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Abstract
Control of Linear Deformable Objects for Robotized Crops Manipulation

by Omid AGHAJANZADEH

The use of robots in several essential domains (domestic, industrial, and agricultural) has
increased significantly. In recent years, robots have been able to execute a variety of tasks
with rigid objects. However, despite the abundance of non-rigid objects all around of us,
the manipulation of deformable objects (DO) has received significantly less attention.

Linear deformable objects (LDOs) are one type of DO that are commonly present
in industry and agriculture, for instance, cables and twigs of vegetables. Yet, finding
a suitable technique to control this type of objects remains a significant challenge due
to their high degrees of freedom (DOF). Thus, the direction of this research is to develop
methods to deal with the stated problem. The main application we consider is agriculture
but the methods can be used in other fields as well. In agriculture, many objects can be
assumed as LDOs, such as the branches and trunks of vegetables. Pruning, harvesting,
packing vegetables and fruits, and moving plants are examples of tasks that require the
manipulation of LDOs.

A significant challenge in manipulating these objects is to deform them toward the
targets desirably, in order to perform different actions (deforming, picking, etc). A major
question that may arise here is how robots can properly perform the deformation tasks
with LDOs while a wide range of LDOs with different characteristics exists in the agricul-
tural field. Another challenge is that tracking their entire shape is not possible (and not
necessary) during the deformation process in some cases, while in others, it is required
to track and control the entire shape. Based on the mentioned problems, this dissertation
is motivated by two research questions: (1) how can robots deform an LDO without per-
ceiving its entire shape? (2) how can robots deform the entire shape of the object without
knowing any model parameters or offline information of the object’s deformation before-
hand?

To address the first question, we propose two methods to manipulate the objects
without perceiving the entire shape. First, we propose an offline geometric model for
controlling the shape of elastic linear objects, which develops a method to calculate the
deformation Jacobian based on the object’s shape at rest. This method has some limi-
tations and cannot be used with a wide range of objects. So, in the next chapter, using
an adaptive algorithm, we suggest a more generic approach for controlling an arbitrary
point along the length of an object without calculating any model-based Jacobian matrix.
This method can track a desired manipulation trajectory to reach the target shape. To
answer the second question, first, we propose an optimal controller method by using an
online estimation of a deformation Jacobian to control the objects’ entire shape using a
geometric algorithm. Next, we extend the adaptive methodology to control the entire
shape. In this method, we do not need to have a geometric model of the object. To vali-
date the presented methods, numerical simulations and real experiments are conducted.

Keywords. Linear deformable objects, robot manipulation, adaptive control, tracking
of deformation, optimal control, agricultural robotics.
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Résumé
Contrôle d’objets déformables linéaires pour la manipulation robotisée de cultures

par Omid AGHAJANZADEH

De nombreux domaines peuvent bénéficier de l’apport de la robotique pour réaliser
des travaux difficiles et répétitifs, ou requérant une précision particulière. A ce titre, de
nombreux robots sont aujourd’hui exploités pour exécuter une grande variété de tâches
avec des objets rigides. En revanche, malgré l’abondance d’objets déformables autour
de nous, la manipulation d’objets déformables (en anglais : deformable objects ou DO)
a reçu beaucoup moins d’attention, notamment du fait de la nécessaire adaptation des
fonctions robotiques à la variabilité des propriétés d’interactions avec l’environnement.

Les objets linéaires déformables (en anglais : linear deformable object ou LDO) sont
un type de DO très présent dans l’industrie en général et l’agriculture en particulier.
Pourtant, trouver une technique appropriée pour contrôler ce type d’objet reste un défi
important en raison de leur nombre élevé de degrés de liberté (en anglais : degrees of
freedom ou DOF). Ainsi, l’objectif de cette thèse est de développer des méthodes de con-
trôle pour traiter le problème d’asservissement de forme. Même si les contributions de
cette thèse peuvent être utilisées dans de nombreux domaines, la principale application
que nous considérons dans cette thèse est l’agriculture. En effet, dans ce contexte, de
nombreux objets peuvent être considérés comme des LDOs, tels que les branches ou les
plantes.

Le défi important lors de la manipulation de ces objets est de pouvoir les positionner
selon une forme désirée, afin de réaliser différentes actions (taile, cueillette, traitement,
etc). La question qui peut se poser ici est de savoir comment les robots peuvent effectuer
correctement les tâches de déformation avec des LDO alors qu’une large gamme de car-
actéristiques différentes existe, ainsi qu’une forte variabilité de leurs propriétés. Une
autre problématique est que le suivi de leur forme complète est difficilement envisage-
able pendant le processus de déformation, tandis que dans certain cas, il est nécessaire de
suivre et de contrôler la forme entière. Sur la base des problèmes mentionnés, cette thèse
cherche à répondre à deux questions de recherche : (1) comment les robots peuvent-ils
déformer un LDO sans percevoir sa forme entière ? (2) comment les robots peuvent-ils
déformer la forme entière de l’objet sans connaître au préalable les caractéristiques de
l’objet ?

Pour répondre à la première question, nous proposons deux méthodes pour ma-
nipuler les objets sans percevoir leur forme entière. Tout d’abord, nous proposons un
modèle géométrique hors ligne pour contrôler la forme d’objets linéaires élastiques, qui
développe une méthode de calcul de la jacobienne de déformation en se basant sur la
forme de l’objet au repos. Cette méthode présente certaines limites et ne peut être utilisée
avec une large gamme d’objets. Ainsi, à l’aide d’un algorithme adaptatif, nous proposons
une approche plus générique pour contrôler un point arbitraire sur la longueur d’un ob-
jet sans avoir recours à la matrice jacobienne. Cette méthode peut suivre une trajectoire
de manipulation souhaitée pour atteindre la forme cible. Pour la deuxième question,
nous proposons d’abord une méthode de contrôle optimale en utilisant une estimation
en ligne d’une jacobienne de déformation pour contrôler la forme entière des objets en
utilisant un algorithme géométrique. Ensuite, nous étendons la méthode adaptative pour
contrôler la forme entière. Dans cette méthode, nous n’avons pas besoin de disposer d’un
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modèle géométrique de l’objet. Afin de valider les méthodes présentées, des simulations
numériques et des expériences en réel sont menées pour évaluer leurs performances.

Mots clés. Objet linéairement déformable, manipulation robotique, contrôle adaptatif,
suivi de la déformation, commande optimale, robotique agricole.
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Chapter 1

Introduction

The work accomplished in this dissertation is funded by a public grant overseen by
the French National Research Agency as part of the "Investissements d’Avenir" through
the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initia-
tive CAP 20-25 (ANR-16-IDEX-0001). It is developed within the context of the project
"SyncEA" ("Dynamic SYNChronization of mobile manipulators for new Environmental
and Agricultural tools") of CAP 20-25 Challenge 2 (Domain: Agro Technologies). In the
agricultural context, the ambition of the project is to participate in laying the founda-
tions of new modes of agricultural production. It is also aimed to be beneficial in other
similar application fields (e.g., factory of the future). It is part of the momentum of the
dynamics launched locally on mobile handling and benefits from equipment already ac-
quired under the CPER 2015-2020, MMII project (Mobility in Industrial and Uncertain
Environments), Challenge MMaSyF (Mobilities - Materials and Systems of the Future).

The context of the SyncEA project concerns agro-technologies. It aims to open future
perspectives for developing fast, precise, and safe tasks performed by autonomous mo-
bile manipulators moving on agricultural land. In fact, the agro-ecological transition is a
significant challenge for our society, and its implementation requires new tools to change
production methods towards new, more ecological, and responsible methods. In this
context, the contribution of robotics appears as essential support, and robots are needed
in terms of multitasking movement and the ability to manipulate natural elements. Thus,
the work focuses on two complementary aspects, and as a result, INRAE (UR TSCF) and
Institut Pascal offered two robotics Ph.D. positions. The first one concerns the synchro-
nization of the movements of a mobile manipulator for the precise and robust position-
ing of the effector environments (it is funded by the MMAsyF program, dealing with the
navigation of mobile manipulators in relation to the SyncEA project). The second one,
which is the topic of the current dissertation, deals with the manipulation of deformable
objects (DO) for the realization of operations on plants. The main focus is to control one-
dimensional DOs grasped by a mobile manipulator, with application in an agricultural
domain.

1.1 Context

Robotic manipulation has come to the attention of researchers in recent decades since
robots can undertake activities that are either risky or monotonous for humans. Until
recent years, most works in this area have been focused on manipulating objects, as-
suming they are rigid (meaning that the shape of the object remains unchanged dur-
ing manipulation), and researchers have suggested successful ways to meet the chal-
lenges [BMAK14, BK19]. However, there is a wide range of objects whose deformation
cannot be neglected during the manipulation process (such as clothes, human tissues,
vegetables, metal sheets, cables, and so on). These types of objects have been named
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deformable (as opposed to rigid) objects. Fig.1.1 shows several examples of humans ma-
nipulating DOs.

(a) Knot tying (b) Fruits picking

(c) Clothes folding (d) Cable deformation [CP20]

FIGURE 1.1: DOs manipulation examples

Automating DOs manipulation could significantly impact many human life applica-
tions as they are ubiquitous. Examples of DO manipulation range from agricultural tasks
(for instance, in fruit harvesting) to medical tasks (such as robotic surgery). However,
when it comes to robotic manipulation, effectively deforming these types of objects is
very challenging. This is due to the fact that they have a high number of degrees of free-
dom (DOF), they can go under self-occlusions, there are local deformations in each part
of these objects, and finally, the types of deformations vary from one to another.

Generally, the main research topics of robotic manipulation of DOs can be categorized
as modeling, sensing, and control. DO modeling is mainly a study area in computer
graphics. The fundamental difficulty in this area is that a realistic model that includes
physical features is frequently computationally costly and unsuitable for real-time sim-
ulation [MM07]. Sensing the objects’ deformation is typically achieved using visual or
force sensors, which is not always possible. Finally, controlling the deformation of the
objects and manipulating them desirably is the most critical challenge. It is important
to note that our specific topic within this dissertation is the manipulation of linear de-
formable objects (LDOs) especially with agriculture as the main target field. Therefore,
the main focus of the current study is on the shape controlling of linear deformable ob-
jects; yet, we develop or adopt the necessitated models to use in our controller where
needed, and we also deployed the required detection techniques to sense the object.
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1.2 Motivation

Most agricultural elements (such as branches) can be assumed as LDOs and many agri-
culture tasks need to reshape objects [Dav06,HS18,ZGT+18]. In this field, skilled labor is
scarce, and labor costs are increasing significantly. Meanwhile, worker safety is another
issue in traditional farming. Therefore, mechanical or robotic solutions for reducing the
amount of hand labor seem necessary [HS18]. The problem is that this topic (i.e., robotic
manipulation of DOs in the agricultural field) has not received significant attention in the
former studies, and none of the existing LDO manipulation approaches have considered
agricultural applications in their studies [AWH+18b, SCBM18, ZNAPC21, NALRL13b,
Ber13, LWL19].

In the literature, several successful methods can be found that attempt to manipu-
late DOs in various applications. However, most proposed approaches require some
information about the object (an exact model or an estimation of the deformation). They
mostly need to perceive its total shape during the deformation process. Therefore, apply-
ing these methods with these limitations to the objects that exist in the agriculture field
is not easy. This inspired us to develop methods to solve these issues. Moreover, this
dissertation aims to set a milestone in using these methods for the tasks that involve the
manipulation of objects in agriculture, such as tree pruning. Pruning is the most preva-
lent method of tree maintenance. Pruning must be done carefully since incorrect pruning
can cause long-term harm to the tree or limit its lifespan. The main purpose of this task is
to bend the branches so that the cutting point moves to an appropriate cutting location. It
is worth stressing that the proposed approaches can also be used to manipulate the stem
or branches of a vegetable plant for plant inspection and fruit harvesting tasks. The main
issues are that in these kinds of tasks, one cannot have the model or the required offline
information of the object each time.

(a) Pruning trees (b) Fruit harvesting

(c) Branch inspection (d) Wire harness

FIGURE 1.2: Examples of manipulating LDOs
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It is important to note that this type of object is one of the most common DOs in
industrial applications as well. Therefore, taking a step forward in the manipulation of
LDOs can be useful in other domains, and the presented methods can also be used in
other similar fields. Fig.1.2 shows several examples of LDO manipulation in different
applications.

To close this section, it is worth highlighting that although there exist several studies
on LDOs manipulation, there exist many challenges to deal with in this area. In the
agriculture field, there exists a wide range of LDOs with different characteristics, and
in some cases, deformation of the entire shape is needed while being manipulated. On
the other hand, tracking their entire shape in some other tasks is not trivial (and not
necessary). Therefore, this dissertation attempts to propose methods that enable robots
to do the deformation tasks by considering these challenges.

1.3 Contribution and outline

Fig. 1.3 displays a simplified illustration of the current thesis. It outlines the key points
of each chapter of this thesis sequentially. Furthermore, the contributions of this thesis
are summarized as follows.

The second chapter provides related works on DO manipulation. We also investigate
the agriculture robotics and the existing studies in manipulation of DO in this field. This
chapter also introduces the models that we adopt to simulate the LDO in the rest of this
thesis for development and validation of the proposed algorithms.

In the third and fourth chapters of this dissertation, we focus on deforming LDOs
toward the targets by sensing only the controlled points and without perceiving their
entire shape.

In the third chapter, we first propose a method to calculate a deformation Jacobian for
LDOs, and then we use a proportional controller to deform the object by moving one end-
point of the object. This chapter’s primary novelty is an offline technique for computing
the Jacobian based on the rest shape of the object. Furthermore, a simple controller is
designed by inverting the Jacobian model. Although this method has some limitations,
it can be used to design different algorithms that do not require to perceive the entire
shape. Our main contribution to this chapter is:

• A novel method for 2-D control of the shape of elastic linear objects is presented
based on an offline geometric model which, at run-time, does not require comput-
ing a deformation model or sensing the full shape of the object.

In the fourth chapter, we propose an adaptive control strategy to regulate the state
(position and orientation) of an arbitrary point on the body of the object. The proposed
method does not need prior knowledge of any model parameters of the object and works
in real-time. There are several contributions in this section:

• This method can track a desired dynamic evolution of the state while the existing
adaptive approaches in the literature, simply reach a fixed set-point without con-
sidering any deformation trajectory.

• Using the present technique, the Jacobian is not required to determine the link be-
tween the object’s deformation and the gripper’s motion. The provided controller
does not require offline information of object’s deformation.

• The present approach can control the full states of the controlled point, including
the angle (i.e., we control the angle of the controlled point as well as its position). It
contains a formal analysis of the system dynamics under the controller.
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FIGURE 1.3: The schematic diagram of the present thesis that depicts the chapters in sequence.

The purpose of the fifth and sixth chapters of this dissertation is to go a step further
than the previous chapters by focusing on controlling the entire shape of the object. Our
goal is to provide methods that can be used to deform LDOs while the main focus is
agriculture.

In the fifth chapter, we first propose a method to calculate a deformation Jacobian
for LDOs, and then based on the proposed Jacobian, we develop an optimal controller
to reach the target. In this chapter, we attempt to provide a complete methodology that
can be used in the future to manipulate agricultural LDOs, such as branches and twigs of
vegetables, without damaging them. The first section of this chapter is a shape prediction
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optimal method that obtains a target shape that minimizes the stress along the target’s
length. Using this method, the reachability of the target shape can be guaranteed. The
second part of this chapter is executed later and is based on an indirect optimal controller
that automatically drives the objects’ shapes into the target shapes by minimizing a cost
function that reduces the error between the targets and the current shapes. To find the
relation between the motion of the robotic arm and the object’s shape, an online Jaco-
bian matrix is calculated by using the As-Rigid-As-Possible (ARAP) [SA07] deformation
model. This Jacobian does not have the limitation of the Jacobian of the third chapter
and can be used with a broader range of objects. The contributions of this chapter are
summarized as follows.

• The first part of this chapter attempts to address the problem of finding desired
target shapes for the LDOs. We design a method to obtain a reachable target shape
that is at minimum stress. This helps to have a stable shape for the target that is less
likely to break.

• The main goal of the second part of this chapter is to propose an optimal control
strategy to deform LDOs from initial shapes to the obtained target shapes. The
method we use is to move mesh nodes on the object’s body using the manipulated
point to achieve the desired shape of the object. The proposed method does not
need prior knowledge of any dynamical parameters of the object. Our method is
simple to implement, and it does not necessitate collecting the data from a time
window to compute a Jacobian.

In the sixth chapter, we extend the used adaptive scheme in chapter four to control
the entire shape of the object in 3-D. Our objective is to propose a 3-D model-free method
that can be used with a wide range of objects. Our contributions are:

• The proposed method can be used to track a desired dynamic evolution of the entire
shape of the object in 3-D, rather than simply reach fixed set-points. This gives
closer control on the path to be followed and on the time to complete the task.

• Our method works in real-time and is suitable for large deformations of the en-
tire shape. Our proposed method controls the full shape of the object and not a
simplified representation of it.

• The method we present does not require offline information about the object’s de-
formation. In addition, we do not need to compute any Jacobian matrix to know
how displacements of the manipulator are mapped to deformations of the body.

• The proposed method is suitable for manipulating objects that exist in agricultural
domains, such as stems or twigs.

Upon review of all chapters, the last chapter of this dissertation summarizes the work
developed throughout the current research and gives perspectives on future studies.

