charge immediately upon the arrival of the stimulus. The time it takes to charge one node depends on the charging time of the preceding internode [START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF].

Propagation Velocity. The propagation velocity depends on the interrelated factors, such as the axon diameter, the myelin thickness relative to the axon diameter, the internodal length, the length constant (λ), the time constant (τ), the local current intensity,
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VGCs, and the threshold potential [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Koch | Biophysics of computation: information processing in single neurons[END_REF][START_REF] Purger | Myelin plasticity in the central nervous system[END_REF][START_REF] Bucher | Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon[END_REF][START_REF] Auer | Evidence for myelin sheath remodeling in the cns revealed by in vivo imaging[END_REF]. Therefore,

θ ∝ λ τ . (2.25)
Substituting λ and τ, the propagation velocity becomes

θ ∝ 1 C m r R m R i . (2.26)
Therefore, the larger the axon diameter, the lower the longitudinal resistance (R m ), the greater the local current flows along the internode. If myelination reduces C m , then θ increases proportionally [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF]. If the threshold (V th ) shifts to a more positive voltage, it will take longer for the node to spike; thus, the propagation velocity becomes slower.

Considering the internode distance as constant, the g-ratio (the ratio between the axonal diameter and the sum of the axonal diameter and myelin sheath thickness) has a value of 0.6-0.7 for maximum conduction velocity [START_REF] Purger | Myelin plasticity in the central nervous system[END_REF].

2.7/ CONCLUSION

Information is initially stored as short-term memory in the hippocampus. Then, the hippocampus communicates with the prefrontal cortex to convert the short-term into longterm memory. Fundamental to the hippocampus processes is the neuron network called the trisynaptic circuit, where the information flows from the DG (input layer) to CA3, to CA1 subfields (hidden layers), and finally to the entorhinal cortex (output layer). Thus, the hippocampus inspired numerous research to understand its processes further and mimic them for applications in biomedical engineering and artificial neural networks (ANN).

Central to the hippocampal processes is the cellular elements called the pyramidal neurons. We presented its biological structure, morphology, and intracellular component.

We then showed that the neuron membrane separates the extracellular fluid and the cytoplasm and plays a significant role in signal generation. The membrane consists of ion-specific channels regulating ion transport, such as Na + , K + , Ca 2+ , and leakage ions, from and into the intracellular space. The intracellular concentration changes create a potential difference in the membrane that is essential for neuron signaling. We illustrated the influence of these ion channel dynamics on the neuron membrane using an equivalent electric circuit comprising the passive and active mechanism.

The instant that the membrane potential reaches a certain threshold, an AP is generated. This AP is considered the main information carrying-signal in the neuron and is generally generated in the AIS. The shape of the AP depends on the ionic channel distribution. The Hodgkin-Huxley model is the first model to describe the AP generation in the neuron. This model is recognized as biologically accurate since it details the dynamics of the necessary ion channels. Several neuron models were developed since then. Here, we presented the commonly used models and gave an example of the AP shape and spiking patterns resulting from increasing applied current intensity. Neuron models are divided into two categories based on the mechanism of spike initiation. AP generation can be dynamic-based, such as the HH, M-L, and FHN model, where the threshold is intrinsic in the system. Models, such as the IF-type and Izhikevich models, initiate spikes when the membrane potential increases beyond an explicitly defined threshold.

Axons act as a transmission line that directs APs generated in the AIS to the neighboring neurons through synaptic endings, typically without significant AP changes and delays. Axonal excitability and signal transmission along the axon proper are challenging to study because the small axonal size poses difficulties in conventional electrophysiological recordings. However, recent studies on axons argued that axons modify the shape and firing patterns of APs, and determine how APs propagate along the axonal arbor, thus contributing to neural circuit functions. In this chapter, we have discussed the AP initiation in the AIS via the opening and closing of voltage-gated ion channels. The AP generation presented in this chapter follows a single-compartment model, that is, the AIS compartment.

In the following chapter, we present the information transfer from one neuron to another via the synapse. We also discuss the conversion of multiple incoming signals in the dendritic tree into a single AP.

3.1/ INTRODUCTION

Neurotransmission is the process in which one neuron communicates to another neuron by releasing neurotransmitters into the synaptic space. The axon terminal of a presynaptic neuron transmits signals to its postsynaptic dendritic spine counterpart via the synapse chemically rather than electrically. The intracellular [Ca 2+ ] fluctuations play an essential role in converting the APs into chemical signals for presynaptic vesicle release of neurotransmitters, such as glutamate (Glu -). Neurotransmitters then open neurotransmitterspecific receptors in the dendritic spines of spines, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. These receptors are active mechanisms that induce membrane potential increase in the spine head.

The postsynaptic neuron receives thousands of synaptic inputs, be it excitatory or inhibitory inputs, from myriads of presynaptic neurons via its dendritic tree. These simultaneous inputs travel along the dendritic arborization to the soma while inducing changes in the membrane potential along their path, activating passive and active dendritic mechanisms. These mechanisms influence how the neuron processes the incoming signals and encodes information. The point neuron is the classical conceptual model of neural coding, wherein all inputs have the same influence on somatic depolarization. The soma integrates the synaptic inputs, and when the summation reaches a certain threshold, the soma generates an AP. The point neuron hypothesis, though conventionally used, is instead an oversimplified representation of neural computation and coding, as it disregards the local processes in the dendritic trees and the location of synaptic activation. Current studies suggest that the complex dendritic morphology creates independent computational subunits, compartments that perform individual operations separate from other dendritic branches or subunits. However, a comprehensive understanding of how neurons integrate the synaptic inputs, perform computations, and codes information into a single spike train is still lacking.

In this chapter, Section 3.2 describes the influence of APs and ER on the fast and slow Ca 2+ dynamics. Section 3.3 is about neurotransmission. It illustrates the neurotransmitter release process and modes and describes the Glu -dynamics in the synaptic cleft. Section 3.4 deals with signal propagation by describing the dendritic spines, the synaptic inputs that target them, and the resulting dendritic depolarization. It also illustrates 32 CHAPTER 3. NEUROTRANSMISSION AND NEURAL CODING the dendritic membrane potential changes as the synaptic inputs travel along the dendritic arbor and the activation of passive and active dendritic mechanisms along the path. Lastly, Section 3.5 presents the transformation of synaptic inputs into somatic output. It describes the dendritic information processing, the processes the signals undergo before reaching the soma, and the computational schemes the neuron utilizes. It also presents dendritic abstractions and neural coding schemes at the single neuron level.

3.2/ PRESYNAPTIC CALCIUM DYNAMICS

Intracellular Ca 2+ is an important secondary messenger that controls various cellular activities, such as in synaptic transmission [START_REF] Genevi Ève | Recent developments in models of calcium signalling[END_REF][START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Min | A mathematical model of calcium dynamics: Obesity and mitochondria-associated er membranes[END_REF]. The timing of fluctuations in the presynaptic Ca 2+ concentration ([Ca 2+ ]) is crucial for triggering neurotransmitter release and improving synaptic plasticity [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF]. Various mechanisms control the presynaptic Ca 2+ dynamics, including the voltage-dependent Ca 2+ channels (VDCCs) along the cell membrane and the ER.

This section focuses mainly on the Ca 2+ dynamics along the axon and specifically in the axon terminals. Cells not only exhibit compartmentalization of special proteins (ion channels) but also inorganic molecules such as Ca 2+ ions [START_REF] Donato | Neuronal sub-compartmentalization: a strategy to optimize neuronal function[END_REF]. The synaptic terminals display large [Ca 2+ ] compared to the adjacent axonal segments, likely due to the nonuniform Ca 2+ channel distribution [START_REF] Ali | Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review[END_REF]. Calcium signaling is both temporal and spatial. Cells can increase or decrease their [Ca 2+ ] in different locations and with different timescales to target specific functions [START_REF] Genevi Ève | Recent developments in models of calcium signalling[END_REF].

3.2.1/ SIGNALING PATHWAYS

The series of intracellular biochemical reactions and diffusion, shown in Figure 3.1, forms signaling pathways wherein Ca 2+ is a multifunctional secondary messenger [START_REF] Blackwell | Approaches and tools for modeling signaling pathways and calcium dynamics in neurons[END_REF]. Calcium is a unique secondary messenger in that Ca 2+ influx can be derived from the opening of voltage-dependent ion channels or the Ca 2+ released from the ER through Ca 2+sensitive, Ca 2+ -permeable channels. Here, we divide the intracellular signaling pathways into two timescales: the fast Ca 2+ dynamics derived from the VDCCs, and the slow Ca 2+ dynamics derived from Ca 2+ stores.

3.2.1.1/ VOLTAGE-DEPENDENT CALCIUM INFLUX

In the axon terminals, membrane depolarization controls Ca 2+ signals [START_REF] Ali | Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review[END_REF][START_REF] Brockhaus | Imaging and analysis of presynaptic calcium influx in cultured neurons using syngcamp6f[END_REF][START_REF] Sasaki | The axon as a unique computational unit in neurons[END_REF]. Action potentials trigger Ca 2+ influx to the cytosol from the extracellular space by opening voltage-dependent Ca 2+ channels (VDCCs), which are voltage-sensitive membrane pores [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF][START_REF] Brockhaus | Imaging and analysis of presynaptic calcium influx in cultured neurons using syngcamp6f[END_REF][START_REF] Rusakov | Ca2+-dependent mechanisms of presynaptic control at central synapses[END_REF]. Refer to Chapter 2 for the characteristics and subunits of VD-CCs. All VDCC types are distributed in the neuron compartments, where P/Q-type and Ntype channels are mainly responsible for Ca 2+ influx in the presynaptic areas [START_REF] Rusakov | Ca2+-dependent mechanisms of presynaptic control at central synapses[END_REF]. In the human brain during repetitive APs within a few hundreds of microseconds, approximately 10,000 Ca 2+ ions enter the axon terminals or approximately a 500 nM-10 µM increase in transient [Ca 2+ ] is elicited [START_REF] Ali | Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review[END_REF][START_REF] Ritzau | Presynaptic calcium en passage through the axon[END_REF]. The Ca 2+ influx is driven by the 70 mV electrical gradient and a 20,000-fold concentration gradient, given that 50 nM intracellular and one mM extracellular [Ca 2+ ] [START_REF] Ritzau | Presynaptic calcium en passage through the axon[END_REF]. When the Ca v channels close, the Ca 2+ ions diffuse in the intracellular space diminishing the [Ca 2+ ] in the microdomain, leaving a residual [Ca 2+ ] of 100 nM to 1 µM. High intracellular [Ca 2+ ] is detrimental to the cell. Therefore, excess cytosolic Ca 2+ is removed from the cytosol to the extracellular space by plasma membrane Ca 2+ (PMCA) pumps and plasma membrane leakage channels (PMleak) [START_REF] Rusakov | Ca2+-dependent mechanisms of presynaptic control at central synapses[END_REF].

3.2.1.2/ CALCIUM INFLUX FROM CALCIUM STORES

One of the main contributors to the cytosolic Ca 2+ oscillations is the ER. The smooth ER compartments are distributed throughout the neuron, extending to the axon and synaptic sites [START_REF] Donato | Neuronal sub-compartmentalization: a strategy to optimize neuronal function[END_REF]. The smooth ER is a Ca 2+ source, which stores internal [Ca 2+ ] of three to four orders of magnitude larger than in the cytosolic [Ca 2+ ] at resting condition [START_REF] Min | A mathematical model of calcium dynamics: Obesity and mitochondria-associated er membranes[END_REF][START_REF] Blackwell | Approaches and tools for modeling signaling pathways and calcium dynamics in neurons[END_REF]. The ER releases Ca 2+ via two types of channels. The first type is passive leakage channels that release Ca 2 + depending on the [Ca 2+ ] gradient between the cytosol and the ER. The second type is the Ca 2+ release through inositol-3-phosphate (IP 3 )-gated channels, or IP 3 receptors (IPR) [START_REF] Min | A mathematical model of calcium dynamics: Obesity and mitochondria-associated er membranes[END_REF][START_REF] Blackwell | Approaches and tools for modeling signaling pathways and calcium dynamics in neurons[END_REF][START_REF] Rusakov | Ca2+-dependent mechanisms of presynaptic control at central synapses[END_REF]. The IP 3 signaling pathway starts from the extracellular molecules, such as glutamate (Glu -), impinging the G-protein coupled receptors (GPCRs) on the cell membrane leading to the production of IP 

c i = c f ast + c slow , dc i dt = dc f ast dt + dc slow dt . (3.1) 

3.2.2.1/ FAST CALCIUM DYNAMICS

A set of ordinary differential equations describe the intracellular Ca 2+ dynamics resulting from the time-dependent membrane potentials. In the following models, the Ca 2+ influx in a single compartment (with homogeneous extracellular space) is related to the model geometry. The fast Ca 2+ dynamics, c f ast , through voltage-dependent calcium channels (VDCCs), is governed by the construction-destruction formula [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF][START_REF] Maryna A Hliatsevich | Design of deterministic model of signal transduction between neuronal cells[END_REF], = g Ca (V -V Ca ) and the VDCC voltage-dependent opening probability m Ca [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF]. Therefore, the electrochemical gradient over the membrane drives the Ca 2 + current through an open VDCC. The current surface density through the N-type VDCC is given as

dc f ast dt = - I Ca A z Ca Fv c + J PMleak - I PMCA A z Ca Fv c . ( 3 
I Ca = ρ Ca m 2 Ca g Ca (V -V Ca ) , (3.3) 
where ρ Ca is the N-type channel surface density, g Ca is the single N-type Ca 2+ open-pore conductivity [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Maryna A Hliatsevich | Design of deterministic model of signal transduction between neuronal cells[END_REF][START_REF] Gerard | Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem[END_REF]. The potential difference through the VDCC is relative to the Ca 2+ reversal potential, V Ca , and incorporates in the model the [Ca 2+ ] in the intracellular and extracellular space at rest. The Nernst equation determines the VDCC reversal potential, 

V Ca = RT z Ca F ln c ext c rest i , (3.4 
dm Ca dt = m ∞ Ca -m Ca τ m Ca , (3.5) 
which may be related to experiment using data for the average number of open channels in an ensemble of channels [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF]. The probability m Ca approaches its asymptotic value, m ∞ Ca , with a time constant τ m Ca [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF]. The voltage-dependent m ∞ Ca is a sigmoidal function given by the Boltzmann function,

m ∞ ca = 1 1 + e Vm Ca -V km Ca , (3.6) 
approximated the dependence of m ∞ Ca on V fitted to the whole-cell current of an N-type Ca 2+ channel. Here, V m Ca is the half-activation voltage, and k m Ca describes the steepness of the asymptotic opening probability m ∞ Ca [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF][START_REF] Maryna A Hliatsevich | Design of deterministic model of signal transduction between neuronal cells[END_REF][START_REF] Gerard | Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem[END_REF]. In presynaptic axon terminals, the Ca 2+ influx during a single AP has approximately 1 ms and 60 ms of a fast rise and slow decay time constants, respectively [START_REF] Ali | Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review[END_REF]. The proteins such as PMCAs actively transport Ca 2+ ions through the membrane against the electrochemical gradient using the ATP molecules energy, and whose kinetics are different from pores (e.g., VD-CCs) [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF]. The protein structure limits the PMCA kinetics to a maximum rate [START_REF] Erler | A quantitative model for presynaptic free ca2+ dynamics during different stimulation protocols[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF]. The Ca 2+ current due to PMCA, I PMCA is best described by the Hill function

I PMCA = v PMCA c 2 i c 2 i + K 2 PMCA , (3.7) 
where v PMCA is the maximum Ca 2+ current via PMCA and K PMCA is the [Ca 2+ ] at half of v PMCA [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Chris J Roome | Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[END_REF].

Then, J PMleak in is the leak from the extracellular space into the compartment and is added to ensure that the [Ca 2+ ] will not decrease to 0, in that 

J PMleak = v leak (c ext -c i ) , (3.8 
d p dt = v g g 0.3 k 0.3 g + g 0.3 -τ p (p -p 0 ) , (3.9) 
where g is the extracellular [Glu -], p 0 is the resting [IP 3 ], v g is the maximum IP 3 production rate, k g is the half-activation based on [Glu -], and τ p is the IP 3 degradation constant [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF].

The physiological range of [IP 3 ] is between 0 and 5 µM [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF].

The Li-Rinzel model describes the dynamical system governing the c slow behavior [START_REF] Li | Equations for insp3 receptor-mediated [ca2+] i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism[END_REF].

The model assumes that the regulatory properties of the IPR provoke the periodic release of Ca 2+ ions from the ER [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. Under this hypothesis, intracellular calcium balance is determined by only three fluxes, corresponding to (1) a passive leak of Ca 2+ from the ER to the cytosol (J leak ); (2) an active uptake of Ca 2+ into ER (J pump ) due to action of SERCA pumps; and (3) a Ca 2+ release (J chan ) that is mutually gated by Ca 2+ and IP 3 concentrations (denoted by c i and p, respectively) [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF][START_REF] Maryna A Hliatsevich | Design of deterministic model of signal transduction between neuronal cells[END_REF]. Therefore,

dc slow dt = -J chan -J pump -J leak , (3.10) 
describes the slow Ca 2+ dynamics [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Maryna A Hliatsevich | Design of deterministic model of signal transduction between neuronal cells[END_REF][START_REF] Chan | The role of neuron-glia interactions in the emergence of ultra-slow oscillations[END_REF][START_REF] Ding | Contribution of calcium fluxes to astrocyte spontaneous calcium oscillations in deterministic and stochastic models[END_REF][START_REF] Wade | Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach[END_REF].

The Ca 2+ current flowing out of the ER-mediated by IPR channel is relative to the [Ca 2+ ] gradient between the cytosol and the ER whose permeability is relative to the IPR permeability, r C = c 1 v 1 , times the open channel probability [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. The open channel probability is based on a gating model of the IPR subunit, assuming three binding sites: one for IP 3 and two for Ca 2+ (including one activation and one inactivation site). Let m ∞ be the IP 3 binding probability, n ∞ is the Ca 2+ activation, and q is the Ca 2+ inactivation probability. Experimental data suggest a third power for the probabilities, thus

J chan = r C m 3 ∞ n 3 ∞ q 3 (c i -c ER ) , (3.11) 
where the opening probabilities

m ∞ = p p + d 1 , and n ∞ = c i c i + d 5 , (3.12) 
are direct functions of intracellular [IP 3 ] and [Ca 2+ ], respectively, and where v 1 is the maximum IP 3 receptor flux, d 1 is the IP 3 dissociation constant, and d 5 is the activation Ca 2+ dissociation constant [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. The concentration in the ER, c ER , is relative to the slow calcium dynamics and is described as

dc ER dt = - 1 c 1 dc slow dt , (3.13) 
where c 1 is the ratio between the ER volume and the compartment volume [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. For isolated cell model where Ca 2+ fluxes across the membrane (fast Ca 2+ dynamics) are neglected, the average free [Ca 2+ ] (c 0 ) is conserved [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. Thus c ER is equivalent to

c ER = c 0 -c i c 1 . (3.14) 
Assuming fast IP 3 binding and Ca 2+ activation, the IPR gating kinetics is described by an ordinary differential equation with a dimensionless variable q that represents the inactivated IPRs by intracellular Ca 2+ ,

dq dt = α q (1 -q) -β q q, α q = a 2 d 2 p + d 1 p + d 3 , β q = a 2 c 1 , (3.15) 
where a 2 is the inhibitory Ca 2+ binding constant, and d 3 is also an IP 3 dissociation constants [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF].

Intracellular Ca 2+ oscillations can also be due to the activity of SERCA pumps drawing Ca 2+ ions back to the ER. The Ca 2+ pump rate is an instantaneous function of intracellular [Ca 2+ ] and expresses a Hill function with a Hill constant of 2.

J pump = v 3 c 2 i k 2 3 + c 2 i , (3.16) 
where v 3 is the maximal Ca 2+ uptake rate of SERCA and k 3 is the SERCA Ca 2+ affinity [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF].

The passive Ca 2+ leakage current, J leak , is relative to the [Ca 2+ ] gradient across the ER membrane and the maximum Ca 2+ leakage rate from the ER to the cytosol.

J leak = r L (c i -c ER ) , (3.17) 
where r L = c 1 v 2 , and v 2 is the Ca 2+ leak rate constant.

The Ca 2+ influxes J chan and J leak can be grouped into J rel .

J rel (c i , q, p) = J chan (c i , q, p)

+ J leak (c i ) = r C m 3 ∞ n 3 ∞ h 3 ∞ + r L (c ER -c i ) .
(3.18) Thus, J rel becomes a function of cell parameters described by

J rel (c i , q, p) = r C m 3 ∞ n 3 ∞ h 3 ∞ + r L × (c 0 -(1 + c 1 ) c i ) . (3.19)
Therefore, the intracellular [Ca 2+ ] balance equation is

dc i dt = -J rel (c i , q, p) -J pump (c i ). (3.20) 
The Ca 2+ dynamics equilibrium occurs when both the intracellular Ca 2+ level and the fraction of inactivated IPR are constant, that is dc i /dt = 0 and dq/dt = 0 [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. During stimulation, cytosolic [Ca 2+ ] tends to fluctuate, also referred to as Ca 2+ oscillations [START_REF] Min | A mathematical model of calcium dynamics: Obesity and mitochondria-associated er membranes[END_REF].

In the Li-Rinzel model, Ca 2+ oscillations are related to the IP 3 levels; the stability in Ca 2+ levels occurs either during low or high [IP 3 ] [157].

3.3/ NEUROTRANSMISSION

What is the importance of Ca 2+ concentration and oscillations in the axon terminal? One consequence of the Ca 2+ influx in the presynaptic terminal is the initiation of synaptic transmission, the process in which one neuron communicates with another. The accumulation of AP-evoked transient Ca 2+ triggers synaptic vesicle exocytosis, therefore releasing neurotransmitters into the synaptic cleft. Synaptic neurotransmitters enter the postsynaptic neuron through the receptors in the spine head, causing membrane depolarization due to excitatory neurotransmitters or temporary hyperpolarization due to inhibitory neurotransmitters. The neurotransmitter presented here is of excitatory type, specifically glutamate (Glu -). Therefore, synaptic transmission is the interplay between the electrical and chemical dynamics of the neurons.

The synapse, the basic neurotransmission unit, is a complex physiological structure that connects the axon terminal or bouton of the presynaptic neuron with the dendritic spine head of the postsynaptic neuron [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF]. The synapse serves as an intercellular junction whose intersynaptic space is approximately 15 nm between the bouton and the spine head [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF]. Neurotransmitters are chemical messengers, molecules used by the neurons to transfer information to targeted cells. In the presynaptic neuron, these neurotransmitters are stored in vesicles, membrane-bound organelles synthesized in the soma [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Ia Kuznetsov | How dense core vesicles are delivered to axon terminals-a review of modeling approaches[END_REF]. Cargos, such as neurotransmitters, are packaged into these vesicles for transport to the active zones located in the axon terminals through a microtubule-dependent process. A quantal size corresponds to a single synaptic vesicle [START_REF] Branco | The probability of neurotransmitter release: variability and feedback control at single synapses[END_REF]. Synaptic vesicles are classified according to their propensity to fuse with the plasma membrane [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF]. The readily releasable pool (RRP), which is less than 5% of the total synaptic vesicles, fuse in response to an AP [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF]. In hippocampal synapses, the docked synaptic vesicles belong to the RRP. Docked vesicles are those vesicles fastened to the plasma membrane near the active zone [START_REF] Ege | The mechanisms and functions of spontaneous neurotransmitter release[END_REF]. The reserved pool, which comprises 10-60% of the total vesicles, restock the RRP to maintain neurotransmission [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF]. Therefore, the RRP and reserved pool form the recycling pool of synaptic vesicles. The rest of the synaptic vesicles belong to the resting or dormant pool, which is highly invulnerable to synaptic activity. The resting pool may contribute to spontaneous neurotransmitter release or may act as reserved synaptic vesicles. axon terminal, briefly opening VDCCs in the active zone, causing a rapid influx of highlylocalized, transient Ca 2+ ions [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Branco | The probability of neurotransmitter release: variability and feedback control at single synapses[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF][START_REF] Thomas | Calcium control of neurotransmitter release[END_REF]. Intracellular Ca 2+ ions bind with the vesicular Ca 2+ sensors. The kinetic binding schemes between the vesicular sensor and intracellular [Ca 2+ ] differ depending on the release mode, the level of [Ca 2+ ], and synaptic plasticity [START_REF] Bornschein | Synaptotagmin ca2+ sensors and their spatial coupling to presynaptic cav channels in central cortical synapses[END_REF]. In this study, there are five cooperative, low-affinity Ca 2+ -binding sites where five Ca 2+ ions must bind with vesicular Ca 2+ sensors to induce docking. The kinetic model governing the Ca 2+ binding to the Ca 2+ sensors is given as

X 5αc i ⇄ β X(c i ) 1 4αc i ⇄ 2β X(c i ) 2 3αc i ⇄ 3β X(c i ) 3 2αc i ⇄ 4β X(c i ) 4 αc i ⇄ 5β X(c i ) 5 γ ⇄ δ X(c i ) * 5 , (3.21) 
where X is the Ca 2+ sensor with no Ca 2+ bound, X(c i ) 1 to X(c i ) 5 correspond to the Ca 2+ sensors with one to five Ca 2+ bound, X(c i ) * 5 is the isomer of X(c i ) 5 ready for release, α and β are the Ca 2+ association and dissociation constants, respectively, and γ and δ are the Ca 2+ independent isomerization constants [START_REF] Johann H Bollmann | Calcium sensitivity of glutamate release in a calyx-type terminal[END_REF]. With sufficient bounded Ca 2+ and [Ca 2+ ] elevation of ∼10 µM [START_REF] Schneggenburger | Intracellular calcium dependence of transmitter release rates at a fast central synapse[END_REF], Ca 2+ sensors activate, inducing docking and then priming synaptic vesicles with the axon terminal membrane [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Branco | The probability of neurotransmitter release: variability and feedback control at single synapses[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. During priming, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) fusion complex starts to form in the synaptic vesicles and SNAREs syntaxin 1 and on the plasma membrane [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Ege | The mechanisms and functions of spontaneous neurotransmitter release[END_REF][START_REF] Trimbuch | Should i stop or should i go? the role of complexin in neurotransmitter release[END_REF]. The SNARE complex space is limited [START_REF] Trimbuch | Should i stop or should i go? the role of complexin in neurotransmitter release[END_REF]; thus, there are two docked vesicles at the active zone [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. The SNARE fusion complex pulls together the vesicle and the plasma membrane, effectuating the opening and expansion of the pore for exocytosis. The pore opening and neurotransmitter release are either Ca 2+ -triggered mediated by Ca 2+ sensors or by spontaneous release [START_REF] Thomas | Calcium control of neurotransmitter release[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. After neurotransmitter release, the SNARE complex disassembles, and the empty vesicle leaves the terminal and reenters the vesicle circulation for endocytosis [START_REF] Ia Kuznetsov | How dense core vesicles are delivered to axon terminals-a review of modeling approaches[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. The released neurotransmitters rapidly diffuse from the axon terminal and bind to dendritic receptors that induce postsynaptic membrane potential changes [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF]. The success of synaptic transmission, therefore, is dependent on (1) the number of readily releasable vesicles, the [Ca 2+ ] in the presynaptic bouton, and (3) the Ca 2+ coupling and vesicle fusion [START_REF] Branco | The probability of neurotransmitter release: variability and feedback control at single synapses[END_REF]. The neurotransmitter release process occurs within milliseconds upon arrival of an AP [START_REF] Trimbuch | Should i stop or should i go? the role of complexin in neurotransmitter release[END_REF]. The neurotransmission time course is presented in Figure 3.3.

3.3.2/ MODES OF NEUROTRANSMITTER RELEASE

Molecular and electrophysiological data revealed diversity in synaptic vesicles, in turn, in presynaptic exocytotic fusion machinery, giving rise to multiple modes of neurotransmitter release: synchronous, asynchronous, and spontaneous release (Figure 3.4). These modes are influenced by the AP arrival or by transient [Ca 2+ ].

3.3.2.1/ SYNCHRONOUS RELEASE

The synchronous release is the predominant mode of neurotransmitter release in most synapses, accounting for >90% of release at low-frequency stimulation [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF]. Synchronous neurotransmitter release is time-locked with the arrival of AP in the axon terminal and induced by the rapid Ca 2+ influx, which is closely associated with Ca 2+ mediated fusion of synaptic vesicles [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. In the presynaptic Ca 2+ nanodomains, Ca 2+ sensors respond quickly to Ca 2+ entry, have low Ca 2+ -affinity, and fast off-rate [START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF]. Vesicle fusion occurs in less than a millisecond after an AP invades the axon terminal. These properties are exceptionally vital for neuronal communication, which requires fast neurotransmission [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF]. The axon terminal must generate and maintains the RRP of vesicles for fast exocytosis.

Tsodyks-Markram Model. The Tsodyks-Markram Model (TMM) [START_REF] Markram | Redistribution of synaptic efficacy between neocortical pyramidal neurons[END_REF] is the classical phenomenological model that describes the time evolution of available vesicles and dynamically changing release probability [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. The arrival of AP at time t AP induces a fraction of total vesicles in the RRP, R, to release their neurotransmitter content, where the total amount of neurotransmitter for release, E, is contained in this fraction of readily releasable vesicles (Equation 3.22).

dR dt = - R τ f + R 0 [1 -R] AP δ(t -t AP ), dE dt = E F -E τ d -q r , (3.22) 
where τ f controls the rate of decay of R, τ d controls the rate of replenishment of vesicles, R 0 denotes the increment of R due to the arrival of AP, E F is the total neurotransmitter in the vesicles after replenishment, and δ(•) is the Dirac delta function. The variable q r is the neurotransmitter release rate, described as

q r = R(t + AP )E(t - AP ) AP δ(t -t AP ), (3.23) 
where t + AP and t - AP correspond to when an AP begins and ends, respectively.

Tsodyks Model. The Tsodyks Model [START_REF] Tsodyks | Activity-dependent transmission in neocortical synapses[END_REF] is an extension of the TMM. In this case, instead of computing the amount of neurotransmitters in the readily releasable vesicles, the model postulates the probability of neurotransmitter release. Upon the arrival of AP at t AP , the probability of neurotransmitters available for release (u S ) increases by a factor u 0 (release probability at rest), while the readily releasable neurotransmitter (x S ) decreases by a fraction r S (t AP ) = u S (t

+ AP )x S (t - AP ), (3.24) 
that corresponds to the fraction of effectively released neurotransmitter. In between APs, neurotransmitter resources are reintegrated at a rate of 1/τ d while u S decays to zero at a CHAPTER 3. NEUROTRANSMISSION AND NEURAL CODING rate of τ f . The probabilities are given as

τ f du S dt = -u S + AP u 0 (1 -u S ) δ (t -t-AP ) τ f , τ d dx S dt = 1 -x S - AP r S δ (t -t AP ) τ d .
(3.25)

The synapse is "at rest" when u S → 0 and x S → 1, which occurs during the AP onset is much larger than the synaptic time scales τ d and τ f . In this case, the probability of AP-evoked neurotransmitter release from the presynaptic bouton is equal to u 0 [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF].

3.3.2.2/ ASYNCHRONOUS RELEASE

There are also some cases wherein synaptic transmission occurs even after the last AP. Synaptic vesicles fuse and release neurotransmitters asynchronously, and the amount of neurotransmitter that is released can be quite large [START_REF] Wang | A phenomenological synapse model for asynchronous neurotransmitter release[END_REF][START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Branco | The probability of neurotransmitter release: variability and feedback control at single synapses[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. This release may occur and persists for tens to hundreds of milliseconds after the end of stimulation, a single or a series of APs. The neuron type, presynaptic terminal capacity, intrinsic molecular attributes of the neurotransmitter release machinery, and prior activity history are some conditions that influence this particular mode of release. The asynchronous release is stochastic, and the level and duration are regulated by the Ca 2+ entry and from sustained moderate-to high-frequency stimulation.

3.3.2.3/ SPONTANEOUS RELEASE

Almost in all neurons, spontaneous mini-releases occurs even when the presynaptic membrane is not depolarized, in that it is independent of neuronal activity [START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF][START_REF] Thomas | Calcium control of neurotransmitter release[END_REF][START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. Confocal or two-photon microscopy with single-cell electrophysiology in the hippocampal CA1 area suggests that the spontaneous fluctuations of intracellular Ca 2+ also regulate this mode of release [START_REF] Rusakov | Ca2+-dependent mechanisms of presynaptic control at central synapses[END_REF][START_REF] Natali | Presynaptic origins of distinct modes of neurotransmitter release[END_REF][START_REF] Thomas | Calcium control of neurotransmitter release[END_REF]. The significance of spontaneous release is still under debate, though it may implicate synaptic stabilization, long-term synaptic plasticity and may prevent loss of dendritic spines [START_REF] Pascal | Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release[END_REF].

Unlike in synchronous release, where the synaptic neurotransmitter can be computed directly in response to AP, the spontaneous release is dependent on the state of vesicles ready to be released. Given two docked vesicles in the active zone, the number of vesicles ready to be released spontaneously, f r , can have values of [0, 0.5, 1] for [0, 1, 2] releasable vesicles. The probability, f r , is a stochastic process; therefore, the fluctuation in f r is a Poisson process whose rate, λ, is dependent on the intracellular [Ca 2+ ], c i ,

λ(c i ) = a 3 1 + exp a 1 -c i a 2 -1 , (3.26) 
where a 1 is the [Ca 2+ ] at which λ is halved, a 3 is the slope factor of spontaneous release rate λ, and a 3 is the maximum spontaneous release rate. Tewari et al. [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] modified the TMM to make the vesicle fusion f r -dependent.

dR dt = 1 τ rec -f r • R, dE dt = - E τ inact + f r • R, I = 1 -R -E, (3.27) 
where R is the fraction of releasable vesicles in the presynaptic terminal, E is the fraction of effective vesicles in the synaptic cleft, I is the fraction of inactive vesicles undergoing recycling, and τ inact and τ rec are the time constants of vesicle inactivation and recovery. Once a vesicle is released, either synchronously or spontaneously, the release process remains inactivated for 6.34 ms.

3.3.3/ SYNAPTIC GLUTAMATE DYNAMICS

The most abundant neurotransmitter in the human brain (80-90% of the neurons) is glutamate (Glu -), which excites virtually every neuron (80-90% of synapses) for fast excitatory neurotransmission [START_REF] Flanagan | A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability[END_REF][START_REF] Hassel | Glutamate and glutamate receptors[END_REF]. In the hippocampus, Glu -is the principal mediator for memory formation and retrieval. The hippocampus comprises mainly glutamatergic synapses: the entorhinal cortex to DG, DG to CA3, and between pyramidal cells from CA3 to CA1 regions. There are only a few mmol/l of Glu -in the cytosol; instead, Glu -is concentrated in the synaptic vesicles with 60-250 mmol/l of [Glu -] per vesicle. A glutamatergic vesicle has an inner radius of ∼17 nm and a volume of 2×10 -20 liters. Therefore, a [Glu -] of 100 mmol/l (∼6×10 22 molecules per liter) would yield 1200 molecules of Glu - in each vesicle.

In the Tsodyks model in Equation 3.25, assuming that the total vesicular [Glu -] is Y T , the released Glu -into the synaptic cleft is equal to the

Y rel (t AP ) = ϱ c Y T r S (t AP ), (3.28) 
where ϱ c represents the ratio between vesicular and synaptic cleft volumes [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF][START_REF] Flanagan | A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability[END_REF].

The time course of synaptically released Glu, Y S , is modeled by a first-order degradation reaction of characteristic time τ c ,

τ c dY S dt = -Y S + AP Y rel δ (t -t AP ) τ c . (3.29)
There are two vital quantities for the spontaneous release model: n v , which is the number of docked of vesicles, and f r , which is the release probability updated during every arrival of AP at time t AP [START_REF] Rodrigues | Time-coded neurotransmitter release at excitatory and inhibitory synapses[END_REF]. Therefore, the total amount of neurotransmitter released, with a small time delay, during a single AP is T ( t AP ) = n v (t AP ) f r (t AP ). Upon synaptic release, Glu -must rapidly exit the synaptic cleft, usually diffusing to the extrasynaptic space for astrocytic reuptake [START_REF] Chatton | A quantitative analysis of l-glutamate-regulated na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics[END_REF]. The synaptic cleft must regulate its [Glu -] to prevent overactivation of neuronal glutamate receptors, which leads to excitotoxicity [START_REF] Flanagan | A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability[END_REF][START_REF] Hassel | Glutamate and glutamate receptors[END_REF][START_REF] Chatton | A quantitative analysis of l-glutamate-regulated na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics[END_REF]. Therefore, in order to include the synaptic glutamate clearance, synaptic [Glu -], g, time course is where E is the effective fraction of Glu -in the synaptic cleft (Equation 3.27), g v is the vesicular [Glu -], and g c is the rate of Glu -clearance by neuronal or astrocytic reuptake [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. Using these dynamics, synaptic [Glu -] ranges from 0.24 to 11 mM and last 2 ms.

3.4/ SIGNAL PROPAGATION ALONG THE DENDRITIC ARBORIZA-TION

In the mammalian brain, a neuron typically receives 10 3 to 10 4 synaptic information formed on the dendritic tree, which processes electrical information locally and globally within a millisecond timescale [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Yasuda | Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity[END_REF]. The complex morphology of neurons has fascinated neuroscientists since Cajal published his drawings of brain cells. Decades of experimental and computational work have shown that neurons performed sophisticated computations through the complex and diversified biophysical and electrical dendritic compartments. Studies on neuronal morphology, especially in varying and constant dendritic properties, attempt to elucidate the information transmission and signal processing in neurons.

3.4.1/ SYNAPTIC INPUTS VIA DENDRITIC SPINES

The dendrites of pyramidal neurons are covered with small protrusions called dendritic spines (Figure 3.5), emanating from the dendritic surface [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Yasuda | Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity[END_REF][START_REF] Spruston | Information processing in dendrites and spines[END_REF]. The dendritic spines form the primary site of synaptic information contacts, mostly from (∼95%) excitatory neurons and some from inhibitory interneurons. Figure 3.5 shows a dendritic segment recorded using a stimulated-emission depletion (STED) microscope. Spine distribution is low on dendrites less than 40 µm from the soma, then increases to a maximum within 40-130 µm from the soma, gradually decreasing toward the distal dendrites [START_REF] Emoto | Dendrites: development and disease[END_REF].

3.4.1.1/ DENDRITIC SPINE STRUCTURE AND FUNCTIONS

Dendritic spines are composed of a small spherical spine head (<1 µm in diameter) and a narrow spine neck (∼1 µ in diameter and ∼1 µm in length) [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Yasuda | Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity[END_REF][START_REF] Spruston | Information processing in dendrites and spines[END_REF]187]. Structural studies on dendritic spines using electron microscopy or super-resolution light microscopy showed that the dendrites of pyramidal neuron have a variety of spine shapes classified as stubby-(short and stubby necks with an unclear distinction between the neck and the head), thin-(long necks correlated with smaller heads), and mushroom-type (big and spherical head connected to a thick neck. Mature dendritic spines often have a mushroom shape. The dendritic head accommodates a synapse while the spine neck connects the spine to the dendritic shaft [187]. The spine neck separates the head from the main dendritic branch, acting as a diffusion barrier and compartmentalizing biochemical signaling [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Yasuda | Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity[END_REF].

The dendritic spines serve as the postsynaptic contacts in cooperation with the presynaptic counterparts from presynaptic axon terminals. Excitatory contacts tend to terminate on spine heads rather than directly on the dendritic shafts, implying that the spines have an important functional role, or else the excitatory contacts could directly couple with the dendritic shafts [187]. Dendritic spines have a distinctive feature called postsynaptic density (PSD), an electron dense region packed with signal transduction machinery that acts as the receiving site of synaptic transmission [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF][START_REF] Yasuda | Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity[END_REF]. The PSD is linearly related to the dendritic geometry (largest in mushroom-shaped and smaller in thin or stubby spines) and sensitivity of spines to Glu - [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF]. Another example of the structural-functional importance of dendritic spines is the one-to-one relationship between the number of dendritic spines and excitatory synapses [START_REF] Veronica | Anatomical and physiological plasticity of dendritic spines[END_REF]. In addition, the morphological and biophysical characteristics of spines support synaptic plasticity by providing biochemical isolation and chemical compartmentalization distinct from the dendritic shaft [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Spruston | Information processing in dendrites and spines[END_REF]187].

3.4.1.2/ EXCITATORY AND INHIBITORY SYNAPTIC INPUTS

The dendritic spines accommodate excitatory synapses while inhibitory synapses directly target the dendritic shaft (Figure 3.6). Ligand-gated channels, also called receptors, are abundant on the postsynaptic sites. When the synaptic signaling chemical (ligand) binds to the specific site on the receptor, it opens and allows ion flow through the channel [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The most common types of receptors located at the postsynaptic membrane are the glutamate-gated AMPA and NMDA receptors mediating fast excitatory synaptic transmission and GABA-gated (γ-aminobutyric acid) GABA A (GABA A-subtype) receptors for inhibitory transmission [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Wallisch | MATLAB for neuroscientists: an introduction to scientific computing in MATLAB[END_REF]. These receptors are named after their selective agonists. Glutamate binds with both AMPA and NMDA receptors; however, AMPA only binds with AMPA receptors (and NMDA with NMDA receptors).

In glutamatergic synapses, AMPA and NMDA receptors coexist in the same postsynaptic site [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. AMPA-receptors are permeable to both Na + and K + ions, while NMDA receptors are permeable to Na + , K + , and Ca 2+ ions. The Na + current influx through the AMPA-channel and the NA + and Ca 2+ current fluxes through the NMDA channel cause an excitatory postsynaptic potential (EPSP). The activation of AMPA receptors results in the accumulation of positive ions into the intracellular space, resulting in a rapid and large depolarization. NMDA receptors also mediate excitation; however, they mediate weak but more sustained depolarization, unlike AMPA receptors. Magnesium ions block or clog the NMDA channel at resting state, preventing other ions from flowing freely. During depolarization after AMPA receptor activation, the Mg 2+ block separates from the NMDA receptor allowing the flow of inward ionic current. Therefore, there NMDA receptor is both a ligand-gated and voltage-gated channel.

GABAergic synapses mediate fast inhibitory transmission, with reversal potential close to the resting potential [START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Silver | Neuronal arithmetic[END_REF]. GABA is an amino acid synthesized from Glu -and is the major inhibitory neurotransmitter in the CNS [START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The GABA receptor activation results in the influx of Cl -causing a hyperpolarization or an inhibitory postsynaptic potential (IPSP). This hyperpolarization inhibits the depolarizing effects of excitatory synaptic inputs in the same dendritic compartment [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. Hippocampal pyramidal neurons construct GABAergic synapses with interneurons. Pyramidal dendrites have an excitatory to inhibitory synapses ratio of 12:1 [START_REF] Emoto | Dendrites: development and disease[END_REF].

3.4.1.3/ EXCITATORY POSTSYNAPTIC POTENTIALS

The small spine structure creates an electrical asymmetry caused by the very high spine resistance (R sp ) connected to a relatively low-resistance dendrite via an intermediary spine neck resistance (Figure 3.7a) [START_REF] Spruston | Information processing in dendrites and spines[END_REF]187]. The cable theory also describes the electrical consequence from each spine compartment (head and neck), which helps analyze the EPSP propagation from the spine head to the dendritic shaft. As shown in Figure 3.7b, the dendritic head, neck, and dendritic shaft are separate compartments represented by a resistance-capacitance (RC) circuit. The transient synaptic conductance, g syn , the electromotive force due to the ion influx from the synaptic area, the membrane capacitance (C head , C neck , and C dendrite ), and membrane resistance (1/g head , 1/g neck , and 1/g dendrite ) are the main parameters that determine the EPSP time course and amplitude [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF]187,[START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. The electromotive force (or the driving force) is the difference between the membrane potential and the synaptic reversal potential (V spine -E syn ) [START_REF] Beaulieu-Laroche | Dendritic spines prevent synaptic voltage clamp[END_REF]. The spine (head and neck) is so small that it has negligible membrane resistance and capacitance (Figure 3.7c) [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. The spine behaves like a sealed cable whose overall resistance R sp is larger than the dendritic compartment. However, according to Popovic et al. [START_REF] Marko A Popovic | Electrical behaviour of dendritic spines as revealed by voltage imaging[END_REF], this does not directly apply to all spines in the dendrites, especially in the proximal primary dendrite with large diameter and larger regions devoid of spines. Here, the EPSP amplitude is mainly dependent on high dendritic impedance Z and not on low R sp .
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Applying Ohm's law to the electrical circuit equivalent of the dendritic spine (with the spine head connected to a narrow spine neck) in Figure 3.7b, the excitatory synaptic input, V syn , is described as

V syn ≈ I syn R sp ≈ I syn (R N + Z) ≈ I syn R N , (3.31) 
where I syn is the synaptic current due to the ions flowing through the open channels, and R sp is the spine resistance [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF]. The spine resistance is the sum of the spine neck resistance, R N , and the dendritic impedance Z (Figure 3.7c) [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Koch | The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization[END_REF]. The EPSP is dependent mainly on the spine neck resistance, R N , whose resistance is so much greater than the dendritic of spine head resistance; therefore, the influence of Z becomes negligible [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Allan T Gulledge | Electrical advantages of dendritic spines[END_REF]. In addition, the small surface area of spines also provides negligible membrane conductance and capacitance. Electron microscopy measurements suggest that R N ranges from 1 MΩ to 1 GΩ [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Spruston | Information processing in dendrites and spines[END_REF], while measurements from voltage imaging with genetically encoded voltage indicators (GEVIs) estimates R N to be 101 ± 95 MΩ [START_REF] Kwon | Attenuation of synaptic potentials in dendritic spines[END_REF]. The spine neck resistance, R N , is determined by

R N = 4ρl πd 2 , (3.32) 
where l is the spine neck length, ρ is the cytoplasmic resistivity, and d is the diameter [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Tønnesen | Dendritic spines as tunable regulators of synaptic signals[END_REF]. With the passive spine membrane mechanism, the change in the membrane CHAPTER 3. NEUROTRANSMISSION AND NEURAL CODING potential is generated by summating of all EPSP contributions of the receptors.

τ m dV dt = V rest -V + V ampa + V nmda , = V rest -V -R N I ampa + I nmda , (3.33) 
where V is the EPSP in the spine, and τ m is the membrane time constant [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF].

Dual-exponential function. During neurotransmission, the current flowing through the synaptic receptor is described as

I syn = g syn V -E syn , (3.34) 
where syn can be either AMPA or NMDA receptors. Here, g syn is the synaptic receptor conductance, V is the membrane potential, and E syn is the excitatory receptor reversal potential equal to 0 mV [START_REF] Destexhe | An efficient method for computing synaptic conductances based on a kinetic model of receptor binding[END_REF][START_REF] Hassanpoor | An investigation into the effective role of astrocyte in the hippocampus pattern separation process: A computational modeling study[END_REF]. The temporal dynamics of g ampa is modeled using a dual-exponential formulation given as

g ampa (t) = ḡampa α e -t τ 2ampa -e -t τ 1ampa , (3.35) 
where ḡmax is the maximum conductance, α is chosen so that the maximum value of g ampa matches the ḡampa , τ 1 ampa is the rise time constant equal to 0.2 ms, and τ 2 ampa is the decay time constant equal to 2 ms [START_REF] Baker | A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal ca3 pyramidal cells[END_REF][START_REF] Mark T Harnett | Synaptic amplification by dendritic spines enhances input cooperativity[END_REF][START_REF] Olypher | Input-to-output transformation in a model of the rat hippocampal ca1 network[END_REF]. A single AMPA receptor conductance has an estimated value of 9 pS [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF][START_REF] Smith | Concentration-dependent substate behavior of native ampa receptors[END_REF]. Note here that ḡampa is the collective conductance of AMPA receptors in the spine head (the mean number of receptors is 82) [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF]. Furthermore, the NMDA receptor conductance is also modeled using a dual-exponential function with external [Mg 2+ ] and membrane potential dependence.

g nmda (t) = ḡnmda α e -t τ 2 nmda -e -t τ 1 nmda 1 + [Mg 2+ ] 3.57 e -0.062V(t) , (3.36) 
where ḡnmda is the maximum g nmda conductance, τ 1 nmda = 2 ms, τ 2 nmda = 86 ms, [Mg 2+ ] is the external Mg 2+ concentration and V is the local membrane potential in mV [START_REF] Baker | A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal ca3 pyramidal cells[END_REF][START_REF] Destexhe | Kinetic models of synaptic transmission[END_REF][START_REF] Walker | Distance-dependent gradient in nmdar-driven spine calcium signals along tapering dendrites[END_REF][START_REF] Ómez Gonz Ález | Distinguishing linear vs. non-linear integration in ca1 radial oblique dendrites: it's about time[END_REF].

If both AMPA and NMDA receptors contribute to the response, [Mg 2+ ] is set to 1 mM, while when AMPA receptors are blocked, the [Mg 2+ ] is equal to 50 µM [START_REF] Baker | A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal ca3 pyramidal cells[END_REF]. The total synaptic conductance, G syn , due to AMPA and NMDA receptors is estimated to be ≥1 nS [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF].

Receptor gating function.

In order to take into account the receptor opening, the synaptic currents are modified into

I ampa = g ampa m ampa V -E ampa , and (3.37) 
I nmda = g nmda m nmda B(V) (V -E nmda ) , (3.38) 
where m ampa and m nmda are the gating variables of AMPA and NMDA receptors, respectively, and B(V) = 1 + [Mg 2+ ]e -0.062V(t) /3.57 [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] Allan T Gulledge | Electrical advantages of dendritic spines[END_REF][START_REF] Hassanpoor | An investigation into the effective role of astrocyte in the hippocampus pattern separation process: A computational modeling study[END_REF][START_REF] Destexhe | Kinetic models of synaptic transmission[END_REF]. In this simplified model, the synaptic receptor conductances are dependent on the neurotransmitter concentration in the synaptic cleft and follow the HH-type formulism. The gate activation is governed by dm ampa dt = α ampa g 1m ampa -β ampa m ampa , and

dm nmda dt = α nmda g (1 -m nmda ) -β nmda m nmda , (3.39) 
where α ampa and α nmda are the forward rates (1.1 µM -1 and 72 mM -1 , respectively) while β ampa and β nmda are the backward rates (190 s -1 and 6.6 s -1 , respectively), and g is the [Glu -] in the synaptic cleft.

Instantaneous Jump and Exponential Decay. Fourcaud-Trocm é [START_REF] Fourcaud-Trocm É | Integrate and fire models, deterministic[END_REF] used a more simplified model of synaptic inputs where at the arrival of the synaptic spike at time t k , the V syn jumps instantaneously to a maximum value J syn (in mV) and then exponentially decays with a time constant τ N . The model is given as

τ N dV syn dt = -V syn (t) + J syn δ(t -t k )τ m (3.40)
where δ(•) is the Dirac-delta function. Then, De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] modified this model to make V syn dependent on the time course of synaptic neurotransmitters, g. The model becomes

τ N dV syn dt = -V syn (t) + Ĵsyn ζg(t)τ N , (3.41) 
where ζ is the synaptic transmission efficacy from 0 to 1, and Ĵsyn is the instantaneous jump given as

Ĵsyn = J syn ϱ c Y T τ N . (3.42)
The parameter ϱ c is the ratio between the vesicle and synaptic area volumes (ϱ c = 0.005), and Y T is the total vesicular [Glu -].

3.4.2/ SYNAPTIC INPUT PROPAGATION THROUGH DENDRITES

The high neck resistance, R N , can significantly decrease the synaptic signal amplitude from the spine head to the dendritic shaft (Figure 3.7c) [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF]187]. Therefore, the activation of an excitatory synapse should produce a membrane potential greater amplitude than the voltage of the dendritic shaft where the spine is attached [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF][START_REF] Spruston | Information processing in dendrites and spines[END_REF]. The significant voltage drop from a single spine head to the dendritic shaft also limits the influence of the spine on its neighbors. However, dendritic voltage, produced during clustered synaptic activation or backpropagating APs (bAPs) and dendritic spikes, transmits reliably into spines altering the membrane potential of the spine. These dendritic voltages enter the spine head without significant attenuation, whereas EPSP amplitude decreases as it propagates to the dendrite. This electrical behavior is a consequence of multiple impedance mismatches between the spine and dendritic compartments. Even though an EPSP in a spine is quite large, the resulting EPSP in the soma is very small due to the dendritic morphology and the passive and active dendritic mechanism. The EPSP significantly attenuates as it enters the dendritic compartment and travels along the dendritic segment. Therefore, the EPSP reaching the soma is so much smaller compared to the synaptic input.

3.4.2.1/ PASSIVE DENDRITES

The dendritic arborization creates a more complex multicompartmental equivalent circuit (Figure 3.8). In his series of studies in the 1960s on modeling passive dendrites, Wilfrid Rall identified three important dendritic properties [START_REF] Rall | Neural theory and modeling[END_REF][START_REF] Rall | Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input[END_REF][START_REF] Wilfrid Rall | Dendritic location of synapses and possible mechanisms for the monosynaptic epsp in motoneurons[END_REF][START_REF] Rall | Handbook of physiology[END_REF]. The dendritic compartment consists of axial resistance (r a ), membrane resistance (r m ), and membrane capacitance (c m ) (Figure 3.8c). In an elementary compartment, the current injected leaks across the membrane and decreases as it travels down to the next compartment through r a , resulting in a continuous voltage drop to the soma [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Jeffrey C Magee | Dendritic integration of excitatory synaptic input[END_REF]. Therefore, the driving force flowing through r m decreases with distance from the soma. The membrane capacitance, c m , temporarily stores charge, which delays signal propagation. Overall, these passive properties attenuate the signal and slow down its time course.

3.4.2.2/ ACTIVE DENDRITES

Passive cable models are only a first approximation to the physiological properties of neurons since the dendritic tree is not purely passive. The dendritic membrane expresses ionic conductances attributed to the heterogeneous distribution of VGCs, which can coun-
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teract the influence of the passive mechanisms [187, [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Migliore | The physiological variability of channel density in hippocampal ca1 pyramidal cells and interneurons explored using a unified datadriven modeling workflow[END_REF]. In CA1 pyramidal neurons, Na v channel conductance tends to be constant at ∼115 pS/m 2 from 0-100 µm distance from the soma [START_REF] Migliore | Emerging rules for the distributions of active dendritic conductances[END_REF]. A-type K v and HCN channels have higher densities in distal apical dendrites than in soma or proximal dendrites [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF]. T-type Ca v channels increase moderately while L-and N-type Ca v channels have relatively constant density [START_REF] Migliore | Emerging rules for the distributions of active dendritic conductances[END_REF]. In CA3 dendrites, Na v channel conductance has a gradient decrease from 60 pS/m 2 near the soma to almost no conductance at 200 µm away from the soma, restricting the Na v channel distribution in the proximal dendrites. A-type K v channel seemed to be nonexistent or minimal along the dendrites because its hyperpolarizing effect of high-density K v could inhibit somatic bursting.

