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Abstract 

Mechanical ventilation is a lifesaving treatment for critically ill patients. When the precipitating 

reason for which mechanical ventilation has been resolved, the challenge is to safely and 

promptly separate the patients from the ventilator. In some patients, the separation from the 

ventilator is poorly tolerated, a process referred to as extubation failure. Extubation failure 

occurs in 10% to 25% of the patients and is associated with increased morbidity and increased 

mortality. To prevent the occurrence of extubation failure, noninvasive respiratory supports are 

employed. Though, clinicians lack reliable monitoring tools to identify the patient that would 

most likely benefit from preventive measures.  

To address this monitoring shortcoming, we want to use the Electrical Impedance Tomography. 

This monitoring device uses current injection and voltage measurement on electrodes place 

around the thorax. From this, images that show the conductivity variation are reconstructed. 

Applied to the thorax, we can monitor the distribution of the ventilation. This technology offers 

many advantages, it is non-invasive and can be used continuously at the bedside of the patient. 

With such technology, we want to monitor patients once they are extubated, and attempt to 

predict as soon as possible the extubation failure. 

For this goal, first, we put in place a clinical study called EXIT, in which patients undergoing 

extubation were monitored with EIT for 48 hours. During the study that lasted 2 years, 37 

patients were included, though 2 were not included in the database due to too much noise in the 

signal.  

During the inclusions time, we setup our Electrical Impedance Tomography (EIT) framework, 

to pre-process the raw EIT data, reconstruct the images and finally, extracting the EIT features 

from the images. In total, we use 61 EIT features. Most of them are coming from the scientific 

literature. But after analyzing the first EXIT patients and discussing with clinicians, we 

introduce 4 new EIT metrics: lung_area, lung_shape, FlowEIT, RSBIEIT. The last two are based 

on already existing metrics, used by clinicians that we have adapted to be computed on EIT 

data. The addition of those features allows to significantly improve the extubation failure’s 

prediction results of our models (+10.8% of sensitivity and +17.9% of specificity for the failure 

class).  

For the learning task, we study 3 different dataset models composed of the EIT data coming 

from EXIT. The goal of this study is to evaluate the impact of the ventilation variation after 

extubation on the prediction learning models. Three different inference’s algorithms are learned 
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on each dataset, they are: the Decision tree, the Random Forest and the Support Vector 

Machine.  

Our results show that the EIT offers good prediction capabilities. We are not only able to predict 

the extubation failure, but we are able to predict them hours before the clinician’s re-intubation 

decision. The sensitivity for the failure class increases throughout the weaning observation. 

Overall, our failure extubation prediction yields a sensitivity of 0.80 and a specificity of 0.73. 

This shows the usefulness of the EIT during this crucial period.  

 

Key words: Electrical Impedance Tomography, Mechanical ventilation, Weaning, Failure 

prediction. 
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Résumé  

La ventilation mécanique est un traitement salvateur pour les patients de réanimation. Lorsque 

la raison précipitante pour laquelle la ventilation mécanique est résolue, le défi consiste à 

séparer rapidement et en toute sécurité les patients du ventilateur. Chez certains patients, la 

séparation du ventilateur est mal tolérée, un processus appelé échec d'extubation. L'échec de 

l'extubation survient chez 10 % à 25 % des patients et est associé à une morbidité et à une 

mortalité accrue. Pour prévenir l'apparition d'un échec d'extubation, des supports respiratoires 

non invasifs sont utilisés. Cependant, les cliniciens manquent d'outils de surveillance fiables 

pour identifier le patient le plus susceptible de bénéficier de mesures préventives. 

Pour répondre à cette lacune de surveillance, nous souhaitons utiliser la tomographie par 

impédance électrique. Ce dispositif de surveillance utilise l'injection de courant et la mesure de 

tension sur des électrodes placées autour du thorax. À partir de là, des images montrant la 

variation de conductivité sont reconstruites. Appliqué au thorax, on peut suivre la répartition de 

la ventilation. Cette technologie offre de nombreux avantages, elle est non invasive et peut être 

utilisée en continu au chevet du patient. Avec une telle technologie, nous voulons suivre les 

patients une fois qu'ils sont extubés, et tenter de prédire le plus tôt possible l'échec de 

l'extubation. 

Pour cet objectif, nous avons d'abord mis en place une étude clinique appelée EXIT, dans 

laquelle des patients subissant une extubation ont été suivis avec EIT pendant 48 heures. 

Pendant la durée de l’étude qui a duré 2 ans, 37 patients ont été inclus, bien que 2 ne soient pas 

inclus dans la base de données en raison d'un trop grand bruit dans le signal. 

Pendant le temps des inclusions, nous avons configuré notre cadre de tomographie par 

impédance électrique (EIT), pour prétraiter les données brutes EIT, reconstruire les images et 

enfin, extraire les caractéristiques EIT des images. Au total, nous utilisons 61 fonctionnalités 

EIT. La plupart d'entre eux sont issus de la littérature scientifique. Mais après avoir analysé les 

premiers patients EXIT et discuté avec des cliniciens, nous introduisons 4 nouvelles métriques 

EIT : lung_area, lung_shape, FlowEIT, RSBIEIT. Les deux derniers sont basés sur des métriques 

déjà existantes, utilisées par les cliniciens, que nous avons adaptées pour être calculées sur des 

données EIT. L'ajout de ces fonctionnalités permet d'améliorer significativement les résultats 

de prédiction d'échec d'extubation de nos modèles (+10,8% de sensibilité et +17,9% de 

spécificité pour la classe d'échec). 
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Pour la tâche d'apprentissage, nous étudions 3 modèles de jeux de données différents composés 

des données EIT provenant d’EXIT. Le but de cette étude est d'évaluer l'impact de la variation 

de la ventilation après extubation sur les modèles d'apprentissage de prédiction. Trois 

algorithmes d'inférence différents sont appris sur chaque jeu de données, ce sont : l'arbre de 

décision, la forêt aléatoire et la machine à vecteurs de support. 

Nos résultats montrent que l'EIT offre de bonnes capacités de prédiction. Nous sommes non 

seulement capables de prédire l'échec de l'extubation, mais nous sommes capables de les prédire 

des heures avant la décision de réintubation du clinicien. La sensibilité pour la classe d'échec 

augmente tout au long de l'observation du sevrage. Globalement, notre prédiction d'échec 

d'extubation donne une sensibilité de 0,80 et une spécificité de 0,73. Cela montre l'utilité de 

l'EIT pendant cette période cruciale. 

Mots clés : Tomographie d'impédance électrique, Ventilation mécanique, Sevrage, Prédiction 

d'échec. 
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1. Introduction 

 Background 

Positive pressure ventilation has seen a global implementation in the hospital after 1951[1], [2]. 

During an outbreak of poliomyelitis that occurred in Copenhagen, Dr. Ibsen recognized that 

patients died from respiratory failure. The use of positive pressure ventilation was then tested. 

Medical students were recruited to manually insufflate air in the chest of patients with rubber 

bags. This produced impressive results with a decrease of mortality from 87% previously to 

40%[3]. This method was then generalized to all patients in hospitals.  

The goal of artificial ventilation was to replace the natural respiratory muscles pump. 

Nowadays, the classical form of invasive mechanical ventilation is positive pressure ventilation 

which consists in cyclic insufflation inside the thorax by an external ventilator. The insufflation 

is permitted by a flow between the ventilator and the lungs, the flow being driven by developing 

higher pressure outside the thorax. The technological development as well as increased 

knowledge let to optimized ventilation strategies that now aims to support the patients’ 

ventilation and not replace it[1]. This intends to reduce the possibility to injure the lungs due to 

the mechanical ventilation. 

To help clinicians to better adapt the ventilator assistance to the patient’s need, they have at 

their disposal different monitoring devices. The main one is the ventilator itself, which can 

measure important metrics such as the airway pressure, respiratory rate and tidal volume. To 

examine the condition of the lungs, they are 3 methods that are usually available in hospital:  

• X-ray: it is a great tool to identify the cause of the ventilation distress. This technology 

has been used for decades, and thus, the different ventilation problems are easily 

recognizable by clinicians. Though, it offers low spatial resolution. Plus, it has never 

been shown that performing X-ray may allow to better adapt the patient’s ventilation 

treatment.  

• CT-scan: this method offers high spatial resolution. This gives it a vast range of 

applications in the medical field to better understand the problem of a patient. For ICU 

applications, the CT-scan can be used to simply monitor the lung distribution with a 

good accuracy. Or it could be used to detect overdistended alveolar induces by a 

ventilator. However, in practice, the use of the CT-scan for ICU1 patients is limited. 

 

 

1 Intensive Care Unit 
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Indeed, this limitation is due to the patient’s transportation to the CT-scan, which can 

induce complications for the patient.  

• Ultrasound: it is used by clinicians to detect ventilation pathology, such as 

pneumothorax or pulmonary edema. Though, like the X-ray, it has not been proven that 

this method can help clinicians to set the ventilator. Plus, the results are operator 

dependent, which can pose a problem to compare results.   

In an ICU setting, the ultrasound is the best candidate from those three methods for lung 

monitoring for two main reasons. The ultrasound can be done at the patient’s bedside, and it 

does not use ionizing radiation. Though as mentioned, the primary used of the ultrasound is to 

find the cause of the ventilation distress. Therefore, the main tool used by clinicians to guide 

them to better adapts the ventilation treatment, is the ventilator itself which give vital 

information about the patient’s ventilation state. However, once the patient is extubated from 

the ventilator, there are no more efficient tools available to monitor the patient’s ventilation.   

Although, there is another monitoring device that was first published in 1984 by Mr. Barber 

and Mr. Brown [4], called Electrical Impedance Tomography (EIT). Many improvements to 

this method had to be realized for it to be commercialized. But it then emerged in the market in 

2011, by the company Drager which made it available through his EIT devices called 

“Pulmovista 500”. This method allows to monitor the distribution of the ventilation through 

impedance measurement. It is non-invasive and non-ionizing, so it can be used continuously at 

the patient’s bedside. It has very good temporal resolution as the frame rate can go up to 50 

frames/s. Though, it does not have great spatial resolution like the CT-scan. Most research using 

the EIT applied to ICU patients, has been done to better guide the clinician during the ventilator 

treatment.  

Though, there are very few studies that focus on guiding the clinician once the patient is 

extubated. Indeed, when the precipitating reason for which mechanical ventilation has been 

resolved, the challenge is to safely and promptly separate the patients from the ventilator. In 

some patients, the separation from the ventilator is poorly tolerated, a process referred to as 

extubation failure. Extubation failure occurs in 10% to 25% of the patients and is associated 

with increased morbidity and increased mortality. To prevent the occurrence of extubation 

failure, noninvasive respiratory supports are employed. Though, clinicians lack reliable 

monitoring tools to identify the patient that most likely would benefit from preventive measures. 

Plus, once extubated, clinicians lose all information about the ventilation of the patient that was 

recorded through the ventilator. They now have to rely on other means to detect if the patient 
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is at risk of extubation failure. But they lack the ability to monitor in real-time the ventilation 

state of the patient.  

Our goal would be to use the monitoring capability of the EIT after extubation. With those EIT 

data, we want to build a prediction model that could predict the extubation outcome as soon as 

possible. Such prediction model could allow clinicians to identify the patient at risk before they 

experience clinical signs of acute respiratory failure and to administer treatment to prevent 

extubation failure.  

 their distress and administer preemptive treatment to avoid it. 

This is a CIFRE (Conventions Industrielles de Formation par la Recherche) thesis, this work is 

based on a partnership between academic laboratories and an industrial partner: 

• Academic laboratory:  

o LIP6 is a computer science laboratory part of Sorbonne Université which 

focuses on modeling and solving fundamental application-driven problems, as 

well as implementing and validating solutions through academic and industrial 

partnerships. The research challenges are addressed among four transversal 

axes: Artificial intelligence and data science; Architecture, systems and 

networks; Safety, security and reliability and Theory and mathematics of 

computing. Two teams participate to this work: SYEL (Systèmes 

Electroniques). 

 

o INSERM UMRS_1158, Neurophysiologie respiratoire expérimentale et 

Clinique is a research unit located in the hospital of la Pitié Salpétrière (AP-HP) 

and work in the department of Respiratory and Critical Care. Their focus is on 

the relationships between the nervous system and the respiratory system.  

 

• Bioserenity: the core of this company is on remote healthcare. More precisely, they are 

developing smart textiles embedding medical sensors that would allow monitoring of 

patients from home.  

 

 Thesis organization  

The introduction chapter briefly introduces the problematic and provides the scientific rationale 

for conducting this thesis.  
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Then in the state of the art, we dive more into the mechanical ventilation treatment, with the 

risks of the mechanical ventilation, the process to extubate patients and the weaning phase 

following. We also present some of the main prediction models for the extubation outcome 

already existing. Those methods entail using data from the ventilator, lung ultrasound or blood 

analysis. There is only one method that uses the EIT data for such purpose.  

In the chapter 3, we detail our clinical study called EXIT, with the protocol that we have 

implemented, as well the recruited patients.  

In the next chapter, we define all the EIT features used in this study. With, in addition, 4 new 

features that we introduced and tested in order to improve the prediction results. 

The chapter 5 relates about the EIT framework built to study and test different prediction 

models. In total, 3 different estimators were tested with 3 different dataset training models. The 

results obtained from each model are presented. 

In chapter 6 we have tuned the training algorithms and optimized the EIT features number in 

order to find the best set-up to improve the performances. The results obtained from each 

optimization are then shown and compared with the firsts ones.  

At last, chapter 7 presents the conclusion of this thesis work and bring about future 

development. 
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2. Context and state of the art  

This chapter aims at describing the current epidemiology, definitions and process referred to 

as weaning from mechanical ventilation. To that end, the chapter will describe clinical 

challenge of mechanical ventilation, from its initiation until the readiness to undergo safe and 

prompt separation. Then, it will review the interests and limits of indices developed to help 

clinicians to predict the outcome of the patients after extubation. Eventually, the electrical 

impedance tomography technology will be discussed before to raise the hypothesis of the 

present project. 

 

 Mechanical ventilation 

 Benefits and risks of mechanical ventilation 

Worldwide, millions of patients are admitted to intensive care units (ICU) and require invasive 

mechanical ventilation (MV). Admission to the ICU is a heavy burden at the collective level in 

terms of healthcare costs and resources and also at the individual level in terms of functional 

prognosis and survival. In view of the current Covid-19 pandemic, ICU bed availability has 

become a subject of crucial importance since it may affect triage decisions and, moreover, the 

use and relevance of MV has increased at a scale not previously imaginable. MV is usually 

considered to be a supportive therapy and is often lifesaving. MV increase oxygenation, 

decreases the work of breathing, helps to reopen or to keep open collapsed alveoli, and improves 

respiratory mechanics.  

However, MV per se can injure the lungs, process referred to as ventilator-induced lung injury 

[5]. Moreover, MV can also lead to other complications such as ventilator-induced diaphragm 

dysfunction [6] and brain dysfunction (delirium) [7]. The main reason for which MV is initiated 

is acute respiratory failure that mainly originates from the community-acquired pneumonia, 

viruses (such influenza or SARS-CoV-2), exacerbation of chronic obstructive pulmonary 

disease or acute pulmonary edema. MV is only a supportive treatment and cannot be viewed in 

any way as a curative treatment. Therefore, in parallel to MV initiation, it is fundamental to 

address the primary reason that precipitated the need of MV. After the resolution of the acute 

disease, the priority of clinicians is to separate patients from the ventilator, a process referred 

to as weaning from mechanical ventilation. It is sometimes a long and complex process when 

faced with various difficulties, but it is simple for a majority of patients. This simplicity, 

however, does not imply that it is conducted in an optimal way in such cases. Indeed, 

discontinuation of ventilatory support and extubation should occur as expeditiously as possible 

to minimize the iatrogenic consequences of intubation and invasive ventilation, including 
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infectious complications, complications of bed rest and, importantly, ventilator-induced 

diaphragm dysfunction [6]. Therefore, the weaning process aims at identifying patients early to 

separate them from invasive ventilation. (cf. Figure 1). 

 

Figure 1 - Different stages a patient goes through once intubated. 

 

 Weaning from mechanical ventilation 

Weaning failure is defined as the inability to separate a patient from the ventilator but actually 

weaning from mechanical ventilation implies two major milestones. First, the transition from 

artificial breathing delivered by the ventilator toward natural breathing that is driven by the 

contraction of the respiratory muscles. Generally, the ability of patients to tolerate the return 

toward natural breathing is ascertained by a so-called spontaneous breathing trial (SBT) during 

which the assistance of the ventilator is set to zero to challenge the cardiac and respiratory 

muscles functions. The second milestone is the ability to control the upper airways (glottis) 

without the endotracheal tube that connects the patient to the ventilator. Following this, weaning 

can be viewed as a continuum multi-steps process.  

It starts by screening readiness criteria that basically indicate to the clinicians that the patient 

may be ready to breathe without the assistance of the ventilator. If those criteria are present, it 

is current practice to “challenge” the respiratory and cardiac system by performing a SBT. If 

the SBT is successful which means that patients tolerate a period of 30 to 60 minutes with 

ventilator assistance set to zero or low level of pressure, extubation can be considered. The 

majority of patients are safely weaned from the ventilator after a first attempt, some are even 

extubated without any SBT [8], [9]. This group of patients is referred to as “simple weaning”. 