1.4 Publications

Adaptive deformation control for elastic linear objects.
Omid Aghajanzadeh, Miguel Aranda, Juan Antonio Corrales Ramon, Christophe
Cariou, Roland Lenain, and Youcef Mezouar.
Frontiers in Robotics and AI 9:868459.2022. doi: 10.3389/frobt.2022.868459
Video: https://www.youtube.com/watch?v=mMsRmehdcXo [AACR+22]

 https://www.youtube.com/watch?v=mMsRmehdcXo
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Optimal deformation control framework for elastic linear objects.
Omid Aghajanzadeh, Guillaume Picard, Juan Antonio Corrales Ramon, Christophe
Cariou, Roland Lenain, and Youcef Mezouar.
2022 IEEE 18th International Conference on Automation Science and Engineering
(CASE), IEEE, 2022, pp. 722–728
Video: https://www.youtube.com/watch?v=a3XoJFYlyc4 [APR+22]

An offline geometric model for controlling the shape of elastic linear objects.
Omid Aghajanzadeh, Miguel Aranda, Gonzalo Lopez-Nicolas, Roland Lenain, and
Youcef Mezouar.
Accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2022.
Video: https://www.youtube.com/watch?v=LI8JdTFPlR8 [AALN+22]

3-D shape control of linear deformable objects using an adaptive Lyapunov-based
scheme.
Omid Aghajanzadeh, Mohammadreza Shetab-Bushehri, Miguel Aranda, Juan An-
tonio Corrales Ramon, Christophe Cariou, Roland Lenain, and Youcef Mezouar.
Submitted to Control Engineering Practice journal. 2022.
Video: https://www.youtube.com/watch?v=FlEMAy_IcZo

https://www.youtube.com/watch?v=a3XoJFYlyc4
https://www.youtube.com/watch?v=LI8JdTFPlR8
https://www.youtube.com/watch?v=FlEMAy_IcZo
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Chapter 2

State of the art and preliminaries

This chapter provides an overview of relevant methodologies to this topic. We discuss
robotics in agriculture in section 2.1, despite the fact that DOs topic is new in agriculture,
and there are few works on agricultural manipulation of DOs (mostly on picking appli-
cation). Next, we review the works on DO modeling in section 2.2. At the end of this
section, the models we use to simulate the objects in this work are described. Section 2.3
explores object manipulation deformation techniques generally addressed in other appli-
cations. Subsequently, the works on linear deformable object (LDO) manipulation, which
is the main topic of this research, are explicitly presented in section 2.4. Finally, the work
accomplished during this Ph.D. is positioned concerning the existing literature in section
2.5.

2.1 Robotics in agriculture

Agriculture is the backbone of many countries, which helps them to improve their eco-
nomic and social situation. Agriculture is also one of the most important reasons for
bringing people together, which has led to the creation and development of human civi-
lizations worldwide over the past 10,000 years. The modern agricultural industry that the
world has today with advanced, accurate, and quality technology results from changes in
time and various inventions in agriculture. Today, environmental agriculture with mod-
ern advanced technology produces good quality food and meets the basic nutritional
needs of human health. These significant changes helped the agricultural sector grow
rapidly by discovering incredible innovations and creating various revolutions around
the world [Bac15]. However, decreasing farmer and agricultural labor populations due
to various factors is a severe problem in the present era. Skilled labor is scarce in this
field, and labor costs increase significantly. Meanwhile, worker safety is another issue in
traditional farming. To solve this problem, researchers aim to use highly advanced robots
that can replace manpower to provide long-term solutions to agricultural mechanization
and automation. Therefore mechanical or robotic solutions for reducing the amount of
hand labor seem necessary [HS18]. It is notable that most agricultural activities can be
performed by robots [SSM21].

The concept of using robotic technology in agriculture is relatively new. There are
various applications of using robots in agriculture. Therefore, robots appear in various
forms and increasing numbers in this field. Farmers are interested in utilizing robots to
harvest their crop, gather fruit, or even take care of their animals. Moreover, the employ-
ment of robots in the agricultural sector can result in higher-quality fresh food, reduced
production costs, and less need for human labor. Other advantages of using robots in
agriculture are as follows.
• The robots can effectively detect better-quality items.
• They can be used to automate manual operations that are too risky for the operators.
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• They do not get ill, get tired, or need time off.
• They offer fewer mistakes and work at greater speeds.
• They use less energy and generate less waste in comparison to the bigger, inefficient
existing machinery.
• They can prevent pollutants and emissions by using clean energy and streamlining the
production process.

Agricultural robots are complex systems that require interdisciplinary collaborations
between different research groups for effective task delivery in unstructured crops and
plant environments [RSHP+18]. In spite of the fact that agriculture is one of the essen-
tial fields of humanity that provides food resources, it has not received enough atten-
tion from robotic researchers, and numerous obstacles remain. One of these impedi-
ments is the deformation of agricultural items, as many agriculture tasks need to re-
shape objects [Dav06, HS18, FSTB21, ARB+21]. By way of illustration, in recent years,
researchers have tried to develop automatic harvesting robots for various fruits and
crops [KYS+09, HBvT+14, HKL+12]. Still, they considered all existing objects as rigid
objects and ignored the deformation of the objects in this vital field. This is a particularly
intriguing topic because by considering the deformation of the existing items, it is feasible
to limit the potential damage to trees in robotic activities while increasing the performed
task performance. It should be pointed out that there are several reasons why automatic
manipulation of agricultural DOs is complicated: existing methods cannot provide the
dynamic properties of objects online, detecting the entire object is not a trivial task in all
cases, and a wide range of objects with different physical properties exists.

FIGURE 2.1: Several snapshots of the position of the robotic arm with respect to the target (red
target board) presented in [YPS+21]. Red arrows show the contact points. The first row shows

successful cases, and the second row shows failing ones where the end effector hits the tree.

In the agriculture sector, most agricultural elements (such as branches) can be as-
sumed as LDOs. The problem is that there exists no work about the manipulation of this
type of object (like the other types of agricultural DOs) in the former studies, and other
existing LDO manipulation approaches [KFB+21, JWT19, SCBM18] did not consider this
vital application in their robotic studies. Accordingly, this thesis aims to develop LDO
manipulation approaches to be used in agricultural applications for some tasks such as
pruning the trees. Pruning [YSF+20, BPG+17, YGSD22] is the most common tree mainte-
nance procedure. Pruning must be done correctly because improper pruning can create
lasting damage or shortening the tree’s life. In this task, the main point is to deform the
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branches so that the cutting point moves to where the branch can be cut appropriately.
For instance, [BPG+17] described a robot system for automatically pruning grape vines
without considering any deformation of the branches. Recently, [YPS+21] considered the
pruning problem and developed an RL-based solution for the task of reaching goal points
in vines by avoiding collisions with their branches. Fig. 2.1 presents various snapshots of
some of the experiments done using this method for successful and failing cases where
the goal was to reach a cutting point on the tree branches. Like the previous study, they
did not take deformation of the objects into consideration.

Another application of our study can be in the robotic plant inspection and fruit har-
vesting tasks [BMBS16, BDB18, FZF+18]. Despite advances in agricultural robotics, mil-
lions of tons of fruits and vegetables are still hand-picked each year in open fields and
greenhouses [SHKW18]. The problem with the current harvesting methods is that they
cause some forms of damage, such as broken or removed stems that can affect the trees’
life [ZWA+21]. [BDB+08] reported approximately 30% of the tree had stems removed
during the harvesting of the apples. Moving the branches and picking the fruits without
damaging the tree is necessary in this task. This means that branches and twigs should
not be considered as rigid objects to be safely deformed. However, as mentioned, most
agricultural robotic studies ignored this crucial fact.

FIGURE 2.2: Approximating the DO as presented in [TKK01].

One of the first works in agriculture that assumed robots are dealing with DOs can be
found in [TKK01]. The DO (shown in Fig. 2.2) is discretized using finite element method
(FEM). However, that study mainly focused on obtaining equations of a multiple mo-
bile manipulator system, and no shape controllers were presented. Another drawback of
that work is that the model is not sufficient to guarantee nonholonomic motion for a real
system, and additional work is needed to ensure the mechanical stability and nonholo-
nomic motion of the robots. Recently, [SSM21] presented a system capable of generating
3-D models of non-rigid corn plants, which can be used as a tool in the phenotyping pro-
cess. The method implemented to perform the model deformation was the Smoothed
Rotation Enhanced As-Rigid-As Possible (SR-ARAP) [LG14] technique (like the previ-
ous work, no shape controller was provided). To the best of the authors’ knowledge, no
other relevant study considers the deformation of agricultural objects. As a result, in the
next sections, we will go through the studies of DO manipulation that have been done in
other applications in general. In the first step, we review the well-known methods used
to model and simulate DOs (in section 2.2). Next, in section 2.3, we review the works on
DO manipulation.
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2.2 Deformation modeling

Modeling of DOs is a research topic in robotics that has a long history in many applica-
tions such as computer graphics, virtual surgery, cloth animation, agriculture, and indus-
try. In fact, due to the highly-dynamic behavior of non-rigid objects, modeling the defor-
mation of these objects is one of the main challenges in robotics [HLNAS19]. The major
challenge of this research topic is that incorporating the object’s physical properties is of-
ten computationally heavy and unsuitable for real-time simulation [MM07]. Until a few
decades ago, most works were presented in geometric models for rigid bodies. However,
in 1986, [SP86] proposed an initial free-form deformation method that deformed arbitrary
objects by distorting space in which they were contained. In 1987, [TPBF87] proposed a
class of elastically DOs for non-rigid curves, surfaces, and solids that incorporated the
physical properties of the object directly in a graphical object which provided a way to
represent the shape and motion of the DOs. It was the first time that a model of DOs re-
sponded to external forces and naturally interacted with other objects. Without a doubt,
the presented works set a new milestone in the reliable modeling of various objects.

Since the problem of DO is complex, no single model can be suitable for all kinds of
problems that exist in this field. Due to this fact, several works which rely on simulating
the deformation of various objects can be found in the literature. The most well-known
methods that are repeatedly found in the literature can be listed as follows:
• Geometric models [LL08, BMGA10]
• Mass-spring-damper (MSD) models [TFH99, LAAB14]
• Finite element method (FEM) [YVK21, LGWJ15]
• Boundary element method (BEM) [JP03].

Despite the existing studies, it is still challenging to obtain the exact models of DOs.
Thus, researchers have attempted to work on DOs without an exact deformation model
[HSP18, COC+20] over the last few years. These model-free studies use some estimation
of the deformation behavior.

Since modeling of DO is not the main topic of the presented research, we give a gen-
eral overview of the DO modeling and briefly present the models we use to simulate the
studied objects at the end of this part.

2.2.1 Geometric models

Modeling and simulating DOs most often rely on geometric representations. The geo-
metric models typically use a set of points or nodes to create curves or surfaces, as in-
dicated in Fig. 2.3. They have been widely adopted in literature [MVDBF+12, ZSGS12,
CGLX17, YGL+18]. As the name implies, they do not consider the physics that govern
the deformation. One of the most essential advantages of these models is that they do
not consider the mechanical properties of the object. This can be useful for objects whose
physical properties cannot be obtained easily. However, the accuracy of the models is
compromised for fast calculations.

2.2.2 Mass-spring-damper models

One of the most common methods to model DOs used in different applications [TW90,
BW98, JL97] is the MSD model. It was applied to the simulation of skin and muscle
[CHP89], facial modeling in computer graphics [Wat87], creation of animals’ animated
locomotion [TT94], and cloth modeling [BHW94]. In general, these models include a set
of nodes with a specific mass that are connected to each other by massless springs. To
give a few examples, [DS11] used an MSD model to simulate a DO. Their model was used
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FIGURE 2.3: Different geometric models for elastic deformations presented in [YGL+18]. The
objects’ shapes were constructed using a set of geometrical nodes on their surfaces without

considering any physical properties.

to deform a planar object toward a desired shape. However, they need a certain amount
of information about the object to model it (see Fig. 2.4). Similarly, [HYK10] used an MSD
model to investigate the deformation of a clay-like object.

One of the advantages of MSD models is that they can be easily implemented while
being computationally efficient. However, the main drawback is that MSD models are
not able to approximate the actual physics that occurs in a continuous body precisely.
Another challenge is that this approach requires a significant amount of manipulation
points (nodes to model objects’ shape) to achieve acceptable results.

FIGURE 2.4: Model of an object with interconnected MSD presented in [DS11]. The mass points
(mi (i = 1, 2, ...)) are inserted at the nodal points to model the object. Moreover, a three-element
model (Ej (j = 1, 2, ...)) is placed between the nearby mass points. Ej consist of elastic and vis-
cosity coefficients of the non-residual deformation part (k1 and c1), and the viscosity coefficient

in the residual deformation1 part (c2).

2.2.3 Finite element methods models

Another popular numerical method that has been widely used to model DOs is the
FEM [FMC+18, SKM21, ZPC21]. It has a wide range of applications. To name a few, it
has been utilized in skin simulation [BM17], muscle [CZ92], shape editing [CG91], cloth

1An irreversible deformation that remains after the load is removed.
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modeling [EKS03], and surgical simulation [BWG+99], which is an area where model ac-
curacy is very critical. This method needs sets of physical properties (such as elasticity
and physical properties of the object) to describe the object. In this method, a discrete
mesh is used to divide the object into smaller, simpler parts called finite elements. The
efficiency of the model is very sensitive to this discretization of the object. However,
choosing the proper number of nodes is challenging because as the number of meshes
increases, the model will be more accurate while the calculation time will also increase.
Therefore, these models require significant tuning. Another point is that such models
are dependent on the physical properties of the object, such as its Young’s modulus and
friction parameters. Fig. 2.5 shows an example of a flexible rod modeled using FEM in
MATLAB.

FIGURE 2.5: A flexible rod modeled in MATLAB using a large number of meshes to make the
model accurate. However, due to the extensive use of mesh, it has a very high computational

cost.

2.2.4 Boundary element method

In FEM, the objects have been modeled using the nodes positioned in their interior vol-
ume. However, in the cases where the DOF of the nodes on the surface (boundary) are
needed, the BEM can be used to model the DO. By way of explanation, to mesh objects
with BEM, only the boundary of the object is needed, while FEM requires the interior
and boundary of the object simultaneously (as shown in Fig. 2.6). This property of BEM
makes it suitable for computer vision problems because edge detection can be used to
locate the boundary of an object. Another advantage of this method compared to FEM
is that it can readily handle large deformations without mesh refinement [GSN04]. In
this method, thanks to the Green-Gauss theorem, the three-dimensional problem can be
reduced to two dimensions [Das10]. This leads to achieving a substantial speedup in the
computational cost resulting in real-time simulation of global object deformation. How-
ever, BEM only works for objects that have a homogeneous interior. [JP99] utilized BEM
approach to simulate volumetric models in real-time. Additionally, [GN03] developed
a technique for 2-D tracking of DOs by using BEM to model deformation. Another ap-
plication of this method can be found in [MMA+01], which has been used for surgical
simulations.

2.2.5 Local models

Thus far, we have presented global models for DOs. These models are created using
accurate offline data about the object. On the contrary, several recent works do not
need an exact DO model by using some approximations of the deformation behavior.
These local models are linear and can be computed in real-time with a small number of



2.2. Deformation modeling 15

FIGURE 2.6: Comparison between BEM and FEM mesh presented in [GSN04]. FEM mesh is
used to model the top jaw, and BEM mesh is used to model the bottom jaw.

data [ZCD+21]. They need to be continuously updated online during the object defor-
mation. Some examples can be found in [MB20, ZNAPC21, COC+20]. Most local models
approximate the perception/action relationship via a Jacobian matrix (a matrix that re-
lates the motion of the robot with the changes in deformation of the grasped object). The
main challenge is that since the model is assumed local, it should be continuously up-
dated during task execution. Another challenge is to compute a Jacobian matrix that
can be used for the entire process or continually updated during the deformation. The
computation of an exact Jacobian is often computationally intractable and requires high-
fidelity models. Therefore, its calculation should not be heavy in terms of computational
cost so that one can use it in real-time controllers. Having these local models, one can de-
sign a simple controller by inverting the Jacobian model. However, since this controller
only guarantees local convergence, the deformation cannot be so large.

Briefly, we have investigated the main advantages and disadvantages of the most
well-known models used in the domain of DOs. We seek to model an elastic linear ob-
ject by lowering the complexity. Based on this knowledge and reviewing the literature,
we select two suitable techniques to model the studied object. We will merely adopt
these models to simulate the object studied in this dissertation and evaluate our control
strategies before performing the real experiments with the robots. These models will be
succinctly presented in the section that follows.

2.2.6 Models used to simulate LDOs in this dissertation

In this dissertation, we aim to control the deformation of objects that can be thought of
as LDOs (they are either linear, such as rods, or similar to linear objects, such as tree
branches). Therefore, the objective of this section is to model an elastic linear object simi-
lar to what has been shown in Fig. 2.7.

To simulate the object, we consider a few assumptions. We presume that the ends’
poses (position and orientation) of the object are known during the deformation. We as-
sume that the object is symmetric in the simulation, while our control techniques can also
be used with asymmetric objects. It is worthy to note that these assumptions are com-
monly used in the LDOs’ manipulation literature such as [NAL13, NALRL13b, YZL22,
LWL19]. We choose two fast and available models (Kirchhoff elastic rod (KER) and
As-Rigid-As-Possible (ARAP)) among all the existing ones to simulate the LDO. KER
[BM14, SS16] model is obtained based on boundary value methods which help us have
a high computational speed in the simulations. On the other hand, ARAP [SA07] is a
well-known model that has been used widely in computer graphics applications [SA07,



16 Chapter 2. State of the art and preliminaries

FIGURE 2.7: Approximating the studied object as LDO

ACOL00, LG14]. The main idea of ARAP is to model the object geometrically while as-
suming the modeled object tends to preserve local rigidity. It is based on an energy mea-
sure that expresses the deviation from rigidity as the sum of deviations in local regions
of the object [SBAMO22]. These two models can work in real-time. The reason we adopt
two distinct models is to show that the proposed algorithms are not attached to any par-
ticular model. We use these models to validate our presented methods before applying
them in real experiments. Therefore, our proposed controller methods in chapters 3, 4, 5,
and 6 are independent of these models, as shown in Fig. 2.8. In the following sections,
we will briefly introduce these models.

FIGURE 2.8: The schematic diagram shows the relationship between the proposed controller
methods and the adopted simulated models/real objects in this thesis. As one can see, the con-
trollers are designed independently, and the models or objects are used to validate the methods.
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FIGURE 2.9: An elastic rod in static equilibrium, held at each end by robotic grippers presented
in [BM14].

