
HAL Id: tel-04092400
https://theses.hal.science/tel-04092400v2

Submitted on 9 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance and Verifiability of IoT Security Protocols
Mohamad Mansouri

To cite this version:
Mohamad Mansouri. Performance and Verifiability of IoT Security Protocols. Cryptography and
Security [cs.CR]. Sorbonne Université, 2023. English. �NNT : 2023SORUS065�. �tel-04092400v2�

https://theses.hal.science/tel-04092400v2
https://hal.archives-ouvertes.fr

Performance and Verifiability of
IoT Security Protocols.

Dissertation

submitted to

Sorbonne Université and EURECOM

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Mohamad MANSOURI

Scheduled for defense on April 6th 2023, in front of a committee composed of:

Reviewers
Prof. Ghassan KARAME Ruhr-Universität Bochum, Germany
Prof. Marc JOYE Zama, France

Examiners
Prof. Mauro CONTI University of Padua, Italy
Prof. Antonio FAONIO EURECOM, France
Dr. Ferhat KARAKOÇ Ericsson, Turkey

Industrial Supervisor
Dr. Wafa BEN JABALLAH Thales SIX GTS, France

Thesis Supervisor
Prof. Melek ÖNEN EURECOM, France

Performance et Vérifiabilité des
Protocoles de Sécurité IoT.

Thèse

soumise à

Sorbonne Université et EURECOM

pour l’obtention du Grade de Docteur

présentée par:

Mohamad MANSOURI

Soutenance de thèse prévue le 6 Avril 2023 devant le jury composé de:

Reviewers
Prof. Ghassan KARAME Ruhr-Universität Bochum, Allemagne
Prof. Marc JOYE Zama, France

Examiners
Prof. Mauro CONTI University of Padua, Italie
Prof. Antonio FAONIO EURECOM, France
Dr. Ferhat KARKAOÇ Ericsson, Turquie

Industrial Supervisor
Dr. Wafa BEN JABALLAH Thales SIX GTS, France

Thesis Supervisor
Prof. Melek ÖNEN EURECOM, France

Some nice words

Abstract

The Internet of Things (IoT) is one of the most important technologies in our current
world. It is composed of connected devices with sensors and processing abilities, all
connected to a single platform that orchestrates them. The integration of these IoT devices
into many real-life applications (eg., transportation, industries, ...) imply significant
performance and efficiency improvements. As a consequence, we have seen a boom in the
number of IoT devices deployed and their corresponding platforms. These IoT devices
use real-time data from their deployment environment and send them to the platform.
The collected data by these devices often consist of sensitive information belonging to
the individual who uses this technology. Hence, the privacy of users’ data is one of the
important concerns in IoT. Moreover, IoT applications rely on automating frequent tasks
to achieve better efficiency. Unfortunately, moving control of usually human-controlled
operations to the IoT presents some non-negligible risks to the safety of IoT users.

This thesis deals with the privacy and safety concerns raised by IoT. We propose
security protocols that preserve the privacy of the users’ data. In addition to privacy, we
design verifiable solutions that guarantee the correctness of the computations performed
by the IoT devices and the platform and hence increase trust toward this technology. We
design these solutions while focusing on their performance. More precisely, we propose
protocols that are scalable to cope with the increasing number of IoT devices. We also
consider protocols that are fault-tolerant to cope with the frequent dropouts of IoT
devices. We particularly focus on two security protocols: Secure Aggregation and Remote
Attestation.

Secure aggregation is a protocol where an aggregator computes the sum of the private
inputs of a set of users. In this thesis, we propose the first verifiable secure aggregation
protocol (VSA) that gives formal guarantees of security in the malicious model. Our
solution preserves the privacy of users’ inputs and the correctness of the aggregation result.
Moreover, we propose a novel fault-tolerant secure aggregation protocol (FTSA) based
on additively-homomorphic encryption. The scheme allows users in secure aggregation to
drop from the protocol and offers a mechanism to recover the aggregate without affecting
the privacy of the data. We show that FTSA outperforms the state-of-the-art solutions
in terms of scalability with respect to the number of users.

On the other hand, a remote attestation protocol is a protocol that allows an IoT
device (acting as a prover) to prove its software integrity to the IoT platform (acting
as the verifier). We propose a new collaborative remote attestation protocol (FADIA)
in which devices collect attestations from each other and aggregate them. FADIA deals
with the heterogeneity and dynamic nature of IoT by considering fairness in its design.
The evaluation of FADIA shows an increase in the lifetime of the overall network.

i

Abstract

ii

Abrégé

L’internet des objets (IoT) est l’une des technologies les plus importantes de notre monde
actuel. Il est composé d’appareils connectés dotés de capteurs et de capacités de traitement,
tous reliés à une plateforme unique qui les orchestre. L’intégration de ces dispositifs IoT
dans de nombreuses applications de la vie réelle (par exemple, le transport, les soins de
santé, les industries, ...) a impliqué des améliorations significatives de la performance et
de l’efficacité. En conséquence, nous avons assisté à un boom du nombre de dispositifs IoT
déployés et de leurs plateformes correspondantes. Ces dispositifs IoT utilisent les données
réelles de leur environnement de déploiement et les envoient à la plateforme. Les données
collectées par ces dispositifs sont souvent des informations sensibles. Par conséquent, la
confidentialité des données des utilisateurs est l’une des principales préoccupations de
l’IoT. En outre, les applications IoT reposent sur l’automatisation de tâches fréquentes
pour une meilleure efficacité. Malheureusement, le transfert du contrôle d’opérations
habituellement contrôlées par l’homme vers l’IoT risque de compromettre la sécurité des
utilisateurs de l’IoT.

Cette thèse traite des problèmes de confidentialité et de sécurité soulevés par l’IoT.
Nous proposons des protocoles de sécurité qui préservent la confidentialité des données des
utilisateurs. En plus de la confidentialité, nous voulons concevoir des solutions vérifiables
qui garantissent l’exactitude des calculs effectués par les dispositifs IoT et la plateforme.
Nous concevons ces solutions en nous concentrant sur leurs performances spécifiquement
pour l’IoT. Plus précisément, nous proposons des protocoles qui sont évolutifs pour faire
face au nombre croissant de dispositifs IoT. Nous considérons également des protocoles
tolérants aux pannes pour faire face à la mobilité et aux abandons fréquents des dispositifs
IoT. Nous nous concentrons sur deux protocoles de sécurité : l’agrégation sécurisée et
l’attestation à distance.

L’agrégation sécurisée est un protocole où un agrégateur calcule la somme des entrées
privées d’un ensemble d’utilisateurs. Dans cette thèse, nous proposons le premier protocole
d’agrégation sécurisée vérifiable (VSA) qui donne des garanties formelles de sécurité
dans le modèle malveillant. Notre solution préserve la confidentialité des entrées de tous
les utilisateurs et l’exactitude du résultat de l’agrégation. En outre, nous proposons
un nouveau protocole d’agrégation sécurisée tolérant aux pannes (FTSA) basé sur le
cryptage additif-homomorphe. Le schéma permet aux utilisateurs de l’agrégation sécurisée
de se retirer du protocole et offre un mécanisme pour récupérer l’agrégat sans affecter la
confidentialité des données. Nous montrons que le FTSA surpasse les solutions de l’état
de l’art en termes d’évolutivité par rapport au nombre d’utilisateurs.

iii

Abrégé

D’autre part, un protocole d’attestation à distance est un protocole qui permet à
un dispositif IoT (agissant en tant que prouveur) de prouver son intégrité logicielle à la
plateforme IoT (agissant en tant que vérificateur). Nous proposons un nouveau protocole
collaboratif d’attestation à distance (FADIA) dans lequel les dispositifs collectent des
attestations les uns des autres et les agrègent. FADIA traite de l’hétérogénéité et de la
nature dynamique de l’IoT en tenant compte de l’équité dans sa conception. L’évaluation
de FADIA montre une augmentation de la durée de vie d’un réseau.

iv

Acknowledgements

Acknowledgments

v

Acknowledgements

vi

Contents

Abstract . i

Abrégé [Français] . iii

Acknowledgements . v

Contents . vii

List of Figures . xi

List of Tables . xv

List of Publications . xvii

1 Introduction 1

1.1 IoT and its Applications . 1

1.2 IoT Components . 2

1.2.1 IoT End-Devices . 2

1.2.2 IoT Platform . 3

1.3 The Dark Side of IoT . 3

1.3.1 Adversaries Controlling The End-Devices 3

1.3.2 Adversaries Controlling The Platform 3

1.3.3 External Adversaries . 4

1.4 Problem Statement . 4

1.4.1 Security Protocols for IoT . 5

1.4.2 Contributions . 7

2 Preliminaries and Cryptographic Building Blocks 9

2.1 Notations . 9

2.2 Hard Problems and Assumptions . 9

2.2.1 Decisional and Computational Diffie-Hellman Assumptions 10

2.2.2 Decisional Composite Residuosity Assumption 10

2.3 Cryptographic Schemes . 10

2.3.1 Threshold Secret Sharing (SS) . 11

2.3.2 Symmetric Encryption . 13

2.3.3 Pseudo Random Generator . 14

2.3.4 Key Agreement Scheme . 14

vii

Contents

2.4 Ideal Functionalities and Protocols . 15

2.4.1 The Universal Composability Framework (UC) 15

2.4.2 Common Reference String (CRS) 16

2.4.3 Random Oracle Model . 17

2.4.4 Sharing Random Number (RShare) 17

2.4.5 Oblivious Transfer (OT) . 17

2.4.6 Garbled Circuits (GC) . 19

2.4.7 Zero-Knowledge Proofs (ZKP) . 20

I Secure Aggregation 23

3 Characterization of Secure Aggregation 25

3.1 Environment of Secure Aggregation . 25

3.2 Threat Models and Security Requirements for Secure Aggregation 26

3.2.1 Threat Models . 26

3.2.2 Security Requirements . 27

3.3 Existing Secure Aggregation Protocols . 27

3.3.1 SA based on differential privacy . 27

3.3.2 SA based on trusted-execution environment 28

3.3.3 SA based on anonymity . 28

3.3.4 SA based on cryptography . 28

3.4 Secure Aggregation based on Cryptography 28

3.4.1 Secure Aggregation Protocol Phases 29

3.4.2 Encryption-based SA . 29

3.4.3 MPC-based SA . 36

3.5 Summary of Honest-but-Curious Secure Aggregation 37

4 Secure Aggregation in the Malicious Model 39

4.1 Secure Aggregation with Malicious Parties 39

4.2 Previous Work . 39

4.3 VSA - Overview . 41

4.4 PUDA secure aggregation . 42

4.4.1 PUDA model . 42

4.4.2 PUDA construction . 43

4.5 VSA - Formal Definitions . 44

4.5.1 Correctness of VSA . 44

4.5.2 Security of VSA . 45

4.6 Ideal Functionality for Distributed Tagging Protocol 47

4.7 VSA - Construction in the F̂ t,G
DTAG-Hybrid Model 47

4.7.1 VSA Scheme . 47

viii

Contents

4.7.2 Proof of Correctness . 49

4.8 VSA - Security Analysis . 49

4.9 Realization of Distributed Tagging Protocol 53

4.9.1 Realization of The Tagging Protocol 56

4.10 Conclusion on Verifiable SA . 61

II Secure Aggregation for Federated Learning 63

5 Privacy-Preserving Federated Learning with Secure Aggregation 65

5.1 Introduction to Privacy-Preserving Federated Learning 65

5.2 Characteristics of Federated Learning . 67

5.2.1 Scale of Federation . 67

5.2.2 Partitioning of the training data 67

5.2.3 Learning algorithm . 68

5.3 Privacy of the Datasets in Federated Learning 68

5.4 Existing Secure Aggregation for Privacy-Preserving Federated Learning . 68

5.4.1 Challenges in using Secure Aggregation for Federated Learning . . 70

5.4.2 Secure Aggregation Solutions for Federated Learning 72

5.5 Observations and Conclusion on Secure Aggregation for FL 78

6 Scalable and Fault-Tolerant Secure Aggregation for Federated Learning 81

6.1 Fault-Tolerant Secure Aggregation . 81

6.2 Threat Model . 82

6.3 Prior Work based on Masking . 82

6.3.1 SecAgg . 82

6.3.2 SecAgg+ . 83

6.3.3 TurboAgg . 84

6.3.4 FastSecAgg . 84

6.4 FTSA - Overview . 84

6.5 Threshold Joye-Libert Scheme . 85

6.6 FTSA - Complete Specifications . 88

6.6.1 The Setup Phase . 88

6.6.2 The Online Phase . 90

6.6.3 Deployment of FTSA on Semi-Connected Graphs (FTSA+) 91

6.7 Security Analysis . 91

6.7.1 Security in the honest-but-curious model 93

6.7.2 Security in the malicious model . 94

6.8 Performance Analysis . 96

6.8.1 Scalability Analysis of The Offline Phase 96

6.8.2 Scalability Analysis of The Online Phase at the Client 96

ix

Contents

6.8.3 Scalability Analysis of The Online Phase at the Server 97

6.8.4 Experimental Evaluation . 98

6.9 FTSA*: An Optimized Fault-Tolerant SA 101

6.9.1 The Idea . 101

6.9.2 The Protocol . 102

6.9.3 Security Analysis . 102

6.9.4 Performance Analysis . 104

6.10 Conclusions . 104

III Remote Attestation Protocols 105

7 Fairness-Driven Remote-Attestation 107

7.1 Remote Attestation . 107

7.1.1 Definition . 107

7.1.2 Root of Trust for Remote Attestation Protocols 108

7.1.3 Collaborative Remote Attestation 108

7.2 Previous Work on Collaborative Remote Attestation 109

7.2.1 Categorization based on Connection Topology 109

7.2.2 Categorization based on Key Management 110

7.2.3 Limitation of Previous Work . 110

7.3 FADIA - Overview . 111

7.4 Building Block: Eschenauer and Gligor’s Scheme 113

7.5 Assumptions and Threat Model . 113

7.5.1 Network Assumptions . 113

7.5.2 Security Model . 114

7.6 FADIA - Complete Specifications . 115

7.6.1 Initialization Phase . 115

7.6.2 Joining Phase . 116

7.6.3 Attestation Phase . 117

7.6.4 Key Revocation Phase . 120

7.6.5 Role of the score function . 120

7.7 Security Analysis . 121

7.8 Performance Analysis . 122

7.8.1 Implementation of FADIA on Tmote Sky and Raspberry PI 2 . . . 122

7.8.2 Environment for Experimental Evaluation 123

7.8.3 Evaluation in Heterogeneous Networks 123

7.8.4 Evaluation in Homogeneous Networks 126

7.8.5 Evaluation with Selfish Provers . 129

7.8.6 Evaluation of the Revocation Phase in FADIA 129

7.9 Conclusion on Fairness-Driven Remote-Attestation 130

x

Contents

8 Final Conclusion and Future Work 133

8.1 Conclusion . 133

8.2 Future Work . 134

Appendices 137

A Appendices for Chapter 6 139

A.1 Detailed Measurements of the Running Time 139

A.2 Detailed Measurements of the Data Transfer 139

B Appendix for Chapter 7 141

B.1 Energy consumption evaluation . 141

B.2 Benchmarks of ESP32-PICO-D4 Devices and Stellaris LM4F120H5QR

Microcontrollers . 142

xi

Contents

xii

List of Figures

2.4 OT protocol . 19

2.5 Protocol to evaluate secure comparison using GC. 20

3.1 Illustration of one SA round . 26

3.2 Masking-based SA. 30

3.3 AHE-based SA. 32

3.4 FE-based SA. 34

3.5 MPC-based SA. 36

4.1 PUDA protocol. 42

4.3 VSA protocol . 49

4.4 Overview of the tagging and distributed tagging functionalities 54

4.7 Tagging Protocol in FRZK-hybrid model. 58

5.1 One federated learning round with three FL clients and one server. 66

5.2 A secure aggregation protocol integrated into federated learning. 69

5.3 Grouping of SA solutions for FL . 74

5.4 New Components of Secure Aggregation 79

6.1 Demonstration of an execution of TJL scheme 85

6.2 Detailed description of the setup phase of FTSA 89

6.3 Description of the online phase of FTSA 92

6.4 Runtime and bandwidth consumption of FTSA 98

6.5 Description of the online phase of FTSA* 103

7.1 Remote Attestation . 107

7.2 FADIA’s joining phase . 116

7.3 Tree construction in FADIA’s attestation phase. 117

7.4 Attestation collection in FADIA’s attestation phase. 119

7.5 Evaluation of the energy consumption of the devices in FADIA 124

7.6 Runtime of FADIA. 126

7.7 Runtime of FADIA and PASTA. 127

7.8 Bandwidth consumption of FADIA. 128

7.9 Efficiency of key revocation in FADIA. 130

xiii

List of Figures

B.1 Evaluation of the fairness in energy consumption for FADIA. 141
B.2 Evaluation of the network lifetime for FADIA 142

xiv

List of Tables

2.1 Common Notations . 9

3.1 Comparison table for SA schemes in the honset-but-curious model 37

5.1 Summary of the challenges in using secure aggregation for FL. 70
5.2 Categorization of SA solutions for FL. 73

6.1 Complexity analysis of the online phase of FTSA 96
6.2 Benchmarks of JL and TJL schemes. 100
6.3 Runtime of clients in FTSA for one FL round 100
6.4 Runtime of clients in FTSA for many FL rounds 101
6.5 Complexity analysis of the online phase of FTSA*. 104

7.1 Comparison between work on collaborative remote attestation. 112
7.2 Notations . 115
7.3 Benchmarks and energy consumption measurements of FADIA 122
7.4 Energy consumption measurement of FADIA 125

A.1 Running time for the clients and the server in FTSA 139
A.2 Data transfer per client for FTSA . 140

B.1 Benchmarks of SHA256 and HMAC-SHA256 142

xv

List of Tables

xvi

List of Publications

We have presented the following publications during this PhD study. Most of them have
already been presented through different venues enumerated below:

1. Mohamad Mansouri, Wafa Ben Jaballah, Melek Önen, Md Masoom Rabbani, and
Mauro Conti. 2021. “FADIA: fairness-driven collaborative remote attestation”. In
Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’21). Abu Dhabi, UAE (Remote Conference), June 28 -
July 2, 2021.

2. Mohamad Mansouri, Melek Önen, and Wafa Ben Jaballah. 2022. “Learning
from Failures: Secure and Fault-Tolerant Aggregation for Federated Learning”.
In Proceedings of the 38th Annual Computer Security Applications Conference
(ACSAC ’22). Austin, Texas, USA, December 5 - December 9, 2022.

3. Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti. 2023.
“SoK: Secure aggregation based on cryptographic schemes for federated Learning”.
In Proceedings of the 23rd Privacy Enhancing Technologies Symposium (PETS ’23).
Lausanne, Switzerland (Hybrid Conference), July 10 - July 14, 2023.

4. Mohamad Mansouri, Antonio Faonio, Melek Önen, Wafa Ben Jaballah, Sayantan
Mukherjee, and Katerina Mitrokotsa. 2023. “Verifiable Secure aggregation in The
Malicious Model”. Under Submission.

xvii

List of Tables

xviii

Chapter 1

Introduction

1.1 IoT and its Applications

With the recent advances in embedded systems and communication technologies, the
Internet of Things (IoT) paradigm emerge and evolves rapidly. Indeed, researchers
expect that the number of IoT devices installed will raise to 41.6 billion devices that
will generate 79.4 ZB of data in the year 2025 [Dig19]. IoT is composed of connected
objects with sensors and processing abilities. The connected objects exchange data with
each other and with external systems. IoT spans different life sectors such as medical
care, end-consumers, industrial, and even military applications. The main benefit of
IoT originates from its ability to automate daily tasks leading to improved efficiency,
productivity, and accuracy of existing systems.

Many applications use IoT technologies to improve the quality of their services and
to reduce their operational cost. We discuss the main applications where IoT made a
significant contribution to their advancement.

Home Automation It may involve temperature and humidity sensors, live monitoring
devices, electric appliances control, etc. Smart homes [Pro22] provide a platform for end
consumers to collect data from their houses and automate actions. The main benefit
of smart homes is offering more life convenience for end-consumers and cost-saving by
optimizing energy consumption.

Healthcare The medical sector also benefits from IoT technologies to improve healthcare
systems [PSJH+20]. It allows the collection of more rich medical data from patients
which are used to improve the research work and studies on existing diseases [IHPS11].
Additionally, IoT can improve the live monitoring of patients leading to improved
treatment of emergency cases.

Transportation Automated cars are the future of the world. This promising technology
strongly depends on IoT sensors and devices that are installed inside vehicles and on the

1

Chapter 1. Introduction

roads [MTMH18]. These devices communicate with each other to provide autonomous
driving features for passengers.

Industry 4.0 One of the main reasons behind the boom of IoT technologies is their use
in industries [YSW18]. Industry 4.0 involves the deployment of smart sensors and IoT
platforms in the production lines. The exchange of data between the product and the
production line enables a much more efficient connection of the supply chain. Thus, it
leads to a reduction in production costs and an improvement in product quality.

Infrastructures Large-scale applications that cover metropolitan projects have also a
huge interest in IoT technologies. They involve smart cities [Poo18] where smart sensors
enable services like parking search, environmental monitoring, water distribution, and
traffic management. They also involve smart grids [SG17] that enable smart monitoring
of electricity consumption in a large inhabited area.

1.2 IoT Components

The IoT involves two main components: the IoT end-devices (the sensors, actuators, etc.)
and the IoT platform to which these end-devices are connected. We describe the role
and the properties of each of these components.

1.2.1 IoT End-Devices

These are the devices installed at the peripheries of the IoT network. They collect live
data from the environment and perform simple actions. An example of these devices is
smart sensors, programmable logic units (PLC), cameras, electricity relays, etc. Although
there exist many types of IoT end-devices, they all share some common characteristics:

• Deployed in large-scale: It is common in many IoT applications that the IoT
end-devices are deployed in large numbers and spread across multiple geo-dispersed
locations. For example, smart city applications install end-devices in different
locations to track live information about the environment in multiple locations.
This allows authorities to take better decisions that help improve the life quality in
some regions.

• Low in Resource: Due to the need for large number of devices in some applications,
the manufacturers have to decrease their costs to make them affordable. This comes
at the cost of minimizing the resources that these devices possess such as their
processing power, their data transfer speed, and their energy resources.

• Heterogeneity: The complexity of IoT applications requires deploying different
types of IoT end-devices. These devices can have different properties in terms of
their amount of resources and their software stack.

2

Chapter 1. Introduction

• Mobility: In many applications, the end-devices are supposed to move frequently
within some areas. For example, in industrial applications, smart sensors may be
connected to objects to track the production or business process.

1.2.2 IoT Platform

In addition to the IoT end-devices, IoT applications deploy an IoT platform to provide
their servers. The IoT platform is the brain of the IoT which manages all the connected IoT
end-devices. It involves the network architecture and the processing servers that collect
data from the end-devices and analyze/process them. The IoT platform administrators
control these servers. They define how the data is processed and what decisions and
actions to take based on the data analysis. These IoT platforms may be deployed
physically on-premises or might use cloud technologies and thus get installed as software
services on the cloud.

1.3 The Dark Side of IoT

Along with the bright side of IoT comes a dark side. Security researchers raise concerns
about the security of IoT devices and their impact on the privacy and safety of users
[TMTQ20]. We identify three types of adversaries for IoT that raise serious security
problems: Adversaries controlling some IoT devices, adversaries controlling the IoT
platform, and external adversaries that are on the same network of the IoT devices. In
this section, we present the different types of adversaries and their impact on the user’s
safety and privacy.

1.3.1 Adversaries Controlling The End-Devices

It is possible to have IoT end-devices performing attacks on the IoT application. This
can happen either due to users of these devices acting maliciously or due to the devices
being compromised. In such cases, the adversary aims to compromise the IoT application
to influence its logic or to leak private information about other users. In these attacks,
the adversary controls the inputs of the compromised devices. Hence, it can influence
the results and decisions. An example of such attacks is the attack on the implantable
cardiac devices from St. Jude Medical (2017) [Lar17]. The attacker compromised these
implementable and threatened the safety of the users. Another example is the famous
StuxNet Malware (2009) [Kus13]. This malware infected PLC devices at Iranian nuclear
plant and caused damage to its components while remaining undetected by reporting
false information about the actual performance. Therefore, to secure the IoT, one should
consider the malicious behavior of IoT end-devices and thus verify their inputs.

1.3.2 Adversaries Controlling The Platform

The IoT platform collects users’ data for further processing. However, users cannot trust
the platform as this data often contains private information. IoT platform owners might
be interested in increasing their profit by reselling these data to malicious entities. Indeed,

3

Chapter 1. Introduction

in 2009 the Dutch parliament rejected a smart metering program, basing their decision
on privacy concerns [MRT12]. The smart metering program aims to collect live data from
Dutch households about their electricity consumption. However, the Dutch parliament
raised concerns about the misuse of this data by electricity companies. Therefore, to
secure the IoT, one should consider the malicious behavior of the IoT platform.

1.3.3 External Adversaries

External attackers are connected to the IoT network. Hence, they can see the messages
sent from the devices to the platform. This allows the adversary to tamper with these
messages. Moreover, external attackers may exploit existing vulnerabilities on the IoT
end-devices and thus take control of these end-devices. In addition, some external
attackers may also have physical access to the IoT end-devices which allows them to
perform hardware attacks on the devices. These types of adversaries are mainly interested
in three attacks types:

• Leaking Sensitive Data: In this type of attack, the attacker exploits the lack of
security mechanisms on IoT end-devices to collect private information from the
user of that device. These attacks happen either due to insecure communication
between the IoT end-devices and the IoT platform or due to software and hardware
vulnerabilities that allow the attacker to leak private data.

• Privilege Escalation: External adversaries aim to get more privileges by compro-
mising the end-devices. This allows the adversaries to perform more sophisticated
attacks and gain more information as shown in Section 1.3.1.

• Creating Botnets: The adversaries can compromise a large number of IoT devices to
create botnets. A botnet is a group of Internet-connected devices used to perform
Distributed Denial-of-Service (DDoS) attacks, steal data, send spam, and allow
the attacker to access the device and its connection. The owner can control the
botnet using command and control (C&C) softwares [Sab16]. One of the most
popular botnets that hit the IoT is “Mirai Botnet (2016)” [AAB+17]. It is composed
primarily of embedded and IoT devices, and it took the Internet by storm in late
2016 when it overwhelmed several high-profile targets with some of the largest
distributed denial-of-service (DDoS) attacks on record.

1.4 Problem Statement

It is clear how important IoT is to our world. It is even more clear that the trend of
integrating more and more IoT devices will keep increasing. Therefore, one very important
goal for researchers is securing these IoT devices to make sure that this integration is not
a curse but rather a benefit for humanity. In this thesis, we aim for designing security
protocols for IoT devices. We first start by posing the question: Are existing protocols
designed for standard IT devices (e.g., computers) can solve the security concerns of
IoT? The direct answer to this question is No. Researchers have already identified the

4

Chapter 1. Introduction

limitation of IT world security solutions and traced back this limitation to the unique
characteristics of IoT devices (see Section 1.2.1). Therefore, in this thesis, we aim to
design customized security protocols that take into consideration all the constraints of
the IoT ecosystem. We specifically study the security protocols on three main axes:
scalability, fault tolerance, and verifiability.

• Scalability: We aim to design scalable security protocols that involve thousands or
possibly millions of devices. This allows for more practical solutions targeting IoT
applications that run with a large number of IoT devices.

• Fault Tolerance: We aim to design security protocols that are reliable in case of
failures of some devices. This allows for more practical solutions targeting IoT
applications with mobile devices that may encounter connectivity problems and
occasionally fail to receive and deliver messages.

• Verifiability: We aim to design security protocols that do not rely on trusting the
different IoT components (processing platform, end-devices, etc.). By integrating
verification mechanisms into our design, we can verify that third-party IoT platforms
are correctly processing the collected data. Additionally, verifiable security protocols
can also ensure that compromised devices cannot affect the results of our protocol
without being detected.

1.4.1 Security Protocols for IoT

In this thesis, we focus on two very important security protocols that can be game-
changers for improving IoT security. Namely, secure aggregation protocols and remote
attestation protocols.

1.4.1.1 Secure Aggregation Protocols

Secure aggregation consists of computing the sum of data collected from multiple sources
without disclosing these individual inputs. Hence, the goal of a secure aggregation protocol
is to preserve the privacy of the data sources. Researchers identified that such protocols
are useful to improve privacy guarantees in IoT applications. More precisely, secure
aggregation can be used at the network layer to secure the data exchange from the end-
devices to the platform. Smart grid applications are a good example. Moreover, secure
aggregation can also be used at the processing layer to allow multiple IoT platforms to
aggregate securely their collected data. For example, secure aggregation can be applied to
IoT platforms that are using federated learning. Therefore, we classify secure aggregation
into the following two categories.

• Intra-Platform Secure Aggregation: Smart grids are IoT end-devices that monitor
energy consumption in households and industries. These devices collect live mea-
surements of energy consumption and send them to service providers. The service
providers compute statistics on the collected data thus enabling them to optimize
their energy supply and improve their business model. Collecting these data from

5

Chapter 1. Introduction

households poses a privacy problem. It allows the service providers to perform
real-time surveillance and profile the tenants by determining their behavior patterns.
Service providers may also determine the used electric appliances in households
and track the behavior of renters/leasers.

Secure aggregation can be used to protect the energy consumption measurements
of each household and allows the service provider to only compute their sum. By
only disclosing the statistical average value of a large inhabited area, the privacy of
inhabitants is preserved.

• Inter-Platform Secure Aggregation: One of the most important technologies used at
the IoT processing layer is machine learning. The processing units of IoT platforms
use machine learning to train models from the data collected from IoT devices.
These models are used to improve the quality of the IoT application. Recently,
federated learning emerged as a new collaborative machine learning technology to
train machine learning models. This new technology consists of several federated
clients holding private data and contributing to the training of a machine learning
model collaboratively: Each client first trains a local machine learning model using
its dataset and further shares training updates with a server. The server computes
the average of the training updates and sends the average back to the clients. The
clients update their local model and repeat the process so that they finally converge
to one shared, global model. Thanks to this new technology, several IoT platforms
(acting as FL clients) can train more accurate machine learning models using larger
and more diverse datasets (collected from different IoT infrastructures).

Unfortunately, federated learning may compromise the privacy of IoT users. Adver-
saries, who have access only to the training updates (sent by each FL client) can
perform inference attacks to reveal some data samples from the private training
dataset. Therefore, it is very important to secure the federated learning protocol.
Secure aggregation can be used to protect the training updates and allows the
federated learning server to only compute the average of the updates. By protecting
the individual training updates from each IoT platform, secure aggregation helps
improve the privacy of IoT users.

In this thesis, we are interested in designing secure aggregation protocols that can
scale to a large number of users, do not require the availability of all users, and where
their results are publicly verifiable.

1.4.1.2 Remote Attestation Protocols

Remote Attestation (RA) schemes are protocols that enable a device to prove the integrity
of its software to another remote device. It involves two roles: the prover (the device
that proves its software integrity) and the verifier (the device that verifies the integrity
of the prover’s software). In RA, the verifier relies on a root of trust existing on the
prover device to perform integrity checks on the prover’s running software. It then
creates a cryptographic proof and sends it to the verifier. The verifier upon validating

6

Chapter 1. Introduction

this proof authenticates the prover and thus trusts its software. RA is very useful for
IoT applications since it can be used to detect compromised IoT end-devices. Basic RA
solutions require installing a verifier in the IoT platform which verifies the state of all IoT
end-devices. Such a solution is not practical since it does not scale well with the number
of IoT devices. To solve this problem, collaborative RA protocols are used where the
IoT devices attest to each other and create a single proof for their software integrity. In
this thesis, we raise questions about the scalability of existing collaborative RA protocols
in dynamic and heterogeneous networks. Thus, we aim to design efficient RA protocols
that scale with a large number of IoT end-devices and can support their dynamic nature
and heterogeneity of IoT devices in the network.

1.4.2 Contributions

The thesis describes novel secure aggregation and remote attestation protocols that
are suitable for the IoT. The thesis is organized intro three parts. In what follows, we
summarize the contributions in each part:

Part I: Secure Aggregation

In Chapter 3, we perform an in-depth literature study of secure aggregation protocols that
are based on cryptographic techniques and consequently propose a new definition of this
concept. We present existing techniques for secure aggregation as instantiations of our
new definition and we compare them. The chapter gives a clear view of the advantages
and disadvantages of each of the secure aggregation types.

In Chapter 4, we present the first formal definition of security for secure aggregation
protocols in the malicious model. Our new security definitions captures malicious
aggregators and users. Then, we design a novel verifiable secure aggregation (VSA)
protocol and prove that it achieve our security definitions.

Part II: Secure Aggregation for Federated Learning

In Chapter 5, we conduct a large-scale study on secure aggregation solutions specifically
designed for federated learning applications. We identify the main security, privacy,
and performance challenges raised by using secure aggregation for federated learning
and we categories the existing solutions based on the challenges they tackle. The study
finishes with key takeaways that can help developers design, develop or improve secure
aggregation schemes for federated learning.

In Chapter 6, we design a novel secure and fault-tolerant aggregation protocol for federated
learning. For this purpose, we propose a new threshold encryption scheme (based on the
Joye-Libert encryption scheme [JL13]) and we use it to achieve a highly scalable secure
aggregation protocol that supports users dropping frequently from the network. We are
able to reach the theoretical limit in terms of scalability with respect to the number of
users.

7

Chapter 1. Introduction

Part III: Remote Attestation

In this Chapter 7 we design a novel collaborative remote attestation protocol that relies
on device-to-device connection to perform attestation of a large network. Our solution
has better scalability than the existing collaborative remote attestation protocol. It
focuses on the heterogeneity aspect of IoT networks and integrates fairness by design.
We show by experiments that by developing a fair-by-design protocol, we can achieve
better scalability for a RA protocol.

8

Chapter 2

Preliminaries and Cryptographic
Building Blocks

In this thesis, we propose new protocols that improve IoT in terms of security. To build
these protocols we rely on a set of security assumptions and some existing cryptographic
primitives. For this purpose, we introduce, in this chapter, the relevant assumptions and
tools used throughout the thesis. Additionally, we present the basic security protocols and
cryptographic schemes that are considered interesting building blocks for our solutions.

2.1 Notations

We use some common notations throughout the thesis. We present these notations in
Table 2.1.

N The set of natural numbers {1, .., inf}.
Zn The set of integer modulus n {0, .., n−1}.
[n] The set {1, .., n}.
[n]− The set {1, .., n−1}.
I An interval of integers.
F An algebraic field.
G An algebraic group.
Z∗
n The multiplicative group modulus n.

x⟨i⟩ The i-th bit of x = x⟨1⟩||...||x⟨ℓ⟩.
|U| The cardinality of the set U .
r ←$ D r is sampled uniformly at random from distribution D.
D1

c
≈ D2 The two distributions are not distinguishable by a computationally bounded adversary.

D1
s
≈ D2 The two distributions are not distinguishable by a computationally unbounded adversary.

Table 2.1: Common Notations

2.2 Hard Problems and Assumptions

In cryptography, it is common to rely on the hardness of some mathematical problems to
build secure systems. In this thesis, we rely on a set of hard problems which we present

9

Chapter 2. Preliminaries and Cryptographic Building Blocks

in this section.

2.2.1 Decisional and Computational Diffie-Hellman Assumptions

Given a finite, cyclic group G of order p and generator g, we present the following four
assumptions (ordered from strongest to weakest):

Definition 2.2.1: Inv-DDH Assumption

Given the two distributions: D1 : {(g, ga, gc)} and D2 : {(g, ga, ga−1
)} such that

a, c←$ Zp and a−1 is the inverse of a in Zp, the assumption states that D1
c
≈ D2.

Definition 2.2.2: DDH Assumption

Given the two distributions: D1 : {(g, ga, gb, gc)} and D2 : {(g, ga, gb, gab)} such that

a, b, c←$ Zp, the assumption states that D1
c
≈ D2.

Definition 2.2.3: GDH Assumption

The assumption states that given ga, gb ∈ G and ODDH such that a, b ←$ Zp and

ODDH(g
x, gy, gz) is an oracle that returns (gxy

?
= gz), there is no polynomial time

algorithm that outputs gab except with some negligible probability.

Definition 2.2.4: CDH Assumption

The assumption states that given ga, gb ∈ G such that a, b ←$ Zp, there is no
polynomial time algorithm that outputs gab except with some negligible probability.

2.2.2 Decisional Composite Residuosity Assumption

Given N = pq where p and q are two large primes. We define the following assumption
(initially introduced in [Pai99]) in the multiplicative group Z∗N2 :

Definition 2.2.5: DCR Assumption

Given two distributions: D1 : {xN mod N2} and D2 : {x mod N2} such that

x←$ Z∗N2 . The assumption states that D1
c
≈ D2.

2.3 Cryptographic Schemes

In this section, we present the main cryptographic schemes used in our thesis.

10

Chapter 2. Preliminaries and Cryptographic Building Blocks

2.3.1 Threshold Secret Sharing (SS)

A threshold secret sharing scheme (SS) is a scheme that allows sharing a secret value
with n parties such that a threshold number of these parties can reconstruct the secret
value. It is composed of two algorithms:

• SS.Share(s, t, n, I) → {(i, ⟨s⟩i)}∀i∈[n]: The algorithm takes as input secret s ∈ I
and a reconstruction threshold t, and generates n random shares.

• SS.Recon({(i, ⟨s⟩i)}∀i∈I , I) → s: The algorithm takes as input a set of |I| pairs in
[n]× I. It outputs a value s ∈ I.

Definition 2.3.1: Correctness

SS is said to be correct in I if and only if:

∀s, ∀n,∀t,∀I s.t. (I ⊂ [n]) ∧ (|I| ≥ t) ∧ (s ∈ I),

Pr

[
r ̸= s

∣∣∣∣ SS.Share(s, t, n, I)→ {(i, ⟨s⟩i)}∀i∈[n],
SS.Recon({(i, ⟨s⟩i)}∀i∈I , I)→ r

]
= 0

Definition 2.3.2: Security

SS is said to be secure in I if and only if:

∀s, ∀s′,∀n,∀t,∀I, ∀I s.t. (I ⊂ [n]) ∧ (|I| < t) ∧ (s ∈ I) ∧ (s′ ∈ I),
SS.Share(s, t, n, I)→ {(i, ⟨s⟩i)}∀i∈[n] : {(i, ⟨s⟩i)}∀i∈I

s
≈

SS.Share(s′, t, n, I)→ {(i, ⟨s′⟩i)}∀i∈[n] : {(i, ⟨s′⟩i)}∀i∈I

Definition 2.3.3: Homomorphism

SS is said to be homomorphic in I if and only if:

∀s1,∀s2,∀n,∀t,∀I, s.t. (I ⊂ [n]) ∧ (|I| ≥ t) ∧ (s1, s2 ∈ I),

Pr

r ̸= s1 + s2

∣∣∣∣∣∣
SS.Share(s1, t, n, I)→ {(i, ⟨s1⟩i)}∀i∈[n],
SS.Share(s2, t, n, I)→ {(i, ⟨s2⟩i)}∀i∈[n],
SS.Recon({(i, ⟨s1⟩i + ⟨s2⟩i)}∀i∈I , I)→ r

 = 0

11

Chapter 2. Preliminaries and Cryptographic Building Blocks

Realization over the Field Zp Shamir’s secret sharinf scheme (SSS) [Sha79] is a realization
of the threshold secret sharing scheme SSS in the field Zp. SSS is correct, secure, and
homomorphic, and defined as follows:

• SSS.Share(s, t, n,Zp)→ {(i, ⟨s⟩i)}∀i∈[n]: The algorithm first generates a polynomial
p(x) with uniformly random coefficients in Zp and of degree t−1 such that p(0) = s.
It then sets ⟨s⟩i = p(i),∀i ∈ [n].

• SSS.Recon({(i, ⟨s⟩i)}∀i∈I ,Zp)→ s: The algorithm uses the Lagrange interpolation
formula [Mei02] to compute the value of p(0) as follows:

s = p(0) =
∑
∀i∈I

ηi⟨s⟩i mod p where ηi =
∏

∀j∈I,j ̸=i

j

j − i
mod p

We additionally define the following algorithm for Shamir’s Secret Sharing:

• SSS.ReconExp({(i, g⟨s⟩i)}∀i∈I ,G)→ gs: The algorithm uses the Lagrange interpo-
lation formula on the exponent to compute the value of gs = gp(0) =

∏
∀i∈I(g

⟨s⟩i)ηi .

Lemma 2.3.1

Given the cyclic group G of prime order p and generator g, it holds that:

∀s, ∀n, ∀t,∀I, ∀g ∈ G s.t. (I ⊂ [n]) ∧ (|I| ≥ t) ∧ (s ∈ Zp),

Pr

[
r ̸= gs

∣∣∣∣ SSS.Share(s, t, n,Zp)→ {(i, ⟨s⟩i)}∀i∈[n],
SSS.ReconExp({(i, g⟨s⟩i)}∀i∈I ,G)→ r

]
= 0

Lemma 2.3.2

Given the cyclic group G of prime order p and generator g, it holds that:

∀s1,∀s2,∀n,∀t,∀I, ∀g1,∀g2 s.t. (I ⊂ [n]) ∧ (|I| ≥ t) ∧ (s1, s2 ∈ Zp) ∧ (g1, g2 ∈ G),

Pr

r ̸= gs11 gs22

∣∣∣∣∣∣
SSS.Share(s1, t, n,Zp)→ {(i, ⟨s1⟩i)}∀i∈[n],
SSS.Share(s2, t, n,Zp)→ {(i, ⟨s2⟩i)}∀i∈[n],
SSS.ReconExp({(i, g⟨s1⟩i1 g

⟨s2⟩i
2)}∀i∈I ,G)→ r

 = 0

Realization over the Integers A variant of Shamir’s secret sharing is defined over the
integers (rather than in a field). The secret sharing scheme over the integers is defined by
Rabin [Rab98] and we denote it by ISS. The scheme shares a secret integer s in an interval
I = [−η, η] and provides σ-bits statistical security where σ is a security parameter.

• ISS.Share(s, t, n, I) → {(i, ⟨s⟩i)}∀i∈[n]: The algorithm first generates a polynomial
p(x) with uniformly random coefficients in [−2σ∆2η, 2σ∆2η] and of degree t − 1
such that p(0) = ∆s where ∆ = n!. It then sets ⟨s⟩i = p(i),∀i ∈ [n].

12

Chapter 2. Preliminaries and Cryptographic Building Blocks

• ISS.Recon({(i, ⟨s⟩i)}∀i∈I ,Zp)→ s: The algorithm uses the Lagrange interpolation
formula to compute the value of p(0) as follows:

s = p(0) =

∑
∀i∈I

νi⟨s⟩i

∆2
where νi =

∆
∏

∀j∈I,j ̸=i

j∏
∀j∈I,j ̸=i

j − i

2.3.2 Symmetric Encryption

A symmetric encryption scheme parameterized with a security parameter λ, its key space
K, message spaceM, and ciphertext space C is composed of the following algorithms.

• Enck(m)→ e: It encrypts the message m with key k.

• Deck(e)→ m: It decrypts the ciphertext e with key k

Definition 2.3.4: Correctness

A symmetric encryption scheme is correct if and only if it satisfies:

∀k ∈ K,m ∈M,Pr[m ̸= Deck(Enck(m))] = 0

Definition 2.3.5: Secure

A symmetric encryption scheme is secure if and only if it satisfies indistinguishability
under chosen plaintext attacks (IND-CPA). See formal definition in [BN08].