In this case, the dendritic tree becomes excitable [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. For active dendrites, active conductances are added to the equivalent circuit wherein the specific channel conductance is relative to the dimensions of the compartments (similar to the compartmentalization in axons presented in Section 2.6). The cable equation in discrete form for a compartment k is, therefore,

C k dV k dt = l γ l,k (V 1 -V k ) -I ionic,k , (3.43) 
where k and l are index compartments, C is capacitance, V is the membrane potential, γ is the coupling conductance between the connected compartments, and the summation corresponds to the overall compartments l connected to compartment k [START_REF] Roger D Traub | A branching dendritic model of a rodent ca3 pyramidal neurone[END_REF]. The ionic current I ionic,k is the total ionic membrane current impinging synaptic inputs and ion influxes through VGCs. The distributed active conductances amplify synaptic activity by activating local dendritic spikes [START_REF] Bloss | Single excitatory axons form clustered synapses onto ca1 pyramidal cell dendrites[END_REF]. Compared to passive dendrites, active dendrites exhibit more location-specific activities [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF]. Therefore, an active neuron can perform synaptic input transformations into AP, an event that usually requires multiple passive neurons.

3.4.2.3/ DENDRITIC MECHANISM

In addition to the complex structure is the distribution of synaptic inputs. Inputs may arrive at different spine heads synchronously or asynchronously. Clustered synaptic inputs arrive at a spatially restricted zone in the dendritic segment while distributed inputs spread along the dendritic arbor [START_REF] Araya | Input transformation by dendritic spines of pyramidal neurons[END_REF]. Bloss et al. [START_REF] Bloss | Single excitatory axons form clustered synapses onto ca1 pyramidal cell dendrites[END_REF] showed that a single axon of CA3 neuron projects clustered synapses in distal, not in proximal, dendrites of CA1 pyramidal neurons. The impact of individual synaptic inputs is generally weak to cause somatic spiking; however, the synchronous and clustered synapses on a dendritic branch produce local spikes that can nonlinearly influence somatic spikes [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF].

What happens to the neuron dynamics if the dendrites contain both passive and active mechanisms? The complex structure of the dendritic arborization and the nonuniform expression of VGCs have a profound effect on signal propagation and processing by producing dendritic events (Figure 3.9), such as filtering, dendritic spikes, and backpropagation, that contribute to the activity-dependent refinement of neuronal circuitry.

branches. We discuss how the properties of dendritic spike generation combined with the local biochemical signalling machinery should favour the formation of these clusters. This nonrandom connectivity pattern resulting in nonlinear summation should greatly expand the computational properties of a neural network [17,19,21 ,22].

Phenomenology of dendritic spikes

We begin our argument by characterizing the variety of dendritic spikes that have been described so far and their impact on AP generation (Figure 1). Dendritic spikes add computational capacity to neurons; however, in addition to specialised active mechanisms, they require synaptic input that is synchronised and spatially clustered. The 

Dendritic Filtering

As explained previously, the resistance-capacitance electrical equivalent of a compartment acts as a filter.The ratio between neck conductance and synaptic conductance (g neck /g syn ) determines the amount of electrical filtering in the spine. [187]. Then, the EPSP in the dendrites is larger than the recorded somatic EPSP due to dendritic filtering (Figure 3.9f) [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Because r i increases with distance from the soma, and c m also increases with dendritic diameter, distal EPSPs have lower amplitude than proximal EP-SPs (Figure 3.9g) [START_REF] Jeffrey C Magee | Dendritic integration of excitatory synaptic input[END_REF]. Dendritic filtering accounts for the larger EPSPs along the dendrites than in those recorded in the soma [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. The dendrites have other mechanisms for counteracting the effect of dendritic filtering, that is, through the active properties of VGCs. The ion influx through the opening of Na v channels along the dendrites increase the EPSP amplitude by replacing the ions lost during propagation, while efflux due to K v channels reduces the filtering effect of c m by charging and discharging the membrane [START_REF] Jeffrey C Magee | Dendritic integration of excitatory synaptic input[END_REF]. Also, the compound influence of clustered synapses minimizes dendritic filtering [START_REF] Bloss | Single excitatory axons form clustered synapses onto ca1 pyramidal cell dendrites[END_REF].

Dendritic Spikes

Dendrites are also excitable, like the AIS but with a higher threshold, and could generate dendritic spikes [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. Few clustered synapses activated synchronously produce dendritic depolarization that is large enough to activate VGCs along the dendritic membrane [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Greg | Dendritic integration: 60 years of progress[END_REF]. These weak dendritic spikes do not reliably propagate throughout the dendrites and can be locally restricted within the dendritic branch where the spikes were produced. Balind et al. [START_REF] Snezana | Diverse synaptic and dendritic mechanisms of complex spike burst generation in hippocampal ca3 pyramidal cells[END_REF] and Kim et al. [START_REF] Kim | Active dendrites support efficient initiation of dendritic spikes in hippocampal ca3 pyramidal neurons[END_REF] showed that CA3 pyramidal neurons efficiently produce local Na + and NMDA spikes and widespread Ca 2+ spikes upon clustered synapses.

The name of dendritic spikes is mainly based on the dominant channels activated during the event (though varieties of channel-types can influence dendritic spiking).

Na + spikes.

Sodium spikes (Figure 3.9c) are the fastest and relatively brief dendritic event similar to a somatically-evoked AP, resulting from fast Na v channel kinetics [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF]. High-amplitude local depolarization triggers Na + spiking, which implies that Na + spikes require synchronous activation of clustered synapses. Two-photon glutamate uncaging on radial oblique CA1 dendrites suggest that at least 20 synaptic inputs can trigger a local Na + spike [START_REF] Silver | Neuronal arithmetic[END_REF]. In addition, the activation of NMDA receptors also contributes to an influx of Na + ions [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF]. Even though Na + spikes tend to be highly confined and do not propagate reliably out of the branch, this dendritic event can be triggered in most dendritic regions and can still contribute to somatic spiking. The resulting depolarization can be large enough to activate other VGCs and NMDA receptors distributed along the dendrites.

Ca 2+ spikes.

Strong synchronous excitatory synaptic inputs initiate Ca 2+ spikes (Figure 3.9b) [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Matthew E Larkum | A new cellular mechanism for coupling inputs arriving at different cortical layers[END_REF]. In contrast with Na + spikes, calcium spikes tend to be generated in specific dendritic locations, especially in the distal apical dendrite, which exhibits high-density VDCCs. Calcium spikes have a longer duration, causing plateau potentials as a consequence of slow Ca v channel kinetics [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. Calcium spikes tend to change the spiking behavior of the neuron to bursting mode, allowing dendrites in the distal tuft to communicate with the soma [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Matthew E Larkum | A new cellular mechanism for coupling inputs arriving at different cortical layers[END_REF].

NMDA spikes.

Voltage-sensitive NMDA receptors activate dendritic NMDA spikes (Figure 3.9d) [START_REF] Spruston | Information processing in dendrites and spines[END_REF], most prominent in basal dendrites [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Schiller | Nmda spikes in basal dendrites of cortical pyramidal neurons[END_REF]. NMDA spikes are highly restricted to the synaptic input sites due to the Glu --dependence of NMDA receptors, thus not propagate to dendritic regions void of NMDA receptors [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] Cichon | Branch-specific dendritic ca 2+ spikes cause persistent synaptic plasticity[END_REF]. If sufficient NMDA receptors are activated, regenerative spikes occur even if a small number of Na v and Ca v channels are active [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. The regenerative activation is due to the voltage-dependent relief of Mg 2+ blocks [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF]. NMDA spikes are also longer than Na + spikes and produce plateau potentials, lasting from 20 to hundreds of milliseconds [START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Major | Spatiotemporally graded nmda spike/plateau potentials in basal dendrites of neocortical pyramidal neurons[END_REF].

Dendritic spikes contribute to synaptic integration. Though not propagating actively, dendritic excitability still delivers enough charge to the axon and influences AP generation [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. For example, the summation of dendritic spikes activated in multiple dendritic branches allows neurons to perform coincident detection. Dendritic spikes also mediate local communication by activating channels that allow dendrite to release substances, such as neurotransmitters. Dendritic spikes also increase synaptic strength, thus regulating synaptic plasticity.

Backpropagating Action Potentials

The AP generated in the axon can propagate back into the soma and then to the dendrites (Figure 3.9e and Figure 3.9g) via the transient increase in dendritic membrane potential, [Ca 2+ ] elevation through VDCCs, and interaction with NMDA receptors [START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF][START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF]. Backpropagating APs signal the state of the soma back to the synaptic input sites. In addition, bAPs adds to the arriving synaptic activity where the increase in membrane depolarization activates VDCCs [START_REF] Jeffrey C Magee | Dendritic integration of excitatory synaptic input[END_REF][START_REF] Grienberger | Imaging calcium in neurons[END_REF]. Moreover, bAPs lessen the Ca 2+ spiking threshold, resulting in a localized increase in [Ca 2+ ] that influences some Ca 2+ -dependent synaptic plasticity [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Matthew E Larkum | A new cellular mechanism for coupling inputs arriving at different cortical layers[END_REF]. The amplitude of bAPs flowing through the dendrites varies with respect to the distance of the compartment from the soma [START_REF] Matthew | Synaptic clustering by dendritic signalling mechanisms[END_REF][START_REF] Spruston | Activitydependent action potential invasion and calcium influx into hippocampal ca1 dendrites[END_REF]. Potassium channel activation, heterogeneous Na v channel distribution, inhibition, and neuromodulation control the extent of backpropagation. Theoretically, passive dendritic cables impair bAPs in thin basal dendrites. Backpropagating APs often decay entirely before reaching the distal dendrites of CA1 pyramidal neurons [START_REF] Bloss | Single excitatory axons form clustered synapses onto ca1 pyramidal cell dendrites[END_REF] due to the minimum distribution of Na v channels along the distal dendrites.

3.5/ DENDRITIC INFORMATION PROCESSING

A single neuron must transform these inputs into an appropriate somatic output train to process the information carried by the multiple synaptic inputs. For example, in the CA3 network, neurons process the patterned synaptic inputs to generate and consolidate information coding [START_REF] Judit | Variable dendritic integration in hippocampal ca3 pyramidal neurons[END_REF]. Individual neurons utilize the passive and active mechanisms such as filtering, dendritic spikes, ligand-gated or voltage-gated nonlinearities to control the transformation of incoming synaptic inputs into somatic output trains. One of the long-lasting questions in neuroscience is how exactly the neuron processes the various incoming synaptic signals into information. In this subsection, we discuss the current advances in dendritic computation studies, the biophysical mechanisms controlling the transformation of inputs into somatic firing, the operations the dendrites perform, and the dendritic abstraction describing the overall neuron model.

3.5.1/ SYNAPTIC INTEGRATION

Postsynaptic currents flow through the dendritic arbor, integrate at the bifurcation points, or converge in the soma. Then, the soma converts the incoming signals into somatic depolarization, and if the resulting amplitude reaches a certain threshold, the soma generates an AP. The sequence of action potentials, even the subthreshold depolarizations, contains the processed information. The process of converting the synaptic inputs into somatic output is called dendritic integration, an intrinsic computation dependent on the location and number of activated synapses, the active and passive properties of the dendrites, and the spiking history.

Synaptic Integration in Passive Dendrites. In passive dendrites, the EPSP from a single synapse is insufficient to cause an AP [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. Therefore, multiple inputs, clustered or distributed, must impinge the cell via the complex morphology of the dendritic arborization. The passive properties of the dendrite allow the neuron to integrate the EPSPs in a nonlinear manner. Because passive dendrites have low-pass filtering characteristics, the EPSPs arriving at the soma may be 100-fold attenuated compared to the EPSPs at the spine head [START_REF] Papoutsi | Coding and decoding with dendrites[END_REF]. Therefore, the main effect of the passive dendritic properties is dendritic filtering. Synaptic integration also varies with input location [START_REF] Silver | Neuronal arithmetic[END_REF]. Based on the cable theory, the passive dendritic tree inflicts spatiotemporal distortion between distal and proximal inputs. Without compensatory mechanisms, distal synaptic inputs are significantly attenuated and delayed [START_REF] Michael | Dendrites: bug or feature?[END_REF].

Synaptic Integration in Active Dendrites. Nonlinear dendritic integration improves the computational capacity of neurons [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. It provides compensation and counteracts the filtering effect of the passive properties. Active synaptic EPSPs nonlinearly sum due to the current flowing through the synaptic conductance, reducing the driving forces [START_REF] Silver | Neuronal arithmetic[END_REF]. As mentioned earlier, the spatial distribution of synaptic inputs significantly affects synaptic integration. Detecting temporally correlated and spatially segregated synaptic inputs (synapses located on separate dendritic branches) poses some difficulties for the neuron, as these inputs, especially those from the distal apical tuft, are heavily attenuated as they propagate down to the soma. Therefore, the neuron reacts more effectively with clustered inputs, a group of synaptic inputs that are spatially restricted within a dendritic segment, a branch, or a group of branches. Clustered synapses may produce large local depolarization, which activates nonlinear dendritic mechanisms that trigger regenerative spiking. Besides, dendritic spiking and VGCs distributed along the dendritic length also result in nonlinear integration of synaptic inputs [START_REF] Spruston | Activitydependent action potential invasion and calcium influx into hippocampal ca1 dendrites[END_REF]. The activation of Na v channels amplifies the amplitude of subthreshold EPSPs in a multiplicative manner [START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] Allan T Gulledge | Electrical advantages of dendritic spines[END_REF]. Moreover, synaptic NMDA receptors provide an essential mechanism for the nonlinear amplification and integration of synaptic inputs.

3.5.2/ DENDRITIC OPERATIONS

The influence of the summation of synaptic inputs (input) to the resulting membrane depolarization at the soma (output) is quantified by defining the corresponding input-output (I/O) relationship [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. In the I/O quantification process, the expected membrane depolarization (input) is the compound EPSP or arithmetic sum of individual EPSPs resulting from the simultaneous activation of excitatory synapses. The observed depolarization is the resulting depolarization, for example, at the soma (Figure 3.10). The resulting I/O relationships are comparable to mathematical functions that the neuron performs.

Neurons utilize different combinations of these dendritic operations for computations and signal encoding. These dendritic operations, as shown in Figure 3.10, can be (1) linear where the observed depolarization is equal to the expected depolarization, (2) supralinear where the observed depolarization is above the expected depolarization, and (3) sublinear where the observed depolarization is less than the expected depolarization [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Brunel | Single neuron dynamics and computation[END_REF]. It is important to note that different dendrites generate different IO curves regenerative voltage depolarizations in the dendrite 159 . These so-called NMDAR spikes are spatially restricted to sites of synaptic input owing to their glutamatedependence and are unlikely to actively propagate 159 . NMDAR spikes last 50-100 ms 156,159,160 , but modelling predicts that they can be curtailed by smaller inhibitory synaptic conductances on the dendrite 161 . NMDARs on hyperpolarized regions of the dendrite exhibit a 'memory' of the prior synaptic activity for the 40 ms or so that glutamate (and glycine) remains bound to the receptors 156 . This can be 'unlocked' upon depolarization, when the Mg 2+ block of the channel is relieved, allowing glutamate-bound NMDARs to pass current.

This mechanism, which can amplify subsequent glutamatergic inputs to the same dendrite 156 (FIG. 7c), is local because the space constant for the ePSP is short in thin dendrites of pyramidal cells 127 . A number of other differences between Na + spikes and NMDAR spikes are worth noting. NMDAR spikes are slower rising and the time-window for coincidence of the presynaptic inputs is tenfold larger than for Na + spikes, allowing activation with less temporal precision. In addition, the duration of the NMDAR spike is sufficiently long to act as a coincident detector and also interact with short-duration rate-coded bursts of input. lastly, NMDARs do not become inactivated as rapidly as dendritic Na + channels, regenerative voltage depolarizations in the dendrite 159 . These so-called NMDAR spikes are spatially restricted to sites of synaptic input owing to their glutamatedependence and are unlikely to actively propagate 159 . NMDAR spikes last 50-100 ms 156,159,160 , but modelling predicts that they can be curtailed by smaller inhibitory synaptic conductances on the dendrite 161 . NMDARs on hyperpolarized regions of the dendrite exhibit a 'memory' of the prior synaptic activity for the 40 ms or so that glutamate (and glycine) remains bound to the receptors 156 . This can be 'unlocked' upon depolarization, when the Mg 2+ block of the channel is relieved, allowing glutamate-bound NMDARs to pass current.

This mechanism, which can amplify subsequent glutamatergic inputs to the same dendrite 156 (FIG. 7c), is local because the space constant for the ePSP is short in thin dendrites of pyramidal cells 127 . A number of other differences between Na + spikes and NMDAR spikes are worth noting. NMDAR spikes are slower rising and the time-window for coincidence of the presynaptic inputs is tenfold larger than for Na + spikes, allowing activation with less temporal precision. In addition, the duration of the NMDAR spike is sufficiently long to act as a coincident detector and also interact with short-duration rate-coded bursts of input. lastly, NMDARs do not become inactivated as rapidly as dendritic Na + channels, regenerative voltage depolarizations in the dendrite 159 . These so-called NMDAR spikes are spatially restricted to sites of synaptic input owing to their glutamatedependence and are unlikely to actively propagate 159 . NMDAR spikes last 50-100 ms 156,159,160 , but modelling predicts that they can be curtailed by smaller inhibitory synaptic conductances on the dendrite 161 . NMDARs on hyperpolarized regions of the dendrite exhibit a 'memory' of the prior synaptic activity for the 40 ms or so that glutamate (and glycine) remains bound to the receptors 156 . This can be 'unlocked' upon depolarization, when the Mg 2+ block of the channel is relieved, allowing glutamate-bound NMDARs to pass current.

This mechanism, which can amplify subsequent glutamatergic inputs to the same dendrite 156 (FIG. 7c), is local because the space constant for the ePSP is short in thin dendrites of pyramidal cells 127 . A number of other differences between Na + spikes and NMDAR spikes are worth noting. NMDAR spikes are slower rising and the time-window for coincidence of the presynaptic inputs is tenfold larger than for Na + spikes, allowing activation with less temporal precision. In addition, the duration of the NMDAR spike is sufficiently long to act as a coincident detector and also interact with short-duration rate-coded bursts of input. lastly, NMDARs do not become inactivated as rapidly as dendritic Na + channels, The synaptic inputs that are clustered or target synapses on a restricted spatial location produce a nonlinear influence on somatic depolarization. (b) Distributed synaptic inputs, those inputs targeting different branches, perform linear summation in the soma. In this case, the arithmetic sum of EPSPs equals the measured depolarization in the soma. (Images were taken from [START_REF] Silver | Neuronal arithmetic[END_REF].) (c) When the resulting somatic depolarization always results in a lower amplitude than the input summation, the dendritic operation is sublinear. (d) Linear operation occurs if the somatic depolarization consistently equals the input summation. (e) The dendrite performs supralinear integration when the output depolarization exceeds the input summation.

according to the number of simultaneous inputs targeting multiple locations in the cell and the biophysical mechanisms under consideration [START_REF] Ómez Gonz Ález | Distinguishing linear vs. non-linear integration in ca1 radial oblique dendrites: it's about time[END_REF]. [START_REF] Spruston | Activitydependent action potential invasion and calcium influx into hippocampal ca1 dendrites[END_REF][START_REF] Brunel | Single neuron dynamics and computation[END_REF]. The magnitude of sublinearity is dependent on the distance between synapses, where the depolarization experience by one synapse is dependent on the distance of the other activated synapses [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. If two synapses are closer to each other, they strongly influence the individual driving force, and their summation is sublinear. Therefore, if the synapses are clustered, inputs are integrated sublinearly due to reduced driving force and membrane shunting [START_REF] Silver | Neuronal arithmetic[END_REF]. However, clustered inputs are less efficient at triggering an AP than when inputs are scattered or distributed along the dendritic tree [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Sublinear operations primarily account for passive dendritic properties; however, some studies suggest that active dendritic properties also influence sublinearity [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Potassium channel activation can also provoke sublinear summation by producing hyperpolarization that decreases the membrane potential. Neuronal excitation from clustered inputs may be prevented through sublinear integration by providing a mechanism for input saturation [START_REF] London | Dendritic computation[END_REF].

Sublinear. Excitatory synapses summate sublinearly in passive dendrites

(Fig- ure 3.10c)
Linear. Linear integration occurs when the arithmetic sum of the individual EPSPs produces a peak response equal to the actual peak depolarization (Figure 3.10d) [START_REF] Ómez Gonz Ález | Distinguishing linear vs. non-linear integration in ca1 radial oblique dendrites: it's about time[END_REF]. Both the distributed and clustered synaptic inputs evoke linear summation in hippocampal pyramidal neurons [START_REF] Brunel | Single neuron dynamics and computation[END_REF]. Linear summation occurs when synaptic inputs are distributed over the dendritic tree due to the passive dendritic properties [START_REF] Silver | Neuronal arithmetic[END_REF]. Gasparini and Magee [START_REF] Gasparini | State-dependent dendritic computation in hippocampal ca1 pyramidal neurons[END_REF] found that highly distributed or asynchronous synaptic inputs targeting the dendritic arbors of CA1 pyramidal neurons perform linear integration. This operation results in variable AP rate and timing and depends on the number of incoming inputs. In clustered inputs, activation of nonlinear dendritic conductancessuch as NMDA receptors, Na v channels, and Ca v channelscan increase EPSPs during synaptic activities, while K v conductance dampens them [START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] Brunel | Single neuron dynamics and computation[END_REF]. A balance between these active conductances underlies linear summation of clustered synaptic inputs of culture pyramidal cells, compensating the sublinearity due to the reduced driving force and shunting from the passive properties.

Supralinear. Studies on dendrites showed that active dendritic properties are the main contributors to nonlinear integration, primarily in supralinear integration (Figure 3.10e) [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Makara and Magee [START_REF] Judit | Variable dendritic integration in hippocampal ca3 pyramidal neurons[END_REF] performed two-photon imaging and glutamate uncaging on CA3 pyramidal neurons to characterized the synaptic integration in thin dendrites. The results showed that synchronous synaptic inputs in thin dendrites are nonlinearly integrated with a supralinear fashion. Coactivation of a sufficient number of synaptic inputs in a dendritic branch activates NMDA receptors results in supralinear summation of excitatory synaptic inputs greater than expected [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Allan T Gulledge | Electrical advantages of dendritic spines[END_REF][START_REF] Judit | Variable dendritic integration in hippocampal ca3 pyramidal neurons[END_REF][START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF]. Signal amplification mediated by NMDA receptors can activate Na + spiking, further increasing the peak depolarization that drives the somatic spiking. Using paired-pulse stimulation protocol, Gomez et al. [START_REF] Ómez Gonz Ález | Distinguishing linear vs. non-linear integration in ca1 radial oblique dendrites: it's about time[END_REF] showed that the increase in NMDA conductance after the first spike triggers local dendritic spikes, thus resulting in a strongly supralinear integration, even if the temporal window between succeeding synaptic inputs is more than 100 ms. When synaptic input arrives synchronously and spatially clustered, the dendritic compartment receiving the clustered input produces a highly nonlinear integration that leads to an AP output that is extraordinarily precise and invariant. Furthermore, a neuron can also perform more complex computations by utilizing the dendritic properties and background noise and combining the previously discussed dendritic integration [START_REF] Brunel | Single neuron dynamics and computation[END_REF].

Boolean Operations. The neuron can also perform basic Boolean operationssuch as AND, OR, and AND-NOT -, which are also influence by the synaptic locations and spike threshold [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. These simple Boolean operations can be combined to perform more complex computations [START_REF] Spruston | Activitydependent action potential invasion and calcium influx into hippocampal ca1 dendrites[END_REF]. Neurons can implement an AND operation using inputs from multiple dendritic branches. The AND operation is equivalent to coincidence detection wherein two simultaneous and different groups of synaptic inputs are directed to different dendritic branches. Hippocampal CA3 neurons also perform OR operations. The soma initiates APs from DG inputs at the primary apical dendrite or neighboring CA3 neuron collateral connections near the soma [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. Neurons implement logical AND-NOT operations using inhibitory synapses place between the soma and excitatory input [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Silver | Neuronal arithmetic[END_REF].

the high density of ion channels [START_REF] Christopher | The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[END_REF][START_REF] Bonvento | Astrocyte-neuron metabolic cooperation shapes brain activity[END_REF]. In dendrites, just as in the cell body, nonlinearities can be either kept in check by the linearizing effect of background noise [START_REF] Bear | Neuroscience: Exploring the brain[END_REF] or they can be captured by an equivalent linear process [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF]. Thus, the combined effect of multiple synapses can result, at least approximately, in a linear sum at moderate noise. Such location-dependent attenuation and filtering combined with linear summation confers to dendrites the characteristics of a spatiotemporal filter (Figure 1a). Importantly, within the class of spatio-temporal filters one can distinguish distinct dynamic modes such as lowpass filters or resonance [START_REF] Burwell | 3.03 anatomy of the hippocampus and the declarative memory system[END_REF][START_REF] Lee | The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective[END_REF].

Spatiotemporal filtering can contribute to powerful [START_REF] Maguire | The hippocampus: a manifesto for change[END_REF] and behaviourally relevant [START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF][START_REF] Golgi | Sulla fina anatomia degli organi centrali del sistema nervoso[END_REF] computations. As an illustrous example, spatiotemporal filtering tunes the input delays in order to give rise to selectivity for interaural time difference (ITD) [START_REF] Amir-Homayoun | Hippocampal and prefrontal processing of network topology to simulate the future[END_REF][START_REF] Moscovitch | Episodic memory and beyond: the hippocampus and neocortex in transformation[END_REF]. Thus our ability to perform azimuthal sound localization arises in part from the spatiotemporal class of dendritic computation.
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Classes of dendritic information processing Payeur, Be ´ı ¨que and Naud 79 Dendritic Arithmetic. Neurons perform simple addition by summing spatiotemporal inputs to react the spiking threshold [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Silver | Neuronal arithmetic[END_REF]. On the other hand, if inputs are inhibitory, the summation hyperpolarizes the membrane [START_REF] Spruston | Activitydependent action potential invasion and calcium influx into hippocampal ca1 dendrites[END_REF], which can be thought of as subtraction. Multiplication is the simplest nonlinear operation [START_REF] London | Dendritic computation[END_REF]. In the case of binary inputs, an AND operation can be considered as multiplication [START_REF] Spruston | Information processing in dendrites and spines[END_REF]. If either input is zeros, then the output is also zero. This operations describes coincidence detection [START_REF] London | Dendritic computation[END_REF]. Neurons may also perform division via shunting inhibition which scales down the membrane depolarization in proportion with the strength of the EPSPs, in accordance with Ohm's law [START_REF] Spruston | Information processing in dendrites and spines[END_REF][START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] London | Dendritic computation[END_REF].

3.5.3/ DENDRITIC INFORMATION PROCESSING

The dendritic operations determine the resulting somatic depolarization and the somatic activity from the barrage of spatiotemporal synaptic inputs. The dendritic morphology, however, is a more complicated matter. Theoretically, dendritic integration does not only occur in the soma but anywhere throughout the dendritic tree. How does the neuron merge the diversified inputs into a single spike train? The definite answer is still about to be discovered as technology advances. However, current studies suggest the following classes dendritic processes that can allow the soma to consolidate information.

Spatiotemporal filtering

The dendritic tree attenuates and lowpass filtered a distal synaptic input as this signal spreads to the site of initiation and propagates down to the soma (Figure 3.11a) [START_REF] London | Dendritic computation[END_REF][START_REF] Payeur | Classes of dendritic information processing[END_REF]. It follows that due to dendritic filtering, distal synaptic inputs have a smaller influence on somatic firing [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. The location-dependent attenuation and filtering combined with linear summation allow the dendrites to perform spatiotemporal filtering, which then tunes the input delays to give rise to selectivity.

Information Selection From multiple synapses activated simultaneously, only a small portion of these inputs are communicated to the soma Figure 3.11b [START_REF] London | Dendritic computation[END_REF][START_REF] Payeur | Classes of dendritic information processing[END_REF]. Due to pooling, information such as the origin of the synaptic inputs is lost during transmission. One solution is compartmentalization. Compartmentalization preserves the information that would otherwise be lost during pooling; however, it may also decrease the amount of information that reaches the soma. This dilemma can be solved if nonlinear mechanisms select a part of the information and transiently amplifies the information-containing signal for transmission to the soma. Furthermore, local information not communicated to the soma is still significant in local processes such as plasticity.

Information Routing Information routing is a process in which the dendritic subunits modify the flow of signal en route to the soma for information relay (Figure 3.11c) [START_REF] Payeur | Classes of dendritic information processing[END_REF][START_REF] Diogo M Camacho | Next-generation machine learning for biological networks[END_REF]. One mechanism in which information is routed to the soma is via feedforward inhibition, where inhibitory synapses act as a binary switch that either allows or vetoes the propagation of signals [START_REF] Payeur | Classes of dendritic information processing[END_REF]. The location of inhibitory synapses along the dendritic tree determines the signal route, a pathway-specific gating [START_REF] Wilmes | Inhibition as a binary switch for excitatory plasticity in pyramidal neurons[END_REF][START_REF] Robert | A dendritic disinhibitory circuit mechanism for pathway-specific gating[END_REF]. Wilmes et al. [START_REF] Wilmes | Inhibition as a binary switch for excitatory plasticity in pyramidal neurons[END_REF] also showed that bAPs and Ca 2+ spikes also enable signal switching.

Information Multiplexing Information multiplexing by neurons is a current concept in dendritic information processing (Figure 3.11d). The notion from theoretical studies is that the neurons can represent multiple inputs into one spiking output by harnessing its dendritic mechanisms [START_REF] Payeur | Classes of dendritic information processing[END_REF]. Sardi et al. [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF] performed different types of experiments on neuronal cultures and suggested that a neuron functions as a collection of independent threshold units. The compartmentalization allows the neuron to process local dendritic information independent from sibling dendrites. Wybo et al. [START_REF] Wybo | Electrical compartmentalization in neurons[END_REF] suggested that signals from distal branches arriving at the proximal dendrites do not merge; instead, they are superimposed from one another. The signal from one independent subunit is then transmitted to the soma through the dendritic arbor, acting as a multiplexer cable [START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF]. Metaphorically speaking, Payeur er al. [START_REF] Payeur | Classes of dendritic information processing[END_REF] suggested that the dendritic arbor resembles a telegraph office, where incoming messages are first filtered, then selected for transmission, routed to the destination where the messages are summarized or encoded for future communication. The two-layer computational scheme has one layer of functional subunits corresponding to dendritic trees and performing its specific nonlinear transformation. The subunit outputs are then transmitted to the soma for a global linear summation and somatic spiking. (c) An individual dendritic compartment exhibits independent processing of synaptic inputs and separate IO transformation. The compartmentalization creates multiple layers of integration with specific nonlinearity, comparable to a network whose architecture is determined by the dendritic morphology. Then, the soma integrates and multiplexes the incoming signals from the subunits for somatic depolarization.

3.5.4/ COMPUTATIONAL SCHEMES

Decades of experimental studies used the conventional computational scheme, wherein the neuron acts as a single electrical excitable threshold unit or, in classical terms, a point neuron [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF]. In the classical view of dendritic integration in CNS neurons, excitatory and inhibitory signals from the dendritic tree are channeled to the soma for linear summation (Figure 3.12a). Linear integration governs the transformation of weighted inputs into somatic output [START_REF] Michael | Dendrites: bug or feature?[END_REF]. When the linear summation reaches a certain threshold, the soma generates an AP in an all-or-none manner [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF][START_REF] Jadi | An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[END_REF][START_REF] Winnubst | Synaptic clustering during development and learning: the why, when, and how[END_REF]. This model is also known as the integrate-and-fire model introduced by Lapicque [START_REF] Larry | Lapicque's introduction of the integrate-and-fire model neuron (1907)[END_REF]. The point neuron hypothesis, where the whole dendritic tree is nonetheless considered as a single compartment, allows synaptic democracy; the synapses have equal ability to influence somatic depolarization [START_REF] Michael | Dendrites: bug or feature?[END_REF]. It indicates that the synapses must be propagated and integrated neutrally for synaptic democracy to function [START_REF] Winnubst | Synaptic clustering during development and learning: the why, when, and how[END_REF] and that the soma acts as a global summing unit.

Another scenario is based on nonlinear integration and also consists of a single central excitable cell [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF]. The computational scheme is a two-stage integration process, where the first layer consists of the independent dendritic compartments acting as separate thresholding functional subunits (Figure 3.12b) [START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF], and the group synaptic inputs within the compartment interact with each other [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF][START_REF] Jadi | An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[END_REF][START_REF] Daniel Caz É | Passive dendrites enable single neurons to compute linearly non-separable functions[END_REF]. The assumption that dendrites are divided into subunits is based on the spatially restricted dendritic spiking [START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF]. The local nonlinear synaptic integration output is added to the somatic summation, and an AP is produced only if the summation crosses the threshold for spiking [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF][START_REF] Jadi | An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[END_REF][START_REF] Daniel Caz É | Passive dendrites enable single neurons to compute linearly non-separable functions[END_REF].

In the two-stage mode of integration, clustered synaptic inputs directed at a single or a group of distal dendrites could initiate a nonlinear response transmitted to the proximal compartments for global linear summation. Polsky et al. [START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF] provided the first experimental support for the two-layer network model of Poirazi et al. [START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF], wherein Polsky et al. [START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF] showed that the same branched inputs integrate sigmoidally, while between-branch inputs summed linearly. The researchers then identified the mechanism allowing pyramidal neurons to function as a two-layer network [START_REF] Bardia | Mechanisms underlying subunit independence in pyramidal neuron dendrites[END_REF]. Two-stage integration can also significantly increase the computational power and spiking response of the neuron over that of the point neuron by introducing nonlinear operations between clustered synapses, thus increasing the number of nonlinear operations the neuron can perform and allows the implementation of a spatiotemporal coding scheme [START_REF] Michael | Dendrites: bug or feature?[END_REF][START_REF] Winnubst | Synaptic clustering during development and learning: the why, when, and how[END_REF][START_REF] Bartlett W Mel | Synaptic integration in an excitable dendritic tree[END_REF].

The most recent computational scheme is based on the neuronal capability of performing locally restricted computations. Sardi et al. [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF] suggested that the neuron functions as an anisotropic threshold unit (Figure 3.12c) divided into independent excitable subunits or compartments that can be a dendrite or a part of the dendritic tree. Each compartment collects its anisotropic signals and performs its IO transformation process; thus, the inputs are independent of other threshold units. Then, Ujfalussy et al. [START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF] provided a quantitative approach for describing IO transformation in neurons and suggested that each subunit has its nonlinearity and transmits its output to the proximal subunit via multiplexing signals in parallel processing channels with different time constants. The hypothesis on multiple thresholding units was further supported by Wybo et al. [START_REF] Wybo | Electrical compartmentalization in neurons[END_REF] by devising a formulism that characterized the dendritic arborization to an impedance-based tree graph, revealing that the dendritic topology may indeed consist of multiple independent functional units.

The development of neuronal computation schemes, from a point neuron perspective to multiple independent excitable units, implies that a single neuron performs even more complex computations. Modeling studies suggest that neurons, by internal compartmental processes and independent synaptic transformation, can perform functions usually attributed only to neural networks. Independent subunit computations also suggest that neurons can perform branch-specific learning [START_REF] Wybo | Electrical compartmentalization in neurons[END_REF].

3.5.5/ MATHEMATICAL MODELS FOR NEURAL CODING

Neural coding is the process in which the neuron encodes the afferent spike trains into a single information-carrying output for communication to postsynaptic neurons. Analytical models are used to approximate and represent dendritic operations and neuronal computations to examine the experimental predictions and implement such operations in neural circuits. Biophysical models contain large parameter space, but the succeeding simplified models give us deep insights into neuron processes and computations, particularly in neural coding. Inputs are linearly integrated, and when the summation is above a threshold, θ, the neuron produces an output equal to 1, and 0 otherwise. (b) The perceptron is an extension of the McCulloch-Pitts model. Here, the inputs x n , which can be real values, are multiplied to arbitrary synaptic weights, ω n , representing the strength of influence of the synaptic inputs to the neuron spiking. The thresholding function(activation function or nonlinearity), f , nonlinearly transforms the input summation into somatic output. Also, when the nonlinear summation is above the threshold, θ, the neuron produces binary 1. (c) The model by [START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF] is similar to a two-layer network of perceptrons. Each dendritic subunit has an independent linear summation of inputs and local nonlinearity. The output of each subunit is multiplied to the corresponding subunit weight, α n , before reaching the soma for global summation and thresholding function, g. (d) Generalized linear models (GLMs) are point processes that model the stochastic properties and history-dependence of neuron spiking. The nonlinearity function transforms the convolution of the outputs of the linear and the post-spike filters to produce stochastic output spiking via the Poisson process. (e) Lastly, the Linear-Nonlinear Poisson (LNP) model is a class of GLM without the post-spike filter. In this case, the neuron spiking is purely stochastic due to the inhomogeneous Poisson process and independent from the previous spiking activity.

McCulloch and Pitts Model

McCulloch and Pitts suggested a binary point neuron model [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF], which became the most dominant conceptual model for single neuron computation [START_REF] Wallisch | MATLAB for neuroscientists: an introduction to scientific computing in MATLAB[END_REF][START_REF] Brunel | Single neuron dynamics and computation[END_REF] (Figure 3.13a).

McCulloch and Pitts neuron model consists of binary inputs (0 and 1), a summing operation for the inputs, a thresholding function, and a binary output. Synapses have a value of 1 when active and 0 when inactive and are multiplied with their corresponding positive weights (for excitatory inputs) that correspond to the synaptic strengths. The weighted inputs are summed together, and if the sum is greater than the somatic threshold, the soma will spike. The soma gives a value of 1 if the sum is above the threshold and 0 otherwise. Given the sum g(x) of the input vector x,

g(x 0 , x 1 , x 2 , x 3 , ..., x n ) = g(x) = n i=1 x i , (3.44) 
where n is the number of synaptic inputs and x n ∈ {0, 1}, the soma generates an output y only if g is above the threshold for spiking, θ [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF]. Therefore,

y = f (g(x)) =        1 if g(x) ≥ θ 0 if g(x) < θ . (3.45)
Linear summation and threshold adjustment allow the neuron to perform logical operations such as AND or OR operations but not XOR [START_REF] Wallisch | MATLAB for neuroscientists: an introduction to scientific computing in MATLAB[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Numerous studies, especially in neural information processing and neural networks, adapted the McCulloch and Pitts model because of its simplicity. However, biologically speaking, the model oversimplified neural processing. It disregards the fundamental spatiotemporal characteristics of neurons, the morphology of the dendrites, the stochasticity of synaptic inputs, and the history-dependence of somatic spiking [START_REF] Brunel | Single neuron dynamics and computation[END_REF].

Perceptron

Rosenblatt [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF], inspired by the McCulloch and Pitts model and the theoretical studies of Donald Hebb in plasticity, developed a neuron model called a perceptron (Figure 3.13b).

Rosenblatt [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] modified the McCulloch and Pitts scheme by extending the input values into real values (not only binary) and by adding arbitrary weights in the inputs. Let g(x, w) be the weighted sum of inputs x,

g(x, w) = n i=1 x i ω i + b, (3.46) 
where n is the number of inputs and b is the biasing constant. Instead of immediately deciding if the soma spikes or not, the summation is then passed through the nonlinearity for transformation. The nonlinearity acts as a thresholding or activation function, in that when the transformed sum is above the threshold θ, the soma spikes. Therefore, the somatic spiking is governed by

y = f (g(x, w)) =        1 if g(x, w) ≥ θ 0 if g(x, w) < θ . (3.47)
The output still produces 1 for summation greater than the threshold and 0 otherwise. Inputs have different and adjustable weights; thus, removing synaptic democracy, in that some synapses can have a greater influence on the somatic spiking over the others. Adjusting the synaptic weights and thresholds enables the neuron to learn and perform more powerful computations [START_REF] Brunel | Single neuron dynamics and computation[END_REF]. Point neuron models can also accommodate various output nonlinearities. Compressive nonlinearity, such as logarithmic, produces an IO curve that is sublinear [START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF]. For expansive nonlinearity, such as quadratic or exponential function, the input summations always exceed the linear summation; thus, the IO relationship is always supralinear. In a sigmoidal nonlinearity, the output ranges from supralinear to sublinear depending on the stimulus intensity.

Two-Layer Neuron Model

Even though the point neuron model is widely used, the assumption that the neuron has only one integrative point where all excitatory and inhibitory inputs are combined oversimplify the neuronal functions [START_REF] Jadi | An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[END_REF]. Thus from a modern perspective, the point neuron is insufficient. The model disregards the location-dependent dendritic mechanisms and synaptic interactions.

Poirazi et al. [START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF] studied the IO transformation in realistic hippocampal CA1 pyramidal neurons and suggested that the neuron functions as a two-layer network (Figure 3.13c).

The first layer consists of the subunits from the apical and basal dendrites, and the second layer is the global summation at the soma. Assuming binary inputs, the hypothetical subunit IO function, s(n), can be expressed as

s(n i ) = s          k j=1 x n, j ω j,k          , (3.48) 
where i = [1, 2, 3, ...] is the subunit number, and k is the net number of synaptic inputs in n. Therefore, the somatic output is defined as

y = g        m i=1 α i s(n i )        , (3.49) 
where α i is the weight of the n i th unit, m is the number of subunits in the neurons, and g is the global output of nonlinearity. The subunit nonlinearity is a sigmoidal function.

The two-layer binary model is an extension of the point neuron model. Each nonlinear compartments have its IO functions with different thresholds, representing the threshold of dendritic nonlinearity. The output of the nonlinear compartments is linearly summed in the soma and compared with the spike threshold [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF].

Jadi et al. [START_REF] Jadi | An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[END_REF] also introduced an augmented two-layer model (2LM) that consists of local dendritic integration processes and a global integration process. Local integration occurs within a subtree consisting of a uniform set of thin and unbranched dendrites emanating from a node. Based on cable theory, it is assumed here that communication within the dendritic subunit is efficient while communication between dendrites is relatively low.

Generalized Linear Models

Unlike the point and two-layer neuron models whose spiking occurs upon the summation reaches the threshold, Generalized Linear Models (GLMs) capture the stochastic response of the neuron and mathematically represents the canonical physiological characteristics and dynamics of a neuron, such as spatiotemporal filtering, without explicitly modeling the influence of ion channels [START_REF] Payeur | Classes of dendritic information processing[END_REF][START_REF] Paninski | Statistical models for neural encoding, decoding, and optimal stimulus design[END_REF][START_REF] Shreejoy | Intermediate intrinsic diversity enhances neural population coding[END_REF][START_REF] Gerhard | On the stability and dynamics of stochastic spiking neuron models: Nonlinear hawkes process and point process glms[END_REF]. The GLMs models serve as tractable mathematical models describing single-neuron spiking activity.

In systems neuroscience, the term GLM refers to autoregressive point process models [START_REF] Truccolo | A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects[END_REF][START_REF] Hadi Salman | Hierarchical reinforcement learning for sequencing behaviors[END_REF]. Each GLM has (1) a linear stimulus filter determining the stimulus preference of the neuron and, (2) a static nonlinearity that transforms the convolution of stimulus and other variables, (3) a stochastic spiking function whose spiking probability is based on its spiking history, and (4) a spike history function capturing the refractory and bursting property of the neuron (Figure 3.13d) [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Shreejoy | Intermediate intrinsic diversity enhances neural population coding[END_REF]. The stimulus filter describes the external input integration process, and the nonlinearity transforms the filtered stimulus to produce the conditional intensity of the Poisson spiking [START_REF] Hadi Salman | Hierarchical reinforcement learning for sequencing behaviors[END_REF]. Neurons tend to increase their spiking probability if the cell has previously spiked. The post-spike filter captures the history-dependence of the spiking activity and adds the response as input to the static nonlinearity [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Hadi Salman | Hierarchical reinforcement learning for sequencing behaviors[END_REF][START_REF] Jeffrey C Magee | A prominent role for intrinsic neuronal properties in temporal coding[END_REF]. Unlike the deterministic HH and IF modes, GLMs are stochastic due to Poisson spiking.

Linear-Nonlinear Poisson Model

The Linear-Nonlinear Poisson (LNP) model is a particular case of GLM that approximates the arbitrary spiking neuron models [START_REF] Marcus | Probabilistic encoding models for multivariate neural data[END_REF]. The LNP model consists of the linear temporal filter (the L operation), a static nonlinearity (the N operation), and the Poisson process (the P operation) (Figure 3.13e) [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Marcus | Probabilistic encoding models for multivariate neural data[END_REF][START_REF] Pillow | Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model[END_REF]. In contrast to GLMs, LNP models have no spike history filter [START_REF] Hadi Salman | Hierarchical reinforcement learning for sequencing behaviors[END_REF][START_REF] Mensi | Enhanced sensitivity to rapid input fluctuations by nonlinear threshold dynamics in neocortical pyramidal neurons[END_REF]. Therefore, the timing of individual output spike is statistically independent [START_REF] Meyer | Models of neuronal stimulus-response functions: elaboration, estimation, and evaluation[END_REF].

First, the temporal filter linearly convolves the stimulus. The temporal filter here corresponds to the response of the neuron to a small and sharp input current The static nonlinearity then transforms the output of the convolution to an instantaneous firing rate. The feedback process in the GLM was simplified into a single nonlinearity corresponding to the average of the neuron, with a static input and background noise. Then, the heterogeneous Poisson process generates the spikes a fixed time window. The Poisson point process means that the distribution of spike counts within a time window must have a Poisson distribution [START_REF] Meyer | Models of neuronal stimulus-response functions: elaboration, estimation, and evaluation[END_REF]. Both the temporal filter and the static nonlinearity can be analytically approximated in several 1 or 2 variable spiking neuron models, such as the LIF, generalized integrate-and-fire (GIF), and generalized exponential models (GEM) [START_REF] Brunel | Single neuron dynamics and computation[END_REF].

Hierarchical model

As depicted beforehand, the dendritic arborization is complex, that a point process cannot fully describe the neuronal information processing. Since dendrites have independent subunits, the processes can be modeled using a hierarchy of cascaded linear-nonlinear (hLN) processes [START_REF] Ostojic | From spiking neuron models to linear-nonlinear models[END_REF]. Ujfalussy et al. [START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF] developed an hLN neuron model wherein the dendrites are subdivided into subunits. The inputs to each subunit are linearly integrated and then fed to a nonlinearity, representing the spatiotemporal processes of the individual CHAPTER 3. NEUROTRANSMISSION AND NEURAL CODING subunit. The outputs of the subunits are then linearly combined with other subunits belonging to the mother subunit. The process continues until the signals reach the soma for global integration and somatic spiking using GLM. Because of compartmentalization due to localized active mechanisms, the neuron becomes similar to multilayer perceptrons, with nonlinear (e.g., sigmoidal) hidden units [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF][START_REF] Daniel Caz É | Passive dendrites enable single neurons to compute linearly non-separable functions[END_REF]. The multilayer architecture can be utilized to perform routing, information selection, and multiplexing [START_REF] Payeur | Classes of dendritic information processing[END_REF].

3.6/ CONCLUSION

Neuronal communication and computation is a more multifaceted process than previously suggested, and the functional implications of single neurons to neuronal networks are thought-provoking. This chapter illustrated and presented the interaction between the electrical, biochemical, and physiological characteristics of neurons that control information processing and communication. Also, the neuronal computation are associated with mathematical models and showed the progression of neuronal models from single point process to multiple layer process.

The presynaptic Ca 2+ dynamics, accompanied by the IP 3 dynamics, chiefly mediate neurotransmission. In the axonal compartments, the total intracellular [Ca 2+ ] is the summation of Ca 2+ ions acquired via Ca 2+ influx through VDCCs during APs generation and via the slow Ca 2+ fluxes to and from the ER. One of the consequences of intracellular [Ca 2+ ] fluctuations is the release of neurotransmitters from presynaptic vesicles into the synaptic cleft, a cycle of vesicle fusion, neurotransmitter release, and replenishment. Therefore, the arrival of AP to the axon terminal followed by the increase of [Ca 2+ ] and the time course of the neurotransmitter release process is indicative of the overall Glu - time course. Here, we presented the models for stochastic (mainly evoked by the level of [Ca 2+ ]) and deterministic (evoked by the arrival of AP) neurotransmission.

Chemical synaptic signals are converted back to electrical signals when neurotransmitters activate the postsynaptic receptors, such as AMPA and NMDA receptors on the dendrites. What are the functional consequences of spines and the implications of the intricate dendritic trees to neuronal computations and processes? It is still difficult to answer precisely, though, with the advances in neuroimaging and measurements, researchers discovered that the dendrites are not just receptive surfaces but are essential for neurons to perform more complex computations. Here, we discussed synaptic input propagation from the dendritic spine head, the spine neck where it is significantly attenuated, and into the dendritic shaft where it is integrated with other inputs. The input signals do not directly propagate to the soma; instead, the signals undergo different changes due to the passive and active properties of dendrites. Highly localized dendritic mechanisms indicate that the dendritic tree must not be considered a point process; instead, it comprises computational compartments performing independent processes. These processes can be linear and nonlinear integration, as well as arithmetic and Boolean operations. Furthermore, the neuron also filters, select, routes, and multiplex signals through its dendritic arborization. However, the exact comprehension of how the neuron performs these operations and functions is still lacking.

Overall, we demonstrated the course of signals from the synapse through the dendritic 3.6. CONCLUSION 67 tree to the soma for information consolidation in the form of somatic spiking. Numerous efforts have been made and are continuing in order to understand or replicate neuronal processing. From a point process of McCulloch-Pitts model to the addition of synaptic weights in perceptrons, to the two-layer neuron model of [START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF], and the cascade and hierarchical GLMs and LNP models, the neurons seem to be capable of performing computations that are previously solely associated to neural networks.

Furthermore, recent studies suggest that brain computations are not only assigned to neurons. More researchers are remarking on the functions of astrocytes as computational units rather than just structural supports. This notion implies more complex neural networks than previously thought. The following chapter deals with astrocytes as computational units, their properties, and dynamics that influence neural processing.

ASTROCYTES AS COMPUTATIONAL UNITS 4.1/ INTRODUCTION

In the 1800s, it was thought that the brain contains no connective tissues until Rudolf Virchow argued against this notion. In his series of works in the 1950s, Virchow identified connective cellular elements penetrating the brain, filling the interstices among nerve cells and fibers, and separating nervous tissues from blood vessels [START_REF] Virchow | Über das granulierte ansehen der wandungen der gerhirnventrikel[END_REF][START_REF] Virchow | Gesammelte abhandlungen zur wissenschaftlichen medicin[END_REF][START_REF] George G Somjen | Nervenkitt: notes on the history of the concept of neuroglia[END_REF]. He termed these cellular elements as neuroglia or Nervenkitt. Camillo Golgi and Ram ón y Cajal supported Virchow's discovery when they highlighted that neuroglia and nerve cells form separate populations, the variety of glial shapes and forms, and the glial network [START_REF] George G Somjen | Nervenkitt: notes on the history of the concept of neuroglia[END_REF][START_REF] Matias | Astrocyte heterogeneity: impact to brain aging and disease[END_REF]. The term astrocytes came into view when by the end of the 19th century, Lenhoss ék used the word to refer to star-shaped glial cells, which, even though electrically silent, had significant functions as nerve cells [START_REF] Michael Von | Der feinere Bau des Nervensystems im Lichte neuester Forschungen[END_REF].

From then on, an increasing amount of studies on astrocytes and their functionality emerged, especially as support structures to other cells and in maintenance, pruning, and remodeling of synapses during development, aging, and disease [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Matias | Astrocyte heterogeneity: impact to brain aging and disease[END_REF]. However, it took another century for scientists to determine that astrocytes, though electrically silent, influence neurotransmission via the tripartite synapse, a well-established concept introduced by Araque et al. [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF]. In addition, astrocytes create a distinct network through gap junction and communicate via gliotransmission. Emerging technologies in the last decades, therefore, challenge the neurocentric view of signal processing in the brain, as astrocytes release gliotransmitters that change the synaptic function and modulate synaptic activity.

This chapter takes a closer view of astrocytes as computational units in the hippocampus, their function in the tripartite synapse, the communication between astrocytes, and their influence in the neuron-astrocyte network. As the presynaptic neuron releases glutamate into the synaptic cleft, a portion of the [Glu -] spills out of the cleft into the perisynaptic space, which is then sensed and removed from the extracellular space by the perisynaptic astrocytic process. The astrocytic Glu -intake then mediates the intracellular Ca 2+ oscillations, and almost similar to presynaptic Ca 2+ activity, results in gliotransmitters release but with a timescale that is much longer than neurotransmitter release. At this point, gliotransmission can have pathways back to the presynaptic or the postsynaptic neurons, influencing synaptic activities. Indeed, the addition of astrocytes in the synaptic activity creates a more complex neural circuit. Adding in the complexity is that astrocytes also form a separate network, where IP 3 diffusion via gap junctions with neighboring astrocytes mediates calcium wave propagation allowing astrocyte-to-astrocyte communication.

4.2/ BIOLOGICAL STRUCTURE AND FUNCTIONS OF ASTROCYTES

Astrocytes belong to a non-neuronal heterogeneous group of cells in the CNS with an electrically non-excitable nature [START_REF] Matias | Astrocyte heterogeneity: impact to brain aging and disease[END_REF][START_REF] Yang | Astrocyte identity: evolutionary perspectives on astrocyte functions and heterogeneity[END_REF][START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF]. Glial cells are about 10 to 50 times more than neurons [START_REF] Stephen | Synaptic transmission[END_REF], and that astrocytes account for approximately 20-40% of the total number of brain cells [START_REF] Baljit | Astrocyte-neuron interactions in the striatum: insights on identity, form, and function[END_REF][START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF]. Indeed, the proportion of astrocytes between brain regions varies. In the cerebral cortex, the astrocyte-to-neuron ratio typically ranges around 1:2 and 1:3 [START_REF] Herculano-Houzel | The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution[END_REF][START_REF] Fang | Effects of astrocyte on neuronal outgrowth in a layered 3d structure[END_REF].