2.2.6.1 Kirchhoff elastic rod formalism

In this method, we assume that the object deforms like an elastic linear object. This
method is commonly used to model objects of the considered type [BM14, SS16, WH04].
Hence, to model the LDO, we use a minimum-energy-based scheme to compute the
shape of the object. According to [BM14, SS16], the shape of the LDO in 2-D could be
defined by a curve as follows (see Fig. 2.9):

P(s) = [p1(s), p2(s), p3(s)]T (2.1)

where p1 and p2 are the coordinates of the curve traced by the object at any point s ∈ [0, L]
(L is the length of the LDO), and p3 is the tangent angle to this curve. The curve P must
be a solution to the following curve optimization problem:

minP,v

∫ 1

0
(k

v2

L2 + LWg p2) ds

subject to
[dp1/ds, dp2/ds, dp3/ds]T = [Lcos(p3), Lsin(p3), v]T

P(0) = P0 & P(L) = PL ∈ R3 (2.2)

where k, Wg, and v are the bending stiffness, the weighting factor for gravity, and the cur-
vature of LDO, respectively. By adopting the taken cost function, we try to minimize the
total elastic energy over the whole body of the object. The problem of shape computation
is identical to an optimization problem. Due to the maximum principle theory [BM14],
there must exist a costate trajectory fi : [0, L] → R3 (see [BM14] for more information),
where i = 1, 2, 3. We set [ f1, f2, f3]T to represent the costates. By having this informa-
tion and solving the given optimal problem (2.2), the formulation to obtain shape of the
object can be found as [SS16]:

dp1/ds
dp2/ds
dp3/ds
d f1/ds
d f2/ds
d f3/ds

 =



Lcos(p3)
Lsin(p3)

v
0

LWg
L f1sin(p3)− L f2cos(p3)

 (2.3)

subject to the boundary conditions: P0 and PL.
(2.3) is adopted for LDO simulation with the aim of evaluating the efficiency of the

methods presented in this dissertation.
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2.2.6.2 As-Rigid-As-Possible

FIGURE 2.10: Modeling an Armadillo using ARAP presented in [SA07].

ARAP has been used repeatedly in diverse applications [LG14, PPBC15, DDF+17,
HZSP18]. In this method, the object is modeled based on an energy measure (E) that
expresses the deviation from rigidity as the sum of deviations in local regions of the ob-
ject (so-called shell energy [TPBF87, SA07]). This model assumes that the object tends to
preserve local rigidity even during the deformation. The main background idea of this
model is to design a method according to the minimization of the shell energy.

To simulate the LDO based on ARAP, we use the algorithm presented in [SA07]. As
mentioned, ARAP relies on E that expresses the deviation from rigidity. To calculate E, a
cell is defined for each node in the mesh, comprising its first-order neighbors [SBAMO22].
This neighborhood is called Ni. Ei, which expresses the deviation from the rigidity of the
cell i, is defined here to show the energy of each cell in the object. Ei is:

Ei = ∑
j∈Ni

wij ∥ si − sj −Ri(su
i − su

j ) ∥ (2.4)

si shows the shape of node i of the modeled object. su
i is the deformed shape of si,

which is assumed to be known before starting the task. Ri stands for the effect of optimal
rotation for every cell that minimizes Ei for the given information, and wij is a scalar
encoding the connection between nodes i and j in the mesh [SBAMO22,SA07]. By having
Ei for each cell, one can obtain E as follows:

E =
n

∑
i=1

Ei (2.5)

By minimizing the energy Ei for the given set of positions si, we reach to the following
equation [SA07]:

∑
j∈Ni

wij(si − sj) = ∑
j∈Ni

wij

2
(Ri +Rj)(su

i − su
j ) (2.6)

The linear combination on the left-hand side is non-other than the discrete Laplace-
Beltrami operator [SA07] applied to si. The system of equations can be compactly pre-
sented as

Lsi = b (2.7)

where b is an n-vector whose ith row contains the right-hand side expression from
(2.6). Having (2.7), one can simulate the object based on ARAP. Although most former
works used (2.7) to model the volumetric objects with planar meshes (as in Fig. 2.10), in
this work we use it to model an elastic linear object.
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2.2.7 Conclusion

In this section, we have discussed the main benefits and drawbacks of the different meth-
ods to model the deformation of the objects in simulations. Among all the presented
models, we choose two very different methods (KER model and ARAP) to use in our
tests. The main advantages of these methods are that they are pretty fast in terms of
computational cost, can precisely show the deformation of LDOs, are capable of express-
ing a complete deformation, and have been successfully validated in the former studies.
The main difference between these methods is that ARAP is faster than KER since it only
uses the geometrical mesh to model the object. However, KER is more realistic since it
contains some object properties. Furthermore, to model the object using KER, we need to
use more mesh than ARAP, which is another reason for KER to be more computationally
expensive than ARAP. In the next section, the state of the art in manipulating DOs is
reviewed.

2.3 State-of-the-art on deformable object manipulation

In this and the following sections, we review the existing literature on robotic manipu-
lation of non-rigid objects. As a consequence, this section generally provides the works
related to DO manipulation, whereas the next section particularly presents existing stud-
ies on LDO manipulation. Although shape control of a DO is a challenging problem that
requires sophisticated algorithms, several successful methods of DO manipulation can
be found in the literature. One of the first works in this field is [II84], which used visual
feedback to propose a method for knotting problem. A few years later, [SNR96] proposed
a relative elasticity model using the visual feedback to be used in DO manipulation with-
out a physical model. At the beginning of the third millennium, a simple control law for
the grasping manipulation of DO is presented in [HTW01] by utilizing multiple sensors
(force and vision). A position/force hybrid control method that used visual information
with force control is presented in [HTY05]. [PML04, Cha04] employed an online estima-
tion method to control the shape of the objects. However, the method of [PML04] is
susceptible to entering local minima, and the real-time performance of [Cha04] is limited
owing to a large number of calculations. Although these works tried to solve some of the
existing primary challenges in this field by simplifying the problems, they created a clear
path for future works.

In the last several years, many researchers have made efforts to design appropriate
approaches to manipulate these objects [Tan06, ACM19, SMBB20]. Some of the manipu-
lation techniques available in the former studies have been proposed based on an exact
deformation model. These works have been called model-based in the literature. As
the name implies, these methods are based on a deformation model, assuming that the
deformation properties must be known or estimated in advance during the calibration
phase [SP09,P+11]. These techniques are represented by stiffness or elasticity coefficients
over different models such as FEMs and MSDs.

Model-based controllers have been used for instance in [ZBD+17] for controlling soft
robots. [LWL19] proposed a model-based method to reshape the object by moving some
of its points toward their objectives. In this work, the multiple feature points are manip-
ulated in a sequential manner, which means only one point is manipulated at each step,
and the rest remain static. Using this technique and the Lyapunov theorem, the stability
was proved. [DS11] employed an MSD model to reconstruct the shape of DO. A robust
controller is presented to minimize an energy-like criterion derived from the shape error
between the desired and initial shapes. [KP12] used indirect DO manipulation to move a
few points on the object to their targets. [JC07] adopted an MSD to model the object and
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FIGURE 2.11: A deformable foam manipulation that was modeled with a non-linear mass-
spring system [ZCB+17].

reported a locally optimal method to control the behavior of physically-based simulation
of DOs. In [SH06], a symmetric linear MSD model was applied to analyze the dynamic
behavior of the object in a simple way. Then, a PID controller was adopted to find an ade-
quate feedback gain to stabilize the system. In [ZCB+17], the authors utilized a non-linear
MSD model to represent the object deformations based on the mechanical loads gener-
ated by the robotic actuator. In this work, the initial task is to use MSD to determine the
initial grasp configuration (as shown in Fig. 2.11), and then a position-control scheme
was presented to move the fingers of the robotic hand towards their desired position.

An FEM simulation is used in [FSAB11] for effector path planning while preserving
the shape of a DO. This work consists of offline and online steps. In the offline step,
training data were generated as a preprocessing using the physical deformation simula-
tion system, and a cost function was obtained that considers the distance between robot
configurations and the deformation cost estimated using a FEM simulation tool. Sub-
sequently, new deformation costs were calculated from learning ones using Gaussian
Process regression during the online step. [SMEDC+20] proposed a pose control method
for a DO using a force sensor and a physical model of the object. FEM physics-based sim-
ulation is also used in [AGDMC16] to insert a flexible needle automatically and slowly in
deformable tissue using a predefined path.

[DBPC18] used an FEM model to represent an object (as seen in Fig. 2.12) and
applied optimization to find the robot’s joint angles that moved the object into the de-
sired shape. This dual-arm manipulation method acts without relying on a feedback
signal representing the object’s shape. Similarly [FMC+18] used an FEM model to find
a proper FEM-based deformation control for dexterous manipulation of DOs. Both of
these works [DBPC18, FMC+18] executed open-loop control, and no feedback was used
on the actual shape of the object. [LLJ22] proposed a modeling and control technique to
control LDOs. First, a dynamic model of LDOs based on the discrete elastic rod model
was proposed to simulate the stretching, bending, and twisting deformation of LDOs.
Later, a dynamic control scheme for single-arm manipulation and dual-arm manipula-
tion was developed to deploy the LDO onto the plane and form the target shapes at
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FIGURE 2.12: FEM model of the object used in [DBPC18] for a simulation-based control
methodology. To model the object using FEM, some physical information about the object is

needed in advance.

the same time. [ZPC21] proposed two trajectory optimization techniques based on New-
ton’s method and DDP for robotic manipulation of DOs. The presented techniques are
open-loop and depend on a forward simulation model of soft objects, which has been
developed using a volumetric mesh based on the FEM method. Recently, [SBAMO22]
proposed a method to control the 3-D deformation of DO on a deformation Jacobian
computed from ARAP. In this study, a shape servoing method based on ARAP model
was also presented.

Although several model-based methods exist in the literature that successfully ma-
nipulate DOs, the main drawback of these methods is that they need and are attached
to prior knowledge about the system, including the object mass, geometry, or physical
parameters. Another point is that these kinds of algorithms are usually expensive in
terms of computation time. To avoid these obstacles, the methods that need minimum
information about the objects can be used while providing fast calculations. Another so-
lution is to use the model-free methods. Unlike the model-based methods, model-free
techniques do not rely on any characterization of the object. These studies solve the
need for an exact DO model by using some approximations of the deformation behav-
ior [MB18,ZNF+18,COC+20]. These models are linear and can be computed in real-time
with a small number of data [ZCD+21]. They need to be continuously updated during
the object deformation since they are local.

Most of the studies in this domain used adaptive approaches or a Jacobian matrix
that describes the relationship between robot motions and feedback deformations. Broy-
den rules [AWH+18a], receding horizon adaption [ZNAPC21], local gradient descent
[NAL17], QP-based optimization [LKM20], and multi-armed Bandit-based methods [MB20]
are some methods of model updating that existed in the former studies. To name a
few, [NALRL13a] used parameter linearization and least-squares techniques to calculate
the Jacobian deformation matrix. [HA94] used the Broyden method to online estimate the
Jacobian matrix without a known structure. Kalman Filter is used in [LH06, WYW+18]
to calculate the Jacobian with high performance in estimating unknown variables using
a series of measurements observed over time in the presence of noise and uncertainty.

One of the most interesting successful model-free works to control the deformation of
an object using a robot can be found in [NALRL14]. In this paper, two vision-based adap-
tive methods that do not need the prior identification of the object deformation model
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FIGURE 2.13: Setup used in [NAYW+16] for the automatic manipulation of the objects.

and the camera parameters were presented. The studied object assumed to be quasi-
static and purely elastic. Although the controllers successfully performed the desired
tasks, the main drawback of this work is that the presented method can only be used for
small deformations. [NAL14] used an online estimation method to control the shape of
the objects. Performance of this method necessitates a prior-known structure of the setup
and depends on the choice of regression matrix. Later, an adaptive controller is presented
in [NAYW+16] to deform an elastic object in 3-D, also without requiring the deformation
model. The experimental setup of this work is illustrated in 2.13. In this article, based
on the error between the deformation model and the velocity of the feature points, an
estimation of the deformation model was computed, and a velocity controller was pre-
sented. One of the limitations of this method is that it is not effective for mono-camera
experiments. Although the proposed method has taken a big step in manipulating DOs,
it requires a proper choice of the feature points, and it is not able to handle large curvature
deformations appropriately.

Later, [NAL17] proposed a vision-based controller to manipulate the entire shape of
the object using its 2-D shape based on truncated Fourier series. This method can be used
for cases where the shape of the object can be correctly described with a reduced number
of Fourier coefficients. A robust data-driven control framework to indirectly manipulate
heterogeneous 3-D compliant objects in the presence of unknown internal and external
disturbances is presented in [AWH+18b]. Visual feedback is used to design the controller.
This method does not need any prior knowledge of the object. The Jacobian matrix that
relates the grasping points motions to the feature points motions is estimated online us-
ing the Broyden update rule. [FP04] developed a method based on a neural network to
select appropriate grasping points on the DOs using visual feedback.

[DRCRM+17] described a model-free approach for DO manipulation according to
tactile images. The proposed algorithm introduced a way to represent and use tactile
information based on a combination of dynamic Gaussians that are defined from the
sensor values. Model-free methods presented in [NP19, NP20] tried to move the 2-D
contour of the studied objects toward the contour of the target. The main limitations of
the presented model-free methods are that they are often very slow and cannot be used
for large and complex deformations.

As we discussed some works that existed in the literature on DO manipulation, one
can find out that most of the methods that allow a global control of the object deformation
need physical models. Several works just control the 2-D shape of the object (based on a
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visual projection of objects obtained by cameras) or require an offline step to be able to
complete the task. In the next section, we investigate the literature of linear deformable
objects (LDOs), which are more pertinent to the dissertation’s subject.

2.4 LDO manipulation

A particular subdomain that has attracted considerable attention in the past few years
is the manipulation of linear deformable objects (LDOs) such as cables, wires, flexible
rods, plant stems [LKM20, QMZ+21, KFB+21, QMZ+21]. This recent interest is due to
the fact that many industrial and agricultural applications demand manipulating LDOs.
To name a few, LDOs should be manipulated in assembling devices in 3C2 manufac-
turing [LSGL18], surgical suturing [CLP+20, JÇ13], automated handling of flexible ma-
terials [SN02], threading a needle [WBB15], knot tying [SHLA16, BLM04, KW02], and
harnessing a cable [TWT18]. Therefore, in this section, we review the type of research
that is closely related to the main topic of this dissertation which is LDO manipulation.
Nevertheless, LDOs deformation toward desired shapes is very challenging for robots
since the system is underactuated (typically, the number of controller inputs is less than
the DOF of the controlled system). Hence, in cases where the objective is to control the
entire shape or a part that includes several controlled features, the controllability of a
closed-loop system is not guaranteed [LWL19]. Another tough challenge in this domain
is to model these objects accurately and predict their deformation [SCBM18].

Different methodologies have been proposed to manipulate linear objects in the state
of the art. For instance, several works about manipulation planning of LDOs can be
found in [LK01,BM14,BB15]. In this regard, [MK06] developed a path planning technique
for LDOs and explored the entire space of stable, collision-free configurations. [SIL08]
offered a Probabilistic Roadmap [KSLO96] that plans for knot-tying tasks with an LDO.
A cooperating dual-arm was used to tie self-knots and knots around simple static objects
without assuming a specific physical model of the LDO.

Multiple popular and successful methods have been proposed based on a pre-existing
deformation model to manipulate LDOs. [PLK02] is one of the first works in LDO manip-
ulation, which presented a simple method of knot tying. In this article, a loosely knotted
rope was pulled tight, and the knot was preserved, using an impulse model for collision
handling. [AZMD15] presented a framework for aerial knot-tying using quadrocopters,
which is one of the fundamental tasks for the aerial assembly of tensile structures. Re-
cently, [KFB+21] proposed a method using a reduced FEM to present a closed-loop shape
control of LDOs. However, these methods depend on the analytical model’s accuracy,
and they need to accurately obtain LDOs’ parameters. [DHYH18] assumed that LDO is
a nonlinear system with a significant number of underactuated DOF and one actuated
DOF. Given the LDO’s motion characteristics, this paper stated that the vibration at the
end of an LDO is unavoidable, and proposed a dynamic surface control strategy to con-
trol an LDO by trying to eliminate the vibrations. However, this algorithm is used for
low-speed movements. An approach based on a diminishing rigidity assumption has
also been proposed [Ber13], which attempted to move the object into a desired configura-
tion using a pair of floating robot’s grippers. Later, [RMB18] developed a more effective
controller than previous work by constructing a more accurate geometric model of how
the direction of gripper motion and obstacles affect DOs. The most crucial downside of
these techniques is that they require a large amount of offline data in advance, which is
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not always possible, particularly in the application we are working on. Moreover, at run-
time, the cited methods require sensing the full shape of the object in order to simulate
the deformation model.

FIGURE 2.14: The robot’s performance in emulating the human demonstration for deforming
the rope into various shapes was compared qualitatively and presented in [NCA+17]. The se-
quence of example images supplied as input to the robot is shown in the upper row. The lower

row shows the states achieved by the robot as it attempts to follow the indicated trajectory.

Another prominent technique that has lately acquired attraction in the literature is
addressing LDO manipulation problems via the use of machine learning [YZL22, LK21,
HDL+21]. To mention a few examples, a deep-neural-network-based dynamics model
was proposed in [YZJB20] to predict the next shape of the object. In [HHS+19], a multi-
layer neural network encoded the mapping between end-effector motions and object de-
formations. [YZL22] proposed a scheme for LDO deformation control relying on both
offline and online learning. The work [LK21] addressed LDO manipulation via the use
of reinforcement learning and accommodated elastoplastic behaviors. A data-driven
method to control a DO using learned nonlinear dynamics model is presented in [PMY+22].
[NCA+17] used a learning method according to the visual feedback to manipulate ropes.
They have trained a predictive model of rope behavior using data of rope interaction
collected autonomously by the robot, as shown in Fig. 2.14. This self-supervised model
predicts which action the robot can execute to put the rope into the target configuration
based on the current and target image of a rope. Some of the results obtained by this
method are illustrated in Fig. 2.14, and they show that this method still has some lim-
itations and is not able to achieve the target in all cases. The main drawbacks of the
cited methods are that they are mostly complex, and applying these strategies to various
objects is not straightforward. Training these approaches frequently necessitates a sig-
nificant amount of time and effort. Finally, they mostly are not able to manipulate the
objects into complex configurations.