Definition 2.3.6: Authenticated

A symmetric encryption scheme is authenticated if and only if it satisfies ciphertext
integrity (INT-CTXT). See formal definition in [BN08].

Definition 2.3.7: Non-Committing

A symmetric encryption scheme is non-committing if ∀m ∈ M we have D1
c
≈ D2

where D1 and D2 are defined as follows:

• D1 : {(e, k)} such that k ←$ K and e← Enck(m)

• D2 : {(e′, k′)} such that e′ ←$ S1(1λ), k′ ←$ S2(e′,m) and S1, S2 are any PPT
algorithms that may share a state.

13

Chapter 2. Preliminaries and Cryptographic Building Blocks

Definition 2.3.7 of non-committing encryption says that it is possible for a simulator to
come up with a ciphertext which can later be explained as an encryption of any message,
in such a way that the joint distribution of the ciphertext and the key in this simulated
experiment is indistinguishable from the normal use of the encryption scheme, where a
key is first sampled and then an encryption of m is generated.

In this thesis, we will use (Enc,Dec) for authenticated encryption scheme and
(Enc∗,Dec∗) for a non-commiting authenticated encryption scheme.

2.3.3 Pseudo Random Generator

PRG(m,R, b)→ B: is a pseudo-random generator that extends seed b ∈ {0, 1}λ to vector
B ∈ Zm

R (vector of m elements and each element is in ZR).

Definition 2.3.8: Security

Given the two distribution D1 : {A} such that A ←$ Zm
R and D2 : {B} such that

B ← PRG(b) where b ←$ {0, 1}λ and λ is a large security parameter, it holds that

D1
c
≈ D2.

2.3.4 Key Agreement Scheme

A key agreement scheme KA is a scheme parameterized by the security parameter λ and
the key space K. It is composed of the following algorithms:

• KA.Param(1λ)→ pp: Given a security parameter λ it generates the public parame-
ters pp.

• KA.Gen(pp) → (pk, sk): This algorithm generates a key pair from the public
parameter.

• KA.Agree(pp, sk, pk1, pk2, G) → k: This algorithm uses a private key, two public
keys, and a hash function G to generate an encryption key.

Definition 2.3.9: Correctness

The key agreement scheme is correct if and only if:

∀λ,Pr

k1,2 ̸= k2,1

∣∣∣∣∣∣∣∣∣∣
KA.Param(1λ)→ pp,
KA.Gen(pp)→ (pk1, sk1),
KA.Gen(pp)→ (pk2, sk2),
KA.Agree(pp, sk1, pk1, pk2, G)→ k1,2,
KA.Agree(pp, sk2, pk2, pk1, G)→ k2,1

 = 0

14

Chapter 2. Preliminaries and Cryptographic Building Blocks

Definition 2.3.10: Security

The key agreement scheme is secure if and only if D1
c
≈ D2 where the two distributions

are defined as follows:

D1 :

(pk1, pk2, r)

∣∣∣∣∣∣∣∣
KA.Param(1λ)→ pp,
KA.Gen(pp)→ (pk1, sk1),
KA.Gen(pp)→ (pk2, sk2),
r ←$ K

D2 :

(pk1, pk2, k)

∣∣∣∣∣∣∣∣
KA.Param(1λ)→ pp,
KA.Gen(pp)→ (pk1, sk1),
KA.Gen(pp)→ (pk2, sk2),
KA.Agree(pp, sk1, pk1, pk2, G)→ k

Realization based on DDH Under the DDH assumption we can construct a KA scheme
that is secure in the random oracle G (see Section 2.4.3) as follows:

• KA.Param(1λ)→ pp: From the security parameter λ, it chooses a group G of order
p and generator g where the DDH holds in G. The public parameters are set to
pp = (G, g, p).

• KA.Gen(pp)→ (pk, sk): It outputs (ga, a) where a←$ Zp.

• KA.Agree(pp, sk, pk1, pk2, G)→: It outputs k ← GG
(pk1,pk2)

(pksk2).

2.4 Ideal Functionalities and Protocols

2.4.1 The Universal Composability Framework (UC)

In this thesis, we use the standard universal composability framework proposed by
Canetti [Can20]. The UC framework defines a probabilistic polynomial time (PPT)
environment machine Z that oversees the execution of a protocol in one of two worlds:
The “ideal world” execution involves “dummy parties” (some of whom may be corrupted
by an ideal adversary S) interacting with a functionality F . The “real world” execution
involves PPT parties (some of whom may be corrupted by a PPT real-world adversary
A) interacting only with each other in some protocol Π. Let EXECΠ,A,Z(x) denote the
random variable (over the local random choices of all the real world parties) describing
the output of an execution of Π with environment Z and adversary A, on input x.
Similarly, let IDEALF ,S,Z(x) denote the random variable (over the local random choices
of a simulator S) describing the output of an execution of F with environment Z and
simulated adversary S, on input x. Moreover, Let EXECΠ,A,Z and IDEALF ,S,Z denote
the ensembles {EXECΠ,A,Z(x)}x∈{0,1}∗ and {IDEALF ,S,Z(x)}x∈{0,1}∗ respectively. We refer
to [Can20] for a more detailed description of both executions.

15

Chapter 2. Preliminaries and Cryptographic Building Blocks

Definition 2.4.1: Protocol Realization

Let F be an ideal functionality. A protocol Π is said to UC-realize F if for any
adversary A, there exists a simulator S such that for all environments Z,

IDEALF ,S,Z
c
≈ EXECΠ,A,Z .

Additionally, we say that protocol Π operates in G-hybrid-model, if Π uses the ideal
functionality G.

Definition 2.4.2: Protocol Emulation

Let G1,G2 be ideal functionalities and let Π1,Π2 be multi-party protocols. We say Π1

in the G1-hybrid model UC-emulates Π2 in the G2-hybrid model if for any adversary
A1, there exists an adversary A2 such that for all environments Z,

EXECΠ1,A1,Z
c
≈ EXECΠ2,A2,Z .

Furthermore, we follow the definitions in [Can20] for modeling adversary corruptions.
When the adversary corrupts a party it sends a backdoor message (sid, ID) where sid
denotes the session id and ID denotes the identifier of the corrupted party. This happens
at the very beginning of the protocol execution in the case of static corruption. For
simplicity, we do not show these messages in the ideal functionalities as we assume the
default behavior is that party ID is recorded as corrupted.

We also use the work in [CR03] which describes the execution of multi-sessions of
a protocol. We denote by Π̂ and F̂ , the multi-session extensions of the protocol Π and
functionality F respectively. We recall that the UC theorem with joint state (JUC
theorem):

Theorem 2.4.1: Universal Composability with Joint State [CR03]

Given protocol Π that UC-realizes F in G-hybrid-model and a protocol Ψ̂ that
UC-realizes functionality Ĝ in the real-world model, it is true that the composition
of Π and Ψ̂: Π ◦ Ψ̂ in the real-world model UC-emulates Π in G-hybrid-model.

In this section, we present the ideal functionality of the primitives we use in this
thesis. Additionally, we discuss a possible realization for some of these functionalities.

2.4.2 Common Reference String (CRS)

We use the ideal functionality FD,nCRS parameterized by the sampling algorithm D and the
number of parties n. The purpose of this functionality is to have a common string crs

sampled from a fixed distribution and available to all parties of the protocol. Notice that
this proposed functionality differs from the one proposed in [CR03] because it supports
distributing the CRS to n parties. It is described in Figure 2.1.

16

Chapter 2. Preliminaries and Cryptographic Building Blocks

Functionality FD,nCRS

FD,nCRS runs with parties P1,..., Pn and is parameterized by an algorithm D and a security
parameter λ.

• When receiving a message (sid, CRS, Pi) from Pi, if this is the first CRS message,
compute crs←$ D(1λ). Then, send (sid, CRS, crs) to Pi and S. Check if received
message (sid, CRS, ...) from all parties. If yes, halt. If no, continue.

Figure 2.1: Ideal functionality of CRS

2.4.3 Random Oracle Model

Random oracles are typically used as an idealised replacement for cryptographic hash
functions in schemes where strong randomness assumptions are needed. The ideal
functionality of the random oracle returns a uniformly random response from the output
domain. Additionally, if a query is repeated, it responds the same way every time that
the same query is submitted. Throughout this thesis, we use the following hash functions
modeled as random oracles.

• HG : {0, 1}∗ 7→ G. This hash function is used to generate random group elements
from arbitrary strings. The group used in this hash function is indicated as a
parameter in its superscript.

• GG : G3 7→ {0, 1}λ. This hash function is used as a key-derivation function to
extract a λ-bit key from a group element, and the first two inputs are used to seed
the function.

2.4.4 Sharing Random Number (RShare)

We define the ideal functionality F t,n,F
RShare parameterized by the field F, the number of

parties n, and a threshold t ≤ n. The purpose of this functionality is to generate a
uniformly random element in the field F and secretly share it (using Shamir’s secret
sharing) with the n parties. The functionality is described in Figure 2.2.

Realization This functionality can be realized by letting each party Pi generate its
random value ri ←$ F and secretly share it (using authenticated channels) with the other
parties SS.Share(ri, t, n,F) → {(j, ⟨ri⟩j)}∀j∈[n]. Then, each partly Pi simply sums the
shares it receives to obtain the share ⟨r⟩i =

∑n
j=1⟨rj⟩i where r =

∑n
1 ri.

2.4.5 Oblivious Transfer (OT)

An oblivious transfer protocol (OT) is a protocol executed between two parties: the
sender and the receiver. The sender inputs a pair (m0,m1) whereas the receiver inputs
a selection bit x ∈ {0, 1}. At the end of the protocol, the receiver outputs value mx

17

Chapter 2. Preliminaries and Cryptographic Building Blocks

Functionality F t,n,F
RShare

F t,n,F
RShare runs with parties P1,..., Pn and is parameterized by field F, the number of parties

n, and a threshold t ≤ n.

• When receiving a message (sid, init, Pi) from Pi, if this is the first init message,
compute r ←$ F.

• When all init messages are received from the n parties, compute
SS.Share(r, t, n,F) → {(i, ⟨r⟩i)}∀i∈[n] and send (sid, share, ⟨r⟩i) to each Pi and
send (sid, share) to S.

Figure 2.2: Ideal functionality of random secret sharing

while the sender outputs nothing. The security of the OT protocol ensures that the
receiver does not learn any information about m1−x and the sender does not learn any
information about x. The ideal functionality of OT is shown in Figure 2.3.

Functionality FOT

FOT interacts with a receiver R and a sender S.
Auxiliary Inputs: the length of the sender input ℓ

• Upon receiving a message (sid, send, S,m0,m1) from S, where mi ∈ {0, 1}ℓ, store
(m0,m1).

• Upon receiving a message (sid, recv, R, x) from R, check if a (send, sid, S, ...)
message was previously sent. If yes, send (sid, sent,mx) to R and (sid, sent) to
adversary S and halt. If not, send nothing to R (but continue running).

Figure 2.3: Ideal functionality of oblivious transfer protocol.

We present the construction proposed by Chou and Orlandi [CO15] in Figure 2.4.
The authors of the OT protocol prove that it UC-realizes the functionality FOT in the
random oracle model. Their proof relies on the CDH assumption. Later Hauck and
Loss [HL17] identify a flow in the proof from [CO15] and provide a patch for the proof
that relies on the hardness of the GDH assumption. Based on the work of Hauck and
Loss [HL17] we restate the following two Lemmas.

Lemma 2.4.1

For any PPT adversary A that statically corrupts a receiver in ΠOT protocol, and any
PPT environment Z, the algorithm Srcv (defined in [HL17]) simulates the execution

for A under the GDH assumption (i.e., IDEALFOT,Srcv,Z
c
≈ EXECΠOT,A,Z).

18

Chapter 2. Preliminaries and Cryptographic Building Blocks

OT Protocol ΠOT

Receiver Sender
(x ∈ {0, 1}) (m0,m1)

A = gα α←$ Zp

β ←$ Zp

B ← Axgβ

κ← GG
(A,B)(A

β)

B

κ0 ← GG
(A,B)(B

α)

κ1 ← GG
(A,B)((

B

A
)α)

c0 ← Enc∗κ0(m0)

(c0, c1) c1 ← Enc∗κ1(m1)

mx ← Decκ(c
x)

Figure 2.4: The OT protocol [CO15] parameterized by the cyclic group G of order p and
generator g.

Lemma 2.4.2

For any PPT adversary A that statically corrupts a sender in ΠOT protocol, and any
PPT environment Z, the algorithm Ssnd (defined in [HL17]) simulates the execution

for A under the CDH assumption (i.e., IDEALFOT,Ssnd,Z
c
≈ EXECΠOT,A,Z).

In a nutshell, the simulator Srcv takes the messages of the receiver and extracts the
receiver’s choice. It then gets the output from FOT and generates the simulated sender
messages accordingly. On the other hand, the simulator Ssnd takes the messages of the
sender and extracts the sender’s input pair. In our work, we are interested in reusing
Ssnd and Srcv algorithms for our proofs.

2.4.6 Garbled Circuits (GC)

A garbled circuit protocol proposed by Yao [Yao86] runs between two parties (a garbler
G and an evaluator E). It is used to evaluate an arbitrary function f chosen by G on the
private input x of E . Yao garbling scheme is defined as two algorithms:

• GC.Grb(1λ, f)→ (F, {lbx,i}∀b∈{0,1},∀i∈[ℓx], {lbout,i}∀b∈{0,1},∀i∈[ℓout]): Given the security
parameter λ and the function f , the algorithm generates a garbled circuit F and
a label for each bit of the input and output (ℓx and ℓout are the bit-length of the
input and output, respectively).

• GC.Eval(F, {lx⟨i⟩
x,i }∀i∈[ℓx]) → {lout

⟨i⟩
out,i }∀i∈[ℓout]: Given the garbled circuit F and the

labels of the input bits, the algorithm outputs the labels of the result out = f(x).

19

Chapter 2. Preliminaries and Cryptographic Building Blocks

Protocol with GC and OT to compute fθ,M

Evaluator (x = x1||...||xℓ) Garbler (θ,M)

F, {lbx,i}, lbout ← GC.Grb(1λ, fθ)
∀i ∈ [ℓ],∀b ∈ {0, 1}

A = gα, F α←$ Zp

βi ←$ Zp ∀i ∈ [ℓ]

Bi ← Ax⟨i⟩
gβi ∀i ∈ [ℓ]

κi ← GG
(A,Bi)

(Aβi) ∀i ∈ [ℓ]

{Bi}∀i∈[ℓ]

κ0
i ← GG

(A,Bi)
(Bα

i) ∀i ∈ [ℓ]

κ1
i ← GG

(A,Bi)
((
Bi

A
)α) ∀i ∈ [ℓ]

c0i ← Enc∗κ0
i
(l0x,i) ∀i ∈ [ℓ]

c1i ← Enc∗κ1
i
(l1x,i) ∀i ∈ [ℓ]

{(c0i , c1i }∀i∈[ℓ], C C ← Enc∗l1out(M)

lx
⟨i⟩

x,i ← Decκi(c
x⟨i⟩

i) ∀i ∈ [ℓ]

lresout ← GC.Eval(F, {lx
⟨i⟩

x,i }∀i∈[ℓ])
M ← Declresout

(C)

Figure 2.5: Protocol to evaluate fθ,M using a garbled circuit and oblivious transfer. The
protocol is parameterized by the cyclic group G of order p and generator g

In this thesis, we are interested in the function fθ,M which checks if the evaluator’s
input is less than θ and if so, returns a message M . We define the two functions fθ and
fθ,M as follows

fθ(x) =

{
1 , if x ≤ θ
0 , otherwise

fθ,M (x) =

{
M , if x ≤ θ
⊥ , otherwise

(2.1)

To evaluate fθ,M using a garbled circuit, the garbler G generates and sends a garbled
circuit F of fθ and a label for each bit of the input. G sends F to E and then transfers
the labels of x to E using OT. G also uses the output label l1out to encrypt the message
M and send the ciphertext to E . Finally, E evaluates F on the labels of x and obtains
lresout where res ∈ {0, 1}. If res = 1 the evaluator decrypts the ciphertext and obtains
M . We describe the protocol in Figure 2.5. Notice, that this protocol is secure when the
garbler is honest-but-curious (follows the protocol steps).

2.4.7 Zero-Knowledge Proofs (ZKP)

Zero-Knowledge Proof protocols are two-party protocols where a prover P interacts with
a verifier V to convince it that a given statement is true while P avoids conveying any
additional information apart from the fact that the statement is indeed true. We show
the ideal functionality of ZKP in Figure 2.6.

20

Chapter 2. Preliminaries and Cryptographic Building Blocks

Functionality FRZK

FRZK interacts with a prover P and a verifier V and is parameterized by the relation R.

• Upon receiving a message (sid, prove, x, w) from P , store x and w, and continue.

• Upon receiving a message (sid, verify, x′) from P , abort if x′ ̸= x, otherwise, send
(sid,R(x,w)) to V and S, and halt.

Figure 2.6: Ideal functionality for zero-knowledge protocol.

2.4.7.1 Discrete Logarithm Relation Rn
DL

Given G (a group where DDH holds) of order p the multi-value discrete logarithm relation
Rn

DL(x,w) : G2n × Zp 7→ {0, 1} is defined as:

Rn
DL({Ai, Bi}∀i∈[n], w) :

∧
∀i∈[n]

(Bi = Aw
i)

Realization: We can realize FR
n
DL

ZK as an extension of Schnorr’s zero-knowledge proof
for discrete logarithm [Sch90]. More precisely, P samples n uniformly random values
ri ←$ Zp ∀i ∈ [n] and sends {gri}∀i∈[n] to V . V samples the challenge c ←$ Zp and
sends it to P . P computes the proof zi ← wc + ri mod Zp, and sends {zi}∀i∈[n] to
V which finally checks

∧
∀i∈[n](g

riBc
i = gzi). This protocol can be transformed into a

non-interactive zero-knowledge proof using the Fiat-Shamir transformation [FS87].

2.4.7.2 Tag Relation RTag

Given G (a group where DDH holds) of order p, we define the tag relation RTag(x,w) :
G3 × Z2

p 7→ {0, 1} as:
RTag({A,B,C}, (a, b)) : C = AaBb

Realization: Similarly, we can realize FRTag

ZK as an extension of Schnorr’s zero-knowledge
proof for discrete logarithm [Sch90]. More precisely, P samples two uniformly random
values r1, r2 ←$ Zp and sends (gr1+r2) to V . V samples the challenge c←$ Zp and sends it
to P . P computes the proof z1 ← ac+ r1 mod Zp and z2 ← bc+ r2 mod Zp, then sends
(z1, z2) to V which finally checks Cgr1+r2 = gz1gz2 . This protocol can also be transformed
into a non-interactive zero-knowledge proof using Fiat-Shamir transformation [FS87].

21

Chapter 2. Preliminaries and Cryptographic Building Blocks

22

Part I

Secure Aggregation

23

Chapter 3

Characterization of Secure
Aggregation

In this chapter, we provide a formal definition of a secure aggregation protocol and we
study the existing threat models studied in the literature: the honest-but-curious model
and the malicious model. We first identify the four major technologies used to build secure
aggregation solutions: differential privacy, trusted execution environment, anonymity,
and cryptography. Then, we focus on solutions that are based on cryptography. We
study the existing cryptography-based solutions in the honest-but-curious model and we
suggest a systematic categorization of these solutions.

3.1 Environment of Secure Aggregation

One of the most important functionalities of the IoT is aggregating the data collected
by the end-devices. Many IoT applications such as smart grids [ADMC17], water
management systems, and traffic control in cities use this functionality. In most of these
applications, aggregating the data involves the operation of the statistical sum of the
data points collected from multiple geo-dispersed data sources (eg., sensors).

Nevertheless, these individual data points usually involve sensitive data. This raises
serious privacy concerns and thus calls for suitable privacy-enhancing technologies to
protect the confidentiality of end-devices’ data while still being able to perform the
aggregation operation. During the past 20 years, a huge amount of research focused on
designing secure aggregation (SA) solutions [ÖM07,LEM14a,BSK+19,BIK+17,DA16,
CMT05] for various applications. The goal is to enable the computation of the sum
of several parties’ inputs without leaking any information about each individual input
except the aggregate (the sum).

In this thesis, aggregation refers to the process where data collected from multiple
sources are summed up. Usually, data is collected in consecutive timestamps and the sum
(aggregate) is calculated for each timestamp. For many applications, the data contains
sensitive information. Usually, secure aggregation involves the following actors:

• Users (U): Parties that provide the input data xi,τ at each timestamp τ .

25

Chapter 3. Characterization of Secure Aggregation

...

Figure 3.1: An illustration of secure aggregation between n users (U1, ..., Un) and one
aggregator A. A trusted party T P is used to setup up the parties.

• Aggregators (A): Parties that perform the aggregation to obtain the sum Xτ of the
input data at each timestamp τ .

• Trusted Third Party (T P): A trusted part that may be required for setup purposes
in some secure aggregation protocols.

3.2 Threat Models and Security Requirements for Secure Aggre-
gation

We describe the most popular threat models considered for secure aggregation. Namely,
the honest-but-curious model and the malicious model. Then, we define the security
requirements for secure aggregation.

3.2.1 Threat Models

Honest-but-curious Model A common security model for secure aggregation schemes
is the honest-but-curious model. An honest-but-curious adversary correctly follows the
protocol steps but remains curious to discover any private information. The adversary
may corrupt the aggregator and some users. When the aggregator corrupts multiple
parties it accesses all their private information. This models collusion between the
corrupted aggregator and corrupted users.

Malicious Model In addition to the honest-but-curious model, several research works
consider a malicious model where the adversaries are more powerful. A malicious
adversary may deviate from the protocol steps and thus has arbitrary inputs to the
protocol. There are some variations of this model where the adversary only corrupts the

26

Chapter 3. Characterization of Secure Aggregation

aggregator (a.k.a. malicious aggregator model) or only corrupts a subset of users (a.k.a.
malicious users model).

In this chapter, we only study SA solutions secure under the honest-but-curious
model.

3.2.2 Security Requirements

We present the main two security requirements that define the security of secure aggre-
gation protocols. The first requirement is Aggregator Obliviousness and it was initially
proposed by Shi et al. [SCR+11]. We state this security requirement in Definition 3.2.1.
The second requirement is Aggregator Unforgeability and it was initially proposed by
Leontiadis et al. [LEÖM15] and improved later in several other works. We state this
security requirement in Definition 3.2.2.

Definition 3.2.1

Aggregator Obliviousness: This security notion ensures that an adversary (by
corrupting the aggregator) cannot learn more than what could be learned from the
sum of the users’ inputs. If the adversary corrupts some users, the notion only
requires that the adversary gets no extra information about the values of the honest
users beyond their sum.

Definition 3.2.2

Aggregate Unforgeability: This security notion ensures that an adversary (by
corrupting the aggregator) cannot output an incorrect sum without being detected
by honest users. If the adversary corrupts a small subset of users (Ucorr), the notion
requires that the adversary can only make an insignificant change in the result of
the sum. This means that given X is the sum of the honest users’ inputs, the
adversary can only output a result X ′ such that X ≤ X ′ ≤ X + θ|Ucorr| where θ is
the maximum allowed value of a user input (xi,τ < θ) .

3.3 Existing Secure Aggregation Protocols

There are mainly four types of secure aggregation (SA) protocols: SA based on differential
privacy, SA based on Trusted-Execution Environment (TEE), SA based on anonymity,
and SA based on cryptography. In the following, we elaborate on each type of secure
aggregation.

3.3.1 SA based on differential privacy

Differential privacy (DP) [DR14] is a technique of adding a controlled amount of random-
ness (noise) to some data such that this noise is sufficient to hide sensitive information

27

Chapter 3. Characterization of Secure Aggregation

but also keeps this data useful. Hence, differential privacy provides a mathematically
quantifiable way to balance data privacy and data utility. To achieve secure aggre-
gation using DP mechanisms, users protect their trained models by adding statistical
noise [MASN21,ASY+18,TF19,YWW21,CYD20, STL20,DHCP21]. By adding some
noise to the individual data points, the users preserve their privacy. The sum of the noisy
data points is an inaccurate but useful result for many applications. Therefore, the main
concern with this approach is the accuracy of the result since noise is amplified during
the aggregation.

3.3.2 SA based on trusted-execution environment

Another method to perform secure aggregation is to use a TEE at the server [ZJF+21,
NMZ+21, ZWC+21,MHK+21]. The TEE is a hardware-separated area of the main
processor that guarantees the confidentiality and integrity of the processed data. SA can
be achieved by computing the aggregation within the TEE. This method requires strong
trust assumptions regarding the use of the TEE.

3.3.3 SA based on anonymity

A different method relies on anonymous communication assumption [IKOS06]. This
method is also known as secure shuffling where users split their inputs into shares
and send them anonymously to the aggregator [ZWC+21]. Thanks to the anonymous
communication, the server cannot discover the origin of the received shares and thus is
unable to reconstruct the user inputs. In most applications, it is often impossible to have
completely anonymous communication channels between the end-devices and the IoT
platform.

3.3.4 SA based on cryptography

Finally, cryptographic techniques are used to design secure aggregation protocols. Many
researchers are particularly interested in this type of secure aggregation since it does
not significantly affect the accuracy of the aggregation result. It also does not rely on
impractical assumptions such as in the case of TEE and secure shuffling which makes
this choice suitable for many IoT applications.

In this thesis, we only study secure aggregation (SA) solutions based on cryptographic
schemes as these seem to be the most popular ones for many applications. We believe
that this is mainly due to their practical setup and the fact that they do not affect the
accuracy of the results.

3.4 Secure Aggregation based on Cryptography

We first identify and investigate the three phases of secure aggregation protocol: Setup,
Protection, and Aggregation. Then, we regroup secure aggregation solutions into two cat-
egories based on the underlying cryptographic tools used to build the SA protocol. Specif-

28

Chapter 3. Characterization of Secure Aggregation

ically, we distinguish encryption-based secure aggregation and multi-party-computation
(MPC)-based secure aggregation. For each of the categories, we show how to build the
baseline1 secure aggregation protocol from the existing cryptographic schemes by defining
the algorithms executed at each SA phase. We provide some realizations of the different
categories and we summarize their advantages and disadvantages in Table 3.1.

3.4.1 Secure Aggregation Protocol Phases

A secure aggregation protocol consists of three consecutive phases: SA.Setup, SA.Protect,
and SA.Agg. Each of these phases achieves a specific task described as follows:

• SA.Setup: In this phase, the n users and the aggregator get the public parameters
and the key material. The public parameters and the keys are generated either
using a trusted third party (T P) or through a distributed mechanism. At the
end of this phase, each user stores a single, unique key ki where i ∈ [n] and the
aggregator stores its aggregation key k0.

• SA.Protect: Each user Ui locally executes a protection algorithm to protect its
input xi,τ at timestamp τ . The resulting protected input is sent to the aggregator(s).

• SA.Agg: Once the aggregators collect all the protected inputs, they collaboratively
execute an aggregation algorithm to retrieve the sum of user inputs for timestamp τ .
In the case with a single aggregator, the aggregation algorithm is locally executed
by the aggregator.

3.4.2 Encryption-based SA

Encryption-based SA protocols use encryption schemes to protect the inputs of the
users. Encryption utilizes a secret key to ensure the confidentiality of the user input. To
achieve Aggregator Obliviousness (see Definition 3.2.1), users should not be allowed to
encrypt their inputs with the same key. Moreover, the encryption scheme should allow the
computation of the sum of the inputs over the ciphertexts without leaking the individual
cleartext values. There are three types of encryption schemes that are used to build a
secure aggregation protocol: (i) masking, (ii) additively homomorphic encryption (AHE),
and (iii) functional encryption (FE). In general, encryption-based SAs rely on a single
aggregator to perform the aggregation which minimizes the communication overhead of
the protocol.

3.4.2.1 Secure Aggregation using Masking

Masking is a symmetric encryption technique based on one-time pad [Rub96]. It uses
modular addition to mask the data owner inputs. Given a shared key k between two
parties and an upper bound R of the input, masking is defined by two algorithms:

1Baseline secure aggregation protocols correspond to the basic constructions from the corresponding
cryptographic tool.

29

Chapter 3. Characterization of Secure Aggregation

... DH ...

Mask

UnMask

SA.Setup (online) SA.Protect SA.Agg
DH

Figure 3.2: The main operations and communication between parties in Masking-based
SA.

• Masking.Mask(k, x)→ c : Masks an input x with the masking key k

c = x+ k mod R

• Masking.UnMask(k, c)→ x : Unmasks the ciphertext c using the masking key k

c = c− k mod R

It is one of the oldest techniques for designing a secure aggregation protocol. It was first
used in tree-structured networks. These schemes are called layered masking schemes
[CMT05, ÖM07,CCMT09]. More recently, Dining Cryptographers network (DC-net)
variants are proposed in [ÁC11,BIK+17,BBG+20,SGA21b].

Layered Masking Variant In this type of masking scheme, the users are assumed to
have network connectivity with each other. Hence, the users are arranged in a tree
structure. In the SA.Setup phase, the ones that are at a distance of h hops from each
other, share the same keys (h being a security parameter). Each user representing a node
in the tree runs a secure aggregation process with its children. In SA.Protect, each child
node masks its input with the sum of the keys it holds using Masking.Mask. It then
sends it to its parent node. In SA.Agg, the parent sums the masked inputs received from
all its children and then removes the layers of the masks that correspond to their keys
using Masking.UnMask. The same process is repeated from bottom to up for each parent
node until the aggregated value reaches the root of the tree at which the final layers are
removed. Castelluccia et al. [CMT05] proposed a specific version of this scheme when
h =∞. Önen et al. [ÖM07] later generalized this scheme.

DC-Net Variant In the variant, secure aggregation is seen as a variation of the dining
cryptographers problem [Cha88]. The solution is realized from masking as follows: In the
SA.Setup phase, each pair of users (Ui, Uj) agrees on a random key k(i,j),τ using a Key
Agreement protocol (ex., Diffie Hellman (DH) [DH06] using the aggregator as a proxy
to forward the public keys). Also, each user Ui agrees on a random key k(i,0),τ with the
aggregator. As a result, each user Ui and the aggregator A computes their own unique

30

Chapter 3. Characterization of Secure Aggregation

key as follows:

ki,τ ←
i−1∑
j=1

k(i,j),τ −
n∑

j=i+1

k(i,j),τ − k(i,0),τ

s.t. k(i,j),τ = k(j,i),τ and k(i,i),τ = 0 ∀ i ∈ [0, .., n]

(3.1)

In the SA.Protect phase, each user masks its own input xi,τ with the key ki,τ :

ci,τ ← Masking.Mask(ki,τ , xi,τ)

In the SA.Agg phase, the aggregator adds the masked inputs from all users. Then, it
removes the mask using its key k0,τ (all the operations are mod R = nRu where ZRu is
the range for the input values of each user):

Masking.UnMask(k0,τ ,

n∑
i=1

ci,τ) =

n∑
i=1

ci,τ − k0,τ

=
n∑

i=1

(xi,τ +

i−1∑
j=1

k(i,j),τ −
n∑

j=i+1

k(i,j),τ − k(i,0),τ)− k0,τ

=

n∑
i=1

xi,τ +

���������������:0
n∑

i=1

(

i−1∑
j=1

k(i,j),τ −
n∑

j=i+1

k(i,j),τ)

−
n∑

i=1

k(i,0),τ − k0,τ

=

n∑
i=1

xi,τ −
n∑

i=1

k(i,0),τ − (−
n∑

i=1

k(0,i),τ) =

n∑
1

xi,τ

(3.2)

Analysis (DC-Net Variant): This scheme does not require a key dealer (KD) to distribute
the masks. However, it relies on a trusted public key infrastructure (PKI). On the other
hand, the masking operations are themselves very lightweight since they only include
modular additions. However, the setup phase incurs significant overhead in terms of
computation and communication costs per user which increases linearly with the total
number of users. Since masking uses one-time pad encryption, the setup phase is
performed on each timestamp τ (notice the use of the tag τ for each key). Another
disadvantage is that once keys are distributed, all users should provide their protected
inputs (i.e., does not support dynamic users). Indeed, if some users did not participate,
the masks on the aggregated value cannot be removed. Note that masking itself is
information-theoretically secure but the setup relies on a key agreement protocol that is
computationally secure.

3.4.2.2 Secure Aggregation using Additively Homomorphic Encryption

A special type of Additively Homomorphic Encryption (AHE) schemes can be used
for secure aggregation. Specifically, multi-user AHE is proposed such that “addition

31

Chapter 3. Characterization of Secure Aggregation

... Agg

EncSetup

SA.Setup (offline) SA.Protect SA.Agg

Figure 3.3: The main operations and the communication between parties in AHE-based
SA.

homomorphism” property is maintained across ciphertexts generated by different users
with different keys. These schemes are generally defined by the three following algorithms:

• AHE.Setup(λ)→ (pp, {ki}i∈[n], k0): Given a security parameter λ, it generates the
public parameters, the encryption keys, and the decryption key.

• AHE.Enc(pp, ki, τ, xi,τ)→ ci,τ : It encrypts message xi,τ for timestamp τ using key
ki and outputs ciphertext ci,τ .

• AHE.Agg(pp, k0, τ, {ci,τ}i∈[n])→
∑n

1 xi,τ : It evaluates the homomorphic operation
on the n ciphertexts generated at timestamp τ . Then decrypts the resulting
ciphertext using decryption key k0.

A multi-user AHE scheme can guarantee Aggregator Obliviousness if each user encrypts
only one input per timestamp. Several instantiations are proposed in [SCR+11,ET12,
JL13,BJL16]. Multi-user AHE schemes are specifically designed for secure aggregation
protocols: In the SA.Setup phase, T P runs AHE.Setup(λ) and distributes the keys to the
users and the aggregator. The SA.Setup phase is executed only once; In the SA.Protect
phase, Ui executes AHE.Enc(pp, ki, τ, xi,τ) and sends the ciphertext to the aggregator;
Finally, in the SA.Agg phase, the aggregator executes AHE.Agg(pp, k0, τ, {ci,τ}i∈[n]) and
retrieves the sum of the inputs.

Shi-Chan-Rieffel-Chow-Song Scheme (SCRCS) SCRCS scheme [SCR+11] is the first
AHE scheme used for secure aggregation. It guarantees Aggregator Obliviousness based
on Decisional Diffie Hellman (DDH) assumption. The three algorithms (AHE.Setup,
AHE.Enc, and AHE.Agg) are defined as follows:

• AHE.Setup(λ)→ (pp, {ki}i∈[n], k0): Given security parameter λ, it chooses generator
g ∈ G where G is a cyclic group of prime order p for which DDH holds. Additionally,
it defines the hash functionHG (see Section 2.4.3). It also generates n random secrets
k1, ..., kn ∈ Zp and k0 = −

∑n
1 ki. It outputs the public parameters pp = (G, g,HG),

the secrets keys of each user {ki}i∈[n], and the secret key of the aggregator k0.

• AHE.Enc(pp, ki, τ, xi,τ)→ ci,τ :

ci,τ ← gxi,τHG(τ)ki

32

Chapter 3. Characterization of Secure Aggregation

• AHE.Agg(pp, k0, τ, {ci,τ}i∈[n])→
∑n

1 xi,τ :

cτ ←
n∏
1

ci,τ = g
∑n

1 xi,τHG(τ)
∑x

1 ki

V ← H(τ)k0cτ = g
∑n

1 xi,τ mod n

Then, it computes the discrete logarithm base g of V to obtain
∑n

1 xi,τ mod p. For
an efficient computation of the discrete logarithm using Pollard’s method [Pol78],
the output

∑n
1 xi,τ should be a small number.

Theorem 3.4.1

The scheme provides Aggregator Obliviousness (see 3.2.1) security under the DDH
assumption in the random oracle model if each user encrypts at most one value per
timestamp.

Proof.

For the proof of correctness and security of this scheme, refer to [SCR+11].

Joye-Libert Scheme (JL) JL scheme [JL13] is another AHE scheme for SA which is
designed as an improvement of the SCRCS scheme. JL scheme has a simpler decryption
function as it does not require the computation of the discrete logarithm in a group in
which the DDH assumption holds. The JL scheme guarantees Aggregator Obliviousness
based on Decision Composite Residuosity (DCR) assumption [Pai99]. It defines the three
algorithms (AHE.Setup, AHE.Enc, and AHE.Agg) as follows:

• AHE.Setup(λ) → (pp, {ki}i∈[n], k0): Given security parameter λ, it generates ran-
domly two equal-size prime numbers p and q and sets N = pq. Then, it defines a
cryptographic hash function HZ∗

N2 (see Section 2.4.3). It randomly generates n secret

keys {ki}i∈[n] ∈ {0, 1}2l and sets k0 = −
n∑
1
ki. It outputs the public parameters

pp = (N,HZ∗
N2), the secrets keys of each user {ki}i∈[n], and the secret key of the

aggregator k0.

• AHE.Enc(pp, ki, τ, xi,τ)→ ci,τ :

ci,τ ← (1 + xi,τN)HZ∗
N2(τ)ki mod N2

• AHE.Agg(pp, k0, τ, {ci,τ}i∈[n])→
∑n

1 xi,τ :

cτ ←
n∏
1

ci,τ = (1 +N
n∑
1

xi,τ)H
Z∗
N2(τ)

∑n
1 ki mod N2

HZ∗
N2(τ)k0cτ − 1

N
=

n∑
1

xi,τ mod N

33

Chapter 3. Characterization of Secure Aggregation

SA.Setup (offline) SA.Protect SA.Agg

...

Setup Enc DKGen

Dec

Figure 3.4: The main operations and the communication between parties in FE-based
SA.

Theorem 3.4.2

The scheme provides Aggregator Obliviousness (see 3.2.1) security under the DCR
assumption in the random oracle model if each user encrypts at most one value per
timestamp.

Proof.

For the proof of correctness and security of this scheme, refer to [JL13].

Analysis: The main advantage of AHE schemes is that they require running the setup
phase only one time, and hence they are effective when aggregating a stream of data.
This originally comes with the cost of relying on a trusted key dealer (KD) to perform the
setup. Nevertheless, previous work has improved these schemes to enable running them
without the need for a key dealer [LEM14b]. The per-user computational cost resulting
from SA.Protect does not depend on the total number of users but remains significant.
Similarly, the communication cost per user does not depend on the total number of users
but incurs a size expansion because of the size of the ciphertext. Additionally, similar to
masking schemes, AHE does not support dynamic users since all users should provide
their inputs to correctly aggregate them.

3.4.2.3 Secure Aggregation using Functional Encryption

Functional encryption (FE) is a type of encryption scheme that enables a user to learn
a function on the encrypted data [BSW11]. Multi-Input Function Encryption (MIFE),
introduced by Goldwasser [GGG+14], enables the learning of a function over multiple
encrypted inputs. A special type of MIFE scheme can be designed to compute the inner
product function of multiple inputs [AGRW17,ACF+18a,DOT18]. Assuming that we
have two vectors x and y, each consisting of l elements, the inner product of x and y is
as follows:

IP (x, y) =
ℓ∑

i=1

xiyi (3.3)

An inner product MIFE scheme is defined by four algorithms:

34

Chapter 3. Characterization of Secure Aggregation

• MIFE.Setup(λ)→ (pp,msk, {ki}i∈[n]) : Given a security parameter λ, it generates
the public parameters pp, master secret key msk, and n user keys {ki}i∈[n].

• MIFE.Enc(pp, ki, xi,τ) → ci,τ : It encrypts message xi,τ using key ki and outputs
ciphertext ci,τ .

• MIFE.DKGen(pp,msk, yτ)→ dkτ : It generates decryption key dkτ using the master
secret key and vector yτ of n elements.

• MIFE.Dec(pp, dkτ , cτ , yτ) → IP (xτ , yτ) : It takes vector cτ = [c1,τ , .., cn,τ], vector
yτ , and decryption key dkτ generated from yτ . It decrypts cτ such that the result
is the inner product of xτ = [x1,τ , .., xn,τ] and yτ .

MIFE schemes for inner product can be used to construct a secure aggregation proto-
col [XBZ+19,WPX+20]. In the SA.Setup phase, T P runs MIFE.Setup(λ) and distributes
the keys to the users. In the SA.Protect phase, Ui executes MIFE.Enc(pp, ki, xi,τ) and
sends the ciphertext ci,τ to the aggregator. Finally, in the SA.Agg phase, the aggregator
first sends vector yτ = [1, ..., 1] to T P which executes MIFE.DKGen(pp,msk, yτ) and
sends decryption key dkτ of timestamp τ to the aggregator. The aggregator then exe-
cutes MIFE.Dec(pp, dkτ , [c1,τ , .., cn,τ], yτ) and retrieves the inner product

∑n
i=1 xi,τy[i] =∑n

1 xi,τ .

Construction based on one-time pad An efficient FE-based secure aggregation can be
built using one-time pad encryption and a pseudo-random generator, only. The MIFE
scheme from [ACF+18b] defines the four algorithms (MIFE.Setup, MIFE.Enc, MIFE.DKGen,
and MIFE.Dec) as follows:

• MIFE.Setup(λ) → (pp,msk, {ki}i∈[n]) : Given security parameter λ, it chooses
prime p and a pseudo-random generator PRG : (Zp,Z)→ Zp as the public parameter
then chooses n user keys at random ki ← Zp∀i ∈ [n]. Finally it sets the master key
msk = {ki}i∈[n].

• MIFE.Enc(pp, ki, xi,τ) → ci,τ : It first computes ki,τ ← PRG(ki, τ) then ci,τ ←
xi,τ + ki,τ mod p

• MIFE.DKGen(pp,msk, yτ)→ dkτ :

dkτ ←
∑

∀ki∈msk

yi,τPRG(ki, τ) mod p

• MIFE.Dec(pp, dkτ , cτ , yτ)→ IP (xτ , yτ) :

IP (cτ , yτ)− dkτ mod p

35

Chapter 3. Characterization of Secure Aggregation

SA.Setup (offline) SA.Protect SA.Agg

...

Share Recon

Figure 3.5: The main operations and communication between parties in MPC-based SA.

Analysis: Similar to AHE schemes, MIFE-based SA incurs constant computation and
communication costs per user with respect to the total number of users. A very important
property of these schemes is that they can deal with dynamic users by replacing zero
weights in vector yτ for the users that do not provide input at timestamp τ . On the
other hand, the disadvantage of these schemes is that they require an online key dealer
(KD) as a trusted third party to generate the decryption key for each timestamp.

3.4.3 MPC-based SA

Another cryptographic tool used to build secure aggregation protocols is multi-party
computation (MPC). In MPC, keys are not needed to protect user inputs. Instead,
private messages are split into shares and distributed to multiple servers such that t
of them can collaborate to reconstruct them. The secret sharing scheme presented in
Section 2.3.1 can be used to construct a secure aggregation protocol.

To design a secure aggregation protocol from MPC, the SA.Setup phase is not needed
since no keys are generated. In the SA.Protect phase, a user protects its input by splitting
it into l random shares using SSS.Share(xi,τ , t, l,Zp) where l is the number of aggregators
and p is the first prime number such that p ≥ nRu . It then sends one unique share
to each aggregator. In the SA.Agg phase, each aggregator locally sums up the shares.
Because secret sharing is additively homomorphic, the sum of the shares will result in a
share of the sum. Finally, at least t aggregators broadcast their shares of the sum so that
any aggregator can then run SSS.Recon and retrieve the sum

∑n
1 xi,τ .