The other groups are referred to as difficult or prolonged weaning (taking <1 week or >1 week) 

and are explained by specific causes of weaning difficulties, including positive fluid balance 

and cardiogenic pulmonary edema and respiratory muscle dysfunction. The third group 

(prolonged weaning) represents patients entering the general definition of ventilator-dependent 

patients, who are usually tracheotomies and may benefit from specialized weaning centers.  
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It is still common belief that the separation from the ventilator should always be gradual, which 

is not justified [10]. In addition, the assessment of the degree of the reversal of the causative 

process is often based on subjective grounds, with a frequent natural tendency for clinicians to 

keep their patients on the ‘safe’ side, i.e., considering them as not being ready for separation. A 

landmark trial describing a systematic approach aimed at finding simple criteria for performing 

a SBT has shown interest in significantly shortening the duration of invasive ventilation and 

reducing associated complications. In this study, Ely et al. (1996) have shown the interest of a 

systematic approach to “patient weanability” by the daily search for predefined criteria that, if 

necessary, led to the completion of a SBT. The criteria were variables that were easily obtained 

at the patient’s bedside and that showed the level of oxygenation, hemodynamic stability, the 

presence of a cough and the measurement of the respiratory rate/tidal volume ratio. Using this 

approach significantly reduced the duration of invasive ventilation without any additional 

complications such as reintubation [11]. More recently, a strategy that paired spontaneous 

awakening, based on the interruption of sedatives, with SBTs improved extubation rates, 

reduced ICU length of stay and decreased mortality by 32%. Therefore, bundles have been 

proposed to facilitate separation from invasive ventilation [12]. It seems therefore important to 

facilitate the weaning process and to allow extubation as soon as it is possible when the patients 

are ready. The advantages of early discontinuation must also be balanced against the detrimental 

consequences of extubation failure. Patients who fail the extubation (extubation failure) and 

require reintubation have a high mortality [13], which to some degree may be precipitated by 

the extubation failure itself. Extubation failure defined by the need of reintubation or the 

development of post extubation acute respiratory failure is associated with prolonged duration 

of mechanical ventilation and increased mortality. In studies, extubation is considered as being 

successful if the patient is not re-intubated after 48 hours [22] [23]. Though, some studies 

extend this period to 72 hours [16]. The timing of reintubation is likely to influence the outcome: 

delayed reintubation is associated with a higher mortality rate [13]. Therefore, early 

identification of patients at high risk of extubation failure is of great importance. Accordingly, 

studies have identified risk factors of extubation failure [17]–[19]. In presence of one of these 

risk factors (age>65 years, chronic respiratory disease, chronic heart disease), the rate of 

extubation failure is around 15% and can reach up to 30% [20]. By contrast, patients without 

risk factors have lower rate of extubation failure, between 5 to 10% [19]. In clinical practice, 

recognition of clinical worsening after extubation can be delayed because key elements of 

respiratory monitoring (e.g., tidal volume) are no longer available and respiratory rate alone is 

not a good indicator of inspiratory effort. Since decades, physicians struggle to develop 

monitoring tools that could predict the outcome of extubation, such tools would permit to 
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carefully monitor a patient with high risk of extubation failure and to personalize a preventive 

strategy with multifaced approach including non-invasive ventilation, high flow oxygen 

cannula, chest physiotherapy, mobilization and armchair. 

 Extubation Predictors  

Extubation failure is provoked by a constellation of causes, some of them potentially linked. 

When the capacity of the system (respiratory muscle strength, respiratory drive) is reduced, the 

load (lung disease, fluid overload, cardiac dysfunction, abnormality of the chest wall) is 

increased, leading to a respiratory load/capacity imbalances. To prevent the risk of extubation 

failure, clinicians have searched for monitoring tools and clinical indicators that could predict 

the extubation outcome. A number of indexes such as vital capacity, maximal inspiratory 

pressure, arterial carbon dioxide tension has been studied as predictors but their predictive 

performance is poor [21]. In 1991, came a landmark study introducing the Rapid Shallow 

Breathing Index (RSBI) [22]. This index reflects the efficiency of the respiratory system to cope 

with unassisted breathing. It is calculated by dividing the tidal volume (VT), by the respiratory 

rate (RR). A value superior to 105 bpm/min indicates that the patient has a high risk to fails the 

extubation. This index serves as the gold standard for extubation prediction. Since then, several 

new metrics have been tested, here is presented a non-exhaustive list: 

• Tidal volume: the measure of tidal volume has been tested on patients, however, the 

difference observed between the patient succeeding and failing the extubation is not 

always significant [23], [24]. However, studies have shown that the coefficient of 

variation (CV) is more efficient to separate success from extubation failure [25], [26]. 

The Figure 2 shows the difference in performance between the average Vt and CV Vt; 

 

 

Figure 2 - Comparison of the performance between Average Vt and Coefficient of variation Vt under different 
ventilator settings [26]. 

 

• cough strength: for a patient to succeed the extubation, he needs to be able to have a 

sufficient cough strength to expel mucus from the breathing airway. To that end, test 
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has been done, such as measuring the peak ventilation flow of a cough, to study the 

prediction on the extubation depending on the cough strength [27], [28]. Though, from 

the study Gobert et al, the difference in cough peak flow (CPF) does not seem to yield 

significant difference between the two populations [29].   

 

Figure 3 - Cough peak flow results for the failure and success extubation groups [27].  

 

• blood analysis: signs of alveolar hypoventilation (hypercapnia notably) can be 

observed in the blood gas analysis. A lot of markers have then been tested [23], [24], 

[30], but there are no consensus on which is the best one yet. The ratio between PaO2 

(oxygen partial pressure) and the FiO2 (fraction inspired in oxygen) seems to be 

providing interesting prediction capability depending on the study though; 

 

• ultrasound: diaphragm ultrasound has been increasingly used in the ICU and several 

studies have been done to investigate its use and relevance to predict weaning outcome. 

When the diaphragm contracts, it shortens, thickens, displaces, and stiffens which 

provide interesting estimates of diaphragm function, a key determinant of weaning the 

outcome. For instance, a thickening fraction of the diaphragm below than 29% (cf. 

Figure 4) has been associated with the diaphragm dysfunction in mechanically 

ventilated patients [31] and cut-off values for predicting successful weaning (success of 

the spontaneous breathing trial and/or extubation success) range between 25 and 35% 

[32]. Another helpful indication for ultrasound is to image the lungs to evaluate the loss 

of lung aeration during spontaneous breathing (cf. Figure 5). Excessive lung aeration 

loss at the time of the spontaneous breathing trial is associated with weaning failure. 

There are many causes for lung aeration losses, including alterations in lung 

compliance/resistance, ventilation/perfusion mismatch, atelectasis and pulmonary 

edema. Respiratory muscle weakness has also been suggested to play a role in lung 
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aeration loss during weaning, but has never been investigated. Lung ultrasound is an 

interesting tool in this context since it can show the occurrence of B lines that are mainly 

generated by weaning-induced pulmonary edema [33], [34]. 

 

 

Figure 4 – Percentage change of the diaphragm thickness between end-expiration and end-inspiration [35] 

 

 

Figure 5 – Ultrasound of the left lung on the upper posterior thoracic region. The image on the left shows a good 
aeration, while it is degraded in the right image [36]. 
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Some of the prediction results for the extubation are displayed in the Table 1. 

Table 1 – Protocol setup and prediction results on the extubation using different methods. 

Authors 
Measurement 

period 
Measures 

Prediction 
method 

Nb of 
patients 
Success-
Failure 

Inclusion 

parameters Sensitivity Specificity 

Segal et al. 
[37] 

During the SBT 
Measures 
from the 
ventilator 

Rapid Shallow 
Breathing 

Index 

100 
86% - 
14% 

- Patient's age > 18 
 - MV duration > 

48h 
0.89 0.89 

Perren et 
al. [38] 

Prior to the SBT 

Asking 
patient's 
opinion 

Patient were 
asked if he 

felt confident 
in his 

extubation 
outcome 

211 
78% - 
22% 

- Patient's age > 18 
 - MV duration > 

10h 

0.72 0.33 

After the SBT 0.86 0.64 

Saugel et 
al. [24] 

Prior to the 
extubation 

Blood 
analysis 

Serum anion 
gap 61 

89% - 
11% 

- Patient's age > 18 

0.7 0.86 

Prior to the 
extubation 

Corrected 
serum anion 

gap 
0.88 0.71 

DiNino et 
al. [35] 

During the SBT 
Lung 

ultrasound 
Diaphragm 
thickness 

63 
78% - 
22% 

- Patient's age > 18 0.88 0.71 

Gobert et 
al. [27] 

After the SBT Measures 
from the 
ventilator 

Cough peak 
flow 

92 
 76% - 
24% 

- Patient's age > 18 
 - MV duration > 

24h 

0.7 0.64 

After the SBT Tidal volume 0.64 0.86 

Llamas-
Álvarez et 

al. [16] 

Cohort of study 
with different 

methods 

Lung 
ultrasound 

Diaphragmatic 
excursion 

1071 
Depends 

on the 
study 

Depends on the 
study 

0.75 0.75 

Hsieh et al. 
[39]  

During the SBT 
Review 
medical 

file 

Neural 
network 

3602 
95% - 5% 

- Patient's age > 18 
 - MV duration > 

24h 
0.82 / 

 

More complex prediction models using multiple variables have been investigated. Baptistella 

et al. [40] tested 28 variables such as blood gas (arterial pH, hematocrit, arterial oxygenation 

tension, …), hospital meta data (days of MV, days of sedation, fluid balance, …) or ventilator 

data (RSBI, tidal volume, lung compliance,…). Features were then chosen for the extubation’s 

prediction model based on their area under the curve (AUC) scores. For computing their 

development cohort, they recruited consecutive patients with the following criteria: older than 

18 years old and mechanical ventilation longer than 24 hours. Eventually, 112 patients were 

enrolled, from them 8% had extubation failure. After reviewing the prediction performance of 

all 28 individual features, 7 Features were kept for the prediction model. Those features were 

the RSBI, the lung compliance, the duration of MV, the maximal inspiratory pressure, Glasgow 

coma scale, hematocrit and serum creatinine. Those features were then combined into one 

metric called ExPreS (Extubation Prediction Score). From the ExpreS score, three groups of 

extubation outcome probability were determined (low, intermediate and high of success). The 
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result for each group is detailed in Table 2. After creating this model, the authors tested their 

model in a validation cohort in which 232 patients were recruited. They were able to reduce the 

original failures rate of 8.2% from the original database to 2.4% in the validation cohort. 

 

Table 2 - Extubation results from the extubation prediction score ExPreS [40]. 

 Sensitivity Specificity 
Success rate 

(%) 
Success 

probability 

ExPreS ≤ 44 
points 

0.96 0.33 57.10 Low 

ExPreS from 
45 to 58 
points 

0.950 - 
0.667 

0.333 - 
0.772 

88.30 Intermediate 

ExPreS ≥ 59 
points 

0.89 0.75 98.70 High 

 

An artificial network has also been tested on ICU data by Hsieh et al [39]. They retrieved 

medical data from patients going through the ICU between 2009 and 2011 in a Taiwanese 

hospital. All patients older than 18 years old that went through at least 24 hours of mechanical 

ventilation could be included in the study, upon the patient’s consent. Their database is 

composed of 3602 patients with 161 patients receiving Non-Invasive Ventilation (NIV) after 

the extubation. They monitored the patients for 72h after the extubation, after which the patient 

was considered an extubation success, even if they received NIV. In total, 37 features were 

included in the prediction model. These 37 features gathered blood gas analysis, meta data such 

as the patient’s age or past medical history or ventilator data such as maximum inspiratory 

pressure, tidal volume or respiratory rate. For the prediction model, they used a Multilayer 

Perceptron neural network [41] (cf. Figure 6), which is a common neural network algorithm. 

They used 3 layers, the first one includes of one input layer with 37 dimensions composed of 

the 37 medical features, the hidden one has 19 dimensions and the output has 2 (success or 

failure). This model provides good prediction results with a F1 score of 0.867, a precision of 

0.939 and a recall (also called sensitivity) of 0.822.  

Using a single parameter or a bunch of variables, studies have tried to develop the best predictor 

of extubation failure. However, it must be underlined that that the predictive performance of 

any predictor highly depends on the pretest probability of the occurrence of the event [42]. In 

addition, the timing of the test is crucial. The predictive performance is completely different if 

the test is performed before the SBT or after extubation. 
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Figure 6 - Architecture example of a Multilayer Perceptron neural network. 

On the one hand, the SBT actually challenges the cardiac function and the muscular pump to 

mimic the breathing of a patient without the ventilator. On the other hand, the extubation means 

to breathe without the endotracheal tube. Therefore, it is important to ask to a predictor only 

what it can actually do. In other words, a predictor related to load/capacity respiratory balance 

could perfectly predict a successful SBT but poorly extubation if extubation failure is related to 

aspiration and weak control of the upper airways. As a consequence, rather trying to predict the 

extubation outcome, a pragmatic approach would be to carefully monitor the patient’s status in 

order to detect as early as possible a sub-clinical deterioration. This approach requires 

continuous and reliable monitoring tools.  

 

 Electrical Impedance Tomography 

 Introduction to the EIT 

The first use of EIT on humans was published in 1984, where it was shown that it was possible 

to observe the distribution of conductivity variation in vivo [4]. Since then researchers have 

tried this imaging method for different applications in the medical field, such as monitoring the 

brain activity [43], breast cancer detection [44] or even estimating the urinary volume [45]. 

Though it seems that application to monitor the ventilation through the EIT are the most 

commonly find in research.  

The EIT apply on the thorax offers image with great contrast of the ventilation in the image (cf. 

Figure 7). Indeed, the EIT apply to the thorax, measure the movement of air, which is not 

conductive, in a tissues environment which is conductive to some degree. Thus, during an 

inspiration, we observe a decrease of conductivity induce by the air filling the lung.  
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Figure 7 - EIT images from a healthy subject. The blue colors represent negative conductivity variation induce by 
the ventilation. 

EIT measurements work by placing electrodes around the subjects’ thorax (using an electrode 

belt or individual electrodes depending on the system). Then, a current is injected between a 

pair of electrodes while measuring the voltage on the following electrodes (see Figure 8). These 

measurements are repeated until current has been injected into all pairs of electrodes. The 

voltages are then processed by a reconstruction algorithm which makes it possible to map the 

conductivity variations. There are so-called “absolute EIT” algorithms which allow the 

conductivity values to be displayed directly. However, this technique is not very successful, 

because it is highly sensitive to errors due to the movement of the electrodes or variation in 

contact impedance [46]. Therefore, in a large majority, the 'time-difference EIT' is used. This 

method displays the variations of conductivity by realizing the difference of the measurements 

between two instants. 

 

Figure 8 - Current injection and voltage measurement pattern [47] 

Several EIT devices are commercially available (cf. Table 3). There are two types of devices, 

depending on whether they have the CE mark. They are either intended in a hospital 
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environment for monitoring and test on patients; or for research purpose like the Swisstom 

Pioneer Set where you can adjust the current injection parameter.  

 

Table 3 – List of available EIT devices marked CE on the market  [48] 

Manufacturer  EIT System 
Electrodes Image 

Reconstruction 
algorithm 

Measurement 
and Data 

Acquisition Number Configuration 

Swisstom AG BB² 32 Electrode belt GREIT Adjustable skip 

Timpel SA Enlight 32 Electrode stripes Newton-Raphson 
3-electrode 

skip 

CareFusion Goe-MF II 16 Individual electrodes 
Sheffield back-

projection 
Adjacent 

Dräger Medical 
PulmoVista 

500 
16 Electrode belt Newton-Raphson Adjacent 

Maltron Inc Mark 1 16 Individual electrodes 
Sheffield back-

projection 
Adjacent 

 

The EIT also found other applications to it than the medical field. A variant to this method, 

ERT (Electrical Resistivity Tomography) is used in geology  [49], [50]. Electrodes are placed 

on the surface of the ground. The measurement allows to map the underground by displaying 

the different components in the ground that have different resistivity.  

The EIT also found an application in the robotic field  [51], [52]. Researchers created artificial 

skin from conductive materials. They then apply EIT measurement to it to detect the position 

where the skin is touched. 

 

 EIT reconstruction process 

Finding the different conductivity inside a system from voltage measurements realized on the 

boundary is an ill-posed problem. Meaning that for a set of voltage measurements, they are not 

a unique solution to the problem. Thus, different reconstruction algorithm could arrive to 

different solutions and recreate different EIT images showing different conductivity variations. 

Historically, the first reconstruction algorithm was the ‘Sheffield backprojection’ algorithm [4]. 

This method consists of adding the equipotential of each current injection couple, which makes 

it possible to highlight the zones which have had the most variation in conductivity (see Figure 

9). 
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Figure 9 - The superposition of each of the equipotential on the image on the left makes it possible to obtain the 
result which is observable on the image on the right [47]. 

Yet, most of the reconstruction algorithms are based on sensitivity models (see Figure 10). This 

method consists of comparing the real boundary voltage measure, from estimation of boundary 

voltages calculated thanks to the forward solution. In the case of the EIT, the forward solution 

calculated the boundary voltage from the system conductivity. So, algorithms iterate over 

themselves to minimize the difference between the real boundary voltages and the estimates 

ones, in order to find the right conductivity. From this original method, many algorithms 

emerged throughout the years, with different regularization methods or other improvements 

devoted to the image quality [53]–[55]. 

 

Figure 10 - Description of the different sorts of EIT reconstruction algorithms [56] 
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In 2009, a consensus of experts chose to opt for a new approach and created the GREIT 

algorithm which improves the image by optimizing the reconstruction matrix R [57]. 

To configure R, GREIT creates a simulation set with different conductivity variations (later 

called target). From this, two EIT images are created: the desired EIT image and the real image 

(cf. Figure 11). It is possible to see that the desired image results in a larger circle, because 

GREIT considers the blurring effect inherent in EIT. Indeed, it was found with other 

reconstruction algorithms that the conductivity variation in the center could be blurred or not 

detect at all. This problem is due to the ill-conditions of the EIT reconstruction [58]. It can be 

solved by increasing the regularization parameters during the reconstruction.  

 

Figure 11 - On the left, the simulation of a variation in conductivity; in the middle, the real image; on the right, 
the desired image [57]. 

From the real image and the desired one, GREIT adjust certain pixels weight in the image, to 

have an image reconstruction closer to the desired image. The creation of the reconstruction 

matrix is done by following the objectives of six performance parameters which the expert 

consensus has deemed to be the most important. Its parameters are as follows (ordered from 

most important to least important): 

• amplitude response: knowing that the amplitude of the targets is the same throughout 

the test set, the amplitude on the EIT image must be the same between each test; 

• position error: the center of gravity of the object in the real image must be at the same 

position as the target; 

• resolution: the size of the actual image must be equal to the size of the desired image; 

• shape deformation: the reconstructed image must be a circular shape just like the 

target; 

• circle effect: the W matrix tries to limit the circle effect that can be created around 

objects reconstructed in EIT; 

• noise amplification: It must be ensured that the noise on the signals is not amplified. 

