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1
INTRODUCTION

What makes the brain so powerful? Is it the millions of tightly packed but well-organized
neurons efficiently intercommunicating via synapses? Is it its capacity to learn informa-
tion, store it in memory, and retrieve it for future use? Or is it the multilayer networks exe-
cuting parallel computations while systematically allocating the brain energy resources?
For decades, these questions have been the subject of neuroscience investigation, and
the brain continuously inspires neural engineers. As technology advances, our under-
standing of the brain (its components, organization, and processes) becomes ever more
complex. Indeed, it is a well-grounded knowledge that neurons are the fundamental com-
puting elements of the brain, whose cellular activities are driven by the interplay between
their chemical and electrical dynamics. With the advent of neurophysiological measure-
ment tools, neuroscientists recently introduced astrocytes, a type of glial cells, as an
active component capable of executing neuron-like functions, such as information trans-
mission and computation, but within a longer time scale and with an entirely chemical
activation. This concept, hence, reshapes our perspective regarding the brain – which is
now a more powerful system than ever.

As the name implies, astrocytes are star-shaped glial cells constituting 20% to 40% of
the total number of cells in the brain [1]. Previously, astrocytes are thought of as passive
elements, directing the axons, enwrapping synapses, providing metabolic and structural
support to neurons and blood vessels, and maintaining brain homeostasis by regulating
extracellular molecules. Glial cells outnumber neurons, and the astrocyte-to-neuron ratio
can be one depending on the brain region [2, 3]. An astrocyte fills the interstitial space be-
tween neurons, allowing the astrocytic processes to cover thousands of synapses formed
by hundreds of neurons passing through its territory. Therefore, the proximity of astro-
cytes to neurons, especially in the synapses, hints that astrocytes can be more than
structural support but may also influence neuronal communication. More than 20 years
ago, shortly after Araque et al. [4] proposed the concept of tripartite synapse, where the
astrocyte forms the third component in pre- to postsynaptic neuronal communication, the
research on astrocyte-mediated neuronal signaling expanded considerably.

Astrocytes are electrically passive, and the signaling mechanisms are slow; howbeit, as-
trocytes display numerous similarities with neurons.

• Presynaptic neurotransmitters-mediated activation of metabotropic glutamate
(Glu−) receptors (mGluRs) on the astrocytic process membrane activates the pro-
duction of a secondary messenger called Inositol trisphosphate (IP3) that triggers
the IP3-dependent calcium (Ca2+) oscillation in the cytosol [5, 6]. Therefore, astro-
cytes indirectly integrate presynaptic signals (like postsynaptic neurons) via intra-
cellular Ca2+ diffusion.

1
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• Astrocytes are active in terms of their cytosolic Ca2+ concentration ([Ca2+]) levels,
where [Ca2+] above a threshold generates Glu− spikes in the extrasynaptic space
[7, 8]. In neurons, membrane potential above a certain threshold generates an
action potential (AP).

• The released extrasynaptic Glu− diffuses to the pre- or postsynaptic neuron mem-
branes, creating signaling pathways – the same in neurons with its released neu-
rotransmitters (synaptic Glu−) diffusing through the synaptic or extracellular space
[7].

• If neurons communicate via the synapses (neuronal junctions), astrocytes commu-
nicate via gap junctions [9].

• Lastly, Ca2+ imaging techniques suggest that astrocytes form a network where cells
communicate via intercellular Ca2+ wave (ICW) propagation [10].

Neurons and astrocytes together form a spiking neuron-astrocyte network. In artificial
intelligence (AI), spiking networks are the next-generation networks that closely mimic
brain computation and whose signal transmission operates on spike events [11] . Neural
engineers are now recognizing the computational capabilities of astrocytes and incorpo-
rating their slow dynamics into applications such as network synchrony [12], fault toler-
ance [13], and autoencoders [14]. Though there are numerous studies on their biological
characteristics and signaling mechanisms, the definite influence of astrocytes in network
information transmission is not fully defined yet. In addition, research on the potential of
astrocytes as computational units in neural networks, be it biological or artificial, is just
beginning.

In this study, we explore the capacity of astrocytes to influence neural activities, from cel-
lular level computation to network-level neural coding. The primary defined influence of
astrocytes is their modulation of synaptic plasticity [15]; accordingly, we study the cellular
elements and network formation comprising the hippocampus, the brain region responsi-
ble for memory formation and learning. Inspired by the biological neuron-astrocyte inter-
actions, we then develop an astrocyte-mediated spiking neural network for deep learning
applications. Here, we implement a bottom-up strategy, modeling the neuronal and as-
trocytic signaling mechanisms, the information transfer within the tripartite synapse, the
signal integration leading to neuronal and astrocytic activation, and the neuron-astrocyte
network communication. Specifically, we aim to

1. Model a biologically plausible tripartite synapse to identify the extent to which synap-
tic plasticity benefits from gliotransmission,

2. Simulate the ICW propagation in the astrocytic network and determine the impact
of astrocytic heterogeneity in neural communication,

3. Develop a neuron-astrocyte network using simplified models capable of recognizing
images using unsupervised learning, and

4. Propose an integration scheme for faster learning.

The tripartite synapse is a multivariable and complex system, and developing a biologi-
cally plausible network means that we must delve deeper into the extracellular connection
between neurons and astrocytes and their intracellular processes. Chapter 2 presents the
network formation in the hippocampus consisting of the so-called trisynaptic circuit and
the roles of this region in memory storage and learning. Furthermore, it defines the bio-
physical characteristics of pyramidal neurons and their AP generating mechanisms. In
parallel, it presents the computational models describing the electrical dynamics of the
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membrane leading to the AP activation in the axon initial segment (AIS) and its trans-
mission along the myelinated axon through saltatory conduction. Chapter 3 is about the
neural transmission from the pre- to the postsynaptic neuron. The transmission starts
from the slow and fast Ca2+ dynamics triggering the neurotransmitter release into the
synaptic cleft to the synaptic integration by the postsynaptic neuron. It simultaneously
presents the mathematical models describing the neuronal synaptic integration and neu-
ral coding scheme. Chapter 4 describes the biophysical characteristics and chemical
signaling pathways in astrocytes and the related computational models, specifically the
slow IP3-dependent Ca2+ dynamics driven by the presynaptic signals and the astrocytic
Glu- modulating the pre- and postsynaptic activities. As the astrocytes create a network
separate from the neurons, a syncytium connected via gap junctions and communicate
through ICW propagation, Chapter 4 also presents the general framework of the astro-
cytic network detailing the intra- and extracellular Ca2+ diffusions within.

We illustrate and model the interconnection between the neurons and astrocytes forming
the tripartite synapse based on the biological characteristics of the cellular elements in
the CA3-CA1 hippocampal region in Chapter 5. This chapter consists of two parts. First,
it focuses on the tripartite synapse dynamics with the stochastic neurotransmitter release
process and where the astrocytic Glu- signaling pathway forms a feedback system by
modulating the presynaptic release probabilities. Here, we determined the astrocytic in-
fluence on synaptic efficacy. Then, we extend the tripartite synapse communication into
a neuron-astrocyte network. In this part, the astrocyte creates feedforward and feedback
pathways that modulate the presynaptic release probability and the postsynaptic mem-
brane potential. In addition, the astrocytes perform Ca2+ integration, and ICW propagates
in the astrocytic network with varying connectivity. Then, we discussed the influence of
heterogeneity of the astrocytic network on the communication strength between neurons.
The models were developed using MATLAB and simulated using the high-performance
computing (HPC) resources of the Université de Bourgogne.

The simulation results in Chapter 5 indicate that astrocytes enhance neural activities
depending on the astrocytic connectivity and network topology. Inspired by their bio-
logical impact, we developed an artificial spiking neuron-astrocyte network capable of
recognizing features and classifying images and presented the results in Chapter 6. The
handwritten digits from the standard MNIST (Modified National Institute of Standards and
Technology) dataset [16] are converted into spiking frequencies that trigger the spiking
activities of the Poisson neurons in the Input layer. The synapses are densely connected
with the adaptive Integrate-and Fire (AIF) neurons with later inhibitions of the First layer.
Between these two neuron layers is the astrocytic layer that integrates the presynaptic sig-
nals and creates additional inputs that modulate the postsynaptic neurons. The neurons
learn following the spike-timing-dependent plasticity algorithm. The classifier unit deter-
mines the input class based on the spiking patterns produced by the First layer neurons.
The networks were simulated using the Brian2 simulator with the python programming
language. This study is a collaboration with the Department of Computer Systems, En-
gineering and Telematics of the University of Extremadura, Spain, and is funded by the
HPC-Europa3 Transnational Programme (INFRAIA-2016-1-730897) with the Barcelona
Computing Center, which provided the computing resources. To our knowledge, this is
one of the first studies on the development of spiking networks utilizing astrocytes as
computational components for deep learning purposes.

Researchers suggest that learning is branch-specific rather than cell-specific. Chapter 7
shows that neurons perform more complex computations than formerly presumed. Here,
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we present a multilayer and multiplexer dendritic integration scheme based on the CA3
pyramidal neuron from the rat hippocampus. The dendritic abstraction integrates fast and
slow inputs (i.e., from neurons and astrocytes) while considering the voltage decay and
signal delay resulting from the signals travel from the synapses to the soma along the
dendritic length for neural coding. Therefore, we introduce an Input-Output (IO) transfor-
mation method and present an activation function dependent on the synaptic locations
and number of activated synapses. The CA3 pyramidal neuron model was developed us-
ing the NEURON simulation platform [17]. We analyzed the spatiotemporal signals and
determined the activation function parameters using the R programming language.

Lastly, we conclude our study and offer our perspectives for future research in Chapter 8.
Then, Chapter 9 shows the list of our publications and communications.



2
BIOPHYSICAL PROPERTIES AND

DYNAMICS OF NEURONS

2.1/ INTRODUCTION

The brain is perhaps the most complex and sophisticated system that nature has devised.
It comprises billions of tightly packed cellular elements communicating and cooperating
via molecular and electrical events to perform multiple functions simultaneously and ef-
ficiently. It is widely known that the cellular elements called neurons are the primary
underlying component of the brain. Myriads of these neurons create subsystems that
interact with each other in a complicated manner. Recently, neuroscientists introduced
astrocytes, a type of glial cells, as information processing units rather than merely as
structural supports, making the system even more complicated. To understand how the
human brain works, we have to delve closer to the organization of its biological substrate.
Then, to artificially recreate the neuron-astrocyte system, we have first to understand the
fundamental biological components of the brain and their dynamics regarding information
processing.

This chapter focuses on the subregion of the temporal lobe called the hippocampus. A
comprehensive collection of studies on the hippocampus demonstrates its critical function
in memory formation, storage, and retrieval. However, it is challenging to determine the
exact capacity of the hippocampus since information and memory processes are carried
out in various timescales, from milliseconds to days even. So, why are we focusing on the
hippocampus? It is because of the very same reason that it can store memory, learn from
past experiences, retrieve information, use them to simulate the future, and cooperate
with the prefrontal cortex for decision making, which is the main principle behind artificial
neural networks, for instance, in deep learning.

This chapter defines the hippocampus, its subfields and cellular components, and its im-
portance in brain information processing and memory. It focuses on the morphology,
internal structures, and molecular components of the hippocampal neurons. Then, we
describe the ion transfer through voltage-gated ion channels and illustrate its electrical
influence on the membrane potential. We describe the interplay between the chemical
dynamics and the electrical dynamics and how they result in action potentials (APs), the
primary information-carrying signal in the brain. In parallel, this chapter also includes
the state-of-the-art describing the neuron processes, AP generation, and spiking mecha-
nisms. We then tackle the AP propagation from the AIS, as it travels through the series
of myelinated segments and nodes of Ranvier until reaching the synaptic axon terminals.
These models are significant in further understanding of the biological properties and
computational capacity of the neuron.

5



6 CHAPTER 2. BIOPHYSICAL PROPERTIES AND DYNAMICS OF NEURONS
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declarative memories. Examples are experiments that used  electrical 
stimulation or neural recordings from the temporal lobe. Further evi-
dence came from cases of amnesia that resulted from damage to the 
temporal lobes. Before considering the studies that suggest that memory 
storage involves the medial temporal lobes, let’s look at the anatomy of 
this brain region. 

Anatomy of the Medial Temporal Lobe.  The temporal lobe is located 
under the temporal bone, so named because the hair of the temples is 
often the fi rst to go gray with the passage of time ( tempus is Latin for 
“time”). The association of the temporal lobe with time was fortuitous as 
this region of the brain is important for recording past events. The medial 
portion of the temporal lobe contains the temporal neocortex, which may 
be a site of long-term memory storage, and a group of structures intercon-
nected with neocortex that are critical for the formation of declarative 
memories.

The key structures are the hippocampus, the nearby cortical areas, 
and the pathways that connect these structures with other parts of the 
brain (Figure 24.12). As we saw in Chapter 7, the  hippocampus  is a 
folded structure situated medial to the lateral ventricle. The name means 
“seahorse,” a resemblance you can see in Figure 24.13. Ventral to the 
hippocampus are three important cortical regions that surround the 
rhinal sulcus: the  entorhinal cortex , which occupies the medial bank 
of the rhinal sulcus; the  perirhinal cortex , which occupies the lateral 
bank; and the  parahippocampal cortex, which lies lateral to the rhinal 
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▲

FIGURE 24.12 
Structures in the medial temporal 
lobe involved in declarative 
memory formation.   (a) Lateral and 
medial views show the location of 
the hippocampus in the temporal 
lobe.  (b) The brain is sectioned coro-
nally to show the hippocampus and 
cortex of the medial temporal lobe. 

▲ FIGURE 24.13 
The hippocampus.  In Greek mythology, 
the hippocampus was a creature com-
bining the front of a horse with the hind 
end of a dolphin or fish. Here a dis-
sected hippocampus is shown next to a 
seahorse. (Source: Laszlo Seress/Wiki-
media Commons.) 

823-864_Bear_24_revised_final.indd   838823-864_Bear_24_revised_final.indd   838 12/20/14   8:08 AM12/20/14   8:08 AM

Figure 2.1: The location of the hippocampus in the brain. The brain section, sliced coronally, shows the
hippocampus and the parahippocampal region of the medial temporal lobe. The image was extracted from
Bear et al. [21].

2.2/ THE HIPPOCAMPUS

The hippocampus is a critical brain structure, especially in learning, memory, and cogni-
tion [18–20]. The morphological structure of the hippocampus resembles a Greek mythi-
cal creature called the ’hippocampus’ or a seahorse [21], thus the name. It is a complex
and folded structure located in the medial temporal lobe. The coronal brain slice in Fig-
ure 2.1 shows the hippocampal system divided into the hippocampal formation and the
parahippocampal region, which includes the cortical regions ventral to the hippocampus
(the entorhinal cortex, the perirhinal cortex, and the parahippocampal cortex) [22]. There-
fore, the hippocampus location in the temporal lobe is vital to its time-dependent memory
functions [23, 24] and its association with the decision-making function of the prefrontal
cortex via the entorhinal cortex [22, 25]. In the 1960s, researchers discovered that the
hippocampus can be removed from the brain of experimental animals, sliced, and still be
alive in vitro [21]. The brain slice preparation paved the way for thousands of studies on
the hippocampus (and because the hippocampal structures in the human brain also exist
in monkey and rat brains [22]), making it one of the most studied subregions of the brain
[18, 21].

2.2.1/ HIPPOCAMPAL TRISYNAPTIC CIRCUIT

The hippocampus comprises distinct and interconnected subfields: the dentate gyrus
(DG) and the Cornu Ammonis (from CA1 to CA4) subfields, which form two sheets of
neurons folded onto each other, and the subiculum [18, 20, 21]. Figure 2.2a displays the
coronal (perpendicular to the long axis) section of the main body of the hippocampus.
Note that the distribution of the subfields is nonuniform and that the connections extend
along the hippocampal length [18, 27]. We focus on the arrangement in the hippocampus
widely recognized as the trisynaptic circuit, which is the three sets of connections from
the entorhinal cortex through the DG subfield and to the CA3 and CA1 areas [21, 28].
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▲

FIGURE 25.5
Some microcircuits of the hippocampus.  ① Informa-
tion flows from the entorhinal cortex via the perforant 
path to the dentate gyrus. ② The dentate gyrus granule 
cells emit axons called mossy fibers that synapse upon 
pyramidal neurons in area CA3. ③ Axons from the CA3 
neurons, called the Schaffer collaterals, synapse upon 
pyramidal neurons in area CA1.

1

2

3

Fornix

Entorhinal
cortex

CA3

CA1
Rhinal fissure

Dentate
gyrus

Strengthening Synapses 

Consideration of neural network models, such as the one shown in 
Figure 25.4, indicates that both increases and decreases in synaptic 
weights can shift neuronal selectivity and store information. We begin 
our discussion of how this synaptic plasticity occurs with  long-term 
potentiation (LTP) , originally discovered in the hippocampus, a brain 
region critical for memory formation. (LTP was also discussed in the con-
text of brain development in Chapter 23.) 

Anatomy of the Hippocampus. The hippocampus consists of two thin 
sheets of neurons folded onto each other. One sheet is called the  dentate 
gyrus , and the other  Ammon’s horn. Of the four divisions of Ammon’s 
horn, we will focus on two: CA3  and  CA1 (CA stands for  cornu Ammonis , 
Latin for “Ammon’s horn”).

Recall from Chapter 24 that a major input to the hippocampus is 
the  entorhinal cortex. The entorhinal cortex sends information to the 
hippocampus by way of a bundle of axons called the  perforant path . 
Perforant path axons synapse on neurons of the dentate gyrus. Dentate 
gyrus neurons give rise to axons (called mossy fi bers) that synapse on cells 
in CA3. The CA3 cells give rise to axons that branch. One branch leaves 
the hippocampus via the fornix. The other branch, called the  Schaffer 
collateral , forms synapses on the neurons of CA1. These connections, 
summarized in Figure 25.5, are sometimes called the  trisynaptic circuit , 
because three sets of synaptic connections are involved: 

1. Entorhinal cortex → dentate gyrus (perforant path) synapses 
2. Dentate gyrus → CA3 (mossy fi ber) synapses 
3. CA3 → CA1 (Schaffer collateral) synapses 

Because of its very simple architecture and organization, the hippocam-
pus is an ideal place to study synaptic transmission in the mammalian 
brain. In the late 1960s, researchers discovered that the hippocampus 
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(a) (b)

Figure 2.2: Coronal section of the main body of the hippocampus showing the signal flow through the
trisynaptic circuit. (a) (1) From the entorhinal cortex, inputs enter the hippocampus via the perforant pathways
to the DG. (2) Then, DG granule cells send signals to the pyramidal neurons in the CA3 area through
its mossy fibers. (3) Signals sent by the CA3 neurons along the Schaffer collaterals drives the pyramidal
neurons in the CA1 area. The image was extracted from [21]. (b) To further visualize the trisynaptic circuit,
here is the hippocampus histology of a neonatal kitten originally drawn by Camillo Golgi, published in 1903
[26].

Researchers deduced that this unique and unidirectional trisynaptic circuit is the principal
signal route in the hippocampus (Figure 2.2a) [22, 28]. Here, neurons of the entorhinal
cortex send information to the hippocampus through the perforant path that connects
to the DG. The DG mossy fibers then transmit the information to the CA3 cells. When
activated, signals from the CA3 Schaffer collaterals can either exit the hippocampus to
the fornix or enter the CA1 region. The subiculum and the CA1 neurons then feed the
signal back to the entorhinal cortex, forming a loop [18, 21, 22, 28, 29].

Camillo Golgi drew the histology of the hippocampus based on the silver chromate stain-
ing of a neonatal kitten hippocampal section, showing the neuronal distributions and mor-
phology in the subfields (Figure 2.2b) [26]. This histology helps visualize the neuronal
connectivity in the trisynaptic circuit. The three subfields in the trisynaptic circuit per-
form distinctive functions: granule cells of DG for pattern separation, pyramidal CA3 neu-
rons for pattern completion, and pyramidal CA1 neurons for input integration [18, 27, 28].
Therefore, the simple neural architecture in the hippocampus of the mammalian brain is
suitable for studies on information processing [21].

2.2.2/ THE ROLE OF THE HIPPOCAMPUS IN MEMORY AND LEARNING

As many research suggests, memory functions and learning processes, such as episodic
and autobiographical memory, contextual and associative memory, recollection, encod-
ing, and retention, are associated with the hippocampus [19, 20, 30]. The hippocampus
first learns and temporarily stores the incoming sensory signals and then guides the acti-
vated cortical regions during ”slow learning” [31]. However, the interplay of memory and
learning includes an extensive range of challenging tasks to categorize in that the hip-
pocampal subfields perform heterogeneously distributed tasks. Consequently, it is quite
challenging to determine the exact function of the hippocampus. For an overall view of its
capacity, we take note of the following fundamental functions.
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Memory Consolidation. Memory consolidation is the process in which the hippocam-
pus strengthens the newly-established, temporary, and unstable memory into a stable,
long-lasting memory that is insusceptible to interference (but can still be modified and
updated) [31, 32]. The hippocampus stores temporary information until it can be com-
bined with preexisting memory traces in the cortical region for long-term storage until the
cortical regions become independent of the hippocampus [31, 33].

Spatial Learning. The hippocampus supports spatial memory and spatial awareness
by encoding a cognitive map of space and location of objects for spatial navigation, spatial
discrimination, and scene imagination [21, 30, 34]. The notion of spatial learning and
memory started with discovering ’place cells’ in rats that spike when the rats are in a
specific position in space [32, 34, 35]. Familiarization with the location stabilizes the
memory for long-term storage [35].

Memory Retrieval. The length of time a memory remains in the hippocampus is still
unclear because memory stored in the hippocampus can last from seconds to days [21].
Neuroimaging works showed that the hippocampus aids with the retrieval of memory
representation and with future simulation [25, 36]. During retrieval, the hippocampus
reactivates the specific memory representation by reconstructing cortical activity patterns
observed while learning [37, 38], where the retrieved patterns help imagine the future and
decision-making [25, 39].

2.2.3/ CELLULAR ELEMENTS IN THE HIPPOCAMPUS

How many neurons and astrocytes are there in the human brain exactly? Here is one of
the most enduring questions in neuroscience [40]. Neurons and astrocytes, occupying
more than 90% of the functional tissue of the brain, are distributed heterogeneously and
interacts with each other via a chemical release [41, 42]. In the human brain, the neurons
outnumber the astrocytes slightly with a regional difference, in that there are ∼80 billion
neurons and ∼60 billion glial cells (20-40% are astrocytes) [40]. These cells are dominant
in the cortex and hippocampus [43]. Therefore, the astrocyte-neuron ratio is comparable
with the ratio in the mouse hippocampus, where the overall reported astrocyte to neuron
ratio is 0.68 [44]. Cell bodies in the hippocampal CA strata are morphologically nonuni-
form though their composition per stratum is similar [44]. It is essential to identify these
cells in the brain region and their cell density and connectivity to understand the compu-
tational processes and capabilities of the hippocampus and reconstruct and simulate the
neuron-astrocyte network [41, 44].

2.3/ FUNDAMENTAL BIOLOGICAL STRUCTURE OF A NEURON

Neurons are the fundamental computational and processing units of the central nervous
system (CNS). Their cell densities are higher in the hippocampus and the neocortex
compared to other brain regions [45]. In the hippocampus, most of the neurons are of the
pyramidal neuronal type [29, 46]. Though they share principal functional properties, these
pyramidal neurons vary in the cellular architecture and biophysical structure [29, 45]. The
distinct properties enable the pyramidal neurons to perform specialized functions within
the neural network [29].
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Figure 2.3: Fundamental parts of a pyramidal neuron.

Figure 2.3 depicts the basic biological structure of a pyramidal neuron. A neuron has two
main parts: the soma and the neurites. The central region (cell body) called the soma
(plural: somata) contains the nucleus of the neuron [21]. The soma of the pyramidal
neuron type is pyramidal in shape, as the name implies [45, 46]. Pyramidal neurons have
soma ranging from 20 to 120 µm in diameter [47]. Then, the neurites are the thin tubes
emerging from and radiating away from the soma. The pyramidal neuron is a bipolar
cell, as shown by the opposite directions of its neurites [46]. The axon radiates from
the base of the soma while the dendrites develop towards the other direction [46]. The
axon comprises three parts: the axon hillock, the axon proper, and the axon terminals
[21]. The axon hillock, also called the axon initial segment (AIS), emerging from the
base of the cell body, forms the first axon segment and connects the axon proper to the
soma [21, 48]. The axon proper is a long tube covered with periodic myelin segments.
Then, the nodes of Ranvier are the axonal section in between the myelinated segments.
Along the axon proper, branches called axon collaterals may appear [30, 48]. They can
spread and reach other neurons [30], or in the case of recurrent collaterals, return and
communicate with the cell itself [21]. At the unmyelinated branches at the end of the axon
(terminal arbors) are protrusions that resemble swollen disks called the axon terminals
or boutons, which serve as the input side of the synapse [21]. The synapse is the site
of transmission between the axon of one neuron and the dendrites of the neighboring
neuron [21]. The dendritic arborizations are collectively called a dendritic tree, and each
branch a dendritic branch [21]. There are two dendrites divisions that characterize a
pyramidal neuron, the basal dendrites, which are the short and fine dendritic structures
directed downward from the base of the soma, and the apical dendrites projecting up-
ward from the cell body [45]. There are also protrusions on the dendritic branch called
dendritic spines, where synaptic input enters the dendritic length [46].

No two neurons are the same, even though they have the same cell type and belong to
the same hippocampal subfield. Neurons are heterogeneous due to the variations in cell
development and maturation, variations in input signals, and changes in the cell environ-
ment [49]. Pyramidal neurons in CA1 and CA3 subfields are diverse and substantially
varied in their morphology. However, their dendrites bifurcate extensively in the distal api-
cal region to form the apical tuft [46]. Figure 2.4 are the Golgi stains of the neurons from
the hippocampus of rats. Figure 2.4a and Figure 2.4b show the morphology of the pyrami-
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Figure 4: Golgi staining revealed changes in spine density after the fA𝛽
1−42

-injection (A). Apical dendritic spine density analysis showed that
the amyloid treatment induced a decrease in spine density (𝑃 < 0.0001). In each experimental group 75 dendritic shafts of 3 animals were
studied. The values represent the mean (±S.E.M.) (𝑛 = 3 rats per group).

(a) (b)

Figure 5: Representative photomicrograph of a CA1 subfield pyramidal neuron from a control (a) and an amyloid-treated (b) rat.

and the surrounding oligomeric A𝛽 are considered as trigger
signals to induce dendritic spine loss and synapse dysfunction
in AD. A𝛽 assemblies are synaptotoxic: they can be bound to
axons and membrane proteins, resulting in Ca2+ influx into
the neurons [49]. The synapse and dendritic spine loss are
strongly correlated with cognitive impairment in AD, and A𝛽
has been shown to target synapses [40, 50].

Numerous studies have reported significant changes after
IHCadministration of various types and aggregation forms of
A𝛽 [4, 25–38]. Some studies reported that synapse dysfunc-
tion was triggered by A𝛽 oligomers [49, 51]. Other studies
proposed fA𝛽 deposits as causative factor for the local synap-
tic abnormalities since decrease of dendritic spine densitywas
detected nearby the A𝛽 plaques [13, 52–54]. However, it has
not been clear how the nondiffusible, immobile A𝛽 fibrils
interact with neuronal structure. As of today, senile plaques
are considered mostly as nontoxic “outburns” sequestering
toxic A𝛽 species to nontoxic fibrils. However, bilateral IHC
injection of fA𝛽

1−42
results in reduction of neuronal density

and increases of glial fibrillary acidic protein intensity, with
simultaneous appearance of numerous A𝛽 deposits and
behavioural performance deficits [4, 26]. IHC administration

of shorter form of A𝛽 (A𝛽
1−40

) results in decreased density of
dendritic spines in hippocampus [25, 28].

Our current findings demonstrated that synthetic fA𝛽
1−42

simultaneously decreased spatial learning abilitymeasured in
MWM (Figure 2(a)) and reduced dendritic spine density in
the rat hippocampus CA1 region (Figures 4–6). According
to the literature data, the synthetic fA𝛽 assemblies have also
a surrounding of A𝛽 oligomers [55], in accordance with the
law of chemical equilibriums. After fA𝛽 injection, diffusible
A𝛽 oligomers could be formed in the rat hippocampus and
initiate dendritic spine density loss. The measured spine loss
in HC CA1 region may explain the decreased learning ability
since the presence and maturation of dendritic spines on the
CA1 pyramidal cells are necessary to evolve the spatial mem-
ory unit [56]. It is generally accepted that misfolded proteins
initiate dendritic spine reduction and memory decline. A𝛽
and 𝛼-synuclein oligomers decrease the amount of synaptic
proteins and vesicles and via tau hyperphosphorylation
initiate the loss of dendritic spines [57, 58]. The instability
of dendritic spines leads to progressive neocortical spine loss
in a mouse model of Huntington’s disease [59]. Our results
support the theory that decreasing spine density in AD can

(b)

Fig 3. Effects of β-asarone on dendritic spine density in Pb-exposed developmental rats. (A) CA1 area; (B) DG area. The

top: Representative Golgi-Cox staining of dendritic arborization and dendritic spine density. The middle: Representative dendritic

shaft with spines of hippocampal neurons. Scale bar = 10μm. The bottom: Histogram reports the quantification of spine density

(10μm). (**P<0.01, ***P<0.001, n = 8 per group; β-asa: β-asarone, the same in the following Figs).

doi:10.1371/journal.pone.0167401.g003
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(c)

Figure 2.4: Morphology of the (a) CA3 [51] and (b) CA1 [52] pyramidal neurons and (c) DG granule [53]
cell in rat hippocampus. Even though neurons belong in the same subfields, their morphology is diverse and
distinct. Granule cells are smaller than the pyramidal neurons.

dal neurons in the CA3 and CA1 subfields, respectively. Furthermore, in the DG subfield,
the prominent cell type is the granule cell [50]. Granule cells shown in Figure 2.4c are
multipolar neurons with short axons and are smaller than pyramidal cells with a cell body
of less than 20 µm in diameter [47]. There is a small number of dendrites, also covered
with spines, protruding from their oval-shaped soma [22].

The soma contains most of the organelles found in other cell types necessary for the
maintenance and neuronal functions [47, 54], most proteins and membrane synthesis
as well as gene transcription [47, 55]. The neuronal membrane is a 5nm thick bar-
rier, made up of phospholipid bilayer and associated proteins, that encloses the internal
cellular structures and separates them from the substances floating in the extracellular
fluid bathing the neuron [21, 55]. The neuronal membrane also plays a crucial role in
information processing and signaling between neurons, which we later discuss in detail.
Inside the neuronal membrane of the cell body are the nucleus and the cytoplasm. The
cytoplasm is a collective term for everything, including the organelles, the cytosol (fluid),
and excluding the nucleus, enclosed by the neuronal membrane. Synthesized proteins
and membranes are packaged inside the vesicles and transported along the axon via the
microtubules [55]. Microtubules are tubular polymeric proteins 24 nm in diameter and
up to 1mm in length and extend along the axonal length (except the terminals) [21, 47].

Another organelle crucial to signaling and information processing is the endoplasmic
reticulum (ER). The ER is a membrane-bound organelle that originates as part of the
nuclear envelope [56]. The ER forms a network through the neuron by expanding and
morphing into an intricate reticulum (another term for the web- or net-like structure) [56].
The ER forms vesicles that traverse and access the long axons, apical and distal den-
drites, as well as the synapses [56, 57]. There are two types of ER in the neuron: the
rough ER, which is constituted with membrane-associated ribosomes and engaged with
protein synthesis, and the smooth ER, which lacks ribosomes and plays a role in lipid
and steroid biosynthesis [56]. Of these two types of ER, the smooth ER can reach the
axon and dendrites. It plays a principal function in Ca2+ signaling, especially in regulating
neuronal excitability and synaptic plasticity [56, 57].
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2.4/ THE NEURONAL MEMBRANE

The phospholipid bilayer neuronal membrane separates the extracellular liquid from the
intracellular environment and plays a significant role in neuron signaling [21, 58, 59]. In
nonsynaptic areas, the neuronal membrane contains pore-forming macromolecular pro-
teins called ion channels that control the passage of ions from the extra- to the intracel-
lular area of the neuron, or vice versa [58, 60]. Ionic concentration fluctuation between
the inside and outside of the neuron results in fast voltage changes across the neuron
membrane. Ion channels can be potential-dependent, in the case of voltage-gated chan-
nels controlled by transmembrabe voltage, or ligand-dependent, in the case of receptors
in the synaptic areas which are activated by signal molecules.

2.4.1/ ION CHANNELS

Ion channels are protein assemblies that allow selective passage of ionic current in and
out of the cell and control the membrane permeability for corresponding ion transfer
[58, 60, 61]. At any given moment, an ion channel can occupy one of the multiple possi-
ble discrete states: closed-activable, open (conducting, activated) that permits ion to flow,
or a closed (non-conducting, inactivable) state that prevents ion passage [60–62]. The
stochastic transition between states occurs <1 µs and is driven by thermal agitation [60].
For voltage-gated channels (VGCs) or potential-dependent channels, the transition prob-
ability between states is dependent on the membrane potential [58, 60]. These channels
consist of primary voltage sensing subunits and auxiliary subunits responsible for control-
ling membrane targeting and kinetics of activation and inactivation of the channel [63].

Protein-protein interactions along the somatodendritic and axonal domains create specific
ion channel distribution and density in the cell membrane, defining the electrophysiologi-
cal properties and unique functioning of different subtypes of neurons [63, 64]. Pyramidal
neuron domains express a wide variety of voltage-gated channels, such as sodium (Nav),
potassium (Kv), and calcium (Cav) channels that contain a selectivity filter for each corre-
sponding Na+, K+, and Ca2+ ions, as well as hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels [58, 63, 64]. Ion selectivity means that a specific channel attracts
its corresponding ions, while other ions cannot pass through the channel [58].

Sodium channels. The most abundant sodium channels in the hippocampal pyramidal
neurons are the Nav1.1, Nav1.2, and Nav1.6 generating different types of depolarizing
currents critical for AP generation: fast activation or transient (INaT ), persistent (INaP), and
resurgent (INaR) [63, 65]. Voltage-gated sodium channels in the AIS primarily generate
INaT , which is responsible for developing the upstroke of the AP [63]. Subthreshold INaP

generated in the AIS increases neuronal excitability, while INaR following AP contributes
to after-depolarization and promotes repetitive firing, except in CA3 pyramidal cells where
resurgent Na+ channels are nonexistent [63, 66]. In hippocampal pyramidal cell dendrites,
sodium channel, distributed uniformly in the apical trunk, support AP backpropagation,
nonlinear synaptic integration, and dendritic Na+ spike generation [67, 68].

Calcium channels. High-voltage activated calcium channels comprise L-, N-, P/Q, and
R-type channels, while low-voltage activated calcium channels include T-type channels
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[63, 68]. The distal dendrites of CA1 pyramidal neurons have high densities of T- and R-
type Cavs, whereas, in apical dendrites, there is an abundance of L- and N-type channels
[68]. Cav channels play a vital role in neuronal signaling by transforming electrical signals
into changes in the cytoplasmic [Ca2+] [63, 64]. During depolarization, Cav channels are
activated, causing the channels to conduct Ca2+ into the cytoplasm, thus raising the in-
tracellular [Ca2+]. The influx of Ca2+, therefore, modulates the cellular processes such as
regulation of Ca2+-dependent channels, triggers neurotransmitter release, and stimulates
intracellular signaling enzymes and gene expression. Cav channels also influence the AP
generation, shape, and firing patterns.

Potassium channels. Potassium channels are classified into different families: voltage-
gated (Kv), calcium-activated (KCa), inward-rectifying (Kir), and 2-pore (K2P) channels [63].
Transient rapidly activating and inactivating subthreshold current (IA) carried by Kv4 and
Kv3 channels delay AP initiation and slows down the firing frequency [63, 68]. Over-
all, Kv channels regulate neuronal excitability by controlling the AP initiation threshold,
the AP repolarization, and limiting neuronal firing frequency. On the other hand, Ca2+-
activated potassium channels (KCa) have Ca2+ sensors that activate potassium channels
in response to Ca2+ influx. In CA1 pyramidal neurons, A-type K+ channels are distributed
somatodendritically in an increasing manner, while in other neurons such as layer V pyra-
midal cells, these channels are distributed uniformly [68]. The increasing somatodendritic
distribution of these channels create a ’shock absorber’ that limits the spread of backprop-
agating AP.

HCN channels. HCN channels belong to the Kv channel superfamily [69]. However,
these channels provide specializations that make them crucial in neuronal excitability.
HCN channels include HCN1-4 subunits, in which HCN1 and HCN2 are the most abun-
dant in the CNS [63]. HCN channels are partially open at rest and get activated during
membrane hyperpolarization, in contrast with most voltage-gated channels activated by
membrane depolarization [63, 68, 69]. The depolarizing current Ih counteracts both mem-
brane hyperpolarization and depolarization [63].

2.4.2/ MEMBRANE POTENTIAL AND ACTION POTENTIAL

The membrane potential is fundamental in neuron signaling and brain functions [70]. The
ionic charges in the extra- and intracellular fluid results in a potential difference in the
impermeable membrane separating them [71]. Electrical signaling is mediated by the
rapid changes in the membrane potential through ionic charge redistribution regulated
by the opening and closing of ion channels [60, 71]. In neuronal signaling, the principal
carrier of information is the sequence of electrical signals called action potentials (APs)
(Figure 2.5), usually initiated in the AIS and distributed to diverse neurons via synapses
[70, 72]. The temporal pattern of AP firing thus forms the basis of neural coding [70].

As mentioned earlier, VGCs plays a vital role in regulating neuronal excitability, the ability
of the neuron to create rapid increase and decrease in membrane potential in response
to a stimulus. Figure 2.6 shows the transition between states of the VGCs and the flow
of ions in response to the membrane potential increase. At rest, when the neuron does
not receive stimulus from synaptic inputs, VGCs are closed, and the membrane potential
is measured to be -70 mV (Figure 2.5) due to the concentration gradient between the
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Figure 2.5: Action potential generation. An excitable neuron has two critical membrane potential levels: the
resting potential and threshold potential. At rest, the ionic strength between the extra- and intracellular area
sets the membrane potential to -70 mV. When a stimulus reaches a neuron compartment, it depolarizes the
membrane, and if this stimulus is strong enough to produce a membrane potential higher than the threshold,
a rapid increase of membrane potential to 40 mV occurs; thus, an action potential is generated. After
reaching the AP peak, the membrane potential rapidly decreases during repolarization. During the refractory
period, the voltage-gated channels are inactive. However, there are leakage channels and some Kv channels
that are still open, causing a hyperpolarization until the membrane potential returns to the resting state.

Na+ and K+ ions in the intra- and extracellular spaces (Figure 2.6a) [58, 73, 74]. De-
polarization begins in the arrival of a stimulus, which opens Nav channels allowing Na+

ions to penetrate the intracellular space making the membrane less positively charged
(Figure 2.6b) [58, 73, 74]. There is a greater influx of Na+ ions while a lesser efflux of
K+ ions resulting in a more positive membrane potential [61]. The influx of Na+ further
augments the membrane depolarization, consequently increasing the opening probability
of other Nav channels [58]. The further increase of membrane potential above a critical
threshold generates an action potential [58, 70]. The membrane permeability for Na+

becomes maximum, and the membrane potential for Na+ reaches equilibrium at +40 mV
(Figure 2.6c). At this point, a further increase in depolarization inactivates the Nav chan-
nels and augments the opening probability of Kv channels [58, 73]. The neuron becomes
more negatively charged as the Kv ions leave the cytosol until further augmentation of re-
polarization inactivates the Kv channels [58]. The point wherein the membrane potential is
more negative than the resting potential is called hyperpolarization [74]. Both channels,
Nav and Kv, require a recovery period before the next activation. During the refractory
period, VGCs are closed; however, some leakage channels are still open, allowing the
flow of ions until the membrane potential recovers back to the resting potential, at -70 mV
[73]. Fundamentally, the neuron loads Na+ ions during depolarization and loses K+ ions
during repolarization. The proportion of intracellular K+ ions and extracellular Na+ ions is
adequate to generate a sequence of thousands of APs [58]. This process, however, is
energy-consuming for the brain; the neurons have ion equilibrium recovery proteins Na+,
K+ - ATPase, whose activity requires almost half of the brain energy.

2.4.3/ ELECTRICAL EQUIVALENT

A cell membrane section can be represented by an equivalent nonlinear electrical circuit
comprising active and passive components, such as resistance or conductance, capaci-
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(a)

(b)

(c)

Figure 2.6: Neuronal membrane during action potential generation. (a) The Nav and Kv channels, when
the neuron is at rest, the membrane potential has a negative potential at -70 mV. The VGCs are closed;
however, some open leakage channels allow K+ ions to the extracellular space. (b) During depolarization,
Nav channels open, and the influx of Na+ ions into the cytosol further increasing the membrane potential
above the threshold. (c) Then, at peak depolarization of 40 mV, the cytosol becomes rich in Na+ ions. Rapid
repolarization starts, and the Nav channels get inactivated while Kv channels open and allow the flow of K+

ions out of the cytosol. The cytosol becomes negatively charged, and the membrane potential recovers back
to its resting state.

tance, and voltage source [75]. Here, we describe the equivalent circuit of the AIS where
AP is generated and whose membrane compartment in Figure 2.7a gives a neurophys-
iological model equivalent to a nonlinear electric circuit in Figure 2.7b, first described by
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Figure 2.7: The neuron membrane and its equivalent circuit. (a) The neuron membrane which separates
the cytoplasm and the extracellular fluid forms a capacitance Cm. The membrane retains potential due to the
flow of currents (INa, IK , and some leakage IL) through the ionic channels. (b) Therefore, the membrane can
be described as an electric circuit whose membrane potential Vm is the difference between the ionic charges
in the extra- and intracellular space. A specific ionic channel is equivalent to resistor R in series with a battery
representing the reversal potential E.

Hodgkin and Huxley [76, 77]. The voltage across the membrane, Vm, is the potential dif-
ference between the extracellular, vo, and intracellular medium, vi. At rest, the membrane
potential is Vm = −70 mV, considering that the extracellular medium is the ground (0 mV)
[61, 74, 75]. The membrane potential then fluctuates due to the Na+, K+, and leakage
(remaining ions such as Ca2+ and Cl−) ions flowing through the channels [75, 78].

The neuron resembles two plates of electrical conductors (the cytoplasm and the extra-
cellular fluid) separated by an insulating material (the lipid bilayer); thus, the membrane
forms a linear capacitive property implying that the ions move through the ion channels
and not directly through the membrane Cm [61, 74, 75, 78]. Membrane specific capaci-
tance is approximately equal to 0.7−1.0 µF/cm2 [74, 78, 79]. As a consequence of the
capacitance, the change in membrane potential follows an exponential time course. For
the circuit in Figure 2.7b, the time constant is modeled as τ = RTh × Cm where Rth is the
Thevenin resistance formed by the passive ion channels [74]. For a typical neuron, τ
ranges from 1 to 20 ms, and at 5τ, the response is within the 1% of steady-state.

Sodium and potassium channels are passive components because they only allow spe-
cific ions to pass through the channel [74]. As shown in Figure 2.7b, a passive ion chan-
nel is modeled as a resistor in series with a battery [75]; a resistor because it resists the
movement of electrical charge through the channel and a battery for the electromotive
force that drives the ions through the channel [74]. In relation to the membrane resis-
tance, conductance measured in Siemens (S), therefore, describes the ease in which
ions flow through channels. Consider a specific ion channel with a conductance G′; the
total conductance in the compartment is therefore proportional to the number of that spe-
cific channel, N; thus, G = N×G′. Conductance is a linear function that varies with the ion
concentration, so even the channel permeability is high, G = 0 if there are no available
ions on either side of the neuron membrane [74, 78]. In the conventional model of the
AIS equivalent circuit (Figure 2.7b), the total membrane conductance Gm is equal to the
sum of the parallel conductances from Na+ (GNa), K+ (GK), and some leakage (GL) ion
channels.

There is an electromotive force for each specific channel called a reversal potential
(also called Nernst potential) created by a concentration gradient and is represented by
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a battery. The reversal potential is the equilibrium potential; the static difference in Vm

wherein no current flows [71, 74, 75]. The reversal potential for Na+ is higher while the
reversal potential for K+ is lower than the resting potential of the neuron, causing an
influx of Na+ ions during depolarization and efflux of K+ during hyperpolarization [75].
The leakage current, commonly associated with other remaining ions such as Cl− ions, is
small compared to INa and IK [78]. Essentially, when an external current Iext is applied to
stimulate the membrane in Figure 2.7, the Kirchoff’s current law indicates that [74, 80]

Iext = GK (Vm − EK) +GNa (Vm − ENa) +GL (Vm − EL) +Cm
dVm

dt
. (2.1)

2.5/ NEURON MODELS FOR MEMBRANE POTENTIAL

Computational models are utilized to describe the fluctuations in the membrane poten-
tial and the shape of the AP, depending on the ionic channel distribution. In theoret-
ical and computational neuroscience, there are various models ranging from single-
compartment to multicompartment neuron models. The series of seminal studies in
the squid giant axon performed and published by Hodgkin and Huxley in the 1950s paved
the way to neuronal modeling [76, 81–83]. Using voltage-clamp experiments, Hodgkin
and Huxley recorded ionic currents and voltage-gated conductances in the AIS, whose
physiology is analogous to a single cylindrical structure. Thus, the Hodgkin-Huxley (HH)
model became the basis of subsequent single-compartment neuron models for AP [77].
Following the studies of Hodgkin and Huxley, Wilfred Rall then provided profound insights
into the cable properties of dendritic trees and developed the technique for modeling the
current flow in neurons [84]. The dendritic tree was divided into compartments defined
by their homogeneous activities and distinct hyperpolarization or depolarization [72, 84].
Input to the first compartment generates a corresponding output, which is directed to the
next compartment. This technique revolutionized modern multicompartment modeling
[77].

The selection between single- or multicompartment models generally depends on the
modeling objective and complexity. A single-compartment model is isopotential and usu-
ally neglects the spatial dimension of the neuron [62, 85]; however, such a model is use-
ful but straightforward enough to describe the membrane dynamics. Multicompartment
models are made up of linked single-compartments that differ in ionic densities. Both
models are useful in neuroscience study depending on the range of problem complexity:
multicompartment models for problems requiring detailed neuron morphology and single
compartment models for simplicity [62].

This section focuses on the membrane potential and AP generation, specifically in the
AIS, of single-compartment models. These models include the biologically-inspired mod-
els (quantitative), starting from the Hodgkin-Huxley, where AP generation results from
the model dynamics to integrate-and-fire (IF) models where spiking occurs when the volt-
age exceeds a threshold, and to some model variations that qualitatively describe neuron
spiking [85].
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2.5.1/ DYNAMIC-BASED BIOPHYSICAL NEURON MODELS

Models formulated from biophysical data usually use similar formulism to describe the
membrane potential V from the summation of ionic and applied currents I, and Iapp, re-
spectively, and with additional equations for ionic channels activation rates [62]. Then,
these parameters are incorporated into a single-compartment (or multicompartment )
neuron models whose membrane potential follows a time-dependent first-order differ-
ential equation:

C
dV
dt
= −

∑
j=1

jN I j − Ineighbors (2.2)

where the current form neighboring compartments Ineighbors = 0 for single-compartment
model and I j stands for the current flowing through several different ionic channels types,
N [80, 86]. In an instance that an external current stimulus Iext is applied to the membrane,
the membrane potential becomes

C
dV
dt
= Iext −

N∑
j=1

I j (2.3)

following Kirchoff’s current law. Applying Ohm’s law, the current intensity flowing through
a specific channel I j is equal to the product of the difference between the membrane po-
tential and the reversal potential E j and the conductance g j of the corresponding channel,
and is given by

I j = g j
(
V − E j

)
. (2.4)

There are a wide range of neuron models developed from these equations.

2.5.1.1/ HODGKIN-HUXLEY MODEL

The HH model became a reference for a several model variations. Neuron models of
HH-type usually vary in terms of the nature and properties of VGCs and still maintain
the spiking behavior generated by the intrinsic dynamics of the neuron [80, 85]. The
HH formulism also turned out to accurately reproduce the AP waveform across different
types of neurons [70]. It provides a detailed description of ion channel dynamics and
uses physiological parameters, the main advantage of the HH model [86]. Aside from
a whole-cell model, the HH model can be expanded into local differential equations to
model the dynamics in an individual compartment in a multicompartment model [78].

Ion Channels Gating Schemes. Markov chain models usually describe the transition
between states of VGCs; however, structure-function investigations suggest that for al-
most all VGCs, HH-like kinetics are specific approximations of the channel behavior
[60, 87]. The standard equation of a time- and voltage-dependent j-type channel con-
ductance, g j, is

g j = ḡ ja
p j
j bq j

j , (2.5)

where ḡ j is the maximum conductance of channels in the open state [60, 86]. The gating
variables a j and b j characterize the probability of opening the activation and inactiva-
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tion gates, where p j and q j are the numbers of activation and inactivation gates per ion
channel [86]. During membrane depolarization, activation gates open gradually while in-
activation gates close, in turn, modulating the conductance behavior as a voltage-function
[75, 86]. Hodgkin and Huxley determined that for a Nav channel, the number of activation
gates pNa = 3 and an inactivation gate qNa = 1, while for potassium channel, there are for
activation gates (pK = 4) and zero inactivation gate (qK = 0) [60, 86]. It can be interpreted
that, for Kv channels, K+ ions can flow through the channel when four identical particles
occupy a certain region of the membrane [76]. The opening of the activation and inactiva-
tion gates are defined by gating variables moving from the off- to the on-state and back,
with a voltage-dependent rate [76]. The transition rates α(V) determines the ion transfer
from outside to inside, and β(V) which determines the ion transfer in the other direction
[60, 76]. The following are the conductance equations for Nav and Kv gating schemes (at
6.3 ◦C) [60, 81]. The voltage- and time-dependent equation for Nav channel conductance,
gNa, follows

gNa(V, t) = γρNaAm3(V, t)h(V, t) (2.6)

where γNa is the single-channel conductance, ρNa is the channel density per area A and
where ḡNa = γNaρNaA is the maximum Na+ conductance [60, 75]. The forward and back-
ward transitions rates in 1/ms for m and h are established as

αm =
0.1 (−V − 45)

exp
(
−V − 45

10

)
− 1
, βm = 4exp

(
−V − 70

18

)
, (2.7)

αh = 0.07exp
(
−V − 70

20

)
, βh =

1

exp
(
−V − 40

10

)
+ 1
,

where the membrane potential V has a unit in mV [60, 76, 88]. Likewise, the Kv channel
conductance is

gK(V, t) = γKρK An4(V, t), (2.8)

where ḡK = γKρK A is the maximal conductance for four identical activation variables n,
with forward and backward transition rates given below [60, 75, 76, 78, 88].

αn =
0.01 (−V − 60)

exp
(
−V − 60

10

)
− 1
, βn = 0.125exp

(
−V − 70

80

)
(2.9)

The gating variables have delayed first-order kinetics modeled by the differential equation

dx
dt
= αx (1 − x) − βxx, (2.10)

where x = m, n, and h [61, 75, 76, 78, 88]. The gating variables are dimensionless
functions normalized between 0 to 1 to represent the relative number of open channels
[75, 78, 80]. Refer to Figure 2.8a for the gating kinetics of m, h, and n, during the course
of a single AP in Figure 2.8b. The rapid recruitment of Nav channels (m) at the threshold
outpaced the delayed activation (n) of Kv channels, resulting in an all-or-one event [70].
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Figure 2.8: The kinetics of gating variables during an AP modeled using the Hodgkin-Huxley formulism. (a)
The gating variables m and h represent the activation and inactivation of Nav channels, while n represents
the activation of Kv channels. (b) When the AP crosses the threshold after stimulation at t = 20 ms, a rapid
increase in depolarization results from the m kinetics outpacing the n kinetics. During AP, h gates are closed.

Action Potential Generation. Returning to the equivalent circuit in Figure 2.7b and re-
arranging Equation 2.1, we obtain the Hodgkin-Huxley model following a nonlinear system
of ordinary differential equations [76, 78].

C
dV
dt
= Iapp − ḡNam3h (V − ENa) − ḡKn4 (V − EK) − ḡL (V − EL) , (2.11)

Here, Iapp (in µA/cm2) is applied to the membrane either from external stimulation or
neighboring compartments. Table 2.1 shows the range of HH model parameters mea-
sured experimentally [89]. The shape of the AP depends on the conductance distribution
in the AIS. Figure 2.9 illustrates a train of action potential showing different levels of ex-
citability with varying Iapp intensity. At the first Iapp pulse of 2 µm/cm2, the HH model is
non-excitable. When Iapp = 5.82 (second pulse), the model becomes excitable. Even a
small increase of applied current (third pulse at Iapp = 5.83) results in a large difference
in the dynamics of the HH membrane. The membrane potential then oscillates for larger
current intensity (from the fourth to the sixth pulse at Iapp = 6.10, 6.105, and 10). Here,
it is noticeable that the AP firing frequency and spiking are dynamic with respect to the
membrane current.

2.5.1.2/ OTHER DYNAMIC-BASED MODELS

Based on the HH model, Morris and Lecar, in the 1980s, suggested a 2-dimensional
conductance-based model by invoking the fast dynamics of Cav conductance with respect
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Figure 2.9: Action potential train with different levels of excitability. The HH model parameters are as follow:
ḡNa = 36 ms/cm2, ḡK = 120 mS/cm2, ḡL = 0.3 mS/cm2, ENa = 45 mV, EK = −82 mV, and EL = −59.40 mV [88].
The excitability and firing rate of the AP (blue) depend on the intensity of the applied current Iapp (red). For
Iapp = 2 µA/cm2, the cell is nonexcitable. From Iapp = 5.82 µA/cm2, the model becomes excitable. Then further
increase from Iapp = 6.10 to 10 µA/cm2, the AP shows oscillatory characteristics.

to the other variables [86, 90]. The principal equation describes the membrane potential
V, dependent on the instantaneous Cav activation (ICa), delayed K+ (IK), and passive
leakage (IL) currents flowing through the membrane, while the second equation describes
the slower activation current of the Kv channel, the same as in the HH model [86, 90–95].

The next model, called the FitzHugh-Nagumo (FHN) model, is a combination of the works
of FitzHugh on ion channel dynamics of nerve cells and Nagumo on spatially-extended
systems [96–98]. It is also a 2-dimensional model based on dividing the currents ac-
cording to their time scale, turning the neural activity from four state-variables to only two
[86, 99]. Going back to the HH model, where V and m evolve in similar time scales during
an AP, while n and h also have similar and slower time scales, it is logical to lump these
variables into a single variable V (for V and m) for ”excitation” and ω (for n and h) for ”re-
covery” [96, 100–102]. The FHN model ignores the Na+ activation variable and replaces
it with an equilibrium value [103].

2.5.2/ THRESHOLD-BASED NEURON MODELS

In this subsection, we present the commonly-used neuron models that simulate the fun-
damental dynamics of the neuron and do not require a full description of ion transport.

Table 2.1: Hodgkin-Huxley model parameters.

Parameter Description
Values

Min Max Mean
C Membrane capacitance, µF/cm2 0.80 1.50 0.80
ḡNa Sodium channel conductance, mS/cm2 65 260 120
ḡK Potassium channel conductance, mS/cm2 26 49 34
ḡL Leak channel conductance, mS/cm2 0.13 0.50 0.26
ENa Sodium channel reversal potential, mV +30 +54 +44
EK Potassium channel reversal potential, mV −79 −74 −76
EL Leak channel reversal potential, mV −61 −43 −54
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Figure 2.10: Action potential firing regime of a leaky integrate-and-fire neuron. The shape of the AP does
not follow the shape of the AP of a biological model but depends on the membrane potential crossing the
threshold (at −40 mV) for AP generation. However, the firing characteristics resemble that of a HH neuron
wherein the it increases with further augmentation in the injected current Iapp. The LIF model, here, has the
following intrinsic parameters: C = 1 nF, Vth = −40 mV, VR = −70 mV, τL

m = 20 ms, τre f = 5 ms [104, 105].

These models have a predefined threshold for AP generation and are often used in simu-
lating large neural networks because of their low dimensionality and low computing power
requirement.

2.5.2.1/ INTEGRATE-AND-FIRE MODEL

The integrate-and-fire (IF) model could be considered an approximation of the HH model
or a phenomenological description of AP generation [85]. It generates an AP in terms of a
single variable, the membrane potential [106, 107]. However, the IF model only describes
the subthreshold dynamics, as the AP generation is an extrinsic mechanism [86, 107].
When the membrane potential reaches the threshold, only then that an AP spikes. It
uses a deterministic reset mechanism to return the membrane potential to the resting
potential [108]. Since the IF model is an approximation, it does not present the dynamic
mechanism, shape, and duration of an AP [86].

The IF model has several variants, where the original model is called the leaky integrate-
and-fire (LIF) model [85]. The neuron is leaky because the membrane potential decays
with a characteristic time constant, and if this decay is disregarded, the model becomes
a perfect integrator. Once the membrane potential reaches the threshold, it generates an
AP using a firing mechanism [107]. The subthreshold membrane potential is a first-order
linear differential equation in time (t) and is given as

C
dV
dt
= IL(t) + Iapp(t),

if V(t) > Vth then V(t)← VR

(2.12)

where V is the membrane potential, C is the membrane capacitance, IL is the current
leaking through the membrane, and Iapp is the injected current. The leak current is gov-
erned by

IL(t) = −GL [V(t) − EL] , (2.13)

where EL is the leak reversal potential and GL is the constant leak conductance described
as GL = C/τL

m, and τL
m is the time constant of the leaky membrane. Once V crosses the
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threshold Vth, it diverges to infinity for AP firing (this can be set to the peak amplitude of the
AP). The membrane potential then returns to the resting potential VR (VR = EL) and stays
in the refractory state for a time period of τre f [104–111]. The LIF model parameters are
independent of the neuron dynamics and can be determined by a direct method [107].
Figure 2.10 shows the dynamics of the membrane potential of the LIF neuron, whose
firing frequency increases with an increase in the injected current intensity.

Generalizations of the LIF model were developed to deal with its drawback. Here, we
present a brief description of the IF model variants. These variants still follow the same
firing mechanism and include changes on the membrane potential equation from linear to
nonlinear or a second equation, an adaptation process, to the system. The IF models pro-
vide a simple approach for simulating a spiking neuron and displaying high computational
efficiency and tractability, making it advantageous in both theoretical and computational
[86, 110].

Quadratic Integrate-and-Fire Model. The quadratic integrate-and-fire (QIF) model is
the most straightforward generalization of the LIF model. It is dynamically equivalent to
a HH model with a constant current near the rheobase (the minimum stimulation current
resulting in an AP) and approximates the qualitative behavior of the frequency-current
(f-I) curve of a biological neuron [85, 112, 113]. The QIF model obeys

C
dV
dt
=

GL

2∆T
(V − VR)2 − I0 + Iapp (2.14)

where for an applied external current, Iapp, below I0, the model exhibits both stable and
unstable points. When Iapp > I0, the fixed points merge, then the membrane potential
destabilized, and the neuron fires regularly [114, 115]. The parameter ∆t is the spike
shape factor that quantifies the sharpness of the AP initiation [106, 114]. The QIF model
is ideal for very low spiking frequency [113].

Exponential Integrate-and-Fire Model. Current-voltage analysis of the HH model re-
vealed a linear-plus-exponential dependence of the membrane potential on the ionic cur-
rents [116]. Assuming that the Nav channel activation is instantaneous and neglecting its
inactivation, the INa is described exponentially [117]. Therefore, the exponential integrate-
and-fire (EIF) model includes an exponential approximation of INa and is equivalent to the
HH model for fluctuating applied current [85]. The EIF model current-voltage (I-V) curve
comprises a linear component in the subthreshold region and a sharp exponential rise
above the threshold [118].

C
dV
dt
= −GL (V − EL) +GL∆T e

V−Vth
∆T + Iapp, (2.15)

where GL∆T e
V−VT
∆T is the spike generating current [106, 114, 118]. For pyramidal neurons

∆T is typically equal to 1 mV.