Analysis: An important property of MPC-based SA is that it does not need a trusted
third party since it does not need a key setup phase. Also, MPC supports dynamic
users since it allows any subset of users to participate in the aggregation. This is mainly
because MPC does not rely on secret keys that uniquely identify a user. On the contrary,
MPC incurs high computation and communication costs since the protection of a user
input involves creating O(nm) shares where n is the number of users and m is the size of
the input. Furthermore, to distribute the shares, pre-existing secure channels are needed
between the users and the aggregators. The secure channels ensure that each share is
received and accessed only by its destined aggregator.

36

Chapter 3. Characterization of Secure Aggregation

3.5 Summary of Honest-but-Curious Secure Aggregation

Schemes
T P No SC Dynamic

Comp. Comm.
required required users

Masking (DC-net) [ÁC11,DA16] PKI O(n +m) O(n +m)

AHE [LEM14a,JL13,SCR+11] KD O(m) O(m)

E
n
cr
yp
ti
on

FE [ACF+18b,ABM+20,LŢ19] KD O(m) O(m)

n-out-of-n SS [BSMD10,GJ11]

M
P
C

t-out-of-n SS [Sha79]
- O(nm) O(nm)

Table 3.1: Table comparing the baseline constructions of the different categories of secure
aggregation. T P stands for trusted third party. SC stands for pre-established secure
channels. Dynamic users property shows whether the aggregation can be performed with
a subset of the users, only. Comp. stands for computation cost on users. Comm. stands
for communication cost between users and aggregators. n and m represent the number
of users and the size of the user’s input, respectively.

In this chapter, we introduced secure aggregation protocols by defining their three
phases of execution. Then, we surveyed existing solutions and presented them as
instantiations of our definitions. We categorized these solutions into encryption-based
solutions (Masking, AHE, FE) and MPC-based solutions and we compared their pros
and cons. We found out that secure aggregation based on MPC can offer less strict
setup assumptions and allow user dynamics. However, this comes at a cost of higher
computation and communication costs. On the other hand, secure aggregation based on
additively homomorphic encryption can perform with much better scalability in terms
of the number of users. However, the latter requires a strong setup assumption where
a key dealer is needed to initialize the protocol. Secure aggregation based on masking
serves as a mid-way between AHE and MPC solutions. Finally, all properties can be
achieved by secure aggregation based on functional encryption, but it requires a very
strong assumption that the trusted key dealer should stay online during the protocol
execution.

This chapter tackled the solutions in the honest-but-curious threat model only.
Unfortunately, the adversary in many real-life applications is more powerful. Therefore,
these schemes provide a good starting point to build solutions that can achieve stronger
and more realistic threat models. In the next chapters, we focus on secure aggregation in
the malicious model and we propose a new secure aggregation protocol.

37

Chapter 3. Characterization of Secure Aggregation

38

Chapter 4

Secure Aggregation in the Malicious
Model

In this chapter, we study secure aggregation protocols when the aggregator and a subset
of the users are considered malicious. We review some of the previous work and then
we propose a new verifiable secure aggregation protocol (VSA). We first formalize the
security definitions of a verifiable secure aggregation which capture stronger security
guarantees than previous work. Then we construct our protocol VSA that satisfies these
security definitions.

4.1 Secure Aggregation with Malicious Parties

In the malicious model, the adversary controlling the aggregator and a subset of the
users may deviate from the protocol steps. This model represents more realistic scenarios
than the honest-but-curious model. For example, in smart grid systems, the adversary
may control some of the smart meters and additionally succeed in compromising the
aggregation server. In such a case, we need to guarantee that the electricity consumption
of honest users remains private. Moreover, we need to guarantee that the adversary is
detected if the aggregation server produces incorrect statistics about the total electricity
consumption.

In general, a secure aggregation protocol in the malicious model involves some
verification mechanism to ensure Aggregate Unforgeability in addition to Aggregator
Obliviousness (see Definitions 3.2.1 and 3.2.2). For this purpose, we propose a formal
definition for verifiable secure aggregation protocols which capture both the privacy and
verifiability of the protocol. Moreover, we present in this chapter the first verifiable secure
aggregation protocol (VSA) that meets our definition.

4.2 Previous Work

Most of the existing work focus either on the malicious aggregator model [LEÖM15,
TLB+21,HKKH21] or the malicious users model [KOB21,CGB17,BLV+21].

39

Chapter 4. Secure Aggregation in the Malicious Model

Secure Aggregation against Malicious Aggregator All the solutions in the malicious
aggregator model share the idea of using tags created by the users to authenticate the
sum of the inputs. More precisely, the user sends a tag along with its protected input.
Then, the aggregator adds all the tags to produce a final tag that proves the correctness
of the sum. There are mainly two types of tags proposed in the literature:

• Hash-based tags: In DEVA [TLB+21] and VERSA [HKKH21], the authors use
homomorphic hashes [YWHZ18, KFM04] as tags. The problem with the hash
approach is that the tags a need to be authenticated and saved on a public bulletin
board. The public verifier later aggregates the hashes and verifies the sum. This
approach leads to a linear increase in the size of the tags with respect to the number
of users.

• Signature-based tags: In PUDA [LEÖM15], the authors modify the SCRCS secure
aggregation scheme (see Section 3.4.2.2) to provide a verification mechanism of
the aggregate. PUDA users generates homomorphic tags based on a homomorphic
signature scheme. The homomorphic signature scheme is an extension of the
signature scheme in [Fre12a] to the multi-user setting. The advantage of PUDA
over hash-based tags is the succinctness of the aggregated tag (i.e., constant size
with respect to the number of users). We present PUDA scheme in details in
Section 4.4.1 since it is one of the building blocks for VSA.

The problem with these solutions is that they do not consider the case where one or more
users are corrupted. In such a case, the adversary who controls both the aggregator and
one user can forge a tag for any arbitrary value. Therefore, these solutions are limited to
a few applications.

Secure Aggregation against Malicious Users Another type of secure aggregation pro-
tocols target applications where the user is not trusted. In these protocols, the user
produces a tag that proves to the aggregator that the input is within a valid range. To
generate these tags, Karakoç et al. propose KOB [KOB21] which uses an Oblivious
Programable Pseudo-Random Function (OPPRF) protocol. The protocol runs between
the user which provides its input and the aggregator which provides an upper-bound
value. If the user input is less than the upper bound chosen by the aggregator, the user
receives a valid tag of its input. They build their OPPRF using an OT protocol. More
specifically, the user and the aggregator perform a secure comparison of their inputs
using ℓ OT executions (ℓ is the bit-size of the input). In each run, the aggregator sends a
masked part of the tag. After executing all the OTs, the user can reconstruct the tag and
unmask it if its input is less than the aggregator’s upper bound. This solution ensures
that a malicious user cannot provide out-of-bound input and thus limits their influence
on the sum of all users’ inputs.

Unfortunately, in this solution, the aggregator is trusted to perform the check on
the user inputs. Additionally, in the case of a malicious aggregator, this solution cannot
ensure privacy. Indeed, the malicious aggregator can compute an arbitrary function of
the user input instead of computing the tag. Therefore, this secure aggregation solution
is insecure when the aggregator is controlled by the adversary.

40

Chapter 4. Secure Aggregation in the Malicious Model

Secure Aggregation against both Malicious Users and Aggregator There is only one
solution that studies this extreme case where both the aggregator and the users are
malicious. Guo et al. propose a solution [GLL+21] that considers the case where the
aggregator is malicious and it colludes with a subset of the user. However, the authors
assume that the users provide correct inputs. In their solution, the users commit to their
inputs using a homomorphic commitment scheme [Ped92] and send the commitments
to all the other users before the aggregation process starts. After the users receive the
commitments, they send their protected inputs to the aggregator. This solution does not
prevent the adversary from providing bad inputs and changing the sum. Instead, it only
guarantees that the adversary can influence the aggregation result before knowing the
actual sum of the honest users. Hence, this solution does not provide strong security
guarantees. Therefore, we identify the need for a strong definition of security for secure
aggregation in the case of malicious parties as a missing requirement.

4.3 VSA - Overview

We aim to build a verifiable secure aggregation protocol that ensures both Aggregator
Obliviousness and Aggregate Unforgeability in the malicious model. Thus, we propose
to extend PUDA [LEÖM15] (which is secure in the malicious aggregator model) to
achieve security when both the aggregator and a subset of users are malicious. The main
problem with PUDA is that users are trusted in generating tags for their inputs. Thus,
a malicious user can produce tags for any input and thus compromise the sum while
still having a valid tag. Alternatively, KOB protocol [KOB21] allows the aggregator to
generate the tags instead of the user after privately checking the correctness of the user
inputs. However, this approach requires the aggregator to be trusted. Therefore, our
idea is to involve additional parties in the protocol called taggers. The purpose of the
taggers is to generate user tags. More precisely, each user runs a tagging protocol with
the taggers. If the user input is less than the upper bound set by each tagger, the user
receives a PUDA-like tag. Then, the user continues as in PUDA protocol but instead
of generating its own tag, it uses the tag computed by the taggers. The aggregator
receives the protected input and the tag of each user and finally outputs the sum and
its corresponding tag. In our protocol VSA, the final tag ensures both, that the users
provided well-formed inputs, and that the aggregator correctly computed the sum.

One challenge in building VSA is building a secure and robust tagging protocol
that even when some taggers (less than a threshold) are malicious, the tag can still be
produced. To build this protocol we use threshold secret sharing to share the tagging
keys among the taggers. Each tagger computes a partial tag using the key share. The
user robustly aggregates the partial tags under the assumption that there is a sufficient
number of honest taggers.

One more challenge to deal with is how each tagger privately checks that the user
input is in the correct range. KOB proposes an OPPRF approach for this purpose.
However, this solution is only secure when the tagger is honest-but-curious since it allows
the tagger to compute any function of the user input instead of computing the tag. To
solve this problem, we design our tagging protocol using zero-knowledge proofs to ensure

41

Chapter 4. Secure Aggregation in the Malicious Model

correct behavior of the tagger.

4.4 PUDA secure aggregation

()Enc

Agg

Tag
...

...

Figure 4.1: PUDA protocol. The aggregator is malicious and users are honest.

Leontiadis et al. presented PUDA [LEÖM15] as a model for aggregating inputs from
n users using a single aggregator. We describe this model and its properties. Then, we
present the construction proposed by the authors.

4.4.1 PUDA model

The PUDA model involves n users, one aggregator, and a trusted key dealer. It consists
of the five following algorithms:

• PUDA.Setup(1λ): An interactive randomized algorithm which on the input of
security parameter λ, generates public parameters pp, an encryption and tagging
key (eki, tki) for user Ui, an aggregator key ak, and a public verification key vk.

• PUDA.Enc(eki, xi, τ) → ci: It encrypts the private value xi using key eki for times-
tamp τ .

• PUDA.Tag(tki, xi, τ) → σi : It generates a tag for private value xi using tagging
key tki for timestamp τ .

• PUDA.Agg(ak, {ci}∀i∈[n], {σi}∀i∈[n], τ) → (Xτ ,Υτ): It aggregates the ciphertext and
the tags of all users for timestamp τ using the aggregation key ak. It outputs the
sum Xτ and the corresponding tag Υτ .

• PUDA.Verify(vk, Xτ ,Υτ , τ) → {0, 1}: It uses the verification key vk to verify the
tag Υτ of the sum Xτ for timestamp τ .

The authors define security using the two notions of Aggregator Obliviousness and
Aggregate Unforgeability (see Section 3.2). They propose a formal definition of these
notions using security games AOPUDA and AUPUDA respectively1.

1For the formal definitions, please refer to the original paper.

42

Chapter 4. Secure Aggregation in the Malicious Model

4.4.2 PUDA construction

PUDA construction is based on SCRCS secure aggregation scheme (see Section 3.4.2.2).
It is described as follows:

• PUDA.Setup(1λ):

- The trusted key dealer generates the public parameters: It selects the groups
G1, G2, and GT (where DDH holds) of prime order p; the generators g1 ∈ G1

and g2 ∈ G2; a bilinear map e : {G1,G2} → GT ; and a hash function HG1 (see
Section 2.4.3). It gives pp = (g1, g2,G1,G2,GT , e,H

G1) to all users and the
aggregator.

- The key dealer generates a uniformly random encryption key per user eki ←$ Zp.
It sets the aggregation key ak = −

∑
∀i∈[n] eki. It gives eki for each user and

ak to the aggregator.

- The key dealer generates a uniformly random key a and sends it to all the users.
Then, each user generates a uniformly random key bi ←$ Zp and forwards gbi2
to the key dealer. The user sets tki = (a, bi) as its tagging key.

- The key dealer computes vk1 = ga2 and vk2 =
∏n

1 g
bi
2 = g

∑n
1 bi

2 and then sets
the verification key as vk = (vk1, vk2)

• PUDA.Enc(eki, xi, τ):
The user encrypts xi for timestamp τ as follows:

ci ← (gxi
1)HG1(τ)eki

• PUDA.Tag(tki, xi, τ):
The user parses tki=(a, bi) and generates a tag of xi for timestamp τ as follows:

σi ← (ga1)
xiHG1(τ)bi

• PUDA.Agg(ak, {ci}∀i∈[n], {σi}∀i∈[n], τ):
The aggregator aggregates the ciphertexts and the tags from each user:

Vτ ← (
∏
i∈[n]

ci)H
G1(τ)ak = gXτ

1 Υτ ←
∏
i∈[n]

σi = (ga1)
XτHG1(τ)

∑
i∈[n]

bi

It then finds Xτ =
∑

i∈[n] xi by computing the discrete logarithm of Vτ .

• PUDA.Verify(vk, Xτ ,Υτ , τ):

e(Υτ , g2)
?
= e(HG1(τ), vk1)e(g

Xτ
1 , vk2)

43

Chapter 4. Secure Aggregation in the Malicious Model

4.5 VSA - Formal Definitions

In this section, we present the VSA model and its security properties. VSA is composed
of n users U = {U1, ..., Un}, m taggers T = {T1, ..., Tm}, and one aggregator A. The
users generate inputs at each timestamp τ . The taggers are parties that compute the tag
of a user’s inputs at a given timestamp. Finally, the aggregator is the party that produces
the sum of all inputs and its corresponding authenticating tag for a given timestamp.
VSA is composed of the following PPT algorithms:

• VSA.Setup(1λ, t): An interactive randomized algorithm which on input of secu-
rity parameter λ and threshold t ≤ m, generates the public parameters pp, an
encryption key eki for user Ui, an aggregator key ak, a list of n tagging keys
TKj = {tk1,j , ..., tkn,j} (one key per user) for each tagger Tj , and a public verifica-
tion key vk.

• VSA.Enc(eki, xi, τ) → ci: It encrypts the private value xi using key eki for times-
tamp τ .

• VSA.Tag({tki,j}j∈Ji , {θj}j∈Ji , xi, τ) → σi : An interactive randomized algorithm
which takes an input xi, a higher bound on the inputs θ, a subset of tagging keys
{tki,j}j∈Ji , and a timestamp τ . It outputs a tag σi.

• VSA.Agg(ak, {ci}∀i∈[n], {σi}∀i∈[n], τ) → (Xτ ,Υτ): It aggregates the ciphertext and
the tags of all users for timestamp τ using the aggregation key ak. It outputs the
sum Xτ and a tag Υτ .

• VSA.Verify(vk, Xτ ,Υτ , τ) → {0, 1}: It uses the verification key vk to verify the
tag Υτ of the sum Xτ for timestamp τ .

The main difference between VSA model and PUDA model is due to the additional
parties called taggers. Moreover, each user’s tagging key is distributed to the m taggers
and not to the users. Consequently, the tagging algorithm becomes an interactive protocol
between the user and the taggers to produce the tag of the user’s input.

4.5.1 Correctness of VSA

We require that when all users provide inputs that are less than all the bounds set by the
participating taggers, and when the number of taggers that participate in producing the
tag of each user is higher than a threshold t, the verification algorithm outputs 1 with an
overwhelming probability. More formally:

∀λ,∀t,∀Ji, ∀xi, and ∀θj s.t. i ∈ [n], j ∈ Ji, Ji ⊂ [m], |Ji| ≥ t, and xi ≤ θj ,

Pr

VSA.Verify(vk, Xτ ,Υτ) = 0

∣∣∣∣∣∣∣∣
VSA.Setup(1λ)→ (pp, {eki}, {tki,j}, ak, vk),
VSA.Enc(eki, xi, τ)→ ci,τ ∀i ∈ [n],
VSA.Tag({tki,j}j∈Ji , {θj}j∈Ji , xi, τ)→ σi,τ ∀i ∈ [n],
VSA.Agg(ak, {ci}i∈[n], {σi}i∈[n], τ) → (Xτ ,Υτ)

≤ µ(λ)

44

Chapter 4. Secure Aggregation in the Malicious Model

where µ is a negligible function.

4.5.2 Security of VSA

We consider that the adversary controls the aggregator A, a set of taggers Tcorr ⊂ T ,
and a set of users Ucorr ⊂ U . We present the oracle OEncTag that we use to define the
security games. Throughout the games, we consider that the minimal upper bound value
θmin = min({θj}∀j∈[m]) is known to the adversary. .

• OEncTag: When queried with a user identifier i, input x, and timestamp τ , the oracle
first checks if i and τ are queried before. If so, it aborts. The oracle computes ci and
σi as VSA.Enc(eki, x, τ) and VSA.Tag({tki,j}∀j∈[m], {θmin, ..., θmin}, x, τ) respectively.
Then, if Ui /∈ Ucorr, it outputs the result (ci, σi), otherwise it outputs (σi).

Aggregator Obliviousness (AO) We give a formal definition of AO using a security game.
Our game is an improved version of AOPUDA game from PUDA [LEÖM15] that captures
(in addition to the static corruption of the aggregator and some users) the corruptions of
some taggers. The game proceeds in three phases:

Setup and Corruption Phase: The adversary A chooses the security parameter λ and
the threshold t ≤ m and accordingly gets the public parameters of the protocol pp, the
aggregator’s key ak, the verification key vk, the secret keys of the parties in Ucorr (i.e.,
{eki}∀Ui∈Ucorr), and the secret keys of the parties in Tcorr (i.e., {TKj}∀Tj∈Tcorr).

Learning Phase: The adversary A interacts with oracle OEncTag in polynomial times by
sending tuples (i, x, τ) such that for every user identifier i, if Ui /∈ Ucorr, then x ≤ θ.

Challenge Phase: The adversary A chooses a timestamp τ∗ that has never been queried,
and a set of non-corrupted users U∗ (i.e., U∗ ∩ Ucorr = ϕ). It chooses two lists X 0

τ∗ and
X 1
τ∗ each corresponds to the inputs for each user in U∗ at τ∗. It queries the oracle OAO

with these lists which is defined as follows:

• OAO: The oracle is called with the a set of users U∗ ⊂ U \Ucorr and two list of inputs
(i, x0i , τ)∀Ui∈U∗ and (i, x1i , τ)∀Ui∈U∗ such that

∑
∀Ui∈U∗ x0i =

∑
∀Ui∈U∗ x1i . It flips a

coin b ∈ {0, 1} and returns the ciphertexts and tags of the input (i, xbi , τ)∀Ui∈U∗ .

After receiving the ciphertexts {cbi}∀Ui∈U∗ and their corresponding tags {σb
i}∀Ui∈U∗ , A

submits a guess bit b∗ and wins the game if b∗ = b.

1This does not affect the security proof as it gives in a general sense more power to the adversary

45

Chapter 4. Secure Aggregation in the Malicious Model

Game 1 Aggregator Obliviousness (AO)

The Learning Phase:
/* A queries the oracle poly-number of times for any i, x, and τ s.t. Ui /∈ Ucorr and x≤θ */

(ci, σi)← OEncTag(i,x,τ)

/* A queries the oracle poly-number of times for any i, x, and τ s.t. Ui ∈ Ucorr*/
(σi)← OEncTag(i,x,τ)

The Challenge Phase:
A → τ∗,U∗ ⊂ U \ Ucorr
A → X 0

τ∗ ,X 1
τ∗

{(cbi , σb
i)}∀Ui∈U∗ ← OAO(X 0

τ∗ ,X 1
τ∗)

A → b∗ ∈ {0, 1}

Definition 4.5.1

Let Pr[AAO] denote the probability that the adversary A outputs b∗ = b. Then,
VSA is said to ensure Aggregator Obliviousness if for any poly-bounded adversary
A the probability Pr[AAO] ≤ 1

2 + µ(λ), where µ(λ) is a negligible function and λ is
the security parameter.

Aggregate Unforgeability (AU) We give a formal definition of AU using a security game.
Our game is an improved version of AUPUDA game that captures (in addition to the static
corruption of the aggregator) the corruptions of some users and taggers.

Similar to the previous definition (i.e., AO) the game proceeds in three phases. The
Setup and Corruption Phase and Learning Phase are the same as in AO game. In the
Challenge Phase A submits a tuple (τ∗, sumτ∗ ,Υτ∗).

Game 2 Aggregate Unforgeability (AU)

The Learning Phase:
/* A queries the oracle poly-number of times for any i, x, and τ s.t. Ui /∈ Ucorr and x≤θ */

(ci, σi)← OEncTag(i,x,τ)

/* A queries the oracle poly-number of times for any i, x, and τ s.t. Ui ∈ Ucorr*/
(σi)← OEncTag(i,x,τ)

The Challenge Phase:
A → (τ∗, sumτ∗ ,Υτ∗)

The adversary wins the game if it succeeds in forging a valid tag of a sum. In [LEÖM15],
the authors define two types of forgeries. We reconsider these types and add a new type.

• Type I Forgery: VSA.Verify(vk, sumτ∗ ,Υτ∗) = 1 and the adversary A never made
a previous query with timestamp τ∗.

46

Chapter 4. Secure Aggregation in the Malicious Model

• Type II Forgery: VSA.Verify(vk, sumτ∗ ,Υτ∗) = 1 and A already made queries
with timestamp τ∗, however the sum sumτ∗ ̸=

∑
∀Ui∈U xi,τ∗ .

• Type III Forgery: VSA.Verify(vk, sumτ∗ ,Υτ∗) = 1 and A made queries with
timestamp τ∗, however the sum sumτ∗ >

∑
∀Ui∈U\Ucorr xi,τ∗ + |Ucorr|θmin.

Definition 4.5.2

Let Pr[AAU
I], Pr[AAU

II], and Pr[AAU
III] denote the probability that the adversary A

outputs a tuple that satisfies Type I, II, and III Forgery respectively. Then, VSA is
said to ensure Aggregate Unforgeability if for any poly-bounded adversary A the
probability Pr[AAU] = Pr[AAU

I] + Pr[AAU
II] + Pr[AAU

III] ≤ µ(λ), where µ(λ) is a
negligible function and λ is the security parameter.

Definition 4.5.2 features stronger security guarantees than PUDA. First, it captures
the Type I and II Forgeries that represent a corrupted aggregator forcing an incorrect
sum, but this time, even when a corrupted aggregator colludes with corrupted users.
Second, it captures a new type of forgery Type III Forgery that represents corrupted
users adding invalid inputs to the sum.

4.6 Ideal Functionality for Distributed Tagging Protocol

In this section, we present the ideal functionality F t,G
DTAG for the distributed tagging protocol

Πt,G
DTAG ≡ VSA.Tag. The protocol runs between the user and the m taggers. The user

provides an input x and each tagger provides a share of the tagging key k and a bound θj .
The protocol outputs a tag computed by PUDA.Tag(k, x, τ) if x is less than all the bounds
of the honest taggers. Otherwise, it gets no output. Figure 4.2 shows the functionality
F t,G
DTAG.

4.7 VSA - Construction in the F̂ t,G
DTAG-Hybrid Model

In this section, we first present our VSA protocol. Then, we prove its correctness and
that it achieves the security properties defined in Section 4.5. We describe the protocol
in the hybrid model of the functionalities FD,nCRS (Section 2.4.2), F t,G

DTAG (Section 4.6), and

F t,n,F
RShare (Section 2.4.4). Figure 4.3 illustrates a single run of the protocol.

4.7.1 VSA Scheme

Let Λ be a sampling algorithm that returns a uniformly random tuple of the form
(g1, g2, p,G1,G2,GT , e,H

G1) where G1, G2, and GT are groups where DDH holds of prime
order p; g1 is a generator of G1; g2 is generator of G2; e : {G1,G2} → GT is a bilinear
map; and HG1 is a hash function as defined in Section 2.4.3.

47

Chapter 4. Secure Aggregation in the Malicious Model

Functionality F t,G
DTAG

F t,G
DTAG runs between user U and m taggers T = {T1, ..., Tm} and is parameterized by the

reconstruction threshold t ≤ m of the SSS scheme. Let Th ⊂ T be the set of honest
taggers such that |Th| ≥ t.
Auxiliary Inputs: The bit size ℓ of the user’s input x and the tagger’s bound θj . A
function PUDA.Tag : Z2

p × [2ℓ]− × {0, 1}∗ 7→ G where G is a cyclic group of order p.

• Upon receiving a message (sid, input, x) from U where x ∈ [2ℓ]−, store x. Then,
send message (sid, input, U) to S.

• Upon receiving a message (sid, input, ⟨tk⟩j , θj) from Tj where ⟨tk⟩j=(⟨a⟩j , ⟨b⟩j) ∈
Z2
p and θj ∈ [2ℓ]−, store ⟨tk⟩j and θj . Then, send message (sid, input, Tj) to S

and continue.

• When (sid, input) is received from U and all Tj , set tk ← (a, b) such that
a← SSS.Recon({(j, ⟨a⟩j)}∀j|Tj∈Th ,Zp) and b← SSS.Recon({(j, ⟨b⟩j)}∀j|Tj∈Th ,Zp).
Finally, check if x ≤ min{θj}∀j|Tj∈Th . If yes, compute σ ← PUDA.Tag(tk, x, sida).
If no, set σ ←⊥. Send (sid, output, σ) to U and halt.

aThe session id (sid) is the current timestamp (sid=τ)

Figure 4.2: Ideal functionality for a Distributed Tagging Protocol.

• VSA.Setup(1λ, t):

- Distributing the public parameters:
The m taggers, the aggregator, and the n users query FΛ,m+n+1

CRS and receives
the public parameters pp = (g1, g2, p,G1,G2,GT , e,H

G1).

- Distributing the encryption and aggregation keys:
Each tagger Tj uniformly samples eki,j ←$ Zp per user (i.e. ∀Ui ∈ U), and
computes akj = −

∑
∀Ui∈U eki,j . It sends to each user Ui ∈ U the key eki,j and

to the aggregator akj . Each user computes its encryption key eki =
∑

j∈[n] eki,j
and the aggregator computes the aggregation key ak =

∑
j∈[n] akj .

- Distributing the tagging keys:
Each tagger Tj queries F t,m,Zp

RShare n+1 times and receives the share ⟨a⟩j and the
n shares ⟨bi⟩j for each i ∈ [n]. It sets tagging keys tki,j = (⟨a⟩j , ⟨bi⟩j) ∀i ∈ [n].
The tagger key is TKj = {tk1,j , ..., tkn,j}.

- Distributing the verification keys:

Each tagger Tj publishes vk1,j = g
⟨a⟩j
2 and vk2,j = g

∑
i∈[n]⟨bi⟩j

2 . Each tag-
ger then computes SSS.ExpRecon([m], {vk1,j}∀j∈[m],G2) → vk1 = ga2 and

SSS.ExpRecon([m], {vk2,j}∀j∈[m],G2) → vk2 = g

∑
i∈[n] bi

2 and finally vk =
(vk1, vk2) is published.

48

Chapter 4. Secure Aggregation in the Malicious Model

Enc

...

...

Tag

...

...

()

Agg

Figure 4.3: Our verifiable secure aggregation protocol. All parties can be malicious and
may collude except a threshold number taggers.

• VSA.Enc(eki, xi, τ) ≡ PUDA.Enc(eki, xi, τ)

• VSA.Tag({tki,j}j∈Ji , {θj}j∈Ji , xi, τ):
The user Ui (with input xi) and each tagger Tj (with input (tki,j , θj)) query F̂ t,G1

DTAG.

The user receives the output στ from F̂ t,G1
DTAG.

• VSA.Agg(ak, {ci}∀i∈[n], {σi}∀i∈[n], τ) ≡ PUDA.Agg(ak, {ci}∀i∈[n], {σi}∀i∈[n], τ)

• VSA.Verify(vk, Xτ ,Υτ , τ) ≡ PUDA.Verify(vk, Xτ ,Υτ , τ)

4.7.2 Proof of Correctness

The correctness of our construction directly follows from the correctness of PUDA
protocol. To prove this argument, observe that ∀λ, ∀t, such that VSA.Setup(1λ, t) and
PUDA.Setup(1λ), the following holds:

• ∀xi, the ciphertexts produced by PUDA and VSA schemes are statistically indistin-
guishable since VSA.Enc ≡ PUDA.Enc.

• ∀Ji,∀xi,∀θj s.t. (Ji ⊂ [m])∧ (|Ji| ≥ t)∧ (xi ≤ θj), the tags produced by PUDA and
VSA schemes are statistically indistinguishable. This holds because VSA outputs
the result of F̂ t,G1

DTAG which produces tags computed with PUDA.Tag algorithm if xi is
less than the minimum bound and a sufficient number of taggers participate.

• The aggregation and verification algorithms are equivalent: VSA.Agg ≡ PUDA.Agg

and VSA.Verify ≡ PUDA.Verify.

4.8 VSA - Security Analysis

We now perform a security analysis of the scheme. To prove that our VSA scheme
achieves Aggregator Obliviousness and Aggregate Unforgeability, we first take a step to
show that both our AO game and AU game can be reduced to AOPUDA game and AUPUDA

game.

49

Chapter 4. Secure Aggregation in the Malicious Model

Lemma 4.8.1

For any ϵ > 0 and poly-bounded adversary A that statically corrupts Ucorr ⊂ U , A,
or Tcorr ⊂ T s.t. |T | < t (t is the SSS threshold), or any combination of them where
Pr[AAO] ≤ 1

2 + ϵ there exists a poly-bounded adversary B that statically corrupt

Ucorr ⊂ U and/or A such that Pr[BAOPUDA
] ≥ 1

2 + ϵ.

Proof.

Notice that this reduction is only true when the adversary does not corrupt t or more
taggers (|Tcorr| < t). To prove this reduction, we construct the adversary B using A.
Let us denote the oracles that B has access to by OPUDA

Setup, OPUDA
Corrupt, OPUDA

EncTag, and OPUDA
AO

defined in [LEÖM15]. B proceeds as follows:

1. During the Setup and Corruption Phase: Given that the corrupted parties
in Ucorr ∪ Tcorr ∪ {A}, when A chooses the security parameter λ and the
threshold t, B queries OPUDA

Setup which returns pp, ak, and vk. It then queries
OPUDA

Corrupt with each user identifier i of the corrupted users Ui ∈ Ucorr which
returns {(eki, tki)}∀Ui∈Ucorr . B samples uniformly at random a′ ←$ Zp and
b′i ←$ Zp for each i ∈ [n]. Then it computes SSS.Share(a′, t,m,Zp) and
SSS.Share(b′i, t,m,Zp) for each i ∈ [n]. It sets TKj = {(⟨a′⟩j , ⟨b′1⟩j), ..., (⟨a′⟩j , ⟨b′n⟩j)}
for each corrupted Tj ∈ Tcorr . B gives A the public parameters pp, the verifica-
tion key of PUDA vk, the aggregation key ak, the corrupted users’ encryption
keys {eki}∀Ui∈Ucorr , and the randomly generated list of shares TKj of the corrupted
taggers.

2. During the Learning Phase: When A queries OEncTag, B returns the values from
History if the user identifier and timestamp were previously queried. Otherwise,

• If Ui ̸∈ Ucorr: it queries OPUDA
EncTag with (i, x, τ) and gets (cu,τ , σu,τ), saves it

to History and sends σi to A.
• If Ui ∈ Ucorr and x ≤ θmin: B computes PUDA.Tag(tki, x, τ)→ σi, saves σi
to History and sends it to A.

• If Ui ∈ Ucorr and x > θmin it sets σi ←⊥ saves σi to History and sends it
to A.

3. During the Challenge Phase: When A queries OAO with some parameters, B
queries OPUDA

AO with the same parameters then gives the result to A and outputs
what it outputs.

In this reduction, the difference between A’s simulated view (by B) and A’s real view
(when it plays the real game) is only the tagging keys’ shares of the corrupted taggers.
Since A does not see a sufficient number of shares (because |Tcorr| < t), the shares from
both views are indistinguishable (see Security definition of Shamir’s secret sharing in
section 2.3.1). Therefore, if A outputs b∗ = b (wins VSA AO game) with a probability

50

Chapter 4. Secure Aggregation in the Malicious Model

1
2 + ϵ, B will also output b∗ = b (win PUDA AO game) with the same probability.
This proves the lemma.

Lemma 4.8.2

For any ϵ > 0 and poly-bounded adversary A that statically corrupts Ucorr ⊂ U , A,
or Tcorr ⊂ T s.t. |T | < t (t is the SSS threshold), or any combination of them where
Pr[AAU

I] + Pr[AAU
II] ≤ ϵ there exists a poly-bounded adversary B that statically

corrupt A such that Pr[BAUPUDA
] ≥ ϵ.

Proof.

Notice that this reduction is only true when the adversary does not corrupt t or more
taggers (|Tcorr| < t). To prove this reduction, we construct the adversary B using A.
Denote the oracles that B has access to by OPUDA

Setup and OPUDA
EncTag defined in [LEÖM15].

Notice that B does not have access to oracle OPUDA
Corrupt since in PUDA the aggregator

is not allowed to collude with the users. However, B should provide A with the
encryption keys of the corrupted users. It turns out that B can simply generate a
random encryption key for each user and use that key to produce ciphertexts instead of
using OPUDA

EncTag (B needs OPUDA
EncTag to only produce the tags). In more detail, B proceeds

as follows:

1. During the Setup and Corruption Phase: Given the corrupted parties are
Ucorr ∪ Tcorr ∪ {A}, B queries OPUDA

Setup which returns pp, ak, and vk. It then
samples the user encryption keys uniformly at random for all users rki ←$ Zp

such that
∑

i∈[n] rki = −ak. It also samples a′ ←$ Zp and b′i ←$ Zp uni-

formly at random for each i ∈ [n]. Then it computes SSS.Share(a′, t,m,Zp) and
SSS.Share(b′i, t,m,Zp) for each i ∈ [n]. It sets TKj = {(⟨a′⟩j , ⟨b′1⟩j), ..., (⟨a′⟩j , ⟨b′n⟩j)}
for each corrupted Tj ∈ Tcorr. B gives A the public parameters pp, the verifica-
tion key of PUDA vk, the aggregation key ak, the randomly generated encryption
keys of the corrupted users {rki}∀Ui∈Ucorr , and the randomly generated list of
shares TKj of the corrupted taggers. B maintains a list History of the queried
ciphertexts and tags.

2. During the Learning Phase: When A queries OEncTag, B returns the values
from History if the user identifier and timestamp where previously queried.
Otherwise,

• If x ≤ θmin: B queries OPUDA
EncTag with (i, x, τ) and gets (ci, σi). B computes

c′i ← VSA.Enc(rki, x, τ), saves (c
′
i, σi) to History and sends it to A.

• If x > θmin: B computes c′i ← VSA.Enc(rki, x, τ), saves (c
′
i,⊥) to History

and sends it to A.

3. During the Challenge Phase: B outputs what A outputs.

51

Chapter 4. Secure Aggregation in the Malicious Model

In this reduction, the differences between A’s simulated view (by B) and A’s real
view (when it plays the real game) are: (i) the encryption keys of the corrupted
users, (ii) the tagging keys’ shares of the corrupted taggers, and (iii) the ciphertexts
received from the oracles. The tagging keys’ shares are statistically indistinguishable
in both views as shown in the previous proof. Similarly, the encryption keys are chosen
uniformly randomly as if they were generated by the setup algorithm. It remains to
show that the ciphertexts received from the oracles are indistinguishable in both views.
In both views, the ciphertexts are generated by randomly generated encryption keys.

Additionally, they both satisfy the relation
∏

i∈[n] ci = (g

∑
i∈[n] xi

1)H(τ)−ak thus, they
are statistically indistinguishable.

We conclude that the simulated view of A (by B) and the real view of A are
statistically indistinguishable. Hence, if A succeeds in producing a Type I or II
Forgery with probability ϵ then B succeeds with the same probability. This proves the
lemma.

Corollary 4.8.1

For any poly-bounded adversaryA that statically corrupts Ucorr ⊂ U , A, or Tcorr ⊂ T
s.t. |T | < t (t is the SSS threshold), or any combination of them, VSA achieves
Aggregator Obliviousness under the decisional Diffie-Hellman (DDH) assumption in
G1 in the random oracle model and F t,G1

DTAG-hybrid model.

Proof.

Since PUDA ensures aggregator obliviousness under the DDH assumption in G1

in the random oracle model, and since our AO game reduces to AOPUDA game (see
Lemma 4.8.1), we can conclude directly that our scheme also ensures aggregator
obliviousness under the decisional Diffie-Hellman (DDH) assumption in G1 in the
random oracle model and F t,G1

DTAG-hybrid model.

Corollary 4.8.2

For any poly-bounded adversaryA that statically corrupts Ucorr ⊂ U , A, or Tcorr ⊂ T
s.t. |T | < t (t is the SSS threshold), or any combination of them, VSA scheme
achieves Aggregate Unforgeability against a Type I Forgery under the BCDH as-
sumption in the random oracle model and F t,G1

DTAG-hybrid model.

Proof.

Since PUDA ensures aggregate unforgeability against Type I Forgery under the BCDH
assumption in the random oracle model, and since our AU game reduces to AUPUDA

game (see Lemma 4.8.2), we can conclude directly that our scheme also ensures
aggregate unforgeability against Type I Forgery under the BCDH assumption in the
random oracle model and F t,G1

DTAG-hybrid model.

52

Chapter 4. Secure Aggregation in the Malicious Model

Corollary 4.8.3

For any poly-bounded adversaryA that statically corrupts Ucorr ⊂ U , A, or Tcorr ⊂ T
s.t. |T | < t (t is the SSS threshold), or any combination of them, VSA scheme
achieves Aggregate Unforgeability against a Type II Forgery under the LEOM
assumption in the random oracle model and F t,G1

DTAG-hybrid model.

Proof.

Since PUDA ensures aggregate unforgeability against Type II Forgery under the
BCDH assumption in the random oracle model, and since our AU game reduces to
AUPUDA game (see Lemma 4.8.2), we can conclude directly that our scheme also ensures
aggregate unforgeability against Type II Forgery under the LEOM assumption in the
random oracle model and F t,G1

DTAG-hybrid model.

Theorem 4.8.1

For any poly-bounded adversaryA that statically corrupts Ucorr ⊂ U , A, or Tcorr ⊂ T
s.t. |T | < t (t is the SSS threshold), or any combination of them, VSA scheme
achieves Aggregate Unforgeability against a Type III Forgery under the LEOM
assumption in the random oracle model and F t,G1

DTAG-hybrid model.

Proof.

Let us assume that sumτ∗ >
∑
∀Ui∈U\Ucorr xi,τ∗ + |Ucorr|θmin. This gives us

that
∑
∀Ui∈Ucorr xi,τ∗ > |Ucorr|θmin. Notice that in this case the probability

that VSA.Verify(vk, sumτ∗ ,Υτ∗)= 1 is Pr[AAU
III]. Now observe that to have∑

∀Ui∈Ucorr xi,τ∗ > |Ucorr|θmin there exists at least one xi,τ∗ > θmin. Let U ′corr ̸=ϕ
be the set of users that their user identifiers were queried with xi,τ∗ > θmin. Ob-
serve that VSA.Tag returns ⊥ when run with input x > θmin. Therefore, the or-
acle OEncTag returns σi =⊥ (no output) for all queries (i, x, τ∗) where Ui ∈ U ′corr.
Let sum′τ∗ =

∑
∀Ui∈U\U ′

corr
xi,τ∗ +

∑
∀Ui∈U ′

corr
x′i,τ∗ such that sumτ∗ ̸= sum′τ∗ and

x′i,τ∗ > θmin ∀Ui ∈ U ′corr. The oracle OEncTag returns the same result (i.e., ⊥) for
both queries (i, xi,τ∗ , τ

∗) and (i, x′i,τ∗ , τ
∗) ∀Ui ∈ U ′corr. Thus, we can deduce that

Pr[VSA.Verify(vk, sumτ∗ ,Υτ∗) = 1] ≃ Pr[VSA.Verify(vk, sum′τ∗ ,Υτ∗) = 1]. There-
fore, Pr[AAU

III] = Pr[AAU
II].

By relying on Corollary 4.8.3, we conclude that our scheme ensures aggregate
unforgeability against Type III Forgery under the LEOM assumption in the random
oracle model and F t,G1

DTAG-hybrid model.

4.9 Realization of Distributed Tagging Protocol

In this section, we show how to build the protocol Πt,G
DTAG ≡ VSA.Tag that realizes the

functionality F t,G
DTAG. To build this protocol, we first propose a tagging protocol ΠG

TAG

53

Chapter 4. Secure Aggregation in the Malicious Model

()

User Tagger

if :
()
...

...

if :

User

Taggers

Figure 4.4: Overview of the tagging and distributed tagging functionalities

with ideal functionality FG
TAG that runs between one user and one tagger only. The ideal

functionality FG
TAG is shown in Figure 4.5. Notice that FG

TAG is very similar to F t,G
DTAG (with

one tagger) except that the adversary in FG
TAG is allowed to perform a selective failure

attack (i.e., choose to abort the protocol on certain inputs from the honest user). Given
the functionality, FG

TAG, the protocol Πt,G
DTAG is defined in the FG

TAG-hybrid model as shown
in Figure 4.6.

Theorem 4.9.1

Protocol Πt,G
DTAG UC-realizes the functionality F t,G

DTAG in the FG
TAG-hybrid model under

static corruption if the number of corrupted taggers |Tcorr| < t and |Tcorr| < m− t
(eg., for t = m

2 , it is sufficient to choose |Tcorr| < m
2).

Proof.

To prove the theorem we build a simulator S that runs in the ideal world and interacts
with F t,G

DTAG and Z. It simulates for the adversary A the interaction with the non-
corrupted parties and Z. We consider three different cases depending on which
parties A corrupts. In each case, S runs internally an instance of A. It simulates the
interaction with Z by forwarding the messages sent from Z to A and vice-versa. It
simulates the interaction with the protocol parties based on a well-defined strategy
described in what follows.

Case 1: A corrupts U
Observe that U only interacts with F̂G

TAG. Thus, S simply forwards the messages
between A and F̂G

TAG and vice-versa. Hence, the simulated execution of A and the real
one are identical. Additionally, the honest parties do not get any output. Therefore,
we proved that Πt,G

DTAG UC-realizes the functionality F t,G
DTAG in the FG

TAG-hybrid model if
A corrupts only U .

Case 2: A corrupts Tcorr ⊂ T
Observe that each Tj ∈ Tcorr sends a message to F̂G

TAG only and receives noth-
ing. So S simply forwards the message from A to F̂G

TAG. Hence, the simulated
execution of A and the real one are identical. We only need to show that the

54

Chapter 4. Secure Aggregation in the Malicious Model

Functionality FG
TAG

FG
TAG runs between user U and a tagger T and is parameterized by the function f and

the reconstruction threshold of the SSS scheme t ≤ m.
Auxiliary Inputs: The bit size ℓ of the user’s input x and the tagger’s bound θj . A
function PUDA.Tag : Z2

p × [2ℓ]− × {0, 1}∗ 7→ G where G is a cyclic group of order p.

• Upon receiving a message (sid, input, x) from U where x ∈ [2ℓ]−, store x. Then,
if the T is corrupted, send message (sid, input, U) to S and receive the message
(sid, ok, η) where η : [2ℓ]− 7→ {0, 1}. If η(x) = 0 abort, otherwise, continue.