The next studies that we investigate are the ones that tried to estimate the local lin-
ear deformation model of LDOs. They use some shape estimations to deform the ob-
jects [JWT19,LKM20,NAL17,ZNAPC21]. They mainly used some approximations of the
deformation behavior. The problem is that only a small amount of local data can be used,
so these estimated methods are less accurate. A feedback signal is required in these ap-
proaches to control the objects. Consequently, they mostly employ visual information as
feedback since, in most applications, visual sensors are adequate to get the essential in-
formation and are inexpensive and non-invasive. Moreover, visual servoing techniques
are very effective since the control loop can be closed over the vision sensor [TM10]. In
this regard, [LKM20] proposed a method to deform a wire in 3-D using a least-squares
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FIGURE 2.15: Experiment with large deformations of the wire presented in [LKM20]. The target
shape is shown on the left, and the final shape of the wire is presented on the right. This figure
depicts an example of unsuccessful attempts in large deformations with the approach provided

in [LKM20].

FIGURE 2.16: A successful test with intermediary targets for reaching large deformations of the
wire that is presented in [LKM20]. Some of the intermediary targets are shown in the three first

pictures. The final picture shows the final configuration of the wire that reached the target.

estimation to estimate the Jacobian matrix online. In the first step, this work proposed a
visual feature that permits modeling the 3-D shape of a wire and based on the obtained
information, a geometric model independent of the object’s mechanical properties was
used. Next, an adaptive model-free shape servoing method is presented to control the
shape of a wire toward a desired shape. This method cannot directly control large defor-
mations (as shown in Fig. 2.15). Intermediate targets are therefore used to achieve large
wire deformations (as shown in Fig. 2.16).

[QMNA+20] proposed a vision-based algorithm to control the shape of elastic rods
with robot manipulators. This study calculated parametric regression features from on-
line sensor measurements and used an adaptive controller to estimate the transformation
between the robot’s motion and the relative shape changes. One of the experiments per-
formed with this method is shown in Fig. 2.17. The main drawbacks of this method are
that the algorithm is very slow, it is used only with small and simple deformations, it is
sometimes not resistant to assumed noises and disturbances during deformation, and it
only controls the shape of the object in 2-D without any gripper rotation.

[YZZL21] proposed a method for the manipulation of LDOs with unknown deforma-
tion models, in which the unknown deformation model is estimated using both offline
and online learning approaches in order to combine the benefits of both. In another sim-
ilar work, [YLZL22] has adopted a method for large deformation of LDOs with coupled
offline and online learning of the unknown global deformation model. In the offline
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FIGURE 2.17: An experiment performed with the approach presented in [QMNA+20]. The
target is shown in red, and the green curves illustrate the path that the object took to get there

from the initial shape.

phase, a model is trained with respect to different random movements of LDOs to ob-
tain an estimation with acceptable generalization performance. Later in the online phase,
the deformation controller was applied. The main limitations of this work are its slow
manipulation, and the path of movement is not optimal globally.

FIGURE 2.18: An experiment performed with the method proposed by [CCR21]. The image on
the left shows the initial configuration of the object (back object) and the target (front object).

The image on the right shows the final configuration of the object with respect to its target.

Recently, [CCR21] proposed an algorithm to manipulate a flexible beam using a dual-
arm robot as shown in Fig. 2.18. In this technique, the object’s deformation model is
not required because it is experimentally constructed. Several markers were used to de-
tect some points of the large beam and move them toward their targets. This method is
used for small deformations since they used the local method to develop the proposed
controller. [ZNF+18] proposed an algorithm to control the 2-D shape of an LDO (a wire)
using two robotic manipulators. In this paper, the LDO’s shape is estimated by a Fourier
series. A least-squares minimization scheme is adopted to calculate the Jacobian matrix,
which relates the motion of the end-effectors to the deformation of the LDO. Its hardware
setup for LDO manipulation is illustrated in Fig. 2.19.

The main limitations of these methods are that they often can be used for low-speed
movements and fixed targets. Furthermore, they cannot be used for large deformations,
and since they are attached to the feedback of the used sensors, they are not very accurate.



2.5. Positioning of this thesis with regards to the literature 27

FIGURE 2.19: The experimental setup for LDO manipulation used in [ZNF+18]. In this work,
a Fourier series is used to parameterize the shape. The shape parameters are used to estimate
a local deformation model of the cable online. A velocity control rule is applied to the robot

using the deformation model to deform the cable into the target.

2.4.1 Conclusion

In this chapter, we reviewed the literature on DO manipulation, and we investigated the
existing works in this domain. As discussed, prior studies have not taken into account
the deformation of the objects in the agriculture sector; and with their limitations, it is
not easy to apply their strategies to agricultural activities. Some of the presented studies
required much information regarding the objects. Some of them are not capable of han-
dling large deformations. Another issue is that existing techniques cannot provide ob-
jects’ dynamic properties online. However, when it comes to agricultural elements, the
biggest problem is that there are many distinct items with varying physical attributes.
Furthermore, the system should be able to handle the soft and delicate branches during
the manipulating process with respect to their various shapes and sizes with large defor-
mations. Thus, proposing novel methods to cover some of the existing challenges seems
to be essential.

2.5 Positioning of this thesis with regards to the literature

FIGURE 2.20: A schematic of an LDO and the used robot (Campero) in the current research.
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The main objective of this dissertation is to propose new control methods to allow
the automatic robotic manipulation of LDOs. Our goal is to develop manipulation algo-
rithms that can be used in agriculture in the future, as shown in Fig. 2.20. We use a mobile
manipulator robot named Campero (Robotnik) with a Ur10 arm (Universal Robots) with
six DOF. Robotic manipulators with six DOF allow operating the robot in any arbitrary
position and orientation in 3-D space, making them appropriate for harvesting and prun-
ing the trees [DBM+20].

To start designing the controllers, we adopt visual information as the feedback for
our methods in view of the fact that visual sensors are sufficient to obtain the required
information. They are cheap and non-invasive, and commonly used in industry and agri-
culture. Regarding control approaches, it is evident that a feedback signal is necessary
in order to control the shape of an LDO precisely. In this thesis, we choose to present
deformation techniques that are independent of any particular model since they can be
used to manipulate more types of objects. Moreover, offering these kinds of techniques
makes it easy to apply the same method to different objects. As mentioned, the existing
methods require some initial steps such as obtaining objects’ physical properties, which
is not a necessary step in our methods. Unlike data-driven methods, we do not need to
collect a lot of data beforehand. In addition, we intend to propose two new algorithms
(in chapters 3 and 5) based on novel methods of computing the Jacobian matrix for lin-
ear objects that are easily computable. We also offer an adaptive controller that can be
used with the least possible information about the object (in chapter 4, for controlling an
arbitrary point and in chapter 6, for controlling the entire shape).
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Chapter 3

An offline geometric method for
LDOs deformation control without
sensing the full shape

As a starting point of our research, we focus on linear deformable objects (LDO) manip-
ulation, aiming to regulate the position of an arbitrary point (or a few points) along their
length. We seek to find a solution to this problem without perceiving their entire shape
during the deformation procedure. This can be helpful in applications where one needs
to control only a part of the object, such as cutting wires and pruning the branches. Since
servoing the entire shape is challenging and not trivial in some cases, it could be simpler
only to track the controlled part in the mentioned tasks. Tracking a feature on the object
is much more feasible since the detection algorithm can only focus on perceiving a spe-
cific feature, part, or mark on the object that we aim to control, and the entire possible
workspace of the object’s motion is not needed to be covered by the camera workspace.
As a result, we seek a solution to this problem that does not involve tracking or online
modeling of the complete object. To address the aforementioned issue, we attempt to
propose a new approach to deforming linear objects with robots that takes these chal-
lenges into account. Specifically, we consider a fixed-length elastic linear object lying on
a 2-D workspace. Our main idea is to encode the object’s deformation behavior in an
offline constant Jacobian matrix. To derive this Jacobian, we use an offline geometric de-
formation modeling and based on this Jacobian, we then propose a robotic control law
that is capable of driving a set of shape features on the object toward prescribed targets in
section 3.4. We illustrate the proposed approach in simulation and in experiments with
real LDOs in section 3.6.

3.1 Introduction

In the state of the art, successful methods have been proposed to manipulate LDOs based
on a pre-existing deformation model [BM14,KFB+21,SMBB20] or on a model-free sensor-
based adaptive scheme [ZNF+18,LKM20,QMZ+21]. An alternative approach based on a
diminishing rigidity assumption has also been proposed [Ber13]. At run-time, the cited
methods that perform closed-loop control require sensing the full shape of the object
(in order to simulate the deformation model), or running adaptive schemes based on a
Jacobian matrix to estimate the deformation behavior. Another solution is to address
LDO manipulation problems via the use of machine learning that has gained popularity
recently [YZJB20, HHS+19, YZL22, LK21]. The main challenges of these methods are that
they are usually complex and require a lot of effort in training.
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We discussed the literature on LDO manipulation in chapter 2. The fundamental
objective of the current chapter is to propose an approach that does not have the draw-
backs of the previous works [LKM20, QMZ+21, KFB+21, SMBB20, Ber13, ARM+20] that
are required sensing the full shape of the object and simulating the deformation model
at run-time. We would like to present an approach which works by computing offline
a model (a deformation Jacobian) based on geometric modeling and assuming an elastic
behavior (we assume the types of objects that we study in this dissertation do not have
any plastic deformation). As mentioned in the previous chapter, the Jacobian matrix is
a matrix that links the motion of the robot to the changes in the deformation of the ob-
ject. At run-time, we desire to present a method that needs to sense the values of the
servoed features only, and not the full shape. To develop our model, we build on recent
techniques for DO manipulation [KFB+21] and multirobot systems control [ALNM21].
It is interesting to use this approach in a very different application (i.e., manipulation
of DOs) since by using this method, we are able to propose a controller without cal-
culating a deformation model or tracking the complete shape of the object during the
deformation process. Our model is geometric and thus we also follow along the lines
of recent work [ARM+20, SBAMO22] which proposed the robotic control of the shape of
DOs using geometric deformation modeling techniques [SA07,MHHR07b]. A significant
advantage of geometric models is that they are not attached to the dynamic properties of
a specific object. Therefore, using a geometric model to propose a controller helps us to
easily adopt the same method to manipulate a broader range of objects.

3.2 Our contributions

The contributions of this chapter are:
• A novel method for 2-D control of the shape of elastic linear objects based on an offline
geometric model which, at run-time, does not require computing a deformation model
or sensing the full shape of the object.
• A novel link between prior work in two different domains: DO modeling and multi-
robot systems control. This link is a promising starting point for potential future devel-
opments in the same direction.
• A practical and straightforward method to control LDOs based on an offline model
that does not need to know any physical or material parameter or characterization of the
object’s deformation. We only need the knowledge of all the nodes that construct the
shape of the object at rest shape so as to compute the Jacobian matrix.
• Successful validation of the applicability of the proposed method, in simulation and
via robotic experiments with diverse objects.

The envisioned applications of the proposed approach are diverse, including for in-
stance plant pruning tasks in agriculture, or assembly operations in industrial contexts.

3.3 Problem formulation

The problem we address is the shape control of a linear elastic object by means of robotic
manipulation. Our goal is to control the position of one or multiple features on the object.
We divide the shape of the LDO into a set of nodes. p1 and p2 indicate the position of
the center of each node in the camera frame, and p3 indicates its angle, as shown in
Fig. 3.1. To clarify, p3 is the tangent angle to the object (normal to the object) at the
center of each node, and we use the edge position (the top and bottom) of each node to
compute it. The problem we are dealing with has been given the name of shape servoing
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FIGURE 3.1: The studied object in this dissertation. p1 and p2 represented the position of the
LDO and p3 shows its angle.

in the literature [NAL17, QMZ+21, SBAMO22]. Specifically, we consider the following
conditions and assumptions:
• The object is an LDO and lies in a 2-D workspace. It has fixed length and it deforms
elastically (not plastically). The shape of the object at rest (i.e., the object’s shape without
applying any manipulation or deformation) is known. The object’s shape always remains
stable (i.e., in quasi-static equilibrium) during its manipulation.
• One or multiple robots (i.e., grippers) grasp the object. The velocity of each gripper can
be set by a robotic controller. Each gripper constrains a specific gripped region on the
object. There may also be anchored regions on the object, i.e., whose position is constant
due to external constraints (e.g., a grounded region). The gripped and anchored regions
of the object are known before starting the task, and they remain fixed throughout the
execution. The grasping configuration used is suitable for completing the task described
next.
• The addressed task consists in controlling a set of features that encode information
about the object’s shape (e.g., the 2-D positions of certain parts of the object). Each fea-
ture has a desired value, which is fixed and prescribed before starting the task. The
current values of the features can be continually sensed at run-time (e.g., with vision).
Our objective is to find a closed-loop control law for the velocity of every gripper so that
every feature is driven to its desired value.

Fig. 3.2 shows the block diagram of the method we propose to carry out this task. We
describe the method next.

3.4 Proposed LDO modeling and shape control

We represent the LDO discretely with a set of n nodes, indexed 1, ..., n. The nodes are
sampled uniformly and consecutively along the object’s length. The object’s rest shape,
c, is the stacking of the positions at rest of all nodes: c = [c⊤1 , c⊤2 , ..., c⊤n ]⊤ ∈ R2n. We
group the nodes in sets of three. We call each of these sets a triad, as shown in 3.3. The full
linear object has w chained triads, Tk = {k, k + 1, k + 2} (where the indexes are taken mod
n) for k = 1, ..., w. We consider that the object’s rest shape is open; e.g., a rod with two
ends. Therefore, w = n − 2. We denote the current shape of the object (i.e., the current
mesh node positions) as q = [q⊤

1 , q⊤
2 , ..., q⊤

n ]
⊤ ∈ R2n.
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FIGURE 3.2: Schematic diagram of the proposed method.

FIGURE 3.3: The LDO is discretized into a set of nodes (ng gripped nodes, ns servoed nodes,
and n f free nodes). The nodes are grouped in sets of three, which we call each of these sets a

triad.

Our approach is based on an As-Similar-As-Possible (ASAP) modeling. ASAP is a
way to model deformations that has been used in the computer graphics domain for vi-
sualization applications [IMH05, LZX+08, CG16]. It is closely related to, and sometimes
used in conjunction with, the popular model ARAP (As-Rigid-As-Possible) [IMH05,SA07,
LG14, SBAMO22], which has been shown to be effective in modeling the deformation of
deformable objects. ASAP is based on the intuitive idea that every local region of the
modeled object has a tendency to preserve its original shape up to translation, rotation
and scaling: i.e., a similarity transformation of the original shape, hence the name of the
method. In concrete terms, ASAP is formulated as a deformation energy, and the quasi-
static configurations of the object’s shape are local minima of that energy.

There are different formulations of ASAP/ARAP; all are based on the same underly-
ing concepts, but they use different definitions of the local regions. In particular, an ASAP
energy in 2-D was proposed in [ALNM21], in a context not related with DOs: specifically,
the proposed energy was used as the cost function in a distributed controller of a mul-
tirobot formation. In [ALNM21], the elements forming the triads were robots, whereas
they are the points on the object’s body in our case. As we show next, the formulation
of [ALNM21] is compact and adapts perfectly to our needs, which motivates our use of
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it. The energy proposed in [ALNM21] is a sum of energies over every triad, as follows:

Ea =
w

∑
k=1

Ek, Ek =
1
2 ∑

i∈Tk

||(qi − q0k)− Hk(ci − c0k)||
2 (3.1)

q0k and c0k are the centroids of the current and rest positions of the three nodes in Tk.
Hk ∈ R2×2 is the least-squares similarity (rotation and uniform scaling) transformation
between these two sets of positions. Ea can be expressed compactly:

Ea = −1
2

q⊤Aq (3.2)

In this expression, A is a constant matrix that encapsulates the deformation (in the ASAP
sense) of the object. A is a sparse symmetric matrix based on the triad structure of the
mesh and on its shape at rest, c. Note that this compact 2-D formulation cannot be directly
extended to 3-D, where non-linearities appear (see, e.g., [SCOL+04]). An expression of
matrix A was given for general triad structures and general shapes at rest in [ALNM21].
Next, starting from that expression, we give the particular form of the matrix in the case
of our LDO model.

Specifically, we define S = [(0, 1)⊤, (−1, 0)⊤], i.e., a counterclockwise rotation of
π/2 rad, and T = In ⊗ S, where ⊗ denotes the Kronecker product. Then, A, Ak, Lk ∈
R2n×2n, Lgk ∈ Rn×n are as follows:

A =
w

∑
k=1

Ak, Ak =
Lk(cc⊤ + Tcc⊤T⊤)Lk

c⊤Lkc
− Lk (3.3)

Lk = Lgk ⊗ I2, Lgk[i, j] =


2/3, if i = j & i ∈ Tk

−1/3, if i ̸= j & i, j ∈ Tk

0 otherwise

ASAP (and ARAP) are models that represent physical behavior at the geometric level,
rather than at the mechanical one. Still, these models assume the object behavior is quasi-
static, and they are based on formulating a deformation energy. In these aspects they are
analogous to elastic FEM models [DBPC18,KFB+21]. Therefore, it is possible to compute
equivalent mechanical magnitudes (e.g., forces) in ASAP or ARAP. We will therefore use
an analysis similar to [DBPC18, KFB+21] to derive a control law from ASAP.