Adaptive Integrate-and-Fire Model. Biologically speaking, the flow of specific ions dur-
ing the opening and closing of channels modifies the intracellular concentration of that ion
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and continues until the membrane potential decays back to the resting potential, thus a
dynamically varying threshold [119]. Therefore, adaptation describes the instantaneous
discharge rate in response to a sustained injected current, causing the firing rate to decay
to a steady-state [120]. In the adaptive integrate-and-fire (AIF) model, the spike threshold
is not constant as in the standard LIF; instead, the threshold θ(t) increases by α′ after
an AP and then decays exponentially to an asymptotic level θ0 with a time constant τθ
[109, 121]. In this case, the adaptation process is dependent on the firing history. The
adaptive threshold θ(t) follows

dθ
dt
=
θ(t) − θ0
τθ

, (2.16)

where θ = V − VR, and if V(t) > Vth, then V → VR and θ → θ + α′, where α′ is usually
equal to 0.1 mV [122, 123]. Studies on cortical pyramidal neurons revealed the presence
of spike frequency adaptation mechanism, suggesting that IF models with adaptation can
predict the firing rate of the neuron [124].

Adaptive Exponential Integrate-and-Fire Model (AdEx). The adaptive exponential
integrate-and-fire model, generally called AdEx, is an extension of the EIF combined
with an adaptation process [85]. In this case, it employs a spike-triggered current adap-
tation mechanism rather than an adaptive threshold [117, 123]. The AdEx model with an
additional hyperpolarizing adaptation current is given as

C
dV
dt
= −GL (V − EL) +GL∆T e

V−Vth
∆T − Iad + Iapp,

τad
dIad

dt
= a (V − VR) − Iad,

(2.17)

where τad is the time constant of the adaptation current Iad, and a is a constant param-
eter [117, 125]. After an AP firing, V resets to VR, whereas Iad increases by a value b
[117, 125]. When the neuron is at rest and Iapp increases slowly to a critical current, the
membrane potential destabilizes, resulting to the repetitive firing [117]. One advantage of
the AdEx model is that the parameters can be fit with biological cell recordings [126].

2.5.2.2/ OTHER THRESHOLD-BASED MODELS

The Izhikevich model is similar to the QIF with an adaptation process [85]. It also de-
scribes the subthreshold activity of the neuron, spikes up to a cut-off amplitude, and
contains a recovery variable that accounts for the lumped K+ activation and Na+ inactiva-
tion currents [127]. The Izhikevich model is a system of two ordinary differential equations
consisting of fast activation variable for the membrane potential, slow membrane recovery
variable, and a resetting mechanism.

Fast-slow properties of the model help it simulate different types of oscillatory activity
and spiking-bursting oscillations necessary for qualitatively reproducing a wide range of
neuronal dynamics [86, 128]. This model is suitable for extensive network simulations be-
cause of its simplicity, computational efficiency, and biological plausibility [92, 129, 130].
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2.6/ SIGNAL TRANSMISSION THROUGH AXONS

Action potentials initiated in the AIS propagate along the axon proper to the axon ter-
minals. During propagation, an AP undergoes a series of decay and regeneration as it
travels through the alternating myelinated axon segments and nodes of Ranvier. Subtle
changes in the myelin structure result in significant conduction velocity changes, critical
to neural circuit functioning, and timely delivery of information in the CNS.

2.6.1/ MYELINATED AXON STRUCTURE

Myelination is the process in which the plasma membranes of oligodendrocytes (a type
of glial cells) ensheath the axons in the CNS with laminated layers of insulating materi-
als as shown in Figure 2.11a [131–133]. These layers are compacted, forming periodic
unexcitable myelinated axon segments, and unmyelinated gaps called nodes of Ranvier
along the axon (Figure 2.11b). The myelin segment length tends to be similar along an
axon rather than between individual axons. The nodes of Ranvier, which are approxi-
mately 0.3-1 µm long, are the unmyelinated regions (area free of myelin sheath) of the
axon in contact with the extracellular matrix, thus allowing entry of Na+ ions through Nav

channels [131–135]. Voltage-gated Na+ channels are localized in the axonal membrane
of the nodes of Ranvier with densities between 700 and 1200 per µm2, enabling the re-
generation of AP [100, 136]. The Kv channels are localized and segregated from the Nav

channels in the nodes of Ranvier, and are involved in AP repolarization [137].

2.6.2/ SALTATORY CONDUCTION

The interaction between the glial cell and the axon is essential for successfully transmit-
ting the AP from the AIS to the axon terminal. The myelin sheaths inhibit ionic current
conduction in the internodal region, therefore acting as an insulator. The signal pas-
sively and rapidly flows down through the myelin segment rather than across the axonal
membrane [131, 133]. Depolarization only occurs in the nodes of Ranvier due to the high-
density VGCs and their direct access to the extracellular space. Conduction through the
alternating patterns of myelinated axon and nodes of Ranvier is therefore discontinuous,
where AP from the AIS appears to ’jump’ from node to node. This conduction is called
saltatory conduction (Figure 2.12), an efficient process because only the small regions
of the axon are depolarized (rather than the whole axonal length), thus enhancing the
overall axon conduction [47, 79, 100, 132, 138, 139].

Saltatory conduction is rapid and cost-effective. Action potential propagation along the
myelinated axon is 100-fold faster than along the unmyelinated axon as the oligoden-
drocytes reduce the charge needed for depolarization (1/100th of that the entire axonal
length) [79, 131, 132, 140]. Also, saltatory conduction requires less energy to restore
[Na+] gradient following AP generation in the node of Ranvier because of limited passive
leaks and reduced current loss in the small nodes [79, 100]. Besides, myelinated axons
are 50 times thinner than unmyelinated axons, allowing the brain to pack millions of axons
[100].
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Figure 2.12: Saltatory conduction allows the AP initiated from the AIS to rapidly propagated down the axon
terminal. The myelinated segment insulates the axonal membrane inhibiting ion flux from the extracellular
space. Therefore, AP flows down the myelinated axon segment rather than across the membrane. Current
flowing out the myelinated segment depolarizes the consecutive node of Ranvier, which has a high density
of Nav channels. Thus, the AP seems to jump from one node to the next. (The image was extracted from
Rogers [141].)

2.6.3/ ELECTRICAL MODEL OF MYELINATED AXON

The axon is comparable to a transmission line where the nodes consist of leaky capacitors
and voltage-sensitive ion channels (following the HH mechanisms) connected in parallel
with the subsequent nodes by the internodal resistances and capacitances, as shown
in the distributed circuit in Figure 2.13. The biological cable consists of two plates of
conductors: the extracellular fluid and the intracellular fluid (axoplasm) [79, 132]. The
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Extracellular Fluid

Figure 2.13: Myelinated axon equivalent circuit. The nodes of Ranvier follow the HH mechanisms for AP
generation, and are connected in parallel with the subsequent nodes via the distributed circuit of the intern-
odes. The myelinated axon is equivalent to a biological cable with two parallel conductors, the extracellular
fluid and the axoplasm. The resistance of the extracellular fluid is negligible compared to the axoplasmic
resistance (Ri). The parallel conductors then create a stray capacitance (C) while the myelin sheath provides
a resistance (Rm) from ionic fluxes.

axoplasmic resistance (Ra) is high because of the conductivity of the inside fluid and
the small cross-sectional area of the axon, thus cannot be disregarded. The resistance
of the outside conductor is relatively lower than Ra because of the larger volume of the
extracellular fluid and is assumed to be negligible. Furthermore, capacitance C occurs
due to the two parallel conductors separated by a thin axon membrane (∼7 nm), while a
high membrane resistance Rm results from the insulation by the myelin sheath.

Generally, the resistance of a volume conductor is given as R = ρL/A, where ρ is the
resistivity (an intrinsic property of the material describing the opposition to electric current
flow), L is the conductor length, and A is the cross-sectional area. The internal resistance
Ra depends on the axon radius (r), therefore

Ra = ρa
L
πr2 , (2.18)

where ρa is the resistivity (Ω-cm) of the axoplasmic fluid, L is the internodal length, and
r is the axon radius [132, 142]. The membrane resistance is dependent on the surface
area of the membrane, thus

Rm =
ρm

2πr
, (2.19)

where ρm is the membrane resistivity in Ω−cm2 [142]. The internode then exhibits a
capacitance

C = 2πrLCm, (2.20)

where Cm is the membrane capacitance per unit area.

2.6.4/ THE CABLE EQUATION

The AP initiated in the AIS enters the first myelinated segment, where the AP exhibits
delay and decay. The current flowing from the other end of the segment must be enough
to regenerate the AP in the node, as in saltatory conduction. The signal propagation along
the myelinated segment, with respect to time and segment length, is often described by
the cable model consisting of resistive and capacitive properties. The spatiotemporal
cable model is a second-order differential equation that describes the membrane potential
v(x, t) as

r
2ρa

∂2v
∂x2 −Cm

∂v
∂t
−

v
ρml
= 0, (2.21)
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where v is the electrotonic potential (the difference between the membrane potential, and
the resting potential) at time t, l is the membrane thickness, and x the location of v along
the myelinated segment [143, 144]. In order to include the influence of distributed VGCs,
such as Kv channels in the internode, the cable model is extended to

r
2ρa

∂2v
∂x2 −Cm

∂v
∂t
−

v
ρml
+

G(v)
2πr

= 0. (2.22)

The parameter G(v) is the charge generation function that describes the ionic exchanges
within the segment and is equal to βv where β ≥ 0. Bogatov et al. [143] presented an
approximation of the cable model in Equation 2.22 and showed the changes in AP shape
with distance traveled from the point of initiation and the propagation time.

v(x, t) ≈ e−
x
√
γ

λ v0

(
t −

τx
2λ
√
γ

)
, (2.23)

where three constants parameters emerge: (1) γ (in mm) is the length constant which
determines the maximum distance the AP can travel without considerate attenuation, (2)
τ in (ms) is the time constant which is the maximum propagation time before the signal
decay, and (3) γ (from 0 to 1) is the constant of distributed AP that describes the ionic
exchanges within the segment. The term −x

√
γ/λ describes the voltage decay while

τx/(2λ
√
γ) is the time delay that the input v0 experiences as it gets further away from the

initiation site. The parameters are given as

λ =

√
rlρm

2ρa
, τ = lρmCm, and γ = 1 −

βlρm

2πr
. (2.24)

Length and Time Constant. The length constant and time constant govern the spread
of AP from the initiation site to the adjacent node of Ranvier. The length constant deter-
mines the distance in which the signal can travel that still results in nodal membrane de-
polarization, and the time constant describes how long the capacitance delays the depo-
larization [139]. The myelin sheath serves two purposes in promoting signal propagation
and conduction speed [79, 131, 135, 139]. First, it increases the effective axonal mem-
brane resistance, lengthening the electrical space constant that promotes signal spread.
Second, it lowers the effective membrane capacitance, decreasing the time constant so
that less charge is needed to enter the node for depolarization. The time constant τ tends
to increase with an increase in Rm. However, the decrease in Cm counteracts this effect;
thus, τ remains almost constant [79]. Along the internode, the voltage decay is exponen-
tial (Equation 2.23). If λ is relatively short, the signal amplitude rapidly falls as a function
of distance, and if it is shorter than the cable length, the signal will be insignificant [79].
Also, because of the high membrane capacitance, the membrane cannot charge imme-
diately upon the arrival of the stimulus. The time it takes to charge one node depends on
the charging time of the preceding internode [100].

Propagation Velocity. The propagation velocity depends on the interrelated factors,
such as the axon diameter, the myelin thickness relative to the axon diameter, the in-
ternodal length, the length constant (λ), the time constant (τ), the local current intensity,
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VGCs, and the threshold potential [79, 100, 131, 139, 145]. Therefore,

θ ∝
λ

τ
. (2.25)

Substituting λ and τ, the propagation velocity becomes

θ ∝
1

Cm

√
r

RmRi
. (2.26)

Therefore, the larger the axon diameter, the lower the longitudinal resistance (Rm), the
greater the local current flows along the internode. If myelination reduces Cm, then θ
increases proportionally [79]. If the threshold (Vth) shifts to a more positive voltage, it
will take longer for the node to spike; thus, the propagation velocity becomes slower.
Considering the internode distance as constant, the g-ratio (the ratio between the axonal
diameter and the sum of the axonal diameter and myelin sheath thickness) has a value
of 0.6-0.7 for maximum conduction velocity [131].

2.7/ CONCLUSION

Information is initially stored as short-term memory in the hippocampus. Then, the hip-
pocampus communicates with the prefrontal cortex to convert the short-term into long-
term memory. Fundamental to the hippocampus processes is the neuron network called
the trisynaptic circuit, where the information flows from the DG (input layer) to CA3, to
CA1 subfields (hidden layers), and finally to the entorhinal cortex (output layer). Thus, the
hippocampus inspired numerous research to understand its processes further and mimic
them for applications in biomedical engineering and artificial neural networks (ANN).

Central to the hippocampal processes is the cellular elements called the pyramidal neu-
rons. We presented its biological structure, morphology, and intracellular component.
We then showed that the neuron membrane separates the extracellular fluid and the
cytoplasm and plays a significant role in signal generation. The membrane consists of
ion-specific channels regulating ion transport, such as Na+, K+, Ca2+, and leakage ions,
from and into the intracellular space. The intracellular concentration changes create a po-
tential difference in the membrane that is essential for neuron signaling. We illustrated the
influence of these ion channel dynamics on the neuron membrane using an equivalent
electric circuit comprising the passive and active mechanism.

The instant that the membrane potential reaches a certain threshold, an AP is generated.
This AP is considered the main information carrying-signal in the neuron and is generally
generated in the AIS. The shape of the AP depends on the ionic channel distribution.
The Hodgkin-Huxley model is the first model to describe the AP generation in the neuron.
This model is recognized as biologically accurate since it details the dynamics of the
necessary ion channels. Several neuron models were developed since then. Here, we
presented the commonly used models and gave an example of the AP shape and spiking
patterns resulting from increasing applied current intensity. Neuron models are divided
into two categories based on the mechanism of spike initiation. AP generation can be
dynamic-based, such as the HH, M-L, and FHN model, where the threshold is intrinsic in
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the system. Models, such as the IF-type and Izhikevich models, initiate spikes when the
membrane potential increases beyond an explicitly defined threshold.

Axons act as a transmission line that directs APs generated in the AIS to the neigh-
boring neurons through synaptic endings, typically without significant AP changes and
delays. Axonal excitability and signal transmission along the axon proper are challenging
to study because the small axonal size poses difficulties in conventional electrophysiolog-
ical recordings. However, recent studies on axons argued that axons modify the shape
and firing patterns of APs, and determine how APs propagate along the axonal arbor,
thus contributing to neural circuit functions. In this chapter, we have discussed the AP
initiation in the AIS via the opening and closing of voltage-gated ion channels. The AP
generation presented in this chapter follows a single-compartment model, that is, the AIS
compartment.

In the following chapter, we present the information transfer from one neuron to another
via the synapse. We also discuss the conversion of multiple incoming signals in the
dendritic tree into a single AP.





3
NEUROTRANSMISSION AND NEURAL

CODING

3.1/ INTRODUCTION

Neurotransmission is the process in which one neuron communicates to another neuron
by releasing neurotransmitters into the synaptic space. The axon terminal of a presynap-
tic neuron transmits signals to its postsynaptic dendritic spine counterpart via the synapse
chemically rather than electrically. The intracellular [Ca2+] fluctuations play an essential
role in converting the APs into chemical signals for presynaptic vesicle release of neu-
rotransmitters, such as glutamate (Glu−). Neurotransmitters then open neurotransmitter-
specific receptors in the dendritic spines of spines, such as α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. These
receptors are active mechanisms that induce membrane potential increase in the spine
head.

The postsynaptic neuron receives thousands of synaptic inputs, be it excitatory or in-
hibitory inputs, from myriads of presynaptic neurons via its dendritic tree. These simulta-
neous inputs travel along the dendritic arborization to the soma while inducing changes
in the membrane potential along their path, activating passive and active dendritic mech-
anisms. These mechanisms influence how the neuron processes the incoming signals
and encodes information. The point neuron is the classical conceptual model of neural
coding, wherein all inputs have the same influence on somatic depolarization. The soma
integrates the synaptic inputs, and when the summation reaches a certain threshold,
the soma generates an AP. The point neuron hypothesis, though conventionally used,
is instead an oversimplified representation of neural computation and coding, as it dis-
regards the local processes in the dendritic trees and the location of synaptic activation.
Current studies suggest that the complex dendritic morphology creates independent com-
putational subunits, compartments that perform individual operations separate from other
dendritic branches or subunits. However, a comprehensive understanding of how neu-
rons integrate the synaptic inputs, perform computations, and codes information into a
single spike train is still lacking.

In this chapter, Section 3.2 describes the influence of APs and ER on the fast and slow
Ca2+ dynamics. Section 3.3 is about neurotransmission. It illustrates the neurotransmit-
ter release process and modes and describes the Glu− dynamics in the synaptic cleft.
Section 3.4 deals with signal propagation by describing the dendritic spines, the synap-
tic inputs that target them, and the resulting dendritic depolarization. It also illustrates
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the dendritic membrane potential changes as the synaptic inputs travel along the den-
dritic arbor and the activation of passive and active dendritic mechanisms along the path.
Lastly, Section 3.5 presents the transformation of synaptic inputs into somatic output. It
describes the dendritic information processing, the processes the signals undergo before
reaching the soma, and the computational schemes the neuron utilizes. It also presents
dendritic abstractions and neural coding schemes at the single neuron level.

3.2/ PRESYNAPTIC CALCIUM DYNAMICS

Intracellular Ca2+ is an important secondary messenger that controls various cellular ac-
tivities, such as in synaptic transmission [146–148]. The timing of fluctuations in the
presynaptic Ca2+ concentration ([Ca2+]) is crucial for triggering neurotransmitter release
and improving synaptic plasticity [147, 149]. Various mechanisms control the presynaptic
Ca2+ dynamics, including the voltage-dependent Ca2+ channels (VDCCs) along the cell
membrane and the ER.

This section focuses mainly on the Ca2+ dynamics along the axon and specifically in
the axon terminals. Cells not only exhibit compartmentalization of special proteins (ion
channels) but also inorganic molecules such as Ca2+ ions [150]. The synaptic terminals
display large [Ca2+] compared to the adjacent axonal segments, likely due to the nonuni-
form Ca2+ channel distribution [151]. Calcium signaling is both temporal and spatial. Cells
can increase or decrease their [Ca2+] in different locations and with different timescales
to target specific functions [146].

3.2.1/ SIGNALING PATHWAYS

The series of intracellular biochemical reactions and diffusion, shown in Figure 3.1, forms
signaling pathways wherein Ca2+ is a multifunctional secondary messenger [152]. Cal-
cium is a unique secondary messenger in that Ca2+ influx can be derived from the open-
ing of voltage-dependent ion channels or the Ca2+ released from the ER through Ca2+-
sensitive, Ca2+-permeable channels. Here, we divide the intracellular signaling pathways
into two timescales: the fast Ca2+ dynamics derived from the VDCCs, and the slow Ca2+

dynamics derived from Ca2+ stores.

3.2.1.1/ VOLTAGE-DEPENDENT CALCIUM INFLUX

In the axon terminals, membrane depolarization controls Ca2+ signals [151, 153, 154].
Action potentials trigger Ca2+ influx to the cytosol from the extracellular space by open-
ing voltage-dependent Ca2+ channels (VDCCs), which are voltage-sensitive membrane
pores [147, 149, 153, 155]. Refer to Chapter 2 for the characteristics and subunits of VD-
CCs. All VDCC types are distributed in the neuron compartments, where P/Q-type and N-
type channels are mainly responsible for Ca2+ influx in the presynaptic areas [155]. In the
human brain during repetitive APs within a few hundreds of microseconds, approximately
10,000 Ca2+ ions enter the axon terminals or approximately a 500 nM-10 µM increase in
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Figure 3.1: Calcium signaling pathways showing the influx and efflux of Ca2+ ions in the intracellular space
(cytoplasm or axoplasm). The signaling pathways can be classified into two based on the Ca2+ signaling
timescales. First is the fast Ca2+ influx from the extracellular space to the cytoplasm (axoplasm), derived from
the opening voltage-sensitive Ca2+ channels (VDCCs) upon the arrival of APs. Surplus Ca2+ ions are pumped
back to the extracellular space via plasma membrane leak channels (PMleak), and plasma membrane Ca2+

ATPase (PMCA) pumps to avoid cell toxicity due to high [Ca2+]. Second is the slow Ca2+ influx from Ca2+

stores (endoplasmic reticulum). This influx includes an additional pathway for inositol-3-phosphate (IP3).
Extracellular molecules, glutamate (Glu−), for example, impinge G-protein coupled receptors (GPCRs), which
leads to the production of IP3 molecules in the cytoplasm. IP3 molecules diffuse and bind with IP3 receptors
(IPRs), which open the receptors for Ca2+ release from the ER. Excess Ca2+ ions are pumped back to
the ER through sarco-endoplasmic receptor Ca2+ ATPase (SERCA) pumps, resulting in intracellular Ca2+

oscillations. The ER also has leakage channels that allow Ca2+ flow to the cytoplasm to avoid depletion of
intracellular [Ca2+].

transient [Ca2+] is elicited [151, 156]. The Ca2+ influx is driven by the 70 mV electrical
gradient and a 20,000-fold concentration gradient, given that 50 nM intracellular and one
mM extracellular [Ca2+] [156]. When the Cav channels close, the Ca2+ ions diffuse in the
intracellular space diminishing the [Ca2+] in the microdomain, leaving a residual [Ca2+] of
100 nM to 1 µM. High intracellular [Ca2+] is detrimental to the cell. Therefore, excess cy-
tosolic Ca2+ is removed from the cytosol to the extracellular space by plasma membrane
Ca2+ (PMCA) pumps and plasma membrane leakage channels (PMleak) [155].

3.2.1.2/ CALCIUM INFLUX FROM CALCIUM STORES

One of the main contributors to the cytosolic Ca2+ oscillations is the ER. The smooth ER
compartments are distributed throughout the neuron, extending to the axon and synaptic
sites [150]. The smooth ER is a Ca2+ source, which stores internal [Ca2+] of three to four
orders of magnitude larger than in the cytosolic [Ca2+] at resting condition [148, 152]. The
ER releases Ca2+ via two types of channels. The first type is passive leakage channels
that release Ca2+ depending on the [Ca2+] gradient between the cytosol and the ER.
The second type is the Ca2+ release through inositol-3-phosphate (IP3)-gated channels,
or IP3 receptors (IPR) [148, 152, 155]. The IP3 signaling pathway starts from the extra-
cellular molecules, such as glutamate (Glu−), impinging the G-protein coupled receptors
(GPCRs) on the cell membrane leading to the production of IP3 molecules [157]. The IP3
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molecules then bind with the IPRs, which open to release Ca2+ to the cytosol [146]. As
mentioned, high cytosolic [Ca2+] is toxic to the cell. Therefore, following a rapid [Ca2+]
transient, excess cytosolic Ca2+ is pumped back to the ER via the sarco/endoplasmic
reticulum Ca2+ ATPase (SERCA) pumps that results in a repetition of Ca2+ release and
uptake cycle [146, 148, 155]. On the other hand, the ER leakage channel allows Ca2+ to
enter the cytosol to ensure that the cytosolic [Ca2+] will not decrease to 0 [88].

3.2.2/ MODELING CALCIUM DYNAMICS

The following dynamics and models describe the intracellular Ca2+ dynamics within a sin-
gle compartment, where the external [Ca2+] is held constant at resting conditions. The
change in [Ca2+] in a compartment is attributed to the fast kinetics of AP and the intra-
cellular molecular events generating Ca2+ change. The total [Ca2+] in the compartment,
ci, is equal to the summation of the [Ca2+] due to AP, c f ast, and the intracellular transient
[Ca2+], cslow, and is described as

ci = c f ast + cslow,

dci

dt
=

dc f ast

dt
+

dcslow

dt
.

(3.1)

3.2.2.1/ FAST CALCIUM DYNAMICS

A set of ordinary differential equations describe the intracellular Ca2+ dynamics resulting
from the time-dependent membrane potentials. In the following models, the Ca2+ influx
in a single compartment (with homogeneous extracellular space) is related to the model
geometry. The fast Ca2+ dynamics, c f ast, through voltage-dependent calcium channels
(VDCCs), is governed by the construction-destruction formula [88, 147, 149, 158],

dc f ast

dt
= −

ICaA
zCaFvc

+ JPMleak −
IPMCAA
zCaFvc

. (3.2)

Here, A is the surface area of the compartment, zCa is the Ca2+ ion valence, F is the
Faraday’s constant, and vc is the volume of the compartment. The ICa is the influx current
density per membrane surface area through N-type VDCC, which is directly dependent on
the membrane potential V. The IPMCA is the efflux current density per membrane surface
area caused by ATP-driven PMCA and is dependent on the intracellular [Ca2+]. The Ca2+

leak efflux JPMleak represents all remaining currents implicitly described in the model.

The ohmic current-voltage relation of the Ca2+ influx, ICa, consists of both the voltage-
dependent current through a single open pore I single channel

open = gCa(V − VCa) and the VDCC
voltage-dependent opening probability mCa [147, 149]. Therefore, the electrochemical
gradient over the membrane drives the Ca2+ current through an open VDCC. The current
surface density through the N-type VDCC is given as

ICa = ρCam2
CagCa (V − VCa) , (3.3)

where ρCa is the N-type channel surface density, gCa is the single N-type Ca2+ open-pore
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conductivity [88, 147, 158, 159]. The potential difference through the VDCC is relative to
the Ca2+ reversal potential, VCa, and incorporates in the model the [Ca2+] in the intracel-
lular and extracellular space at rest. The Nernst equation determines the VDCC reversal
potential,

VCa =
RT

zCaF
ln

(
cext

crest
i

)
, (3.4)

where cext is the extracellular [Ca2+] and crest
i is the intracellular [Ca2+] at rest. The variable

mCa is the opening probability of a single gate in a two-gate N-type Ca2+ channel that is
only open when the two gates are open. The probability is time-dependent and modeled
by a single exponential approximation so that

dmCa

dt
=

(
m∞Ca − mCa

)
τmCa

, (3.5)

which may be related to experiment using data for the average number of open channels
in an ensemble of channels [147, 149]. The probability mCa approaches its asymptotic
value, m∞Ca, with a time constant τmCa [147]. The voltage-dependent m∞Ca is a sigmoidal
function given by the Boltzmann function,

m∞ca =
1

1 + e
VmCa−V

kmCa

, (3.6)

approximated the dependence of m∞Ca on V fitted to the whole-cell current of an N-type
Ca2+ channel. Here, VmCa is the half-activation voltage, and kmCa describes the steepness
of the asymptotic opening probability m∞Ca [88, 147, 149, 158, 159]. In presynaptic axon
terminals, the Ca2+ influx during a single AP has approximately 1 ms and 60 ms of a
fast rise and slow decay time constants, respectively [151]. The proteins such as PMCAs
actively transport Ca2+ ions through the membrane against the electrochemical gradient
using the ATP molecules energy, and whose kinetics are different from pores (e.g., VD-
CCs) [147]. The protein structure limits the PMCA kinetics to a maximum rate [147, 149].
The Ca2+ current due to PMCA, IPMCA is best described by the Hill function

IPMCA = vPMCA
c2

i

c2
i + K2

PMCA

, (3.7)

where vPMCA is the maximum Ca2+ current via PMCA and KPMCA is the [Ca2+] at half of
vPMCA [88, 149].

Then, JPMleak in is the leak from the extracellular space into the compartment and is added
to ensure that the [Ca2+] will not decrease to 0, in that

JPMleak = vleak (cext − ci) , (3.8)

where vleak is the maximal [Ca2+] and cext is the external [Ca2+] [88].
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3.2.2.2/ SLOW CALCIUM DYNAMICS

The slow Ca2+ dynamics, cslow, is attributed to (1) the release of Ca2+ from the ER trig-
gered by the production of intracellular messenger IP3, by the binding of the extracellular
Glu− molecules and the Glu− receptors, and (2) the SERCA pump that pumps Ca2+ back
into the Ca2+ depot [88, 158, 160, 161].

The IPR kinetics are central to IP3-based Ca2+ signaling. The intracellular [IP3], p, is
given as

dp
dt
= vg

g0.3

k0.3
g + g0.3

− τp (p − p0) , (3.9)

where g is the extracellular [Glu−], p0 is the resting [IP3], vg is the maximum IP3 production
rate, kg is the half-activation based on [Glu−], and τp is the IP3 degradation constant [88].
The physiological range of [IP3] is between 0 and 5 µM [157].

The Li-Rinzel model describes the dynamical system governing the cslow behavior [162].
The model assumes that the regulatory properties of the IPR provoke the periodic release
of Ca2+ ions from the ER [157]. Under this hypothesis, intracellular calcium balance is
determined by only three fluxes, corresponding to (1) a passive leak of Ca2+ from the
ER to the cytosol (Jleak); (2) an active uptake of Ca2+ into ER (Jpump) due to action of
SERCA pumps; and (3) a Ca2+ release (Jchan) that is mutually gated by Ca2+ and IP3
concentrations (denoted by ci and p, respectively) [157, 158]. Therefore,

dcslow

dt
= −Jchan − Jpump − Jleak, (3.10)

describes the slow Ca2+ dynamics [88, 158, 160, 161, 163].

The Ca2+ current flowing out of the ER-mediated by IPR channel is relative to the [Ca2+]
gradient between the cytosol and the ER whose permeability is relative to the IPR perme-
ability, rC = c1v1, times the open channel probability [157]. The open channel probability
is based on a gating model of the IPR subunit, assuming three binding sites: one for IP3
and two for Ca2+ (including one activation and one inactivation site). Let m∞ be the IP3
binding probability, n∞ is the Ca2+ activation, and q is the Ca2+ inactivation probability.
Experimental data suggest a third power for the probabilities, thus

Jchan = rCm3
∞n3
∞q3 (ci − cER) , (3.11)

where the opening probabilities

m∞ =
p

p + d1
, and n∞ =

ci

ci + d5
, (3.12)

are direct functions of intracellular [IP3] and [Ca2+], respectively, and where v1 is the
maximum IP3 receptor flux, d1 is the IP3 dissociation constant, and d5 is the activation
Ca2+ dissociation constant [88, 157]. The concentration in the ER, cER, is relative to the
slow calcium dynamics and is described as

dcER

dt
= −

1
c1

dcslow

dt
, (3.13)
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where c1 is the ratio between the ER volume and the compartment volume [88]. For
isolated cell model where Ca2+ fluxes across the membrane (fast Ca2+ dynamics) are
neglected, the average free [Ca2+] (c0) is conserved [157]. Thus cER is equivalent to

cER =
c0 − ci

c1
. (3.14)

Assuming fast IP3 binding and Ca2+ activation, the IPR gating kinetics is described by an
ordinary differential equation with a dimensionless variable q that represents the inacti-
vated IPRs by intracellular Ca2+,

dq
dt
= αq (1 − q) − βqq,

αq = a2d2
p + d1

p + d3
,

βq = a2c1,

(3.15)

where a2 is the inhibitory Ca2+ binding constant, and d3 is also an IP3 dissociation con-
stants [88, 157].

Intracellular Ca2+ oscillations can also be due to the activity of SERCA pumps drawing
Ca2+ ions back to the ER. The Ca2+ pump rate is an instantaneous function of intracellular
[Ca2+] and expresses a Hill function with a Hill constant of 2.

Jpump = v3
c2

i

k2
3 + c2

i

, (3.16)

where v3 is the maximal Ca2+ uptake rate of SERCA and k3 is the SERCA Ca2+ affinity
[88, 157].

The passive Ca2+ leakage current, Jleak, is relative to the [Ca2+] gradient across the ER
membrane and the maximum Ca2+ leakage rate from the ER to the cytosol.

Jleak = rL (ci − cER) , (3.17)

where rL = c1v2, and v2 is the Ca2+ leak rate constant.

The Ca2+ influxes Jchan and Jleak can be grouped into Jrel.

Jrel(ci, q, p) = Jchan(ci, q, p) + Jleak(ci)

=
(
rCm3

∞n3
∞h3
∞ + rL

)
(cER − ci) .

(3.18)

Thus, Jrel becomes a function of cell parameters described by

Jrel(ci, q, p) =
(
rCm3

∞n3
∞h3
∞ + rL

)
× (c0 − (1 + c1) ci) . (3.19)

Therefore, the intracellular [Ca2+] balance equation is

dci

dt
= −Jrel(ci, q, p) − Jpump(ci). (3.20)
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The Ca2+ dynamics equilibrium occurs when both the intracellular Ca2+ level and the
fraction of inactivated IPR are constant, that is dci/dt = 0 and dq/dt = 0 [157]. During
stimulation, cytosolic [Ca2+] tends to fluctuate, also referred to as Ca2+ oscillations [148].
In the Li-Rinzel model, Ca2+ oscillations are related to the IP3 levels; the stability in Ca2+

levels occurs either during low or high [IP3] [157].

3.3/ NEUROTRANSMISSION

What is the importance of Ca2+ concentration and oscillations in the axon terminal? One
consequence of the Ca2+ influx in the presynaptic terminal is the initiation of synaptic
transmission, the process in which one neuron communicates with another. The ac-
cumulation of AP-evoked transient Ca2+ triggers synaptic vesicle exocytosis, therefore
releasing neurotransmitters into the synaptic cleft. Synaptic neurotransmitters enter the
postsynaptic neuron through the receptors in the spine head, causing membrane de-
polarization due to excitatory neurotransmitters or temporary hyperpolarization due to
inhibitory neurotransmitters. The neurotransmitter presented here is of excitatory type,
specifically glutamate (Glu−). Therefore, synaptic transmission is the interplay between
the electrical and chemical dynamics of the neurons.

The synapse, the basic neurotransmission unit, is a complex physiological structure that
connects the axon terminal or bouton of the presynaptic neuron with the dendritic spine
head of the postsynaptic neuron [164, 165]. The synapse serves as an intercellular junc-
tion whose intersynaptic space is approximately 15 nm between the bouton and the spine
head [165]. Neurotransmitters are chemical messengers, molecules used by the neurons
to transfer information to targeted cells. In the presynaptic neuron, these neurotrans-
mitters are stored in vesicles, membrane-bound organelles synthesized in the soma
[164, 166]. Cargos, such as neurotransmitters, are packaged into these vesicles for trans-
port to the active zones located in the axon terminals through a microtubule-dependent
process. A quantal size corresponds to a single synaptic vesicle [167]. Synaptic vesicles
are classified according to their propensity to fuse with the plasma membrane [165]. The
readily releasable pool (RRP), which is less than 5% of the total synaptic vesicles, fuse
in response to an AP [165, 168]. In hippocampal synapses, the docked synaptic vesicles
belong to the RRP. Docked vesicles are those vesicles fastened to the plasma mem-
brane near the active zone [169]. The reserved pool, which comprises 10-60% of the
total vesicles, restock the RRP to maintain neurotransmission [165]. Therefore, the RRP
and reserved pool form the recycling pool of synaptic vesicles. The rest of the synaptic
vesicles belong to the resting or dormant pool, which is highly invulnerable to synaptic
activity. The resting pool may contribute to spontaneous neurotransmitter release or may
act as reserved synaptic vesicles.

3.3.1/ NEUROTRANSMITTER RELEASE PROCESS

Figure 3.2 shows the neurotransmission process, from the AP-triggered Ca2+ influx to
vesicle fusion and priming with the axon terminal membrane to neurotransmitters dif-
fusing into the synaptic space. Neurotransmission begins with the arrival of APs in the
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Figure 3.2: Calcium-triggered neurotransmitter release. Synaptic transmission occurs chemically via the
presynaptic release of neurotransmitters from the axon terminal or bouton into the synaptic cleft and fol-
lowed by the neurotransmitter uptake of the postsynaptic counterpart through the receptors in the spine
head. (1) The arrival of APs in the axon terminal activates the VDCCs in the active zone, (2) increasing
intracellular [Ca2+]. (3) Calcium ions bind with the neurotransmitter-containing vesicle Ca2+ sensors. (4) With
sufficient bounded Ca2+ ions, Ca2+ sensors activate and induce the fusion and priming of vesicles with the
plasma membrane through the complex soluble N-ethylmaleimide-sensitive factor attachment protein recep-
tors (SNARE) complex. (5) The vesicle and plasma membrane fuse together, creating an opening in the
membrane for neurotransmitter release into the synaptic cleft. (6) Empty vesicles return in the circulation to
replenish their vesicular neurotransmitters through endocytosis.

axon terminal, briefly opening VDCCs in the active zone, causing a rapid influx of highly-
localized, transient Ca2+ ions [164, 164, 165, 167, 168, 170]. Intracellular Ca2+ ions bind
with the vesicular Ca2+ sensors. The kinetic binding schemes between the vesicular sen-
sor and intracellular [Ca2+] differ depending on the release mode, the level of [Ca2+], and
synaptic plasticity [171]. In this study, there are five cooperative, low-affinity Ca2+-binding
sites where five Ca2+ ions must bind with vesicular Ca2+ sensors to induce docking. The
kinetic model governing the Ca2+ binding to the Ca2+ sensors is given as

X
5αci

⇄
β

X(ci)1

4αci

⇄
2β

X(ci)2

3αci

⇄
3β

X(ci)3

2αci

⇄
4β

X(ci)4

αci

⇄
5β

X(ci)5

γ

⇄
δ

X(ci)∗5, (3.21)

where X is the Ca2+ sensor with no Ca2+ bound, X(ci)1 to X(ci)5 correspond to the Ca2+

sensors with one to five Ca2+ bound, X(ci)∗5 is the isomer of X(ci)5 ready for release, α
and β are the Ca2+ association and dissociation constants, respectively, and γ and δ are
the Ca2+ independent isomerization constants [172]. With sufficient bounded Ca2+ and
[Ca2+] elevation of ∼10 µM [173], Ca2+ sensors activate, inducing docking and then prim-
ing synaptic vesicles with the axon terminal membrane [164, 167, 168, 174]. During prim-
ing, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE)
fusion complex starts to form in the synaptic vesicles and SNAREs syntaxin 1 and on
the plasma membrane [164, 165, 169, 175]. The SNARE complex space is limited [175];
thus, there are two docked vesicles at the active zone [88]. The SNARE fusion complex
pulls together the vesicle and the plasma membrane, effectuating the opening and ex-
pansion of the pore for exocytosis. The pore opening and neurotransmitter release are
either Ca2+-triggered mediated by Ca2+ sensors or by spontaneous release [170, 174].
After neurotransmitter release, the SNARE complex disassembles, and the empty vesicle
leaves the terminal and reenters the vesicle circulation for endocytosis [166, 174]. The
released neurotransmitters rapidly diffuse from the axon terminal and bind to dendritic
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Figure 3.3: Neurotransmission time course. A single neurotransmission cycle, starting from the arrival of
AP, to Ca2+ influx and binding with synaptic vesicles, to vesicle and plasma membrane fusion, and opening
of pores for neurotransmitter release transpires within a few milliseconds. (Image was extracted from Südhof
[170].)
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Figure 3.4: Modes of neurotransmitter release. Synchronous release occurs during the rapid Ca2+ influx
upon the arrival of AP. Asynchronous release occurs and persists even after the arrival of the last AP. Sponta-
neous release is regulated by Ca2+ fluctuations but is independent of neuronal activity. (Image was extracted
from Kavalali [169].)

receptors that induce postsynaptic membrane potential changes [165]. The success of
synaptic transmission, therefore, is dependent on (1) the number of readily releasable
vesicles, the [Ca2+] in the presynaptic bouton, and (3) the Ca2+ coupling and vesicle fu-
sion [167]. The neurotransmitter release process occurs within milliseconds upon arrival
of an AP [175]. The neurotransmission time course is presented in Figure 3.3.

3.3.2/ MODES OF NEUROTRANSMITTER RELEASE

Molecular and electrophysiological data revealed diversity in synaptic vesicles, in turn, in
presynaptic exocytotic fusion machinery, giving rise to multiple modes of neurotransmit-
ter release: synchronous, asynchronous, and spontaneous release (Figure 3.4). These
modes are influenced by the AP arrival or by transient [Ca2+].
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3.3.2.1/ SYNCHRONOUS RELEASE

The synchronous release is the predominant mode of neurotransmitter release in most
synapses, accounting for >90% of release at low-frequency stimulation [164, 168]. Syn-
chronous neurotransmitter release is time-locked with the arrival of AP in the axon termi-
nal and induced by the rapid Ca2+ influx, which is closely associated with Ca2+ mediated
fusion of synaptic vesicles [164, 165, 174]. In the presynaptic Ca2+ nanodomains, Ca2+

sensors respond quickly to Ca2+ entry, have low Ca2+-affinity, and fast off-rate [168]. Vesi-
cle fusion occurs in less than a millisecond after an AP invades the axon terminal. These
properties are exceptionally vital for neuronal communication, which requires fast neu-
rotransmission [165, 168]. The axon terminal must generate and maintains the RRP of
vesicles for fast exocytosis.

Tsodyks-Markram Model. The Tsodyks-Markram Model (TMM) [176] is the classical
phenomenological model that describes the time evolution of available vesicles and dy-
namically changing release probability [164, 174]. The arrival of AP at time tAP induces
a fraction of total vesicles in the RRP, R, to release their neurotransmitter content, where
the total amount of neurotransmitter for release, E, is contained in this fraction of readily
releasable vesicles (Equation 3.22).

dR
dt
= −

R
τ f
+ R0 [1 − R]

∑
AP

δ(t − tAP),

dE
dt
=

EF − E
τd

− qr,

(3.22)

where τ f controls the rate of decay of R, τd controls the rate of replenishment of vesicles,
R0 denotes the increment of R due to the arrival of AP, EF is the total neurotransmitter in
the vesicles after replenishment, and δ(·) is the Dirac delta function. The variable qr is the
neurotransmitter release rate, described as

qr = R(t+AP)E(t−AP)
∑
AP

δ(t − tAP), (3.23)

where t+AP and t−AP correspond to when an AP begins and ends, respectively.

Tsodyks Model. The Tsodyks Model [177] is an extension of the TMM. In this case,
instead of computing the amount of neurotransmitters in the readily releasable vesicles,
the model postulates the probability of neurotransmitter release. Upon the arrival of AP at
tAP, the probability of neurotransmitters available for release (uS ) increases by a factor u0
(release probability at rest), while the readily releasable neurotransmitter (xS ) decreases
by a fraction

rS (tAP) = uS (t+AP)xS (t−AP), (3.24)

that corresponds to the fraction of effectively released neurotransmitter. In between APs,
neurotransmitter resources are reintegrated at a rate of 1/τd while uS decays to zero at a
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rate of τ f . The probabilities are given as

τ f
duS

dt
= −uS +

∑
AP

u0 (1 − uS ) δ (t − t−AP) τ f ,

τd
dxS

dt
= 1 − xS −

∑
AP

rS δ (t − tAP) τd.
(3.25)

The synapse is ”at rest” when uS → 0 and xS → 1, which occurs during the AP onset
is much larger than the synaptic time scales τd and τ f . In this case, the probability of
AP-evoked neurotransmitter release from the presynaptic bouton is equal to u0 [178].

3.3.2.2/ ASYNCHRONOUS RELEASE

There are also some cases wherein synaptic transmission occurs even after the last AP.
Synaptic vesicles fuse and release neurotransmitters asynchronously, and the amount of
neurotransmitter that is released can be quite large [164, 165, 167, 168, 174]. This re-
lease may occur and persists for tens to hundreds of milliseconds after the end of stimula-
tion, a single or a series of APs. The neuron type, presynaptic terminal capacity, intrinsic
molecular attributes of the neurotransmitter release machinery, and prior activity history
are some conditions that influence this particular mode of release. The asynchronous
release is stochastic, and the level and duration are regulated by the Ca2+ entry and from
sustained moderate- to high-frequency stimulation.

3.3.2.3/ SPONTANEOUS RELEASE

Almost in all neurons, spontaneous mini-releases occurs even when the presynaptic
membrane is not depolarized, in that it is independent of neuronal activity [165, 168, 170,
174]. Confocal or two-photon microscopy with single-cell electrophysiology in the hip-
pocampal CA1 area suggests that the spontaneous fluctuations of intracellular Ca2+ also
regulate this mode of release [155, 165, 170]. The significance of spontaneous release
is still under debate, though it may implicate synaptic stabilization, long-term synaptic
plasticity and may prevent loss of dendritic spines [168].

Unlike in synchronous release, where the synaptic neurotransmitter can be computed di-
rectly in response to AP, the spontaneous release is dependent on the state of vesicles
ready to be released. Given two docked vesicles in the active zone, the number of vesi-
cles ready to be released spontaneously, fr, can have values of [0, 0.5, 1] for [0, 1, 2]
releasable vesicles. The probability, fr, is a stochastic process; therefore, the fluctuation
in fr is a Poisson process whose rate, λ, is dependent on the intracellular [Ca2+], ci,

λ(ci) = a3

(
1 + exp

(
a1 − ci

a2

))−1

, (3.26)

where a1 is the [Ca2+] at which λ is halved, a3 is the slope factor of spontaneous release
rate λ, and a3 is the maximum spontaneous release rate. Tewari et al. [88] modified the
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TMM to make the vesicle fusion fr-dependent.

dR
dt
=

1
τrec
− fr · R,

dE
dt
= −

E
τinact

+ fr · R,

I = 1 − R − E,

(3.27)

where R is the fraction of releasable vesicles in the presynaptic terminal, E is the fraction
of effective vesicles in the synaptic cleft, I is the fraction of inactive vesicles undergoing
recycling, and τinact and τrec are the time constants of vesicle inactivation and recovery.
Once a vesicle is released, either synchronously or spontaneously, the release process
remains inactivated for 6.34 ms.

3.3.3/ SYNAPTIC GLUTAMATE DYNAMICS

The most abundant neurotransmitter in the human brain (80-90% of the neurons) is glu-
tamate (Glu−), which excites virtually every neuron (80-90% of synapses) for fast exci-
tatory neurotransmission [179, 180]. In the hippocampus, Glu− is the principal mediator
for memory formation and retrieval. The hippocampus comprises mainly glutamatergic
synapses: the entorhinal cortex to DG, DG to CA3, and between pyramidal cells from
CA3 to CA1 regions. There are only a few mmol/l of Glu− in the cytosol; instead, Glu− is
concentrated in the synaptic vesicles with 60-250 mmol/l of [Glu−] per vesicle. A gluta-
matergic vesicle has an inner radius of ∼17 nm and a volume of 2×10−20 liters. Therefore,
a [Glu−] of 100 mmol/l (∼6×1022 molecules per liter) would yield 1200 molecules of Glu−

in each vesicle.

In the Tsodyks model in Equation 3.25, assuming that the total vesicular [Glu−] is YT , the
released Glu− into the synaptic cleft is equal to the

Yrel(tAP) = ϱcYT rS (tAP), (3.28)

where ϱc represents the ratio between vesicular and synaptic cleft volumes [178, 179].
The time course of synaptically released Glu, YS , is modeled by a first-order degradation
reaction of characteristic time τc,

τc
dYS

dt
= −YS +

∑
AP

Yrelδ (t − tAP) τc. (3.29)

There are two vital quantities for the spontaneous release model: nv, which is the number
of docked of vesicles, and fr, which is the release probability updated during every arrival
of AP at time tAP [174]. Therefore, the total amount of neurotransmitter released, with
a small time delay, during a single AP is T(tAP) = nv(tAP) fr(tAP). Upon synaptic release,
Glu− must rapidly exit the synaptic cleft, usually diffusing to the extrasynaptic space for
astrocytic reuptake [181]. The synaptic cleft must regulate its [Glu−] to prevent overactiva-
tion of neuronal glutamate receptors, which leads to excitotoxicity [179–181]. Therefore,
in order to include the synaptic glutamate clearance, synaptic [Glu−], g, time course is
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Figure 3.5: Stimulated-emission-depletion image of a spine-covered dendrite recorded from a living neuron
of a hippocampal slice. (Image taken from de Souza [184].)

modified into
dg
dt
= nvgvE − gcg, (3.30)

where E is the effective fraction of Glu− in the synaptic cleft (Equation 3.27), gv is the
vesicular [Glu−], and gc is the rate of Glu− clearance by neuronal or astrocytic reuptake
[88]. Using these dynamics, synaptic [Glu−] ranges from 0.24 to 11 mM and last 2 ms.

3.4/ SIGNAL PROPAGATION ALONG THE DENDRITIC ARBORIZA-
TION

In the mammalian brain, a neuron typically receives 103 to 104 synaptic information
formed on the dendritic tree, which processes electrical information locally and glob-
ally within a millisecond timescale [182, 183]. The complex morphology of neurons has
fascinated neuroscientists since Cajal published his drawings of brain cells. Decades
of experimental and computational work have shown that neurons performed sophisti-
cated computations through the complex and diversified biophysical and electrical den-
dritic compartments. Studies on neuronal morphology, especially in varying and constant
dendritic properties, attempt to elucidate the information transmission and signal process-
ing in neurons.

3.4.1/ SYNAPTIC INPUTS VIA DENDRITIC SPINES

The dendrites of pyramidal neurons are covered with small protrusions called dendritic
spines (Figure 3.5), emanating from the dendritic surface [182, 183, 185]. The dendritic
spines form the primary site of synaptic information contacts, mostly from (∼95%) ex-
citatory neurons and some from inhibitory interneurons. Figure 3.5 shows a dendritic
segment recorded using a stimulated-emission depletion (STED) microscope. Spine dis-
tribution is low on dendrites less than 40 µm from the soma, then increases to a maximum
within 40-130 µm from the soma, gradually decreasing toward the distal dendrites [186].
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3.4.1.1/ DENDRITIC SPINE STRUCTURE AND FUNCTIONS

Dendritic spines are composed of a small spherical spine head (<1 µm in diameter) and a
narrow spine neck (∼1 µ in diameter and ∼1 µm in length) [182, 183, 185, 187]. Structural
studies on dendritic spines using electron microscopy or super-resolution light microscopy
showed that the dendrites of pyramidal neuron have a variety of spine shapes classified
as stubby- (short and stubby necks with an unclear distinction between the neck and
the head), thin- (long necks correlated with smaller heads), and mushroom-type (big and
spherical head connected to a thick neck. Mature dendritic spines often have a mushroom
shape. The dendritic head accommodates a synapse while the spine neck connects the
spine to the dendritic shaft [187]. The spine neck separates the head from the main den-
dritic branch, acting as a diffusion barrier and compartmentalizing biochemical signaling
[182, 183].

The dendritic spines serve as the postsynaptic contacts in cooperation with the presynap-
tic counterparts from presynaptic axon terminals. Excitatory contacts tend to terminate
on spine heads rather than directly on the dendritic shafts, implying that the spines have
an important functional role, or else the excitatory contacts could directly couple with
the dendritic shafts [187]. Dendritic spines have a distinctive feature called postsynap-
tic density (PSD), an electron dense region packed with signal transduction machinery
that acts as the receiving site of synaptic transmission [45, 183]. The PSD is linearly re-
lated to the dendritic geometry (largest in mushroom-shaped and smaller in thin or stubby
spines) and sensitivity of spines to Glu− [45]. Another example of the structural-functional
importance of dendritic spines is the one-to-one relationship between the number of den-
dritic spines and excitatory synapses [188]. In addition, the morphological and biophysical
characteristics of spines support synaptic plasticity by providing biochemical isolation and
chemical compartmentalization distinct from the dendritic shaft [182, 185, 187].

3.4.1.2/ EXCITATORY AND INHIBITORY SYNAPTIC INPUTS

The dendritic spines accommodate excitatory synapses while inhibitory synapses directly
target the dendritic shaft (Figure 3.6). Ligand-gated channels, also called receptors, are
abundant on the postsynaptic sites. When the synaptic signaling chemical (ligand) binds
to the specific site on the receptor, it opens and allows ion flow through the channel
[21]. The most common types of receptors located at the postsynaptic membrane are
the glutamate-gated AMPA and NMDA receptors mediating fast excitatory synaptic trans-
mission and GABA-gated (γ-aminobutyric acid) GABAA (GABA A-subtype) receptors for
inhibitory transmission [21, 189]. These receptors are named after their selective ago-
nists. Glutamate binds with both AMPA and NMDA receptors; however, AMPA only binds
with AMPA receptors (and NMDA with NMDA receptors).

In glutamatergic synapses, AMPA and NMDA receptors coexist in the same postsynap-
tic site [21]. AMPA-receptors are permeable to both Na+ and K+ ions, while NMDA re-
ceptors are permeable to Na+, K+, and Ca2+ ions. The Na+ current influx through the
AMPA-channel and the NA+ and Ca2+ current fluxes through the NMDA channel cause
an excitatory postsynaptic potential (EPSP). The activation of AMPA receptors results in
the accumulation of positive ions into the intracellular space, resulting in a rapid and large
depolarization. NMDA receptors also mediate excitation; however, they mediate weak
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Figure 3.6: Excitatory and inhibitory synapses. A synapse can be excitatory or inhibitory, depending on the
neurotransmitter in the synaptic cleft. In the excitatory synapse, the axon terminal of the presynaptic neuron
makes contact on the dendritic spine of the postsynaptic neuron by releasing excitatory neurotransmitters
such as Glu. In contrast, in the inhibitory synapse, the axon terminal makes contact directly on the dendritic
shaft and releases inhibitory neurotransmitters such as GABA. Synaptic Glu activates the NMDA and AMPA
receptors on the spine head, allowing the flow of Na+, K+, and Ca2+ ions through the channels. These current
fluxes result in membrane depolarization or EPSPs. When synaptic GABA molecules activate the GABAA

receptor, Cl− current flux from the synaptic cleft through the membrane, creating hyperpolarizing potential or
IPSP.

but more sustained depolarization, unlike AMPA receptors. Magnesium ions block or clog
the NMDA channel at resting state, preventing other ions from flowing freely. During de-
polarization after AMPA receptor activation, the Mg2+ block separates from the NMDA
receptor allowing the flow of inward ionic current. Therefore, there NMDA receptor is both
a ligand-gated and voltage-gated channel.

GABAergic synapses mediate fast inhibitory transmission, with reversal potential close
to the resting potential [21, 190]. GABA is an amino acid synthesized from Glu− and
is the major inhibitory neurotransmitter in the CNS [21]. The GABA receptor activation
results in the influx of Cl− causing a hyperpolarization or an inhibitory postsynaptic poten-
tial (IPSP). This hyperpolarization inhibits the depolarizing effects of excitatory synaptic
inputs in the same dendritic compartment [185]. Hippocampal pyramidal neurons con-
struct GABAergic synapses with interneurons. Pyramidal dendrites have an excitatory to
inhibitory synapses ratio of 12:1 [186].

3.4.1.3/ EXCITATORY POSTSYNAPTIC POTENTIALS

The small spine structure creates an electrical asymmetry caused by the very high spine
resistance (Rsp) connected to a relatively low-resistance dendrite via an intermediary
spine neck resistance (Figure 3.7a) [185, 187]. The cable theory also describes the
electrical consequence from each spine compartment (head and neck), which helps an-
alyze the EPSP propagation from the spine head to the dendritic shaft. As shown in
Figure 3.7b, the dendritic head, neck, and dendritic shaft are separate compartments rep-
resented by a resistance-capacitance (RC) circuit. The transient synaptic conductance,
gsyn, the electromotive force due to the ion influx from the synaptic area, the membrane
capacitance (Chead, Cneck, and Cdendrite), and membrane resistance (1/ghead, 1/gneck, and
1/gdendrite) are the main parameters that determine the EPSP time course and amplitude
[182, 187, 191]. The electromotive force (or the driving force) is the difference between
the membrane potential and the synaptic reversal potential (Vspine−Esyn) [192]. The spine
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Figure 3.7: Electrical equivalent of a passive dendritic spine. (a) The large head and slender neck divide the
spine into two separate compartments. (b) A resistance-capacitance circuit represents each compartment.
(c) Due to the small size of the spine, the membrane resistance (1/ghead) and capacitance (Chead) become
negligible, and the EPSP in the spine depends mainly on the change in synaptic conductance (gsyn). The
narrow diameter of the spine neck also results in a large neck resistance RN , eliminating the influence of the
membrane resistance (1/gneck) and capacitance (Cneck).

(head and neck) is so small that it has negligible membrane resistance and capacitance
(Figure 3.7c) [185]. The spine behaves like a sealed cable whose overall resistance Rsp

is larger than the dendritic compartment. However, according to Popovic et al. [193],
this does not directly apply to all spines in the dendrites, especially in the proximal pri-
mary dendrite with large diameter and larger regions devoid of spines. Here, the EPSP
amplitude is mainly dependent on high dendritic impedance Z and not on low Rsp.

Applying Ohm’s law to the electrical circuit equivalent of the dendritic spine (with the spine
head connected to a narrow spine neck) in Figure 3.7b, the excitatory synaptic input, Vsyn,
is described as

Vsyn ≈ IsynRsp ≈ Isyn (RN + Z) ≈ IsynRN , (3.31)

where Isyn is the synaptic current due to the ions flowing through the open channels,
and Rsp is the spine resistance [88, 182]. The spine resistance is the sum of the spine
neck resistance, RN , and the dendritic impedance Z (Figure 3.7c) [182, 194]. The EPSP
is dependent mainly on the spine neck resistance, RN , whose resistance is so much
greater than the dendritic of spine head resistance; therefore, the influence of Z becomes
negligible [182, 195]. In addition, the small surface area of spines also provides negligible
membrane conductance and capacitance. Electron microscopy measurements suggest
that RN ranges from 1 MΩ to 1 GΩ [182, 185], while measurements from voltage imaging
with genetically encoded voltage indicators (GEVIs) estimates RN to be 101 ± 95 MΩ
[196]. The spine neck resistance, RN , is determined by

RN =
4ρl
πd2 , (3.32)

where l is the spine neck length, ρ is the cytoplasmic resistivity, and d is the diameter
[182, 197]. With the passive spine membrane mechanism, the change in the membrane
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potential is generated by summating of all EPSP contributions of the receptors.

τm
dV
dt
= Vrest − V + Vampa + Vnmda,

= Vrest − V − RN
(
Iampa + Inmda

)
,

(3.33)

where V is the EPSP in the spine, and τm is the membrane time constant [88, 178].

Dual-exponential function. During neurotransmission, the current flowing through the
synaptic receptor is described as

Isyn = gsyn
(
V − Esyn

)
, (3.34)

where syn can be either AMPA or NMDA receptors. Here, gsyn is the synaptic receptor
conductance, V is the membrane potential, and Esyn is the excitatory receptor reversal
potential equal to 0 mV [198, 199]. The temporal dynamics of gampa is modeled using a
dual-exponential formulation given as

gampa(t) = ḡampaα
[
e
− t
τ2ampa − e

− t
τ1ampa

]
, (3.35)

where ḡmax is the maximum conductance, α is chosen so that the maximum value of gampa

matches the ḡampa, τ1ampa is the rise time constant equal to 0.2 ms, and τ2ampa is the decay
time constant equal to 2 ms [200–202]. A single AMPA receptor conductance has an
estimated value of 9 pS [182, 203]. Note here that ḡampa is the collective conductance of
AMPA receptors in the spine head (the mean number of receptors is 82) [182]. Further-
more, the NMDA receptor conductance is also modeled using a dual-exponential function
with external [Mg2+] and membrane potential dependence.

gnmda(t) = ḡnmda

α
[
e
− t
τ2nmda − e

− t
τ1nmda

]
1 + [Mg2+]

3.57 e−0.062V(t)
, (3.36)

where ḡnmda is the maximum gnmda conductance, τ1nmda = 2 ms, τ2nmda = 86 ms, [Mg2+] is the
external Mg2+ concentration and V is the local membrane potential in mV [200, 204–206].
If both AMPA and NMDA receptors contribute to the response, [Mg2+] is set to 1 mM,
while when AMPA receptors are blocked, the [Mg2+] is equal to 50 µM [200]. The total
synaptic conductance, Gsyn, due to AMPA and NMDA receptors is estimated to be ≥1 nS
[182].

Receptor gating function. In order to take into account the receptor opening, the
synaptic currents are modified into

Iampa = gampamampa
(
V − Eampa

)
, and (3.37)

Inmda = gnmdamnmdaB(V) (V − Enmda) , (3.38)

where mampa and mnmda are the gating variables of AMPA and NMDA receptors, respec-
tively, and B(V) = 1 + [Mg2+]e−0.062V(t)/3.57 [88, 195, 199, 204]. In this simplified model,
the synaptic receptor conductances are dependent on the neurotransmitter concentration
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in the synaptic cleft and follow the HH-type formulism. The gate activation is governed by

dmampa

dt
= αampag

(
1 − mampa

)
− βampamampa, and

dmnmda

dt
= αnmdag (1 − mnmda) − βnmdamnmda,

(3.39)

where αampa and αnmda are the forward rates (1.1 µM−1 and 72 mM−1, respectively) while
βampa and βnmda are the backward rates (190 s−1 and 6.6 s−1, respectively), and g is the
[Glu−] in the synaptic cleft.