• Upon receiving a message (sid, input, k, θ) from T where k ∈ Z2
p and θ ∈ [2ℓ]−,

store k and θ. Then, if U is corrupted send message (sid, input, T) to S.

- If S sends (sid, abort), send abort to all parties and abort.

- If S sends (sid, ok), continue.

• When (sid, input) is received from U and all Ti, compute σ ← PUDA.Tag(k, x, sida).
If no, set σ ←⊥. Send (sid, output, σ) to U and halt.

aThe session id (sid) is the same as the timestamp (sid=τ)

Figure 4.5: Ideal functionality for a Tagging Protocol.

Protocol Πt,G
DTAG

Πt,G
DTAG runs between user U and m taggers T = {T1, ..., Tm} and is parameterized by the

reconstruction threshold of the SSS scheme t ≤ m.
Inputs: User’s input x ∈ [2ℓ]− and tagger Tj input

(
⟨tk⟩j=(⟨a⟩j , ⟨b⟩j), θj

)
∈ Z2

p × [2ℓ]−.

• User U initializes an empty set Ω then interacts with each tagger Tj as follows:

- U sends (sid, ssid, input, x) to F̂G
TAG.

- Tj sends (sid, ssid, input, ⟨tk⟩j , θj) to F̂G
TAG.

- U receives (sid, ssid, output, σj) from F̂G
TAG (or the sub-session ssid aborts).

If σj ̸=⊥, add (j, σj) to the set Ω.

• ∀Jk ⊂ Ω s.t. |Jk| = t, U computes SSS.ReconExp({(j, σj)}∀(j,σj)∈Jk ,G)→ σ′k. The
user outputs σ ← majority({σ′k}∀k∈[(t

n)]
).

Figure 4.6: Distributed Tagging Protocol in FG
TAG-hybrid model.

55

Chapter 4. Secure Aggregation in the Malicious Model

output of the honest parties (the user since it is the only party that gets an out-
put) is identical in both worlds. In the real world, the user outputs σREAL ←
majority({σ′k}∀k∈[(t

n)]
) where σ′k ← SSS.ReconExp({(j, σj)}∀(j,σj)∈Jk ,G). In the ideal

world, the user outputs σIDEAL ← PUDA.Tag(tk, x, sid) where tk ← (a, b) such that
a ← SSS.Recon({(j, ⟨a⟩j)}∀j|Tj∈Th ,Zp) and b ← SSS.Recon({(j, ⟨b⟩j)}∀j|Tj∈Th ,Zp).
Thus, we need to show that σIDEAL = σREAL.

Notice that Th = T \ Tcorr. Thus, for |Tcorr| < m− t, we have |Th| > t and thus
σIDEAL = (gx1)

aH(τ)b where g1, H(τ) ∈ G.
In the real world, σj = (gx1)

⟨a⟩jH(τ)⟨b⟩j ∀Tj ∈ Th. So, we have for each σ′k ←
SSS.ReconExp({(j, σj)}∀(j,σj)∈Jk ,G), where Jk ⊂ Th, σ′k = (gx1)

aH(τ)b = σIDEAL (from

Lemma 2.3.2). Since |Th| > t, then
(

t
|Th|

)
> 1. Hence, the number of σ′k’s that

are equal to σIDEAL are more than one. On the other hand, since |Tcorr| < t, for
each Jk, we have Pr[σ′k1 = σ′k2 ≠ σIDEAL] ≃ 0 (from Definition 2.3.2). Therefore,
Pr[majority({σ′k}∀k∈[(t

n)]
) ̸= σIDEAL] ≃ 0. This proves that σIDEAL = σREAL and conse-

quently we proved Πt,G
DTAG UC-realizes the functionality F t,G

DTAG in the FG
TAG-hybrid model

if A corrupts Tcorr ⊂ T and |Tcorr| < t and |Tcorr| < m− t.

Case 3: A corrupts U and Tcorr ⊂ T
Similar to the previous two cases, S will forward messages between A and F̂G

TAG. Hence,
the simulated execution of A and the real one are identical. Additionally, the honest
parties do not get any output. Therefore, we proved that Πt,G

DTAG UC-realizes the

functionality F t,G
DTAG in the FG

TAG-hybrid model if A corrupts U and Tcorr ⊂ T .

We finally deduce that, if |Tcorr| < t and |Tcorr| < m − t, IDEALFt,G
DTAG,S,Z

s
≈

EXEC
Πt,G
DTAG,A,Z

which proves our theorem.

4.9.1 Realization of The Tagging Protocol

The ideal functionality of the protocol ΠG
TAG (depicted in Figure 4.5) computes the tag

PUDA.Tag(k = (a, b), x, τ) = (ga)xH(τ)b if the user input x is less than a bound θ chosen
by the tagger.

For illustration purposes, we first present a version of the protocol that is secure in
the honest-but-curious (HBC) model (the user and the tagger follow the protocol steps).
Next, we present our ΠG

TAG protocol and prove that it UC-realizes FG
TAG in the malicious

model.

Tagging Protocol in the HBC model

The user generates a uniformly random value r ←$ Zp and computes P=(gx)r and
Q=H(τ)r then send P and Q to the tagger. The tagger computes E=P aQb. Notice that

the user now can obtain the tag from E by computing σ = E
1
r . To prevent the user from

obtaining the tag σ if its input x > θ, the tagger does not send E to the user. Instead, it

56

Chapter 4. Secure Aggregation in the Malicious Model

runs a garbled circuit protocol as described in Section 2.4.6 with the function fθ,E :

fθ,E(x) =

{
E , if x ≤ θ
⊥ , otherwise

This protocol is only secure in the HBC model since a malicious user may compute the
tag on a value x > θ, then evaluate the garbled circuit on a different value x′ ≤ θ. On the
other hand, a malicious tagger may garble any arbitrary function f ′ and thus influence
the protocol to output f ′(x) instead of σ.

Tagging Protocol ΠG
TAG in the malicious model

To correctly realize the protocol ΠG
TAG in the malicious model, we need the tagger to

ensure that the tag is evaluated on the same input used to evaluate the garbled circuit.
Additionally, we need the user to ensure that the garbled circuit is evaluating a tag of
data point x.

To solve the first issue, we propose to modify the OT protocol used in the garbled
circuit protocol. The goal is to use the messages sent by the user in the OT protocol
to evaluate the tag σ directly. By reusing these messages, we make sure that the tag is
computed on the same input used to evaluate the circuit.

To solve the second issue, we use a zero-knowledge proof of knowledge of language
RTag (see Section 2.4.7) to verify the result of the protocol. The details of the protocol
are described in Figure 4.7.

Theorem 4.9.2

Protocol ΠG
TAG UC-realizes the functionality FG

TAG in the FRZK-hybrid model under
static corruption and under the Inv-DDH assumption in G.

Proof.

To prove the theorem we build a simulator S that runs in the ideal world and interacts
with FG

TAG and Z. It simulates for the adversary A the interaction with the non-
corrupted parties and Z. We consider two different cases depending on what parties A
corrupts. In each case, S runs internally an instance of A. It simulates the interaction
with Z by forwarding the messages sent from Z to A and vice-versa. It simulates
the interaction with the protocol parties based on a well-defined strategy described in
what follows.

Case 1: A corrupts the user U

1. S first chooses θ = 2ℓ−1 (largest bound possible). It garbles the circuit similar to
an honest tagger F, {lbx,i}, lbout ← GC.Grb(1λ, fθ) ∀i ∈ [ℓ],∀b ∈ {0, 1} and samples
value α, γ ←$ Zp uniformly at random. It sends the message (sid,γ,A = gα, F)
to A and waits for A′s response.

57

Chapter 4. Secure Aggregation in the Malicious Model

Tagging Protocol ΠG
TAG

User (x = x1||...||xℓ) Tagger
(
θ, k=(a, b)

)
F, {lbx,i}, lbout ← Grb(1λ, fθ)
∀i ∈ [ℓ],∀b ∈ {0, 1}

γ,A = gα, F α←$ Zp, γ ←$ Zp

r ←$ Zp, β ←$ Zp | γ=rβ

βi ←$ Zp ∀i ∈ [ℓ] | β=
∑ℓ

1(βi×2i−1)

Bi ← Ax⟨i⟩
gβi ∀i ∈ [ℓ]

κi ← GG
(A,Bi)

(Aβi) ∀i ∈ [ℓ]

Pi ← Br
i ∀i ∈ [ℓ]

Q← H(τ)r

{Bi, Pi}∀i∈[ℓ], Q

{(Bi, Pi)}i∈[ℓ], (H(τ), Q)

witness = r
FR

ℓ+1
DL

ZK

{(Bi, Pi)}i∈[ℓ], (H(τ), Q)

True

κ0
i ← GG

(A,Bi)
(Bα

i) ∀i ∈ [ℓ]

κ1
i ← GG

(A,Bi)
((
Bi

A
)α) ∀i ∈ [ℓ]

c0i ← Enc∗κ0
i
(l0x,i) ∀i ∈ [ℓ]

c1i ← Enc∗κ1
i
(l1x,i) ∀i ∈ [ℓ]

P ← (g−γ
∏ℓ

1 (Pi)
2i−1

)
1
α

E ← P aQb

C ← Enc∗l1out(E)

{(c0i , c1i }∀i∈[ℓ], C

lx
⟨i⟩

x,i ← Decκi
(cx

⟨i⟩

i) ∀i ∈ [ℓ]

lresout ← Eval(F, {lx
⟨i⟩

x,i }∀i∈[ℓ])

E ← Declresout
(C)

(gxr, Q,E)

FRTag

ZK

(P,Q,E)

witness = (a, b)True

return σ ← E
1
r

Figure 4.7: Tagging Protocol in FRZK-hybrid model. Black text is the GC part and Blue
text is the modifications. Recall that timestamp τ=sid represents the session id.

58

Chapter 4. Secure Aggregation in the Malicious Model

2. When A sends the message (sid,{Bi, Pi}∀i∈[ℓ], Q), S starts internally Srcv (de-
fined in Lemma 2.4.1). It handles the OT receiver’s message (Bi) and the random
oracle GG queries to Srcv. Srcv extracts the receiver’s choice x⟨i⟩ and sends it out
to S. S repeats the process for every i ∈ [ℓ]. Hence, S extracts the user input x.

3. When A sends the message (sid,prove,({(B′i, P ′i)}i∈[ℓ], (H ′, Q′)), r) to FR
ℓ+1
DL

ZK .
S checks if H ′=H(sid), Q′=Q, Bi=B′i, and Pi=P ′i ∀i ∈ [ℓ], and the relation
Rℓ+1

DL hold, and send (sid, abort) to FG
TAG if any of the checks fail. If the

values are valid and the relation Rℓ+1
DL holds, then S sets β = γ

r and checks if∏ℓ
1(Bi)

2i−1
= (gα)xgβ. If this equality does not hold, this means A chose βi

such that (
∑n

1 βi×2i−1) ̸= β. In this case, S sets the value bad_input = 1 and
continues.

4. S sends the message (sid, input, x) to FG
TAG and receives (sid, output, σ). S com-

putes:

• κ0i ← GG
(A,Bi)

(Bα
i) ∀i ∈ [ℓ],

• κ1i ← GG
(A,Bi)

((Bi
A)α) ∀i ∈ [ℓ]

• c0i ← Enc∗κ0
i
(l0x,i) ∀i ∈ [ℓ]

• c1i ← Enc∗κ1
i
(l1x,i) ∀i ∈ [ℓ]

Then, S computes:

• if σ =⊥, samples ε←$ {0, 1}λ and E ←$ G then computes C ← Enc∗ε(E).

• if σ ̸=⊥ and bad_input = 0, sets E = σr then computes C ← Enc∗l1out
(E).

• if σ ̸=⊥ and bad_input = 1 sets E ←$ G then computes C ← Enc∗l1out
(E).

S finally sends (sid,{(c0i , c1i }∀i∈[ℓ], C) to A.

5. (Proceed to this step only if σ ̸=⊥). When A sends (sid,(P ′, Q′, E′)) to FRTag

ZK ,
if P ′=grx, Q′=Q, and E′=E, and the relation RTag holds, S sends (sid,True)
to A, otherwise send (sid,False) to A and (sid, abort) to FG

TAG.

In this simulation, the difference between the simulated execution of A and the
real one is in the generated garbled circuit F and in the ciphertext C. We argue that
both values are indistinguishable between the real world and the ideal world.

Indistinguishability of the simulated garbled circuit F : The simulated garbled circuit is
garbled from the function fθIDEAL where θIDEAL = 2ℓ − 1. The only difference is in the
value of θ. However, the security of the garbled circuit scheme (see [Yao86]) guarantees
computational indistinguishablity between these two circuits.

59

Chapter 4. Secure Aggregation in the Malicious Model

Indistinguishability of the simulated ciphertext C: There are three different cases in
our simulation:

Case (i) when σ =⊥: This means that A’s input x is greater than θREAL (input
of the honest tagger). In this case, the adversary in the real world will not be
able to decrypt the value of C since it will not obtain l1out from the evaluation
of the garbled circuit (A will obtain l0out since x ̸≤ θREAL). Hence the ciphertext
C in the ideal world which is encrypted by a random key ε is computationally
indistinguishable from C in the real world based on the security property of the
encryption scheme (see Definition 2.3.5 and Definition 2.3.7).

Case (ii) when σ ≠⊥ and bad_input = 0: In the ideal world, the value of C
is the encryption of σr with l1out where σ is the output of FG

TAG and r is the

randomness chosen by A (extracted from the FR
ℓ+1
DL

ZK message). In the real world,
the value of C is the encryption of E with l1out where E = P aQb. We have

P = (g−γ
∏ℓ

1 (Pi)
2i−1

)
1
α = g

rαx+rβ−γ
α = grx (since γ = rβ when bad_input = 0).

Additionally, Q = H(τ)r, so we have E = (grx)aH(τ)rb = σr. Hence, the values
of C are identical from both worlds.

Case (iii): σ ̸=⊥ and bad_input = 1: In the ideal world, the value of C is
the encryption of EIDEAL with l1out where EIDEAL is chosen uniformly random
in G. In the real world, the value of C is the encryption of EREAL with l1out
where EREAL = P aQb. We have P = (g−γ

∏ℓ
1 (Pi)

2i−1
)
1
α = g

rαx+rβ−γ
α ≠ grx (since

γ ̸= rβ when bad_input = 1). So we have EREAL = (g
rαx+rβ−γ

α)aH(τ)rb. Notice
that Z does not know α which is chosen uniformly random in Zp. We can write

the value of EREAL = gc1+c2α−1
H(τ)c3 where c1 = arx, c2 = b(rβ − γ) ̸= 0 (since

rβ ̸= γ), and c3 = rb are three values chosen by Z. Let us assume that Z
can distinguish EREAL from EIDEAL with a non-negligible probability given only
g, gα ∈ G and τ ∈ {0, 1}∗. We show that we can solve the Inv-DDH problem (i.e.,
given the tuple (g, gX , gZ) tell of gZ = gX

−1
) using Z. For a tuple (g, gX , gZ)

query Z with (g, gα=gX ,EREAL = gc1(gZ)c2H(τ)c3). Hence, the values of C
are computationally indistinguishable from both worlds under the Inv-DDH
assumption.

This proves that ΠG
TAG UC-realizes the functionality FG

TAG in the FRZK-hybrid model
under the Inv-DDH assumption in G if A statically corrupts U .

Case 2: A corrupts the tagger T

1. When A sends the message (sid,γ,A = gα, F), S chooses x=1 (smallest input
possible) and proceeds similarly to an honest user to compute {Bi}∀i∈[ℓ], {Pi}∀i∈[ℓ],
and Q. S sends (sid,{Bi, Pi}∀i∈[ℓ], Q) to A.

60

Chapter 4. Secure Aggregation in the Malicious Model

2. S sends the message (sid,prove,({(Bi, Pi)}i∈[ℓ], (H(sid), Q)), r) to FR
ℓ+1
DL

ZK and

waits for A to sends (sid,({(B′i, P ′i)}i∈[ℓ], (H ′, Q′))) to FR
ℓ+1
DL

ZK . If H ′=H(sid),

Q′=Q, Bi=B′i, and Pi=P ′i ∀i ∈ [ℓ], and the relation Rℓ+1
DL holds, S sends

(sid,True) to A, otherwise send (sid,False) to A and (sid, abort) to FG
TAG.

3. When A sends the message (sid,{(c0i , c1i }∀i∈[ℓ], C), S starts internally Ssnd (de-
fined in Lemma 2.4.2) and handles the OT sender’s message A = gα,(c0i , c

1
i), and

the random oracle GG queries to Ssnd. Ssnd extracts the sender’s input (l0x,i, l
1
x,i)

and sends it out to S. S repeats the process for every i ∈ [ℓ]. Hence, S extracts
all the input labels of the garbled circuit {lbx,i}∀i∈[ℓ],b∈{0,1}. Then, S evaluates

the garbled circuit F on all possible values of x ∈ [2ℓ]− using the labels and uses
the output label to decrypt C and obtain E. If this operation fails for any x, S
sets η(x)=0, otherwise η(x)=1. S finally sends (sid, ok, η) to FG

TAG.

4. When A sends (sid,((P ′, Q′, E′), (a, b)) to FRTag

ZK , If P ′ ̸=P , Q′ ̸=Q, and E′ ̸=E, or
the relation RTag does not hold, send (sid, abort) to FG

TAG. Otherwise, S chooses
θ = 2ℓ − 1 and then sends the message (sid, input, k = (a, b), θ) to FG

TAG.

In this simulation, the difference between the simulated execution of A and the
real one is only in the choice of the input x = 1. As a result, the only messages that
are different are Bi and Pi , ∀i ∈ [ℓ]. Recall that Bi is the OT message defined in the
OT protocol in Section 2.4.5. By relying on the UC proof of [HL17] (when simulating
the corrupted sender), we can show that Bi are computationally indistinguishable
from both views under the CDH problem. The indistinguishability of Pi follows
directly since Pi = Br

i , and r is chosen uniformly random in Zp. This proves that Π
G
TAG

UC-realizes the functionality FG
TAG in the FRZK-hybrid model if A statically corrupts T

under the CDH assumption.

We finally deduce that, IDEALFG
TAG,S,Z

s
≈ EXECΠG

TAG,A,Z
under static corruption and

under the Inv-DDH assumption which proves our theorem.

4.10 Conclusion on Verifiable SA

In conclusion, we proposed a new formal definition for verifiable secure aggregation
protocol. Our new definition captures the privacy of the user inputs and the verifiability
of the aggregation result in the malicious model. Moreover, we presented VSA protocol
and proved that it satisfies these security guarantees. VSA improves PUDA protocol
which originally provides a verification mechanism against a malicious aggregator. VSA
extends it by generating the PUDA tags using a distributed tagging protocol. Our
distributed tagging protocol runs between a user and m taggers. It guarantees that an
honest user receives a valid tag of its input and that a malicious user receives nothing.
Thanks to this tagging protocol, VSA guarantees that an adversary controlling the
aggregator and few users cannot compromise the aggregation result.

61

Chapter 4. Secure Aggregation in the Malicious Model

62

Part II

Secure Aggregation for Federated
Learning

63

Chapter 5

Privacy-Preserving Federated
Learning with Secure Aggregation

In this chapter, we study federated learning, one of the recent technologies used in IoT
platforms. We specifically discuss its limitations in terms of privacy and we propose to
improve its security using secure aggregation. For this purpose, we study all existing
solutions that integrate secure aggregation within federated learning and we regroup them
based on the specific challenge they tackle. We finally derive some takeaway messages
that would help for a secure design of federated learning protocol and identify research
directions in this topic.

5.1 Introduction to Privacy-Preserving Federated Learning

With the recent advancements in information technologies, machine learning techniques
take a substantial part of data processing. Machine learning is a set of techniques that
uses real data (e.g., measurements) to improve the accuracy and performance of existing
systems [Mit97]. These techniques aim to develop the so-called machine learning models
by learning to perform some well-specified tasks. This operation is known as training
machine learning models on collected data. As a consequence, data becomes the most
important resource for such systems to achieve better accuracy.

In the case of IoT platforms, machine learning is an essential technique to improve
their business targets. IoT platforms collect data from IoT devices and process them
using machine learning techniques. Lately, these IoT platforms started to collaborate
with each other to train better machine learning models. However, they cannot simply
share their collected data due to privacy reasons. Thus, federated learning technology
emerged as a privacy-preserving technique to train on private datasets from multiple
sources.

The term federated learning (FL) was initially introduced by McMahan et al.
[MMR+17] and refers to a technology that enables training machine learning mod-
els on data from different sources without the need to store the data at a central location.
Federated Learning is performed in several rounds with n clients and a server. A FL

65

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Figure 5.1: One federated learning round with three FL clients and one server.

client i (the IoT platform in our case) holds a dataset Di. In the beginning, the FL
server initiates the same model M for all clients. At each FL round, the client i receives
the model M τ from the server and trains it on Di which results in the trained model
M τ

i . The client sends the updated model to the server. The FL server aggregates the
trained models received from clients by averaging them and then sends the and sends the
aggregated model M τ+1 back to the clients. Once a client receives the aggregated model,
a new FL round starts where clients and the server repeat the steps. FL stops when the
aggregated model converges. Figure 5.1 illustrates one FL round.

The main goal of FL is to protect the privacy of the local data while still being able
to use them for training public models. This technology provides a great advantage
over other techniques that try to achieve the same goal (eg., training on encrypted
data [VNP+20, HTGW18, WGC19, DGBL+16, WTB+20]). The latter adds a large
computational overhead since it involves encryption of the inputs then performing complex
computations on encrypted data. FL requires less computation as it only involves the
averaging operation at the server.

While FL is proposed for privacy-protection purposes, it lacks a formal guarantee
of privacy. For example, adversaries who have access to the training results sent from
each client to the server might be able to infer a training sample from a client’s private
dataset. Many types of inference attacks on FL are investigated and researched in
[MSDCS19,ZLH19,LHCH20,NSH19]. One of the solutions to mitigate these inference
attacks is secure aggregation. In this chapter, we study the use of secure aggregation
to perform the averaging operation in federated learning. To better understand the
integration of secure aggregation in federated learning, we study the specific requirements

66

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

and characteristics of federated learning compared to the legacy application of secure
aggregation. Additionally, we survey all 37 existing solutions that propose to do this
integration and we regroup them based on the specific challenge they tackle. As a
result, we identify the limitations and gaps in the literature and present them as a set of
take-aways.

5.2 Characteristics of Federated Learning

Federated learning has a wide range of use cases and applications. These applications
differ based on the scale of federation, the partitioning of the training data, and the
learning algorithm used in training.

5.2.1 Scale of Federation

Two types of FL exists with respect to the scale of federation: Cross-silo FL and
cross-device FL [KMA+19].

• Cross-silo Scenarios (X-Silo): A small number of powerful users host the data.
These often have decent computational power with a reliable and high bandwidth
network connection.

• Cross-device Scenarios (X-Device): It involves a large number of users. These users
often correspond to end-devices with moderate computational power. In many
applications, these devices directly interact with end-users from which they collect
data.

5.2.2 Partitioning of the training data

There exist three categories of data partitioning [YLCT19,LWH19,DP21]: Horizontal
partitioning, vertical partitioning, and hybrid partitioning.

• Horizontal Partitioning: Each FL client holds a set of complete training samples.
Each sample contains all the training features and the corresponding label. Hence,
each client can train a local model on these samples.

• Vertical Partitioning: A client may hold part of the features of each training sample
while the other parts might be held by other FL clients. In this FL type, the clients
are not able to locally train a model without collecting the missing information of
each sample from other clients.

• Hybrid Partitioning: A hybrid partitioned dataset is a combination of horizontally
and vertically partitioned datasets.

Secure aggregation is only suitable to FL based on horizontally partitioned datasets since
those based on vertically partitioned datasets require more operations than just summing
the clients’ updates. In this thesis, we only consider horizontally partitioned datasets
since it is the most realistic case in real-life applications.

67

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

5.2.3 Learning algorithm

The most used learning algorithm for horizontal FL is Federated Averaging [MMR+17],
which is based on Stochastic Gradient Descent (SGD) [iA93]. SGD is an iterative
algorithm used to train a model on a dataset (i.e., find the best weights of a model that
can fit the dataset). At each SGD step, client i uses model M τ and a loss function f to
compute gradient gτi from the values in its dataset Di:

gτi = ∆f(M τ , Di) = ∆
∑

(x,y)∈Di

f(M τ , x, y)

Then, the gradient is used to update the weights of the model with learning rate η
(M τ

i = M τ − ηgτi). The FL clients send their new trained model M τ
i to the FL server

who aggregates them:

M τ+1 ←
∑n

1 M
τ
i

n

Finally, each FL client obtains the aggregated model M τ+1 and starts a new federated
learning round.

5.3 Privacy of the Datasets in Federated Learning

An adversary having access to the model update M τ
i sent by client i can perform inference

attacks. These attacks allow an attacker to retrieve some private information about the
client’s datasets. Based on the type of private information, there exist three categories of
inference attacks:

• Membership Inference Attacks [SSSS17a,NSH19]: The attackers learn whether a
specific data record is part of the training dataset or not.

• Reconstruction Attacks [DN03,WLW+09]: The attacker learns some of the attributes
of a record in the dataset. These attacks are also known as model invasion
attacks [FJR15].

• Data Properties Inference Attacks [AMS+15,GWY+18]: The attacker learns global
properties of the training dataset, such as the environment in which the data was
produced.

All these attacks show that federated learning is not sufficient to preserve data privacy
when used alone. To mitigate these attacks, it is crucial to protect the model updates
sent by the federated learning clients while still being able to compute their aggregate.

5.4 Existing Secure Aggregation for Privacy-Preserving Federated
Learning

Secure aggregation schemes aim to prevent inference attacks by hiding the model updates
from any potential adversary. Based on the definition given in Chapter 3, it involves two

68

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Figure 5.2: A secure aggregation protocol integrated into federated learning. The secure
aggregation protocol ensures that the aggregators do not learn anything about the clients’
locally trained ML models except their aggregate.

main players (i.e., users U and aggregators A) which execute the three SA phases (i.e.,
SA.Setup, SA.Protect, and SA.Agg). The users correspond to the FL clients and their
inputs in each round are the locally trained model weights (M τ

i). On the other hand,
the aggregator (or the set of aggregators) acts as the FL server. Any secure aggregation
algorithm consisting of the three defined phases can be used for running a secure version
of the FL protocol. To run FL with secure aggregation, SA.Setup phase is performed
before the training starts. Then for each FL round τ , client Ui trains its model on its
local data and obtains the model M τ

i . It then runs SA.Protect to protect the locally
trained model and sends it to the server. Finally, the server runs SA.Agg after it collects
all protected trained models. As a result, the clients get the aggregated model and starts
a new FL round. Figure 5.2 shows the components of secure aggregation integrated in
federated learning.

69

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

5.4.1 Challenges in using Secure Aggregation for Federated Learning

Masking-based SA AHE-based SA FE-based SA MPC-based SA

Client Failure (C1)

High Dim. Inputs (C2)

Float Inputs (C3)

Scalability (C4)

Privacy Leaks (C5)

Malicious Users (C6)

Malicious Agg (C7)

Table 5.1: Challenges in using secure aggregation for FL based on the specific requirements
of FL. It shows for each challenge whether the baseline SA protocols defined in Chapter 3
can originally cope with that challenge.

Federated learning features some unique properties and characteristics that differ
from previous applications where secure aggregation was used. This makes integrating
secure aggregation schemes to federating learning a challenging task. We hereby identify
seven unique properties for FL that raise significant challenges for the integration of
secure aggregation in FL. We further analyze the suitability of each secure aggregation
category (see Chapter 3) to cope with these characteristics. We summarize the results in
Table 5.1.

Failures and Drops of Clients at Realtime (C1) In cross-device FL scenarios, it is
common to have mobile, unreliable FL clients. The mobility of a client may cause failures
(drops) of some FL clients causing their unavailability for some federated learning rounds.
Failures of clients may even happen within the FL round as well. All this can be a
problem for some secure aggregation schemes that do not support dynamic users. In
particular, SA schemes based on masking and AHE are not fundamentally designed to
cope with user failures. Therefore, the need for fault-tolerant secure aggregation is a
requirement for FL.

Client’s Inputs are Vectors of High Dimension (C2) In FL, the user’s input is a vector
that holds all the model parameters (weights). Not all types of secure aggregation
protocols can efficiently work with vectors. For example, MPC-based SA incurs a
significant communication overhead since the shares of the inputs have the same size of
the input. Therefore, it is not practical to run secret sharing to share large vectors. Also,
in masking-based SA, the users should run a key-agreement protocol to compute new
masks for each FL round. This adds significant overhead. Additionally, for AHE, the
encryption algorithm results in large ciphertexts. Thus, encrypting each element in the
input vector adds a large overhead. This calls for efficient packing techniques designed
for AHE-based SA. Unlike other methods, for FE-based secure aggregation, it is possible
to construct a solution where each party sends exactly one value of the size of the input
vector (see the SA scheme construction presented in Section 3.4.2.3 in Chapter 3).

70

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Client’s Inputs are of Floating Point Type (C3) All the baseline secure aggregation
protocols are designed to operate on integer types. In FL, the user’s input usually is of
floating point (float) type. This calls for efficient quantization techniques that transform
floats to integers while preserving a high accuracy in the result. Representing floats
with integers incurs an increase in the size of the input. Hence, the use of quantization
techniques helps achieve a good trade-off between accuracy and communication overhead.

Huge Number of Clients (C4) Recently, we start to observe FL applications involving
thousands of FL clients. Google is researching how to train Gboard (the Android’s
keyboard application) search suggestion system using federated learning on large scale
[YAE+18,HKR+18]. With secure aggregation integrated with federated learning, the
scalability problem becomes a serious challenge. MPC-based SA protocols do not scale
well with huge number of users since they suffer from a quadratic complexity in terms of
communication and computation. Similarly, masking-based SA suffers from a quadratic
complexity in the setup phase. Additionally, with a large number of clients, the typical
synchronized FL protocol is not practical. In an asynchronous FL protocol, clients do
not wait for the updates of a sufficient number of users at each FL round. Instead, the
updates of the users are incorporated as soon as they arrive at the server. Adopting
SA for asynchronous FL is challenging because updates may be protected with keys
corresponding to different FL rounds.

Privacy Attacks that Bypass SA (C5) The aggregated model M τ+1 is a public informa-
tion that is accessible for all FL clients. Therefore, secure aggregation is not used to hide
this value. There exists a different type of inference attacks that can still infer private
information from the aggregated model, only [SSSS17b]. For example, recently So et
al. [SAG+21] pointed out a new attack to leak the client’s updates even when protected
with secure aggregation. The authors notice that the models from the FL clients do not
change a lot between one training step and another one when the trained model starts to
converge. This causes a privacy leakage if a FL client did not participate. In more details,
if all FL clients participate in round τ − 1 and all clients except one participate in round
τ , and if the inputs did not change a lot, an adversary who has access to the aggregated
model updates for rounds τ and τ − 1 will be able to approximate the inputs of the
missing FL client. Such specific attacks can bypass the security measures of SA. Gao
et al. [GHG+21] implemented these types of attacks and show how they can effectively
infer the category of the given data samples.

Secure aggregation protocols by definition do not provide protection against these
types of attacks. Therefore, additional security mechanisms should be used with secure
aggregation to mitigate these attacks.

Malicious Users (C6) Earlier SA protocols proposed before the FL paradigm appeared,
mainly consider a honest-but-curious threat model with colluding users (see Section 3.2
in Chapter 3). Such a threat model is not sufficient in the context of federated learning.
Specifically, FL clients cannot be trusted to provide their inputs truthfully at each FL

71

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

round. Thus, we should consider an extended threat model which considers malicious
users.

Indeed, poisoning attacks (a.k.a., backdooring attacks) are attacks where malicious
FL clients manipulate their model updates M τ

i to affect the aggregated model M τ+1.
Their goal is to install a backdoor in the trained model. A “backdoored” model behaves
almost normally on all inputs except for some attacker-chosen inputs at which it outputs
attacker-desired predictions. Malicious FL clients use two main methods to poison a
model: Dataset poisoning [STS16] where attackers insert malicious records in their
dataset; and model poisoning [BVH+20a] (a.k.a., constrain-and-scale attacks) where the
attacker replaces the trained model by a malicious model and send it instead of the
trained model. An even more recent attack method consists of distributed poisoning
attacks [XHCL20] in which the poison is distributed among several malicious clients
inputs so that it is harder to detect malicious models. On the other hand, malicious
clients can perform less stealthy attacks by sending ill-formed inputs to prevent the
calculation of the aggregation. To further prevent all these types of attacks we need to
implement additional security mechanisms for SA.

Malicious Aggregator (C7) Similar to challenge C6, the honest-but-curious threat model
is not sufficient to prevent the cheating of a server in the context of federated learning.
More specifically, the SA protocols described in Section 3 prevent a curious FL server from
learning the clients inputs, but cannot protect against a malicious server that modifies
the aggregated model. Indeed a malicious server can cause a huge damage because it
has full control of the final aggregated value. Therefore, an adversary controlling the FL
server can force the clients to receive an adversary chosen model. In fact, the impact
of a malicious aggregator can even go beyond forging the aggregation result. Pasquini
et al. [PFA21] showed that a malicious aggregator can even compromise the privacy by
bypassing the secure aggregation protocol. An example for these attacks illustrated by
the authors is when the malicious aggregator chooses specific values for the aggregated
result. The values are chosen such that when the clients train the forged model sent by
the aggregator, the training outputs a model of zero parameters. Hence, the malicious
aggregator can suppress arbitrary clients of his choice from the aggregation by sending
them malformed models. Therefore, it can suppress all clients except a targeted one
and leak its input. To prevent such attacks, SA protocols should consider a malicious
aggregator in their threat model.

5.4.2 Secure Aggregation Solutions for Federated Learning

A lot of research has been conducted on designing secure aggregation protocols based on
cryptographic schemes for federated learning applications. Most of the proposed schemes
are improvements of the basic secure aggregation protocols described in Chapter 3 and
tackle one or more of the aforementioned challenges (C1-C7). The proposed schemes can
be categorized based on the challenge they tackle. We summarize how these solutions
propose different solutions for each of the challenges. Table 5.2 presents an overview of
these solutions grouped by their challenge scope. Also, Figure 5.3 regroups them per SA

72

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Scope Solution (year) SA scheme FL scale Technique
F
a
u
lt
-

T
o
le
ra
n
ce

(C
1
)

Bonawitz et al. [BIK+17] Masking X-Dev Integrating Shamir SS with Masking
HybridAlpha [XBZ+19] MIFE X-Silo Assigning zero weights for dropped clients
FastSecAgg [KRKR20] MPC-t-of-n X-Dev Using FFT with Shamir SS
Stevens et al. [SSV+21] Masking X-Dev Integrating Shamir SS with LWE-based Masking
LightSecAgg [YSH+21] Masking X-Dev Integrating MDS code with Masking

C
o
m
m
.

E
ffi
ci
en

cy
(C

2
)

Phong et al. [PAH+18] AHE X-Silo Batch encryption
Liu et al. [LCV19] AHE X-Silo Batch encryption

BatchCrypt [ZLX+20] AHE X-Silo Batch encryption
Wu et al. [WPX+20] MIFE X-Silo All or nothing transformation

Bonawitz et al. [BIK+17] Masking X-Dev Generate masks from small seeds

A
cc
u
ra
cy

(C
3
)

Bonawitz et al. [BSK+19] Masking X-Dev Auto-tuned quantization
HeteroSAg [EA20] Masking X-Dev Auto-tuned quantization

EastFly [DCSW20]
MPC-n-
of-n /
AHE

X-Silo Quantization: Ternary FL

Safer [BT20] MPC-n-of-n X-Silo Top-k sparsification with 1-bit quantization

S
ca
la
bi
li
ty

(C
4
)

Bonawtiz et al. [BEG+19] Masking X-Dev Sub-grouping: Running multiple SA instances
Bell et al. [BBG+20] Masking X-Dev Sub-grouping: Creating random connected graphs
TurboAgg [SGA21b] Masking X-Dev Sub-grouping: Circular subgroups of clients

SAFE [SMH21] Masking X-Dev Arranging clients in a circular chain
So et al. [SAGA21] Masking X-Dev Adapting SA for asynchronous FL

SwiftAgg [JNMALC22] Masking X-Dev Sub-grouping: Running multiple SA instances

P
ri
va
cy

E
n
h
a
n
ci
n
g

(C
5
)

Truex et al. [TBA+19] AHE X-Silo DDP: clients add gaussian noise
Peter et al. [KLS21] Masking X-Dev DDP: clients add gaussian noise
So et al. [SAG+21] Masking X-Dev Multi-round privacy using client selection

Timothy et al. [SSV+21] Masking X-Dev DDP: clients use LWE-based masking
Joaqúın et al. [FMLF21] Masking X-Dev DP: aggregator add noise to the aggregate

V
er
if
y

In
p
u
ts

(C
6
)

MLGuard [KTC20] MPC-2-of-2 X-Silo Boolean circuits to compute cosine distance
FLGuard [NRY+21] MPC-2-of-2 X-Silo Bool/Arth circuits to perform clustering

RoFL [BLV+21] AHE X-Silo Commitment scheme to compute euclidean distance
BREA [SGA21a] Masking X-Dev Arithmetic circuits to compute square distance

Karakoc et al. [KOB21] AHE X-Silo OPPRF to compare with a threshold
SAFELearning [ZLYM21] Masking X-Dev Multi-step aggregation to verify intermediate results
Velicheti et al. [VXK21] Masking X-Dev Multi-step aggregation to verify intermediate results

V
er
if
y

A
gg
.

(C
7
)

Zhang et al. [ZFW+20] AHE X-Silo Using HHF based on Bilinear Maps
VerifyNet [XLL+20] Masking X-Dev Using HHF with ZKP scheme
VERSA [HKKH21] Masking X-Dev Using keyed HHF with ZKP scheme

NIVA [BTL+21] MPC X-Dev Verifiable secret sharing
DEVA [TLB+21] MPC X-Dev Verifiable secret sharing
VeriFL [GLL+21] Masking X-Dev Using commitment scheme with HHF

Table 5.2: Categorization of secure federated learning solutions based on the challenge
tackled with a short description of the proposed solution. All the solutions are secure
in the honest-but-curious model except those addressing C7 (malicious aggregator) and
C6 (malicious users) thus addressing a specific malicious setting. An exception is for the
solutions in red which do not protect against collusions between users and aggregators
and thus are considered not secure (based on our security definitions in Chapter 3).

category and shows the relation between the solutions.

Fault-tolerant Secure Aggregation To tackle the problem of client failures (see C1), a
fault-tolerant secure aggregation protocol should be used.

MPC-based SA, more specifically, Shamir’s SS scheme [Sha79] is fault-tolerant by
design. It is used in [DCSW20,KRKR20] where the FL server role is distributed among

73

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Figure 5.3: Summary of existing FL solutions that use crypto-based secure aggregation
grouped by the type of secure aggregation used and the specific challenge they tackle.
Bordered boxes indicate that the solution presents a technique that can be deployed in
other types of SA protocols (eg., [XLL+20] is implemented on masking-based SA but
can be also used for AHE-based SA). Hatched boxes indicate that the scheme cannot
achieve the security requirements since they do not support collusions (this is discussed
in Section 5.5). Different colors represent research groups of the authors.

multiple aggregators. The high communication cost that these solutions incur, encourages
researchers to look for alternative fault-tolerant solutions.

MIFE-based SA also are fault-tolerant by design since the data aggregator can assign
zero weights for missing clients [XBZ+19]. However, these schemes require a key dealer
to stay online for each federated learning round.

On the other hand, Bonawitz et al. [BIK+17] propose a fault-tolerant variant of the
masking-based SA. Later, this scheme is widely adopted and improved by [BBG+20,
EA20,SGA21b,KLS21,XLL+20,GLL+21]. The idea of this scheme is to merge Shamir’s
SS scheme with masking. More specifically, it benefits from the lightweight operations and
low communication overhead of the masking scheme and on the other hand, the solution
inherits the fault-tolerance property of Shamir’s SS scheme. Thanks to this trade-off,
it is considered a big jump towards designing practical secure aggregation scheme for
cross-device FL scenarios. A similar scheme is proposed by Stevens et al. [SSV+21]
that replaces the standard masking with a Learning With Error masking and uses a
packed and verifiable version of Shamir’s secret sharing. Also, Yang et al. propose
LightSecAgg [YSH+21] which replaces the Shamir’s secret sharing scheme with a secret
sharing scheme based on Maximal Distance Separable (MDS) code [RL89]. The work of
Yang et al. reduces the computation time at the server. Another approach is proposed
by Swanand et al. [KRKR20] that uses Fast Fourier Transform (FFT) for secret sharing.

74

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Communication Efficient Secure Aggregation Researchers propose some techniques to
bound the communication overhead incurred by SA (see C2).

For AHE-based SA, batch encryption has been leveraged by Liu et al. [LCV19],
Phong et al. [PAH+18], and Yang et al. [ZLX+20]. Batch encryption allows encrypting
of multiple values in a single operation and thus optimizing the encryption of vector
inputs (representing machine learning models). In BatchCrypt [ZLX+20], the authors
propose a method to quantize and batch the elements of a model before encryption.
The strength of their approach is that it preserves the additively homomorphic property
of the ciphertexts. Another interesting technique presented by Wu et al. [WPX+20] is
to use the All Or Nothing Transformation (AONT) [Riv97]. AONT is a technique for
transforming data into a different form such that, the new data can only be understood if
all of it is known. The authors show that by transforming clients’ models with AONT, it
is sufficient to encrypt a small part of the transformed model. Thanks to AONT property,
the non-encrypted part of the transformed model does not give any useful information as
long as the other part of it is encrypted. This can decrease the size of the protected user
input by several orders.

For masking-based SA, Bonawitz et al. [BIK+17] propose to execute a key agreement
protocol to produce small random numbers that are used as seeds of a pseudo-random
generator. These seeds are then used to generate the masks.

Accurate Secure Aggregation To deal with the floating point challenge while preserving
good accuracy, researchers propose to use different quantization techniques. Elkordy
et al. [EA20] and Bonawitz et al. [BSK+19] propose to use auto-tuned quantization.
This technique allows adapting the quantization level of the model vector based on
the requirements. More specifically, for some elements of the trained model that do
not have a large impact on its accuracy, this technique reduces the quantization level
which consequently reuced the communication cost. Auto-quantization is integrated with
FT-Masking [BIK+17]. Alternatively, in [BT20], Beguier et al. propose a quantization
technique called TopBinary quantization. This technique is essentially a combination of
top-k sparsification [SCJ18] with 1-bit quantization [BWAA18]. We observe that these
quantization techniques is that they can be used for all categories of secure aggregation
protocols.

Scalable Secure Aggregation To tackle challenge C4, scalability of SA started to gain
researchers’ attention thanks to the new large-scale applications of FL. Bonawitz et
al. [BEG+19] set up a general framework to scale a secure aggregation framework to
millions of devices. The authors propose to simply run multiple instances of the scheme,
one for each subgroup of clients. Each subgroup computes intermediate aggregates which
are combined later. The same intuition of grouping clients is followed up by Bell et
al. [BBG+20] and by So et al. [SGA21b]. Bell et al. observe that the FT-Masking scheme
in [BIK+17] does not require that all the clients are connected. Thus, they propose
to generalize the scheme by creating random graphs. Each FL client executes the FT-
Masking with its neighbors. The new protocol assumes that not all the neighbors will be
corrupted at the same time and it proposes a method to build the so-called “good” graphs.