There are two types of astroglial in the brain whose distinct morphologies were revealed by Golgi staining: the protoplasmic astrocytes found in the gray matter and the fibrous astrocytes in white matter [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Albert Von | Handbuch der gewebelehre des menschen: Die allgemeine gewebelehre[END_REF][START_REF] Lloyd | The neuroglia elements in the human brain[END_REF]. Protoplasmic astrocytes form complex arborizations, occupy large volumes by giving rise to numerous fine processes, and appear uniformly and roughly spherically distributed within the gray matter area. On the other hand, fibrous astrocytes have distinguishable little to moderate branching, exhibits long fiber-like processes, and are oriented longitudinally in the fiber-bundle (or axonal) plane [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF][START_REF] Michael | Astrocytes: biology and pathology[END_REF].

Most of this research focuses on astrocytes of the protoplasmic type since these astrocytes establish close contact with the synapse [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF], necessary for neuron-and gliotransmission.

4.2.1/ MORPHOLOGICAL COMPLEXITY

Protoplasmic astrocytes have structurally compact core regions consisting of the soma, processes, and endfeet and complex spongiform peripherals (gliapil) formed by fine branches (Figure 4.1a) [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF]. Their sponge-like morphology allows astrocytic processes to penetrate and reach compacted areas in the neuropil, comprising the synapses [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF]. Astrocytic processes are further classified depending on their sizes and locations (Figure 4.1b). These processes can be a branch (the primary stem process), branchlet (the secondary or tertiary process), thinnest processes which make contact with the synapse called leaflets or peripheral processes or perisynaptic astrocyte processes (PAPs), and end feet that are specialized and polarized astrocytic structures in contact with blood vessels [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF][START_REF] Michael | Astrocytes: biology and pathology[END_REF]. Additionally, astrocytes have motile microdomains that expand and surround synapses [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF].

In rodents, astrocytes have diameters of ∼40-60 µm with volumes in the order of 10 4 µm, while human protoplasmic astrocytes are ∼2.5 times larger in diameter and ∼16.5 times larger in volume [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF][START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF]. The number of neuronal cell bodies and dendrites that a single astrocyte creates contact with varies dramatically. Mature protoplasmic astrocytes completely to the soma of a neighboring astrocyte unless that soma did not itself extend processes in one direction, thereby allowing the process of its neighbor to approach. In such circumstances, the astrocytes usually extended their primary processes in opposite directions or parallel to each other (Fig. 4 B). Spongiform process extending directly from the adjacent somata prevented direct contact between the somata. Nearly every astrocyte formed end-feet processes with at least one blood vessel. Blood vessels appeared to influence the overall morphology of astrocytes, apparently prompting some astrocytes to develop decidedly longitudinal forms, presumably in an attempt to reach a vessel (Fig. 4C). Blood vessels also seemed capable of influencing interastrocytic interactions. The amount of interdigitation of astrocytic processes increased around blood vessels, as seen in Figure 4 D, as if the astrocytes were competing for access to a passing blood vessel.

Extensive overlap is observed between the processes of distinct glial cell types

Occasionally, cells that exhibited the characteristic morphology of either oligodendrocytes or oligodendrocyte precursor cells in CA1 stratum radiatum were filled, possessing small, round somata and radial, varicose processes (D'Ambrosio et al., 1998; Levine et al., 2001). Cells of this type were less commonly found than protoplasmic astrocytes and did not stain for GFAP, and their somata were often in direct contact with the soma of a protoplasmic astrocyte or interneuron, a known characteristic of oligodendrocytes (Peters et al., 1991). When one of these oligoden-drocyte-like cells was filled next to a protoplasmic astrocy extensive interdigitation was observed among the processes these distinct glial cell types (Fig. 5B). This suggests that, though the highly ramified nature of protoplasmic astrocy appears to influence the morphology of other neighboring pro plasmic astrocytes and prevent them from encroaching into th space (Fig. 5A), it does not necessarily influence the extension processes from other cell types. The conspicuous difference se between the interactions of distinct cell types versus neighbor protoplasmic astrocytes suggests that the lack of interdigitat observed with the latter is not a result of our imaging or analy techniques.

Visualization of the interface region between astrocytes

To enhance the visualization of the regions of contact betwe astrocyte processes throughout the 3D volumes, the volum were searched for voxels containing both red and green sig using a colocalization routine. To highlight closely appos processes at the interface zones, the astrocytes were fi blurred slightly using a Gaussian blur filter. This proc smeared the appearance of the fine processes and allowed the detection of areas in which fine processes containing d tinct dyes were interdigitated but of course not actually ov lapping. Colocalization now effectively detected narrow ban of interaction occurring between astrocyte processes at t periphery of the extent of each astrocyte (Figs. 6,7). Wh such volumes were viewed as 3D projections, they revealed located in the hippocampus and cortex have more branch arborization than subcortical regions such as the hypothalamus [START_REF] Yang | Astrocyte identity: evolutionary perspectives on astrocyte functions and heterogeneity[END_REF]. In rodents, a single hippocampal astrocyte makes contact with ∼100,000-140,000 synapses and one neuronal body; whereas, individual human astrocyte can cover ∼2 million synapses with a synaptic density of ∼1100 million synapses per mm 3 , contacts 300-600 neuronal dendrites, and enwraps four to eight neuronal somata [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF][START_REF] Bushong | Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains[END_REF][START_REF] Nicola | Cell biology of astrocyte-synapse interactions[END_REF][START_REF] Michael M Halassa | Synaptic islands defined by the territory of a single astrocyte[END_REF]. In the CA3 region, astrocytic processes fully enwrap the synapse prohibiting glutamate spillover, while in the CA1 region, astrocytic processes ensheath a portion of the synapse, partially covering 57-62% of the synapses in the CA1 stratum radiatum (synapse-containing region) [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF][START_REF] Tao-Cheng | Activity-induced fine structural changes of synapses in mammalian central nervous system[END_REF].

4.2.2/ BIOPHYSICAL CHARACTERISTICS

Like other cells in the mammalian body, astrocytes display complex molecular dynamics and cellular signaling and express abundant numbers of channels, transporters, and receptors necessary for providing homeostasis and synaptic functions. They express major ion channels such as K + , Na + , Ca 2+ channels, and other non-selective channels such as anion and chloride channels, water channels, and transient receptor potential channels [START_REF] Mcneill | Ion channels and electrophysiological properties of astrocytes: Implications for emergent stimulation technologies[END_REF][START_REF] Michelle L Olsen | New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling[END_REF][START_REF] Seifert | Ion channels in astrocytes[END_REF]. Astrocytes are traditionally considered electrically nonexcitable; they do not conduct APs. Even though astrocytic intracellular [K + ] and [Ca 2+ ] are somewhat similar to neurons, unlike neurons, astrocytes cannot generate membrane depolarizations due to higher [Na + ] and [Cl -], yet maintain a more negative resting membrane potential between -85 to -90 mV, a consequence of the predominant K+ conductance [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Bruce | The neurophysiology of glial cells[END_REF]. Indeed, astrocytes do not fire APs and do not display excitatory/inhibitory postsynaptic potentiallike activity [281]. However, astrocytes communicate with their neighboring astrocytes or influence synaptic transmission via chemical signaling through Ca 2+ -mediated signals instead of electrical signaling in neurons. Therefore, astrocytes are also considered excitable cells based on their intracellular Ca 2+ transients and oscillations [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF].

CHAPTER 4. ASTROCYTES AS COMPUTATIONAL UNITS

Similar to neurons, astrocytes also express membrane transporters for ions, neurotransmitters, and other substances. Astrocytes have adenosine-and ATP-transporters such as Na + /K + -ATPase (Na + /K + pump), Ca 2+ -ATPase (PMCA), as well as Sarco/ER Ca 2+ -ATPase (SERCA pump) on the ER membrane [START_REF] Boison | Adenosine signaling and function in glial cells[END_REF][START_REF] Fresu | Plasma membrane calcium atpase isoforms in astrocytes[END_REF][START_REF] Simpson | Role of sarcoplasmic/endoplasmic-reticulum ca2+-atpases in mediating ca2+ waves and local ca2+-release microdomains in cultured glia[END_REF]. Notably, there are also secondary transporters such as glutamate transporters or excitatory amino acid transporters (EAATs), GABA-transporters, glycine transporters, NCXs, and others [START_REF] Christopher | Astrocyte glutamate transport: review of properties, regulation, and physiological functions[END_REF][START_REF] Chrissandra | Regulation of glutamate transporters in astrocytes: evidence for a relationship between transporter expression and astrocytic phenotype[END_REF][START_REF] Hansson | Astrocytic receptors and second messenger systems[END_REF][START_REF] Hansson | Co-existence between receptors, carriers, and second messengers on astrocytes grown in primary cultures[END_REF]. Among glial cells, astrocytes express the highest surface density of glutamate transporters (glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) of approximately 10,800 µm -2 (measured based on protein extracts from mature rodent hippocampal astrocytes) for Glu -uptake [START_REF] Nedergaard | Beyond the role of glutamate as a neurotransmitter[END_REF][START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF]281,[START_REF] Perego | The glt-1 and glast glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures[END_REF]. Human astrocytes have two prominent expressions of glutamate transporters called excitatory amino acid transporter 1 and 2 (EAAT1 and EAAT2, respectively) [281,[START_REF] Roberts | Localization of excitatory amino acid transporters eaat1 and eaat2 in human postmortem cortex: a light and electron microscopic study[END_REF]; EAAT1 and EAAT2 are human homologs of GLAST and GLT-1, respectively [START_REF] Pajarillo | The role of astrocytic glutamate transporters glt-1 and glast in neurological disorders: potential targets for neurotherapeutics[END_REF].

Ionotropic and metabotropic receptors (e.g., for Glu -, GABA, serotonin, adenosine, ATP, and other typical neurotransmitters) coupled with secondary messengers allow astrocytes to sense neural activity and synaptically released neurotransmitters, as seen in vitro cell cultures and in vivo. Astrocytic Glu -uptake is mediated by ionotropic glutamate receptors (iGluRs), such as AMPA-and NMDA type receptors, that directly regulate ion channel gatings and metabotropic glutamate receptors (mGluRs) from the family of GPCRs that, when activated, result in PLC-and IP 3 -dependent intracellular [Ca 2+ ] increase [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Simona | Metabotropic glutamate receptors in glial cells[END_REF][START_REF] Lalo | Ionotropic receptors in neuronal-astroglial signalling: what is the role of "excitable" molecules in non-excitable cells[END_REF][START_REF] Steven R Glaum | Glutamate receptors activate ca2+ mobilization and ca2+ influx into astrocytes[END_REF]. The following sections further describe the functions of these transporters and receptors and their influence on glutamate-mediated astrocytic Ca 2+ signaling.

4.2.3/ FUNCTIONS

A plethora of studies substantiate that astrocytes act as structural and metabolic supports essential for a healthy CNS. They maintain brain architecture, support neurodevelopment and migration, and regulate metabolism and hemodynamics [START_REF] Michael | Astrocytes: biology and pathology[END_REF]281,[START_REF] Savtchouk | Gliotransmission: beyond black-andwhite[END_REF]. Then, recent studies suggest that astrocytes also contribute to circuit information processing, especially in synaptic transmission in neural circuits [START_REF] Nicola | Cell biology of astrocyte-synapse interactions[END_REF]. This research focuses on their functional responsibilities in connection with neural information processing. The following are the primary functions of astrocytes, as suggested by Nedergaard and Verkhratsky [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF].

Astroglial cradle. One of the primary functions of perisynaptic astrocytes is to create an astroglial cradle, structural support that works in two ways [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF]. The first is creating a physical barrier that shields the synapse from the "spill-in" of various extrasynaptic signaling events from neighboring non-neuronal cells. The second is preventing the "spillover" of neurotransmitters into the extracellular space [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF]. Even though most cell types in the brain express glutamate transporters, astrocytes are the primary cells responsible for the uptake of synaptically released Glu -and GABA. The PAPs rapidly remove these neurotransmitters to avoid synaptic excitotoxicity, which is detrimental to neurons [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Christopher | Astrocyte glutamate transport: review of properties, regulation, and physiological functions[END_REF][START_REF] Conti | Gaba transporters in the mammalian cerebral cortex: localization, development and pathological implications[END_REF].

Spatial precision of synaptic transmission.

Because astrocytes serve as synaptic barriers, the dynamic changes in astrocytic coverage of synapses consequently modulate and keep the spatial specificity of synaptic transmission [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]. By limiting the spill-over or spill-on of neurosignaling molecules, PAPs also limit the crosstalk between neuronal elements, thus promoting input specificity during synaptic transmission. At the same time, the tight structural arrangement of neuron-astrocyte coupling allows astrocytes to sense specific synaptic activity and control the molecular signaling within the synaptic island, a group of synapses located within a single astrocytic territory [START_REF] Michael M Halassa | Synaptic islands defined by the territory of a single astrocyte[END_REF]297].

Synaptic strength modulation. Synapses with astrocytic processes coverage are larger than synapses consisting of the axon-spine interface alone [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF]. This morphological characteristic hints that astrocytes might influence synaptic activities. Studies suggest that astrocytes participate in synaptic transmission by releasing gliotransmitters such as Glu -which modulate the synaptic strength [START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF][START_REF] Covelo | Lateral regulation of synaptic transmission by astrocytes[END_REF]. In addition, astrocytes regulate extracellular levels and the diffusion of neurotransmitters via rapid glutamate uptake [START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF]281,[START_REF] Covelo | Lateral regulation of synaptic transmission by astrocytes[END_REF].

Global modulation of neural networks. The influence of astrocytes in synaptic transmission is not only restricted within the synaptic area. Astrocytic Ca 2+ signals originating in the PAPs can propagate within the intracellular space, to the soma, or other PAPs; thus, affecting the [Ca 2+ ] elevations in different compartments, and in turn, also influence the gliotransmitter release in neighboring synapses. Furthermore, Nedergaard and Verkhratsky [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF] also suggested that astrocytes influence information processing by globally and tonically modulating neural networks. The morphological characteristics of astrocytes, such as extensive contacts with thousands of synapses and several neighboring astrocytes, enable them to listen and respond to other cellular elements. The range of neuron-astrocyte interactions expands into networks as astrocytes also release additional Glu -to neighboring synapses resulting from intercellular Ca 2+ wave propagation [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF].

The morphological and functional characteristics of astrocytes indicate that the complex bidirectional signaling between neurons and astrocytes, or among astrocytes, can potentially impact neural information processing. Though astrocytes perform diverse responsibilities, their exact role in these functions still needs further investigation.

4.3/ INTRACELLULAR DYNAMICS

Compared with their neuronal counterparts, astrocytes are electrically silent, where passive currents dominate the membrane conductance. However, astrocytes are chemically excitable in terms of the main signaling mechanism, the intracellular [Ca 2+ ] oscillations [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF][START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF]. Signaling molecules trigger intracellular [Ca 2+ ] elevations in astrocytic microdomains (such as in PAPs) and in the soma [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Covelo | Lateral regulation of synaptic transmission by astrocytes[END_REF]. Let us consider a singlecompartment astrocyte in Figure 4.2. Calcium ions, along with other signaling molecules such as Glu -, IP 3 , Na + , and K + , are located in the extracellular and intracellular spaces and can cross the astrocytic membrane [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF]. Calcium ions are also stored in the ER, considered as a subcompartment separate from the intracellular space. There are two mechanisms responsible for Ca 2+ oscillations: (1) the IP 3 triggered Ca 2+ -induced Ca 2+ release (CICR) from the ER driven by the mGluR activity, and (2) the entry of Ca 2+ ions through the astrocytic plasma membrane that depends on the activities of GluTs and NCX [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF][START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] De Pitt À | Astrocytes: orchestrating synaptic plasticity?[END_REF]. (2) Extracellular Glu -enters the intracellular space via the GluT, which simultaneously transports Na + and K + ions in and out of the cell. The Na + and K + gradients, caused by the transporters and leakage channels, activate the Na + efflux and Ca 2+ influx between the intra-and extracellular spaces.

The main signaling mechanism of astrocytes is the Ca 2+ signals from mGluR-dependent IP 3 -sensitive ER, whose dynamics are illustrated in Figure 4.2(1) [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF]. Metabotropic GluRs from the GPCR family sense synaptic activities and influence Ca 2+ mobilization from the ER, triggering intracellular astrocytic [Ca 2+ ] elevations [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF][START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF][START_REF] De Pitt À | Astrocytes: orchestrating synaptic plasticity?[END_REF][START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF]. Neurotransmitter spill-over, specifically Glu -, from the presynaptic terminals, activates astrocytic mGluRs. As a response, activated mGluRs then stimulate the PLC hydrolysis, which leads to the production of the second messenger IP 3 [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF]. The IP 3 molecules then bind with the IP 3 Rs on the ER membrane, subsequently provoking the ER to release Ca 2+ to the intracellular space. In order to sustain the nonlinear Ca 2+ dynamics, Ca 2+ stored in the ER must be replenished [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF]. This is achieved by exchanging Ca 2+ ions from the intracellular space to the ER by SERCA pumps. The ER membrane also contains leakage channels that prevent intracellular Ca 2+ depletion. In this case, Ca 2+ signaling is slower, peaking at three to ten seconds after initial stimulation [START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF].

The second pathway is GluT-dependent, as shown in Figure 4.2(2) [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF]. Here, note that GluT has no direct influence on intracellular [Ca 2+ ] elevation. When the extracellular Glu - molecule enters the GluT, it is accompanied by three Na + ions to the intracellular space and one K + to the extracellular space. The transient increase of intracellular [Na + ] drives the NCX to transport Na + out of the astrocyte while producing Ca 2+ influx [START_REF] Christine R Rose | On the special role of ncx in astrocytes: Translating na+-transients into intracellular ca2+ signals[END_REF]. In this case, GluT indirectly increases the intracellular [Ca 2+ ]. In addition, Na + /K + ATPase (NKA) breaks down energy from ATP, resulting in the three Na + ions efflux and two K + ions influx [START_REF] Felix | Sodium fluctuations in astroglia and their potential impact on astrocyte function[END_REF]. These intracellular [Na + ] fluctuations, with the influences of the Na + and K + leakages, allow astrocytes to drive multiple mechanisms for ion transports, such as the GluT.
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Consider a single cylindrical compartment with the same intra-and extracellular volumes, the change of ion concentration in the intracellular space at any time t is equal to the summation of ionic currents multiplied by the ratio between the outer surface area, A, and the product of the Faraday's constant, F, and the volume, Vol, of the space where the ions are located [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF]. Therefore,

d[ion] dt = A F • Vol I ion , (4.1) 
where A and Vol are scaled by the length, l, of the compartment. Therefore, for a single compartment astrocyte whose intracellular volume contains the ER volume, the intracellular [Ca 2+ ] is determined by the Ca 2+ entering the membrane through NCX and the Ca 2+ ions exiting and entering the ER given as

d[Ca 2+ ] i dt = A F • Vol J NCX + A √ r ER F • Vol J IP 3 R -J S ERCA + J C ER leak , (4.2) 
where A is the surface area of the outer cell membrane, Vol is the intracellular volume, and √ r ER is the factor that reduces the ER surface area in comparison with the intracellular space (r ER is the ratio between the surface volume ratio of the compartment and the volume ratio between the ER and the intracellular space). Here, the flux J NCX is the Ca 2+ influx due to Na 2+ /Ca 2+ exchange, J IP 3 R is the Ca 2+ influx due to the activation of mGluR, J S ERCA is the efflux due to SERCA pump, and J C ER leak is the current leaking from the ER to the intracellular space. Furthermore, the amount of Ca 2+ in the internal stores is determined by the Ca 2+ fluxes entering and leaving the ER described as

d[Ca 2+ ] ER dt = A √ r ER F • Vol • r ER -J IP 3 R + J S ERCA -J C ER leak , (4.3) 
where A √ r ER and Vol √ r ER are the surface area and the volume of the ER, respectively.

The properties of intracellular [Ca 2+ ] oscillations are different from neurons for their larger amplitude, longer duration, regular but infrequent occurrence, and are governed by the neuronal and astrocytic inputs [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]. Manninen et al. [START_REF] Manninen | Reproducibility and comparability of computational models for astrocyte calcium excitability[END_REF][START_REF] Manninen | Computational models for calcium-mediated astrocyte functions[END_REF] compiled a list of Ca 2+mediated biophysical astrocytic models, presented the state-of-the-art, and compared computational modeling of astrocytes. One can consult their papers for more information on the advancement of astrocytic Ca 2+ modeling. In that case, the following sections deal with the fundamental models describing the Ca 2+ and IP 3 dynamics both in the dimensional and non-dimensional methods. As presented by Manninen [START_REF] Manninen | Computational models for calcium-mediated astrocyte functions[END_REF], hundreds of models currently available are adaptations of the Li-Rinzel model [START_REF] Li | Equations for insp3 receptor-mediated [ca2+] i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism[END_REF], which is also a simplified version of De Young and Keizer [START_REF] Young | A single-pool inositol 1, 4, 5-trisphosphatereceptor-based model for agonist-stimulated oscillations in ca2+ concentration[END_REF]. The Li-Rinzel model assumes that the intracellular Ca 2+ signaling is due to CICR from the ER to the cytosol, regulated by IP3Rs, the Ca 2+ flux from the SERCA pump, and the ER Ca 2+ leakage [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF][START_REF] Manninen | Reproducibility and comparability of computational models for astrocyte calcium excitability[END_REF]. See Figure 4.2 [START_REF] Baljit | Astrocyte-neuron interactions in the striatum: insights on identity, form, and function[END_REF]. In addition, this model also uses the closed-cell assumption, meaning that there is no Ca 2+ flux across the astrocytic membrane [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF], removing the influence of the GluT-dependent mechanisms. Calcium signaling is a consequence of the combined activities of the mGluRs on the astrocytic membrane and the IP 3 Rs on the ER membrane and the active engagement of cytosolic Ca 2+ and IP 3 ions [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF].

IP 3 dynamics

Extrasynaptic Glu -spilling over from the synaptic cleft, g, and the astrocytic Ca 2+ both influence the production of IP 3 via G-protein link to PLC, while phosphorylation of IP 

d[IP 3 ] a dt = J PLCβ g, [Ca 2+ ] a + J PLCδ [IP 3 ] a , [Ca 2+ ] a -J 3K [IP 3 ] a , [Ca 2+ ] a -J 5P ([IP 3 ] a ) , (4.4) 
where J PLCβ and J PLCδ are the agonist-dependent and agonist-independent IP 3 productions mediated by phosphoinositide-specific PLCβ and PLCδ, respectively. The fluxes J 3K and J 5P cause IP 3 degradation mediated by IP 3 -3K and IP-5P, respectively. Among these fluxes, PLCβ-mediated IP 3 production is dependent on the level of extracellular [Glu -],

[Glu -] a . The fluxes are described as

J PLCβ = v β Hill [Glu -] 0.7 a , K R 1 + K p K R Hill [Ca 2+ ] a , K π , J PLCδ = v δ 1 + [IP 3 ] a k δ Hill [Ca 2+ ] 2 a , K PLCδ , J 3K = v 3K Hill [Ca 2+ ] 4 a , K D Hill ([IP 3 ] a , K 3 ) , J 5P = r 5P [IP 3 ] a , (4.5) 
noting that Hill(x n , K) is the Hill function (sigmoid) equal to x n /(x n + K n ) [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. The constant terms v β and v δ are the maximal rates of IP 3 production by PLCβ and PLCδ, respectively, while v 3K and r 5p are the maximal degradation rate of IP 3 by IP 3 -3K and IP-5P, respectively. The term k δ is a constant inhibiting the J PLCδ flux. Moreover, K R is the Glu -affinity of the GPCR (mGluR), K p is the Ca 2+ /Protein kinase C-dependent (PKC) inhibition factor, K π Ca 2+ affinity of PKC, K PLCδ is the Ca 2+ affinity of PLCδ, K D is the Ca 2+ affinity of IP 3 -3K, and K 3 is the IP 3 affinity of IP 3 -3K, respectively.

De Pitta et al. [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] approximated the IP 3 production based on the fraction of activated mGluRs rather than directly on g (synaptic Glu -spilling to the extrasynaptic space). Glutamate from the presynaptic terminal spills and binds with mGluRs on the PAPs. Assuming that a fraction of synaptic glutamate binding with postsynaptic receptors is ζ, the fraction that spills out of the synapse to the PAP is therefore 1 -ζ. The fraction of activated mGluRs, γ A , is

τ A dγ A dt = -γ A + O A (1 -ζ) Y S (1 -γ A ) τ A , (4.6) 
where τ A is the time constant of receptor deactivation, O A is the agonist binding rate, and
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Y S is the synaptic [Glu -] described in Equation 3.29. Then, J PLCβ becomes v β γ A .

The [IP 3 ], in association with [Ca 2+ ], triggers the opening and closing of IP 3 R channels on the ER membrane controlling the CICR mechanism for Ca 2+ delivery into the intracellular space [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Foskett | Regulation of ip3r channel gating by ca2+ and ca2+ binding proteins[END_REF]. The IP 3 R channel is active when one Ca 2+ and one IP 3 ion bind to two out of three IP 3 R subunits [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Denizot | Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity[END_REF][START_REF] Skupin | Calcium signals driven by single channel noise[END_REF]. The IP 3 R channel becomes inactive when a second Ca 2+ ion binds with the third subunit. Each IP 3 R subunit in the cluster has a Ca 2+ binding site for inactivation whose gating kinetics can be described by a dimensionless variable h a [START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF][START_REF] Li | Equations for insp3 receptor-mediated [ca2+] i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism[END_REF][START_REF] Manninen | Reproducibility and comparability of computational models for astrocyte calcium excitability[END_REF], defined as

dh a dt = h a ∞ -h a τ h , (4.7) 
where

h a ∞ = Q 2 Q 2 + [Ca 2+ ] , τ h = 1 a 2 Q 2 + [Ca 2+ ] , Q 2 =d 2 [IP 3 ] + d 1 [IP 3 ] + d 3 .
(4.8)

The IP 3 R gating variable in Equation 4.7 can be rewritten into

dh a dt = α h a (1 -h a ) -β h a h a , (4.9) 
where

α h a = a 2 d 2 [IP 3 ] + d 1 [IP 3 ] + d 3 (4.10)
describes the opening rate of h a and

β h a = a 2 [Ca 2+ ] (4.11)
is the closing rate [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. The terms a 2 , d 1 , d 2 , and d 3 are the IP 3 R binding rate for Ca 2+ inhibition, the IP 3 dissociation constant, the Ca 2+ inactivation dissociation constant, and the IP 3 dissociation constant respectively [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. By adding a zero mean, uncorrelated, Gaussian white-noise G h (t) with covariance function described in Equation 4.12 to the rate of change of h a , the Ca 2+ flow through the IP 3 R channel becomes stochastic.

G h (t)G h (t ′ ) = α h a + β h a h a N IP 3 δ t -t ′ , (4.12) 
where δ(t) is the Dirac-delta function, t and t ′ are specific times, the term α h a (1h a ) + β h a h a /N IP 3 is the spectral density, and N IP 3 is the number of IP 3 Rs in the cluster [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF].

Moreover, each IP 3 R also has two activation sites: one for IP 3 and another for Ca 2+ . The gating kinetics for IP 3 activation is defined as

m a ∞ = [IP 3 ] [IP 3 ] + d 1 , (4.13) 
while the gating kinetics for Ca 2+ activation is given as

n a ∞ = [Ca 2+ ] [Ca 2+ ] + d 5 , (4.14) 
where d 5 is the Ca 2+ activation dissociation constant [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF]. Together, the gating kinetics m a ∞ , n a ∞ , and h a represent the opening probability of the IP 3 R cluster.

Ca 2+ dynamics

Similar to the slow Ca 2+ dynamics in neurons (presented in Chapter 3 Section 3.2), intracellular Ca 2+ ([Ca 2+ ] a ) balance is primarily dependent on three fluxes [START_REF] Oschmann | Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De Pitta | Multimodal encoding in a simplified model of intracellular calcium signaling[END_REF][START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]; a passive Ca 2+ leakage from the ER to the intracellular space (cytosol), J C ER leak , ER Ca 2+ intake due to SERCA pumps, J S ERCA , and Ca 2+ released from the ER to the cytosol based on the levels of [Ca 2+ ] and [IP 3 ], J IP 3 R , following the equation

d[Ca 2+ ] a dt = J IP 3 R [Ca 2+ ] a , h, [IP 3 ] a + J S ERCA [Ca 2+ ] a -J C ER leak [Ca 2+ ] a . (4.15) 
The ER releases Ca 2+ by opening of IP 3 R channels whose opening probability depends on three distinct gating processes described previously. The influx, J IP 3 R , is therefore proportional to the Ca 2+ gradient and is also mediated by the IP 3 Rs whose opening probability of channels has a power of three. Therefore,

J IP 3 R [Ca 2+ ] a , h a , [IP 3 ] a = r C m 3 a ∞ n 3 a ∞ h 3 a [Ca 2+ ] ER -[Ca 2+ ] a , (4.16) 
where the proportionality constant r C is the maximal rate at which Ca 2+ flows from the IP 3 R cluster and [Ca 2+ ] ER is the Ca 2+ concentration stored in the ER. The term m 3 a ∞ n 3 a ∞ h 3 a characterizes the opening probability of the channel.

The Ca 2+ current, J S ERCA , flowing through the SERCA pump is dependent on the intracellular [Ca 2+ ]. This influx assumes a Hill rate expression with Hill constant equal to 2, and given as

J S ERCA [Ca 2+ ] a = v ER [Ca 2+ ] 2 a K 2 ER + [Ca 2+ ] 2 a , (4.17) 
where v ER is the maximal Ca 2+ uptake by the pump and K ER is the SERCA Ca 2+ affinity, which is the [Ca 2+ ] at which the pump operates at half of its maximum capacity.

The Ca 2+ leak J C ER leak is proportional to the [Ca 2+ ] gradient across the ER membrane, given as

J C ER leak [Ca 2+ ] a = r L [Ca 2+ ] ER -[Ca 2+ ] a , (4.18) 
where r L is the maximal rate of Ca 2+ leakage from the ER. The Ca 2+ current strength is proportional to the Ca 2+ gradient between the ER and the intracellular space, ([Ca 2+ ] ER -[Ca 2+ ] a ). The two influxes J IP 3 R and J C ER leak can be combined into a single flux J rel ,

J rel [Ca 2+ ] a , h a , [IP 3 ] a =J IP 3 R [Ca 2+ ] a , h a , [IP 3 ] a + J C ER leak [Ca 2+ ] a , = r C m 3 a ∞ n 3 a ∞ h 3 a + r L [Ca 2+ ] ER -[Ca 2+ ] a . (4.19) 
Under the closed-cell assumption, the cell-averaged total free [Ca 2+ ], C 0 , is conserved. The [Ca 2+ ] in the ER can also be expressed completely in terms of the astrocyte cell parameters, described as

[Ca 2+ ] ER = C 0 -[Ca 2+ ] a c 1 ⇒ [Ca 2+ ] ER c 1 = C 0 -[Ca 2+ ] a , (4.20) 
where c 1 is the ratio between the ER and cytosolic volumes. Therefore, the J rel function can be rewritten as

J rel [Ca 2+ ] a , h a , [IP 3 ] a = r C m 3 a ∞ n 3 a ∞ h 3 a + r L C 0 -(1 + c 1 ) [Ca 2+ ] a . (4.21)
Finally, the astrocytic Ca 2+ in the intracellular space is 

d[Ca 2+ ] a dt = J rel [Ca 2+ ] a , h a , [IP 3 ] a -J S ERCA [Ca 2+ ] a . ( 4 
τ s dz dt = (1 + tanh (s s (v 1 -h s ))) (1 -z) - z d s , (4.23) 
where the variable v 1 describes the presynaptic neuron fast variable and z is the synaptic activation that acts as the input to the postsynaptic neuron and the astrocyte, stimulating the IP 3 production. The time constant τ s is the synaptic delay, and the constant terms s s , h s , and d s control the activation and relaxation of z. Here, h s is analogous to the AP activation threshold, wherein during z < h s , the neuron is in the subthreshold region and the synapse is silent. As the v 1 increases beyond h s , the synapse activates and z elevates. Upon reaching the peak value, z ≈ 1, the synapse relaxes, and z inactivates. Once activated, the presynaptic neuron releases a neurotransmitter concentration, [T ], multiplied to an amplifying factor, a, exceeding zero, (z = a[T ]). Because the model is nondimensional, the neurotransmitter concentration must be modified into

[T ] = 1 1 + exp (-(v 1 -θ S ) /σ s ) , (4.24) 
where v 1 is the membrane potential of the presynaptic neuron, θ S is the half-activation voltage, and σ s is the steepness of the sigmoid function.

The postsynaptic current input, I syn , includes the combined influence of the presynaptic CHAPTER 4. ASTROCYTES AS COMPUTATIONAL UNITS neuron (z) and the astrocyte (δG m ) to the synapse.

I syn = (k s -δG m )(z -z 0 ), (4.25) 
where, k s describes the conductivity, δ is the fraction of G m spilling into the synapse, and z 0 is the reference level during which the synapse is silent. Therefore, the total input to the postsynaptic neuron is the sum of I syn and I ast , the astrocyte-induced current G m multiplied by the factor γ.

Ca 2+ dynamics

Let c be the unitless description of [Ca 2+ ] in the cytoplasm given as

τ c dc dt = c -c 4 f (c, c e ) + (r + βS m ) , ϵ c τ c dc e dt = f (c, c e ) , f (c, c e ) = c 1 c 2 1 + c 2 -       c 2 e 1 + c 2 2             c 4 c 4 2 + c 4       -c 3 c e , (4.26) 
where c e denotes the Ca 2+ concentration in the ER, the constant parameters ϵ c , τ c together define the characteristic time for Ca 2+ oscillations. The factor β controls the variable S m , which defines the production of the secondary messenger IP 3 , and r controls the initial state of Ca 2+ oscillation. The nonlinear function f (c, c e ) describes the Ca 2+ exchange between the cytoplasm and the ER.

IP 3 dynamics

Let the slow astrocytic IP 3 dynamics be described by S m defined as

τ S m dS m dt = 1 + tanh S S m z -h S m (1 -S m ) - S m d S m , (4.27) 
where z is the synaptic activation that triggers the production of IP Cresswell et al. [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF] recently developed a simpler notation for Ca 2+ fluxes, which also uses nondimensional models described by the Hill function

H n (x, k) = x n x n + k n . (4.28)
This model only contains two Ca 2+ fluxes: J r denotes the Ca 2+ flux from the ER to the cytosol through IP 3 R and J p for the Ca 2+ flux from the cytosol into the ER through SERCA pumps. Hill function was used due to the common characteristics of previous IP 3 R models; the bell-shaped function of Ca 2+ . Assuming a sufficient level of IP 3 and fast activation and slow inactivation of Ca 2+ -sensitive IP 3 R channels, the interaction between the cytosolic and ER Ca 2+ pools creates a flux, J r , described as

J r (C E , C I ) = H 2 (C E , 1) H 4 (C 1 , b 2 ) , (4.29) 
where C I and C E are the nondimensional cytosolic and ER [Ca 2+ ], respectively. Here, b 2 is the half-activation value for C I for the IP 3 channels. Then, the flux through SERCA pumps is a continuous model described as

J p (C I ) = b 1 H 2 (C I , 1), (4.30) 
where b 1 is the maximum velocity of the reaction. The [Ca 2+ ] in the astrocytic process is given by

τ c dC I dt = r + σξ i + b 4 J r -J p -C I , ϵ c τ c dC E dt = -J r + J p . (4.31) 
where C I and C E denote the intracellular and ER Ca 2+ , respectively. The parameter r controls the intrinsic Ca 2+ excitability in the PAP, σξ i denotes the stochastic neuronal input, b 4 is the ratio between the ER and the cytosolic volumes, τ c is the time constant for Ca 2+ variations, and ϵ c is the timescale separation between the cytosolic and the ER Ca 2+ pools.

4.3.2/ LOCAL AND GLOBAL CA 2+ DYNAMICS

Studies also suggest that astrocytes, like neurons, display compartmental dynamics. Calcium and IP 3 currents are confined within the astrocytic processes and the soma [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Nimmerjahn | Large-scale recording of astrocyte activity[END_REF], and diffuse to neighboring compartments, to different astrocytic processes, and even the whole cell [START_REF] Covelo | Lateral regulation of synaptic transmission by astrocytes[END_REF]. These local astrocytic Ca 2+ events can spread within the intracellular region by activating clusters of IP 3 receptors on the ER membrane or by astrocytic ligand-gated Ca 2+ channels, transient receptor potential channels, and reverse operation of Na + /Ca 2+ exchanger (NCX), or by the activity of GPCRs within the perisynaptic regions [START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF][START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF]. Calcium events can be classified as focal, expanded, or generalized depending on how the Ca 2+ spreads.

Wu et al. [START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF] suggested that spontaneous Ca 2+ events in single astrocytes, measured using two-photon imaging, have power-law distribution and that Ca 2+ events may have scale-invariant properties. It means that Ca 2+ spread in a single focal plane of astrocytes in the brain is a continuum rather than separated. However, Bindocci et al. [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF] contradicted the results of conventional 2D imaging techniques (two-photon imaging) that assume that Ca 2+ events in a single focal plane represent the whole-cell activity, given that astrocytes are highly three-dimensional. Therefore, they developed a three-dimensional Ca 2+ imaging method and found transient and compartmentalized Ca 2+ activities heterogeneously distributed within the astrocytic regions. Furthermore, global Ca 2+ events consist of multifocal Ca 2+ activities starting from multiple peripheral regions, which spread to the soma rather than sweeping waves [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF]. The astrocytic morphology and biophysics control the molecular diffusion from one region to another. In this case, the [Ca 2+ ] levels in an astrocytic process may increase even without neuronal inputs [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF].

Compartmental Models

Global and local [Ca 2+ ] elevations in different astrocytic regions have specific spatial and temporal properties due to the complexity of the astrocytic morphology [START_REF] Ónia Guerra-Gomes | Functional roles of astrocyte calcium elevations: from synapses to behavior[END_REF]. Consider, in Figure 4.4a, that the neuronal inputs in individual processes cause spatially distinct Ca 2+ and IP 3 signals diffusing bidirectionally to the soma or other processes. Consider that the astrocytic processes and soma are separate compartments defined by their single point model with homogenized [Ca 2+ ] and where Ca2+ ions and IP 3 molecules diffuse between compartments (Figure 4.4b) [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF].

Let (s) represent the soma compartment and (p i ) be the process compartment, where i is the astrocytic process number. The following system is derived from the Hill functionbased Ca 2+ dynamics of multicompartment astrocytes [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF]. The variables J IP3di f f and J Cadi f f are the amounts of IP 3 and Ca 2+ , respectively, diffusing from the process, (p i ), to the soma, (s), and vice versa. Therefore, we extend the Ca 2+ dynamics in the intracellular space, [Ca 2+ ] a , into

d[Ca 2+ ] (p i ) a dt = J (p i ) IP 3 R + J (p i ) S ERCA -J (p i ) C ER leak + J (p i ) Cadi f f , d[Ca 2+ ] (s) a dt = J (s) IP 3 R + J (s) S ERCA -J (s) C ER leak - k i=1 J (p i ) Cadi f f , (4.32) 
where k denotes the number of compartments representing the astrocytic processes. The increase in somatic [IP 3 ] is independent of the synaptic input but on the Ca 2+ diffusion. Therefore, the IP 3 dynamics in the processes and the soma become

d[IP 3 ] (p i ) a dt = J (p i ) PLCβ + J (p i ) PLCδ -J (p i ) 3K -J (p i ) 5P + J (p i ) IP3di f f , d[IP 3 ] (s) a dt = J (s) PLCδ -J (s) 3K -J (s) 5P - k i=1 J (p i ) IP3di f f . (4.33) 
In order to take into account the difference in volume between the processes, V process , and the soma, V soma , Cresswell et al. [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF] considered the ratio

V r = V soma V process (4.34)
Assuming that all astrocytic processes are homogeneous point processes with identical geometry, the somatic Ca 2+ and IP 3 dynamics in the processes shown in Equation 4.32 are updated into

V r d[Ca 2+ ] (s) a dt = V sur f J (s) IP 3 R + J (s) S ERCA -J (s) C ER leak - k i=1 J (p i ) Cadi f f , V r d[IP 3 ] (s) a dt = V sur f J (s) PLCδ -J (s) 3K -J (s) 5P - k i=1 J (p i ) IP3di f f , (4.35) 
CHAPTER 4. ASTROCYTES AS COMPUTATIONAL UNITS where V sur f is the surface volume equal to V 2/3 r accounting for the increase in membrane area [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF]. The increase in somatic volume, therefore, slows down the Ca 2+ dynamics.

Ca 2+ and IP 3 Diffusion

Calcium ions diffuse to the compartment of lesser concentration, from the process to the soma or vice versa, proportional to the difference between the [Ca 2+ ] of the two compartments, described by the equation

J (p i ) Cadi f f = D I [Ca 2+ ] (s) a -[Ca 2+ ] (p i ) a , (4.36) 
where D I is the Ca 2+ diffusion coefficient between the soma and the astrocytic process within the cytosol [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF].

For short -distances, Fick's first diffusion law describes the intracellular IP 3 diffusion, such that J

(p i ) IP3di f f = D P [IP 3 ] (s) a -[IP 3 ] (p i ) a , (4.37) 
where D P is the diffusion coefficient [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF].

4.4/ GLIOTRANSMISSION

At the start of the 1900s, Jean Nageotte hypothesized that astroglials in the CNS also secrete signaling molecules, like neurotransmitters in neurons [START_REF] Nageotte | Phenomenes de secretion dans le protoplasma des cellules nevrogliques de la substance grise[END_REF]. It took another one hundred years to experimentally confirm that astrocytes indeed release chemical transmitters, or gliotransmitters, that act as signaling mechanisms to neighboring neurons and astrocytes [START_REF] Zorec | Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture[END_REF]. Thus the concept of gliotransmission began, substantiated by the discoveries that astrocytes sense and react to neurotransmitters, such as Glu -, by altering their cytosolic Ca 2+ [START_REF] Cornell-Bell | Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling[END_REF][START_REF] John W Dani | Neuronal activity triggers calcium waves in hippocampal astrocyte networks[END_REF], and trigger astrocyte-neuron signaling via the gliotransmitter release [START_REF] Nedergaard | Direct signaling from astrocytes to neurons in cultures of mammalian brain cells[END_REF]. In 1994 during the growth of Ca 2+ imaging techniques, two separate studies by Nedergaard [START_REF] Nedergaard | Direct signaling from astrocytes to neurons in cultures of mammalian brain cells[END_REF] and Parpura et al. [START_REF] Parpura | Glutamate-mediated astrocyte-neuron signalling[END_REF] simultaneously demonstrated that Ca 2+ dynamics in astrocytes could modify neuronal response by triggering delayed neuronal Ca 2+ [START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF]. There is also a sudden increase in studies showing Ca 2+ elevation in astrocytes as a response to downstream neurotransmitters, especially Glu -. Astrocytes are then recognized to play active roles in neural communication [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF].

Gliotransmission is the concept in which astrocytes, when activated, send signals to neighboring cells by releasing and regulating transmitters or modulators (gliotransmitters), allowing information transfer from astrocyte to neuron affecting synaptic activities [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Michael M Halassa | Synaptic islands defined by the territory of a single astrocyte[END_REF][START_REF] Savtchouk | Gliotransmission: beyond black-andwhite[END_REF][START_REF] Parpura | Glutamate-mediated astrocyte-neuron signalling[END_REF]. Gliotransmitters are neuroactive molecules such as Glu -, ATP, GABA, and D-serine altering synaptic transmission and neuronal excitability [START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF][START_REF] Michael M Halassa | Synaptic islands defined by the territory of a single astrocyte[END_REF][START_REF] Bezzi | A neuron-glia signalling network in the active brain[END_REF].

Though neurons also release these molecules, these are called gliotransmitters based on their glial origins. There are at least two possible mechanisms of astrocytic signaling. The first is via the direct connection through gap junctions (astrocyte-astrocyte) [START_REF] Nedergaard | Direct signaling from astrocytes to neurons in cultures of mammalian brain cells[END_REF]. Second is the indirect interaction utilizing astrocytic Glu -release via Ca 2+ -dependent exocytosis (astrocyte-neuron) [START_REF] Parpura | Glutamate-mediated astrocyte-neuron signalling[END_REF], indicating a gliotransmission-based synaptic modulation [START_REF] Araque | Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons[END_REF].

The discovery of these interactions between neurons and astrocytes leads to the conception of the term 'synaptic triad' [START_REF] Kettenmann | Neuron-glia interactions in homeostasis and degeneration[END_REF], which later became the so-called 'tripartite synapse' [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF].

4.4.1/ TRIPARTITE SYNAPSE

The tripartite synapse concept describes the bidirectional signaling between neuronal synaptic elements and the astrocytic processes [START_REF] Covelo | Lateral regulation of synaptic transmission by astrocytes[END_REF]. As the astrocytic process enwraps the synapse, it forms a third synaptic element, in addition to the two traditional elements, the presynaptic bouton and the postsynaptic spine head [START_REF] Zorec | Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture[END_REF]. The neuron-dependent astrocytic excitation was first recognized in the hippocampus and cerebellum [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]. Then, most investigations on tripartite synapses were facilitated by scrutinizing the glutamatergic synapses in the hippocampal circuit, especially in the SC-CA1 region [START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF].

In the tripartite synapse model shown in Figure 4.5, the presynaptic neuron releases neurotransmitters into the synaptic cleft [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF]. Following the synaptic vesicle release, a fraction of these neurotransmitters spill over into the extrasynaptic space through passive diffusion, causing a decrease in the neurotransmitter concentration in the synaptic cleft [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]281]. However, a high neurotransmitter concentration persisting in the extracellular space leads to prolonged activation of neuron receptors, a potentially neurotoxic effect [281]. The brain avoids this biologically toxic condition through astrocytic glutamate transporters. In effect, the neurotransmitter spill-over also facilitates the neuron-to-astrocyte information transfer [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]. The neurotransmitters diffusing into the presynaptic space bind with EAAT1 and EEAT2, whose binding rate is similar to ionotropic AMPA and NMDA receptors (i.e., 10 6 -10 7 M -1 s -1 ) [281], and trigger the cytosolic [Ca 2+ ] elevation in the presynaptic astrocyte [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF]. When the intracellular [Ca 2 +] increases beyond a certain threshold, neuron-dependent excitation occurs, and the astrocyte releases an additional amount of transmitters, such as Glu -or ATP, into the extracellular space, triggering the delivery of specific messages to the neighboring cells (to neurons or even to astrocytes) through gliotransmission [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF][START_REF] Araque | Gliotransmitters travel in time and space[END_REF]. These gliotransmitters can directly participate in synaptic activities by modulating the pre-and postsynaptic components.

Astrocytes in the hippocampus and the cortex show that they release Glu -, ATP and Dserine, inducing neural excitation and inhibition modulating synaptic activity and plasticity [START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF][START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF]. There are two pathways of gliotransmission relevant to synaptic modulation: astrocytic Glu -mediation of extrasynaptic receptors at the (1) presynaptic boutons and (2) postsynaptic spines [START_REF] De Pitt À | Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity[END_REF]. Researchers reported that the release of astrocytic Glu -results in an increase or decrease of glutamate released from SC terminals of SC-CA1 synapses [START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF]. Also, in CA1 neurons, laboratory experiments where IP 3 molecules were uncaged to drive the astrocytic [Ca 2+ ] elevations exhibit increased spontaneous excitatory postsynaptic AMPA currents. These two pathways, therefore, provide feedforward and feedback interactions between the pre-and postsynaptic terminals [START_REF] De Pitt À | Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity[END_REF]. The synaptic transmission, with the addition of the perisynaptic astrocytic process, becomes bi-directional rather than unidirectional. 

4.4.2/ GLIOTRANSMITTER RELEASE

Aside from opening anion channels, hemichannels, and ionotropic receptors on the membrane, the primary mechanism for gliotransmitter release is via the clear synaptic-like microvesicle (SLMV) release through Ca 2+ -dependent exocytosis [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Zorec | Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture[END_REF][START_REF] Fernandez De-Miguel | Extrasynaptic neurotransmission as a way of modulating neuronal functions[END_REF][START_REF] Guček | Exocytosis in astrocytes: transmitter release and membrane signal regulation[END_REF]. This quantal release of vesicular transmitter content via exocytosis, typical with neurons discussed in subsection 3.3.1, is also observed in adult hippocampal astrocytes through fluorescence imaging. However, in contrast with vesicle-containing Glu -from neurons, astrocytic Glu -are not as tightly packed in SLMVs. Astrocytic SLMVs also express SNARE protein complex such as VAMP3 and transporters such as VGLUT1-3, equipping astrocytes of glutamate uptake, storage, and release. This subsection presents the models describing the gliotransmitter release process akin to the synaptic neurotransmitter release, starting from (1) the binding of Ca 2+ ions to SLMVs for controlling the vesicular release probability, (2) the fusion of vesicles to the plasma membrane releasing a fraction of stored gliotransmitters, and finally, (3) the recycling process through endocytosis. Bertram et al. [START_REF] Bertram | Single-domain/bound calcium hypothesis of transmitter release and facilitation[END_REF] originally presented two-gate and four-gate neurotransmitter release processes. Then, Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] modified the release model and applied it to a three-gated gliotransmitter release model. In the model of Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF], a possible gliotransmitter release occurs when three Ca 2+ ions bind with the three independent sites (S 1 -S 3 ). Let C a be the [Ca 2+ ] a in the release site, then

C a + C j k + j ⇌ k - j O j , j = 1, 2, 3 (4.38) 
where C j denotes the closing probability of site j while O j is the opening probability, and k + j and k - j are the opening and closing rates of S j , respectively. Since C a is in µM, C j and O j here can be considered nondimensional and normalized [Ca 2+ ] [START_REF] Bertram | Single-domain/bound calcium hypothesis of transmitter release and facilitation[END_REF]. The vesicular release is a stochastic and dynamic process. The temporal evolution of the open gate O j is a differential equation described as

dO j dt = k + j [Ca 2+ ] a -k + j [Ca 2+ ] a + k - j O j . (4.39) 
Here, the opening (in µM -1 ms -1 ) and closing rates (in ms -1 ) are k + 1 = 3.7 × 10 -3 and k - 1 = 4 × 10 4 for S 1 , k + 2 = 2.5 × 10 -3 and k - 2 = 1 × 10 -3 for S 2 , and k + 3 = 1.25 × 10 -2 and k - 3 = 10 × 10 -3 for S 3 , respectively. The dissociation constants for gates S 1 to S 3 are 108 nM, 400 nM, and 800 nM. The time constants for gate closure (1/k - j ) are 2500 ms, 1000 ms, and 100 ms. Then, the fraction of SLMVs ready for release, f a r , depends on the opening probabilities of the three sites and is given as

f a r = O 1 • O 2 • O 3 .
(4.40)

4.4.2.2/ FUSION AND RECYCLING PROCESS

The fusion and recycling process of SLMVs is given by the system

dR a dt = I a τ a rec -Θ [Ca 2+ ] a -[Ca 2+ ] thresh a f a r R a , dE a dt = - E a τ a inact + Θ [Ca 2+ ] a -[Ca 2+ ] thresh a f a r R a , I a =1 -R a -E a . (4.41)
where R a is the fraction of readily releasable SLMVs inside the astrocytic process, E a is the fraction of effective SLMVs in the extrasynaptic cleft, and I a is the fraction of SLMVs undergoing endocytosis or re-acidification [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. Θ is a Heaviside function with the threshold for release site activation equal to [Ca 2+ ] thresh . The parameters τ a inact and τ a rec , respectively, are the time constants of inactivation and recovery of SLMVs.

De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] presented a deterministic approach of determining the fraction of released gliotransmitters based directly on the supply of [Ca 2+ ] a at any time t solely CHAPTER 4. ASTROCYTES AS COMPUTATIONAL UNITS rather than with the kinetics of Ca 2+ binding to the SLMV. Considering that at time t j , the [Ca 2+ ] a exceeds the [Ca 2+ ] thresh a , the astrocyte releases a fraction of gliotransmitters into the extrasynaptic space, r A (t), from the pool of readily available for release gliotransmitter resources, x A (t). The temporal evolution of x A (t) is defined by the set of equations

τ G dx A dt = 1 -x A - j r A (t)δ(t -t j )τ G , r A (t) = U A x A (t - j ), (4.42) 
where δ(•) is a Delta function, τ G is the Glu -recycling time constant, and U A is the resting Glu -release probability (0 < U A < 0.9). The residual Glu -during recycling is reintegrated at a rate equal to 1/τ A (see Equation 4.6).

The astrocytic vesicular release is slow, attributable to the slow astrocytic Ca 2+ dynamics, with an exocytosis rate of at least two orders of magnitude slower than in neurons [START_REF] Zorec | Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture[END_REF][START_REF] Kreft | Properties of ca2+dependent exocytosis in cultured astrocytes[END_REF]. However, a small [Ca 2+ ] a increase of approximately 100 nM from the resting level is sufficient to induce gliotransmitter release [START_REF] Parpura | Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons[END_REF].

4.4.2.3/ EXTRASYNAPTIC GLUTAMATE DYNAMICS

The extrasynaptic Glu -concentration, [Glu -] a , is governed by

d[Glu -] a dt = n v a g v a E a -g c a [Glu -] a , (4.43) 
where n v a is the number readily releasable pool of SLMVs, g v a is the [Glu -] within each SLMV, and g c a is the [Glu -] clearance rate due to diffusion and re-uptake by the perisynaptic astrocyte [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. In their tripartite model, Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] assumed that there are 12 SLMV in the astrocyte and individual SLMV holds 20mM of Glu -. Also, De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] estimated the timecourse of extrasynaptic Glu -as

τ e d[Glu -] a dt = -[Glu -] a + j G rel (t)δ(t -t j )τ e , G rel (t j ) = ϱ e G T r A (t j ). (4.44) 
At t = t j , a quantal release event transpires, releasing Glu -into the extrasynaptic space represented by G rel , dependent on the total vesicular [Glu -], G T , and the ratio between the volumes of the astrocytic vesicle and the extrasynaptic space, ϱ e , with a clearance rate of 1/τ e .