Instantaneous Jump and Exponential Decay. Fourcaud-Trocmé [114] used a more
simplified model of synaptic inputs where at the arrival of the synaptic spike at time tk,
the Vsyn jumps instantaneously to a maximum value Jsyn (in mV) and then exponentially
decays with a time constant τN . The model is given as

τN
dVsyn

dt
= −Vsyn(t) + Jsynδ(t − tk)τm (3.40)

where δ(·) is the Dirac-delta function. Then, De Pitta and Brunel [178] modified this model
to make Vsyn dependent on the time course of synaptic neurotransmitters, g. The model
becomes

τN
dVsyn

dt
= −Vsyn(t) + Ĵsynζg(t)τN , (3.41)

where ζ is the synaptic transmission efficacy from 0 to 1, and Ĵsyn is the instantaneous
jump given as

Ĵsyn =
Jsyn

ϱcYTτN
. (3.42)

The parameter ϱc is the ratio between the vesicle and synaptic area volumes (ϱc = 0.005),
and YT is the total vesicular [Glu−].

3.4.2/ SYNAPTIC INPUT PROPAGATION THROUGH DENDRITES

The high neck resistance, RN , can significantly decrease the synaptic signal amplitude
from the spine head to the dendritic shaft (Figure 3.7c) [182, 187]. Therefore, the acti-
vation of an excitatory synapse should produce a membrane potential greater amplitude
than the voltage of the dendritic shaft where the spine is attached [45, 185]. The signifi-
cant voltage drop from a single spine head to the dendritic shaft also limits the influence
of the spine on its neighbors. However, dendritic voltage, produced during clustered
synaptic activation or backpropagating APs (bAPs) and dendritic spikes, transmits reli-
ably into spines altering the membrane potential of the spine. These dendritic voltages
enter the spine head without significant attenuation, whereas EPSP amplitude decreases
as it propagates to the dendrite. This electrical behavior is a consequence of multiple
impedance mismatches between the spine and dendritic compartments. Even though an
EPSP in a spine is quite large, the resulting EPSP in the soma is very small due to the
dendritic morphology and the passive and active dendritic mechanism.
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Figure 3.8: Compartmentalization in a passive dendritic tree. The dendritic arborization of a pyramidal
neuron in (a) is divided into multiple compartments as shown in (b) approximately determined by the dendritic
segments diameter and length and bifurcation points. The passive compartments are represented by the RC
circuit (rm is the membrane resistance and cm is the membrane capacitance) and are connected to the next
compartment via the axial resistance ra. The activation of Vsyn in (a) results in an EPSP in the dendritic
spine in (c). The EPSP significantly attenuates as it enters the dendritic compartment and travels along the
dendritic segment. Therefore, the EPSP reaching the soma is so much smaller compared to the synaptic
input.

3.4.2.1/ PASSIVE DENDRITES

The dendritic arborization creates a more complex multicompartmental equivalent circuit
(Figure 3.8). In his series of studies in the 1960s on modeling passive dendrites, Wilfrid
Rall identified three important dendritic properties [207–210]. The dendritic compartment
consists of axial resistance (ra), membrane resistance (rm), and membrane capacitance
(cm) (Figure 3.8c). In an elementary compartment, the current injected leaks across the
membrane and decreases as it travels down to the next compartment through ra, result-
ing in a continuous voltage drop to the soma [191, 211]. Therefore, the driving force
flowing through rm decreases with distance from the soma. The membrane capacitance,
cm, temporarily stores charge, which delays signal propagation. Overall, these passive
properties attenuate the signal and slow down its time course.

3.4.2.2/ ACTIVE DENDRITES

Passive cable models are only a first approximation to the physiological properties of
neurons since the dendritic tree is not purely passive. The dendritic membrane expresses
ionic conductances attributed to the heterogeneous distribution of VGCs, which can coun-



3.4. SIGNAL PROPAGATION ALONG THE DENDRITIC ARBORIZATION 51

teract the influence of the passive mechanisms [187, 212, 213]. In CA1 pyramidal neu-
rons, Nav channel conductance tends to be constant at ∼115 pS/m2 from 0-100 µm dis-
tance from the soma [214]. A-type Kv and HCN channels have higher densities in distal
apical dendrites than in soma or proximal dendrites [45]. T-type Cav channels increase
moderately while L- and N-type Cav channels have relatively constant density [214]. In
CA3 dendrites, Nav channel conductance has a gradient decrease from 60 pS/m2 near
the soma to almost no conductance at 200 µm away from the soma, restricting the Nav

channel distribution in the proximal dendrites. A-type Kv channel seemed to be nonexis-
tent or minimal along the dendrites because its hyperpolarizing effect of high-density Kv

could inhibit somatic bursting.

In this case, the dendritic tree becomes excitable [185]. For active dendrites, active con-
ductances are added to the equivalent circuit wherein the specific channel conductance
is relative to the dimensions of the compartments (similar to the compartmentalization in
axons presented in Section 2.6). The cable equation in discrete form for a compartment
k is, therefore,

Ck
dVk

dt
=

∑
l

γl,k (V1 − Vk) − Iionic,k, (3.43)

where k and l are index compartments, C is capacitance, V is the membrane potential,
γ is the coupling conductance between the connected compartments, and the summa-
tion corresponds to the overall compartments l connected to compartment k [215]. The
ionic current Iionic,k is the total ionic membrane current impinging synaptic inputs and ion
influxes through VGCs. The distributed active conductances amplify synaptic activity by
activating local dendritic spikes [216]. Compared to passive dendrites, active dendrites
exhibit more location-specific activities [212]. Therefore, an active neuron can perform
synaptic input transformations into AP, an event that usually requires multiple passive
neurons.

3.4.2.3/ DENDRITIC MECHANISM

In addition to the complex structure is the distribution of synaptic inputs. Inputs may arrive
at different spine heads synchronously or asynchronously. Clustered synaptic inputs ar-
rive at a spatially restricted zone in the dendritic segment while distributed inputs spread
along the dendritic arbor [182]. Bloss et al. [216] showed that a single axon of CA3
neuron projects clustered synapses in distal, not in proximal, dendrites of CA1 pyrami-
dal neurons. The impact of individual synaptic inputs is generally weak to cause somatic
spiking; however, the synchronous and clustered synapses on a dendritic branch produce
local spikes that can nonlinearly influence somatic spikes [212].

What happens to the neuron dynamics if the dendrites contain both passive and active
mechanisms? The complex structure of the dendritic arborization and the nonuniform
expression of VGCs have a profound effect on signal propagation and processing by
producing dendritic events (Figure 3.9), such as filtering, dendritic spikes, and backprop-
agation, that contribute to the activity-dependent refinement of neuronal circuitry.



52 CHAPTER 3. NEUROTRANSMISSION AND NEURAL CODING

branches. We discuss how the properties of dendritic

spike generation combined with the local biochemical

signalling machinery should favour the formation of

these clusters. This nonrandom connectivity pattern

resulting in nonlinear summation should greatly expand

the computational properties of a neural network

[17,19,21��,22].

Phenomenology of dendritic spikes
We begin our argument by characterizing the variety of

dendritic spikes that have been described so far and their

impact on AP generation (Figure 1). Dendritic spikes add

computational capacity to neurons; however, in addition

to specialised active mechanisms, they require synaptic

input that is synchronised and spatially clustered. The

322 Signalling mechanisms

Figure 1

Phenomenology of dendritic spikes. (a) Image of a biocytin stained layer 5 pyramidal neuron. Electrodes depict different recording positions at the

soma (grey), apical dendrite (blue) and basal dendrite (orange). (b) Recordings of dendritic spikes and the corresponding somatic waveform. EPSP-like

current injection to the apical dendrite results in the generation of a Ca2+ spike (blue trace, left) that evokes a short burst of APs at the soma. A similar

current injection to a basal dendrite can evoke a local Na+ spike (orange trace, middle) that is strongly attenuated towards the soma. Focal,

extracellular synaptic stimulation to the basal dendrites can evoke a NMDA receptor mediated regenerative dendritic spike (NMDA spike, orange trace,

right) that is less attenuated towards the soma as compared to a subthreshold EPSP (see (c and e)). (c) An AP evoked by somatic current injection

backpropagates into the basal dendritic tree. The AP amplitude decreases with the distance from the soma (orange trace, left). Miniature EPSPs

(mEPSPs) generated near the site of dendritic recording have large local amplitudes in the basal dendrite (orange trace, middle) but they are strongly

attenuated towards the soma. By contrast, mEPSPs originating close to the soma propagate well to the distal basal dendritic site (orange trace, right).

(d) Attenuation of BAP amplitude as the function of normalised dendritic length in basal (orange) and apical (blue) dendrites (left graph). When

compared to the normalised dendritic length attenuation in the short basal dendrites and the much longer apical dendrite are very similar. Attenuation

of EPSPs towards the soma in apical and basal dendrites is identical when compared to the normalised dendritic length (right graph). These

comparisons suggest that despite the relatively small physical size of basal dendrites their electrical dimensions are equivalent to that of the much

larger apical dendrite. (e) Attenuation of EPSPs compared to the attenuation of NMDA spikes. NMDA spikes are much less attenuated as compared

with subthreshold EPSPs originating from the same dendritic location, suggesting that these generative dendritic events increase the dendritic

coupling efficacy. Adapted from references [7��,14].
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Figure 3.9: Dendritic mechanisms. (a) The electrodes (gray, orange, and blue) positioned at the soma,
basal and apical dendrites of a biocytin stained layer 5 pyramidal neuron measure the membrane potential
at the mentioned compartments. The dendritic tree expresses various VGCs distributed non-uniformly, ac-
tivating localized dendritic spiking at separate dendritic compartments. These dendritic spikes (namely (b)
Ca2+ spike, (c) Na+ spike, and (d) NMDA spike) are named after the main VGCs that are activated during the
dendritic events. (e) Backpropagation occurs when the somatic AP propagates back to the distal dendrites.
(f) Due to the passive dendritic properties, synaptic EPSP amplitude diminishes as it travels along the den-
drite, causing a weak influence on somatic depolarization. (g) However, an EPSP evoked near the soma can
propagate well to the distal end of the dendrite. (Image was adapted from Larkum and Nevian [212].)

Dendritic Filtering

As explained previously, the resistance-capacitance electrical equivalent of a compart-
ment acts as a filter.The ratio between neck conductance and synaptic conductance
(gneck/gsyn) determines the amount of electrical filtering in the spine. [187]. Then, the
EPSP in the dendrites is larger than the recorded somatic EPSP due to dendritic filter-
ing (Figure 3.9f) [191]. Because ri increases with distance from the soma, and cm also
increases with dendritic diameter, distal EPSPs have lower amplitude than proximal EP-
SPs (Figure 3.9g) [211]. Dendritic filtering accounts for the larger EPSPs along the den-
drites than in those recorded in the soma [191]. The dendrites have other mechanisms
for counteracting the effect of dendritic filtering, that is, through the active properties of
VGCs. The ion influx through the opening of Nav channels along the dendrites increase
the EPSP amplitude by replacing the ions lost during propagation, while efflux due to Kv

channels reduces the filtering effect of cm by charging and discharging the membrane
[211]. Also, the compound influence of clustered synapses minimizes dendritic filtering
[216].

Dendritic Spikes

Dendrites are also excitable, like the AIS but with a higher threshold, and could generate
dendritic spikes [185]. Few clustered synapses activated synchronously produce den-
dritic depolarization that is large enough to activate VGCs along the dendritic membrane
[185, 212, 217]. These weak dendritic spikes do not reliably propagate throughout the
dendrites and can be locally restricted within the dendritic branch where the spikes were
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produced. Balind et al. [218] and Kim et al. [219] showed that CA3 pyramidal neurons ef-
ficiently produce local Na+ and NMDA spikes and widespread Ca2+ spikes upon clustered
synapses.

The name of dendritic spikes is mainly based on the dominant channels activated during
the event (though varieties of channel-types can influence dendritic spiking).

1. Na+ spikes.

Sodium spikes (Figure 3.9c) are the fastest and relatively brief dendritic event similar
to a somatically-evoked AP, resulting from fast Nav channel kinetics [185, 191, 212].
High-amplitude local depolarization triggers Na+ spiking, which implies that Na+

spikes require synchronous activation of clustered synapses. Two-photon glutamate
uncaging on radial oblique CA1 dendrites suggest that at least 20 synaptic inputs
can trigger a local Na+ spike [190]. In addition, the activation of NMDA receptors
also contributes to an influx of Na+ ions [185, 191, 212]. Even though Na+ spikes
tend to be highly confined and do not propagate reliably out of the branch, this
dendritic event can be triggered in most dendritic regions and can still contribute to
somatic spiking. The resulting depolarization can be large enough to activate other
VGCs and NMDA receptors distributed along the dendrites.

2. Ca2+ spikes.

Strong synchronous excitatory synaptic inputs initiate Ca2+ spikes (Figure 3.9b)
[185, 191, 212, 220]. In contrast with Na+ spikes, calcium spikes tend to be gener-
ated in specific dendritic locations, especially in the distal apical dendrite, which ex-
hibits high-density VDCCs. Calcium spikes have a longer duration, causing plateau
potentials as a consequence of slow Cav channel kinetics [185]. Calcium spikes
tend to change the spiking behavior of the neuron to bursting mode, allowing den-
drites in the distal tuft to communicate with the soma [212, 220].

3. NMDA spikes.

Voltage-sensitive NMDA receptors activate dendritic NMDA spikes (Figure 3.9d)
[185], most prominent in basal dendrites [212, 221]. NMDA spikes are highly re-
stricted to the synaptic input sites due to the Glu−-dependence of NMDA receptors,
thus not propagate to dendritic regions void of NMDA receptors [185, 190, 222]. If
sufficient NMDA receptors are activated, regenerative spikes occur even if a small
number of Nav and Cav channels are active [185]. The regenerative activation is
due to the voltage-dependent relief of Mg2+ blocks [212]. NMDA spikes are also
longer than Na+ spikes and produce plateau potentials, lasting from 20 to hundreds
of milliseconds [190, 212, 223].

Dendritic spikes contribute to synaptic integration. Though not propagating actively, den-
dritic excitability still delivers enough charge to the axon and influences AP generation
[185]. For example, the summation of dendritic spikes activated in multiple dendritic
branches allows neurons to perform coincident detection. Dendritic spikes also mediate
local communication by activating channels that allow dendrite to release substances,
such as neurotransmitters. Dendritic spikes also increase synaptic strength, thus regulat-
ing synaptic plasticity.
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Backpropagating Action Potentials

The AP generated in the axon can propagate back into the soma and then to the dendrites
(Figure 3.9e and Figure 3.9g) via the transient increase in dendritic membrane potential,
[Ca2+] elevation through VDCCs, and interaction with NMDA receptors [45, 212]. Back-
propagating APs signal the state of the soma back to the synaptic input sites. In addition,
bAPs adds to the arriving synaptic activity where the increase in membrane depolariza-
tion activates VDCCs [211, 224]. Moreover, bAPs lessen the Ca2+ spiking threshold,
resulting in a localized increase in [Ca2+] that influences some Ca2+-dependent synaptic
plasticity [212, 220]. The amplitude of bAPs flowing through the dendrites varies with
respect to the distance of the compartment from the soma [212, 225]. Potassium channel
activation, heterogeneous Nav channel distribution, inhibition, and neuromodulation con-
trol the extent of backpropagation. Theoretically, passive dendritic cables impair bAPs
in thin basal dendrites. Backpropagating APs often decay entirely before reaching the
distal dendrites of CA1 pyramidal neurons [216] due to the minimum distribution of Nav

channels along the distal dendrites.

3.5/ DENDRITIC INFORMATION PROCESSING

A single neuron must transform these inputs into an appropriate somatic output train
to process the information carried by the multiple synaptic inputs. For example, in the
CA3 network, neurons process the patterned synaptic inputs to generate and consolidate
information coding [226]. Individual neurons utilize the passive and active mechanisms
such as filtering, dendritic spikes, ligand-gated or voltage-gated nonlinearities to control
the transformation of incoming synaptic inputs into somatic output trains. One of the
long-lasting questions in neuroscience is how exactly the neuron processes the various
incoming synaptic signals into information. In this subsection, we discuss the current
advances in dendritic computation studies, the biophysical mechanisms controlling the
transformation of inputs into somatic firing, the operations the dendrites perform, and the
dendritic abstraction describing the overall neuron model.

3.5.1/ SYNAPTIC INTEGRATION

Postsynaptic currents flow through the dendritic arbor, integrate at the bifurcation points,
or converge in the soma. Then, the soma converts the incoming signals into somatic
depolarization, and if the resulting amplitude reaches a certain threshold, the soma gen-
erates an AP. The sequence of action potentials, even the subthreshold depolarizations,
contains the processed information. The process of converting the synaptic inputs into
somatic output is called dendritic integration, an intrinsic computation dependent on
the location and number of activated synapses, the active and passive properties of the
dendrites, and the spiking history.
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Synaptic Integration in Passive Dendrites. In passive dendrites, the EPSP from a
single synapse is insufficient to cause an AP [185]. Therefore, multiple inputs, clustered
or distributed, must impinge the cell via the complex morphology of the dendritic arboriza-
tion. The passive properties of the dendrite allow the neuron to integrate the EPSPs in
a nonlinear manner. Because passive dendrites have low-pass filtering characteristics,
the EPSPs arriving at the soma may be 100-fold attenuated compared to the EPSPs at
the spine head [227]. Therefore, the main effect of the passive dendritic properties is
dendritic filtering. Synaptic integration also varies with input location [190]. Based on
the cable theory, the passive dendritic tree inflicts spatiotemporal distortion between dis-
tal and proximal inputs. Without compensatory mechanisms, distal synaptic inputs are
significantly attenuated and delayed [228].

Synaptic Integration in Active Dendrites. Nonlinear dendritic integration improves the
computational capacity of neurons [191]. It provides compensation and counteracts the
filtering effect of the passive properties. Active synaptic EPSPs nonlinearly sum due to
the current flowing through the synaptic conductance, reducing the driving forces [190].
As mentioned earlier, the spatial distribution of synaptic inputs significantly affects synap-
tic integration. Detecting temporally correlated and spatially segregated synaptic inputs
(synapses located on separate dendritic branches) poses some difficulties for the neuron,
as these inputs, especially those from the distal apical tuft, are heavily attenuated as they
propagate down to the soma. Therefore, the neuron reacts more effectively with clustered
inputs, a group of synaptic inputs that are spatially restricted within a dendritic segment,
a branch, or a group of branches. Clustered synapses may produce large local depolar-
ization, which activates nonlinear dendritic mechanisms that trigger regenerative spiking.
Besides, dendritic spiking and VGCs distributed along the dendritic length also result in
nonlinear integration of synaptic inputs [225]. The activation of Nav channels amplifies
the amplitude of subthreshold EPSPs in a multiplicative manner [190, 195]. Moreover,
synaptic NMDA receptors provide an essential mechanism for the nonlinear amplification
and integration of synaptic inputs.

3.5.2/ DENDRITIC OPERATIONS

The influence of the summation of synaptic inputs (input) to the resulting membrane de-
polarization at the soma (output) is quantified by defining the corresponding input-output
(I/O) relationship [191]. In the I/O quantification process, the expected membrane depo-
larization (input) is the compound EPSP or arithmetic sum of individual EPSPs resulting
from the simultaneous activation of excitatory synapses. The observed depolarization
is the resulting depolarization, for example, at the soma (Figure 3.10). The resulting I/O
relationships are comparable to mathematical functions that the neuron performs.

Neurons utilize different combinations of these dendritic operations for computations and
signal encoding. These dendritic operations, as shown in Figure 3.10, can be (1) linear
where the observed depolarization is equal to the expected depolarization, (2) supra-
linear where the observed depolarization is above the expected depolarization, and (3)
sublinear where the observed depolarization is less than the expected depolarization
[185, 191, 229]. It is important to note that different dendrites generate different IO curves
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regenerative voltage depolarizations in the dendrite159. 
These so-called NMDAR spikes are spatially restricted 
to sites of synaptic input owing to their glutamate-
dependence and are unlikely to actively propagate159. 
NMDAR spikes last 50–100 ms156,159,160, but modelling 
predicts that they can be curtailed by smaller inhibitory 
synaptic conductances on the dendrite161. NMDARs 
on hyperpolarized regions of the dendrite exhibit a 
‘memory’ of the prior synaptic activity for the 40 ms or 
so that glutamate (and glycine) remains bound to the 
receptors156. This can be ‘unlocked’ upon depolariza-
tion, when the Mg2+ block of the channel is relieved, 
allowing glutamate-bound NMDARs to pass current. 

This mechanism, which can amplify subsequent gluta-
matergic inputs to the same dendrite156 (FIG. 7c), is local 
because the space constant for the ePSP is short in thin 
dendrites of pyramidal cells127. A number of other dif-
ferences between Na+ spikes and NMDAR spikes are 
worth noting. NMDAR spikes are slower rising and the 
time-window for coincidence of the presynaptic inputs 
is tenfold larger than for Na+ spikes, allowing activation  
with less temporal precision. In addition, the duration 
of the NMDAR spike is sufficiently long to act as a  
coincident detector and also interact with short-dura-
tion rate-coded bursts of input. lastly, NMDARs do not 
become inactivated as rapidly as dendritic Na+ channels, 

Figure 7 | clustered synaptic input activates local dendritic nonlinearities which could form the basis of 
branch specific computation. a | Cartoons showing layer 5 cortical pyramidal cells with the location of activated 
synaptic inputs and the recording electrode. ‘Within branch’ refers to two inputs (A and B) that synapse onto the same 
dendritic branch (left), and ‘between branches’ corresponds to two inputs that synapse onto different branches (right). 
Traces show the somatic responses to a paired-pulse synaptic stimulation protocol. Black traces show the two synaptic 
inputs stimulated individually, blue traces show the predicted response for simultaneous activation (assuming linear 
summation) and red traces show the measured response for intermediate strength stimulation. The within-branch 
response was supralinear, whereas the response between branches was linear. This effect was blocked by a selective 
NMDAR (N-methyl-d-aspartate receptor) antagonist. b | Responses for the two input scenarios; the between-branches 
configuration (shown in green; the dashed line indicates linearity) and the within-branch configuration (shown in red). 
The nonlinear effects of NMDARs are seen when excitatory postsynaptic potentials (EPSPs) are a few millivolts in 
amplitude. However, these experiments were carried out in the presence of a GABA

A
 (α-aminobutyric acid type A) 

receptor antagonist, which may favour the occurrence of NMDA spikes161. c | The difference between the arithmetic 
sum of individual inputs (shown by blue squares) and paired-pulse protocols with different intervals between the 
pulses. The supralinear response of the within-branch configuration occurs when the two synaptic inputs occur within 
approximately 40 ms indicates that synaptic NMDAR activation has a ‘memory’ of prior input onto the branch over this 
timescale. d | A cartoon of a pyramidal cell with n

i
 clustered synaptic inputs on each of the dendritic branches. A 

nonlinear dendritic mechanism, such as NMDAR spikes, introduces a nonlinear sigmoidal input–output function (S(n
i
)) 

to each of the subcompartments. The weights of the subcompartments (α
i
) are then combined with the somatic spike 

threshold nonlinearity (g) to produce output (y). It has been proposed that the presence of multiple dendritic 
subcompartments each with a nonlinear thresholding element could enable an individual pyramidal cell to act like a 
two-layer network of neurons, thereby enhancing its computational power. Parts a–c modified, with permission, from 
Nature Neuroscience ReF. 156 © (2004) Macmillan Publishers Ltd. All rights reserved. Part d modified, with permission, 
from ReF. 157 © (2003) Elsevier.  
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(e) Supralinear

Figure 3.10: Input-Output transformation and dendritic operations. The input-output relationship between
the arithmetic summation of the individual EPSPs (expected depolarization) and the resulting somatic de-
polarization (observed depolarization) from the combined effect of the individual EPSPs describes of the
dendritic operation the neuron can perform. (a) The synaptic inputs that are clustered or target synapses on
a restricted spatial location produce a nonlinear influence on somatic depolarization. (b) Distributed synaptic
inputs, those inputs targeting different branches, perform linear summation in the soma. In this case, the
arithmetic sum of EPSPs equals the measured depolarization in the soma. (Images were taken from [190].)
(c) When the resulting somatic depolarization always results in a lower amplitude than the input summation,
the dendritic operation is sublinear. (d) Linear operation occurs if the somatic depolarization consistently
equals the input summation. (e) The dendrite performs supralinear integration when the output depolariza-
tion exceeds the input summation.

according to the number of simultaneous inputs targeting multiple locations in the cell and
the biophysical mechanisms under consideration [206].

Sublinear. Excitatory synapses summate sublinearly in passive dendrites (Fig-
ure 3.10c) [225, 229]. The magnitude of sublinearity is dependent on the distance be-
tween synapses, where the depolarization experience by one synapse is dependent on
the distance of the other activated synapses [185]. If two synapses are closer to each
other, they strongly influence the individual driving force, and their summation is sublin-
ear. Therefore, if the synapses are clustered, inputs are integrated sublinearly due to
reduced driving force and membrane shunting [190]. However, clustered inputs are less
efficient at triggering an AP than when inputs are scattered or distributed along the den-
dritic tree [191]. Sublinear operations primarily account for passive dendritic properties;
however, some studies suggest that active dendritic properties also influence sublinearity
[191]. Potassium channel activation can also provoke sublinear summation by producing
hyperpolarization that decreases the membrane potential. Neuronal excitation from clus-
tered inputs may be prevented through sublinear integration by providing a mechanism
for input saturation [230].
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Linear. Linear integration occurs when the arithmetic sum of the individual EPSPs pro-
duces a peak response equal to the actual peak depolarization (Figure 3.10d) [206]. Both
the distributed and clustered synaptic inputs evoke linear summation in hippocampal pyra-
midal neurons [229]. Linear summation occurs when synaptic inputs are distributed over
the dendritic tree due to the passive dendritic properties [190]. Gasparini and Magee
[231] found that highly distributed or asynchronous synaptic inputs targeting the dendritic
arbors of CA1 pyramidal neurons perform linear integration. This operation results in
variable AP rate and timing and depends on the number of incoming inputs. In clustered
inputs, activation of nonlinear dendritic conductances − such as NMDA receptors, Nav

channels, and Cav channels − can increase EPSPs during synaptic activities, while Kv

conductance dampens them [190, 229]. A balance between these active conductances
underlies linear summation of clustered synaptic inputs of culture pyramidal cells, com-
pensating the sublinearity due to the reduced driving force and shunting from the passive
properties.

Supralinear. Studies on dendrites showed that active dendritic properties are the main
contributors to nonlinear integration, primarily in supralinear integration (Figure 3.10e)
[191]. Makara and Magee [226] performed two-photon imaging and glutamate uncaging
on CA3 pyramidal neurons to characterized the synaptic integration in thin dendrites. The
results showed that synchronous synaptic inputs in thin dendrites are nonlinearly inte-
grated with a supralinear fashion. Coactivation of a sufficient number of synaptic inputs in
a dendritic branch activates NMDA receptors results in supralinear summation of excita-
tory synaptic inputs greater than expected [191, 195, 226, 229, 232]. Signal amplification
mediated by NMDA receptors can activate Na+ spiking, further increasing the peak depo-
larization that drives the somatic spiking. Using paired-pulse stimulation protocol, Gomez
et al. [206] showed that the increase in NMDA conductance after the first spike triggers
local dendritic spikes, thus resulting in a strongly supralinear integration, even if the tem-
poral window between succeeding synaptic inputs is more than 100 ms. When synaptic
input arrives synchronously and spatially clustered, the dendritic compartment receiving
the clustered input produces a highly nonlinear integration that leads to an AP output that
is extraordinarily precise and invariant.

Furthermore, a neuron can also perform more complex computations by utilizing the den-
dritic properties and background noise and combining the previously discussed dendritic
integration [229].

Boolean Operations. The neuron can also perform basic Boolean operations − such
as AND, OR, and AND-NOT −, which are also influence by the synaptic locations and
spike threshold [185, 191]. These simple Boolean operations can be combined to perform
more complex computations [225]. Neurons can implement an AND operation using
inputs from multiple dendritic branches. The AND operation is equivalent to coincidence
detection wherein two simultaneous and different groups of synaptic inputs are directed
to different dendritic branches. Hippocampal CA3 neurons also perform OR operations.
The soma initiates APs from DG inputs at the primary apical dendrite or neighboring CA3
neuron collateral connections near the soma [185]. Neurons implement logical AND-
NOT operations using inhibitory synapses place between the soma and excitatory input
[185, 190].
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the high density of ion channels [2,3]. In dendrites, just as

in the cell body, nonlinearities can be either kept in check

by the linearizing effect of background noise [21�] or they

can be captured by an equivalent linear process [22].

Thus, the combined effect of multiple synapses can

result, at least approximately, in a linear sum at moderate

noise. Such location-dependent attenuation and filtering

combined with linear summation confers to dendrites the

characteristics of a spatiotemporal filter (Figure 1a).

Importantly, within the class of spatio-temporal filters

one can distinguish distinct dynamic modes such as low-

pass filters or resonance [22,23].

Spatiotemporal filtering can contribute to powerful [24]

and behaviourally relevant [25,26�] computations. As an

illustrous example, spatiotemporal filtering tunes the

input delays in order to give rise to selectivity for inter-

aural time difference (ITD) [25,27��]. Thus our ability to

perform azimuthal sound localization arises in part from

the spatiotemporal class of dendritic computation.

Classes of dendritic information processing Payeur, Béı̈que and Naud 79

Figure 1

Four classes of dendritic information processing. In all panels, discretized spike trains appear above or near their respective axons, where lighter

shading indicates more distant past. Class I: A spike arriving at a distal synapse evokes a local postsynaptic potential (red). Propagation results in

a filtered voltage response at the soma (orange). Class II: Two independent distal dendritic branches (red and green) each receive synaptic inputs.

Two coincident input spikes in either the red branch or the green branch can successfully contribute to a spiking output. The same number of

input spikes distributed on different branches only causes a small depolarization that does not reach the soma, but that information can be

important for local processing. Class III: Routing is schematically depicted by a switch circuit symbol on the green branch. Even though both the

green and red branches receive equivalent input signals, a modulating input (orange) prevents the transmission of the information from the green

branch. Class IV: Two contextually different input streams impinge on opposite poles of the neuron. When activated by the perisomatic (blue)

stream alone, a single spike is fired by the postsynaptic neuron (blue 1 in bottom spike train). When present, the apical input (red) modulates the

postsynaptic response by transforming a single spike into a burst (purple = blue + red). Short-term facilitation (STF) and depression (STD) and

disynaptic inhibition (blue square synapse) can decode the multiplexed information.
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(d) Information multiplexing

Figure 3.11: Classes of dendritic information processing. The binary inputs (0 and 1) represent the activation
of synapses within a time window. (a) Synaptic inputs targeting the distal synapse evoke a local EPSP
(red), which propagates down to the soma with considerable attenuation and delay (orange). (b) Coincident
inputs from different branches can cause somatic spiking, while single inputs not communicated to the soma
are still crucial for local processing. (c) Information routing is comparable to having a switch along the
propagation path. Routing is usually performed by inhibitory signals (orange) vetoing the flow of EPSP
between the distal branch and the soma. (d) Two input trains targeting different poles of the cell are encoded
via multiplexing. The somatic spike (purple) constitutes two signals (one red and one blue) reaching the soma
simultaneously. The multiplexed information can be decoded by short-term facilitation (STF) and short-term
depression (STD). Image was taken from Payeur et al. [233].

Dendritic Arithmetic. Neurons perform simple addition by summing spatiotemporal
inputs to react the spiking threshold [185, 190]. On the other hand, if inputs are inhibitory,
the summation hyperpolarizes the membrane [225], which can be thought of as subtrac-
tion. Multiplication is the simplest nonlinear operation [230]. In the case of binary inputs,
an AND operation can be considered as multiplication [185]. If either input is zeros, then
the output is also zero. This operations describes coincidence detection [230]. Neu-
rons may also perform division via shunting inhibition which scales down the membrane
depolarization in proportion with the strength of the EPSPs, in accordance with Ohm’s
law [185, 190, 230].

3.5.3/ DENDRITIC INFORMATION PROCESSING

The dendritic operations determine the resulting somatic depolarization and the somatic
activity from the barrage of spatiotemporal synaptic inputs. The dendritic morphology,
however, is a more complicated matter. Theoretically, dendritic integration does not only
occur in the soma but anywhere throughout the dendritic tree. How does the neuron
merge the diversified inputs into a single spike train? The definite answer is still about to
be discovered as technology advances. However, current studies suggest the following
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classes dendritic processes that can allow the soma to consolidate information.

Spatiotemporal filtering The dendritic tree attenuates and lowpass filtered a distal
synaptic input as this signal spreads to the site of initiation and propagates down to the
soma (Figure 3.11a) [230, 233]. It follows that due to dendritic filtering, distal synaptic in-
puts have a smaller influence on somatic firing [191]. The location-dependent attenuation
and filtering combined with linear summation allow the dendrites to perform spatiotempo-
ral filtering, which then tunes the input delays to give rise to selectivity.

Information Selection From multiple synapses activated simultaneously, only a small
portion of these inputs are communicated to the soma Figure 3.11b [230, 233]. Due to
pooling, information such as the origin of the synaptic inputs is lost during transmission.
One solution is compartmentalization. Compartmentalization preserves the information
that would otherwise be lost during pooling; however, it may also decrease the amount of
information that reaches the soma. This dilemma can be solved if nonlinear mechanisms
select a part of the information and transiently amplifies the information-containing signal
for transmission to the soma. Furthermore, local information not communicated to the
soma is still significant in local processes such as plasticity.

Information Routing Information routing is a process in which the dendritic subunits
modify the flow of signal en route to the soma for information relay (Figure 3.11c) [233,
234]. One mechanism in which information is routed to the soma is via feedforward
inhibition, where inhibitory synapses act as a binary switch that either allows or vetoes
the propagation of signals [233]. The location of inhibitory synapses along the dendritic
tree determines the signal route, a pathway-specific gating [235, 236]. Wilmes et al. [235]
also showed that bAPs and Ca2+ spikes also enable signal switching.

Information Multiplexing Information multiplexing by neurons is a current concept in
dendritic information processing (Figure 3.11d). The notion from theoretical studies is that
the neurons can represent multiple inputs into one spiking output by harnessing its den-
dritic mechanisms [233]. Sardi et al. [237] performed different types of experiments on
neuronal cultures and suggested that a neuron functions as a collection of independent
threshold units. The compartmentalization allows the neuron to process local dendritic
information independent from sibling dendrites. Wybo et al. [238] suggested that sig-
nals from distal branches arriving at the proximal dendrites do not merge; instead, they
are superimposed from one another. The signal from one independent subunit is then
transmitted to the soma through the dendritic arbor, acting as a multiplexer cable [239].
Metaphorically speaking, Payeur er al. [233] suggested that the dendritic arbor resembles
a telegraph office, where incoming messages are first filtered, then selected for transmis-
sion, routed to the destination where the messages are summarized or encoded for future
communication.
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Figure 3.12: Neuronal computational schemes. (a) The classical view describing neuronal computation is
a single excitable unit. The neuron exhibits synaptic democracy; the synaptic inputs have an equal influ-
ence on the somatic depolarization regardless of synapse location in the dendritic tree. The soma linearly
summates the inputs, and if the summation reaches a certain threshold, the soma generates an AP. (b) The
two-layer computational scheme has one layer of functional subunits corresponding to dendritic trees and
performing its specific nonlinear transformation. The subunit outputs are then transmitted to the soma for a
global linear summation and somatic spiking. (c) An individual dendritic compartment exhibits independent
processing of synaptic inputs and separate IO transformation. The compartmentalization creates multiple
layers of integration with specific nonlinearity, comparable to a network whose architecture is determined by
the dendritic morphology. Then, the soma integrates and multiplexes the incoming signals from the subunits
for somatic depolarization.

3.5.4/ COMPUTATIONAL SCHEMES

Decades of experimental studies used the conventional computational scheme, wherein
the neuron acts as a single electrical excitable threshold unit or, in classical terms, a
point neuron [237]. In the classical view of dendritic integration in CNS neurons, exci-
tatory and inhibitory signals from the dendritic tree are channeled to the soma for linear
summation (Figure 3.12a). Linear integration governs the transformation of weighted in-
puts into somatic output [228]. When the linear summation reaches a certain threshold,
the soma generates an AP in an all-or-none manner [237, 240, 241]. This model is also
known as the integrate-and-fire model introduced by Lapicque [242]. The point neu-
ron hypothesis, where the whole dendritic tree is nonetheless considered as a single
compartment, allows synaptic democracy; the synapses have equal ability to influence
somatic depolarization [228]. It indicates that the synapses must be propagated and in-
tegrated neutrally for synaptic democracy to function [241] and that the soma acts as a
global summing unit.

Another scenario is based on nonlinear integration and also consists of a single central
excitable cell [237]. The computational scheme is a two-stage integration process, where
the first layer consists of the independent dendritic compartments acting as separate
thresholding functional subunits (Figure 3.12b) [243], and the group synaptic inputs within



3.5. DENDRITIC INFORMATION PROCESSING 61

the compartment interact with each other [237, 240, 244]. The assumption that dendrites
are divided into subunits is based on the spatially restricted dendritic spiking [232]. The
local nonlinear synaptic integration output is added to the somatic summation, and an AP
is produced only if the summation crosses the threshold for spiking [237, 240, 244].

In the two-stage mode of integration, clustered synaptic inputs directed at a single or a
group of distal dendrites could initiate a nonlinear response transmitted to the proximal
compartments for global linear summation. Polsky et al. [232] provided the first experi-
mental support for the two-layer network model of Poirazi et al. [243], wherein Polsky et al.
[232] showed that the same branched inputs integrate sigmoidally, while between-branch
inputs summed linearly. The researchers then identified the mechanism allowing pyra-
midal neurons to function as a two-layer network [245]. Two-stage integration can also
significantly increase the computational power and spiking response of the neuron over
that of the point neuron by introducing nonlinear operations between clustered synapses,
thus increasing the number of nonlinear operations the neuron can perform and allows
the implementation of a spatiotemporal coding scheme [228, 241, 246].

The most recent computational scheme is based on the neuronal capability of performing
locally restricted computations. Sardi et al. [237] suggested that the neuron functions as
an anisotropic threshold unit (Figure 3.12c) divided into independent excitable subunits
or compartments that can be a dendrite or a part of the dendritic tree. Each compartment
collects its anisotropic signals and performs its IO transformation process; thus, the inputs
are independent of other threshold units. Then, Ujfalussy et al. [239] provided a quan-
titative approach for describing IO transformation in neurons and suggested that each
subunit has its nonlinearity and transmits its output to the proximal subunit via multiplex-
ing signals in parallel processing channels with different time constants. The hypothesis
on multiple thresholding units was further supported by Wybo et al. [238] by devising a
formulism that characterized the dendritic arborization to an impedance-based tree graph,
revealing that the dendritic topology may indeed consist of multiple independent functional
units.

The development of neuronal computation schemes, from a point neuron perspective to
multiple independent excitable units, implies that a single neuron performs even more
complex computations. Modeling studies suggest that neurons, by internal compartmen-
tal processes and independent synaptic transformation, can perform functions usually
attributed only to neural networks. Independent subunit computations also suggest that
neurons can perform branch-specific learning [238].

3.5.5/ MATHEMATICAL MODELS FOR NEURAL CODING

Neural coding is the process in which the neuron encodes the afferent spike trains into a
single information-carrying output for communication to postsynaptic neurons. Analytical
models are used to approximate and represent dendritic operations and neuronal compu-
tations to examine the experimental predictions and implement such operations in neural
circuits. Biophysical models contain large parameter space, but the succeeding simpli-
fied models give us deep insights into neuron processes and computations, particularly
in neural coding.
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Figure 3.13: Neural coding schemes. (a) The first model depicting neural coding is the McCulloch-Pitts
neuron model, where synaptic inputs, xn, are binary, either 1 or 0 for active and inactive inputs, respectively.
Inputs are linearly integrated, and when the summation is above a threshold, θ, the neuron produces an out-
put equal to 1, and 0 otherwise. (b) The perceptron is an extension of the McCulloch-Pitts model. Here, the
inputs xn, which can be real values, are multiplied to arbitrary synaptic weights, ωn, representing the strength
of influence of the synaptic inputs to the neuron spiking. The thresholding function(activation function or
nonlinearity), f , nonlinearly transforms the input summation into somatic output. Also, when the nonlinear
summation is above the threshold, θ, the neuron produces binary 1. (c) The model by [243] is similar to
a two-layer network of perceptrons. Each dendritic subunit has an independent linear summation of inputs
and local nonlinearity. The output of each subunit is multiplied to the corresponding subunit weight, αn, be-
fore reaching the soma for global summation and thresholding function, g. (d) Generalized linear models
(GLMs) are point processes that model the stochastic properties and history-dependence of neuron spiking.
The nonlinearity function transforms the convolution of the outputs of the linear and the post-spike filters to
produce stochastic output spiking via the Poisson process. (e) Lastly, the Linear-Nonlinear Poisson (LNP)
model is a class of GLM without the post-spike filter. In this case, the neuron spiking is purely stochastic due
to the inhomogeneous Poisson process and independent from the previous spiking activity.

McCulloch and Pitts Model

McCulloch and Pitts suggested a binary point neuron model [247], which became the
most dominant conceptual model for single neuron computation [189, 229] (Figure 3.13a).
McCulloch and Pitts neuron model consists of binary inputs (0 and 1), a summing oper-
ation for the inputs, a thresholding function, and a binary output. Synapses have a value
of 1 when active and 0 when inactive and are multiplied with their corresponding positive
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weights (for excitatory inputs) that correspond to the synaptic strengths. The weighted
inputs are summed together, and if the sum is greater than the somatic threshold, the
soma will spike. The soma gives a value of 1 if the sum is above the threshold and 0
otherwise. Given the sum g(x) of the input vector x,

g(x0, x1, x2, x3, ..., xn) = g(x) =
n∑

i=1

xi, (3.44)

where n is the number of synaptic inputs and xn ∈ {0, 1}, the soma generates an output y
only if g is above the threshold for spiking, θ [247]. Therefore,

y = f (g(x)) =

1 if g(x) ≥ θ
0 if g(x) < θ

. (3.45)

Linear summation and threshold adjustment allow the neuron to perform logical opera-
tions such as AND or OR operations but not XOR [189, 191]. Numerous studies, espe-
cially in neural information processing and neural networks, adapted the McCulloch and
Pitts model because of its simplicity. However, biologically speaking, the model oversim-
plified neural processing. It disregards the fundamental spatiotemporal characteristics of
neurons, the morphology of the dendrites, the stochasticity of synaptic inputs, and the
history-dependence of somatic spiking [229].

Perceptron

Rosenblatt [248], inspired by the McCulloch and Pitts model and the theoretical studies of
Donald Hebb in plasticity, developed a neuron model called a perceptron (Figure 3.13b).
Rosenblatt [248] modified the McCulloch and Pitts scheme by extending the input values
into real values (not only binary) and by adding arbitrary weights in the inputs. Let g(x,w)
be the weighted sum of inputs x,

g(x,w) =
n∑

i=1

xiωi + b, (3.46)

where n is the number of inputs and b is the biasing constant. Instead of immediately
deciding if the soma spikes or not, the summation is then passed through the nonlinearity
for transformation. The nonlinearity acts as a thresholding or activation function, in that
when the transformed sum is above the threshold θ, the soma spikes. Therefore, the
somatic spiking is governed by

y = f (g(x,w)) =

1 if g(x,w) ≥ θ
0 if g(x,w) < θ

. (3.47)

The output still produces 1 for summation greater than the threshold and 0 otherwise.
Inputs have different and adjustable weights; thus, removing synaptic democracy, in that
some synapses can have a greater influence on the somatic spiking over the others.
Adjusting the synaptic weights and thresholds enables the neuron to learn and perform
more powerful computations [229]. Point neuron models can also accommodate various
output nonlinearities. Compressive nonlinearity, such as logarithmic, produces an IO
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curve that is sublinear [232]. For expansive nonlinearity, such as quadratic or expo-
nential function, the input summations always exceed the linear summation; thus, the IO
relationship is always supralinear. In a sigmoidal nonlinearity, the output ranges from
supralinear to sublinear depending on the stimulus intensity.

Two-Layer Neuron Model

Even though the point neuron model is widely used, the assumption that the neuron has
only one integrative point where all excitatory and inhibitory inputs are combined over-
simplify the neuronal functions [240]. Thus from a modern perspective, the point neuron
is insufficient. The model disregards the location-dependent dendritic mechanisms and
synaptic interactions.

Poirazi et al. [243] studied the IO transformation in realistic hippocampal CA1 pyramidal
neurons and suggested that the neuron functions as a two-layer network (Figure 3.13c).
The first layer consists of the subunits from the apical and basal dendrites, and the second
layer is the global summation at the soma. Assuming binary inputs, the hypothetical
subunit IO function, s(n), can be expressed as

s(ni) = s

 k∑
j=1

xn, jω j,k

 , (3.48)

where i = [1, 2, 3, ...] is the subunit number, and k is the net number of synaptic inputs in
n. Therefore, the somatic output is defined as

y = g

 m∑
i=1

αis(ni)

 , (3.49)

where αi is the weight of the nith unit, m is the number of subunits in the neurons, and
g is the global output of nonlinearity. The subunit nonlinearity is a sigmoidal function.
The two-layer binary model is an extension of the point neuron model. Each nonlinear
compartments have its IO functions with different thresholds, representing the threshold
of dendritic nonlinearity. The output of the nonlinear compartments is linearly summed in
the soma and compared with the spike threshold [191].

Jadi et al. [240] also introduced an augmented two-layer model (2LM) that consists of
local dendritic integration processes and a global integration process. Local integration
occurs within a subtree consisting of a uniform set of thin and unbranched dendrites
emanating from a node. Based on cable theory, it is assumed here that communication
within the dendritic subunit is efficient while communication between dendrites is relatively
low.

Generalized Linear Models

Unlike the point and two-layer neuron models whose spiking occurs upon the summa-
tion reaches the threshold, Generalized Linear Models (GLMs) capture the stochastic
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response of the neuron and mathematically represents the canonical physiological char-
acteristics and dynamics of a neuron, such as spatiotemporal filtering, without explicitly
modeling the influence of ion channels [233, 249–251]. The GLMs models serve as
tractable mathematical models describing single-neuron spiking activity.

In systems neuroscience, the term GLM refers to autoregressive point process models
[252, 253]. Each GLM has (1) a linear stimulus filter determining the stimulus preference
of the neuron and, (2) a static nonlinearity that transforms the convolution of stimulus and
other variables, (3) a stochastic spiking function whose spiking probability is based on
its spiking history, and (4) a spike history function capturing the refractory and bursting
property of the neuron (Figure 3.13d) [229, 250]. The stimulus filter describes the ex-
ternal input integration process, and the nonlinearity transforms the filtered stimulus to
produce the conditional intensity of the Poisson spiking [253]. Neurons tend to increase
their spiking probability if the cell has previously spiked. The post-spike filter captures
the history-dependence of the spiking activity and adds the response as input to the
static nonlinearity [229, 253, 254]. Unlike the deterministic HH and IF modes, GLMs are
stochastic due to Poisson spiking.

Linear-Nonlinear Poisson Model

The Linear-Nonlinear Poisson (LNP) model is a particular case of GLM that approximates
the arbitrary spiking neuron models [255]. The LNP model consists of the linear temporal
filter (the L operation), a static nonlinearity (the N operation), and the Poisson process (the
P operation) (Figure 3.13e) [229, 255, 256]. In contrast to GLMs, LNP models have no
spike history filter [253, 257]. Therefore, the timing of individual output spike is statistically
independent [258].

First, the temporal filter linearly convolves the stimulus. The temporal filter here cor-
responds to the response of the neuron to a small and sharp input current The static
nonlinearity then transforms the output of the convolution to an instantaneous firing rate.
The feedback process in the GLM was simplified into a single nonlinearity correspond-
ing to the average of the neuron, with a static input and background noise. Then, the
heterogeneous Poisson process generates the spikes a fixed time window. The Poisson
point process means that the distribution of spike counts within a time window must have
a Poisson distribution [258]. Both the temporal filter and the static nonlinearity can be an-
alytically approximated in several 1 or 2 variable spiking neuron models, such as the LIF,
generalized integrate-and-fire (GIF), and generalized exponential models (GEM) [229].

Hierarchical model

As depicted beforehand, the dendritic arborization is complex, that a point process can-
not fully describe the neuronal information processing. Since dendrites have independent
subunits, the processes can be modeled using a hierarchy of cascaded linear-nonlinear
(hLN) processes [106]. Ujfalussy et al. [239] developed an hLN neuron model wherein the
dendrites are subdivided into subunits. The inputs to each subunit are linearly integrated
and then fed to a nonlinearity, representing the spatiotemporal processes of the individual
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subunit. The outputs of the subunits are then linearly combined with other subunits be-
longing to the mother subunit. The process continues until the signals reach the soma for
global integration and somatic spiking using GLM. Because of compartmentalization due
to localized active mechanisms, the neuron becomes similar to multilayer perceptrons,
with nonlinear (e.g., sigmoidal) hidden units [229, 232, 244]. The multilayer architecture
can be utilized to perform routing, information selection, and multiplexing [233].

3.6/ CONCLUSION

Neuronal communication and computation is a more multifaceted process than previ-
ously suggested, and the functional implications of single neurons to neuronal networks
are thought-provoking. This chapter illustrated and presented the interaction between the
electrical, biochemical, and physiological characteristics of neurons that control informa-
tion processing and communication. Also, the neuronal computation are associated with
mathematical models and showed the progression of neuronal models from single point
process to multiple layer process.

The presynaptic Ca2+ dynamics, accompanied by the IP3 dynamics, chiefly mediate neu-
rotransmission. In the axonal compartments, the total intracellular [Ca2+] is the summa-
tion of Ca2+ ions acquired via Ca2+ influx through VDCCs during APs generation and
via the slow Ca2+ fluxes to and from the ER. One of the consequences of intracellu-
lar [Ca2+] fluctuations is the release of neurotransmitters from presynaptic vesicles into
the synaptic cleft, a cycle of vesicle fusion, neurotransmitter release, and replenishment.
Therefore, the arrival of AP to the axon terminal followed by the increase of [Ca2+] and
the time course of the neurotransmitter release process is indicative of the overall Glu−

time course. Here, we presented the models for stochastic (mainly evoked by the level of
[Ca2+]) and deterministic (evoked by the arrival of AP) neurotransmission.

Chemical synaptic signals are converted back to electrical signals when neurotransmit-
ters activate the postsynaptic receptors, such as AMPA and NMDA receptors on the den-
drites. What are the functional consequences of spines and the implications of the intri-
cate dendritic trees to neuronal computations and processes? It is still difficult to answer
precisely, though, with the advances in neuroimaging and measurements, researchers
discovered that the dendrites are not just receptive surfaces but are essential for neurons
to perform more complex computations. Here, we discussed synaptic input propagation
from the dendritic spine head, the spine neck where it is significantly attenuated, and into
the dendritic shaft where it is integrated with other inputs. The input signals do not directly
propagate to the soma; instead, the signals undergo different changes due to the passive
and active properties of dendrites. Highly localized dendritic mechanisms indicate that
the dendritic tree must not be considered a point process; instead, it comprises computa-
tional compartments performing independent processes. These processes can be linear
and nonlinear integration, as well as arithmetic and Boolean operations. Furthermore,
the neuron also filters, select, routes, and multiplex signals through its dendritic arboriza-
tion. However, the exact comprehension of how the neuron performs these operations
and functions is still lacking.

Overall, we demonstrated the course of signals from the synapse through the dendritic
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tree to the soma for information consolidation in the form of somatic spiking. Numerous
efforts have been made and are continuing in order to understand or replicate neuronal
processing. From a point process of McCulloch-Pitts model to the addition of synaptic
weights in perceptrons, to the two-layer neuron model of Poirazi et al. (2003), and the
cascade and hierarchical GLMs and LNP models, the neurons seem to be capable of
performing computations that are previously solely associated to neural networks.

Furthermore, recent studies suggest that brain computations are not only assigned to
neurons. More researchers are remarking on the functions of astrocytes as computa-
tional units rather than just structural supports. This notion implies more complex neural
networks than previously thought. The following chapter deals with astrocytes as compu-
tational units, their properties, and dynamics that influence neural processing.





4
ASTROCYTES AS COMPUTATIONAL

UNITS

4.1/ INTRODUCTION

In the 1800s, it was thought that the brain contains no connective tissues until Rudolf
Virchow argued against this notion. In his series of works in the 1950s, Virchow identi-
fied connective cellular elements penetrating the brain, filling the interstices among nerve
cells and fibers, and separating nervous tissues from blood vessels [259–261]. He termed
these cellular elements as neuroglia or Nervenkitt. Camillo Golgi and Ramón y Ca-
jal supported Virchow’s discovery when they highlighted that neuroglia and nerve cells
form separate populations, the variety of glial shapes and forms, and the glial network
[261, 262]. The term astrocytes came into view when by the end of the 19th century,
Lenhossék used the word to refer to star-shaped glial cells, which, even though electri-
cally silent, had significant functions as nerve cells [263].

From then on, an increasing amount of studies on astrocytes and their functionality
emerged, especially as support structures to other cells and in maintenance, pruning,
and remodeling of synapses during development, aging, and disease [8, 262]. How-
ever, it took another century for scientists to determine that astrocytes, though electrically
silent, influence neurotransmission via the tripartite synapse, a well-established concept
introduced by Araque et al. [4]. In addition, astrocytes create a distinct network through
gap junction and communicate via gliotransmission. Emerging technologies in the last
decades, therefore, challenge the neurocentric view of signal processing in the brain,
as astrocytes release gliotransmitters that change the synaptic function and modulate
synaptic activity.

This chapter takes a closer view of astrocytes as computational units in the hippocampus,
their function in the tripartite synapse, the communication between astrocytes, and their
influence in the neuron-astrocyte network. As the presynaptic neuron releases glutamate
into the synaptic cleft, a portion of the [Glu−] spills out of the cleft into the perisynaptic
space, which is then sensed and removed from the extracellular space by the perisynap-
tic astrocytic process. The astrocytic Glu− intake then mediates the intracellular Ca2+

oscillations, and almost similar to presynaptic Ca2+ activity, results in gliotransmitters re-
lease but with a timescale that is much longer than neurotransmitter release. At this
point, gliotransmission can have pathways back to the presynaptic or the postsynaptic
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neurons, influencing synaptic activities. Indeed, the addition of astrocytes in the synaptic
activity creates a more complex neural circuit. Adding in the complexity is that astrocytes
also form a separate network, where IP3 diffusion via gap junctions with neighboring
astrocytes mediates calcium wave propagation allowing astrocyte-to-astrocyte communi-
cation.

4.2/ BIOLOGICAL STRUCTURE AND FUNCTIONS OF ASTROCYTES

Astrocytes belong to a non-neuronal heterogeneous group of cells in the CNS with an
electrically non-excitable nature [262, 264, 265]. Glial cells are about 10 to 50 times more
than neurons [266], and that astrocytes account for approximately 20-40% of the total
number of brain cells [1, 267]. Indeed, the proportion of astrocytes between brain regions
varies. In the cerebral cortex, the astrocyte-to-neuron ratio typically ranges around 1:2
and 1:3 [43, 268].

There are two types of astroglial in the brain whose distinct morphologies were revealed
by Golgi staining: the protoplasmic astrocytes found in the gray matter and the fibrous
astrocytes in white matter [9, 269, 270]. Protoplasmic astrocytes form complex arboriza-
tions, occupy large volumes by giving rise to numerous fine processes, and appear
uniformly and roughly spherically distributed within the gray matter area. On the other
hand, fibrous astrocytes have distinguishable little to moderate branching, exhibits long
fiber-like processes, and are oriented longitudinally in the fiber-bundle (or axonal) plane
[9, 271, 272].

Most of this research focuses on astrocytes of the protoplasmic type since these astro-
cytes establish close contact with the synapse [267], necessary for neuron- and gliotrans-
mission.

4.2.1/ MORPHOLOGICAL COMPLEXITY

Protoplasmic astrocytes have structurally compact core regions consisting of the soma,
processes, and endfeet and complex spongiform peripherals (gliapil) formed by fine
branches (Figure 4.1a) [5]. Their sponge-like morphology allows astrocytic processes
to penetrate and reach compacted areas in the neuropil, comprising the synapses [9].
Astrocytic processes are further classified depending on their sizes and locations (Fig-
ure 4.1b). These processes can be a branch (the primary stem process), branchlet (the
secondary or tertiary process), thinnest processes which make contact with the synapse
called leaflets or peripheral processes or perisynaptic astrocyte processes (PAPs),
and end feet that are specialized and polarized astrocytic structures in contact with blood
vessels [267, 272]. Additionally, astrocytes have motile microdomains that expand and
surround synapses [15].

In rodents, astrocytes have diameters of ∼40-60 µm with volumes in the order of 104 µm,
while human protoplasmic astrocytes are ∼2.5 times larger in diameter and ∼16.5 times
larger in volume [267, 271]. The number of neuronal cell bodies and dendrites that a
single astrocyte creates contact with varies dramatically. Mature protoplasmic astrocytes
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completely to the soma of a neighboring astrocyte unless that
soma did not itself extend processes in one direction, thereby
allowing the process of its neighbor to approach. In such circum-
stances, the astrocytes usually extended their primary processes
in opposite directions or parallel to each other (Fig. 4B). Spon-
giform process extending directly from the adjacent somata pre-
vented direct contact between the somata.

Nearly every astrocyte formed end-feet processes with at
least one blood vessel. Blood vessels appeared to influence the
overall morphology of astrocytes, apparently prompting some
astrocytes to develop decidedly longitudinal forms, presumably
in an attempt to reach a vessel (Fig. 4C). Blood vessels also
seemed capable of influencing interastrocytic interactions. The
amount of interdigitation of astrocytic processes increased
around blood vessels, as seen in Figure 4 D, as if the astrocytes
were competing for access to a passing blood vessel.

Extensive overlap is observed between the processes
of distinct glial cell types
Occasionally, cells that exhibited the characteristic morphology
of either oligodendrocytes or oligodendrocyte precursor cells in
CA1 stratum radiatum were filled, possessing small, round somata
and radial, varicose processes (D’Ambrosio et al., 1998; Levine et
al., 2001). Cells of this type were less commonly found than
protoplasmic astrocytes and did not stain for GFAP, and their
somata were often in direct contact with the soma of a protoplas-
mic astrocyte or interneuron, a known characteristic of oligoden-
drocytes (Peters et al., 1991). When one of these oligoden-

drocyte-like cells was filled next to a protoplasmic astrocyte,
extensive interdigitation was observed among the processes of
these distinct glial cell types (Fig. 5B). This suggests that, al-
though the highly ramified nature of protoplasmic astrocytes
appears to influence the morphology of other neighboring proto-
plasmic astrocytes and prevent them from encroaching into their
space (Fig. 5A), it does not necessarily influence the extension of
processes from other cell types. The conspicuous difference seen
between the interactions of distinct cell types versus neighboring
protoplasmic astrocytes suggests that the lack of interdigitation
observed with the latter is not a result of our imaging or analysis
techniques.