 

Once the training is complete, the reconstruction matrix R can be used to reconstruct the EIT 

images 𝑥̂ with a simple multiplication with the voltage vector y (Cf. Equation 1). 
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𝑥̂ = 𝑅𝑦 Equation 1 

 

The whole process is described in the Figure 12. With an EIT system using 16 electrodes, this 

results in voltages vector of 208 measures. This number comes from the fact that, for a certain 

electrode pair injection, 13 measures are realized (cf. Figure 8). The 13 measures are then 

repeated for 16 different electrode pair injection. Once the 208 measures are done, we have all 

the measures corresponding to an EIT frame. For the time-difference EIT, a reference has to be 

subtracted. The reference chosen depends on the EIT application. For pulmonary monitoring, 

the reference chosen is usually a frame corresponding to an end-expiration. Now that the 

voltage dataset was subtracted to the reference, the image can be reconstructed. For each frame, 

the voltage vector is multiplied by the reconstruction matrix. This results in an image 

represented as a vector, which then have to be rearranged to be displayed as an image.  

 

Figure 12 - Whole EIT reconstruction process. 

Among the linear-one step algorithms, it has been shown that GREIT is the best one [56]. This 

sort of algorithm has the advantage to simplify the EIT image computation by the multiplication 

of the reconstruction matrix with the voltage vector. 

 

 EIT applications in the ICU 

Although the use of EIT is not used in routine in the ICU, it represents a promising approach to 

continuously monitor the distribution of the ventilation inside the lungs. It is non-invasive, it 

provides continuous visualization of the ventilation and it is not ionized. It may be useful to 

detect heterogenous ventilation which is harmful or to detect the progressive loss of lung 

aeration during a spontaneous breathing trial or later after extubation. EIT could also be useful 

to personalize the ventilator settings.   

It was found that through the EIT measurement, it is possible to estimate the variation of the  

ventilation volume [59], [60]. Indeed, this estimation is rendered possible through the 

calibration with the real ventilation volume measured by the ventilator or another device like a 

spirometer. This allows to translate EIT metrics into ones uses in the ICU so that the doctors 
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can better grasp their meaning. The estimation of the volume variation through the EIT is 

calculated thanks to the calibration coefficient a (see Equation 2). The calibration coefficient 

corresponds to the slope coefficient of the line that best fit the linear relationship between the 

ventilation volume and the conductivity variation ΔZ (cf Figure 13), which is calculated by 

summing every pixel in the EIT image.  

However, it is important to note that the EIT cannot measure the actual ventilation volume but 

only the variation. This limitation is due to that fact that we realized time-different EIT, and 

thus always compare the measure to a reference from which we calculate the variation.  

 

𝑉𝐸𝐼𝑇(𝑡) = 𝑎 × ∆𝑍(𝑡)  Equation 2 

 

 

Figure 13 - Conductivity variation ∆𝑍 (called here Delta C) depending on the variation of volume [61]. 

Study have been realized to check the validity of the EIT against the CT-scan, which has the 

highest resolution compared to other monitoring devices [62]. Tests were realized on porcine 

mechanically ventilated models. The authors of the study compared the estimation of volume 

through the two different methods, by calculating the tidal volume and the variation End-

Expiratory Lung Volume, EELV. EELV is the volume present in the lungs at the end of 

expiration and is also called functional residual capacity in spontaneously breathing subjects. 

The EIT counterpart is the variation End-Expiratory Lung Impedance, ΔEELZ, the calculation 

process is the same except that we used ΔZ instead of the ventilation volume. Using the Pearson 

correlation score, they found a good correlation between the different metrics, 0.84 for the tidal 

volume against ΔZ and 0.94 for ΔEELV against ΔEELZ. Thus, proving the reliability of this 

method against a gold standard.  
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Figure 14 - Measurement of CT-scan and EIT realize on a porcine [62]. On top, the CT scan images. At the 
bottom, the EIT images are added. 

Another application of EIT is for setting the right level of Positive End-Expiratory Pressure 

(PEEP). The PEEP allows to keep the lungs opened at the end of expiration. The optimal level 

of PEEP is a critical setting when delivering ventilation because there is a tradeoff between 

higher PEEP (and increased EELV but a risk of hyperinflation) and lower PEEP (and decreased 

EELV but a risk of atelectasis). Before EIT, doctors relied on different baseline rules but had 

to rely on their experience to find the right settings for an individual patient [63]. With the EIT, 

it is now possible observe the area that is over distending or collapsing depending on the level 

of pressure [64], [65]. Thus, allowing to find the optimal ratio between collapse and over 

distension.   

The EIT also have different metrics to quantify the distribution of the ventilation in the lungs. 

Such as the center of ventilation (CoV) [66], [67] which indicates the distribution of the tidal 

volume between the anterior-posterior parts. This is realized by calculating the sum of pixels 

of each line ΔZline and realizing a weighted average of each of them (cf. Equation 3). 

 

𝐶𝑜𝑉 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒 × ∆𝑍𝑙𝑖𝑛𝑒

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑖𝑛𝑒
  Equation 3 

 

The calculation process can be simplified by looking at the Figure 15.  

 

Figure 15 - Process to calculate the EIT features CoV. 
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One other application of EIT has been tested by Longhini and his team which is especially 

interesting for our study. They tested the capability of the EIT to predict extubation failure [68]. 

Measurements were realized before and after the 30 minutes SBT, as well as right after the 

extubation and 30 minutes later. Three EIT metrics were tested: estimation of the tidal volume 

by EIT measurement ΔVtEIT  (after calibration with the ventilator volume), ΔEELZ and the 

global inhomogeneity index (GI), which is a metric that reflect the homogeneity of the volume 

distribution in the lungs [69], [70] and is calculated as follows:  

 

𝐺𝐼 =  
∑ |∆𝑍𝑥𝑦−𝑀𝑒𝑑𝑖𝑎𝑛(∆𝑍𝑙𝑢𝑛𝑔)|𝑥,𝑦∈𝑙𝑢𝑛𝑔

∑ 𝑍𝑥𝑦𝑥,𝑦∈𝑙𝑢𝑛𝑔∆
  Equation 4 

 

With ΔZx,y being the value of the pixel located in the position x, y; and ΔZlung being the sum of 

all pixels belonging to the lung in the EIT image.  

To test the extubation capability of those EIT metrics, a threshold was used to separate both 

class (success and failure). The Youden index method was used to calculate the threshold [71]. 

They included 61 patients whom 36.1% of them had extubation failure.  

With the success defined as the negative class and the extubation failure as the positive class, 

they found the results displayed in the Table 4. The best predictors come from ΔEELZ after the 

SBT and the GI, 30 mins after extubation.  

Table 4 - Results on the prediction of the extubation outcome using EIT metrics [68] 

 

 

Longhini and his team demonstrated the ability of the EIT to predict extubation failure. Though, 

their study is limited to the 3 EIT metrics they tested. In addition to that, there weaning 

observation was limited to 30 mins.  

 

 Conclusion 

Over this overview of the existing literature on weaning and prediction of extubation failure, 

we introduced the importance to rightfully predict the prediction outcome. Prediction models 
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have been developed and tested by researchers. Some provide good results. Like the models 

from Baptistella et al [40] where they have been able to show the model capability by reducing 

the extubation failure rate on a validation set. Though, most of the proposed models focus the 

observation during the spontaneous breathing trial or before the extubation. This limitation 

pushed us to develop our clinical study. Our hypothesis is that continuous monitoring of 

regional volume distribution by EIT after extubation may detect patients at risk of subsequent 

extubation failure. The aim is to give a more extending understanding of the capability of the 

EIT to predict extubation outcome. To do this, we included a large number of EIT features and 

we observe the patients for 48 hours in order to describe how the ventilation patterns change 

after extubation, as well as developing more complex prediction models to predict the 

extubation failure. 
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3. Clinical study EXIT 

This chapter describes the clinical study that was put in place to study the EIT performance to 

monitor patients after extubation (NCT04180410). The clinical study was designed at the 

beginning of the thesis by my thesis supervisors and myself. This chapter describes the clinical 

study that was conducted to ascertain the EIT performance to monitor patients after extubation. 

Dr Martin Dres, in collaboration with Dr Vincent Bonny and Dr Vincent Joussellin, were 

responsible of the inclusion and setup. M. Andrea Pinna and Vincent Janiak oversaw the testing 

and analyzing the prediction model, in collaboration with the Pr Christophe Marsala. The 

inclusion of the patients occurred at the intensive care unit of the hospital La Pité Salpêtrière 

in Paris and lasted between the February 2020 to March 2022.  

 

 EXIT scope 

For this study, the main goal is to monitor patients during the weaning phase with EIT. Such 

study has never been realized before, so we do not know how the ventilation will change 

according to the EIT monitoring.  

From those EIT data, we want to propose a prediction model that could predict the extubation 

outcome. We want to include as many as possible EIT features to have a whole view of the 

patient’s ventilation from the EIT perspective.  

  

 Study population 

We included ICU patients older than 18 years, who were mechanically ventilated for at least 48 

hours through an orotracheal tube, with at least one risk factor of extubation failure (age > 65 

years old, chronic heart or pulmonary disease). They had to succeed to a spontaneous breathing 

trial. Patients undergoing extubation during weekends were not considered for inclusion. Non-

inclusion criteria were the following: pregnant women, patients under extra-corporal assistance 

(ECMO), patients without social insurance. 

 

 Weaning observation 

Patients were included in the study once the physician prescribed the extubation, and if the 

patient met the inclusion criteria. After enrollment, a silicon 16-electrode EIT belt of proper 

size was placed around the patient’s chest between the 4th and 6th intercostal spaces and 

connected to the EIT device (PulmoVista 500; Draeger Medical GmbH, Lübeck, Germany). 

EIT was connected to a ventilator (Infinity V500; Drager Medical GmbH, Lübeck, Germany) 
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through a RS232 interface to calibrate impedance variation with volume while patients were 

still intubated.  

After 48 hours, if the patient was not re-intubated, she/he was considered as an extubation 

success.   Post-extubation acute respiratory failure was predefined by the presence of one or 

more of the following criteria (if persistent over 5 minutes): SpO2 < 90% with an oxygen 

support ≥ 5 L/min, a respiratory rate ≥ 35/min, a pH < 7,35 with a pCO2 > 45 mmHg. Patients 

were allowed to receive preventive NIV.  

 

 Data acquisition 

For this clinical study, we decided to realize 7 visits with different measures that are realized. 

The first one occurred right before the extubation (H0), then 2 hours after the extubation (H2), 

then 6 hours (H6), 12 hours (H12), 24 hours (H24), 36 hours (H36) and at last 48 hours (H48). 

Between those visits, no measures were realized on patients.  

At each visit, EIT measurement was realized by the Drager Pulmovista 500 [1] set to 30 

frames/s. Two EIT recording of 5 minutes each was realized at each visit. The 16 electrodes 

belt was positioned between the 4th and 6th intercostal space. A temporary mark is placed on the 

thorax to make sure the belt does not move significantly between takes. Each EIT measures last 

for 5 minutes which produced 9000 frames.  

In addition to the EIT measurement, several other variables were collected (see Table 5). The 

other measures realized at each visit are intended for other goals than the one defined for this 

thesis. The results from those are therefore not discussed in this report.  

Table 5 - Data available for the first 5 visits. 

H0 H2 H6 H12 H24 

Meta data Usual ICU data Usual ICU data Usual ICU data Usual ICU data 

Arterial blood gas  Heart ultrasound Dyspnea sign EIT Blood analysis  

Usual ICU data Lung ultrasound EIT  Usual ICU data 

Heart ultrasound Dyspnea sign   Heart ultrasound 

Lung ultrasound EIT   Lung ultrasound 

EIT    EIT 

    
 

 Weaning outcome 

During the 2 years inclusion periods, 37 patients were included. The first one occurred on 

February 28th in 2020, the last one was included on Marsh 17th in 2022 (cf. all inclusions date 
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in Table 30 in the Annex). From the 37 patients, 2 could not be analyzed, which left us with 35 

patients in our database, with 26 success and 9 failures, thus a failure rate of 26%. Table 6 

describes the anthropometric measures, as well as the medical condition of patients from both 

classes.  

Table 6 - EXIT meta data. The first 7 lines display the following results: median [1st quartile; 3rd quartile]. 

  Success Failure 

Age [years] 61 [49; 66] 59 [40; 69] 

Weight [kg] 72.5 [70; 94.9] 75 |69.3; 78] 

Height [m] 1.73 [1.68; 1.78] 1.7 [1.68; 1.76] 

Body Mass Index (BMI) [kg/m²] 27 [23.8: 29.8] 24.9 22.3; 28.3] 

Mechanical ventilation duration [days] 8 [5; 13] 8 [7; 12] 

Delay between extubation and failure [hours] / 8.3 [1.1; 14] 

Sequential Organ Failure Assessment score (SOFA) 8 [4; 11.8] 6 [3.3; 8] 

Patients with chronic respiratory disease [%] 36 33 

Patients with chronic heart disease [%] 36 11 

Patients with diabetes [%] 22 22 

Patients with neuromuscular disease [%] 5 11 

Number of males 17 7 

Number of females 5 3 

 

After extubation, prophylactic NIV was used in 12 patients (34%) and high flow nasal cannula 

in 8 patients (23%). Extubation failure occurred in 9 (26%) patients within the 48 hours after 

extubation. The main cause of extubation failure was the presence of ineffective cough (n=6, 

14%). Weaning-induced pulmonary edema was documented in one patient. One patient 

presented a hemorrhagic shock and was re-intubated to perform upper gastrointestinal 

endoscopy, while another patient was re-intubated immediately after extubation because of a 

laryngeal edema. Two patients were not re-intubated: the first had a sudden hypoxic cardiac 

arrest that occurred 74 hours after extubation, while the other developed an acute respiratory 

failure for which high-flow nasal oxygen therapy was intensified.  

The Table 7 shows all EIT measures realized on the patients. Unfortunately, not all measures 

were realized or can be analyzable. Indeed, 3 success patients (P01, P15 and P22) exited the 

ICU before the 48h observation, as they were deemed treated. As due for the measure which 

cannot be analyzed, an example can be seen below in the Figure 16. In such cases, we are not 

sure what happens during the recording. The assumption is that the patient moved too much 

and displaced the electrode belt. One last case that need to be addressed is the patient P28. This 

patient is considered an extubation success even though he was re-intubated, as his failure was 

not due to ventilation reasons. 
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Table 7 - Each EIT measurements realized on success's patient (on the left) and on failure’s patient (on the right).  

Patient H0 H2 H6 H12 H24 H36 H48 

  

Patient H0 H2 H6 H12 H24 H36 H48 

Re-
intubation 

delay 
[hours] 

P01                 P02               15 

P04                 P03               35 

P07                 P05               45 

P08                 P06               24 

P10                 P09               0.5 

P11                 P13               0 

P12                 P14               8 

P15                 P27               1 

P16                 P29               1.5 

P17                 P36               24 

P18                 Total 9 6 5 2 3 0 0   

P19                                   

P20                                   

P21                                   

P22                                   

P23                                   

P24                     Good measure   

P25                     ICU discharge   

P26                     Measure not analyzable   

P28                     Measure not realize   

P30                     Re-intubated patient   

P31                     Ventilation distress   

P32                     Study exit   

P33                                   

P34                                   

P35                                   

P37                                   

Total 26 25 24 14 18 6 13                     
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Figure 16 - Example of a take that cannot be analyzed (P35-H12). 

 

 Conclusion 

This chapter presented the clinical trial. From the measurement protocol, the inclusion 

parameter and the weaning observation process. The 35 included patients were presented. Table 

8 sums up the study and echoes the Table 1 to compare with the previous studies on the subject. 

Next chapter will review the whole EIT framework from which the EIT metric are calculated 

and used for prediction.  

 

Table 8 – Protocol setup for our clinical study EXIT.  

Measurement 
set 

Measures 
Nb of patients 
Success-Failure 

Inclusion parameters  

7 measures 
after extubation 

Electrical 
Impedance 

Tomography 

35 
75% - 25% 

 - Patient's age > 65  
 - MV duration > 48h 

 

 



44 

 

 

4. EIT features extracted from the images 

Using the Drager Pulmovista 500, we had access to the EIT reconstruction from their software. 

In addition to that, their software allows to calculate only a couple of EIT metrics (ΔZ, CoV, 

GI and lung compliance if ventilator data available). Thus, due to the great limitation that are 

imposed when using their software, we decided to realize our own EIT framework. This enabled 

us to better optimize the process to fit our need, including adding more EIT features. The whole 

framework is summarized by the Figure 17. 

This chapter describes every EIT features that are calculated which are then used in the 

prediction model. First, the usual features found in the literature are described. Then new EIT 

features are introduced. Those were developed based on observation realized on the EIT images 

from both groups (success vs failure). As well as recreating ICU metrics with the EIT signal. 

All in all, 151 EIT takes were analyzable from 35 patients. Each takes lasted for 5 minutes 

which yields 9000 EIT frames with the Drager Pulmovista 500. The size of each file is around 

50 Mo, which made for a database of 7.5 Go. 

 

  

Figure 17 - EIT framework: from the EIT system to the EIT images from 5 minutes takes. 

 

 Preprocessing and reconstruction of the EIT data 

 Preprocessing 

Patients who were extubated may cough due to accumulation of mucus in the upper airways. 

Plus, they can be confused due to spending days in artificial coma. Those two factors induce 

noise in the EIT voltage measurement. As a means to observe if the take is good enough to 

analyze, we are observing the variation of Vmean. It is the average of the 208 voltages 

(corresponding to all the voltages of a frame using a 16 electrodes EIT system) and represent 

the air volume variation in the lungs. An example of the Vmean variation can be seen in Figure 

18. This signal is also used to detect the tidal cycles by finding the end-expiration and the end-

inspiration events in the signal. These events are located by finding the local maximum and 

minimum in the Vmean signal. 