For nondimensional models such as the Postnov model [START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF], astrocytic Glu -released depends directly on the intracellular astrocytic [Ca 2+ ]. Let G m be the released astrocytic Glu -mediator, Imaging studies of brain slices reported that astrocytic morphology changes spontaneously, revealing that the neuron-astrocyte interaction is also plastic [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF]. This subsection deals with the contribution of astrocytes in synaptic plasticity. First is its indirect control on the neurotransmitter release probability of the presynaptic neuron, and second is its modulating effect on the postsynaptic potential. By bidirectionally modulating both the pre-and the postsynaptic activities, astrocytes emerge as a computational unit rather than simple structural support.

τ G m dG m dt = 1 + tanh S G m c -h G m (1 -G m ) - G m d G m . ( 4 

4.4.3.1/ SYNAPTIC RELEASE PROBABILITY

Astrocytic Glu -activates mGluRs located on the extrasynaptic membrane of presynaptic boutons, as shown in situ experiments at hippocampal synapses. In turn, extrasynaptic Glu -is used as an input for PLCβ-mediated IP 3 production in the presynaptic neuron (see Equation 4.5) [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. The increase of IP 3 production facilitates and modulates the neurotransmitter release probability lasting for tens of minutes [START_REF] Sasaki | Locally synchronized astrocytes[END_REF], hinting that astrocytes can mediate long-term synaptic plasticity.

Below is a simpler model for neurotransmitter release probability, wherein the extracellular Glu -binds with a fraction of extrasynaptically bound presynaptic receptors (γ S ), modulating the synaptic release probability u 0 [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. Let

τ P dγ S dt = -γ S + O P (1 -γ S ) [Glu -] a τ P , (4.46) 
where O P and τ P are the rising rate and the decay time of synaptic Glu -release due to gliotransmission. Then, γ S -dependent u 0 follows

u 0 (γ S ) ≈ U 0 + (ξ -U 0 )γ S , (4.47) 
where U 0 is the release probability at rest and 0 ≤ ξ < U 0 , which represents the influence of gliotransmission to the delivered information.

4.4.3.2/ SLOW INWARD CURRENT

Experiments use the whole-cell patch technique with selective astrocytic stimulation in parallel with EPSPs or IPSPs recordings to determine the impact of astrocytes in neural activity [START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF]. These experiments reveal that astrocytic Ca 2+ triggers an increase in EPSP or IPSP frequencies or postsynaptic potential amplitudes [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF], detected by monitoring slow inward currents (SICs) activated by NMDARs containing subunit 2B (NR2B) [START_REF] Sasaki | Locally synchronized astrocytes[END_REF][START_REF] Perea | Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes[END_REF][START_REF] Bal Ázs P Ál | Astrocytic actions on extrasynaptic neuronal currents[END_REF]. These currents are kinetically distinct from EPSCs due to their large amplitude (19-477 pA), and slower rise (13-332 ms), and decay (72-1630 ms) time [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Bal Ázs P Ál | Astrocytic actions on extrasynaptic neuronal currents[END_REF][START_REF] Shigetomi | Two forms of astrocyte calcium excitability have distinct effects on nmda receptor-mediated slow inward currents in pyramidal neurons[END_REF][START_REF] Fellin | Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic nmda receptors[END_REF].
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The [Glu -] a -evoked SICs is modeled as

I S IC = g NR2B h S IC v post , dh S IC dt = σ a τ S IC 1 - h S IC τ S IC 2 , (4.48) 
where g NR2B is the NR2B-containing receptor conductance, h S IC is the extrasynaptic NM-DAR gating variable, and v post is the membrane potential of the postsynaptic spine [START_REF] Tewari | A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework[END_REF].

Here, parameter σ a regulates the gate opening dependent on Ca 2+ activity of the astrocyte, where σ a = 0.4 when [Ca 2+ ] a crosses its threshold and σ a = 0 otherwise. The time constants τ S IC 1 and τ S IC 2 are the rise and decay times, respectively, of the extrasynaptic NMDARs, respectively.

De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] also presented SIC (i A (t)) independent of the postsynaptic potential by an exponential difference given as

τ r S di A (t) dt = -i A (t) + ÎA B A (t)τ r S , τ S dB A (t) dt = -B A (t) + ĴA [Glu -] a τ S , ĴA = J A ϱ e G T τ S , ÎA = I A ((1/τ S ) -(1/τ r S )) (τ r S /τ S ) (τ N /(τ N -τ r S )) -(τ r S /τ S ) (τ r S /(τ S -τ r S )) , (4.49) 
where the parameters τ r S and τ S are the rise and decay time constants of SICs. Here, ÎA and Ĵ are scaling factors set so that SIC is maximum (equal to a constant value I A ) during astrocytic Glu -release. Furthermore, J A is the synaptic efficacy, and τ N is the EPSC decay time constant.

4.5/ CALCIUM WAVE PROPAGATION

In the 1990s, laboratory experiments using cultured astrocytes demonstrated that astrocytes respond to stimuli by increasing their intracellular [Ca 2+ ], which diffuse through the cell itself and then propagate through the astrocyte syncytium [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Agulhon | What is the role of astrocyte calcium in neurophysiology?[END_REF][START_REF] Cornell-Bell | Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling[END_REF][START_REF] John W Dani | Neuronal activity triggers calcium waves in hippocampal astrocyte networks[END_REF]. From these results, researchers deduced that astrocytes could serve as a mechanism for longdistance information transfer, and their astrocytic Ca 2+ events also convey information about local brain activity. As discussed in subsection 4.3.2, an astrocytic cell also exhibits Ca 2+ oscillations in separate local and global regions. These Ca 2+ responses may be (1) confined from distal processes, (2) within the single astrocytic cell, or (3) propagate to neighboring astrocytes, whose activities may also occur in the absence of neuronal signals [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF].

The continuous and gradual propagation of Ca 2+ within the complex astrocytic network that causes a change in the intracellular [Ca 2+ ] in a single or a group of astrocytes brought about by the calcium signals from the neighboring astrocytes forms the so-called intercellular calcium waves (ICWs) (see Figure 4.6) [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF]. These ICWs propagate from one astrocyte to another in a coordinated manner and increase Ca 2+ within the astrocytic net-e.com/scientificreports/ study was therefore designed to assess the distinct contributions of gap junction and extracellular ATP and the ATP release mechanism in calcium waves, revealing novel aspects of the diverse and complicated dynamics of astrocyte [Ca 2+ ] i .

Results

Components of [Ca 2+ ] i increases in calcium waves. Figure 1a shows a representative calcium wave induced by mechanical stimulation of cultured astrocytes. The [Ca 2+ ] i increase in the mechanically-stimulated work, typically around 20-80 cells across a 200-to 600-mm-wide field, consistent with in vivo preparations [START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF][START_REF] Philip | How do astrocytes participate in neural plasticity?[END_REF]. One of the main differences between neuronal and astrocytic signaling is their temporal scales, while AP-mediated conductance between neurons has a velocity of 10-100 m/s, astrocytic Ca 2+ waves propagate at 4-20 m/s [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF].

In this subsection, we illustrate the primary mechanism for ICW propagation between protoplasmic astrocytes, that is, via the gap junction. Through these gap junction connections (GJC), astrocytes can form a network and facilitate long-distance information transfer.

4.5.1/ GAP JUNCTION CONNECTION

The gap junction connections are the primary mechanism in which Ca 2+ waves propagate between neighboring protoplasmic astrocytes in the gray matter [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF]. One of the main differences between astrocytes and neurons is that astrocytes are physically attached through connexin 43 hemichannels in their peripheral branches, allowing them to create a functional syncytium [START_REF] Nancy | Heterogeneity of astrocytic form and function[END_REF][START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF][START_REF] Manninen | Computational models for calcium-mediated astrocyte functions[END_REF]. When these hemichannels are in the closed state, they are permeable to ions and small molecules; otherwise, when in the open state, they enable the passage of large hydrophilic solutes [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF].

There are two experimentally verified routes for Ca 2+ wave propagation, either via intracellular or extracellular diffusion [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF]. First is the ICW propagation, mentioned previously and illustrated in Figure 4.7, involving the cell-to-cell diffusion of IP3 molecules through GJCs [START_REF] Giaume | Intercellular calcium signaling and gap junctional communication in astrocytes[END_REF]. The IP 3 transport triggers the CICR mechanism of the coupled astrocytes, in turn triggering Ca 2+ waves [START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF]. The second is through ATP release to the extracellular space [START_REF] Newman | Calcium waves in retinal glial cells[END_REF]. In this study, we only consider the ICW as the fundamental mechanism for astrocytic communication.

Astrocytic Ca 2+ propagation occurs in various modes, which can be spontaneous or evoked and restricted to a small astrocytic network or within a hundred cells. Therefore, the actual operation in which Ca 2+ spread is still vague. In its simplest form, IP 3 diffusion through GJCs can be modeled directly by the [Ca 2+ ] gradient between the coupled astrocytes, comparable with the diffusion mechanism between compartments in a single astrocyte (Equation 4.37). Considering the astrocytes in Figure 4.7, let i be the astrocyte couple with astrocyte j. Then the exchange of IP 3 molecules between the two is modeled by

J i j = D i j [IP 3 ] i -[IP 3 ] j , (4.50) 
a linear relationship wherein D i j is the diffusion coefficient [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF].

In another case, to ensure that the intracellular supply of IP 3 within a single astrocyte will not deplete during gap junction communication, IP 3 diffusion between the coupled astrocytes can be modeled by a threshold-based function [START_REF] Goldberg | Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks[END_REF]. The IP 3 flux is

J i j = - F i j 2 1 + tanh | ∆ i j I | -I θ ω IP 3 ∆ i j I | ∆ i j I | , (4.51) 
where ∆ i j I is the astrocytic [IP 3 ] gradient between astrocytes i and j, I θ is the threshold gradient that triggers IP 3 diffusion, ω I scales the rate in which J i j decreases or increases in relative with ∆ i j I, and F i j establishes the maximum magnitude of J i j .

4.5.2/ ASTROCYTIC NETWORKS

In the hippocampus, astrocytes exhibit heterogeneous coupling and network configuration (Figure 4.8) through GJCs [START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF], building dynamic communication between astrocytes as a response to various membrane receptor activation by extracellular Glu - [START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF]. The anatomical domains of individual astrocytes cover non-overlapping or discrete territories accommodating local interactions with synapses and other astrocytes [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF][START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF]. Because of their separate territories, astrocytes appear to be interstitial, filling and tiling spaces between other cells [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF]. Wallach et al. [START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF] provided an immunostaining image (see Figure 4.8a) of a cortical astrocytic network showing cells with exclusive territories and forming a lattice. This arrangement of astrocytes was also seen in fluorescent dyes of hippocampal astrocytes [START_REF] Volterra | Astrocytes, from brain glue to communication elements: the revolution continues[END_REF] and 3D confocal analysis and electron microscopy of protoplasmic astrocytes in the CA1 stratum radiatum shown in Figure 4.8b [START_REF] Bushong | Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains[END_REF]. are similarly organized and that these astrocytes divide the neuropil on multiple levels.

Because of the inability to discriminate between the processes of neighboring astrocytes when these cells are metal impregnated or HRP labeled, previous work examining interastrocytic relationships relied on the assumption that the average astrocyte occupied a spherical region of neuropil (Rohlmann and Wolff, 1996). These assumptions led to the conclusion that astrocytes must interdigitate extensively and possess a very limited autocon-trol space. This was ba cytes, and regional var known. We show that, i edly lead to an underes independently invest n variation in morpholog toplasmic astrocytes w astrocyte in CA1 strat apical dendrites of CA used the Voronoi tessellation to identify the extent of each astrocytic territory (gray and blue lines) on an immunostaining image composed of the astrocytes (green) and neurons (red) network. Here, astrocyte A is coupled to its neighboring astrocytes B 1 to B 7 through GJCs. (b) Confocal analysis of adjacent astrocytes in the CA1 region shows discrete regions of interaction (yellow) between astrocytic processes [START_REF] Bushong | Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains[END_REF]. Models of Ca 2+ wave diffusion can be visualized by simulating astrocytes connected in various topologies [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF][START_REF] Lallouette | Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks[END_REF]. An astrocyte under consideration (blue) connects to its neighboring neurons (green) within its boundary (Link Radius), any cell within the network (Erd ős-R ényi), its nearest neighbors (Regular Degree), its nearest neighbors and random cells (Shortcut), and cells relative to its degree and distance (Spatial scale-free).

Network Topology

Astrocytes tile the brain spaces, and their network organization is diverse due to their heterogeneous morphology, flexible gap junction coupling, and the brain region [START_REF] Matyash | Heterogeneity in astrocyte morphology and physiology[END_REF][START_REF] Giaume | Intercellular calcium signaling and gap junctional communication in astrocytes[END_REF]. Houades et al. [START_REF] Houades | Shapes of astrocyte networks in the juvenile brain[END_REF][START_REF] Houades | Gap junction-mediated astrocytic networks in the mouse barrel cortex[END_REF] discovered that in the hippocampal stratum radiatum, astrocytes form a circular network; that is spherical in three-dimensional form. On the other hand, astrocytes positioned near the pyramidal cells layer form a somewhat elongated network parallel to the pyramidal layer.

One can develop a model of ICW with one-to three-dimensional astrocytic topologies, as shown by Lallouette et al. [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF][START_REF] Lallouette | Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks[END_REF]. One-dimensional astrocytic networks form cells connected in series or chains. For more intricate astrocytic connection in space shown in Figure 4.8c, the astrocytic organization can be:

1. strongly spatially constrained networks where an astrocyte attaches to all its neigh-boring astrocytes within a specified radial constraint (e.g., link-radius networks), 2. completely spatially unconstrained random networks where an astrocyte connects to an arbitrary number of cells anywhere in the network, regardless of their distance (e.g., Erd ős-R ényi network), 3. regular-degree network wherein the astrocyte connects to its k nearest neighbors, 4. shortcut networks originating from regular-degree networks with cell connections randomly rearranged independently of distance, and 5. spatial scale-free networks whose astrocytic connections follow a power-law distribution relative to the cell degree and distance.

General Framework

Each astrocyte in the network is a node whose somatic activation allows ICWs to jump from one cell to another through links of gap-junction [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF]. Let i be an astrocyte in the network connected to a set of neighboring astrocytes ℵ. Its activity is modeled using the generic two-state vectors

da i dt = F i (a i , s i ) + D a i a i , a j , s | j ∈ ℵ i ds i dt = G i a i , a j + D s i s i , s j , a | j ∈ ℵ i , (4.52) 
where a lumps the astrocytic [Ca 2+ ] i , and s represents the Ca 2+ -mobilizing signals responsible for regenerative Ca 2+ propagation. The vector function F i may also incorporate other components such as [Ca 2+ ] of the ER and channel dynamics. Meanwhile, G i corresponds to the second-messenger functions required in regulating [Ca 2+ ] i . The constant terms D a i and D s i correspond to the chemical exchange between astrocyte i and its neighbors j ∈ ℵ.

4.5.3/ UAR MODEL

Lallouette et al. [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF][START_REF] Lallouette | Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks[END_REF] introduced a method of modeling calcium wave propagation in astrocytic networks, where astrocytes are considered nodes and GJCs are links. Lenk et al. [START_REF] Lenk | A computational model of interactions between neuronal and astrocytic networks: The role of astrocytes in the stability of the neuronal firing rate[END_REF] also utilized the discrete method for modeling Hill-functions-based astrocytic networks. The UAR model states that the probability that an astrocyte triggers Ca 2+ wave propagation to neighboring astrocytes, or vice versa, depends on the state of the astrocyte S a : U for the inactive or dormant state where the astrocyte is at rest (the dynamics of IP 3 and Ca 2+ are in the subthreshold regions), A for the active state, and R for the refractory state during which the astrocyte cannot transmit Ca 2+ signals. An astrocyte can be in one of these states at a time, and transitions between states are probabilistic depending on the propagation efficiency of coupled astrocytes.

Consider the coupled cells shown in Figure 4.9. From the biophysical perspective, the increase of [IP 3 ] beyond threshold activates CICR resulting in a large Ca2+ spike (U → A).

The cell stays in the active state during the duration that the IP 3 flux coming into the cell via GJCs is sufficient to retain the CICR above the threshold. The cell deactivates and stays in the refractory state (A → R) when the [IP 3 ] and [Ca 2+ ] drop below the threshold. Recruitment of an astrocyte by an ICW may be regarded as a three-state process, as exemplified for two connected astrocytes (cell 1, top row; cell 2, bottom row). Astrocytes are in the unactivated state (U) when at rest. Upon arrival of an ICW, their intracellular IP 3 (red traces) crosses the threshold for CICR initiation (dotted line) and cell 1, followed by cell 2, get activated (A, green-shaded windows), which is marked by a pulse-like increase of intracellular Ca 2+ in these two cells (blue traces). Following activation, each cell recovers to rest through a refractory period (R, red-shaded windows), when their intracellular IP 3 falls below a supply threshold (dashed line). Time constants of the transitions may be estimated as following: τ U coincides with the delay between the Ca 2+ increases in cell 1 and in cell 2; τ A is estimated by the time interval from the beginning of the Ca 2+ elevation to the point where IP 3 gets below the diffusion threshold; finally, τ R is derived from τ A + τ R = T , where T = 16 s is the minimum period of Ca 2+ oscillations in the single astrocyte. Transition rates used in the simulations are obtained averaging over all τ values obtained by simulations of the biophysical model in Fig. ] is in subthreshold level, the astrocyte becomes inactive and stays in the R state for some period. This activity is a continuous cycle and restarts when [IP 3 ] goes beyond the threshold once again. The image was adapted from Lalloutte et al. [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF].

The cycle repeats (from U to A to R and back to U) when both cells recover to their resting values.

Starting from the inactive state U, the rate of transition from inactive to active (k U→A ) states also depends on the activities of the neighboring cells. The propagation efficacy or the ability of an astrocyte to supply IP 3 to neighboring cells is given as

β a (t) =        1/N U a (t) if a is in the A state at time t 0 otherwise . (4.53) 
Here, N U a (t) is the number of astrocytes coupled to a that are not in the active state at time t. Then, the activation propensity of astrocyte a is computed using

γ a (t) = θ a b∈N a β b (t k ) + [Ca 2+ ] i ja N • M, (4.54) 
where N(a) is the set of astrocytes connected to a and θ a is the astrocyte activation threshold. The first term of the right-hand side is the dependency of activation propensity on the propagation efficiency of the neighboring astrocytes b, and the second term is the average [Ca 2+ ] of local areas i ja of astrocyte a. These local areas are the number of perisynaptic astrocytes forming excitatory connections with neurons (N is the number of excitatory connections) and then scaled by a factor M for their contribution to the activation propensity. The state of astrocyte a changes from U to A once the activation propensity is above the threshold θ a . This threshold changes based on the number of neighboring astrocytes gap junction couples to astrocyte a and follows a linear relation where b 0 and b 1 are the slope and intercept of activation threshold. Therefore, the probability that the astrocytic state shifts from inactive to active state k U→A at time t is

k U→A (t) =        1/τ U if γ a (t) > θ a (n a ) 0 otherwise , (4.56) 
which states that the astrocyte becomes active only if the accumulative IP 3 through GJCs exceeds the threshold of activation θ a , where τU is the activation transition.

The transition of astrocyte a from active to refractory (A → R) and from refractory back to the inactive state (R → A) is spontaneous, where

k (A→R) =1/τ A , k(R → U) =1/τ R , (4.57) 
where the parameters τA and τR are the average time in which the astrocyte is active during ICW and the average refractory period, respectively.

4.6/ CONCLUSION

After decades of studies on the biophysical properties and functions of astrocytes, our perspective on astrocytes becomes expansive than ever, from a single passive cell whose primary function is structural support into a more complex cell for intercellular communication. In this chapter, we dealt with the functional characteristics of astrocytes, from their complex morphology, intracellular dynamics, to its ability to form networks through gap junctions and even through tripartite synaptic couplings. The morphological complexity of astrocytes, and more recent discoveries, its Ca 2+ -dependent excitability, put astrocytes in a vital position in neural signaling.

In the tripartite synapse concept, an astrocyte is considered as the third active component for neural information processing. It integrates synaptic signals which activate receptors and trigger IP 3 and Ca 2+ activities on its processes. In return, it controls the synaptic transmission by modulating either or both the pre-and postsynaptic activities, thus influencing short-and long-term synaptic plasticity, and ultimately, a broader network activity. Given that the presence of astrocytic processes results in larger synapses, tripartite synapses may function differently than those with synaptic coupling alone. One difference is that synaptic communications become bidirectional with astrocytes due to the lateral astrocyte regulation of synaptic signals. In addition, because an astrocyte enwraps thousands of synapses from separate neurons, it serves as a bridge communication between neurons without direct neuronal connectivity. This type of connection expands the astrocytic influence. It provides additional pathways for neuronal such as the intracellular Ca 2+ signaling resulting in gliotransmission.

Furthermore, astrocytic influence is not confined within the synaptic areas alone -astrocytes, like neurons, form computational compartments. Different regions of astrocytes exhibit transient and local Ca 2+ activities, allow IP 3 and Ca 2+ diffusion between neighboring compartments, and communicate with neighboring astrocytes through IP 3 exchange via gap junctions. These morphological connections enable Ca 2+ wave propagation within a group of astrocytes or a more extensive network. However, the heterogeneity in astrocytic connections and the expression of GJCs still need further investigation; therefore, the exact mechanisms and the exact influence of ICW propagation in neuronal processing are still unclear.

With the ability of astrocytes to form a syncytium, neuron-astrocyte signaling is not only synapse-or cell-specific but also develops into a broader circuit-specific activity. What are the implications of these complexities on our understanding of neuronal signaling and neural network dynamics? If astrocytes can therefore influence the neuronal AP generation, how then can they affect network dynamics? In the following chapter, we delve into the neuron-astrocyte interaction by modeling tripartite synapse-specific activities and then expanding it into a small neuron-astrocyte network intercellular communication.

MODELING THE NEURON-ASTROCYTE INTERACTIONS

5.1/ INTRODUCTION

In the hippocampus, the complex interconnections of neuronal elements control brain activities crucial for cognition and storage and memory functions by generating, modulating, and combining intrinsic and extrinsic signals nonlinearly. In Chapter 2 and Chapter 3, we discussed the information transfer between neurons via synaptic connections. A pyramidal neuron integrates the incoming signals, and upon reaching a certain threshold, generates an AP. It then encodes information into the spiking frequency and patterns of repetitive firing of the output signal, which is then sent to different brain regions through neuronal networks for signal processing and response generation. Recently, researchers hypothesized that hippocampal astrocytes impact contextual memory, especially in the CA1 region [START_REF] Tewari | A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework[END_REF][START_REF] Choi | Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus[END_REF]. As discussed in Chapter 4, astrocytes, though electrically passive, can influence synaptic transmission by sensing presynaptic activities and modulating extrasynaptic Glu -which activates pre-and postsynaptic receptors. In this case, astrocytes play an active role in neuronal excitability and synaptic plasticity.

Even with experimental and computational studies, however, a coherent view on the functions of astrocytes in neuronal processes, apart from being structural and metabolic supports, is still lacking. One of the main reasons is the complex astrocytic morphology that spreads radially and creates myriads of leaflet processes throughout maturation [START_REF] Bushong | Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development[END_REF][START_REF] Rossi | Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death[END_REF]. The influence of intracellular Ca 2+ dynamics in the astrocytic processes on the synaptic transmission depends on the percentage of enwrapped synaptic volume and the size of the astrocytic processes. In addition, neuron-astrocyte interaction is not only constricted in the synaptic areas. Astrocytes also sense extracellular Glu -from nonsynaptic sources [START_REF] Del | Extrasynaptic neurotransmission mediated by exocytosis and diffusive release of transmitter substances[END_REF] such as the neuronal bodies and nodes of Ranvier because an axon, as it bifurcates, can pass through several astrocytic domains [START_REF] James M Robertson | Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories[END_REF]. As mentioned previously, neuron-astrocyte signaling is not only cell-or synapse-specific but circuit-specific as well. An inactive synapse can still be stimulated even in the absence of presynaptic inputs. Intracellular Ca 2+ wave propagation activates astrocytic microdomains and allows the release of extrasynaptic Glu -to inactive synapses, which triggers the opening of preand postsynaptic mGluRs. Consequently, the extent of astrocytic influence is more than a point process.

CHAPTER 5. MODELING THE NEURON-ASTROCYTE INTERACTIONS

In this chapter, we focus on the computational models of the neuron-astrocyte intercommunications based on physiological processes. Here, we implement a bottom-up strategy: studying the electrical dynamics and molecular interplay between the tripartite synapse components, extending the model to incorporate the transient and localized astrocytic Ca 2+ dynamics in a single astrocyte, and lastly, further expanding the interactions by modeling the Ca 2+ wave diffusion in a small neuron-astrocyte network.

5.2/ MODELING THE TRIPARTITE SYNAPSE DYNAMICS

With their sponge-like morphology, protoplasmic astrocytes in the gray matter establish non-overlapping and exclusive three-dimensional domain within their neuropilar volume [START_REF] Bushong | Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains[END_REF][START_REF] Bushong | Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development[END_REF][START_REF] Rossi | Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death[END_REF][START_REF] Alexander A Sosunov | Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain[END_REF]. Three-dimensional confocal analysis and electron microscopy showed protoplasmic astrocytes in rat CA1 stratum radiatum form almost a spherical territory. In the human brain, the polyhedral domains of protoplasmic astrocytes are arranged repeatedly and uniformly in a 3D manner [START_REF] James M Robertson | Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories[END_REF]. Within a single territory, an astrocyte can influence an average of four neurons, enveloping thousands of neuronal structures, including the neuronal soma, dendrites, synapse, and axons [START_REF] Bushong | Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains[END_REF][START_REF] Michael M Halassa | Synaptic islands defined by the territory of a single astrocyte[END_REF][START_REF] Rossi | Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death[END_REF][START_REF] Debanne | Astrocytes shape axonal signaling[END_REF]. According to Debanne and Rama [START_REF] Debanne | Astrocytes shape axonal signaling[END_REF], the spherical volume of an astrocyte in the hippocampus has an approximate diameter of 40 mm, suggesting that it can affect a population of axons. Furthermore, an axon, as it bifurcates, can pass through several astrocytic territories [START_REF] James M Robertson | Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories[END_REF]. These imply that information transfer is not constrained within the synaptic area but occurs with all cellular elements within the astrocytic domain.

Through stimulations on ex vivo systems of CA3 pyramidal neurons of hippocampal slice cultures, Sasaki et al. [START_REF] Sasaki | Action-potential modulation during axonal conduction[END_REF] investigated the effects of Ca2+ uncaging of perinodal astrocytes near the unmyelinated axon (150 to 400 µm from the initial segment) on synaptic efficacy. However, physical evidence of direct contact between the node of Ranvier and the protoplasmic astrocyte is still lacking. Nonetheless, given that the soma and the unmyelinated axon release Glu -and that the expression of astrocytic mGluRs varies, Glu - released from these cellular elements may reach astrocytic compartments in proximity [START_REF] Arthur | Atp: a ubiquitous gliotransmitter integrating neuron-glial networks[END_REF], thus influencing synaptic transmission. Besides, the morphological heterogeneity of astrocytes plays an active role in neuron-astrocyte interaction [START_REF] Hu | Heterogeneous astrocytes: Active players in cns[END_REF]. Studies suggest that leaflet processes extend towards the location with high glutamate concentration ([Glu -]), predominantly in the synaptic area [START_REF] Ventura | Three-dimensional relationships between hippocampal synapses and astrocytes[END_REF]. Since leaflets are fine processes that are not easily captured by light microscopy [START_REF] Zhou | Astrocyte morphology: Diversity, plasticity, and role in neurological diseases[END_REF], it is possible that these processes are not only in contact with synapses but may also contact other neuronal elements where Glu-release occurs.

Numerous investigations concerning the role of astrocytes in neuronal activity have already been published [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF][START_REF] Manninen | Computational models for calcium-mediated astrocyte functions[END_REF]. Manninen et al. [START_REF] Manninen | Reproducibility and comparability of computational models for astrocyte calcium excitability[END_REF][START_REF] Manninen | Computational models for calcium-mediated astrocyte functions[END_REF] collected, compared, and presented in their literature reviews the computational models of biologically-based astrocyte and neuron-astrocyte Ca2+ signaling and dynamics in single cells or networks. However, the gathered models only incorporate astrocytes, neuron-astrocyte synapses, and neuron-astrocyte networks, but none regarding nonsynaptic neuron-astrocyte signaling. Astrocytes can sense signals from nonsynaptic neuronal localities due to extrasynaptic transmission, the flow of transmitters released from the soma, axon, and dendrites occurring through exocytosis or spillover even in the absence of a postsynaptic counter-part [START_REF] Del | Extrasynaptic neurotransmission mediated by exocytosis and diffusive release of transmitter substances[END_REF]. For example, localized receptors in the perinodal astrocytic area receive Glureleased from the neuronal nodes of Ranvier [START_REF] Maria P Abbracchio | Purinergic signalling in the nervous system: an overview[END_REF].

Given these current discoveries regarding astrocytic dynamics, it is about time to include such an astrocytic process in the tripartite synapse and synaptic information processing model. This section focuses on the molecular exchange that regulates transmission in a closed-loop system comprising the pre-and postsynaptic neurons and astrocyte. Our goal is to present the neuron astrocyte interaction as biologically plausible as possible and compare its dynamics with a system containing synaptic coupling alone [START_REF] Lorenzo | Spatiotemporal model of tripartite synapse with perinodal astrocytic process[END_REF]. The model presented by Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] described the biological processes in detail; with that, we used this as the basis of our study, along with other studies [START_REF] Maryna A Hliatsevich | Design of deterministic model of signal transduction between neuronal cells[END_REF][START_REF] Chan | The role of neuron-glia interactions in the emergence of ultra-slow oscillations[END_REF][START_REF] Mirzakhalili | A mathematical and computational model of the calcium dynamics in caenorhabditis elegans ash sensory neuron[END_REF]. In their model, the AP originates from the AIS and reaches the presynaptic bouton without delay and voltage change. Also, their model focuses on the Ca 2+ dynamics within the tripartite synapse domain. Hence, we extended their model and incorporated nonsynaptic neuronal and astrocytic elements that may also affect intracellular Ca 2+ dynamics. Here, the extended model includes compartmentalization of cellular processes, and by doing so, it describes an intercellular relationship rather than a synapse-specific process. The proposed model of the tripartite synapse by Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] is therefore modified to include the propagation of AP along the axon, the molecular dynamics in the node of Ranvier for neurotransmitter release, the perinodal astrocytic processes for extrasynaptic signaling, and the compartmentalization of astrocytic Ca 2+ dynamics via different Ca 2+ store sites. Biophysical models demonstrate the electrical and chemical dynamics of the system and how compartmentalization in astrocytes contributes to information processing and synaptic plasticity. The results suggest that Ca 2+ stores positioned on different astrocytic processes improve the synaptic efficacy by increasing intracellular astrocytic [Ca 2+ ]. However, the longer the [Ca 2+ ] is above the threshold, the astrocyte can create an oversupply of Glu -in the extrasynaptic area, which can cause excitotoxic effects to the neurons.

5.2.1/ FUNCTIONAL MODEL OF THE TRIPARTITE SYNAPSE (SPONTANEOUS RE-LEASE)

The tripartite synapse is modeled based on the pyramidal neurons and astrocytes in the hippocampal CA3-CA1 network. In this case, we focus on the tripartite area and extend the morphology to include the nonsynaptic components such as the axonal length, shown in Figure 5.1. The model comprises multiple compartments whose characteristics and dynamics are described subsequently. These are the (1) AIS for AP generation, (2) myelinated segments and (3) nodes of Ranvier for AP propagation via saltatory conduction, (4) perinodal astrocytic process sensing vesicular release from the node of Ranvier, (5) the presynaptic bouton for neurotransmitter release, (6) the synaptic area for neurotransmission, [START_REF] Nedergaard | Beyond the role of glutamate as a neurotransmitter[END_REF] the perisynaptic astrocytic process for gliotransmission, (8) the astrocytic soma for signal integration, and finally, (9) the postsynaptic spine head for EPSP. The presynaptic neuron generates APs at the distal end of the AIS, then propagates them along the myelinated segment, which causes signal decay, then to the node of Ranvier for signal re-amplification. During the axonal transmission, Ca 2+ dynamics in the node of Ranvier results in the release of neurotransmitters into the perinodal area. The perinodal astrocyte then receives and utilizes these neurotransmitters for intracellular Ca2+ release. The pattern of AP attenuation and regeneration continues until it reaches the presynaptic bouton. From here, the tripartite synapse follows the dynamics described by the functional model in Figure 5.2. The presynaptic bouton membrane potential V pre causes an increase in the [Ca 2+ ], c i , which influences the probability of neurotransmitter release, R S . The released neurotransmitters in the synaptic cleft, specifically Glu -, G S , activate AMPA receptors on the postsynaptic spine head producing the excitatory synaptic current I ampa , which increases the EPSP. Synaptic Glu -also diffuses into the extrasynaptic area and activates mGluRs on the perisynaptic astrocytic process producing the second messenger IP 3 , which activates IP 3 Rs on the astrocytic ER enabling the influx of Ca 2+ a , J IP 3 R into the intracellular space, in addition to the Ca 2+ a leakage, J C ER leak . Part of the Ca 2+ a , J S ERCA , flows back into the internal Ca 2+ store to maintain the molecular balance in the astrocyte. These three fluxes, J IP 3 R , J S ERCA , and J C ER leak , contribute to the intracellular Ca 2+ oscillation. Assuming that the astrocytic soma integrates the transient Ca 2+

a from the astrocytic processes, the amount of intracellular Ca 2+ a influences the probability of gliotransmitter release, R A , into the extrasynaptic area, increasing the extracellular [Glu -], G A . This process creates a closed-loop, in the form of G A as feedback to the presynaptic neuron: by activating presynaptic mGluRs and influencing the presynaptic [IP 3 ], the c i level increases. In turn, the astrocytic dynamics indirectly influence the neurotransmitter release process, thus affecting the activities of the postsynaptic neuron. Following is a more comprehensive description of each compartment and its processes. 

AXON INITIAL SEGMENT

The AIS is the neuronal domain separating the axonal and somatodendritic compartments and is a critical site where AP is initiated and propagated bidirectionally (to the axon terminals and back to the soma) [START_REF] Guo | Neurons with multiple axons have functional axon initial segments[END_REF][START_REF] Maarten | The electrical significance of axon location diversity[END_REF][START_REF] Andrew | Axonal membranes and their domains: assembly and function of the axon initial segment and node of ranvier[END_REF][START_REF] Yamada | Structural and functional plasticity at the axon initial segment[END_REF][START_REF] Zbili | Dynamic control of neurotransmitter release by presynaptic potential[END_REF]. Electrical excitability occurs in this site due to the clustering of high-density voltage-gated channels, such as Na v channels causing the AIS to obtain the lowest AP threshold within the neuron and K v channels counteracting the Na v channels by suppressing AP generation. Aside from these ionic channels, the location of the AIS plays a vital role in AP generation [START_REF] Sasaki | The axon as a unique computational unit in neurons[END_REF]. It is isolated from the soma, which makes it electrically compact, and its proximal distance from the soma optimizes the charge reaching its domain [START_REF] Yamada | Structural and functional plasticity at the axon initial segment[END_REF]. Multi-compartmental studies noted that AP initiates at the distal end of the AIS due to electrotonic isolation [START_REF] Maarten | The electrical significance of axon location diversity[END_REF]. Here, the Hodgkin-Huxley model [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] in Equation 2.11 describes the membrane potential, V, and the AP generation in the AIS through the influx/efflux of Na + and K + ions. Refer to Table A.1 for the list of parameters and the corresponding values.

MYELINATED SEGMENTS

The AP, generated at the distal end of the AIS, propagates along the first myelinated segment. Electrically, myelin sheaths have significantly high resistance and low capacitance. Furthermore, the ionic channel density along the myelinated segment is low, causing a passive voltage spread [START_REF] Bucher | Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon[END_REF]. Here, the extended model of cable transmission in Equation 2.22 describes the signal propagation along the myelinated segment, V m , considered a transmission line consisting of resistive and capacitive properties [START_REF] Nm Bogatov | Calculation of action potential propagation in nerve fiber[END_REF]. The characteristics of the myelinated segment are listed in Table A.2. The subscript m corresponds to the parameters exclusive to the myelinated segment. With the solution from Bogatov et al. [START_REF] Nm Bogatov | Calculation of action potential propagation in nerve fiber[END_REF], the constant parameters such as the length constant, λ, the time constant, τ, and the constant of distributed AP, γ, were computed. These parameters describe the signal propagation along the myelinated segment. Because of the small capacitance and considerable resistance of the myelin [START_REF] Poliak | The local differentiation of myelinated axons at nodes of ranvier[END_REF], the length constant of the axonal cable is longer while its time constant is shorter than in unmyelinated segments [START_REF] Bucher | Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon[END_REF].

NODE OF RANVIER

The current density at the distal end of the myelinated segment is the stimulus for regenerating the AP at the node of Ranvier. Electrophysiological studies showed that the node of Ranvier follows the spike frequency of the AP initiated in the AIS with ∼100 µs delay [START_REF] Maarten | The electrical significance of axon location diversity[END_REF]. The current density I n flowing into the node from the myelinated segment is computed as the change in voltage over time [366] so that I n = CdV m /dt, where V m is the voltage at the point in the axon where the myelin segment ends. Arancibia-Carcamo et al. [START_REF] Attwell | The node of ranvier in cns pathology[END_REF] measured the node lengths of the myelinated axons. As a result, they found that the nodal length is consistent along an axon but differs between axons. The node length and the number of nodal Nav channels positively correlate, indicating a constant channel density. Also, the transmembrane inactivating Na+ and low-threshold K+ channels densities are higher in the node of Ranvier than in the soma and the AIS [START_REF] Charles | Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons[END_REF][START_REF] Ye | Shielding effects of myelin sheath on axolemma depolarization under transverse electric field stimulation[END_REF][START_REF] Marc C Ford | Tuning of ranvier node and internode properties in myelinated axons to adjust action potential timing[END_REF]. Therefore, there is a lower threshold of AP activation in this compartment [START_REF] Ye | Shielding effects of myelin sheath on axolemma depolarization under transverse electric field stimulation[END_REF]. In saltatory conduction, the AP amplitude, initiated in the AIS, diminishes as it propagates along the myelinated segment and intensifies at the node due to the voltage-gated mechanisms in the node. This activity repeatedly occurs until the AP reaches the axon terminals. In these compartments, the AP regeneration, V n , also follows the Hodgkin-Huxley model in Equation 2.11 [START_REF] Allan | The components of membrane conductance in the giant axon of loligo[END_REF][START_REF] Allan | Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo[END_REF] using channel conductances and reversal potentials specific in the node and input current I n = I app . Refer to Table A.3 for the corresponding parameters.

Here, the subscript n indicates values exclusive to the node of Ranvier.

PERINODAL AREA

We considered the node of Ranvier and perinodal astrocyte as compartments due to their properties similar to the synapse; therefore, we have taken the perinodal area into account for the following reasons. First is the presence of vesicles containing neurotransmitters in the nodes. The soma packages these vesicles and transports them into the axon terminals to be captured by axonal varicosities. Uncaptured vesicles leave the terminal and re-enter circulation [START_REF] Ia Kuznetsov | How dense core vesicles are delivered to axon terminals-a review of modeling approaches[END_REF]. Second, in the central nervous system, the nodes are connected to perinodal astrocytes [START_REF] Poliak | The local differentiation of myelinated axons at nodes of ranvier[END_REF][START_REF] Dipankar | Regulation of myelin structure and conduction velocity by perinodal astrocytes[END_REF], which occupy the space between myelinated segments in the axon and show biochemical characteristics when connected. Action potential influences the release of Glu -from the unmyelinated section of the axon. This release is dependent on the [Ca 2+ ] elevation attributable to AP and the ER extending throughout the axon [START_REF] De Juan-Sanz | Axonal endoplasmic reticulum ca2+ content controls release probability in cns nerve terminals[END_REF][START_REF] Özg Ür Genc | Mctp is an er-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity[END_REF]. This nonsynaptic neurotransmitter release [START_REF] Jennifer L Ziskin | Vesicular release of glutamate from unmyelinated axons in white matter[END_REF] influences the opening of Glu receptors in the perinodal astrocyte [START_REF] Maria P Abbracchio | Purinergic signalling in the nervous system: an overview[END_REF]. Lastly, while communication is classically known to occur at synapses, evidence shows that extrasynaptic transmitter release from the soma, axon, and dendrites occurs even without a postsynaptic counterpart via exocytosis or spillover [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF][START_REF] Del | Extrasynaptic neurotransmission mediated by exocytosis and diffusive release of transmitter substances[END_REF][START_REF] Trueta | Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system[END_REF]. The Ca 2+ and Glu -dynamics in the node, perinodal area, and perinodal astrocyte follow the presynaptic bouton and astrocytic dynamics presented next. The biophysical properties and parameters related to the perinodal section are in Tables A. [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF], A.5, A.7, and A.7.

PRESYNAPTIC BOUTON

The increase in the intracellular [Ca 2+ ], c i , in the presynaptic bouton (and also c i,n in the nodes of Ranvier) is the consequence of the interplay between the electrical (the fast Ca2+ activities due to the voltage-dependent increase in cytosolic Ca 2+ upon the arrival of AP) and chemical dynamics (the slow Ca 2+ -dependent release of Ca 2+ ions from the ER) in the compartment. The Ca 2+ dynamics in each compartment are also dependent on the dimension and shape of the compartment itself. Here, the intracellular Ca 2+ dynamics follow the biological model in Subsection 3.2.2 (Modeling Calcium Dynamics).

The construction-destruction formulism in Equation 3.2 describes the changes in c f ast , and the modified Li-Rinzel model [START_REF] Li | Equations for insp3 receptor-mediated [ca2+] i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism[END_REF] defines the dynamics of c slow . Refer to Table A.4 for the parameters associated with the presynaptic neuron Ca 2+ activities.

There are two conditions for triggering the release of neurotransmitters from the presynaptic bouton (or the node). First, the compartment releases Glu -into the synaptic cleft when five Ca 2+ ions bind to the Ca 2+ sensor of the vesicle. The transition of the Ca2+ sensor from one state to another is computed using the Markov model for ionic channels. The arrival of AP, in correlation with the intracellular [Ca 2+ ], evokes the release [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. Second, the intracellular [Ca 2+ ] can also randomly provoke vesicular neurotransmitter release. Following the study of Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF], two docked vesicles are present in the bouton; therefore, f r , (with values 0, 0.5, and 1) represents the fraction of the ready vesicles out of the total number of docked vesicles in the bouton. See Subsubsection 3.3.2.3 (Spontaneous Release). In addition, based on the amount of intracellular [Ca 2+ ], the spontaneous vesicle release is also possible even in the absence of AP. In the study of Modchang et al. [START_REF] Modchang | A comparison of deterministic and stochastic simulations of neuronal vesicle release models[END_REF], comparing stochastic and deterministic approaches on vesicle release, the result suggested that in synapses with nanodomain, stochastic vesicle release algorithm is more accurate than deterministic approach. The modified TMM in Equation 3.27 describes the vesicular fusion and recycling process. The synaptic release is history-dependent; therefore, if the next incoming AP is in the order of these time constants, vesicles are neither replenished nor released. Whether evoked or spontaneous, the vesicle release process is history-dependent; that is, the process is inactive 6.34 ms after release the previous release, wherein the vesicles neither replenish nor release their neurotransmitter content [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF][START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. Lastly, Equation 3.30 describes the synaptic Glu -dynamics, g. The parameters in the neurotransmitter release process and synaptic Glu - dynamics are explicitly for CA3-CA1 synapse and are listed in Table A.5.

ASTROCYTE

Transient astrocytic [Ca 2+ ] (or [Ca 2+ ] a ) increases in response to synaptic activity and propagates within the astrocyte into the soma or nearby cells. The discovery of this Ca 2+ wave suggests that astrocytes integrate and transfer signals [START_REF] Janosch | The nanoworld of the tripartite synapse: insights from super-resolution microscopy[END_REF]. In this model, the extrasynaptic and perinodal astrocytic processes are distinct compartments whose Ca 2+ a transients flow into the soma for integration and vesicle packaging. In the astrocyte, 108
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Ca 2+ a oscillation is attributed to the CICR from the ER into the cytosol through IP3 receptors. Astrocyte responds to synaptic activity by changes in its global (somatic) and focal (perisynaptic and perinodal) Ca 2+ a elevations [START_REF] Ónia Guerra-Gomes | Functional roles of astrocyte calcium elevations: from synapses to behavior[END_REF][START_REF] Volterra | Astrocyte ca 2+ signalling: an unexpected complexity[END_REF]. Intracellular [Ca 2+ ] a transients can propagate along the process and into the soma, influence somatic [Ca 2+ ] a elevations. Subsequently, the overall summation of somatic and transient [Ca 2+ ] a leads to transmitter release [START_REF] Cinciute | Translating the hemodynamic response: why focused interdisciplinary integration should matter for the future of functional neuroimaging[END_REF]. However, biophysical mechanisms of astrocytic Ca 2+ intracellular propagation are still insufficient [START_REF] Yu Gordleeva | Astrocyte as a detector of synchronous events of a neural network[END_REF], specifically if global [Ca 2+ ] a elevations result from the linear summation of transient Ca 2+ [START_REF] Ónia Guerra-Gomes | Functional roles of astrocyte calcium elevations: from synapses to behavior[END_REF].Therefore, we assumed that the total intracellular [Ca 2+ ] a is responsible for astrocytic vesicle release. Astrocyte dynamics is a stochastic process, and the total intracellular [Ca 2+ ] a is the summation of all the transient Ca 2+

a . Here, the biologically-based and modified Li-Rinzel model presented in Subsection 4.3.1.1 describes the astrocytic IP 3 and Ca 2+ dynamics in the extrasynaptic and perinodal astrocytic processes, where the parameters and the corresponding values are presented in Table A.6.

Then, three Ca 2+ ions must bind with three independent gates (S 1 , S 2 , and S 3 ) for possible gliotransmitter release, following the kinetic model and release probability presented in Subsection 4.4.2.1. Astrocytic vesicle fusion and recycling uses an essentially similar transmitter release process as the presynaptic neuron, described by the stochastic models in Subsection 4.4.2.2. Here, only the extrasynaptic process releases extracellular Glu -, which is necessary for presynaptic IP 3 production. Extrasynaptic Glu -dynamics is governed by Equation 4.43. Refer to Table A.7 for the parameters.

POSTSYNAPTIC SPINE HEAD

Synaptic Glu -then activates the postsynaptic firing. In this glutamatergic synapse, the excitatory synaptic input is due to the activation of clustered and localized AMPARs in the spine head. The passive postsynaptic membrane potential, V post , is given as

τ post dV post dt = -V post -V rest -R m I ampa , (5.1) 
where V rest is the postsynaptic resting membrane potential, R m is the spine resistance, and I ampa is the AMPAR current computed using the AMPAR gating function in Equation 3.37. See Table A.8 for the list of parameters and their corresponding values.

5.2.2/ SIMULATION AND ANALYSIS METHOD

We simulated the tripartite synapse dynamics in Matlab, implementing the Euler method with a time step dt = 0.05 ms for the system of differential equations numerical computation. In this model, there are 20 myelinated segments in the presynaptic axon [START_REF] Allan | Neuron morphology influences axon initial segment plasticity[END_REF], forming 41 compartments: one AIS, 20 myelinated segments, 19 nodes of Ranvier, and one presynaptic bouton. The AIS input is a pulse wave of 10 µA/cm 2 with a frequency of 5 Hz and a pulse width of 4 ms [START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF][START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF]. In addition, there is one compartment for the postsynaptic spine head, one compartment each for perisynaptic astrocytic process and astrocytic soma, 0 to 2 perinodal astrocytic process/es, a synaptic area, perinodal area/s (0 to 2), and an extrasynaptic area. There is a 0.33 ms delay in AP arrival from the AIS to the first node of Ranvier, V 1 . Therefore, it takes 6.66 ms before AP reaches the bouton, V pre .

MODELING THE TRIPARTITE SYNAPSE DYNAMICS

We previously addressed the electrical and chemical dynamics of a neuron-astrocyte interaction with nonsynaptic sources from external areas. To analyze the impacts of these sources, we simulated different neuron-astrocyte configurations: (1) tripartite synapse, (2) tripartite synapse with one perinodal source, and (3) tripartite synapse with two perinodal sources. Because of the stochastic nature of the dynamics, we simulated each configuration for 50-second simulation time and repeated the simulation 20 times.

The neurotransmitter release is a stochastic process that varies the postsynaptic membrane potential spiking pattern over time. The fundamental quantity in neural circuits that describes these variations is called synaptic efficacy or strength [START_REF] Matthias | Theoretical models of synaptic short term plasticity[END_REF][START_REF] London | The information efficacy of a synapse[END_REF][START_REF] Graupner | Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models[END_REF]. Synaptic efficacy determines the strength of the connection between the pre-and postsynaptic neurons with time, identified by the transferred mutual information based on the activity patterns of the input and output spike trains. We also used synaptic efficacy to identify the influence of astrocytic processes in synaptic transmission numerically, computed by obtaining the ratio of the number of successful postsynaptic spikes over the number of presynaptic spikes within a 5-second sliding window.

5.2.3/ RESULTS

5.2.3.1/ PRESYNAPTIC NEURON DYNAMICS

Figure 5.3 shows the generated AP in the AIS (V) and the regenerated AP in the nodes (V n where n = [START_REF] Baljit | Astrocyte-neuron interactions in the striatum: insights on identity, form, and function[END_REF][START_REF] Tottenham | A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing[END_REF]) and bouton, V pre . Here, the voltage delay and attenuation resulted from the AP propagation across the myelinated segments. The change in amplitude from the AIS (peak amplitude of 36.53 mV) to the first node of Ranvier (peak amplitude of 46.56 mV) results from channel conductance increase in the nodes. Due to the increase in the voltage-gated channels and the changes in their reversal potential, the nodal Na + current amplifies the axosomatic AP and hyperpolarizes the AP voltage [START_REF] Zbili | Dynamic control of neurotransmitter release by presynaptic potential[END_REF][START_REF] Maarten | First node of ranvier facilitates high-frequency burst encoding[END_REF]. In this model, the astrocytic processes cover the synapse and the 19 th node of Ranvier.

As the AP propagates through the axonal length to the presynaptic bouton, it simultaneously triggers the [Ca 2+ ] elevations in the said compartments. In the presynaptic axon, the local calcium concentration combines the AP-evoked Ca 2+ and the ER Ca of the morphometric properties of the compartments. In addition, the intracellular [Ca 2+ ] peak amplitudes are inversely proportional to the Ca 2+ content of the ER. The activation of IP3Rs allows the release of Ca 2+ from the ER to the intracellular space. Thus, Ca 2+ ER shows an inverse activity of the IP3. The [IP 3 ] concentration in Figure 5.4a is equivalent to the initial value (160 nM) from t = 0 to t = 13.97 sec. Note that the increase in [IP 3 ] amplitude corresponds with the astrocytic gliotransmitter release shown in Figure 5.7. The perinodal activity does not involve extracellular gliotransmitter release; therefore, there are no fluctuations in the nodal [IP 3 ] levels but rather increases from the initial concentration and stabilizes at 1.44 mM.

The internal Ca 2+ dynamics in the presynaptic compartments determine the vesicle release probability resulting in either evoked or spontaneous Glu -spiking activities. Refer to Figure 5.5. The fraction of readily releasable synaptic vesicle, R, in the presynaptic bouton fluctuates between 0.9249 and 1, resulting in stochastic and fractional vesicle release, E, into the synaptic cleft with an average peak amplitude of 0.0245, and a fraction of inactive vesicles, I, ranging from 0 to 0.0737 (Figure 5.5a). Therefore, the resulting synaptic [Glu -] in the synaptic cleft peaks at an average amplitude equal to 0.2705 mM. The perinodal coupling displays a different range of neurotransmitter release activities (Figure 5.5b). The perinodal R has a lower release probability, between 0.8621 to 1, a higher fraction of effectively released vesicle, E, with an average amplitude of 0.0484, and a higher fraction of vesicles for recycling, I ∈ [0, 0.1353]. This phenomenon can be attributed to the absence of astrocytic Glu -released into the node and the lower nodal [Ca 2+ ]. On the other hand, the perinodal area also shows similar Glu-activities (in terms of Glu -spike peaks, with an average peak amplitude of 0.2670 mM). Glutamate spikes in both perinodal and synaptic areas are dependent on their neurotransmitter release probability. This asynchronous process results in 50 and 49 Glu -spikes in the synapse and perinodal area, respectively, which is infrequent compared to the 5 Hz input spiking 250 times within the 50-second stimulation.

5.2.3.2/ ASTROCYTIC CALCIUM DYNAMICS

Figure 5.6 shows the localized transient [Ca 2+ ] elevations and the corresponding IP 3 dynamics in the astrocytic compartments. These transients are independent of each other, occur rapidly due to the individual Ca 2+ stores [START_REF] Verkhratsky | Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion[END_REF], and are highly variable between cell subcompartments [START_REF] Handy | Mathematical investigation of ip3-dependent calcium dynamics in astrocytes[END_REF], with an independent local initial [Ca 2+ ] a , according to the spatial Ca 2+ quantification by Lopez-Caamal et al. [START_REF] Lopez-Caamal | Spatial quantification of cytosolic ca2+ accumulation in nonexcitable cells: An analytical study[END_REF]. The resulting Ca 2+ dynamics coincide with the experimental studies using mouse hippocampus slices wherein patterns of transients and localized Ca 2+ events with different sizes and durations were detected in a single astrocyte [START_REF] Wu | Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity[END_REF][START_REF] Wu | Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes[END_REF]. Astrocytic Ca 2+ oscillations show a much lower frequency compared to the oscillations exhibited by the presynaptic compartments. In addition, the increase in the [IP 3 ] a is concomitant with the synaptic neurotransmitter release while the [Ca 2+ ] elevation creates a time window for astrocytic IP 3 level depression. These Ca 2+ waves can remain localized or propagate, as shreds of evidence showed that after initiation, Ca 2+ waves spread within the cell [START_REF] Manninen | Computational models for calcium-mediated astrocyte functions[END_REF][START_REF] Ashhad | Stores, channels, glue, and trees: active glial and active dendritic physiology[END_REF][START_REF] Semyanov | Spatiotemporal pattern of calcium activity in astrocytic network[END_REF]). Figure 5.7 displays the total intracellular [Ca 2+ ] a on which the vesicle fusion and recycling process depends. Vesicle synthesis in astrocytes depends on the sensitivity of the secretory apparatus to the intracellular Ca 2+ [START_REF] Verkhratsky | Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion[END_REF]. The fraction of SLMVs available for release is maximum (R a = 1) during subthreshold Ca 2+ activities and minimum (R a = 0) at Ca 2+ peaks. The fraction effectively released SLMVs, E a into the perisynaptic area peaks simultaneously (average peak amplitude equal to 0.0867) with the drop in R a . In addition, most of the released Glu - a undergoes the recycling process (I a ≈ 1). Once the [Ca 2+ ] a goes beyond the threshold, gliotransmitters are released. Going back to Figure 5.6, the second elevation of perinodal [Ca 2+ ] a causes the Glu - a release. Therefore, even when the synaptic area is silent, the astrocyte might modulate the synaptic transmission by processing signals from the extracellular matrix. However, prolonged delay in Glu -release might also be possible. Consider only the perisynaptic Ca 2+ dynamics; there should be a Glu - a release from t = 36 to t = 40 sec. However, with the additional perinodal [Ca 2+ ] a , the total intracellular [Ca 2+ ] a just remained over the threshold, making the vesicle fusion and recycling slower.