Visualization of the interface region
between astrocytes
To enhance the visualization of the regions of contact between
astrocyte processes throughout the 3D volumes, the volumes
were searched for voxels containing both red and green signal
using a colocalization routine. To highlight closely apposed
processes at the interface zones, the astrocytes were first
blurred slightly using a Gaussian blur filter. This process
smeared the appearance of the fine processes and allowed for
the detection of areas in which fine processes containing dis-
tinct dyes were interdigitated but of course not actually over-
lapping. Colocalization now effectively detected narrow bands
of interaction occurring between astrocyte processes at the
periphery of the extent of each astrocyte (Figs. 6, 7). When
such volumes were viewed as 3D projections, they revealed a

Figure 4. Optical slices through neighboring
protoplasmic astrocytes filled with distinct flu-
orescent dyes. A, The major processes (arrows)
of astrocytes were commonly seen to extend
tangentially to the approaching processes of
neighboring astrocytes. B, The processes
emerging from two astrocytes with adjacent so-
mata radiate parallel to or away from each
other. C, Blood vessels (arrowhead) appeared to
be capable of influencing the arrangement of
astrocyte processes as they attempted to form
end feet. Astrocyte on the far right is highly
elongated as it reaches for passing vessel. The
center astrocyte ( green) shows little overlap with
its neighbors. D, One astrocyte ( green) is seen
to have its process “invade” the territory of its
neighbor as both astrocytes form end feet on
passing blood vessels. Scale bars, 15 �m.
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Figure 4.1: Morphology of a protoplasmic astrocyte. (a) An optical image of neighboring astrocytes in the
CA1 region filled with different colored dyes showing separate anatomical domains. (Image taken was taken
from Bushong et al. [273].) The morphological structure of the astrocyte consists of a soma (cell body) with
protruding stem processes (arrows). (b) The major branches (stem processes) then bifurcate into smaller
processes (i) forming the tripartite synapse, (ii) endfeet contacting the blood vessels, or (iii) gap-junctions
connecting the neighboring astrocytes.

located in the hippocampus and cortex have more branch arborization than subcortical
regions such as the hypothalamus [264]. In rodents, a single hippocampal astrocyte
makes contact with ∼100,000-140,000 synapses and one neuronal body; whereas, indi-
vidual human astrocyte can cover ∼2 million synapses with a synaptic density of ∼1100
million synapses per mm3, contacts 300-600 neuronal dendrites, and enwraps four to
eight neuronal somata [9, 267, 273–275]. In the CA3 region, astrocytic processes fully
enwrap the synapse prohibiting glutamate spillover, while in the CA1 region, astrocytic
processes ensheath a portion of the synapse, partially covering 57-62% of the synapses
in the CA1 stratum radiatum (synapse-containing region) [267, 276].

4.2.2/ BIOPHYSICAL CHARACTERISTICS

Like other cells in the mammalian body, astrocytes display complex molecular dynamics
and cellular signaling and express abundant numbers of channels, transporters, and re-
ceptors necessary for providing homeostasis and synaptic functions. They express major
ion channels such as K+, Na+, Ca2+ channels, and other non-selective channels such as
anion and chloride channels, water channels, and transient receptor potential channels
[277–279]. Astrocytes are traditionally considered electrically nonexcitable; they do not
conduct APs. Even though astrocytic intracellular [K+] and [Ca2+] are somewhat similar to
neurons, unlike neurons, astrocytes cannot generate membrane depolarizations due to
higher [Na+] and [Cl−], yet maintain a more negative resting membrane potential between
-85 to -90 mV, a consequence of the predominant K+ conductance [9, 15, 280]. Indeed,
astrocytes do not fire APs and do not display excitatory/inhibitory postsynaptic potential-
like activity [281]. However, astrocytes communicate with their neighboring astrocytes
or influence synaptic transmission via chemical signaling through Ca2+-mediated signals
instead of electrical signaling in neurons. Therefore, astrocytes are also considered ex-
citable cells based on their intracellular Ca2+ transients and oscillations [15].
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Similar to neurons, astrocytes also express membrane transporters for ions, neurotrans-
mitters, and other substances. Astrocytes have adenosine- and ATP-transporters such
as Na+/K+-ATPase (Na+/K+ pump), Ca2+-ATPase (PMCA), as well as Sarco/ER Ca2+-
ATPase (SERCA pump) on the ER membrane [282–284]. Notably, there are also sec-
ondary transporters such as glutamate transporters or excitatory amino acid transporters
(EAATs), GABA-transporters, glycine transporters, NCXs, and others [285–288]. Among
glial cells, astrocytes express the highest surface density of glutamate transporters (glu-
tamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) of approxi-
mately 10,800 µm−2 (measured based on protein extracts from mature rodent hippocam-
pal astrocytes) for Glu− uptake [7, 9, 281, 289]. Human astrocytes have two prominent
expressions of glutamate transporters called excitatory amino acid transporter 1 and 2
(EAAT1 and EAAT2, respectively) [281, 290]; EAAT1 and EAAT2 are human homologs of
GLAST and GLT-1, respectively [291].

Ionotropic and metabotropic receptors (e.g., for Glu−, GABA, serotonin, adenosine, ATP,
and other typical neurotransmitters) coupled with secondary messengers allow astrocytes
to sense neural activity and synaptically released neurotransmitters, as seen in vitro cell
cultures and in vivo. Astrocytic Glu− uptake is mediated by ionotropic glutamate receptors
(iGluRs), such as AMPA- and NMDA type receptors, that directly regulate ion channel
gatings and metabotropic glutamate receptors (mGluRs) from the family of GPCRs that,
when activated, result in PLC- and IP3-dependent intracellular [Ca2+] increase [9, 292–
294]. The following sections further describe the functions of these transporters and
receptors and their influence on glutamate-mediated astrocytic Ca2+ signaling.

4.2.3/ FUNCTIONS

A plethora of studies substantiate that astrocytes act as structural and metabolic supports
essential for a healthy CNS. They maintain brain architecture, support neurodevelopment
and migration, and regulate metabolism and hemodynamics [272, 281, 295]. Then, re-
cent studies suggest that astrocytes also contribute to circuit information processing, es-
pecially in synaptic transmission in neural circuits [274]. This research focuses on their
functional responsibilities in connection with neural information processing. The following
are the primary functions of astrocytes, as suggested by Nedergaard and Verkhratsky [8].

Astroglial cradle. One of the primary functions of perisynaptic astrocytes is to create
an astroglial cradle, structural support that works in two ways [8]. The first is creating
a physical barrier that shields the synapse from the ”spill-in” of various extrasynaptic
signaling events from neighboring non-neuronal cells. The second is preventing the ”spill-
over” of neurotransmitters into the extracellular space [267]. Even though most cell types
in the brain express glutamate transporters, astrocytes are the primary cells responsible
for the uptake of synaptically released Glu− and GABA. The PAPs rapidly remove these
neurotransmitters to avoid synaptic excitotoxicity, which is detrimental to neurons [9, 285,
296].

Spatial precision of synaptic transmission. Because astrocytes serve as synaptic
barriers, the dynamic changes in astrocytic coverage of synapses consequently modulate
and keep the spatial specificity of synaptic transmission [8, 15]. By limiting the spill-over
or spill-on of neurosignaling molecules, PAPs also limit the crosstalk between neuronal
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elements, thus promoting input specificity during synaptic transmission. At the same time,
the tight structural arrangement of neuron-astrocyte coupling allows astrocytes to sense
specific synaptic activity and control the molecular signaling within the synaptic island, a
group of synapses located within a single astrocytic territory [275, 297].

Synaptic strength modulation. Synapses with astrocytic processes coverage are
larger than synapses consisting of the axon-spine interface alone [267]. This morpho-
logical characteristic hints that astrocytes might influence synaptic activities. Studies
suggest that astrocytes participate in synaptic transmission by releasing gliotransmitters
such as Glu− which modulate the synaptic strength [298, 299]. In addition, astrocytes reg-
ulate extracellular levels and the diffusion of neurotransmitters via rapid glutamate uptake
[271, 281, 299].

Global modulation of neural networks. The influence of astrocytes in synaptic trans-
mission is not only restricted within the synaptic area. Astrocytic Ca2+ signals originating
in the PAPs can propagate within the intracellular space, to the soma, or other PAPs;
thus, affecting the [Ca2+] elevations in different compartments, and in turn, also influ-
ence the gliotransmitter release in neighboring synapses. Furthermore, Nedergaard and
Verkhratsky [8] also suggested that astrocytes influence information processing by glob-
ally and tonically modulating neural networks. The morphological characteristics of astro-
cytes, such as extensive contacts with thousands of synapses and several neighboring
astrocytes, enable them to listen and respond to other cellular elements. The range
of neuron-astrocyte interactions expands into networks as astrocytes also release addi-
tional Glu− to neighboring synapses resulting from intercellular Ca2+ wave propagation
[15, 300].

The morphological and functional characteristics of astrocytes indicate that the complex
bidirectional signaling between neurons and astrocytes, or among astrocytes, can poten-
tially impact neural information processing. Though astrocytes perform diverse responsi-
bilities, their exact role in these functions still needs further investigation.

4.3/ INTRACELLULAR DYNAMICS

Compared with their neuronal counterparts, astrocytes are electrically silent, where pas-
sive currents dominate the membrane conductance. However, astrocytes are chemically
excitable in terms of the main signaling mechanism, the intracellular [Ca2+] oscillations
[9, 271, 298]. Signaling molecules trigger intracellular [Ca2+] elevations in astrocytic
microdomains (such as in PAPs) and in the soma [9, 299]. Let us consider a single-
compartment astrocyte in Figure 4.2. Calcium ions, along with other signaling molecules
such as Glu−, IP3, Na+, and K+, are located in the extracellular and intracellular spaces
and can cross the astrocytic membrane [6]. Calcium ions are also stored in the ER,
considered as a subcompartment separate from the intracellular space. There are two
mechanisms responsible for Ca2+ oscillations: (1) the IP3 triggered Ca2+-induced Ca2+

release (CICR) from the ER driven by the mGluR activity, and (2) the entry of Ca2+ ions
through the astrocytic plasma membrane that depends on the activities of GluTs and NCX
[5, 6, 301].
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Figure 4.2: Astrocytic signaling mechanisms. Intracellular [Ca2+] signaling in astrocytes have glutamate-
mediated pathways that are mGluR- or GluT-dependent. (1) Glutamate from presynaptic terminals binds with
astrocytic mGluR, which then triggers the production of IP3 molecules. The second messenger IP3 then binds
to IP3R on the ER membrane, opening the channel for Ca2+ release into the intracellular space. The SERCA
pump and leakage channels on the ER membrane sustain intracellular Ca2+ oscillations by generating Ca2+

fluxes. (2) Extracellular Glu− enters the intracellular space via the GluT, which simultaneously transports
Na+ and K+ ions in and out of the cell. The Na+ and K+ gradients, caused by the transporters and leakage
channels, activate the Na+ efflux and Ca2+ influx between the intra- and extracellular spaces.

The main signaling mechanism of astrocytes is the Ca2+ signals from mGluR-dependent
IP3-sensitive ER, whose dynamics are illustrated in Figure 4.2(1) [6, 298]. Metabotropic
GluRs from the GPCR family sense synaptic activities and influence Ca2+ mobilization
from the ER, triggering intracellular astrocytic [Ca2+] elevations [5, 265, 301, 302]. Neu-
rotransmitter spill-over, specifically Glu−, from the presynaptic terminals, activates astro-
cytic mGluRs. As a response, activated mGluRs then stimulate the PLC hydrolysis, which
leads to the production of the second messenger IP3 [6, 302]. The IP3 molecules then
bind with the IP3Rs on the ER membrane, subsequently provoking the ER to release Ca2+

to the intracellular space. In order to sustain the nonlinear Ca2+ dynamics, Ca2+ stored in
the ER must be replenished [303]. This is achieved by exchanging Ca2+ ions from the in-
tracellular space to the ER by SERCA pumps. The ER membrane also contains leakage
channels that prevent intracellular Ca2+ depletion. In this case, Ca2+ signaling is slower,
peaking at three to ten seconds after initial stimulation [298].

The second pathway is GluT-dependent, as shown in Figure 4.2(2) [6]. Here, note that
GluT has no direct influence on intracellular [Ca2+] elevation. When the extracellular Glu−

molecule enters the GluT, it is accompanied by three Na+ ions to the intracellular space
and one K+ to the extracellular space. The transient increase of intracellular [Na+] drives
the NCX to transport Na+ out of the astrocyte while producing Ca2+ influx [304]. In this
case, GluT indirectly increases the intracellular [Ca2+]. In addition, Na+/K+ ATPase (NKA)
breaks down energy from ATP, resulting in the three Na+ ions efflux and two K+ ions
influx [305]. These intracellular [Na+] fluctuations, with the influences of the Na+ and K+

leakages, allow astrocytes to drive multiple mechanisms for ion transports, such as the
GluT.
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Consider a single cylindrical compartment with the same intra- and extracellular volumes,
the change of ion concentration in the intracellular space at any time t is equal to the
summation of ionic currents multiplied by the ratio between the outer surface area, A, and
the product of the Faraday’s constant, F, and the volume, Vol, of the space where the
ions are located [6]. Therefore,

d[ion]
dt

=
A

F · Vol

∑
Iion, (4.1)

where A and Vol are scaled by the length, l, of the compartment. Therefore, for a single
compartment astrocyte whose intracellular volume contains the ER volume, the intracel-
lular [Ca2+] is determined by the Ca2+ entering the membrane through NCX and the Ca2+

ions exiting and entering the ER given as

d[Ca2+]i

dt
=

A
F · Vol

JNCX +
A
√

rER

F · Vol
(
JIP3R − JS ERCA + JCERleak

)
, (4.2)

where A is the surface area of the outer cell membrane, Vol is the intracellular volume, and
√

rER is the factor that reduces the ER surface area in comparison with the intracellular
space (rER is the ratio between the surface volume ratio of the compartment and the
volume ratio between the ER and the intracellular space). Here, the flux JNCX is the
Ca2+ influx due to Na2+/Ca2+ exchange, JIP3R is the Ca2+ influx due to the activation of
mGluR, JS ERCA is the efflux due to SERCA pump, and JCERleak is the current leaking from
the ER to the intracellular space. Furthermore, the amount of Ca2+ in the internal stores
is determined by the Ca2+ fluxes entering and leaving the ER described as

d[Ca2+]ER

dt
=

A
√

rER

F · Vol · rER

(
−JIP3R + JS ERCA − JCERleak

)
, (4.3)

where A
√

rER and Vol
√

rER are the surface area and the volume of the ER, respectively.

The properties of intracellular [Ca2+] oscillations are different from neurons for their larger
amplitude, longer duration, regular but infrequent occurrence, and are governed by the
neuronal and astrocytic inputs [15]. Manninen et al. [306, 307] compiled a list of Ca2+-
mediated biophysical astrocytic models, presented the state-of-the-art, and compared
computational modeling of astrocytes. One can consult their papers for more information
on the advancement of astrocytic Ca2+ modeling. In that case, the following sections
deal with the fundamental models describing the Ca2+ and IP3 dynamics both in the
dimensional and non-dimensional methods.

4.3.1/ CALCIUM AND IP3 DYNAMICS

4.3.1.1/ REDUCED LI-RINZEL MODEL

As presented by Manninen [307], hundreds of models currently available are adaptations
of the Li-Rinzel model [162], which is also a simplified version of De Young and Keizer
[308]. The Li-Rinzel model assumes that the intracellular Ca2+ signaling is due to CICR
from the ER to the cytosol, regulated by IP3Rs, the Ca2+ flux from the SERCA pump,
and the ER Ca2+ leakage [157, 306]. See Figure 4.2(1). In addition, this model also
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uses the closed-cell assumption, meaning that there is no Ca2+ flux across the astrocytic
membrane [88], removing the influence of the GluT-dependent mechanisms. Calcium
signaling is a consequence of the combined activities of the mGluRs on the astrocytic
membrane and the IP3Rs on the ER membrane and the active engagement of cytosolic
Ca2+ and IP3 ions [178].

IP3 dynamics

Extrasynaptic Glu− spilling over from the synaptic cleft, g, and the astrocytic Ca2+ both
influence the production of IP3 via G-protein link to PLC, while phosphorylation of IP3
3-kinase (IP3-3K) and inositol polyphosphate 5-phosphatase (IP-5P) degrade the [IP3]
[6, 10, 88, 157, 178]. The evolution of [IP3] with time following the mass balance equation

d[IP3]a

dt
= JPLCβ

(
g, [Ca2+]a

)
+ JPLCδ

(
[IP3]a, [Ca2+]a

)
− J3K

(
[IP3]a, [Ca2+]a

)
− J5P ([IP3]a) ,

(4.4)

where JPLCβ and JPLCδ are the agonist-dependent and agonist-independent IP3 produc-
tions mediated by phosphoinositide-specific PLCβ and PLCδ, respectively. The fluxes J3K

and J5P cause IP3 degradation mediated by IP3-3K and IP-5P, respectively. Among these
fluxes, PLCβ-mediated IP3 production is dependent on the level of extracellular [Glu−],
[Glu−]a. The fluxes are described as

JPLCβ = vβHill
(
[Glu−]0.7

a ,KR

(
1 +

Kp

KR
Hill

(
[Ca2+]a,Kπ

)))
,

JPLCδ =
vδ

1 + [IP3]a
kδ

Hill
(
[Ca2+]2

a,KPLCδ
)
,

J3K = v3KHill
(
[Ca2+]4

a,KD
)
Hill ([IP3]a,K3) ,

J5P = r5P[IP3]a,

(4.5)

noting that Hill(xn,K) is the Hill function (sigmoid) equal to xn/(xn + Kn) [6, 88, 178]. The
constant terms vβ and vδ are the maximal rates of IP3 production by PLCβ and PLCδ,
respectively, while v3K and r5p are the maximal degradation rate of IP3 by IP3-3K and
IP-5P, respectively. The term kδ is a constant inhibiting the JPLCδ flux. Moreover, KR is
the Glu− affinity of the GPCR (mGluR), Kp is the Ca2+/Protein kinase C-dependent (PKC)
inhibition factor, Kπ Ca2+ affinity of PKC, KPLCδ is the Ca2+ affinity of PLCδ, KD is the Ca2+

affinity of IP3-3K, and K3 is the IP3 affinity of IP3-3K, respectively.

De Pitta et al. [178] approximated the IP3 production based on the fraction of activated
mGluRs rather than directly on g (synaptic Glu− spilling to the extrasynaptic space). Gluta-
mate from the presynaptic terminal spills and binds with mGluRs on the PAPs. Assuming
that a fraction of synaptic glutamate binding with postsynaptic receptors is ζ, the frac-
tion that spills out of the synapse to the PAP is therefore 1 − ζ. The fraction of activated
mGluRs, γA, is

τA
dγA

dt
= −γA + OA (1 − ζ) YS (1 − γA) τA, (4.6)

where τA is the time constant of receptor deactivation, OA is the agonist binding rate, and
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YS is the synaptic [Glu−] described in Equation 3.29. Then, JPLCβ becomes vβγA.

The [IP3], in association with [Ca2+], triggers the opening and closing of IP3R channels on
the ER membrane controlling the CICR mechanism for Ca2+ delivery into the intracellular
space [6, 309]. The IP3R channel is active when one Ca2+ and one IP3 ion bind to two out
of three IP3R subunits [6, 310, 311]. The IP3R channel becomes inactive when a second
Ca2+ ion binds with the third subunit. Each IP3R subunit in the cluster has a Ca2+ binding
site for inactivation whose gating kinetics can be described by a dimensionless variable
ha [157, 162, 306], defined as

dha

dt
=

ha∞ − ha

τh
, (4.7)

where
ha∞ =

Q2

Q2 + [Ca2+]
,

τh =
1

a2
(
Q2 + [Ca2+]

) ,
Q2 =d2

[IP3] + d1

[IP3] + d3
.

(4.8)

The IP3R gating variable in Equation 4.7 can be rewritten into

dha

dt
= αha (1 − ha) − βhaha, (4.9)

where
αha = a2d2

[IP3] + d1

[IP3] + d3
(4.10)

describes the opening rate of ha and

βha = a2[Ca2+] (4.11)

is the closing rate [88]. The terms a2, d1, d2, and d3 are the IP3R binding rate for Ca2+

inhibition, the IP3 dissociation constant, the Ca2+ inactivation dissociation constant, and
the IP3 dissociation constant respectively [6, 88, 157]. By adding a zero mean, uncorre-
lated, Gaussian white-noise Gh(t) with covariance function described in Equation 4.12 to
the rate of change of ha, the Ca2+ flow through the IP3R channel becomes stochastic.

〈
Gh(t)Gh(t′)

〉
=
αha + βhaha

NIP3

δ
(
t − t′

)
, (4.12)

where δ(t) is the Dirac-delta function, t and t′ are specific times, the term(
αha(1 − ha) + βhaha

)
/NIP3 is the spectral density, and NIP3 is the number of IP3Rs in the

cluster [88].

Moreover, each IP3R also has two activation sites: one for IP3 and another for Ca2+. The
gating kinetics for IP3 activation is defined as

ma∞ =
[IP3]

[IP3] + d1
, (4.13)
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while the gating kinetics for Ca2+ activation is given as

na∞ =
[Ca2+]

[Ca2+] + d5
, (4.14)

where d5 is the Ca2+ activation dissociation constant [88, 157]. Together, the gating kinet-
ics ma∞ , na∞ , and ha represent the opening probability of the IP3R cluster.

Ca2+ dynamics

Similar to the slow Ca2+ dynamics in neurons (presented in Chapter 3 Section 3.2), intra-
cellular Ca2+ ([Ca2+]a) balance is primarily dependent on three fluxes [6, 88, 157, 178]; a
passive Ca2+ leakage from the ER to the intracellular space (cytosol), JCERleak, ER Ca2+

intake due to SERCA pumps, JS ERCA, and Ca2+ released from the ER to the cytosol based
on the levels of [Ca2+] and [IP3], JIP3R, following the equation

d[Ca2+]a

dt
= JIP3R

(
[Ca2+]a, h, [IP3]a

)
+ JS ERCA

(
[Ca2+]a

)
− JCERleak

(
[Ca2+]a

)
. (4.15)

The ER releases Ca2+ by opening of IP3R channels whose opening probability depends
on three distinct gating processes described previously. The influx, JIP3R, is therefore
proportional to the Ca2+ gradient and is also mediated by the IP3Rs whose opening prob-
ability of channels has a power of three. Therefore,

JIP3R
(
[Ca2+]a, ha, [IP3]a

)
= rCm3

a∞n3
a∞h3

a

(
[Ca2+]ER − [Ca2+]a

)
, (4.16)

where the proportionality constant rC is the maximal rate at which Ca2+ flows from the
IP3R cluster and [Ca2+]ER is the Ca2+ concentration stored in the ER. The term m3

a∞n3
a∞h3

a
characterizes the opening probability of the channel.

The Ca2+ current, JS ERCA, flowing through the SERCA pump is dependent on the intracel-
lular [Ca2+]. This influx assumes a Hill rate expression with Hill constant equal to 2, and
given as

JS ERCA
(
[Ca2+]a

)
=

vER[Ca2+]2
a

K2
ER + [Ca2+]2

a
, (4.17)

where vER is the maximal Ca2+ uptake by the pump and KER is the SERCA Ca2+ affinity,
which is the [Ca2+] at which the pump operates at half of its maximum capacity.

The Ca2+ leak JCERleak is proportional to the [Ca2+] gradient across the ER membrane,
given as

JCERleak
(
[Ca2+]a

)
= rL

(
[Ca2+]ER − [Ca2+]a

)
, (4.18)

where rL is the maximal rate of Ca2+ leakage from the ER. The Ca2+ current strength is
proportional to the Ca2+ gradient between the ER and the intracellular space, ([Ca2+]ER −

[Ca2+]a). The two influxes JIP3R and JCERleak can be combined into a single flux Jrel,

Jrel
(
[Ca2+]a, ha, [IP3]a

)
=JIP3R

(
[Ca2+]a, ha, [IP3]a

)
+ JCERleak

(
[Ca2+]a

)
,

=
(
rCm3

a∞n3
a∞h3

a + rL
) (

[Ca2+]ER − [Ca2+]a
)
.

(4.19)
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Under the closed-cell assumption, the cell-averaged total free [Ca2+], C0, is conserved.
The [Ca2+] in the ER can also be expressed completely in terms of the astrocyte cell
parameters, described as

[Ca2+]ER =

(
C0 − [Ca2+]a

)
c1

⇒ [Ca2+]ERc1 = C0 − [Ca2+]a, (4.20)

where c1 is the ratio between the ER and cytosolic volumes. Therefore, the Jrel function
can be rewritten as

Jrel
(
[Ca2+]a, ha, [IP3]a

)
=

(
rCm3

a∞n3
a∞h3

a + rL
) (

C0 − (1 + c1) [Ca2+]a
)
. (4.21)

Finally, the astrocytic Ca2+ in the intracellular space is

d[Ca2+]a

dt
= Jrel

(
[Ca2+]a, ha, [IP3]a

)
− JS ERCA

(
[Ca2+]a

)
. (4.22)

Accordingly, the change in the intracellular [Ca2+] results from the behavior and coop-
eration of four components: (1) the intracellular [Ca2+], (2) the intracellular [IP3], (3) the
fraction of activated mGluRs, (4) the fraction of de-inactivated IP3Rs.

4.3.1.2/ POSTNOV MODEL

Postnov et al. [312–314] developed a nondimensional and qualitative model, a general-
ized and simplified model describing the astrocytic Ca2+ and IP3 dynamics. The synaptic
coupling is described by a first-order differential equation

τs
dz
dt
= (1 + tanh (ss (v1 − hs))) (1 − z) −

z
ds
, (4.23)

where the variable v1 describes the presynaptic neuron fast variable and z is the synaptic
activation that acts as the input to the postsynaptic neuron and the astrocyte, stimulating
the IP3 production. The time constant τs is the synaptic delay, and the constant terms
ss, hs, and ds control the activation and relaxation of z. Here, hs is analogous to the
AP activation threshold, wherein during z < hs, the neuron is in the subthreshold region
and the synapse is silent. As the v1 increases beyond hs, the synapse activates and z
elevates. Upon reaching the peak value, z ≈ 1, the synapse relaxes, and z inactivates.
Once activated, the presynaptic neuron releases a neurotransmitter concentration, [T ],
multiplied to an amplifying factor, a, exceeding zero, (z = a[T ]). Because the model is
nondimensional, the neurotransmitter concentration must be modified into

[T ] =
1

1 + exp (− (v1 − θS ) /σs)
, (4.24)

where v1 is the membrane potential of the presynaptic neuron, θS is the half-activation
voltage, and σs is the steepness of the sigmoid function.

The postsynaptic current input, Isyn, includes the combined influence of the presynaptic
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neuron (z) and the astrocyte (δGm) to the synapse.

Isyn = (ks − δGm)(z − z0), (4.25)

where, ks describes the conductivity, δ is the fraction of Gm spilling into the synapse, and
z0 is the reference level during which the synapse is silent. Therefore, the total input
to the postsynaptic neuron is the sum of Isyn and Iast, the astrocyte-induced current Gm

multiplied by the factor γ.

Ca2+ dynamics

Let c be the unitless description of [Ca2+] in the cytoplasm given as

τc
dc
dt
= c − c4 f (c, ce) + (r + βS m) ,

ϵcτc
dce

dt
= f (c, ce) ,

f (c, ce) = c1
c2

1 + c2 −

 c2
e

1 + c2
2

  c4

c4
2 + c4

 − c3ce,

(4.26)

where ce denotes the Ca2+ concentration in the ER, the constant parameters ϵc, τc to-
gether define the characteristic time for Ca2+ oscillations. The factor β controls the vari-
able S m, which defines the production of the secondary messenger IP3, and r controls
the initial state of Ca2+ oscillation. The nonlinear function f (c, ce) describes the Ca2+

exchange between the cytoplasm and the ER.

IP3 dynamics

Let the slow astrocytic IP3 dynamics be described by S m defined as

τS m

dS m

dt
=

(
1 + tanh

(
S S m

(
z − hS m

)))
(1 − S m) −

S m

dS m

, (4.27)

where z is the synaptic activation that triggers the production of IP3. The parameters τS m ,
sS m , hS m , and dS m control the time scale, steepness of activation of the sigmoid function,
threshold values, and the deactivation rate, respectively.

4.3.1.3/ HILL FUNCTION-BASED MODEL

Cresswell et al. [303] recently developed a simpler notation for Ca2+ fluxes, which also
uses nondimensional models described by the Hill function

Hn(x, k) =
xn

xn + kn . (4.28)
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This model only contains two Ca2+ fluxes: Jr denotes the Ca2+ flux from the ER to the
cytosol through IP3R and Jp for the Ca2+ flux from the cytosol into the ER through SERCA
pumps. Hill function was used due to the common characteristics of previous IP3R mod-
els; the bell-shaped function of Ca2+. Assuming a sufficient level of IP3 and fast activation
and slow inactivation of Ca2+-sensitive IP3R channels, the interaction between the cy-
tosolic and ER Ca2+ pools creates a flux, Jr, described as

Jr (CE ,CI) = H2 (CE , 1) H4 (C1, b2) , (4.29)

where CI and CE are the nondimensional cytosolic and ER [Ca2+], respectively. Here,
b2 is the half-activation value for CI for the IP3 channels. Then, the flux through SERCA
pumps is a continuous model described as

Jp(CI) = b1H2(CI , 1), (4.30)

where b1 is the maximum velocity of the reaction. The [Ca2+] in the astrocytic process is
given by

τc
dCI

dt
= r + σξi + b4

(
Jr − Jp

)
−CI ,

ϵcτc
dCE

dt
= −Jr + Jp.

(4.31)

where CI and CE denote the intracellular and ER Ca2+, respectively. The parameter r
controls the intrinsic Ca2+ excitability in the PAP, σξi denotes the stochastic neuronal
input, b4 is the ratio between the ER and the cytosolic volumes, τc is the time constant
for Ca2+ variations, and ϵc is the timescale separation between the cytosolic and the ER
Ca2+ pools.

4.3.2/ LOCAL AND GLOBAL CA2+ DYNAMICS

Studies also suggest that astrocytes, like neurons, display compartmental dynamics. Cal-
cium and IP3 currents are confined within the astrocytic processes and the soma [9, 315],
and diffuse to neighboring compartments, to different astrocytic processes, and even the
whole cell [299]. These local astrocytic Ca2+ events can spread within the intracellu-
lar region by activating clusters of IP3 receptors on the ER membrane or by astrocytic
ligand-gated Ca2+ channels, transient receptor potential channels, and reverse operation
of Na+/Ca2+ exchanger (NCX), or by the activity of GPCRs within the perisynaptic re-
gions [265, 302]. Calcium events can be classified as focal, expanded, or generalized
depending on how the Ca2+ spreads.

Wu et al. [265] suggested that spontaneous Ca2+ events in single astrocytes, measured
using two-photon imaging, have power-law distribution and that Ca2+ events may have
scale-invariant properties. It means that Ca2+ spread in a single focal plane of astrocytes
in the brain is a continuum rather than separated. However, Bindocci et al. [5] contra-
dicted the results of conventional 2D imaging techniques (two-photon imaging) that as-
sume that Ca2+ events in a single focal plane represent the whole-cell activity, given that
astrocytes are highly three-dimensional. Therefore, they developed a three-dimensional
Ca2+ imaging method and found transient and compartmentalized Ca2+ activities hetero-
geneously distributed within the astrocytic regions. Figure 4.3(left) is a 3D reconstruction
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Figure 4.3: A three-dimensional reconstruction of hippocampal astrocyte by Bindocci et al. [5] showing
heterogeneity in Ca2+ activities in each astrocytic process (left). The right side shows that an astrocyte has
processes with different average activity ranging from low (0-3 mHz) to medium (3-6 mHz) and high (>6 mHz)
levels.

of a hippocampal astrocyte in situ, while Figure 4.3(right) shows the average Ca2+ ac-
tivity levels. Most of local mean Ca2+ activity in an astrocyte resides in the peripheral
regions, while the soma is generally inactive. The results indicate the heterogeneity in
Ca2+ activities in different astrocytic compartments, ranging from low to medium and to
high activity levels. In addition, individual astrocytic processes also have alternating hot
and cold spots distributed heterogeneously.

Furthermore, global Ca2+ events consist of multifocal Ca2+ activities starting from multi-
ple peripheral regions, which spread to the soma rather than sweeping waves [5]. The
astrocytic morphology and biophysics control the molecular diffusion from one region to
another. In this case, the [Ca2+] levels in an astrocytic process may increase even without
neuronal inputs [9].

Compartmental Models

Global and local [Ca2+] elevations in different astrocytic regions have specific spatial and
temporal properties due to the complexity of the astrocytic morphology [316]. Consider, in
Figure 4.4a, that the neuronal inputs in individual processes cause spatially distinct Ca2+

and IP3 signals diffusing bidirectionally to the soma or other processes. Consider that the
astrocytic processes and soma are separate compartments defined by their single point
model with homogenized [Ca2+] and where Ca2+ ions and IP3 molecules diffuse between
compartments (Figure 4.4b) [303].

Let (s) represent the soma compartment and (pi) be the process compartment, where i
is the astrocytic process number. The following system is derived from the Hill function-
based Ca2+ dynamics of multicompartment astrocytes [303]. The variables JIP3di f f and
JCadi f f are the amounts of IP3 and Ca2+, respectively, diffusing from the process, (pi), to
the soma, (s), and vice versa. Therefore, we extend the Ca2+ dynamics in the intracellular
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Figure 4.4: Dynamics in astrocytic compartments. (a) Calcium and IP3 molecules diffuse from the processes
to the soma to the neighboring processes bidirectionally. (b) Each astrocytic process and the soma are
considered separate compartments consisting of distinct dynamics.

space, [Ca2+]a, into

d[Ca2+](pi)
a

dt
= J(pi)

IP3R + J(pi)
S ERCA − J(pi)

CERleak + J(pi)
Cadi f f ,

d[Ca2+](s)
a

dt
= J(s)

IP3R + J(s)
S ERCA − J(s)

CERleak −

k∑
i=1

J(pi)
Cadi f f ,

(4.32)

where k denotes the number of compartments representing the astrocytic processes. The
increase in somatic [IP3] is independent of the synaptic input but on the Ca2+ diffusion.
Therefore, the IP3 dynamics in the processes and the soma become

d[IP3](pi)
a

dt
= J(pi)

PLCβ + J(pi)
PLCδ − J(pi)

3K − J(pi)
5P + J(pi)

IP3di f f ,

d[IP3](s)
a

dt
= J(s)

PLCδ − J(s)
3K − J(s)

5P −

k∑
i=1

J(pi)
IP3di f f .

(4.33)

In order to take into account the difference in volume between the processes, Vprocess, and
the soma, Vsoma, Cresswell et al. [303] considered the ratio

Vr =
Vsoma

Vprocess
(4.34)

Assuming that all astrocytic processes are homogeneous point processes with identical
geometry, the somatic Ca2+ and IP3 dynamics in the processes shown in Equation 4.32
are updated into

Vr
d[Ca2+](s)

a

dt
= Vsur f

(
J(s)

IP3R + J(s)
S ERCA − J(s)

CERleak

)
−

k∑
i=1

J(pi)
Cadi f f ,

Vr
d[IP3](s)

a

dt
= Vsur f

(
J(s)

PLCδ − J(s)
3K − J(s)

5P

)
−

k∑
i=1

J(pi)
IP3di f f ,

(4.35)
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where Vsur f is the surface volume equal to V2/3
r accounting for the increase in membrane

area [303]. The increase in somatic volume, therefore, slows down the Ca2+ dynamics.

Ca2+ and IP3 Diffusion

Calcium ions diffuse to the compartment of lesser concentration, from the process to the
soma or vice versa, proportional to the difference between the [Ca2+] of the two compart-
ments, described by the equation

J(pi)
Cadi f f = DI

(
[Ca2+](s)

a − [Ca2+](pi)
a

)
, (4.36)

where DI is the Ca2+ diffusion coefficient between the soma and the astrocytic process
within the cytosol [303].

For short -distances, Fick’s first diffusion law describes the intracellular IP3 diffusion, such
that

J(pi)
IP3di f f = DP

(
[IP3](s)

a − [IP3](pi)
a

)
, (4.37)

where DP is the diffusion coefficient [300].

4.4/ GLIOTRANSMISSION

At the start of the 1900s, Jean Nageotte hypothesized that astroglials in the CNS also
secrete signaling molecules, like neurotransmitters in neurons [317]. It took another one
hundred years to experimentally confirm that astrocytes indeed release chemical trans-
mitters, or gliotransmitters, that act as signaling mechanisms to neighboring neurons
and astrocytes [318]. Thus the concept of gliotransmission began, substantiated by
the discoveries that astrocytes sense and react to neurotransmitters, such as Glu−, by
altering their cytosolic Ca2+ [319, 320], and trigger astrocyte-neuron signaling via the
gliotransmitter release [321]. In 1994 during the growth of Ca2+ imaging techniques, two
separate studies by Nedergaard [321] and Parpura et al. [322] simultaneously demon-
strated that Ca2+ dynamics in astrocytes could modify neuronal response by triggering
delayed neuronal Ca2+ [298]. There is also a sudden increase in studies showing Ca2+

elevation in astrocytes as a response to downstream neurotransmitters, especially Glu−.
Astrocytes are then recognized to play active roles in neural communication [15].

Gliotransmission is the concept in which astrocytes, when activated, send signals to
neighboring cells by releasing and regulating transmitters or modulators (gliotransmit-
ters), allowing information transfer from astrocyte to neuron affecting synaptic activities
[15, 275, 295, 322]. Gliotransmitters are neuroactive molecules such as Glu−, ATP, GABA,
and D-serine altering synaptic transmission and neuronal excitability [265, 275, 323].
Though neurons also release these molecules, these are called gliotransmitters based on
their glial origins. There are at least two possible mechanisms of astrocytic signaling. The
first is via the direct connection through gap junctions (astrocyte-astrocyte) [321]. Second
is the indirect interaction utilizing astrocytic Glu− release via Ca2+-dependent exocytosis
(astrocyte-neuron) [322], indicating a gliotransmission-based synaptic modulation [324].
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The discovery of these interactions between neurons and astrocytes leads to the concep-
tion of the term ’synaptic triad’ [325], which later became the so-called ’tripartite synapse’
[4].

4.4.1/ TRIPARTITE SYNAPSE

The tripartite synapse concept describes the bidirectional signaling between neuronal
synaptic elements and the astrocytic processes [299]. As the astrocytic process enwraps
the synapse, it forms a third synaptic element, in addition to the two traditional elements,
the presynaptic bouton and the postsynaptic spine head [318]. The neuron-dependent
astrocytic excitation was first recognized in the hippocampus and cerebellum [15]. Then,
most investigations on tripartite synapses were facilitated by scrutinizing the glutamater-
gic synapses in the hippocampal circuit, especially in the SC-CA1 region [302].

In the tripartite synapse model shown in Figure 4.5, the presynaptic neuron releases
neurotransmitters into the synaptic cleft [8, 265]. Following the synaptic vesicle release, a
fraction of these neurotransmitters spill over into the extrasynaptic space through passive
diffusion, causing a decrease in the neurotransmitter concentration in the synaptic cleft
[15, 281]. However, a high neurotransmitter concentration persisting in the extracellu-
lar space leads to prolonged activation of neuron receptors, a potentially neurotoxic effect
[281]. The brain avoids this biologically toxic condition through astrocytic glutamate trans-
porters. In effect, the neurotransmitter spill-over also facilitates the neuron-to-astrocyte
information transfer [15]. The neurotransmitters diffusing into the presynaptic space bind
with EAAT1 and EEAT2, whose binding rate is similar to ionotropic AMPA and NMDA
receptors (i.e., 106 − 107 M−1 s−1) [281], and trigger the cytosolic [Ca2+] elevation in the
presynaptic astrocyte [8, 265]. When the intracellular [Ca2+] increases beyond a certain
threshold, neuron-dependent excitation occurs, and the astrocyte releases an additional
amount of transmitters, such as Glu− or ATP, into the extracellular space, triggering the
delivery of specific messages to the neighboring cells (to neurons or even to astrocytes)
through gliotransmission [8, 15, 265, 326]. These gliotransmitters can directly participate
in synaptic activities by modulating the pre- and postsynaptic components.

Astrocytes in the hippocampus and the cortex show that they release Glu−, ATP and D-
serine, inducing neural excitation and inhibition modulating synaptic activity and plasticity
[5, 9, 15, 302]. There are two pathways of gliotransmission relevant to synaptic modula-
tion: astrocytic Glu− mediation of extrasynaptic receptors at the (1) presynaptic boutons
and (2) postsynaptic spines [327]. Researchers reported that the release of astrocytic
Glu− results in an increase or decrease of glutamate released from SC terminals of SC-
CA1 synapses [302]. Also, in CA1 neurons, laboratory experiments where IP3 molecules
were uncaged to drive the astrocytic [Ca2+] elevations exhibit increased spontaneous
excitatory postsynaptic AMPA currents. These two pathways, therefore, provide feedfor-
ward and feedback interactions between the pre- and postsynaptic terminals [327]. The
synaptic transmission, with the addition of the perisynaptic astrocytic process, becomes
bi-directional rather than unidirectional.
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Figure 4.5: The tripartite synapse. The closed-loop interplay between the molecular and electrical dynamics
in the tripartite synapse model is as follows. Upon the presynaptic vesicular release, a fraction of neuro-
transmitters bind with the postsynaptic ionotropic receptors (iGluRs), and the remaining fraction passively
diffuses into the extrasynaptic space, binding to astrocytic metabotropic receptors (mGluRs). The binding
activity triggers the production of IP3 molecules, which then results in intracellular astrocytic [Ca2+] eleva-
tions. The neuron-dependent activation of the astrocyte occurs when its [Ca2+] exceeds a certain threshold,
facilitating the release of gliotransmitters into the extracellular space. Astrocytes also consists of synaptic
like microvesicles (SLMVs) containing gliotransmitters with a release mechanism similar to neurons. The
released gliotransmitters diffuse in the extracellular space activating extrasynaptic iGluRs and mGlurs in the
pre- and postsynaptic components. These additional transmitters (gliotransmitters) influence the synaptic
vesicle release probability, indirectly modulating the synaptic activity. In addition, activation of postsynaptic
iGluRs due to gliotransmitters adds to the postsynaptic potential. With this concept, information transfer be-
comes bidirectional rather than the unidirectional flow in the classical synapse.

4.4.2/ GLIOTRANSMITTER RELEASE

Aside from opening anion channels, hemichannels, and ionotropic receptors on the mem-
brane, the primary mechanism for gliotransmitter release is via the clear synaptic-like mi-
crovesicle (SLMV) release through Ca2+-dependent exocytosis [15, 318, 328, 329]. This
quantal release of vesicular transmitter content via exocytosis, typical with neurons dis-
cussed in subsection 3.3.1, is also observed in adult hippocampal astrocytes through flu-
orescence imaging. However, in contrast with vesicle-containing Glu− from neurons, as-
trocytic Glu− are not as tightly packed in SLMVs. Astrocytic SLMVs also express SNARE
protein complex such as VAMP3 and transporters such as VGLUT1-3, equipping astro-
cytes of glutamate uptake, storage, and release. This subsection presents the models
describing the gliotransmitter release process akin to the synaptic neurotransmitter re-
lease, starting from (1) the binding of Ca2+ ions to SLMVs for controlling the vesicular
release probability, (2) the fusion of vesicles to the plasma membrane releasing a fraction
of stored gliotransmitters, and finally, (3) the recycling process through endocytosis.
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4.4.2.1/ GLIOTRANSMITTER RELEASE PROBABILITY

Bertram et al. [330] originally presented two-gate and four-gate neurotransmitter release
processes. Then, Tewari and Majumdar [88] modified the release model and applied it
to a three-gated gliotransmitter release model. In the model of Tewari and Majumdar
[88], a possible gliotransmitter release occurs when three Ca2+ ions bind with the three
independent sites (S 1 − S 3). Let Ca be the [Ca2+]a in the release site, then

Ca +C j

k+j
⇌
k−j

O j, j = 1, 2, 3 (4.38)

where C j denotes the closing probability of site j while O j is the opening probability, and
k+j and k−j are the opening and closing rates of S j, respectively. Since Ca is in µM, C j and
O j here can be considered nondimensional and normalized [Ca2+] [330]. The vesicular
release is a stochastic and dynamic process. The temporal evolution of the open gate O j

is a differential equation described as

dO j

dt
= k+j [Ca2+]a −

(
k+j [Ca2+]a + k−j

)
O j. (4.39)

Here, the opening (in µM−1 ms−1) and closing rates (in ms−1) are k+1 = 3.7 × 10−3 and
k−1 = 4 × 104 for S 1, k+2 = 2.5 × 10−3 and k−2 = 1 × 10−3 for S 2, and k+3 = 1.25 × 10−2 and
k−3 = 10 × 10−3 for S 3, respectively. The dissociation constants for gates S 1 to S 3 are 108
nM, 400 nM, and 800 nM. The time constants for gate closure (1/k−j ) are 2500 ms, 1000
ms, and 100 ms. Then, the fraction of SLMVs ready for release, f a

r , depends on the
opening probabilities of the three sites and is given as

f a
r = O1 · O2 · O3. (4.40)

4.4.2.2/ FUSION AND RECYCLING PROCESS

The fusion and recycling process of SLMVs is given by the system

dRa

dt
=

Ia

τarec
− Θ

(
[Ca2+]a − [Ca2+]thresh

a

)
f a
r Ra,

dEa

dt
= −

Ea

τainact
+ Θ

(
[Ca2+]a − [Ca2+]thresh

a

)
f a
r Ra,

Ia =1 − Ra − Ea.

(4.41)

where Ra is the fraction of readily releasable SLMVs inside the astrocytic process, Ea is
the fraction of effective SLMVs in the extrasynaptic cleft, and Ia is the fraction of SLMVs
undergoing endocytosis or re-acidification [88]. Θ is a Heaviside function with the thresh-
old for release site activation equal to [Ca2+]thresh. The parameters τainact and τarec, respec-
tively, are the time constants of inactivation and recovery of SLMVs.

De Pitta and Brunel [178] presented a deterministic approach of determining the fraction
of released gliotransmitters based directly on the supply of [Ca2+]a at any time t solely
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rather than with the kinetics of Ca2+ binding to the SLMV. Considering that at time t j, the
[Ca2+]a exceeds the [Ca2+]thresh

a , the astrocyte releases a fraction of gliotransmitters into
the extrasynaptic space, rA(t), from the pool of readily available for release gliotransmitter
resources, xA(t). The temporal evolution of xA(t) is defined by the set of equations

τG
dxA

dt
= 1 − xA −

∑
j

rA(t)δ(t − t j)τG,

rA(t) = UAxA(t−j ),

(4.42)

where δ(·) is a Delta function, τG is the Glu− recycling time constant, and UA is the resting
Glu− release probability (0 < UA < 0.9). The residual Glu− during recycling is reintegrated
at a rate equal to 1/τA (see Equation 4.6).

The astrocytic vesicular release is slow, attributable to the slow astrocytic Ca2+ dynamics,
with an exocytosis rate of at least two orders of magnitude slower than in neurons [318,
331]. However, a small [Ca2+]a increase of approximately 100 nM from the resting level is
sufficient to induce gliotransmitter release [332].

4.4.2.3/ EXTRASYNAPTIC GLUTAMATE DYNAMICS

The extrasynaptic Glu− concentration, [Glu−]a, is governed by

d[Glu−]a

dt
= nv

agv
aEa − gc

a[Glu−]a, (4.43)

where nv
a is the number readily releasable pool of SLMVs, gv

a is the [Glu−] within each
SLMV, and gc

a is the [Glu−] clearance rate due to diffusion and re-uptake by the perisy-
naptic astrocyte [88]. In their tripartite model, Tewari and Majumdar [88] assumed that
there are 12 SLMV in the astrocyte and individual SLMV holds 20mM of Glu−.

Also, De Pitta and Brunel [178] estimated the timecourse of extrasynaptic Glu− as

τe
d[Glu−]a

dt
= −[Glu−]a +

∑
j

Grel(t)δ(t − t j)τe,

Grel(t j) = ϱeGT rA(t j).

(4.44)

At t = t j, a quantal release event transpires, releasing Glu− into the extrasynaptic space
represented by Grel, dependent on the total vesicular [Glu−], GT , and the ratio between
the volumes of the astrocytic vesicle and the extrasynaptic space, ϱe, with a clearance
rate of 1/τe.

For nondimensional models such as the Postnov model [312], astrocytic Glu− released
depends directly on the intracellular astrocytic [Ca2+]. Let Gm be the released astrocytic
Glu− mediator,

τGm

dGm

dt
=

(
1 + tanh

(
S Gm

(
c − hGm

)))
(1 −Gm) −

Gm

dGm

. (4.45)

where the time constant τGm is five times the synaptic variable time constant, τs (Equa-
tion 4.23). Note that the variable c is the dimensionless representation of the astrocytic
[Ca2+], and hGm and dGm are control parameters.
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4.4.3/ SYNAPTIC INFLUENCE

Imaging studies of brain slices reported that astrocytic morphology changes sponta-
neously, revealing that the neuron-astrocyte interaction is also plastic [15, 298]. This
subsection deals with the contribution of astrocytes in synaptic plasticity. First is its in-
direct control on the neurotransmitter release probability of the presynaptic neuron, and
second is its modulating effect on the postsynaptic potential. By bidirectionally modulat-
ing both the pre- and the postsynaptic activities, astrocytes emerge as a computational
unit rather than simple structural support.

4.4.3.1/ SYNAPTIC RELEASE PROBABILITY

Astrocytic Glu− activates mGluRs located on the extrasynaptic membrane of presynaptic
boutons, as shown in situ experiments at hippocampal synapses. In turn, extrasynaptic
Glu− is used as an input for PLCβ-mediated IP3 production in the presynaptic neuron (see
Equation 4.5) [88]. The increase of IP3 production facilitates and modulates the neuro-
transmitter release probability lasting for tens of minutes [333], hinting that astrocytes can
mediate long-term synaptic plasticity.

Below is a simpler model for neurotransmitter release probability, wherein the extracellular
Glu− binds with a fraction of extrasynaptically bound presynaptic receptors (γS ), modulat-
ing the synaptic release probability u0 [178]. Let

τP
dγS

dt
= −γS + OP (1 − γS ) [Glu−]aτP, (4.46)

where OP and τP are the rising rate and the decay time of synaptic Glu− release due to
gliotransmission. Then, γS -dependent u0 follows

u0(γS ) ≈ U0 + (ξ − U0)γS , (4.47)

where U0 is the release probability at rest and 0 ≤ ξ < U0, which represents the influence
of gliotransmission to the delivered information.

4.4.3.2/ SLOW INWARD CURRENT

Experiments use the whole-cell patch technique with selective astrocytic stimulation in
parallel with EPSPs or IPSPs recordings to determine the impact of astrocytes in neural
activity [298]. These experiments reveal that astrocytic Ca2+ triggers an increase in EPSP
or IPSP frequencies or postsynaptic potential amplitudes [8, 298], detected by monitoring
slow inward currents (SICs) activated by NMDARs containing subunit 2B (NR2B) [333–
335]. These currents are kinetically distinct from EPSCs due to their large amplitude
(19-477 pA), and slower rise (13–332 ms), and decay (72–1630 ms) time [15, 335–337].
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The [Glu−]a-evoked SICs is modeled as

IS IC = gNR2BhS ICvpost,

dhS IC

dt
=
σa

τS IC1

−
hS IC

τS IC2

,
(4.48)

where gNR2B is the NR2B-containing receptor conductance, hS IC is the extrasynaptic NM-
DAR gating variable, and vpost is the membrane potential of the postsynaptic spine [338].
Here, parameter σa regulates the gate opening dependent on Ca2+ activity of the astro-
cyte, where σa = 0.4 when [Ca2+]a crosses its threshold and σa = 0 otherwise. The time
constants τS IC1 and τS IC2 are the rise and decay times, respectively, of the extrasynaptic
NMDARs, respectively.

De Pitta and Brunel [178] also presented SIC (iA(t)) independent of the postsynaptic
potential by an exponential difference given as

τrS
diA(t)

dt
= −iA(t) + ÎABA(t)τrS ,

τS
dBA(t)

dt
= −BA(t) + ĴA[Glu−]aτS ,

ĴA =
JA

ϱeGTτS
,

ÎA =
IA((1/τS ) − (1/τrS ))

(τrS /τS )(τN/(τN−τ
r
S )) − (τrS /τS )(τrS /(τS−τ

r
S )) ,

(4.49)

where the parameters τrS and τS are the rise and decay time constants of SICs. Here, ÎA

and Ĵ are scaling factors set so that SIC is maximum (equal to a constant value IA) during
astrocytic Glu− release. Furthermore, JA is the synaptic efficacy, and τN is the EPSC
decay time constant.

4.5/ CALCIUM WAVE PROPAGATION

In the 1990s, laboratory experiments using cultured astrocytes demonstrated that astro-
cytes respond to stimuli by increasing their intracellular [Ca2+], which diffuse through the
cell itself and then propagate through the astrocyte syncytium [9, 302, 319, 320]. From
these results, researchers deduced that astrocytes could serve as a mechanism for long-
distance information transfer, and their astrocytic Ca2+ events also convey information
about local brain activity. As discussed in subsection 4.3.2, an astrocytic cell also exhibits
Ca2+ oscillations in separate local and global regions. These Ca2+ responses may be
(1) confined from distal processes, (2) within the single astrocytic cell, or (3) propagate
to neighboring astrocytes, whose activities may also occur in the absence of neuronal
signals [9, 15].

The continuous and gradual propagation of Ca2+ within the complex astrocytic network
that causes a change in the intracellular [Ca2+] in a single or a group of astrocytes brought
about by the calcium signals from the neighboring astrocytes forms the so-called inter-
cellular calcium waves (ICWs) (see Figure 4.6) [300]. These ICWs propagate from one
astrocyte to another in a coordinated manner and increase Ca2+ within the astrocytic net-
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study was therefore designed to assess the distinct contributions of gap junction and extracellular ATP and the 
ATP release mechanism in calcium waves, revealing novel aspects of the diverse and complicated dynamics of 
astrocyte [Ca2+]i.

Results
Components of [Ca2+]i increases in calcium waves. Figure 1a shows a representative calcium wave 
induced by mechanical stimulation of cultured astrocytes. The [Ca2+]i increase in the mechanically-stimulated 
cell (arrow) propagated to adjacent cells, and the area of [Ca2+]i increases reached a maximum at 24 sec. Then, 
[Ca2+]i in the distal region declined to the baseline by 120 sec, whereas that proximal to the stimulated cell 
remained elevated for longer than 120 sec. The distribution of [Ca2+]i increases was expressed as a maximum 
[Ca2+]i projection, in which each pixel represents the maximum Δ340/380 ratio during the calcium wave (Fig. 1b 

Figure 1. Distinct components of [Ca2+]i increases in an astrocyte calcium wave. (a) Representative Fura2 
ratio (Δ340/380) images of an astrocyte calcium wave 0, 3, 9, 24, 36 and 120 sec after mechanical stimulation 
(arrow). (b) Distribution of [Ca2+]i increases during the calcium wave. The maximum [Ca2+]i projection, in 
which each pixel represents the maximum Δ340/380 during the calcium wave (left). The peak [Ca2+]i increase 
(red), which is the [Ca2+]i increase in the mechanically-stimulated cell, and the persistent (orange) and transient 
(blue) [Ca2+]i increases, in which the Δ340/380 ratio of each pixel sustained above and declined below 30% of 
the mean Δ340/380 ratio of pixels within the peak [Ca2+]i increase until 120 sec, respectively are shown overlaid 
on the maximum [Ca2+]i projection (center). A Line and cells for the analyses in (c) and (d) are indicated in 
the right panel. (c) Histogram of the maximum Δ340/380 along the line in the right panel of (b). (d) Time-
dependent changes in [Ca2+]i in cells 1–6 in the right panel of (b).

Figure 4.6: Astrocytic Ca2+ wave propagation from 0, 3, 9, 24, 36, and 120 seconds after mechanical
stimulation (arrow), measured using Fura2 calcium indicator. The image was taken from Fuji et al. [339].

work, typically around 20-80 cells across a 200- to 600-mm-wide field, consistent with in
vivo preparations [265, 298]. One of the main differences between neuronal and astro-
cytic signaling is their temporal scales, while AP-mediated conductance between neurons
has a velocity of 10-100 m/s, astrocytic Ca2+ waves propagate at 4-20 m/s [8].

In this subsection, we illustrate the primary mechanism for ICW propagation between
protoplasmic astrocytes, that is, via the gap junction. Through these gap junction con-
nections (GJC), astrocytes can form a network and facilitate long-distance information
transfer.

4.5.1/ GAP JUNCTION CONNECTION

The gap junction connections are the primary mechanism in which Ca2+ waves propagate
between neighboring protoplasmic astrocytes in the gray matter [9, 271]. One of the main
differences between astrocytes and neurons is that astrocytes are physically attached
through connexin 43 hemichannels in their peripheral branches, allowing them to create
a functional syncytium [9, 300, 307]. When these hemichannels are in the closed state,
they are permeable to ions and small molecules; otherwise, when in the open state, they
enable the passage of large hydrophilic solutes [15].

There are two experimentally verified routes for Ca2+ wave propagation, either via intra-
cellular or extracellular diffusion [15]. First is the ICW propagation, mentioned previously
and illustrated in Figure 4.7, involving the cell-to-cell diffusion of IP3 molecules through
GJCs [340]. The IP3 transport triggers the CICR mechanism of the coupled astrocytes, in
turn triggering Ca2+ waves [265]. The second is through ATP release to the extracellular
space [341]. In this study, we only consider the ICW as the fundamental mechanism for
astrocytic communication.

Astrocytic Ca2+ propagation occurs in various modes, which can be spontaneous or
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Gap Junction

Connexin 43

Figure 4.7: Intracellular communication between two coupled astrocytes i and j occurs via the exchange
of IP3 molecules through gap junction connections (GJCs) in the peripheries. Connexin 43 hemichannels
physically connect the two astrocytes and facilitate the IP3 diffusion between the two cells.

evoked and restricted to a small astrocytic network or within a hundred cells. There-
fore, the actual operation in which Ca2+ spread is still vague. In its simplest form, IP3
diffusion through GJCs can be modeled directly by the [Ca2+] gradient between the cou-
pled astrocytes, comparable with the diffusion mechanism between compartments in a
single astrocyte (Equation 4.37). Considering the astrocytes in Figure 4.7, let i be the
astrocyte couple with astrocyte j. Then the exchange of IP3 molecules between the two
is modeled by

Ji j = Di j
(
[IP3]i − [IP3] j

)
, (4.50)

a linear relationship wherein Di j is the diffusion coefficient [300].

In another case, to ensure that the intracellular supply of IP3 within a single astrocyte
will not deplete during gap junction communication, IP3 diffusion between the coupled
astrocytes can be modeled by a threshold-based function [342]. The IP3 flux is

Ji j = −
Fi j

2

(
1 + tanh

(
| ∆i jI | −Iθ
ωIP3

))
∆i jI
| ∆i jI |

, (4.51)

where ∆i jI is the astrocytic [IP3] gradient between astrocytes i and j, Iθ is the threshold
gradient that triggers IP3 diffusion, ωI scales the rate in which Ji j decreases or increases
in relative with ∆i jI, and Fi j establishes the maximum magnitude of Ji j.

4.5.2/ ASTROCYTIC NETWORKS

In the hippocampus, astrocytes exhibit heterogeneous coupling and network configura-
tion (Figure 4.8) through GJCs [10], building dynamic communication between astrocytes
as a response to various membrane receptor activation by extracellular Glu− [271]. The
anatomical domains of individual astrocytes cover non-overlapping or discrete territories
accommodating local interactions with synapses and other astrocytes [15, 265]. Because
of their separate territories, astrocytes appear to be interstitial, filling and tiling spaces
between other cells [300]. Wallach et al. [10] provided an immunostaining image (see
Figure 4.8a) of a cortical astrocytic network showing cells with exclusive territories and
forming a lattice. This arrangement of astrocytes was also seen in fluorescent dyes of
hippocampal astrocytes [15] and 3D confocal analysis and electron microscopy of proto-
plasmic astrocytes in the CA1 stratum radiatum shown in Figure 4.8b [273].
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such that all points inside this region are closer to the center of its

associated cell than to any other cell center. An illustration of a

Voronoi diagram is given in grey (Fig. 2B) with its associated cell

culture (Fig. 2A). All astrocyte pairs whose anatomical regions

shared a border were GJC coupled in the model. As an illustration,

Fig. 2C displays an immunostaining image together with its

associated Voronoi tessellation (light gray lines); astrocyte A shares

its anatomical region boundaries with 7 other astrocytes (B1

through B7). Assuming that all of its neighbors are correctly

characterized as astrocytes (and not unclassified cells), A will be GJC

linked to all its neighbors in the reconstructed network. Note that

the non-astrocyte cells (and the astrocytes that were not classified as

such because they did not display any Ca2+ activity) were not used

subsequently in the model.

GJC coupling
In terms of cell-averaged concentrations, the exchange of IP3

between two cells can be regarded as a multiscale phenomenon

that depends on many factors, including astrocyte morphology and

physiology, GJC location and permeability to IP3 [36]. To account

for these factors, IP3 exchange between two GJC-coupled

astrocytes i and j was assumed nonlinear. To model this

nonlinearity, we chose to use a sigmoid function of the IP3

gradient between the two cells DIij~Ii{Ij , according to [35,37]:

Jij~{
F

2
1z tanh

DDijI D{Ih

vI

� �� �
DijI

DDijI D
ð6Þ

Where Ih represents the threshold IP3 gradient for effective

intercellular exchange, i.e. the minimal IP3 gradient for which Jij.