75

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Similarly, both So et al. (TurboAgg) [SGA21b] and Sandholm et al. (SAFE) [SMH21]
propose a circular topology. Clients perform a chain of aggregations by passing the
aggregated updates to the next client. To further deal with a large number of clients,
So et al. [SAGA21] propose a SA protocol that can be integrated into asynchronous
FL. The solution uses the scheme proposed in [YSH+21] and adapts it to enable secure
aggregation of inputs from different timestamps.

Secure Aggregation Resilient to Privacy Attack To deal with inference attacks on the
aggregated model (C5), Differential Privacy (DP) solutions [Dwo06] should be used with
secure aggregation. Notice that the goal of using DP mechanism with SA is to protect
the aggregated model, only, and not user inputs.

A simple method is to let the aggregator apply DP mechanism on the aggregated
model [FMLF21]. However, this requires trusting the aggregator. A better method is
to use a distributed version of DP (DDP) along with SA to mitigate the information
leakage caused by the public aggregated model. Few works have followed this approach
for FL [KLS21,TBA+19]. These solutions add Gaussian noise to the FL clients’ inputs.
They leverage the fact that FL clients’ inputs are protected with cryptographic tools
(thanks to SA) which permit them to decrease the level of noise while achieving sufficient
privacy level. Therefore, using DDP with SA limits the degradation of the accuracy of
the trained model compared to using DP alone. Stevens et al. [SSV+21] follow a similar
approach by using Learning with Error (LWE) masking technique to make the final
aggregate differentially private.

On the other hand, a multi-round privacy concept is introduced by So et al. [SAG+21].
This concept is to ensure that an adversary cannot learn valuable information by mon-
itoring the changes in the aggregated model across different FL rounds. The authors
propose a solution enlightened by the work in [TNW+21]. They propose to randomly
and fairly (using weights) select participants in each FL round based on well-defined
criteria called Batch Partitioning. Using this technique they can guarantee the long-term
privacy of the data at the FL clients.

Secure Aggregation Against Malicious Users To deal with malicious users who perform
poisoning attacks (C6), the FL server needs a mechanism to validate the inputs of the
clients. Mitigating poisoning attacks is studied by researchers independently from using
secure aggregation for FL [FYB18,AMMK20]. One of the methods used to prevent such
attacks is to use the cosine distance [FYB18] to detect poisoned inputs that deviate
from the other benign inputs. Clustering [STS16,BEMGS17] and anomaly detection
methods [AMMK20] are also used to detect malicious model updates. An orthogonal
approach is to use clipping and noising to smooth the model updates and remove the
differences [BVH+20b]. While all these solutions are shown to be efficient in preventing
poisoning attacks, using them with secure aggregation is a big challenge. The problem is
that all these solutions rely on analyzing the FL clients’ inputs while secure aggregation
aims to hide and protect these inputs. Several methods are proposed to verify the inputs
while keeping them protected to preserve their privacy.

For MPC-based SA, it is possible to build circuits that can perform complex operations

76

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

on the shares. This can be used to evaluate functions on the inputs other than just
computing the sum. Indeed, MLGuard [KTC20] proposes to verify the users’ inputs
by transforming a verification function into a circuit that gets executed by the two
servers using 2PC. The verification function computes the distance between the clients’
inputs. The circuit compares the distance to pre-defined thresholds and thus rejects the
input if it exceeds it. FLGuard [NRY+21] follows the same approach by building two
circuits: One circuit for detecting poisoned inputs using a dynamic clustering algorithm
(HDBSCAN [CMS13]) and another circuit for reducing the impact of poisoned inputs
using clipping and noising. The communication cost of running these circuits is significant
thus making scalability even harder to achieve for SA in the federated learning context.
A promising approach to reduce this cost is through the use of secret-sharing non-
interactive proof (SNIP). This approach was proposed in [CGB17] (Prio). Using SNIP
enables the aggregators to validate the user inputs without interacting with the users
and with minimal interaction between themselves. This scheme is not yet deployed in
FL applications. SNIP brings a great advantage over standard 2-PC validation circuits
since it does not limit the number of aggregators thanks to its lower communication cost.
The limitation of SNIP is that it only supports specific validation functions. Therefore,
it is an open challenge to design validation circuits for detecting poisoning attacks using
SNIP.

On the other hand, regarding AHE-based SA, Karakoc et al. [KOB21] propose
OPPRF, an algorithm based on private set membership (PSM) [CO18] and oblivious
transfer (OT) [NP05]. OPPRF uses PSM to perform equality checks between values (i.e.,
equivalent to finding an intersection between sets of cardinality equal to one [Cou18]).
Using OPPRF, the users can create tags that are only valid if their inputs are lower than
a threshold provided by the aggregator. Karakoc et al. [KOB21] applied this scheme for
AHE-based SA schemes and evaluated it in FL applications. The scheme enables the FL
server to detect poisoning attacks by checking that the minimum, maximum and average
of the model elements do not cross a certain threshold value. The threshold is configured
based on an observation of the models of benign clients. Another approach is proposed by
Lukas et al. [BLV+21]. The authors use a non-interactive commitment scheme proposed
in [Ped92]. Using this scheme, the users create proofs that the Euclidean distance of their
inputs satisfies the bound set by the aggregator. Upon receiving the client’s protected
input and the commitment, the server verifies that the proof is valid.

For masking-based SA, two techniques are proposed. One technique is proposed by
So et al. [SGA21a] in which users secretly share their model updates with all other clients
and then compute the squared distance between the model shares. The server can finally
reconstruct the squared distances and use the result to detect malicious inputs. An
alternative technique is proposed by Zhang et al. [ZLYM21] and Velicheti et al. [VXK21].
In more detail, users are anonymously and randomly grouped into clusters. Aggregation
happens per cluster and then a following round of aggregation happens on the results of
each cluster. For each cluster, the intermediate aggregation results are checked to prevent
poisoning attacks. The fact that attackers do not know to which cluster the compromised
device belongs to, protects from distributed poisoning attacks (see C6).

77

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Secure Aggregation Against Malicious Aggregator In a malicious aggregator threat
model, the FL server forges false aggregation results (C7). Mitigating these attacks
requires a verifiable secure aggregation scheme. Many solutions are proposed to enable
the verification of the aggregation outcome [KShS12,SS11,DOS18,CDE+18]. However,
these solutions do not fit well in federated learning applications due to their high
communication overhead. In the context of federated learning, six solutions are proposed
[GLL+21,HKKH21,XLL+20,ZFW+20,TLB+21,BTL+21].

For masking-based and AHE-based SA, Zhang et al. [ZFW+20] and Xu et al. (Veri-
fyNet) [XLL+20] use Homomorphic Hash Functions (HHF) to verify the result of the
aggregation. HHF can be built using bilinear maps [BGLS03a,Fre12b]. First, the data
owners create authentication tags for their inputs and send them to the aggregator. The
latter aggregate them to prove the outcome of the aggregation. Finally, the aggregator
verifies the result. Hahn et al. [HKKH21] detect possible brute-force attacks on VerifyNet
and improve it by deploying a keyed HHF. All these solutions do not prevent collusions
between the users and the aggregator. Therefore, they cannot be considered secure based
on our security definitions for secure aggregation in Chapter 3). Another problem with
these solutions is that they significantly affect the performance of SA. This is because of
the linear increase in computation and communication overhead with the increase of the
dimension of inputs. This is a clear limitation since the performance of the ML model
highly depends on its size (i.e., number of parameters). To solve this problem, Guo et
al. (VeriFL) [GLL+21] focus on designing a verification scheme specifically for secure
aggregation applications with inputs of high dimension. To support user-aggregator
collusions, the authors integrated a commitment scheme to prevent users from changing
their hashes after the computation of the aggregate. The authors of VeriFL apply this
scheme to the fault-tolerant masking scheme in [BIK+17]. The evaluation of their solu-
tion on federated learning applications shows a significant reduction in communication
overhead with respect to other verification schemes. However, VeriFL still suffers from a
quadratic computation and communication cost with respect to the number of FL clients.
Achieving better scalability for verification systems is an open problem.

For MPC-based SA, Brunetta et al. [BTL+21] propose NIVA as a non-interactive
secure aggregation protocol that includes the verification of the result. The users create
a tag for each of their input shares. Upon computing the aggregate, the result can
be verified using all the generated tags. Tsaloli et al. [TLB+21] propose DEVA which
improves the number of tags created for each user. DEVA requires that a user creates a
single tag for its input rather than creating a tag for each share. Both approaches do not
support collusions between users and the aggregator and incur very high communication
overhead since they use MPC.

5.5 Observations and Conclusion on Secure Aggregation for FL

We have extensively studied federated learning solutions that integrate secure aggregation
schemes. In this section, we identify and share the following observations and takeaway
messages:

78

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

Figure 5.4: New Components of Secure Aggregation

O1 We can observe that masking-based SA is the most integrated secure aggregation
solution for federated learning. More specifically FT-Masking [BIK+17], appeared in 20
solutions where each one tries to improve it in a certain direction. It is interesting to see
all these parallel improvements integrated into a single solution.

O2 We notice that secure aggregation solutions based on AHE are not widely adopted in
federated learning. This is mainly because they do not support user dynamics. However,
we see that AHE-based SA is promising since they provide long-term security using
the same user keys. We hope to see more research improving these schemes towards a
practical deployment in federated learning context.

O3 We notice that some of the solutions proposed to preserve the privacy in federated
learning do not adhere to the minimal security requirements for secure aggregation
protocols (see Definition 3.2.1 for Aggregator Obliviousness). Specifically, AHE schemes
[PAH+18,LCV19,ZLX+20,ZFW+20] and masking-based verification schemes [ZFW+20,
XLL+20,HKKH21] that use the same key for all users should not be considered secure
since they do not guarantee security in case of a collusion between a user and the
aggregator.

O4 We note that secure aggregation alone is insufficient to guarantee the privacy of the
clients’ datasets in the context of federated learning. Although SA helps prevent inference
attacks, the global model that is collaboratively computed from private individual

79

Chapter 5. Privacy-Preserving Federated Learning with Secure Aggregation

inputs can still leak information. Therefore, additional protection mechanisms are
required. Differentially private mechanisms and multi-round privacy solutions are suitable
candidates to cope with this problem.

O5 Poisoning attacks against federated learning call for some integrity mechanisms
that would allow the aggregator (the FL server in this context) to verify the correct-
ness/veracity of received inputs. Nevertheless, the cost of such mechanisms can be
significant. Therefore, we can consider the design of such mechanisms that can (i) detect
stealthy and sophisticated poisoning attacks, and (ii) ensure the security and scalability
requirements, as an open challenge.

O6 Similar to the previous observation, we identify the need for an integrity mechanism
for verifying the correctness of the actual aggregate. Basic solutions would linearly
increase the size of the transmitted data between parties w.r.t. the model size. Using
incremental HHF is promising as shown in VeriFL [GLL+21]. However, this solution is
still far from being applied for FL applications in larger scale since it still implies a linear
increase in communication and computation cost w.r.t the number of clients.

Based on all the previous observations, we propose revisiting the definition of crypto-
based secure aggregation to make it suitable for FL. Specifically, we revise the description
of the protocol phases (i.e., SA.Setup, SA.Protect, and SA.Agg) to meet all the security
requirements for FL applications. Following observation O4, the SA.Protect phase should
be modified such that users first pre-process their inputs with distributed DP mechanisms
before running the actual protection algorithm. Additionally, based on observation O5,
SA.Protect should also generate integrity proofs of inputs which are sent together with
the protected inputs to the data aggregators. On the other hand, SA.Agg should include
a verification mechanism of the inputs which validates the integrity proofs. Moreover,
observation O6 indicates that SA.Agg should compute a proof of the aggregation which is
sent to the users along with the aggregation result. In order for the users to validate the
aggregation result, we require an additional phase: Namely, the SA.Verify phase should
be performed as a final step by the users. In this phase, the users verify the received
result of the aggregation.

Summary In summary, we propose a better definition of secure aggregation protocols
based on cryptographic schemes which cope with the security requirements of federated
learning. The definition consists of four phases: SA.Setup, SA.Protect, SA.Agg, and
SA.Verify. Figure 5.4 shows the details of the improvements in each of the phases. It
is worth noting that this new definition combines and generalizes all the improvements
proposed by the state-of-the-art solutions. It would be interesting to develop the first SA
solution for FL implementing our proposed definition by combining all the state-of-the-art
techniques.

80

Chapter 6

Scalable and Fault-Tolerant Secure
Aggregation for Federated Learning

In the previous chapter, we have identified and enumerated the main challenges of
integrating secure aggregation schemes in federated learning (FL) protocol. In this
chapter, we tackle one of these challenges, namely, failures and drops of FL clients in real-
time. We first provide an extensive study of the existing solutions against such failures.
We further propose a novel fault-tolerant secure aggregation solution for federated learning
(FTSA) that is the first one based on additively homomorphic encryption.

6.1 Fault-Tolerant Secure Aggregation

Consider a scenario where hundreds of companies manage IoT platforms and would like
to collaboratively train a machine learning model over their private datasets. Their
goal is to provide better services to their customers by sharing their resources. The
different IoT platforms use federated learning to train a common model. Additionally,
these platforms do not wish to rely on a trusted third party to run the federated learning
server. Therefore, they integrate secure aggregation into federated learning to preserve
the privacy of their customers. Each company may have multiple federated learning
clients (clients may correspond to different geolocated branches or different company
sectors). Consequently, running federated learning protocols on large scale (with a large
number of clients) may frequently encounter client failures and dropouts. Such a use case
calls for a secure and fault-tolerant federated learning solution with an untrusted server
(that can be located on any of the companies’ premises).

Most secure aggregation solutions fall short to address such a problem (see Chapter 6).
Previous work from Bonawitz et al. [BIK+17] develops a fault-tolerant secure aggregation
that enables the server to recover the aggregate from up to t out of n client failures.
The authors design their solution by extending an existing masking scheme [DA16] with
Shamir’s secret sharing to enable fault tolerance. Their scheme has been used as a
building block for a significant number of privacy-preserving federated learning solutions
[BSK+19,EA20,BEG+19,BBG+20,SGA21b,KLS21,SAG+21,XLL+20,GLL+21,SGA21a].

81

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Nevertheless, masking is based on one-time-pad encryption (i.e., modular addition) and
hence requires the re-distribution of new keys for each aggregation process. This incurs a
significant computation and communication overhead originating from the execution of
the key re-distribution among clients and the generation of new masks at each FL round.

We, therefore, propose a new solution that enables a client to use the same key for
multiple FL rounds. We revisit the Joye-Libert (JL) secure aggregation scheme proposed
in [JL13] (see Section 3.4.2.2 in Chapter 3) and propose a variant that supports clients’
failures. Compared to [BIK+17], we provide a more efficient and fault-tolerant secure
aggregation scheme since it does not require the re-distribution of the protection keys for
each FL round.

6.2 Threat Model

We consider a threat model with an untrusted FL server that colludes with some clients.
Additionally, we consider some of the honest clients to unintentionally fail (i.e., drop from
the protocol) in some federated learning rounds. The failures can happen at any stage of
the protocol. The adversary (controlling the server and the colluding clients) is interested
in discovering any private information about the individual inputs of the honest clients.

We consider the two possible settings for the adversary as defined in Section 3.2.
Namely, the honest-but-curious model and the malicious model. For each of these settings,
we identify the minimum required security parameters to achieve Aggregator Obliviousness
(see Definition 3.2.1). We rely on a trusted party only to generate the public parameters
of our protocol. Attacks that aim to change the result of the aggregated data or to
perform some denial of service are out of the scope. Additionally, we do not consider
attacks where the adversary impersonates existing clients as these can be prevented by
deploying a public key infrastructure with signed certificates. Note that this threat model
is common among secure aggregation protocols and it is the same as the one adopted
by [BIK+17] except for the dependency on a trusted party for the setup. We show later
how to avoid this dependency.

6.3 Prior Work based on Masking

In this section, we discuss the previous works on fault-tolerant secure aggregation. All
the existing work focus on masking-based secure aggregation. To achieve fault tolerance,
these solutions integrate different types of secret sharing with masking.

6.3.1 SecAgg

Bonawitz et al. propose SecAgg [BIK+17] as a secure aggregation scheme based on
masking. The solution is briefly described in Section 5.4. We here give a more detailed
description of the protocol. Every two clients agree on a mutual mask using a key-
agreement scheme and use these masks to protect their inputs. To recover from some
potential drops of clients, the clients secretly share their secret keys such that any t
online clients can help the aggregator reconstruct the missing client’s masks and remove

82

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

them from the aggregate. In more detail, in the SA.Setup phase, the users agree on
mutual seeds using Diffie-Hellman key-agreement scheme similar to the case in standard
masking-based SA. Additionally, they use the t-out-of-n Shamir’s Secret Sharing [Sha79]
to share their key-agreement [DH06] private keys. Using this approach, masks of dropped
users can be recovered as long as t users are still online. While this solves the problem of
dropped users, it causes a new security problem. More specifically, the aggregator can
claim that an online user actually dropped and thus ask for reconstructing its masks
and hence reveal the user input. To solve this problem, a double masking technique is
used in the SA.Protect phase. Each user adds another layer of masking using a randomly
generated mask bi,τ :

ci,τ ← xi,τ + ki,τ + bi,τ

where ki,τ is computed based on the masking construction discussed in Chapter 3
(Equation 3.1). This new mask bi,τ is generated from a randomly generated seed which is
also shared using Shamir’s Secret Sharing with all other users. In SA.Agg, the aggregator
can ask to either reconstruct the blinding mask bi,τ or the Diffie-Hellman private key of
a user. Therefore, the aggregator will not be able to reveal individual inputs. So, it first
collects t shares of the seed of each mask bi,τ of every online user Ui and reconstructs it.
Then, it gets t shares of the Diffie-Hellman’s secret key of the dropped users and thus
reconstructs the missing masks. Consider X and Y as the set of remaining and dropped
users, respectively, the aggregation operation is described as follows (all the operations
are performed mod R = nRi where ZRi is the range for the input values of each user):∑

Ui∈X
ci,τ −

∑
Ui∈X

bi,τ +
∑
Uj∈Y

ki,τ

=
∑
Ui∈X

xi,τ +
∑
Ui∈X

ki,τ +
∑
Ui∈X

bi,τ −
∑
Ui∈X

bi,τ +
∑
Uj∈Y

ki,τ

=
∑
Ui∈X

xi,τ +

���
���*

0∑
Ui∈X∪Y

ki,τ

=
n∑
1

xi,τ

6.3.2 SecAgg+

Bell et al. propose a new technique [BBG+20] to increase the scalability of secure
aggregation protocols. In their solution, the clients do not need to share secret keys with
all other clients to achieve robustness against dropouts. The authors propose to build
partially connected (as opposed to fully connected) graphs where secure aggregation runs
between the connected graph nodes (representing clients) only. More specifically, each
client sends and receives secret shares of its keys to/from its neighbor nodes (according
to the graph). Since the graph is connected, the correctness of mask cancellation and the
privacy of individual values are both guaranteed under certain thresholds. The authors
further propose a method to build these graphs to achieve a good tradeoff between security

83

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

and efficiency. They apply this technique to SecAgg and show that their technique reduces
the complexity in a logarithmic scale with respect to the number of users.

6.3.3 TurboAgg

So et al. propose TurboAgg [SGA21b] which uses additive secret sharing instead of
Shamir’s secret sharing. To achieve robustness against dropouts, Lagrange coding
[YRSA18] is used. The main drawback of the scheme is that it divides the clients
into groups and each client in a group needs to communicate with every other client
in the next group. Therefore, the communication cost of TurboAgg is relatively high.
Additionally, the protocol can fail to recover the aggregate value when some clients drop
with a non-negligible probability.

6.3.4 FastSecAgg

Kadhe et al. propose FastSecAgg [KRKR20] which uses FastShare instead of Shamir’s
secret sharing. FastShare is a new cryptographic primitive proposed by the same authors.
It relies on Fast Fourier Transfer (FFT) and it decreases the computation cost of sharing
and reconstructing a secret. Using FastShare, the authors reduce the computational
complexity of the fault-tolerant secure aggregation. However, this comes at a cost of
lower security guarantees. Indeed, FastSecAgg can reconstruct the aggregate (with a
good probability) if the failed clients are arbitrarily chosen. Therefore, an adversary may
prevent the recovery of the aggregate by cherry-picking a few clients and isolating them.

6.4 FTSA - Overview

In this section, we present our fault-tolerant secure aggregation protocol (FTSA) by
giving an overview of the main idea.

Joye-Libert (JL) scheme [JL13] is an AHE-based SA scheme (see the construction of
the scheme in Section 3.4.2.2). The scheme allows n users to encrypt their private input
with a unique long-term pre-distributed key. Its main interesting property is that it is
homomorphic with respect to both the messages and the encryption keys. An aggregator
holding the sum of the user keys can decrypt the aggregate of the messages. Since this
secure aggregation scheme supports long-term keys, it features a significant advantage in
terms of computation and communication cost as it allows the use of the same keys for
all FL rounds. However, JL introduces the following challenges when used for federated
learning:

Client failures It is common in federated learning that some clients drop in several
FL rounds. When one or more clients do not provide a ciphertext for FL round τ , the
aggregation fails. This is because the aggregation key used to aggregate the ciphertext is
equal to the sum of the user keys. If a client fails, its encryption key will not be involved
in the aggregation. We deal with this problem by designing a threshold version of JL to
recover from dropouts.

84

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Se
rv

er

Protect() ShareProtect()

ShareCombine()

Agg()

SKShare()

Se
rv

er

Offline Online

Figure 6.1: Demonstration of an execution of TJL scheme with four users (n = 4) and a
reconstruction threshold t = 2.

Our Idea (Threshold-variant of JL scheme): We design a threshold JL scheme, whereby
clients can secretly share their individual keys with each other so that when one or more
clients fail, t out of n clients that are still online help provide a protected zero-value
that is computed with the failed clients’ individual keys. By computing the protected
zero-value of the missing clients, the server can correctly compute the aggregated result.

Larger inputs In federated learning, the inputs are the parameters of the client’s model
and are of vector type. JL is originally designed to encrypt single integers. We extend JL

to support vector inputs.

Our Idea (JL scheme with vector inputs): We propose to encode the vector elements in a
single integer. The vector sum is decoded after aggregation.

No trusted key dealer JL requires a key dealer to distribute some keys to the users and
the aggregator. However, a trusted key dealer may not be feasible in federated learning
applications. Therefore, we propose a decentralised key setup phase to distribute the
keys.

Our Idea (JL scheme with decentralized key setup): In order not to rely on a trusted
key dealer, we propose a distributed key generation mechanism. We mainly use secure
multi-party computation such that each of the n users and the aggregator get a random
additive share of zero. Each user will use its share as a secret key so that the sum of the
keys with the aggregator key equals zero.

6.5 Threshold Joye-Libert Scheme

We describe a threshold version of the Joye-Libert secure aggregation scheme (see Section
3.4.2.2 for the original scheme). The design of this scheme mainly transplants the design
of the threshold version of the Paillier encryption scheme [DJN10] into this context. This
extended solution mainly helps the aggregator recover failed users’ inputs (which consists
of the protection of the zero-value under each failed user’s individual key) and hence
compute the final aggregate value.

The goal is to distribute user key ki to the n users such that any subset of at least t
(online) users can produce a ciphertext on behalf of user Ui while less than t users learn

85

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

nothing. To secret share the keys, we use integer secret sharing ISS (see Section 2.3.1).
Let U = {U1, ..., Un} be the set of all users and Uon ⊂ U be the set of online users,

the threshold-variant Joye-Libert secure aggregation scheme, denoted as TJL, consists of
the following PPT algorithms:

• TJL.Setup(λ, σ) → (pp, k0, {ki}∀i∈[n]): Given some security parameter λ, this
algorithm calls the original JL.Setup(λ) and outputs the server key, one secret
key per user and the public parameters pp = (N,HZ∗

N2 , I) where I = [−2l, 2l] and
l corresponds to the bit-size of the modulus N . Additionally, it sets the security
parameter of the ISS scheme to σ.

• TJL.SKShare(pp, ki, t, n)→ {(i, ⟨ki⟩j)}∀j∈[n]: On input of user Ui’s secret key, this
algorithm calls ISS.Share(ki, , t, n, I) (see Section 2.3.1). It outputs n shares of the
key where each share is intended for different user Uj ∈ U .

• TJL.ShareProtect(pp, {⟨kj⟩i}∀j|Uj∈U\Uon , τ) → ⟨y′τ ⟩i: This algorithm protects a
zero-value with Ui’s shares of all the secret keys corresponding to the failed users.
It calls JL.Protect(pp,

∑
j∈U\Uon⟨kj⟩i, τ, 0) and outputs ⟨y′τ ⟩i

• TJL.ShareCombine(pp, {(i, ⟨y′τ ⟩i)}∀Ui∈Uτ
shares

) → y′τ : This algorithm computes the
Lagrange interpolation on the exponent (the νi coefficients are defined in ISS.Recon

in Section 2.3.1):

y′τ =
∏

∀Ui∈Ushares

(⟨y′τ ⟩i)νi

• TJL.Protect(pp, ki, τ, xi,τ)→ yi,τ : This algorithm calls JL.Protect(pp, ki, τ, xi,τ)
and hence outputs cipher yi,τ .

• TJL.Agg(pp, k0, τ, {yi,τ}Ui∈Uon , y
′
τ) → Xτ : On input public parameters pp, the

aggregation key k0, the ciphertexts of online users, and the ciphertext of the zero-
value corresponding to the failed users for timestamp τ , this algorithm computes:

yτ = (
∏

Ui∈Uon

yi,τ)
∆2 · y′τ mod N2 (6.1)

To decrypt the final result, the algorithm proceeds as follows:

Vτ = H(τ)∆
2k0 · yτ Xτ =

Vτ − 1

N∆2
mod N (6.2)

Definition 6.5.1: Correctness

Given the set of users U and the set of online user Uon ⊂ U , the correctness of TJL
scheme is defined as follows:

∀λ,∀σ, ∀t,∀τ,∀xi,τ , ∀τ,∀Ushares s.t. (t ≤ n) ∧ (Ushares ⊂ Uon) ∧ (|Ushares| ≥ t),

86

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Pr

Xτ ̸=

∑
∀Ui∈Uon

xi,τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

TJL.Setup(λ, σ)→ (pp, k0, {ki}∀i∈[n]),{
TJL.SKShare(pp, ki, t, n)→ {(i, ⟨ki⟩j)}∀j∈[n]

}
∀i∈[n]

,{
TJL.ShareProtect(pp, {⟨kj⟩i}∀Uj∈U\Uon , τ)→ ⟨y′τ ⟩i

}
∀Ui∈Uτ

shares

,{
TJL.Protect(pp, ki, τ, xi,τ)→ yi,τ

}
∀Ui∈Uon

,

TJL.ShareCombine(pp, {(i, ⟨y′τ ⟩i)}∀Ui∈Ushares)→ y′τ ,
TJL.Agg(pp, k0, τ, {yi,τ}∀Ui∈Uon , y

′
τ)→ Xτ

= 0

Theorem 6.5.1

The scheme TJL is correct.

Proof.

To prove the correctness of TJL, observe that the following equalities hold:

1) yi,τ = (1 + xi,τN)HZ∗
N2(τ)ki mod N2

2) ⟨y′τ ⟩i =HZ∗
N2(τ)

∑
Uj∈U\Uon ⟨kj⟩i mod N2

3) y′τ =
∏

Ui∈Ushares

(⟨y′τ ⟩i)νi

= HZ∗
N2(τ)

∑
Ui∈Ushares

νi
∑

Uj∈U\Uon ⟨kj⟩i

= HZ∗
N2(τ)

∑
Uj∈U\Uon

∑
Ui∈Ushares

νi⟨kj⟩i

= HZ∗
N2(τ)

∆2
∑

Uj∈U\Uon kj

4) yτ = (
∏

Ui∈Uon

yi,τ)
∆2 · y′τ mod N2

= (1 +∆2
∑
∀Ui∈Uon

xi,τN)HZ∗
N2(τ)

∆2
∑

∀Ui∈Uon
ki

·HZ∗
N2(τ)

∆2
∑

∀Ui∈U\Uon
ki

= (1 +∆2
∑
∀Ui∈Uon

xi,τN)HZ∗
N2(τ)

∆2
∑

∀Ui∈U
ki

= (1 +∆2
∑
∀Ui∈Uon

xi,τN)HZ∗
N2(τ)−∆

2k0

5) Vτ = H(τ)∆
2k0 · yτ

= (1 +∆2
∑
∀Ui∈Uon

xi,τN)

87

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Theorem 6.5.2

This scheme provides Aggregator Obliviousness security under the DCR assumption
in the random oracle model if the number of corrupted users is less than threshold t.

Proof.

The security of this scheme mainly relies on the security of the JL secure aggregation
scheme which is proved secure under the DCR assumption (Theorem 3.4.2). Similar to
the original scheme, we assume that each user encrypts at most one input per timestamp.
Additionally, we assume that failed users do not provide any encrypted values for that
timestamp and the non-corrupted users construct at most one encrypted value on
behalf of the failed clients. By relying on the security of the secret sharing scheme
over integers (which is proved to be statistically secure in Theorem 1 in [VAS19]),
we can show that less than t users cannot construct an encrypted value. Therefore,
Aggregator Obliviousness is guaranteed in the random oracle model under the DCR
assumption if less than t users are corrupted.

6.6 FTSA - Complete Specifications

We now describe the newly designed secure and fault-tolerant aggregation protocol based
on the proposed TJL scheme. The protocol consists of a setup phase and an online phase
each of them defined with two communication rounds. The setup phase is performed
once, while the online phase is repeated for each federated learning round. We describe
the details of each protocol phase.

6.6.1 The Setup Phase

The setup phase consists of the registration of the clients and the distribution of the
security keys. In TJL, a trusted key dealer is needed to generate the keys. To avoid the
dependence on a key dealer, we propose a distributed method to setup the TJL user keys.

Distribution of TJL keys We recall that the aggregator’s key k0 allows the aggregator to
recover the sum of the inputs from the set of users’ ciphertexts (see Equation 6.1). The
goal of this key is to protect the final aggregate result. In the case of FL applications, the
aggregated ML model is considered public and thus does not need to be hidden. Therefore,
we set the aggregator’s key to a publicly known value (for example zero). Indeed, the
security proof in [JL13] considers the case where an adversary controls the key of the
aggregator. In such case, the scheme cannot protect the result of the aggregation but it
still protects the individual inputs of the users which is sufficient for FL. To generate the
user keys, every two clients Ui and Uj agree using the KA scheme on a shared mutual key
ki,j . Then, client Ui computes its protection key ki ←

∑
Uj∈U (δi,j · ki,j) where δi,j = 1

88

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

FTSA - Setup Phase

• Setup - Registration:
Trusted Dealer:
– Choose security parameters λ, σ and runs KA.Param(λ)→ (G, g, q) = ppKA and TJL.Setup(λ, σ)→
((N,HZ∗

N2 , I),⊥,⊥). It sets the public parameters pp = (ppKA, ppTJL, GG, t, n,m,R,F) such that t
is the secret sharing threshold, n is the number of clients, Zm

R is the space from which inputs are
sampled, GG is the hash function for key-derivation (see Section 2.4.3), and F is the field for SSS
scheme. It sends them to the server and to all the clients.

User u (pp):
– Receive the public parameters from the trusted dealer.
– Generate key pairs (cPK

i , cSK
i)← KA.gen(ppKA), (sPK

i , sSK
i)← KA.gen(ppKA)

– Send (cPK
i || sPK

i) to the server (through the private authenticated channel) and move to next
round.

Server(pp):
– Receives public parameters pp from the trusted dealer.
– Collect all public keys from the users (denote with U the set of registered users). Abort if |U| < t

otherwise move to the next round.
– Broadcast to all users the list {Ui, (c

PK
i , sPK

i)}∀Ui∈U
• Setup - Key Setup:
User u:
– Receive the public keys of all registered users U
– For each registered user Uj ∈ U \{Ui}, compute channel keys ci,j ← KA.agree(ppKA, cSK

i , cPK
j , GG).

– For each registered user Uj ∈ U \ {Ui}, compute ki,j ← KA.agree(ppKA, sSK
i , sPK

j , GG) (set

ki,i = 0). Then compute the TJL secret key ki ←
∑
Uj∈U

δi,j · ki,j where δi,j = 1 when i > j, and

δi,j = −1 when i < j.
– Generate t-out-of-n shares of the TJL secret key: {(j, ⟨ki⟩j)}∀Uj∈U ← TJL.SKShare(ppTJL, ki, t, n).
– For each registered user Uj ∈ U \ {Ui}, encrypt its corresponding shares: ϵi,j ←

Encci,j (Ui || Uj || ⟨ki⟩j).
– If any of the above operations fails, abort.
– Send all the encrypted shares {ϵi,j}∀Uj∈U to the server (each implicitly containing addressing

information Ui, Uj as metadata).
– Store all messages received and values generated in the setup phase, and move to the online

phase.
Server:
– Collect from each user Ui its encrypted shares {(Ui, Uj , ϵi,j)}∀Uj∈U .
– Forward to each user Uj ∈ U its corresponding encrypted shares: {(Ui, Uj , ϵi,j)}∀Ui∈U and move

to the online phase.

Figure 6.2: Detailed description of the setup phase of FTSA

89

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

when i > j, and δi,j = −1 when i < j. The correctness of the protocol is preserved since:∑
∀Ui∈U

ki =
∑
∀Ui∈U

(
∑
∀Uj∈U

δi,j · ki,j) = 0 = −k0

Note that this distributed method allows the distribution of the JL user keys but it still
relies on a trusted third party to generate the public parameters. There exist techniques
to distribute the computation of the public RSA modulus N ([BF01,NS11,VAS19] in
the passive setting and [CDK+22] in the active setting). In this work, we assume the
existence of a trusted offline third party that distributes the public parameters.

Protocol steps During Registration, clients register by sending their public keys to the
aggregator who further broadcasts them to all clients. Notice that each client generates
two public keys, one used to create secret communication channels among clients and the
other used to compute the TJL secret key. Later, in the Key Setup step, each client Ui

computes mutual channel keys ci,j and its TJL key ki. It also creates secret shares of the
TJL keys using TJL.SKShare and sends them to the corresponding clients (via the server
through the authenticated channels). The specifications of the setup phase are given in
Figure 6.2.

6.6.2 The Online Phase

The online phase consists of two communication rounds. In the first communication
round, (i.e., Encryption step), the clients protect their inputs and send them to the
aggregator. In the second communication round (i.e., Aggregation step), the clients and
the aggregator construct the ciphertext of the failed clients.

Blinding inputs to ensure privacy One problem with the TJL scheme is that it guarantees
privacy under the assumption that only one ciphertext of each user is computed for
each timestamp. However, this assumption may break even in the honest-but-curious
model. Let us assume the case where a client sends its protected input with some
delay. The delay may cause the aggregator to request the online clients to construct the
protected zero-value of the assumed failed client. In this case, two ciphertexts for the
same timestamp are collected breaking the security assumption of the JL scheme. To deal
with this problem, the client masks its input before encrypting it. The goal of the mask
is to protect any leakage in case two ciphertexts of the same period are obtained. To
remove these masks from the aggregated value, each client secretly shares its mask with
all other clients. If the client survives the federated learning round, the online clients
help construct its blinding mask. Otherwise, the clients construct the ciphertext of the
zero-value using the TJL scheme.

Input vector encoding The TJL scheme is originally designed to work with integers. In
federated learning applications, FL clients send a vector of parameters instead of a single
value. We, therefore, propose a dedicated encoding solution to encode a vector into a
long integer. Each element of the initial vector V is firstly expanded by log2(n) bits of

90

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

0’s at the beginning of the element. Then the elements of the vector are packed to form
a large integer ω. The number of elements that ω represents corresponds to ptsize which
denotes the plaintext size of TJL divided by the actual size of the extended element (i.e
⌊ ptsize
log2(R)+log2(n)

⌋,R being the maximum possible value for vector elements). Note that for

TJL scheme, the plaintext size is equal to half of the size of the user key (ptsize = |ki|
2).

The decoding operation simply consists of unpacking ω into bitmaps of log2(R) +
log2(n).

To execute TJL.Protect and TJL.ShareProtect, the user input is first encoded. In
the case where the user input vectors are too large to be encoded in a single integer of size
ptsize, the vectors are split into multiple vectors of length ⌊ ptsize

log2(R)+log2(n)
⌋ and encoded

separately. We use a counter to generate a unique timestamp for each encoded part.

Protocol steps In the Encryption step, the client generates random seed bi which is
further extended to blinding mask Bi using a PRG. The client first blinds its input with
Bi then protects it with TJL.Protect. After that, the client secretly shares the seed bi
with other clients and sends its masked and protected input to the server.

In the Aggregation step, the client learns the list of failed clients and computes
TJL.ShareProtect using the sum of their TJL keys’ shares. Then, it sends to the server
the blinding mask share of each online client and the share of the protected zero-value
corresponding to all the failed clients. The server constructs the blinding masks and the
protected zero-value using TJL.ShareCombine. Finally, it uses TJL.Agg to obtain the
blinded sum which is unblinded by removing the clients’ masks. The detailed specification
of this phase is provided in Figure 6.3.

6.6.3 Deployment of FTSA on Semi-Connected Graphs (FTSA+)

In the current description of the protocol, we assumed that all clients secretly share
their keys with each other. This gives the maximum security guarantee. However,
as shown in [BBG+20], the client doesn’t need to share its key with all other clients
(see Section 6.3). Indeed it is sufficient to build a connected graph where each node
(representing a client) is connected to a subset of all clients and only shares its key
with this subset. As we presented in Section 6.3, this technique is used to improve the
scalability of SecAgg [BIK+17]. We observe that the same method can also be applied
to FTSA. We refer to our protocol as FTSA+ when deployed on such graphs. Given a
connected graph as described in [BBG+20], FTSA+, involves the same steps as FTSA,
except that the sharing of the key is done only with the neighbor clients. By using this
optimization, the complexity of our protocol in terms of the number of users is reduced
into a logarithmic factor.

6.7 Security Analysis

In this section, we evaluate the security of our secure and fault-tolerant aggregation
protocol (FTSA) and prove that it ensures Aggregator Obliviousness (see Definition 3.2.1)

91

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

FTSA - Online Phase

• Online - Encryption (step τ):
User u:
– Sample a random element bi,τ

R←− F (to be used as a seed for a PRG).
– Extend bi,τ using the PRG: Bi,τ ← PRG(bi,τ).
– Protect the private input Xi,τ ∈ Zm

R (after masking it with Bi,τ) using TJL scheme: Yi,τ ←
TJL.Protect(pp, ki, τ,Xi,τ +Bi,τ).

– Generate t-out-of-n shares of bi,τ using the SSS scheme: {(j, ⟨bi,τ ⟩j)}∀Uj∈U ←
SSS.Share(bi,τ , t, n,F).

– For each registered user Uj ∈ U \ {Ui}, encrypt its corresponding shares e(i,j),τ ←
Encci,j (Ui || Uj || ⟨bi,τ ⟩j)

– If any of the above operations fails, abort.
– Send all the encrypted shares {e(i,j),τ}∀Uj∈U (with addressing information Ui, Uj as metadata)

and the protected input Yi,τ to the server .
Server:
– Collect from each user u its encrypted shares {(Ui, Uj , e(i,j),τ)}∀Uj∈U and its protected input Yi,τ

(or time out).
– Denote with Uτ

on ⊂ U the set of online users. Abort if |Uτ
on| < t.

– Forward to each user Uj ∈ Uτ
on its corresponding encrypted shares: {(i, j, e(i,j),τ)}∀Ui∈Uτ

on
.

• Online - Aggregation (step τ):
User u:
– Receive the encrypted shares and deduce the list of online users Uτ

on from the received shares.
Verify that Uτ

on ⊂ U and |Uτ
on| >= t.

– Decrypt all the encrypted secret shares: U ′
j || U ′

i || ⟨bj,τ ⟩i ← Decci,j (e(j,i),τ) . Assert that
Ui = U ′

i ∧ Uj = U ′
j

– Compute the share of the zero-value corresponding to all failed users: ⟨Y ′
τ ⟩i ←

TJL.ShareProtect(ppTJL, {⟨kj⟩i}∀Uj∈U\Uτ
on
, τ).

– Abort if any operation failed.
– Send the secret shares of the blinding mask seeds {⟨bj,τ ⟩i}∀Uj∈Uτ

on
and of the share of the protected

zero-value ⟨Y ′
τ ⟩i to the server.

Server:
– Collect shares from at least t honest users. Denote with Uτ

shares ⊂ Uτ
on the set of users. Abort if

|Uτ
shares| < t.

– Construct the blinding mask seed of all users bi,τ ∀Ui ∈ Uτ
on : bi,τ ←

SSS.Recon({⟨bi,τ ⟩j}∀Uj∈Uτ
shares

,F)
– Recompute the blinding mask: Bi,τ ← PRG(bi,τ)
– Construct the protected zero-value corresponding to all failed users: Y ′

τ ←
TJL.ShareCombine(pp, {⟨Y ′

τ ⟩j}∀Uj∈Uτ
shares

)
– Aggregate all the protected inputs of the online clients and the protected zero-value: Cτ ←

TJL.Agg(pp, 0, τ, {Yi,τ}∀Ui∈Uτ
on
, Y ′

τ)
– Remove the blinding masks Cτ −

∑
∀Ui∈Uτ

on

Bi,τ =
∑

∀Ui∈Uτ
on

Xi,τ

Figure 6.3: Detailed description of the online phase of FTSA

92

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

in both the honest-but-curious and malicious model settings, given a dedicated threshold
t of honest clients.

6.7.1 Security in the honest-but-curious model

As explained in Section 3.2, in the honest-but-curious model, the adversary, who corrupts
the aggregator and a subset of the clients, correctly follows the protocol but colludes
with up to n− t clients. Let Ucorr be the set of corrupted clients and C = Ucorr ∪A (A
represents the aggregator).

Theorem 6.7.1: Security in the honest-but-curious model

In the honest-but-curious model, the protocol FTSA achieves Aggregator Oblivious-
ness if the number of corrupted clients is less than threshold t (|Ucorr| < t).

Proof.

To prove this argument, we show that the view of C is computationally indistinguishable
from a simulated view where all inputs of the honest clients are replaced with random
values (given that the sum of the random inputs is equal to the sum in the real
view). For the offline phase, the proof is trivial as the offline phase is considered as a
distribution of a secret sharing a zero value between n parties using Diffie-Hellman.
Thus, we focus on proving security in the online phase using a hybrid argument that
relies on the security of the underlying cryptographic primitives.

H0H0H0: This hybrid view is the same as the real view.

H1H1H1: In this hybrid view, we replace all channel keys established by KA.agree between
honest clients with uniformly random keys. The Decisional Diffie-Hellman
assumption guarantees that this hybrid view is indistinguishable from the previous
one.

H2H2H2: In this hybrid view, we replace all ciphertexts generated from Enc between honest
clients with encryptions of zeros (padded to the right length). The IND-CPA
security of the encryption scheme (see Definition 2.3.5) guarantees that this
hybrid view is indistinguishable from the previous one.

H3H3H3: In this hybrid view, we replace all shares of bi sent in the online phase from honest
clients Ui ∈ U \Uτ

on \Ucorr to corrupted ones with a random share of zero. Notice
that the adversary does not receive additional shares of bi in the construction
phase since the honest clients do not provide shares of bi for Ui ∈ U \Uτ

on. Hence,
if |Ucorr| < t, this hybrid view is indistinguishable from the previous one due to
the security of the ISS scheme (see Definition 2.3.2).