Within the 50-second presynaptic stimulation, [Ca 2+ ] a crosses the threshold three times producing simultaneous Glu - a spikes. Notice that a fraction of total Glu - a stays in the perisynaptic area until the recycling process is over (I a ≲ 1) or [Ca 2+ ] a drops below the threshold. The extrasynaptic Glu - a serves as feedback to the presynaptic neuron activity and produces second messenger IP The synaptic efficacy is stable when t is between 0 and 34 s at 0.08, then increases to 0.12.

5.2.3.3/ POSTSYNAPTIC NEURON ACTIVITIES

The postsynaptic membrane potential spiking frequency is dependent on the amount and frequency of synaptic [Glu -]. Therefore, the sudden increase in synaptic [Glu -] results in a voltage spike in the postsynaptic spine head, as shown in the relationship between the [Glu -] in Figure 5.5a and V post in Figure 5.8. A postsynaptic spike is successful when its peak driving force is less than or equal to the difference between the reversal and the resting potential (E AMPA -V rest ) [START_REF] Tønnesen | Dendritic spines as tunable regulators of synaptic signals[END_REF]. The increase in synaptic efficacy occurs at t = 34 sec, displayed by the higher number of spikes clustering with time, indicating increased postsynaptic activity [START_REF] London | The information efficacy of a synapse[END_REF].

5.2.4/ DISCUSSION

Advances in neuron-astrocyte researches expand our observation of the complexity of brain processes. State-of-the-art imaging techniques challenge the present concept of the tripartite synapse, where information flows from the presynaptic to the postsynaptic component with astrocytic influences on plasticity. We extended the tripartite synapse model presented by Tewari and Majumdar [START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] by incorporating nonsynaptic elements through axon-astrocyte interaction for the following reasons. (1) Information transfer is not only confined in the synapse and can be an intercellular process. Astrocytic mGluRs, distributed heterogeneously throughout the cell body, react to extracellular Glu -. A single protoplasmic astrocyte can, therefore, sense molecular signals from the neuronal elements within its domain. [START_REF] Christopher | The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[END_REF] The vesicular release also occurs in the soma, unmyelinated axon, and varicosities. Adjacent astrocytic processes sense these signals, in turn recognizing the activity of neighboring neurons or networks. (3) Compartmentalization of neuronal and astrocytic Ca 2+ dynamics is probable. In the neuron, the cell morphology, the expression of ionic channels, the distribution of Ca 2+ stores, and the behavior of AP means that intracellular [Ca 2+ ] varies across the neuron. Astrocytic Ca 2+ dynamics, Sup-ported by the ER, are transient and localized, indicating individual processes in each locality. With these, we presented a model of neuron-astrocyte interaction extending the tripartite synapse and incorporating saltatory conduction along the myelinated axon, nonsynaptic neurotransmitter release, perinodal astrocytic compartments, and integration of transient astrocytic [Ca 2+ ] for gliotransmitter release.

5.2.4.1/ TRIPARTITE SYNAPTIC TRANSMISSION IS MORE THAN A POINT PROCESS

Previous models assumed that AP generated in the AIS reaches the axon terminals without delay or decay by considering the axon as one compartment. We showed that even though myelination promotes rapid conduction, signal delay still occurs. Besides, the AP waveform changes due to the different expression of ionic channels in the nodes and the AIS. Therefore, we considered the axonal length as a sequence of compartments representing the nodes and myelinated segments. By doing so, we were able to insert perinodal processes that are independent of the synapse.

At this point, we described information transfer within the tripartite synapse, originating from the AP generation in the AIS to the nodal [Ca 2+ ] elevations during saltatory conduction, followed by the unmyelinated axonal and presynaptic bouton vesicular release triggering the Glu-dynamics in the perinodal and synaptic areas, respectively, to the activation of perinodal and perisynaptic astrocytic mGluRs, and finally, the astrocytic dynamics. Here, we presented the localization of astrocytic Ca 2+ dynamics in the perisynaptic and perinodal compartments. The stochastic nature of neurotransmitter release and the spatial variation in extracellular [Glu -] surrounding the astrocyte determine transient astrocytic Ca 2+ activities. Here, we assumed a linear summation of transient [Ca 2+ ] in the soma that determines the [Glu -] in the perisynaptic cleft. As a result, the additional nonsynaptic Glu-sources boost the intracellular astrocytic [Ca 2+ ], which improves synaptic efficacy. However, as the extrasynaptic [Glu -] increases indirectly, presynaptic Ca 2+ stored in the ER will be depleted due to the frequent activation of presynaptic ER IP 3 Rs. The results show that the extent of astrocytic influence on synaptic transmission is distributed within the astrocytic territory; thus, the astrocytic activities and computation can be considered as more than a point process. We recommend further biophysical investigation and model formulation on astrocytes viewed as a compartmentalized system, similar to neurons, rather than a point process.

5.2.4.2/ NONSYNAPTIC ELEMENTS INFLUENCE SYNAPTIC EFFICACY

We simulated the tripartite synapse dynamics for 50 seconds with an increasing number of nonsynaptic sources of Glu -and then summarized the Glu - a activities in the perisynaptic area in Table 5.1. Configuration 0 is a tripartite synapse alone, Configuration 1 has one nonsynaptic source coupled with the 19 th node of Ranvier, and Configuration 2 is coupled with the 19 th and 18 th nodes of Ranvier. Here, the average Glu - a spikes show an inverse relationship with the number of Glu -sources (therefore, also related to the total amount of sensed [Glu -]). Gliotransmitter release becomes less frequent, and the period wherein Glu - a is available in the extrasynaptic area extends for a longer time window. This activity results from the amount of intracellular [Ca 2+ ] a staying above the [Ca 2+ ] thresh a for 0 1 2

No. of Nonsynaptic Source No. of Sources (c) Figure 5.9: Influence of extrasynaptic glutamate to synaptic efficacy with increasing nonsynaptic sources (blue for 0, red for 1, and green for 2). (a) The boxplots show the range and mean of [Ca 2+ ] peak amplitudes in the presynaptic bouton. As the amount of Glu - a the nonsynaptic sources sensed increases, the astrocytic [Ca 2+ ] a rises, increasing the presynaptic Ca 2+ peaks. (b) Simultaneously, the Ca 2+ -and Glu - a -dependent IP 3 reaches the equilibrium more progressively when the number of extrasynaptic sources, in this case, is maximum (green line). The solid line indicates the change of mean synaptic efficacy with time for the three model configurations, while the shaded area is the corresponding standard error. (c) The comparison of synaptic efficacy between the three configurations, computed per 5-ms sliding window, shows that synaptic strength is minimum with tripartite synapse alone (blue), and increases as the number of Ca 2+ stores (located in the different locations, i.e., perisynaptic and perinodal astrocytic compartments) engages in intracellular Ca 2+ a integration. a more extended period and denotes that the vesicle fusion and recycling process slows down. How does the extrasynaptic Glu - a activity influence the synaptic plasticity? In order to demonstrate this, we then analyzed the factors influencing synaptic plasticity directly linked with extrasynaptic Glu - a . In the presented tripartite synapse model, most of the factors affecting synaptic plasticity are components of the presynaptic terminal, such as the vesicle release probability and the number of available releasable vesicles. These factors are dependent on the presynaptic [Ca 2+ ] elevations that are simultaneously affected by the extrasynaptic Glu - a . While in the postsynaptic side, the amount of synaptic neurotransmitters released into the synaptic cleft regulates the postsynaptic spiking activity. By taking the presynaptic bouton [Ca 2+ ] into account, the mean presynaptic [Ca 2+ ] peaks increase as the astrocytic [Ca 2+ ] a rises, as shown in Figure 5.9a. The ER of the presynaptic bouton utilizes the extrasynaptic Glu -for Ca 2+ release via the opening of IP 3 Rs. Figure 5.9b shows the mean [IP 3 ] for each configuration. Noting that the Glu - a directly influences the presynaptic IP 3 dynamics, the extended availability of extrasynaptic Glu - a causes the IP 3 to reach equilibrium. In Figure 5.9c, the mean synaptic efficacy per sliding time window for each configuration shows that the tripartite synapse alone exhibits the lowest synaptic efficacy and that the addition of perinodal Glu - a sources increases the synaptic strength. However, an extremely high concentration of intracellular Ca 2+ ] a leads to an abnormal extrasynaptic [Glu -] a [START_REF] Taynnan | Feed-forward and feedback control in astrocytes for ca2+-based molecular communications nanonetworks[END_REF], as shown in Table 5.1, wherein Glu - a remains in the extracellular space for a prolonged period (≥ 44.04 sec) which can cause neuro-excitotoxicity.

Based on the simulation results, the changes in the neuron-astrocyte dynamics during extrasynaptic transmitter sites have constructive and destructive implications for neuronal information processing. Neuron-astrocyte interactions support neural firing and synchronization and synaptic coordination [START_REF] Amiri | Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments[END_REF][START_REF] Yu Gordleeva | Bi-directional astrocytic regulation of neuronal activity within a network[END_REF]. However, according to Deplanque [START_REF] Deplanque | Maladie d'alzheimer: dualit é des effets physiologiques et pathologiques du glutamate[END_REF], overload in Glu -within the synaptic space causes detrimental excitotoxic effects to the postsynaptic spine head by exaggerating the activation of its receptors. The impairment of such glial-neuronal interaction (consisting of perinodal astrocytic components) may result in schizophrenia, as shown in the pathophysiological study conducted by Mitterauer [START_REF] Mitterauer | Pathophysiology of schizophrenia based on impaired glialneuronal interactions[END_REF]. Neurodegenerative diseases, such as Alzheimer's, are caused when astrocyte Ca 2+ signaling is altered [START_REF] Shigetomi | Probing the complexities of astrocyte calcium signaling[END_REF]. On the contrary, the inadequacy in Glu -may cause the severity of Alzheimer's disease. Therefore, synaptic Glu -insufficiency can be avoided during synaptic transmission by the additional extrasynaptic transmitter sites provided by the axon-astrocyte interaction. In that case, excessive Glu -in the synaptic area exaggeratedly activates postsynaptic receptors damaging neurons.

5.2.4.3/ ASTROCYTES FORM A NEW LEVEL OF FUNCTIONAL INTEGRATION.

Rossi [START_REF] Rossi | Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death[END_REF] suggested that the intercellular coordination of elements within the astrocytic domain indicates a new layer of functional integration that does not entirely include synaptic networks. Here, we present a tripartite synapse model whose dynamics are not dependent only on the tripartite area. This model is not restricted to the perinodal astrocytic process and may be varied to represent perineuronal astrocytic processes, as neuron-astrocyte signaling is not only synapse-specific but cell-and circuit-specific as well [START_REF] Durkee | Diversity and specificity of astrocyte-neuron communication[END_REF]. If astrocyte influences thousands of neuronal elements within its territory, it suggests that the individual astrocytic processes in its branch and branchlets and its somata form a new level of functional integration. We recommend further biophysical investigation and model formulation on astrocytes viewed as a compartmentalized system, similar to neurons, rather than a point process.

We presented a model of intercellular communication between a neuron and astrocyte that includes synaptic and nonsynaptic processes. In the current wave of research on astrocytic processes, conflicting views on gliotransmission, an artifact or reality, arise. Over the years, controversies regarding gliotransmission have emerged, whether it is a natural astrocytic process or a consequence of pharmacological stimulation [START_REF] Nedergaard | Artifact versus reality-how astrocytes contribute to synaptic events[END_REF][START_REF] Steven | Looks can be deceiving: reconsidering the evidence for gliotransmission[END_REF]. Fiacco and McCarthy [START_REF] Todd | Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions[END_REF] deduced that gliotransmission is not a physiological mechanism but the result of observing cultured astroglia in vitro; thus, it does not affect short-and long-term plasticity. Savtchouk and Volterra [START_REF] Savtchouk | Gliotransmission: beyond black-andwhite[END_REF] contradicted the "negative" evidence on astrocytic Ca 2+ a waves, explaining that this concept is due to oversimplification of data collection techniques and presumptions on the interpretation of results. A century ago, Santiago Ramon y Cajal expressed that the real purpose of glial cells would only be known when a direct method of studying them is available [START_REF] Kettenmann | Neuroglia: the 150 years after[END_REF]. Heterogeneity and complexity of astrocytic mechanisms lead to divergence in conclusions on the exact role of astrocytes in information transfer. Until researchers arrive at a coherent view, differences in perception imply that our current knowledge of astrocytic mechanisms is inadequate. Moreover, interaction between local [Ca 2+ ] a elevations and their propagation through the cell and astrocytic network is inconclusive. Future experimental and methodological advances will provide clarifications of these issues.

5.3/ MODELING NEURON-ASTROCYTE NETWORK

Previously, we discussed the roles of astrocytes in synaptic information transfer and acknowledged that the heterogeneous properties of astrocytes could either improve or impair synaptic communication. In this section, we continue our analysis on the astrocyte syncytium, looking into the influence of astrocytes in a global perspective, that is, their functions in a neuron-astrocyte network. The main goal in this section is to develop a spiking network of neurons and astrocytes with varying connectivity, where astrocytes are connected via gap junctions and communicate through ICW propagation.

Then, what network architecture should we use if we implement a neuron-astrocyte network in image processing or deep learning applications? Depending on the intended output, how should astrocytes be connected to increase synaptic efficacy or improve network activity? In what specific applications can we employ astrocytes? We aim to unravel these questions at the end of this section; to relate and inspire artificial networks based on biological network processes.

5.3.1/ CALCIUM WAVE PROPAGATION FUNCTIONAL MODEL

5.3.1.1/ TRIPARTITE SYNAPSE (SYNCHRONOUS RELEASE) MODEL

In the extended tripartite synapse model (Figure 5.10), the astrocytic process modulates the presynaptic release probability and the postsynaptic potential via the SICs. This paradigm makes the tripartite synapse both a feedforward and feedback system. In this model, the Hodgkin-Huxley mechanism models the presynaptic bouton membrane potential, V in , and action potential generation. Refer to Equation 2.11 and Table A.1. We employed the synchronous neurotransmitter release process, where the presynaptic bou- Synaptic glutamate interaction with mGluRs results in IP 3a production, which subsequently results in CICR from the ER. Endoplasmic reticulum calcium reuptake occurs via SERCA pumps. In addition, [Ca 2+ ] a ions leak from the ER to the cytosol. An increase in the amount of cytosolic C A above threshold results on the gliotransmission release. Gliotransmitters (G A ) activates iGluRs in the postsynaptic spine head and presynaptic bouton, with fractions equal to β and 1 -β, respectively. The sum of the slow inward current (I S IC ) due to G A and the synaptic current (I AMPA ) current results in excitatory postsynaptic potential V out .

ton releases synaptic glutamate simultaneously with the arrival of the AP. Here, we used the Tsodyks Model [START_REF] Tsodyks | Activity-dependent transmission in neocortical synapses[END_REF] described in Chapter 3 to compute for a fraction of effectively released neurotransmitters, R S . This parameter sets the amount of Glu -in the synaptic cleft. Given the vesicular [Glu -] in the synaptic cleft, G S , the total amount of released Glu -in the synaptic cleft at time t AP is G rel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. Refer to Equation 3.29. The control parameter ζ sets the fraction of G S that activates the AMPA receptors in the postsynaptic spine head and the amount of Glu -spilling over to the extracellular spaces that activate astrocytic mGluRs.

The astrocytic IP 3 production follows a simple model depending only on the synaptic input [START_REF] Volman | The astrocyte as a gatekeeper of synaptic information transfer[END_REF], given as

dP A dt = P 0 -P A τ IP 3 + r IP 3 (1 -ζ) G S (5.2) 
where P A is the astrocytic [IP 3 ] at time t. The astrocytic Ca 2+ dynamics also follow the Li-Rinzel model [START_REF] Li | Equations for insp3 receptor-mediated [ca2+] i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism[END_REF] used in the previous section. Refer to Subsection 4.3.1.1 for the models and Table A.6 for the parameters. Here, the astrocytic gliotransmitter release
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process is a deterministic approach, akin to the neurotransmitter release process, where gliotransmitters release is simultaneous with the crossing of astrocytic [Ca 2+ ] (C A ) above the Ca 2+ threshold instead of the Ca 2+ -binding with SLMV. This model by De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] described in Equation 4.42 models the amount of glutamate released into the extracellular space R A . The control parameter β sets the amount of extrasynaptic Glu -, G A , diffusing to the extrasynaptic iGluRs on presynaptic and NMDARs on the postsynaptic membranes. The feedback amplifies the neurotransmitter release probability while the feedforward signal triggers the influx of SIC through NMDARS. Refer to Table A.9 for the set of parameters.

For excitatory synaptic currents, we consider the fast component of AMPAR-mediated EPSC and the slow dynamics of the NMDAR-mediated SIC. The synaptic voltage caused by I AMPA is modeled by the instantaneous jump and exponential decay function originally presented by Fourcaud-Trocme [START_REF] Fourcaud-Trocm É | Integrate and fire models, deterministic[END_REF] in Equation 3.40 and modified by De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] shown in Equation 3.41. Due to the presence of SICs, the synaptic input, v S , is further extended into

τ r N dv S dt = -v S + ÎS B S τ r N , τ N dB S dt = dB S dt = -B S + ĴS ζG S τ N , (5.3) 
where τ r N and τ N , respectively, are the rise and decay time constant of the EPSC, ĴS is a scaling factor corresponding to the amplitude of the instantaneous jumps that causes the gating variable B S to increase unitarily, and ÎS is also a scaling factor that sets the increase in synaptic current equals I S . These scaling factors are described as

ĴS = J S ϱ c G S T τ N , ÎS = I S 1 τ N -1 τ r N τ r N τ N τ N τ N -τ r N - τ r N τ N τ r N τ N -τ r N . (5.4) 
The voltage dependence of SIC is negligible, therefore the extrasynaptic input due to SIC, v A , is modeled similarly with v S but with different time scales. Refer to Equation 4.49. Note that G A is multiplied to the control parameter β.

The postsynaptic membrane potential, V out , is, therefore, the summation of the synaptic I AMPA and extrasynaptic I S IC inputs, and evolves as

τ m dV out dt = V rest -V out + v S + v A , (5.5) 
where τ m is the membrane time constant equal to 40 ms and the resting potential V rest = -70 mV. For the postsynaptic membrane potential, the parameters are in Table A.10.

5.3.1.2/ ASTROCYTIC NETWORK MODEL

We extend the intercellular communication beyond the tripartite synaptic area to model the ICW. We developed a network of astrocytes where the processes and soma are inde- Each astrocyte is divided into compartments p(i) denoting the astrocytic process where i corresponds to the process number and s n (s m ) denoting the soma where n (m) corresponds to the cell number in the network. Intracellular calcium signaling occurs between processes and soma of individual astrocytes, while IP 3 signaling occurs both intra-and intercellularly (via gap-junction connections). (b) The shift between states of the astrocyte is a Markov process where P corresponds to the event that a cell changes its state. (c) The astrocytes (green stars) form a network via gap junctions (blue lines) with varying topologies: chain where each astrocyte is connected in series, fully connected where the astrocytes form a lattice, and regular where each cell is connected to its k nearest neighbor.

pendent compartments whose joint function is to integrate synaptic inputs via local and global Ca 2+

a oscillations and where astrocytic somas are connected with the neighboring astrocytes via GJCs to allow intercellular communication. Consider the astrocyte n in Figure 5.11a. Assuming homogenizations, the processes (p i n ) and soma (s n ) are separate compartments that interact with the other compartments (neighboring processes or soma, and vice versa) via the Ca 2+ and IP 3 diffusion along the branches. Here, i is the number of the astrocytic process and n is number of astrocytes in the network, while m is the number of astrocytes linked to n. Astrocyte n communicates with its neighbor m via the exchange of IP 3 molecules through the GJC. Therefore, the communication with astrocyte n causes an increase or decrease in [IP 3 ] in astrocyte m, affecting is intracellular Ca 2+ oscillations. It is important to note that only the processes receive synaptic inputs triggering IP 3 production. Therefore, P A in the soma from molecular diffusion between the CHAPTER 5. MODELING THE NEURON-ASTROCYTE INTERACTIONS processes and the soma, and the IP 3 influx from GJCs. In addition, only the processes reaching a local C A above threshold releases gliotransmitters into the input-specific extrasynaptic area.

There are two additional fluxes in the Ca 2+ dynamics: (1) the J

(p i n )
IP 3 di f f which is the amount of IP 3 diffusing from (p i n ) to (s n ) or vice versa, and (2) the J

(p i n )
Cadi f f corresponding to the amount of Ca 2+ also diffusing between the process and the soma. These fluxes are concentration gradients given as

J (p i n ) IP 3 di f f = D P P (s n ) A -P (p i n ) A , J (p i n ) Cadi f f = D C C (s n ) A -C (p i n ) A , (5.6) 
where D P and D C , respectively, are the IP 3 and Ca 2+ diffusion constants between the process and the soma.

The IP 3 flux through the gap junction, J IP 3 gap(n,m) is described by the threshold function in Equation 4.51. The ability of the astrocyte to send or receive J IP 3 gap(n,m) is stochastic, depending on its state and the states of its neighbors. We apply the Markov process to determine the state of the astrocyte and its probability, P, to shift from one state to another, depicted in Figure 5.11b. Refer to the UAR model in Chapter 4.5.3. Here, the astrocyte can only transmit signals in the active (A) state.

Let P

(p i n ) A be the IP 3 and C (p i n ) A
be the cytosolic [Ca 2+ ] in the process compartment. Therefore, dP

(p i n ) A dt = P 0 -P (p i n ) A τ IP 3 + r IP 3 (1 -ζ) G S + J (p i n ) IP 3 di f f , dC (p i n ) A dt = -J (p i n ) chan -J (p i n ) pump -J (p i n ) leak + J (p i n )
Cadi f f .

(5.7) Let P (s n ) A be the somatic [IP 3 ] a , the sum of all the fluxes flowing from the processes and the GJCs, and C (s n )

A is the somatic [Ca 2+ ] a with additional fluxes from the processes.

dP (s n ) A dt = P 0 -P (p i n ) A τ IP 3 - k i=1 J (p i n ) IP 3 di f f + j m=1 J IP 3 gap(n,m) , dC (s n ) A dt = -J (s n ) chan -J (s n ) pump -J (s n ) leak - k i=1 J (p i n ) Cadii f . (5.8) 
We also consider the ratio between the process and somatic surface areas to account for the impeding influence of larger somatic volume to Ca 2+ flux [START_REF] Cresswell-Clay | A compartmental model to investigate local and global ca2+ dynamics in astrocytes[END_REF]. By homogenization, we assume that all processes have the same dimension; therefore, the ratio V r is equal to V soma /V process and the surface volume ratio is

V sur f = V (2/3)
r . In this model,V r = 1.5. The
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123 somatic dynamics become

V r dP (s n ) A dt = V sur f          P 0 -P (p i n ) A τ IP 3          - k i=1 J (p i n ) IP 3 di f f + j m=1 J IP 3 gap(n,m) , V r dC (s n ) A dt = V sur f -J (s n ) chan -J (s n ) pump -J (s n ) leak - k i=1 J (p i n )
Cadi f f .

(5.9)

Three types of astrocytic connectivity were considered (Figure 5.11c): (1) astrocytes are connected in series (chain), ( 2) astrocytes form a lattice (fully-connected), and (3) astrocytes are randomly connected with k nearest neighbors in the network where k is the degree of connection [START_REF] Lalo | Ionotropic receptors in neuronal-astroglial signalling: what is the role of "excitable" molecules in non-excitable cells[END_REF]. Overall, the shallow network comprises three layers of neurons: the HH presynaptic neuronal layer, the IF postsynaptic neuronal layer, and the astrocytic layer between the neuronal layers forming the tripartite synapses.

5.3.1.3/ SYNAPTIC EFFICACY

The postsynaptic neurons integrate the synaptic inputs, and when the summation of V(t) exceeds the threshold (-40 mV), the neuron fires an action potential. Synaptic efficacy, ρ, here is another parameter defined as the coupling strength between the pre-and postsynaptic components. It determines the strength of communication between the neurons. We modified the synaptic efficacy equation from De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF] so that the synaptic efficacy is dependent on the synaptic inputs and the spiking activity of the neuron. Let ρ be described by the first-order differential equation

τ ρ dρ dt = -ρ(1 -ρ)(ρ b -ρ) + γ p (1 -ρ)Θ V(t) -θ p -γ d ρΘ (V(t) -θ d ) , (5.10) 
where V(t) is the input summation voltage of the presynaptic neuron, ρ b is the boundary parameter, τ ρ is the decay time constants, and γ p and γ d are the corresponding rate of increase and decrease in synaptic efficacy, respectively, when V(t) exceeds the depression and potentiation thresholds, θ d and θ d , with Θ(•) the Heaviside function. Synaptic efficacy strengthens the contribution of V out for every successful postsynaptic spike. Refer to Table A.11 for the parameters.

5.3.2/ SIMULATION METHOD

The neuron-astrocyte network was simulated in MATLAB by performing numerical analysis of the systems of differential equations using Runge-Kutta with time step dt = 0.5 ms.

In the simulation, we used the handwritten images from the modified National Institute of Standards and Technology (MNIST) database [START_REF] Deng | The mnist database of handwritten digit images for machine learning research [best of the web[END_REF] instead of entirely random inputs. In this case, we can also visualize and make sense of the activity of the output layer. Each pixel corresponds to a presynaptic neuron, where each image is fed to the network for 200 seconds. Therefore, the presynaptic neuron receives a 5 Hz input current whose pulse amplitude varies from 0-10 µA/cm 2 proportional to the pixel intensity in grayscale and pulse width of 4 ms. The network was simulated for 200 continuous batches of 100 images each, 4000 seconds in total length.

The shallow spiking neuron-astrocyte network, therefore, consists of three layers: an input layer with 784 presynaptic HH neurons (equal to the number of pixels in an MNIST image), an output layer of 196 postsynaptic IF neurons linked to four distinct presynaptic neurons, and an astrocytic network creating the tripartite synaptic connections distributed equally to 196 astrocytes, in that each astrocyte has four process compartments connected to distinct synapses. Then, we simulated the network for the three types of astrocytic connectivity: chain, fully connected, and regular topology (maximum of five gap junction connections). Calculations were performed using HPC resources from DNUM CCUB (Center de Calcul de l'Universit é de Bourgogne).

5.3.3/ RESULTS

The following section presents the simulation results and analysis in a bottom-up approach, starting from the local tripartite synapse and astrocytic compartments, moving up to the single-cell activity, and finally to the network level.

5.3.3.1/ TRIPARTITE SYNAPSE DYNAMICS (SYNCHRONOUS RELEASE)

Figure 5.12 summarizes the dynamics of a single tripartite synapse compartment simulated for 20 seconds. The presynaptic bouton generates an AP pattern (V in ) with 5 Hz spiking frequency (Figure 5.12a). In the synchronous and deterministic model, the synaptic release probability, R S , peaks simultaneously with the arrival of AP, whose peak amplitudes vary between 0.68 to 0.74 (Figure 5.12b). As a result, the synaptic [Glu -], G S , also fluctuates in accordance with the AP spikes, with an average peak concentration of 0.20 mM (Figure 5.12c).

Twenty-five percent of G S diffuses to the astrocytic process and activates the astrocytic IP 3 production, as shown in Figure 5.12d. From the initial condition, P 0 = 0.16 µM, and with a constant input frequency, P A increases and saturates at a level equal to 0.45 µM. Figure 5.12e depicts the slow astrocytic calcium dynamics (C A ) in the process compartment. Note that the astrocytic IP 3 and Ca 2+ dynamics shown here results from blocking the control factors D P and D C . The astrocytic process then releases extrasynaptic Glu - at the event that C A crosses above threshold (0.197 µM) as shown in Figure 5.12f. Also, half of G A (given that β = 0.5) modulates the presynaptic neuron activity by increasing R S (Figure 5.12b) and, in turn, also modulates the synaptic Glu -activity (Figure 5.12c). It is noticeable that R S and G S increase following the astrocytic Glu -release.

A single postsynaptic spine head generates an excitatory input, shown in Figure 5.12g, with a peak amplitude of 3 mV through fast AMPARs activations controlled 75% of G S (ζ = 0.75). In addition, the astrocytic process indirectly modulates the postsynaptic activity, remarking that V AMPA (v S ), peaks with G A activity. The remaining half of G A activates SIC in the postsynaptic spine head, generating a slow excitatory input V S IC (v A ), as shown in Figure 5.12h, with a peak amplitude of 1 mV. The summation of these excitatory inputs leads to the postsynaptic spine head membrane potential shown in Figure 5.12i. 

Figure 5.12: Tripartite synapse dynamics with synchronous neurotransmitter release, showing the interrelationships of the fundamental signaling mechanisms and pathways between the (a-c) presynaptic bouton, (d-f) astrocytic process, and (g-i) postsynaptic spine head.

5.3.3.2/ CALCIUM WAVE PROPAGATION

We extended the analysis from the tripartite synapse to the astrocytic cellular activity and changed the inputs to random frequencies based on the MNIST dataset. Four processes and the soma exchange signal via the Ca 2+ and IP 3 diffusions (Figure 5.13a and 5.13b). Both the diffusion coefficients D P and D C are equal to 0.005, which maintains the dynamics between the soma and the processes, and subsequently sets the boundaries of P A between P 0 and 0.5 µM to prevent oversaturation or depletion of the signaling molecules within a compartment. The somatic Ca 2+ oscillation (Figure 5.13a) exhibits global events during the first and last spikes and independently local events from t = 15 to t = 40 seconds. Synaptic inputs stimulate IP 3 production exclusively in astrocytic processes; consequently, somatic P A (Figure 5.13b) is entirely due to intracellular diffusion of IP 3 from the processes, or intercellular diffusion through gap junction connections. Intracellular Ca 2+ oscillation then triggers the glutamate release activity that favors the synchronization of compartmental activities (Figure 5.13c).

All four neighbors of the astrocyte under consideration exchange IP3 soma-to-somatically through gap junctions. Figure 5.13d and 5.13e show the Ca 2+ and IP 3 dynamics of the soma and its neighbors. The probability that the astrocytic state changes from inactive (U) to active (A) and then to refractory (R) depends on the Ca 2+ dynamics of both the subcellular compartments and the somatic compartments of its adjacent cells (Figure 5.13f). The P A level increases when the astrocyte is in the U and R states; the increase rate is On the network level, (d) Ca 2+ and (e) IP 3 dynamics of the soma (blue) are also dependent on the molecular concentration levels of its neighboring astrocytes (gray ). (f) Whether the astrocyte can communicate with its neighbors depends primarily on its state. maximal during the U state, where its gap junction connections permit IP 3 influxes. Inversely, the somatic Ca 2+ and IP 3 levels drop in the A state as the astrocyte becomes readily available for IP 3 exchange.

We developed an astrocytic network model, a syncytium that operates as a singular system. We simulated the three network architectures with varying astrocytic topology (chain, full, and regular) for 4000 seconds. Next, we characterized the global (network level) astrocytic Ca 2+ oscillations by converting the temporal responses of all the compartments into their corresponding frequency responses using Fast Fourier Transform (FFT). Figure 5.14 shows the comparisons between the process and soma Ca 2+ spectra. The C A levels fluctuate between frequencies from 0 to 500 mHz, with peak amplitudes at f = [0 : 50 : 500] mHz. The magnitudes are steady at frequencies less than 100 mHz and start to decrease beyond that. In addition, the spectra suggest that the networks exhibit more Ca 2+ activities in the processes than in the soma. Moreover, the astrocytic network with chain topology exhibits lower Ca 2+ activity than the regular and full network topologies, particularly during steady-state at A(0), whereas the full and regular networks have similar global activities.

5.3.3.3/ ASTROCYTIC GLUTAMATE SPIKING ACTIVITY

Intracellular calcium wave propagation indirectly modulates the neural activity via astrocytic Glu -spikes. Therefore, we examined the spiking behavior of the astrocytes under varying levels of connectivity. The raster plots in Figure 5.15a display the spiking pattern of the astrocytic processes during the initial 100 seconds of stimulation. Of the three networks, synchronous spiking activity is apparent primarily in the chain topology (notably at t = [20, 40, 60] s) and least in the regular topology. Meanwhile, regular topology appears to have more frequent and dispersed spiking activity, in which processes at the extremities (process number <100 and >700) were active, unlike in the chain topology. Additionally, Figure 5.15b gives the number of spikes per second (equivalent to the number of Glu - A -releasing astrocytic processes. The results support the previous expectation that series-connected astrocytes favor network synchrony, whereas the spike rate decreases in the full topology and is minimal in the regular connection.

To gain insight into the effect of ICW propagation in the network, we map the presynaptic input into astrocytic output. Figure 5. [START_REF] Deng | The mnist database of handwritten digit images for machine learning research [best of the web[END_REF] shows the average spiking rate of input and output per astrocyte in the network, given that the chain, full, and regular networks receive the same set of stimuli. The input pattern in Figure 5.16a reveals certain astrocytes that receive no presynaptic input. The IO comparisons show that the chain topology spiking distribution (Figure 5.16b) reflects the input pattern compared with the other topologies. On the other hand, the influence of ICW becomes more prominent in the full (Figure 5.16c) and most in the regular topology (Figure 5.16d), noting the increase in spike rate of those astrocytes with no presynaptic input. Therefore, the spikes in astrocytic processes, such as those found in the extremities (Figure 5.15a), result from intracellular Ca 2+ diffusion and gap junction mediated IP 3 diffusion rather than neurotransmission. The spike rate distributions (Figure 5.16) suggest that the more gap junction connections an astrocyte has, the slower it will take for local C A to reach the threshold, shown by the decrease in spike rates of those astrocytes initially receiving the presynaptic inputs. A spikes per second graphs for the chain, full, and regular astrocytic network topologies suggest that the chain topology favors synchronous activity.

5.3.3.4/ SYNAPTIC RELEASE PROBABILITY AND EFFICACY

Extrasynaptic glutamate then modulates the neurotransmitter release probability. In the synchronous release process, the presynaptic bouton release Glu -upon the arrival of AP. We also simulated a network without astrocytes while maintaining the neural network architecture. The deterministic release results in constant counts of synaptic Glu -spikes in all topologies, though they differ in the spike amplitude, based on the activity and inactivity of the astrocytic process (except to the neural network). The synaptic release peak probability, R S , changes from 0.685 to 0.745 upon iGluRs activation during gliotransmission. Given the same input pattern, the chain topology produces higher synaptic release probability, as presented in Table 5.2, indicating that 68.57% (out of 2.26×10 6 ) of synaptic release events are astrocytic Glu --mediated. It also reveals that even though more astrocytes get activated in the full and regular topologies (shown in Figure 5.16c and 5.16d), gliotransmission occurs in short durations.

Synaptic efficacy determines the strength of communication between the pre-and the postsynaptic components, computed by comparing the number of successful postsynaptic spikes over the number of presynaptic input spikes, where successful spikes are those V out ≥ -50 mV, per 20 second-time windows. We performed a two-dimensional correlation between the input and output spikes using the corr2 MATLAB function to get the efficacy curves shown in Figure 8. The curves indicate that neuron-astrocyte networks perform more reliable synaptic communication than neurons. Here, the synaptic efficacy of the neuron network (No Astrocyte) increases to and saturates at 0.254. Neuron-astrocyte networks exhibit higher but fluctuating efficacy. The chain topology also produces the highest efficacy, consistent with its synaptic release probability (Table 5.2) and spiking rate (Figure 5.15b). In addition, the linear fits indicate that the efficacy gradually increases with time (except in No Astrocyte topology).

5.3.4/ DISCUSSION

We have developed spiking neuron-astrocyte networks with varying astrocytic topologies and analyzed its dynamics from the bottom up: from the subcellar compartments to the single cells and finally to the network level. The tripartite synapse with deterministic neurotransmitter release process is a feedforward and feedback system, where the presynaptic neuron creates input patterns with random frequency based on the pixel color intensity (in grayscale) of the input MNIST image. The postsynaptic output consists of fast and slow excitatory inputs from synaptic and extrasynaptic Glu -. Fraction of synaptic Glu -diffuses to the astrocytic processes. The process releases extrasynaptic Glu-which can modulate the presynaptic neuron release probability and the postsynaptic spine head membrane potential, creating closed-loop signaling pathways.

The proposed model differs from the previous models in that the proposed astrocytic cell dynamics are compartmentalized. The astrocyte performs integration of synaptic inputs in the processes, and the soma forms a new level of integration of Ca 2+ molecules diffusing from the processes, rather than the commonly employed single point process.

In addition, the astrocytic also communicates with its gap-junction connected astrocytes. Communication occurs based on the state of the astrocyte and not solely by the IP 3 gradient between the cells. The change of state, a Markov process, is highly stochastic and adds complexity to the direction of ICW propagation in the astrocytic network. Given the complexity of the model and the numerous variables involved, HPC resources allowed us to observe the activity of every compartment in the network.

Extending the model to the network level, we simulated three networks with different astrocytic topologies: series connection, the full connection forming a lattice, and a regular connection forming a k-NN random network. The simulation results indicate that the astrocytic network topology though highly heterogeneous depending on its location in the brain is an essential factor in determining the function of the astrocytes in that network. The astrocytic connectivity indicates the distance a Ca 2+ wave can travel and influence distant astrocytes in the network and, indirectly, the distant neurons. For example, in Figure 5.15 and Figure 5.16, ICW in chain topology travels slower due to the distance between astrocytes, resulting in confined communication between adjacent cells. Meanwhile, ICW in lattice and random networks influence numerous astrocytes, producing a more dispersed spiking activity as shown in the raster plots.

5.3.4.1/ ASTROCYTIC CONNECTIVITY DRIVING NETWORK SYNCHRONY

There are two levels of synchronization in the proposed astrocytic network. The first one is at the cellular level, wherein the astrocytic processes release extrasynaptic Glu - simultaneously, albeit they receive different presynaptic input patterns (Figure 5.13c). The synchronization is an effect of the IP 3 and Ca 2+ intracellular diffusions, as shown in the global activity (all compartments have similar molecular levels) of the cell in Figure 5.13a and 5.13b. The second is the network level synchronization, wherein various astrocytes (adjacent or distant) simultaneously activate Glu - A spikes, as depicted in Figure 5.15. In this case, synchrony is a consequence of ICW propagations and the stochastic shift of astrocytic states.

One of the main functions of the astrocytic syncytium in neural activities is to maintain network synchronization [START_REF] Amiri | On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective[END_REF][START_REF] Carmignoto | Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus[END_REF]. A single astrocyte enwraps numerous synapses of different neurons and can simultaneously modulate the postsynaptic neuron spiking activity during global Glu - A release. The simulation results suggest that the astrocytes connected in series generate a more synchronous activity than those connected in lattice or random, as shown by the average Glu - A spike rate in Figure 5.15b. One can hypothesize that the more gap-junction connected astrocytes, the greater the network synchrony; however, the results suggest the opposite. For chain topology with a maximum of two neighboring astrocytes, the ICW is restricted within these cells, and the compartmental [Ca 2+ ] A increase rate from active and inactive is fast. In contrast, the full and regular topologies have more neighboring astrocytes participating in gap junction mediated IP 3 exchange. Crossing the Ca 2+ threshold takes longer for an astrocyte because it has more adjacent astrocytes to share its IP 3 content. The spectrum in Figure 5.14b shows that the chain topology has the lowest Ca 2+ oscillation magnitude, supporting the assumption that the Ca 2+ oscillation is restricted within a few cells. The Ca 2+ level is lower because the astrocyte has fewer sources of IP 3 , unlike in regular topology with a maximum of five GJCs, there is a sudden IP 3 influx once the astrocyte shifts to the U state (Figure 5.13f).

In summary, astrocytic chain topology in neuron-astrocyte networks improves network synchronization compared to the full or regular topology. Therefore, synchronization is dependent on the number of GJC mediating IP 3 exchanges and the distance of ICW propagation.

5.3.4.2/ EFFICACY VS. HOMEOSTASIS

We quantified the synaptic efficacy with time by correlating the input and output spiking activity. It is evident in Figure 5.17 that the networks with astrocytes have a considerable improvement in communication strength over the neuron network alone. In addition, the levels of synaptic efficacy linearly increase with time, unlike in a neuron network that stabilizes at 0.254. This increase in efficacy corroborates our results discussed in the previous section, that astrocytes indeed support synaptic plasticity. Moreover, the chain network topology gives the highest efficacy of the three neuron-astrocyte networks, an effect attributed to the restricted ICW propagation between a few adjacent cells. Restricted ICW is evident in the average spiking rate shown in Figure 5.16a and 5.16b. Because of this restriction, IP 3 production and spiking activity of the astrocytes in chain topology significantly depends on the presynaptic spikes [START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF]. In addition, Vuillaume et al. [START_REF] Vuillaume | A computational study on synaptic plasticity regulation and information processing in neuron-astrocyte networks[END_REF] presented neuron-astrocyte network wherein astrocytes transform neural activity across multiple layers of neurons. It showed that the input activities are more correlated with the neuron networks than with astrocyte mediated neuron networks, which corroborates our results that neural activity in the proposed network is correlated with both the input and astrocytic activities.

Another function of astrocytic networks is homeostasis, where astrocytes prevent neurons from hyperactivity. In the case of full or regular network topology, ICW facilitates Glu - A release, even in the absence of presynaptic input, or weakens Glu - A release probability by lessening the amount of [Ca 2+ ] A in the astrocytic processes (through diffusion). The effect of ICW is noticeable in Figure 5.16c and 5.16d, where astrocytes receiving no input generate Glu - A spikes while those with high input rates show lower activity than in chain topology. Synaptic strengths of tripartite synapses from a single neuron are bounded in a mean efficacy. If a group of postsynaptic spine heads fires more frequently than others, astrocytes would slightly decrease the group activity and activate previously silent neurons via ICW propagation. Remarkably, the full and regular connections can best implement network homeostasis, credited to GJCs. The regular network activity in Figure 5.15b displays a dispersed astrocytic activity, indicating that neural modulation by astrocytes is widely spread in the network. Homeostasis is, therefore, necessary to maintain network stability.

In the proposed network architecture, the astrocytic heterogeneity posed a counteracting effect between efficacy (and synchrony) and homeostasis, where chain topology promotes higher efficacy while full or regular topology leads to network stability. Therefore, whether to implement a chain, full or regular astrocytic topology entirely depends on the intended applications.

5.3.4.3/ ASTROCYTIC NETWORKS IN AUTOENCODERS

We used the MNIST dataset to visualize the output of the postsynaptic neurons rather than presenting a random set of spikes. Autoencoders in artificial intelligence is a type of neural network composed of an input layer encoder, a hidden layer compressor, and an output layer decoder that use unsupervised learning algorithm [START_REF] Quoc | A tutorial on deep learning part 2: Autoencoders, convolutional neural networks and recurrent neural networks[END_REF]. Gordleeva et al. [START_REF] Yu Gordleeva | Modelling working memory in spiking neuron network accompanied by astrocytes[END_REF] proposed a spiking neuron network to model working memory where the astrocytic network promotes successful recall by modulating the synaptic connections. Though not explicitly termed, the biological model by Gordleeva et al. is equivalent to an autoencoder in artificial networks. Our proposed network architecture can also be employed as a sparsely connected autoencoder, where astrocytes help the postsynaptic spines to replicate the input signals.

Therefore, the functions of astrocytes in maintaining network synchronization, improving synaptic communication strength, promoting stabilization, and learning [START_REF] Adamsky | Astrocytes in memory function: Pioneering findings and future directions[END_REF] are indicative of the potentials the astrocytes have in artificial intelligence implementations.

5.4/ CONCLUSION

Astrocytes are highly heterogeneous, with their diverse receptor expressions, complex morphology, and elaborate network connections, making the astrocytic dynamics challenging to predict. However, increasing studies support the notion that astrocytes are not just passive components but are integral components in brain computations. In this chapter, we studied the interaction of neurons and astrocytes from the ground up, from its tripartite coupling to neural modulation by ICW, and determined the possible functions of astrocytes in neural computing.

First, we focused on communication within the tripartite synapse, where we developed a detailed and biological model of the presynaptic bouton, postsynaptic spine head, and the astrocytic processes. The stochastic neurotransmitter release mediates the astrocytic processes, which forms a feedback signaling pathway through Glu - A that modulates the neurotransmitter release probability. The results suggest that the astrocytes indirectly modulate synaptic plasticity and increase the communication strength between the neuronal components. On the other hand, astrocytes can also impair synaptic communication due to the excitotoxicity resulting from the overactivation of neuronal receptors during a prolonged period of Glu - A released in the extracellular space.

We then extended the neuron-astrocyte interaction by widening the astrocytic territory by developing a neuron network for signal reconstruction using unsupervised learning mediated by astrocytic networks. We concluded that the heterogeneous connection of the astrocytic networks is not random at all but instead plays a significant role that depends on the function of the neural network. Astrocytic networks with chain topology can assist network synchrony and improve communication strength, while randomly connected astrocytes can promote network homeostasis via ICW propagation.

There are still some debates on whether astrocytes should be considered computational components, which can only be answered when leading-edge technology capable of measuring and analyzing the minute dynamics of subcellular components are available.

Based on the advantages displayed by the astrocytes in our study, we continue to work under the notion that astrocytes are active components in brain processes and memory.

In the following chapter, we extend our study on the neuron-astrocyte interaction by implementing a spiking network for image recognition and identifying the role of astrocytes in learning.

NEURON-ASTROCYTE NETWORK FOR IMAGE RECOGNITION

6.1/ INTRODUCTION

Astrocytes influence neural communication on three levels. First is in the tripartite synapse compartment, where an astrocytic process via gliotransmission forms a closedloop system consisting of a feedback pathway for modulating the presynaptic neurotransmitter release and a feedforward connection activating postsynaptic SICs. Second is the cellular level integration, where thousands of incoming presynaptic signals produce IP 3dependent global and local Ca 2+ elevations. During astrocytic activation, the astrocytic Glu -release modulates the postsynaptic neurons coupled with the astrocyte, thus, promoting network synchrony. Lastly, at the network level, ICW propagation facilitates communication between astrocytes, allowing an astrocyte to modulate the synaptic activities of neurons not coupled with itself but with its neighboring astrocytes. The heterogeneity of the astrocytic morphology and gap junction connectivity either boosts or impairs synaptic communication, thus, affecting the whole network performance.

In the previous chapter, we proposed that different astrocytic topologies can be employed in neural networks to improve network performance by increasing synaptic efficacy, promoting synchronization through simultaneous firing, or maintaining network stability through homeostasis. Here, we develop a spiking neural network with astrocytic modulation to show that astrocytes assist memory formation and recognition. In AI, spiking neural networks or SNNs are considered the next generation of neural network that closely mimics neural processes where computations are event-based, rather than the previous generations using rule-based knowledge. However, one of the main challenges in simulating a biologically inspired neuron-astrocyte network is the computational complexity; it requires a longer simulation time using supercomputing resources than is necessary for a neuron network alone.

We develop an architecture derived from the baseline SNN for unsupervised MNIST classification designed by Diehl and Cook [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF], then extend the architecture by integrating astrocytes into the network using the simplified Postnov astrocytic model [START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF][START_REF] Dmitry E Postnov | Functional modeling of neural-glial interaction[END_REF], which lessens the computational complexity while keeping the primary astrocytic functions. This study is one of the first attempts to utilize astrocytes in a spiking network for digit classification using the standard MNIST dataset. Interestingly, astrocyte-mediated SNNs display better network performance with an optimal variance-bias tradeoff.
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6.2/ SPIKING NEURON ASTROCYTE NETWORKS: BIOLOGICAL TO ARTIFICIAL

The Spiking Neural Networks (SNNs), considered the third generation of neural networks, are becoming competitive with their Artificial Neural Network (ANN) counterparts due to their ability to capture brain dynamics [START_REF] Pfeiffer | Deep learning with spiking neurons: opportunities and challenges[END_REF][START_REF] Lee | Enabling spike-based backpropagation for training deep neural network architectures[END_REF][START_REF] Lobo | Spiking neural networks and online learning: An overview and perspectives[END_REF]. Inspired by biological neural mechanisms, SNNs utilize spike-based signaling to perform brain-like computations, represent and integrate spatiotemporal information, communicate sparse and asynchronous signals, and process massive data in parallel. These properties, especially its temporal dimensions, make SNNs leading candidates for real-life applications and neuromorphic hardware implementations compared to other deep neural networks. As in real neural circuits, SNNs offer low-power consumption, analog computation, fast inference, online learning, and event-driven processing.

While models of SNNs closely mimic brain processes, there are some drawbacks. Training using benchmarks such as MNIST and ImageNet indeed yields a lower accuracy than ANNs, which can be attributed to converting the frame-based images into rate-coded information. Besides, there is a lack of training algorithms for spiking networks. Training SNNs means dealing with the asynchronous and discontinuous nature of spikes, making the application of current differentiable backpropagation techniques quite challenging [START_REF] Pfeiffer | Deep learning with spiking neurons: opportunities and challenges[END_REF]. In spiking neuron-astrocyte networks (SNANs), astrocytes were determined to promote neural synchrony [START_REF] Evgeniya V Pankratova | Neuronal synchronization enhanced by neuron-astrocyte interaction[END_REF], which can help in stochastic neural spiking. Another advantage of astrocytes in the neural network is their function in memory storage -in maintaining long-term hippocampal potentiation [START_REF] Rogier Min | The computational power of astrocyte mediated synaptic plasticity[END_REF]. Our research explores these astrocytic properties and their functions in neural networks to develop a SNAN capable of recognizing images, an attempt to bridge brain-inspired computation and artificial networks.

The general aim of this study is to develop a SNAN architecture for image recognition purposes using an unsupervised learning scheme. First, we create a neural network incorporating astrocytes between neuronal networks using simplified neurons and astrocyte models. Then, we added an unsupervised learning algorithm for image recognition using spike-timing-dependent plasticity (STDP). Next, we train the network using inputs from the MNIST dataset to determine the hyperparameters (related to network architecture and learning) and optimize the network parameters (synaptic coupling strengths and firing thresholds), leading to the best network performance. Using the trained network, we then identify the accuracy of the network in predicting the output digits. Lastly, we analyze the influence of astrocytes on network performance. The results suggest that astrocytes indeed facilitate faster learning compared to SNN alone.

6.3/ DEVELOPING THE SNAN ARCHITECTURE

This section describes the tripartite synapse connection, the neuron and astrocyte layers, and the corresponding network architecture. In addition, it also includes the learning algorithm used in training the network, the simulation process, and the performance analysis method. The tripartite synapse model consists of two layers of neurons and an astrocytic layer in between. The presynaptic neuron is a Poisson spiking neuron whose spike-based event modulates the postsynaptic neuron and the astrocyte. The postsynaptic layer consists of AIF neurons with lateral inhibitions from interneurons (IN). Therefore, the postsynaptic neuron receives three types of inputs whose strengths are defined by the synaptic weights w exc1 , w exc2 , and w inh from the presynaptic neuron through neurotransmission, the astrocyte through gliotransmission, and inhibition from neighboring IN. The IN sense the spiking activity of the coupled postsynaptic neuron and relays it to the neighboring excitatory neurons. The astrocyte then integrates the synaptic inputs whose coupling strengths are controlled by β. Here, the model ensures that in a tripartite connection, the astrocyte modulates the postsynaptic neuron counterpart of its input neuron.

Neurotransmission

6.3.1/ TRIPARTITE SYNAPSE MODEL

The tripartite synapse shown in Figure 6.1 consists of a Poisson spiking presynaptic neuron whose output is coupled to the astrocyte and the postsynaptic neuron. Here, the Poisson spiking rate depends on the input image pixel intensity ranging from 0 for black to 31.875 Hz for white pixelslow enough so that the presynaptic inputs do not oversaturate the astrocytic dynamics and high enough to generate a postsynaptic spike. The postsynaptic neuron summates three types of inputs: (1) the fast excitatory inputs resulting from neurotransmission, (2) the slow excitatory inputs due to gliotransmission, and (3) the inhibitory inputs from the interneurons (IN). This adaptive integrate-and-fire (AIF) neuron is defined by

τ dv dt = (v rest -v) + g exc1 (v exc1 -v) + g exc2 (v exc2 -v) + g inh (v inh -v) , τ x dx dt = -x, x = g exc1 , g exc2 , g inh , (6.1) 
where v (in mV) corresponds to the postsynaptic neuron potential (see Integrate-and-Fire Model). The conductance (in nS) of the fast excitatory, slow excitatory, and inhibitory synapses are equal to the weight summations g exc1 , g exc2 , and g inh , respectively, and where x defines their conductance decay through time t. The parameter v rest is the membrane resting potential while v exc1 , v exc2 , and v inh are the reversal potentials of the excitatory and inhibitory synapses. The constant parameters, τ and τ x , are the time constants of the membrane potential and the synapses, respectively. When the AIF neuron membrane potential v crosses its spiking threshold θ, it generates a spike, then immediately resets to a level equal to v reset , and remains here until the refractory period, τ re f , ends.

During training, the adaptive threshold increases by α ′ after a spike and decays following Unless otherwise stated, the parameters are taken from Diehl and Cook [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF].

the exponential model

dθ dt = θ -θ 0 τ θ , (6.2) 
where θ = vv reset and τ θ is the time constant.

The postsynaptic neuron layer consists of lateral inhibition for maintaining homeostasis and signaling the postsynaptic neuron activity to its neighbors. Here, the postsynaptic neuron signals its spiking activity to the IN, and in return, the IN then inhibits the activity of the other neurons, generating competition among neurons. The interneurons follow the IF model in Equation 6.1 but without the adaptive property θ and the g exc2 and g inh conductances, while g exc1 changes with respect to the postsynaptic neuron spiking activity. Refer to Table 6.1 for the list of parameters of the postsynaptic excitatory and inhibitory neurons.