0; vI sets stiffness of this sigmoid function and F quantifies the

strength of coupling between these two cells.

Neuronal stimulation of the astrocyte network
Our computer model distinguishes two astrocyte populations:

directly activated astrocytes, that receive direct glutamate stimu-

lation from a neuronal process (for which a = 1 in eq. 5) and

Fig. 2. Inference of model networks from experimental data. A, The experimental culture of Fig. 2, with neurons segmented in red, astrocytes
in green and unresponsive cells in blue. Scale bar is 75 mm. B, Model networks constructed using the experimental data of A. Fine grey lines delineate
the Voronoi diagram computed from the experimental cell positions; green circles denote model astrocytes and dark green cells with a lightning
symbol denote stimulated model astrocytes. Wide dark grey lines show the GJC connections between astrocytes. Scale bar is 75 mm. Model networks
were inferred according to this process for each experiment. C, Close-up view of the Voronoi tesselation (light gray and blue lines) associated with an
immunostaining image (in red the neuronal marker NeuN and in green the astrocytic marker GFAP). Astrocyte A will be GJC coupled to astrocytes B1
through B7 as they share boundaries of their anatomical domains (thick blue lines). D, Resulting distribution of astrocyte coupling degree. Most
model astrocytes are connected to very few neighbors (n = 373). The inset shows the distribution of the size of connected astrocyte clusters (n = 146).
It can be seen that most astrocytes are isolated but some experiments contain very large clusters of up to 60 astrocytes (indicated by stars).
doi:10.1371/journal.pcbi.1003964.g002
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(a)

are similarly organized and that these astrocytes divide the neu-
ropil on multiple levels.

Because of the inability to discriminate between the processes
of neighboring astrocytes when these cells are metal impregnated
or HRP labeled, previous work examining interastrocytic rela-
tionships relied on the assumption that the average astrocyte
occupied a spherical region of neuropil (Rohlmann and Wolff,
1996). These assumptions led to the conclusion that astrocytes
must interdigitate extensively and possess a very limited autocon-

trol space. This was based on the examination of cortical astro-
cytes, and regional variations in astrocyte morphology are well
known. We show that, in CA1, such assumptions would undoubt-
edly lead to an underestimation of the degree to which astrocytes
independently invest neuropil. This is attributable to the large
variation in morphology seen throughout the population of pro-
toplasmic astrocytes within this region. Although the typical
astrocyte in CA1 stratum radiatum is elongated parallel to the
apical dendrites of CA1 pyramidal neurons, astrocytes were ob-

Figure 7. Another example of colo-
calization between adjacent astro-
cytes. A, Slice through adjacent astro-
cytes, as seen in Figure 6. B, Stereo
pair of the same group of astrocytes.
3D views of colocalization reveal sheets
in which neighboring astrocytes inter-
act with each other. Scale bar, 20 �m.

Bushong et al. • Astrocyte Domains in CA1 J. Neurosci., January 1, 2002, 22(1):183–192 189

(b)

ilmi
Link Radius Erdos-Rényi Regular Degree Shortcut Spatial Scale-free

(c)

Figure 4.8: The anatomical domains of astrocytes form non-overlapping territories. (a) Wallach et al. [10]
used the Voronoi tessellation to identify the extent of each astrocytic territory (gray and blue lines) on an
immunostaining image composed of the astrocytes (green) and neurons (red) network. Here, astrocyte A is
coupled to its neighboring astrocytes B1 to B7 through GJCs. (b) Confocal analysis of adjacent astrocytes in
the CA1 region shows discrete regions of interaction (yellow) between astrocytic processes [273]. Models of
Ca2+ wave diffusion can be visualized by simulating astrocytes connected in various topologies [300, 343].
An astrocyte under consideration (blue) connects to its neighboring neurons (green) within its boundary
(Link Radius), any cell within the network (Erdős-Rényi), its nearest neighbors (Regular Degree), its nearest
neighbors and random cells (Shortcut), and cells relative to its degree and distance (Spatial scale-free).

Network Topology

Astrocytes tile the brain spaces, and their network organization is diverse due to their het-
erogeneous morphology, flexible gap junction coupling, and the brain region [271, 340].
Houades et al. [344, 345] discovered that in the hippocampal stratum radiatum, astro-
cytes form a circular network; that is spherical in three-dimensional form. On the other
hand, astrocytes positioned near the pyramidal cells layer form a somewhat elongated
network parallel to the pyramidal layer.

One can develop a model of ICW with one- to three-dimensional astrocytic topologies,
as shown by Lallouette et al. [300, 343]. One-dimensional astrocytic networks form cells
connected in series or chains. For more intricate astrocytic connection in space shown in
Figure 4.8c, the astrocytic organization can be:

1. strongly spatially constrained networks where an astrocyte attaches to all its neigh-



94 CHAPTER 4. ASTROCYTES AS COMPUTATIONAL UNITS

boring astrocytes within a specified radial constraint (e.g., link-radius networks),
2. completely spatially unconstrained random networks where an astrocyte connects

to an arbitrary number of cells anywhere in the network, regardless of their distance
(e.g., Erdős-Rényi network),

3. regular-degree network wherein the astrocyte connects to its k nearest neighbors,
4. shortcut networks originating from regular-degree networks with cell connections

randomly rearranged independently of distance, and
5. spatial scale-free networks whose astrocytic connections follow a power-law distri-

bution relative to the cell degree and distance.

General Framework

Each astrocyte in the network is a node whose somatic activation allows ICWs to jump
from one cell to another through links of gap-junction [300]. Let i be an astrocyte in the
network connected to a set of neighboring astrocytes ℵ. Its activity is modeled using the
generic two-state vectors

dai

dt
= Fi (ai, si) + Da

i

(
ai, aj, s | j ∈ ℵi

)
dsi

dt
= Gi

(
ai, aj

)
+ Ds

i

(
si, sj, a | j ∈ ℵi

)
,

(4.52)

where a lumps the astrocytic [Ca2+]i, and s represents the Ca2+-mobilizing signals respon-
sible for regenerative Ca2+ propagation. The vector function Fi may also incorporate other
components such as [Ca2+] of the ER and channel dynamics. Meanwhile, Gi corresponds
to the second-messenger functions required in regulating [Ca2+]i. The constant terms Da

i
and Ds

i correspond to the chemical exchange between astrocyte i and its neighbors j ∈ ℵ.

4.5.3/ UAR MODEL

Lallouette et al. [300, 343] introduced a method of modeling calcium wave propagation
in astrocytic networks, where astrocytes are considered nodes and GJCs are links. Lenk
et al. [346] also utilized the discrete method for modeling Hill-functions-based astrocytic
networks. The UAR model states that the probability that an astrocyte triggers Ca2+ wave
propagation to neighboring astrocytes, or vice versa, depends on the state of the astro-
cyte S a: U for the inactive or dormant state where the astrocyte is at rest (the dynamics
of IP3 and Ca2+ are in the subthreshold regions), A for the active state, and R for the
refractory state during which the astrocyte cannot transmit Ca2+ signals. An astrocyte
can be in one of these states at a time, and transitions between states are probabilistic
depending on the propagation efficiency of coupled astrocytes.

Consider the coupled cells shown in Figure 4.9. From the biophysical perspective, the
increase of [IP3] beyond threshold activates CICR resulting in a large Ca2+ spike (U→ A).
The cell stays in the active state during the duration that the IP3 flux coming into the cell
via GJCs is sufficient to retain the CICR above the threshold. The cell deactivates and
stays in the refractory state (A → R) when the [IP3] and [Ca2+] drop below the threshold.
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Fig. 7.5 UAR model of ICW propagation. a, b Recruitment of an astrocyte by an ICW may be
regarded as a three-state process, as exemplified for two connected astrocytes (cell 1, top row;
cell 2, bottom row). Astrocytes are in the unactivated state (U) when at rest. Upon arrival of an
ICW, their intracellular IP3 (red traces) crosses the threshold for CICR initiation (dotted line) and
cell 1, followed by cell 2, get activated (A, green-shaded windows), which is marked by a pulse-like
increase of intracellularCa2+ in these twocells (blue traces). Following activation, each cell recovers
to rest through a refractory period (R, red-shaded windows), when their intracellular IP3 falls below
a supply threshold (dashed line). Time constants of the transitions may be estimated as following:
τU coincides with the delay between the Ca2+ increases in cell 1 and in cell 2; τA is estimated by
the time interval from the beginning of the Ca2+ elevation to the point where IP3 gets below the
diffusion threshold; finally, τR is derived from τA + τR = T , where T = 16 s is theminimumperiod
of Ca2+ oscillations in the single astrocyte. Transition rates used in the simulations are obtained
averaging over all τ values obtained by simulations of the biophysical model in Fig. 7.3. c, d ICW
propagation for the samenetworks of Fig. 7.3 (panelsC andD),where astrocytes aremodeled instead
by the UAR description. The extent of ICW propagation (Nact : number of activated astrocytes)
generally mirrors qualitative characteristics of ICWs simulated in our biophysical network models.
Data points±errorbars: mean values±standard deviation over n = 20 networks of similar topology.
Parameters of the biophysical model and the UAR model are reported in Table 7.1 and Table 7.3,
respectively. Adapted from Lallouette et al. (2014)

Figure 4.9: The UAR model [300, 343] describes the activity of an astrocyte during ICW propagation. Con-
sider the coupled cells 1 and 2. During the U state, both cells perform in the subthreshold regions. Then, as
Cell 1 gets activated, with simultaneous Ca2+ spiking, during the transition of [IP3] level beyond the threshold
(dotted lines), it can supply Cell 2 with IP3 via their GJC, which results in the activation of Cell 2. When
both cells are in the A state, both cells are able to supply IP3 to each other depending on the [IP3] gradient
between the two cells. Once the [IP3] decreases below the threshold (dashed lines) at the same period that
the [Ca2+] is in subthreshold level, the astrocyte becomes inactive and stays in the R state for some period.
This activity is a continuous cycle and restarts when [IP3] goes beyond the threshold once again. The image
was adapted from Lalloutte et al. [300].

The cycle repeats (from U to A to R and back to U) when both cells recover to their resting
values.

Starting from the inactive state U, the rate of transition from inactive to active (kU→A)
states also depends on the activities of the neighboring cells. The propagation efficacy
or the ability of an astrocyte to supply IP3 to neighboring cells is given as

βa(t) =

1/NU
a (t) if a is in the A state at time t

0 otherwise
. (4.53)

Here, NU
a (t) is the number of astrocytes coupled to a that are not in the active state at time

t. Then, the activation propensity of astrocyte a is computed using

γa(t) = θa
∑
b∈Na

βb(tk) +
∑

[Ca2+]i ja

N
· M, (4.54)

where N(a) is the set of astrocytes connected to a and θa is the astrocyte activation thresh-
old. The first term of the right-hand side is the dependency of activation propensity on
the propagation efficiency of the neighboring astrocytes b, and the second term is the
average [Ca2+] of local areas i ja of astrocyte a. These local areas are the number of
perisynaptic astrocytes forming excitatory connections with neurons (N is the number of
excitatory connections) and then scaled by a factor M for their contribution to the ac-
tivation propensity. The state of astrocyte a changes from U to A once the activation
propensity is above the threshold θa. This threshold changes based on the number of
neighboring astrocytes gap junction couples to astrocyte a and follows a linear relation
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given by
θa(na) = b0na + b1, (4.55)

where b0 and b1 are the slope and intercept of activation threshold. Therefore, the proba-
bility that the astrocytic state shifts from inactive to active state kU→A at time t is

kU→A(t) =

1/τ̄U if γa(t) > θa(na)
0 otherwise

, (4.56)

which states that the astrocyte becomes active only if the accumulative IP3 through GJCs
exceeds the threshold of activation θa, where τ̄U is the activation transition.

The transition of astrocyte a from active to refractory (A→ R) and from refractory back to
the inactive state (R→ A) is spontaneous, where

k(A→R) =1/τ̄A,

k(R→ U) =1/τ̄R,
(4.57)

where the parameters τ̄A and τ̄R are the average time in which the astrocyte is active
during ICW and the average refractory period, respectively.

4.6/ CONCLUSION

After decades of studies on the biophysical properties and functions of astrocytes, our
perspective on astrocytes becomes expansive than ever, from a single passive cell whose
primary function is structural support into a more complex cell for intercellular communica-
tion. In this chapter, we dealt with the functional characteristics of astrocytes, from their
complex morphology, intracellular dynamics, to its ability to form networks through gap
junctions and even through tripartite synaptic couplings. The morphological complexity of
astrocytes, and more recent discoveries, its Ca2+-dependent excitability, put astrocytes in
a vital position in neural signaling.

In the tripartite synapse concept, an astrocyte is considered as the third active component
for neural information processing. It integrates synaptic signals which activate receptors
and trigger IP3 and Ca2+ activities on its processes. In return, it controls the synap-
tic transmission by modulating either or both the pre- and postsynaptic activities, thus
influencing short- and long-term synaptic plasticity, and ultimately, a broader network ac-
tivity. Given that the presence of astrocytic processes results in larger synapses, tripartite
synapses may function differently than those with synaptic coupling alone. One difference
is that synaptic communications become bidirectional with astrocytes due to the lateral
astrocyte regulation of synaptic signals. In addition, because an astrocyte enwraps thou-
sands of synapses from separate neurons, it serves as a bridge communication between
neurons without direct neuronal connectivity. This type of connection expands the astro-
cytic influence. It provides additional pathways for neuronal such as the intracellular Ca2+

signaling resulting in gliotransmission.

Furthermore, astrocytic influence is not confined within the synaptic areas alone — as-
trocytes, like neurons, form computational compartments. Different regions of astrocytes
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exhibit transient and local Ca2+ activities, allow IP3 and Ca2+ diffusion between neighbor-
ing compartments, and communicate with neighboring astrocytes through IP3 exchange
via gap junctions. These morphological connections enable Ca2+ wave propagation within
a group of astrocytes or a more extensive network. However, the heterogeneity in astro-
cytic connections and the expression of GJCs still need further investigation; therefore,
the exact mechanisms and the exact influence of ICW propagation in neuronal processing
are still unclear.

With the ability of astrocytes to form a syncytium, neuron-astrocyte signaling is not only
synapse- or cell-specific but also develops into a broader circuit-specific activity. What
are the implications of these complexities on our understanding of neuronal signaling and
neural network dynamics? If astrocytes can therefore influence the neuronal AP gener-
ation, how then can they affect network dynamics? In the following chapter, we delve
into the neuron-astrocyte interaction by modeling tripartite synapse-specific activities and
then expanding it into a small neuron-astrocyte network intercellular communication.
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5
MODELING THE NEURON-ASTROCYTE

INTERACTIONS

5.1/ INTRODUCTION

In the hippocampus, the complex interconnections of neuronal elements control brain ac-
tivities crucial for cognition and storage and memory functions by generating, modulating,
and combining intrinsic and extrinsic signals nonlinearly. In Chapter 2 and Chapter 3, we
discussed the information transfer between neurons via synaptic connections. A pyra-
midal neuron integrates the incoming signals, and upon reaching a certain threshold,
generates an AP. It then encodes information into the spiking frequency and patterns of
repetitive firing of the output signal, which is then sent to different brain regions through
neuronal networks for signal processing and response generation. Recently, researchers
hypothesized that hippocampal astrocytes impact contextual memory, especially in the
CA1 region [338, 347]. As discussed in Chapter 4, astrocytes, though electrically passive,
can influence synaptic transmission by sensing presynaptic activities and modulating ex-
trasynaptic Glu− which activates pre- and postsynaptic receptors. In this case, astrocytes
play an active role in neuronal excitability and synaptic plasticity.

Even with experimental and computational studies, however, a coherent view on the
functions of astrocytes in neuronal processes, apart from being structural and metabolic
supports, is still lacking. One of the main reasons is the complex astrocytic morphol-
ogy that spreads radially and creates myriads of leaflet processes throughout maturation
[348, 349]. The influence of intracellular Ca2+ dynamics in the astrocytic processes on
the synaptic transmission depends on the percentage of enwrapped synaptic volume and
the size of the astrocytic processes. In addition, neuron-astrocyte interaction is not only
constricted in the synaptic areas. Astrocytes also sense extracellular Glu− from nonsy-
naptic sources [350] such as the neuronal bodies and nodes of Ranvier because an axon,
as it bifurcates, can pass through several astrocytic domains [351]. As mentioned previ-
ously, neuron-astrocyte signaling is not only cell- or synapse-specific but circuit-specific
as well. An inactive synapse can still be stimulated even in the absence of presynaptic
inputs. Intracellular Ca2+ wave propagation activates astrocytic microdomains and allows
the release of extrasynaptic Glu− to inactive synapses, which triggers the opening of pre-
and postsynaptic mGluRs. Consequently, the extent of astrocytic influence is more than
a point process.
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In this chapter, we focus on the computational models of the neuron-astrocyte inter-
communications based on physiological processes. Here, we implement a bottom-up
strategy: studying the electrical dynamics and molecular interplay between the tripartite
synapse components, extending the model to incorporate the transient and localized as-
trocytic Ca2+ dynamics in a single astrocyte, and lastly, further expanding the interactions
by modeling the Ca2+ wave diffusion in a small neuron-astrocyte network.

5.2/ MODELING THE TRIPARTITE SYNAPSE DYNAMICS

With their sponge-like morphology, protoplasmic astrocytes in the gray matter estab-
lish non-overlapping and exclusive three-dimensional domain within their neuropilar vol-
ume [273, 348, 349, 352]. Three-dimensional confocal analysis and electron microscopy
showed protoplasmic astrocytes in rat CA1 stratum radiatum form almost a spherical terri-
tory. In the human brain, the polyhedral domains of protoplasmic astrocytes are arranged
repeatedly and uniformly in a 3D manner [351]. Within a single territory, an astrocyte can
influence an average of four neurons, enveloping thousands of neuronal structures, in-
cluding the neuronal soma, dendrites, synapse, and axons [273, 275, 349, 353]. Accord-
ing to Debanne and Rama [353], the spherical volume of an astrocyte in the hippocampus
has an approximate diameter of 40 mm, suggesting that it can affect a population of ax-
ons. Furthermore, an axon, as it bifurcates, can pass through several astrocytic territories
[351]. These imply that information transfer is not constrained within the synaptic area but
occurs with all cellular elements within the astrocytic domain.

Through stimulations on ex vivo systems of CA3 pyramidal neurons of hippocampal slice
cultures, Sasaki et al. [354] investigated the effects of Ca2+ uncaging of perinodal astro-
cytes near the unmyelinated axon (150 to 400 µm from the initial segment) on synaptic
efficacy. However, physical evidence of direct contact between the node of Ranvier and
the protoplasmic astrocyte is still lacking. Nonetheless, given that the soma and the un-
myelinated axon release Glu− and that the expression of astrocytic mGluRs varies, Glu−

released from these cellular elements may reach astrocytic compartments in proximity
[355], thus influencing synaptic transmission. Besides, the morphological heterogene-
ity of astrocytes plays an active role in neuron-astrocyte interaction [356]. Studies sug-
gest that leaflet processes extend towards the location with high glutamate concentration
([Glu−]), predominantly in the synaptic area [357]. Since leaflets are fine processes that
are not easily captured by light microscopy [267], it is possible that these processes are
not only in contact with synapses but may also contact other neuronal elements where
Glu- release occurs.

Numerous investigations concerning the role of astrocytes in neuronal activity have al-
ready been published [178, 307]. Manninen et al. [306, 307] collected, compared, and
presented in their literature reviews the computational models of biologically-based as-
trocyte and neuron-astrocyte Ca2+ signaling and dynamics in single cells or networks.
However, the gathered models only incorporate astrocytes, neuron-astrocyte synapses,
and neuron-astrocyte networks, but none regarding nonsynaptic neuron-astrocyte signal-
ing. Astrocytes can sense signals from nonsynaptic neuronal localities due to extrasy-
naptic transmission, the flow of transmitters released from the soma, axon, and dendrites
occurring through exocytosis or spillover even in the absence of a postsynaptic counter-



5.2. MODELING THE TRIPARTITE SYNAPSE DYNAMICS 103

part [350]. For example, localized receptors in the perinodal astrocytic area receive Glu-
released from the neuronal nodes of Ranvier [358].

Given these current discoveries regarding astrocytic dynamics, it is about time to include
such an astrocytic process in the tripartite synapse and synaptic information processing
model. This section focuses on the molecular exchange that regulates transmission in
a closed-loop system comprising the pre- and postsynaptic neurons and astrocyte. Our
goal is to present the neuron astrocyte interaction as biologically plausible as possible and
compare its dynamics with a system containing synaptic coupling alone [359]. The model
presented by Tewari and Majumdar [88] described the biological processes in detail; with
that, we used this as the basis of our study, along with other studies [158, 160, 360]. In
their model, the AP originates from the AIS and reaches the presynaptic bouton without
delay and voltage change. Also, their model focuses on the Ca2+ dynamics within the tri-
partite synapse domain. Hence, we extended their model and incorporated nonsynaptic
neuronal and astrocytic elements that may also affect intracellular Ca2+ dynamics. Here,
the extended model includes compartmentalization of cellular processes, and by doing
so, it describes an intercellular relationship rather than a synapse-specific process. The
proposed model of the tripartite synapse by Tewari and Majumdar [88] is therefore modi-
fied to include the propagation of AP along the axon, the molecular dynamics in the node
of Ranvier for neurotransmitter release, the perinodal astrocytic processes for extrasynap-
tic signaling, and the compartmentalization of astrocytic Ca2+ dynamics via different Ca2+

store sites. Biophysical models demonstrate the electrical and chemical dynamics of the
system and how compartmentalization in astrocytes contributes to information process-
ing and synaptic plasticity. The results suggest that Ca2+ stores positioned on different
astrocytic processes improve the synaptic efficacy by increasing intracellular astrocytic
[Ca2+]. However, the longer the [Ca2+] is above the threshold, the astrocyte can create an
oversupply of Glu− in the extrasynaptic area, which can cause excitotoxic effects to the
neurons.

5.2.1/ FUNCTIONAL MODEL OF THE TRIPARTITE SYNAPSE (SPONTANEOUS RE-
LEASE)

The tripartite synapse is modeled based on the pyramidal neurons and astrocytes in the
hippocampal CA3-CA1 network. In this case, we focus on the tripartite area and extend
the morphology to include the nonsynaptic components such as the axonal length, shown
in Figure 5.1. The model comprises multiple compartments whose characteristics and dy-
namics are described subsequently. These are the (1) AIS for AP generation, (2) myeli-
nated segments and (3) nodes of Ranvier for AP propagation via saltatory conduction, (4)
perinodal astrocytic process sensing vesicular release from the node of Ranvier, (5) the
presynaptic bouton for neurotransmitter release, (6) the synaptic area for neurotransmis-
sion, (7) the perisynaptic astrocytic process for gliotransmission, (8) the astrocytic soma
for signal integration, and finally, (9) the postsynaptic spine head for EPSP. The presynap-
tic neuron generates APs at the distal end of the AIS, then propagates them along the
myelinated segment, which causes signal decay, then to the node of Ranvier for signal
re-amplification. During the axonal transmission, Ca2+ dynamics in the node of Ranvier
results in the release of neurotransmitters into the perinodal area. The perinodal astrocyte
then receives and utilizes these neurotransmitters for intracellular Ca2+ release.
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Tripartite Synapse

Astrocytic
Process

Presynaptic
Bouton

Postsynaptic
Spine

Astrocyte 
Soma

Myelin 
Segment 

Node 
of 

Ranvier

Saltatory Conduction 
(from AIS) 

Figure 5.1: Tripartite synapse with perinodal astrocytic components. The morphology and the exclusive
dynamics under consideration commence from the AP generation in the presynaptic AIS, V, propagating via
saltatory conduction along the axonal length with alternating myelinated segments and nodes of Ranvier,
Vn. Along the axonal length, the astrocytic process enwraps the node of Ranvier positioned within the
astrocytic territory, developing a perinodal area for nonsynaptic molecular transmission. Another astrocytic
process enwraps the synaptic area connecting the presynaptic bouton and the postsynaptic spine, thus
forming the tripartite synaptic connection. The extracellular Glu− sensed from the extrasynaptic and perinodal
areas trigger the astrocytic [Ca2+]a elevation for gliotransmitter release. Here, only the extrasynaptic process
releases extrasynaptic Glu− within the extrasynaptic area. Lastly, the postsynaptic spine head generates an
EPSP, Vpost, dependent on the excitatory synaptic input.

The pattern of AP attenuation and regeneration continues until it reaches the presynaptic
bouton. From here, the tripartite synapse follows the dynamics described by the func-
tional model in Figure 5.2. The presynaptic bouton membrane potential Vpre causes an
increase in the [Ca2+], ci, which influences the probability of neurotransmitter release,
RS . The released neurotransmitters in the synaptic cleft, specifically Glu−, GS , activate
AMPA receptors on the postsynaptic spine head producing the excitatory synaptic cur-
rent Iampa, which increases the EPSP. Synaptic Glu− also diffuses into the extrasynaptic
area and activates mGluRs on the perisynaptic astrocytic process producing the second
messenger IP3, which activates IP3Rs on the astrocytic ER enabling the influx of Ca2+

a ,
JIP3R into the intracellular space, in addition to the Ca2+

a leakage, JCERleak. Part of the Ca2+
a ,

JS ERCA, flows back into the internal Ca2+ store to maintain the molecular balance in the
astrocyte. These three fluxes, JIP3R, JS ERCA, and JCERleak, contribute to the intracellular
Ca2+ oscillation. Assuming that the astrocytic soma integrates the transient Ca2+

a from
the astrocytic processes, the amount of intracellular Ca2+

a influences the probability of
gliotransmitter release, RA, into the extrasynaptic area, increasing the extracellular [Glu−],
GA. This process creates a closed-loop, in the form of GA as feedback to the presynaptic
neuron: by activating presynaptic mGluRs and influencing the presynaptic [IP3], the ci

level increases. In turn, the astrocytic dynamics indirectly influence the neurotransmitter
release process, thus affecting the activities of the postsynaptic neuron. Following is a
more comprehensive description of each compartment and its processes.
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Figure 5.2: Tripartite synapse functional model. The tripartite synapse is the interaction between the cellular
compartments (the presynaptic bouton, the postsynaptic spine head, and the astrocytic process) and areas
(the synaptic area and the extrasynaptic area).

AXON INITIAL SEGMENT

The AIS is the neuronal domain separating the axonal and somatodendritic compart-
ments and is a critical site where AP is initiated and propagated bidirectionally (to the
axon terminals and back to the soma) [361–365]. Electrical excitability occurs in this
site due to the clustering of high-density voltage-gated channels, such as Nav channels
causing the AIS to obtain the lowest AP threshold within the neuron and Kv channels
counteracting the Nav channels by suppressing AP generation. Aside from these ionic
channels, the location of the AIS plays a vital role in AP generation [154]. It is isolated
from the soma, which makes it electrically compact, and its proximal distance from the
soma optimizes the charge reaching its domain [364]. Multi-compartmental studies noted
that AP initiates at the distal end of the AIS due to electrotonic isolation [362]. Here,
the Hodgkin-Huxley model [76] in Equation 2.11 describes the membrane potential, V,
and the AP generation in the AIS through the influx/efflux of Na+ and K+ ions. Refer to
Table A.1 for the list of parameters and the corresponding values.

MYELINATED SEGMENTS

The AP, generated at the distal end of the AIS, propagates along the first myelinated seg-
ment. Electrically, myelin sheaths have significantly high resistance and low capacitance.
Furthermore, the ionic channel density along the myelinated segment is low, causing a
passive voltage spread [139]. Here, the extended model of cable transmission in Equa-
tion 2.22 describes the signal propagation along the myelinated segment, Vm, considered
a transmission line consisting of resistive and capacitive properties [143]. The charac-
teristics of the myelinated segment are listed in Table A.2. The subscript m corresponds
to the parameters exclusive to the myelinated segment. With the solution from Bogatov
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et al. [143], the constant parameters such as the length constant, λ, the time constant,
τ, and the constant of distributed AP, γ, were computed. These parameters describe the
signal propagation along the myelinated segment. Because of the small capacitance and
considerable resistance of the myelin [136], the length constant of the axonal cable is
longer while its time constant is shorter than in unmyelinated segments [139].

NODE OF RANVIER

The current density at the distal end of the myelinated segment is the stimulus for re-
generating the AP at the node of Ranvier. Electrophysiological studies showed that the
node of Ranvier follows the spike frequency of the AP initiated in the AIS with ∼100 µs
delay [362]. The current density In flowing into the node from the myelinated segment is
computed as the change in voltage over time [366] so that In = CdVm/dt, where Vm is the
voltage at the point in the axon where the myelin segment ends. Arancibia-Carcamo et
al. [135] measured the node lengths of the myelinated axons. As a result, they found that
the nodal length is consistent along an axon but differs between axons. The node length
and the number of nodal Nav channels positively correlate, indicating a constant channel
density. Also, the transmembrane inactivating Na+ and low-threshold K+ channels den-
sities are higher in the node of Ranvier than in the soma and the AIS [132, 367, 368].
Therefore, there is a lower threshold of AP activation in this compartment [367]. In salta-
tory conduction, the AP amplitude, initiated in the AIS, diminishes as it propagates along
the myelinated segment and intensifies at the node due to the voltage-gated mechanisms
in the node. This activity repeatedly occurs until the AP reaches the axon terminals. In
these compartments, the AP regeneration, Vn, also follows the Hodgkin-Huxley model in
Equation 2.11 [81, 82] using channel conductances and reversal potentials specific in the
node and input current In = Iapp. Refer to Table A.3 for the corresponding parameters.
Here, the subscript n indicates values exclusive to the node of Ranvier.

PERINODAL AREA

We considered the node of Ranvier and perinodal astrocyte as compartments due to
their properties similar to the synapse; therefore, we have taken the perinodal area into
account for the following reasons. First is the presence of vesicles containing neurotrans-
mitters in the nodes. The soma packages these vesicles and transports them into the
axon terminals to be captured by axonal varicosities. Uncaptured vesicles leave the ter-
minal and re-enter circulation [166]. Second, in the central nervous system, the nodes
are connected to perinodal astrocytes [136, 369], which occupy the space between myeli-
nated segments in the axon and show biochemical characteristics when connected. Ac-
tion potential influences the release of Glu− from the unmyelinated section of the axon.
This release is dependent on the [Ca2+] elevation attributable to AP and the ER extending
throughout the axon [370, 371]. This nonsynaptic neurotransmitter release [372] influ-
ences the opening of Glu receptors in the perinodal astrocyte [358]. Lastly, while com-
munication is classically known to occur at synapses, evidence shows that extrasynaptic
transmitter release from the soma, axon, and dendrites occurs even without a postsynap-
tic counterpart via exocytosis or spillover [178, 350, 373]. The Ca2+ and Glu− dynamics
in the node, perinodal area, and perinodal astrocyte follow the presynaptic bouton and
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astrocytic dynamics presented next. The biophysical properties and parameters related
to the perinodal section are in Tables A.4, A.5, A.7, and A.7.

PRESYNAPTIC BOUTON

The increase in the intracellular [Ca2+], ci, in the presynaptic bouton (and also ci,n in the
nodes of Ranvier) is the consequence of the interplay between the electrical (the fast
Ca2+ activities due to the voltage-dependent increase in cytosolic Ca2+ upon the arrival
of AP) and chemical dynamics (the slow Ca2+-dependent release of Ca2+ ions from the
ER) in the compartment. The Ca2+ dynamics in each compartment are also dependent
on the dimension and shape of the compartment itself. Here, the intracellular Ca2+ dy-
namics follow the biological model in Subsection 3.2.2 (Modeling Calcium Dynamics).
The construction-destruction formulism in Equation 3.2 describes the changes in c f ast,
and the modified Li-Rinzel model [162] defines the dynamics of cslow. Refer to Table A.4
for the parameters associated with the presynaptic neuron Ca2+ activities.

There are two conditions for triggering the release of neurotransmitters from the presy-
naptic bouton (or the node). First, the compartment releases Glu− into the synaptic cleft
when five Ca2+ ions bind to the Ca2+ sensor of the vesicle. The transition of the Ca2+
sensor from one state to another is computed using the Markov model for ionic channels.
The arrival of AP, in correlation with the intracellular [Ca2+], evokes the release [88, 178].
Second, the intracellular [Ca2+] can also randomly provoke vesicular neurotransmitter re-
lease. Following the study of Tewari and Majumdar [88], two docked vesicles are present
in the bouton; therefore, fr, (with values 0, 0.5, and 1) represents the fraction of the ready
vesicles out of the total number of docked vesicles in the bouton. See Subsubsection
3.3.2.3 (Spontaneous Release). In addition, based on the amount of intracellular [Ca2+],
the spontaneous vesicle release is also possible even in the absence of AP. In the study
of Modchang et al. [374], comparing stochastic and deterministic approaches on vesi-
cle release, the result suggested that in synapses with nanodomain, stochastic vesicle
release algorithm is more accurate than deterministic approach. The modified TMM in
Equation 3.27 describes the vesicular fusion and recycling process. The synaptic release
is history-dependent; therefore, if the next incoming AP is in the order of these time con-
stants, vesicles are neither replenished nor released. Whether evoked or spontaneous,
the vesicle release process is history-dependent; that is, the process is inactive 6.34 ms
after release the previous release, wherein the vesicles neither replenish nor release their
neurotransmitter content [88, 178]. Lastly, Equation 3.30 describes the synaptic Glu− dy-
namics, g. The parameters in the neurotransmitter release process and synaptic Glu−

dynamics are explicitly for CA3-CA1 synapse and are listed in Table A.5.

ASTROCYTE

Transient astrocytic [Ca2+] (or [Ca2+]a) increases in response to synaptic activity and prop-
agates within the astrocyte into the soma or nearby cells. The discovery of this Ca2+

wave suggests that astrocytes integrate and transfer signals [375]. In this model, the
extrasynaptic and perinodal astrocytic processes are distinct compartments whose Ca2+

a
transients flow into the soma for integration and vesicle packaging. In the astrocyte,
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Ca2+
a oscillation is attributed to the CICR from the ER into the cytosol through IP3 re-

ceptors. Astrocyte responds to synaptic activity by changes in its global (somatic) and
focal (perisynaptic and perinodal) Ca2+

a elevations [316, 376]. Intracellular [Ca2+]a tran-
sients can propagate along the process and into the soma, influence somatic [Ca2+]a
elevations. Subsequently, the overall summation of somatic and transient [Ca2+]a leads
to transmitter release [377]. However, biophysical mechanisms of astrocytic Ca2+ in-
tracellular propagation are still insufficient [378], specifically if global [Ca2+]a elevations
result from the linear summation of transient Ca2+ [316].Therefore, we assumed that the
total intracellular [Ca2+]a is responsible for astrocytic vesicle release. Astrocyte dynam-
ics is a stochastic process, and the total intracellular [Ca2+]a is the summation of all the
transient Ca2+

a . Here, the biologically-based and modified Li-Rinzel model presented in
Subsection 4.3.1.1 describes the astrocytic IP3 and Ca2+ dynamics in the extrasynaptic
and perinodal astrocytic processes, where the parameters and the corresponding values
are presented in Table A.6.

Then, three Ca2+ ions must bind with three independent gates (S 1, S 2, and S 3) for possi-
ble gliotransmitter release, following the kinetic model and release probability presented
in Subsection 4.4.2.1. Astrocytic vesicle fusion and recycling uses an essentially sim-
ilar transmitter release process as the presynaptic neuron, described by the stochastic
models in Subsection 4.4.2.2. Here, only the extrasynaptic process releases extracellular
Glu−, which is necessary for presynaptic IP3 production. Extrasynaptic Glu− dynamics is
governed by Equation 4.43. Refer to Table A.7 for the parameters.

POSTSYNAPTIC SPINE HEAD

Synaptic Glu− then activates the postsynaptic firing. In this glutamatergic synapse, the
excitatory synaptic input is due to the activation of clustered and localized AMPARs in the
spine head. The passive postsynaptic membrane potential, Vpost, is given as

τpost
dVpost

dt
= −

(
Vpost − Vrest

)
− RmIampa, (5.1)

where Vrest is the postsynaptic resting membrane potential, Rm is the spine resistance, and
Iampa is the AMPAR current computed using the AMPAR gating function in Equation 3.37.
See Table A.8 for the list of parameters and their corresponding values.

5.2.2/ SIMULATION AND ANALYSIS METHOD

We simulated the tripartite synapse dynamics in Matlab, implementing the Euler method
with a time step dt = 0.05 ms for the system of differential equations numerical compu-
tation. In this model, there are 20 myelinated segments in the presynaptic axon [379],
forming 41 compartments: one AIS, 20 myelinated segments, 19 nodes of Ranvier, and
one presynaptic bouton. The AIS input is a pulse wave of 10 µA/cm2 with a frequency of
5 Hz and a pulse width of 4 ms [10, 88]. In addition, there is one compartment for the
postsynaptic spine head, one compartment each for perisynaptic astrocytic process and
astrocytic soma, 0 to 2 perinodal astrocytic process/es, a synaptic area, perinodal area/s
(0 to 2), and an extrasynaptic area.
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Figure 5.3: Signal propagation via axonal saltatory conduction changes the AP waveform and propagation
delay. The stimulus at t = 200 ms generates an AP, V, in the AIS. Given the myelinated segment characteris-
tics mentioned in Table A.2, the constant parameters are computed as γ = 1, λ = 1.5076, and τ = 0.3317 ms.
There is a 0.33 ms delay in AP arrival from the AIS to the first node of Ranvier, V1. Therefore, it takes 6.66
ms before AP reaches the bouton, Vpre.

We previously addressed the electrical and chemical dynamics of a neuron-astrocyte in-
teraction with nonsynaptic sources from external areas. To analyze the impacts of these
sources, we simulated different neuron-astrocyte configurations: (1) tripartite synapse,
(2) tripartite synapse with one perinodal source, and (3) tripartite synapse with two perin-
odal sources. Because of the stochastic nature of the dynamics, we simulated each
configuration for 50-second simulation time and repeated the simulation 20 times.

The neurotransmitter release is a stochastic process that varies the postsynaptic mem-
brane potential spiking pattern over time. The fundamental quantity in neural circuits that
describes these variations is called synaptic efficacy or strength [380–382]. Synaptic
efficacy determines the strength of the connection between the pre- and postsynaptic
neurons with time, identified by the transferred mutual information based on the activity
patterns of the input and output spike trains. We also used synaptic efficacy to identify
the influence of astrocytic processes in synaptic transmission numerically, computed by
obtaining the ratio of the number of successful postsynaptic spikes over the number of
presynaptic spikes within a 5-second sliding window.

5.2.3/ RESULTS

5.2.3.1/ PRESYNAPTIC NEURON DYNAMICS

Figure 5.3 shows the generated AP in the AIS (V) and the regenerated AP in the nodes
(Vn where n = [1, 19]) and bouton, Vpre. Here, the voltage delay and attenuation resulted
from the AP propagation across the myelinated segments. The change in amplitude from
the AIS (peak amplitude of 36.53 mV) to the first node of Ranvier (peak amplitude of
46.56 mV) results from channel conductance increase in the nodes. Due to the increase
in the voltage-gated channels and the changes in their reversal potential, the nodal Na+

current amplifies the axosomatic AP and hyperpolarizes the AP voltage [365, 383].
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(a) Presynaptic Bouton

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

-100

-60

-20

20

60

V
pr

e (
m

V
)

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

0

2

4

6

8

[C
a

2+
] (

M
)

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

1.20

1.30

1.40

1.50

[C
a

2+
] E

R
 (

m
M

)

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

0

200

400

600

[IP
3] (

nM
)

(b) 19th node of Ranvier

Figure 5.4: Calcium dynamics on the presynaptic bouton and node of Ranvier. (a) The total presynaptic
bouton [Ca2+], (ci), oscillation has a frequency equivalent to the frequency of the incoming AP. The [Ca2+]
gradient between the intracellular space and the ER is relative to the increase and decrease of the [IP3].
(b) Calcium oscillation in the node of Ranvier also happens simultaneously with the AP arrival to the node,
however with lesser peak amplitudes due to the dimension of the node. Then, the [Ca2+]ER stabilizes to 1.44
mM due to the absence of extracellular inputs triggering the increase of IP3.

In this model, the astrocytic processes cover the synapse and the 19th node of Ranvier.
As the AP propagates through the axonal length to the presynaptic bouton, it simultane-
ously triggers the [Ca2+] elevations in the said compartments. In the presynaptic axon,
the local calcium concentration combines the AP-evoked Ca2+ and the ER Ca2+ fluxes.
As presented in Figure 5.4, intracellular Ca2+ fluctuations in the bouton (Figure 5.4a) and
the 19th node (Figure 5.4b) exhibit probabilistic behaviors concurrent with the arrival of
AP. The average peak amplitudes of [Ca2+] in the bouton and node were 7511 nM and
4919 nM, respectively. With the same channel conductance and compartment-to-ER ra-
tio, the difference between the amplitudes of bouton and nodal [Ca2+] is the consequence
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Figure 5.5: Synaptic and perinodal neurotransmitter release within a 50-second stimulation. The vesicle fu-
sion and recycling process in the (a) presynaptic bouton and the (b) 19th node of Ranvier results in stochastic
Glu− spikes in the synapse and the perinodal area, respectively.

of the morphometric properties of the compartments. In addition, the intracellular [Ca2+]
peak amplitudes are inversely proportional to the Ca2+ content of the ER. The activa-
tion of IP3Rs allows the release of Ca2+ from the ER to the intracellular space. Thus,
Ca2+ ER shows an inverse activity of the IP3. The [IP3] concentration in Figure 5.4a is
equivalent to the initial value (160 nM) from t = 0 to t = 13.97 sec. Note that the in-
crease in [IP3] amplitude corresponds with the astrocytic gliotransmitter release shown in
Figure 5.7. The perinodal activity does not involve extracellular gliotransmitter release;
therefore, there are no fluctuations in the nodal [IP3] levels but rather increases from the
initial concentration and stabilizes at 1.44 mM.

The internal Ca2+ dynamics in the presynaptic compartments determine the vesicle re-
lease probability resulting in either evoked or spontaneous Glu− spiking activities. Refer
to Figure 5.5. The fraction of readily releasable synaptic vesicle, R, in the presynaptic
bouton fluctuates between 0.9249 and 1, resulting in stochastic and fractional vesicle re-
lease, E, into the synaptic cleft with an average peak amplitude of 0.0245, and a fraction
of inactive vesicles, I, ranging from 0 to 0.0737 (Figure 5.5a). Therefore, the resulting
synaptic [Glu−] in the synaptic cleft peaks at an average amplitude equal to 0.2705 mM.
The perinodal coupling displays a different range of neurotransmitter release activities
(Figure 5.5b). The perinodal R has a lower release probability, between 0.8621 to 1, a
higher fraction of effectively released vesicle, E, with an average amplitude of 0.0484,
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Figure 5.6: Transient [Ca2+]a and [IP3]a elevations in the perisynaptic (blue) and perinodal (red) astrocytic
processes.

and a higher fraction of vesicles for recycling, I ∈ [0, 0.1353]. This phenomenon can be
attributed to the absence of astrocytic Glu− released into the node and the lower nodal
[Ca2+]. On the other hand, the perinodal area also shows similar Glu- activities (in terms
of Glu− spike peaks, with an average peak amplitude of 0.2670 mM). Glutamate spikes in
both perinodal and synaptic areas are dependent on their neurotransmitter release prob-
ability. This asynchronous process results in 50 and 49 Glu− spikes in the synapse and
perinodal area, respectively, which is infrequent compared to the 5 Hz input spiking 250
times within the 50-second stimulation.

5.2.3.2/ ASTROCYTIC CALCIUM DYNAMICS

Figure 5.6 shows the localized transient [Ca2+] elevations and the corresponding IP3 dy-
namics in the astrocytic compartments. These transients are independent of each other,
occur rapidly due to the individual Ca2+ stores [384], and are highly variable between cell
subcompartments [385], with an independent local initial [Ca2+]a, according to the spatial
Ca2+ quantification by Lopez-Caamal et al. [386]. The resulting Ca2+ dynamics coin-
cide with the experimental studies using mouse hippocampus slices wherein patterns of
transients and localized Ca2+ events with different sizes and durations were detected in
a single astrocyte [265, 387]. Astrocytic Ca2+ oscillations show a much lower frequency
compared to the oscillations exhibited by the presynaptic compartments. In addition, the
increase in the [IP3]a is concomitant with the synaptic neurotransmitter release while the
[Ca2+] elevation creates a time window for astrocytic IP3 level depression.

These Ca2+ waves can remain localized or propagate, as shreds of evidence showed that
after initiation, Ca2+ waves spread within the cell [307, 388, 389]). Figure 5.7 displays the
total intracellular [Ca2+]a on which the vesicle fusion and recycling process depends. Vesi-
cle synthesis in astrocytes depends on the sensitivity of the secretory apparatus to the
intracellular Ca2+ [384]. The fraction of SLMVs available for release is maximum (Ra = 1)
during subthreshold Ca2+ activities and minimum (Ra = 0) at Ca2+ peaks. The fraction
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Figure 5.7: Extracellular gliotransmitter release process. The total intracellular [Ca2+]a activates the SLMV
fusion and recycling process (Ra, Ea, and Ia) in the perisynaptic astrocytic process, simultaneously triggering
Glu−a spikes.

effectively released SLMVs, Ea into the perisynaptic area peaks simultaneously (average
peak amplitude equal to 0.0867) with the drop in Ra. In addition, most of the released
Glu−a undergoes the recycling process (Ia ≈ 1). Once the [Ca2+]a goes beyond the thresh-
old, gliotransmitters are released. Going back to Figure 5.6, the second elevation of
perinodal [Ca2+]a causes the Glu−a release. Therefore, even when the synaptic area is
silent, the astrocyte might modulate the synaptic transmission by processing signals from
the extracellular matrix. However, prolonged delay in Glu− release might also be possible.
Consider only the perisynaptic Ca2+ dynamics; there should be a Glu−a release from t = 36
to t = 40 sec. However, with the additional perinodal [Ca2+]a, the total intracellular [Ca2+]a
just remained over the threshold, making the vesicle fusion and recycling slower.

Within the 50-second presynaptic stimulation, [Ca2+]a crosses the threshold three times
producing simultaneous Glu−a spikes. Notice that a fraction of total Glu−a stays in the
perisynaptic area until the recycling process is over (Ia ≲ 1) or [Ca2+]a drops below the
threshold. The extrasynaptic Glu−a serves as feedback to the presynaptic neuron activity
and produces second messenger IP3, as displayed by the fluctuations in [IP3] in Fig-
ure 5.4a. The ER then releases Ca2+ into the intracellular area, increasing the [Ca2+]
elevation peaks in the presynaptic bouton.
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Figure 5.8: Postsynaptic membrane potential and synaptic efficacy. (a) The postsynaptic membrane poten-
tial of the dendritic head is dependent on the synaptic [Glu−]. The dendritic spikes coincide with the synaptic
Glu− spikes with an average peak amplitude of –39.57 mV. (b) The synaptic efficacy is stable when t is be-
tween 0 and 34 s at 0.08, then increases to 0.12.

5.2.3.3/ POSTSYNAPTIC NEURON ACTIVITIES

The postsynaptic membrane potential spiking frequency is dependent on the amount and
frequency of synaptic [Glu−]. Therefore, the sudden increase in synaptic [Glu−] results
in a voltage spike in the postsynaptic spine head, as shown in the relationship between
the [Glu−] in Figure 5.5a and Vpost in Figure 5.8. A postsynaptic spike is successful when
its peak driving force is less than or equal to the difference between the reversal and the
resting potential (EAMPA − Vrest) [197]. The increase in synaptic efficacy occurs at t = 34
sec, displayed by the higher number of spikes clustering with time, indicating increased
postsynaptic activity [381].

5.2.4/ DISCUSSION

Advances in neuron-astrocyte researches expand our observation of the complexity of
brain processes. State-of-the-art imaging techniques challenge the present concept of
the tripartite synapse, where information flows from the presynaptic to the postsynaptic
component with astrocytic influences on plasticity. We extended the tripartite synapse
model presented by Tewari and Majumdar [88] by incorporating nonsynaptic elements
through axon-astrocyte interaction for the following reasons. (1) Information transfer is
not only confined in the synapse and can be an intercellular process. Astrocytic mGluRs,
distributed heterogeneously throughout the cell body, react to extracellular Glu−. A single
protoplasmic astrocyte can, therefore, sense molecular signals from the neuronal ele-
ments within its domain. (2) The vesicular release also occurs in the soma, unmyelinated
axon, and varicosities. Adjacent astrocytic processes sense these signals, in turn rec-
ognizing the activity of neighboring neurons or networks. (3) Compartmentalization of
neuronal and astrocytic Ca2+ dynamics is probable. In the neuron, the cell morphology,
the expression of ionic channels, the distribution of Ca2+ stores, and the behavior of AP
means that intracellular [Ca2+] varies across the neuron. Astrocytic Ca2+ dynamics, Sup-
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ported by the ER, are transient and localized, indicating individual processes in each
locality. With these, we presented a model of neuron-astrocyte interaction extending the
tripartite synapse and incorporating saltatory conduction along the myelinated axon, non-
synaptic neurotransmitter release, perinodal astrocytic compartments, and integration of
transient astrocytic [Ca2+] for gliotransmitter release.

5.2.4.1/ TRIPARTITE SYNAPTIC TRANSMISSION IS MORE THAN A POINT PROCESS

Previous models assumed that AP generated in the AIS reaches the axon terminals with-
out delay or decay by considering the axon as one compartment. We showed that even
though myelination promotes rapid conduction, signal delay still occurs. Besides, the AP
waveform changes due to the different expression of ionic channels in the nodes and
the AIS. Therefore, we considered the axonal length as a sequence of compartments
representing the nodes and myelinated segments. By doing so, we were able to insert
perinodal processes that are independent of the synapse.

At this point, we described information transfer within the tripartite synapse, originating
from the AP generation in the AIS to the nodal [Ca2+] elevations during saltatory con-
duction, followed by the unmyelinated axonal and presynaptic bouton vesicular release
triggering the Glu- dynamics in the perinodal and synaptic areas, respectively, to the
activation of perinodal and perisynaptic astrocytic mGluRs, and finally, the astrocytic dy-
namics. Here, we presented the localization of astrocytic Ca2+ dynamics in the perisy-
naptic and perinodal compartments. The stochastic nature of neurotransmitter release
and the spatial variation in extracellular [Glu−] surrounding the astrocyte determine tran-
sient astrocytic Ca2+ activities. Here, we assumed a linear summation of transient [Ca2+]
in the soma that determines the [Glu−] in the perisynaptic cleft. As a result, the addi-
tional nonsynaptic Glu- sources boost the intracellular astrocytic [Ca2+], which improves
synaptic efficacy. However, as the extrasynaptic [Glu−] increases indirectly, presynaptic
Ca2+ stored in the ER will be depleted due to the frequent activation of presynaptic ER
IP3Rs. The results show that the extent of astrocytic influence on synaptic transmission
is distributed within the astrocytic territory; thus, the astrocytic activities and computation
can be considered as more than a point process. We recommend further biophysical in-
vestigation and model formulation on astrocytes viewed as a compartmentalized system,
similar to neurons, rather than a point process.

5.2.4.2/ NONSYNAPTIC ELEMENTS INFLUENCE SYNAPTIC EFFICACY

We simulated the tripartite synapse dynamics for 50 seconds with an increasing number
of nonsynaptic sources of Glu− and then summarized the Glu−a activities in the perisynap-
tic area in Table 5.1. Configuration 0 is a tripartite synapse alone, Configuration 1 has
one nonsynaptic source coupled with the 19th node of Ranvier, and Configuration 2 is
coupled with the 19th and 18th nodes of Ranvier. Here, the average Glu−a spikes show an
inverse relationship with the number of Glu− sources (therefore, also related to the total
amount of sensed [Glu−]). Gliotransmitter release becomes less frequent, and the period
wherein Glu−a is available in the extrasynaptic area extends for a longer time window. This
activity results from the amount of intracellular [Ca2+]a staying above the [Ca2+]thresh

a for
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Figure 5.9: Influence of extrasynaptic glutamate to synaptic efficacy with increasing nonsynaptic sources
(blue for 0, red for 1, and green for 2). (a) The boxplots show the range and mean of [Ca2+] peak amplitudes
in the presynaptic bouton. As the amount of Glu−a the nonsynaptic sources sensed increases, the astrocytic
[Ca2+]a rises, increasing the presynaptic Ca2+ peaks. (b) Simultaneously, the Ca2+- and Glu−a−dependent
IP3 reaches the equilibrium more progressively when the number of extrasynaptic sources, in this case, is
maximum (green line). The solid line indicates the change of mean synaptic efficacy with time for the three
model configurations, while the shaded area is the corresponding standard error. (c) The comparison of
synaptic efficacy between the three configurations, computed per 5-ms sliding window, shows that synaptic
strength is minimum with tripartite synapse alone (blue), and increases as the number of Ca2+ stores (located
in the different locations, i.e., perisynaptic and perinodal astrocytic compartments) engages in intracellular
Ca2+

a integration.

a more extended period and denotes that the vesicle fusion and recycling process slows
down. How does the extrasynaptic Glu−a activity influence the synaptic plasticity? In order
to demonstrate this, we then analyzed the factors influencing synaptic plasticity directly
linked with extrasynaptic Glu−a .

Table 5.1: Extrasynaptic glutamate activities.

No. of Non-
synaptic
Sources

Average No. of
Glu−a Spikes
(50-sec
Stimulation)

Average Time
Before First
Spike (sec)

Average [Glu−]a
Peak (mM)

Average Period
of [Glu−]a
elevation (sec)

0 3.40 14.40 1.7414 4.56
1 2.35 14.50 1.7955 11.85
2 1.05 6.05 2.1712 ≥ 44.04
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In the presented tripartite synapse model, most of the factors affecting synaptic plastic-
ity are components of the presynaptic terminal, such as the vesicle release probability
and the number of available releasable vesicles. These factors are dependent on the
presynaptic [Ca2+] elevations that are simultaneously affected by the extrasynaptic Glu−a .
While in the postsynaptic side, the amount of synaptic neurotransmitters released into
the synaptic cleft regulates the postsynaptic spiking activity. By taking the presynaptic
bouton [Ca2+] into account, the mean presynaptic [Ca2+] peaks increase as the astro-
cytic [Ca2+]a rises, as shown in Figure 5.9a. The ER of the presynaptic bouton utilizes
the extrasynaptic Glu− for Ca2+ release via the opening of IP3Rs. Figure 5.9b shows the
mean [IP3] for each configuration. Noting that the Glu−a directly influences the presynap-
tic IP3 dynamics, the extended availability of extrasynaptic Glu−a causes the IP3 to reach
equilibrium. In Figure 5.9c, the mean synaptic efficacy per sliding time window for each
configuration shows that the tripartite synapse alone exhibits the lowest synaptic efficacy
and that the addition of perinodal Glu−a sources increases the synaptic strength. However,
an extremely high concentration of intracellular Ca2+]a leads to an abnormal extrasynaptic
[Glu−]a [390], as shown in Table 5.1, wherein Glu−a remains in the extracellular space for
a prolonged period (≥ 44.04 sec) which can cause neuro-excitotoxicity.

Based on the simulation results, the changes in the neuron-astrocyte dynamics during
extrasynaptic transmitter sites have constructive and destructive implications for neuronal
information processing. Neuron-astrocyte interactions support neural firing and synchro-
nization and synaptic coordination [12, 391]. However, according to Deplanque [392],
overload in Glu− within the synaptic space causes detrimental excitotoxic effects to the
postsynaptic spine head by exaggerating the activation of its receptors. The impairment
of such glial-neuronal interaction (consisting of perinodal astrocytic components) may re-
sult in schizophrenia, as shown in the pathophysiological study conducted by Mitterauer
[140]. Neurodegenerative diseases, such as Alzheimer’s, are caused when astrocyte
Ca2+ signaling is altered [393]. On the contrary, the inadequacy in Glu− may cause the
severity of Alzheimer’s disease. Therefore, synaptic Glu− insufficiency can be avoided
during synaptic transmission by the additional extrasynaptic transmitter sites provided by
the axon-astrocyte interaction. In that case, excessive Glu− in the synaptic area exagger-
atedly activates postsynaptic receptors damaging neurons.

5.2.4.3/ ASTROCYTES FORM A NEW LEVEL OF FUNCTIONAL INTEGRATION.

Rossi [349] suggested that the intercellular coordination of elements within the astro-
cytic domain indicates a new layer of functional integration that does not entirely include
synaptic networks. Here, we present a tripartite synapse model whose dynamics are
not dependent only on the tripartite area. This model is not restricted to the perinodal
astrocytic process and may be varied to represent perineuronal astrocytic processes,
as neuron-astrocyte signaling is not only synapse-specific but cell- and circuit-specific
as well [394]. If astrocyte influences thousands of neuronal elements within its territory,
it suggests that the individual astrocytic processes in its branch and branchlets and its
somata form a new level of functional integration. We recommend further biophysical in-
vestigation and model formulation on astrocytes viewed as a compartmentalized system,
similar to neurons, rather than a point process.

We presented a model of intercellular communication between a neuron and astrocyte
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that includes synaptic and nonsynaptic processes. In the current wave of research on as-
trocytic processes, conflicting views on gliotransmission, an artifact or reality, arise. Over
the years, controversies regarding gliotransmission have emerged, whether it is a natural
astrocytic process or a consequence of pharmacological stimulation [8, 395]. Fiacco and
McCarthy [396] deduced that gliotransmission is not a physiological mechanism but the
result of observing cultured astroglia in vitro; thus, it does not affect short- and long-term
plasticity. Savtchouk and Volterra [295] contradicted the “negative” evidence on astrocytic
Ca2+

a waves, explaining that this concept is due to oversimplification of data collection
techniques and presumptions on the interpretation of results. A century ago, Santiago
Ramon y Cajal expressed that the real purpose of glial cells would only be known when
a direct method of studying them is available [397]. Heterogeneity and complexity of as-
trocytic mechanisms lead to divergence in conclusions on the exact role of astrocytes in
information transfer. Until researchers arrive at a coherent view, differences in percep-
tion imply that our current knowledge of astrocytic mechanisms is inadequate. Moreover,
interaction between local [Ca2+]a elevations and their propagation through the cell and as-
trocytic network is inconclusive. Future experimental and methodological advances will
provide clarifications of these issues.

5.3/ MODELING NEURON-ASTROCYTE NETWORK

Previously, we discussed the roles of astrocytes in synaptic information transfer and ac-
knowledged that the heterogeneous properties of astrocytes could either improve or im-
pair synaptic communication. In this section, we continue our analysis on the astrocyte
syncytium, looking into the influence of astrocytes in a global perspective, that is, their
functions in a neuron-astrocyte network. The main goal in this section is to develop a
spiking network of neurons and astrocytes with varying connectivity, where astrocytes
are connected via gap junctions and communicate through ICW propagation.

Then, what network architecture should we use if we implement a neuron-astrocyte net-
work in image processing or deep learning applications? Depending on the intended
output, how should astrocytes be connected to increase synaptic efficacy or improve net-
work activity? In what specific applications can we employ astrocytes? We aim to unravel
these questions at the end of this section; to relate and inspire artificial networks based
on biological network processes.

5.3.1/ CALCIUM WAVE PROPAGATION FUNCTIONAL MODEL

5.3.1.1/ TRIPARTITE SYNAPSE (SYNCHRONOUS RELEASE) MODEL

In the extended tripartite synapse model (Figure 5.10), the astrocytic process modulates
the presynaptic release probability and the postsynaptic potential via the SICs. This
paradigm makes the tripartite synapse both a feedforward and feedback system. In this
model, the Hodgkin-Huxley mechanism models the presynaptic bouton membrane po-
tential, Vin, and action potential generation. Refer to Equation 2.11 and Table A.1. We
employed the synchronous neurotransmitter release process, where the presynaptic bou-
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Figure 5.10: Tripartite synapse model with feedforward and feedback signaling pathways. The membrane
potential (Vin) of the presynaptic neuron axon terminal, as well as the extrasynaptic glutamate concentration
(GA), set the amount of neurotransmitter release (RS ). Vesicles release neurotransmitters into the synaptic
cleft each time an action potential arrives. A fraction, ζ, of synaptic glutamate (GS ) activates the postsynaptic
spine head, and the astrocytic process receives the remaining fraction spilling out of the synaptic cleft.
Synaptic glutamate interaction with mGluRs results in IP3a production, which subsequently results in CICR
from the ER. Endoplasmic reticulum calcium reuptake occurs via SERCA pumps. In addition, [Ca2+]a ions
leak from the ER to the cytosol. An increase in the amount of cytosolic CA above threshold results on
the gliotransmission release. Gliotransmitters (GA) activates iGluRs in the postsynaptic spine head and
presynaptic bouton, with fractions equal to β and 1−β, respectively. The sum of the slow inward current (IS IC)
due to GA and the synaptic current (IAMPA) current results in excitatory postsynaptic potential Vout.

ton releases synaptic glutamate simultaneously with the arrival of the AP. Here, we used
the Tsodyks Model [177] described in Chapter 3 to compute for a fraction of effectively
released neurotransmitters, RS . This parameter sets the amount of Glu− in the synaptic
cleft. Given the vesicular [Glu−] in the synaptic cleft, GS , the total amount of released
Glu− in the synaptic cleft at time tAP is Grel [178]. Refer to Equation 3.29. The control
parameter ζ sets the fraction of GS that activates the AMPA receptors in the postsynaptic
spine head and the amount of Glu− spilling over to the extracellular spaces that activate
astrocytic mGluRs.