H4H4H4: In this hybrid view, we replace all honest clients’ (U \Ucorr) inputs with uniformly
random values such that the sum of the online clients’ random inputs is equal to

93

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

the aggregate. The simulator masks these random values and then protects them
with TJL.Protect and gives the resulting ciphertexts to the adversary. Notice
that we allow the adversary to receive TJL.Protect ciphertexts from offline
clients as this may happen in benign scenarios where the aggregator receives the
delayed ciphertext after it had considered the user offline.

– For the online honest clients (Ui ∈ Uτ
on \ Ucorr) the adversary does not

receive the shares of the zero-protected value from the honest clients. Thus,
the adversary cannot construct the zero-protected value of the user Ui if
|Ucorr| < t. Hence, the adversary only sees one ciphertext of TJL.Protect of
the user Ui. The security of TJL states that the ciphertext of two different
values cannot be distinguished under the DCR assumption if only one
ciphertext per timestamp is provided (see Theorem 6.5.2). Therefore, the
ciphertext of the uniformly random input in this hybrid is indistinguishable
from the ciphertext of the real input from the real view.

– For the offline honest clients (Ui ∈ U \ Uτ
on \ Ucorr) the adversary does not

receive the shares of the mask bi from honest clients. Thus, the adversary
cannot construct the mask bi of the user Ui if |Ucorr| < t. Hence, the
masked random input in this hybrid view cannot be distinguished from the
masked real input in the real view.

Since the adversary cannot distinguish the messages in the hybrid view from
that in the real view for both online and offline clients, we can deduce that this
hybrid view is indistinguishable from the previous one if |Ucorr| < t.

We showed that we can define a simulator that can simulate the view of parties
in C, where for any adversary in polynomial time the output of the simulation is
indistinguishable from the real view of C if |Ucorr| < t. Thus, the aggregator learns
nothing more than the sum of the inputs of the online honest clients. This proves
Aggregator Obliviousness.

Corollary 6.7.1

In the honest-but-curious model, security is guaranteed if the minimum number of
honest clients t should be strictly larger than half of the number of clients in the
protocol (t > n

2) and the protocol can recover from up to n
2 − 1 client failures.

Proof.

From Theorem 6.7.1, |Ucorr| < t. We also have the number of honest users set to the
threshold t (i.e, |Ucorr| = n− t). Therefore, t > n

2 .

6.7.2 Security in the malicious model

As explained in Section 3.2, in the malicious model, the adversary, who corrupts the
aggregator and a subset of users, can additionally manipulate the messages of the

94

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

corrupted parties.

Theorem 6.7.2: Security in the malicious model

In the malicious model, the protocol FTSA achieves Aggregator Obliviousness if the
number of corrupted clients is |Ucorr| < 2t− n.

Proof.

The only messages that the aggregator distributes, are the encrypted shares. The
aggregator cannot modify the values of these encrypted shares thanks to the underlying
authenticated encryption Enc scheme (see Definition 2.3.6). Therefore, the aggregator’s
power in the protocol is limited to not forwarding some of the shares. This will make
clients reach some false conclusions about the set of online clients in the protocol. Note,
importantly, that the aggregator can give different views to different clients about
which clients have failed. Therefore, the aggregator can convince a set of honest clients
to send the protected zero-value Y ′τ corresponding to client Ui (i.e., U \ Uτ

on = {Ui})
while asking another set of honest clients to send the shares of the blinding mask bi,τ .
The aggregator should not obtain the protected zero-value Y ′τ corresponding to a client
Ui and its blinding mask bi,τ for the same FL round τ . If that happens, the aggregator
can recover the masked input from Y ′τ and Yi,τ , then remove the mask using bi,τ .

Knowing that the aggregator may collude with |Ucorr| corrupted clients, The
adversary controlling C obtains |Ucorr| shares of Y ′τ s.t. U \ Uτ

on = {Ui} and |Ucorr|
shares of bi,τ . Additionally, for the remaining U \ Ucorr honest clients, the adversary’s
best strategy is to set Ui as online for half of them and set it as offline for the other
half. It thus receives shares of Y ′τ of Ui from

n−|Ucorr|
2 honest clients and shares of

bi,τ from the other n−|Ucorr|
2 honest clients. Hence, in total, the adversary can learn

a maximum number of |Ucorr|+ n−|Ucorr|
2 = n+|Ucorr|

2 shares of Y ′τ and bi,τ of the same
client.

Finally, we can use the same hybrid argument used in the proof of security in
the honest-but-curious model except that in the active model the adversary chooses
to receive the share ⟨Y ′τ ⟩j or the share ⟨bi,τ ⟩j from each honest client Uj (instead of
being fixed according to Uτ

on). Hence, the indistinguishablity can be ensured as long
as the maximum number of shares of both values obtained by the adversary is less
than the reconstruction threshold (n+|Ucorr|2 < t). Therefore, we can prove Aggregator
Obliviousness if the number of corrupted clients is |Ucorr| < 2t− n.

Corollary 6.7.2

In the active model, security is guaranteed if the minimum number of honest clients
t should be strictly larger than two third of the number of clients in the protocol
(t > 2n

3) and the protocol can recover from up to n
3 − 1 client failures.

Proof.

95

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

From Theorem 6.7.2, |Ucorr| < 2t− n. We also have the number of honest users set to
the threshold t (i.e, |Ucorr| = n− t). Therefore, the reconstruction threshold is t > 2n

3 .

6.8 Performance Analysis

In this section, we analyze the performance of FTSA in terms of computation, commu-
nication, and storage costs at both the client and the server and compare it with the
state-of-the-art. We first perform the complexity analysis with respect to the number of
clients n and the dimension of the client’s input m. Then, we implement the protocol
and conduct an experimental evaluation of it. For completeness, we analyze both the
offline and online phases. We only compare the online phases of different protocols since
the offline setup phase is a one-time process.

Table 6.1: Complexity analysis of the online phase of FTSA and the state-of-the-art
protocols. The values represent the order of complexity. n is the number of clients
(order of hundreds) and m is the dimension of the client’s input (order of hundreds of
thousands).

Communication Computation

Client Server Client Server

SecAgg [BIK+17] m+ n nm+ n2 nm+ n2 n2m
SecAgg+ [BBG+20] m+ log(n)m+ log(n)m+ log(n) nm+ n log(n)nm+ n log(n)nm+ n log(n) log(n)m+ log2(n) n log(n)m+ n log2(n)
TurboAgg [SGA21b] log(n)m n log(n)m log(n)m nmnmnm

FastSecAgg [KRKR20] m+ n nm+ log2(n) log(n)m nmnmnm

FTSA m+ n nm+ n2 m+ n2 nm+ n2

FTSA+ m+ log(n)m+ log(n)m+ log(n) nm+ n log(n)nm+ n log(n)nm+ n log(n) m+ log2(n)m+ log2(n)m+ log2(n) nm+ n log2(n)

6.8.1 Scalability Analysis of The Offline Phase

In terms of communication cost, the offline phase consists of each client receiving n
public keys and sending n shares of its secret keys. Thus, the complexity is O(n) for the
client and O(n2) for the server. In terms of computation cost, the server only relays the
messages between the clients so it does not perform cryptographic operations. However,
the client’s cost is dominated with creating t shares of its secret keys which is O(n2).
Finally, the storage requirement of the client depends on the number of shares which is
O(n) while it is O(n2) for the server since it has to collect and forward the encrypted
shares of all clients.

6.8.2 Scalability Analysis of The Online Phase at the Client

Communication The communication cost consists of:
During the Encryption step:

1. Sending O(n) shares of bi,τ and receiving O(n) shares.

2. Sending the encrypted client input which is O(m).

96

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

During the Aggregation step:

3. Sending O(n) shares of bi,τ .

4. If at least one client failed, sending the share of the protected zero-value ⟨Y ′τ ⟩i which
is O(m).

During the total, the complexity is O(n+m) which is the same as in [BIK+17].

Computation The computation cost consists of:
During the Encryption step:

1. Generating t out of n shares of bi,τ which is O(n2).

2. Encrypting the client’s message Xi,τ which is O(m).

During the Aggregation step:

3. Encrypting the zero-value using the secret shares which is O(m).

Therefore, the total complexity is O(n2+m) which is lower than in [BIK+17] (O(n2+nm)).
The higher complexity in [BIK+17] is due to the one-to-one key agreement on the shared
masking seeds then extending each of them to the dimension of the client’s input which
adds an extra O(nm).

Storage The client must store the keys and shares of all clients as well as the data
vector which results in a storage overhead of O(n +m) which is the same as the one
in [BIK+17].

6.8.3 Scalability Analysis of The Online Phase at the Server

Communication The server’s communication cost is n times the client’s communication
cost. Thus, a complexity of O(n2 + nm) which is the same as the one in [BIK+17].

Computation The computation cost consists of:
During the Encryption step, the server’s computation cost is not significant since the

server only forwards messages.
During the Aggregation step:

1. Computing the product of the received ciphertexts which corresponds to O(nm).

2. Reconstructing t out of n shares of bi,τ for each online client Ui which is O(n2).

3. Extending the seed bi,τ to the dimension of the client’s input (using PRG) which is
O(nm).

4. If at least one client failed, constructing the protected zero-value Y ′τ from its t
shares which is O(nm).

97

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

5. Aggregating the ciphertexts and unmasking the result which is O(nm).

The total computation cost equals to O(n2+nm) which is lower than the one in [BIK+17]
(O(n2m)).

Note that the reconstruction of t out of n shares normally costs O(n2) since it consists
of computing the Lagrange coefficient O(n2) and then applying the Lagrange formula
O(n). Thus, the computation of t out of n shares for n clients should cost O(n3). However,
we optimize the reconstruction by computing the Lagrange coefficients only one time per
FL round and use them for all the reconstructions which result in O(n2 + n) ≡ O(n2).

Storage O(n2 + nm). The server storage consists of: t shares of bi,τ for each client bi,τ
which is O(n2) and t shares of Y ′τ which is O(nm).

6.8.4 Experimental Evaluation

(a) Client Runtime (b) Server Runtime (c) Bandwidth

Figure 6.4: The wall-clock running time (a,b) and the total data transfer sent and received
(c). The measurements are performed using a single-threaded python implementation of
our solution and the solution in [BIK+17] (only the online phase time is shown). When
varying the number of clients, we fix the input dimension to m = 100K and when varying
the dimension we fix the number of clients to n = 300. Bars represent the average value
based on 10 runs and the error margins represent the standard deviation.

We have implemented a prototype of the TJL scheme and our fault-tolerant secure
aggregation protocol. Additionally, we have also implemented a prototype of the protocol
presented in [BIK+17]. Our implementation is done using Python programing language
and is available on GitHub1. We first benchmark our new proposed TJL secure aggregation
scheme. Then, we run several experiments with our secure aggregation protocol and the
one in [BIK+17] while varying the number of clients n = {100, 300, 600, 1000}. We also
use different dimensions for clients’ inputs m = {103, 104, 05, 106} and different client

1https://github.com/MohamadMansouri/fault-tolerant-secure-agg

98

https://github.com/MohamadMansouri/fault-tolerant-secure-agg

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

failure rates f = {0%, 10%, 20%, 30%}. In each experiment, we run all the clients’ and the
server’s processes and measure their execution time. We also measure the size of the data
transmitted in the network. The measurements are performed using a single-threaded
process on a machine with an Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz processor
and 32 GB of RAM.

6.8.4.1 Implementation Details

We use the same implementation and parameters for the building blocks of our protocol
and the protocol proposed in [BIK+17].

• Pseudo-Random Generator (PRG): We use AES encryption [DBN+01] in the counter
mode with 128 bits key size. Thus, the blinding mask seed (bi) is 128-bit long.

• Key Agreement (KA): We use Elliptic-Curve Diffie-Hellman over the NIST P-256
curve. For the hash function, we use SHA256.

• Secret Sharing (SS): We use the finite fields Fp (integers modulo p where p is prime)
in the implementation of Shamir’s secret sharing. To share the seed of the blinding
mask (bi) (128 bits) we set p = 2129 − 1365. To share the DH secret key (256 bits)
we set p = 2257 − 2233.

• Authenticated Encryption (Enc): We use AES-GCM [Dwo07] with a key size of 256
bits.

• Threshold Joye-Libert Scheme (TJL): We use 1024 bits for the public parameter
N . Thus, the user keys are of size 2048 bits. For the hash function H : Z →
Z∗N2 , we implement it as a Full-Domain Hash using a chain of eight SHA256
hashes. Additionally, for the secret sharing over the integers scheme ISS used by
TJL.SKShare, we set the security parameter σ to 128 bits.

6.8.4.2 Benchmarks for JL and TJL schemes

We show in Table 6.2 the execution time of all the algorithms of JL and TJL schemes.

6.8.4.3 Benchmarks for FTSA and SecAgg

Running time for clients We plot the wall-clock running time for a client in both
protocols (i.e., our protocol and the one in [BIK+17]) in Figure 6.4a. Our protocol shows
better running time in most of the scenarios. Additionally, our protocol scales better
with respect to the increasing number of clients (i.e., our solution is ×1.5 faster with 100
clients, ×5.5 faster with 600 clients, and ×8 faster with 1000 clients). This confirms the
study in Section 6.8.2. We also show the setup time for our protocol in Table 6.4. The
results show that the offline time becomes negligible after running a sufficient number of
FL rounds.

Running time for the server We plot the wall-clock running time for the server in
both protocols (i.e., our protocol and the one in [BIK+17]) in Figure 6.4b. We show the

99

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Table 6.2: Benchmarks of JL and TJL schemes. The time measurements are in milliseconds
such that x / y refers to x ms runtime for JL scheme and y ms runtime for TJL scheme. The
current benchmarks are run with 30% user failures and 70% threshold. Gray distinguishes
the algorithms that are executed only once for the setup.

n = 100 n = 300 n = 600

T
P Setup 12 / 10 11 / 15 13 / 13

U
se
r SkShare - / 2 - / 23 - / 149

ShareProtect - / 7 - / 14 - / 26
Protect 4 / 4 4 / 4 4 / 4

A
gg

ShareCombine - / 88 - / 946 - / 4220
Agg 4 / 8 5 / 21 7 / 42

Table 6.3: Wall-clock running time per client in the online phase for one FL round with
different % of client failures. The number of clients varies n = {100, 300, 600, 1000} and
the dimension is fixed to m = 100K.

Clients
% Failures

0% 10% 20% 30%

100 9.8 sec 20.9 sec 20.8 sec 20.8 sec
300 10.9 sec 28.1 sec 27.9 sec 26.6 sec
600 10.5 sec 35.5 sec 35.6 sec 35.8 sec
1000 10.7 sec 51.6 sec 51.2 sec 52.1 sec

running time with different failure rates of clients (with 0% failure rate the runtime is
negligible since there is no need for a recovery phase which is the most costly operation).
In general, the cost is higher in our protocol since the reconstruction operation (i.e.,
Lagrange formula) is computed on the exponent. However, this overhead is constant in
our protocol w.r.t. the number of failed clients (i.e., construction of single value Y ′τ that
represents all failed clients). Therefore, the scalability of our protocol with respect to the
number of failures is better. We show the detailed running time (per protocol round) in
Table A.1 in Appendix A.1.

Data transfer To measure the data transfer, we measure the size of the data sent by the
client to the server, and the data received by the client from the server. We plot the total
data transfer (sent and received) per client in both protocols (i.e., our protocol and the
protocol in [BIK+17]) in Figure 6.4c. Our protocol has larger data transfer in scenarios
with a low number of clients (n = 300) but is more efficient when the number of clients
is increased to n = 1000. This shows that our protocol scales better with an increasing
number of clients. On the other hand, our protocol involves larger data transfer when the
input dimension increases. This is mainly because of the larger size of the ciphertext (two

100

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Table 6.4: Wall-clock running time per client for T = {100, 500, 1000} FL rounds. The
number of clients, dimension and % of failures are fixed to n = 600,m = 100K, f = 10%.

FL rounds Total Time Setup Time

100 451.3 sec 9.6 sec (2.1%)
500 2218.3 sec 9.6 sec (0.4%)
1000 4427.0 sec 9.6 sec (0.2%)

times the size of the plaintext) with respect to masking. We show detailed measurements
per protocol round in Table A.2 in Appendix A.2.

Summary In summary, the major improvement of our protocol over SecAgg [BIK+17]
is in the running time at the client. Our protocol reduces the overhead on the client’s
processor up to 8 times when running in large networks. For the server running time, the
improvement is only achieved in networks with significantly high failure rates (∼ 30%).
Finally, the data transfer is better in our protocol in the case of a large number of clients
but worse in the case of huge input dimensions.

6.9 FTSA*: An Optimized Fault-Tolerant SA

We present an optimized version of our protocol FTSA presented in Section 6.6. The
optimization can be considered as a major change in the way how the TJL scheme is
used to achieve fault-tolerant secure aggregation. We first discuss the main idea of this
modification and its consequences on the protocol. Second, we present the new version of
our protocol (we call it FTSA*). Finally, we present the new performance results of the
protocol.

6.9.1 The Idea

The main limitation of FTSA is that it requires masking the user input Xi,τ with random
mask Bi,τ before applying the TJL.Protect algorithm. The masks are secretly shared
with all users which results in a quadratic complexity in terms of computation and
communication. The reason for masking the input (Xi,τ +Bi,τ) is to prevent a malicious
aggregator to leak the user input. This attack is performed by a malicious aggregator
claiming that an actually online user is dropped. It allows the aggregator to obtain two
ciphertexts (for the same timestamp) produced by the same user key (the first ciphertext
is received from the online user and the second is the zero-protected value computed
using the shares of the key). Masking guarantees that the user input is protected when
such an attack happens.

We propose a different solution to mitigate this attack. Our solution is to mask the
encryption key of the user instead of masking the message itself. The advantage of this
approach is that it is performed in the offline phase when the keys are created. Hence,
the sharing of the masking key is also performed in the offline phase. Consequently, the

101

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

computation and communication complexity of the user in the online phase becomes
constant with respect to the number of users.

6.9.2 The Protocol

Similar to FTSA, our optimized secure and fault-tolerant aggregation protocol is composed
of an offline and an online phase. In the setup phase, the users compute their TJL
secret keys similar to FTSA protocol. In addition, each user generates a masking key
bki ←$ {0, 1}2l and shares it with the other user using the t-out-of-n secret sharing scheme.
Thus, each user Ui will get a share {(j, ⟨bkj⟩i)}∀Uj∈U .

In the encryption step of the online phase, the users do not need to mask their input
with Bi,τ which is generated from secretly shared seed bi,τ . Instead, they compute the
TJL.Protect of their input with the masked key and send it to the server. Next, in the
construction step, the online users construct the zero-protected values of the offline users
similar to FTSA protocol. In addition, they help the aggregator remove the masking
keys from the ciphertexts of the online users. The details of the online phase of the new
protocol are shown in Figure 6.5.

6.9.3 Security Analysis

Theorem 6.9.1

The protocol FTSA* achieves Aggregator Obliviousness in the passive model if the
number of corrupted clients is less than threshold t (|Ucorr| < t) and it achieves
Aggregator Obliviousness in the active model if the number of corrupted clients is
|Ucorr| < 2t− n.

Proof.

FTSA* uses TJL scheme which is secure under the DCR assumption if the users
encrypt no more than one ciphertext for each timestamp. Encrypting with a masked
key (ki + bki) is equivalent to masking the ciphertext of each user at each times-
tamp with a fresh random mask H(τ)bki (i.e., TJL.Protect(ki + bki, τ, xi,τ) = (1 +
xi,τN)HZ∗

N2(τ)kiHZ∗
N2(τ)bki). Similar to FTSA, removing the mask requires at least

t users to collaborate where t is the threshold of the secret sharing scheme. Hence,
similar to the security analysis in Section 6.7, and based on Theorems 6.7.1 and 6.7.2,
FTSA* achieves Aggregator Obliviousness when (|Ucorr| < t) in the case of a passive
adversary and it achieves Aggregator Obliviousness when |Ucorr| < 2t− n in the active.

Corollary 6.9.1

In the passive (active) model, security is guaranteed if the minimum number of
honest clients t > n

2 (t > 2n
3) and the protocol can recover from up to n

2 − 1 (n3 − 1)
client failures.

102

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Secure Aggregation Protocol - Online Phase

• Online - Encryption (step τ):
User u:
– Protect the private input Xi,τ ∈ Zm

R with the masked key (ki + bki) using TJL scheme: Yi,τ ←
TJL.Protect(ppTJL, ki + bki, τ,Xi,τ).

– Send the protected input Yi,τ to the server .
Server:
– Collect from each user its protected input Yi,τ (or time out).
– Denote with Uτ

on ⊂ U the set of online users. Abort if |Uτ
on| < t.

– Send to each user Uj ∈ Uτ
on the list |Uτ

on|.
• Online - Aggregation (step τ):
User u:
– Receive the list of online users Uτ

on.
– Compute the share of the zero-value corresponding to all failed users: ⟨Y ′

τ ⟩i ←
TJL.ShareProtect(ppTJL, {⟨kj⟩i}∀Uj∈U\Uτ

on
, τ).

– Compute the share of the masking value corresponding to all online users: ⟨Ỹτ ⟩i ←
TJL.ShareProtect(ppTJL, {⟨bkj⟩i}∀Uj∈Uτ

on
, τ).

– Send the share of the protected zero-value ⟨Y ′
τ ⟩i and the masking value ⟨Ỹτ ⟩i to the server.

Server:
– Collect shares from at least t honest users. Denote with Uτ

shares ⊂ Uτ
on the set of users. Abort if

|Uτ
shares| < t.

– Construct the protected zero-value corresponding to all failed users: Y ′
τ ←

TJL.ShareCombine({⟨Y ′
τ ⟩j}∀Uj∈Uτ

shares
, t)

– Construct the masking value corresponding to all online users: Ỹτ ←
TJL.ShareCombine({⟨Ỹτ ⟩j}∀Uj∈Uτ

shares
, t)

– Aggregate all the protected inputs of the online clients and the protected zero-value: Cτ ←
TJL.Agg(ppTJL, 0, τ, {Yi,τ}∀Ui∈Uτ

on
, Y ′

τ)
– Remove the blinding masks:

Cτ

Ỹτ

=
∑

∀Ui∈Uτ
on

Xi,τ

Figure 6.5: Detailed description of the online phase of our optimized secure and fault-
tolerant aggregation protocol. The text in blue shows the new modifications.

103

Chapter 6. Scalable and Fault-Tolerant Secure Aggregation for Federated Learning

Proof.

The proof follows the proof for Collaries 6.7.1 and 6.7.2

6.9.4 Performance Analysis

Table 6.5: Complexity analysis of the online phase of FTSA* scheme and the state-of-the-
art protocols. The values represent the order of complexity. n is the number of clients
(order of hundreds) and m is the dimension of the client’s input (order of hundreds of
thousands).

Communication Computation

Client Server Client Server

SecAgg [BIK+17] m+ n nm+ n2 nm+ n2 n2m
SecAgg+ [BBG+20] m+ log(n) nm+ n log(n) log(n)m+ log2(n) n log(n)m+ n log2(n)
TurboAgg [SGA21b] log(n)m n log(n)m log(n)m nmnmnm

FastSecAgg [KRKR20] m+ n nm+ log2(n) log(n)m nmnmnm

FTSA m+ n nm+ n2 m+ n2 nm+ n2

FTSA+ m+ log(n) nm+ n log(n) m+ log2(n) nm+ n log2(n)

FTSA* mmm nmnmnm mmm nmnmnm

FTSA* shows a significant improvement in the performance of the user in the online
phase. More specifically, the computation cost of the user is one call of the algorithm
TJL.Protect and two calls to TJL.ShareProtect. Consequently, the communication cost
is sending three ciphertexts. Therefore, both costs depend on the size of the user input
(i.e., only O(m)). On the other hand, the server computation cost involves computing
TJL.ShareCombine twice to reconstruct Y ′τ and Ỹτ from their shares. These operations
are O(nm). It also involves aggregating the ciphertexts and unmasking the result which
is O(nm). Therefore the asymptotic costs of the user and the server are reduced to
O(m) and O(nm) respectively which correspond to the theoretical bound since this is
equivalent to the cost of federated learning without using secure aggregation. Table 6.5
summarizes the result.

6.10 Conclusions

We presented two versions of a new secure and fault-tolerant aggregation protocol (FTSA
and FTSA*). Our solutions use the additively homomorphic encryption scheme of Joye-
Libert [JL13] with Shamir’s secret sharing to achieve fault tolerance. FTSA protocol
outperforms the state-of-the-art protocols in terms of the computational cost of the
federated learning clients. On the other hand, our optimized version FTSA* allows
performing all secret-sharing operations during the setup phase. Hence, The online phase
of FTSA* has only a constant factor of overhead compared to a base federated learning
protocol (without secure aggregation). Consequently, FTSA* outperforms all the existing
fault-tolerant secure aggregation protocols in terms of the asymptotic cost on both the
clients and the server. We show that FTSA* indeed achieves optimal scalability.

104

Part III

Remote Attestation Protocols

105

Chapter 7

Fairness-Driven Remote-Attestation

In this chapter, we investigate remote attestation protocols when the IoT network is large,
dynamic, and heterogeneous. We first study state-of-the-art solutions for collaborative
remote attestation and we identify challenges due to the large size of IoT networks; We
focus on two particular problems: the heterogeneity of the devices used in the network
and the dynamic nature of IoT networks. To deal with these challenges, we propose
FADIA, the first lightweight collaborative remote attestation protocol that is designed
with fairness in mind: FADIA enables the fair distribution of attestation load/tasks to
achieve better performance. We implement our solution on heterogeneous embedded
devices and evaluate it in real scenarios. The evaluation shows that FADIA can (i)
increase the lifetime of a network by an order of magnitude and (ii) decrease the remote
attestation runtime by a factor of 1.6.

7.1 Remote Attestation

7.1.1 Definition

Figure 7.1: Illustration of an remote attestation execution between a prover and verifier
.

Remote attestation (RA) is a technique that enables a device called prover to prove
the integrity of its software configuration to another remote device called verifier.

• The prover : It is the device that needs to prove its software integrity. The
device executes some internal procedure that checks its software configuration and

107

Chapter 7. Fairness-Driven Remote-Attestation

consequently generates a cryptographic proof. The procedure is usually run inside
a trusted execution environment in the device.

• The verifier : The device that verifies the integrity of the prover’s software. It
receives the proof from the prover and validates it. The verifier relies on a root of
trust such as a trusted execution environment installed on the prover.

7.1.2 Root of Trust for Remote Attestation Protocols

In remote attestation protocols, the verifier in an attestation protocol relies on a root
of trust existing on the prover device. Based on the kind of the root of trust, there are
three types of attestations:

Software Root of Trust [GGR09, SLP08, SPvK04, LMP11, SLS+05, KJ03] Software-
based attestation relies on assumptions concerning the software implementation of the
attestation code. An example of software-based attestations is Pioneer [SLS+05]. Pioneer
computes a checksum of device memory using a function that includes side effects in its
computation, such that any emulation of this function incurs a timing overhead sufficiently
long to detect cheating. Software-based attestation is useful only if the verifier and the
prover are directly connected (without passing through intermediate hops) [CFPS09],
thus impractical as a remote attestation technique.

Hardware Root of Trust [AFS97,Gro08,KSA+09,SZJvD04] Hardware-based attestation
relies on assumptions concerning the hardware that hosts the attestation code. This
involves hardware components such as Trusted Platform Modules (TPM) [Gro08] and
secure co-processors [Smi02]. These extra hardware components perform verification
tasks such as secure booting. The high cost of these techniques limits their use for IoT
devices.

Hybrid Root of Trust [FNRT14, KPS+14, EFPT12, BES+15] More recently, hybrid
approaches for the root of trust have been proposed. These approaches rely on a
combination of hardware and software assumptions. They propose to design a minimal
secure hardware architecture on the prover which can be used to perform integrity checks
on the prover’s running software. It then creates a cryptographic proof and sends it to
the verifier. The verifier upon validating this proof authenticates the prover and thus
trusts its software.

7.1.3 Collaborative Remote Attestation

Lately, to adhere to the increasing number of embedded devices in the network, col-
laborative remote attestation protocols are proposed. The idea of collaborative remote
attestation is to allow the IoT devices to collaboratively collect attestations from each
other and finally produce a single proof for the IoT platform administrators. Hence, it
improves the scalability of the protocol.

108

Chapter 7. Fairness-Driven Remote-Attestation

In this thesis, we are interesting on studying collaborative remote attestation tech-
niques since they are very practical in IoT networks.

7.2 Previous Work on Collaborative Remote Attestation

In this section, we present previous work on collaborative remote attestation. We first
regroup them into three categories based on the type of connection topology between
provers. Then, we categorize them based on the type of key management. Finally, we
identify the main limitations of the previous work in the literature.

7.2.1 Categorization based on Connection Topology

In collaborative remote attestation, provers communicate with each other to collect the
proofs. We identify three main types of collaborative remote attestation based on the
topology of the connection between provers.

Remote Attestation using Tree Topology Collaborative remote attestation such as
SANA [ACI+16], LISA [CERT17], SEDA [ABI+15], and SHeLA [RVW+19] are designed
for static or quasi-static networks. These approaches run on devices deployed in a static
tree topology. Tree structures provide an efficient and scalable method for verifying
a large number of devices. In general, there exist three roles in the tree based on the
position of the nodes:

• Initiator node: This is the root node of the tree. It initiates the tree construction
(attestation) process.

• Intermediate node: This corresponds to any node in the tree that has a parent node
and children nodes. It forwards messages from its parent to its children and vice
versa. It usually also aggregates the attestations received from the children nodes.

• Leaf node: This is any node in the tree that has no children nodes. The message
forwarding stops at this node. It sends its attestation to its parent node.

Using this tree structure, provers can collaboratively attest by aggregating their proofs.
Depending on the type of cryptographic tools used to generate the proof, different
aggregation algorithms may be used. For example, SANA [ACI+16] uses a combination
of Boldyreva’s multi-signature scheme [Bol02] and Boneh et al.’s aggregate signature
scheme [BGLS03b] to generate a proof. Other solutions like LISA [CERT17] uses simple
message authentication code (MAC) to generate proofs.

Remote Attestation using Mesh Topology Another line of research proposes RA schemes
that use a gossip-based mechanism and run in dynamic mesh networks. Examples
of such an approach are DARPA [ISTZ16], PADS [ACL+18], SALAD [KBK18], and
SARA [DRC+20]. In these protocols, provers share their attestations with all their
neighbors, then the received attestations are aggregated and forwarded. The process is

109

Chapter 7. Fairness-Driven Remote-Attestation

repeated until convergence is reached about the state of all provers. Although gossip-based
protocols offer high tolerance against failures and a high degree of autonomy, they suffer
from high bandwidth overhead and long runtime.

Remote Attestation using Hybrid Topology Recently, Kohnhauser et al. proposed
PASTA [KBK19], an autonomous RA protocol in which provers create multiple spanning
trees in the network and generate the so-called tokens to verify the attestations of the
provers participating in the tree. Each token embeds the attestations of all the nodes
in the tree. Later, these tokens are distributed among all the provers in a gossip-like
approach. The parallelized tree generation process in PASTA allows for a relatively low
runtime for the protocol. Also, the token distribution offers autonomy (decentralization)
to the RA protocol. However, PASTA does not scale well in terms of communication due
to the broadcasting of large-size tokens. Also, PASTA requires provers with high storage
and computation capabilities. This is because it uses asymmetric cryptography for token
generation.

7.2.2 Categorization based on Key Management

In remote attestation protocols, two types of secret keys are defined: the communication
keys which are used to establish a secure channel between provers and the attestation
keys which are used for attestation, i.e., to generate a proof of the integrity of a prover’s
software. We identify two main types of collaborative remote attestation with regard to
the underlying key management mechanism.

Remote Attestation using a Single Shared Key In such RA solutions, the network
operator defines a single key shared among all provers. This key is used as both a
communication key and an attestation key (e.g., PADS [ACL+18]). Such an approach
enables the efficient addition of new devices to the network at runtime. Nevertheless,
solutions become inefficient if a single node is compromised (as all nodes need to update
their keying material).

Remote Attestation using Pairwise Unique Keys In such RA solutions, each prover
holds a unique attestation key and a pair-wise mutual communication key with each
other prover. An example of this type of RA is SALADS [KBK18], PASTA [KBK19],
and DARPA [ISTZ16]. This approach ensures better security guarantees and enables an
efficient revocation mechanism. However, it does not scale with a high number of provers.
Moreover, the addition of new devices to the network becomes costly because each newly
joined device requires a key distribution mechanism to run with all existing provers.

7.2.3 Limitation of Previous Work

The aforementioned collaborative remote attestation solutions tackle different challenges
such as scalability, security and robustness. Unfortunately, these solutions may become
inefficient and sometimes even impractical for some applications of IoT networks. This is

110

Chapter 7. Fairness-Driven Remote-Attestation

mainly because the current state-of-the-art solutions disregard two common characteristics
of IoT networks: (i) heterogeneity of IoT networks and (ii) continuous increase in the
size of the network (i.e., devices are added to the network gradually over time).

Heterogeneity of devices: Large-scale RA protocols involve collaborative tasks across
devices. These tasks include the generation and forwarding of attestations. Existing
solutions perform the distribution of this load (i.e., RA tasks) randomly or uniformly. This
may imply a significant performance decrease in heterogeneous networks because it results,
usually, in creating bottlenecks, resulting in a degradation of the overall performance. We
define heterogeneity in the IoT network as the diversity in the (hardware and/or software)
characteristics of the IoT devices. For instance in Industry 4.0 IoT applications [RMK16],
sensor devices in the network (ex. Tmote Sky [Cor16]) have Microcontroller Units (MCU)
with low computational capabilities compared to a Raspberry Pi operating in robots.
The quality of the MCU directly affects the speed of processing the attestation messages
from peer devices. Therefore, a RA collaborative protocol that does not consider this
gap in the hardware capabilities between devices will end up putting either an equal
attestation load on different devices or a higher load on less capable devices. The number
of proofs (i.e., attestations) that a node can receive and forward should thus be depending
on its capabilities. The heterogeneity of the network can also threaten the lifetime of
the services. Running a RA protocol on a device consumes a significant amount of its
battery due to the frequent participation in the transmission and reception of attestation
messages. Thus, if sensors with lower battery levels engage in many energy-consuming
operations, this can end up with battery depletion of some devices causing potential
disruption in the service. To this end, we see heterogeneity as a problem that can have a
strong impact on both the performance and lifetime of a collaborative RA protocol.

Dynamic nature of IoT networks: With the continuous advancement of IoT applications,
IoT networks gradually increase in size (i.e., new devices are added). In collaborative
remote attestation, existing devices need to agree on keys with new devices to communicate.
These keys ensures secure commination between devices to transmit their attestations.
The existing solutions lack scalability and add a high overhead to the runtime of the RA
protocol. Based on that, we identify the need for dynamic management and distribution
of the key materials as a missing requirement for a practical remote attestation protocol.

7.3 FADIA - Overview

We present our approach to solving the problems mentioned in Section 7.2.3 (namely,
heterogeneity and device addition). We design a lightweight collaborative RA protocol
(FADIA).

To solve the heterogeneity problem, FADIA is designed with fairness in mind. In
a collaborative RA protocol, we define fairness as the ability to distribute the load of
the protocol according to the capabilities of the provers. The goal is to increase the
performance of the protocol and to reach a better lifetime for the network. In a fair RA

111

Chapter 7. Fairness-Driven Remote-Attestation

Table 7.1: Comparison between previous work on collaborative remote attestation and
FADIA. The big O notation represents the complexity of the cost on a prover with respect
to n (number of provers in the network).

Scalability Supported Features

C
o
m
m
u
n
i-

ca
ti
o
n
C
os
t

S
to
ra
g
e

co
st

M
o
b
il
it
y

D
et
ec
ts

h
w

at
ta
ck
s

A
u
to
n
o
-

m
ou

s

A
d
d
in
g

D
ev
ic
es

F
ai
rn
es
s

SEDA [ABI+15] O(1) O(1)
SENA [ACI+16] O(1) O(1)
LISAα [CERT17] O(log n) O(1)
LISAs [CERT17] O(1) O(1)
DARPA [ISTZ16] O(n) O(n)
SALAD [KBK18] O(n) O(n)
PADS [ACL+18] O(n) O(n)
PASTA [KBK19] O(n) O(n)

FADIA O(1) O(1)

protocol, provers in FADIA can be assigned a score depending on their capabilities and
behave accordingly. This score will be frequently computed and the protocol should adapt
to any change. In FADIA, similar to PASTA [KBK19], a group of provers collaborate
and create a spanning tree in which parent nodes collect attestations from children nodes.
However, in contrast to PASTA, the choice of the position and the number of children
of a prover in the tree are adaptively regulated. These are determined by the scoring
function which is computed based on the hardware capabilities (e.g., CPU) of the prover
and its current residual battery. We, therefore, define a score function that outputs a
score value between 0 and 1: when the score is closer to 1, the prover can assign more
tasks with respect to the RA protocol (for example, the node can have a higher number
of children).

To cope with the dynamic nature of the network, the protocol should support the
addition of new devices at runtime. We propose to rely on an exisiting Eschenauer-
Gligor’s (E-G) scheme [EG02] for the distribution of communication keys. In FADIA,
each node is pre-loaded with a random keyring (a set of communication keys) randomly
selected from the key pool. Devices that share at least one key in their keyrings can
directly establish a secure communication channel. Thanks to this scheme, FADIA easily
addresses the trade-off between the connectivity of the provers and the security of the
communication. Furthermore, the addition of a new prover to the protocol does not
require any modification of the other provers.

112

Chapter 7. Fairness-Driven Remote-Attestation

7.4 Building Block: Eschenauer and Gligor’s Scheme

We present Eschenauer and Gligor’s (E-G) [EG02] scheme that is used in the design of
our protocol. E-G key distribution scheme follows a probabilistic approach to efficiently
distribute the keys over a large number of devices. It facilitates the addition and the
revocation of nodes (and the corresponding keys) in the network without substantial
computation and communication overhead on the end devices. The scheme defines a
main key pool as a set of p keys of size. The participating devices pick a key ring as a
random subset of size r from the key pool. Devices having at least one shared key from
their key rings can communicate securely. This scheme has been shown to be simple and
highly scalable and is, therefore, suitable for resource-constrained devices. In this work,
we utilize E-G scheme to distribute the keys to the provers. Only provers who share
common keys can establish secure communication channels.

Connectivity of the Provers Connectivity between provers is defined as the average
percentage of provers, a prover can connect to (i.e., communicate with). The connectivity
between provers using E-G scheme is equivalent to the probability of two provers sharing
at least one key in their key rings (Ps).

Ps = 1− ((p− r)!)2

(p− 2r)!p!
(7.1)

For example, with a key ring of size r = 300 and a key pool of size p = 100000 we obtain
a connectivity of Ps ≈ 0.6.

7.5 Assumptions and Threat Model

In this section, we describe the assumptions on the network. Then we define our security
model.

7.5.1 Network Assumptions

We consider a mesh network topology where devices acting as provers, communicate
within their communication range. Additionally, all provers are connected to a more
powerful device (the controller C) acting as the verifier. For example, this can be an edge
router. The network may contain more than one controller such that these controllers
share their information and synchronize their data on a different layer. For the sake of
simplicity, in this paper, we consider a single controller that connects to all provers in
the network. Both, the provers and the verifier are managed by the network operator O.
The participating provers can have heterogeneous characteristics. Moreover, they can be
static or mobile within the network. New provers may be added to the network at any
point in time.

113

Chapter 7. Fairness-Driven Remote-Attestation

7.5.2 Security Model

Security assumptions: We assume that provers have the minimal secure hardware
features to perform RA [FNRT14]. Additionally, provers are equipped with loosely
synchronized real-time clocks. The minimal secure hardware can be implemented using
a secure Read-Only-Memory (ROM) to store the keys and a Memory Protection Unit
(MPU) that stores FADIA’s attestation code. The aforementioned execution space on
each prover is referenced as the Trusted Anchor (TA). Additionally, we assume that
the controller is not compromised and is fully trusted. Furthermore, similar to previous
research, FADIA only considers invasive and semi-invasive physical attacks. Thus, non-
invasive attacks such as side-channel attacks are out of the scope of this paper. In this
context, we rely on a common assumption that for an attacker to successfully bypass
TA, it needs to take the devices offline for more than some δh time which is predefined
and known to be non-negligible [CDPG+10,CDPMM08]. This is because such attacks
require expensive and complex laboratory equipment and require the full possession of
the target for a significant amount of time (from hours to weeks) [Sko12,Sko11]. This
becomes even more expensive especially when devices are equipped with tamper-resistant
mechanisms [RRC04, ION+18,MGGA17]. We finally assume that the implementation of
FADIA and its cryptographic components do not suffer from any security bugs.

Adversarial Model: The main objective of an Adversary is to perform malicious activities
by corrupting the memory of a prover and also damaging the network communication
while being undetected. We consider two types of adversaries, Software Adversary As

and Hardware Adversary Ah.

• As has full control of the execution of a prover apart from the TA. It also has full
access to the prover’s memory except the memory protected by the MPU. Thus, As

can launch attacks like spoofing attacks, Man-in-the-middle-attacks, replay attacks.

• Ah has, in addition to As capabilities, physical access to the devices in the network.
This provides it with the ability to leak any secret or modify FADIA’s code on the
targeted prover. However, this is only possible after turning the prover off for more
than δh time, as stated previously. δh is defined by C for all provers participating
in the protocol.

Definition 7.5.1: Security

FADIA is considered secure if an adversary (under the aforementioned assumptions)
cannot forge a “healthy” state of a compromised prover.

In line with other RA schemes [ABI+15,ACI+16,KBK19,ACL+18] we do not consider
Distributed Denial of Service (DDoS) attacks. Nevertheless, in Section 7.7 we mention
possible ways to detect DDoS attacks in FADIA.

114

Chapter 7. Fairness-Driven Remote-Attestation

Table 7.2: Notations

Entities

Pi, C, O A prover of index i, Collector, and Network Operator
Ah, As Hardware adversary and software adversary

Parameters

uid Unique id of a prover
cntr Counter for the number of attestation of a prover
αg Max size of the set of uids in an attestation message.
δh Minimum time required by Ah to compromise a prover
δc Time a prover waits to receive invite before it calls generateTree()
cmax Maximum number of children for a node in a tree
climit Maximum number of children a prover can accept in a tree
Kic Secret key shared between Pi and the controller
Ks Secret key shared between C and O
KID

ij , Kij Secret key (and it corresponding key id) shared between Pi and Pj
sch The hash of the software configuration on a prover

7.6 FADIA - Complete Specifications

In this section, we describe the design of FADIA. The protocol is composed of four
different phases: the initialization, joining, attestation and revocation phases. The first
initialization phase consists of an offline setup phase where the keying material is installed
at all involved provers. During the joining phase, a prover identifies itself to the controller.
The prover further starts the attestation phase. During the attestation phase (which is
the core phase of FADIA), the active prover periodically participates in virtual attestation
trees to send its attestation report and forward others’. The active prover keeps running
this phase until it is dropped from the network (either intentionally because it is detected
as malicious or incidentally because it left the network). On such an event, the revocation
phase starts whereby the dropped prover becomes offline and its keys are revoked. In the
following, we describe each phase in more detail.