The astrocyte function as a point process integrating the presynaptic inputs, following the simplified astrocytic model proposed by Postnov et al. [START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF][START_REF] Dmitry E Postnov | Functional modeling of neural-glial interaction[END_REF]. The synaptic coupling variable z spikes to 1, synchronous with the presynaptic neuron spiking, and The parameters are taken from Postnov et al. [START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF][START_REF] Dmitry E Postnov | Functional modeling of neural-glial interaction[END_REF].

then immediately inactivates by decaying to 0, following the simplified model

τ S dz dt = - z d S , (6.3) 
where d S controls the relaxation of z and τ S is the synaptic delay. The variable z triggers the astrocytic IP 3 production, S m , (Equation 4.27) resulting in Ca2 2+ elevation, c, described by the system shown in Equation 4.26. The astrocyte then integrates the presynaptic signals from multiple synaptic connections, where β is the control parameter defining the magnitude of influence of the presynaptic neuron activity on the astrocytic Ca 2+ . The modified Ca 2+ model [START_REF] Dmitry E Postnov | Functional modeling of neural-glial interaction[END_REF] is defined as

τ c dc dt = c -c 4 f (c, c e ) +         r + k i=1 βS m i         . (6.4) 
When the astrocytic [Ca 2+ ], c, increases beyond the threshold, c thresh , it triggers the release of extrasynaptic Glu -, activating slow excitatory synapses of the coupled postsynaptic neurons. After the Glu -spike, the astrocyte stays in the refractory period provided that c stays above the threshold. The astrocytic parameters are listed in Table 6.2.

6.3.2/ NETWORK ARCHITECTURE

The digit recognition process follows the network architecture presented in Figure 6.2.

The process starts from the image preprocessing, where the input or sample image is converted into rate-coded signals, followed by unsupervised learning by the SNAN, and lastly, based on the SNAN output spike patterns, the machine learning (ML) model predicts the output digit. Given a sample digit from the MNIST dataset, a 28×28-pixel image of a handwritten digit is converted into a 784×1 vector of pixel intensities. One pixel intensity corresponds to the spiking frequency that drives a Poisson neuron in the input layer of the SNAN.

In the spiking network, 784 Input layer neurons form 78 400 fully connected (dense) synapses with the neurons in the First Layer. There is a 1:1 ratio between the number of excitatory and inhibitory neurons in the First Layer, where the forward connection (from the excitatory to the inhibitory) is a one-to-one topology. At the same time, the lateral inhibitions form 9900 inhibitory synapses, where an IN connects with all excitatory neurons in the same layer except with the one in the forward connection. The astrocytic layer between the two neuronal layers, also following a 1:1 ratio with the First layer neurons, forms the tripartite synapses by connecting with the synapses rather than directly with the input layer neurons. Because an astrocyte is coupled with the synapses, it can receive multiple presynaptic inputs from the same Input layer neuron and increase its influence on a First layer neuron by modulating multiple tripartite synapses coupled to that postsynaptic neuron.

In the machine learning unit, the spike counter converts the output spiking patterns of the First layer excitatory neurons into a vector of whole numbers corresponding to the number of spikes in each neuron. This vector gives the set of input features for the classifier. Our simulation analysis suggests that the cosine k-NN classifier using 5-fold cross-validation yields a faster and more accurate classification performance than the other available machine learning classifier. Then lastly, the network predicts the output from ten classes labeled from 0 to 9. This paradigm requires that the SNAN generates a stable spiking pattern for each input class for the network to recognize and differentiate each input pattern. 

6.3.3/ SPIKE-TIMING-DEPENDENT PLASTICITY

Learning between interconnected neurons (or neuron-astrocyte) occurs by strengthening or weakening their synaptic connections during neuronal activities. Donald Hebb proposed the concept of synaptic plasticity, suggesting that simultaneous and correlated spiking between biological neurons strengthens their synaptic coupling [START_REF] Richard | The legacy of donald o. hebb: more than the hebb synapse[END_REF]. This form of synaptic plasticity prompted the Hebbian learning rule, one of the earliest algorithms used in training SNNs. Here, the synaptic weight increases when both the pre-and postsynaptic neurons are active and decreases otherwise [START_REF] Terrence | The hebb rule for synaptic plasticity: algorithms and implementations[END_REF]. However, one of the main drawbacks of the Hebbian learning rule is that synaptic weights are updated only when the neurons are coactive, causing a long period of synaptic weakening when the spiking activities between neurons are uncorrelated. A form of long-term plasticity called spiketiming-dependent plasticity (STDP) addressed the temporal issue in Hebbian plasticity [START_REF] Markram | Spike-timingdependent plasticity: a comprehensive overview[END_REF][START_REF] Fr | Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules[END_REF][START_REF] Caporale | Spike timing-dependent plasticity: a hebbian learning rule[END_REF]. Rather than correlated inputs driving the synaptic plasticity, the spiking activities of neurons within a temporal window define the direction of synaptic plasticity, and the relative timing between the pre-and postsynaptic firing determines the change in the synaptic weights. Therefore, the SDTP learning rule is suitable for training the SNAN due to the significant difference between the neuronal and astrocytic time scales.

The STDP curve in Figure 6.3 describes the increase or decrease in synaptic weight (∆w) relative to the arrival of the presynaptic spike and the generation of postsynaptic AP. If the presynaptic spike arrives before the postsynaptic spike (∆t > 0), the synaptic weight is updated following w → w + ∆w. Otherwise, the weight decreases when the postsynaptic neuron generates an AP before the presynaptic spike (∆t < 0), in that w → w -∆w. However, biological neurons do not have memories of their spiking activities, and storing and comparing all the spike timing during simulation has rich computational cost. Therefore, we used a time-invariant and event-based STDP rule by adding preand postsynaptic traces, α pre and α post , eliminating the need to compute for ∆t while still following the STDP curve (Figure 6.3) [START_REF] Pfister | Triplets of spikes in a model of spike timing-dependent plasticity[END_REF][START_REF] Sj Östr Öm | Spike-timing dependent plasticity[END_REF].

In this STDP rule following Diehl and Cook model [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF], the increase in synaptic weight includes a weight-dependent term so that during postsynaptic activation, the weight increases only after the presynaptic activation. Let the traces α pre , α post1 , and α post2 decay where τ pre , τ post1 , and τ post2 are the decay constants equal to 20 ms, 20 ms, and 40 ms, respectively. On presynaptic activation, the weights are updated following the rule

w → w + η pre α post1 , (6.6) 
while on the postsynaptic activation,

w → w + η post α pre α post2 , (6.7) 
where η pre and η post are the pre-and postsynaptic rates, respectively. The excitatory-toexcitatory connections use the pre-and postsynaptic spiking weight update rules, while astrocyte-postsynaptic coupling only increases postsynaptic weights during astrocytic activation. Due to the significant time scale difference between neurons and astrocytes, the slow synapse conductance depletes to zero when the postsynaptic neuron fires continuously. Moreover, the excitatory-to-inhibitory and the inhibitory-to-excitatory ∆w are constants equal to 17 and 10.4, respectively.

6.3.4/ SIMULATION METHOD AND PERFORMANCE ANALYSIS

Neural simulators such as NEURON [START_REF] Nicholas | The NEURON book[END_REF], NEST [START_REF] Gewaltig | Nest (neural simulation tool)[END_REF], and Brian2 [START_REF] Dan | The brian simulator[END_REF] provide computational neuroscientists efficient tools to simulate and analyze large networks [START_REF] Ruben A Tikidji-Hamburyan | Software for brain network simulations: a comparative study[END_REF]. Here, we used the Brian2 simulator, in conjunction with the python programming language, as it explicitly describes models in a high-level form by writing the differential equations directly in the code, compared with other simulators. It allows us to efficiently model and to integrate astrocytes into the network.

The MNIST dataset [START_REF] Deng | The mnist database of handwritten digit images for machine learning research [best of the web[END_REF] contains 60 000 training, 5 000 validation, and 5 000 test images. Each image is fed into the proposed network one at a time for 350 ms, followed by a resting time of 150 ms, to ensure that the network activity due to the previous image will not overlap with the new sample; therefore, one sample takes 500 ms to pass through the SNAN. The network continuously updates its weights via the STDP learning rule and the neuronal firing thresholds during training. We divide one epoch (containing all the training images) into batches of 1000 samples each and then normalize the weights after each batch. After each epoch, the validation set is fed into the network using the learned parameters.

We simulated different spiking network configurations to determine the hyperparameters that lead to optimum network performance: one SNN and three SNANs (SNAN,1, SNAN2, SNAN3). All networks have the same number of neurons and astrocytes (except in SNN), while the number of synaptic connections with astrocytic coupling increases from 10% to 60% (increment of 10%) of the total synapses, where each astrocyte receives the same number of presynaptic inputs. The set of hyperparameters is listed in Table 6.3. The simulations were performed using the high-performance computing resources from the Barcelona Computing Center and the Centre de Calcul de l'Universit é de Bourgogne. 

6.3.5/ PERFORMANCE ANALYSIS

The ML accuracy defines how well the system groups and distinguishes the spiking patterns generated by the SNAN from one class to another. Therefore, the classification performance of the ML unit depends on the extent to which the SNAN learned the rate-coded images. As the network evaluation metric, accuracy is the ratio between the number of correctly predicted outputs over the total number of inputs. During training, we determine the accuracy after each epoch. Then, using the learned parameters after each epoch, we feed the validation set into the network for prediction and compare the results with the training accuracy. Therefore, the parameters chosen for the test network simulations are the learned parameters of the epoch giving the maximum average accuracy between the train and validation sets.

6.4/ RESULTS

We simulated the spiking networks and set the SNN as the baseline of the SNAN activities. Here, we focus on the influence of astrocytes in network activities. The minimum numbers of neurons for conventional MNIST classification networks are 784 and 100 in the Input and First layers, respectively. Here, the number of astrocytes in all networks is equal to the number of First layer excitatory neurons (1:1 ratio); however, the number of synapses covered by astrocytes increases by 10% of the total number of Input to First layer synaptic connections. A higher number of neurons results in more synapses. Moreover, astrocytes create two more types of synaptic coupling (presynaptic neuron-toastrocyte and astrocyte-to-postsynaptic neuron shown in Figure 6.1), resulting in a more complex network that requires prolonged simulations.

The SNAN design is a highly iterative process, requiring numerous trials before arriving at the possible set of hyperparameters shown in Table 6.3. The neuronal and neuronto-neuron synaptic hyperparameters are consistent in all the networks. Based on our initial simulations, these parameters lead to regular neuronal spiking. The Poisson neuron changes its spiking rate every 500 ms. We also determined that the Poisson neuronal firing rate lies between 0 to 32 Hz (proportional to the pixel intensity from 0 to 255) to prevent oversaturation of astrocytic S m (IP 3 pathway) and avoid overexcitation of astrocytic Ca 2+ dynamics, c.

6.4.1/ TRIPARTITE SYNAPSE DYNAMICS

.4 is an overview of the activities of a single tripartite synapse without STDP and wherein the astrocyte only receives a presynaptic input and modulates one postsynaptic neuron. The presynaptic neuron generates 5 Hz and regularly spaced spikes. The synaptic coupling variable z increases to 1 simultaneously with the input neuron spikes and then exponentially decays back to 0, replicating the neurotransmitter release and recycling process. In addition, the IP 3 pathway (S m ) also increases and decays with z, and whose peak amplitudes stabilize at 0.54. The Ca 2+ variable c generates spikes, upon crossing the 0.4 threshold, with a peak amplitude equal to 1.29 with a pulse duration of 58 ms. After activation, the astrocyte is in the refractory period provided that c > 0.4. A single fast excitatory synaptic input generates a postsynaptic spike, v, with -64.38 mV peak amplitude (first three spikes). In this example, the fast and slow excitatory synapse conductances and weights are equal to 1 nS and 1, respectively, creating the same strength of influence on the postsynaptic neuron. However, the combination of the neuronal and astrocytic inputs triggers a sudden increase in v up to -46.35 mV. Then, v decays to 0 while fluctuating, resulting from the fast activation of presynaptic input. In the SNAN, astrocytes receive hundreds of inputs; therefore, the summation of slow synaptic weights must generate a conductance, g exc2 , low enough to not overexcite the postsynaptic neuron. In addition, the neuron-astrocyte coupling control factor β must be high enough to trigger astrocytic activation. We performed multiple simulations and determined the astrocytic hyperparameters in Table 6.3. Here, the astrocyte-neuron coupling, w exc2 , is updated upon the arrival of astrocytic input; however, there is no w exc2 update (η exc2 post is null) upon postsynaptic neuron spiking due to the significant time scales difference between the astrocyte and the neuron. If STDP is bidirectional, then the fast-spiking of the postsynaptic neuron can cancel the astrocyte-neuron coupling. High slow excitatory synaptic weights excite the First layer neurons that can cause erratic spiking patterns, suggested by the average spiking rates of SNAN2 in Figure 6.5a that grow with an extended number of tripartite connections. The astrocytic population rates of SNAN1 and SNAN2 (Figure 6.5b) have the same trend due to the similarity in β. For β = 0.001 and β = 0.0005 with 10% and 20% tripartite synapses, respectively, are inadequate to activate the astrocytes.

6.4.2/ TRAINING RESULTS

We trained the networks by presenting the entire 60 000 MNIST training dataset 25 times. The Table F. [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF] shows the approximate simulation runtime for training 25 times of input representations per configuration. Here, the 784 excitatory-to-excitatory synaptic weights vector of a neuron is rearranged to a 28×28 matrix. For example, the second neuron in the SNN learned the features of class "1", and the ninth neuron in SNAN3 initially learned class "8" features, then became strongly coupled with class "1" inputs. The receptive fields show that neurons in the three SNAN configurations learn almost the same features (3, 2, 0, 6, and 6), while the neurons in SNN learn differently. In SNAN2, it is noticeable that the rate of increase in the accuracy of SNN is maximum. However, starting from Epoch 13, the SNN performance decreases to a minimum and becomes stable at an average accuracy of 65.38%, and then all SNANs achieve higher accuracy than SNN. In SNAN1 (10%-50% tripartite synapses), the accuracy curves stabilize at an average level equal to 61.60%, almost 9% lower than SNN. In SNAN2, where the astrocyte-neuron synaptic coupling strength is a factor of 10 greater than SNAN1, the increase of tripartite connections to 50% and 60% results in a sudden decrease in validation accuracy, implying overfitting of the trained SNAN2 and that the introduction of unknown samples generates irregular spiking patterns. SNAN3 has the same coupling strength as SNAN1 but double the presynaptic-to-astrocytic coupling strength. In this case, the validation accuracy increases gradually but results in higher performance (for 20% and 30% tripartite synapses).

6.4. RESULTS
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We chose the test network parameters from the train vs. validation accuracy graphs in Figure 6.8 to 6.10. Strikingly, the SNN network has a validation accuracy curve of 6% higher than the training accuracy, indicating underfitting. The increase of astrocytic coverage by up to 30% diminishes the difference between the train and validation accuracy of SNAN1 (Figure 6.8). A further increase to 60% results in considerable divergence between the accuracy curves. The same results are noticeable in SNAN2 (Figure 6.9); validation accuracy increases with more astrocytic-mediated synapses but drops significantly to 10% accuracy for 60% tripartite connections. However, SNAN3 validation accuracy, with slow astrocyte-to-neuron STDP, and stronger neuron-to-astrocyte coupling (β = 0.001), also shows a slower convergence with the training accuracy (Figure 6.10). The SNAN3 with 20% and 30% tripartite connections have comparable training and validation accuracy levels in all configurations. Also, for the given SNAN3 parameters with 40%-60% astrocytic mediated synapses, the network performance improves gradually, compared to the low validation accuracy in SNAN2 (Figure 6.9). These results are accordant with our results in Chapter 5, suggesting that astrocytes can either improve or impair network activities.

Variance is a metric describing the ability of the network to adjust and predict the output given a different input dataset [START_REF] Geman | Neural networks and the bias/variance dilemma[END_REF][START_REF] Briscoe | Conceptual complexity and the bias/variance tradeoff[END_REF]. Here, low variance means that the training and validation accuracy is in the same low error region while ensuring that the training accuracy is higher than the validation (not overfitting). Bias describes the ability of the network to capture relevant features, determined by the difference between the predicted and actual values [START_REF] Janet | Bias and variance of validation methods for function approximation neural networks under conditions of sparse data[END_REF]. The SNN, in this case, displays underfitting (having a higher validation than training accuracy). Therefore, the test network parameters are from the epoch giving the best variance-bias tradeoff -with the low classification variance and bias [START_REF] Neal | A modern take on the bias-variance tradeoff in neural networks[END_REF].

The network parameters giving the optimal model complexity (balance between variance and bias) are the learned parameters after the epochs specified in Table 6.4. The SNN is optimal after ten times input presentations. SNANs achieve higher network performance and, in some instances, require less training. For example, it only takes seven iterations for SNAN1 with 40% tripartite connections to achieve an accuracy of 0.20% less than SNN, and nine iterations for SNAN3 with 60% tripartite connections to obtain 1.21% higher than SNN. In addition, for the same number of epochs, SNAN2 with 50% tripartite connections achieves 1.07% higher than SNN. The results in Table 6.4 suggest that astrocytes support neuronal memory formation and promote faster learning. 

6.4.3/ TEST RESULTS

We tested the network using the 5 000 test images from the MNIST dataset. The test simulations take an average of 0.41 s, 0.69 s, 0.88 s, 1.02 s, 1.33 s, 1.67 s, and 1.59 s for the networks with 0%, 10%, 20%, 30%, 40%, 50%, and 60% tripartite synaptic connections, respectively, to predict the class of a single test image. Then, Table 6.5 shows the resulting test accuracy per network configuration. The proposed SNN gives an accuracy of 82.46%, 0.44% less than the accuracy reported by Diehl and Cook [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF] for their network with 100 First layer neurons. Of the neuron-astrocyte networks, the parameters of SNAN3 give the best network performance, with maximum accuracy of 75.28% for 30% tripartite connections. Indeed, the neural network displays higher prediction accuracy than the neuron-astrocyte networks. However, the neuron network also displays high bias and underfitting, given that the test accuracy is 14.17% greater than the training accuracy. It suggests the SNN network is not yet fully optimized and requires extended training for more than 25 epochs. Therefore, the astrocytes improve network performance, especially in the SNAN3, where there is an optimum variance-bias tradeoff.

The diagonals of the confusion matrices in Figure 6.11 shows the number of correctly predicted input class. Even though the SNN correctly predicted class "0" more times than the SNAN, the SNAN still generates higher precision (92%) for the specified class, given that there are more instances that the SNN confuses the remaining input classes as "0". The SNAN precisely predicts input classes "1" (93.70%) and "3" (97.10%). Furthermore, The SNAN also displays higher recall for input classes "4" (79.90%) and "6" (95.60%), correctly predicting the input class and not confusing them with other classes. For other instances otherwise, the SNN displays higher precision and recall compared to the SNAN as expected. SNAN3 also predicts input classes "1" and "2" as "8". This prediction can be caused by the receptive field of the neuron showing combined features of "1" and "8", for example, the ninth neuron in the SNAN3 shown in Figure 6.6. SNAN3 also confuses class "9" as "4" due to their similar vertical features. The neurons with receptive fields of "9" spike at a high rate when the number "4" is presented to the network. 

6.5/ DISCUSSION

We have developed a spiking neuron-astrocyte network for recognizing image features of the handwritten digits from the standard MNIST dataset and showed that astrocyticmediated plasticity improves the network capacity to learn these features. Like neurons, astrocytes are active and integrative components described by the Postnov model [START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF]. The astrocytes were incorporated into the network based on the biological tripartite synapse coupling, where the astrocytes translate the spike events from the input layers and then transmit them, via spike events, to the first layer neuron; thus, the astrocytes create feedforward signaling pathways in parallel with the synaptic communication directions.

6.5.1/ TOWARDS THE DEVELOPMENT OF SNANS FOR DEEP LEARNING

Furthermore, we presented a hybrid network of spiking networks and machine learning, derived from the baseline SNN by Diehl and Cook [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF], where the SNAN generates a spiking pattern specific to the input class and the k-NN classifier predicts the output class. Diehl and Cook [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF] reported a classification performance of 82.90% for 100 first layer neurons. With our proposed baseline SNN, we acquired a relative value equal to 82.46%. Our analysis suggests that even though the baseline SNN has the highest accuracy, it displays underfitting caused by insufficient training iterations shown by the difference in training and validation accuracies (Figure 6.8-6.10). However, there was no validation set in the study of Diehl and Cook [START_REF] Peter | Unsupervised learning of digit recognition using spike-timing-dependent plasticity[END_REF]. We reported a maximum test accuracy of 75.28% for the SNAN, displaying optimal variance and bias tradeoff.

Rastogi et al. [START_REF] Rastogi | On the self-repair role of astrocytes in stdp enabled unsupervised snns[END_REF] recently demonstrated SNAN designs using the MNIST dataset, where astrocytes modulate the presynaptic neuron release probability during faults when synaptic learning is stuck at zero. In this case, the astrocytes indirectly modulate synaptic activities. In our proposed network, astrocytes act as excitatory inputs to the postsynaptic neurons with STDP ability. To our knowledge, the proposed neuron-astrocyte network is one of the first attempts to identify the potential of astrocytes in image classification using the standard MNIST dataset. Therefore, this study can serve as a baseline for evaluating future studies on astrocyte implementation in SNNs.

6.5.2/ ASTROCYTES IMPROVE NETWORK PERFORMANCE

Our results suggest that astrocytes influence and improve three attributes of the spiking network: (1) faster learning, (2) variance and bias tradeoff, and (3) simplified network architecture. During training, the SNANs displayed higher accuracy than SNN (Figure 6.7), indicative of the ability of the network to stabilize its spiking activity quickly. Moreover, the SNANs achieved peak accuracy with fewer input set presentations (Table 6.4). These activities support the idea that astrocyte-mediated neuronal spiking aids in faster learning. For traditional SNN and artificial networks, increased neuronal connectivity equates to fast and precise learning. Therefore, the astrocytes and the corresponding tripartite synapse promote efficient learning by providing additional synaptic connections in parallel with the neuron-to-neuron couplings, thus strengthening the communication strength between neuronal layers. Also, as the neuron spikes more frequently, the spiking threshold increases, thus requiring more input eventually. Astrocytes, therefore, provide additional input for equalizing neuronal firing rate.

Second, networks with astrocytes balanced variance and bias, as shown in comparing the training and validation accuracies (Figure 6.8-6.10). The SNAN3 with 30% tripartite synaptic connections exhibits optimal variance and bias tradeoff, with higher training accuracy than SNN and comparable validation accuracy. These metrics ensure that the spiking patterns from the validation set matched the spiking patterns produced during training. The SNN displays underfitting, exhibited by a higher validation accuracy than training accuracy, conveying that the trained network has difficulty generalizing new data. Defining the SNAN architecture is a highly iterative process due to the heterogeneity of the astrocytes combined with the stochastic spiking activity. Therefore, the number of astrocyte-to-neuron synapses must be sufficient to influence the postsynaptic neuron spiking and low enough to avoid neuronal overexcitation resulting in erratic neuronal spiking patterns. These effects are noticeable in the networks with more than 30% tripartite connections (Figure 6.9), whose validation accuracies suddenly drop to minimum levels.

Lastly, we have developed a SNAN where astrocytes are point processes with simpler models (compared with the astrocytic networks presented in Chapter 5) while retaining the essential astrocytic dynamics. Interestingly, astrocytes can simplify the network architecture. An SNN achieves faster learning with increasing synaptic connections, which is maximum when neurons have dense synaptic connections. If the dense connection is insufficient, another solution is increasing the number of postsynaptic neurons. Saunders et al. [START_REF] Daniel | Stdp learning of image patches with convolutional spiking neural networks[END_REF] presented a network with 100 and 400 postsynaptic neurons and reported that the training accuracy increases from 67% to 70%, respectively. Therefore, for example, a network with 400 neurons creates 316 600 synaptic connections. The proposed SNAN3 with 30% tripartite achieved 75.28% accuracy with only 78 400 synaptic connections plus 47 040 (neuron-to-astrocyte and astrocyte-to-neuron synaptic connections) with only 200 integrating components (100 neurons and 100 astrocytes).

6.6/ CONCLUSION

We proposed a novel and simplified spiking neuron-astrocyte network for unsupervised learning using STDP, combined with k-NN classifier for image recognition. The input layer consists of Poisson spiking neurons translating the input image pixel intensity into spike events. The dense synaptic connections transmit the input activities to the 100 postsynaptic neurons. The postsynaptic neurons then learn the input features by changing their synaptic weights following the STDP algorithm. In these networks, astrocytes have three main functions: (1) create a new network layer for integrating and translating presynaptic inputs, (2) act as additional synaptic connections simplifying network architecture, and (3) modulate synaptic plasticity for faster learning. We have achieved a maximum of 75.28 % of classification performance for SNANs, ensuring an optimal balance between variance and bias. We showed that astrocytes improve network performance (depending on their topology within the network) and facilitate stable neuronal spiking.

One of the main challenges we faced during network design is the simulation costs, where simulations are restricted to series computation rather than in parallel. Indeed, the additional astrocytic components plus the neuron-astrocyte couplings require more extended simulation and computationally heavy programs. Instead of using the Li-Rinzel model, we opted for the Postnov model and simplified the corresponding code using the Brian2 simulator with high-performance computing resources. Researchers can also design and implement SNAN using neuromorphic systems or hardware to solve the series computation restrictions. One can also design SNANs where astrocytes communicate via gap-junction mediated ICW propagation.

The next chapter aims to further simplify the network architecture by investigating how a single neuron can analyze synaptic inputs (neuronal and astrocytic inputs the like) for faster integration and transformation. This chapter is also a part of our objective to bridge the biological processes and artificial intelligence by taking advantage of the computational capacity of neurons and astrocytes.

A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME

7.1/ INTRODUCTION

Synaptic inputs entering the dendritic heads diffuse along the dendritic shaft and pass through a series of attenuation, amplification, filtering, and delay depending on the passive and active mechanisms in the dendritic compartments, as discussed in Chapter 3. We have shown that fast synaptic current via AMPARs activation and slow synaptic or inward currents via NMDARs activation triggered by synaptic Glu -or astrocytic Glu - a , respectively, influence the information processing in a single neuron (Chapter 5) and, therefore, in a network (Chapter 6). Identifying the influence of the dendrites in a single input signal is a rudimentary process. However, the driving force of a single synaptic input is inadequate to influence a somatic spike. Therefore, multiple presynaptic cells (neurons and astrocytes) continuously bombard the dendrites with input signals, and this is where the dendritic computation gets complicated. During simultaneous synaptic activation, the driving force of an input signal combines with the driving forces of its neighboring synaptic inputs. The contribution of a signal depends on several factors: its distance from the points of entry of other inputs, the diameter and length of its dendritic compartment, the morphology of the dendrites, the distribution of active channels, and the somatic dynamics, as well [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Sardi | Dendritic learning as a paradigm shift in brain learning[END_REF][START_REF] Li | Bilinearity in spatiotemporal integration of synaptic inputs[END_REF][START_REF] Hao | An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons[END_REF][START_REF] Bardia F Behabadi | Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites[END_REF]]. An AP is generated if the sum of the driving forces reaching the somatic compartment exceeds the spiking threshold. At this point, it is challenging to determine the influence of synaptic input on somatic depolarization or to identify the role of the dendrites in neuronal computation [START_REF] Payeur | Classes of dendritic information processing[END_REF][START_REF] Bardia F Behabadi | Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites[END_REF][START_REF] Li | Dendritic computations captured by an effective point neuron model[END_REF].

After decades of studies, developing a unified understanding of how dendrites integrate and transform synaptic inputs entering the dendritic arborization into information-carrying spiking patterns is still lacking. In addition, advances in neuronal studies suggest that a single neuron can perform integration functions previously associated only with neuronal networks. To bridge and employ biological processes with deep learning schemes, we developed an abstraction modeling neural input integration and described how we could employ such abstractions in deep networks. The abstraction includes synaptic input location-dependent voltage delay and decay, time-dependent linear summation, and dynamic thresholding function. The proposed dendritic abstraction can be used to create multilayer-multiplexer neurons that consider the spatiotemporal properties of the dendrites and with greater computational capacity than the conventional schemes.

7.2/ BIOLOGICAL TO ARTIFICIAL SYNAPTIC INPUT INTEGRATION

The pioneering studies of Rall in the 1960s [START_REF] Rall | Neural theory and modeling[END_REF][START_REF] Rall | Theory of physiological properties of dendrites[END_REF] paved the way for extensive research to determine the governing principles of dendritic integration [START_REF] Greg | Dendritic integration: 60 years of progress[END_REF], the crucial roles of dendrites in neuronal processing [START_REF] Poirazi | Illuminating dendritic function with computational models[END_REF], and to create models or abstractions for improving the computational capacity of a neuron [START_REF] Gleeson | Open source brain: a collaborative resource for visualizing, analyzing, simulating, and developing standardized models of neurons and circuits[END_REF]. As discussed in Section 3.5, the biologically-inspired McCulloch-Pitts neuron model describes the dendritic integration process in its simplest abstraction [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF]. The linear summation of weighted synaptic inputs passes through a nonlinear thresholding function that determines the spiking behavior of the neuron. The most recent dendritic abstraction extends the linear-nonlinear Poisson (LNP) called the generalized linear model (GLM). In GLMs, the convolution of inputs passes through a static nonlinearity and is then fed to a spiking mechanism for the instantaneous firing rate [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Weber | Capturing the dynamical repertoire of single neurons with generalized linear models[END_REF]. For both abstractions, the thresholding function (also called activation or transfer function) in the McCulloch-Pitts model and the static nonlinearity in GLM serves as the quantified function for dendritic integration. Most dendritic abstractions suggest that the nonlinearity is a sigmoidal signal [START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF][START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF][START_REF] Wang | Multilayer processing of spatiotemporal spike patterns in a neuron with active dendrites[END_REF][START_REF] Zhang | Nonlinear multiplicative dendritic integration in neuron and network models[END_REF], although it becomes increasingly implausible when fitted with biological data [START_REF] Jadi | An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[END_REF].The subthreshold nonlinearity consists of three divisions for inputs within the same branch: linear for weak signals, supralinear for intermediate signals, and sublinear for strong inputs [START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF]. Sigmoidal nonlinearity then becomes inaccurate when the dendritic parameters and input distribution change [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF].

A widely used method for quantifying dendritic integration is the IO transformation, comparing the synaptic inputs and the corresponding response in the somatic depolarization [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Jeffrey C Magee | Dendritic integration of excitatory synaptic input[END_REF][START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF]. However, the IO curves vary significantly depending on which parameter is under observation, such as dendritic morphology, synaptic topology, and properties, ion channels, or combinations. Therefore, the level of biological realism or the complexity of the neuron model used for investigation is crucial for determining the dendritic nonlinearity [START_REF] Poirazi | Illuminating dendritic function with computational models[END_REF]. Another factor to be considered in quantifying the dendritic integration is how the synaptic inputs were injected. In modeling and physiological experiment, stimulation protocols commonly use unitary or paired-pulse inputs. [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF][START_REF] Judit | Variable dendritic integration in hippocampal ca3 pyramidal neurons[END_REF][START_REF] Bardia | Mechanisms underlying subunit independence in pyramidal neuron dendrites[END_REF]. However, such inputs limit the dynamic range of the dendrites. Because experimental recording and dendritic manipulation are challenging [START_REF] Poirazi | Illuminating dendritic function with computational models[END_REF], the stimulation protocols and experiments on dendritic integration performed under simplified conditions in vitro or unobserved inputs in vivo do not conclusively describe the biophysical dynamics of the neuron [START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF]. Singh and Zald [START_REF] Singh | A simple transfer function for nonlinear dendritic integration[END_REF] introduced a static linear hook transfer function describing linearnonlinear dendritic integration by performing IO transformation with the neuron model. However, the formulation of the transfer function sacrificed some dendritic properties due to the simplification of the dendritic morphology, removal of dendritic mechanisms, and application of a time-invariant function. Simplification or tuning of such properties can potentially bias the output [START_REF] Sorensen | Associating changes in output behavior with changes in parameter values in spiking and bursting neuron models[END_REF].

Our goal here is two-fold: (1) formulate a thresholding function that captures the linearnonlinear dendritic integration, both in the sub-and suprathreshold region, and (2) propose a dendritic abstraction that takes into account the spatiotemporal synaptic and dendritic dynamics. First, we created a CA3 pyramidal neuron model, which included most biophysical mechanisms distributed somatodendritically. Then, we simulated the model using in vivo-like synaptic inputs to reconstruct biophysical dynamics. We identified the synaptic input propagation along the dendritic length and formulated the corresponding signal delay and attenuation model. Next, we proposed a method for IO quantification for continuous inputs. Based on the results of the IO-transformation, we formulated the dynamic nonlinear thresholding functions. We described the functional components of the dendritic abstraction, which considers the spatial specificity of the inputs and the interaction between the inputs and dendritic mechanisms. Using multiple regression analysis, we identified the thresholding function. The resulting threshold nonlinearity is a dynamic function dependent on the synaptic input amplitude and the number of activated synapses that capture the linear, supralinear, and sublinear dendritic integration processes in the subthreshold region. The proposed dendritic abstraction captures the spatiotemporal processes such as synaptic input attenuation and delay, synaptic-input location dependency of somatic depolarization, and the biophysical spiking mechanism of the neuron.

7.3/ FORMULATING THE DENDRITIC ABSTRACTION

This section presents the step-by-step procedure in formulating the proposed dendritic integration abstraction. First is the development of the CA3 neuron, its morphology, and biophysical mechanisms. Then, the second part details the proposed equivalent dendritic abstraction and its subcomponents. Finally, the last part defines the IO transformation process.

7.3.1/ PYRAMIDAL NEURON MODEL

A large number of time-dependent synaptic inputs entering a morphologically complex dendritic tree is difficult to control, and analyzing the dynamic response of the neuron is quite challenging [START_REF] Li | Bilinearity in spatiotemporal integration of synaptic inputs[END_REF][START_REF] Xiumin | Signal integration on the dendrites of a pyramidal neuron model[END_REF]. Thin oblique dendrites protruding from the main dendritic branch also influence the somatic response. Therefore, the neuron model should be biophysically-plausible, with its morphology and distributed mechanisms, but simple enough to follow the signal propagation.

7.3.1.1/ DISTRIBUTED MECHANISMS

We developed a simple but biologically-plausible anisotropic model of the CA3 pyramidal neuron from a rat hippocampus [START_REF] So | Anisotropically organized threedimensional culture platform for reconstruction of a hippocampal neural network[END_REF] using the NEURON simulation platform [START_REF] Nicholas | The NEURON book[END_REF] ran with a time step of 0.05 ms [START_REF] Xiumin | Signal integration on the dendrites of a pyramidal neuron model[END_REF]. NEURON is a well-suited simulator for multicompartmental models of individual neurons [START_REF] Vitay | Annarchy: a code generation approach to neural simulations on parallel hardware[END_REF][START_REF] Bednar | Topographica: building and analyzing map-level simulations from python, c/c++, matlab, nest, or neuron components[END_REF]. The morphological detail is available at NeuroMorpho.Org, whose ID number is NMO 76005 [START_REF] Ascoli | Mobilizing the base of neuroscience data: the case of neuronal morphologies[END_REF]. This simple model has seven stems, four bifurcations, 15 dendritic branches, and a total of 116 dendritic sections. The spines are mushroom-typed with a head diameter of 0.35 µm [START_REF] So | Anisotropically organized threedimensional culture platform for reconstruction of a hippocampal neural network[END_REF], a neck diameter of 0.10 µm [187], and a neck length of 0.35 µm [START_REF] So | Anisotropically organized threedimensional culture platform for reconstruction of a hippocampal neural network[END_REF]. The spines are placed 0.50 µm from one another along the dendritic length [START_REF] So | Anisotropically organized threedimensional culture platform for reconstruction of a hippocampal neural network[END_REF], equating to 2129 synaptic locations. The d lambda discretization rule divides the dendritic sections into electrical compartments [START_REF] Wang | Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields[END_REF]. The neuron dynamics consist of various interactions amongst biophysical mechanisms such as synaptic saturations, dendritic spikes, and NMDA receptor nonlinearities [START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] Judit | Variable dendritic integration in hippocampal ca3 pyramidal neurons[END_REF][START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF]. These mechanisms facilitate dendritic integration and control the transformation of synaptic input patterns into somatic membrane potential changes and the generation of output spike trains [START_REF] Brunel | Single neuron dynamics and computation[END_REF][START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF]. Therefore, we incorporate passive mechanisms and active channels into the neuron. Table C.1 presents the properties of these mechanisms and their distribution throughout the somatodendritic arborization. The neuron has constant passive properties, including the membrane and cytoplasmic resistivities and specific capacitance. In the spine necks, the cytoplasmic resistivity was set so that the spine neck resistance was equal to 500 MΩ [187]. Furthermore, the biological cell model includes active channels distributed heterogeneously from soma to dendrites. These active channels are the fast-activating sodium channels (Na), delayedrectifier potassium channels (K DR ), A-type potassium channels (K A ), N-, T-, and L-type calcium channels (Ca N , Ca T , and Ca L ).

7.3.1.2/ SYNAPTIC INPUTS

In this study, the synaptic inputs follow in vivo-like spatiotemporal patterns to replicate the full range of neuronal dynamics covering the sub-and suprathreshold regions. We modeled the spatial-and time-dependent excitatory synaptic inputs as membrane potentials induced by the conductance change of AMPA and NMDA receptors in the spine heads [START_REF] Walker | Distance-dependent gradient in nmdar-driven spine calcium signals along tapering dendrites[END_REF].

For time t, the synaptic conductance of AMPAR, g AMPA , is a double-exponential function given in Equation 3.35 [START_REF] Olypher | Input-to-output transformation in a model of the rat hippocampal ca1 network[END_REF]. The NEURON Exp2Syn function models the AMPAR response [START_REF] Brunel | Single neuron dynamics and computation[END_REF]. The voltage-dependent NMDARs kinetics follow the same function as the AMPARs kinetics with extracellular Mg 2+ blocking component [START_REF] Baker | A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal ca3 pyramidal cells[END_REF][START_REF] Walker | Distance-dependent gradient in nmdar-driven spine calcium signals along tapering dendrites[END_REF][START_REF] Ómez Gonz Ález | Distinguishing linear vs. non-linear integration in ca1 radial oblique dendrites: it's about time[END_REF]. The NMDAR conductance g N MDA is given by Equation 3.36 [START_REF] Baker | A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal ca3 pyramidal cells[END_REF]. The NEURON function au-tomatically computes the values of α A and α N so that the maximum values of g AMPA and g N MDA are equal to their corresponding peak conductances. The single synaptic input in Figure 7.1b measured in the spine head has a 14.81 mV peak amplitude from rest and a half-width of 2.75 ms. The corresponding values of the synaptic input parameters and other neuron properties are in Table C.2.

7.3.2/ DENDRITIC ABSTRACTION

When multiple synapses are simultaneously active and spatially segregated, inputs driving the somatic potential change are challenging to discriminate. Working on the notion that dendrites require dynamic independence to perform various computations, we identified each dendritic length as an independent subunit. For example, when identical inputs simultaneously activate clustered synapses in C and D (Figure 7.2a) following spiking patterns in Figure 7.2b, the changes in the membrane potential along the distal C-tosoma (Figure 7.2c) and distal D-to-soma (Figure 7.2d) at specific time windows indicate signal diffusion. Synaptic inputs propagate from the synaptic location to the distal end of the dendritic branch, to the neighboring branches and the soma. Indeed, signal propagation along the dendritic branch is bidirectional, and signals backpropagate, upon AP generation, from the soma to some extent of the distal branches [START_REF] Stuart | Action potential initiation and backpropagation in neurons of the mammalian cns[END_REF]. This bidirectional propagation then makes input discrimination intricate. Notice the low membrane potential between the synaptic input activation and the somatic activation. It suggests that even though the synaptic input in the tertiary dendrites significantly attenuates, it can still cause a somatic activation with ∼3 ms delay. Moreover, the backpropagating AP may have a minimum effect on the distal dendrites. We examined the membrane potential magnitudes, particularly during the synaptic input peaks (Figure 7.2e). At t = 21.50 ms, both the dendrites drive the membrane potential elevation. When individual dendrite is active, at t = 222.50 ms and t = 322.50 ms, significant differences in the membrane potential between sibling branches are noticeable. Therefore, even though signal diffuses throughout the dendritic tree, we can still identify the origin of the somatic fluctuations by the level of the driving force produced from the individual branches. We repeated the simulations using varying synaptic input combinations and locations, and the results were similar. One of the foci of this study is to identify how the dendrites process synaptic inputs to perform branch dendrite-specific computation. Therefore, we arrive with the following modeling approach with these results.

We already presented the biological model of the neuron in the previous section. The next step is to identify a dendritic abstraction that models the spatiotemporal dendritic integration process. This abstraction is necessary because the thresholding nonlinearity, a time-independent function, is insufficient for describing the dendritic dynamics [START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF][START_REF] Singh | A simple transfer function for nonlinear dendritic integration[END_REF]. There is a need for another function for the signal propagation along the dendritic branch, the corresponding signal delay, attenuation, and the time-and location-dependency.

7.3.2.1/ MODEL

Consider the primary dendritic branch (the apical trunk) and the secondary dendritic branch (in the apical tuft) shown in Figure 7.3a and Figure 7.3b. For modeling purposes, we apply the following concepts:

1. Each dendritic branch is an independent computational subunit. The dendritic abstraction corresponds to the dynamics occurring within a compartment: the dendritic length from the bifurcation point to the somatic connection (Figure 7.3a) or from the distal end of the apical dendritic branch to the bifurcation point (Figure 7.3b). Based on the impedance tree-graph concept [START_REF] Wybo | Electrical compartmentalization in neurons[END_REF], branches are mutually independent.

2.

Synaptic activation occurs in the dendritic spine head and none along the dendritic shaft. This assumption avoids electrical shunting and over saturation of inputs [187] and ensures that the synaptic inputs have a comparable influence on the dendritic 164CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME shaft around their entry points.

3.

Signals within the dendritic branch propagate individually (untangled), and synaptic inputs travel only in one direction, from the distal apical or basal dendrites to the somatic compartment [START_REF] Wybo | Electrical compartmentalization in neurons[END_REF]. We considered the dendritic branch as multiplexer, and the signals are superimposed on each other. It simplifies the tangling problem and allows us to approximate the influence of each input on the depolarization in the branching point.

4.

The input summation and IO transformation occur in the branching point. Theoretically and experimentally, and when considering the equivalent dendritic circuit, a synaptic input almost immediately integrates with the neighboring inputs around its entry point in the dendritic shaft. Therefore, dendritic integration can transpire anywhere along the dendritic length. To cover the whole dendritic length and the incoming signals, we take the proximal end of the dendritic branch as the thresholding point.

The dendritic abstraction consists of the following. The synaptic input V in (t), where n is the number of the activated synapse, is a time-varying in vivo-like synaptic spiking. Throughout the distance between the dendritic head to the branching point, the dendritic active and passive mechanisms influence the amplitude decay and time delay of V in (t). The attenuation function output V on (t) is a weaker location-dependent signal. The linear summation integrates the attenuated signals and thus represents the linear component of dendritic integration. The nonlinear function f transforms the sum into a single information-carrying V m (t). V m (t) then travels along the dendritic arborization to the next proximal dendritic branch or straight to the soma for spiking.

7.3.2.2/ SIGNAL PROPAGATION AND DELAY

Wybo et al. [START_REF] Wybo | Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses[END_REF] presented a method for simplifying the dendritic morphology directly from experimental data and suggested that a complex subtree can be modeled into a single branch with multiple reduced compartments while preserving the neuronal biological responses. They approximated the dendritic voltage responses using the Hodgkin-Huxley formalism, where the parameters for the passive and active channels were fitted using the least-square method. Since our goal is to identify the input integration at the thresholding point, dividing the dendritic branch into compartments with multiple nonlinear systems of equations is computationally costly. In order to simplify the dendritic voltage response, we used the voltage propagation model, which was modified to incorporate the collective effects of the passive and active mechanism along the cable of varying morphology. Instead of fitting each ion channel in the compartment, we identified the parameters α and β in Equation 7.1 using regression analysis of the membrane potential at the entry and thresholding points caused by individual synaptic inputs.

The IO transformation method usually compares the arithmetic summation of input with the output depolarization. However, this method disregards the synaptic locations and considers that the synaptic inputs have the same influence over the soma or the thresholding point. Synaptic input travels through the spine neck from the spine head, enters the dendritic shaft, and then propagates to the thresholding point. While propagating, signals are susceptible to considerable voltage decay and delay before reaching the proximal end of the dendritic branch. Therefore, it is only fitting to compute the arithmetic sum of the decayed and delayed signals rather than the direct sum of the signals entering the spine head. In this case, the dendritic abstraction becomes spatiotemporal, where the input signals are subjected to decay and delay by V o (t) before integrating into the thresholding point (Figure 7.3c). The spatiotemporal propagation model is defined as

V o (t) = αe -x/λ V i t -β τx 2π , (7.1) 
where V o is the attenuated and delayed synaptic input amplitude when it reaches the thresholding point at time t, V i is the electrotonic potential of the synaptic input (the difference between the synaptic input and the resting potential), and x is the distance between the synaptic input entry point and the thresholding point [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Nm Bogatov | Calculation of action potential propagation in nerve fiber[END_REF][START_REF] Beierlein | Cable properties and information processing in dendrites[END_REF]. The propagation velocity varies at different points along the dendritic branch due to the difference in diameters and lengths of the dendritic sections. To simplify this issue, we converted the dendritic branch into a single cable with constant distributed parameters by computing the total effective length, λ, and total time constant, τ [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF]. The total effective length (in µm), given as

λ = k j=1 R m j R a j d j 4 , (7.2) 
and the total time constant (in ms), given as

τ = k j=1 R m j C m j , (7.3) 
are dependent on the diameter d of k sections. Here, R m is the membrane resistance equal to 10 000 Ωcm 2 and R a is the axial resistance equal to 100 Ωcm [START_REF] Sperelakis | Cable properties and propagation of action potentials[END_REF][START_REF] Beierlein | Cable properties and information processing in dendrites[END_REF], consistent with the biological model. The parameter α captures the dramatic decrease in synaptic input amplitude as it travels along the high resistance spine neck [START_REF] Allan T Gulledge | Electrical advantages of dendritic spines[END_REF] and dendritic shaft, while β defines the signal delay caused by the active mechanisms along the dendritic length. The terms αe (-x/λ) is the coefficient of voltage decay and β(τx/2π) represents the time delay. We computed the corresponding values of α and β for each dendritic branch via regression analysis. To do so, each synapse along the dendritic branch, from the distal to the proximal end, is activated one at a time while measuring the membrane potentials at the input spine head and the thresholding point. The parameter α was computed by fitting αe -x/λ to the amount of measured voltage decays (difference between the peak depolarizations of the synaptic inputs and thresholding point). In parallel, β was determined by fitting β(τx/2π) to the measured voltage delays (the time difference between the peak depolarizations at the spine head and thresholding point).

7.3.2.3/ SPIKING MECHANISM

Even with the ramified morphology of dendrites and spatiotemporal disparity of synaptic inputs, the soma is responsible for encoding information [START_REF] Li | Dendritic computations captured by an effective point neuron model[END_REF]. When the transformed dendritic signals arriving at the soma are large enough, the somatic spiking mechanism generates an AP [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. In the dendritic abstraction, we used the Hodgkin-Huxley spiking 166CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME mechanism in Equation 7.4 because it closely reproduces the somatic dynamics of the biological neuron.

C dV dt = I -g Na m 3 h (V -V Na ) -g K n 4 (V -V K ) -g Ca s 2 r (V -V Ca ) -g L (V -V L ) (7.4) 
It includes active Na + , K + , Ca 2+ channels, and passive leak parameters. V corresponds to the membrane potential, C is the membrane capacitance, and I serves as the input whose intensity is equal to 10 µA/cm 2 multiplied by the summation of activation functions f of the dendritic branches connected to the soma [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] As Dmitrichev | Nonlinear dynamical models of neurons[END_REF][START_REF] Ma | A review for dynamics in neuron and neuronal network[END_REF][START_REF] Beth | Spatial considerations of feedback control for the suppression of epileptic seizures[END_REF]]. Equation 7.5 gives the channel activation and inactivation functions. Refer to Table C.3 for the parameters.

dz dt = α z (1 -z) -β z z, z = m, n, h, r, s, (7.5 
)

α m = 0.1 (-V -45) exp -V -45 10 -1 , β m = 4exp -V -70 18 , α n = 0.01 (-V -60) exp -V -60 10 -1 , β n = 0.125exp -V -70 80 , α h = 0.07exp -V -70 30 , β h = 1 exp -V -40 10 + 1 , α r = 0.000457exp -V -13 50 , β r = 0.0065 exp -V -15 38 + 1 , α s = 0.055 (-V -27) exp -V -37 3.8 -1 , β s = 0.094exp -V - 75 17 . 
Note that the dendritic abstraction can employ other spiking mechanisms such as LIF. In this case, we employ the common Hodgkin-Huxley formulism, which best approximates the spiking behavior and the shape of the AP of the biological soma consisting of multiple types of ionic channels presented in Section 7.3.1.

7.3.2.4/ INPUT DISTRIBUTION

For each dendritic branch, we performed 40 simulations that lasted 1000 ms each (with a 0.05 ms time step) and whose inputs have a Poisson spiking interval of 20 ms and Gaussian synaptic noise. These inputs were either segregated or clustered along the dendritic branch. Let d be the length of the dendritic branch. For segregated inputs, activated synapses were randomly located between 0.01d-d, 0.01d-0.5d, or 0.5d-d. For clustered inputs, activated synapses were also randomly placed between 0.01d-0.25d, 0.25d-0.5d, 0.5d-0.75d, or 0.75dd. The number of activated synapses per simulation was minimum enough to cause depolarization at the thresholding point and maximum
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enough to avoid oversaturation and excessive dendritic burst. Therefore, three, five, and seven synaptic inputs were activated for each simulation set. In total, there were 21 input categories. There were ten simulations for segregated inputs along the dendritic branch and five simulations for the rest. This input distribution gave a wide range of synaptic and dendritic activities. The following are the features of this IO quantification framework: the input is the summation of the estimated synaptic inputs reaching the thresholding point (normalized), then the output is the measured membrane potential at the thresholding point (normalized), and lastly, the IO relationship is a nonlinear time-independent function. The feature scaling restricts the voltage amplitude from 0 (-70 mV) to 1 (40 mV) to avoid the effects of negative values. We measured the synaptic inputs at the spine head along the primary apical trunk and the thresholding point (Figure 7.4a). Then, we estimated the voltage decay and delay of the individual inputs when they reached the thresholding point by applying Equation 7.1. V expected represents the summation of the attenuated inputs. For instance, Figure 7.4b shows the input patterns measured from synapses segregated along the primary apical dendritic branch. The input summation (gray) shown in Figure 7.4c drove the depolarization at the thresholding point (black).

First, we divided the V observed time series into time windows defined by the two consecutive local minima (gray lines in Figure 7.4d). The exact time windows were also applied to V expected . Within each time window, we measured the maximum depolarization of V observed and the corresponding maximum peak amplitude of V expected . The comparison between these points gives us the IO relationship.

7.4/ RESULTS

7.4.1/ DENDRITIC INTEGRATION IN THE SUBTHRESHOLD AND SUPRATHRESH-OLD REGIONS

The dendritic arborization in Figure 7.1a has three levels mainly, the primary dendrites (those connected directly to the soma), the secondary dendrites (after the first bifurcation points), and the tertiary dendrites (after the last bifurcation points). We simulated the neuron model for each dendritic branch by randomly activating segregated or clustered synaptic inputs along the dendritic length. Then, we applied the IO quantification method to identify the within-branch dendritic integration in the sub-and suprathreshold regions. Furthermore, we removed the suprathreshold IO pairs caused by the backpropagating signals and dendritic bursts from the dataset.

Here, we present the IO curves in the apical trunk (primary), the left-most apical tuft (secondary), and the right-most apical tuft (tertiary) dendrites (Figure 7.1a). The subthreshold IO data were smoothened using the locally estimated scatterplot smoothing (loess) method, while linear models best described the suprathreshold data. The points 168CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME The in vivo-like synaptic inputs V i1 , V i2 , and V i3 were measured from the synaptic heads that are 46.67 µm, 28.32 µm, and 38.17 µm from the thresholding point of the primary apical dendritic branch. Inputs V in are subjected to propagation delay and decay before reaching the thresholding point for arithmetic summation, where the resulting sum is the V expected . The measured potential at the thresholding point is termed as V observed . (b) The random spiking frequency of the inputs results in a dynamic and sustained nature. (c) The summation of the predicted attenuated inputs reaching the thresholding point (gray) drove the subthreshold depolarization (black) from the same point. (d) Two consecutive local minima of the membrane potential (V observed ) divided the observed and expected depolarization (V expected ) into time windows (alternating white and orange rectangles). IO quantification compares the maximum observed depolarization (black), and the maximum expected depolarization (gray) within the same time window. represent the mean V observed amplitude per V expected bin width. Figure 7.5 illustrates the V expected : V observed curves of the apical dendrites in the subthreshold (left column) and the suprathreshold (right column) regions. According to Polsky et al. [START_REF] Polsky | Computational subunits in thin dendrites of pyramidal cells[END_REF], the subthreshold nonlinearity in the pyramidal neurons follows a linear-supralinear-sublinear curve based on increasing input strength. This relationship is visible in the secondary (Figure 7.5c) and tertiary dendrites (Figure 7.5e), where the IO curves deviate above and below the linearity upon crossing V expected = 0.1. However, the primary dendrite exhibits a strong supralinear dendritic integration (Figure 7.5a), then the V observed levels stabilize as the curve approaches the sublinear region. The basal dendrites connected to the soma also exhibit almost the same nonlinearity. In the suprathreshold regions (Figure 7.5b, 7.5d, and 7.5f), the V observed level is steady even with increasing V expected . It is as expected since the somatic spiking peak amplitude is constant. 7.1) preceding the IO quantification. Therefore, we consider the dendritic integration as independent from the synaptic input location, given that the propagation model in the dendritic abstraction (Figure 7.3c) already has the spatiotemporal data of the input signals.