The tidal cycle detection can be badly impacted by the noise generated by cough or by 

movements and can generate a wrong detection.  
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Figure 18 – Unfiltered variation of Vmean during a 5 minutes EIT measures for the patient P06 at H0 

In addition to the signal spikes generated by cough or movement, a drift can be seen in most 

measurements (cf. Figure 19). This does not come from the patient’s ventilation. Indeed, the 

drift is equivalent to 6 times the patient’s tidal volume. So, the patient could not have 

progressively exhaled such volume over the 5 minutes period. Therefore, this drift must come 

from measurement errors. We are unclear as to why the drift occurs. The drift could come from 

different sources such as: small movement of the electrode belt, changes in contact impedance 

between the electrode and the skin (drying of the electrode or sweating).  

 

 

Figure 19 – On the left, unfiltered variation of Vmean during a 5 min EIT measures for the patient P06 at H2. On 
the right, the same signal but filtered.  

 

To reduce the chance to have a bad take that has too much noise or drift, 2 EIT measures are 

realized at each measurement set (H0, H2, …). The one with the less disturbance is then chosen. 

However, the spikes and drift present in certain measures still need to be addressed. To achieve 
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that, we are applying a band pass filter with cutoff frequencies equal to 0.05Hz and 0.7Hz, that 

is applied on each of the 206 voltages channel measurements. 

As mentioned above, the end-inspiratory and end-expiratory frames are found by searching for 

the local maximum and minimum in the signal. Though due to the noise, some of the tidal 

images found are not relevant (cf. Figure 20). To address this issue and only detect real tidal 

variation, thresholds were put in place to select the tidal image. The tidal amplitudes that were 

either higher than Thresholdhigh or lower than the Thresholdlow were not kept (cf. Equations 5 

and 6). The thresholds were set as to remove most false tidal detection, even if it meant 

removing true tidal cycle. From this, we found empirically the following values for the 

coefficient: Thresholdhigh = 1.0; Thresholdlow = 0.6. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤 = 𝑚𝑒𝑎𝑛(𝑉𝑚𝑒𝑎𝑛(𝑡𝑖𝑑𝑎𝑙𝑎𝑚𝑝)) − 0.6 ∗ 𝑠𝑡𝑑(𝑉𝑚𝑒𝑎𝑛(𝑡𝑖𝑑𝑎𝑙𝑎𝑚𝑝)) Equation 5 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ℎ𝑖𝑔ℎ = 𝑚𝑒𝑎𝑛(𝑉𝑚𝑒𝑎𝑛(𝑡𝑖𝑑𝑎𝑙𝑎𝑚𝑝)) + 1 ∗ 𝑠𝑡𝑑(𝑉𝑚𝑒𝑎𝑛(𝑡𝑖𝑑𝑎𝑙𝑎𝑚𝑝)) Equation 6 

 

 

Figure 20 - Example of noise variation that could be mistakenly recognized as a tidal variation 

With this process to remove any false tidal detection, we end up having in average of 74 tidal 

cycles detected between all patients throughout the 48 hours (Cf. Table 9).  

Table 9 – Number of tidal cycles kept at each measurement set. 

 

 

 

 

 

 
H0 H2 H6 H12 H24 H36 H48 

Min 27 48 39 41 47 60 43 

Max 156 114 133 91 110 135 92 

Mean 71 75 73 68 71 87 75 

Std 28 19 22 18 17 26 15 
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This number can vary greatly between patients (Cf. Table 31 in Annex) as the standard 

deviation results show. But this should not pose any significant problem. Indeed, the patient’s 

ventilation should be relatively stable during the 5 minutes measurement. Thus, the different 

tidal images do not really change between the start and the end (cf. Figure 21). Plus, at the end, 

we average the results on each tidal image, as we need a one-dimension results for each feature 

to feed our chosen estimators that are discussed in the next chapter. 

 

 

Figure 21 – First and last tidal images for the patient P18 take H2. 

 

Once this step is done, we have removed any false tidal detection from our analysis, though the 

perturbation is still present in the overall signal. To further clean it, we removed any parts that 

contain false tidal detection and then we reassemble the signal.   

 

Figure 22 – Reunification of the different EIT parts after removing the false tidal detection due to noise. The false 
tidal parts are depicted in red.  

 

With this last filtering of the EIT signal, we are left with an average between the measurement 

set of 3455 frames. This corresponds to using only 38% of the whole 5 minutes frames. The 

62% other frames correspond for the most parts as noise that was detected from the voltage 

signal. 



48 

 

 

Table 10 - Number of EIT frames kept at each measurement set after removing the part containing noise. 

 
H0 H2 H6 H12 H24 H36 H48 

Min 919 923 1267 2153 1690 3446 2019 

Max 6622 6608 6621 4886 5432 5070 5751 

Mean 3244 3469 3402 3175 3175 4252 3465 

Std 1310 1225 1268 866 931 636 1218 

 

 Image reconstruction 

The algorithm GREIT is used for the image’s reconstruction. To calculate the GREIT 

reconstruction matrix R, the EIT open-source toolkit EIDORS [72] is used in Matlab. GREIT 

have many parameters that need to be set for the training of R. Like the target size, which define 

the size of the target simulation (cf. Figure 11), the distribution of the target or the number of 

simulations. Thürk and his teams published two articles on the best methods to find the right 

settings [73], [74]. They recommend an empiric method where different values for each 

parameter are tested. Then they tested each reconstruction matrix by reconstructing the image 

and calculating certain EIT features to check against gold standard. They used the same analyze 

framework proposed by Grychtol et al [56] that was previously explained in the part EIT 

reconstruction process part in the state of the art. They also used the same data as theirs. Though, 

as we wanted to have a reconstruction that was optimized using our setup, we used our own 

data. EIT recordings were realized on 2 healthy subjects using the Drager Pulmovista 500. Two 

takes of 5 minutes were realized for each subject. Subjects had to ventilate through a spirometer 

in order to measures the true ventilation volume. In total, over 1200 reconstruction matrix were 

tested, examples of different reconstruction matrices are shown in the Figure 23.  

 

 

Figure 23 – Reconstruction example of an EIT tidal image using different GREIT reconstruction matrix. The image 
on the left is from our reconstruction matrix. 
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Estimation of the tidal volume was calculated for each reconstruction matrix and evaluated 

against the true volume. The one that yielded the lowest difference in tidal volume was then 

chosen to reconstruct all images from the clinical study. The best mix of GREIT parameters 

under the EIDORS implementation is shown in Table 11. 

Table 11 – Best GREIT parameters chosen for this study.  

Image size [pixels] 64 x 54 

Distribution of simulated conductivity 
variation 

Random 

Size of conductivity variation as 
proportion of mesh radius [%] 

0.08% 

Number of simulations 500 

Noise level [Ø] 0.3  

 

The reconstruction matrix is then exported in a Python IDE where the whole framework takes 

place, which includes the preprocessing, the image reconstruction and the calculation of the 

EIT features. The image reconstructed from the reconstruction matrix have a size of 54x64 

pixels. They are two sorts of EIT image reconstruction: the tidal images and the dynamic 

images. As mentioned in the state of the art, the tidal images are the difference between the 

end-inspiration and the end-expiration, thus showing the lung without the residual volume at 

the end-expiration. The dynamic images are the difference between each EIT frames and a 

reference. The reference chosen is the end-expiratory frames with the lowest Vmean. This 

simplifies the interpretation of the EIT images, as it induces that the negative conductivity 

variations are due to air movement, and positive variations are noise in our case (as the focus is 

on the ventilation).  

 

 Usual EIT features 

The only similar study on the subject comes from the prediction models developed by Longhini 

et al [68]. Indeed, they tested the prediction capability of 3 EIT features. Though, their 

observation windows after the extubation lasted for 30 minutes. Our study extends this duration 

to 48 hours, as we want to monitor the whole weaning process. Not knowing initially what kind 

of ventilation profile we observe in the study, we wanted to have a comprehensive set of EIT 

features that could capture the information on the EIT images from different perspectives. 

Therefore, most of the usual EIT features found in the literature were included in our 

framework. They are three different perspectives from which the EIT images are interpreted: 

the ventilation distribution, the volume and the frequency (cf. Figure 24).   
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Figure 24 - All usual EIT features calculated. In green, the distribution features; in blue, the features related to 
the ventilation volume; in red, the temporal feature.  

The implementation of the different usual EIT features is reviewed in this part. Except for CoV, 

Vmean and ΔZ that were explained in the state of the art and does not need further precision. 

This step is necessary to remove any variation that is not due to ventilation, thus corresponds 

to noise for our study. Now, unto the explanation of the remaining features.   

 

 Regional distribution 

The regional distribution is a feature that divides the EIT images in four quadrants and calculate 

the percentage of involvement of each of them. Then, the percentage of involvement of each 

quadrant is calculated with the following formula: 

 

𝑅𝑒𝑔 𝑑𝑖𝑠𝑡𝑟𝑖 𝑞 =  
∆𝑍𝑞

∆𝑍𝑎𝑙𝑙 𝑖𝑚𝑎𝑔𝑒
 × 100  Equation 7 

 

With q, being one of the four quadrants; ∆𝑍𝑞 the sum of each pixel value from the quadrant q 

and ∆𝑍𝑎𝑙𝑙 𝑖𝑚𝑎𝑔𝑒 the sum of each pixel from the whole image. The whole process is described in 

the Figure 25. 
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Figure 25 – Example of the calculation of the regional distribution on a healthy subject. On the left is the tidal 
image with the 4 quadrants; on the right is the percentage of the participation of each quadrant.  

 

 Global Inhomogeneity Index 

For the Global Inhomogeneity index (GI), the equation for the calculation was shown in the 

state of the art (cf. Equation 4). Though, we left out the explanation about how the lungs are 

identified in the image. During the state of the art, we came across diverse method to identify 

the lungs in the EIT image [75]. The most used method in the literature is the uses of standard 

deviation (std) method. This entail calculating the standard deviation of each pixel during the 

entire measurement and applying a threshold depending on the maximum value, to remove the 

background noise of the EIT images. This method works well for identifying the ventilation in 

the thorax. However, upon a patient who does not have any ventilation in one of his lungs, the 

standard deviation method will not detect this lung. This would result in a bad estimation of the 

GI. Indeed, the GI calculates the homogeneity of the volume distribution over the whole lung 

and not just the ventilated area. We can observe an illustration of this problem from the patient 

5 that had atelectasis on the left lung (cf. Figure 26). Only the ventilated area was detected. 

Therefore, we needed a method capable of identifying the whole lung region, even if no 

ventilation occurs.  

  

Figure 26 - Uses of the Std method to find the ROI in the EIT images. On the left, the original tidal image; on the 
right the ROI detected. 

To suits our need, we designed our own method to identify the lung. We use the EIT data from 

measures on 2 healthy subjects. Two measures of 5 minutes were realized while the subject was 

seated and asked to ventilate in a normal fashion. The standard deviation method was then 
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applied to those measures with a threshold of 30% of the maximum value. We use the threshold 

recommended from study conducted by Frerichs et al [76]. The results for the 4 measures in 

shown in the Figure 27. With those, we combined them to form the final binary mask that will 

be applied to all EXIT patients. To combine them, we opted to keep every pixel that is present 

in each of the 4 EIT images. This gives the overall pixel mask that can be seen in the Figure 28.  

 

 

Figure 27 - Lung detection after the 30% threshold applied. The two images on the left are from the 2 measures 
from the subject 1, and the other 2 from the subject 2.  

 

Figure 28 - Overall pixel mask to detect the lungs in the EIT images. 

This new method allowed to have a GI result more aligned with other studies. Indeed, with the 

Std method, we had a GI equal to 0.28 with the example from P05h24 (cf Figure 26). Such 

result seems inaccurate, as previews study showed that for healthy subjects, GI ranged from 0.4 

to 0.5 [69]. As for patient having ventilation distress, GI range from 0.5 to 1.5. With our ROI 

method, the GI is equal to 0.65 which is more in line with what we expect. 

This our ROI method was designed to fix the problem that occurs when the lungs are not 

properly ventilated. With it, we are able to calculate the GI in accordance with other studies. 

Though, while this method works, it is somewhat rude in the making. Only 2 healthy subjects 

were used to construct the ROI. Which does not allow for a good generalization of the model.  

Plus, other parameters could have been considered to realize more custom ROI depending on 

the patient’s profile. Like considering the patient’s morphology or his body mass index. 
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 Respiratory rate 

For the respiratory rate, we use the Vmean signal. The method is to count the number of 

inspiration points (cf.  Figure 29) over the 5 minutes measures. The count is then divided by 5 

to express the results as breaths/minutes.  

 

 

Figure 29 - Detection of the inspiration point (orange) and expiration point (green). 

 

 Other features  

EIT features such as the compliance or calibrating the EIT data to express the results as a 

volume variation could not be realized. Indeed, the ventilator data was only available at H0. 

Therefore, those metrics would only have been calculated for only one measurement set.  

In addition to all EIT features included, we are also included another version of each of them. 

It has been shown the coefficient of variation of the tidal volume is a better extubation predictor 

that the actual tidal volume [25], [26]. From this spirit, we calculated the coefficient of variation 

of every EIT features.  

To finish, we can note that some features are calculated on the tidal image. While for some, we 

also calculated the same feature on the dynamic images (cf. Figure 24). Which corresponds to 

each EIT frames measures during the 5 minute period. We then only used the average of the 

features from the 5 minutes as we are limited from our chosen prediction’s estimator. Indeed, 

they do not allow for vector input. 
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 Added features  

 Features based on existing ICU metrics  

We wanted to add EIT features that could be more recognize by clinicians. To do that, we had 

to select ICU metrics that could be estimated from EIT measurements. We opted to estimate 

the RSBI and the ventilation flow. The variation of both metrics could be estimated through the 

variation of ΔZ. Both metrics are interesting as they mix the temporal aspect of the ventilation 

with the volume. Thus, bringing a new optic to the EIT analysis.  

The RSBIEIT is calculated by dividing ΔZ by the respiratory rate RR. From this global formula, 

we decline it into 2 features, RSBIEIT(overall) and RSBIEIT(cycle) that are calculated from the 

Equations 8 and 9. RSBIEIT(overall) calculate the overall RSBI, with ΔZt which is calculated 

by summing the pixel from an average tidal image from the 5 minutes take. RSBIEIT(cycle) 

calculates another version from only one tidal cycle, with Ti being the inspiration time.  

 

𝑅𝑆𝐵𝐼𝐸𝐼𝑇(𝑜𝑣𝑒𝑟𝑎𝑙𝑙) =  
𝑅𝑅

∆𝑍𝑡(5𝑚𝑖𝑛)
  Equation 8 

 

𝑅𝑆𝐵𝐼𝐸𝐼𝑇(𝑐𝑦𝑐𝑙𝑒) =  
𝑇𝑖

∆𝑍𝑡
 Equation 9 

 

The second added feature is the ventilation flow. It is calculated from the tidal images 

(inspiration frame minus the expiration frames) as well as the expiration images (expiration 

frame minus the inspiration frames). Those two-ventilation flows are calculated from the 

equation below. With Te, being the expiration time and ΔZte, the conductivity variation of the 

expiration image. 

 

𝑓𝑙𝑜𝑤𝐸𝐼𝑇(𝑖𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛) =  
∆𝑍𝑡

𝑇𝑖
 Equation 10 

 

𝑓𝑙𝑜𝑤𝐸𝐼𝑇(𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛) =  
∆𝑍𝑡𝑒

𝑇𝑒
 Equation 11 

 

 Features based on the lung’s appearance on EIT images 

With the first patients included, we reviewed the EIT data to check if we could improve our 

analysis framework. From it, we could observe that the ventilation distribution was different in 
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most cases between the two classes (cf. Figure 30). Indeed, for patients succeeding the 

extubation, we can observe EIT images that look like lungs. However, for patients failing it, the 

ventilation looks particularly odd, and the lungs are not clearly visible.  

 

Figure 30 - Tidal images of different patients. 

To try to capture this aspect, we created 2 EIT features, lung area, which capture the ventilation 

surface measures on the EIT images; and lung shape, which captures the ventilation appearance. 

Both EIT features are calculated on the tidal images and on the left and right sides separately 

to monitor both lung ventilation. To measures the features, we first binarized the tidal EIT 

images after applying a 20% threshold of the maximum pixel value to remove any background 

noise (cf. Figure 31).  

 

Figure 31 - Binarization process of the tidal images. 

From the binarized images, the lung area is calculated by counting the number of pixels presents 

in 4 areas: right, left, front and back (cf. Figure 32). While lung shape is calculated by counting 

the height and width of both lungs. In addition, to have a feature combining both, we calculated 

the compacity of the ventilation (cf Equation 12). This metric is also applied on both sides.  
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Figure 32 – On the left, the lung area measures on the lung; on the right, the lung shape measures. Xr and Yr are 
the height and width of the right lung. XL and YL are the height and width of the left lung. 

 

𝐿𝑢𝑛𝑔 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑚𝑝𝑎𝑠𝑖𝑡𝑦 =
𝑌

𝑋
     Equation 12 

 

 Conclusion 

This chapter presented the EIT framework. With the EIT voltages filtering to remove any noise 

present in the signal. Then, we presented the different features that are calculated from the 

reconstructed EIT images. In total, we compute 61 EIT features. From of all those, they will 

have to be sorted to examine which features are best to separate the success from the extubation 

failure. Which will give us an insight as to what kind of ventilation profile a failing patient has, 

with the EIT perspective. Now, unto the next chapter where the different prediction models are 

details as well as the training method. 
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5. Framework to construct and test the prediction models. 

We had 3 main concerns at the beginning:  

1. We are dealing with a database with few examples.  

2. The ratio success patients versus failure one is clearly not balanced in favor for the 

success class.  

3. The number of patients per measurement set H is not constant.  

As we will discuss in this chapter, those concerns greatly weighted in the conception of our 

framework, as we had to work around them to find the best solution. 