The first step is to know the forces at the nodes due to the ASAP energy. By definition
these forces are equal to the negated gradient of the energy. Therefore, noting that A is
symmetric, the nodal forces fa ∈ R2n are:

fa = −∂Ea

∂q
= Aq (3.4)

It is interesting to note that this is a linear expression in q. We compute its time derivative:

Aq̇ = ḟa (3.5)

From (3.5), we will next derive a control law following a similar strategy to the one used
in [KFB+21] with a FEM model. We first define a partition of the nodes. Concretely, we
divide the set of nodes into ng gripped nodes, ns servoed nodes, and n f free nodes, such
that ng + ns + n f = n, as shown in Fig. 3.3. The servoed nodes are the ones we track and
control, whereas free nodes are those we do not regulate. Note that the set of gripped
nodes includes all regions of the object whose position is constrained externally: i.e., the
grasped regions, and also the anchored regions. The positions of the nodes are denoted,
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respectively, by qg ∈ R2ng , qs ∈ R2ns , q f ∈ R2n f . Matrix A and the vector of forces fa are
also partitioned accordingly, and hence (3.5) takes the form:Agg Ags Ag f

Asg Ass As f
A f g A f s A f f

q̇g
q̇s
q̇ f

 =

ḟag
ḟas
ḟa f

 (3.6)

As the object is always in quasi-static equilibrium, all resultant forces (i.e., sum of ASAP
force and external force) on all nodes are always zero. Hence, their time-derivative is
zero too. Therefore, using subscript ex to denote external forces, we have:

ḟag + ḟexg = 0 , ḟas + ḟexs = 0 , ḟa f + ḟex f = 0 (3.7)

The gripped nodes are subjected to the external forces that cause the object to deform,
which are in general time-varying forces. Therefore, ḟexg are not zero, and consequently
ḟag is not zero. On the other hand, the nodes that are not being gripped (i.e., the servoed
nodes and free nodes) are subjected to constant external forces (since we assumed that
the object’s shape always remains in quasi-static equilibrium). Typically these constant
external forces are zero, or equal to the gravity force. This means ḟexs = 0 and ḟex f = 0.
Hence, from (3.7), ḟas = 0 and ḟa f = 0. Using these latter two conditions in (3.6), we get:

(
Asg Ass As f
A f g A f s A f f

)q̇g
q̇s
q̇ f

 = 0 (3.8)

From (3.8), we can obtain the key expression in our development: the relation be-
tween gripped and servoed node motions. This expression is as follows:

q̇s = Jsgq̇g (3.9)

with Jsg = −(Ass − As f A−1
f f A f s)

−1(Asg − As f A−1
f f A f g). Similarly to [IMH05, KFB+21,

YZL22], we assume the matrices that have to be inverted are full-rank. This comes from
the fact that the shape is completely constrained by the gripped nodes.

3.4.1 Control law

Assuming the desired positions for the servoed nodes are qsd ∈ R2ns , we define the ser-
voing error as:

es = qs − qsd (3.10)

Now, from (3.9) and (3.10), we can propose the following proportional control law:

ur = −krJ†
sges (3.11)

where kr is a positive gain, † denotes the pseudoinverse, and ur is the velocity to be
applied to the gripped nodes: ur = q̇g.

Frequently, the gripper used in real applications can constrain not only the position
of the gripped point of the linear object, but also the orientation (i.e., the line tangent to
the object’s curve) at that point. Interestingly, this can be introduced in a straightforward
way in our model, as follows. For simplicity, assume a gripper h grips two (adjacent)
nodes. Calling the positions of these nodes g1 = [g1p1, g1p2]

⊤ and g2 = [g2p1, g2p2]⊤, the
three DOF configuration of the gripper in the global frame is [p1g, p2g, p3g]⊤ = [(g1p1 +

g2p1)/2, (g1p2 + g2p2)/2, atan2(g2p2 − g1p2, g2p1 − g1p1)]
⊤ (p1, p2, and p3 show the state
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of any point on the object, as shown in Fig. 3.1). Denoting the gripped length (i.e., length
of the line segment between g1 and g2) by lg, a Jacobian matrix block that maps gripper
h’s velocities to the velocities of its gripped nodes is as follows:

Jgph =


1 0 (lg/2) sin p3g
0 1 −(lg/2) cos p3g
1 0 −(lg/2) sin p3g
0 1 (lg/2) cos p3g

 (3.12)

Assuming there are ne such grippers, we assemble the Jacobian blocks for all of them
in a full Jacobian matrix Jgp of size 4ne × 3ne. We also stack the gripper velocities (two
linear and an angular velocities) in a vector ug of length 3ne. Then we define the control
law:

ug = −kgJ†
spes (3.13)

where Jsp = JsgJgp is the Jacobian relating servoed nodes to grippers. A gain matrix
can be used in place of kg, to weight differently translation and rotation velocities.

3.4.2 Discussion

We make several remarks about the presented idea.
• For elastic linear objects, there are well-known instabilities at certain configurations
where the shape changes non-smoothly [BM14]. Our formulation is only valid in the
regions of the object’s shape space where the changes are stable and smooth, i.e., where
a relation such as (3.9) can be defined.
• In [KFB+21], a matrix K that plays an analogous role to our A is used. That K is the
tangent stiffness matrix of the FEM structure that represents the object, and it is a function
of q. This means one needs to estimate q (i.e., the full shape of the object) at run-time to
compute the control law, even if only a few of the nodes are servoed and most are not.
We avoid this requirement since our matrix A is constant and can be computed offline.
This is important because measuring the shape of DOs robustly is challenging.
• A and then Jsg can be computed from the rest shape of the object (which is direct to
know for a straight elastic rod) and the knowledge of what nodes are gripped and what
nodes are to be servoed. At run-time, our control law (3.11) only needs to compute es,
which requires measuring the positions of the servoed nodes only (not the shape of the
full object).
• Even if our Jacobian is computed using the rest shape, this does not mean that it is only
valid at the rest shape. On the contrary, it is the valid and exact Jacobian of the object,
under the ASAP modeling, at every shape that satisfies our prior assumptions (stable
deformation).
• Recent works performed successful shape control with approximated deformation mod-
els (FEM with imprecise parameters [KFB+21], ARAP [SBAMO22]). By using the mea-
surement of the object’s shape in a feedback loop, the control laws in these works are
convergent even if the deformation model is only coarsely accurate. This justifies our use
of ASAP.
• Our controller idea directly accommodates multiple robots (grippers) without any change
in the methodology. Just by knowing which nodes are gripped by each gripper, one can
derive directly the control laws for all grippers.
• However, in order to use the described idea to control the shape of real-world objects,
there remains a major issue: in general, ASAP is not a good model of the deformation
of real-world elastic objects. We solve this issue by identifying specific conditions under
which it becomes a good model, as explained in the next section.
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3.5 ASAP as an ARAP approximation

Although ASAP is a proper method to calculate the deformation Jacobian of elastic ob-
jects, it has some limitations. For instance, it is not a good representation of the behavior
of elastic objects because it does not preserve their physical size. In general, an object
simulated using ASAP can easily shrink or grow in size unrealistically [IMH05,LZX+08].
On the other hand, ARAP is a good model of deformation behaviors of elastic objects
[SA07, LG14]. ARAP tends to preserve rigidity locally and by doing so, it keeps the size
of the object under control, unlike ASAP does. However, ARAP is a nonlinear model,
and its Jacobian depends on the current shape q (it should be mentioned that ARAP is
more general than ASAP, and we will use it (ARAP) in chapter 5 to propose an optimal
controller). Avoiding this dependency is precisely why we want to use ASAP, which is
simpler and faster than ARAP.

Our triad-based formulation can be used both for ASAP and ARAP. For both mod-
els, an essential element is the computation of an optimal transformation for each triad.
In ASAP, this transformation is a similarity (rotation and scaling), as described above:
Hk, for triad k. In ARAP, the transformation is a pure rotation: Rk, for triad k. These
transformations satisfy:

Hk = skRk ∀k (3.14)

Therefore, we can make the observation that if the condition sk = 1 ∀k holds, ASAP
and ARAP are equivalent. Motivated by this observation, we next show that this condi-
tion approximately holds in the scenario we consider.

3.5.1 Geometric analysis for a triad

Our geometric modeling of a generic triad, shown in Fig. 3.4, is motivated next. This
modeling assumes the rest shape of every triad is a straight line. Note that our modeling
of the object is discrete. Hence, the shape of the object between two adjacent nodes is
represented as a straight line segment. Recall that the object’s length (equal to the sum
of the segments’ lengths in our modeling) is fixed and we have divided it into meshes
of the same shape and size. Therefore all segments always have equal and fixed lengths
(l). The change of curvature along the object is represented via the angle θ relative to r,
which is the line tangent to the object’s curve according to our discrete modeling. Due
to the symmetry of the layout, the variables of the ASAP/ARAP models can be obtained
via direct trigonometric relations. In particular, we can obtain:

s = cos(θ) (3.15)

Our goal was to have values of s close to 1 (3.14): it is clear from (3.15) that this
will happen when θ is small. Therefore, we want θ to be always small for all triads
which implies a smooth (not sudden) deformation along the object. Note that θ is always
between −π/2 and π/2, which means that the cos(θ) is always positive.

Notice that θ is small if the local curvature at every point is small: this will typically
be true if n is high enough to sample the object densely, and there are no extreme local
deformations (i.e., very high bending at some point along the rod). Observe that the
global deformation of the object can still be large even if the local curvature is small at
every one of its points, as shown in our experiments (section 3.6).

We used the gradients (which express the forces) of the ASAP energy to derive our
controller. To support the use of this controller, next we study how well the ASAP gradi-
ents can approximate the ARAP ones. In Fig. 3.4, the ASAP gradient for the shown triad
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FIGURE 3.4: Geometric modeling. Left: four nodes in two triads Tk, Tk+1, with their angles θk,
θk+1. Center: a generic triad. Right: close-up of a region of the center plot. Nodes are shown as

circles, gradient vectors as arrows.

is denoted by gH, the ARAP gradient as gR, and the approximation error as gE = gR −gH.
Due to the properties of least-squares alignment, the three endpoints of the gradient vec-
tors form the rest (straight) shape and their centroid is the same as the nodes’ centroid.
Moreover, the vectors have certain symmetries due to the symmetry of the layout (the
nodes form an isosceles triangle). We can obtain the following expression:

α = arctan
||gE||
||gH ||

= arctan
3(1 − cos(θ))

sin(θ)
(3.16)

As |θ| ≤ π/2 rad by definition, (3.16) implies that |α| < π/2 rad. This means that the
inner product of the true gradient vector (gR) and the one we use as its approximation
(gH) is always non-negative. In gradient-based algorithms, this is usually a sufficient
condition for obtaining the desired performance (e.g., in gradient descent). Note that we
do not need to study the center node of the triad, because for that node gH = gR, i.e., the
approximation is perfect.

Overall, this geometric analysis supports the appropriateness of approximating elas-
tic behavior with an ASAP model in our scenario. Note that this is only a partial analysis
restricted to one triad; for each point, its total gradient is the sum of gradients over all the
triads the point belongs to.

3.6 Experimental validation

We test the approach in simulation using KER and ARAP model and in hardware exper-
iments using various real objects having diverse characteristics, in different scenarios1.

3.6.1 Simulation

We use Matlab and the models we explained in chapter 2 (ARAP and KER) to test the
presented scheme in simulations. As mentioned in the previous chapter, we only use
these models to model the object in simulation in order to verify the methods we present

1A video of some of our simulations and experimental results can be found at:
https://www.youtube.com/watch?v=LI8JdTFPlR8
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in this dissertation (as shown in Fig. 2.8). We assume n = 50, and we control different
points along the length of the various simulated objects. It should be noted that for other
similar values of n, similar results are obtained. To manipulate the object, (3.13) is imple-
mented to the used grippers. The value of s for all triads always stayed between 0.995
and 1, which is consistent with our analysis in section 3.5.1.

In the plots of this section, the error related to the position of each controlled point is
defined from (3.10) as follows (ι indicates the controlled point number):

errorι =
√
(p1s−ι − p1sd−ι)2 + (p2s−ι − p2sd−ι)2 (3.17)

where [p1s−ι, p2s−ι]⊤ is the current position of the controlled point and [p1sd−ι, p2sd−ι]
⊤ is

its desired position.

3.6.2 Robotic experiments with real objects

FIGURE 3.5: The experimental setup used in this chapter. Control point(s) and the grasped
point are tracked with a camera.

The proposed method with the offered controller (3.13) is implemented in a robotic
manipulation system to study its performance, as shown in Fig. 3.5. The experiments are
performed with a UR10 arm. Fifty points are used to discretize the object (i.e., n = 50).
Other values of n in a similar range (several tens) produce similar results. The controlled
points (servoed nodes) and the gripped points are tracked with a fixed Logitech C270
camera, and ArUco markers have been used to obtain the pose of these points using the
OpenCV library of C++. It’s worth noting that utilizing markers to detect objects is a
well-known and commonly utilized technique [CFL+20, ARM+20, GJMSMCMJ14]. The
used marker should be detectable by cameras and provide an appropriate estimation of
the position of the points.

To validate the performance of the proposed method, various experiments are per-
formed to control one, two, and three different points along the length of the objects. We
use three different LDOs with various characteristics to conduct the tests: a thin flexible
rod made of plastic with the length of 0.87(m), a deformable foam rod with the length of
0.87(m), and a small deformable foam rod with the length of 0.26(m). Note that by select-
ing an appropriate n, the object’s length does not affect the controller’s performance. The
Jacobian matrix is obtained using the proposed method offline in section 3.4, and then,
the states of the gripped points are updated using control law (3.13) at each instant.
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3.6.3 Results of controlling one point

To investigate the controller’s performance, in the first step, we try to control pose (posi-
tion, and angle of the line tangent to the object’s curve) of a single point along the object’s
length. To do that, the pose of the point is obtained using the position of its two closest
nodes that we use to obtain the control law (3.13) with the defined Jacobian in section
3.4. Several simulations and experiments have been performed to validate the accuracy
of the proposed algorithm, and the results are shown in Fig. 3.6 to Fig. 3.11.

FIGURE 3.6: Simulation 3.1. Pose control of one point. The object is modeled using ARAP (L =
0.41(m)). From the top-left, the initial and final shapes, the errors, and the gripper velocities
on different axes are shown. The controlled point can be found as a red circle with a dashed
line segment used to show its angle. The target point can be found as a blue diamond with a

dashed line segment used to show the target angle.

FIGURE 3.7: Simulation 3.2. Pose control of one point. The object is modeled using ARAP
(L = 1.00(m)). The initial and final shapes can be seen in the first row. The controlled point can
be found as a red circle with a dashed line segment used to show its angle. The target point
can be found as a blue diamond with a dashed line segment used to show the target angle. The

errors are plotted in the second row.
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As one can see in Fig. 3.6 to Fig. 3.11., by applying the controller (3.13) during the
deformation process, the errors of the controlled points converge to zero. In these tests, to
show the performance of the proposed method, we define the error of the angle errorp3 =
p3s−ι − p3sd−ι, where p3s−ι and p3sd−ι are the current and target value of the angle of the
point, respectively. It is assumed that the angle of the object remains in the same range in
each iteration. The initial, target, and final pose of the controlled points in all experiments
are presented in Table 3.1. Moreover, the final errors of all tests (the absolute value of the
difference between the final states and their targets) are also shown in that table.

FIGURE 3.8: Simulation 3.3. Pose control of one point. The object is modeled using KER (L =
0.90(m)). The initial and final shapes can be seen in the first row. The target point can be found
as a blue diamond with a dashed line segment used to show the target angle. The errors are

plotted in the second row.

FIGURE 3.9: Experiment 3.1. Pose control of one point. From the top-left, the initial and final
shapes, the errors, and the gripper velocities on different axes are shown. The target point can

be found as a red circle with a dashed line segment used to show the target angle.
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FIGURE 3.10: Experiment 3.2. Pose control of one point. The initial and final shapes can be
found in the first row. The errors are plotted in the second row.

FIGURE 3.11: Experiment 3.3. Pose control of one point. The initial and final shapes can be
found in the first row. The errors are plotted in the second row.

TABLE 3.1: State of the controlled points in the performed tests for controlling one point.

Test Initial pose Target pose Final error
number (m, m, rad) (m, m, rad) (m, m, rad)
Sim. 3.1 [0.000, 0.291, 1.571] [−0.086, 0.254, 2.547] [0.000, 0.00, 0.000]
Sim. 3.2 [0.000, 0.510, 1.571] [0.181, 0.459, 1.695] [0.000, 0.00, 0.001]
Sim. 3.3 [0.000, 0.639, 1.571] [0.159, 0.609, 0.997] [0.000, 0.00, 0.001]
Exp. 3.1 [0.086, 0.650, 1.609] [0.296, 0.502, 1.915] [0.002, 0.003, 0.005]
Exp. 3.2 [−0.027, 0.266, 1.467] [−0.146, 0.198, 1.258] [0.001, 0.001, 0.019]
Exp. 3.3 [0.019, 0.678, 1.571] [−0.283, 0.551, 1.144] [0.003, 0.005, 0.009]
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3.6.4 Results of controlling multiple points

In the next step, we take another pace and try to control position of two and three non-
adjacent points using the proposed method.

In the initial step, we attempt to control two points using two different grippers. The
results can be seen in Fig. 3.12 and Fig. 3.13. As one can be seen, the method is able to
perform the defined tasks accurately. Table 3.2 displays the initial and target states of the
controlled points as well as the final errors of these tests.

FIGURE 3.12: Simulation 3.4. Position control of two points using two grippers. The object is
modeled using KER (L = 0.70(m)). The grippers are shown as red and green circles having a
dashed line representing their angles. From the top-left, the initial and final shapes, the error
of the controlled points, and the gripper velocities on different axes can be seen. In the top-left
image, the target points can be seen as a red diamond (as the target for the lower controlled
point (shown in light blue)) and a blue diamond (as the target for the upper controlled point
(shown in brown)). Subscript 1 is used for the lower controlled point with the red target and
the lower gripper, and subscript 2 is used for the upper controlled point with the blue target

and upper gripper.