The astrocytic IP3 production follows a simple model depending only on the synaptic input
[398], given as

dPA

dt
=

P0 − PA

τIP3

+ rIP3 (1 − ζ) GS (5.2)

where PA is the astrocytic [IP3] at time t. The astrocytic Ca2+ dynamics also follow the
Li-Rinzel model [162] used in the previous section. Refer to Subsection 4.3.1.1 for the
models and Table A.6 for the parameters. Here, the astrocytic gliotransmitter release
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process is a deterministic approach, akin to the neurotransmitter release process, where
gliotransmitters release is simultaneous with the crossing of astrocytic [Ca2+] (CA) above
the Ca2+ threshold instead of the Ca2+-binding with SLMV. This model by De Pitta and
Brunel [178] described in Equation 4.42 models the amount of glutamate released into the
extracellular space RA. The control parameter β sets the amount of extrasynaptic Glu−,
GA, diffusing to the extrasynaptic iGluRs on presynaptic and NMDARs on the postsynaptic
membranes. The feedback amplifies the neurotransmitter release probability while the
feedforward signal triggers the influx of SIC through NMDARS. Refer to Table A.9 for the
set of parameters.

For excitatory synaptic currents, we consider the fast component of AMPAR-mediated
EPSC and the slow dynamics of the NMDAR-mediated SIC. The synaptic voltage caused
by IAMPA is modeled by the instantaneous jump and exponential decay function origi-
nally presented by Fourcaud-Trocme [114] in Equation 3.40 and modified by De Pitta and
Brunel [178] shown in Equation 3.41. Due to the presence of SICs, the synaptic input, vS ,
is further extended into

τrN
dvS

dt
= −vS + ÎS BS τ

r
N ,

τN
dBS

dt
=

dBS

dt
= −BS + ĴS ζGS τN ,

(5.3)

where τrN and τN , respectively, are the rise and decay time constant of the EPSC, ĴS is
a scaling factor corresponding to the amplitude of the instantaneous jumps that causes
the gating variable BS to increase unitarily, and ÎS is also a scaling factor that sets the
increase in synaptic current equals IS . These scaling factors are described as

ĴS =
JS

ϱcGS T τN
,

ÎS =

IS

(
1
τN
− 1
τrN

)
(
τrN
τN

) τN
τN−τ

r
N −

(
τrN
τN

) τrN
τN−τ

r
N

.
(5.4)

The voltage dependence of SIC is negligible, therefore the extrasynaptic input due to SIC,
vA, is modeled similarly with vS but with different time scales. Refer to Equation 4.49. Note
that GA is multiplied to the control parameter β.

The postsynaptic membrane potential, Vout, is, therefore, the summation of the synaptic
IAMPA and extrasynaptic IS IC inputs, and evolves as

τm
dVout

dt
= Vrest − Vout + vS + vA, (5.5)

where τm is the membrane time constant equal to 40 ms and the resting potential Vrest =

−70 mV. For the postsynaptic membrane potential, the parameters are in Table A.10.

5.3.1.2/ ASTROCYTIC NETWORK MODEL

We extend the intercellular communication beyond the tripartite synaptic area to model
the ICW. We developed a network of astrocytes where the processes and soma are inde-
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Figure 5.11: Astrocytic network model. (a) Each astrocyte is divided into compartments p(i) denoting the
astrocytic process where i corresponds to the process number and sn (sm) denoting the soma where n (m)
corresponds to the cell number in the network. Intracellular calcium signaling occurs between processes
and soma of individual astrocytes, while IP3 signaling occurs both intra- and intercellularly (via gap-junction
connections). (b) The shift between states of the astrocyte is a Markov process where P corresponds to the
event that a cell changes its state. (c) The astrocytes (green stars) form a network via gap junctions (blue
lines) with varying topologies: chain where each astrocyte is connected in series, fully connected where the
astrocytes form a lattice, and regular where each cell is connected to its k nearest neighbor.

pendent compartments whose joint function is to integrate synaptic inputs via local and
global Ca2+

a oscillations and where astrocytic somas are connected with the neighboring
astrocytes via GJCs to allow intercellular communication. Consider the astrocyte n in
Figure 5.11a. Assuming homogenizations, the processes (pi

n) and soma (sn) are sepa-
rate compartments that interact with the other compartments (neighboring processes or
soma, and vice versa) via the Ca2+ and IP3 diffusion along the branches. Here, i is the
number of the astrocytic process and n is number of astrocytes in the network, while m
is the number of astrocytes linked to n. Astrocyte n communicates with its neighbor m
via the exchange of IP3 molecules through the GJC. Therefore, the communication with
astrocyte n causes an increase or decrease in [IP3] in astrocyte m, affecting is intracellular
Ca2+ oscillations. It is important to note that only the processes receive synaptic inputs
triggering IP3 production. Therefore, PA in the soma from molecular diffusion between the
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processes and the soma, and the IP3 influx from GJCs. In addition, only the processes
reaching a local CA above threshold releases gliotransmitters into the input-specific ex-
trasynaptic area.

There are two additional fluxes in the Ca2+ dynamics: (1) the J(pi
n)

IP3di f f which is the amount

of IP3 diffusing from (pi
n) to (sn) or vice versa, and (2) the J(pi

n)
Cadi f f corresponding to the

amount of Ca2+ also diffusing between the process and the soma. These fluxes are
concentration gradients given as

J(pi
n)

IP3di f f = DP

(
P(sn)

A − P(pi
n)

A

)
,

J(pi
n)

Cadi f f = DC

(
C(sn)

A −C(pi
n)

A

)
,

(5.6)

where DP and DC, respectively, are the IP3 and Ca2+ diffusion constants between the
process and the soma.

The IP3 flux through the gap junction, JIP3gap(n,m) is described by the threshold function
in Equation 4.51. The ability of the astrocyte to send or receive JIP3gap(n,m) is stochastic,
depending on its state and the states of its neighbors. We apply the Markov process
to determine the state of the astrocyte and its probability, P, to shift from one state to
another, depicted in Figure 5.11b. Refer to the UAR model in Chapter 4.5.3. Here, the
astrocyte can only transmit signals in the active (A) state.

Let P(pi
n)

A be the IP3 and C(pi
n)

A be the cytosolic [Ca2+] in the process compartment. There-
fore,

dP(pi
n)

A

dt
=

P0 − P(pi
n)

A

τIP3

+ rIP3 (1 − ζ) GS + J(pi
n)

IP3di f f ,

dC(pi
n)

A

dt
= −J(pi

n)
chan − J(pi

n)
pump − J(pi

n)
leak + J(pi

n)
Cadi f f .

(5.7)

Let P(sn)
A be the somatic [IP3]a, the sum of all the fluxes flowing from the processes and

the GJCs, and C(sn)
A is the somatic [Ca2+]a with additional fluxes from the processes.

dP(sn)
A

dt
=

P0 − P(pi
n)

A

τIP3

−

k∑
i=1

J(pi
n)

IP3di f f +

j∑
m=1

JIP3gap(n,m),

dC(sn)
A

dt
= −J(sn)

chan − J(sn)
pump − J(sn)

leak −

k∑
i=1

J(pi
n)

Cadii f .

(5.8)

We also consider the ratio between the process and somatic surface areas to account for
the impeding influence of larger somatic volume to Ca2+ flux [303]. By homogenization,
we assume that all processes have the same dimension; therefore, the ratio Vr is equal
to Vsoma/Vprocess and the surface volume ratio is Vsur f = V (2/3)

r . In this model,Vr = 1.5. The
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somatic dynamics become

Vr
dP(sn)

A

dt
= Vsur f

P0 − P(pi
n)

A

τIP3

 − k∑
i=1

J(pi
n)

IP3di f f +

j∑
m=1

JIP3gap(n,m),

Vr
dC(sn)

A

dt
= Vsur f

(
−J(sn)

chan − J(sn)
pump − J(sn)

leak

)
−

k∑
i=1

J(pi
n)

Cadi f f .

(5.9)

Three types of astrocytic connectivity were considered (Figure 5.11c): (1) astrocytes are
connected in series (chain), (2) astrocytes form a lattice (fully-connected), and (3) as-
trocytes are randomly connected with k nearest neighbors in the network where k is the
degree of connection [293]. Overall, the shallow network comprises three layers of neu-
rons: the HH presynaptic neuronal layer, the IF postsynaptic neuronal layer, and the
astrocytic layer between the neuronal layers forming the tripartite synapses.

5.3.1.3/ SYNAPTIC EFFICACY

The postsynaptic neurons integrate the synaptic inputs, and when the summation of V(t)
exceeds the threshold (–40 mV), the neuron fires an action potential. Synaptic efficacy, ρ,
here is another parameter defined as the coupling strength between the pre- and postsy-
naptic components. It determines the strength of communication between the neurons.
We modified the synaptic efficacy equation from De Pitta and Brunel [178] so that the
synaptic efficacy is dependent on the synaptic inputs and the spiking activity of the neu-
ron. Let ρ be described by the first-order differential equation

τρ
dρ
dt
= −ρ(1 − ρ)(ρb − ρ) + γp(1 − ρ)Θ

(
V(t) − θp

)
− γdρΘ (V(t) − θd) , (5.10)

where V(t) is the input summation voltage of the presynaptic neuron, ρb is the boundary
parameter, τρ is the decay time constants, and γp and γd are the corresponding rate of in-
crease and decrease in synaptic efficacy, respectively, when V(t) exceeds the depression
and potentiation thresholds, θd and θd, with Θ(·) the Heaviside function. Synaptic effi-
cacy strengthens the contribution of Vout for every successful postsynaptic spike. Refer to
Table A.11 for the parameters.

5.3.2/ SIMULATION METHOD

The neuron-astrocyte network was simulated in MATLAB by performing numerical analy-
sis of the systems of differential equations using Runge-Kutta with time step dt = 0.5 ms.
In the simulation, we used the handwritten images from the modified National Institute of
Standards and Technology (MNIST) database [16] instead of entirely random inputs. In
this case, we can also visualize and make sense of the activity of the output layer. Each
pixel corresponds to a presynaptic neuron, where each image is fed to the network for
200 seconds. Therefore, the presynaptic neuron receives a 5 Hz input current whose
pulse amplitude varies from 0–10 µA/cm2 proportional to the pixel intensity in grayscale
and pulse width of 4 ms. The network was simulated for 200 continuous batches of 100
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images each, 4000 seconds in total length.

The shallow spiking neuron-astrocyte network, therefore, consists of three layers: an in-
put layer with 784 presynaptic HH neurons (equal to the number of pixels in an MNIST
image), an output layer of 196 postsynaptic IF neurons linked to four distinct presynap-
tic neurons, and an astrocytic network creating the tripartite synaptic connections dis-
tributed equally to 196 astrocytes, in that each astrocyte has four process compartments
connected to distinct synapses. Then, we simulated the network for the three types of as-
trocytic connectivity: chain, fully connected, and regular topology (maximum of five gap
junction connections). Calculations were performed using HPC resources from DNUM
CCUB (Center de Calcul de l’Université de Bourgogne).

5.3.3/ RESULTS

The following section presents the simulation results and analysis in a bottom-up ap-
proach, starting from the local tripartite synapse and astrocytic compartments, moving
up to the single-cell activity, and finally to the network level.

5.3.3.1/ TRIPARTITE SYNAPSE DYNAMICS (SYNCHRONOUS RELEASE)

Figure 5.12 summarizes the dynamics of a single tripartite synapse compartment sim-
ulated for 20 seconds. The presynaptic bouton generates an AP pattern (Vin) with 5
Hz spiking frequency (Figure 5.12a). In the synchronous and deterministic model, the
synaptic release probability, RS , peaks simultaneously with the arrival of AP, whose peak
amplitudes vary between 0.68 to 0.74 (Figure 5.12b). As a result, the synaptic [Glu−], GS ,
also fluctuates in accordance with the AP spikes, with an average peak concentration of
0.20 mM (Figure 5.12c).

Twenty-five percent of GS diffuses to the astrocytic process and activates the astrocytic
IP3 production, as shown in Figure 5.12d. From the initial condition, P0 = 0.16 µM, and
with a constant input frequency, PA increases and saturates at a level equal to 0.45 µM.
Figure 5.12e depicts the slow astrocytic calcium dynamics (CA) in the process compart-
ment. Note that the astrocytic IP3 and Ca2+ dynamics shown here results from blocking
the control factors DP and DC. The astrocytic process then releases extrasynaptic Glu−

at the event that CA crosses above threshold (0.197 µM) as shown in Figure 5.12f. Also,
half of GA (given that β = 0.5) modulates the presynaptic neuron activity by increasing RS

(Figure 5.12b) and, in turn, also modulates the synaptic Glu− activity (Figure 5.12c). It is
noticeable that RS and GS increase following the astrocytic Glu− release.

A single postsynaptic spine head generates an excitatory input, shown in Figure 5.12g,
with a peak amplitude of 3 mV through fast AMPARs activations controlled 75% of GS (ζ =
0.75). In addition, the astrocytic process indirectly modulates the postsynaptic activity,
remarking that VAMPA (vS ), peaks with GA activity. The remaining half of GA activates SIC
in the postsynaptic spine head, generating a slow excitatory input VS IC (vA), as shown in
Figure 5.12h, with a peak amplitude of 1 mV. The summation of these excitatory inputs
leads to the postsynaptic spine head membrane potential shown in Figure 5.12i.
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Figure 5.12: Tripartite synapse dynamics with synchronous neurotransmitter release, showing the interre-
lationships of the fundamental signaling mechanisms and pathways between the (a-c) presynaptic bouton,
(d-f) astrocytic process, and (g-i) postsynaptic spine head.

5.3.3.2/ CALCIUM WAVE PROPAGATION

We extended the analysis from the tripartite synapse to the astrocytic cellular activity and
changed the inputs to random frequencies based on the MNIST dataset. Four processes
and the soma exchange signal via the Ca2+ and IP3 diffusions (Figure 5.13a and 5.13b).
Both the diffusion coefficients DP and DC are equal to 0.005, which maintains the dynam-
ics between the soma and the processes, and subsequently sets the boundaries of PA

between P0 and 0.5 µM to prevent oversaturation or depletion of the signaling molecules
within a compartment. The somatic Ca2+ oscillation (Figure 5.13a) exhibits global events
during the first and last spikes and independently local events from t = 15 to t = 40 sec-
onds. Synaptic inputs stimulate IP3 production exclusively in astrocytic processes; conse-
quently, somatic PA (Figure 5.13b) is entirely due to intracellular diffusion of IP3 from the
processes, or intercellular diffusion through gap junction connections. Intracellular Ca2+

oscillation then triggers the glutamate release activity that favors the synchronization of
compartmental activities (Figure 5.13c).

All four neighbors of the astrocyte under consideration exchange IP3 soma-to-somatically
through gap junctions. Figure 5.13d and 5.13e show the Ca2+ and IP3 dynamics of the
soma and its neighbors. The probability that the astrocytic state changes from inactive
(U) to active (A) and then to refractory (R) depends on the Ca2+ dynamics of both the sub-
cellular compartments and the somatic compartments of its adjacent cells (Figure 5.13f).
The PA level increases when the astrocyte is in the U and R states; the increase rate is
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Figure 5.13: Intra- and intercellular activities in a single astrocyte. (a) Intercompartment molecular exchange
between compartments leads to somatic (blue) and process (red) Ca2+ dynamics showing local and global
events. (b) The somatic PA increase is the summation of IP3 fluxes from the astrocytic processes. (c)
Astrocytic processes exhibit synchronous and asynchronous GA spiking activity following the Ca2+ events.
On the network level, (d) Ca2+ and (e) IP3 dynamics of the soma (blue) are also dependent on the molecular
concentration levels of its neighboring astrocytes (gray ). (f) Whether the astrocyte can communicate with its
neighbors depends primarily on its state.

0  50 100 150 200 250 300 350 400 450 500
Frequency (mHz)

10-4

10-3

10-2

10-1

100

M
ag

ni
tu

de
 (

dB
)

Astrocytic Process

Regular: A0 = 138.07

Full: A0 = 138.89

Chain: A0 = 121.49

Topology

(a)

0  50 100 150 200 250 300 350 400 450 500
Frequency (mHz)

10-4

10-3

10-2

10-1

100

M
ag

ni
tu

de
 (

dB
)

Astrocytic Soma

Regular: A0 = 138.30

Full: A0 = 135.01

Chain: A0 = 121.75

Topology

(b)

Figure 5.14: Spectral analysis of Ca2+ oscillation in (a) the processes and (b) somas.
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maximal during the U state, where its gap junction connections permit IP3 influxes. In-
versely, the somatic Ca2+ and IP3 levels drop in the A state as the astrocyte becomes
readily available for IP3 exchange.

We developed an astrocytic network model, a syncytium that operates as a singular sys-
tem. We simulated the three network architectures with varying astrocytic topology (chain,
full, and regular) for 4000 seconds. Next, we characterized the global (network level) as-
trocytic Ca2+ oscillations by converting the temporal responses of all the compartments
into their corresponding frequency responses using Fast Fourier Transform (FFT). Fig-
ure 5.14 shows the comparisons between the process and soma Ca2+ spectra. The
CA levels fluctuate between frequencies from 0 to 500 mHz, with peak amplitudes at
f = [0 : 50 : 500] mHz. The magnitudes are steady at frequencies less than 100 mHz
and start to decrease beyond that. In addition, the spectra suggest that the networks
exhibit more Ca2+ activities in the processes than in the soma. Moreover, the astrocytic
network with chain topology exhibits lower Ca2+ activity than the regular and full network
topologies, particularly during steady-state at A(0), whereas the full and regular networks
have similar global activities.

5.3.3.3/ ASTROCYTIC GLUTAMATE SPIKING ACTIVITY

Intracellular calcium wave propagation indirectly modulates the neural activity via astro-
cytic Glu− spikes. Therefore, we examined the spiking behavior of the astrocytes under
varying levels of connectivity. The raster plots in Figure 5.15a display the spiking pattern
of the astrocytic processes during the initial 100 seconds of stimulation. Of the three net-
works, synchronous spiking activity is apparent primarily in the chain topology (notably at
t = [20, 40, 60] s) and least in the regular topology. Meanwhile, regular topology appears to
have more frequent and dispersed spiking activity, in which processes at the extremities
(process number <100 and >700) were active, unlike in the chain topology. Addition-
ally, Figure 5.15b gives the number of spikes per second (equivalent to the number of
Glu−A-releasing astrocytic processes. The results support the previous expectation that
series-connected astrocytes favor network synchrony, whereas the spike rate decreases
in the full topology and is minimal in the regular connection.

To gain insight into the effect of ICW propagation in the network, we map the presynaptic
input into astrocytic output. Figure 5.16 shows the average spiking rate of input and output
per astrocyte in the network, given that the chain, full, and regular networks receive the
same set of stimuli. The input pattern in Figure 5.16a reveals certain astrocytes that re-
ceive no presynaptic input. The IO comparisons show that the chain topology spiking dis-
tribution (Figure 5.16b) reflects the input pattern compared with the other topologies. On
the other hand, the influence of ICW becomes more prominent in the full (Figure 5.16c)
and most in the regular topology (Figure 5.16d), noting the increase in spike rate of those
astrocytes with no presynaptic input. Therefore, the spikes in astrocytic processes, such
as those found in the extremities (Figure 5.15a), result from intracellular Ca2+ diffusion
and gap junction mediated IP3 diffusion rather than neurotransmission. The spike rate
distributions (Figure 5.16) suggest that the more gap junction connections an astrocyte
has, the slower it will take for local CA to reach the threshold, shown by the decrease in
spike rates of those astrocytes initially receiving the presynaptic inputs.
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Figure 5.15: Astrocytic network spiking behavior. (a) The raster plots and (b) the Glu−A spikes per second
graphs for the chain, full, and regular astrocytic network topologies suggest that the chain topology favors
synchronous activity.

5.3.3.4/ SYNAPTIC RELEASE PROBABILITY AND EFFICACY

Extrasynaptic glutamate then modulates the neurotransmitter release probability. In the
synchronous release process, the presynaptic bouton release Glu− upon the arrival of
AP. We also simulated a network without astrocytes while maintaining the neural network
architecture. The deterministic release results in constant counts of synaptic Glu− spikes
in all topologies, though they differ in the spike amplitude, based on the activity and inac-
tivity of the astrocytic process (except to the neural network). The synaptic release peak
probability, RS , changes from 0.685 to 0.745 upon iGluRs activation during gliotransmis-
sion. Given the same input pattern, the chain topology produces higher synaptic release
probability, as presented in Table 5.2, indicating that 68.57% (out of 2.26×106) of synaptic
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Figure 5.16: Comparison between the average spiking rates of the input and the astrocytes in the network.

release events are astrocytic Glu−-mediated. It also reveals that even though more astro-
cytes get activated in the full and regular topologies (shown in Figure 5.16c and 5.16d),
gliotransmission occurs in short durations.

Synaptic efficacy determines the strength of communication between the pre- and the
postsynaptic components, computed by comparing the number of successful postsynap-
tic spikes over the number of presynaptic input spikes, where successful spikes are those
Vout ≥ −50 mV, per 20 second-time windows. We performed a two-dimensional correlation

Table 5.2: Synaptic release probability.

Topology
Counts (%)

Without Gliotransmission With Gliotransmission
RS = 0.685 (peak) RS = 0.756 (peak)

No Astrocyte 100 0
Chain 31.43 68.57
Full 32.48 67.52
Regular 32.56 67.44
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Figure 5.17: Average synaptic efficacies (solid lines) in networks with varying astrocytic topologies. The
corresponding linear fits (dashed lines) indicate increasing efficacy with time.

between the input and output spikes using the corr2 MATLAB function to get the efficacy
curves shown in Figure 8. The curves indicate that neuron-astrocyte networks perform
more reliable synaptic communication than neurons. Here, the synaptic efficacy of the
neuron network (No Astrocyte) increases to and saturates at 0.254. Neuron-astrocyte
networks exhibit higher but fluctuating efficacy. The chain topology also produces the
highest efficacy, consistent with its synaptic release probability (Table 5.2) and spiking
rate (Figure 5.15b). In addition, the linear fits indicate that the efficacy gradually increases
with time (except in No Astrocyte topology).

5.3.4/ DISCUSSION

We have developed spiking neuron-astrocyte networks with varying astrocytic topologies
and analyzed its dynamics from the bottom up: from the subcellar compartments to the
single cells and finally to the network level. The tripartite synapse with deterministic neu-
rotransmitter release process is a feedforward and feedback system, where the presy-
naptic neuron creates input patterns with random frequency based on the pixel color
intensity (in grayscale) of the input MNIST image. The postsynaptic output consists of
fast and slow excitatory inputs from synaptic and extrasynaptic Glu−. Fraction of synaptic
Glu− diffuses to the astrocytic processes. The process releases extrasynaptic Glu- which
can modulate the presynaptic neuron release probability and the postsynaptic spine head
membrane potential, creating closed-loop signaling pathways.

The proposed model differs from the previous models in that the proposed astrocytic
cell dynamics are compartmentalized. The astrocyte performs integration of synaptic
inputs in the processes, and the soma forms a new level of integration of Ca2+ molecules
diffusing from the processes, rather than the commonly employed single point process.
In addition, the astrocytic also communicates with its gap-junction connected astrocytes.
Communication occurs based on the state of the astrocyte and not solely by the IP3
gradient between the cells. The change of state, a Markov process, is highly stochastic
and adds complexity to the direction of ICW propagation in the astrocytic network. Given
the complexity of the model and the numerous variables involved, HPC resources allowed
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us to observe the activity of every compartment in the network.

Extending the model to the network level, we simulated three networks with different as-
trocytic topologies: series connection, the full connection forming a lattice, and a regular
connection forming a k-NN random network. The simulation results indicate that the as-
trocytic network topology though highly heterogeneous depending on its location in the
brain is an essential factor in determining the function of the astrocytes in that network.
The astrocytic connectivity indicates the distance a Ca2+ wave can travel and influence
distant astrocytes in the network and, indirectly, the distant neurons. For example, in
Figure 5.15 and Figure 5.16, ICW in chain topology travels slower due to the distance
between astrocytes, resulting in confined communication between adjacent cells. Mean-
while, ICW in lattice and random networks influence numerous astrocytes, producing a
more dispersed spiking activity as shown in the raster plots.

5.3.4.1/ ASTROCYTIC CONNECTIVITY DRIVING NETWORK SYNCHRONY

There are two levels of synchronization in the proposed astrocytic network. The first
one is at the cellular level, wherein the astrocytic processes release extrasynaptic Glu−

simultaneously, albeit they receive different presynaptic input patterns (Figure 5.13c). The
synchronization is an effect of the IP3 and Ca2+ intracellular diffusions, as shown in the
global activity (all compartments have similar molecular levels) of the cell in Figure 5.13a
and 5.13b. The second is the network level synchronization, wherein various astrocytes
(adjacent or distant) simultaneously activate Glu−A spikes, as depicted in Figure 5.15. In
this case, synchrony is a consequence of ICW propagations and the stochastic shift of
astrocytic states.

One of the main functions of the astrocytic syncytium in neural activities is to maintain
network synchronization [314, 399]. A single astrocyte enwraps numerous synapses
of different neurons and can simultaneously modulate the postsynaptic neuron spiking
activity during global Glu−A release. The simulation results suggest that the astrocytes
connected in series generate a more synchronous activity than those connected in lattice
or random, as shown by the average Glu−A spike rate in Figure 5.15b. One can hypothe-
size that the more gap-junction connected astrocytes, the greater the network synchrony;
however, the results suggest the opposite. For chain topology with a maximum of two
neighboring astrocytes, the ICW is restricted within these cells, and the compartmental
[Ca2+]A increase rate from active and inactive is fast. In contrast, the full and regular
topologies have more neighboring astrocytes participating in gap junction mediated IP3
exchange. Crossing the Ca2+ threshold takes longer for an astrocyte because it has more
adjacent astrocytes to share its IP3 content. The spectrum in Figure 5.14b shows that the
chain topology has the lowest Ca2+ oscillation magnitude, supporting the assumption that
the Ca2+ oscillation is restricted within a few cells. The Ca2+ level is lower because the
astrocyte has fewer sources of IP3, unlike in regular topology with a maximum of five
GJCs, there is a sudden IP3 influx once the astrocyte shifts to the U state (Figure 5.13f).

In summary, astrocytic chain topology in neuron-astrocyte networks improves network
synchronization compared to the full or regular topology. Therefore, synchronization is
dependent on the number of GJC mediating IP3 exchanges and the distance of ICW
propagation.
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5.3.4.2/ EFFICACY VS. HOMEOSTASIS

We quantified the synaptic efficacy with time by correlating the input and output spiking
activity. It is evident in Figure 5.17 that the networks with astrocytes have a consider-
able improvement in communication strength over the neuron network alone. In addition,
the levels of synaptic efficacy linearly increase with time, unlike in a neuron network that
stabilizes at 0.254. This increase in efficacy corroborates our results discussed in the
previous section, that astrocytes indeed support synaptic plasticity. Moreover, the chain
network topology gives the highest efficacy of the three neuron-astrocyte networks, an ef-
fect attributed to the restricted ICW propagation between a few adjacent cells. Restricted
ICW is evident in the average spiking rate shown in Figure 5.16a and 5.16b. Because
of this restriction, IP3 production and spiking activity of the astrocytes in chain topology
significantly depends on the presynaptic spikes [300]. In addition, Vuillaume et al. [400]
presented neuron-astrocyte network wherein astrocytes transform neural activity across
multiple layers of neurons. It showed that the input activities are more correlated with the
neuron networks than with astrocyte mediated neuron networks, which corroborates our
results that neural activity in the proposed network is correlated with both the input and
astrocytic activities.

Another function of astrocytic networks is homeostasis, where astrocytes prevent neurons
from hyperactivity. In the case of full or regular network topology, ICW facilitates Glu−A
release, even in the absence of presynaptic input, or weakens Glu−A release probability
by lessening the amount of [Ca2+]A in the astrocytic processes (through diffusion). The
effect of ICW is noticeable in Figure 5.16c and 5.16d, where astrocytes receiving no
input generate Glu−A spikes while those with high input rates show lower activity than
in chain topology. Synaptic strengths of tripartite synapses from a single neuron are
bounded in a mean efficacy. If a group of postsynaptic spine heads fires more frequently
than others, astrocytes would slightly decrease the group activity and activate previously
silent neurons via ICW propagation. Remarkably, the full and regular connections can
best implement network homeostasis, credited to GJCs. The regular network activity in
Figure 5.15b displays a dispersed astrocytic activity, indicating that neural modulation
by astrocytes is widely spread in the network. Homeostasis is, therefore, necessary to
maintain network stability.

In the proposed network architecture, the astrocytic heterogeneity posed a counteracting
effect between efficacy (and synchrony) and homeostasis, where chain topology pro-
motes higher efficacy while full or regular topology leads to network stability.

Therefore, whether to implement a chain, full or regular astrocytic topology entirely de-
pends on the intended applications.

5.3.4.3/ ASTROCYTIC NETWORKS IN AUTOENCODERS

We used the MNIST dataset to visualize the output of the postsynaptic neurons rather
than presenting a random set of spikes. Autoencoders in artificial intelligence is a type
of neural network composed of an input layer encoder, a hidden layer compressor, and
an output layer decoder that use unsupervised learning algorithm [401]. Gordleeva et al.
[14] proposed a spiking neuron network to model working memory where the astrocytic
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network promotes successful recall by modulating the synaptic connections. Though not
explicitly termed, the biological model by Gordleeva et al. is equivalent to an autoen-
coder in artificial networks. Our proposed network architecture can also be employed
as a sparsely connected autoencoder, where astrocytes help the postsynaptic spines to
replicate the input signals.

Therefore, the functions of astrocytes in maintaining network synchronization, improving
synaptic communication strength, promoting stabilization, and learning [402] are indica-
tive of the potentials the astrocytes have in artificial intelligence implementations.

5.4/ CONCLUSION

Astrocytes are highly heterogeneous, with their diverse receptor expressions, complex
morphology, and elaborate network connections, making the astrocytic dynamics chal-
lenging to predict. However, increasing studies support the notion that astrocytes are
not just passive components but are integral components in brain computations. In this
chapter, we studied the interaction of neurons and astrocytes from the ground up, from
its tripartite coupling to neural modulation by ICW, and determined the possible functions
of astrocytes in neural computing.

First, we focused on communication within the tripartite synapse, where we developed
a detailed and biological model of the presynaptic bouton, postsynaptic spine head, and
the astrocytic processes. The stochastic neurotransmitter release mediates the astro-
cytic processes, which forms a feedback signaling pathway through Glu−A that modulates
the neurotransmitter release probability. The results suggest that the astrocytes indirectly
modulate synaptic plasticity and increase the communication strength between the neu-
ronal components. On the other hand, astrocytes can also impair synaptic communication
due to the excitotoxicity resulting from the overactivation of neuronal receptors during a
prolonged period of Glu−A released in the extracellular space.

We then extended the neuron-astrocyte interaction by widening the astrocytic territory by
developing a neuron network for signal reconstruction using unsupervised learning me-
diated by astrocytic networks. We concluded that the heterogeneous connection of the
astrocytic networks is not random at all but instead plays a significant role that depends
on the function of the neural network. Astrocytic networks with chain topology can as-
sist network synchrony and improve communication strength, while randomly connected
astrocytes can promote network homeostasis via ICW propagation.

There are still some debates on whether astrocytes should be considered computational
components, which can only be answered when leading-edge technology capable of
measuring and analyzing the minute dynamics of subcellular components are available.
Based on the advantages displayed by the astrocytes in our study, we continue to work
under the notion that astrocytes are active components in brain processes and memory.
In the following chapter, we extend our study on the neuron-astrocyte interaction by im-
plementing a spiking network for image recognition and identifying the role of astrocytes
in learning.
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NEURON-ASTROCYTE NETWORK FOR

IMAGE RECOGNITION

6.1/ INTRODUCTION

Astrocytes influence neural communication on three levels. First is in the tripartite
synapse compartment, where an astrocytic process via gliotransmission forms a closed-
loop system consisting of a feedback pathway for modulating the presynaptic neurotrans-
mitter release and a feedforward connection activating postsynaptic SICs. Second is the
cellular level integration, where thousands of incoming presynaptic signals produce IP3-
dependent global and local Ca2+ elevations. During astrocytic activation, the astrocytic
Glu− release modulates the postsynaptic neurons coupled with the astrocyte, thus, pro-
moting network synchrony. Lastly, at the network level, ICW propagation facilitates com-
munication between astrocytes, allowing an astrocyte to modulate the synaptic activities
of neurons not coupled with itself but with its neighboring astrocytes. The heterogeneity of
the astrocytic morphology and gap junction connectivity either boosts or impairs synaptic
communication, thus, affecting the whole network performance.

In the previous chapter, we proposed that different astrocytic topologies can be em-
ployed in neural networks to improve network performance by increasing synaptic ef-
ficacy, promoting synchronization through simultaneous firing, or maintaining network
stability through homeostasis. Here, we develop a spiking neural network with astro-
cytic modulation to show that astrocytes assist memory formation and recognition. In AI,
spiking neural networks or SNNs are considered the next generation of neural network
that closely mimics neural processes where computations are event-based, rather than
the previous generations using rule-based knowledge. However, one of the main chal-
lenges in simulating a biologically inspired neuron-astrocyte network is the computational
complexity; it requires a longer simulation time using supercomputing resources than is
necessary for a neuron network alone.

We develop an architecture derived from the baseline SNN for unsupervised MNIST clas-
sification designed by Diehl and Cook [403], then extend the architecture by integrat-
ing astrocytes into the network using the simplified Postnov astrocytic model [312, 313],
which lessens the computational complexity while keeping the primary astrocytic func-
tions. This study is one of the first attempts to utilize astrocytes in a spiking network for
digit classification using the standard MNIST dataset. Interestingly, astrocyte-mediated
SNNs display better network performance with an optimal variance-bias tradeoff.
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6.2/ SPIKING NEURON ASTROCYTE NETWORKS: BIOLOGICAL TO

ARTIFICIAL

The Spiking Neural Networks (SNNs), considered the third generation of neural networks,
are becoming competitive with their Artificial Neural Network (ANN) counterparts due to
their ability to capture brain dynamics [11, 404, 405]. Inspired by biological neural mech-
anisms, SNNs utilize spike-based signaling to perform brain-like computations, represent
and integrate spatiotemporal information, communicate sparse and asynchronous sig-
nals, and process massive data in parallel. These properties, especially its temporal
dimensions, make SNNs leading candidates for real-life applications and neuromorphic
hardware implementations compared to other deep neural networks. As in real neural
circuits, SNNs offer low-power consumption, analog computation, fast inference, online
learning, and event-driven processing.

While models of SNNs closely mimic brain processes, there are some drawbacks. Train-
ing using benchmarks such as MNIST and ImageNet indeed yields a lower accuracy than
ANNs, which can be attributed to converting the frame-based images into rate-coded in-
formation. Besides, there is a lack of training algorithms for spiking networks. Training
SNNs means dealing with the asynchronous and discontinuous nature of spikes, mak-
ing the application of current differentiable backpropagation techniques quite challeng-
ing [11]. In spiking neuron-astrocyte networks (SNANs), astrocytes were determined to
promote neural synchrony [406], which can help in stochastic neural spiking. Another
advantage of astrocytes in the neural network is their function in memory storage – in
maintaining long-term hippocampal potentiation [407]. Our research explores these as-
trocytic properties and their functions in neural networks to develop a SNAN capable of
recognizing images, an attempt to bridge brain-inspired computation and artificial net-
works.

The general aim of this study is to develop a SNAN architecture for image recognition
purposes using an unsupervised learning scheme. First, we create a neural network
incorporating astrocytes between neuronal networks using simplified neurons and astro-
cyte models. Then, we added an unsupervised learning algorithm for image recognition
using spike-timing-dependent plasticity (STDP). Next, we train the network using inputs
from the MNIST dataset to determine the hyperparameters (related to network architec-
ture and learning) and optimize the network parameters (synaptic coupling strengths and
firing thresholds), leading to the best network performance. Using the trained network,
we then identify the accuracy of the network in predicting the output digits. Lastly, we
analyze the influence of astrocytes on network performance. The results suggest that
astrocytes indeed facilitate faster learning compared to SNN alone.

6.3/ DEVELOPING THE SNAN ARCHITECTURE

This section describes the tripartite synapse connection, the neuron and astrocyte layers,
and the corresponding network architecture. In addition, it also includes the learning algo-
rithm used in training the network, the simulation process, and the performance analysis
method.
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Figure 6.1: The tripartite synapse model consists of two layers of neurons and an astrocytic layer in be-
tween. The presynaptic neuron is a Poisson spiking neuron whose spike-based event modulates the postsy-
naptic neuron and the astrocyte. The postsynaptic layer consists of AIF neurons with lateral inhibitions from
interneurons (IN). Therefore, the postsynaptic neuron receives three types of inputs whose strengths are
defined by the synaptic weights wexc1, wexc2, and winh from the presynaptic neuron through neurotransmission,
the astrocyte through gliotransmission, and inhibition from neighboring IN. The IN sense the spiking activity
of the coupled postsynaptic neuron and relays it to the neighboring excitatory neurons. The astrocyte then
integrates the synaptic inputs whose coupling strengths are controlled by β. Here, the model ensures that in
a tripartite connection, the astrocyte modulates the postsynaptic neuron counterpart of its input neuron.

6.3.1/ TRIPARTITE SYNAPSE MODEL

The tripartite synapse shown in Figure 6.1 consists of a Poisson spiking presynaptic
neuron whose output is coupled to the astrocyte and the postsynaptic neuron. Here,
the Poisson spiking rate depends on the input image pixel intensity ranging from 0 for
black to 31.875 Hz for white pixels − low enough so that the presynaptic inputs do not
oversaturate the astrocytic dynamics and high enough to generate a postsynaptic spike.
The postsynaptic neuron summates three types of inputs: (1) the fast excitatory inputs
resulting from neurotransmission, (2) the slow excitatory inputs due to gliotransmission,
and (3) the inhibitory inputs from the interneurons (IN). This adaptive integrate-and-fire
(AIF) neuron is defined by

τ
dv
dt
= (vrest − v) + gexc1 (vexc1 − v) + gexc2 (vexc2 − v) + ginh (vinh − v) ,

τx
dx
dt
= −x, x = gexc1, gexc2, ginh,

(6.1)

where v (in mV) corresponds to the postsynaptic neuron potential (see Integrate-and-Fire
Model). The conductance (in nS) of the fast excitatory, slow excitatory, and inhibitory
synapses are equal to the weight summations gexc1, gexc2, and ginh, respectively, and
where x defines their conductance decay through time t. The parameter vrest is the mem-
brane resting potential while vexc1, vexc2, and vinh are the reversal potentials of the excita-
tory and inhibitory synapses. The constant parameters, τ and τx, are the time constants
of the membrane potential and the synapses, respectively. When the AIF neuron mem-
brane potential v crosses its spiking threshold θ, it generates a spike, then immediately
resets to a level equal to vreset, and remains here until the refractory period, τre f , ends.
During training, the adaptive threshold increases by α′ after a spike and decays following
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Table 6.1: List of parameters of the postsynaptic neurons with lateral inhibition.

Parameter Value Description
Postsynaptic Excitatory Neurons
vrest -65 mV Membrane resting potential
vexc1 0 mV Fast synaptic input reversal potential
vexc2 0 mV Slow synaptic input reversal potential [338]
vinh -100 mV Inhibitory synaptic reversal potential
τ 100 ms Membrane time constant
τexc1 1 ms Excitatory synapse (fast) time constant
τexc2 600 ms Excitatory synapse (slow) time constant [338]
τinh 2 ms Inhibitory synapse time constant
vreset -65 mV Reset potential
vthresh -52 mV Spiking threshold level
tre f 5 ms Refractory period
θ0 20 mV Spiking threshold offset
τθ 107 ms Spiking threshold time constant
α′ 0.05 mV Increase in spiking threshold
Postsynaptic Inhibitory Neurons
vrest -60 mV Membrane resting potential
vexc1 0 mV Synapse reversal potential
τ 100 ms Membrane time constant
τexc1 1 ms Excitatory synapse time constant
vreset -45 mV Reset potential
vthresh -40 mV Spiking threshold
tre f 2 ms Refractory period

Unless otherwise stated, the parameters are taken from Diehl and Cook [403].

the exponential model
dθ
dt
=
θ − θ0
τθ
, (6.2)

where θ = v − vreset and τθ is the time constant.

The postsynaptic neuron layer consists of lateral inhibition for maintaining homeostasis
and signaling the postsynaptic neuron activity to its neighbors. Here, the postsynaptic
neuron signals its spiking activity to the IN, and in return, the IN then inhibits the activity
of the other neurons, generating competition among neurons. The interneurons follow the
IF model in Equation 6.1 but without the adaptive property θ and the gexc2 and ginh con-
ductances, while gexc1 changes with respect to the postsynaptic neuron spiking activity.
Refer to Table 6.1 for the list of parameters of the postsynaptic excitatory and inhibitory
neurons.

The astrocyte function as a point process integrating the presynaptic inputs, following
the simplified astrocytic model proposed by Postnov et al. [312, 313]. The synaptic
coupling variable z spikes to 1, synchronous with the presynaptic neuron spiking, and
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Table 6.2: Simplified astrocytic model parameters.

Parameter Value Description
Neuron-astrocyte coupling
τS 10 ms Synaptic delay time constant
sS 1 Steepness of activation
hS 0 Activation control
dS 3 Relaxation control
IP3 production
τS m 100 ms Time constant
sS m 100 Steepness of activation
hS m 0.45 Threshold
dS m 3 Deactivation rate
Astrocytic Ca2+

ϵc 0.04 Characteristic time control
c1 0.13 Ca2+ oscillation control parameters
c2 0.9
c3 0.004
c4 2/ec

r 0.31 Ca2+ oscillation initial state
τc 600 ms Time constant for Ca2+ oscillation

The parameters are taken from Postnov et al. [312, 313].

then immediately inactivates by decaying to 0, following the simplified model

τS
dz
dt
= −

z
dS
, (6.3)

where dS controls the relaxation of z and τS is the synaptic delay. The variable z trig-
gers the astrocytic IP3 production, S m, (Equation 4.27) resulting in Ca22+ elevation, c,
described by the system shown in Equation 4.26. The astrocyte then integrates the
presynaptic signals from multiple synaptic connections, where β is the control parame-
ter defining the magnitude of influence of the presynaptic neuron activity on the astrocytic
Ca2+. The modified Ca2+ model [313] is defined as

τc
dc
dt
= c − c4 f (c, ce) +

r + k∑
i=1

βS mi

 . (6.4)

When the astrocytic [Ca2+], c, increases beyond the threshold, cthresh, it triggers the re-
lease of extrasynaptic Glu−, activating slow excitatory synapses of the coupled postsy-
naptic neurons. After the Glu− spike, the astrocyte stays in the refractory period provided
that c stays above the threshold. The astrocytic parameters are listed in Table 6.2.

6.3.2/ NETWORK ARCHITECTURE

The digit recognition process follows the network architecture presented in Figure 6.2.
The process starts from the image preprocessing, where the input or sample image is
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Figure 6.2: Network architecture for image recognition is a three-stage process comprising an input prepro-
cessing unit, a SNAN learning unit, and a classifier unit.

converted into rate-coded signals, followed by unsupervised learning by the SNAN, and
lastly, based on the SNAN output spike patterns, the machine learning (ML) model pre-
dicts the output digit. Given a sample digit from the MNIST dataset, a 28×28-pixel image
of a handwritten digit is converted into a 784×1 vector of pixel intensities. One pixel inten-
sity corresponds to the spiking frequency that drives a Poisson neuron in the input layer
of the SNAN.

In the spiking network, 784 Input layer neurons form 78 400 fully connected (dense)
synapses with the neurons in the First Layer. There is a 1:1 ratio between the number of
excitatory and inhibitory neurons in the First Layer, where the forward connection (from
the excitatory to the inhibitory) is a one-to-one topology. At the same time, the lateral in-
hibitions form 9900 inhibitory synapses, where an IN connects with all excitatory neurons
in the same layer except with the one in the forward connection. The astrocytic layer be-
tween the two neuronal layers, also following a 1:1 ratio with the First layer neurons, forms
the tripartite synapses by connecting with the synapses rather than directly with the input
layer neurons. Because an astrocyte is coupled with the synapses, it can receive multi-
ple presynaptic inputs from the same Input layer neuron and increase its influence on a
First layer neuron by modulating multiple tripartite synapses coupled to that postsynaptic
neuron.

In the machine learning unit, the spike counter converts the output spiking patterns of
the First layer excitatory neurons into a vector of whole numbers corresponding to the
number of spikes in each neuron. This vector gives the set of input features for the
classifier. Our simulation analysis suggests that the cosine k-NN classifier using 5-fold
cross-validation yields a faster and more accurate classification performance than the
other available machine learning classifier. Then lastly, the network predicts the output
from ten classes labeled from 0 to 9. This paradigm requires that the SNAN generates a
stable spiking pattern for each input class for the network to recognize and differentiate
each input pattern.
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Figure 6.3: STDP curve. Synaptic plasticity, specifically the strengthening and weakening of the synaptic
connection between two neurons, is relative to the temporal window between the pre- and postsynaptic
spikes. (Parameters: τpre = τpost1 = 20 ms, τpost2 = 40 ms, ηpre = 0.1, ηpost = −0.1.)

6.3.3/ SPIKE-TIMING-DEPENDENT PLASTICITY

Learning between interconnected neurons (or neuron-astrocyte) occurs by strengthen-
ing or weakening their synaptic connections during neuronal activities. Donald Hebb
proposed the concept of synaptic plasticity, suggesting that simultaneous and correlated
spiking between biological neurons strengthens their synaptic coupling [408]. This form
of synaptic plasticity prompted the Hebbian learning rule, one of the earliest algorithms
used in training SNNs. Here, the synaptic weight increases when both the pre- and post-
synaptic neurons are active and decreases otherwise [409]. However, one of the main
drawbacks of the Hebbian learning rule is that synaptic weights are updated only when
the neurons are coactive, causing a long period of synaptic weakening when the spiking
activities between neurons are uncorrelated. A form of long-term plasticity called spike-
timing-dependent plasticity (STDP) addressed the temporal issue in Hebbian plasticity
[410–412]. Rather than correlated inputs driving the synaptic plasticity, the spiking activ-
ities of neurons within a temporal window define the direction of synaptic plasticity, and
the relative timing between the pre- and postsynaptic firing determines the change in the
synaptic weights. Therefore, the SDTP learning rule is suitable for training the SNAN due
to the significant difference between the neuronal and astrocytic time scales.

The STDP curve in Figure 6.3 describes the increase or decrease in synaptic weight
(∆w) relative to the arrival of the presynaptic spike and the generation of postsynaptic
AP. If the presynaptic spike arrives before the postsynaptic spike (∆t > 0), the synaptic
weight is updated following w → w + ∆w. Otherwise, the weight decreases when the
postsynaptic neuron generates an AP before the presynaptic spike (∆t < 0), in that w →
w − ∆w. However, biological neurons do not have memories of their spiking activities,
and storing and comparing all the spike timing during simulation has rich computational
cost. Therefore, we used a time-invariant and event-based STDP rule by adding pre-
and postsynaptic traces, αpre and αpost, eliminating the need to compute for ∆t while still
following the STDP curve (Figure 6.3) [413, 414].

In this STDP rule following Diehl and Cook model [403], the increase in synaptic weight
includes a weight-dependent term so that during postsynaptic activation, the weight in-
creases only after the presynaptic activation. Let the traces αpre, αpost1, and αpost2 decay
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exponentially by

τpre
dαpre

dt
= −αpre, τpost1

dαpost1

dt
= −αpost1, τpost2

dαpost2

dt
= −αpost2, (6.5)

where τpre, τpost1, and τpost2 are the decay constants equal to 20 ms, 20 ms, and 40 ms,
respectively. On presynaptic activation, the weights are updated following the rule

w→ w + ηpreαpost1, (6.6)

while on the postsynaptic activation,

w→ w + ηpostαpreαpost2, (6.7)

where ηpre and ηpost are the pre- and postsynaptic rates, respectively. The excitatory-to-
excitatory connections use the pre- and postsynaptic spiking weight update rules, while
astrocyte-postsynaptic coupling only increases postsynaptic weights during astrocytic ac-
tivation. Due to the significant time scale difference between neurons and astrocytes, the
slow synapse conductance depletes to zero when the postsynaptic neuron fires con-
tinuously. Moreover, the excitatory-to-inhibitory and the inhibitory-to-excitatory ∆w are
constants equal to 17 and 10.4, respectively.

6.3.4/ SIMULATION METHOD AND PERFORMANCE ANALYSIS

Neural simulators such as NEURON [17], NEST [415], and Brian2 [416] provide compu-
tational neuroscientists efficient tools to simulate and analyze large networks [417]. Here,
we used the Brian2 simulator, in conjunction with the python programming language, as
it explicitly describes models in a high-level form by writing the differential equations di-
rectly in the code, compared with other simulators. It allows us to efficiently model and to
integrate astrocytes into the network.

The MNIST dataset [16] contains 60 000 training, 5 000 validation, and 5 000 test images.
Each image is fed into the proposed network one at a time for 350 ms, followed by a
resting time of 150 ms, to ensure that the network activity due to the previous image will
not overlap with the new sample; therefore, one sample takes 500 ms to pass through
the SNAN. The network continuously updates its weights via the STDP learning rule and
the neuronal firing thresholds during training. We divide one epoch (containing all the
training images) into batches of 1000 samples each and then normalize the weights after
each batch. After each epoch, the validation set is fed into the network using the learned
parameters.

We simulated different spiking network configurations to determine the hyperparame-
ters that lead to optimum network performance: one SNN and three SNANs (SNAN,1,
SNAN2, SNAN3). All networks have the same number of neurons and astrocytes (except
in SNN), while the number of synaptic connections with astrocytic coupling increases from
10% to 60% (increment of 10%) of the total synapses, where each astrocyte receives the
same number of presynaptic inputs. The set of hyperparameters is listed in Table 6.3.
The simulations were performed using the high-performance computing resources from
the Barcelona Computing Center and the Centre de Calcul de l’Université de Bourgogne.
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Table 6.3: Set of hyperparameters per configuration.

Hyperparameters SNN SNAN1 SNAN2 SNAN3
ηexc1pre 0.0001 0.0001 0.0001 0.0001
ηexc1post 0.01 0.01 0.01 0.01
ηexc2pre - 0.000001 0.00001 0.000001
ηexc2post - - - -
wexc1max 1 1 1 1
wexc2max - 0.001 0.01 0.001
β - 0.00005 0.00005 0.0001

Refer to Appendix E for more information regarding the computing resources specifica-
tions.

6.3.5/ PERFORMANCE ANALYSIS

The ML accuracy defines how well the system groups and distinguishes the spiking pat-
terns generated by the SNAN from one class to another. Therefore, the classification per-
formance of the ML unit depends on the extent to which the SNAN learned the rate-coded
images. As the network evaluation metric, accuracy is the ratio between the number of
correctly predicted outputs over the total number of inputs. During training, we determine
the accuracy after each epoch. Then, using the learned parameters after each epoch,
we feed the validation set into the network for prediction and compare the results with the
training accuracy. Therefore, the parameters chosen for the test network simulations are
the learned parameters of the epoch giving the maximum average accuracy between the
train and validation sets.

6.4/ RESULTS

We simulated the spiking networks and set the SNN as the baseline of the SNAN activ-
ities. Here, we focus on the influence of astrocytes in network activities. The minimum
numbers of neurons for conventional MNIST classification networks are 784 and 100 in
the Input and First layers, respectively. Here, the number of astrocytes in all networks
is equal to the number of First layer excitatory neurons (1:1 ratio); however, the num-
ber of synapses covered by astrocytes increases by 10% of the total number of Input to
First layer synaptic connections. A higher number of neurons results in more synapses.
Moreover, astrocytes create two more types of synaptic coupling (presynaptic neuron-to-
astrocyte and astrocyte-to-postsynaptic neuron shown in Figure 6.1), resulting in a more
complex network that requires prolonged simulations.

The SNAN design is a highly iterative process, requiring numerous trials before arriving
at the possible set of hyperparameters shown in Table 6.3. The neuronal and neuron-
to-neuron synaptic hyperparameters are consistent in all the networks. Based on our
initial simulations, these parameters lead to regular neuronal spiking. The Poisson neu-
ron changes its spiking rate every 500 ms. We also determined that the Poisson neuronal



144 CHAPTER 6. NEURON-ASTROCYTE NETWORK FOR IMAGE RECOGNITION

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |Spikes

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

0.5

1

z

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

0.2

0.4

0.6

S
m

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

0.5

1

1.5

c

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-70

-60

-50

-40

v 
(m

V
)

Figure 6.4: Sample tripartite synapse dynamics. The spikes represent the regular spiking activity of the
input neuron that triggers the fluctuation of the synaptic coupling z from 0 to 1, which then activates the S m

signaling pathway. The parameter β controls the fraction of S m influencing the astrocytic Ca2+ spiking. The
postsynaptic membrane potential v is the summation of the excitatory signals from the presynaptic neuron
and the astrocyte. (Parameters: dt = 1 ms, input spike rate = 5 Hz, vrest = −70 mV, θ = −40 mV, cthresh = 0.40,
ge1 = 1 nS, synaptic delay = 9.62 ms, β = 0.006, τc = 50 ms, ge2 = 1 nS.)

firing rate lies between 0 to 32 Hz (proportional to the pixel intensity from 0 to 255) to pre-
vent oversaturation of astrocytic S m (IP3 pathway) and avoid overexcitation of astrocytic
Ca2+ dynamics, c.

6.4.1/ TRIPARTITE SYNAPSE DYNAMICS

Figure 6.4 is an overview of the activities of a single tripartite synapse without STDP and
wherein the astrocyte only receives a presynaptic input and modulates one postsynap-
tic neuron. The presynaptic neuron generates 5 Hz and regularly spaced spikes. The
synaptic coupling variable z increases to 1 simultaneously with the input neuron spikes
and then exponentially decays back to 0, replicating the neurotransmitter release and
recycling process. In addition, the IP3 pathway (S m) also increases and decays with z,
and whose peak amplitudes stabilize at 0.54. The Ca2+ variable c generates spikes, upon
crossing the 0.4 threshold, with a peak amplitude equal to 1.29 with a pulse duration of 58
ms. After activation, the astrocyte is in the refractory period provided that c > 0.4. A sin-
gle fast excitatory synaptic input generates a postsynaptic spike, v, with -64.38 mV peak
amplitude (first three spikes). In this example, the fast and slow excitatory synapse con-
ductances and weights are equal to 1 nS and 1, respectively, creating the same strength
of influence on the postsynaptic neuron. However, the combination of the neuronal and
astrocytic inputs triggers a sudden increase in v up to -46.35 mV. Then, v decays to 0
while fluctuating, resulting from the fast activation of presynaptic input.
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Figure 6.5: Population rates of (a) First layer neurons and (b) astrocytic layers with an increasing number of
tripartite synaptic connections.

In the SNAN, astrocytes receive hundreds of inputs; therefore, the summation of slow
synaptic weights must generate a conductance, gexc2, low enough to not overexcite the
postsynaptic neuron. In addition, the neuron-astrocyte coupling control factor β must be
high enough to trigger astrocytic activation. We performed multiple simulations and deter-
mined the astrocytic hyperparameters in Table 6.3. Here, the astrocyte-neuron coupling,
wexc2, is updated upon the arrival of astrocytic input; however, there is no wexc2 update
(ηexc2post is null) upon postsynaptic neuron spiking due to the significant time scales differ-
ence between the astrocyte and the neuron. If STDP is bidirectional, then the fast-spiking
of the postsynaptic neuron can cancel the astrocyte-neuron coupling. High slow excita-
tory synaptic weights excite the First layer neurons that can cause erratic spiking patterns,
suggested by the average spiking rates of SNAN2 in Figure 6.5a that grow with an ex-
tended number of tripartite connections. The astrocytic population rates of SNAN1 and
SNAN2 (Figure 6.5b) have the same trend due to the similarity in β. For β = 0.001 and
β = 0.0005 with 10% and 20% tripartite synapses, respectively, are inadequate to activate
the astrocytes.

6.4.2/ TRAINING RESULTS

We trained the networks by presenting the entire 60 000 MNIST training dataset 25 times.
The Table F.4 shows the approximate simulation runtime for training 25 times of input
representations per configuration. Figure F.1 and Figure F.2 in Appendix F, respectively,
show the synaptic weights of the input-to-first and astrocyte-to-first layer couplings of the
SNN and SNANs (with 50% tripartite synapses) after 25 epochs. The patterns suggest
which input neurons were inactive and strongly coupled with the first layer neurons. The
synaptic weight evolution in Figure 6.6 show the ability of the First layer neurons to learn
the representative inputs. Here, the 784 excitatory-to-excitatory synaptic weights vector
of a neuron is rearranged to a 28×28 matrix. For example, the second neuron in the SNN
learned the features of class ”1”, and the ninth neuron in SNAN3 initially learned class ”8”
features, then became strongly coupled with class ”1” inputs. The receptive fields show
that neurons in the three SNAN configurations learn almost the same features (3, 2, 0, 6,
and 6), while the neurons in SNN learn differently.
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Figure 6.6: Receptive field evolutions for the nine First layer neurons of the SNN and SNANs with 50%
tripartite synaptic components.

The classifier then predicts the output class based on the spiking patterns given by the
SNAN per individual input. Figure 6.7 summarizes the change in training accuracy of
each network configuration with increasing synapses covered by astrocytes. The curve
with 0% tripartite synapses is the training accuracy of SNN, used as the reference in
comparing the SNAN performance. The accuracy curves are the same during initial train-
ing, and the SNN gradually outperforms the SNANs. In SNAN2, it is noticeable that the
rate of increase in the accuracy of SNN is maximum. However, starting from Epoch 13,
the SNN performance decreases to a minimum and becomes stable at an average accu-
racy of 65.38%, and then all SNANs achieve higher accuracy than SNN. Figure 6.6 also
indicates that SNANs with 50% tripartite synapses have higher performance in all net-
work configurations, wherein the maximum accuracy is 69.94% at Epoch 13 for SNAN1,
69.76% at Epoch 25 for SNAN2, and 70.13% at Epoch 23 for SNAN3. From these re-
sults, SNAN3 with 50% tripartite synapses leads to maximum classification performance.
It is also indicative that the SNAN produces spiking patterns easily categorized by the ML
unit.

The validation accuracy curves in Figure F.3 of Appendix F, on the other hand, indicate the
reverse – showing that the SNN best predicts the output class with maximum accuracy of
70.66% at Epoch 25. In SNAN1 (10%-50% tripartite synapses), the accuracy curves sta-
bilize at an average level equal to 61.60%, almost 9% lower than SNN. In SNAN2, where
the astrocyte-neuron synaptic coupling strength is a factor of 10 greater than SNAN1,
the increase of tripartite connections to 50% and 60% results in a sudden decrease in
validation accuracy, implying overfitting of the trained SNAN2 and that the introduction of
unknown samples generates irregular spiking patterns. SNAN3 has the same coupling
strength as SNAN1 but double the presynaptic-to-astrocytic coupling strength. In this
case, the validation accuracy increases gradually but results in higher performance (for
20% and 30% tripartite synapses).
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Figure 6.7: Training accuracy per network configuration with an increasing number of tripartite synapses as
a function of the presented training epoch.
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We chose the test network parameters from the train vs. validation accuracy graphs in
Figure 6.8 to 6.10. Strikingly, the SNN network has a validation accuracy curve of 6%
higher than the training accuracy, indicating underfitting. The increase of astrocytic cov-
erage by up to 30% diminishes the difference between the train and validation accuracy
of SNAN1 (Figure 6.8). A further increase to 60% results in considerable divergence
between the accuracy curves. The same results are noticeable in SNAN2 (Figure 6.9);
validation accuracy increases with more astrocytic-mediated synapses but drops signif-
icantly to 10% accuracy for 60% tripartite connections. However, SNAN3 validation ac-
curacy, with slow astrocyte-to-neuron STDP, and stronger neuron-to-astrocyte coupling
(β = 0.001), also shows a slower convergence with the training accuracy (Figure 6.10).
The SNAN3 with 20% and 30% tripartite connections have comparable training and val-
idation accuracy levels in all configurations. Also, for the given SNAN3 parameters with
40%-60% astrocytic mediated synapses, the network performance improves gradually,
compared to the low validation accuracy in SNAN2 (Figure 6.9). These results are accor-
dant with our results in Chapter 5, suggesting that astrocytes can either improve or impair
network activities.