For the prediction, we decided to focus on the prediction of the failure patient. The extubation 

outcome for the failure is then set as the positive class and the success are set as the negative 

one. Plus, we decided to realize unique new prediction model for each measurement set. This 

allows to update the prediction with the new data and allows to disregard the third concern 

with the unbalanced number of patients between measurement sets.  

In this chapter, we are first going to present how the EIT data is used. Then how the model 

training is organized. To conclude, we show the first prediction results without any 

optimization. 

 

 Learning model based on the EIT features 

For this study, we primarily focus on detecting patients failing the extubation. Though, from 

our database, there are no more patients in the failing group after the measurement set H24. 

Thus, the data gather at H36 and H48 were not used to build prediction models. So, the 

prediction model was created only for the measurement set H0, H2, H6, H12 and H24. 

As briefly mentioned in the introduction of this chapter, the dataset that we are working with 

includes 3 main challenges. For this part, the most constraining challenges from the 3 is the last 

one, which correspond to the variability of the number of patients per measurement set. Having 

fewer patients in our database through time is inherent to this kind of study, as it is bound to 

have patients failing the extubation at different hours. Though, other factors contributed to this 

variation (cf. Table 7): 

• Whole EIT measures could not be taken into account due to the presence of too 

much noise in the signal (cf. Figure 16 for example). Those represents 20 measures 

in total from both classes combined.  

• Certain measures were not realized as they occurred during the night, which includes 

a more limited medical crew present in the ICU. In total, 11 measures were not 

realized due to this limitation.  
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• Finally, 2 patients were discharged from the ICU as their ventilation condition was 

now stable and healthy.  

This inconsistency of patients in the database limited us in our possibility to organize it. To 

overcome any problem that could occur from this inconsistency, we decided to realize new 

prediction models at each new measurement set (Hx). Rendering each new prediction model 

independent from the other. Plus, this way we are able to re-evaluate our prediction at each new 

set, and hopefully improving our prediction results. A drawback from this approach, though, is 

that we are not taking into account the temporal aspect, that would be possible when more data 

will be available.  

During the conception of the models, we also had to decide how we consider the failure patients. 

There are two possibilities: 

1. patients are declared as extubation failure only on the measurement set (H) preceding 

the failure;  

2. patients are set as failure from the start observation period whatever measurement set 

they are failing.  

Table 12 – Description of the failure database using the first option. 

Patient H0 H2 H6 H12 H24 H36 H48 

P02     1         

P03         1     

P05         1     

P06       1       

P09 1             

P13               

P14     1         

P27 1             

P29 1             

P36         1     

Total 3 0 2 1 3 0 0 

 

The first option is closer to the ground reality as from a clinical point of view, a patient is not 

failing the extubation until he is not re-intubated. Though, it is possible that experienced 

clinicians could see the failure to come. Albeit this option being closer to reality, we decided to 

go for the second option, as the first one has a major drawback for the prediction model.  

  Good measure 

  ICU discharge 

  Measure not analyzable 

  Measure not realize 

  Re-intubated patient 

  Ventilation distress 

  Study exit 
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By defining the patient has failure just moments before it actually happens (first option), we are 

left with very few failure patients in the database at each measurement set. This can be seen in 

the Table 12 which presents the number of patients that would be counted as failure to use the 

first option.  Such implementation would therefore render the construction of the prediction 

models not easy. However, we would not even be able to have a prediction model at H2 as there 

is no failure. Therefore, as stated we use the knowledge that we have of the real outcome, to set 

the patients as failure from the start. This method offers the advantage that the model could 

recognize the ventilation distress way before it actually happens.  

Now unto the learning model, we have 61 features that were extracted from the EIT images. As 

they have never been previous experiment where EIT measures were realized to observe the 

weaning phase, we did not know what kind of evolution we should expect. 

Therefore, we decided to test different hypotheses for sorting the EIT features, to then feed the 

prediction model. In total, we tested 3 hypothesis which are described as follows:   

 

• Hypothesis 1 - Single H: at each epoch i, the measurement set H(i) is used to learn a 

prediction model. Only the EIT features from that epoch i are used for the training (cf. 

Figure 33). This is the most basic model. Though if it proves to be accurate, it will make 

it easier to use the EIT to predict the extubation.  

 

 

Figure 33 - Illustration of the Single H model 

 

• Hypothesis 2 - Variation H: at each epoch i, the measurement set H(i) a prediction 

model is learned, and each dataset is composed of the difference of each feature 

computed between the measurement set H(i) and H(i-1) (cf. Figure 34). With this 

model, we wanted to ascertain whether calculating the ventilation behavior variation 

between two sets carries a more accurate prediction. 
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Figure 34 - Illustration of the Variation H model. 

 

• Hypothesis 3 - Global H: between measures from two epochs on patients, we do not 

have the same measurement condition. Indeed, the electrode belt could have moved 

slightly, the patient do not have the same position and the contact electrode/skin 

changed. Thus, each new EIT measures are independent even for the same patient. 

Thus, we want to test a more global prediction model that would treat each new measure 

independently. Therefore, for each new measurement set H(i), we then integrate the 

new examples to a whole database that include each past measures for all patients. 

 

 

Figure 35 - Illustration of the Global H model. 

 

 Cross-validation 

The limited number of patients present in our database, as well as the unbalanced distribution 

of the two classes (success and failure) is another challenge that we need to address for the 

learning dataset.  

With those concerns in mind, we searched for a method that could handle such database. First, 

we need to organize the database into 3 set: training, testing and validation set. The training set 

is the set that is used to train the model. The testing is the one used to test the prediction 

capability of the trained model. Data present in this set can also be used during the training 

during the cross-validation step. At last, the validation set is used to compute the prediction 

performance of the model. The difference with the testing set is that data present in this set was 
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left untouched during the training set. Thus, this is a test on an independent set to study the 

generalization of the model.  

In order to not overfit the model to the testing set, most solution divide and optimize their model 

by training on subsets of data randomly pick from the training set. This method works greats 

on usual datasets. Though our lack of patients and even more so, our lack of enough failure 

patients, made it difficult. By using those methods, we could only manage to realize 2 or 3 folds 

of subsets. After which, we would not have any more sufficient patients of the failure classes 

to make any more folds. With such method, our prediction model would be based on very few 

examples, making it hard to have a generalized model.  

For those reasons, we decided to realize our own cross-validation-like algorithm. Our main 

concern was to have a training set balanced between the success and failure patients so that we 

would not introduce any bias into the model.  

Our method consists in separating the dataset into two sets: the training set (70% of the data) 

and testing set (30%). The limit values of examples to take from each group (failure or not) is 

set to 70% of the examples of the failure class (cf. Equation 13).  

 

𝑁𝑏 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 =  0.7 × 𝑁𝑏 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝐻𝑖) Equation 13 

 

We then randomly pick patients on both the success and failure group, until both groups reach 

the number of examples fixed earlier. This ensures that the training set is balanced. The 

corresponding test set is composed of all the examples not picked.  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 =  {
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 (𝑁𝑏 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)
𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 (𝑁𝑏 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

 

 

The Figure 36 shows an example of this process with 12 patients. This process is repeated for 

each measurement set, thus the limit of patient change depending on the number of patients 

failing the extubation.  

 

Figure 36 - Example of dataset separation with 12 patients. 
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In addition to those rules, we decided to pick the last included patients to be part of the 

validation set. The patient P33 to P37 are then chosen for this application. From those, the 

patient P35 is not included as the EIT data from him are not analyzable. Which left 4 patients, 

with one extubation failure among them. We then have 25% of failure patients in the validation 

set, same as on the whole database. 

When this cross-validation rule is applied to our dataset with the different prediction, this results 

in the dataset separation that is details in the Table 13, Table 14 and Table 15. From those, it is 

observed that for two last measurement sets of each model, they are very few examples in the 

training sets, as it is limited by the number of extubation failures. However, this would have 

been a difficult problem to avoid giving the nature of the protocol. As first, they are around 10 

to 25% chance to fails the extubation. Second, the risk of failing the extubation decrease 

throughout the hours after the extubation. Thus, there are only a few patients that failed the 

extubation at the H24 mark. A solution to this problem would have been to either recruits more 

patients in the hope to have more patients reaching that stage. Or recruiting patients with even 

higher risk of failures, though they would still need to pass the SBT to be extubated.  

Table 13 - Number of patients per measurement set (Hi) for the Single H model.  

Single H H0 H2 H6 H12 H24 

Total 
Success  24 23 22 14 17 

Failure 8 5 5 2 2 

Training 
Success  6 4 4 1 2 

Failure 6 4 4 1 1 

Testing 
Success 18 19 19 13 15 

Failure 2 2 2 1 1 

 

Table 14 - Number of patients per measurement set for the Variation H model.  

Variation H H2-H0 H6-H2 H12-H6 H24-H12 

Total 
Success  23 22 13 10 

Failure 5 5 2 1 

Training 
Success  4 4 1 1 

Failure 4 4 1 1 

Testing 
Success 19 19 12 9 

Failure 2 2 1 0 

 

 

 



63 

 

 

Table 15 - Number of patients per measurement set for the Global H model. The orange number are the added 
data from the past measurement set.  

Global H H0 H2 H6 H12 H24 

Total 
Success  24 23+24 22+47 14+69 17+73 

Failure 8 5+8 5+13 2+18 2+20 

Training 
Success  6 4 +24 4+47 1+69 2+73 

Failure 6 4+8 4+13 1+18 1+20 

Testing 
Success 18 19 19 13 15 

Failure 2 2 2 1 1 

 

This whole cross-validation process is repeated 100 times to test most possible mix of patients. 

For each new cross-validation sets, a new prediction model is created based on this set. The 

final prediction result is then based on the results of those 100 prediction models. An example 

of how many times a patient is chosen for the training set is shown in the Figure 37. The 

distribution is not perfect as we do not have lots of iterations. Though, we can see that all 

patients are relatively all use the same number of times. Except, of course, for the difference 

between the success and failure patients, which was expected as they are way more success 

patients.  

 

Figure 37 – Example of the number of times each patient is used in the training set with the 100 iterations (data 
at H0). In green, patients succeeding the extubation; in red, patients failing it. 

 

 Estimators 

In this study, we are treating a supervised learning classifications case, as we knew the 

extubation outcome which can fall in only two categories, success or failure. With that in mind, 

we chose to use 3 estimators for the prediction, which are the decision tree, the random forest 

and the Support Vector Machine (SVM). Those estimators were chosen for two main reasons:  
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1. they are applicable on small databases; 

2. the prediction results are easier to understand, in contrast to more complex algorithm 

like neural networks.  

 

 Decision tree 

When using a decision tree, the algorithm builds up the prediction over a set of simple rules 

that were attributed to the features during the training [77]. Those rules correspond to thresholds 

that are applied on the features as well as the composition of the branch. This type of estimator 

renders the prediction easy interpretation to understand, as it just applied the rules that it learns 

during the training. Moreover, it can provide insightful information about which features are 

more relevant than other, by looking at the order of the used features and their repeated use in 

the tree. This kind of inference model can be interpreted by a physician in order to understand 

how the classification is made. To understand that aspect, we are presenting hereafter how this 

algorithm works. Before diving into the explanation, the Figure 38 shows the terminology used 

with this estimator.  

 

Figure 38 – Terminology related to Decision tree 

 

The main challenge of this estimator is to find the best feature to use at each node to separate 

data. Indeed, the goal of the tree is to have leaves that are pure, meaning that only one class is 

present in it. To decide which features to use at each node, the algorithm uses a criterion. Two 

of the most widely used criteria are given here: 

• shannon entropy: this criterion calculates the randomness of the information among 

the different classes. It is calculated by the Erreur ! Source du renvoi introuvable., 

with pj the probability to belong to class j. To illustrate this, entropy equal to 0 would 

indicate that there is only one possible outcome. Whereas entropy reaches its 
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maximum for equiprobability of the classes. During the building of a tree, at each 

node, the feature that minimizes the entropy is selected to split the data; 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑗 . 𝑙𝑜𝑔2. 𝑝𝑗𝑗  Equation 14 

• gini: the frequency of mislabeling data when it is randomly labeled. This is a similar 

idea as with the entropy but realized it in a different manner. As the entropy, the 

feature that minimized the Gini index value is then selected.  

𝐺𝑖𝑛𝑖 = 1 −  ∑ 𝑝𝑗
2

𝑗  Equation 15 

One of the drawbacks of the Decision tree estimators is that it is prone to overfitting. Indeed, 

the algorithm creates new nodes until all leaves are pure. To solve this issue, pruning techniques 

can be used. This reduces the number of nodes or leaf and prevent overfitting to the training 

data.   

 

 Random forest 

The random forest is an ensemble method [78], it corresponds to a method that uses multiple 

estimators to base their prediction. They are two kinds of ensemble method: 

• bagging: this method uses a several estimators that all realized their prediction on 

data. The final prediction of an example is decided by voting between the estimators 

[79]; 

• boosting: it arranges the estimators in a sequential manner. This allows the next 

estimators to learn from errors produced by the previous one, which in turn improve 

the accuracy [80]. 

The random forest is a bagging method and uses decision tree as estimators. Though, one 

additional parameter to consider when using it, is the number of estimators to uses for the 

prediction.  

This method returns more accurate prediction than a simple decision tree, due to the voting 

mechanisms that take place. Though, it is slower to compute due to the highest complexity.  

 

 Support Vector Machine (SVM) 

The SVM attempts to find a hyperplane to separate the different classes. To do that, the 

algorithm calculated the vectors that link the point to the line. It then tries to maximize the 



66 

 

 

distance of all the different vectors, in order to have the best separation between the classes 

[81].  

Data can have all sorts of distribution which is sometimes difficult to separate. For such 

problem, two parameters can be played into: 

• the features to uses to represent the data in the space, this allows to have a different 

distribution which could render the separation easier; 

• the kernel, which transforms the data into a representation space of higher dimensions 

where they could be linearly separated.  

Common kernels are linear, sigmoid, RBF (Radial Basis Function) or polynomial kernels (cf. 

Equation below, X and Y refer to 2 different features). 

 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑋, 𝑌) =  𝑋𝑇𝑌 Equation 16 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑋, 𝑌) = 𝑡𝑎𝑛ℎ (𝛾. 𝑋𝑇𝑌 + 𝑟) Equation 17 

 

𝑅𝐵𝐹 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑋, 𝑌) = 𝑒𝑥𝑝(−𝛾‖𝑋 − 𝑌‖2)   Equation 18 

 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑋, 𝑌) = (𝛾. 𝑋𝑇𝑌 + 𝑟)𝑑     , 𝛼 > 0 Equation 19 

 

 Scoring methods 

For the prediction model, we want to forecast the patient’s extubation failing, because the 

percentage of comorbidity of those patients is too high. This outcome will help clinicians make 

the best decision in order to take the most suitable treatment. For example, they could use NIV 

as a first means treatment to prevent the re-intubation. Therefore, we defined the failures as the 

positive class and the success as negative class.  

To score and compare the different prediction models, we are using the sensitivity and the 

specificity. The equation of both metrics can be seen below. With TP, the True Positive; TN, 

the True Negative; FP, the False Positive and FN, the False Negative. The sensitivity informs 

about how the model is able to recognize positive cases: it is valued as the probability of correct 

predictions of the positive class. The specificity informs about how the model is able to 

recognize negative cases: it is valued as the probability of correct prediction of the negative 
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class. Specificity and Sensitivity are used to evaluate separately the accuracy of the model when 

predicting positive and negative examples. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  Equation 20 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  Equation 21 

For the best learning model, we will also calculate the sensitivity and specificity for the success 

class (the success will be defined as the positive class and failure as the negative one).  

It is important to note that the given results are evaluated for each inference model trained over 

the 100 iterations. Meaning that for each iteration, we count how many patients were predicted 

as TP, TN, FP and FN. All those counts are then added at the end to calculate the sensitivity 

and specificity of the model.  

For the prediction results, we are also calculating the percentage of variation between the 

different version of the same model. This will better demonstrate the gains and losses. It is 

calculated through the following formula: 

𝑉𝑎𝑟[%] =  
𝑉𝑎𝑙𝑢𝑒𝑓𝑖𝑛𝑎𝑙−𝑉𝑎𝑙𝑢𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑉𝑎𝑙𝑢𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 Equation 22 

 

In addition to those two metrics, we also use the Cohen kappa coefficient for the model that 

generated the best prediction results. This coefficient value is used to measure the reliability 

between different raters. In other words, it measures the concordance of answers given between 

two instances. In our case, the two instances are the real extubation outcome versus our 

prediction model. It is calculated from the following formula: 

𝐾 =  
𝑝𝑜−𝑝𝑒

1− 𝑝𝑒
 Equation 23 

With po being the proportion of agreement between the raters and pe the probability of a random 

agreement. The Cohen kappa coefficient results are interpreted as: 

• Inferior to 0: Poor agreement  

• 0.01 – 0.20: Slight agreement 

• 0.21 – 0.40: Fair agreement 

• 0.41 – 0.60: Moderate agreement 

• 0.61 – 0.80: Substantial agreement 

• 0.81 – 1.00: Almost perfect agreement 
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 Proposed training framework 

With every different aspect of the prediction framework that is detailed in the previous part, we 

can show how they are connected. The Figure 39 shows the layout for the whole framework, 

which we resume hereafter.  

This first start with all the EIT features calculated from the EXIT patients. We then have an 

array with 32 patients, each having 61 EIT features results. This array is then rearranged 

depending on which hypothesis we are testing, and it then feeds the cross-validation function, 

which separate it into the training and testing set. The training set is then used to train the 

prediction model using the 3 different estimators presented in section 5.3. Once the training is 

done, the generated model is used on the testing set to measure the performance of the model. 

The scoring counts the number of true positive, true negative, false positive and false negative. 

A scoring is also calculated for the validation set which is composed of Patient P33 to P37.  