Next, we take another pace and try to control the position of two and three non-
adjacent points with the presented method using a single gripper. It is evident that the
system becomes underactuated since the number of actuated DOF (three DOF) is lower
than the number of DOF of the controlled points (four DOF for controlling two points and
six DOF for controlling three points). Therefore, global stability cannot be guaranteed.
Hence, the system can only be stable in a local sense. Different tests have been done, and
the results can be seen in Fig. 3.14 to Fig. 3.19. The final shape of the object and the errors
of the controlled points concerning their targets are presented in Fig. 3.14 to Fig. 3.19. As
one can see, the errors converge to zero, and the presented method achieves its objective.
The initial and target states of the controlled points in all tests are presented in Table 3.2.
The final errors of all tests are also shown in that table.

3.6.5 Mean squared error (MSE)

To show the performance of the strategy, we will provide the mean squared error of all
tests in this section. First, we define MSE to measure the mean squared errors between
the target and final values in tests performed to control a point. Consider the fact that all
tests’ errors are within the same range. Consequently, we present MSE as:
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FIGURE 3.13: Simulation 3.5. Position control of two points using two grippers. The object is
modeled using KER (L = 0.70(m)). From the top-left, the initial and final shapes, the error of
the controlled points, and the gripper velocities on different axes can be seen. In the top-left
image, the target points can be seen as a red diamond (as the target for the lower controlled
point (shown in light blue)) and a blue diamond (as the target for the upper controlled point
(shown in brown)). Subscript 1 is used for the lower controlled point with the red target and
the lower gripper, and subscript 2 is used for the upper controlled point with the blue target

and upper gripper.

FIGURE 3.14: Simulation 3.6. Position control of two points using a gripper. The object is
modeled using ARAP (L = 1.00(m)). From the left, the initial shape, final shape, and the errors
of the three controlled points can be seen. The target points can be found as red (for the first
controlled point which is in the lower section of the LDO) and blue (for the second controlled

point which is in the upper section of the LDO) diamonds.

FIGURE 3.15: Simulation 3.7. Position control of three points using a gripper. The object is
modeled using ARAP (L = 0.85(m)). From the left, the initial shape, final shape, and the errors
of the three controlled points can be seen. The target point can be found as red (for the first
control point that is lower), blue (for the second control point), and green (for the third control

point that is upper) diamonds.
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FIGURE 3.16: Experiment 3.4. Position control of two points. From the left, the initial shape,
final shape of the object, and the errors of the three controlled points are indicated.

FIGURE 3.17: Experiment 3.5. Position control of two points. From the left, the initial shape,
final shape of the object, and the errors of the three controlled points are indicated.

FIGURE 3.18: Experiment 3.6. Position control of three points. From the left, the initial shape,
final shape of the object, and the errors of the three controlled points are indicated.

FIGURE 3.19: Experiment 3.7. Position control of three points. From the left, the initial shape,
final shape of the object, and the errors of the three controlled points are indicated.
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TABLE 3.2: State of the controlled points in the performed tests for controlling multiple points.

Test Initial position Target position Final error
number (m, m) (m, m) (m, m)
Sim. 3.4 [0.000, 0.210] [−0.134, 0.397] [0.001, 0.000]

[0.000, 0.490 [−0.104, 0.545] [0.000, 0.001]
Sim. 3.5 [0.000, 0.210] [0.344, 0.139] [0.000, 0.001]

[0.000, 0.490] [0.373, 0.309] [0.001, 0.001]
Sim. 3.6 [0.000, 0.500] [0.139, 0.475] [0.000, 0.000]

[0.000, 0.800] [0.010, 0.723] [0.000, 0.000]
[0.000, 0.425] [−0.134, 0.397] [0.000, 0.000]

Sim. 3.7 [0.000, 0.578] [−0.104, 0.545] [0.001, 0.000]
[0.000, 0.731] [−0.022, 0.675] [0.000, 0.000]

Exp. 3.4 [0.047, 0.601] [0.096, 0.505] [0.009, 0.011]
[0.072, 0.772] [0.226, 0.619] [0.005, 0.012]

Exp. 3.5 [0.037, 0.564] [−0.345, 0.425] [0.009, 0.004]
[0.072, 0.735] [−0.273, 0.584] [0.004, 0.006]
[−0.065, 0.529] [0.040, 0.519] [0.006, 0.003]

Exp. 3.6 [−0.044, 0.640] [0.101, 0.614] [0.011, 0.006]
[−0.012, 0.753] [0.177, 0.715] [0.000, 0.006]
[−0.044, 0.529] [−0.232, 0.470] [0.003, 0.007]

Exp. 3.7 [−0.024, 0.659] [−0.234, 0.601] [0.011, 0.002]
[−0.006, 0.787] [−0.204, 0.719] [0.002, 0.004]

ev =

√
1
n

n

∑
r=1

(∆vr)2 (3.18)

where
∆vr = |vrm f − vrm−t| (3.19)

n is the number of tests, vrm f is the final value of each state of the controlled point and
vrm−t is the target values of them in test r. Therefore based on the outlined results in
section 3.6.3, for the simulation tests (n = 3) of controlling one point, we have:

ep1 = 0.000(m), ep2 = 0.000(m), ep3 = 0.001(rad) (3.20)

The experimental tests of section 3.6.3 (n = 3) are subjected to the same analysis, and
the results are as follows:

ep1 = 0.002(m), ep2 = 0.003(m), ep3 = 0.012(rad) (3.21)

The same analysis are applied to the results of section 3.6.4 (controlling multiple
points). However, we use the mean of the error of the controlled points in each test
to obtain the ∆vr. For the simulation results (n = 4) we have:

ep1 = 0.000(m), ep2 = 0.000(m) (3.22)

The MSE of the experimental results presented in section 3.6.4 (n = 4) obtain as fol-
lows:

ep1 = 0.006(m), ep2 = 0.007(m) (3.23)
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As shown, the proposed approach is able to precisely control the position of one or a
few points on a deformable rod despite the object’s various properties. The results pre-
sented in Table 3.1 and Table 3.2 show that the presented method works very accurately
in simulation regardless of the type of simulated model we adopt to validate the method.
However, the reason that the algorithm works in simulations slightly better than in ex-
periments is due to the detection method that we use. Some noises exist in our detection
method, which is why we have some small vibrations in our experimental results.

3.7 Conclusion

In this starting work on DO manipulation, we have presented an approach to control one
or several arbitrary points along the length of an object. The proposed approach allows
deforming elastic linear objects in a controlled way and needs only a simple offline geo-
metric model, which is an important practical advantage. The limitations of the approach
include: it is restricted to 2-D workspaces, it cannot handle non-smooth unstable defor-
mation behaviors, the type of objects it can be applied on (fixed-length elastic LDOs) is
limited. The method cannot be applied to the objects without the possibility to calculate
the Jacobian matrix. This is a challenge since obtaining an offline Jacobian matrix has
some limitations, as discussed in section 3.4.2. Another issue with this method is that the
exact pose of the gripper must be known during the manipulation. Therefore, with the
lesson learned from this starting research, in the next chapter, we present a method that
can control the pose of the controlled point without the need to obtain a model-based
Jacobian matrix or use any geometric model.
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Chapter 4

Adaptive deformation control of
LDOs without perceiving the entire
shape

Although the performance of the method presented in the previous chapter is accept-
able, it can only be applied to entirely linear objects of fixed length with a predefined
fixed number of nodes. In this chapter, we aim to provide a more widely applicable tech-
nique for controlling LDOs than the method presented in the previous chapter. We aim to
present a method in which the positions of the other nodes are not required to be known
in advance, and we only need to know the position of the controlled node. The main ap-
plication we consider in this chapter is in the field of agriculture, but may have interests
in other tasks such as human daily activities and industrial production. We specifically
consider an elastic linear object where one of its endpoints is grasped by a robotic arm. To
deal with the mentioned problem, we propose a model-free method to control the state of
an arbitrary point (called controlled point) in section 4.4 that can be at any place along the
object’s length. Our approach allows the robot to manipulate the object without knowing
any model parameters or offline information of the object’s deformation. An adaptive
control strategy is proposed to adjust the state of the controlled point toward the desired
location and deform the object automatically. The control law is developed thanks to
the adaptive estimation of the system parameters and its states. This method can track
a desired manipulation trajectory to reach the target point, which leads to a smooth de-
formation without drastic changes. A Lyapunov-based argument is presented for the
asymptotic convergence of the system that shows the process’s stability and convergence
to desired state values. To validate the controller, numerical simulations involving two
different deformation models are conducted in section 4.5, and performances of the pro-
posed algorithm are investigated through full-scale experiments in section 4.6.

4.1 Introduction

In the literature of DO manipulation, some works have been done by considering an accu-
rate object model [JP03,TFH99,KGKG98], as mentioned in the previous chapters. On the
contrary, several recent works do not need an exact DO model by using some approxima-
tions of the deformation behavior [NAL17, HSP18, ZNAPC21, COC+20]. [NAL14] used
an online estimation method to control the shape of the objects. However, the perfor-
mance of the method presented by [NAL14] depends on the choice of regression matrix.
A vision-based method that computes parameterized regression features to reshape an
elastic rod is presented in [QMNA+20]. Similarly, [LKM20] proposed a model-free visual
servoing approach for deforming a wire into a desired shape. These algorithms are used
for low-speed movements and they need prior knowledge about the the deformation of
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the object or to perceive the entire shape of the object during the manipulation to cal-
culate the used deformation Jacobian. However, these models cannot be used for large
deformations. Moreover, they mostly need offline information about the object to calcu-
late a Jacobian matrix or to perceive the total shape of the object during the procedure.
These methods cannot control the trajectory of the manipulation of the DOs since they
were designed to reach fixed set-points.

This chapter focuses on an elastic linear rod manipulation with one of its ends fixed,
with agriculture as the main targeted field of application. Many agriculture tasks need to
reshape objects [Dav06,HS18,ZGT+18]. Most agriculture elements (such as branches) can
be assumed as LDOs. The problem is that there are few works about the manipulation of
DOs in this domain, and the existing DO manipulation approaches did not include this
field in their research. Accordingly, this chapter aims to develop a method to be used in
the agricultural field for some tasks such as pruning the trees and plant inspection.

As mentioned, most of the proposed methods in the literature need some information
about the object (an exact model or an estimation of the deformation). They mostly need
to perceive the total shape of the object (or enough points on the object to cover its entire
shape) during the deformation process. Therefore, applying these methods with these
limitations to the objects that exist in the agriculture field is not easy. This inspired us
to develop a method to solve these issues and deform the object while moving a point
on the object to a specific target. Therefore, we propose an adaptive control strategy,
using a gripper grasping the object at a given point to regulate the state (position and
orientation) of an arbitrary point on the body of the object. The proposed method does
not need prior knowledge of any model parameters of the object and works in real-time.
Our method does not need to perceive the entire shape of the object and does not attach
to any particular model or object.

4.2 Our contributions

There are several contributions in our work:
• We take as starting point an adaptive control scheme proposed for biomedical applica-
tions [ASTZ17,ASTZ18] and we extend it to a novel problem which is DO manipulation.
• To the best of our knowledge, the existing adaptive approaches [NAL17, ZNF+18,
NALRL14, LKM20] simply reach a fixed set-point without considering any deformation
trajectory while our controller can be used to track a desired dynamic evolution of the
state. This helps to have a closer control on the manipulation of the object and time of the
task’s completion. Furthermore, tracking these trajectories instead of a fixed point can be
helpful in reaching large deformations.
• This method does not need to calculate a Jacobian based on a model to obtain the
relationship between the deformation of the object and the motion of the gripper. The
presented controller also does not need offline information of the object’s deformation.
• Compared with [LWL19, NALRL14], the current method can control the full states of
the controlled point, including the angle.
• Compared with [NAL17, ZNF+18], our work contains a formal analysis of the system
dynamics under the controller.

Even though our method does not control the full shape of the object, controlling as
we do the position and orientation at one point is sufficient for some tasks, requires to per-
ceive online only a single point (not the full shape of the object), and implies the system is
fully actuated, which can reduce the impact of local minima. One of the most interesting
properties of our method is that it can be successfully applied on objects with fairly di-
verse characteristics. To demonstrate this, we provide an extensive validation including
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simulation tests with different deformation models (KER, ARAP), and real robotic exper-
iments with varied objects: a sponge rod, a plexiglass rod, and real vegetable plants1.

4.3 Problem definition

This section defines the challenge we deal with in this chapter. We consider elastic linear
objects, illustrated schematically in Fig. 4.1. The assumptions of our work are as follows.
We assume that the object lies in a 2-D workspace, which is still a complex and interesting
challenge [KFB+21,ZNF+18]. The object is represented as a continuous curve and its state
by the position and orientation (tangent angle of the curve) at each point along its length.
One of the ends is fixed, and the rest of the object is free to move. The length of the rod is
denoted as L. We assume that the object deforms elastically and its size fits the workspace
of the robotic arm. A robotic gripper is used to grasp rigidly the other end (which we call
the grasped point g) on the object, and it can set the object’s state at that point. Moreover,
we assume that the shape of the object always stays in quasi-static stable equilibrium,
and as shown in Fig. 4.1, the whole shape of the object can be manipulated by moving g.
It should also be noted that the thickness range of the object is dependent on the opening-
closing range of the gripper. A camera is used to track the pose of the controlled point
(m), and it is assumed that the position and orientation of m can be known during the
deformation process. The exact position and orientation of the target point are known
before the start of the procedure, and they are defined in the reachable range of the robot
workspace where the object can be reached (i.e., the manipulation task is feasible).

FIGURE 4.1: Considered object in the current study.

The problem we address is the control of the state of an arbitrarily chosen point (m)
on the body of the object using g, and the manipulation task is to move m to the target
position and orientation M f . M denotes the state of the controlled point m, and G denotes
the state of the grasped point g, which are defined as:

M = [p1m, p2m, p3m]
T, G = [p1g, p2g, p3g]

T (4.1)

The main difficulty is that solving this indirect control problem requires taking into
account the deformation behavior of the object appropriately. To solve the problem, we
will design an indirect adaptive controller, to be discussed later in this chapter.

1A video of the simulations and experimental results can be found at: https://www.youtube.com/watch?v=mMsRmehdcXo
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4.4 Controller design

In this section, an adaptive control method to manipulate a point along the object’s length
by moving the gripper is described. Our objective is to develop a controller to reshape
the object so that m reaches its target configuration without the need to know any model
parameters. The final state of the target point is denoted by M f = [p1m f , p2m f , p3m f ]

T.
Like [ZNF+18, LKM20, NAL17, HHS+19, YZZL21], the control input is specified as:

U = Ġ (4.2)

To control the LDOs properly, we try to set an appropriate relationship between the
motion of the gripper and the controlled point. In this context, we were inspired by
[Ogd97, NALRL14] which explained that a relationship exists between G and M:

M = f1(Ġ) or Ṁ = f2(Ġ) (4.3)

Accordingly, for the motion of g, one can write:

Ġ = F(M, Ṁ) (4.4)

In the current study, the objective is to design a control law for U ([u1, u2, u3]T). How-
ever, we emphasize that the mentioned existing works can only control the instantaneous
variation of the state of the controlled variables. By doing so, they can make the state
reach a fixed set-point. In this work, we introduce additional terms in the structure of the
controller. These terms allow us to track a desired trajectory of the state, instead of just
reaching a fixed set-point. The suitability of the controller formulation that we propose is
supported by the fact that it follows well-known adaptive control techniques [SL+91] and
previous works in other application contexts [ASTZ17,ASTZ18]. Hence, in this study, the
relationship between the grasped point and the controlled point is assumed as follows:

Ġ = λṀ + ΩM̃ (4.5)

where Ω is a 3 × 3 matrix that consists of some unknown parameters we named aij (i &
j = 1, 2, 3) and M̃ is M − Mdes. Mdes(t) is the desired trajectory of M. This trajectory is de-
fined as bounded and differentiable. Our goal is to design an adaptive indirect controller
to track this trajectory. Note that we use the desired state variable Mdes in the dynamic
equation (4.5) to reach the target point in a limited time based on a desired deformation
trajectory. λ is then defined as a vector with positive components [a10, a20, a30], which
permits to account for the speed of the controlled point m during the process. Therefore,
according to (4.5), one can write the following relationship between the motion of m and
g:

ṗig = ai0 ṗim +
3

∑
j=1

aij p̃jm (4.6)

where the tracking errors p̃im are pim − pimdes. We introduce pimdes as the desired state
values of the controlled point m, which are time-varying to track a desired trajectory of
the state by the adaptive controller. They will be defined later. aik (k = 0, j) are dependent
on the current shape of the object, since they relate the gripper to the control point. It is
reasonable to assume these parameters are approximately constant in a local neighbor-
hood of the current operating point (i.e., current shape) since they change smoothly. As a
result, to build a control based on this model, these parameters (aik) have to be estimated
and online updated. An adaptive estimation algorithm is here introduced to estimate
these parameters.
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4.4.1 Adaptive estimation algorithm

In this section, the adaptive control strategy is developed for (4.6). Fig. 4.2 shows the
block diagram of the proposed controller.

FIGURE 4.2: Schematic diagram of the proposed adaptive control strategy.

First, we rearrange the right-hand side of (4.6).

ai0 ṗim +
3

∑
j=1

aij p̃jm = RiCT
i (4.7)

where:

Ri = [ ṗim, p̃1m, p̃2m, p̃3m] (4.8)

Ci = [ai0, ai1, ai2, ai3] (4.9)

With the purpose of finding the estimation of aik, the adaptive control law ([u1, u2, u3]T)
is defined as:

ui = âi0( ṗimdes−αi p̃im) +
3

∑
j=1

âij p̃jm (4.10)

The goal of this controller is to set the speed of m with the proposed forms (ṗimdes−αi p̃im),
which will help us to generate desired trajectories for the velocities to be used in the con-
troller design. αi are some positive constants. The accent ˆ is used for the estimated
parameters of the system. In other words, âik are some estimates of the time-varying pa-
rameters aik that will be updated using an adaptation law. They are the estimations of the
true parameters aik.