Variance is a metric describing the ability of the network to adjust and predict the output
given a different input dataset [418, 419]. Here, low variance means that the training
and validation accuracy is in the same low error region while ensuring that the training
accuracy is higher than the validation (not overfitting). Bias describes the ability of the
network to capture relevant features, determined by the difference between the predicted
and actual values [420]. The SNN, in this case, displays underfitting (having a higher
validation than training accuracy). Therefore, the test network parameters are from the
epoch giving the best variance-bias tradeoff – with the low classification variance and
bias [421].

The network parameters giving the optimal model complexity (balance between variance
and bias) are the learned parameters after the epochs specified in Table 6.4. The SNN is
optimal after ten times input presentations. SNANs achieve higher network performance
and, in some instances, require less training. For example, it only takes seven itera-
tions for SNAN1 with 40% tripartite connections to achieve an accuracy of 0.20% less
than SNN, and nine iterations for SNAN3 with 60% tripartite connections to obtain 1.21%
higher than SNN. In addition, for the same number of epochs, SNAN2 with 50% tripar-
tite connections achieves 1.07% higher than SNN. The results in Table 6.4 suggest that
astrocytes support neuronal memory formation and promote faster learning.

Table 6.4: Epochs of the network parameters with optimal model complexity.

% Tripartite
Synapse

SNAN1 SNAN2 SNAN3
Train

Accuracy (%) Epoch #
Train

Accuracy (%) Epoch #
Train

Accuracy (%) Epoch #

0 67.76 10 67.76 10 67.76 10
10 67.30 14 67.30 14 67.94 25
20 67.12 19 65.90 12 66.65 20
30 68.94 18 66.34 12 68.41 19
40 67.56 7 67.45 24 67.45 25
50 69.26 15 68.83 10 66.36 25
60 67.13 25 67.07 24 68.97 9
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Figure 6.8: SNAN1 training (solid lines) and validation (dashed lines) accuracy for n% tripartite synapses.
(Parameters: ηexc1pre = 0.0001, ηexc1post = 0.01, ηexc2pre = 0.000001, wexc1max = 1, wexc2max = 0.001, and β = 0.00005.)



150 CHAPTER 6. NEURON-ASTROCYTE NETWORK FOR IMAGE RECOGNITION

0 5 10 15 20 25
Epoch #

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

10% Triparite Synapses

Train (0%)
Val (0%)
Train (10%)
Val (10%)

0 5 10 15 20 25
Epoch #

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

20% Triparite Synapses

Train (0%)
Val (0%)
Train (20%)
Val (20%)

0 5 10 15 20 25
Epoch #

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

30% Triparite Synapses

Train (0%)
Val (0%)
Train (30%)
Val (30%)

0 5 10 15 20 25
Epoch #

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)
40% Triparite Synapses

Train (0%)
Val (0%)
Train (40%)
Val (40%)

0 5 10 15 20 25
Epoch #

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

50% Triparite Synapses

Train (0%)
Val (0%)
Train (50%)
Val (50%)

0 5 10 15 20 25
Epoch #

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

60% Triparite Synapses

Train (0%)
Val (0%)
Train (60%)
Val (60%)

Figure 6.9: SNAN2 training (solid lines) and validation (dashed lines) accuracy for n% tripartite synapses.
(Parameters: ηexc1pre = 0.0001, ηexc1post = 0.01, ηexc2pre = 0.00001, wexc1max = 1, wexc2max = 0.01, and β = 0.0005.)
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Figure 6.10: SNAN3 training (solid lines) and validation (dashed lines) accuracy for n% tripartite synapses.
(Parameters: ηexc1pre = 0.0001, ηexc1post = 0.01, ηexc2pre = 0.000001, wexc1max = 1, wexc2max = 0.001, and β = 0.001.)
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6.4.3/ TEST RESULTS

We tested the network using the 5 000 test images from the MNIST dataset. The test
simulations take an average of 0.41 s, 0.69 s, 0.88 s, 1.02 s, 1.33 s, 1.67 s, and 1.59
s for the networks with 0%, 10%, 20%, 30%, 40%, 50%, and 60% tripartite synaptic
connections, respectively, to predict the class of a single test image. Then, Table 6.5
shows the resulting test accuracy per network configuration. The proposed SNN gives
an accuracy of 82.46%, 0.44% less than the accuracy reported by Diehl and Cook [403]
for their network with 100 First layer neurons. Of the neuron-astrocyte networks, the
parameters of SNAN3 give the best network performance, with maximum accuracy of
75.28% for 30% tripartite connections. Indeed, the neural network displays higher pre-
diction accuracy than the neuron-astrocyte networks. However, the neuron network also
displays high bias and underfitting, given that the test accuracy is 14.17% greater than
the training accuracy. It suggests the SNN network is not yet fully optimized and requires
extended training for more than 25 epochs. Therefore, the astrocytes improve network
performance, especially in the SNAN3, where there is an optimum variance-bias tradeoff.

The diagonals of the confusion matrices in Figure 6.11 shows the number of correctly
predicted input class. Even though the SNN correctly predicted class ”0” more times than
the SNAN, the SNAN still generates higher precision (92%) for the specified class, given
that there are more instances that the SNN confuses the remaining input classes as ”0”.
The SNAN precisely predicts input classes ”1” (93.70%) and ”3” (97.10%). Furthermore,
The SNAN also displays higher recall for input classes ”4” (79.90%) and ”6” (95.60%),
correctly predicting the input class and not confusing them with other classes. For other
instances otherwise, the SNN displays higher precision and recall compared to the SNAN
as expected. SNAN3 also predicts input classes ”1” and ”2” as ”8”. This prediction can
be caused by the receptive field of the neuron showing combined features of ”1” and ”8”,
for example, the ninth neuron in the SNAN3 shown in Figure 6.6. SNAN3 also confuses
class ”9” as ”4” due to their similar vertical features. The neurons with receptive fields of
”9” spike at a high rate when the number ”4” is presented to the network.

Table 6.5: Test accuracy.

% Tripartite
Synapse SNAN1 SNAN2 SNAN3

0 82.46 82.46 82.46
10 65.46 65.46 66.80
20 67.54 66.44 71.96
30 68.94 69.98 75.28
40 67.26 67.32 70.26
50 68.56 21.66 72.44
60 71.20 11.28 71.96
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Figure 6.11: Confusion matrices for (a) SNN and (b) SNAN3 with 30% tripartite synapses. The precision
and recall are displayed, respectively, below and on the right of the confusion matrix.

6.5/ DISCUSSION

We have developed a spiking neuron-astrocyte network for recognizing image features
of the handwritten digits from the standard MNIST dataset and showed that astrocytic-
mediated plasticity improves the network capacity to learn these features. Like neu-
rons, astrocytes are active and integrative components described by the Postnov model
[312]. The astrocytes were incorporated into the network based on the biological tripartite
synapse coupling, where the astrocytes translate the spike events from the input layers
and then transmit them, via spike events, to the first layer neuron; thus, the astrocytes
create feedforward signaling pathways in parallel with the synaptic communication direc-
tions.

6.5.1/ TOWARDS THE DEVELOPMENT OF SNANS FOR DEEP LEARNING

Furthermore, we presented a hybrid network of spiking networks and machine learning,
derived from the baseline SNN by Diehl and Cook [403], where the SNAN generates a
spiking pattern specific to the input class and the k-NN classifier predicts the output class.
Diehl and Cook [403] reported a classification performance of 82.90% for 100 first layer
neurons. With our proposed baseline SNN, we acquired a relative value equal to 82.46%.
Our analysis suggests that even though the baseline SNN has the highest accuracy, it
displays underfitting caused by insufficient training iterations shown by the difference in
training and validation accuracies (Figure 6.8-6.10). However, there was no validation set
in the study of Diehl and Cook [403]. We reported a maximum test accuracy of 75.28%
for the SNAN, displaying optimal variance and bias tradeoff.

Rastogi et al. [13] recently demonstrated SNAN designs using the MNIST dataset, where
astrocytes modulate the presynaptic neuron release probability during faults when synap-
tic learning is stuck at zero. In this case, the astrocytes indirectly modulate synaptic ac-
tivities. In our proposed network, astrocytes act as excitatory inputs to the postsynaptic



154 CHAPTER 6. NEURON-ASTROCYTE NETWORK FOR IMAGE RECOGNITION

neurons with STDP ability. To our knowledge, the proposed neuron-astrocyte network is
one of the first attempts to identify the potential of astrocytes in image classification using
the standard MNIST dataset. Therefore, this study can serve as a baseline for evaluating
future studies on astrocyte implementation in SNNs.

6.5.2/ ASTROCYTES IMPROVE NETWORK PERFORMANCE

Our results suggest that astrocytes influence and improve three attributes of the spiking
network: (1) faster learning, (2) variance and bias tradeoff, and (3) simplified network ar-
chitecture. During training, the SNANs displayed higher accuracy than SNN (Figure 6.7),
indicative of the ability of the network to stabilize its spiking activity quickly. Moreover,
the SNANs achieved peak accuracy with fewer input set presentations (Table 6.4). These
activities support the idea that astrocyte-mediated neuronal spiking aids in faster learn-
ing. For traditional SNN and artificial networks, increased neuronal connectivity equates
to fast and precise learning. Therefore, the astrocytes and the corresponding tripartite
synapse promote efficient learning by providing additional synaptic connections in parallel
with the neuron-to-neuron couplings, thus strengthening the communication strength be-
tween neuronal layers. Also, as the neuron spikes more frequently, the spiking threshold
increases, thus requiring more input eventually. Astrocytes, therefore, provide additional
input for equalizing neuronal firing rate.

Second, networks with astrocytes balanced variance and bias, as shown in comparing
the training and validation accuracies (Figure 6.8-6.10). The SNAN3 with 30% tripartite
synaptic connections exhibits optimal variance and bias tradeoff, with higher training ac-
curacy than SNN and comparable validation accuracy. These metrics ensure that the
spiking patterns from the validation set matched the spiking patterns produced during
training. The SNN displays underfitting, exhibited by a higher validation accuracy than
training accuracy, conveying that the trained network has difficulty generalizing new data.
Defining the SNAN architecture is a highly iterative process due to the heterogeneity
of the astrocytes combined with the stochastic spiking activity. Therefore, the number
of astrocyte-to-neuron synapses must be sufficient to influence the postsynaptic neuron
spiking and low enough to avoid neuronal overexcitation resulting in erratic neuronal spik-
ing patterns. These effects are noticeable in the networks with more than 30% tripartite
connections (Figure 6.9), whose validation accuracies suddenly drop to minimum levels.

Lastly, we have developed a SNAN where astrocytes are point processes with simpler
models (compared with the astrocytic networks presented in Chapter 5) while retaining
the essential astrocytic dynamics. Interestingly, astrocytes can simplify the network ar-
chitecture. An SNN achieves faster learning with increasing synaptic connections, which
is maximum when neurons have dense synaptic connections. If the dense connection is
insufficient, another solution is increasing the number of postsynaptic neurons. Saunders
et al. [422] presented a network with 100 and 400 postsynaptic neurons and reported that
the training accuracy increases from 67% to 70%, respectively. Therefore, for example,
a network with 400 neurons creates 316 600 synaptic connections. The proposed SNAN3
with 30% tripartite achieved 75.28% accuracy with only 78 400 synaptic connections plus
47 040 (neuron-to-astrocyte and astrocyte-to-neuron synaptic connections) with only 200
integrating components (100 neurons and 100 astrocytes).
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6.6/ CONCLUSION

We proposed a novel and simplified spiking neuron-astrocyte network for unsupervised
learning using STDP, combined with k-NN classifier for image recognition. The input layer
consists of Poisson spiking neurons translating the input image pixel intensity into spike
events. The dense synaptic connections transmit the input activities to the 100 postsy-
naptic neurons. The postsynaptic neurons then learn the input features by changing their
synaptic weights following the STDP algorithm. In these networks, astrocytes have three
main functions: (1) create a new network layer for integrating and translating presynaptic
inputs, (2) act as additional synaptic connections simplifying network architecture, and (3)
modulate synaptic plasticity for faster learning. We have achieved a maximum of 75.28 %
of classification performance for SNANs, ensuring an optimal balance between variance
and bias. We showed that astrocytes improve network performance (depending on their
topology within the network) and facilitate stable neuronal spiking.

One of the main challenges we faced during network design is the simulation costs, where
simulations are restricted to series computation rather than in parallel. Indeed, the addi-
tional astrocytic components plus the neuron-astrocyte couplings require more extended
simulation and computationally heavy programs. Instead of using the Li-Rinzel model, we
opted for the Postnov model and simplified the corresponding code using the Brian2 sim-
ulator with high-performance computing resources. Researchers can also design and im-
plement SNAN using neuromorphic systems or hardware to solve the series computation
restrictions. One can also design SNANs where astrocytes communicate via gap-junction
mediated ICW propagation.

The next chapter aims to further simplify the network architecture by investigating how
a single neuron can analyze synaptic inputs (neuronal and astrocytic inputs the like) for
faster integration and transformation. This chapter is also a part of our objective to bridge
the biological processes and artificial intelligence by taking advantage of the computa-
tional capacity of neurons and astrocytes.





7
A MULTILAYER-MULTIPLEXER

NETWORK PROCESSING SCHEME

7.1/ INTRODUCTION

Synaptic inputs entering the dendritic heads diffuse along the dendritic shaft and pass
through a series of attenuation, amplification, filtering, and delay depending on the pas-
sive and active mechanisms in the dendritic compartments, as discussed in Chapter 3.
We have shown that fast synaptic current via AMPARs activation and slow synaptic or
inward currents via NMDARs activation triggered by synaptic Glu− or astrocytic Glu−a ,
respectively, influence the information processing in a single neuron (Chapter 5) and,
therefore, in a network (Chapter 6). Identifying the influence of the dendrites in a single
input signal is a rudimentary process. However, the driving force of a single synaptic input
is inadequate to influence a somatic spike. Therefore, multiple presynaptic cells (neurons
and astrocytes) continuously bombard the dendrites with input signals, and this is where
the dendritic computation gets complicated. During simultaneous synaptic activation, the
driving force of an input signal combines with the driving forces of its neighboring synap-
tic inputs. The contribution of a signal depends on several factors: its distance from the
points of entry of other inputs, the diameter and length of its dendritic compartment, the
morphology of the dendrites, the distribution of active channels, and the somatic dynam-
ics, as well [229, 423–426]. An AP is generated if the sum of the driving forces reaching
the somatic compartment exceeds the spiking threshold. At this point, it is challenging to
determine the influence of synaptic input on somatic depolarization or to identify the role
of the dendrites in neuronal computation [233, 426, 427].

After decades of studies, developing a unified understanding of how dendrites integrate
and transform synaptic inputs entering the dendritic arborization into information-carrying
spiking patterns is still lacking. In addition, advances in neuronal studies suggest that
a single neuron can perform integration functions previously associated only with neu-
ronal networks. To bridge and employ biological processes with deep learning schemes,
we developed an abstraction modeling neural input integration and described how we
could employ such abstractions in deep networks. The abstraction includes synaptic in-
put location-dependent voltage delay and decay, time-dependent linear summation, and
dynamic thresholding function. The proposed dendritic abstraction can be used to cre-
ate multilayer-multiplexer neurons that consider the spatiotemporal properties of the den-
drites and with greater computational capacity than the conventional schemes.

157
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7.2/ BIOLOGICAL TO ARTIFICIAL SYNAPTIC INPUT INTEGRATION

The pioneering studies of Rall in the 1960s [207, 428] paved the way for extensive re-
search to determine the governing principles of dendritic integration [217], the crucial
roles of dendrites in neuronal processing [429], and to create models or abstractions for
improving the computational capacity of a neuron [430]. As discussed in Section 3.5,
the biologically-inspired McCulloch-Pitts neuron model describes the dendritic integra-
tion process in its simplest abstraction [247]. The linear summation of weighted synaptic
inputs passes through a nonlinear thresholding function that determines the spiking be-
havior of the neuron. The most recent dendritic abstraction extends the linear-nonlinear
Poisson (LNP) called the generalized linear model (GLM). In GLMs, the convolution of
inputs passes through a static nonlinearity and is then fed to a spiking mechanism for
the instantaneous firing rate [229, 431]. For both abstractions, the thresholding function
(also called activation or transfer function) in the McCulloch-Pitts model and the static
nonlinearity in GLM serves as the quantified function for dendritic integration. Most den-
dritic abstractions suggest that the nonlinearity is a sigmoidal signal [239, 243, 432, 433],
although it becomes increasingly implausible when fitted with biological data [240].The
subthreshold nonlinearity consists of three divisions for inputs within the same branch: lin-
ear for weak signals, supralinear for intermediate signals, and sublinear for strong inputs
[232]. Sigmoidal nonlinearity then becomes inaccurate when the dendritic parameters
and input distribution change [191].

A widely used method for quantifying dendritic integration is the IO transformation, com-
paring the synaptic inputs and the corresponding response in the somatic depolarization
[191, 211, 239]. However, the IO curves vary significantly depending on which parameter
is under observation, such as dendritic morphology, synaptic topology, and properties,
ion channels, or combinations. Therefore, the level of biological realism or the complexity
of the neuron model used for investigation is crucial for determining the dendritic nonlin-
earity [429]. Another factor to be considered in quantifying the dendritic integration is how
the synaptic inputs were injected. In modeling and physiological experiment, stimulation
protocols commonly use unitary or paired-pulse inputs. [191, 226, 245]. However, such
inputs limit the dynamic range of the dendrites. Because experimental recording and
dendritic manipulation are challenging [429], the stimulation protocols and experiments
on dendritic integration performed under simplified conditions in vitro or unobserved in-
puts in vivo do not conclusively describe the biophysical dynamics of the neuron [239].
Singh and Zald [434] introduced a static linear hook transfer function describing linear-
nonlinear dendritic integration by performing IO transformation with the neuron model.
However, the formulation of the transfer function sacrificed some dendritic properties due
to the simplification of the dendritic morphology, removal of dendritic mechanisms, and
application of a time-invariant function. Simplification or tuning of such properties can
potentially bias the output [435].

Our goal here is two-fold: (1) formulate a thresholding function that captures the linear-
nonlinear dendritic integration, both in the sub- and suprathreshold region, and (2) pro-
pose a dendritic abstraction that takes into account the spatiotemporal synaptic and den-
dritic dynamics. First, we created a CA3 pyramidal neuron model, which included most
biophysical mechanisms distributed somatodendritically. Then, we simulated the model
using in vivo-like synaptic inputs to reconstruct biophysical dynamics. We identified the
synaptic input propagation along the dendritic length and formulated the corresponding



7.3. FORMULATING THE DENDRITIC ABSTRACTION 159

signal delay and attenuation model. Next, we proposed a method for IO quantification for
continuous inputs. Based on the results of the IO-transformation, we formulated the dy-
namic nonlinear thresholding functions. We described the functional components of the
dendritic abstraction, which considers the spatial specificity of the inputs and the interac-
tion between the inputs and dendritic mechanisms. Using multiple regression analysis,
we identified the thresholding function. The resulting threshold nonlinearity is a dynamic
function dependent on the synaptic input amplitude and the number of activated synapses
that capture the linear, supralinear, and sublinear dendritic integration processes in the
subthreshold region. The proposed dendritic abstraction captures the spatiotemporal pro-
cesses such as synaptic input attenuation and delay, synaptic-input location dependency
of somatic depolarization, and the biophysical spiking mechanism of the neuron.

7.3/ FORMULATING THE DENDRITIC ABSTRACTION

This section presents the step-by-step procedure in formulating the proposed dendritic
integration abstraction. First is the development of the CA3 neuron, its morphology, and
biophysical mechanisms. Then, the second part details the proposed equivalent dendritic
abstraction and its subcomponents. Finally, the last part defines the IO transformation
process.

7.3.1/ PYRAMIDAL NEURON MODEL

A large number of time-dependent synaptic inputs entering a morphologically complex
dendritic tree is difficult to control, and analyzing the dynamic response of the neuron
is quite challenging [424, 436]. Thin oblique dendrites protruding from the main den-
dritic branch also influence the somatic response. Therefore, the neuron model should
be biophysically-plausible, with its morphology and distributed mechanisms, but simple
enough to follow the signal propagation.

7.3.1.1/ DISTRIBUTED MECHANISMS

We developed a simple but biologically-plausible anisotropic model of the CA3 pyramidal
neuron from a rat hippocampus [437] using the NEURON simulation platform [17] ran
with a time step of 0.05 ms [436]. NEURON is a well-suited simulator for multicompart-
mental models of individual neurons [438, 439]. The morphological detail is available at
NeuroMorpho.Org, whose ID number is NMO 76005 [440]. This simple model has seven
stems, four bifurcations, 15 dendritic branches, and a total of 116 dendritic sections. The
spines are mushroom-typed with a head diameter of 0.35 µm [437], a neck diameter of
0.10 µm [187], and a neck length of 0.35 µm [437]. The spines are placed 0.50 µm from
one another along the dendritic length [437], equating to 2129 synaptic locations. The
d lambda discretization rule divides the dendritic sections into electrical compartments
[441]. Figure 7.1aa illustrates the anisotropic and morphologically realistic model, and
the corresponding neuronal characteristics and morphological data are in Appendix B.
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Figure 7.1: (a) The reconstructed model of the CA3 pyramidal neuron. The morphology of the pyramidal
neuron in XY- and YZ axes (left and right, respectively) displays anisotropic features. (b) A single synaptic
input. The single pulse synaptic input activated at t = 20 ms and with a maximum amplitude of −55.19 mV
combines AMPARs and NMDARs kinetics and follows a double-exponential rise and decay function.

The neuron dynamics consist of various interactions amongst biophysical mecha-
nisms such as synaptic saturations, dendritic spikes, and NMDA receptor nonlinearities
[190, 226, 239]. These mechanisms facilitate dendritic integration and control the trans-
formation of synaptic input patterns into somatic membrane potential changes and the
generation of output spike trains [229, 239]. Therefore, we incorporate passive mecha-
nisms and active channels into the neuron. Table C.1 presents the properties of these
mechanisms and their distribution throughout the somatodendritic arborization. The neu-
ron has constant passive properties, including the membrane and cytoplasmic resistiv-
ities and specific capacitance. In the spine necks, the cytoplasmic resistivity was set
so that the spine neck resistance was equal to 500 MΩ [187]. Furthermore, the bi-
ological cell model includes active channels distributed heterogeneously from soma to
dendrites. These active channels are the fast-activating sodium channels (Na), delayed-
rectifier potassium channels (KDR), A-type potassium channels (KA), N-, T-, and L-type
calcium channels (CaN, CaT, and CaL).

7.3.1.2/ SYNAPTIC INPUTS

In this study, the synaptic inputs follow in vivo-like spatiotemporal patterns to replicate the
full range of neuronal dynamics covering the sub- and suprathreshold regions. We mod-
eled the spatial- and time-dependent excitatory synaptic inputs as membrane potentials
induced by the conductance change of AMPA and NMDA receptors in the spine heads
[205].

For time t, the synaptic conductance of AMPAR, gAMPA, is a double-exponential func-
tion given in Equation 3.35 [202]. The NEURON Exp2Syn function models the AMPAR
response [229]. The voltage-dependent NMDARs kinetics follow the same function as
the AMPARs kinetics with extracellular Mg2+ blocking component [200, 205, 206]. The
NMDAR conductance gNMDA is given by Equation 3.36 [200]. The NEURON function au-
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tomatically computes the values of αA and αN so that the maximum values of gAMPA and
gNMDA are equal to their corresponding peak conductances. The single synaptic input in
Figure 7.1b measured in the spine head has a 14.81 mV peak amplitude from rest and
a half-width of 2.75 ms. The corresponding values of the synaptic input parameters and
other neuron properties are in Table C.2.

7.3.2/ DENDRITIC ABSTRACTION

When multiple synapses are simultaneously active and spatially segregated, inputs driv-
ing the somatic potential change are challenging to discriminate. Working on the notion
that dendrites require dynamic independence to perform various computations, we identi-
fied each dendritic length as an independent subunit. For example, when identical inputs
simultaneously activate clustered synapses in C and D (Figure 7.2a) following spiking
patterns in Figure 7.2b, the changes in the membrane potential along the distal C-to-
soma (Figure 7.2c) and distal D-to-soma (Figure 7.2d) at specific time windows indicate
signal diffusion. Synaptic inputs propagate from the synaptic location to the distal end
of the dendritic branch, to the neighboring branches and the soma. Indeed, signal prop-
agation along the dendritic branch is bidirectional, and signals backpropagate, upon AP
generation, from the soma to some extent of the distal branches [442]. This bidirectional
propagation then makes input discrimination intricate. Notice the low membrane potential
between the synaptic input activation and the somatic activation. It suggests that even
though the synaptic input in the tertiary dendrites significantly attenuates, it can still cause
a somatic activation with ∼3 ms delay. Moreover, the backpropagating AP may have a
minimum effect on the distal dendrites. We examined the membrane potential magni-
tudes, particularly during the synaptic input peaks (Figure 7.2e). At t = 21.50 ms, both
the dendrites drive the membrane potential elevation. When individual dendrite is active,
at t = 222.50 ms and t = 322.50 ms, significant differences in the membrane potential be-
tween sibling branches are noticeable. Therefore, even though signal diffuses throughout
the dendritic tree, we can still identify the origin of the somatic fluctuations by the level of
the driving force produced from the individual branches. We repeated the simulations us-
ing varying synaptic input combinations and locations, and the results were similar. One
of the foci of this study is to identify how the dendrites process synaptic inputs to perform
branch dendrite-specific computation. Therefore, we arrive with the following modeling
approach with these results.

We already presented the biological model of the neuron in the previous section. The
next step is to identify a dendritic abstraction that models the spatiotemporal dendritic in-
tegration process. This abstraction is necessary because the thresholding nonlinearity, a
time-independent function, is insufficient for describing the dendritic dynamics [239, 434].
There is a need for another function for the signal propagation along the dendritic branch,
the corresponding signal delay, attenuation, and the time- and location-dependency.

7.3.2.1/ MODEL

Consider the primary dendritic branch (the apical trunk) and the secondary dendritic
branch (in the apical tuft) shown in Figure 7.3a and Figure 7.3b. For modeling purposes,
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Figure 7.2: Signal propagation along the apical dendritic branches. (a) At a distance of 2 µm from the
branching point, ten excitatory inputs activate clustered synapses along dendritic branches C and D with
their respective activation patterns in (b). The space plots in (c) and (d) show the change in membrane
potential of the dendritic length from the distal end of C to soma and from the distal end of D to soma,
respectively. (e) Further investigation on the membrane potential during synaptic activation indicates that
even though the signals diffuse in all directions, it is still possible to identify the dendritic branch that drives
the somatic depolarization by determining the synaptic locations that are first to peak.
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Figure 7.3: The dendritic branch is an independent computational subunit. The synaptic inputs enter the
dendritic shaft via the dendritic neck and then flow untangled in one direction, from the distal end of the
branch to the opposite end. (a) The primary dendritic branch is from the first bifurcation point to the section
connected to the soma, while (b) the secondary dendritic branch is from the distal end to the bifurcation point.
Dendritic integration and transformation occur in the branching point. Its output drives the somatic spiking in
(a) or travels to the soma in (b). (c) The equivalent dendritic abstraction includes the time-continuous synaptic
inputs Vin(t) that experience individual attenuation and delay. The outputs Von(t) are linearly integrated and
then sent to the thresholding function for transformation. The transformed signal Vm(t) flows to the next
proximal point until it reaches the somatic compartment for AP generation.

we apply the following concepts:

1. Each dendritic branch is an independent computational subunit. The dendritic ab-
straction corresponds to the dynamics occurring within a compartment: the dendritic
length from the bifurcation point to the somatic connection (Figure 7.3a) or from the
distal end of the apical dendritic branch to the bifurcation point (Figure 7.3b). Based
on the impedance tree-graph concept [238], branches are mutually independent.

2. Synaptic activation occurs in the dendritic spine head and none along the dendritic
shaft. This assumption avoids electrical shunting and over saturation of inputs [187]
and ensures that the synaptic inputs have a comparable influence on the dendritic



164CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME

shaft around their entry points.

3. Signals within the dendritic branch propagate individually (untangled), and synaptic
inputs travel only in one direction, from the distal apical or basal dendrites to the
somatic compartment [238]. We considered the dendritic branch as multiplexer,
and the signals are superimposed on each other. It simplifies the tangling problem
and allows us to approximate the influence of each input on the depolarization in
the branching point.

4. The input summation and IO transformation occur in the branching point. Theo-
retically and experimentally, and when considering the equivalent dendritic circuit,
a synaptic input almost immediately integrates with the neighboring inputs around
its entry point in the dendritic shaft. Therefore, dendritic integration can transpire
anywhere along the dendritic length. To cover the whole dendritic length and the in-
coming signals, we take the proximal end of the dendritic branch as the thresholding
point.

The dendritic abstraction consists of the following. The synaptic input Vin(t), where n
is the number of the activated synapse, is a time-varying in vivo-like synaptic spiking.
Throughout the distance between the dendritic head to the branching point, the den-
dritic active and passive mechanisms influence the amplitude decay and time delay of
Vin(t). The attenuation function output Von(t) is a weaker location-dependent signal. The
linear summation integrates the attenuated signals and thus represents the linear com-
ponent of dendritic integration. The nonlinear function f transforms the sum into a single
information-carrying Vm(t). Vm(t) then travels along the dendritic arborization to the next
proximal dendritic branch or straight to the soma for spiking.

7.3.2.2/ SIGNAL PROPAGATION AND DELAY

Wybo et al. [443] presented a method for simplifying the dendritic morphology directly
from experimental data and suggested that a complex subtree can be modeled into a sin-
gle branch with multiple reduced compartments while preserving the neuronal biological
responses. They approximated the dendritic voltage responses using the Hodgkin-Huxley
formalism, where the parameters for the passive and active channels were fitted using the
least-square method. Since our goal is to identify the input integration at the thresholding
point, dividing the dendritic branch into compartments with multiple nonlinear systems of
equations is computationally costly. In order to simplify the dendritic voltage response,
we used the voltage propagation model, which was modified to incorporate the collective
effects of the passive and active mechanism along the cable of varying morphology. In-
stead of fitting each ion channel in the compartment, we identified the parameters α and
β in Equation 7.1 using regression analysis of the membrane potential at the entry and
thresholding points caused by individual synaptic inputs.

The IO transformation method usually compares the arithmetic summation of input with
the output depolarization. However, this method disregards the synaptic locations and
considers that the synaptic inputs have the same influence over the soma or the thresh-
olding point. Synaptic input travels through the spine neck from the spine head, enters the
dendritic shaft, and then propagates to the thresholding point. While propagating, signals
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are susceptible to considerable voltage decay and delay before reaching the proximal end
of the dendritic branch. Therefore, it is only fitting to compute the arithmetic sum of the
decayed and delayed signals rather than the direct sum of the signals entering the spine
head. In this case, the dendritic abstraction becomes spatiotemporal, where the input
signals are subjected to decay and delay by Vo(t) before integrating into the thresholding
point (Figure 7.3c). The spatiotemporal propagation model is defined as

Vo(t) = αe−x/λVi

(
t − β

τx
2π

)
, (7.1)

where Vo is the attenuated and delayed synaptic input amplitude when it reaches the
thresholding point at time t, Vi is the electrotonic potential of the synaptic input (the differ-
ence between the synaptic input and the resting potential), and x is the distance between
the synaptic input entry point and the thresholding point [79, 143, 444]. The propaga-
tion velocity varies at different points along the dendritic branch due to the difference in
diameters and lengths of the dendritic sections. To simplify this issue, we converted the
dendritic branch into a single cable with constant distributed parameters by computing
the total effective length, λ, and total time constant, τ [79]. The total effective length (in
µm), given as

λ =

k∑
j=1

√
Rm j

Ra j

d j

4
, (7.2)

and the total time constant (in ms), given as

τ =

k∑
j=1

Rm jCm j, (7.3)

are dependent on the diameter d of k sections. Here, Rm is the membrane resistance
equal to 10 000Ωcm2 and Ra is the axial resistance equal to 100Ωcm [79, 444], consistent
with the biological model. The parameter α captures the dramatic decrease in synaptic
input amplitude as it travels along the high resistance spine neck [195] and dendritic shaft,
while β defines the signal delay caused by the active mechanisms along the dendritic
length. The terms αe(−x/λ) is the coefficient of voltage decay and β(τx/2π) represents the
time delay. We computed the corresponding values of α and β for each dendritic branch
via regression analysis. To do so, each synapse along the dendritic branch, from the
distal to the proximal end, is activated one at a time while measuring the membrane
potentials at the input spine head and the thresholding point. The parameter α was
computed by fitting αe−x/λ to the amount of measured voltage decays (difference between
the peak depolarizations of the synaptic inputs and thresholding point). In parallel, β
was determined by fitting β(τx/2π) to the measured voltage delays (the time difference
between the peak depolarizations at the spine head and thresholding point).

7.3.2.3/ SPIKING MECHANISM

Even with the ramified morphology of dendrites and spatiotemporal disparity of synaptic
inputs, the soma is responsible for encoding information [427]. When the transformed
dendritic signals arriving at the soma are large enough, the somatic spiking mechanism
generates an AP [191]. In the dendritic abstraction, we used the Hodgkin-Huxley spiking
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mechanism in Equation 7.4 because it closely reproduces the somatic dynamics of the
biological neuron.

C
dV
dt
= I − gNam3h (V − VNa) − gKn4 (V − VK) − gCas2r (V − VCa) − gL (V − VL) (7.4)

It includes active Na+, K+, Ca2+ channels, and passive leak parameters. V corresponds
to the membrane potential, C is the membrane capacitance, and I serves as the input
whose intensity is equal to 10 µA/cm2 multiplied by the summation of activation functions
f of the dendritic branches connected to the soma [76, 86, 445, 446]. Equation 7.5 gives
the channel activation and inactivation functions. Refer to Table C.3 for the parameters.

dz
dt
= αz(1 − z) − βzz, z = m, n, h, r, s, (7.5)

αm =
0.1 (−V − 45)

exp
(
−V − 45

10

)
− 1

, βm = 4exp
(
−V − 70

18

)
,

αn =
0.01 (−V − 60)

exp
(
−V − 60

10

)
− 1

, βn = 0.125exp
(
−V − 70

80

)
,

αh = 0.07exp
(
−V − 70

30

)
, βh =

1

exp

(
−V − 40

10

)
+ 1

,

αr = 0.000457exp
(
−V − 13

50

)
, βr =

0.0065

exp

(
−V − 15

38

)
+ 1

,

αs =
0.055 (−V − 27)

exp
(
−V − 37

3.8

)
− 1

, βs = 0.094exp
(
−V − 75

17
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Note that the dendritic abstraction can employ other spiking mechanisms such as LIF. In
this case, we employ the common Hodgkin-Huxley formulism, which best approximates
the spiking behavior and the shape of the AP of the biological soma consisting of multiple
types of ionic channels presented in Section 7.3.1.

7.3.2.4/ INPUT DISTRIBUTION

For each dendritic branch, we performed 40 simulations that lasted 1000 ms each (with
a 0.05 ms time step) and whose inputs have a Poisson spiking interval of 20 ms and
Gaussian synaptic noise. These inputs were either segregated or clustered along the
dendritic branch. Let d be the length of the dendritic branch. For segregated inputs,
activated synapses were randomly located between 0.01d−d, 0.01d−0.5d, or 0.5d−d. For
clustered inputs, activated synapses were also randomly placed between 0.01d−0.25d,
0.25d−0.5d, 0.5d−0.75d, or 0.75d − d. The number of activated synapses per simulation
was minimum enough to cause depolarization at the thresholding point and maximum
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enough to avoid oversaturation and excessive dendritic burst. Therefore, three, five, and
seven synaptic inputs were activated for each simulation set. In total, there were 21 input
categories. There were ten simulations for segregated inputs along the dendritic branch
and five simulations for the rest. This input distribution gave a wide range of synaptic and
dendritic activities.

7.3.2.5/ INPUT-OUTPUT QUANTIFICATION

The following are the features of this IO quantification framework: the input is the summa-
tion of the estimated synaptic inputs reaching the thresholding point (normalized), then
the output is the measured membrane potential at the thresholding point (normalized),
and lastly, the IO relationship is a nonlinear time-independent function. The feature scal-
ing restricts the voltage amplitude from 0 (−70 mV) to 1 (40 mV) to avoid the effects of
negative values. We measured the synaptic inputs at the spine head along the primary
apical trunk and the thresholding point (Figure 7.4a). Then, we estimated the voltage
decay and delay of the individual inputs when they reached the thresholding point by ap-
plying Equation 7.1. Vexpected represents the summation of the attenuated inputs. For in-
stance, Figure 7.4b shows the input patterns measured from synapses segregated along
the primary apical dendritic branch. The input summation (gray) shown in Figure 7.4c
drove the depolarization at the thresholding point (black).

First, we divided the Vobserved time series into time windows defined by the two consecutive
local minima (gray lines in Figure 7.4d). The exact time windows were also applied to
Vexpected. Within each time window, we measured the maximum depolarization of Vobserved

and the corresponding maximum peak amplitude of Vexpected. The comparison between
these points gives us the IO relationship.

7.4/ RESULTS

7.4.1/ DENDRITIC INTEGRATION IN THE SUBTHRESHOLD AND SUPRATHRESH-
OLD REGIONS

The dendritic arborization in Figure 7.1a has three levels mainly, the primary dendrites
(those connected directly to the soma), the secondary dendrites (after the first bifurcation
points), and the tertiary dendrites (after the last bifurcation points). We simulated the
neuron model for each dendritic branch by randomly activating segregated or clustered
synaptic inputs along the dendritic length. Then, we applied the IO quantification method
to identify the within-branch dendritic integration in the sub- and suprathreshold regions.
Furthermore, we removed the suprathreshold IO pairs caused by the backpropagating
signals and dendritic bursts from the dataset.

Here, we present the IO curves in the apical trunk (primary), the left-most apical tuft
(secondary), and the right-most apical tuft (tertiary) dendrites (Figure 7.1a). The sub-
threshold IO data were smoothened using the locally estimated scatterplot smoothing
(loess) method, while linear models best described the suprathreshold data. The points



168CHAPTER 7. A MULTILAYER-MULTIPLEXER NETWORK PROCESSING SCHEME

Vi1
Vi2

Vi3 Thresholding

Point

+

Vi1

Vi3
Vi2

𝑉𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 

𝑛=1

3

𝑉𝑜𝑛(𝑡)

𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

(a)

200 ms

0.
1

Vi1

Vi2

Vi3

(b)

200 ms

0.
01

(c)

Vobserved
Vexpected

0.00

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200
Time (ms)

M
em

br
an

e 
P

ot
en

tia
l

(d)

Figure 7.4: The input-output quantification process. (a) The in vivo-like synaptic inputs Vi1, Vi2, and Vi3 were
measured from the synaptic heads that are 46.67 µm, 28.32 µm, and 38.17 µm from the thresholding point of
the primary apical dendritic branch. Inputs Vin are subjected to propagation delay and decay before reaching
the thresholding point for arithmetic summation, where the resulting sum is the Vexpected. The measured poten-
tial at the thresholding point is termed as Vobserved. (b) The random spiking frequency of the inputs results in a
dynamic and sustained nature. (c) The summation of the predicted attenuated inputs reaching the threshold-
ing point (gray) drove the subthreshold depolarization (black) from the same point. (d) Two consecutive local
minima of the membrane potential (Vobserved) divided the observed and expected depolarization (Vexpected) into
time windows (alternating white and orange rectangles). IO quantification compares the maximum observed
depolarization (black), and the maximum expected depolarization (gray) within the same time window.

represent the mean Vobserved amplitude per Vexpected bin width. Figure 7.5 illustrates the
Vexpected : Vobserved curves of the apical dendrites in the subthreshold (left column) and the
suprathreshold (right column) regions. According to Polsky et al. [232], the subthreshold
nonlinearity in the pyramidal neurons follows a linear-supralinear-sublinear curve based
on increasing input strength. This relationship is visible in the secondary (Figure 7.5c)
and tertiary dendrites (Figure 7.5e), where the IO curves deviate above and below the
linearity upon crossing Vexpected = 0.1. However, the primary dendrite exhibits a strong
supralinear dendritic integration (Figure 7.5a), then the Vobserved levels stabilize as the
curve approaches the sublinear region. The basal dendrites connected to the soma also
exhibit almost the same nonlinearity. In the suprathreshold regions (Figure 7.5b, 7.5d,
and 7.5f), the Vobserved level is steady even with increasing Vexpected. It is as expected since
the somatic spiking peak amplitude is constant.
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Figure 7.5: Dendritic integration in the subthreshold (left column) and suprathreshold (right column) regions.
(a) The subthreshold IO curve in the primary dendrite (dendritic branch connected to the soma) is strongly
supralinear between [0, 0.1] of Vexpected and Vobserved, while in (b) the suprathreshold region, the spiking ampli-
tude is constant at 0.975. (c) The secondary apical dendrite displays a nonlinearity that deviates from linear
to supralinear, and after crossing Vexpected = 0.1, shifts to sublinear. (d) The range of Vexpected necessary for a
successful spike exceeds the range in (b) but with a lower spiking amplitude (0.83). (e) The tertiary apical
dendrite produces a subthreshold nonlinearity that is almost similar to (c), while the suprathreshold spiking
amplitudes slopes down (m = −3.77). Moreover, the orange regions in the subthreshold plots (a, c, and e)
represent the range of Vexpected causing a successful spike in the suprathreshold region, while the orange
regions in the subthreshold plots (b,d, and f) indicates the range of subthreshold points. These boundaries
indicate that the spiking threshold for each dendritic branch increases (0.035 in (a), 0.115 in (c), and 0.245
in (e)) with respect to the distance from the soma and the location in the arborization of the dendritic branch.
Besides, the subthreshold and suprathreshold regions overlap, suggesting that the thresholding function is
not a simple sigmoid function.
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Another striking feature of the IO transformation is the level of Vobserved and the range of
Vexpected. In the primary dendrite (Figure 7.5a), the suprathreshold dendritic integration
output lies between 0 and 0.1 of Vobserved, which is also the same input summation range.
Vexpected > 0.1 results in somatic spiking. In the secondary (Figure 7.5c) and tertiary den-
drites (Figure 7.5e), the dendritic integration plateaus after crossing Vexpected = 0.1 at a
level lower than the threshold (Vobserved = 0.27). The input summation range causing a
subthreshold response increases, from the primary to the tertiary dendrites (the dendritic
branch gets further away from the soma). The smaller range of Vexpected in the primary
dendrite correlates with the large voltage decay of synaptic inputs reaching the branching
point. The peak of observed depolarization in the suprathreshold region also decreases
with respect to the distance and number of bifurcations from the soma. In primary den-
drite (Figure 7.5b), successful spiking produces a peak depolarization of 0.975 (37.5 mV),
while in the secondary dendrite (Figure 7.5d), the peak is constant around 0.83 (21.30
mV). Vobserved in the tertiary dendrite (Figure 7.5f) slopes down from 0.86 (24.6 mV) to
0.84 (22.4 mV). Furthermore, the range of input summation resulting in successful spikes
gets wider. In Figure 7.5b, successful spikes are concentrated between 0.035 to 0.135.
In Figure 7.5d and 7.5f, spikes are spread within [0.115, 0.625] and [0.245, 0.775], re-
spectively.

Furthermore, the minimum input amplitude necessary for a successful spike changes
with dendritic location. The gray areas in subthreshold plots (Figure 7.5a 7.5c, and 7.5e)
indicate the ranges of Vexpected that resulted in somatic spiking, while in the suprathreshold
regions (Figure 7.5b, 7.5d, and 7.5f), the gray areas indicate the subthreshold ranges.
The minimum input summation for suprathreshold spiking shifts to the right, from 0.035
in the primary branch (Figure 7.5a), 0.115 in the secondary branch (Figure 7.5c) to 0.245
in the tertiary branch (Figure 7.5e). In the dendritic integration viewed within-branched, it
appears that the spiking threshold differs as a consequence of heterogeneity in distributed
active mechanisms along the dendrites. Then, considering that the dendrites received the
same input combinations in terms of the number of activated synapses (three, five, and
seven), the range of subthreshold values that the dendrites produced expands. Moreover,
the subthreshold and suprathreshold areas overlap. There are subthreshold values under
the region where successful spikes occurred. It suggests that the thresholding function is
not a straightforward sigmoid because a sigmoid function considers the points within the
overlapping regions as errors.

The within-branch integration results demonstrate that the thresholding function is asym-
metric, in contrast with a sigmoidal function. The subthreshold integration is a linear-
supralinear-sublinear function dependent on the branch location within the dendritic arbor
and whose degree of integration is influenced by the active mechanisms and the strength
of the driving forces of the synaptic inputs.

7.4.2/ LOCATION-DEPENDENT DYNAMICS

We analyzed the effects of segregated and clustered synaptic input locations on the
within-branched dendritic integration. The density plots in Figure D.1 show the distri-
bution of Vexpected/Vobserved for each synaptic location along the dendritic branch. The plots
suggest that synaptic locations have an inconsiderable influence on dendritic depolariza-
tion, which is a direct consequence of the application of synaptic input decay and delay
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Figure 7.6: Location-dependent dynamics. The plots show the relationships between soma and dendritic
branches. The points represent the mean output depolarization per input bin. (a). The depolarizations
in the soma and the apical thresholding point form a linear relationship in the subthreshold (0 ≤ Vprimary ≤

0.125) and concentrated in the suprathreshold with significant discontinuity in between. (b) The relationship
between Vsecondary and Vsoma is strongly sublinear in the subthreshold region (0 ≤ Vsecondary ≤ 0.5) and constant
with increasing Vsecondary inputs. (c) Overall, the relationship between Vtertiary to Vsecondary is linear, with a
slight fluctuation from the linearity. (c) The relationship between the tertiary branch inputs and the soma
is comparable with (b) because the secondary thresholding point also transforms the inputs flowing from the
tertiary dendrites.

(Equation 7.1) preceding the IO quantification. Therefore, we consider the dendritic inte-
gration as independent from the synaptic input location, given that the propagation model
in the dendritic abstraction (Figure 7.3c) already has the spatiotemporal data of the input
signals.

Most studies in IO transformations view the observed depolarization at the soma and
compare it to the summation of inputs or the intensifying stimulation from various dendritic
sites. We compare the membrane potential at the thresholding point with somatic depo-
larization (Figure 7.6). The primary apical dendrite is located near the soma; therefore,
the membrane potential at the thresholding point (Vprimary) leads to an equivalent somatic
potential (Vsoma) (Figure 7.6a). The subthreshold regions display a linear relationship
while spike amplitudes rest at ∼1. The discontinuity occurs due to the sudden increase
in somatic depolarization and the proximity of the primary thresholding point to the soma.
The primary dendrite has a low threshold in that the maximum subthreshold Vprimary is
0.125. The low threshold is consistent with the low Vexpected values in Figure 7.5a. How-
ever, the signal emanating from the secondary apical dendrite undergoes a substantial
voltage decay (Figure 7.6b) due to the drastic increase in apical trunk resistance. The
subthreshold region displays a sublinear relationship with the somatic depolarization. In
this case, the first successful spike occurs at Vsecondary = 0.5, and the spiking thresh-
old differs from the primary dendrite (Figure 7.6a). Then, we analyzed the signal flow
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from the tertiary dendrite to the secondary dendrite (Figure 7.6c) and finally to the soma
(Figure 7.6d). In Figure 7.6c, the Vtertiary/Vsecondary has no noticeable discontinuity, and in
general, the relationship is linear, with only a slight deviation from sublinear to supralinear.
The continuity occurs because the depolarizations are viewed away from the soma. In
our analysis of the membrane potential, we found backpropagation and dendritic bursting
occurrences that are not conveyed into the soma. Then, if we view the signals from the
tertiary apical branch to the soma (Figure 7.6d), the Vtertiary/Vsoma relationship is virtually
the same as in Figure 7.6b. This relationship results from the signal passing through the
secondary dendritic branch.

Therefore, even though the signal from a point in the dendritic arborization is viewed
from the soma and there is a distinguishable difference between the output levels in the
subthreshold and suprathreshold regions, the thresholding function is still not sigmoidal.
Also, the results shown in Figure 7.6 denote the subunit-independence of each dendritic
branch.

7.4.3/ DYNAMIC NONLINEAR THRESHOLDING FUNCTION

Previously, we indicated that the subthreshold and the suprathreshold regions of individ-
ual dendrites with within-branch inputs overlap. We further characterized the dendritic
integration curve and discovered that the overlapping regions resulting from shifting the
IO curve attributed to the increased number of activated synapses during each simulation.
Figure D.2 illustrates the clustering of Vexpected/Vobserved per number of activated synapses,
n. Furthermore, the correlation coefficient r between the Vobserved and n establishes the
influence of synapses in dendritic integration (r = 0.43 for primary apical dendrite, r = 0.36
for secondary apical dendrite, and r = 0.47 for tertiary dendrite).

We discovered that the overlapping sub- and suprathreshold regions displayed in Fig-
ure 7.5 are not outliers but pertain to the shifting of dendritic integration relative to n. In
Figure 7.7, the dendritic integration in the subthreshold (left) and suprathreshold (right)
regions is driven by increasing n. The vertical lines in the subthreshold regions indicate
the minimum Vexpected necessary for a successful somatic spike, while the vertical lines
in the suprathreshold regions correspond to the range of Vexpected in the subthreshold re-
gions. These limits shift to the right as n increases. This behavior demonstrates that the
dendritic branch has a dynamic threshold in that the input summation required for somatic
spiking varies and is dependent on n.

In the primary dendrite (Figure 7.7a), the dendritic integration is strongly supralinear as
it reaches Vobserved = 0.09 and then drops down to slightly above the linearity. In the
suprathreshold region (Figure 7.7b), the IO pairs per n cluster together and slightly over-
lap with the neighboring clusters. However, we can see the difference in dendritic in-
tegration for each n in the subthreshold regions in the secondary (Figure 7.7c) and ter-
tiary dendrites (Figure 7.7e). When n = 3, the dendritic integration is slightly supralinear
(0 < Vexpected < 0.1475). For n = 5, the integration is linear between [0, 0.1275] and turns
into sublinear. Lastly, for n = 7, the integration starts as slightly sublinear then moves
into strongly sublinear, which plateaus at Vobserved ≃ 0.2. For each n in the suprathreshold
region (Figure 7.7d), the continuity of dendritic integration, from sub- to suprathreshold,
becomes distinct as the minimum Vexpected for spiking coincides with the maximum sub-
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Figure 7.7: Influence of activated synapses in dendritic integration. In the subthreshold plots, the vertical
lines indicate the start of somatic activation per number of inputs, while in the suprathreshold regions, the
lines indicate the limit of subthreshold depolarization. In the subthreshold regions (left column), the dendritic
integration curve shifts to the right as the number of inputs, n, increases. The range of Vexpected causing output
depolarization in the suprathreshold regions (right column) also shifts to the right with increasing n. (a) In the
primary branch, the dendritic integration is strongly supralinear, while the integration in (c) the secondary and
(e) tertiary branches, the inputs results in dendritic integration shifting from supralinear to linear to sublinear.
Then, in (b) the suprathreshold region of the primary apical branch, the Vexpected span per n are clustered
close to each other, while as the branch becomes more distant from the soma, (d) in the secondary, then in
the (f) tertiary branch, the span of Vexpected becomes more distinct.

threshold Vexpected (determined by the vertical lines). The tertiary branch also exhibits
the supralinear-linear-sublinear relationship of Vexpected and Vobserved in Figure 7.7c, except
that the IO curve does not stabilize with a further increase of Vexpected. Likewise, in the
suprathreshold region, the clustering of IO pairs is more distinct, and there is a clear
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separation between lower and upper Vexpected. Overall, dendritic integration is a nonlinear
function displayed in the IO curves in Figure 7.5. Further analysis of the IO pairs tells
us that this nonlinearity consists of multiple linear and nonlinear functions, which can be
supralinear, linear, and sublinear, relative to the intensity of the driving force produced by
the synapses.

So what do these imply? It tells us that (1) the dendritic branch performs integration in-
dependent from the neighboring dendrites, (2) dendritic integration is a dynamic process
dependent on the amount of driving force, as well as the number of activated synapses,
and (3) the thresholding nonlinearity is the collective effect of linear and nonlinear inte-
gration (supralinear-linear-sublinear).

7.4.4/ SPATIOTEMPORAL DENDRITIC ABSTRACTION

The dendritic abstraction consists of elements, namely the signal propagation, the linear
summation, and the thresholding function. We established beforehand that the voltage
decay and time delay functions (Equation 7.1) in the dendritic abstraction (Figure 7.3c)
characterize the spatiotemporal model attributes of the dendritic branch under consider-
ation. In contrast, the thresholding function is a time-independent and dynamic model
based on the amplitude summation and number of incoming input signals, as shown in
Figure 7.5 and Figure 7.7. We used multiple linear regression analysis to determine
the thresholding function in each abstraction, where the model parameters were deter-
mined by employing machine learning algorithms performed using the R programming
language. The lm and step regression functions provide a direct and efficient way of
performing regression analysis. Attached in the supplementary materials is the R code
for model prediction.

The training set comprises 70% of the IO dataset in the subthreshold region, while the
remaining 30% was for the testing set. The model which provides the best fit has the form

g = a + bX1 + cX2 + dX1X2, (7.6)

f = g if g ≤ θ or f = Vmax otherwise.

where the variables X1 and X2 correspond to the summation of inputs arriving at the
thresholding point and the number of activated synapses during simulation, respec-
tively. Then, g is the subthreshold integration function, while f is the overall (sub- and
suprathreshold) asymmetric function separated by the spiking threshold θ. Vmax is the
maximum constant depolarization of the dendritic branch. The parameters a, b, c, and d
were identified using the regression analysis. Refer to Table 7.1 for the parameter val-
ues. The thresholding function, f , determines the input intensity that drives the spiking

Table 7.1: Dynamic thresholding function parameters.

Branch a b c d θ Vmax Multiple R2

Primary -0.023 7.900 0.007 -0.865 0.150 0.975 0.991
Secondary 0.011 1.357 0.004 -0.115 0.200 0.830 0.943
Tertiary 0.017 1.395 -0.001 -0.107 0.270 0.850 0.997
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Figure 7.8: The following are the thresholding functions for each dendritic branch and with respect to the
parameters X1 (input summation) and X2 (number of inputs from 1 to 10). For all dendrites, the amount of X1

required to produce an AP increases as the number of activated inputs increases. Thus, in (a), an input level
of ∼0.02 can result in an AP. Furthermore, as the dendritic branch becomes more distal from the soma, from
the (b) secondary to (c) the tertiary dendrite, greater X1 is required. Therefore, the proposed thresholding
function is consistent with the results presented in the previous sections.

mechanism if the branch is connected to the soma. Refer to Equation 7.4. In other cases,
if the branch under consideration is connected to a proximal branch, f determines the
normalized signal coming out of the dendritic branch that will be integrated with the other
inputs of the proximal branch. Here, f is a piecewise function whose subthreshold value
is defined by g. Then, g > θ means an AP is generated, forcing f to equal Vmax. This
activity is observable in Figure 7.7. For every number of inputs (X2), the input summation
(X1) necessary to produce a suprathreshold activity is shifting; thus, we have a dynamic
thresholding function here. Figure 7.8 shows the variation in f with increasing X1 and X2.
The required X1 needed to cross the suprathreshold region increases with X2, agreeing
with the results in Figure 7.7. However, in the primary dendrite where X2 > 8 (Figure 7.8a),
the soma must be forced to spike when X1 > 0.25 done by changing f to Vmax; due to the
large gap between the sub- and suprathreshold regions in the primary-soma connections
(Figure 7.6a). In addition, the variations of f for the secondary dendrite (Figure 7.8b)
and the tertiary dendrite (Figure 7.8c) were comparable with the measured changes in
their respective Vobserved (Figure 7.7), where the threshold in terms of the input summation
shifted from left to right with the increasing number of inputs.

Figure D.3, superimposed on the measured depolarization, is the predicted Vobserved

points. The plots show that the proposed thresholding function indeed follows the dy-
namic characteristics of dendritic integration. The dendritic integration shifts to the right
and varies from supralinear to linear and sublinear described in Figure 7.7. The resulting
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Figure 7.9: Dendritic abstractions. (a) The dendritic abstraction for the primary dendrites includes the
linear summation of synaptic inputs and the thresholding function f , whose output directly drives the somatic
spiking. (b) The boxplot, comparing the measured and expected spiking in the primary dendritic branch within
a 200 ms sliding window, indicates a successful predicting capability (ρ = 0.98) of the dendritic abstraction in
(a). (c) fsecondary output does not enter the primary dendrite as input but instead flows individually, with delay
and decay, through the primary branch for linear summation with fprimary output before reaching the soma.
(d) The boxplot where ρ = 0.97 suggests that the dendritic abstraction in (c) effectively predicts the somatic
spiking. It indicates that spiking is more frequent on the secondary than in the primary dendrites. (e) The
tertiary branch illustrates a dendritic abstraction similar to (c) in that the output of ftertiary flows individually
through the secondary branch for linear summation with the output of fsecondary until it reaches the soma. (f)
The measured and expected somatic spikes comparison validates the dendritic abstraction (ρ = 0.82).

multiple R2 (Table 7.1), which is above 0.9, validates the predictions.

We simulated the biological CA3 pyramidal neuron model by activating random synapses
in each dendritic branch for 5000 ms (10 simulations each branch). With the same synap-
tic inputs measured from the dendritic spine heads, we implemented the proposed den-
dritic abstraction in Figure 7.3c. We predicted the dendritic dynamics and somatic spiking
using the corresponding propagation model (Equation 7.1) and the dynamic thresholding
function (Equation 7.6). For instance, Figure D.4 shows the raster plot of random synaptic
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inputs along the primary apical dendrite and the corresponding observed and predicted
somatic spiking. Then, we compared the measured with the predicted spiking activity
within a 200 ms sliding window.

Figure 7.9a shows the dendritic abstraction of the primary apical dendritic branch (sim-
ulated with n ∈ [4, 10] and spike interval ∈ [38, 67] ms). The output of the thresholding
function is the direct input to the soma. The number of measured and predicted spikes
are from 0 to 2 for every 200 ms sliding window. The boxplot in Figure 7.9b shows that the
dendritic abstraction successfully predicted the somatic spiking where the R2 ρ is 0.98.
Figure 7.9c shows the dendritic abstraction for the secondary dendritic branch (n ∈ [2, 10]
and spike interval ∈ [40, 71] ms). In this case, the output from the secondary thresholding
point independently flows through the primary branch with considerable delay and decay
before reaching the soma. Therefore, the primary dendrite is equivalent to a multiplexer
cable or a waveguide [447]. The linear relationship between the means in the correspond-
ing boxplot (Figure 7.9d) indicates a good prediction capability of the dendritic abstraction
(ρ = 0.97). The tertiary branch exhibits independence from its mother dendrites and sig-
nals multiplexing (Figure 7.9e) (n ∈ [3, 10] and spike interval ∈ [36, 68] ms). Given the
linear relationship of measured and predicted spikes in Figure 7.9f, and that ρ = 0.82,
suggests the dendritic abstraction describes the spiking activity of the biological neuron
model.