With the first iteration realized (cross validation + model training + scoring), a new iteration 

starts with a new dataset generated by a new random pick during cross-validation. For each 

hypothesis and each inference model (Decision Tree, Random Forest, SVM) tested, there are 

100 iterations are realized. To score each whole prediction model (the results of the 100 

iterations), we sum up the score of each iteration (Cf. Equation 24 for example on TP), and we 

calculate the sensitivity and specificity results based on those counts (Cf. Equation 25 and 

Equation 26).  

𝑇𝑃𝑤ℎ𝑜𝑙𝑒 = 𝑇𝑃𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 + 𝑇𝑃𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 + ⋯ + 𝑇𝑃𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛100 Equation 24 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃𝑤ℎ𝑜𝑙𝑒

𝑇𝑃𝑤ℎ𝑜𝑙𝑒−𝐹𝑁𝑤ℎ𝑜𝑙𝑒
 Equation 25 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁𝑤ℎ𝑜𝑙𝑒

𝑇𝑁𝑤ℎ𝑜𝑙𝑒−𝐹𝑃𝑤ℎ𝑜𝑙𝑒
 Equation 26 

It is important to take note that with each hypothesis or measurement set, we have a unique new 

model. This is due to the different composition of patients in the dataset. The way of arranging 

the EIT data through the 3 hypotheses, results in datasets with different numbers of patients 

included (Cf. Table 13 to Table 15). And each measurement set is composed of a different set 

of patients (Cf. Table 7). With that difficulty in mind, we can still compare the results between 

the different hypothesis, as we are interested in observing which one is more adequate to our 

studies. For the comparison between measurement set, the nature of this clinical study makes it 

impossible to have the same number of patients each time. As patients failing the extubation 
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can be re-intubated at any time. So, we still compare and observe the evolution between 

measurement set. 

 

Figure 39 - Framework of the training and testing of the prediction models. 

 

 

 Results with the defaults settings 

To have a first understanding of the different models, we use the 3 estimators with their default 

hyperparameter implemented in Sickit-learn package. This gives us a baseline from which we 

want to improve our results. The hyperparameter used for this test are described in Table 16.  

 

Table 16 - Default hyperparameter used in the implementations of the Sickit-learn package. 

Decision tree 
Criterion Gini 

Max depth Until leaf is pure 

Random 
forest 

Nb of tree per forest 100 

Criterion Gini 

Max depth Until leaf is pure  

SVM 
Kernel RBF 

Regularization parameter 1 

 

The sensitivity and specificity results for all models can be seen in Figure 40, Figure 41 and 

Figure 42. The results are also displayed as table in the Annex (cf. Table 32, 

P01->P32 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H0 0.47 0.61 0.45 0.69 0.31 0.8 

H2 0.53 0.61 0.59 0.72 0.66 0.63 
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H6 0.45 0.62 0.4 0.74 0.47 0.74 

H12 0.39 0.51 0.18 0.58 0.22 0.58 

H24 0.47 0.55 0.43 0.59 0.49 0.59 

Mean 0.46 0.58 0.41 0.66 0.43 0.67 
 

Table 33 and Table 34). From all the different hypotheses tested, the Global H model seems to 

perform best. The three of them starts relatively with the same sensitivity results. Then, the 

Global H sensitivity increases throughout the 48 hours. While the sensitivity of Single H and 

Variation H decrease.  

The best estimator at this stage for the Global H model is the Decision Tree, with a sensitivity 

of 0.46; then the SVM, with 0.43; and the Random Forest with 0.41 (cf. Table 34).  

However, most of the models do not yield good results, as the overall sensitivity average is 

around 50%. Though, in terms of specificity, the Global H model yields very good results with 

an average specificity between the estimators equal to 0.84. 

 

  

Figure 40 - Baseline results - Single H - On the right, the sensitivity; On the left, the specificity – In red, Decision 
Tree; in green, Random Forest, in blue, SVM. 

  

Figure 41 - Baseline results - Variation H - On the right, the sensitivity; On the left, the specificity – In red, 
Decision Tree; in green, Random Forest, in blue, SVM. 

 



71 

 

 

  

Figure 42 - Baseline results - Global H - On the right, the sensitivity; On the left, the specificity – In red, Decision 
Tree; in green, Random Forest, in blue, SVM. 

If we dive further in the best hypothesis, Global H, we can observe from the Table 17, that more 

depth was needed after each measurement set. This can be explained by the addition of the 

added data in the Global H model. Thus, requiring more rules to better predict patients.  

A table showing the most and least used EIT features for the Decision Tree and Random Forest 

can be seen in the Annex (Cf. Table 35). We can note that for both models, coefficient of 

variation features had the most used for the start of the weaning phase (H0 and H2). Then, the 

most important features are the FlowEIT. The least uses features are for all measurement sets, 

features regarding the ventilation volume. 

Table 17 - Depth of each the Trees for the 100 trained estimators. The Random Forest results show the depth’s 
average of the Tree present in the Forest.  

  H0 H2 H6 H12 H24 

Decision 
Tree 

Min 1 3 4 6 6 

Max 3 6 7 6 7 
       

Random 
Forest 

Min 1 4 5 5 5 

Max 3 5 6 6 6 

 

The results on the validation set are displayed on Table 36, Table 37 and Table 38 (see Annex). 

First, we have to note that unfortunately, the sensitivity could not be calculated for the take H6 

and H12, as the failure patients (P36) do not have any valid measure for those measurements 

set. Overall, from those results, the same conclusion with the other set can be made. Meaning 

that the best model is still the Global H one, using the SVM. Interestingly though, we can 

observe that the prediction model has more difficulty to correctly identify the success patients.  

 

 Conclusion 

In this chapter, the prediction models and methods used for the extubation prediction are 

explained. Dealing with a database with few examples and imbalance class distribution 
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highlights some challenges. Adaptation from usual framework had to be realized to address our 

problem. From the first result showed, we now have to observe if this initial trend in the results 

does continuous with the optimization that we bring forth in our model. 
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6. Optimization of prediction models 

This chapter display all of the prediction results, with the two different sorts of optimization. 

The best model is then better analyzed to attempt to understand how the prediction is realized. 

To finish, we compare our method with the one proposed by Longhini and his team [68]. Plus, 

a more overall comparison with the best prediction model from the scientific literature.   

 

 Fine-tuning process 

They are several solutions that exists to improve the results from machine learning algorithms. 

For instance, adding more examples would help to have a more generalized model which could 

handle more different situations. Thus, improving the prediction results. As this method is not 

an option for us, we are employing other means to improve our results.  

In this part, we are focusing on optimizing the hyperparameters of the 3 estimators. There are 

no direct methods to find the optimal hyperparameters. Indeed, we do not know in advance how 

the hyperparameters will impact the results. A common method to find the best combination of 

hyperparameters is to do a grid search. This entails testing a list of values for each 

hyperparameters and to choose the combination values that return the best results. For our 

problem, the best result is defined as the highest sensitivity. The list of the chosen 

hyperparameters per estimator is displayed in Table 18.   

Table 18 - Hyperparameters tested during the fine-tuning phase. 

Decision tree 
Criterion Gini index, Shannon Entropy 

Max depth [2, 3, 4, until leaf is pure] 

Random 
Forest 

Nb of estimators [5, 25, 50, 75, 100] 

Criterion Gini index, Shannon Entropy 

Max depth [2, 3, 4, until leaf is pure] 

SVM 
Kernel RBF, Polynomial 3, Sigmoid 

Regularization parameter [1, 10, 100, 1000] 

 

For the Decision tree and the Random Forest, they are also other hyperparameter that we could 

have attempted to tune. Like the minimum of examples need to create a new node, or the 

minimum number of examples for a leaf. Though, those hyperparameters could not be tested as 

certain measurement set have very few examples, like for the single H model at H12 and H24 

where only 2 and 3 examples are used for the training (cf. Table 13). Therefore, we used the 

default value for the minimum samples split (default = 2) and the default value for the minimum 

samples for leaf (default = 1). 



74 

 

 

It is important to note that the patient P33 to P37 were not included in the test set for this 

experiment. This allows to keep the validation set untouched for the optimization. Thus, 

avoiding to overfit our model to our whole dataset.   

 

 Fine-tuning: Prediction results 

Now that the method to improve the prediction results by tuning the hyperparameters has been 

explained, we can observe the improvement from this optimization. But first, to illustrate what 

kind of variation the different hyperparameter induces, we look at Figure 43 to Figure 45, which 

shows every prediction result for the most promising model, Global H.   

For the Decision tree, the entropy criterion unable to have the best sensitivity in contrast to the 

gini criterion. Regarding the depth of the tree, pruning the tree by restraining the depth to 2, 

allows to maximize the sensitivity for this estimator. On the other hand, the specificity is higher 

from the depth 3, but stays relatively the same from that point. This behavior on the sensibility 

is in accordance with the findings from the SVM. Indeed, both estimators performed better by 

avoiding the outliers present in the data, and thus having a more generalized model.  

For the Random Forest, the same observation realized with the Decision tree estimators can be 

made regarding the depth.  

For the SVM estimator, the sigmoid kernel is clearly the best one to use regardless of the 

regularization value. Regarding the regularization parameter, the lowest value results in the 

highest sensibility. Meaning that, by integrating the outliers through a high value of C, we are 

decreasing the prediction accuracy. Thus, it seems that we are better off to have a more 

generalized model that excludes outliers. Which results in a low value for the regularization 

parameter.  
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Figure 43 - Results during the fine-tuning phase for the Global H model – Decision Tree - On the right, the 
sensitivity; On the left, the specificity – In purple, depth=2; In orange, depth=3; In green, depth=4; In blue, 

depth= until pure. 

  

Figure 44 - Results during the fine-tuning phase for the Global H model – Random Forest - On the right, the 
sensitivity; On the left, the specificity – In purple, depth=2; In orange, depth=3; In green, depth=4; In blue, 

depth= until pure. 

 

  

Figure 45 - Figure 44 - Results during the fine-tuning phase for the Global H model – SVM - On the right, the 
sensitivity; On the left, the specificity – In purple, RBF kernel; In orange, sigmoid kernel; In green, polynomial 

kernel. 

The best hyperparameter for each model can be found in Table 19. As each different hypothesis 

have their database composed of different arrangement of EIT data, we can observe that most 

models resulted in different hyperparameter configuration.  
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Table 19 – Different Hyperparameters chosen through the fine-tuning of each model.  

 Decision Tree Random Forest SVM 

 Criterion Depth Criterion Depth 
Nb of 

estimators 
Kernel Regularization 

Single H Gini Until pure Entropy 2 5 RBF 1000 

Variation H Entropy Until pure Entropy 2 5 Sigmoid 1 

Global H Entropy 2 Entropy 2 75 Sigmoid 1 

 

With the best hyperparameters that have been found, it is now possible to update the prediction 

results. The results can be seen in the Figure 46, Figure 47 and Figure 48 as well as the table 

including all results and variation (Cf Table 39, Table 40 and Table 41 in the Annex).  

The overall percentage variation shows that we were able to improve the sensitivity for all three 

hypotheses, regardless of the inference model. The Global H model benefited the most from 

this optimization. With that optimization, it is clearly the best prediction for two main reasons: 

1. The sensitivity increases over time, rendering the model more accurate the hours before 

the clinician’s decision to re-intubate. This observation is even more true for the SVM 

estimators, as it never ceases to increase. While the Decision Tree and Random Forest 

shows a lack of accuracy for the last measurement set H24. The percentage of accurate 

prediction for each patient for the Decision Tree (Cf. Table 42), shows that the decrease 

is due to the patient P05. While for the Random Forest (Cf. Table 43), shows that 

decrease is due to P03 and P05. 

 

2. The overall sensitivity regardless of the measurement set is superior for all estimator 

(Cf. Table 39, Table 40 and Table 41 in the Annex) 

Using this model and between the different estimator, the SVM is the best one with an overall 

sensitivity of 0.76, then the Decision Tree with 0.68 and the Random Forest with 0.52. 

From the figure below, we can also notice that this sensitivity optimization cost the degradation 

of the specificity for most models.  
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Figure 46 – Fine-tuning results - Single H - On the right, the sensitivity; On the left, the specificity – In red, 
Decision Tree; in green, Random Forest, in blue, SVM – The number represents the average percentage of 

variation between the fine-tuning results and the baseline. 

  

Figure 47 - Fine-tuning results - Variation H - On the right, the sensitivity; On the left, the specificity – In red, 
Decision Tree; in green, Random Forest, in blue, SVM – The number represents the average percentage of 

variation between the fine-tuning results and the baseline. 

  

Figure 48 - Fine-tuning results - Global H - On the right, the sensitivity; On the left, the specificity – In red, 
Decision Tree; in green, Random Forest, in blue, SVM – The number represents the average percentage of 

variation between the fine-tuning results and the baseline. 

For the depth of the Trees for both the Decision Tree and Random Forest, is close to 2 for H0 

which contains few examples in comparison to the other set. Then, the depth reaches the limit 

impose by the hyperparameter. The best features are the same one seen from the Baseline (Cf. 

Table 35). 
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Table 20 – Fine-Tuning - Depth of each the Trees for the 100 trained estimators. The Random Forest results 
show the depth’s average of the Tree present in the Forest. 

  H0 H2 H6 H12 H24 

Decision Tree 
Min 1 2 2 2 2 

Max 2 2 2 2 2 
       

Random 
Forest 

Min 1 2 2 2 2 

Max 2 2 2 2 2 

 

We can also observe this optimization impact on the validation set. Fine-tuning results on the 

validation set 

Table 44 to Table 46 in the Annex shows the results plus the variation between those results 

and the baseline results from the last chapter. The improvements on this set are mitigated as 

some results shows a decrease in sensitivity. Very surprising though, the Single H model with 

the SVM, performed quite well with a sensitivity equal to 0.66. But the specificity is only equal 

to 0.58. Using the same estimator on the Global H model, we have a sensitivity of 0.64 and a 

specificity of 0.73. For such a low difference of sensitivity (-4%) and significantly more 

specificity (+24%), we think the SVM is still the best model after this optimization. 

 

 Optimization of the EIT features 

With the best hyperparameters chosen in the previous part, we focus on the EIT features to 

further improve the prediction. To this point, the totality of the EIT features is used in the 

learning model, thus 61 features. Though from those, they are certainly some of them that do 

not significantly contribute to the prediction. Indeed, not all features allow for a good distinction 

between the success and extubation failure. So, we test different mix of features from the 61, to 

find the one that maximize the sensitivity.  

Ideally, the best method would have been to test every possible mix of features possible. 

Though, this method would have taken way too much time to compute with 61 features in total. 

Therefore, we went with other approaches which first scores the features and uses that to realize 

the different mix. We test3 different methods: 

• Recursive feature elimination (RFE): this method trained the model with the initial 

set of features once. Then, it uses the features coefficient or features importance 

generated by the model during the training, to rank the features. The least important 

feature is then removed, and the process is repeated until we went through all 

features.  
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• Select from models (SFM): this method is also based on the coefficient applied to 

the features by the estimator. For each model training, we retrieve the feature 

coefficient. The one that are inferior to the median feature coefficient is set to 0. The 

coefficients are then saved for each feature and at the end we sum them all per 

features, to give us the overall feature ranking. Then like the RFE method, we iterate 

the training of the models by removing the features with the smallest overall 

coefficient.  

 

• Correlation point-biserial (Pt biserial): features are ranked depending on their 

correlation score with the outcome. Then, we iterate the training by removing each 

time the least correlated feature. The usual correlation method like Pearson or 

Spearman cannot be applied in our case, as we are dealing with a continuous versus 

binary variable. Therefore, we use the Point-biserial correlation that is designed for 

such situation. The equation to calculate it can be seen below: 

 

 

𝑟𝑝𝑏 =  
𝑚𝑒𝑎𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠𝑢𝑐𝑒𝑠𝑠))−𝑚𝑒𝑎𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑓𝑎𝑖𝑙𝑢𝑟𝑒))

𝑠𝑡𝑑(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
√

𝑛𝑏𝑠𝑢𝑐𝑐𝑒𝑠𝑠∗𝑛𝑏𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑛𝑏𝑡𝑜𝑡𝑎𝑙
 Equation 27 

 

For all 3 methods, they find the best features out of all different measurement set (H0, H2, …) 

in order to have a more generalized ranking. The RFE and SFM can only be applied to the 

Decision tree and Random forest estimators, as the SVM does not score the features during the 

training. Otherwise, the 3 methods basically all based their approach on choosing the best 

features depending on their rank. The difference between them rests in their method to rank to 

features.  

Like for the fine-tuning step, the patient P33 to the patient P37 were not included in the test set 

to avoid overfitting our model to our whole database.  

 

 Features optimization: Prediction results 

 Prediction results for patients failing the extubation 

The sensibility results for each optimization methods can be seen in the Table 21. From the 3 

methods, the point-biserial correlation resulted in the best sensibility improvement for the 3 
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estimators. The Figure 49 shows the variation of the sensitivity and the specificity for each 

estimator. We can observe that the Decision tree and Random forest peak rapidly, with 7 and 4 

EIT features, respectively used by the 2 estimators. Then, the sensitivity decreases as they are 

more EIT features. The SVM, on the other hand, has a slow increase and peak at 42 EIT 

features.  

Table 21 - Best number of features and sensibility depending on the optimization methods. 

Global 
Decision Tree Random Forest SVM 

Nb features Max sensi Nb features Max sensi Nb features Max sensi 

RFE 3 0.78 5 0.60 / / 

SFM 4 0.84 4 0.62 / / 

Pt-Biserial 7 0.85 4 0.75 42 0.80 

 

 

 

 

Figure 49 - Variation of the sensitivity and specificity with the point-biserial optimization method. On the top left, 
the Decision tree, on the top right, the Random forest and at the bottom, the SVM. 

With the optimal EIT features for each estimator, it is now possible to have the final prediction 

results of our best model (cf. Table 47). The Decision tree and Random forest estimators 

significantly benefited from this optimization, with a 19.1% overall improvement for the first 

estimator and 28.3% for the second one. The improvements on the SVM have mainly impacted 

the prediction results for H2.  
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Figure 50 – Features optimization results - Global H - On the right, the sensitivity; On the left, the specificity – In 
red, Decision Tree; in green, Random Forest, in blue, SVM – The number represents the average percentage of 

variation between the features optimization results and the fine-tuning results. 