By rearranging (4.10), the control law can be expressed as:

ui = PiĈT
i (4.11)

where:

Pi = [( ṗimdes−αi p̃im), p̃1m, p̃2m, p̃3m] (4.12)

The vectors of system parameters’ estimations are:

Ĉi = [âi0, âi1, âi2, âi3] (4.13)

The adaptation law for updating the estimated parameters is defined as:
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˙̂Ci = −PiTi p̃im (4.14)

The adaptation gains Ti are constant non-singular positive definite matrices of size
4 × 4. Note that, interestingly, the information that needs to be measured to implement
the proposed adaptive feedback controller is just the value of M at each instant of time.
The controller will be analyzed in the next section using the Lyapunov formalism.

Proposition: Under the action of the proposed control law ui (4.10), the control system
tracks the desired trajectory, i.e., p̃im → 0 as t → ∞ for i = 1, 2, 3.

Proof: The closed-loop dynamics of the system using the proposed controller are
obtained in this part. For this purpose, the control law (4.10) is substituted in (4.6), and
by adding and subtracting a term, we have:

ai0 ṗim +
3

∑
j=1

aij p̃jm = âi0( ṗimdes − αi p̃im)+
3

∑
j=1

âij p̃jm + ai0( ṗimdes − αi p̃im)− ai0( ṗimdes − αi p̃im)

(4.15)
By rearranging (4.15), we have:

ai0( ṗim − ( ṗimdes − αi p̃im)) = ( ṗimdes − αi p̃im)(âi0 − ai0) +
3

∑
j=1

p̃jm(âij − aij) (4.16)

According to (4.12), (4.13) and (4.16), the system’s closed-loop dynamics for every i
(i = 1, 2, 3) is found as:

ai0( ˙̃pim + αi p̃im) = PiC̃T
i (4.17)

note that C̃i = Ĉi − Ci. By rearranging (4.17), the dynamics are reformulated as:

˙̃pim = −αi p̃im +
1

ai0
PiC̃T

i (4.18)

A positive definite Lyapunov function candidate is used next to analyze the system
stability and the tracking convergence using the proposed controller.

V =
1
2
(

3

∑
i=1

p̃2
im +

1
ai0

C̃iT−1
i C̃T

i ) ≥ 0 (4.19)

The time derivative of V is obtained as:

V̇ =
3

∑
i=1

( p̃im ˙̃pim +
1

ai0

˙̃CiT−1
i C̃T

i ) (4.20)

We can write ˙̃Ci = ˙̂Ci since Ċi is negligible compared to ˙̂Ci. Consequently, via the
closed-loop dynamics (4.18), (4.20) can be expressed as:

V̇ =
3

∑
i=1

(−αi p̃2
im +

1
ai0

PiC̃T
i p̃im +

1
ai0

˙̃CiT−1
i C̃T

i ) (4.21)

Using the parameters’ adaptation law (4.14), the time derivative of Lyapunov function
(4.21) is simplified to:

V̇ =
3

∑
i=1

−αi p̃2
im (4.22)
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As one can see, the time derivative of the Lyapunov function is negative semi-definite.
The Lyapunov function proposed in (4.19) is positive definite (V(t) > 0) in terms

of p̃im and C̃i. Its time derivative is negative semi-definite (V̇ ≤ 0); therefore, V(t) is
bounded. Accordingly, one can conclude that p̃im and C̃i remain bounded. In addition,
the desired trajectories of the states (pimdes) are defined bounded; thus, the boundedness
of pim = (pimdes + p̃im) is also concluded. Now, the function b(t) is defined:

b(t) =
3

∑
i=1

αi p̃2
im ≥ 0 (4.23)

such that b(t) = −V̇(t) ≥ 0, whose integration gives:

V(0)− V(∞) = lim
t→∞

∫ t

0
b(η)dη (4.24)

Considering that V̇ = dV/dt is negative semi-definite, (V(0) − V(∞)) is positive and
finite. Therefore, limt→∞

∫ t
0 b(η)dη has a finite positive value. Moreover, according to

the Barbalat’s lemma [SL+91], if b(t) is uniformly continuous and the limit of integral
limt→∞

∫ t
0 b(η)dη exists, then:

lim
t→∞

b(t) = 0 (4.25)

Based on (4.23) and considering (4.25), it is concluded that:

lim
t→∞

(
3

∑
i=1

αi p̃2
im) = 0 (4.26)

It is known that αi > 0 are non-zero positive constants and p̃2
im ≥ 0 are positive. As

a result, (4.26) implies that p̃im → 0 as t → ∞. Consequently, the states of the controlled
points converge to their corresponding desired values (pim → pimdes).

4.5 Simulation results

To evaluate the proposed adaptive control strategy, the controller (4.11) and the adaption
law for updating the estimated parameters (4.14) are simulated. At each time instant (t),
using (4.11) the position and orientation of the grasped point are updated, and the new
shape of the object is obtained using the simulated deformation models. It is assumed
that the rod’s shape remains stable during the entire control process. Intending to obtain
a smooth and uniform dynamic evolution of the object’s shape, we define exponential
desired evolutions of the state. These allow reaching the desired final state of the con-
trolled point in a limited time. Specifically, the following desired states are intended to
be tracked using the proposed control strategy:

pimdes = (pim0 − pim f ) exp(−git) + pim f (4.27)

pim0 are the initial values of M. The parameters gi (the exponential coefficient) are
positive constants.

4.5.1 Simulations using Kirchhoff elastic rod model

In the first step of this part, we have chosen the KER formalism [BM14, SS16] to use in
our tests. Various conditions have been used in each simulation to show the performance
of the proposed methodology. L, initial position and final position of the rod have been
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FIGURE 4.3: Simulation 4.1. From the top-left in the first row, the initial and final shape of the
object and the servoing error of the controlled point are illustrated. The desired state of the
point m is shown as a purple diamond (position) and a dashed line segment (orientation). L is
0.70(m). Second row shows the states of the controlled point regarding their desired trajectories

in the first simulation using the KER model.

FIGURE 4.4: Simulation 4.2. From the top-left in the first row, the initial and final shape of the
object and the servoing error of the controlled point are illustrated. The desired state of the
point m is shown as a purple diamond (position) and a dashed line segment (orientation). L is
0.90(m). Second row shows the states of the controlled point regarding their desired trajectories

in the second simulation using the KER model.

changed in each simulation, and one can find the results in Fig. 4.3 to Fig. 4.5. p1 and
p2 are measured in meters and p3 in radians. In the first simulation, L is set to 0.70(m),
and the initial position and target of the controlled point are set as shown in Fig. 4.3. In
the next simulations, we changed L to 0.90(m) to provide different tests with different
conditions, and we applied the proposed method to control the position and orientation
of two different controlled points with two different targets. The first row of Fig. 4.3 to
Fig. 4.5 displays how the object changed from the initial shape to the final shape in these
simulations. The second row of Fig. 4.3 to Fig. 4.5 shows that the proposed strategy can
control the manipulated object according to the desired trajectories. The initial and target
pose of these simulations are given in Table 4.1.
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FIGURE 4.5: Simulation 4.3. From the top-left in the first row, the initial and final shape of the
object and the servoing error of the controlled point are illustrated. The desired state of the
point m is shown as a purple diamond (position) and a dashed line segment (orientation). L is
0.90(m). Second row shows the states of the controlled point regarding their desired trajectories

in the third simulation using the KER model.

FIGURE 4.6: Simulation 4. From the top-left in the first row, the initial and final shape of the
object and the servoing error of the controlled point are displayed. The desired state of the point
m is shown as a blue diamond (position) and a dashed line segment (orientation). L = 1.00(m).
Second row depicts the states of the controlled point based on the desired trajectories in the

fourth simulation using the ARAP model.

4.5.2 Simulations using ARAP model

In this part, we use another method to model the studied DO. These simulations aim
to show that the proposed controller can be used with different models with different
dynamic parameters. To do that, we use ARAP surface modeling [SA07] to model the
object. To validate the performance of the proposed controller, three different simulations
are conducted, and in each of them, various conditions are applied to the object which
means L, M0, and M f des have been changed. One can find the results in Fig. 4.6 to Fig. 4.8.
The first row of Fig. 4.6 to Fig. 4.8 displays the initial and final shape of the object in these
simulations. The second row of Fig. 4.6 to Fig. 4.8 demonstrates the deformation of the
states based on the desired trajectories. It shows that the proposed method can control
the object following desired trajectories. The initial and target pose of these simulations
are given in Table 4.1.

As shown by the various simulations under different conditions (various models,
lengths, initial positions, and targets), it is clear that with the proposed method we can
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FIGURE 4.7: Simulation 4.5. From the top-left in the first row, the initial and final shape of the
object and the servoing error of the controlled point are displayed. The desired state of the point
m is shown as a blue diamond (position) and a dashed line segment (orientation). L = 0.43(m).
Second row depicts the states of the controlled point based on the desired trajectories in the

fifth simulation using the ARAP model.

FIGURE 4.8: Simulation 4.6. From the top-left in the first row, the initial and final shape of the
object and the servoing error of the controlled point are displayed. The desired state of the point
m is shown as a blue diamond (position) and a dashed line segment (orientation). L = 0.43(m).
Second row depicts the states of the controlled point based on the desired trajectories in the

sixth simulation using the ARAP model.

TABLE 4.1: State of the controlled points in the performed tests.

Simulation Initial pose Target pose Final error
number (m, m, rad) (m, m, rad) (m, m, rad)
Sim. 4.1 [0.0000, 0.2310, 1.5708] [0.1200, 0.1820, 0.7600] [0.0006, 0.000, 0.0010]
Sim. 4.2 [0.0000, 0.4500, 1.5708] [0.2600, 0.3470, 1.2000] [0.0000, 0.0003, 0.0000]
Sim. 4.3 [0.0000, 0.6430, 1.5708] [−0.2110, 0.5896, 1.3948] [0.0021, 0.0005, 0.0062]
Sim. 4.4 [0.0000, 0.7000, 1.5708] [−0.1564, 0.6495, 1.0952] [0.0001, 0.0041, 0.0000]
Sim. 4.5 [0.0000, 0.3000, 1.5708] [−0.0579, 0.2750, 0.9406] [0.0029, 0.0006, 0.0046]
Sim. 4.6 [0.0000, 0.3000, 1.5708] [0.1400, 0.2500, 0.6650] [0.0015, 0.0002, 0.0023]

move the point to the chosen goal with an acceptable error.
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4.6 Robot experiments

In this section, we conduct different experiments to show the performance of the pro-
posed adaptive control strategy on real objects. The object is rigidly grasped by the
robotic gripper, and it is tracked with a fixed camera using Aruco markers. The ob-
ject’s shape is captured by a Logitech C270 camera using OpenCV. It should be noted
that we only track the controlled point and obtain its states at each time step. The whole
experimental setup is found in Fig. 4.9.

FIGURE 4.9: The experimental setup used in this work.

4.6.1 Experiments with a sponge rod

For the first and second experiments, we use a sponge rod (L = 0.43(m)) which has high
flexibility. In this part, two different controlled points and two different targets are set
to validate the proposed methodology. We use the same target in the first experiment
as in the last simulation since the object’s length is the same. With this test, we aim
to show that we can expect almost the same results in simulations and experiments for
similar conditions. The obtained results (Fig. 4.8 and Fig. 4.10) confirm that we obtain
almost the same behavior in experiment and simulation. In the second experiment, we
set another target and initial position for the controlled point to show the performance
of the used method in different conditions. In the first row of Fig. 4.10 and Fig. 4.11, the
initial and final configuration of the object can be seen. The second row of Fig. 4.10 and
Fig. 4.11 shows the evolution of the states in these experiments.

4.6.2 Experiments with a plexiglass rod

For the third and fourth experiments, we use an LDO made of plexiglass (L = 0.95(m)).
In this section, our objective is to show that the proposed method can work with different
objects having different characteristics. The initial and final shapes of the object in these
experiments are found in the first row of Fig. 4.12 and Fig. 4.13. The second row of Fig.
4.12 and Fig. 4.13 displays how the states are changed during these tests.
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FIGURE 4.10: Experiment 4.1. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of m is
shown as a red circle with a small line segment. Second row presents the evolution of the states

in the first experiment with respect to their desired trajectories.

FIGURE 4.11: Experiment 4.2. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of m is
shown as a red circle with a small line segment. Second row presents the evolution of the states

in the second experiment with respect to their desired trajectories.

4.6.3 Experiments with real vegetables

For the last experiments, we use two different real vegetables and we do the tests with
them. Our goal is to show that the proposed method can be used with natural agricultural
rods (vegetable branches) without knowing their properties. The initial and final shapes
of the objects are presented in the first row of Fig. 4.14 to Fig. 4.16. Second row of Fig.
4.14 to Fig. 4.16 demonstrates the evolution of the states of the controlled points based
on the desired trajectories in these experiments. As shown by the results (Fig. 4.14 to Fig.
4.16), with the proposed method, the controlled point on the object can reach its target
with a tolerable error.

The aforementioned results (Fig. 4.10 to Fig. 4.16) show that the proposed strategy
can control the object in a precise way, and with this method, one can manipulate the
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FIGURE 4.12: Experiment 4.3. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of m is
shown as a red circle with a small line segment. Second row presents the states of the controlled

point in the third experiment with respect to their desired trajectories.

FIGURE 4.13: Experiment 4.4. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of m is
shown as a red circle with a small line segment. Second row presents the states of the controlled

point in the fourth experiment with respect to their desired trajectories.

taken object desirably following the desired trajectories. The initial and target pose of all
experiments are given in Table 4.2.

4.6.4 Mean squared error (MSE)

In this section, we will present the mean squared error of all tests to show the perfor-
mance of the method. We defined MSE (3.18) as the average of the squares of the errors
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FIGURE 4.14: Experiment 4.5. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of
m is shown as a red circle with a small line segment. Object’s length (L) is 0.72(m). Second
row presents the evolution of the states in the fifth experiment with respect to their desired

trajectories.

FIGURE 4.15: Experiment 4.6. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of
m is shown as a red circle with a small line segment. Object’s length (L) is 0.99(m). Second
row presents the evolution of the states in the last experiment with respect to their desired

trajectories.

between the target values and the final values in the previous chapter. The errors of all
tests are in the same range. Therefore, based on the presented results in the previous
section, for the simulation tests (n = 6), we have:

ep1 = 0.0016(m), ep2 = 0.0017(m), ep3 = 0.0033(rad) (4.28)
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FIGURE 4.16: Experiment 4.7. From the top-left in the first row, the initial and final shape of
the object and the servoing error of the controlled point are illustrated. The desired state of
m is shown as a red circle with a small line segment. Object’s length (L) is 0.86(m). Second
row presents the evolution of the states in the last experiment with respect to their desired

trajectories.

TABLE 4.2: State of the controlled points in the performed tests.

Experiment Initial pose Target pose Final error
number (m, m, rad) (m, m, rad) (m, m, rad)
Exp. 4.1 [0.016, 0.300, 1.428] [0.140, 0.250, 0.665] [0.003, 0.003, 0.004]
Exp. 4.2 [0.010, 0.232, 1.507] [−0.036, 0.217, 1.030] [0.003, 0.001, 0.013]
Exp. 4.3 [−0.016, 0.585, 1.608] [−0.211, 0.523, 1.498] [0.002, 0.004, 0.003]
Exp. 4.4 [−0.019, 0.539, 1.578] [0.209, 0.500, 0.908] [0.007, 0.003, 0.000]
Exp. 4.5 [−0.025, 0.405, 1.480] [0.123, 0.380, 1.200] [0.001, 0.003, 0.003]
Exp. 4.6 [−0.062, 0.702, 1.833] [−0.237, 0.645, 2.306] [0.004, 0.001, 0.003]
Exp. 4.7 [−0.106, 0.563, 1.849] [−0.277, 0.503, 2.143] [0.002, 0.006, 0.011]

The same analysis is carried out on the experimental tests (n = 7), and the results
(MSE) are as follows:

ep1 = 0.004(m), ep2 = 0.003(m), ep3 = 0.007(rad) (4.29)

As can be seen, the proposed approach succeeds in controlling very accurately the
position and orientation of a point on a deformable rod, despite the different properties
of the object. Regardless of the kind of simulated model we use to test the approach,
the results show that the proposed method performs very well in simulation. However,
the detection technique we employ is the reason why the algorithm performs a little bit
better in simulations than in real experiments (in our detecting process, there are certain
noises).
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4.7 Conclusion

In this chapter, we have proposed a novel approach to address the problem of control-
ling an LDO. An adaptive control method was developed to move an arbitrary point to
a chosen objective without knowing prior model parameters. We analyzed the stability
of the controlled system via the Lyapunov theory and presented the adaptation law to
update the estimations of the system parameters and the states of the controlled point
during the control process. The controller was evaluated using KER and ARAP models
in simulation. It was shown that the proposed method is not attached to a specific model
with predefined parameters and structures. It was also successfully validated using var-
ious objects with different characteristics and flexibility in real experiments. Albeit the
MSE of the method presented in this chapter (chapter 4) shows that the accuracy of the
method presented in chapter 3 is slightly better (see the results presented in sections 3.6.5
and 4.6.4), it should be noted that the adaptive method presented in this chapter can be
applied to a wider range of objects because it does not have the limitations of the pre-
vious method (proposed in chapter 3), such as having a predefined model with a fixed
of nodes that each node should have a fixed length trough the deformation process, or
knowing the information of all the nodes in advance.