7.5/ DISCUSSION

7.5.1/ OPTING FOR A NATURAL NEURONAL RESPONSE IN IO QUANTIFICATION

Biological neuron models based on experimental evidence provide a direct means of ma-
nipulating neuronal characteristics, such as ionic channel distribution, biophysics, mor-
phology, and synaptic inputs, that are challenging to control in vitro or in vivo [429]. We
created a morphologically-realistic and biologically-based CA3 pyramidal neuron model
(Figure 7.1a) and studied the dendritic integration of individual branches via analyzing
their transfer functions or IO relationships. The goal here is to find the corresponding
thresholding function, specifically, to identify the instance that the dendritic integration
curve crosses the suprathreshold from the subthreshold region. The first step is to de-
termine the approach for the IO quantification process. The shape of the IO relationship
varies, dependent on (1) the quantification process: single-pulse or paired-pulse stimula-
tion protocol and blocked spiking mechanisms, and (2) the parameters under considera-
tion: linear for passive mechanisms, nonlinear for the active mechanism (Na+ channels
and NMDA receptors), supralinear to sublinear for increasing driving force. These quan-
tification procedures limit the dynamic response of the neuron and, consequently, the
dendritic integration process. Instead of concentrating on one parameter and constricting
the others, we proposed an IO quantification process that opted for a natural dendritic
response by letting the soma spike spontaneously without blocking the spiking mecha-
nisms to conserve the full range of dendritic activity. However, this process poses some
challenges. When the soma generates APs, back-propagating signals move swiftly from
the soma through the dendritic tree [245], causing consecutive spikes in the thresholding
point. Clustered and strongly-activated synapses create regenerative Na+ spikes local-
ized within the branch [190]. During simultaneous synaptic and somatic activities, what
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causes the dendritic spikes is unclear; it is either the dendritic activity or the backprop-
agation [448]. These dendritic spikes overlap with the peak depolarization of successful
spikes (spikes that cause AP generation). Therefore, we removed the IO points caused by
dendritic spikes in the dataset; those points whose observed depolarization are between
the threshold and 0.8. With this process, we still conserved the spontaneous dynam-
ics of the dendrites and examined the full range of dendritic integration, from sub- to
suprathreshold activities.

7.5.2/ BRANCH-SPECIFIC DENDRITIC INTEGRATION IMPLEMENTS A DYNAMIC
THRESHOLDING FUNCTION

Implementing the proposed IO quantification method, the IO curves in Figure 7.5 and
Figure 7.7 describe a dendritic integration with the following features. First, dendritic in-
tegration is dynamic. Integration in the primary apical and basal dendrites are highly
supralinear (Figure 7.5a), while distal dendrites exhibit a nonlinear integration varying
from supralinear to slightly sublinear (Figure 7.5c and 7.5e). Two-photon imaging and glu-
tamate uncaging on CA3 pyramidal neurons indicate that the apical and basal proximal
dendrites perform highly supralinear integration, mainly influenced by NMDA receptors
[226]. Localized regenerative events during activation of voltage-gated channels con-
tribute to the nonlinearity in distal branches [429]. IO curves seen as a whole depict a
single nonlinearity described by Poirazi and others [243]. The IO curve starts linearly for
weak signals, then progresses to supralinear for intermediate signals. As the curve inter-
sects the line separating the supra- and sublinear region, the IO curve becomes sublinear
and plateaus as the input continues to increase until the input is sufficient for somatic
spiking. Further analysis of the IO curves showed that a single branch could change its
integration mode between supralinear, linear, and sublinear, as shown in Figure 7.7.

Second, the spiking threshold varies with the number of activated synapses. Using whole-
cell recordings in the CA3 region of cultured rat hippocampus, Soldado-Magraner et al.
[449] discovered that the transition from the subthreshold to the suprathreshold (during
firing activity) is not a static characteristic of the neuron. Our analysis determined that the
number of activated synapses, not only the input summation in general, has considerable
influence on the dynamic dendritic behavior. The threshold or the amount of synaptic
inputs required to generate an AP is dynamic [94], and varying synaptic input patterns
influence the form of dendritic depolarization [231]. In vivo, the threshold varies with
the number of inputs and spiking history [94, 190]. Figure 7.7 also illustrates the firing
threshold shifting from left to right. The minimum input summation necessary to cause a
successful spike increases as the number of active synapses increases. In the primary
dendrite (Figure 7.7a), the linear part of the integration mode (0 ≤ Vexpected ≤ 0.02) shifts by
changes in slope. In the secondary (Figure 7.7c) and the tertiary (Figure 7.7e) branches,
the integration mode is slightly supralinear at n = 3, linear at n = 5, and sublinear at n = 7.

Lastly, dendritic integration is branch-specific. Dendritic branches process information
independent of the whole neuron, which is evident in the differences in the IO curves of
each branch (Figure 7.7). The driving force required for somatic spiking differs, which is
minimal in the primary dendrites and maximal in tertiary dendrites. Branch specificity is
also apparent in the varying spiking threshold θ and maximum depolarization Vmax devel-
oped in the branches (Table 7.1). The location of the dendritic branch plays a significant
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role in branch specificity. In Figure 7.6, we compared the dendritic spiking activity in each
branch with the somatic activity. The depolarization at the thresholding point in the apical
trunk in relation to the soma is linear, with a significant discontinuity between the sub-
and suprathreshold (Figure 7.6a). The relationship between the peak depolarizations in
the tertiary and secondary thresholding points is also linear. Contrastingly, the linearity is
continuous (Figure 7.6d). What causes the discontinuity in the apical trunk? When the
input summation reaches the threshold, the somatic depolarization instantly generates
an AP and peaks to ∼40 mV. Dendritic spikes and backpropagation in the non-primary
dendrites create peak depolarization between the threshold and AP peak amplitude. Re-
generative spikes are localized in a specific branch [190, 245]. As shown in Figure 7.9b,
7.9d and 7.9f, dendritic spiking is more frequent in distal dendrites, ten times more than
the soma [190], due to higher input resistance [450]. Depolarization in the secondary
(Figure 7.6b) and tertiary (Figure 7.6d) dendrites compared with the somatic depolariza-
tion display a strongly sublinear relationship in the subthreshold area and constant peak
amplitude in the suprathreshold area. Due to compartmentalization, the current flowing
to the next compartment decreases, and the signal attenuates [191]. Usual IO transfor-
mation methods compare the input summation with somatic spiking. On the other hand,
dendritic integration varies depending on the location where the input and the output are
measured. Therefore, branch-specific processing of diverse synaptic inputs results in
cell-specific activities, as depicted by the experimental recordings from CA1 neurons in
the rat hippocampus [451].

We formulated a dynamic thresholding function (Equation 7.6) to replicate the above den-
dritic integration features. This piecewise function is a multiple linear regression depen-
dent on both the summation of synaptic inputs and the number of activated synapses.
This function is time-independent, as most thresholding functions are. Additionally, the
function can shift between integration modes, from supralinear to linear and sublinear,
while sustaining the overall dendritic nonlinearity. The dynamic thresholding function en-
hances the computational capacity of the dendritic branch, compared with the commonly
used static nonlinearity in GLMs and McCulloch-Pitts neurons. Dynamic threshold, dy-
namic integration mode (deviating between linear and nonlinear), and input location speci-
ficity enhance the computational power of the dendrite as it allows the dendrite to shift
from one integration mode to another [429, 452]. These capabilities reveal that a single
neuron performs more complicated functions associated only with neuronal networks.

7.5.3/ DENDRITIC ABSTRACTION WITH DYNAMIC THRESHOLDING FUNCTION

As mentioned earlier, the thresholding function is time-independent, and the input sum-
mation can occur anywhere along the dendritic arborization. Input summation was set on
the proximal end of the dendritic branch, a point near the bifurcation, to cover the whole
dendritic branch length. We proposed a dendritic abstraction (Figure 7.3c) that mod-
els the spatiotemporal changes of synaptic inputs during propagation. Synaptic inputs
are subjected to voltage decay and delay, attributed to the location of the input from the
thresholding point and the active mechanism along the dendrites (Equation 7.1). The lin-
ear summation of propagated inputs occurs once the inputs reach the thresholding point,
followed by the transformation employing the thresholding function.

We demonstrated that the dendritic abstraction models the integration process of the
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dendritic branch and then proceed with the information transfer scheme from the tertiary
branch straight to the soma (Figure 7.9). In most generalized linear models, the output of
one secondary subunit combines with the inputs of the subsequent subunit, the primary
branch. However, the neuron does not correctly predict the expected output train with
this scheme. For example, if the output of the secondary branch is equal to 0.18, which
is in the subthreshold region, enters the thresholding unit of subunit A, the final output
will be a successful spike being that the threshold of A is only 0.15 (refer to Table 7.1).
The difference between the thresholding levels of the two subunits indicates that dendritic
subunits perform independent dendritic integration processes and the dendritic length
multiplexes branch-specific information. Experiments on neuronal cultures suggest that
dendritic arborization forms multiple layers of dendritic integration and independent func-
tional subunits within a layer [237, 245, 434], comparable with multiplex communication
in cultured neural networks [453].

An additional component in the dendritic abstraction is the linear summation after the
thresholding unit for mother branches (Figure 7.9c and 7.9e). This component feeds the
simultaneous inputs from different branches into a single spike train. The dendritic tree
can, therefore, multiplex multiple information from independent sources [233, 239]. Local
dendritic integration and signal multiplexing continue until the information reaches the
soma. The soma performs a global integration summing the inputs from the proximal
apical and basal dendrites. Sakuma et al. [454] also suggested that the synaptic delays
and refractory periods improve and stabilize multiplex communications in neurons. This
particular scheme also increases the computational capacity of the neuron. It performs
spatiotemporal filtering by confining some information within the specific dendrite. Distal
branches produce and confine dendritic spike bursts that do not reach the soma. It also
performs information selection. During somatic spiking, the soma blocks inputs, and
during this time, some dendritic spikes are unable to reach the soma [233]. Only certain
local information from a distal dendritic branch is delivered to the soma. With this scheme,
where inputs are independently processed, the neuron can also determine the source of
the inputs responsible for the somatic firing.

7.6/ CONCLUSION

Overall, we developed an IO transformation process and modeled the corresponding
branch-specific integration. The thresholding function describes a dynamic integration
process. We also formulated a dendritic abstraction incorporating the spatiotemporal
characteristics of synaptic inputs while traveling down the dendritic length. We suggest
further investigation of dendritic integration by merging both experimental and computa-
tional studies. Current physiological experiments are still limited in spatiotemporal reso-
lution. Besides, we suggest examining a pyramidal neuron with a more complex dendritic
arborization, although complicated arborization equates to exhausting manipulation. It
has been suggested that neurons perform more complex computations comparable with
neuronal networks. Therefore, further investigation into dendritic processes helps under-
stand neuronal functions employed in biomedical, artificial intelligence and neuromorphic
applications [455, 456].
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CONCLUSION AND PERSPECTIVES

Realizing that astrocytes can be computational elements by displaying neuron-like func-
tions operating with slower dynamics extends our current understanding of the brain pro-
cesses to a broader perspective. The heterogeneous morphology of astrocytes that cre-
ates syncytium modulating the neighboring neurons and extending its effect to neurons
belonging to separate networks hints that neurons work in cooperation with astrocytes,
here considered active components, creating a more complex circuitry for computation
and communication. Our research was divided into two parts. First, we developed biologi-
cally plausible neuron-astrocyte networks and studied the influence of astrocytic signaling
on synaptic plasticity and neural network activities. Second, we developed an astrocyte-
mediated spiking neural network following the biological characteristics and simplified
dynamics of these components. This chapter summarizes and concludes the research
findings and gives our perspectives for future works.

We discussed the biological characteristics and signaling in neurons and astrocytes (see
Chapters 2-4). We illustrated the signaling pathways that led to the formation of tripartite
synapses to the development of neuron-astrocyte networks and presented the computa-
tional models describing the neuron-astrocyte interactions. Here are the main findings of
our studies discussed in Chapters 5-7:

• We developed a stochastic tripartite synapse model with synaptic and nonsynaptic
sources of Glu− signals. The HH model [76] described the AP generation in the
AIS, and the cable equation [142] modeled the saltatory conduction along the
myelinated axon. The amount of Glu− in the synaptic cleft was dependent on
the fast and slow Ca2+ dynamics and was released stochastically. The Li-Rinzel
model [162] described the IP3-dependent Ca2+ dynamics, and the astrocytic Glu−

followed a synaptic-like fusion and release process. Here, the astrocytic processes
modulate the synaptic release probability and indirectly modulate the postsynaptic
membrane spiking, triggered by the activation of AMPARs.

We analyzed the strength of communication between the pre- and the postsynaptic
components by comparing their spiking activities and determined that astrocytes
can either improve or impair synaptic communication based on the amount of
astrocytic Glu− released in the extracellular space. The extrasynaptic [Glu−]
must be high enough to increase the synaptic efficacy but low enough to avoid
postsynaptic overexcitation. In addition, the multiple sources of extracellular
Glu− triggering localized Ca2+ oscillations indicate that astrocytes perform a new
level of signal integration, suggesting that astrocytes are more than a point process.
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• Therefore, we developed a compartmentalized model for astrocytic Ca2+ inte-
gration. In a single cell, the astrocytic processes and the soma form separate
compartments communicating via Ca2+ and IP3 diffusions relative to the gradient
between compartments. We employed a stochastic neurotransmitter release, while
the Glu− signals (synaptic and extrasynaptic) are restricted within the astrocytic
processes. The tripartite synapse has feedforward and feedback pathways, where
the astrocytic process modulates both the presynaptic release probability and
generates postsynaptic SICs. Furthermore, the gap junction connected astrocytes
form a network with varying topology, chain, dense, or regular connections,
communicating via ICW propagation. The IP3 exchange between astrocytic somas
depends on the state of the cell, described by the UAR model.

The heterogeneity in astrocytic connections (with the neurons and the neighboring
astrocytes) highly influences neural activities, specifically improving network
synchrony, synaptic efficacy, and homeostasis. During global Ca2+ oscillations,
astrocytic processes simultaneously release Glu−, consequently modulating
the neuronal counterparts. At the network level, ICW propagation promotes
simultaneous activation of astrocytes, thus resulting in synchronized postsynaptic
spiking. The simulation results indicate that the chain topology displayed a higher
synchrony level than the other astrocytic connections. The chain topology also
resulted in higher network efficacy, attributed to the restricted Ca2+ activities
within the astrocytic territory. In contrast, heterogeneity exhibited by the regular or
dense topologies provided a positive impact on network stability or homeostasis.
Therefore, heterogeneous as they may be seen in vivo, astrocytic connections play
specific roles in neural activities.

• Based on the biological dynamics and characteristics of neurons and astrocytes,
we developed simplified SNANs capable of learning (unsupervised) features of
handwritten images from the MNIST database [16] and classifying input classes.
The network consists of 784 Poisson Input neurons whose spiking rates depend
on the 28x28 image pixels, 100 AIF First layer neurons with 100 IN for lateral
inhibitions that generate synaptic competitions, and 100 astrocytes (using the
Postnov model [312] creating tripartite connections between the neuronal layers.
The classifier unit converts the spiking patterns of the First layer into a vector for
predicting the input class. We trained the networks with varying hyperparameters
and an increasing number of astrocyte-mediated synapses. The test results of the
SNAN with 30% tripartite synapses (out of the total number of synapses) yielded a
maximum of 75.28% of accuracy with optimal model complexity.

This study is one of the first attempts to employ astrocytes in artificial neural
networks for direct applications to image recognition (using the standard MNIST
dataset) by generating slow excitatory inputs separate from the synaptic signals.
Therefore, the proposed network can serve as a baseline for astrocyte implemen-
tations in artificial networks. It displayed advantages over SNN such as faster
learning due to the additional synapses, increased accuracy while optimizing the
bias and variance tradeoff, and, interestingly, simplified network architecture as the
SNAN network can yield accuracy at the same level as networks with more neuron
components.
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• Lastly, we developed a dendritic abstraction based on a biological CA3 pyramidal
neuron that would allow neurons to perform dendrite-specific integration for faster
learning. The spatiotemporal abstraction consists of signal propagation, linear sum-
mation, thresholding function, and spiking mechanisms. We proposed an IO quan-
tification method for in vivo-like synaptic inputs from the biological model. We for-
mulated a dynamic nonlinear thresholding function using multiple regression, cap-
turing the linear, supralinear, and sublinear shifts in dendritic integration observed
in pyramidal neurons.The IO curves suggest that the dendritic branches are compu-
tational subunits performing branch-specific and independent dendritic integrations
that are dynamic, shifting between linear and nonlinear regions, and whose spiking
threshold varies relative to the activated synapses. In addition, by following the mul-
tilayer and multiplexer computational schemes, a single neuron can perform faster
learning. During synaptic activations, the dendritic subunit can instantly update its
synaptic weights without waiting for the backpropagating signals from the soma.

Researchers are currently acknowledging the potential of astrocytes in brain processes,
and there are efforts to implement astrocytes in artificial spiking networks. In continuing
research in astrocytic processes and implementations, the following research areas are
suggested:

• More than 100 years ago, Santiago Ramon y Cajal said, ”What is the function
of glial cells in neural centers? The answer is still not known, and the problem
is even more serious because it may remain unsolved for many years to come
until physiologists find direct methods to attack it [397].” Intriguingly, we still lack
a solid understanding of astrocytic functions 100 years later. Nowadays, imaging
techniques focus on global [Ca2+] in the astrocytic network; however, astrocytic
communication is the interplay of multiple variables such as the extracellular Glu−

and cytosolic IP3. Therefore, it is also vital to have high spatial resolution and
sensitivity measurement tools to study the effects of synaptic and nonsynaptic Glu−

on astrocytic activation. It is also essential to observe and model the inter- and
intracellular IP3 diffusion, noting that [Ca2+] elevations in the astrocytic processes
are IP3-mediated and astrocytes are gap junction-connected communicate via IP3
exchange.

• The fine astrocytic processes limit the currently available physiological measure-
ment tools; therefore, biologically plausible computational models, such as those
presented in Chapter 5 , help discern the influence of astrocytic networks in brain
activities. In addition, the network models can also be used to study the influence
of extracellular molecules in ICW propagation. We presented in Chapter 5 a model
wherein the astrocyte regulated nonsynaptic Glu−, for example, from the nodes of
Ranvier. Researchers can use this model to simulate how the astrocytes maintain
neuronal health or cause brain pathology such as Alzheimer’s [457] or Parkinson’s
[458] diseases.

• There is no physical evidence of backpropagation from the current to the previous
neuronal layer as the synaptic transmission is a feedforward process. Therefore,
synaptic learning is an unsupervised process. However, the ability of astrocytes
to form networks with the neurons belonging to separate layers may hint that the
astrocytes provide the backpropagation mechanisms. Given two neuron layers,
Layer 1 and Layer 2, with series-connected astrocytes whose one end enwraps
the axon terminals in Layer 2 and the other end is coupled with the presynaptic
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terminal of Layer 1; the series astrocytes provide a conduit for the backpropagating
signals. One end of the astrocytic chain senses the activity of presynaptic spiking
activity of Layer 2 neurons. Via ICW propagation, these activities are sent to
the other end, therefore modulating the Layer 1 presynaptic neurotransmitter
release. Researchers can therefore explore the possibility of astrocyte-mediated
backpropagation.

• One can also improve the classification performance of the proposed SNAN for
image recognition. (1) The researchers can change the network parameters/hyper-
parameters and increase the number of epochs during training to find the network
architecture with better accuracy and bias and variance tradeoff. (2) The astrocytic
layer can also be extended into an astrocytic network connected via a chain, dense,
or regular topology to allow ICW propagation. This method can improve the network
activities, such as synchronization and stability, as mentioned in Chapter 6. (3)
Convolutional spiking neuron astrocyte networks can be implemented by dividing
the image pixels into kernels independently processed by the dendritic abstractions
connected in a multilayer and multiplexer scheme (see Chapter 7).

• One of the main challenges we faced during our research is the computational costs
necessary to simulate the networks, as the Brian2 simulator [416] does not support
parallel computations. Researchers can consider implementing the SNAN into neu-
romorphic computing platforms such as BrainScaleS [459] and SpiNNaker [460]
systems. For shallow networks, simulations can also be accelerated by deploying
the network in field-programmable gate array (FPGA) devices [461].
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APPENDIX A

TRIPARTITE SYNAPSE BIOLOGICAL MODEL PARAMETERS

Table A.1: Action potential initiation along the axon initial segment.

Parameter Value Description
C 1 µF/cm2 Specific capacitance of the membrane
ḡK 36 mS/cm2 K+ channel conductance
ḡNa 120 mS/cm2 Na+ channel conductance
ḡL 0.30 mS/cm2 Leak channel conductance
VK −82 mV K+ channel reversal potential
VNa 45 mV Na+ channel reversal potential
VL −59.40 mV Leak channel reversal potential

Values are from Tewari and Majumdar [88].

Table A.2: Action potential propagation along the myelinated segments.

Parameter Value Description
r 0.50 µm Myelinated axon radius [379]
l 1 µm Myelin sheath thickness [379]
xm 100 µm Myelin segment length [379]
nm 20 Number of myelinated segments [379]
Cm 0.10 µF/cm2 Myelin segment membrane capacitance [379]
ρm 107 Ω-m Membrane resistivity [366]
ρa 1.10 Ω-m Axoplasmic resistivity [366]
β 0 Generation constant [143]
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Table A.3: Action potential propagation in the node of Ranvier.

Parameter Value Description
ḡNan 266.70 mS/cm2 Nodal Na+ channel conductance [379]
ḡKn 66.70 mS/cm2 Nodal K+ channel conductance [379]
ḡLn 1.76 mS/cm2 Modal leak channel conductance [368]
VNan 55 mV Nodal Na+ channel reversal potential [368]
VKn −90 mV Nodal K+ channel reversal potential [368]
VLn −70 mV Nodal leak channel reversal potential [379]

Table A.4: Presynaptic neuron calcium dynamics.

Parameter Value Description
A 1.2398×10−8 cm2 Presynaptic bouton surface area

1.9735×10−8 cm2 Nodal surface area [379]
vc 1.2982×10−16 L Presynaptic bouton volume

3.0995×10−16 L Nodal volume [379]
zCa 2 Calcium valence
F 96487 C/mole Faraday’s constant
R 8.314 J/K Real gas constant
T 293.15 K Absolute temperature
ρCa 3.20 µm−2 N-type Ca2+ channel density
gCa 2.30 pS N-type Ca2+ channel conductance
VCa 125 mV Ca2+ channel reversal potential
cext 2 mM External Ca2+ concentration
crest

i 0.10 µM Resting intracellular Ca2+ concentration
τmCa 10 ms Time constant
VmCa −17 mV Half-activation voltage of N-type Ca2+ channel
kmCa 8.40 mV Slope factor of N-type Ca2+ channel
iPMCa 0.40 µA/cm2 Maximum PMCa current
KPMCa 0.10 µM [Ca2+] at which vPMCa is halved
vleak 0.001022 ms−1 Maximum leak of Ca2+

a2 0.20 µM/s Inhibitory Ca2+ binding constant
c1 0.1850 Ratio of the ER volume to the volume of the bou-

ton and the volume of the node
v1 30 s−1 Maximum IP3 receptor flux
v2 0.2374 µs−1 Ca2+ leak rate constant
v3 0.90 µM/s−1 SERCA maximal pump rate
k3 0.10 µM SERCA maximal pump rate
d1 0.13 µM IP3 dissociation constant
d2 1.0490 µM Inhibitory Ca2+ dissociation constant
d3 943.40 nM IP3 dissociation constant
d5 82.34 nM Activation Ca2+ dissociation constant
vg 0.0620 µM/s Maximum production rate of IP3
kg 0.78 nM [Glu−] at which vg is halved
τp 0.14 s−1 IP3 degradation constant
p0 160 nM Initial [IP3]

Unless otherwise stated, the values are from the study of Tewari and Majumdar [88] and Chan et al. [160].



193

Table A.5: Neurotransmitter release.

Parameter Value Description
α 0.30 µM/ms Ca2+ association rate constant
β 3 ms−1 Ca2+ dissociation rate constant
γ 30 ms−1 Forward isomerization rate constant
∆ 8 ms−1 Backward isomerization rate constant
τrec 800 ms Vesicle recovery time constant
τinact 3 ms Vesicle inactivation time constant
a1 50 µM [Ca2+] at which λ is halved
a2 5 µM Slope factor of sponataneous release rate λ
a3 0.85 ms−1 Maximum spontaneous release rate
nv 2 Number of docked vesicles in the bouton

1 Number of docked vesicles in the node
gv 60 mM [Glu−1] in a single vesicle
gc 10 ms−1 Glutamate clearance rate constant

The values are taken from Tewari and Majumdar [88].

Table A.6: Astrocytic dynamics.

Parameter Value Description
rCa 6 s−1 Maximal IP3R flux
rL 0.11 s−1 Maximal rate of Ca2+ from ER
c0 2 µM Total cell free [Ca2+]
c1,a 0.1850 Ratio of ER volume to cytosol volume
vER 0.90 µM/s Maximal rate of SERCA uptake
KER 0.10 µM SERCA Ca2+ affinity
d1 0.13 µM IP3 dissociation constant
d2 1.0490 µM Ca2+ inactivation dissociation constant
d3 0.9434 µM IP3 dissociation constant
d5 0.082340 µM Ca2+ activation dissociation constant
a2 2 s−1 IP3R binding rate for Ca2+ inhibition
N 20 Number of IP3Rs in a cluster
vβ 0.50 µM/s Maximal rate of IP3 production by PLCβ
KR 1.30 µM Glutamate affinity of the receptor
KP 10 µM Ca2+/PKC-dependent inhibition factor
Kπ 0.60 µM Ca2+ affinity of PKC
vdelta 0.05 µM/s Maximal rate of IP3 production by PLCδ
KPLCδ 0.10 µM Ca2+ affinity of PLCδ
kδ 1.50 µM Inhibition constant of PLCδ activity
r5pa 0.05 s−1 Maximal rate of degradation by IP-5P
v3K 2 µM/s Maximal rate of degradation by IP3-3K
KD 0.70 µM Ca2+ affinity of IP3-3K
K3 1 µM IP3 affinity of IP3-3K

The values are taken from Tewari and Majumdar [88].
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Table A.7: Astrocytic gliotransmitter release.

Parameter Value Description
k+1 3.75×10−3 µM−1ms−1 Ca2+ association rate for site S1
k−1 4×10−4 ms−1 Ca2+ dissociation rate for site S1
k+2 2.50×10−3 µM−1ms−1 Ca2+ association rate for site S2
k−2 1×10−3 ms−1 Ca2+ dissociation rate for site S2
k+3 1.25×10−2 µM−1ms−1 Ca2+ association rate for site S3
k−3 10×10−3 ms−1 Ca2+ dissociation rate for site S3
τrec,a 800 ms Vesicle recovery time constant
τinact,a 3 ms Vesicle inactivate time constant
cthresh,a 196.69 nM Astrocyte response threshold
nv,a 12 Number of SLMV ready to be released
gv,a 20 mM [Glu−] in each vesicle
gc,a 10 ms−1 Glu− clearance rate

The values are taken from Tewari and Majumdar [88].

Table A.8: Postsynaptic neuron membrane potential.

Parameter Value Description
Rm 0.79×105 MΩ Spine head resistance
Vrest

post −70 mV Postsynaptic resting membrane potential
τpost 50 ms Postsynaptic membrane time constant
gAMPA 0.35 nS AMPAR conductance
VAMPA 0 mV AMPAR resting membrane potential
αAMPA 1.10 µM/ms AMPAR forward rate constant
βAMPA 190 s−1 AMPAR backward rate constant

The values are taken from Tewari and Majumdar [88].
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NEURON-ASTROCYTE NETWORK MODEL PARAMETERS

Table A.9: Synchronous neurotransmitter release.

Parameter Value Description
Neurotransmitter release process
τ f 3 ms Facilitation time constant
τd 800 ms Depression time constant
τP 120 s Presynaptic receptors inactivation time con-

stant
OP 0.0015 µM−1 ms−1 Presynaptic receptors activation rate
U0 0.8 Resting synaptic release probability
ξS 1 Effect of gliotransmission on synaptic re-

lease
Synaptic glutamate
τc 25 ms Glutamate clearance time constant
ϱc 0.005 Vesicular versus mixing ratio
GS T 200 mM Total vesicular glutamate concentration
Astrocytic IP3

P0 0.16 µM Equilibrium IP3 concentration [462]
τIP3 1/0.00014 ms Time constant [462]
rIP3 0.0072 ms−1 IP3 maximal rate of degradation [462]

Unless stated, values are from De Pitta and Brunel [178].

Table A.10: Postsynaptic membrane potential.

Parameter Value Description
Excitatory synaptic input
τN 10 ms EPSC decay time
τrN 0.5 ms EPSC rise time
JS 6 Synaptic efficacy
ζ 0.75 Efficacy of synaptic transmission
Slow inward current
τS 600 ms SIC decay time
τrS 20 ms SIC rise time
JA 68 SIC efficacy
IA 10 mV SIC amplitude

Unless stated, values are from De Pitta and Brunel [178].
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Table A.11: Synaptic efficacy parameters.

Parameter Value Description
ρb 0.5 Boundary between state [178]
γp 0.023 ms−1 Synaptic efficacy rate of change during po-

tentiation
γd 0.0057 ms−1 Synaptic efficacy rate of change during de-

pression
θp -40 mV Potentiation threshold
θd -65 mV Depression threshold



APPENDIX B

CA3 PYRAMIDAL NEURON CHARACTERISTICS AND MORPHOLOGY

DETAILS

NeuroMorpho.Org ID : NMO 76005

Cell Name : A2 CA3

Species Name : rat

Strain : Sprague-Dawley

Structural Domains : Dendrites, Soma, No Axon

Physical Integrity : Dendrites Moderate

Morphological Attributes : Diameter, 3D, Angles

Min Age : 18.5 days

Max Age : 18.5 days

Development : embryonic

Primary Brain Region : hippocampus

Secondary Brain Region : CA3

Experiment Protocol : culture

Experimental Condition : Control

Staining Method : immunostaining

Reference Article : Anisotropically organized three-dimensional

culture platform for reconstruction of a

hippocampal neural network[437].

MEASUREMENTS

Soma Surface : 586.27 µm2

Number of Stems : 7

Number of Bifurcations : 4

Number of Branches : 15

Overall Width : 109.36 µm
Overall Height : 245.15 µm
Overall Depth : 37.34 µm
Average Diameter : 1.27 µm
Total Length : 1093.47 µm
Total Surface : 4313.06 µm2

Total Volume : 1581.26 µm3

Max Branch Order : 2

Total Fragmentation : 116
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MORPHOLOGY (STANDARDIZED)

Segment

Number

X Y Z Radius Connected

to Segment

Number

1 0 0 0 6.841 -1

2 6.27 2.67 0.07 6.841 1

3 -6.28 -2.67 -0.07 6.841 1

4 -1.05 17.69 -4.54 0.445 1

5 -2.34 23.95 -9.39 1.425 4

6 -3.46 34.67 -8.12 0.487 5

7 -2.57 53.71 -11.63 0.514 6

8 0 73.13 -10.14 0.658 7

9 1.50 83.08 -4.88 1.737 8

10 5.73 100.57 -10.43 1.152 9

11 7.96 106.80 7.70 0.515 10

12 11.82 119.06 -2.94 0.512 11

13 13.75 129.38 -5.68 0.964 12

14 15.66 140.69 -5.39 0.489 13

15 17.15 149.42 -0.16 0.785 14

16 17.10 157.77 -6.95 0.766 15

17 15.25 164.46 -3.79 0.706 16

18 4.39 173.25 4.37 0.460 17

19 -5.97 179.81 7.52 0.635 18

20 -10.29 183.52 2.60 0.458 19

21 -13.34 187.94 -7.26 0.566 20

22 13.59 108.46 -8.21 0.961 10

23 20.86 115.57 -7.01 1.268 22

24 28.75 121.56 -7.85 0.731 23

25 39.95 131.31 -5.58 0.384 24

26 50.84 139.84 2.63 0.315 25

27 56.40 144.54 -0.20 0.896 26

28 -2.79 80.84 -9.95 0.624 8

29 -6.97 87.92 -8.78 0.676 28

30 -12.49 97.54 -5.55 0.622 29

31 -20.47 108.23 -5.29 0.373 30

32 -23.81 112.85 -5.18 0.315 31

33 -27.86 117.42 -8.08 0.629 32

34 -30.91 119.55 -4.03 1.157 33

35 -31.87 125.25 -6.89 1.089 34

36 -33.28 131.15 -3.74 0.771 35

37 -33.81 135.79 -3.63 0.698 36

38 3.06 0.33 3.03 0.689 1

39 17.88 0.46 -3.92 0.315 38

40 23.30 0.84 -8.90 0.587 39

41 28.18 -0.11 -0.91 0.871 40

42 33.11 0.11 -3.90 0.315 41

43 37.64 0.64 -2.87 0.315 42

44 43.85 0.65 -4.86 0.587 43

45 51.54 1.49 -7.82 0.708 44

46 55.83 1.71 -8.80 0.524 45

47 66.27 2.74 -7.75 0.509 46

48 11.84 -6.17 1.86 0.769 1

49 15.71 -7.58 6.83 1.182 48

50 19.61 -8.64 6.81 0.607 49



199

Segment

Number

X Y Z Radius Connected

to Segment

Number

51 23.04 -10.71 8.77 0.612 50

52 27.65 -13.82 8.70 1.074 51

53 31.60 -14.46 6.69 0.315 52

54 36.33 -15.85 5.67 0.701 53

55 41.07 -17.29 8.64 0.724 54

56 46.69 -17.63 7.65 0.761 55

57 51.76 -16.85 8.68 0.315 56

58 56.66 -15.59 3.72 0.837 57

59 61.19 -16.38 8.71 0.315 58

60 65.06 -17.29 5.70 1.314 59

61 67.61 -18.36 8.68 0.582 60

62 0.41 -13.21 -0.31 0.601 1

63 0 -17.24 -3.41 0.856 62

64 2.34 -23.08 -7.56 0.927 63

65 6.11 -28.81 -11.69 0.799 64

66 8.71 -32.66 -12.79 0.496 65

67 11.61 -36.55 -14.88 0.598 66

68 14.84 -41.59 -17.00 0.567 67

69 20.46 -50.26 -12.20 0.608 68

70 24.18 -54.40 -11.30 0.859 69

71 27.65 -59.31 -5.42 0.784 70

72 29.63 -65.48 -18.57 0.517 71

73 29.83 -76.51 -14.85 0.76 72

74 30.75 -80.69 -17.95 0.341 73

75 -8.46 6.35 -4.84 0.485 1

76 -10.97 10.72 -1.74 0.477 75

77 -12.12 13.76 24.30 0.611 76

78 -11.02 16.24 23.37 0.376 77

79 -15.26 24.47 0.56 0.933 78

80 -14.59 29.03 -2.28 0.634 79

81 -16.18 32.47 -2.20 0.716 80

82 -18.36 35.71 -3.12 1.113 81

83 -22.82 39.92 -3.03 0.355 82

84 -10.91 -2.08 8.90 0.574 1

85 -19.22 -1.43 15.90 0.551 84

86 -22.72 0.65 11.94 1.321 85

87 -26.02 3.17 16.00 0.575 86

88 -31.25 5.85 9.05 0.525 87

89 -34.66 8.29 -8.86 0.315 88

90 -38.34 10.06 16.15 0.599 89

91 -41.37 9.52 -7.84 0.315 90

92 -45.12 8.60 -7.87 0.552 91

93 -47.58 9.61 -7.85 0.413 92

94 -49.39 12.26 -7.79 0.315 93

95 -51.63 17.47 -7.66 0.374 94

96 -34.18 2.90 24.98 0.465 87

97 -39.24 2.76 -3.01 0.379 96

98 -43.83 2.30 -7.03 0.581 97

99 -48.26 1.91 -13.05 0.562 98

100 -52.96 -0.04 -13.11 0.649 99



200

Segment

Number

X Y Z Radius Connected

to Segment

Number

101 -61.08 -3.64 -8.22 0.356 100

102 -20.53 -4.74 16.81 0.315 85

103 -22.33 -8.41 16.71 0.411 102

104 -26.60 -13.87 10.56 0.743 103

105 -31.77 -18.35 10.44 0.315 104

106 -34.53 -20.04 10.39 0.49 105

107 -37.99 -23.02 10.31 0.677 106

108 -42.89 -29.26 10.14 0.603 107

109 -44.32 -33.91 10.02 0.622 108

110 -7.90 -9.93 -0.26 0.478 1

111 -11.38 -14.68 -0.38 0.584 110

112 -14.41 -20.15 -0.53 0.351 111

113 -16.31 -28.9 11.21 0.587 112

114 -18.68 -35.41 -14.93 0.582 113

115 -20.46 -42.23 -19.10 0.573 114

116 -23.44 -45.71 -21.20 0.76 115

117 -27.54 -49.89 -20.32 0.541 116

118 -31.96 -53.97 -18.43 0.58 117

119 -35.62 -58.46 -10.55 0.525 118



APPENDIX C

CA3 NEURON PARAMETERS

Table C.1: CA3 pyramidal neuron model distributed mechanisms.

Parameter Value Placement
Specific membrane capaci-
tance Cm

1 µF/cm soma, dendrites, spines [195]

Cytoplasmic resistivity Ra 100 Ωcm soma, dendrites, spine heads
[195]

1122 Ωcm spine necks [195]
Leak conductance density gL 0.0001 S/cm2 soma, dendrites [463]
Fast Na+ conductance density
ḡNa

0.03 S/cm2 soma, dendrites [463]

Delayed rectifier K+ conduc-
tance density ḡKDR

0.015 S/cm2 soma, dendrites [463]

A-type K+ conductance 0.005 S/cm2 soma [463]
density ḡKA ḡKAsoma

(1 + 5.2x/350) somatodendritic gradient
where x is the distance from
the soma in µm [200]

N-type Ca2+ conductance
density ḡCaN

0.0015 S/cm2 soma, spine heads [206, 464]

T-type Ca2+ conductance den-
sity ḡCaT

0.001 S/cm2 soma, dendrites [63, 206,
464]

L-type Ca2+ conductance
density ḡCaL

0.0013 S/cm2 soma, spine heads, dendritic
length of 50 µm from the soma
[63, 206, 464]
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Table C.2: Synaptic inputs and miscellaneous parameters.

Parameter Value Source
Synaptic Inputs
AMPAR time rise τA1 0.2 ms [202, 205]
AMPAR time decay τA2 2 ms [205]
AMPAR peak conductance gAmax 0.5 nS [200]
AMPAR reversal potential EAMPA 0 mV [202]
NMDAR time rise τN1 2 ms [205]
NMDAR time decay τN2 86 ms [205]
NMDAR peak conductance gNmax 0.16 nS [200]
NMDAR reversal potential ENMDA -5 mV [185, 465]
Extracellular [Mg2+]o 1 mM [200, 466]
Miscellaneous
Resting potential VR -70 mV [205]
Leak reversal potential EL -70 mV [205]
Na+ reversal potential ENa 50 mV [213]
K+ reversal potential EK -90 mV [213]
Intracellular [Ca2+]i 50 × 10−6 mM [213]
Extracellular [Ca2+]o 2 mM [213]

Table C.3: Somatic spiking mechanism

Parameter Value Description
gNa 120 Na+ conductance (mS/cm2)
gK 36 K+ conductance (mS/cm2)
gCa 7 Ca2+ conductance (mS/cm2)
gL 0.1 Leak conductance (mS/cm2)
VNa 45 Na+ reversal potential (mV)
VK -75 K+ reversal potential (mV)
VCa 90 Ca2+ reversal potential (mV)
VL -70 Leak reversal potential (mV)
C 1 Membrane capacitance (µF/cm2)



APPENDIX D

DEVELOPING THE EQUIVALENT DENDRITIC ABSTRACTION
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Figure D.1: Density plots of segregated and clustered within-branch synaptic inputs located on the dendritic
length d. The results indicate no considerable correlation with the dendritic depolarization and location
of activated synapses since the spatiotemporal characteristics of the inputs and dendrites were already
expressed in the propagation models.
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Figure D.2: The density plots of input summation Vexpected show the clustering of thresholding point depolar-
izations Vobserved per number of synaptic inputs (3, 5, and 7).
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Figure D.3: Predictions using the dynamic thresholding function. The predicted Vobserved (points) superim-
posed on the measured Vobserved at the thresholding point in the (a) primary, (b) secondary, and (c) tertiary
apical branches. The prediction follows the behavior of the observed depolarization, wherein the dendritic
integration shifts to the right with an increasing number of activated synapses, n = 3 (red), n = 5 (blue), and
n = 7 (green).
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Figure D.4: (a) Sample random synaptic spiking activity in the primary apical dendrite and the corresponding
somatic spiking. (b) The measured somatic spiking was reproduced using a Hodgkin-Huxley mechanism.



APPENDIX E

CENTRE DE CALCUL DE L’UNIVERSITÉ DE BOURGOGNE

Cluster Characteristics

No. of machines : 4 (webern)
No. of cores : 24
Theoretical power (Gflops) : 1996.8
Memory (Go) : 96
Model : C6420
Specifications : Intel Xeon Gold 6126 2.60 GHz (2P, 12C/P)

For more information on the cluster characteristics, visit https://ccub.u-bourgogne.fr/
dnum-ccub/ccubw3/puissance-cluster-iso.html.

BARCELONA COMPUTING CENTER

Cluster Characteristics

The CTE-POWER system overview shown below is taken from https://www.bsc.es/
supportkc/docs/CTE-POWER/overview/. CTE-POWER is a cluster based on IBM Power9
processors, with a Linux Operating System and an Infiniband interconnection network.

It has the following configuration:

• 2 login node and 52 compute nodes, each of them:

– 2 x IBM Power9 8335-GTH 2.4GHz (3.0GHz on turbo, 20 cores and 4 thread-
s/core, total 160 threads per node)

– 512GB of main memory distributed in 16 dimms x 32GB 2666MHz

– 2 x SSD 1.9TB as local storage

– 2 x 3.2TB NVME

– 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2

– Single Port Mellanox EDR

– GPFS via one fiber link 10 GBit

The operating system is Red Hat Enterprise Linux Server 7.5 alternative.
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APPENDIX F

RUNTIME SUMMARY

Table F.4: Training runtime (25 epochs) for each configuration.

No. of Tripartite Synapses
out of 78 400 Synapses

Runtime
(Days, Hours, Minutes)

SNAN1 SNAN2 SNAN3
0 (0 %) 4, 16, 30 4, 16, 30 4, 16, 30
7 840 (10 %) 8, 8, 0 11, 11, 0 14, 10, 30
15 680 (20 %) 30, 5, 0 35, 22, 30 26, 19, 45
23 520 (30 %) 35, 10, 0 34, 9, 0 33, 1, 45
31 360 (40 %) 42, 17, 0 41, 16, 0 41, 16, 0
39 200 (50 %) 47, 22, 0 47, 22, 0 49, 17, 45
47 040 (60 %) 57, 7, 0 57, 19, 30 60, 16, 15
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TRAINED SYNAPTIC WEIGHTS
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Figure F.1: Input-to-First layer synaptic weights after 25 epochs of training. Half of the number of synapses
in the SNANs are tripartite connections.
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Figure F.2: Astrocytic-to-First layer synaptic weights after 25 epochs of training. Half of the number of
synapses in the SNANs are tripartite connections.
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Figure F.3: Validation accuracy.
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Asta Kastanauskaite, Silvia Tapia-González, Gonzalo León-Espinosa, Concepcion
Rojo, Ricardo Insausti, Idan Segev, and Javier DeFelipe. Differential structure of
hippocampal ca1 pyramidal neurons in the human and mouse. Cerebral Cortex,
30(2):730–752, 2020.

[49] Hongkui Zeng and Joshua R Sanes. Neuronal cell-type classification: challenges,
opportunities and the path forward. Nature Reviews Neuroscience, 18(9):530–546,
2017.

[50] Benedetta Leuner and Elizabeth Gould. Structural plasticity and hippocampal func-
tion. Annual review of psychology, 61:111–140, 2010.

[51] JL Pawluski, Andreia Valenca, Ana Isabel M Santos, João Pedro Costa-Nunes,
Harry WM Steinbusch, and T Strekalova. Pregnancy or stress decrease complexity
of ca3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience,
227:201–210, 2012.
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[233] Alexandre Payeur, Jean-Claude Béı̈que, and Richard Naud. Classes of dendritic
information processing. Current opinion in neurobiology, 58:78–85, 2019.

[234] Diogo M Camacho, Katherine M Collins, Rani K Powers, James C Costello, and
James J Collins. Next-generation machine learning for biological networks. Cell,
173(7):1581–1592, 2018.



BIBLIOGRAPHY 229

[235] Katharina A Wilmes, Henning Sprekeler, and Susanne Schreiber. Inhibition as a
binary switch for excitatory plasticity in pyramidal neurons. PLoS computational
biology, 12(3):e1004768, 2016.

[236] Guangyu Robert Yang, John D Murray, and Xiao-Jing Wang. A dendritic disin-
hibitory circuit mechanism for pathway-specific gating. Nature communications,
7(1):1–14, 2016.

[237] Shira Sardi, Roni Vardi, Anton Sheinin, Amir Goldental, and Ido Kanter. New types
of experiments reveal that a neuron functions as multiple independent threshold
units. Scientific reports, 7(1):1–17, 2017.

[238] Willem AM Wybo, Benjamin Torben-Nielsen, Thomas Nevian, and Marc-Oliver
Gewaltig. Electrical compartmentalization in neurons. Cell reports, 26(7):1759–
1773, 2019.

[239] Balázs B Ujfalussy, Judit K Makara, Máté Lengyel, and Tiago Branco. Global
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[343] Jules Lallouette, Maurizio De Pittà, Eshel Ben-Jacob, and Hugues Berry. Sparse
short-distance connections enhance calcium wave propagation in a 3d model of
astrocyte networks. Frontiers in computational neuroscience, 8:45, 2014.

[344] Vanessa Houades, Nathalie Rouach, Pascal Ezan, Frank Kirchhoff, Annette
Koulakoff, and Christian Giaume. Shapes of astrocyte networks in the juvenile
brain. Neuron glia biology, 2(1):3–14, 2006.

[345] Vanessa Houades, Annette Koulakoff, Pascal Ezan, Isabelle Seif, and Christian
Giaume. Gap junction-mediated astrocytic networks in the mouse barrel cortex.
Journal of Neuroscience, 28(20):5207–5217, 2008.

[346] Kerstin Lenk, Eero Satuvuori, Jules Lallouette, Antonio Ladrón-de Guevara,
Hugues Berry, and Jari AK Hyttinen. A computational model of interactions be-
tween neuronal and astrocytic networks: The role of astrocytes in the stability of
the neuronal firing rate. Frontiers in computational neuroscience, 13:92, 2020.

[347] Moonseok Choi, Sangzin Ahn, Eun-Jeong Yang, Hyunju Kim, Young Hae Chong,
and Hye-Sun Kim. Hippocampus-based contextual memory alters the morpholog-
ical characteristics of astrocytes in the dentate gyrus. Molecular brain, 9(1):1–9,
2016.

[348] Eric A Bushong, Maryann E Martone, and Mark H Ellisman. Maturation of as-
trocyte morphology and the establishment of astrocyte domains during postnatal
hippocampal development. International Journal of Developmental Neuroscience,
22(2):73–86, 2004.

[349] Daniela Rossi. Astrocyte physiopathology: at the crossroads of intercellular net-
working, inflammation and cell death. Progress in neurobiology, 130:86–120, 2015.

[350] Elaine Del-Bel and Francisco F De-Miguel. Extrasynaptic neurotransmission me-
diated by exocytosis and diffusive release of transmitter substances. Frontiers in
synaptic neuroscience, 10:13, 2018.



BIBLIOGRAPHY 237

[351] James M Robertson. Astrocyte domains and the three-dimensional and seam-
less expression of consciousness and explicit memories. Medical hypotheses,
81(6):1017–1024, 2013.

[352] Alexander A Sosunov, Xiaoping Wu, Nadejda M Tsankova, Eileen Guilfoyle, Guy M
McKhann, and James E Goldman. Phenotypic heterogeneity and plasticity of iso-
cortical and hippocampal astrocytes in the human brain. Journal of Neuroscience,
34(6):2285–2298, 2014.

[353] Dominique Debanne and Sylvain Rama. Astrocytes shape axonal signaling. Sci-
ence signaling, 4(162):pe11–pe11, 2011.

[354] Takuya Sasaki, Norio Matsuki, and Yuji Ikegaya. Action-potential modulation during
axonal conduction. Science, 331(6017):599–601, 2011.

[355] Arthur M Butt. Atp: a ubiquitous gliotransmitter integrating neuron–glial networks.
In Seminars in cell & developmental biology, volume 22, pages 205–213. Elsevier,
2011.

[356] Xin Hu, Yimin Yuan, Dan Wang, and Zhida Su. Heterogeneous astrocytes: Active
players in cns. Brain research bulletin, 125:1–18, 2016.

[357] Rachel Ventura and Kristen M Harris. Three-dimensional relationships between
hippocampal synapses and astrocytes. Journal of Neuroscience, 19(16):6897–
6906, 1999.

[358] Maria P Abbracchio, Geoffrey Burnstock, Alexei Verkhratsky, and Herbert Zimmer-
mann. Purinergic signalling in the nervous system: an overview. Trends in neuro-
sciences, 32(1):19–29, 2009.

[359] Jhunlyn Lorenzo, Roman Vuillaume, Stéphane Binczak, and Sabir Jacquir. Spa-
tiotemporal model of tripartite synapse with perinodal astrocytic process. Journal
of computational neuroscience, 48(1):1–20, 2020.

[360] Ehsan Mirzakhalili, Bogdan I Epureanu, and Eleni Gourgou. A mathematical and
computational model of the calcium dynamics in caenorhabditis elegans ash sen-
sory neuron. PloS one, 13(7):e0201302, 2018.

[361] Yu Guo, Zhuo Liu, Yi-kun Chen, Zhen Chai, Chen Zhou, and Yan Zhang. Neurons
with multiple axons have functional axon initial segments. Neuroscience bulletin,
33(6):641–652, 2017.

[362] Maarten HP Kole and Romain Brette. The electrical significance of axon location
diversity. Current opinion in neurobiology, 51:52–59, 2018.

[363] Andrew D Nelson and Paul M Jenkins. Axonal membranes and their domains:
assembly and function of the axon initial segment and node of ranvier. Frontiers in
cellular neuroscience, 11:136, 2017.

[364] Rei Yamada and Hiroshi Kuba. Structural and functional plasticity at the axon initial
segment. Frontiers in cellular neuroscience, 10:250, 2016.

[365] Mickael Zbili, Sylvain Rama, and Dominique Debanne. Dynamic control of neu-
rotransmitter release by presynaptic potential. Frontiers in cellular neuroscience,
10:278, 2016.



238 BIBLIOGRAPHY

[366] University of Notre Dame. Physics in Medicine. Elsevier, 2004.

[367] Hui Ye and Jeffrey Ng. Shielding effects of myelin sheath on axolemma depolariza-
tion under transverse electric field stimulation. PeerJ, 6:e6020, 2018.

[368] Marc C Ford, Olga Alexandrova, Lee Cossell, Annette Stange-Marten, James Sin-
clair, Conny Kopp-Scheinpflug, Michael Pecka, David Attwell, and Benedikt Grothe.
Tuning of ranvier node and internode properties in myelinated axons to adjust action
potential timing. Nature communications, 6(1):1–14, 2015.

[369] Dipankar J Dutta, Dong Ho Woo, Philip R Lee, Sinisa Pajevic, Olena Bukalo,
William C Huffman, Hiroaki Wake, Peter J Basser, Shahriar SheikhBahaei, Vanja
Lazarevic, et al. Regulation of myelin structure and conduction velocity by perinodal
astrocytes. Proceedings of the National Academy of Sciences, 115(46):11832–
11837, 2018.

[370] Jaime de Juan-Sanz, Graham T Holt, Eric R Schreiter, Fernando de Juan, Dou-
glas S Kim, and Timothy A Ryan. Axonal endoplasmic reticulum ca2+ content
controls release probability in cns nerve terminals. Neuron, 93(4):867–881, 2017.
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bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

[419] Erica Briscoe and Jacob Feldman. Conceptual complexity and the bias/variance
tradeoff. Cognition, 118(1):2–16, 2011.

[420] Janet M Twomey and Alice E Smith. Bias and variance of validation methods for
function approximation neural networks under conditions of sparse data. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), 28(3):417–430, 1998.

[421] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Si-
mon Lacoste-Julien, and Ioannis Mitliagkas. A modern take on the bias-variance
tradeoff in neural networks. arXiv preprint arXiv:1810.08591, 2018.

[422] Daniel J Saunders, Hava T Siegelmann, Robert Kozma, et al. Stdp learning of
image patches with convolutional spiking neural networks. In 2018 international
joint conference on neural networks (IJCNN), pages 1–7. IEEE, 2018.

[423] Shira Sardi, Roni Vardi, Amir Goldental, Yael Tugendhaft, Herut Uzan, and Ido
Kanter. Dendritic learning as a paradigm shift in brain learning. ACS chemical
neuroscience, 9(6):1230–1232, 2018.



242 BIBLIOGRAPHY

[424] Songting Li, Nan Liu, Xiao-hui Zhang, Douglas Zhou, and David Cai. Bilinear-
ity in spatiotemporal integration of synaptic inputs. PLoS computational biology,
10(12):e1004014, 2014.

[425] Jiang Hao, Xu-dong Wang, Yang Dan, Mu-ming Poo, and Xiao-hui Zhang. An arith-
metic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neu-
rons. Proceedings of the National Academy of Sciences, 106(51):21906–21911,
2009.

[426] Bardia F Behabadi, Alon Polsky, Monika Jadi, Jackie Schiller, and Bartlett W Mel.
Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.
PLoS Comput Biol, 8(7):e1002599, 2012.

[427] Songting Li, Nan Liu, Xiaohui Zhang, David W McLaughlin, Douglas Zhou, and
David Cai. Dendritic computations captured by an effective point neuron model.
Proceedings of the National Academy of Sciences, 116(30):15244–15252, 2019.

[428] Wilfrid Rall. Theory of physiological properties of dendrites. Annals of the New York
Academy of Sciences, 96(4):1071–1092, 1962.

[429] Panayiota Poirazi and Athanasia Papoutsi. Illuminating dendritic function with com-
putational models. Nature Reviews Neuroscience, 21(6):303–321, 2020.

[430] Padraig Gleeson, Matteo Cantarelli, Boris Marin, Adrian Quintana, Matt Earnshaw,
Sadra Sadeh, Eugenio Piasini, Justas Birgiolas, Robert C Cannon, N Alex Cayco-
Gajic, et al. Open source brain: a collaborative resource for visualizing, analyzing,
simulating, and developing standardized models of neurons and circuits. Neuron,
103(3):395–411, 2019.

[431] Alison I Weber and Jonathan W Pillow. Capturing the dynamical repertoire of single
neurons with generalized linear models. Neural computation, 29(12):3260–3289,
2017.

[432] Yingxue Wang and Shih-Chii Liu. Multilayer processing of spatiotemporal spike
patterns in a neuron with active dendrites. Neural computation, 22(8):2086–2112,
2010.

[433] Danke Zhang, Yuanqing Li, Malte J Rasch, and Si Wu. Nonlinear multiplicative
dendritic integration in neuron and network models. Frontiers in computational neu-
roscience, 7:56, 2013.

[434] Matt Singh and David Zald. A simple transfer function for nonlinear dendritic inte-
gration. Frontiers in computational neuroscience, 9:98, 2015.

[435] ME Sorensen and RH Lee. Associating changes in output behavior with changes
in parameter values in spiking and bursting neuron models. Journal of neural engi-
neering, 8(3):036014, 2011.

[436] Li Xiumin. Signal integration on the dendrites of a pyramidal neuron model. Cogni-
tive neurodynamics, 8(1):81–85, 2014.

[437] So Hyun Kim, Sun-Kyoung Im, Soo-Jin Oh, Sohyeon Jeong, Eui-Sung Yoon,
C Justin Lee, Nakwon Choi, and Eun-Mi Hur. Anisotropically organized three-
dimensional culture platform for reconstruction of a hippocampal neural network.
Nature communications, 8(1):1–16, 2017.



BIBLIOGRAPHY 243
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Title: Modeling of neuron-astrocyte interaction: application to signal and image processing
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Abstract:
The introduction of the tripartite synapse and the
discovery of calcium wave propagation motivated our
research to explore the potential of astrocytes as active
components in brain circuits. For decades, astrocytes
have been considered passive cells whose primary
function is metabolic and structural support to neurons;
however, recent physiological measurements suggest that
astrocytes modulate neural communication, strengthen
synaptic efficacy, enhance synchronization, and promote
homeostasis. Inspired by these biological functions, this
research aimed to implement astrocytes in artificial spiking
networks for deep learning applications. First, we modeled
the biological interaction between neurons and astrocytes
– from the tripartite connection to neuron-astrocyte
networks. The results suggest that astrocytic connectivity
and heterogeneity determine whether astrocytes would
improve or impair neural activities. Then, we designed a
spiking neuron-astrocyte network architecture for image
recognition using simplified biologically inspired models.

We trained the network to recognize features and classify
handwritten digits using spike-timing-dependent plasticity
and an unsupervised learning algorithm. Here, the
astrocyte-mediated networks displayed advantages over
neuron networks alone, such as faster learning, higher
accuracy, and improved bias-variance tradeoff. One of
the challenges in the study is the extended duration
needed for training. Therefore, we proposed a dendritic
abstraction supporting dendrite-specific computations for
faster learning. We analyzed the signal propagation along
a pyramidal neuron dendritic tree and determined that
a single neuron performs more complex computations
previously attributed only to neural networks by following a
multilayer-multiplexer scheme. We proposed that dendritic
abstractions connected in this scheme could promote
faster synaptic updates independent of backpropagating
signals from the soma. This research is one of the
first attempts to implement astrocytes as computational
elements in artificial networks.

Titre : Modélisation de l’interaction neurone-astrocyte: application au traitement du signal et des images
Mots-clés : Astrocyte, neurone, réseaux d’impulsionnel, synapse tripartite, propagation des ondes calciques, plasticité
synaptique, dynamique biologique, modèle informatique, réseau artificiel
Résumé :
Les concepts de synapse tripartite et d’onde calcique
ont motivé nos recherches afin d’explorer la dynamique
des astrocytes en tant que composants actifs des
circuits cérébraux. Les astrocytes ont été considérés
comme des cellules passives dont la fonction principale
est le soutien métabolique et structurel des neurones.
Cependant, des mesures physiologiques récentes
suggèrent que les astrocytes modulent la communication
neuronale, renforcent l’efficacité synaptique, favorisent
la synchronisation et l’homéostasie. Inspirée par
ces fonctions, cette recherche vise à proposer
de nouveaux paradigmes de réseaux de neurones
artificiels. Il s’agit d’intégrer des astrocytes en
tant qu’objets computationnels dans des réseaux de
neurones impulsionnels artificiels et à terme utiliser
ces réseaux neurones-astrocytes pour des applications
en deep learning. D’abord, nous avons modélisé
mathématiquement et numériquement l’interaction
biologique neurone-astrocyte - de la liaison tripartite aux
réseaux neurone-astrocyte. Les résultats suggèrent que la
connectivité et l’hétérogénéité des astrocytes déterminent
si les astrocytes améliorent ou nuisent aux activités
neuronales. Nous avons ensuite conçu une architecture
de réseau neurones-astrocytes pour la reconnaissance
d’images en utilisant des modèles de neurones bio-
inspirés. Nous avons entraı̂né le réseau à reconnaı̂tre

les caractéristiques et à classer les chiffres manuscrits
en utilisant un algorithme d’apprentissage non supervisé
et de la plasticité fonction du temps d’occurrence des
impulsions. Nos résultats montrent que les réseaux
mixtes neurones-astrocytes présentent des avantages
par rapport aux seuls réseaux de neurones, tels qu’un
apprentissage plus rapide, une plus grande précision et
un compromis biais-variance amélioré. Cependant, le
réseau neurones-astrocytes a un coût computationnel
élevé en terme de simulation. Ce coût est dû à la
complexité des interactions et des dynamiques en jeu.
Par conséquent, nous avons proposé une abstraction
dendritique supportant des calculs spécifiques au niveau
des dendrites pour un apprentissage plus rapide. Nous
avons analysé la propagation du signal le long des
dendrites et déterminé qu’un seul neurone effectue des
calculs complexes, précédemment attribués aux seuls
réseaux neuronaux, en suivant un schéma multicouche-
multiplexeur. Nous avons proposé que les abstractions
dendritiques connectées selon ce schéma puissent
favoriser un apprentissage synaptique plus rapide,
indépendamment des signaux de rétropropagation du
soma. En conclusion, nos travaux de recherche sont parmi
les premiers à considérer l’implémentation des astrocytes
comme éléments de calcul dans les réseaux de neurones
artificiels.
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