After being the best estimators so far, with those new results the SVM is no longer the best 

model in terms of pure sensitivity. Indeed, the Decision tree now has the highest score. While 

the Random Forest, has still the worst prediction from the 3 estimators. Though, we would 

argue that the SVM is still the best one for this application. To plead argue our case, we turn to 

the Table 22, which shows the average percentage of accurate prediction over the whole results 

cross-validation process. From it, we can observe from the patients that were not predicted 

100% accurately that: 

• Decision tree: 

▪ the prediction has a lower accuracy for the prediction of P02 before the failure 

which occurred 15 hours after the extubation for this patient; 

▪ for P03, the prediction is completely wrong at H6. This could have falsely 

informed the clinicians, resulting in the patient not receiving the proper 

treatment to avoid a failure; 

▪ the model is able to better predict the patient at H0 than for the SVM; 

• SVM: 

▪ the prediction for P02 lacks accuracy for the measure H2. Though, it was 100% 

accurate the at the next occurrence, before the extubation; 

▪ the same observation can be made for P12, which had an accurate prediction 

hours before the failure. Plus, the low accuracy of the previous measures can be 

linked to the NIV treatment, which temporarily improve the ventilation; 

▪ measures that had prior NIV treatment (in yellow boxes) are more badly 

influence with the SVM. Indeed, the accuracy of those measures are lower than 

their respective counterpart using the Decision tree. 

With those observations, the SVM seems more reliable in his prediction of the failure patient. 

Indeed, for it was always accurate hours before the actual ventilation distress inducing the re-
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intubation. In addition to that, the SVM estimators have a better specificity, with an 

improvement of 22.9% from the Decision tree.  

Table 22 - Percentage of accurate prediction for each patient. The grey boxes are takes that were not realized or 
not interpretable. The purple boxes are when measured that were not realized as the patient was re-intubated. 

The yellow cases marked when a patient received a NIV treatment.  

     Decision tree   SVM 

      H0 H2 H6 H12 H24   H0 H2 H6 H12 H24 

Failure 

P02   24 100 76       4 58 100     

P03   10 89 0 100 100   4 97 95 100 100 

P05   62 100 100   100   89 93 100  100 

P06   68 88 100 100     16 70 54 100   

P09   91           81         

P14   38 91 100       5 64 100     

P27   23           0         

P29   86           100         

P36   66 100     100   21 89     100 

                            

Success 

P01   69 89 100       78 100 100 X X 

P04   79 95 100   3   99 24 94 X 0 

P07   58 3 0   100   94 60 91 X 0 

P08   65 100 100 100     99 100 100 100 X 

P10   48 84         55 27 X X X 

P11   90 91 31 100 100   91 21 100 0 0 

P12   82 100 90 100 100   99 97 100 54 100 

P15   42 94 100       68 99 70 X X 

P16   49 84 0   3   33 100 51 X 100 

P17   47 84 100 0 3   83 100 100 100 45 

P18   43 15 100   100   83 98 100 X 100 

P19   39 16 100 100 100   91 48 91 100 100 

P20   51 79 9 0 3   80 19 0 72 0 

P21   90 84 0 0 3   87 100 94 76 100 

P22   30 4 100   3   60 0 100 X 100 

P23   79 95 9 100 100   98 100 100 100 100 

P24   83     100 100   97   4 100 

P25   26 88 10   100   49 100 95  100 

P26   93 14 100 100 100   99 100 84 72 0 

P28   29 84 11 0     83 100 63 92  

P30   80 87 91 0     87 75 100 72  

P31   41 13 0   100   60 35 100  100 

P32   94 100 100 100     96 90 100 100  
P33   40 4 100 0 73   87 43 100 71 0 

P34   70 15 0   3   69 96 0  0 

P37   48 4 100       90 14 100   
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We can also observe the impact of the features optimization on the validation set (cf. Features 

optimization results on the validation set 

Table 48 in the Annex). The sensitivity results have been greatly improved for all three 

estimators. Especially for the measurement take H0 and H2. Though, this cost a significant 

decrease for the specificity. Indeed, we can observe with the SVM, that for H12 and H24, the 

success patients were always misclassified. From those sensitivity results, the SVM is the less 

performing one. The sensitivity with the Decision Tree is 11.7% better, as well as 10.2% for 

the Random Forest. On the other hand, the prediction is accurate in the measurement set 

preceding the re-intubation. It is interesting to observe that the SVM is the best worst prediction 

model for the validation set.  

Those sensitivity results on the validation set are based on only one failure patient (P36). The 

results on the testing set include 5 failure patients at H2 and H6, and 2 for H12 and H24. As the 

prediction is more stable from the SVM than the Decision Tree (Cf. Figure 50). We still think 

than the SVM is better. As changing abruptly, the prediction by predicting a success (P03H6) 

could really endanger the patient outcome. 

 

 Prediction results for patients succeeding the extubation 

In this part, we are interested to observe the model’s performance regarding the prediction of 

the success group. To do that, we have defined patients succeeding the extubation as 1, and the 

one failing as 0. The Table 23 shows the results for the testing set, and in the Annex, the Table 

49 shows the results for the validation set. From those results, we can observe that the SVM is 

still the best model for our case. Indeed, it has the highest sensitivity, thus resulting in the less 

false detection of success patients than with the other estimators. 

 

Table 23 – Results for the success group - Feature optimization - Global model prediction. 

P01 -> P32 
Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

H0 0.55 0.61 0.61 0.59 0.81 0.32 

H2 0.63 0.92 0.74 0.93 0.69 0.79 

H6 0.63 0.62 0.78 0.53 0.85 0.88 

H12 0.57 1.00 0.65 1.00 0.77 1.00 

H24 0.60 1.00 0.70 0.74 0.67 1.00 

Mean 0.60 0.83 0.70 0.76 0.76 0.80 
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 Kappa results 

For this evaluation, we wanted to compare two perspectives: 

1. How does the clinician’s assessment of the patient state compared to the 

extubation outcome? 

2. How does our best prediction model compared to the extubation outcome?  

In other terms, for the first perspectives, we want to compare the first option to the second one 

describes in the section 5.1. So, we are comparing the clinicians view that declare an extubation 

failure only on the measurement set preceding the failure, to the actual extubation outcome, 

where patients are defined as failure from the start.  

For the second perspectives, we are comparing the prediction realized by our best prediction 

model (Global H using SVM), to the actual extubation outcome.  

To realize the comparison of the different model, we compute the Cohen kappa coefficient for 

both perspectives, to then compare both methods of assessment (clinician versus our model). 

The results are shown in Table 24. From the clinician estimation, their strong assessments are 

for the success patients from which they are never wrong. Although their undoing is toward the 

assessments of the patients failing the extubation. Most clinicians would not notice the signs of 

ventilation distress before it would be too late, and thus had to re-intubate the patient. Although, 

experienced clinicians could have better insight to detect those signs before the actual failure. 

This explains why the Cohen kappa results are so low for the clinician perspective.  

On the other hand, our model has proved effective in detecting the ventilation distress well 

ahead of the actual intervention to re-intubate the patient. Which shows in the high correlation 

of Cohen kappa results between our prediction and the actual extubation outcome. The low 

results for H24, rest in the bad detection of patients succeeding the extubation. 

Table 24 – Comparison of the Cohen kappa results between the clinician and SVM-Global model estimation  

 H0 H2 H6 H12 H24 

Clinician 0.00 0.43 0.00 0.25 0.52 

Our best model 0.92 0.90 0.79 0.76 0.31 
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 Exploring the prediction model  

With the best model now selected, we want to better understand how it works. To do this, this 

part analyzes the EIT features that were selected to yield the highest sensitivity. Mainly the 

SVM estimators will be discussed here.  

First, to give us a view of the best EIT features, the Table 25 display the 10 best EIT features 

depending on their Point-biserial correlation score. From it, 2 interesting information can be 

gathered: 

• half of the features are one that are already present in the scientific literature and the 

other are the one added for this study. This demonstrates the effectiveness of our added 

EIT features, as they are among the one with high correlation with the extubation 

outcome; 

• 40% of the features are their coefficient of variation counterparts, with the 2 best 

features among them. This enlightens the important to not only monitor the current 

ventilation state, but also the variation throughout the measurement.  

Table 25 - 10 best EIT features depending on their Point-biserial correlation. The blue boxes are the features that 
were created for this study. 

Num EIT features H0 H2 H6 H12 H24 Sum 

1 CV_Allimage_Zone4 0.11 0.59 0.53 0.12 0.67 2.02 

2 CV_LungShape_left_compasity 0.36 0.28 0.43 0.69 0.23 2.00 

3 Flow_expi 0.30 0.52 0.41 0.20 0.52 1.95 

4 CV_LungShape_left_y 0.37 0.21 0.44 0.72 0.16 1.92 

5 Allimage_Zone1 0.23 0.21 0.54 0.18 0.62 1.77 

6 CoV_RL_All 0.25 0.37 0.49 0.17 0.46 1.75 

7 Frequency 0.43 0.09 0.41 0.33 0.42 1.68 

8 Flow_inspi 0.16 0.44 0.41 0.13 0.44 1.59 

9 Tidal_Zone1 0.08 0.15 0.54 0.28 0.51 1.56 

10 CV_LungArea_left 0.34 0.36 0.11 0.52 0.21 1.54 

 

The Figure 51 and Figure 52 shows the difference in the different EIT features present in the 

whole database, and the features present after the optimization of the SVM estimator (with 42 

features). With all that information so far, we can draw a better picture of how the prediction 

models work: 



86 

 

 

• The prediction is predominantly based on the results of the distribution EIT features. 

Thus, reflecting the appearance of the lung through the EIT perspective. Indeed, 

they represent 83.3% of the 42 EIT features.  

• The CV features plays an important role in the prediction. Indeed, they represent 

45.9% of the features from the whole database, and 45.2% on the optimize database 

for the SVM. 

• Though low in number, the EIT measures that are correlated to the frequency 

performed well. The flowEIT measures during the expiration is rank as the overall 

top 3 features, while the same metric for the inspiration is rank 8. 

• After the optimization, there is only one volume-related feature which is the GI.  

 

 

Figure 51 - Different sorts of features among all 61 of them. In blue, the original features and in orange, their 
coefficient variation counterpart.  

 

 

Figure 52 - Different sorts of features after the point-biserial feature optimization (42 features). In blue, the 
original features and in orange, their coefficient variation counterpart. 

Seeing as the interpretation of the distribution from the EIT is one of the main parameters for 

the prediction, we can compare the prediction accuracy of different patients to their EIT images 

to test this assessment. We focus on the worst prediction for the success classes first (cf. Table 
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22). There is a total of 21 predictions that are below 50%, all measurement set included. By 

comparing the EIT images from those measures with ones that were correctly predicted, we 

identified that the predictor seems to recognize healthy lungs from the EIT images. 

Consequently, any EIT images that do not look like lungs are classified as extubation failure. 

To illustrate our argument, we show the Figure 53. Accurate prediction has EIT image that 

shows a good distribution of the ventilation on both lungs. While for the patient P20 and P34, 

has odd EIT image, with a ventilation that is more localized in certain area. The odd EIT images 

could come from various reasons: (1) the patient could have an acute ventilation distress which 

results in ventilation patterns that does not look like lungs (2) measurement noise from a bad 

electrodes placement or patient movement could generate artifacts during the image 

reconstruction. 

 

Figure 53 - Different tidal images for different patients that succeeded the extubation. On the left, patient that is 
rightfully classified; on the right, patients that were misclassified.  

However, this theory does not cover for all misclassifications. Indeed, from the 21 incorrect 

predictions on the success class, there are 8 patients that are still misclassified while having 

normal EIT images (cf. Figure 54). Our first theory is mostly based on the numerous original 

distribution features, that allows to give an estimation of the lungs shape to the predictor. 

However, this leaves behind the all the distribution features with the coefficient of variation 

(CV). Plus, seeing as the FlowEIT has a high correlation with the outcome, they certainly play a 

role in the prediction result.  

 

Figure 54 - Success patients that were badly predicted but have good ventilation distribution. 
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 Gain from the additional EIT features. 

In this part, we are interested in measuring the influence of the added EIT features. First, we 

can review the balance between the two sorts of features (cf. Figure 55). We now have a bit 

more of the new features in the database, as the balance changed with the optimization.  

 

 

Figure 55 - Distribution of the usual EIT features finds in the science community (orange) versus the one that are 
added for this study (green). 

Then, we want to really compare the performance of the new features, we create a new 

prediction model only based on the usual EIT features. We opted to only do the Global H model, 

as it was the best clear model. Except for that, the model follows the same optimization, with 

the fine-tuning and the features optimization. This process is realized for the 3 estimators. The 

result for each estimator can be seen in the Table 26. The decision tree uses 9 features, the 

Random Forest 5 features and the SVM, 23. Regardless of the estimator, the prediction is worst 

in all regards. TheTable 27, sum up the variation between this model and our best. 

 

Table 26 - Prediction results for the Usual features prediction model after it was optimized. 

  Decision tree Random forest SVM 

  Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H0 0.56 0.53 0.48 0.55 0.63 0.58 

H2 0.44 0.65 0.56 0.79 0.40 0.59 

H6 0.72 0.69 0.57 0.81 0.62 0.63 

H12 0.93 0.60 0.64 0.84 0.96 0.63 

H24 0.88 0.61 0.77 0.89 0.96 0.58 
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Mean 0.71 0.62 0.60 0.78 0.72 0.60 

 

 

Table 27 – Comparison of the different model using the 2 sets of EIT features. 

 Decision tree Random forest SVM 

 Sensi Speci Sensi Speci Sensi Speci 

Usual EIT features 0.71 0.62 0.60 0.78 0.72 0.60 

With additional EIT features 0.85 0.59 0.75 0.80 0.80 0.73 

Variation [%] 17.5 -3.9 19.9 3.0 10.8 17.9 

 

 Comparison with the study from Longhini.  

We wanted to compare our method with the one already proposed by Longhini et al [68], in 

order to compare both EIT methods. As mentioned in the state of the art, they based their 

prediction on only one EIT feature. After the extubation, the feature that yielded the best 

sensitivity is the GI. Therefore, we decided to use their same method and created a prediction 

model only based on the GI feature.  

To find the best threshold for the EIT feature, their team used the Youden index [82]. This index 

is used to evaluate the performance of a diagnostic marker. In addition to the Youden index 

results, it is possible to calculate the optimal threshold. 

By calculating the Youden index, like it is proposed by their team, we find the best GI threshold 

to uses is 0.62. Patients that have a GI superior to that value are classified as extubation failure. 

The result for this prediction model on our database is shown in the Table 28. Interestingly, the 

GI features did also perform well at the beginning of the extubation. Though, the performance 

then declines throughout the weaning observation.  

This feature performed surprisingly well on his own, but overall offers less prediction 

performance.  

Table 28 - Comparison between Longhini's method on our dataset and the SVM-Global H model. 

 GI SVM 

  Sensitivity Specificity Sensitivity Specificity 

H0 0.78 0.58 0.31 0.81 

H2 0.83 0.64 0.81 0.70 

H6 0.80 0.96 0.90 0.84 

H12 0.50 1.00 1.00 0.72 

H24 0.67 0.94 1.00 0.58 

Mean 0.72 0.82 0.80 0.73 
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 Overall results comparison with the other prediction methods. 

To finish reviewing our proposed method, we compare our results with the best prediction 

model that were shown in the scientific literature. The Table 29 shows the 3 best models, with 

our best results. In this case, a comparison based on our dataset in not possible, because the 

dataset and the measures are different. Though still, it gives us an idea of what can be done. 

From it, we can observe that we were not able to outperform the prediction model already 

establish. Indeed, it seems that the RSBI is still the best prediction model, while the blood gas 

results, and diaphragm thickness are close second.  

 

Table 29 - Comparison between our best prediction model versus the best model from the scientific literature. 

Authors Measures Sensitivity Specificity 

L.N. Segal et al. [37] 
Rapid Shallow 

Breathing Index 
0.89 0.89 

Saugel et al. [24] 
Corrected serum 

anion gap 
0.88 0.71 

E. DiNino [35] Diaphragm thickness 0.88 0.71 

Our best model (Global H - SVM) EIT 0.8 0.73 

 

 Conclusion 

This whole chapter presented all of the different prediction results, through the different 

improvements that were realized. For the first optimization, we realized a grid-search to find 

the best mix of hyperparameter for each different prediction models. From the baseline results, 

the Global H hypothesis had seen the most improvement from the three. The best inference 

model was still the SVM on the testing and validation set. 

After which, we took the best hypothesis models to further improve it by keeping only the 

features that yields the best sensitivity. From this optimization, we have seen that the Decision 

Tree has the best sensitivity, both in the testing and validation set. But has a low specificity. 

While the SVM is now second best. In the end, we chose the SVM as the best inference model, 

despite not having the best sensitivity. The strength of this inference model relies on his 

prediction stability for patients failing the extubation. Meaning that the prediction stays accurate 

and does not change once a patient is predicted as a failure. In contrast to the Decision Tree, 

which changes for a patient. For the SVM model, we then used 42 features, mostly composed 

of distribution features. We also saw that the introduce FlowEIT features played a significant 

role in the prediction has they have a high correlation with the outcome. 

At last, we compare ourselves with the other study that used EIT data to predict extubation 

failure. Longhini and his team found that the best EIT feature is the GI. Apply to our dataset, 

this feature outperforms at H0, and thus before the extubation. The sensitivity of the GI then 

declines with the other measurement set, while with the SVM improves. This shows that more 
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EIT features are needed when we went to observe and prediction patients' outcomes after the 

extubation.  
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7. Conclusion and future development 

The EIT has since many improvements from the last decade, which have been possible through 

the development of open EIT toolkit like EIDORS, and the availability of new commercial EIT 

devices. In ICU, most researchers have focused their effort to develop new EIT features to better 

assist the clinicians during the ventilator treatment. In our approach, we wanted to assert 

whether the EIT could find a new application, in monitoring the patients after the extubation. 