V i1 V i2 V i3 Thresholding Point + V i1 V i3 V i2 𝑉 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
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(Equation

Most studies in IO transformations view the observed depolarization at the soma and compare it to the summation of inputs or the intensifying stimulation from various dendritic sites. We compare the membrane potential at the thresholding point with somatic depolarization (Figure 7.6). The primary apical dendrite is located near the soma; therefore, the membrane potential at the thresholding point (V primary ) leads to an equivalent somatic potential (V soma ) (Figure 7.6a). The subthreshold regions display a linear relationship while spike amplitudes rest at ∼1. The discontinuity occurs due to the sudden increase in somatic depolarization and the proximity of the primary thresholding point to the soma. The primary dendrite has a low threshold in that the maximum subthreshold V primary is 0.125. The low threshold is consistent with the low V expected values in Figure 7.5a. However, the signal emanating from the secondary apical dendrite undergoes a substantial voltage decay (Figure 7.6b) due to the drastic increase in apical trunk resistance. The subthreshold region displays a sublinear relationship with the somatic depolarization. In this case, the first successful spike occurs at V secondary = 0.5, and the spiking threshold differs from the primary dendrite (Figure 7.6a). Then, we analyzed the signal flow 172CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME from the tertiary dendrite to the secondary dendrite (Figure 7.6c) and finally to the soma (Figure 7.6d). In Figure 7.6c, the V tertiary /V secondary has no noticeable discontinuity, and in general, the relationship is linear, with only a slight deviation from sublinear to supralinear. The continuity occurs because the depolarizations are viewed away from the soma. In our analysis of the membrane potential, we found backpropagation and dendritic bursting occurrences that are not conveyed into the soma. Then, if we view the signals from the tertiary apical branch to the soma (Figure 7.6d), the V tertiary /V soma relationship is virtually the same as in Figure 7.6b. This relationship results from the signal passing through the secondary dendritic branch.

Therefore, even though the signal from a point in the dendritic arborization is viewed from the soma and there is a distinguishable difference between the output levels in the subthreshold and suprathreshold regions, the thresholding function is still not sigmoidal. Also, the results shown in Figure 7.6 denote the subunit-independence of each dendritic branch.

7.4.3/ DYNAMIC NONLINEAR THRESHOLDING FUNCTION

Previously, we indicated that the subthreshold and the suprathreshold regions of individual dendrites with within-branch inputs overlap. We further characterized the dendritic integration curve and discovered that the overlapping regions resulting from shifting the IO curve attributed to the increased number of activated synapses during each simulation. Figure D.2 illustrates the clustering of V expected /V observed per number of activated synapses, n. Furthermore, the correlation coefficient r between the V observed and n establishes the influence of synapses in dendritic integration (r = 0.43 for primary apical dendrite, r = 0.36 for secondary apical dendrite, and r = 0.47 for tertiary dendrite).

We discovered that the overlapping sub-and suprathreshold regions displayed in Figure 7.5 are not outliers but pertain to the shifting of dendritic integration relative to n. In Figure 7.7, the dendritic integration in the subthreshold (left) and suprathreshold (right) regions is driven by increasing n. The vertical lines in the subthreshold regions indicate the minimum V expected necessary for a successful somatic spike, while the vertical lines in the suprathreshold regions correspond to the range of V expected in the subthreshold regions. These limits shift to the right as n increases. This behavior demonstrates that the dendritic branch has a dynamic threshold in that the input summation required for somatic spiking varies and is dependent on n.

In the primary dendrite (Figure 7.7a), the dendritic integration is strongly supralinear as it reaches V observed = 0.09 and then drops down to slightly above the linearity. In the suprathreshold region (Figure 7.7b), the IO pairs per n cluster together and slightly overlap with the neighboring clusters. However, we can see the difference in dendritic integration for each n in the subthreshold regions in the secondary (Figure 7.7c) and tertiary dendrites (Figure 7.7e). When n = 3, the dendritic integration is slightly supralinear (0 < V expected < 0.1475). For n = 5, the integration is linear between [0, 0.1275] and turns into sublinear. Lastly, for n = 7, the integration starts as slightly sublinear then moves into strongly sublinear, which plateaus at V observed ≃ 0.2. For each n in the suprathreshold region (Figure 7.7d), the continuity of dendritic integration, from sub-to suprathreshold, becomes distinct as the minimum V expected for spiking coincides with the maximum sub- Influence of activated synapses in dendritic integration. In the subthreshold plots, the vertical lines indicate the start of somatic activation per number of inputs, while in the suprathreshold regions, the lines indicate the limit of subthreshold depolarization. In the subthreshold regions (left column), the dendritic integration curve shifts to the right as the number of inputs, n, increases. The range of V expected causing output depolarization in the suprathreshold regions (right column) also shifts to the right with increasing n. (a) In the primary branch, the dendritic integration is strongly supralinear, while the integration in (c) the secondary and (e) tertiary branches, the inputs results in dendritic integration shifting from supralinear to linear to sublinear. Then, in (b) the suprathreshold region of the primary apical branch, the V expected span per n are clustered close to each other, while as the branch becomes more distant from the soma, (d) in the secondary, then in the (f) tertiary branch, the span of V expected becomes more distinct. threshold V expected (determined by the vertical lines). The tertiary branch also exhibits the supralinear-linear-sublinear relationship of V expected and V observed in Figure 7.7c, except that the IO curve does not stabilize with a further increase of V expected . Likewise, in the suprathreshold region, the clustering of IO pairs is more distinct, and there is a clear 174CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME separation between lower and upper V expected . Overall, dendritic integration is a nonlinear function displayed in the IO curves in Figure 7.5. Further analysis of the IO pairs tells us that this nonlinearity consists of multiple linear and nonlinear functions, which can be supralinear, linear, and sublinear, relative to the intensity of the driving force produced by the synapses.

So what do these imply? It tells us that (1) the dendritic branch performs integration independent from the neighboring dendrites, (2) dendritic integration is a dynamic process dependent on the amount of driving force, as well as the number of activated synapses, and (3) the thresholding nonlinearity is the collective effect of linear and nonlinear integration (supralinear-linear-sublinear).

7.4.4/ SPATIOTEMPORAL DENDRITIC ABSTRACTION

The dendritic abstraction consists of elements, namely the signal propagation, the linear summation, and the thresholding function. We established beforehand that the voltage decay and time delay functions (Equation 7.1) in the dendritic abstraction (Figure 7.3c) characterize the spatiotemporal model attributes of the dendritic branch under consideration. In contrast, the thresholding function is a time-independent and dynamic model based on the amplitude summation and number of incoming input signals, as shown in Figure 7.5 and Figure 7.7. We used multiple linear regression analysis to determine the thresholding function in each abstraction, where the model parameters were determined by employing machine learning algorithms performed using the R programming language. The lm and step regression functions provide a direct and efficient way of performing regression analysis. Attached in the supplementary materials is the R code for model prediction.

The training set comprises 70% of the IO dataset in the subthreshold region, while the remaining 30% was for the testing set. The model which provides the best fit has the form

g = a + bX 1 + cX 2 + dX 1 X 2 , (7.6) 
f = g if g ≤ θ or f = V max otherwise.
where the variables X 1 and X 2 correspond to the summation of inputs arriving at the thresholding point and the number of activated synapses during simulation, respectively. Then, g is the subthreshold integration function, while f is the overall (sub-and suprathreshold) asymmetric function separated by the spiking threshold θ. V max is the maximum constant depolarization of the dendritic branch. The parameters a, b, c, and d were identified using the regression analysis. Refer to Table 7.1 for the parameter values. The thresholding function, f , determines the input intensity that drives the spiking 7.4. In other cases, if the branch under consideration is connected to a proximal branch, f determines the normalized signal coming out of the dendritic branch that will be integrated with the other inputs of the proximal branch. Here, f is a piecewise function whose subthreshold value is defined by g. Then, g > θ means an AP is generated, forcing f to equal V max . This activity is observable in Figure 7.7. For every number of inputs (X 2 ), the input summation (X 1 ) necessary to produce a suprathreshold activity is shifting; thus, we have a dynamic thresholding function here. Figure 7.8 shows the variation in f with increasing X 1 and X 2 .

The required X 1 needed to cross the suprathreshold region increases with X 2 , agreeing with the results in Figure 7.7. However, in the primary dendrite where X 2 > 8 (Figure 7.8a), the soma must be forced to spike when X 1 > 0.25 done by changing f to V max ; due to the large gap between the sub-and suprathreshold regions in the primary-soma connections (Figure 7.6a). In addition, the variations of f for the secondary dendrite (Figure 7.8b) and the tertiary dendrite (Figure 7.8c) were comparable with the measured changes in their respective V observed (Figure 7.7), where the threshold in terms of the input summation shifted from left to right with the increasing number of inputs. multiple R 2 (Table 7.1), which is above 0.9, validates the predictions.

We simulated the biological CA3 pyramidal neuron model by activating random synapses in each dendritic branch for 5000 ms (10 simulations each branch). With the same synaptic inputs measured from the dendritic spine heads, we implemented the proposed dendritic abstraction in Figure 7.3c. We predicted the dendritic dynamics and somatic spiking using the corresponding propagation model (Equation 7.1) and the dynamic thresholding function (Equation 7.6). For instance, Figure D.4 shows the raster plot of random synaptic inputs along the primary apical dendrite and the corresponding observed and predicted somatic spiking. Then, we compared the measured with the predicted spiking activity within a 200 ms sliding window. Figure 7.9a shows the dendritic abstraction of the primary apical dendritic branch (simulated with n ∈ [START_REF] Araque | Tripartite synapses: glia, the unacknowledged partner[END_REF][START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF] and spike interval ∈ [START_REF] Eichenbaum | Interplay of hippocampus and prefrontal cortex in memory[END_REF][START_REF] Lorincz | Molecular identity of dendritic voltage-gated sodium channels[END_REF] ms). The output of the thresholding function is the direct input to the soma. The number of measured and predicted spikes are from 0 to 2 for every 200 ms sliding window. The boxplot in Figure 7.9b shows that the dendritic abstraction successfully predicted the somatic spiking where the R 2 ρ is 0.98. Figure 7.9c shows the dendritic abstraction for the secondary dendritic branch (n ∈ [START_REF] Christopher | The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[END_REF][START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF] and spike interval ∈ [START_REF] Verkhratsky | The history of the decline and fall of the glial numbers legend[END_REF][START_REF] Mep Didier | Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level[END_REF] ms). In this case, the output from the secondary thresholding point independently flows through the primary branch with considerable delay and decay before reaching the soma. Therefore, the primary dendrite is equivalent to a multiplexer cable or a waveguide [START_REF] Mercado | Learning-related synaptic reconfiguration in hippocampal networks: Memory storage or waveguide tuning?[END_REF]. The linear relationship between the means in the corresponding boxplot (Figure 7.9d) indicates a good prediction capability of the dendritic abstraction (ρ = 0.97). The tertiary branch exhibits independence from its mother dendrites and signals multiplexing (Figure 7.9e) (n ∈ [START_REF] Bonvento | Astrocyte-neuron metabolic cooperation shapes brain activity[END_REF][START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF] and spike interval ∈ [START_REF] Rose | The hippocampus and imagining the future: where do we stand?[END_REF][START_REF] Remy | Plasticity of voltage-gated ion channels in pyramidal cell dendrites[END_REF] ms). Given the linear relationship of measured and predicted spikes in Figure 7.9f, and that ρ = 0.82, suggests the dendritic abstraction describes the spiking activity of the biological neuron model. Biological neuron models based on experimental evidence provide a direct means of manipulating neuronal characteristics, such as ionic channel distribution, biophysics, morphology, and synaptic inputs, that are challenging to control in vitro or in vivo [START_REF] Poirazi | Illuminating dendritic function with computational models[END_REF]. We created a morphologically-realistic and biologically-based CA3 pyramidal neuron model (Figure 7.1a) and studied the dendritic integration of individual branches via analyzing their transfer functions or IO relationships. The goal here is to find the corresponding thresholding function, specifically, to identify the instance that the dendritic integration curve crosses the suprathreshold from the subthreshold region. The first step is to determine the approach for the IO quantification process. The shape of the IO relationship varies, dependent on (1) the quantification process: single-pulse or paired-pulse stimulation protocol and blocked spiking mechanisms, and (2) the parameters under consideration: linear for passive mechanisms, nonlinear for the active mechanism (Na + channels and NMDA receptors), supralinear to sublinear for increasing driving force. These quantification procedures limit the dynamic response of the neuron and, consequently, the dendritic integration process. Instead of concentrating on one parameter and constricting the others, we proposed an IO quantification process that opted for a natural dendritic response by letting the soma spike spontaneously without blocking the spiking mechanisms to conserve the full range of dendritic activity. However, this process poses some challenges. When the soma generates APs, back-propagating signals move swiftly from the soma through the dendritic tree [START_REF] Bardia | Mechanisms underlying subunit independence in pyramidal neuron dendrites[END_REF], causing consecutive spikes in the thresholding point. Clustered and strongly-activated synapses create regenerative Na + spikes localized within the branch [START_REF] Silver | Neuronal arithmetic[END_REF]. During simultaneous synaptic and somatic activities, what 178CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME causes the dendritic spikes is unclear; it is either the dendritic activity or the backpropagation [START_REF] William | Local versus global dendritic integration[END_REF]. These dendritic spikes overlap with the peak depolarization of successful spikes (spikes that cause AP generation). Therefore, we removed the IO points caused by dendritic spikes in the dataset; those points whose observed depolarization are between the threshold and 0.8. With this process, we still conserved the spontaneous dynamics of the dendrites and examined the full range of dendritic integration, from sub-to suprathreshold activities.

7.5.2/ BRANCH-SPECIFIC DENDRITIC INTEGRATION IMPLEMENTS A DYNAMIC THRESHOLDING FUNCTION

Implementing the proposed IO quantification method, the IO curves in Figure 7.5 and Figure 7.7 describe a dendritic integration with the following features. First, dendritic integration is dynamic. Integration in the primary apical and basal dendrites are highly supralinear (Figure 7.5a), while distal dendrites exhibit a nonlinear integration varying from supralinear to slightly sublinear (Figure 7.5c and 7.5e). Two-photon imaging and glutamate uncaging on CA3 pyramidal neurons indicate that the apical and basal proximal dendrites perform highly supralinear integration, mainly influenced by NMDA receptors [START_REF] Judit | Variable dendritic integration in hippocampal ca3 pyramidal neurons[END_REF]. Localized regenerative events during activation of voltage-gated channels contribute to the nonlinearity in distal branches [START_REF] Poirazi | Illuminating dendritic function with computational models[END_REF]. IO curves seen as a whole depict a single nonlinearity described by Poirazi and others [START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF]. The IO curve starts linearly for weak signals, then progresses to supralinear for intermediate signals. As the curve intersects the line separating the supra-and sublinear region, the IO curve becomes sublinear and plateaus as the input continues to increase until the input is sufficient for somatic spiking. Further analysis of the IO curves showed that a single branch could change its integration mode between supralinear, linear, and sublinear, as shown in Figure 7.7.

Second, the spiking threshold varies with the number of activated synapses. Using wholecell recordings in the CA3 region of cultured rat hippocampus, Soldado-Magraner et al. [START_REF] Soldado-Magraner | Conditioning by subthreshold synaptic input changes the intrinsic firing pattern of ca3 hippocampal neurons[END_REF] discovered that the transition from the subthreshold to the suprathreshold (during firing activity) is not a static characteristic of the neuron. Our analysis determined that the number of activated synapses, not only the input summation in general, has considerable influence on the dynamic dendritic behavior. The threshold or the amount of synaptic inputs required to generate an AP is dynamic [START_REF] Yi | Input-output relation and energy efficiency in the neuron with different spike threshold dynamics[END_REF], and varying synaptic input patterns influence the form of dendritic depolarization [START_REF] Gasparini | State-dependent dendritic computation in hippocampal ca1 pyramidal neurons[END_REF]. In vivo, the threshold varies with the number of inputs and spiking history [START_REF] Yi | Input-output relation and energy efficiency in the neuron with different spike threshold dynamics[END_REF][START_REF] Silver | Neuronal arithmetic[END_REF]. Figure 7.7 also illustrates the firing threshold shifting from left to right. The minimum input summation necessary to cause a successful spike increases as the number of active synapses increases. In the primary dendrite (Figure 7.7a), the linear part of the integration mode (0 ≤ V expected ≤ 0.02) shifts by changes in slope. In the secondary (Figure 7.7c) and the tertiary (Figure 7.7e) branches, the integration mode is slightly supralinear at n = 3, linear at n = 5, and sublinear at n = 7.

Lastly, dendritic integration is branch-specific. Dendritic branches process information independent of the whole neuron, which is evident in the differences in the IO curves of each branch (Figure 7.7). The driving force required for somatic spiking differs, which is minimal in the primary dendrites and maximal in tertiary dendrites. Branch specificity is also apparent in the varying spiking threshold θ and maximum depolarization V max developed in the branches (Table 7.1). The location of the dendritic branch plays a significant role in branch specificity. In Figure 7.6, we compared the dendritic spiking activity in each branch with the somatic activity. The depolarization at the thresholding point in the apical trunk in relation to the soma is linear, with a significant discontinuity between the suband suprathreshold (Figure 7.6a). The relationship between the peak depolarizations in the tertiary and secondary thresholding points is also linear. Contrastingly, the linearity is continuous (Figure 7.6d). What causes the discontinuity in the apical trunk? When the input summation reaches the threshold, the somatic depolarization instantly generates an AP and peaks to ∼40 mV. Dendritic spikes and backpropagation in the non-primary dendrites create peak depolarization between the threshold and AP peak amplitude. Regenerative spikes are localized in a specific branch [START_REF] Silver | Neuronal arithmetic[END_REF][START_REF] Bardia | Mechanisms underlying subunit independence in pyramidal neuron dendrites[END_REF]. As shown in Figure 7.9b, 7.9d and 7.9f, dendritic spiking is more frequent in distal dendrites, ten times more than the soma [START_REF] Silver | Neuronal arithmetic[END_REF], due to higher input resistance [START_REF] Tomasz G Órski | Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic activity[END_REF]. Depolarization in the secondary (Figure 7.6b) and tertiary (Figure 7.6d) dendrites compared with the somatic depolarization display a strongly sublinear relationship in the subthreshold area and constant peak amplitude in the suprathreshold area. Due to compartmentalization, the current flowing to the next compartment decreases, and the signal attenuates [START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF]. Usual IO transformation methods compare the input summation with somatic spiking. On the other hand, dendritic integration varies depending on the location where the input and the output are measured. Therefore, branch-specific processing of diverse synaptic inputs results in cell-specific activities, as depicted by the experimental recordings from CA1 neurons in the rat hippocampus [START_REF] Mitsushima | Contextual learning requires functional diversity at excitatory and inhibitory synapses onto ca1 pyramidal neurons[END_REF].

We formulated a dynamic thresholding function (Equation 7.6) to replicate the above dendritic integration features. This piecewise function is a multiple linear regression dependent on both the summation of synaptic inputs and the number of activated synapses. This function is time-independent, as most thresholding functions are. Additionally, the function can shift between integration modes, from supralinear to linear and sublinear, while sustaining the overall dendritic nonlinearity. The dynamic thresholding function enhances the computational capacity of the dendritic branch, compared with the commonly used static nonlinearity in GLMs and McCulloch-Pitts neurons. Dynamic threshold, dynamic integration mode (deviating between linear and nonlinear), and input location specificity enhance the computational power of the dendrite as it allows the dendrite to shift from one integration mode to another [START_REF] Poirazi | Illuminating dendritic function with computational models[END_REF][START_REF] Lorenzo | Identification of synaptic integration mode in ca3 pyramidal neuron model[END_REF]. These capabilities reveal that a single neuron performs more complicated functions associated only with neuronal networks.

7.5.3/ DENDRITIC ABSTRACTION WITH DYNAMIC THRESHOLDING FUNCTION

As mentioned earlier, the thresholding function is time-independent, and the input summation can occur anywhere along the dendritic arborization. Input summation was set on the proximal end of the dendritic branch, a point near the bifurcation, to cover the whole dendritic branch length. We proposed a dendritic abstraction (Figure 7.3c) that models the spatiotemporal changes of synaptic inputs during propagation. Synaptic inputs are subjected to voltage decay and delay, attributed to the location of the input from the thresholding point and the active mechanism along the dendrites (Equation 7.1). The linear summation of propagated inputs occurs once the inputs reach the thresholding point, followed by the transformation employing the thresholding function.

We demonstrated that the dendritic abstraction models the integration process of the 180CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME dendritic branch and then proceed with the information transfer scheme from the tertiary branch straight to the soma (Figure 7.9). In most generalized linear models, the output of one secondary subunit combines with the inputs of the subsequent subunit, the primary branch. However, the neuron does not correctly predict the expected output train with this scheme. For example, if the output of the secondary branch is equal to 0.18, which is in the subthreshold region, enters the thresholding unit of subunit A, the final output will be a successful spike being that the threshold of A is only 0.15 (refer to Table 7.1). The difference between the thresholding levels of the two subunits indicates that dendritic subunits perform independent dendritic integration processes and the dendritic length multiplexes branch-specific information. Experiments on neuronal cultures suggest that dendritic arborization forms multiple layers of dendritic integration and independent functional subunits within a layer [START_REF] Sardi | New types of experiments reveal that a neuron functions as multiple independent threshold units[END_REF][START_REF] Bardia | Mechanisms underlying subunit independence in pyramidal neuron dendrites[END_REF][START_REF] Singh | A simple transfer function for nonlinear dendritic integration[END_REF], comparable with multiplex communication in cultured neural networks [START_REF] Nishitani | Classification of spike wave propagations in a cultured neuronal network: Investigating a brain communication mechanism[END_REF].

An additional component in the dendritic abstraction is the linear summation after the thresholding unit for mother branches (Figure 7.9c and 7.9e). This component feeds the simultaneous inputs from different branches into a single spike train. The dendritic tree can, therefore, multiplex multiple information from independent sources [START_REF] Payeur | Classes of dendritic information processing[END_REF][START_REF] Bal Ázs B Ujfalussy | Global and multiplexed dendritic computations under in vivo-like conditions[END_REF]. Local dendritic integration and signal multiplexing continue until the information reaches the soma. The soma performs a global integration summing the inputs from the proximal apical and basal dendrites. Sakuma et al. [START_REF] Sakuma | Simulation of spike wave propagation and two-to-one communication with dynamic time warping[END_REF] also suggested that the synaptic delays and refractory periods improve and stabilize multiplex communications in neurons. This particular scheme also increases the computational capacity of the neuron. It performs spatiotemporal filtering by confining some information within the specific dendrite. Distal branches produce and confine dendritic spike bursts that do not reach the soma. It also performs information selection. During somatic spiking, the soma blocks inputs, and during this time, some dendritic spikes are unable to reach the soma [START_REF] Payeur | Classes of dendritic information processing[END_REF]. Only certain local information from a distal dendritic branch is delivered to the soma. With this scheme, where inputs are independently processed, the neuron can also determine the source of the inputs responsible for the somatic firing.

7.6/ CONCLUSION

Overall, we developed an IO transformation process and modeled the corresponding branch-specific integration. The thresholding function describes a dynamic integration process. We also formulated a dendritic abstraction incorporating the spatiotemporal characteristics of synaptic inputs while traveling down the dendritic length. We suggest further investigation of dendritic integration by merging both experimental and computational studies. Current physiological experiments are still limited in spatiotemporal resolution. Besides, we suggest examining a pyramidal neuron with a more complex dendritic arborization, although complicated arborization equates to exhausting manipulation. It has been suggested that neurons perform more complex computations comparable with neuronal networks. Therefore, further investigation into dendritic processes helps understand neuronal functions employed in biomedical, artificial intelligence and neuromorphic applications [START_REF] Furber | Large-scale neuromorphic computing systems[END_REF][START_REF] Fr Éd Éric D Broccard | Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems[END_REF].

CONCLUSION AND PERSPECTIVES

Realizing that astrocytes can be computational elements by displaying neuron-like functions operating with slower dynamics extends our current understanding of the brain processes to a broader perspective. The heterogeneous morphology of astrocytes that creates syncytium modulating the neighboring neurons and extending its effect to neurons belonging to separate networks hints that neurons work in cooperation with astrocytes, here considered active components, creating a more complex circuitry for computation and communication. Our research was divided into two parts. First, we developed biologically plausible neuron-astrocyte networks and studied the influence of astrocytic signaling on synaptic plasticity and neural network activities. Second, we developed an astrocytemediated spiking neural network following the biological characteristics and simplified dynamics of these components. This chapter summarizes and concludes the research findings and gives our perspectives for future works.

We discussed the biological characteristics and signaling in neurons and astrocytes (see Chapters 2-4). We illustrated the signaling pathways that led to the formation of tripartite synapses to the development of neuron-astrocyte networks and presented the computational models describing the neuron-astrocyte interactions. Here are the main findings of our studies discussed in Chapters 5-7:

• We developed a stochastic tripartite synapse model with synaptic and nonsynaptic sources of Glu -signals. The HH model [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] described the AP generation in the AIS, and the cable equation [START_REF] Basser | Cable equation for a myelinated axon derived from its microstructure[END_REF] modeled the saltatory conduction along the myelinated axon. The amount of Glu -in the synaptic cleft was dependent on the fast and slow Ca 2+ dynamics and was released stochastically. The Li-Rinzel model [START_REF] Li | Equations for insp3 receptor-mediated [ca2+] i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism[END_REF] described the IP 3 -dependent Ca 2+ dynamics, and the astrocytic Glu - followed a synaptic-like fusion and release process. Here, the astrocytic processes modulate the synaptic release probability and indirectly modulate the postsynaptic membrane spiking, triggered by the activation of AMPARs.

We analyzed the strength of communication between the pre-and the postsynaptic components by comparing their spiking activities and determined that astrocytes can either improve or impair synaptic communication based on the amount of astrocytic Glu -released in the extracellular space. The extrasynaptic [Glu -] must be high enough to increase the synaptic efficacy but low enough to avoid postsynaptic overexcitation. In addition, the multiple sources of extracellular Glu -triggering localized Ca 2+ oscillations indicate that astrocytes perform a new level of signal integration, suggesting that astrocytes are more than a point process.

• Therefore, we developed a compartmentalized model for astrocytic Ca 2+ integration. In a single cell, the astrocytic processes and the soma form separate compartments communicating via Ca 2+ and IP 3 diffusions relative to the gradient between compartments. We employed a stochastic neurotransmitter release, while the Glu -signals (synaptic and extrasynaptic) are restricted within the astrocytic processes. The tripartite synapse has feedforward and feedback pathways, where the astrocytic process modulates both the presynaptic release probability and generates postsynaptic SICs. Furthermore, the gap junction connected astrocytes form a network with varying topology, chain, dense, or regular connections, communicating via ICW propagation. The IP 3 exchange between astrocytic somas depends on the state of the cell, described by the UAR model.

The heterogeneity in astrocytic connections (with the neurons and the neighboring astrocytes) highly influences neural activities, specifically improving network synchrony, synaptic efficacy, and homeostasis. During global Ca 2+ oscillations, astrocytic processes simultaneously release Glu -, consequently modulating the neuronal counterparts. At the network level, ICW propagation promotes simultaneous activation of astrocytes, thus resulting in synchronized postsynaptic spiking. The simulation results indicate that the chain topology displayed a higher synchrony level than the other astrocytic connections. The chain topology also resulted in higher network efficacy, attributed to the restricted Ca 2+ activities within the astrocytic territory. In contrast, heterogeneity exhibited by the regular or dense topologies provided a positive impact on network stability or homeostasis. Therefore, heterogeneous as they may be seen in vivo, astrocytic connections play specific roles in neural activities.

• Based on the biological dynamics and characteristics of neurons and astrocytes, we developed simplified SNANs capable of learning (unsupervised) features of handwritten images from the MNIST database [START_REF] Deng | The mnist database of handwritten digit images for machine learning research [best of the web[END_REF] and classifying input classes. The network consists of 784 Poisson Input neurons whose spiking rates depend on the 28x28 image pixels, 100 AIF First layer neurons with 100 IN for lateral inhibitions that generate synaptic competitions, and 100 astrocytes (using the Postnov model [START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF] creating tripartite connections between the neuronal layers. The classifier unit converts the spiking patterns of the First layer into a vector for predicting the input class. We trained the networks with varying hyperparameters and an increasing number of astrocyte-mediated synapses. The test results of the SNAN with 30% tripartite synapses (out of the total number of synapses) yielded a maximum of 75.28% of accuracy with optimal model complexity.

This study is one of the first attempts to employ astrocytes in artificial neural networks for direct applications to image recognition (using the standard MNIST dataset) by generating slow excitatory inputs separate from the synaptic signals.

Therefore, the proposed network can serve as a baseline for astrocyte implementations in artificial networks. It displayed advantages over SNN such as faster learning due to the additional synapses, increased accuracy while optimizing the bias and variance tradeoff, and, interestingly, simplified network architecture as the SNAN network can yield accuracy at the same level as networks with more neuron components.

• Lastly, we developed a dendritic abstraction based on a biological CA3 pyramidal neuron that would allow neurons to perform dendrite-specific integration for faster learning. The spatiotemporal abstraction consists of signal propagation, linear summation, thresholding function, and spiking mechanisms. We proposed an IO quantification method for in vivo-like synaptic inputs from the biological model. We formulated a dynamic nonlinear thresholding function using multiple regression, capturing the linear, supralinear, and sublinear shifts in dendritic integration observed in pyramidal neurons.The IO curves suggest that the dendritic branches are computational subunits performing branch-specific and independent dendritic integrations that are dynamic, shifting between linear and nonlinear regions, and whose spiking threshold varies relative to the activated synapses. In addition, by following the multilayer and multiplexer computational schemes, a single neuron can perform faster learning. During synaptic activations, the dendritic subunit can instantly update its synaptic weights without waiting for the backpropagating signals from the soma.

Researchers are currently acknowledging the potential of astrocytes in brain processes, and there are efforts to implement astrocytes in artificial spiking networks. In continuing research in astrocytic processes and implementations, the following research areas are suggested:

• More than 100 years ago, Santiago Ramon y Cajal said, "What is the function of glial cells in neural centers? The answer is still not known, and the problem is even more serious because it may remain unsolved for many years to come until physiologists find direct methods to attack it [START_REF] Kettenmann | Neuroglia: the 150 years after[END_REF]." Intriguingly, we still lack a solid understanding of astrocytic functions 100 years later. Nowadays, imaging techniques focus on global [Ca 2+ ] in the astrocytic network; however, astrocytic communication is the interplay of multiple variables such as the extracellular Glu - and cytosolic IP 3 . Therefore, it is also vital to have high spatial resolution and sensitivity measurement tools to study the effects of synaptic and nonsynaptic Glu - on astrocytic activation. It is also essential to observe and model the inter-and intracellular IP 3 diffusion, noting that [Ca 2+ ] elevations in the astrocytic processes are IP 3 -mediated and astrocytes are gap junction-connected communicate via IP 3 exchange.

• The fine astrocytic processes limit the currently available physiological measurement tools; therefore, biologically plausible computational models, such as those presented in Chapter 5 , help discern the influence of astrocytic networks in brain activities. In addition, the network models can also be used to study the influence of extracellular molecules in ICW propagation. We presented in Chapter 5 a model wherein the astrocyte regulated nonsynaptic Glu -, for example, from the nodes of Ranvier. Researchers can use this model to simulate how the astrocytes maintain neuronal health or cause brain pathology such as Alzheimer's [START_REF] Cai | Astrocyte and alzheimer's disease[END_REF] or Parkinson's [START_REF] Miyazaki | Neuron-astrocyte interactions in parkinson's disease[END_REF] diseases.

• There is no physical evidence of backpropagation from the current to the previous neuronal layer as the synaptic transmission is a feedforward process. Therefore, synaptic learning is an unsupervised process. However, the ability of astrocytes to form networks with the neurons belonging to separate layers may hint that the astrocytes provide the backpropagation mechanisms. Given two neuron layers, Layer 1 and Layer 2, with series-connected astrocytes whose one end enwraps the axon terminals in Layer 2 and the other end is coupled with the presynaptic CHAPTER 8. CONCLUSION AND PERSPECTIVES terminal of Layer 1; the series astrocytes provide a conduit for the backpropagating signals. One end of the astrocytic chain senses the activity of presynaptic spiking activity of Layer 2 neurons. Via ICW propagation, these activities are sent to the other end, therefore modulating the Layer 1 presynaptic neurotransmitter release. Researchers can therefore explore the possibility of astrocyte-mediated backpropagation.

• One can also improve the classification performance of the proposed SNAN for image recognition. [START_REF] Baljit | Astrocyte-neuron interactions in the striatum: insights on identity, form, and function[END_REF] The researchers can change the network parameters/hyperparameters and increase the number of epochs during training to find the network architecture with better accuracy and bias and variance tradeoff. [START_REF] Christopher | The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[END_REF] The astrocytic layer can also be extended into an astrocytic network connected via a chain, dense, or regular topology to allow ICW propagation. This method can improve the network activities, such as synchronization and stability, as mentioned in Chapter 6. (3) Convolutional spiking neuron astrocyte networks can be implemented by dividing the image pixels into kernels independently processed by the dendritic abstractions connected in a multilayer and multiplexer scheme (see Chapter 7).

• One of the main challenges we faced during our research is the computational costs necessary to simulate the networks, as the Brian2 simulator [START_REF] Dan | The brian simulator[END_REF] does not support parallel computations. Researchers can consider implementing the SNAN into neuromorphic computing platforms such as BrainScaleS [START_REF] Pehle | The brainscales-2 accelerated neuromorphic system with hybrid plasticity[END_REF] and SpiNNaker [START_REF] Furber | The spinnaker project[END_REF] systems. For shallow networks, simulations can also be accelerated by deploying the network in field-programmable gate array (FPGA) devices [START_REF] Nazari | Multiplier-less digital implementation of neuron-astrocyte signalling on fpga[END_REF]. IP 3 maximal rate of degradation [START_REF] Amiri | Functional contributions of astrocytes in synchronization of a neuronal network model[END_REF] Unless stated, values are from De Pitta and Brunel [START_REF] De | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. Title: Modeling of neuron-astrocyte interaction: application to signal and image processing Keywords: Astrocyte, neuron, spiking networks, tripartite synapse, calcium wave propagation, synaptic plasticity, biological dynamics, computational model, artificial network

Abstract:

The introduction of the tripartite synapse and the discovery of calcium wave propagation motivated our research to explore the potential of astrocytes as active components in brain circuits. For decades, astrocytes have been considered passive cells whose primary function is metabolic and structural support to neurons; however, recent physiological measurements suggest that astrocytes modulate neural communication, strengthen synaptic efficacy, enhance synchronization, and promote homeostasis. Inspired by these biological functions, this research aimed to implement astrocytes in artificial spiking networks for deep learning applications. First, we modeled the biological interaction between neurons and astrocytes -from the tripartite connection to neuron-astrocyte networks. The results suggest that astrocytic connectivity and heterogeneity determine whether astrocytes would improve or impair neural activities. Then, we designed a spiking neuron-astrocyte network architecture for image recognition using simplified biologically inspired models.

We trained the network to recognize features and classify handwritten digits using spike-timing-dependent plasticity and an unsupervised learning algorithm.

Here, the astrocyte-mediated networks displayed advantages over neuron networks alone, such as faster learning, higher accuracy, and improved bias-variance tradeoff. One of the challenges in the study is the extended duration needed for training. Therefore, we proposed a dendritic abstraction supporting dendrite-specific computations for faster learning. We analyzed the signal propagation along a pyramidal neuron dendritic tree and determined that a single neuron performs more complex computations previously attributed only to neural networks by following a multilayer-multiplexer scheme. We proposed that dendritic abstractions connected in this scheme could promote faster synaptic updates independent of backpropagating signals from the soma. This research is one of the first attempts to implement astrocytes as computational elements in artificial networks.

Titre : Mod élisation de l'interaction neurone-astrocyte: application au traitement du signal et des images Mots-cl és : Astrocyte, neurone, r éseaux d'impulsionnel, synapse tripartite, propagation des ondes calciques, plasticit é synaptique, dynamique biologique, mod èle informatique, r éseau artificiel

R ésum é :

Les concepts de synapse tripartite et d'onde calcique ont motiv é nos recherches afin d'explorer la dynamique des astrocytes en tant que composants actifs des circuits c ér ébraux. Les astrocytes ont ét é consid ér és comme des cellules passives dont la fonction principale est le soutien m étabolique et structurel des neurones. Cependant, des mesures physiologiques r écentes sugg èrent que les astrocytes modulent la communication neuronale, renforcent l'efficacit é synaptique, favorisent la synchronisation et l'hom éostasie.

Inspir ée par ces fonctions, cette recherche vise à proposer de nouveaux paradigmes de r éseaux de neurones artificiels.

Il s'agit d'int égrer des astrocytes en tant qu'objets computationnels dans des r éseaux de neurones impulsionnels artificiels et à terme utiliser ces r éseaux neurones-astrocytes pour des applications en deep learning.

D'abord, nous avons mod élis é math ématiquement et num ériquement l'interaction biologique neurone-astrocyte -de la liaison tripartite aux r éseaux neurone-astrocyte. Les r ésultats sugg èrent que la connectivit é et l'h ét érog én éit é des astrocytes d éterminent si les astrocytes am éliorent ou nuisent aux activit és neuronales. Nous avons ensuite conc ¸u une architecture de r éseau neurones-astrocytes pour la reconnaissance d'images en utilisant des mod èles de neurones bioinspir és. Nous avons entraîn é le r éseau à reconnaître les caract éristiques et à classer les chiffres manuscrits en utilisant un algorithme d'apprentissage non supervis é et de la plasticit é fonction du temps d'occurrence des impulsions. Nos r ésultats montrent que les r éseaux mixtes neurones-astrocytes pr ésentent des avantages par rapport aux seuls r éseaux de neurones, tels qu'un apprentissage plus rapide, une plus grande pr écision et un compromis biais-variance am élior é. Cependant, le r éseau neurones-astrocytes a un co ût computationnel élev é en terme de simulation. Ce co ût est d û à la complexit é des interactions et des dynamiques en jeu. Par cons équent, nous avons propos é une abstraction dendritique supportant des calculs sp écifiques au niveau des dendrites pour un apprentissage plus rapide. Nous avons analys é la propagation du signal le long des dendrites et d étermin é qu'un seul neurone effectue des calculs complexes, pr éc édemment attribu és aux seuls r éseaux neuronaux, en suivant un sch éma multicouchemultiplexeur. Nous avons propos é que les abstractions dendritiques connect ées selon ce sch éma puissent favoriser un apprentissage synaptique plus rapide, ind épendamment des signaux de r étropropagation du soma. En conclusion, nos travaux de recherche sont parmi les premiers à consid érer l'impl émentation des astrocytes comme él éments de calcul dans les r éseaux de neurones artificiels.

6 CHAPTER 2 .

 62 BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS declarative memories.
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 21 Figure 2.1: The location of the hippocampus in the brain. The brain section, sliced coronally, shows the hippocampus and the parahippocampal region of the medial temporal lobe. The image was extracted from Bear et al. [21].
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 27 hippocampus. ① Informainal cortex via the perforant . ② The dentate gyrus granule ossy fibers that synapse upon CA3. ③ Axons from the CA3 fer collaterals, synapse upon CA1.
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 22 Figure 2.2: Coronal section of the main body of the hippocampus showing the signal flow through the trisynaptic circuit. (a) (1) From the entorhinal cortex, inputs enter the hippocampus via the perforant pathways to the DG. (2) Then, DG granule cells send signals to the pyramidal neurons in the CA3 area through its mossy fibers. (3) Signals sent by the CA3 neurons along the Schaffer collaterals drives the pyramidal neurons in the CA1 area. The image was extracted from [21]. (b) To further visualize the trisynaptic circuit, here is the hippocampus histology of a neonatal kitten originally drawn by Camillo Golgi, published in 1903 [26].
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 23 Figure 2.3: Fundamental parts of a pyramidal neuron.

Figure 2 .

 2 Figure 2.3 depicts the basic biological structure of a pyramidal neuron. A neuron has two main parts: the soma and the neurites. The central region (cell body) called the soma (plural: somata) contains the nucleus of the neuron[START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The soma of the pyramidal neuron type is pyramidal in shape, as the name implies[START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF][START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. Pyramidal neurons have soma ranging from 20 to 120 µm in diameter[START_REF] Johns | Clinical Neuroscience E-Book[END_REF]. Then, the neurites are the thin tubes emerging from and radiating away from the soma. The pyramidal neuron is a bipolar cell, as shown by the opposite directions of its neurites[START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. The axon radiates from the base of the soma while the dendrites develop towards the other direction[START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF]. The axon comprises three parts: the axon hillock, the axon proper, and the axon terminals[START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The axon hillock, also called the axon initial segment (AIS), emerging from the base of the cell body, forms the first axon segment and connects the axon proper to the soma[START_REF] Bear | Neuroscience: Exploring the brain[END_REF][START_REF] Benavides-Piccione | Differential structure of hippocampal ca1 pyramidal neurons in the human and mouse[END_REF]. The axon proper is a long tube covered with periodic myelin segments. Then, the nodes of Ranvier are the axonal section in between the myelinated segments. Along the axon proper, branches called axon collaterals may appear[START_REF] Genon | How to characterize the function of a brain region[END_REF][START_REF] Benavides-Piccione | Differential structure of hippocampal ca1 pyramidal neurons in the human and mouse[END_REF]. They can spread and reach other neurons[START_REF] Genon | How to characterize the function of a brain region[END_REF], or in the case of recurrent collaterals, return and communicate with the cell itself[START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. At the unmyelinated branches at the end of the axon (terminal arbors) are protrusions that resemble swollen disks called the axon terminals or boutons, which serve as the input side of the synapse[START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The synapse is the site of transmission between the axon of one neuron and the dendrites of the neighboring neuron[START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. The dendritic arborizations are collectively called a dendritic tree, and each branch a dendritic branch[START_REF] Bear | Neuroscience: Exploring the brain[END_REF]. There are two dendrites divisions that characterize a pyramidal neuron, the basal dendrites, which are the short and fine dendritic structures directed downward from the base of the soma, and the apical dendrites projecting upward from the cell body[START_REF] Spruston | Pyramidal neurons: dendritic structure and synaptic integration[END_REF]. There are also protrusions on the dendritic branch called dendritic spines, where synaptic input enters the dendritic length[START_REF] Feldmeyer | Functional and structural diversity of pyramidal cells[END_REF].
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 245 Figure 4: Golgi staining revealed changes in spine density after the fA𝛽 1-42 -injection (A). Apical dendritic spine density analysis the amyloid treatment induced a decrease in spine density (𝑃 < 0.0001). In each experimental group 75 dendritic shafts of 3 a studied. The values represent the mean (±S.E.M.) (𝑛 = 3 rats per group).
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 324 Fig 3. Effects of β-asarone on dendritic spine density in Pb-exposed developmental rats. (A) CA1 area; (B) DG area. The top: Representative Golgi-Cox staining of dendritic arborization and dendritic spine density. The middle: Representative dendritic shaft with spines of hippocampal neurons. Scale bar = 10μm. The bottom: Histogram reports the quantification of spine density (10μm). (**P<0.01, ***P<0.001, n = 8 per group; β-asa: β-asarone, the same in the following Figs). doi:10.1371/journal.pone.0167401.g003
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 25 Figure 2.5: Action potential generation.An excitable neuron has two critical membrane potential levels: the resting potential and threshold potential. At rest, the ionic strength between the extra-and intracellular area sets the membrane potential to -70 mV. When a stimulus reaches a neuron compartment, it depolarizes the membrane, and if this stimulus is strong enough to produce a membrane potential higher than the threshold, a rapid increase of membrane potential to 40 mV occurs; thus, an action potential is generated. After reaching the AP peak, the membrane potential rapidly decreases during repolarization. During the refractory period, the voltage-gated channels are inactive. However, there are leakage channels and some K v channels that are still open, causing a hyperpolarization until the membrane potential returns to the resting state.
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 26 Figure 2.6: Neuronal membrane during action potential generation. (a) The Na v and K v channels, when the neuron is at rest, the membrane potential has a negative potential at -70 mV. The VGCs are closed; however, some open leakage channels allow K + ions to the extracellular space. (b) During depolarization, Na v channels open, and the influx of Na + ions into the cytosol further increasing the membrane potential above the threshold. (c) Then, at peak depolarization of 40 mV, the cytosol becomes rich in Na + ions. Rapid repolarization starts, and the Na v channels get inactivated while K v channels open and allow the flow of K + ions out of the cytosol. The cytosol becomes negatively charged, and the membrane potential recovers back to its resting state.
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 27 Figure 2.7: The neuron membrane and its equivalent circuit. (a) The neuron membrane which separates the cytoplasm and the extracellular fluid forms a capacitance C m . The membrane retains potential due to the flow of currents (I Na , I K , and some leakage I L ) through the ionic channels. (b) Therefore, the membrane can be described as an electric circuit whose membrane potential V m is the difference between the ionic charges in the extra-and intracellular space. A specific ionic channel is equivalent to resistor R in series with a battery representing the reversal potential E.
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 28 Figure 2.8: The kinetics of gating variables during an AP modeled using the Hodgkin-Huxley formulism. (a) The gating variables m and h represent the activation and inactivation of Na v channels, while n represents the activation of K v channels. (b) When the AP crosses the threshold after stimulation at t = 20 ms, a rapid increase in depolarization results from the m kinetics outpacing the n kinetics. During AP, h gates are closed.
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 512229 Figure 2.9: Action potential train with different levels of excitability. The HH model parameters are as follow: ḡNa = 36 ms/cm 2 , ḡK = 120 mS/cm 2 , ḡL = 0.3 mS/cm 2 , E Na = 45 mV, E K = -82 mV, and E L = -59.40 mV [88].The excitability and firing rate of the AP (blue) depend on the intensity of the applied current I app (red). For I app = 2 µA/cm 2 , the cell is nonexcitable. From I app = 5.82 µA/cm 2 , the model becomes excitable. Then further increase from I app = 6.10 to 10 µA/cm 2 , the AP shows oscillatory characteristics.
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 210 Figure 2.10: Action potential firing regime of a leaky integrate-and-fire neuron. The shape of the AP does not follow the shape of the AP of a biological model but depends on the membrane potential crossing the threshold (at -40 mV) for AP generation. However, the firing characteristics resemble that of a HH neuron wherein the it increases with further augmentation in the injected current I app . The LIF model, here, has the following intrinsic parameters: C = 1 nF, V th = -40 mV, V R = -70 mV, τ L m = 20 ms, τ re f = 5 ms [104, 105].
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 211 Figure 2.11: Myelinated axon structure. (a) The electron micrograph of an axon from a dog CNS shows the multiple layers of myelin sheaths[START_REF] Indira | Resurgent sodium current and action potential formation in dissociated cerebellar purkinje neurons[END_REF]. (b) Oligodendrocytes wrap the axon with its plasma membrane creating myelin sheaths that insulate the axon segment. In between these myelin sheaths are the bare gaps called nodes of Ranvier, which have high expression of Na v channels allowing Na + ions entry from the extracellular space through the axon membrane. The myelin sheaths are glued onto the axon membrane in the paranode regions, which inhibit current flow between the myelinated axonal segment and the nodes of Ranvier. Juxtaparanode regions are those axonal parts under the compacted myelin sheaths extending to the internode, where K v channels are predominant. The internodes are directly under the compacted myelin sheaths and express low densities of VGCs.
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 212213 Figure 2.12: Saltatory conduction allows the AP initiated from the AIS to rapidly propagated down the axon terminal. The myelinated segment insulates the axonal membrane inhibiting ion flux from the extracellular space. Therefore, AP flows down the myelinated axon segment rather than across the membrane. Current flowing out the myelinated segment depolarizes the consecutive node of Ranvier, which has a high density of Na v channels. Thus, the AP seems to jump from one node to the next. (The image was extracted from Rogers [141].)
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 31 Figure 3.1: Calcium signaling pathways showing the influx and efflux of Ca 2+ ions in the intracellular space (cytoplasm or axoplasm). The signaling pathways can be classified into two based on the Ca 2+ signaling timescales. First is the fast Ca 2+ influx from the extracellular space to the cytoplasm (axoplasm), derived from the opening voltage-sensitive Ca 2+ channels (VDCCs) upon the arrival of APs. Surplus Ca 2+ ions are pumped back to the extracellular space via plasma membrane leak channels (PMleak), and plasma membrane Ca 2+ ATPase (PMCA) pumps to avoid cell toxicity due to high [Ca 2+ ]. Second is the slow Ca 2+ influx from Ca 2+ stores (endoplasmic reticulum). This influx includes an additional pathway for inositol-3-phosphate (IP 3 ). Extracellular molecules, glutamate (Glu -), for example, impinge G-protein coupled receptors (GPCRs), which leads to the production of IP 3 molecules in the cytoplasm. IP 3 molecules diffuse and bind with IP 3 receptors (IPRs), which open the receptors for Ca 2+ release from the ER. Excess Ca 2+ ions are pumped back to the ER through sarco-endoplasmic receptor Ca 2+ ATPase (SERCA) pumps, resulting in intracellular Ca 2+ oscillations. The ER also has leakage channels that allow Ca 2+ flow to the cytoplasm to avoid depletion of intracellular [Ca2+].
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 3132 Figure 3.2 shows the neurotransmission process, from the AP-triggered Ca 2+ influx to vesicle fusion and priming with the axon terminal membrane to neurotransmitters diffusing into the synaptic space. Neurotransmission begins with the arrival of APs in the

Figure 3 . 5 :

 35 Figure 3.5: Stimulated-emission-depletion image of a spine-covered dendrite recorded from a living neuron of a hippocampal slice. (Image taken from de Souza [184].)
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 36 Figure 3.6: Excitatory and inhibitory synapses.A synapse can be excitatory or inhibitory, depending on the neurotransmitter in the synaptic cleft. In the excitatory synapse, the axon terminal of the presynaptic neuron makes contact on the dendritic spine of the postsynaptic neuron by releasing excitatory neurotransmitters such as Glu. In contrast, in the inhibitory synapse, the axon terminal makes contact directly on the dendritic shaft and releases inhibitory neurotransmitters such as GABA. Synaptic Glu activates the NMDA and AMPA receptors on the spine head, allowing the flow of Na + , K + , and Ca 2+ ions through the channels. These current fluxes result in membrane depolarization or EPSPs. When synaptic GABA molecules activate the GABA A receptor, Cl -current flux from the synaptic cleft through the membrane, creating hyperpolarizing potential or IPSP.
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 37 Figure 3.7: Electrical equivalent of a passive dendritic spine. (a) The large head and slender neck divide the spine into two separate compartments. (b) A resistance-capacitance circuit represents each compartment. (c) Due to the small size of the spine, the membrane resistance (1/g head ) and capacitance (C head ) become negligible, and the EPSP in the spine depends mainly on the change in synaptic conductance (gsyn). The narrow diameter of the spine neck also results in a large neck resistance R N , eliminating the influence of the membrane resistance (1/g neck ) and capacitance (C neck ).
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 38 Figure 3.8: Compartmentalization in a passive dendritic tree. The dendritic arborization of a pyramidal neuron in (a) is divided into multiple compartments as shown in (b) approximately determined by the dendritic segments diameter and length and bifurcation points.The passive compartments are represented by the RC circuit (r m is the membrane resistance and c m is the membrane capacitance) and are connected to the next compartment via the axial resistance r a . The activation of V syn in (a) results in an EPSP in the dendritic spine in (c). The EPSP significantly attenuates as it enters the dendritic compartment and travels along the dendritic segment. Therefore, the EPSP reaching the soma is so much smaller compared to the synaptic input.
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 39 Figure 3.9: Dendritic mechanisms. (a) The electrodes (gray, orange, and blue) positioned at the soma, basal and apical dendrites of a biocytin stained layer 5 pyramidal neuron measure the membrane potential at the mentioned compartments. The dendritic tree expresses various VGCs distributed non-uniformly, activating localized dendritic spiking at separate dendritic compartments. These dendritic spikes (namely (b) Ca 2+ spike, (c) Na + spike, and (d) NMDA spike) are named after the main VGCs that are activated during the dendritic events. (e) Backpropagation occurs when the somatic AP propagates back to the distal dendrites. (f) Due to the passive dendritic properties, synaptic EPSP amplitude diminishes as it travels along the dendrite, causing a weak influence on somatic depolarization. (g) However, an EPSP evoked near the soma can propagate well to the distal end of the dendrite. (Image was adapted from Larkum and Nevian [212].)
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 710 Figure 7 | clustered synaptic input activates local dendritic nonlinearities which could form the basis of branch specific computation. a | Cartoons showing layer 5 cortical pyramidal cells with the location of activated synaptic inputs and the recording electrode. 'Within branch' refers to two inputs (A and B) that synapse onto the same dendritic branch (left), and 'between branches' corresponds to two inputs that synapse onto different branches (right). Traces show the somatic responses to a paired-pulse synaptic stimulation protocol. Black traces show the two synaptic inputs stimulated individually, blue traces show the predicted response for simultaneous activation (assuming linear summation) and red traces show the measured response for intermediate strength stimulation. The within-branch response was supralinear, whereas the response between branches was linear. This effect was blocked by a selective NMDAR (N-methyl-d-aspartate receptor) antagonist. b | Responses for the two input scenarios; the between-branches configuration (shown in green; the dashed line indicates linearity) and the within-branch configuration (shown in red).The nonlinear effects of NMDARs are seen when excitatory postsynaptic potentials (EPSPs) are a few millivolts in amplitude. However, these experiments were carried out in the presence of a GABA A (α-aminobutyric acid type A) receptor antagonist, which may favour the occurrence of NMDA spikes161 . c | The difference between the arithmetic sum of individual inputs (shown by blue squares) and paired-pulse protocols with different intervals between the pulses. The supralinear response of the within-branch configuration occurs when the two synaptic inputs occur within approximately 40 ms indicates that synaptic NMDAR activation has a 'memory' of prior input onto the branch over this timescale. d | A cartoon of a pyramidal cell with n i clustered synaptic inputs on each of the dendritic branches. A nonlinear dendritic mechanism, such as NMDAR spikes, introduces a nonlinear sigmoidal input-output function (S(n i )) to each of the subcompartments. The weights of the subcompartments (α i ) are then combined with the somatic spike threshold nonlinearity (g) to produce output (y). It has been proposed that the presence of multiple dendritic subcompartments each with a nonlinear thresholding element could enable an individual pyramidal cell to act like a two-layer network of neurons, thereby enhancing its computational power. Parts a-c modified, with permission, from Nature NeuroscienceReF. 156 © (2004) Macmillan Publishers Ltd. All rights reserved. Part d modified, with permission, from ReF. 157 © (2003) Elsevier.
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 310 Figure 3.10: Input-Output transformation and dendritic operations. The input-output relationship between the arithmetic summation of the individual EPSPs (expected depolarization) and the resulting somatic depolarization (observed depolarization) from the combined effect of the individual EPSPs describes of the dendritic operation the neuron can perform. (a)The synaptic inputs that are clustered or target synapses on a restricted spatial location produce a nonlinear influence on somatic depolarization. (b) Distributed synaptic inputs, those inputs targeting different branches, perform linear summation in the soma. In this case, the arithmetic sum of EPSPs equals the measured depolarization in the soma. (Images were taken from[START_REF] Silver | Neuronal arithmetic[END_REF].) (c) When the resulting somatic depolarization always results in a lower amplitude than the input summation, the dendritic operation is sublinear. (d) Linear operation occurs if the somatic depolarization consistently equals the input summation. (e) The dendrite performs supralinear integration when the output depolarization exceeds the input summation.

  www.sciencedirect.com Current Opinion in Neurobiology 2019, 58:78-85 (a) Spatiotemporal filtering

  Class III: Routing is schematically depicted by a switch circuit symbol on the green branch. Even though both the green and red branches receive equivalent input signals, a modulating input (orange) prevents the transmission of the information from the green branch. Class IV: Two contextually different input streams impinge on opposite poles of the neuron. When activated by the perisomatic (blue) stream alone, a single spike is fired by the postsynaptic neuron (blue 1 in bottom spike train). When present, the apical input (red) modulates the postsynaptic response by transforming a single spike into a burst (purple = blue + red). Short-term facilitation (STF) and depression (STD) and disynaptic inhibition (blue square synapse) can decode the multiplexed information. www.sciencedirect.com Current Opinion in Neurobiology 2019, 58:78-85 (b) Information selection
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 312 Figure 3.12: Neuronal computational schemes. (a)The classical view describing neuronal computation is a single excitable unit. The neuron exhibits synaptic democracy; the synaptic inputs have an equal influence on the somatic depolarization regardless of synapse location in the dendritic tree. The soma linearly summates the inputs, and if the summation reaches a certain threshold, the soma generates an AP. (b) The two-layer computational scheme has one layer of functional subunits corresponding to dendritic trees and performing its specific nonlinear transformation. The subunit outputs are then transmitted to the soma for a global linear summation and somatic spiking. (c) An individual dendritic compartment exhibits independent processing of synaptic inputs and separate IO transformation. The compartmentalization creates multiple layers of integration with specific nonlinearity, comparable to a network whose architecture is determined by the dendritic morphology. Then, the soma integrates and multiplexes the incoming signals from the subunits for somatic depolarization.