7.6.1 Initialization Phase

Provers, before participating in FADIA, are considered offline. In order for a prover Pi
to enter the protocol, it has first to be set by the network operator O. O defines a key
pool (O.Pool) according to [EG02], (see § 7.4). This key pool is stored in a safe location
(offline). The key pool contains p symmetric keys together with their key ids {(KID ,
K)}. Pi randomly receives a key ring of size r from the key pool:

Pi.Ring ← {(KID,K)} ⊂ O.Pool

O also assigns a unique id (uid) for Pi and a cryptographic hash of the current software
configuration (sch). Pi then obtains a unique key Kic (the attestation key) derived from
the chosen keyring ids and the prover’s unique id. This key is computed by O using a key

115

Chapter 7. Fairness-Driven Remote-Attestation

 (Joining prover)

 joinReq():

 authSend

 handleJoinReq :
 KDF
 If MAC Then:
 registerProver

 authSend
 Else:
 ignoreRequest()

 startAttesting():
 ...

 (Controller)

Figure 7.2: FADIA’s joining phase

derivation function (KDF) and a secret key (Ks) known only by O and the controller.
More formally,

Kic ← KDF (Ks, {KID ∀ (KID,K) ∈ Pi.Ring} ∪ {uid}) (7.2)

Kic is used in the later phases of the protocol to provide secure communication between
a Pi and the controllers. Moreover, O also defines a function score() which evaluates
at the runtime the required load Pi should take based on its hardware capabilities and
its current capacity. This function outputs a value between 0 and 1 that indicates the
amount of load Pi can take (0 indicating that this device should take the least load
possible, and 1 indicating that it should take the maximum load that can be given to
one device). The implementation of score() depends on the underlying environment and
application. For example, in the case of a network of wireless devices with batteries, the
function score() will evaluate the battery percentage level of a prover; For a network of
devices with microcontrollers of different computational speeds, score() will categorize
different types of microcontrollers into different classes, and output a higher value for
more powerful classes.

7.6.2 Joining Phase

Once Pi is initialized, it can join the network. Pi sends a join request message (jreq) to
the controller (C) in the network. The join message contains its unique ID (uid) and the
set of key ids in its key ring. This message is authenticated using a message authentication
code (MAC) computed with Kic. Based on the received uid and the key ids, C computes
Kic (see equation 7.2) and authenticates Pi. Upon validation, C registers Pi in the table
of provers currently participating in the protocol. The table of registered provers records
the current state of each prover (being either healthy or unhealthy) along with the last
time the prover attested. Pi is first registered as “healthy”. C sends back a response
message jresp (authenticated using Kic) to confirm the joining process. jresp includes
(i) cid: the controller’s id (ii) δh which corresponds to the maximum time a prover can
stay active without attesting in the network, (iii) αg which defines the maximum number
of attestations that can be aggregated, and (iv) cmax that is the maximum number of

116

Chapter 7. Fairness-Driven Remote-Attestation

 generateTree():
 randomINT()

 sendBroadcast

 invitationReceived():
 If Then:
 ignoreRequest()
 Else:

 If Then:
 ignoreRequest()
 Else:

 randomINT()

 authSend

 handleInvitationResp():
 If Then:
 ignoreResponse()
 Else:

 If MAC Then:

 authSend
 Else:
 ignoreResponse()

 childrenAccepted():
 If MAC Then:

 If Then:
 sendAttestation()
 Else:

 sendBroadcast()

 (Initiator prover) (Intermidiate prover)

 handleInvitationResp()

Figure 7.3: Tree construction in FADIA’s attestation phase.

children a prover can have. After Pi is registered, C regularly checks its status and if
Pi does not attest in δh time, its status becomes “unhealthy”. Figure 7.2 provides the
specification of the joining phase.

7.6.3 Attestation Phase

Provers start running this phase immediately after completing the joining process. Pi
enters a new attestation period every δh /2 time. (δh /2 is chosen to guarantee that
two consequent attestations are always received within no longer than δh time.) At
each attestation period, a Pi starts by performing an integrity check on its software
configuration. The check is performed against the software configuration hash (sch)
stored in the prover. The method of this check and the format of sch is out of the
scope of this paper. This can be a simple technique based on computing the hash of the
firmware or more complex techniques such as the ones proposed in [AAD+16,DZN+17,
ZDA+17,CTR18]. If the integrity check fails, then Pi quits the attestation phase and
will be eventually dropped from the protocol. After succeeding in the integrity check, Pi
participates in the construction of a tree in which it will attest. First, Pi generates a
unique proof of its attestation using the function generateProof(). It further evaluates

117

Chapter 7. Fairness-Driven Remote-Attestation

score() and uses the result to decide on its role in an attestation tree. More specifically,
Pi updates two parameters namely, climit and δc:

• climit is the maximum number of children Pi can accept in the upcoming attestation
tree.

climit ← score()× cmax

• δc (which is less than δh/2) is the amount of time Pi waits to receive a participation
invitation to an attestation tree. When δc is reached and Pi did not receive any
invitation, it starts the tree construction protocol.

δc ← score()× δh/2

Neighboring provers that share common keys and are ready to provide their attesta-
tions construct a tree. Note that if a prover does not share any key with its neighbors, it
directly sends the attestation to the controller. However, such cases appear with a low
probability in realistic networks. For example, if the average number of neighbors for a
prover is 5, and the connectivity Ps = 0.6, then the probability of a prover being isolated
is (1− Ps)

5 ≈ 0.01. The tree construction and the attestation collection processes are
described next.

7.6.3.1 Tree Construction

A tree construction starts by an initiator prover (Pi) after waiting for δc time. The
latter broadcasts an invitation message (invite) to its neighbors. The invitation message
includes the unique id (uid) of Pi as well as a tree id (treeid) (generated from a timestamp
to guarantee freshness) and the set of key ids which Pi holds in its keyring. When Pj
receives invite, it first checks if it did not attest in the last δh/2 time. Then it checks if it
shares at least one key with Pi . Let Kij denote the shared key between Pi and Pj , and
KID

ij be its corresponding key id. Pj responds with an invitation acceptance message

(iaccept) containing the key id KID
ij . The message also includes the unique ids of the

source and the destination, the tree id sent by Pi, and a random value (r) and a Message
Authentication Code (MAC) computed using the shared key Kij . Pi accepts Pj as a
child only if it has not acquired climit children yet and responds with a child acceptance
message caccept authenticated with the shared key concatenated with the random value
(r). To this end, both provers established a secure channel with the shared key Kij .
Next, Pj either extends the tree and thus acts as an intermediate prover, or it finishes
the tree construction process thus acts as a leaf prover. A prover acts as a leaf prover in
two cases: either it does not accept any children (i.e., climit = 0) or its invite message
is timed out without receiving any response from its neighbors. The details of the tree
construction messages are shown in Figure 7.3. The secure channels established between
parent nodes and children nodes in the tree are used next to transmit the attestation
messages.

118

Chapter 7. Fairness-Driven Remote-Attestation

 attestationReceived():

 If MAC Then:
 aggregateAttestation()

 If Then:
 sendAttestation(a)

 attestionReceived()

 validateProvers():

 If MAC Then:
 getValidProvers()
 updateState()

 (Initiator prover) (Intermidiate prover) (Leaf prover)

 sendAttestation():
 generateProof()

 aggregateAttestation(a, a')

 authSend()

 (Controller)

Figure 7.4: Attestation collection in FADIA’s attestation phase.

Algorithm 1 Aggregation of two attestations.
ax = {proofa : uidsa, proofb : uidsb, ...}
uidsx ⊂ {uid1, uid2, ..., uidn}
Algorithm aggregateAttestation(a1, a2)

res← a1
for proof, uids in a2 do

if |uids| = αg then
a2 ← a2 \ {proof : uids}
a2 ← a2 \ {proof : uids}

else
for proof ′, uids′ in res do

if |uids|+ |uids′| < αg then
a2 ← a2 \ {proof : uids}
res← res \ {proof ′ : uids′}
res← res ∪ {proof ⊕ proof ′ : uids ∪ uids′}
break

for proof, uids in a2 do
res← res ∪ {proof : uids}

7.6.3.2 Attestations collection

The leaf nodes send attestation messages (attst) to their parents. The attestation message
of Pi contains the generated proof which is computed as follows:

generateProof() : proof ←MAC(Kic, uid || cntr || treeid) (7.3)

where cntr is a counter that is incremented each time Pi attests. Parent nodes aggregate
the attestation messages from their children using the function aggregateAttestation().
Similarly, the new attestation message is sent to the parent and processed. This is
repeated until the initiator prover receives all the aggregated attestation messages. It
then sends the final attestation message to the controller. An attestation message is
composed of multiple sets of prover ids. The number of provers in a set is controlled by
the parameter αg. Each set is linked with a single proof which is the XOR of all proofs
provided by the provers in that set. The algorithm that describes aggregateAttestation()
is depicted in Algorithm 1.

The granularity of the aggregation of the attestation is parameterized by αg. If αg is
0, then none of the proofs are XORed, and thus, all individual proofs are transmitted to
the controller. If αg is larger than the number of provers participating in the tree, all
proofs are XORed forming a single proof for all provers.

119

Chapter 7. Fairness-Driven Remote-Attestation

When C receives the aggregated attestation it validates the proofs. For each set, it
computes the MAC according to equation 7.3 using the unique keys (Kjc) of each prover
Pj . For each verified aggregated proof, the status of all provers in the set is updated.
More specifically, C updates the time of the last proof received from these provers by the
current time. We show the attestations collection details in Figure 7.4.

7.6.4 Key Revocation Phase

When prover Pi becomes “unhealthy”, it cannot be trusted anymore. So it is required
by C to revoke all the shared keys between Pi and the other provers. Since C knows the
ids of all the keys in the keyrings of all provers, it can find out the affected devices (i.e.,
the ones which share at least a key with the “unhealthy” device). C sends a revocation
message (revk) to each of them. The message contains the uid of the receiving prover,
and the set of key ids that should be revoked. revk is authenticated with a MAC using
Kic of the corresponding prover.

revk ← cid ||uid || affectedKeys() (7.4)

When a prover receives revk, it removes the affected keys from its keyring. When the
size of its keyring goes under a certain threshold θ, the prover goes to the offline state
and requires reinitializing to go back online.

7.6.5 Role of the score function

The fairness by design approach can be achieved thanks to the tuning of mainly two
parameters set with the help of the score function: climit and δc. this allows configuring
the behavior and the computation load of each prover during the attestation phase and
their correct setting hence ensuring a fair distribution of the load caused by FADIA on
the active devices.

The first parameter climit represents the number of children a prover can hold during
one attestation round in the virtual attestation tree. The number of children has a
direct impact on the amount of load put on the prover. The load involves the use of
cryptographic tools (MACs) to establish a secure channel with each child and forward
the attestation proofs.

The second parameter δc is the time at which a prover waits to receive the invitation
message (invite) before it decides to start its own tree and sends invite itself. It is
important to mention here that when a prover finishes an attestation round, it can switch
to a sleeping state since it has completed its attestation for this round. Research on
wireless ad-hoc networks has studied the scheduling of the nodes sleeping state to optimize
the network lifetime [MM08]. Inlighted by these studies we control the sleeping time of
a prover based on a fair policy. In FADIA for each attestation round, a prover is first
actively waiting for invitation messages, then performs the requested attestation operation
in the tree and finally switches to a sleep state until the next round. Consequently, δc is
a critical parameter that influences directly the average amount of time a prover spends
in the sleep state and hence optimizes its resource consumption. Research has shown

120

Chapter 7. Fairness-Driven Remote-Attestation

that being in an active state (listening or sending) can be intensively resource-consuming
compared to being in a sleep state [KJ19]. Therefore, δc parameter is also used to control
the amount of load on a prover in FADIA.

In FADIA, these two parameters are calculated at runtime by each prover. Their
corresponding values are updated at each round of the attestation phase using the score
function. We present examples of how to build this function depending on the scenario
of deployment in section § 7.8.3.

7.7 Security Analysis

The main goal of an adversary is to perform malicious activities and evade detection.
However, a remote attestation scheme should identify the presence of malicious actors
in the network to safeguard the network’s operations. We consider the system secure if
an attacker cannot forge a “healthy” state of a “non-healthy” prover. The remainder of
this section informally discusses the security of FADIA w.r.t. adversarial assumptions
mentioned in 7.5.

Attacks Performed by As:

• Spoofing attacks: FADIA is immune to attackers trying to spoof a prover’s identity.
Since all message exchanges are protected by keys stored in an inaccessible location
for software attackers and can only be accessed through TA, an attacker will not be
able to produce authenticated messages without the keys from the key ring. Please
note that the invite message is an exception, as this message is not authenticated.
However, this does not affect the security of FADIA since attackers spoofing this
message will not be able to complete the 3-way handshake, (i.e., respond with a
valid caccept).

• MITM attacks: FADIA will identify this attack as it suffers the same limitations
as spoofing attacks. As using this attack technique will not be able to manipulate
messages without being detected since the integrity of these messages is ensured
using the keys from the key rings that are protected by TA.

• Replay attacks: FADIA prevents replay attacks since all messages are unique and
cannot be used twice without being detected. Specifically, freshness is guaranteed
in invite messages thanks to using a timestamp in the treeid. Similarly, iaccept
and caccept includes randomness for each prover-to-prover communication. Further,
attst messages are also resilient to replay attacks since they contain a counter which
is incremented at each attestation round.

• DoS Attacks: Although FADIA does not include these types of attacks in its threat
model, it is worth noting that FADIA can detect the effect of such attacks. This is
because As performing DoS attacks on a prover (or prover group) will prevent the
attestation of these provers. The controller will, therefore, inevitably discover a
missing attestation from the provers under attack.

121

Chapter 7. Fairness-Driven Remote-Attestation

Table 7.3: Benchmarks and energy consumption measurements of cryptographic func-
tionalities of FADIA when implemented on Tmote Sky and Raspberry PI 2 devices.

HMAC-SHA256 SHA256
Time (ms) Energy (mJ) Time (ms) Energy (mJ)

PI 2

32 B 0.068 - 0.025 -
4 KB 1.075 - 1.049 -
8 KB 2.083 - 2.032 -
32 KB 8.131 - 8.079 -

SKY
32 B 63.28 0.3384 15.54 0.0862
4 KB 1035 5.5908 988 5.3388
8 KB 1998 10.7892 1960 10.6128

Attacks Performed by Ah In addition to software adversaries, hardware adversaries
have the ability to tamper with a device to extract the keys from its keyring or alter
the attestation code. Under the assumption that a hardware adversary needs to take
the system offline for at least a δh duration, FADIA provides resilience against these
attackers. This is because FADIA requires that within every δh period, each prover
provides evidence of its “healthiness”. This helps the network owner to ensure that the
provers are not taken offline and thus not corrupted. On the other hand, a hardware
adversary may use leaked keys to attack other provers sharing the same key. However,
the key revocation process ensures that if a prover no longer participates in the protocol,
these keys are revoked. Additionally, even if an attacker leaked all the key materials from
a prover, the attacker will not be able to forge legitimate proof as this forgery involves
the targeted prover’s Kic. The state of a “unhealthy” device will thus not be forged by
Ah.

7.8 Performance Analysis

In this section, we evaluate the performance of FADIA in a heterogeneous network and
demonstrate the advantages originating from its fairness-driven approach by evaluating
the energy consumption, the computational cost and the bandwidth. We further study
its performance in a homogeneous network and show that even in this case, FADIA
outperforms the relevant state-of-the-art solutions, namely PASTA [KBK19] and SALAD
[KBK18].

7.8.1 Implementation of FADIA on Tmote Sky and Raspberry PI 2

To illustrate heterogeneity, we implement FADIA on two types of devices: Tmote
Sky [Cor16] and Raspberry PI 2. The Tmote Sky which represents a resource-constrained
device is equipped with an 16-bits 8 MHz msp430 MCU, 10 KB of RAM, and 48 KB of
non-volatile memory. On the other hand, the Raspberry PI 2 is more powerful as it is
equipped with a 900MHz quad-core ARM Cortex-A7 CPU, 1 GB of RAM, and 32 GB of
non-volatile memory. Both types of devices are equipped with CC2420 RF transceivers.

122

Chapter 7. Fairness-Driven Remote-Attestation

The CC2420 chip operates on 2.4 GHz and is compliant with IEEE 802.15.4 standards.
We do not follow a certain security architecture for implementing FADIA on the devices.
However, FADIA can be implemented based on any security architecture. Previous
research has shown that achieving a security architecture on sensor devices is indeed
possible [EFPT12,BES+15,DRT17,NBM+17]. In our implementation, and without loss
of generality, an ARM TEE can be used for the Raspberry PI, and TYTAN [BES+15]
can be used for the Tmote Sky. We use HMAC-SHA256 for authenticating the messages
and creating the proofs. We use the SHA256 of the device’s firmware as the software
configuration hash (sch).

In order to conduct our study, we first evaluate the cost of one attestation round for
a prover in terms of the execution time and the energy consumption of FADIA. Since
one round mainly involves MAC and hash computation operations, we have obtained
some benchmarks on HMAC-SHA256 and SHA-256 respectively. Results are shown in
Table 7.3. As expected, Tmote Sky takes more time to generate attestation proofs. We
also benchmark the throughput and the round-trip time (RTT) of the CC2420 transceiver
in a real environment. The throughput on the application layer is 25.2 Kbps and the
RTT is 61.4 ms.

7.8.2 Environment for Experimental Evaluation

We first evaluate FADIA on a heterogeneous network to measure the influence of fairness
on the performance in terms of energy consumption and computational cost. To evaluate
the benefits of fairness, we consider two variants of FADIA. Variant (1) with fairness
activated and variant (2) without fairness. Our results show that fairness improves
the lifetime of the network and the runtime of the RA protocol. We then evaluate the
performance of FADIA on a homogeneous network in terms of storage, computation
and communication cost. Our results show that FADIA outperforms the state-of-the-art
solutions. Additionally, we evaluate the robustness of FADIA against selfish provers. We
also evaluate the efficiency of the revocation phase. We perform our simulations using
the Omnet++ simulator [VH08]. We implement FADIA on the application layer of the
devices 1. For the lower layers, we use a simplified medium access control version which
makes sure that no device within the communication range transmits at the same time.
Provers communicate in a half-duplex fashion and store messages in queues when the
medium is busy.

7.8.3 Evaluation in Heterogeneous Networks

Test Case 1: Optimizing the energy consumption To measure the optimization of energy
consumption, we simulate FADIA on 500 Tmote Sky sensors acting as provers. sch is set
as the SHA256 hash of the firmware of size 30 KB. The network and cryptographic delays
are set according to the values measured in Table 7.3. Additionally, we consider a simple
energy consumption model: The model updates the current energy consumption based

1The C++ implementation of FADIA for Omnet++ can be found at https://github.com/

MohamadMansouri/FADIA

123

https://github.com/MohamadMansouri/FADIA
https://github.com/MohamadMansouri/FADIA

Chapter 7. Fairness-Driven Remote-Attestation

0 10000 20000 30000 40000
Time (sec)

0

200

400

600

800

1000

R
es

id
ua

l E
ne

rg
y

(J
ou

le
)

0 10000 20000 30000 40000
Time (sec)

0

200

400

600

800

1000

(a) Energy trace

20 40 60 80 100
% Initial Energy

20

40

60

80

100

%
 C

on
su

m
ed

 E
ne

rg
y

(b) Consumed energy

0 20 40 60
% selfish provers

2

4

6

8

10

Ti
m

e
(h

ou
rs

)

1st crash
3rd crash
5th crash

(c) Selfishness experiment

Figure 7.5: Evaluation of the energy consumption. (a) the residual energy over time.
w/ (left side) and w/o (right side) activating fairness. (b) the average consumed energy
w.r.t. initial energy after 16.6 hours of running FADIA with fairness activated. The
green-colored area represents the residual energy and the orange-colored area represents
the consumed energy at the end of the experiment. (c) the time taken until 1st, 3rd, and
5th crash (energy depletion at a prover) with different percentages of selfish provers in
the network. Dotted lines represent the results when fairness is not activated.

on the status of the transceiver and the microcontroller of the prover. The transceiver
can either be transmitting, listening, or OFF. Similarly, the microcontroller can either
be ON or idle. For each of the following statuses, the energy is computed according to
the energy measurements shown in Table 7.4. The provers move in a random waypoint
model at a linear speed uniform between 1mps and 2mps in a 300m× 300m area. Each
of the provers is equipped with a battery of 1000J max capacity. The initial energy
level a prover starts with is chosen randomly (uniformly [100J , 1000J]). Evaluation of
different random distribution functions for the initial energy are shown in appendix B.1.
Note that the maximum capacity of an alkaline AA battery is around 13, 000J . But we
use 1000J as the maximum capacity for the seek of the feasibility of the experiment. We
run FADIA for 60, 000 seconds. For variant (1) of FADIA we implement the score() to
return the current battery level of a device. Alternatively, for variant (2) score() always

124

Chapter 7. Fairness-Driven Remote-Attestation

STATE Energy Consumption

MCU ON 0.0054 J
TX 0.0585 J
RX 0.0654 J
IDLE 0.00016 J

Table 7.4: Energy consumption of Tmote Sky devices while in different states. MCU
ON represents a state where the microcontroller performing computations. TX and RX
represents the CC2420 state while transmitting or receiving respectively. IDLE represents
and idle state where the transceiver is off and the MCU is in low power mode. Data
taken from Tmote Sky datasheet [Cor16].

returns 0.5.

We measure the consumption of energy of each prover with respect to time. Figure
7.5a shows the energy traces of the provers in both variants of FADIA. As expected,
variant (2) of FADIA (i.e. fairness is not activated), shows a fast depletion of the energy
of all the provers while for variant (1), most of the provers remain active after 40, 000
seconds. The reason for the fast depletion of energy in the “unfair” protocol (i.e. variant
2) is that provers with low energy are treated indifferently from high energy provers. This
leads to putting a significant load on these devices due to the high (i.e. unfair) number
of children they need to collect attestations from. Moreover, since δc is not adapted to
the energy level of the device, provers may spend more time waiting to be invited to a
tree construction process. This keeps the transceivers of these devices in the listening
state for a longer time instead of switching sooner to the OFF/idle state. This brings
a serious problem since the part that mostly consumes energy in sensor devices is the
transceiver. This is the case for Tmote Sky as shown in Table 7.4. Notice that, when
provers with low battery crash, this decreases the number of provers in the network and
causes fewer tree constructions to appear, causing a domino effect and faster depletion
for other devices. Differently, in the case of FADIA variant (1), the low battery provers
preserve their the energy which prevents the early loss of provers.

We also look into the consumed energy of the provers at the end of the experiment (i.e.,
after 16.6 hrs). We group provers that had similar initial battery levels at initialization
and we measure their average consumed energy level after the experiment. Figure 7.5b
shows the relation between the consumed energy with respect to the initial energy. The
graph shows that provers with high initial battery levels (more than 50%) consumed
more energy than provers with fewer initial battery levels thus providing a longer lifetime
to the network. Additionally, we measure the time taken until we detect 1st, 3rd and 5th
crash of a prover (i.e., its energy is completely depleted). We observe that the lifetime of
the provers in a fair protocol is an order of magnitude longer.

Test Case 2: Optimizing the runtime To measure the optimization of the runtime
achieved thanks to fairness, we evaluate the runtime of FADIA on heterogeneous static
tree topology. In this scenario, we use two types of devices such that 50% of provers

125

Chapter 7. Fairness-Driven Remote-Attestation

0 2K 4K 6K 8K 10K
Provers

0

20

40

60

80

Ru
nt

im
e

(s
ec

)
Fair
Unfair

Figure 7.6: Runtime of FADIA with (in green) and without (in orange) fairness integrated
in dynamic network.

are Tmote Sky (MSP430) devices and the other 50% are Raspberry PI 2 devices. Both
types of devices use the same transceiver (CC2420). We use the throughput, network
delay, and the cryptographic delays for each type of device according to the benchmarks
measured in table 7.3. We measure the time taken from the start of the tree construction
until the final attestation is sent from the root node to the collector. The function
score() is defined such that it returns 0.05 for the MSP430 provers and 1 for Raspberry
PI provers. Accordingly, the number of accepted children (climit) will be 1 for the less
powerful provers and 20 for the powerful ones. On the contrary, we simulate FADIA
variant (2) which assigns 10 children for each prover regardless of its type. Figure 7.6
shows the runtime results of both approaches with respect to a varying number of provers
in the network. The results show that FADIA with fairness option can run 1.6 faster in
static topologies.

7.8.4 Evaluation in Homogeneous Networks

Memory consumption of FADIA Each prover in FADIA stores one key ring. The storage
consumption derived from the key ring is (4B + 32B) × R, where R is the size of the
keyring. The prover also stores uid (4B), the controller key kic (32B), the attestation
counter cntr (4B), and other FADIA parameters (20B). The total memory consumption
is 56 + 36×R Bytes. For example, with a key ring of size 300, this results in 10.6KB of
memory. It is worth noticing that the memory consumption depends only on the key
ring size and is independent of the number of provers on the network. This provides very
high scalability compared to most of the state-of-the-art solutions that incur a cost linear
to the number of provers. Our experimental study shows that FADIA can run on 10, 000
provers while each of them consumes only 10.6 KB which is significantly low compared
to PASTA with 780KB of memory usage and SALAD with 365KB.

126

Chapter 7. Fairness-Driven Remote-Attestation

0 200K 400K 600K 800K 1M
Provers

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e

(s
ec

)

0 2K 4K 6K 8K 10K
Provers

0

50

100

150

200

R
un

tim
e

(s
ec

)

1.5 1.7 1.9 2.9

FADIA
PASTA

2-ary tree
4-ary tree

8-ary tree
grid

chain
ring

Figure 7.7: Runtime of FADIA and PASTA with a different number of provers in tree,
grid, chain, and ring topologies.

Runtime of FADIA To measure the runtime for FADIA, we have implemented the
protocol in a static network defined under four common topologies: the tree, chain, ring
and grid topologies. We consider the construction of a single attestation tree where all
provers participate in it. The running time is evaluated by measuring the time it takes
until the report is collected by the controller. For a fair comparison with the state-of-
the-art, the scenario, the types of devices, the network delays and the cryptographic
benchmarks are all set as the ones used in the evaluation of PASTA protocol in [KBK19].
We use ESP32-PICO-D4 devices in the simulation as provers and set the size of their
firmware to 50KB. The throughput of the provers on the application layer is 12.51 MB/s
and the round trip time is 4.63 ms. The time a device takes to generate the proof is
set according to Table B.1 in the appendix. The provers perform 10 attestation rounds
and the runtime of the attestation is averaged. The position of the nodes is randomized
between rounds to force reinitialization of the tree construction. We set the keyring size
r = 300, and αg = inf . Figure 7.7 shows the runtime results of FADIA and PASTA.

We observe that FADIA shows a low runtime in tree topologies. It can attest 1, 000, 000
provers in less than 2 seconds in a 4-ary tree. The runtime of FADIA and PASTA are
close to each other in a tree topology since most of the attestation time corresponds
to network delays. Moreover, FADIA shows better performance at higher degree trees
because messages are broadcasted during the construction of the attestation tree, whereas
for PASTA, one-to-one tree commitment requests are sent from the prover to its neighbors.
Additionally, FADIA is faster than PASTA by approximately 17 times for grid topologies
and 1.3 times for ring topologies. In grid topologies, the tree construction results in an
unbalanced tree. This creates a problem for PASTA since the tree construction happens
in two steps. In the first step, all provers first commit to the tree. Then in the second
step, all provers receive the aggregated commitment. This requires all provers to wait
for the tree construction to finish before they start attesting. FADIA does not have this

127

Chapter 7. Fairness-Driven Remote-Attestation

0 100 200 300 400 500
Provers

0

5

10

15

20
D

at
a

Se
nt

 (K
B

)

100 200 300 400 500
Provers

1

2

3

4

D
at

a
Se

nt
 (K

B
)

SALAD-Simple
SALAD-Greedy
SALAD-Smart

αg=1, r=300, p=100K
αg=4, r=300, p=100K
αg=∞, r=300, p=100K

αg=1, r=100, p=10K
αg=∞, r=100, p=10K

Figure 7.8: Average amount of data sent by a prover during one round of attestation in
FADIA and SALAD protocols.

problem since the leaf nodes can immediately send their attestations without waiting for
the tree construction to finish. On the other hand, PASTA outperforms FADIA in chain
topologies with a large number of provers (i.e., > 8000). This is explained by the fact
that in FADIA, every prover sends all the key ids in the keyring to its neighbors which
turns to be not effective in large chain topologies. Fortunately, such topologies do not
often exist in real applications.

Bandwidth consumption of FADIA We evaluate the bandwidth consumption of FADIA
in a dynamic network. We consider devices moving in a random waypoint model (i.e.,
provers choose random destinations and move toward them) at a linear speed uniform
between 1mps and 2mps. The provers move in an area of 500m× 500m. We measure the
average amount of data sent and received by a prover in an attestation round (i.e., for
all provers to attest). Notice that the scenario, the device type, the network delays and
the cryptographic benchmarks are all set the same as the ones used in the evaluation of
SALAD protocol in [KBK18]. We use Stellaris LM4F120H5QR devices in the simulation
as provers and set the size of their firmware to 30KB. The throughput of the provers
on the application layer is set to 35.0 kbps and the round trip time is set to 15ms. The
cryptographic delays are set according to Table B.1 in the appendix. We choose the value
of αg as 1, 10, and infinity. We also use different values for the keyring and pool sizes:
more specifically we set r = 100, p = 10, 000 and r = 300, p = 100, 000. Both cases give
the same connectivity of the graph being Ps = 0.6 (see 7.4). Figure 7.8 shows the results.
In particular, the results show that FADIA has highly scalable bandwidth consumption
since the data consumption is nearly constant with respect to the number of provers. It
also shows that the bandwidth consumption depends mostly on the size of the keyring.
However, this cost always remains less than the average consumption of SALAD increases
linearly with the number of provers in the network.

128

Chapter 7. Fairness-Driven Remote-Attestation

7.8.5 Evaluation with Selfish Provers

We evaluate the impact of selfish provers on the lifetime of the network (time till 1st, 3rd
and 5th crash of a prover). A selfish prover is a prover that does not will to participate in
the tree-generation process. It thus greedily attests individually to the controller and goes
to sleep state as early as possible. Note that such extreme selfish behavior can be easily
detected. We consider this extreme case to evaluate the worst-case scenario. A more
careful selfish prover will still collaborate however less than it is supposed to. We consider
the same energy consumption scenario in Test Case 1 (see 7.8.3). However, selfish
provers are chosen with an initial battery level greater than 250J . Figure 7.5c shows the
results with different percentages of selfish provers. We observe that FADIA is robust
against selfishness. This is because the lifetime drops significantly only when more than
40% of the provers are selfish. With a high number of selfish provers, the performance
degrades since there is a sort of race toward the collector to provide attestation. This
creates too much contention between provers accessing the wireless medium leading to
the attestations being delayed.

7.8.6 Evaluation of the Revocation Phase in FADIA

The revocation phase starts when a prover is dropped from the network. The controller
detects the event during the next δh time and sends a revocation message revk to all the
affected provers. To measure its efficiency, we evaluate the following:

• (E1) The number of provers affected when a device is dropped.

• (E2) The number of connections affected.

• (E3) The number of keys revoked for each prover.

• (E4) Time taken until all affected provers receive the revocation.

E1 is estimated as the number of provers in the network multiplied by the probability
of two provers being connected (n×Ps). This means that the average number of affected
devices is proportionally tied to the connectivity of the provers in the network. An
example of a keyring of size 300 and a key pool of size 100,000 gives Ps = 0.6, thus in
this example 60% of the provers are affected by the revocation process. However, this
is not a problem since most of the keys revoked at the prover are not actually used.
Therefore, a more important metric to look into is the average number of connections
affected (i.e., connections established using a key that is revoked). This is equal to
c× r/p which estimates E2 (c is the total number of connections established at the time
of the revocation). Following our example, the averaged affected connections will be only
0.003× c thus only 0.3% of the current connections need to be re-established. Third, E3

estimates the expected amount of decrease in the size of a keyring on each revocation
process and it is equal to the following:

K∑
i=0

∏i−1
j=0 (K − j)×

∏K−i−1
j=0 (P −K − j)∏K−1

j=0 (P − j)
× i×

(
i

K

)
(7.5)

129

Chapter 7. Fairness-Driven Remote-Attestation

100 200 300 400
Keyring size (r)

0

2

4

6

8
#

 R
ev

ok
ed

 K
ey

s

0.0

0.2

0.4

0.6

0.8

1.0

C
on

ne
ct

iv
ity

 (P
s)

P = 10K
P = 100K

P = 1M
Connectivity

Revokation

(a) Number of revoked keys when one proved
is removed

0 200 400 600 800 1000
Provers

0

25

50

75

100

Ti
m

e
(s

ec
)

1 prover dropped
2 provers dropped
3 provers dropped

4 provers dropped
5 provers dropped

(b) Revocation time

Figure 7.9: Revocation efficiency. (a) shows the number of revoked keys per prover
with respect to different key ring sizes. (b) shows the average amount of time taken till
the revocation process is completed with respect to a variable number of provers in the
network.

We demonstrate this equation in Figure 7.9a. The figure shows the relation between
the average number of keys revoked per prover and the connectivity of the graph with
respect to different keyring sizes and key pool sizes. We can see that for r = 300 and
p = 100, 000, 0.8 keys are revoked per prover on average. It thus requires 190 provers
to drop for an active prover to revoke half of its keys. Finally, to evaluate E4, we run
a simulation in which we deploy FADIA in a network of provers and we set r = 300
and p = 100, 000. During the run of the protocol, we start the revocation process at a
random point in time. We measure the time it takes till all provers receive the revocation
message. We also consider cases where multiple revocations start simultaneously. Results
are shown in Figure 7.9b. The revocation process increases linearly with the number
of provers in the network and is performed within 34 seconds for 1,000 provers. When
multiple provers are dropped simultaneously, the revocation time scales linearly with the
number of dropped provers.

7.9 Conclusion on Fairness-Driven Remote-Attestation

In this chapter, we proposed FADIA, a lightweight collaborative attestation protocol
that can be deployed on heterogeneous networks of IoT devices. FADIA is the first RA
protocol that integrates fairness in its design and deploys a scalable key management
mechanism based on E-G scheme. We show that fairness is an important feature of remote
attestation protocols. It can increase the performance of the protocol by a factor of 1.6 in
a network where Tmote Sky sensors and Raspbery PIs coexist. Additionally, the lifetime
of the network can increase by an order of magnitude, thus achieving fewer failures. We
also show that FADIA outperforms the state-of-art solutions in terms of scalability on

130

Chapter 7. Fairness-Driven Remote-Attestation

networks of a large number of provers. Finally, we evaluated the efficiency of the key
revocation in FADIA. Our results show that the key management in FADIA offers a good
tradeoff between the efficiency of adding and removing provers to the network.

131

Chapter 7. Fairness-Driven Remote-Attestation

132

Chapter 8

Final Conclusion and Future Work

8.1 Conclusion

In this thesis, we have studied the design of security protocols that are suitable for IoT.
We focused on two security protocols: Secure Aggregation and Remote Attestation. We
observe that the existing secure aggregation protocols suffer from several limitations
when used in IoT context. Namely, the existing SA protocols do not consider malicious
users. We argued that this type of solution does not fit IoT use cases since the devices
may be compromised. Moreover, we identified that existing SA protocols do not cope
with the dropouts of users. This poses a limitation for these solutions due to their large
scale where failures of some devices are inevitable. On the other hand, we observe that
existing remote attestation protocols are also not suitable for IoT. The major challenges
facing the efficient design of RA protocols are the heterogeneity of IoT devices and the
dynamic nature of the IoT network. Therefore, this thesis proposed solutions that fix the
limitations of the existing work for secure aggregation and remote attestation.

For secure aggregation protocols, we proposed VSA as a new secure aggregation
protocol that considers a stronger threat model than existing SA protocols. VSA
preserves the privacy of the users’ input and guarantees the correct computations of the
aggregation result even when the aggregator and few users are acting maliciously. To
design VSA, we built over an existing work (PUDA [LEÖM15]) which considers only
a malicious aggregator and uses user-generated tags to verify the aggregation result.
To cover the case of malicious users, we integrated a newly designed tagging protocol
into PUDA. Our tagging protocol (which is secure in the malicious model) involves new
entities called taggers that issue the tags. The tagging protocol guarantees that only
honest users receive valid tags for their inputs. Therefore, thanks to the tagging protocol,
VSA ensures that neither the malicious users nor the malicious aggregator can produce
an incorrect aggregation result.

Additionally, we proposed FTSA as a new secure and fault-tolerant aggregation
protocol dedicated to federated learning application. FTSA allows a robust computation
of the aggregation result even when some users drop during the aggregation process.
To build our new solution, we improved the Joye-Libert secure aggregation scheme
(JL [JL13]) and proposed a threshold variant of it (TJL). Our new TJL uses an Integer

133

Chapter 8. Final Conclusion and Future Work

Secret Sharing scheme (ISS see Section 2.3.1) and it allows a threshold number of users
to protect a zero-value on behalf of other users. FTSA leverages TJL scheme to recover
the aggregation result by enabling online users to submit protected zero-value on behalf
of the offline ones. We deployed FTSA in the context of federated learning and compared
it with the state-of-the-art. Our evaluation showed that FTSA can scale better than all
existing solutions and it achieves the theoretical limit in terms of scalability with respect
to both the number of users and the size of the machine-learning models.

Last and not least, we proposed FADIA as a new collaborative remote attestation
protocol with fairness integrated into its design. FADIA enables the fair distribution
of attestation load/tasks to achieve better performance. We show that fairness is an
important feature for remote attestation protocols. Fairness can increase the performance
of the protocol by a factor of 1.6 in a network where Tmote Sky sensors and Raspbery
PIs coexist. The lifetime of the network can increase by an order of magnitude, thus
achieving fewer failures. We also show that FADIA outperforms the state-of-art-solutions
in terms of scalability.

8.2 Future Work

In this thesis, we studied secure aggregation and remote attestation protocols. Possible
future research directions to investigate for each of the solutions can be listed below:

• The verifiable secure aggregation protocol (VSA) proposed in this thesis is secure
under static corruptions. To achieve security under adaptive corruptions we need to
improve the design of our protocol to cover adversaries that may corrupt honest users
during the execution of the protocol. In the current design, we build our tagging
protocol over an OT protocol [CO15] which is secure in the static corruption model.
To replace this protocol with an OT protocol secure under adaptive corruptions,
we need a technique to still be able to compute the tags from the OT messages as
done in the current design.

• The verifiable secure aggregation protocol (VSA) proposed in this thesis verifies
the users’ inputs by checking that they are less than an upper bound. In some
applications, it might be required to check a more complex condition on the inputs.
Fortunately, our solution uses garbled circuit to implement this condition which
can be generalized to a circuit that checks any predicate. It is interesting to study
what predicates are useful for secure aggregation and their implementations.

• The fault-tolerant secure aggregation protocol (FTSA) proposed in this thesis
presents a method to compute protected inputs on behalf of offline users. To
achieve fault tolerance in the case of verifiable secure aggregation solutions, it is
possible to use the same approach to compute the tags on behalf of offline users.
However, we need some distributed zero-knowledge proof techniques to prove that
the computed ciphertext is an actual protection of zero-value.

• In this thesis, we studied secure aggregation as a solution to preserve the privacy of
clients in federated learning. However, as discussed in Chapter 5, secure aggregation

134

Chapter 8. Final Conclusion and Future Work

should be used with differential privacy to achieve better privacy guarantees. Thus,
studying the suitability of differential privacy techniques with secure aggregation is
an interesting area of research that complements our work.

• The collaborative remote attestation protocol (FADIA) proposed in this thesis
improves the performance of the RA by optimizing the management of the attesta-
tion between provers. Research work on the trusted execution environment which
runs the attestation code and the integrity-checking algorithm can also lead to a
significant improvement of RA protocols for IoT.

135

Chapter 8. Final Conclusion and Future Work

136

Appendices

137

Appendix A

Appendices for Chapter 6

A.1 Detailed Measurements of the Running Time

We show in Table A.1 the running time of each of the phases of our protocol for the
clients and the server.

Table A.1: Wall-clock running time for the clients and the server for our protocol. The
dimension is fixed to m = 10000.

Clients Failures Registeration KeySetup Encryption Aggregation

C
li
en

t

100
0% 1.08 ms 1607 ms 976 ms 18.6 ms
30% 0.86 ms 1583 ms 966 ms 1071 ms

300
0% 0.90 ms 4730 ms 1234 ms 56.8 ms
30% 0.94 ms 4718 ms 1233 ms 1642 ms

600
0% 0.89 ms 9202 ms 1733 ms 109 ms
30% 0.92 ms 8754 ms 1630 ms 2346 ms

S
er
ve
r

100
0% 0.005 ms 1.98 ms 1.97 ms 1235 ms
10% 0.007 ms 1.75 ms 1.7 ms 25196 ms
30% 0.009 ms 1.63 ms 1.65 ms 19176 ms

300
0% 0.018 ms 16.6 ms 16.2 ms 7887 ms
10% 0.009 ms 16.9 ms 15.9 ms 294910 ms
30% 0.009 ms 17.4 ms 16.1 ms 226290 ms

600
0% 0.016 ms 109 ms 102 ms 41057 ms
10% 0.017 ms 116 ms 105 ms 1357778 ms
30% 0.014 ms 96.7 ms 100 ms 962070 ms

A.2 Detailed Measurements of the Data Transfer

We show in Table A.2 the size of the transferred data in each of the phases of our protocol.

139

Appendix A. Appendices for Chapter 6

Table A.2: Data transfer per client for our protocol. The dimension is fixed to m = 10000.

Clients Failures Registration KeySetup Encryption Aggregation

100

0%
sent 0.13 KB 32.84 KB 62.47 KB 1.96 KB
rcvd − KB 45.73 KB − KB 5.46 KB
total 0.13 KB 78.57 KB 62.47 KB 7.42 KB

30%
sent 0.13 KB 32.84 KB 62.46 KB 58.81 KB
rcvd − KB 45.73 KB − KB 3.81 KB
total 0.13 KB 78.57 KB 62.46 KB 62.62 KB

300

0%
sent 0.13 KB 135.95 KB 79.00 KB 5.86 KB
rcvd − KB 174.62 KB − KB 16.50 KB
total 0.13 KB 310.57 KB 79.00 KB 22.36 KB

30%
sent 0.13 KB 135.95 KB 79.00 KB 67.09 KB
rcvd − KB 174.62 KB − KB 11.53 KB
total 0.13 KB 310.57 KB 79.00 KB 78.62 KB

600

0%
sent 0.13 KB 400.79 KB 97.30 KB 11.72 KB
rcvd − KB 478.13 KB − KB 33.05 KB
total 0.13 KB 878.92 KB 97.30 KB 44.77 KB

30%
sent 0.13 KB 400.78 KB 97.30 KB 72.96 KB
rcvd − KB 478.13 KB − KB 23.12 KB
total 0.13 KB 878.91 KB 97.30 KB 96.08 KB

140

Appendix B

Appendix for Chapter 7

B.1 Energy consumption evaluation

20 40 60 80 100
% Initial Energy

20

40

60

80

100

%
 C

on
su

m
ed

 E
ne

rg
y

(a) Normal distribution

20 40 60 80 100
% Initial Energy

20

40

60

80

100

%
 C

on
su

m
ed

 E
ne

rg
y

(b) Pareto distribution

Figure B.1: Evaluation of the fairness in energy consumption for 500 provers. Figures
show the average percentage of consumed energy with respect to the percentage of initial
energy. Details of the experiment are shown in section 7.8.3 (a) the initial energy of
the provers is chosen following a normal distribution (µ = 500, σ = 200). (b) the initial
energy of the provers is chosen following a shifted Pareto distribution (80% of the provers
has an energy between 100J and 300J. The rest has an energy between 300J and 1000J).