We setup a clinical study to pursue this goal, in which we were able to recruit 37 patients in 

total, but 2 had EIT data that were too noisy. The goal was to recruit 50 patients, but the COVID 

crisis set us back a bit. Still, we make do with our database, which contains 25.7% of patients 

failing the extubation.  

During this PhD, we developed our own EIT framework to pre-process, reconstruct and extract 

the EIT features. From our observation of the first patients and our discussion with clinicians, 

we decided to introduce 4 new EIT features. With 2 that are EIT copy of already existing metrics 

used in ICU. All those EIT features allowed to build a comprehensive model that attempt to 

portray the full picture of the ventilation. Through the 3 models tested, the Global H is the best 

clear one. Though between the estimators, the Decision tree and SVM both products good 

sensitivity results. But the SVM seems best as it is more reliable overall. The addition of the 4 

features, greatly benefited the prediction. Indeed with it, we are able to reach the same range of 

results as the best model already proposed in the literature (cf. Table 1). Though, even with the 

different optimization that we put our model through, we did not outperform the already 

existing model. From the Table 29, we see that the best model is still from the RSBI, then in 

second the blood analysis and the diaphragm thickness that have the same prediction results. 

However, with this thesis, we were still able to prove the effectiveness of the EIT to predict the 

extubation failure. Plus, we proposed a new approach that focus more on giving clinicians better 

tools to assist them during the weaning phase. 

Looking back at the thesis, there are several aspects that we could have done differently. For 

starters, we decided to separate the weaning phase of 48 hours into 7 measurements set. 

However, this is not taking full advantage of the EIT that can be used continuously. With such 

approach, it would have been possible to construct “real-time” model, which would signal any 

ventilation distress to the clinicians. But such approach also brings him lots of problems. The 

main one being that the contact impedance variation or electrode belt movement would 

certainly have added significant artifacts. Rendering the analysis complicated. Another possible 

improvement would have been to add the ICU features (blood analysis, lung ultrasound results, 
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…) to the prediction model. This approach was considered, but unlike the EIT data that are 

present in every measurement set, not all ICU features were measured each time. Thus, with 

thus approach, every prediction model at each Hi would have been unique, which complicated 

the comparison. At least, we would have liked to test more complex prediction models, like the 

Long Short Term Memory neural network. This model takes as input vector instead of 1D value 

for each feature. This allows to add the notion of time to the model, which is a critic notion for 

our applications.  
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9. Annex 

 Clinical study EXIT – Weaning outcome 

Table 30 – All inclusions date for the EXIT patients. In green, the success; in orange, the failures. 

Patients Inclusions date   Patients Inclusions date 

P01 28/02/2020   P20 25/06/2021 

P02 04/03/2020   P21 30/06/2021 

P03 17/06/2020   P22 05/08/2021 

P04 25/06/2020   P23 12/08/2021 

P05 17/08/2020   P24 16/08/2021 

P06 01/09/2020   P25 19/08/2021 

P07 22/09/2020   P26 31/08/2021 

P08 17/02/2021   P27 01/09/2021 

P09 03/03/2021   P28 08/09/2021 

P10 10/03/2021   P29 15/09/2021 

P11 18/03/2021   P30 16/09/2021 

P12 01/04/2021   P31 28/09/2021 

P13 02/04/2021   P32 11/10/2021 

P14 19/04/2021   P33 18/11/2021 

P15 21/04/2021   P34 06/12/2021 

P16 10/05/2021   P35 24/01/2022 

P17 11/05/2021   P36 23/02/2022 

P18 12/05/2021   P37 17/03/2022 

P19 08/06/2021       
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 EIT features extracted from the images 

 

Table 31 - Count of tidal and frames used after filtering the signal. 

 Count of EIT tidal images   Count of EIT frames 

 H0 H2 H6 H12 H24 H36 H48   
H0 H2 H6 H12 H24 H36 H48 

P02 86 114 115          
P02 3330 5524 4609         

P03 59 65 62 90 87      P03 3188 4117 2640 3556 3489     
P05 62 53 84   76      P05 4050 923 3578   3327     
P06 118 85 74 90        P06 6370 4665 3097 4886       
P09 73 68 39          P09 919             
P14 77              P14 3399 2409 1367         
P27 102              

P27 4881             
P29 66 74     89      P29 3945             
P36 45 93 53          P36 2715 2390     2666     
P01 47 100 62   79      P01 4459 5707 3470         
P04 119 100 75   71   82  P04 2261 5009 2388   3382     
P07 39 52 45 63        P07 6622 4134 2729   3046   3596 
P08 156              P08 2461 3048 1869 3814       
P10 60 92            P10 2001 3100           
P11 56 60 76 52 56   75  P11 2376 2539 3148 2698 1690   2019 
P12 32 54 90 41 52      P12 2648 3185 5562 2695 5432     
P15 99 51 77          P15 3079 2651 3012         
P16 58 68 74   61 72    P16 3992 2732 3420   1953 3446   
P17 64 70 71 79 87 96 81  P17 2278 2772 1877 2333 3894 4345 3133 
P18 59 48 63   53   76  P18 3556 3724 3678   2112   3432 
P19 53 65 73 75 61      P19 1906 3813 5184 4444 3458     
P20 83 89 70 77 92   89  P20 2194 2085 2459 2169 4224   4146 
P21 59 77 133 88 81   65  P21 2760 3690 6621 2685 3364   2940 
P22 71 112 103   68      P22 4356 6608 3245   2372     
P23 62 74 73 57 64 84 81  P23 3295 3441 1946 3556 2659 4860 3148 
P24 27     53 47 60    P24 2575     3002 2134 3702   
P25 60 62 80   67   80  P25 1334 1622 4092   3475   5751 
P26 50 70 43 59 49 75 86  P26 3459 2894 4516 2987 3108 4089 5751 
P28 108 100 93 91        P28 5913 3984 3200 4441       
P30 58 79 42 75        P30 1783 3520 1267 3172       
P31 104 67 95   110 135 92  P31 3134 2861 4220   4598 5070 3001 
P32 59 52 44 45     52  P32 4216 4065 3527 2153     2485 
P33 64 74 72 47 73   43  P33 3328 4577 4504 2224 3911   2180 
P34 66 53 80   74      P34 2624 2270 2572   2393     
P37 47 58 61          P37 2141 3488 4864         
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 Framework to construct and test the prediction models. 

 Baseline results on the testing set 

Table 32 - Baseline results - Single model prediction results. 

P01->P32 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H0 0.47 0.61 0.45 0.69 0.31 0.8 

H2 0.53 0.61 0.59 0.72 0.66 0.63 

H6 0.45 0.62 0.4 0.74 0.47 0.74 

H12 0.39 0.51 0.18 0.58 0.22 0.58 

H24 0.47 0.55 0.43 0.59 0.49 0.59 

Mean 0.46 0.58 0.41 0.66 0.43 0.67 
 

Table 33 - Baseline results - Variation model prediction results. 

P01->P32 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H2-H0 0.48 0.59 0.56 0.63 0.58 0.6 

H6-H2 0.49 0.5 0.44 0.53 0.45 0.56 

H12-H6 0.4 0.52 0.25 0.57 0.21 0.5 

Mean 0.46 0.54 0.41 0.58 0.41 0.55 

 

Table 34 - Baseline results - Global model prediction results. 

P01->P32 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H0 0.49 0.61 0.44 0.69 0.34 0.74 

H2 0.47 0.64 0.29 0.97 0.65 0.85 

H6 0.33 0.86 0.41 1 0.72 0.96 

H12 0.96 0.76 0.53 1 0.49 0.93 

H24 0.51 0.87 0.52 0.96 0.75 0.75 

Mean 0.55 0.75 0.44 0.92 0.59 0.85 
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Table 35 - Most and least used EIT features for the Global H hypothesis. 

  Decision Tree Random Forest 

H0 
Most used features CV_LungShape_right_compasity CV_LungShape_right_compasity 

Least used Feature ΔZtidal ΔZtidal 

H2 
Most used features CV_LungShape_right_compasity CV_LungShape_right_compasity 

Least used Feature ΔZdynamic ΔZtidal 

H6 

Most used features FlowEIT-Expiration FlowEIT-Expiration 

Least used Feature LungShape_right_compasity ΔZtidal 

H12 
Most used features FlowEIT-Expiration FlowEIT-Expiration 

Least used Feature CV_CoV_FBdynamic ΔZdynamic 

H24 
Most used features FlowEIT-Expiration FlowEIT-Expiration 

Least used Feature ΔZtidal ΔZdynamic l 
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 Baseline results on the validation set 

Table 36 - Baseline results on the validation set - Single model prediction results. 

P33->P37 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H0 0.30 0.71 0.22 0.80 0.27 0.75 

H2 0.60 0.42 0.80 0.43 0.60 0.31 

H6 / 0.54 / 0.60 / 0.72 

H12 / 0.55 / 0.65 / 0.67 

H24 0.56 0.54 0.62 0.60 0.71 0.65 

Mean 0.49 0.55 0.55 0.62 0.53 0.62 

 

Table 37 - Baseline results on the validation set - Variation model prediction results. 

P33->P37 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H2-H0 0.42 0.45 0.37 0.38 0.43 0.28 

H6-H2 / 0.48 / 0.51 / 0.54 

H12-H6 / 0.52 / 0.52 / 0.59 

Mean 0.42 0.49 0.37 0.47 0.43 0.47 

 

Table 38 - Baseline results on the validation set - Global model prediction results. 

P33->P37 
Decision tree Random forest SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

H0 0.34 0.69 0.23 0.79 0.29 0.74 

H2 0.49 0.54 0.16 0.90 0.66 0.62 

H6 / 0.81 / 1.00 / 1.00 

H12 / 0.01 / 1.00 / 1.00 

H24 0.84 0.84 0.99 0.99 1.00 0.10 

Mean 0.56 0.58 0.46 0.94 0.65 0.69 
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 Fine-tuning results 

 Fine-tuning results on the testing set 

Table 39 – Fine-tuning results – Single model prediction results. 

P01->P32 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H0 0.56 19.1 0.59 -3.3 0.53 17.8 0.63 -8.7 0.54 74.2 0.62 -22.5 

H2 0.49 -7.5 0.65 6.6 0.51 -13.6 0.65 -9.7 0.5 -24.2 0.65 3.2 

H6 0.48 6.7 0.62 0.0 0.46 15.0 0.64 -13.5 0.49 4.3 0.64 -13.5 

H12 0.4 2.6 0.52 2.0 0.38 111.1 0.52 -10.3 0.43 95.5 0.49 -15.5 

H24 0.45 -4.3 0.51 -7.3 0.41 -4.7 0.54 -8.5 0.42 -14.3 0.54 -8.5 

Mean 0.47 2.1 0.58 0.0 0.46 10.9 0.59 -11.9 0.48 10.4 0.59 -13.6 

 

Table 40 – Fine-tuning results - Variation model prediction results. 

P01->P32 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H2-H0 0.53 10.4 0.6 1.7 0.59 5.4 0.6 -4.8 0.75 29.3 0.63 5.0 

H6-H2 0.49 0.0 0.5 0.0 0.5 13.6 0.51 -3.8 0.44 -2.2 0.56 0.0 

H12-H6 0.39 -2.5 0.53 1.9 0.4 60.0 0.52 -8.8 0.21 0.0 0.49 -2.0 

Mean 0.47 2.1 0.54 0.0 0.5 18.0 0.54 -7.4 0.47 12.8 0.56 1.8 

 

Table 41 – Fine-tuning results - Global model prediction results. 

P01->P32 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H0 0.56 14.3 0.59 -3.3 0.54 22.7 0.67 -2.9 0.41 20.6 0.8 8.1 

H2 0.56 19.1 0.55 -14.1 0.42 44.8 0.89 -8.2 0.57 -12.3 0.73 -14.1 

H6 0.61 84.8 0.6 -30.2 0.44 7.3 0.98 -2.0 0.83 15.3 0.89 -7.3 

H12 0.99 3.1 0.62 -18.4 0.69 30.2 0.99 -1.0 1 104.1 0.73 -21.5 

H24 0.66 29.4 0.62 -28.7 0.49 -5.8 0.9 -6.2 1 33.3 0.64 -14.7 

Mean 0.68 19.1 0.59 -27.1 0.52 15.4 0.88 -4.5 0.76 22.4 0.76 -11.8 
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 Percentage of good prediction per failure patients 

Table 42 - Percentage of accurate prediction for each patient. The grey boxes are takes that were not realized or 
not interpretable. The purple boxes are when measured that were not realized as the patient was re-intubated. 

The yellow cases marked when a patient 

 Fine-Tuning - Decision Tree 

 h0 h2 h6 h12 h24 
P02 22 70 0     

P03 40 64 0 98 100 

P05 65 62 100   33 

P06 81 21 100 100   

P09 82         

P14 47 70 100     

P27 54         

P29 71         

P36 31 65     84 

 

Table 43 - Percentage of accurate prediction for each patient. The grey boxes are takes that were not realized or 
not interpretable. The purple boxes are when measured that were not realized as the patient was re-intubated. 

The yellow cases marked when a patient 

 Fine-Tuning - Random Forest 

 h0 h2 h6 h12 h24 
P02 4 51 0     

P03 15 34 0 0 0 

P05 89 92 98   8 

P06 88 0 74 100   

P09 96         

P14 25 1 31     

P27 29         

P29 90         

P36 25 17     100 
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 Fine-tuning results on the validation set 

Table 44 - Fine-tuning results on the validation set - Single model prediction results. 

P33->P37 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H0 0.32 5.0 0.69 -2.5 0.39 74.2 0.65 -19.1 0.71 157.3 0.64 -14.6 

H2 0.64 6.8 0.41 -3.5 0.68 -15.3 0.45 4.7 0.57 -5.8 0.30 -3.2 

H6 / / 0.54 -0.2 / / 0.55 -8.3 / / 0.68 -5.6 

H12 / / 0.54 -1.3 / / 0.58 -10.3 / / 0.65 -2.9 

H24 0.57 1.8 0.55 2.6 0.55 -11.8 0.53 -11.4 0.72 1.4 0.65 0.8 

Mean 0.51 4.5 0.55 -1.0 0.54 -1.9 0.55 -10.3 0.66 25.6 0.58 -5.6 

 

Table 45 - Fine-tuning results on the validation set - Variation model prediction results. 

P33->P37 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H2-H0 0.41 -3.1 0.44 -3.1 0.42 12.0 0.43 12.6 0.26 -40.1 0.38 37.9 

H6-H2 / / 0.49 2.5 / / 0.48 -5.9 / / 0.55 1.5 

H12-H6 / / 0.49 -5.7 / / 0.53 2.9 / / 0.46 -22.2 

Mean 0.41 -3.1 0.48 -2.2 0.42 12.0 0.48 2.3 0.26 -40.1 0.46 -1.3 

 

Table 46 - Fine-tuning results on the validation set - Global model prediction results. 

P33->P37 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H0 0.35 0.87 0.69 -0.6 0.27 15.9 0.79 0.4 0.10 -63.5 0.82 10.7 

H2 0.64 30.49 0.38 -29.8 0.28 82.1 0.56 -38.1 0.80 21.9 0.67 8.3 

H6 / / 0.57 -29.5 / / 1.00 -0.2 / / 0.67 -33.3 

H12 / / 0.01 -20.0 / / 0.99 -1.4 / / 1.00 0.0 

H24 0.85 0.12 0.35 -58.3 1.00 0.6 0.63 -36.4 1.00 0.0 0.48 377.0 

Mean 0.61 9.17 0.40 -31.0 0.52 12.4 0.79 -15.3 0.64 -1.9 0.73 5.0 
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 Features optimization: Prediction results 

 Features optimization results on the testing set 

Table 47 - Features optimization - Global model prediction results. 

P01->P32 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H0 0.56 -0.5 0.59 0.0 0.54 -0.7 0.65 -3.3 0.31 -24.4 0.81 1.5 

H2 0.96 72.0 0.60 8.4 0.91 115.5 0.82 -7.6 0.81 41.2 0.70 -4.7 

H6 0.75 23.6 0.61 0.8 0.57 28.9 0.91 -6.8 0.90 8.2 0.84 -5.2 

H12 1.00 1.0 0.57 -8.4 1.00 44.9 0.78 -21.1 1.00 0.0 0.72 -2.1 

H24 1.00 51.5 0.61 -2.3 0.76 54.7 0.83 -7.8 1.00 0.0 0.58 -9.7 

Mean 0.85 19.1 0.59 -0.6 0.75 28.3 0.80 -10.8 0.80 0.9 0.73 -4.3 

 

 Features optimization results on the validation set 

Table 48 - Features optimization on the validation set - Global model prediction results. 

P33->P37 

Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] Result Var[%] 

H0 0.71 105.5 0.50 -27.5 0.76 182.2 0.58 -27.1 0.53 410.6 0.59 -27.7 

H2 0.98 52.8 0.11 -70.0 0.90 215.5 0.23 -57.9 0.85 5.6 0.53 -20.8 

H6 / / 0.67 17.0 / / 0.78 -21.5 / / 0.67 0.0 

H12 / / 0.00 -100.0 / / 0.14 -86.1 / / 0.00 -100.0 

H24 1.00 18.3 0.38 7.4 0.99 -1.1 0.40 -35.9 1.00 0.0 0.00 -100.0 

Mean 0.90 58.9 0.33 -34.6 0.88 132.2 0.43 -45.7 0.79 138.7 0.36 -49.7 

 

 Results for the success group - Features optimization on the validation set 

Table 49 - Validation set - Results for the success group - Features optimization - Global model prediction. 

P33 -> P37 
Decision Tree Random Forest SVM 

sensitivity specificity sensitivity specificity sensitivity specificity 

H0 0.48 0.74 0.55 0.79 0.82 0.20 

H2 0.11 0.98 0.24 0.92 0.52 0.84 

H6 0.67 0.00 0.78 0.00 0.67 0.00 

H12 0.00 0.00 0.14 0.00 0.92 0.00 

H24 0.38 1.00 0.42 0.99 0.50 1.00 

Mean 0.33 0.55 0.42 0.54 0.69 0.41 
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