  Linear-Nonlinear Poisson spiking model
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 313 Figure 3.13: Neural coding schemes. (a) The first model depicting neural coding is the McCulloch-Pitts neuron model, where synaptic inputs, x n , are binary, either 1 or 0 for active and inactive inputs, respectively.Inputs are linearly integrated, and when the summation is above a threshold, θ, the neuron produces an output equal to 1, and 0 otherwise. (b) The perceptron is an extension of the McCulloch-Pitts model. Here, the inputs x n , which can be real values, are multiplied to arbitrary synaptic weights, ω n , representing the strength of influence of the synaptic inputs to the neuron spiking. The thresholding function(activation function or nonlinearity), f , nonlinearly transforms the input summation into somatic output. Also, when the nonlinear summation is above the threshold, θ, the neuron produces binary 1. (c) The model by[START_REF] Poirazi | Pyramidal neuron as two-layer neural network[END_REF] is similar to a two-layer network of perceptrons. Each dendritic subunit has an independent linear summation of inputs and local nonlinearity. The output of each subunit is multiplied to the corresponding subunit weight, α n , before reaching the soma for global summation and thresholding function, g. (d) Generalized linear models (GLMs) are point processes that model the stochastic properties and history-dependence of neuron spiking. The nonlinearity function transforms the convolution of the outputs of the linear and the post-spike filters to produce stochastic output spiking via the Poisson process. (e) Lastly, the Linear-Nonlinear Poisson (LNP) model is a class of GLM without the post-spike filter. In this case, the neuron spiking is purely stochastic due to the inhomogeneous Poisson process and independent from the previous spiking activity.
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 441 Figure 4. Optical slices through neighbor protoplasmic astrocytes filled with distinct orescent dyes. A, The major processes (arro of astrocytes were commonly seen to exte tangentially to the approaching processes neighboring astrocytes. B, The proces emerging from two astrocytes with adjacent mata radiate parallel to or away from e other. C, Blood vessels (arrowhead) appeared be capable of influencing the arrangement astrocyte processes as they attempted to fo end feet. Astrocyte on the far right is hig elongated as it reaches for passing vessel. T center astrocyte ( green) shows little overlap w its neighbors. D, One astrocyte ( green) is s to have its process "invade" the territory of neighbor as both astrocytes form end feet passing blood vessels. Scale bars, 15 m.
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 42 Figure 4.2: Astrocytic signaling mechanisms. Intracellular [Ca 2+ ] signaling in astrocytes have glutamatemediated pathways that are mGluR-or GluT-dependent. (1) Glutamate from presynaptic terminals binds with astrocytic mGluR, which then triggers the production of IP 3 molecules. The second messenger IP 3 then binds to IP 3 R on the ER membrane, opening the channel for Ca 2+ release into the intracellular space. The SERCA pump and leakage channels on the ER membrane sustain intracellular Ca 2+ oscillations by generating Ca 2+ fluxes. (2) Extracellular Glu -enters the intracellular space via the GluT, which simultaneously transports Na + and K + ions in and out of the cell. The Na + and K + gradients, caused by the transporters and leakage channels, activate the Na + efflux and Ca 2+ influx between the intra-and extracellular spaces.
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 31 CALCIUM AND IP 3 DYNAMICS 4.3.1.1/ REDUCED LI-RINZEL MODEL

3 3 -

 3 kinase (IP 3 -3K) and inositol polyphosphate 5-phosphatase (IP-5P) degrade the [IP 3 ] [6, 10, 88, 157, 178]. The evolution of [IP 3 ] with time following the mass balance equation

. 22 )

 22 Accordingly, the change in the intracellular [Ca 2+ ] results from the behavior and cooperation of four components: (1) the intracellular [Ca 2+ ], (2) the intracellular [IP 3 ], (3) the fraction of activated mGluRs, (4) the fraction of de-inactivated IP 3 Rs.4.3.1.2/ POSTNOV MODELPostnov et al.[START_REF] Dimitry E Postnov | Dynamical patterns of calcium signaling in a functional model of neuronastrocyte networks[END_REF][START_REF] Dmitry E Postnov | Functional modeling of neural-glial interaction[END_REF][START_REF] Amiri | On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective[END_REF] developed a nondimensional and qualitative model, a generalized and simplified model describing the astrocytic Ca 2+ and IP 3 dynamics. The synaptic coupling is described by a first-order differential equation
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 4343 Figure 4.3: A three-dimensional reconstruction of hippocampal astrocyte by Bindocci et al.[START_REF] Bindocci | Three-dimensional ca2+ imaging advances understanding of astrocyte biology[END_REF] showing heterogeneity in Ca 2+ activities in each astrocytic process (left). The right side shows that an astrocyte has processes with different average activity ranging from low (0-3 mHz) to medium (3-6 mHz) and high (>6 mHz) levels.
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 44 Figure 4.4: Dynamics in astrocytic compartments. (a) Calcium and IP 3 molecules diffuse from the processes to the soma to the neighboring processes bidirectionally. (b) Each astrocytic process and the soma are considered separate compartments consisting of distinct dynamics.
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 45 Figure 4.5:The tripartite synapse. The closed-loop interplay between the molecular and electrical dynamics in the tripartite synapse model is as follows. Upon the presynaptic vesicular release, a fraction of neurotransmitters bind with the postsynaptic ionotropic receptors (iGluRs), and the remaining fraction passively diffuses into the extrasynaptic space, binding to astrocytic metabotropic receptors (mGluRs). The binding activity triggers the production of IP 3 molecules, which then results in intracellular astrocytic [Ca 2+ ] elevations. The neuron-dependent activation of the astrocyte occurs when its [Ca 2+ ] exceeds a certain threshold, facilitating the release of gliotransmitters into the extracellular space. Astrocytes also consists of synaptic like microvesicles (SLMVs) containing gliotransmitters with a release mechanism similar to neurons. The released gliotransmitters diffuse in the extracellular space activating extrasynaptic iGluRs and mGlurs in the pre-and postsynaptic components. These additional transmitters (gliotransmitters) influence the synaptic vesicle release probability, indirectly modulating the synaptic activity. In addition, activation of postsynaptic iGluRs due to gliotransmitters adds to the postsynaptic potential. With this concept, information transfer becomes bidirectional rather than the unidirectional flow in the classical synapse.

Figure 1 .

 1 Figure 1. Distinct components of [Ca 2+ ] i increases in an astrocyte calcium wave. (a) Representative Fura2 ratio (Δ340/380) images of an astrocyte calcium wave 0, 3, 9, 24, 36 and 120 sec after mechanical stimulation (arrow). (b) Distribution of [Ca 2+ ] i increases during the calcium wave. The maximum [Ca 2+ ] i projection, in which each pixel represents the maximum Δ340/380 during the calcium wave (left). The peak [Ca 2+ ] i increase (red), which is the [Ca 2+ ] i increase in the mechanically-stimulated cell, and the persistent (orange) and transient (blue) [Ca 2+ ] i increases, in which the Δ340/380 ratio of each pixel sustained above and declined below 30% of the mean Δ340/380 ratio of pixels within the peak [Ca 2+ ] i increase until 120 sec, respectively are shown overlaid on the maximum [Ca 2+ ] i projection (center). A Line and cells for the analyses in (c) and (d) are indicated in the right panel. (c) Histogram of the maximum Δ340/380 along the line in the right panel of (b). (d) Timedependent changes in [Ca 2+ ] i in cells 1-6 in the right panel of (b).
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 46 Figure 4.6: Astrocytic Ca 2+wave propagation from 0, 3, 9, 24, 36, and 120 seconds after mechanical stimulation (arrow), measured using Fura2 calcium indicator. The image was taken from Fuji et al.[START_REF] Fujii | Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of atp released from volume-regulated anion channels[END_REF].
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 47 Figure 4.7: Intracellular communication between two coupled astrocytes i and j occurs via the exchange of IP 3 molecules through gap junction connections (GJCs) in the peripheries. Connexin 43 hemichannels physically connect the two astrocytes and facilitate the IP 3 diffusion between the two cells.

Fig. 2 .

 2 Fig. 2. Inference of model networks from experimental data. A, The experimental culture of Fig. 2, with neurons segmented in red, astrocytes in green and unresponsive cells in blue. Scale bar is 75 mm. B, Model networks constructed using the experimental data of A. Fine grey lines delineate the Voronoi diagram computed from the experimental cell positions; green circles denote model astrocytes and dark green cells with a lightning symbol denote stimulated model astrocytes. Wide dark grey lines show the GJC connections between astrocytes. Scale bar is 75 mm. Model networks were inferred according to this process for each experiment. C, Close-up view of the Voronoi tesselation (light gray and blue lines) associated with an immunostaining image (in red the neuronal marker NeuN and in green the astrocytic marker GFAP). Astrocyte A will be GJC coupled to astrocytes B1 through B7 as they share boundaries of their anatomical domains (thick blue lines). D, Resulting distribution of astrocyte coupling degree. Most model astrocytes are connected to very few neighbors (n = 373). The inset shows the distribution of the size of connected astrocyte clusters (n = 146). It can be seen that most astrocytes are isolated but some experiments contain very large clusters of up to 60 astrocytes (indicated by stars). doi:10.1371/journal.pcbi.1003964.g002
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 48 Figure 4.8: The anatomical domains of astrocytes form non-overlapping territories. (a) Wallach et al.[START_REF] Wallach | Glutamate mediated astrocytic filtering of neuronal activity[END_REF] used the Voronoi tessellation to identify the extent of each astrocytic territory (gray and blue lines) on an immunostaining image composed of the astrocytes (green) and neurons (red) network. Here, astrocyte A is coupled to its neighboring astrocytes B 1 to B 7 through GJCs. (b) Confocal analysis of adjacent astrocytes in the CA1 region shows discrete regions of interaction (yellow) between astrocytic processes[START_REF] Bushong | Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains[END_REF]. Models of Ca 2+ wave diffusion can be visualized by simulating astrocytes connected in various topologies[START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF][START_REF] Lallouette | Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks[END_REF]. An astrocyte under consideration (blue) connects to its neighboring neurons (green) within its boundary (Link Radius), any cell within the network (Erd ős-R ényi), its nearest neighbors (Regular Degree), its nearest neighbors and random cells (Shortcut), and cells relative to its degree and distance (Spatial scale-free).
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 75 Fig. 7.5 UAR model of ICW propagation. a, bRecruitment of an astrocyte by an ICW may be regarded as a three-state process, as exemplified for two connected astrocytes (cell 1, top row; cell 2, bottom row). Astrocytes are in the unactivated state (U) when at rest. Upon arrival of an ICW, their intracellular IP 3 (red traces) crosses the threshold for CICR initiation (dotted line) and cell 1, followed by cell 2, get activated (A, green-shaded windows), which is marked by a pulse-like increase of intracellular Ca 2+ in these two cells (blue traces). Following activation, each cell recovers to rest through a refractory period (R, red-shaded windows), when their intracellular IP 3 falls below a supply threshold (dashed line). Time constants of the transitions may be estimated as following: τ U coincides with the delay between the Ca 2+ increases in cell 1 and in cell 2; τ A is estimated by the time interval from the beginning of the Ca 2+ elevation to the point where IP 3 gets below the diffusion threshold; finally, τ R is derived from τ A + τ R = T , where T = 16 s is the minimum period of Ca 2+ oscillations in the single astrocyte. Transition rates used in the simulations are obtained averaging over all τ values obtained by simulations of the biophysical model in Fig. 7.3. c, d ICW propagation for the same networks of Fig. 7.3 (panels C and D), where astrocytes are modeled instead by the UAR description. The extent of ICW propagation (N act : number of activated astrocytes) generally mirrors qualitative characteristics of ICWs simulated in our biophysical network models. Data points±errorbars: mean values±standard deviation over n = 20 networks of similar topology. Parameters of the biophysical model and the UAR model are reported inTable 7.1 and Table 7.3, respectively. Adapted from Lallouette et al. (2014)
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 73 Fig. 7.5 UAR model of ICW propagation. a, bRecruitment of an astrocyte by an ICW may be regarded as a three-state process, as exemplified for two connected astrocytes (cell 1, top row; cell 2, bottom row). Astrocytes are in the unactivated state (U) when at rest. Upon arrival of an ICW, their intracellular IP 3 (red traces) crosses the threshold for CICR initiation (dotted line) and cell 1, followed by cell 2, get activated (A, green-shaded windows), which is marked by a pulse-like increase of intracellular Ca 2+ in these two cells (blue traces). Following activation, each cell recovers to rest through a refractory period (R, red-shaded windows), when their intracellular IP 3 falls below a supply threshold (dashed line). Time constants of the transitions may be estimated as following: τ U coincides with the delay between the Ca 2+ increases in cell 1 and in cell 2; τ A is estimated by the time interval from the beginning of the Ca 2+ elevation to the point where IP 3 gets below the diffusion threshold; finally, τ R is derived from τ A + τ R = T , where T = 16 s is the minimum period of Ca 2+ oscillations in the single astrocyte. Transition rates used in the simulations are obtained averaging over all τ values obtained by simulations of the biophysical model in Fig. 7.3. c, d ICW propagation for the same networks of Fig. 7.3 (panels C and D), where astrocytes are modeled instead by the UAR description. The extent of ICW propagation (N act : number of activated astrocytes) generally mirrors qualitative characteristics of ICWs simulated in our biophysical network models. Data points±errorbars: mean values±standard deviation over n = 20 networks of similar topology. Parameters of the biophysical model and the UAR model are reported inTable 7.1 and Table 7.3, respectively. Adapted from Lallouette et al. (2014)
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 964 ASTROCYTES AS COMPUTATIONAL UNITSgiven by θ a (n a ) = b 0 n a + b 1 , (4.55)
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 104551 Figure 5.1:Tripartite synapse with perinodal astrocytic components. The morphology and the exclusive dynamics under consideration commence from the AP generation in the presynaptic AIS, V, propagating via saltatory conduction along the axonal length with alternating myelinated segments and nodes of Ranvier, V n . Along the axonal length, the astrocytic process enwraps the node of Ranvier positioned within the astrocytic territory, developing a perinodal area for nonsynaptic molecular transmission. Another astrocytic process enwraps the synaptic area connecting the presynaptic bouton and the postsynaptic spine, thus forming the tripartite synaptic connection. The extracellular Glu -sensed from the extrasynaptic and perinodal areas trigger the astrocytic [Ca 2+ ] a elevation for gliotransmitter release. Here, only the extrasynaptic process releases extrasynaptic Glu -within the extrasynaptic area. Lastly, the postsynaptic spine head generates an EPSP, V post , dependent on the excitatory synaptic input.
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 52 Figure 5.2:Tripartite synapse functional model. The tripartite synapse is the interaction between the cellular compartments (the presynaptic bouton, the postsynaptic spine head, and the astrocytic process) and areas (the synaptic area and the extrasynaptic area).
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 53 Figure 5.3: Signal propagation via axonal saltatory conduction changes the AP waveform and propagation delay. The stimulus at t = 200 ms generates an AP, V, in the AIS. Given the myelinated segment characteristics mentioned in TableA.2, the constant parameters are computed as γ = 1, λ = 1.5076, and τ = 0.3317 ms. There is a 0.33 ms delay in AP arrival from the AIS to the first node of Ranvier, V 1 . Therefore, it takes 6.66 ms before AP reaches the bouton, V pre .
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 54 Figure 5.4: Calcium dynamics on the presynaptic bouton and node of Ranvier. (a) The total presynaptic bouton [Ca 2+ ], (c i ), oscillation has a frequency equivalent to the frequency of the incoming AP. The [Ca 2+ ] gradient between the intracellular space and the ER is relative to the increase and decrease of the [IP 3 ]. (b) Calcium oscillation in the node of Ranvier also happens simultaneously with the AP arrival to the node, however with lesser peak amplitudes due to the dimension of the node. Then, the [Ca 2+ ] ER stabilizes to 1.44 mM due to the absence of extracellular inputs triggering the increase of IP 3 .
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 55 Figure 5.5: Synaptic and perinodal neurotransmitter release within a 50-second stimulation. The vesicle fusion and recycling process in the (a) presynaptic bouton and the (b) 19 th node of Ranvier results in stochastic Glu -spikes in the synapse and the perinodal area, respectively.
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 56 Figure 5.6: Transient [Ca 2+ ] a and [IP 3 ] a elevations in the perisynaptic (blue) and perinodal (red) astrocytic processes.
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 57 Figure 5.7: Extracellular gliotransmitter release process. The total intracellular [Ca 2+ ] a activates the SLMV fusion and recycling process (R a , E a , and I a ) in the perisynaptic astrocytic process, simultaneously triggering Glu - a spikes.

  3 , as displayed by the fluctuations in [IP 3 ] in Figure 5.4a. The ER then releases Ca 2+ into the intracellular area, increasing the [Ca 2+ ] elevation peaks in the presynaptic bouton.
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 58 Figure 5.8: Postsynaptic membrane potential and synaptic efficacy. (a) The postsynaptic membrane potential of the dendritic head is dependent on the synaptic [Glu -]. The dendritic spikes coincide with the synaptic Glu -spikes with an average peak amplitude of -39.57 mV. (b)The synaptic efficacy is stable when t is between 0 and 34 s at 0.08, then increases to 0.12.
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 510 Figure 5.10: Tripartite synapse model with feedforward and feedback signaling pathways. The membrane potential (V in ) of the presynaptic neuron axon terminal, as well as the extrasynaptic glutamate concentration (G A ), set the amount of neurotransmitter release (R S ). Vesicles release neurotransmitters into the synaptic cleft each time an action potential arrives. A fraction, ζ, of synaptic glutamate (G S ) activates the postsynaptic spine head, and the astrocytic process receives the remaining fraction spilling out of the synaptic cleft.Synaptic glutamate interaction with mGluRs results in IP 3a production, which subsequently results in CICR from the ER. Endoplasmic reticulum calcium reuptake occurs via SERCA pumps. In addition, [Ca 2+ ] a ions leak from the ER to the cytosol. An increase in the amount of cytosolic C A above threshold results on the gliotransmission release. Gliotransmitters (G A ) activates iGluRs in the postsynaptic spine head and presynaptic bouton, with fractions equal to β and 1 -β, respectively. The sum of the slow inward current (I S IC ) due to G A and the synaptic current (I AMPA ) current results in excitatory postsynaptic potential V out .

Figure 5 . 11 :

 511 Figure 5.11: Astrocytic network model. (a)Each astrocyte is divided into compartments p(i) denoting the astrocytic process where i corresponds to the process number and s n (s m ) denoting the soma where n (m) corresponds to the cell number in the network. Intracellular calcium signaling occurs between processes and soma of individual astrocytes, while IP 3 signaling occurs both intra-and intercellularly (via gap-junction connections). (b) The shift between states of the astrocyte is a Markov process where P corresponds to the event that a cell changes its state. (c) The astrocytes (green stars) form a network via gap junctions (blue lines) with varying topologies: chain where each astrocyte is connected in series, fully connected where the astrocytes form a lattice, and regular where each cell is connected to its k nearest neighbor.

126 CHAPTER 5 .Figure 5 . 13 :

 1265513 Figure 5.13: Intra-and intercellular activities in a single astrocyte. (a) Intercompartment molecular exchange between compartments leads to somatic (blue) and process (red) Ca 2+ dynamics showing local and global events. (b) The somatic P A increase is the summation of IP 3 fluxes from the astrocytic processes. (c)Astrocytic processes exhibit synchronous and asynchronous G A spiking activity following the Ca 2+ events. On the network level, (d) Ca 2+ and (e) IP 3 dynamics of the soma (blue) are also dependent on the molecular concentration levels of its neighboring astrocytes (gray ). (f) Whether the astrocyte can communicate with its neighbors depends primarily on its state.

Figure 5 . 14 :

 514 Figure 5.14: Spectral analysis of Ca 2+ oscillation in (a) the processes and (b) somas.

128 CHAPTER 5 .Figure 5 . 15 :

 1285515 Figure 5.15: Astrocytic network spiking behavior. (a) The raster plots and (b) the Glu -A spikes per second graphs for the chain, full, and regular astrocytic network topologies suggest that the chain topology favors synchronous activity.

Figure 5 . 16 :

 516 Figure 5.16: Comparison between the average spiking rates of the input and the astrocytes in the network.

  Figure 6.1:The tripartite synapse model consists of two layers of neurons and an astrocytic layer in between. The presynaptic neuron is a Poisson spiking neuron whose spike-based event modulates the postsynaptic neuron and the astrocyte. The postsynaptic layer consists of AIF neurons with lateral inhibitions from interneurons (IN). Therefore, the postsynaptic neuron receives three types of inputs whose strengths are defined by the synaptic weights w exc1 , w exc2 , and w inh from the presynaptic neuron through neurotransmission, the astrocyte through gliotransmission, and inhibition from neighboring IN. The IN sense the spiking activity of the coupled postsynaptic neuron and relays it to the neighboring excitatory neurons. The astrocyte then integrates the synaptic inputs whose coupling strengths are controlled by β. Here, the model ensures that in a tripartite connection, the astrocyte modulates the postsynaptic neuron counterpart of its input neuron.

Figure 6 . 2 :

 62 Figure 6.2: Network architecture for image recognition is a three-stage process comprising an input preprocessing unit, a SNAN learning unit, and a classifier unit.

Figure 6 . 3 :

 63 Figure 6.3: STDP curve. Synaptic plasticity, specifically the strengthening and weakening of the synaptic connection between two neurons, is relative to the temporal window between the pre-and postsynaptic spikes. (Parameters: τ pre = τ post1 = 20 ms, τ post2 = 40 ms, η pre = 0.1, η post = -0.1.)

CHAPTER 6 .

 6 NEURON-ASTROCYTE NETWORK FOR IMAGE RECOGNITION exponentially by τ pre dα pre dt = -α pre , τ post1 dα post1 dt = -α post1 , τ post2 dα post2 dt = -α post2 , (6.5)

144 CHAPTER 6 .Figure 6 . 4 :

 144664 Figure 6.4: Sample tripartite synapse dynamics. The spikes represent the regular spiking activity of the input neuron that triggers the fluctuation of the synaptic coupling z from 0 to 1, which then activates the S m signaling pathway. The parameter β controls the fraction of S m influencing the astrocytic Ca 2+ spiking. The postsynaptic membrane potential v is the summation of the excitatory signals from the presynaptic neuron and the astrocyte. (Parameters: dt = 1 ms, input spike rate = 5 Hz, v rest = -70 mV, θ = -40 mV, c thresh = 0.40, g e1 = 1 nS, synaptic delay = 9.62 ms, β = 0.006, τ c = 50 ms, g e2 = 1 nS.)

Figure 6 . 5 :

 65 Figure 6.5: Population rates of (a) First layer neurons and (b) astrocytic layers with an increasing number of tripartite synaptic connections.

Figure F. 1 and

 1 Figure F.2 in Appendix F, respectively, show the synaptic weights of the input-to-first and astrocyte-to-first layer couplings of the SNN and SNANs (with 50% tripartite synapses) after 25 epochs. The patterns suggest which input neurons were inactive and strongly coupled with the first layer neurons. The synaptic weight evolution in Figure6.6 show the ability of the First layer neurons to learn the representative inputs.

1 * H 7 / H 7 / H 7 / H 7 Figure 6 . 6 :

 777766 Figure 6.6: Receptive field evolutions for the nine First layer neurons of the SNN and SNANs with 50% tripartite synaptic components.

  Figure 6.6 also indicates that SNANs with 50% tripartite synapses have higher performance in all network configurations, wherein the maximum accuracy is 69.94% at Epoch 13 for SNAN1, 69.76% at Epoch 25 for SNAN2, and 70.13% at Epoch 23 for SNAN3. From these results, SNAN3 with 50% tripartite synapses leads to maximum classification performance. It is also indicative that the SNAN produces spiking patterns easily categorized by the ML unit. The validation accuracy curves in Figure F.3 of Appendix F, on the other hand, indicate the reverseshowing that the SNN best predicts the output class with maximum accuracy of 70.66% at Epoch 25.

Figure 6 . 8 :Figure 6 . 9 :Figure 6 . 10 :

 6869610 Figure 6.8: SNAN1 training (solid lines) and validation (dashed lines) accuracy for n% tripartite synapses. (Parameters: η exc1pre = 0.0001, η exc1post = 0.01, η exc2pre = 0.000001, w exc1max = 1, w exc2max = 0.001, and β = 0.00005.)

Figure 6 . 11 :

 611 Figure 6.11: Confusion matrices for (a) SNN and (b) SNAN3 with 30% tripartite synapses. The precision and recall are displayed, respectively, below and on the right of the confusion matrix.

Figure 7 .

 7 1aa illustrates the anisotropic and morphologically realistic model, and the corresponding neuronal characteristics and morphological data are in Appendix B.

Figure 7 . 1 :

 71 Figure 7.1: (a) The reconstructed model of the CA3 pyramidal neuron. The morphology of the pyramidal neuron in XY-and YZ axes (left and right, respectively) displays anisotropic features. (b) A single synaptic input. The single pulse synaptic input activated at t = 20 ms and with a maximum amplitude of -55.19 mV combines AMPARs and NMDARs kinetics and follows a double-exponential rise and decay function.

162CHAPTER 7 .Figure 7 . 2 :Figure 7 . 3 :

 77273 Figure 7.2: Signal propagation along the apical dendritic branches. (a) At a distance of 2 µm from the branching point, ten excitatory inputs activate clustered synapses along dendritic branches C and D with their respective activation patterns in (b). The space plots in (c) and (d) show the change in membrane potential of the dendritic length from the distal end of C to soma and from the distal end of D to soma, respectively. (e) Further investigation on the membrane potential during synaptic activation indicates that even though the signals diffuse in all directions, it is still possible to identify the dendritic branch that drives the somatic depolarization by determining the synaptic locations that are first to peak.
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 325 INPUT-OUTPUT QUANTIFICATION

Figure 7 . 4 :

 74 Figure 7.4:The input-output quantification process. (a) The in vivo-like synaptic inputs V i1 , V i2 , and V i3 were measured from the synaptic heads that are 46.67 µm, 28.32 µm, and 38.17 µm from the thresholding point of the primary apical dendritic branch. Inputs V in are subjected to propagation delay and decay before reaching the thresholding point for arithmetic summation, where the resulting sum is the V expected . The measured potential at the thresholding point is termed as V observed . (b) The random spiking frequency of the inputs results in a dynamic and sustained nature. (c) The summation of the predicted attenuated inputs reaching the thresholding point (gray) drove the subthreshold depolarization (black) from the same point. (d) Two consecutive local minima of the membrane potential (V observed ) divided the observed and expected depolarization (V expected ) into time windows (alternating white and orange rectangles). IO quantification compares the maximum observed depolarization (black), and the maximum expected depolarization (gray) within the same time window.

  Figure 7.7:Influence of activated synapses in dendritic integration. In the subthreshold plots, the vertical lines indicate the start of somatic activation per number of inputs, while in the suprathreshold regions, the lines indicate the limit of subthreshold depolarization. In the subthreshold regions (left column), the dendritic integration curve shifts to the right as the number of inputs, n, increases. The range of V expected causing output depolarization in the suprathreshold regions (right column) also shifts to the right with increasing n. (a) In the primary branch, the dendritic integration is strongly supralinear, while the integration in (c) the secondary and (e) tertiary branches, the inputs results in dendritic integration shifting from supralinear to linear to sublinear. Then, in (b) the suprathreshold region of the primary apical branch, the V expected span per n are clustered close to each other, while as the branch becomes more distant from the soma, (d) in the secondary, then in the (f) tertiary branch, the span of V expected becomes more distinct.

Figure D. 3 ,Figure 7 . 9 :

 379 Figure D.3, superimposed on the measured depolarization, is the predicted V observed points. The plots show that the proposed thresholding function indeed follows the dynamic characteristics of dendritic integration. The dendritic integration shifts to the right and varies from supralinear to linear and sublinear described in Figure 7.7. The resulting
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 5 / DISCUSSION 7.5.1/ OPTING FOR A NATURAL NEURONAL RESPONSE IN IO QUANTIFICATION

Figure D. 2 :

 2 Figure D.2: The density plots of input summation V expected show the clustering of thresholding point depolarizations V observed per number of synaptic inputs (3, 5, and 7).

Figure F. 2 :Figure F. 3 :

 23 Figure F.2: Astrocytic-to-First layer synaptic weights after 25 epochs of training. Half of the number of synapses in the SNANs are tripartite connections.
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Table 2 . 1 :

 21 Hodgkin-Huxley model parameters.

	Parameter	Description	Min	Values Max Mean
	C	Membrane capacitance, µF/cm 2	0.80	1.50	0.80
	ḡNa	Sodium channel conductance, mS/cm 2	65	260	120
	ḡK	Potassium channel conductance, mS/cm 2	26	49	34
	ḡL	Leak channel conductance, mS/cm 2	0.13	0.50	0.26
	E Na	Sodium channel reversal potential, mV	+30	+54	+44
	E K	Potassium channel reversal potential, mV	-79	-74	-76
	E L	Leak channel reversal potential, mV	-61	-43	-54

  Ca 2+ ] in a compartment is attributed to the fast kinetics of AP and the intracellular molecular events generating Ca 2+ change. The total [Ca 2+ ] in the compartment, c i , is equal to the summation of the [Ca 2+ ] due to AP, c f ast , and the intracellular transient [Ca 2+ ], c slow , and is described as

	CHAPTER 3. NEUROTRANSMISSION AND NEURAL CODING
	molecules then bind with the IPRs, which open to release Ca 2+ to the cytosol [146]. As
	mentioned, high cytosolic [Ca 2+ ] is toxic to the cell. Therefore, following a rapid [Ca 2+ ]
	transient, excess cytosolic Ca 2+ is pumped back to the ER via the sarco/endoplasmic
	reticulum Ca 2+ ATPase (SERCA) pumps that results in a repetition of Ca 2+ release and
	uptake cycle [146, 148, 155]. On the other hand, the ER leakage channel allows Ca 2+ to
	enter the cytosol to ensure that the cytosolic [Ca 2+ ] will not decrease to 0 [88].
	3.2.2/ MODELING CALCIUM DYNAMICS
	The following dynamics and models describe the intracellular Ca 2+ dynamics within a sin-
	gle compartment, where the external [Ca 2+ ] is held constant at resting conditions. The
	change in [
	3 molecules [157]. The IP 3

  .2)Here, A is the surface area of the compartment, z Ca is the Ca 2+ ion valence, F is the Faraday's constant, and v c is the volume of the compartment. The I Ca is the influx current density per membrane surface area through N-type VDCC, which is directly dependent on the membrane potential V. The I PMCA is the efflux current density per membrane surface area caused by ATP-driven PMCA and is dependent on the intracellular [Ca 2+ ]. The Ca 2+ leak efflux J PMleak represents all remaining currents implicitly described in the model.

	The ohmic current-voltage relation of the Ca 2+ influx, I Ca , consists of both the voltage-single channel dependent current through a single open pore I open

  [START_REF] Bonvento | Astrocyte-neuron metabolic cooperation shapes brain activity[END_REF] . The parameters τ S m , s S m , h S m , and d S m control the time scale, steepness of activation of the sigmoid function, threshold values, and the deactivation rate, respectively.

	4.3.1.3/ HILL FUNCTION-BASED MODEL

  Bushong et al. • Astrocyte Domains in CA1

				(b)	
		il mi			
	Link Radius	Erdos-Rényi	Regular Degree	Shortcut	Spatial Scale-free

Table 7

 7 

.1 and Table 7.3, respectively. Adapted from Lallouette et al. (2014)

Figure 4.9:

The UAR model

[START_REF] Lallouette | Astrocyte networks and intercellular calcium propagation[END_REF][START_REF] Lallouette | Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks[END_REF] 

describes the activity of an astrocyte during ICW propagation. Consider the coupled cells 1 and 2. During the U state, both cells perform in the subthreshold regions. Then, as Cell 1 gets activated, with simultaneous Ca 2+ spiking, during the transition of [IP 3 ] level beyond the threshold (dotted lines), it can supply Cell 2 with IP 3 via their GJC, which results in the activation of Cell 2. When both cells are in the A state, both cells are able to supply IP 3 to each other depending on the [IP 3 ] gradient between the two cells. Once the [IP 3 ] decreases below the threshold (dashed lines) at the same period that the [Ca 2+

Table 5 . 1 :

 51 Extrasynaptic glutamate activities.

	No. of Non-	Average No. of	Average Time	Average [Glu -] a	Average Period
	synaptic	Glu -a Spikes	Before First	Peak (mM)	of [Glu -] a
	Sources	(50-sec	Spike (sec)		elevation (sec)
		Stimulation)			
	0	3.40	14.40	1.7414	4.56
	1	2.35	14.50	1.7955	11.85
	2	1.05	6.05	2.1712	≥ 44.04

Table 5 . 2 :

 52 Synaptic release probability.

		Counts (%)
	Topology	Without Gliotransmission With Gliotransmission
		R S = 0.685 (peak)	R S = 0.756 (peak)
	No Astrocyte	100	0
	Chain	31.43	68.57
	Full	32.48	67.52
	Regular	32.56	67.44

Topology

Figure

5

.17: Average synaptic efficacies (solid lines) in networks with varying astrocytic topologies. The corresponding linear fits (dashed lines) indicate increasing efficacy with time.

Table 6 . 1 :

 61 List of parameters of the postsynaptic neurons with lateral inhibition.

	Parameter	Value	Description
	Postsynaptic Excitatory Neurons
	v rest	-65 mV	Membrane resting potential
	v exc1	0 mV	Fast synaptic input reversal potential
	v exc2	0 mV	Slow synaptic input reversal potential [338]
	v inh	-100 mV	Inhibitory synaptic reversal potential
	τ	100 ms	Membrane time constant
	τ exc1	1 ms	Excitatory synapse (fast) time constant
	τ exc2	600 ms	Excitatory synapse (slow) time constant [338]
	τ inh	2 ms	Inhibitory synapse time constant
	v reset	-65 mV	Reset potential
	v thresh	-52 mV	Spiking threshold level
	t re f	5 ms	Refractory period
	θ 0	20 mV	Spiking threshold offset
	τ θ	107 ms	Spiking threshold time constant
	α ′	0.05 mV	Increase in spiking threshold
	Postsynaptic Inhibitory Neurons
	v rest	-60 mV	Membrane resting potential
	v exc1	0 mV	Synapse reversal potential
	τ	100 ms	Membrane time constant
	τ exc1	1 ms	Excitatory synapse time constant
	v reset	-45 mV	Reset potential
	v thresh	-40 mV	Spiking threshold
	t re f	2 ms	Refractory period

Table 6 . 2 :

 62 Simplified astrocytic model parameters.

	Parameter	Value	Description
	Neuron-astrocyte coupling	
	τ S	10 ms	Synaptic delay time constant
	s S	1	Steepness of activation
	h S	0	Activation control
	d S	3	Relaxation control
	IP 3 production		
	τ S m	100 ms	Time constant
	s S m	100	Steepness of activation
	h S m	0.45	Threshold
	d S m	3	Deactivation rate
	Astrocytic Ca 2+		
	ϵ c	0.04	Characteristic time control
	c 1	0.13	Ca 2+ oscillation control parameters
	c 2	0.9	
	c 3	0.004	
	c 4	2/e c	
	r	0.31	Ca 2+ oscillation initial state
	τ c	600 ms	Time constant for Ca 2+ oscillation

Table 6 . 3 :

 63 Set of hyperparameters per configuration.

	Hyperparameters	SNN	SNAN1	SNAN2	SNAN3
	η exc1 pre	0.0001	0.0001	0.0001	0.0001
	η exc1 post	0.01	0.01	0.01	0.01
	η exc2 pre	-	0.000001	0.00001	0.000001
	η exc2 post	-	-	-	-
	w exc1 max	1	1	1	1
	w exc2 max	-	0.001	0.01	0.001
	β	-	0.00005	0.00005	0.0001
	Refer to Appendix E for more information regarding the computing resources specifica-
	tions.				

Table 6 . 4 :

 64 Epochs of the network parameters with optimal model complexity.

	% Tripartite	SNAN1		SNAN2		SNAN3	
	Synapse	Train Accuracy (%)	Epoch #	Train Accuracy (%)	Epoch #	Train Accuracy (%)	Epoch #
	0	67.76	10	67.76	10	67.76	10
	10	67.30	14	67.30	14	67.94	25
	20	67.12	19	65.90	12	66.65	20
	30	68.94	18	66.34	12	68.41	19
	40	67.56	7	67.45	24	67.45	25
	50	69.26	15	68.83	10	66.36	25
	60	67.13	25	67.07	24	68.97	9

Table 6 . 5 :

 65 Test accuracy.

	% Tripartite Synapse	SNAN1 SNAN2 SNAN3
	0	82.46	82.46	82.46
	10	65.46	65.46	66.80
	20	67.54	66.44	71.96
	30	68.94	69.98	75.28
	40	67.26	67.32	70.26
	50	68.56	21.66	72.44
	60	71.20	11.28	71.96

Table 7 . 1 :

 71 Dynamic thresholding function parameters.

	Branch	a	b	c	d	θ	V max	Multiple R 2
	Primary	-0.023	7.900	0.007	-0.865	0.150	0.975	0.991
	Secondary	0.011	1.357	0.004	-0.115	0.200	0.830	0.943
	Tertiary	0.017	1.395	-0.001	-0.107	0.270	0.850	0.997

Table A . 3 :

 A3 Action potential propagation in the node of Ranvier.

	Parameter	Value	Description
	ḡNa n ḡK n	266.70 mS/cm 2 66.70 mS/cm 2	Nodal Na + channel conductance [379] Nodal K + channel conductance [379]
	ḡL n V Na n V K n	1.76 mS/cm 2 55 mV -90 mV	Modal leak channel conductance [368] Nodal Na + channel reversal potential [368] Nodal K + channel reversal potential [368]
	V L n	-70 mV	Nodal leak channel reversal potential [379]

Table A . 4 :

 A4 Presynaptic neuron calcium dynamics. Presynaptic bouton surface area 1.9735×10 -8 cm 2 Nodal surface area[START_REF] Allan | Neuron morphology influences axon initial segment plasticity[END_REF] Unless otherwise stated, the values are from the study of Tewari and Majumdar[START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF] and Chan et al.[START_REF] Chan | The role of neuron-glia interactions in the emergence of ultra-slow oscillations[END_REF]. 75×10 -3 µM -1 ms -1Ca 2+ association rate for site S 1 k -1 4×10 -4 ms -1 Ca 2+ dissociation rate for site S k + 2 2.50×10 -3 µM -1 ms -1 Ca 2+ association rate for site S 2 k - 2 1×10 -3 ms -1 Ca 2+ dissociation rate for site S k + 3 1.25×10 -2 µM -1 ms -1Ca 2+ association rate for site S 3 k - Glu -clearance rateThe values are taken from Tewari and Majumdar[START_REF] Shivendra | A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity[END_REF].

		Table A.7: Astrocytic gliotransmitter release.
	Parameter	Value	Description
	Parameter A k + 1 3.3 Value 10×10 -3 ms -1 τ rec,a 800 ms 1.2398×10 -8 cm 2 v c 1.2982×10 -16 L τ inact,a 3 ms 3.0995×10 -16 L c thresh,a 196.69 nM z Ca 2 n v,a 12 F 96487 C/mole g v,a 20 mM R 8.314 J/K g c,a 10 ms -1	Description Ca 2+ dissociation rate for site S Vesicle recovery time constant Vesicle inactivate time constant Presynaptic bouton volume Astrocyte response threshold Nodal volume [379] Number of SLMV ready to be released Calcium valence [Glu -] in each vesicle Faraday's constant Real gas constant
	T	293.15 K	Absolute temperature
	ρ Ca	3.20 µm -2	N-type Ca 2+ channel density
	g Ca	2.30 pS	N-type Ca 2+ channel conductance
	V Ca	125 mV	Ca 2+ channel reversal potential
	c ext	2 mM	External Ca 2+ concentration
	c rest i τ m Ca	0.10 µM 10 ms	Resting intracellular Ca 2+ concentration Time constant
	V m Ca	-17 mV	Half-activation voltage of N-type Ca 2+ channel
	k m Ca	8.40 mV	Slope factor of N-type Ca 2+ channel
	i PMCa	0.40 µA/cm 2	Maximum PMCa current
	K PMCa	0.10 µM	[Ca 2+ ] at which v PMCa is halved
	v leak	0.001022 ms -1	Maximum leak of Ca 2+
	a 2	0.20 µM/s	Inhibitory Ca 2+ binding constant
	c 1	0.1850	Ratio of the ER volume to the volume of the bou-
			ton and the volume of the node
	v 1	30 s -1	Maximum IP 3 receptor flux
	v 2	0.2374 µs -1	Ca 2+ leak rate constant
	v 3	0.90 µM/s -1	SERCA maximal pump rate
	k 3	0.10 µM	SERCA maximal pump rate
	d 1	0.13 µM	IP 3 dissociation constant
	d 2	1.0490 µM	Inhibitory Ca 2+ dissociation constant
	d 3	943.40 nM	IP 3 dissociation constant
	d 5	82.34 nM	Activation Ca 2+ dissociation constant
	v g	0.0620 µM/s	Maximum production rate of IP 3
	k g	0.78 nM	[Glu -] at which v g is halved
	τ p	0.14 s -1	IP 3 degradation constant
	p 0	160 nM	Initial [IP 3 ]

Table A . 8 :

 A8 Postsynaptic neuron membrane potential.

			195
	NEURON-ASTROCYTE NETWORK MODEL PARAMETERS
	Parameter	Value	Description
	R m	0.79×10 5 MΩ	Spine head resistance
	V rest post	-70 mV	Postsynaptic resting membrane potential
	τ post	50 ms	Postsynaptic membrane time constant
	g AMPA	0.35 nS	AMPAR conductance
	V AMPA	0 mV	AMPAR resting membrane potential
	α AMPA	1.10 µM/ms	AMPAR forward rate constant
	β AMPA	190 s -1	AMPAR backward rate constant
	The values are taken from Tewari and Majumdar [88].	

Table A . 9 :

 A9 Synchronous neurotransmitter release.

	Parameter	Value	Description
	Neurotransmitter release process	
	τ f	3 ms	Facilitation time constant
	τ d	800 ms	Depression time constant
	τ P	120 s	Presynaptic receptors inactivation time con-
			stant
	O P	0.0015 µM -1 ms -1	Presynaptic receptors activation rate
	U 0	0.8	Resting synaptic release probability
	ξ S	1	Effect of gliotransmission on synaptic re-
			lease
	Synaptic glutamate	
	τ c	25 ms	Glutamate clearance time constant
	ϱ c	0.005	Vesicular versus mixing ratio
	G S T	200 mM	Total vesicular glutamate concentration
	Astrocytic IP 3		
	P 0	0.16 µM	Equilibrium IP 3 concentration [462]
	τ IP 3 r IP 3	1/0.00014 ms 0.0072 ms -1	Time constant [462]

Table A . 10 :

 A10 Postsynaptic membrane potential.

	198 204							
	MORPHOLOGY (STANDARDIZED)	
			Segment	X		Y	Z	Radius	Connected
			Number					to Segment
									Number
					0		0	0	6.841	-1
					6.27		2.67	0.07	6.841	1
			-6.28 Primary Apical Dendrite		-2.67	-0.07	6.841	1
		15			-1.05		17.69	-4.54	0.445	1
					-2.34		23.95	-9.39	1.425	4
	Density	5 10		7	-3.46 -2.57 0 1.50		34.67 53.71 73.13 83.08	-8.12 -11.63 -10.14 -4.88	0.487 0.514 0.658 1.737	5 6 7 8
					5.73		100.57	-10.43	1.152	9
		0	0.00	0.25	7.96 11.82 0.50	106.80 119.06 0.75 1.00	7.70 -2.94	0.515 0.512	10 11
				13.75 V expected		129.38	-5.68	0.964	12
					15.66		140.69	-5.39	0.489	13
					17.15		149.42	-0.16	0.785	14
					17.10		157.77	-6.95	0.766	15
					15.25		164.46	-3.79	0.706	16
					4.39		173.25	4.37	0.460	17
					-5.97		179.81	7.52	0.635	18
					-10.29		183.52	2.60	0.458	19
					-13.34		187.94	-7.26	0.566	20
					13.59		108.46	-8.21	0.961	10
					20.86		115.57	-7.01	1.268	22
					28.75		121.56	-7.85	0.731	23
					39.95		131.31	-5.58	0.384	24
					50.84		139.84	2.63	0.315	25
		Parameter	Value 56.40		144.54	-0.20	Description 0.896	26
		Excitatory synaptic input -2.79	80.84	-9.95	0.624	8
		τ N τ r N J S ζ		10 ms -6.97 0.5 ms -12.49 6 -20.47 0.75 -23.81 -27.86	87.92 97.54 108.23 112.85 117.42	-8.78 -5.55 -5.29 -5.18 -8.08	0.676 EPSC decay time 28 0.622 29 EPSC rise time 0.373 30 Synaptic efficacy 0.315 31 Efficacy of synaptic transmission 0.629 32
		Slow inward current -30.91		119.55	-4.03	1.157	33
		τ S			600 ms -31.87	125.25	-6.89	SIC decay time 1.089 34
		τ r S J A I A		20 ms -33.28 68 -33.81 10 mV 3.06 17.88	131.15 135.79 0.33 0.46	-3.74 -3.63 3.03 -3.92	0.771 SIC rise time 0.698 SIC efficacy 0.689 SIC amplitude 0.315	35 36 1 38
					23.30		0.84	-8.90	0.587	39
	Unless stated, values are from De Pitta and Brunel [178]. 28.18 -0.11 -0.91	0.871	40
					33.11		0.11	-3.90	0.315	41
					37.64		0.64	-2.87	0.315	42
					43.85		0.65	-4.86	0.587	43
					51.54		1.49	-7.82	0.708	44
					55.83		1.71	-8.80	0.524	45
					66.27		2.74	-7.75	0.509	46
					11.84		-6.17	1.86	0.769	1
					15.71		-7.58	6.83	1.182	48
					19.61		-8.64	6.81	0.607	49
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(a) The subthreshold IO curve in the primary dendrite (dendritic branch connected to the soma) is strongly supralinear between [0, 0.1] of V expected and V observed , while in (b) the suprathreshold region, the spiking amplitude is constant at 0.975. (c) The secondary apical dendrite displays a nonlinearity that deviates from linear to supralinear, and after crossing V expected = 0.1, shifts to sublinear. (d) The range of V expected necessary for a successful spike exceeds the range in (b) but with a lower spiking amplitude (0.83). (e) The tertiary apical dendrite produces a subthreshold nonlinearity that is almost similar to (c), while the suprathreshold spiking amplitudes slopes down (m = -3.77). Moreover, the orange regions in the subthreshold plots (a, c, and e) represent the range of V expected causing a successful spike in the suprathreshold region, while the orange regions in the subthreshold plots (b,d, and f) indicates the range of subthreshold points. These boundaries indicate that the spiking threshold for each dendritic branch increases (0.035 in (a), 0.115 in (c), and 0.245 in (e)) with respect to the distance from the soma and the location in the arborization of the dendritic branch. Besides, the subthreshold and suprathreshold regions overlap, suggesting that the thresholding function is not a simple sigmoid function.

170CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME Another striking feature of the IO transformation is the level of V observed and the range of V expected . In the primary dendrite (Figure 7.5a), the suprathreshold dendritic integration output lies between 0 and 0.1 of V observed , which is also the same input summation range. V expected > 0.1 results in somatic spiking. In the secondary (Figure 7.5c) and tertiary dendrites (Figure 7.5e), the dendritic integration plateaus after crossing V expected = 0.1 at a level lower than the threshold (V observed = 0.27). The input summation range causing a subthreshold response increases, from the primary to the tertiary dendrites (the dendritic branch gets further away from the soma). The smaller range of V expected in the primary dendrite correlates with the large voltage decay of synaptic inputs reaching the branching point. The peak of observed depolarization in the suprathreshold region also decreases with respect to the distance and number of bifurcations from the soma. In primary dendrite (Figure 7.5b), successful spiking produces a peak depolarization of 0.975 (37.5 mV), while in the secondary dendrite (Figure 7.5d), the peak is constant around 0.83 (21.30 mV). V observed in the tertiary dendrite (Figure 7.5f) slopes down from 0.86 (24.6 mV) to 0.84 (22.4 mV). Furthermore, the range of input summation resulting in successful spikes gets wider. In Figure 7.5b, successful spikes are concentrated between 0.035 to 0.135. In Figure 7.5d and 7.5f, spikes are spread within [0.115, 0.625] and [0.245, 0.775], respectively.

Furthermore, the minimum input amplitude necessary for a successful spike changes with dendritic location. The gray areas in subthreshold plots (Figure 7.5a 7.5c, and 7.5e) indicate the ranges of V expected that resulted in somatic spiking, while in the suprathreshold regions (Figure 7.5b, 7.5d, and 7.5f), the gray areas indicate the subthreshold ranges. The minimum input summation for suprathreshold spiking shifts to the right, from 0.035 in the primary branch (Figure 7.5a), 0.115 in the secondary branch (Figure 7.5c) to 0.245 in the tertiary branch (Figure 7.5e). In the dendritic integration viewed within-branched, it appears that the spiking threshold differs as a consequence of heterogeneity in distributed active mechanisms along the dendrites. Then, considering that the dendrites received the same input combinations in terms of the number of activated synapses (three, five, and seven), the range of subthreshold values that the dendrites produced expands. Moreover, the subthreshold and suprathreshold areas overlap. There are subthreshold values under the region where successful spikes occurred. It suggests that the thresholding function is not a straightforward sigmoid because a sigmoid function considers the points within the overlapping regions as errors.

The within-branch integration results demonstrate that the thresholding function is asymmetric, in contrast with a sigmoidal function. The subthreshold integration is a linearsupralinear-sublinear function dependent on the branch location within the dendritic arbor and whose degree of integration is influenced by the active mechanisms and the strength of the driving forces of the synaptic inputs.

7.4.2/ LOCATION-DEPENDENT DYNAMICS

We analyzed the effects of segregated and clustered synaptic input locations on the within-branched dendritic integration. The density plots in Figure D.1 show the distribution of V expected /V observed for each synaptic location along the dendritic branch. The plots suggest that synaptic locations have an inconsiderable influence on dendritic depolarization, which is a direct consequence of the application of synaptic input decay and delay The depolarizations in the soma and the apical thresholding point form a linear relationship in the subthreshold (0 ≤ V primary ≤ 0.125) and concentrated in the suprathreshold with significant discontinuity in between. (b) The relationship between V secondary and V soma is strongly sublinear in the subthreshold region (0 ≤ V secondary ≤ 0.5) and constant with increasing V secondary inputs. (c) Overall, the relationship between V tertiary to V secondary is linear, with a slight fluctuation from the linearity. (c) The relationship between the tertiary branch inputs and the soma is comparable with (b) because the secondary thresholding point also transforms the inputs flowing from the tertiary dendrites. The following are the thresholding functions for each dendritic branch and with respect to the parameters X 1 (input summation) and X 2 (number of inputs from 1 to 10). For all dendrites, the amount of X 1 required to produce an AP increases as the number of activated inputs increases. Thus, in (a), an input level of ∼0.02 can result in an AP. Furthermore, as the dendritic branch becomes more distal from the soma, from the (b) secondary to (c) the tertiary dendrite, greater X 1 is required. Therefore, the proposed thresholding function is consistent with the results presented in the previous sections. For more information on the cluster characteristics, visit https://ccub.u-bourgogne.fr/ dnum-ccub/ccubw3/puissance-cluster-iso.html.
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Cluster Characteristics

The CTE-POWER system overview shown below is taken from https://www.bsc.es/ supportkc/docs/CTE-POWER/overview/. CTE-POWER is a cluster based on IBM Power9 processors, with a Linux Operating System and an Infiniband interconnection network.

It has the following configuration:

• 2 login node and 52 compute nodes, each of them: The operating system is Red Hat Enterprise Linux Server 7.5 alternative. 

APPENDIX F RUNTIME SUMMARY