141

Appendix B. Appendix for Chapter 7

Normal Uniform Pareto0

5

10

15

Ti
m

e
(h

ou
rs

)

1st
3rd

5th

1st 3rd 5th

1st

3rd 5th

Fair
Unfair

Figure B.2: Time taken until 1st, 3rd, and 5th crash is seen in a network of provers
running FADIA with (in green) and without (in orange) fairness integrated.

B.2 Benchmarks of ESP32-PICO-D4 Devices and Stellaris LM4F120H5QR
Microcontrollers

ESP32-PICO-D4 LM4F120H5QR

Function Size Time (ms) Size Time (ms)

SHA256 5 KB 13.171 32 KB 40.02

HMAC-SHA256
16 B 0.042 32 B 0.23

1024 B 0.301 32 kB 39.86

Table B.1: Benchmarks of SHA256 and HMAC-SHA256 with different input sizes on
ESP32-PICO-D4 devices and Stellaris LM4F120H5QR MCUs (data from [KBK19] and
[KBK18] respectively).

142

Bibliography

[AAB+17] Manos Antonakakis, Tim April, Michael Bailey, Matthew Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas,
and Yi Zhou. Understanding the mirai botnet. In Proceedings of the 26th
USENIX Conference on Security Symposium, SEC’17, pages 1093–1110,
USA, 2017. USENIX Association.

[AAD+16] T. Abera, N. Asokan, L. Davi, J. E. Ekberg, T. Nyman, A. Paverd, A. R.
Sadeghi, and G. Tsudik. C-flat: Control-flow attestation for embedded
systems software. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16. Association for
Computing Machinery, 2016.

[ABI+15] N. Asokan, F. Brasser, A. Ibrahim, A. R. Sadeghi, M. Schunter, G. Tsudik,
and C. Wachsmann. Seda: Scalable embedded device attestation. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15. Association for Computing Machinery,
2015.

[ABM+20] Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam
Soleimanian, and Hendrik Waldner. Multi-client inner-product functional
encryption in the random-oracle model. In Security and Cryptography for
Networks. Springer International Publishing, 2020.

[ÁC11] Gergely Ács and Claude Castelluccia. I have a dream! (differentially private
smart metering). In Information Hiding. Springer Berlin Heidelberg, 2011.

[ACF+18a] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan
Ursu. Multi-input functional encryption for inner products: Function-
hiding realizations and constructions without pairings. In Advances in
Cryptology – CRYPTO 2018. Springer International Publishing, 2018.

[ACF+18b] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan
Ursu. Multi-input functional encryption for inner products: Function-
hiding realizations and constructions without pairings. In Advances in
Cryptology – CRYPTO 2018. Springer International Publishing, 2018.

143

Bibliography

[ACI+16] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A. R. Sadeghi, and
M. Schunter. Sana: Secure and scalable aggregate network attestation.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16. Association for Computing Machinery,
2016.

[ACL+18] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani, and S. Ranise.
Pads: Practical attestation for highly dynamic swarm topologies. In 2018
International Workshop on Secure Internet of Things (SIoT), 2018.

[ADMC17] Muhammad Rizwan Asghar, György Dán, Daniele Miorandi, and Imrich
Chlamtac. Smart meter data privacy: A survey. IEEE Communications
Surveys Tutorials, 2017.

[AFS97] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable
bootstrap architecture. In Proceedings. 1997 IEEE Symposium on Security
and Privacy (Cat. No.97CB36097), 1997.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-
input inner-product functional encryption from pairings. In Advances in
Cryptology – EUROCRYPT 2017. Springer International Publishing, 2017.

[AMMK20] Sébastien Andreina, Giorgia Azzurra Marson, Helen Möllering, and Ghas-
san Karame. Baffle: Backdoor detection via feedback-based federated
learning. CoRR, abs/2011.02167, 2020.

[AMS+15] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. Hacking smart machines with
smarter ones: How to extract meaningful data from machine learning
classifiers. Int. J. Secur. Netw., 10(3), sep 2015.

[ASY+18] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and
H. Brendan McMahan. Cpsgd: Communication-efficient and differentially-
private distributed sgd. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18. Curran Associates
Inc., 2018.

[BBG+20] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Le-
point, and Mariana Raykova. Secure single-server aggregation with
(poly)logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’20. Association
for Computing Machinery, 2020.

[BEG+19] Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry
Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný,
Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning
at scale: System design. CoRR, abs/1902.01046, 2019.

144

Bibliography

[BEMGS17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine learning with adversaries: Byzantine tolerant gradient
descent. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17. Curran Associates Inc., 2017.

[BES+15] F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl.
Tytan: Tiny trust anchor for tiny devices. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015.

[BF01] Dan Boneh and Matthew Franklin. Efficient generation of shared rsa keys.
J. ACM, 48(4):702–722, jul 2001.

[BGLS03a] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Advances in
Cryptology — EUROCRYPT 2003. Springer Berlin Heidelberg, 2003.

[BGLS03b] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham,
editor, Advances in Cryptology — EUROCRYPT 2003. Springer Berlin
Heidelberg, 2003.

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. CCS ’17, pages 1175–1191, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[BJL16] Fabrice Benhamouda, Marc Joye, and BenôıT Libert. A new framework
for privacy-preserving aggregation of time-series data. ACM Trans. Inf.
Syst. Secur., 18(3), mar 2016.

[BLV+21] Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Küchler,
and Anwar Hithnawi. Rofl: Attestable robustness for secure federated
learning. CoRR, 2021.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic composition paradigm.
Journal of Cryptology, 21(4):469–491, Oct 2008.

[Bol02] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature scheme. In
Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003. Springer
Berlin Heidelberg, 2002.

[BSK+19] Keith Bonawitz, Fariborz Salehi, Jakub Konečný, Brendan McMahan,
and Marco Gruteser. Federated learning with autotuned communication-
efficient secure aggregation. In 2019 53rd Asilomar Conference on Signals,
Systems, and Computers, 2019.

145

Bibliography

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropou-
los. Sepia: Privacy-preserving aggregation of multi-domain network events
and statistics. In Proceedings of the 19th USENIX Conference on Security,
USENIX Security’10, page 15. USENIX Association, 2010.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Def-
initions and challenges. In Yuval Ishai, editor, Theory of Cryptography.
Springer Berlin Heidelberg, 2011.

[BT20] Constance Beguier and Eric W. Tramel. Safer: Sparse secure aggregation
for federated learning, 2020.

[BTL+21] Carlo Brunetta, Georgia Tsaloli, Bei Liang, Gustavo Banegas, and Aika-
terini Mitrokotsa. Non-interactive, secure verifiable aggregation for decen-
tralized, privacy-preserving learning. In Information Security and Privacy,
Cham, 2021. Springer International Publishing.

[BVH+20a] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How to backdoor federated learning. In Proceedings of
the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, 2020.

[BVH+20b] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How to backdoor federated learning. In Proceedings
of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine Learning Research.
PMLR, 2020.

[BWAA18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Ani-
mashree Anandkumar. signSGD: Compressed optimisation for non-convex
problems. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 560–569. PMLR, 10–15
Jul 2018.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5), sep 2020.

[CCMT09] Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik.
Efficient and provably secure aggregation of encrypted data in wireless
sensor networks. ACM Trans. Sen. Netw., 5, 2009.

[CDE+18] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. Spd Z2k : Efficient mpc mod 2k for dishonest majority. In
Advances in Cryptology – CRYPTO 2018. Springer International Publish-
ing, 2018.

[CDK+22] Megan Chen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield,
Abhi Shelat, and Ran Cohen. Multiparty generation of an rsa modulus.
Journal of Cryptology, 35(2), 2022.

146

Bibliography

[CDPG+10] M. Conti, R. Di Pietro, A. Gabrielli, L. V. Mancini, and A. Mei. The
smallville effect: Social ties make mobile networks more secure against node
capture attack. In Proceedings of the 8th ACM International Workshop
on Mobility Management and Wireless Access, MobiWac ’10. Association
for Computing Machinery, 2010.

[CDPMM08] M. Conti, R. Di Pietro, L. Vincenzo Mancini, and A. Mei. Emergent
properties: Detection of the node-capture attack in mobile wireless sensor
networks. In Proceedings of the First ACM Conference on Wireless Network
Security, WiSec ’08. Association for Computing Machinery, 2008.

[CERT17] X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik. Lightweight
swarm attestation: A tale of two lisa-s. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ASIA
CCS ’17. Association for Computing Machinery, 2017.

[CFPS09] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio
Soriente. On the difficulty of software-based attestation of embedded
devices. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09. Association for Computing Machinery,
2009.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation, NSDI’17.
USENIX Association, 2017.

[Cha88] David Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1988.

[CMS13] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-
based clustering based on hierarchical density estimates. In Advances in
Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, 2013.

[CMT05] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of
encrypted data in wireless sensor networks. In The Second Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networking and
Services, 2005.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious
transfer. In Proceedings of the 4th International Conference on Progress
in Cryptology – LATINCRYPT 2015 - Volume 9230, Berlin, Heidelberg,
2015. Springer-Verlag.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection
with secure two-party computation. In Security and Cryptography for
Networks. Springer International Publishing, 2018.

147

Bibliography

[Cor16] Moteiv Corporation. Tmote sky details.
”http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote sky datasheet.pdf”,
2016.

[Cou18] Geoffroy Couteau. New protocols for secure equality test and comparison.
In Applied Cryptography and Network Security. Springer International
Publishing, 2018.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Ad-
vances in Cryptology - CRYPTO 2003, pages 265–281, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[CTR18] X. Carpent, G. Tsudik, and N. Rattanavipanon. Erasmus: Efficient remote
attestation via self-measurement for unattended settings. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), 2018.

[CYD20] Zhou Chuanxin, Sun Yi, and Wang Degang. Federated learning with
gaussian differential privacy. In Proceedings of the 2020 2nd International
Conference on Robotics, Intelligent Control and Artificial Intelligence,
RICAI 2020, New York, NY, USA, 2020. Association for Computing
Machinery.

[DA16] Tassos Dimitriou and Mohamad Khattar Awad. Secure and scalable
aggregation in the smart grid resilient against malicious entities. Ad Hoc
Networks, 50, 2016.

[DBN+01] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced encryption standard
(aes), 2001-11-26 2001.

[DCSW20] Ye Dong, Xiaojun Chen, Liyan Shen, and Dakui Wang. Eastfly: Efficient
and secure ternary federated learning. Computers & Security, 94:101824,
2020.

[DGBL+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16. JMLR.org, 2016.

[DH06] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Inf. Theor., 2006.

[DHCP21] Phan The Duy, Huynh Nhat Hao, Huynh Minh Chu, and Van-Hau Pham. A
secure and privacy preserving federated learning approach for iot intrusion
detection system. In Network and System Security, Cham, 2021. Springer
International Publishing.

148

Bibliography

[Dig19] Larry Dignan. Iot devices to generate 79.4zb of data
in 2025, says idc. https://www.zdnet.com/article/

iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/,
2019. [Online; accessed 14-Octobor-2022].

[DJN10] Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. A generalization of
paillier’s public-key system with applications to electronic voting. Interna-
tional Journal of Information Security, 9(6), Dec 2010.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving
privacy. In Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’03. Asso-
ciation for Computing Machinery, 2003.

[DOS18] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Yet another compiler
for active security or: Efficient mpc over arbitrary rings. In Advances in
Cryptology – CRYPTO 2018, volume 10992 of Lecture Notes in Computer
Science. Springer, 2018.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (un-
bounded) multi-input inner product functional encryption from the k-linear
assumption. In Public-Key Cryptography – PKC 2018. Springer Interna-
tional Publishing, 2018.

[DP21] Anirban Das and Stacy Patterson. Multi-tier federated learning for ver-
tically partitioned data. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

[DR14] Cynthia Dwork and Aaron Roth. 2014.

[DRC+20] E. Dushku, M. M. Rabbani, M. Conti, L. V. Mancini, and S. Ranise. Sara:
Secure asynchronous remote attestation for iot systems. IEEE Transactions
on Information Forensics and Security, 2020.

[DRT17] K. M. El Defrawy, N. Rattanavipanon, and G. Tsudik. Hydra: hybrid
design for remote attestation (using a formally verified microkernel). Pro-
ceedings of the 10th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2017.

[Dwo06] Cynthia Dwork. Differential privacy. In Automa, Languages and Program-
ming. Springer Berlin Heidelberg, 2006.

[Dwo07] Morris J. Dworkin. Sp 800-38d. recommendation for block cipher modes
of operation: Galois/counter mode (gcm) and gmac. Technical report,
Gaithersburg, MD, USA, 2007.

149

https://www.zdnet.com/article/iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/
https://www.zdnet.com/article/iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/

Bibliography

[DZN+17] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A. R. Sadeghi. Lo-fat: Low-overhead control flow attesta-
tion in hardware. In Proceedings of the 54th Annual Design Automation
Conference 2017, DAC ’17. Association for Computing Machinery, 2017.

[EA20] Ahmed Roushdy Elkordy and Amir Salman Avestimehr. Secure aggre-
gation with heterogeneous quantization in federated learning. CoRR,
abs/2009.14388, 2020.

[EFPT12] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik. SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust.
In NDSS 2012, 19th Annual Network and Distributed System Security
Symposium, February 5-8, San Diego, USA, 2012.

[EG02] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed
sensor networks. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS ’02. Association for Computing Ma-
chinery, 2002.

[ET12] Zekeriya Erkin and Gene Tsudik. Private computation of spatial and
temporal power consumption with smart meters. In Applied Cryptography
and Network Security, pages 561–577. Springer Berlin Heidelberg, 2012.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, New York, NY, USA, 2015. Association
for Computing Machinery.

[FMLF21] Joaqúın Delgado Fernández, Sergio Potenciano Menci, Charles Lee, and
Gilbert Fridgen. Secure federated learning for residential short term load
forecasting. CoRR, abs/2111.09248, 2021.

[FMM+21] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini,
Helen Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi,
Thomas Schneider, Hossein Yalame, and Shaza Zeitouni. Safelearn: Secure
aggregation for private federated learning. In 2021 IEEE Security and
Privacy Workshops (SPW), 2021.

[FNRT14] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A minimalist
approach to remote attestation. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE), 2014.

[Fre12a] David Mandell Freeman. Improved security for linearly homomorphic
signatures: A generic framework. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, Public Key Cryptography – PKC 2012, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

150

Bibliography

[Fre12b] David Mandell Freeman. Improved security for linearly homomorphic
signatures: A generic framework. In Public Key Cryptography – PKC 2012.
Springer Berlin Heidelberg, 2012.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

[FYB18] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. Mitigating sybils
in federated learning poisoning. CoRR, abs/1808.04866, 2018.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Advances in Cryptology – EUROCRYPT
2014. Springer Berlin Heidelberg, 2014.

[GGR09] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code alteration
by creating a temporary memory bottleneck. IEEE Transactions on
Information Forensics and Security, 2009.

[GHG+21] Jiqiang Gao, Boyu Hou, Xiaojie Guo, Zheli Liu, Ying Zhang, Kai Chen,
and Jin Li. Secure aggregation is insecure: Category inference attack
on federated learning. IEEE Transactions on Dependable and Secure
Computing, 2021.

[GJ11] Flavio D. Garcia and Bart Jacobs. Privacy-friendly energy-metering via
homomorphic encryption. In Security and Trust Management. Springer
Berlin Heidelberg, 2011.

[GLL+21] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and
Thar Baker. Verifl: Communication-efficient and fast verifiable aggregation
for federated learning. IEEE Transactions on Information Forensics and
Security, 16, 2021.

[Gro08] Trusted Computing Group. Trusted platform module (tpm) sum-
mary. https://trustedcomputinggroup.org/wp-content/uploads/Trusted-
Platform-Module-Summary 04292008.pdf, 2008.

[GWY+18] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov.
Property inference attacks on fully connected neural networks using permu-
tation invariant representations. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[HKKH21] Changhee Hahn, Hodong Kim, Minjae Kim, and Junbeom Hur. Versa:
Verifiable secure aggregation for cross-device federated learning. IEEE
Transactions on Dependable and Secure Computing, pages 1–1, 2021.

151

Bibliography

[HKR+18] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays,
Hubert Eichner, Kanishka Rao, Rajiv Mathews, and Sean Augenstein.
Federated learning for mobile keyboard prediction, 2018.

[HL17] Eduard Hauck and Julian Loss. Efficient and universally composable
protocols for oblivious transfer from the cdh assumption. Cryptology ePrint
Archive, Paper 2017/1011, 2017. https://eprint.iacr.org/2017/1011.

[HTGW18] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright.
Privacy-preserving machine learning as a service. Proceedings on Privacy
Enhancing Technologies, 2018, 2018.

[iA93] Shun ichi Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5, 1993.

[IHPS11] R. S. H. Istepanian, S. Hu, N. Y. Philip, and A. Sungoor. The potential of
internet of m-health things “m-iot” for non-invasive glucose level sensing.
In 2011 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 5264–5266, 2011.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryp-
tography from anonymity. In 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 239–248, 2006.

[ION+18] V. Immler, J. Obermaier, K. Kuan Ng, F. Xiang Ke, J. Lee, Y. Peng Lim,
W. Koon Oh, K. Hoong Wee, and G. Sigl. Secure physical enclosures
from covers with tamper-resistance. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018.

[ISTZ16] A. Ibrahim, A. R. Sadeghi, G. Tsudik, and S. Zeitouni. Darpa: Device
attestation resilient to physical attacks. In Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, WiSec
’16. Association for Computing Machinery, 2016.

[JGP+21] Zoe L. Jiang, Hui Guo, Yijian Pan, Yang Liu, Xuan Wang, and Jun Zhang.
Secure neural network in federated learning with model aggregation under
multiple keys. In 2021 8th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2021 7th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), 2021.

[JL13] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving
aggregation of time-series data. In Ahmad-Reza Sadeghi, editor, Financial
Cryptography and Data Security. Springer Berlin Heidelberg, 2013.

[JNMALC22] Tayyebeh Jahani-Nezhad, Mohammad Ali Maddah-Ali, Songze Li, and
Giuseppe Caire. Swiftagg: Communication-efficient and dropout-resistant
secure aggregation for federated learning with worst-case security guaran-
tees, 2022.

152

https://eprint.iacr.org/2017/1011

Bibliography

[KBK18] F. Kohnhäuser, N. Büscher, and S. Katzenbeisser. Salad: Secure and
lightweight attestation of highly dynamic and disruptive networks. In
Proceedings of the 2018 on Asia Conference on Computer and Commu-
nications Security, ASIACCS ’18. Association for Computing Machinery,
2018.

[KBK19] F. Kohnhäuser, N. Büscher, and S. Katzenbeisser. A practical attestation
protocol for autonomous embedded systems. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), 2019.

[KFM04] M.N. Krohn, M.J. Freedman, and D. Mazieres. On-the-fly verification of
rateless erasure codes for efficient content distribution. In IEEE Symposium
on Security and Privacy, 2004. Proceedings. 2004, pages 226–240, 2004.

[KJ03] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote
computer systems. In Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, SSYM’03. USENIX Association, 2003.

[KJ19] W. Kim and I. Jung. Smart sensing period for efficient energy consumption
in iot network. Sensors, 2019.

[KLS21] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete
gaussian mechanism for federated learning with secure aggregation. In
Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research. PMLR, 2021.

[KMA+19] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià
Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zäıd Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksan-
dra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang
Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. CoRR, abs/1912.04977, 2019.

[KOB21] Ferhat Karakoç, Melek Önen, and Zeki Bilgin. Secure aggregation against
malicious users. In Proceedings of the 26th ACM Symposium on Access
Control Models and Technologies, SACMAT ’21. Association for Computing
Machinery, 2021.

153

Bibliography

[KPS+14] P. Koeberl, S. Patrick, S. Schulz, A. R. Sadeghi, and V. Varadharajan.
Trustlite: A security architecture for tiny embedded devices. In Proceedings
of the Ninth European Conference on Computer Systems, EuroSys ’14.
Association for Computing Machinery, 2014.

[KRKR20] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and Kan-
nan Ramchandran. Fastsecagg: Scalable secure aggregation for privacy-
preserving federated learning. CoRR, abs/2009.11248, 2020.

[KSA+09] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote attestation
to dynamic system properties: Towards providing complete system integrity
evidence. In 2009 IEEE/IFIP International Conference on Dependable
Systems Networks, 2009.

[KShS12] Benjamin Kreuter, Abhi Shelat, and Chih hao Shen. Billion-gate se-
cure computation with malicious adversaries. In 21st USENIX Security
Symposium (USENIX Security 12), 2012.

[KTC20] Youssef Khazbak, Tianxiang Tan, and Guohong Cao. Mlguard: Mitigating
poisoning attacks in privacy preserving distributed collaborative learning.
In 2020 29th International Conference on Computer Communications and
Networks (ICCCN), 2020.

[Kus13] David Kushner. The real story of stuxnet, Feb 2013.

[Lar17] Selena Larson. Fda confirms that st. jude’s cardiac devices can be hacked,
Jan 2017.

[LCV19] Changchang Liu, Supriyo Chakraborty, and Dinesh Verma. Secure Model
Fusion for Distributed Learning Using Partial Homomorphic Encryption.
Springer International Publishing, 2019.

[LEM14a] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and
dynamic time-series data aggregation with trust relaxation. In Cryptology
and Network Security, pages 305–320. Springer International Publishing,
2014.

[LEM14b] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and
dynamic time-series data aggregation with trust relaxation. In Cryptology
and Network Security. Springer International Publishing, 2014.

[LEÖM15] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva.
Puda – privacy and unforgeability for data aggregation. In Cryptology and
Network Security, pages 3–18. Springer International Publishing, 2015.

[LHCH20] Zhaorui Li, Zhicong Huang, Chaochao Chen, and Cheng Hong. Quantifi-
cation of the leakage in federated learning, 2020.

154

Bibliography

[LMP11] Y. Li, J. M. McCune, and A. Perrig. Viper: Verifying the integrity
of peripherals’ firmware. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11. Association for
Computing Machinery, 2011.

[LŢ19] Benôıt Libert and Radu ŢiŢiu. Multi-client functional encryption for
linear functions in the standard model from lwe. In Advances in Cryptology
– ASIACRYPT 2019, pages 520–551. Springer International Publishing,
2019.

[LWH19] Qinbin Li, Zeyi Wen, and Bingsheng He. Federated learning sys-
tems: Vision, hype and reality for data privacy and protection. CoRR,
abs/1907.09693, 2019.

[MASN21] Ahmed Moustafa, Muhammad Asad, Saima Shaukat, and Alexander Norta.
Ppcsa: Partial participation-based compressed and secure aggregation in
federated learning. In Advanced Information Networking and Applications.
Springer International Publishing, 2021.

[Mei02] E. Meijering. A chronology of interpolation: from ancient astronomy to
modern signal and image processing. Proceedings of the IEEE, 2002.

[MGGA17] S. Moein, T. Aaron Gulliver, F. Gebali, and A. Alkandari. Hardware attack
mitigation techniques analysis. International Journal on Cryptography and
Information Security, 2017.

[MHK+21] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego
Perino, and Nicolas Kourtellis. Ppfl: Privacy-preserving federated learning
with trusted execution environments. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

[Mit97] Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York,
1997.

[MM08] S. Mahfoudh and P. Minet. Survey of energy efficient strategies in wireless
ad hoc and sensor networks. In Seventh International Conference on
Networking (icn 2008), 2008.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceed-
ings of Machine Learning Research. PMLR, 2017.

[MRT12] Eoghan McKenna, Ian Richardson, and Murray Thomson. Smart meter
data: Balancing consumer privacy concerns with legitimate applications.

155

Bibliography

Energy Policy, 41:807–814, 2012. Modeling Transport (Energy) Demand
and Policies.

[MSDCS19] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative learning.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 691–706,
2019.

[MTMH18] Khizir Mahmud, Graham E. Town, Sayidul Morsalin, and M.J. Hossain.
Integration of electric vehicles and management in the internet of energy.
Renewable and Sustainable Energy Reviews, 82:4179–4203, 2018.

[NBM+17] J. Noorman, J. Van Bulck, J. Tobias Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling. Sancus
2.0: A low-cost security architecture for iot devices. ACM Trans. Priv.
Secur., 2017.

[NMZ+21] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael
Rabbat, Mani Malek Esmaeili, and Dzmitry Huba. Federated learning
with buffered asynchronous aggregation. CoRR, abs/2106.06639, 2021.

[NP05] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer.
Journal of Cryptology, 18, 2005.

[NRY+21] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Möllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini,
Ahmad-Reza Sadeghi, Thomas Schneider, and Shaza Zeitouni. FLGUARD:
secure and private federated learning. CoRR, abs/2101.02281, 2021.

[NS11] Takashi Nishide and Kouichi Sakurai. Distributed paillier cryptosystem
without trusted dealer. In Yongwha Chung and Moti Yung, editors,
Information Security Applications, pages 44–60, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[NSH19] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning. In 2019 IEEE Symposium on
Security and Privacy (SP), 2019.

[ÖM07] Melek Önen and Refik Molva. Secure data aggregation with multiple
encryption. In Wireless Sensor Networks, pages 117–132. Springer Berlin
Heidelberg, 2007.

[PAH+18] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho
Moriai. Privacy-preserving deep learning via additively homomorphic
encryption. IEEE Transactions on Information Forensics and Security,
13, 2018.

156

Bibliography

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology — EUROCRYPT ’99,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Advances in Cryptology — CRYPTO ’91.
Springer Berlin Heidelberg, 1992.

[PFA21] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding se-
cure aggregation in federated learning via model inconsistency. CoRR,
abs/2111.07380, 2021.

[Pol78] J. Pollard. Monte carlo methods for index computation (). Mathematics
of Computation, 32:918–924, 1978.

[Poo18] Linda Poon. Sleepy in songdo, korea’s smartest city, Jun 2018.

[Pro22] Mike Prospero. Best smart home hubs of 2022. https://www.tomsguide.
com/us/best-smart-home-hubs,review-3200.html. Retrieved 8 Decem-
ber 2022, October 21, 2022.

[PSJH+20] Ravi Pratap Singh, Mohd Javaid, Abid Haleem, Raju Vaishya, and Shokat
Ali. Internet of medical things (IoMT) for orthopaedic in COVID-19
pandemic: Roles, challenges, and applications. J Clin Orthop Trauma,
11(4):713–717, May 2020.

[Rab98] Tal Rabin. A simplified approach to threshold and proactive rsa. In
Proceedings of the 18th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’98, Berlin, Heidelberg, 1998. Springer-
Verlag.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package transform.
In Fast Software Encryption. Springer Berlin Heidelberg, 1997.

[RL89] R.M. Roth and A. Lempel. On mds codes via cauchy matrices. IEEE
Transactions on Information Theory, 35(6), 1989.

[RMK16] V. Roblek, M. MeÅ¡ko, and A. KrapeÅ¾. A complex view of industry 4.0.
SAGE Open, (2), 2016.

[RRC04] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mecha-
nisms for secure embedded systems. In 17th International Conference on
VLSI Design. Proceedings., 2004.

[Rub96] Frank Rubin. One-time pad cryptography. Cryptologia, 1996.

[RVW+19] M. M. Rabbani, J. Vliegen, J. Winderickx, M. Conti, and N. Mentens.
Shela: Scalable heterogeneous layered attestation. IEEE Internet of Things
Journal, 2019.

157

https://www.tomsguide.com/us/best-smart-home-hubs,review-3200.html
https://www.tomsguide.com/us/best-smart-home-hubs,review-3200.html

Bibliography

[Sab16] Paul Sabanal. Thingbots: The future of botnets in the internet of things,
Feb 2016.

[SAG+21] Jinhyun So, Ramy E. Ali, Basak Guler, Jiantao Jiao, and Salman Aves-
timehr. Securing secure aggregation: Mitigating multi-round privacy
leakage in federated learning. CoRR, abs/2106.03328, 2021.

[SAGA21] Jinhyun So, Ramy E. Ali, Basak Güler, and Amir Salman Avestimehr.
Secure aggregation for buffered asynchronous federated learning. CoRR,
abs/2110.02177, 2021.

[Sch90] C. P. Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceed-
ings, pages 239–252, New York, NY, 1990. Springer New York.

[SCJ18] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified
sgd with memory. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[SCR+11] Elaine Shi, T.-H Chan, Eleanor Rieffel, Richard Chow, and Dawn Song.
Privacy-preserving aggregation of time-series data. volume 2, 01 2011.

[SG17] K. Sayed and H.A. Gabbar. Chapter 18 - scada and smart energy grid
control automation. In Hossam A. Gabbar, editor, Smart Energy Grid
Engineering, pages 481–514. Academic Press, 2017.

[SGA21a] Jinhyun So, Başak Göler, and A. Salman Avestimehr. Byzantine-resilient
secure federated learning. IEEE Journal on Selected Areas in Communi-
cations, 39, 2021.

[SGA21b] Jinhyun So, Başak Güler, and A. Salman Avestimehr. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated learning.
IEEE Journal on Selected Areas in Information Theory, 2, 2021.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 1979.

[Sko11] S. Skorobogatov. Physical attacks on tamper resistance: Progress and
lessons. 2nd ARO Special Workshop on HW Assurance, Washington DC,
2011.

[Sko12] S. Skorobogatov. Physical Attacks and Tamper Resistance. Springer New
York, 2012.

[SLP08] A. Seshadri, M. Luk, and A. Perrig. Sake: Software attestation for key
establishment in sensor networks. In Distributed Computing in Sensor
Systems. Springer Berlin Heidelberg, 2008.

158

Bibliography

[SLS+05] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying code integrity and enforcing untampered code execution
on legacy systems. In Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, SOSP ’05. Association for Computing
Machinery, 2005.

[SMH21] Thomas Sandholm, Sayandev Mukherjee, and Bernardo A. Huber-
man. SAFE: secure aggregation with failover and encryption. CoRR,
abs/2108.05475, 2021.

[Smi02] Sean W. Smith. Outbound authentication for programmable secure co-
processors. In Proceedings of the 7th European Symposium on Research in
Computer Security, ESORICS ’02. Springer-Verlag, 2002.

[SPvK04] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based
attestation for embedded devices. In IEEE Symposium on Security and
Privacy, 2004. Proceedings. 2004, 2004.

[SS11] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with
malicious adversaries. IACR Cryptol. ePrint Arch., 2011:533, 2011.

[SSSS17a] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017
IEEE Symposium on Security and Privacy (SP), 2017.

[SSSS17b] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017
IEEE Symposium on Security and Privacy (SP), 2017.

[SSV+21] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel
Clark, and Joseph Near. Efficient differentially private secure aggrega-
tion for federated learning via hardness of learning with errors. CoRR,
abs/2112.06872, 2021.

[STL20] Mohamed Seif, Ravi Tandon, and Ming Li. Wireless federated learning
with local differential privacy. In 2020 IEEE International Symposium on
Information Theory (ISIT), 2020.

[STS16] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against
poisoning attacks in collaborative deep learning systems. In Proceedings of
the 32nd Annual Conference on Computer Security Applications, ACSAC
’16. Association for Computing Machinery, 2016.

[SZJvD04] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implemen-
tation of a tcg-based integrity measurement architecture. In Proceedings
of the 13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04. USENIX Association, 2004.

159

Bibliography

[TBA+19] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-preserving
federated learning. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, AISec’19. Association for Computing Machinery,
2019.

[TF19] Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian
differential privacy. In 2019 IEEE International Conference on Big Data
(Big Data), 2019.

[TLB+21] Georgia Tsaloli, Bei Liang, Carlo Brunetta, Gustavo Banegas, and Aika-
terini Mitrokotsa. DEVA: Decentralized, verifiable secure aggregation for
privacy-preserving learning. In Information Security, Cham, 2021. Springer
International Publishing.

[TMTQ20] Lo’ai Tawalbeh, Fadi Muheidat, Mais Tawalbeh, and Muhannad Quwaider.
Iot privacy and security: Challenges and solutions. Applied Sciences,
10(12), 2020.

[TNW+21] Minxue Tang, Xuefei Ning, Yitu Wang, Yu Wang, and Yiran Chen. Fedgp:
Correlation-based active client selection for heterogeneous federated learn-
ing. abs/2103.13822, 2021.

[VAS19] Thijs Veugen, Thomas Attema, and Gabriele Spini. An implementation
of the paillier crypto system with threshold decryption without a trusted
dealer. Cryptology ePrint Archive, Report 2019/1136, 2019. https:

//ia.cr/2019/1136.

[VH08] A. Varga and R. Hornig. An overview of the omnet++ simulation envi-
ronment. In Proceedings of the 1st International Conference on Simula-
tion Tools and Techniques for Communications, Networks and Systems &
Workshops, Simutools ’08. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008.

[VNP+20] Anamaria Vizitiu, Cosmin Ioan Nită, Andrei Puiu, Constantin Suciu, and
Lucian Mihai Itu. Applying deep neural networks over homomorphic
encrypted medical data. Computational and Mathematical Methods in
Medicine, 2020, 2020.

[VXK21] Raj Kiriti Velicheti, Derek Xia, and Oluwasanmi Koyejo. Secure byzantine-
robust distributed learning via clustering. CoRR, abs/2110.02940, 2021.

[WGC19] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party
secure computation for neural network training. Proceedings on Privacy
Enhancing Technologies, 2019, 2019.

160

https://ia.cr/2019/1136
https://ia.cr/2019/1136

Bibliography

[WLW+09] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong
Zhou. Learning your identity and disease from research papers: Informa-
tion leaks in genome wide association study. In Proceedings of the 16th
ACM Conference on Computer and Communications Security, CCS ’09.
Association for Computing Machinery, 2009.

[WPX+20] Danye Wu, Miao Pan, Zhiwei Xu, Yujun Zhang, and Zhu Han. Towards
efficient secure aggregation for model update in federated learning. In
GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020.

[WTB+20] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Pra-
teek Mittal, and Tal Rabin. FALCON: honest-majority maliciously secure
framework for private deep learning. CoRR, abs/2004.02229, 2020.

[XBZ+19] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig.
Hybridalpha: An efficient approach for privacy-preserving federated learn-
ing. In Proceedings of the 12th ACM Workshop on Artificial Intelligence
and Security, AISec’19. Association for Computing Machinery, 2019.

[XHCL20] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed
backdoor attacks against federated learning. In International Conference
on Learning Representations, 2020.

[XLL+20] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. Verifynet:
Secure and verifiable federated learning. IEEE Transactions on Information
Forensics and Security, 15, 2020.

[YAE+18] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li,
Nicholas Kong, Daniel Ramage, and Françoise Beaufays. Applied fed-
erated learning: Improving google keyboard query suggestions. CoRR,
abs/1812.02903, 2018.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
162–167, 1986.

[YLCT19] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Trans. Intell. Syst.
Technol., 10, 2019.

[YRSA18] Qian Yu, Netanel Raviv, Jinhyun So, and Amir Salman Avestimehr.
Lagrange coded computing: Optimal design for resiliency, security and
privacy. CoRR, abs/1806.00939, 2018.

[YSH+21] Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu, and
Salman Avestimehr. Lightsecagg: Rethinking secure aggregation in feder-
ated learning. CoRR, abs/2109.14236, 2021.

161

Bibliography

[YSW18] Chen Yang, Weiming Shen, and Xianbin Wang. The internet of things
in manufacturing: Key issues and potential applications. IEEE Systems,
Man, and Cybernetics Magazine, 4(1):6–15, 2018.

[YWHZ18] Hailong Yao, Caifen Wang, Bo Hai, and Shiqiang Zhu. Homomorphic hash
and blockchain based authentication key exchange protocol for strangers.
In 2018 Sixth International Conference on Advanced Cloud and Big Data
(CBD), pages 243–248, 2018.

[YWW21] Ge Yang, Shaowei Wang, and Haijie Wang. Federated learning with
personalized local differential privacy. In 2021 IEEE 6th International
Conference on Computer and Communication Systems (ICCCS), 2021.

[ZDA+17] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and
A. Sadeghi. Atrium: Runtime attestation resilient under memory attacks.
In 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017.

[ZFW+20] Xianglong Zhang, Anmin Fu, Huaqun Wang, Chunyi Zhou, and Zhenzhu
Chen. A privacy-preserving and verifiable federated learning scheme. In
ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), 2020.

[ZJF+21] Lingchen Zhao, Jianlin Jiang, Bo Feng, Qian Wang, Chao Shen, and Qi Li.
Sear: Secure and efficient aggregation for byzantine-robust federated
learning. IEEE Transactions on Dependable and Secure Computing, pages
1–1, 2021.

[ZLH19] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[ZLX+20] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang
Liu. Batchcrypt: Efficient homomorphic encryption for cross-silo federated
learning. In 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, 2020.

[ZLYM21] Zhuosheng Zhang, Jiarui Li, Shucheng Yu, and Christian Makaya. Safe-
learning: Enable backdoor detectability in federated learning with secure
aggregation. CoRR, abs/2102.02402, 2021.

[ZWC+21] Yuhui Zhang, Zhiwei Wang, Jiangfeng Cao, Rui Hou, and Dan Meng.
Shufflefl: Gradient-preserving federated learning using trusted execution
environment. In Proceedings of the 18th ACM International Conference
on Computing Frontiers, CF ’21, New York, NY, USA, 2021. Association
for Computing Machinery.

162

	Abstract
	Abrégé [Français]
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Publications
	1 Introduction
	1.1 IoT and its Applications
	1.2 IoT Components
	1.2.1 IoT End-Devices
	1.2.2 IoT Platform

	1.3 The Dark Side of IoT
	1.3.1 Adversaries Controlling The End-Devices
	1.3.2 Adversaries Controlling The Platform
	1.3.3 External Adversaries

	1.4 Problem Statement
	1.4.1 Security Protocols for IoT
	1.4.2 Contributions

	2 Preliminaries and Cryptographic Building Blocks
	2.1 Notations
	2.2 Hard Problems and Assumptions
	2.2.1 Decisional and Computational Diffie-Hellman Assumptions
	2.2.2 Decisional Composite Residuosity Assumption

	2.3 Cryptographic Schemes
	2.3.1 Threshold Secret Sharing (SS)
	2.3.2 Symmetric Encryption
	2.3.3 Pseudo Random Generator
	2.3.4 Key Agreement Scheme

	2.4 Ideal Functionalities and Protocols
	2.4.1 The Universal Composability Framework (UC)
	2.4.2 Common Reference String (CRS)
	2.4.3 Random Oracle Model
	2.4.4 Sharing Random Number (RShare)
	2.4.5 Oblivious Transfer (OT)
	2.4.6 Garbled Circuits (GC)
	2.4.7 Zero-Knowledge Proofs (ZKP)

	I Secure Aggregation
	3 Characterization of Secure Aggregation
	3.1 Environment of Secure Aggregation
	3.2 Threat Models and Security Requirements for Secure Aggregation
	3.2.1 Threat Models
	3.2.2 Security Requirements

	3.3 Existing Secure Aggregation Protocols
	3.3.1 SA based on differential privacy
	3.3.2 SA based on trusted-execution environment
	3.3.3 SA based on anonymity
	3.3.4 SA based on cryptography

	3.4 Secure Aggregation based on Cryptography
	3.4.1 Secure Aggregation Protocol Phases
	3.4.2 Encryption-based SA
	3.4.3 MPC-based SA

	3.5 Summary of Honest-but-Curious Secure Aggregation

	4 Secure Aggregation in the Malicious Model
	4.1 Secure Aggregation with Malicious Parties
	4.2 Previous Work
	4.3 VSA - Overview
	4.4 PUDA secure aggregation
	4.4.1 PUDA model
	4.4.2 PUDA construction

	4.5 VSA - Formal Definitions
	4.5.1 Correctness of VSA
	4.5.2 Security of VSA

	4.6 Ideal Functionality for Distributed Tagging Protocol
	4.7 VSA - Construction in the t,GDTAG-Hybrid Model
	4.7.1 VSA Scheme
	4.7.2 Proof of Correctness

	4.8 VSA - Security Analysis
	4.9 Realization of Distributed Tagging Protocol
	4.9.1 Realization of The Tagging Protocol

	4.10 Conclusion on Verifiable SA

	II Secure Aggregation for Federated Learning
	5 Privacy-Preserving Federated Learning with Secure Aggregation
	5.1 Introduction to Privacy-Preserving Federated Learning
	5.2 Characteristics of Federated Learning
	5.2.1 Scale of Federation
	5.2.2 Partitioning of the training data
	5.2.3 Learning algorithm

	5.3 Privacy of the Datasets in Federated Learning
	5.4 Existing Secure Aggregation for Privacy-Preserving Federated Learning
	5.4.1 Challenges in using Secure Aggregation for Federated Learning
	5.4.2 Secure Aggregation Solutions for Federated Learning

	5.5 Observations and Conclusion on Secure Aggregation for FL

	6 Scalable and Fault-Tolerant Secure Aggregation for Federated Learning
	6.1 Fault-Tolerant Secure Aggregation
	6.2 Threat Model
	6.3 Prior Work based on Masking
	6.3.1 SecAgg
	6.3.2 SecAgg+
	6.3.3 TurboAgg
	6.3.4 FastSecAgg

	6.4 FTSA - Overview
	6.5 Threshold Joye-Libert Scheme
	6.6 FTSA - Complete Specifications
	6.6.1 The Setup Phase
	6.6.2 The Online Phase
	6.6.3 Deployment of FTSA on Semi-Connected Graphs (FTSA+)

	6.7 Security Analysis
	6.7.1 Security in the honest-but-curious model
	6.7.2 Security in the malicious model

	6.8 Performance Analysis
	6.8.1 Scalability Analysis of The Offline Phase
	6.8.2 Scalability Analysis of The Online Phase at the Client
	6.8.3 Scalability Analysis of The Online Phase at the Server
	6.8.4 Experimental Evaluation

	6.9 FTSA*: An Optimized Fault-Tolerant SA
	6.9.1 The Idea
	6.9.2 The Protocol
	6.9.3 Security Analysis
	6.9.4 Performance Analysis

	6.10 Conclusions

	III Remote Attestation Protocols
	7 Fairness-Driven Remote-Attestation
	7.1 Remote Attestation
	7.1.1 Definition
	7.1.2 Root of Trust for Remote Attestation Protocols
	7.1.3 Collaborative Remote Attestation

	7.2 Previous Work on Collaborative Remote Attestation
	7.2.1 Categorization based on Connection Topology
	7.2.2 Categorization based on Key Management
	7.2.3 Limitation of Previous Work

	7.3 FADIA - Overview
	7.4 Building Block: Eschenauer and Gligor's Scheme
	7.5 Assumptions and Threat Model
	7.5.1 Network Assumptions
	7.5.2 Security Model

	7.6 FADIA - Complete Specifications
	7.6.1 Initialization Phase
	7.6.2 Joining Phase
	7.6.3 Attestation Phase
	7.6.4 Key Revocation Phase
	7.6.5 Role of the score function

	7.7 Security Analysis
	7.8 Performance Analysis
	7.8.1 Implementation of FADIA on Tmote Sky and Raspberry PI 2
	7.8.2 Environment for Experimental Evaluation
	7.8.3 Evaluation in Heterogeneous Networks
	7.8.4 Evaluation in Homogeneous Networks
	7.8.5 Evaluation with Selfish Provers
	7.8.6 Evaluation of the Revocation Phase in FADIA

	7.9 Conclusion on Fairness-Driven Remote-Attestation

	8 Final Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	Appendices
	A Appendices for Chapter 6
	A.1 Detailed Measurements of the Running Time
	A.2 Detailed Measurements of the Data Transfer

	B Appendix for Chapter 7
	B.1 Energy consumption evaluation
	B.2 Benchmarks of ESP32-PICO-D4 Devices and Stellaris LM4F120H5QR Microcontrollers