Although the presented methods in this and the previous chapter are able to control
the state of a single point, the challenge of controlling the whole shape of the object was
not considered, which is an interesting problem in several domains. To solve this draw-
back, we will attempt to propose a method to control the whole shape of the object in the
next chapters.
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Chapter 5

Optimal deformation control
framework for elastic linear objects

In this chapter, we pursue our research on the shape controlling of DOs. Our objective
is to address the main challenge that is not considered in the previous chapters, which is
controlling the entire shape of the objects. It is challenging to find suitable methods to de-
form the LDOs’ entire shape desirably since they have a high-dimensional configuration
space. Another challenge in soft object deformation is determining the intended target.
To the best of our knowledge, no work to date has investigated this topic, and usually, a
predefined target or a shape obtained from the performed experiments has been used. To
achieve the declared points, we propose a control framework for changing the shape of
LDOs with a robotic arm without knowing the object’s properties on a 2-D workspace. In
particular, we aim to provide a complete methodology that can be used in the future to
manipulate agricultural LDOs, such as branches and twigs of vegetables, without dam-
aging them. The first component of our framework is a shape prediction optimal method
that obtains a target shape that minimizes the stress along the target’s length. Using this
method, the reachability of the target shape can be guaranteed. The second component of
our framework is executed later and is based on an indirect optimal controller that auto-
matically drives the objects’ shapes into the target shapes by minimizing a cost function
that reduces the error between the targets and the current shapes. Several numerical sim-
ulations and real experiments are presented to highlight the performance of the proposed
methodology.

5.1 Our contributions

The objective of this chapter is to propose an optimal deformation control framework for
LDOs. We aim to propose a method to set desired target shapes of LDOs and deform
the entire shape of objects toward the proposed desired shapes using an indirect control.
The contributions of this chapter are summarized as follows. The first component of our
framework is to address the problem of finding desired target shapes for the LDOs. As far
as we know, there has been no work on the target shape optimization, and all the previous
works had adjusted the target shape based on some former tests [ZNP+19, ZNAPC21,
NAL13]. However, in this study, we design a method to obtain a reachable target shape
that is at minimum stress. This helps to have a stable shape for the target that is less
likely to break. It should be mentioned that [BM14] used similarly a minimum-energy-
based scheme to model linear objects according to a boundary value problem; however,
in this work, we use the optimal theory to find the optimized target shape, and we do
not model the object in this way. The second component of our framework is an optimal
control strategy to deform LDOs from initial shapes to the obtained target shapes. The
method we use is to move mesh nodes on the object’s body using the manipulated point
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to achieve the desired shape of the object. The proposed method does not need prior
knowledge of any dynamical parameters of the object, since we only need to use and
trace the surface of the object to define the mesh. Our method is simple to implement,
and it does not necessitate collecting the data from a time window to calculate a Jacobian.
Moreover, in this chapter, we intend to use a method to calculate a Jacobian that does not
have the limitations of the method presented in chapter 3, such as having fixed-length
meshes during the entire algorithm execution. The proposed method can control the
entire shape of the object in comparison to [ZNF+18, NAL17]. We present a wide range
of validations, including different simulation tests and robotic experiments with different
objects: a thin sponge rod, a plastic rod, and a thick foam rod1.

5.2 Problem statement

In this chapter, we seek to provide a suitable way to control the entire shape of LDOs.
A significant challenge in manipulating these objects is setting a reachable and stable
target that is less likely to cause any breakage or failure. Another challenge is to deform
them to the targets desirably. These challenges inspire us to propose the current control
framework. To clarify the issue, consider the manipulation of the branches in tasks such
as tree inspection or harvesting. In these kinds of tasks, the main point is that the exact
shape of the target is not specified in advance, and only an estimate of the final pose of the
grasped point is known beforehand. In this process, it is essential to move the branches
to a secure position that does not break them.

FIGURE 5.1: Desired shape prediction based on the necessitated motion.

The schematic of the studied object with length L is shown in Fig. 5.1. The problem
of DO manipulation we deal with in this study can be summarized as follows. Firstly, we
seek a method to set a stable and reachable target. To the best of the authors’ knowledge,
previous studies on the manipulation of DOs have set targets using predefined shapes or
pre-performed tests. We develop a method for target shape optimization. Our objective
is to minimize stress along the object’s length to find the optimized target shape. In
this part, there is no need to have exact model values since we aim to deal only with a
shape servoing problem. In the next step, the objective is to deform an object toward the
obtained target shape without being aware of the object’s properties. Therefore, a new
optimal controller is adopted to minimize the shape error between the current shape and

1A video of our simulations and experimental results can be found at: https://www.youtube.com/watch?v=a3XoJFYlyc4
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the target. Fig. 5.2 shows the overall scheme of the proposed control framework. The
current shape of the LDO is shown in Fig. 5.3.

FIGURE 5.2: Schematic diagram of the proposed control framework.

5.3 Desired shape optimization

FIGURE 5.3: The shape of the studied object (shown as a green rod), and the final pose of the
grasped point (shown as a violet circle with a small dashed line representing its angle). The

grasped point is demonstrated as a red circle with a small black dashed line.

It is clear that having a predefined target shape to start the deformation process is
not always possible. Accordingly, in the first part of this chapter, we propose a general
method to find the desired target shapes of the LDOs. Our goal is to provide a shape
that is stable and less likely to break. To solve the mentioned issue, we use a minimum-
energy-based scheme to compute the shape of the LDO’s target based on the coordination
of its endpoints. The full shape of the target can be computed by (see Fig. 5.3)

P(s) = [p1(s), p2(s), p3(s)]T (5.1)
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The curve P can be computed as a solution to the following stress minimization prob-
lem: 

min
∫ L

0 v2 ds,
[dp1/ds, dp2/ds, dp3/ds]T = [L cos(p3), L sin(p3), v]T,
P(0) = P0, P(L) = Pg

(5.2)

v represents the stress along the LDO’s length [BM14]. P0 ∈ R3 and Pg ∈ R3 are the
states of the object at its fixed point and the grasped point (g), respectively (it should
be noted that the same methodology as presented can be used even if the two end-
points are manipulable). According to (5.2), we minimize the total stress over the tar-
get’s length. The problem of shape computation (5.2) can be seen as an optimal control
problem. According to the maximum principle theory [PBGM62], there exist a costate2

trajectory [ f1, f2, f3]T such that (i = 1, 2, 3):

ṗi = ∇ fi H
T, ḟi = −∇pi H

T, 0 = ∇vHT (5.3)

where H is the Hamiltonian function, calculated as follows:

H = f1L cos(p3) + f2L sin(p3) + f3v − ev2 (5.4)

e is a constant bigger than zero. By solving (5.3) based on (5.4), we have (setting
e = 0.5 [BM14]): 

ṗ1 = L cos(p3), ṗ2 = L sin(p3), ṗ3 = v,
ḟ1 = 0, ḟ2 = 0, ḟ3 = f1L sin(p3)− f2L cos(p3),
0 = f3 − v

(5.5)

We can rewrite (5.5) in a compact form as

dp1/ds
dp2/ds
dp3/ds
d f1/ds
d f2/ds
d f3/ds

 =



L cos(p3)
L sin(p3)

f3
0
0

L f1 sin(p3)− L f2 cos(p3)

 (5.6)

The target shape of the object is obtained and can be simulated by solving numerically
(5.6) subject to the boundary conditions (P(0) = P0 and P(L) = Pg) for different targets
of the grasped point.

5.4 Shape control method

In this section, we design a method for controlling the shapes of LDOs toward the target
shapes. Let us first define the shape error Se as:

Se = Mt − Mt f (5.7)

Mt ∈ R2ns denotes the current position of the object and Mt f represents its target
value. ns is the number of points (mesh nodes) along the length of the LDO that we use
to represent the object’s configuration. The controller objective is to drive Se to zero.

2The costate is related to the state used in optimal control [Lue97]
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To design the controller, we set the controller input (U ∈ R3) as

U = δG (5.8)

where δG = [δp1g, δp2g, δp3g]⊤. We use a deformation Jacobian (J ∈ R2ns×3) to predict
shape variations that relate the robotic arm’s motion to the object’s body.

δMt = JδG (5.9)

We assume J is a non-singular matrix. To calculate J for LDOs, we exploit the same
method as in [SBAMO22], where the ARAP deformation model is used for the shape
servoing of planar objects. We assume that the robotic arm grasps the object firmly. It
is also assumed that the object’s shape is always in quasi-static equilibrium and deforms
smoothly under the infinitesimal motion of the robotic arm with elastic behavior. We
define a rigid set (hi, i = 1, 2, 3) that contains the three nearest nodes to the grasped
point. This set can be identified from the knowledge of the shape and the robotic arm
position with respect to the initial shape. A Cartesian frame W is defined to represent
the pose of the robotic arm at the grasped point. A mapping w is also defined to find the
pose of W from the position of hi. Using w, one can find the frame’s pose ζi = w(hi).
Accordingly, the positions of the nodes of the rigid set can be obtained as hi = w−1(ζi).
The motion of W consists of 3 DOF. Starting from the current shape Mt, we calculate a
new ζi by infinitesimally perturbing W in each DOF. Using the new hi = w−1(ζi) at each
perturbation, a new stable shape of the object can be obtained by running the simulation
of ARAP. Using this new stable shape, δMt can be calculated, and therefore, we can
obtain J corresponding to the perturbed DOF using (5.9). By repeating this procedure
for every three DOF, the full matrix J is computed online, and it can be used to design a
controller.

The control objective can be formalized as an optimal control problem by defining the
following cost function and minimizing it.

E = (
t f

∑
j=1

ST
e (j)Qs(j)Se(j) + UT(j)Qu(j)U(j)) (5.10)

By minimizing E, the shape error Se is also reduced, which means that the object
moves towards its target. t f ∈ N is the time horizon of the minimization command, and
the convergence time to the minimum value of E can be increased or decreased using
it. Qs(t) ∈ R2ns×2ns and Qu(t) ∈ R3×3 are constant diagonal matrices. j represents the
discretized time.

Now using (5.9), the discrete state of the system is:

Mt(j + 1) = Mt(j) + J(j)U(j) (5.11)

(5.11) and (5.10) form an optimal controller problem. In this case, the minimizing com-
mand is [AM07]

U(j) = K(j)Se(j) (5.12)

where K(j) ∈ R3×2ns is given by:

K(j) = −[J⊤(j)X(j + 1)J(j) + Qu(j + 1)]−1 J⊤(j)X(j + 1) (5.13)

X is given by:
X(j) = (X(j + 1)− X(j + 1)J(j)[J⊤(j)X(j + 1)J(j)

+Qu(j + 1)]−1 J⊤(j)X(j + 1)) + Qs(j),
X(t f ) = Qs(t f )

(5.14)



68 Chapter 5. Optimal deformation control framework for LDOs

Using (5.12) to (5.14), one can drive Se to zero, and therefore, the object deforms to the
target shape.

5.5 Simulation results

In this section, simulations are carried out to evaluate the performance of the proposed
optimal control strategy. Fifty points are assumed along the length of the simulated rod
(ns = 50). The length of the object (L) is 1 (m). In each test, the target pose of the grasped
point is changed. Then, the target shapes (shown in blue in Fig. 5.4 to 5.6) are obtained
using (5.6) at the start of the control scheme. During the simulation, the current shape
of the object is continuously simulated and observed using the ARAP model. At each
instant, the Jacobian matrix is updated, and then the state of the grasped point (indicated
by the red circle in the figures of this chapter) is updated using (5.12). The new shape
of the object is obtained using the simulated deformation model. The rod’s shape is
assumed to remain stable during the entire control process. The computational time of
our controller is 52 FPS. The servoing error for the total shape is introduced as:

Servoing error =
√
(1/n2

s )SeST
e (5.15)

The initial, target, and final shapes of the object in different tests can be observed in
Fig. 5.4 to 5.6. The servoing error and the used optimal cost function (5.10) in each test
are plotted in Fig. 5.4 to 5.6. Furthermore, it is evident from these figures that the shape
error goes to zero as the cost function decreases, which means that the proposed strategy
is able to control the object’s shape toward its target.

FIGURE 5.4: Simulation 5.1. As shown in the top-left plot, the target pose of the grasped point
is set to [−0.0741, 0.8923, 2.0069]⊤. The object’s initial, target, and final shapes can be observed
in the first row. The servoing error and the cost functions of the controller (E) are plotted in the

second row.

5.6 Robotic experiments

We test our algorithm using a robotic manipulation system at Pascal Institute in Clermont
Auvergne University (UCA). The experiments are performed using a UR10 arm with a
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FIGURE 5.5: Simulation 5.2. As shown in the top-left plot, the target pose of the grasped point
is set to [−0.3941, 0.7890, 2.6384]⊤. The object’s initial, target, and final shapes can be observed
in the first row. The servoing error and the cost functions of the controller (E) are plotted in the

second row.

FIGURE 5.6: Simulation 5.3. As shown in the top-left plot, the target pose of the grasped point
is set to [0.2861, 0.8030, 0.8249]⊤. The object’s initial, target, and final shapes can be observed in
the first row. The servoing error and the cost functions of the controller (E) are plotted in the

second row.

three-finger gripper. Our vision system includes a fixed camera that can provide color
images and depth at 30 FPS3. An edge detection algorithm has been used to obtain the
position of the points along the object’s length using the OpenCV library of C++. Due
to the used detection method, there exists some noise in our results. In our experiments,
we use a uniform discretization to generate the points on the object. Fifty points are used
to discretize the object (i.e., ns = 50). ROS melodic connects the controller and detection
nodes to the arms. The experimental setup is shown in Fig. 5.7.

We now present three example tasks where the proposed method is effective, and
the results are shown in Fig. 5.8 to Fig. 5.10. In our experiments, we first obtain the

3Frames per second
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FIGURE 5.7: The experimental setup used in this work.

FIGURE 5.8: Experiment 5.1. The target pose of the grasped point is set to
[0.0466, 0.3691, 1.2392]⊤. The object’s initial, target, and final shapes can be observed in the
first row. The servoing error and the cost functions of the controller (E) are plotted in the sec-

ond row.

entire shape based on the target position of the grasped point using (5.6), and then we
start the deformation process. The Jacobian matrix is obtained at each iteration using the
information of the current shape, and then the states of the grasped point are updated
using the control law (5.12) at each instant. We use three different LDOs with various
flexibility to conduct the experiments: a small deformable sponge rod with the length of
0.43(m), a flexible rod made of plastic with the length of 0.89(m), a deformable foam rod
with the length of 0.87(m). The objects’ initial, target, and final shapes can be found in the
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first row of Fig. 5.8 to Fig. 5.10. The target shapes are shown in red. The servoing error
and the used optimal cost function (5.10) in each experiment are plotted in the second
row of Fig. 5.8 to Fig. 5.10. It is discernible that the servoing errors have converged to
zero by using the proposed algorithm during the deformation, and the presented method
achieves its objective.

FIGURE 5.9: Experiment 5.2. The target pose of the grasped point is set to
[−0.0383, 0.8395, 1.2654]⊤. The object’s initial, target, and final shapes can be seen in the first
row. The servoing error and the cost functions of the controller (E) are plotted in the second

row.

TABLE 5.1: Final error of the performed tests.

Test number Final servoing error (m)
Sim. 5.1 0.001
Sim. 5.2 0.003
Sim. 5.3 0.005
Exp. 5.1 0.004
Exp. 5.2 0.009
Exp. 5.3 0.006

5.6.1 Mean squared error (MSE)

We will present the mean squared error (MSE) of all tests in this section to show the
effectiveness of the proposed technique. To determine the mean errors between the target
and final shape in the performed tests, MSE is defined as:

es =

√
1
n

n

∑
r=1

(∆sr)2 (5.16)
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FIGURE 5.10: Experiment 5.3. The target pose of the grasped point is set to
[0.3262, 0.7232, 0.5585]⊤. The object’s initial, target, and final shapes can be seen in the first
row. The servoing error and the cost functions of the controller (E) are plotted in the second

row.

n is the number of tests, ∆sr is the final servoing error of each test. Thus, for the
simulation tests (n = 3) and based on the results presented in Table 5.1, we have:

es = 0.003(m) (5.17)

The same analysis is performed on the experimental tests and the outcome are is
follows:

es = 0.006(m) (5.18)

As shown, the proposed approach is able to precisely control the shape of the adopted
objects despite their various properties. The results presented in Table 5.1 show that the
presented method works accurately in simulation regardless of the type of simulated
model we use to validate the method. However, the algorithm works slightly better in
simulations than in experiments due to our detection method (as can be seen in Fig.5.8 to
Fig. 5.10, some small vibrations exist in our experimental results).

5.7 Conclusion

In this chapter, we presented a control framework to control LDO’s shapes. The first
module of our framework provides a target shape by minimizing the stress along the
object’s length. The reachability of the target shape is checked in simulation using the
proposed algorithm. The second module of the methodology is an optimal controller
that is presented to reshape the LDOs toward the target shapes. An online Jacobian cal-
culation is used to calculate the relation between the shape of the LDOs and the motion
of the robotic arm. It should be noted that compared to the method presented in chapter
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3, the Jacobian calculation of this chapter is more complicated, and the computational
time is a little bigger (see Appendix A), since we need to compute at each time iteration.
However, this method does not have the limitations of the method presented in chapter
3, such as having fixed-length meshes without sudden deformations. Furthermore, this
method can be extended to other types of objects (such as 2-D or 3-D shapes) with the
same formula. The proposed method works in real-time, and it controls the entire shape
of the object. The controller was evaluated using different simulations and experiments
on different objects. However, if the Jacobian calculation cannot be obtained, this method
cannot be used for the studied objects. Another limitation of this method is that it con-
trols the 2-D shape of the object. Thus, in the next chapter, we will continue to study the
manipulation of DOs while trying to propose a method that does not require a deforma-
tion Jacobian based on a predefined model to control the shape in 3-D. This leads us to
suggest a way that can be applicable for a wide range of objects.
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Chapter 6

3-D shape control of LDOs using an
adaptive Lyapunov-based scheme

In this chapter, we aim to take a step further than the previous chapters and focus on
the control of the entire shape of LDOs in 3-D, with agriculture as the primary target.
As previously mentioned, there are several challenges in manipulating LDOs in agricul-
ture, i.e., the variety of objects in this field is wide, and the deformation properties of
objects cannot be easily recognized in advance. Thus, in this chapter, we address the
manipulation of the entire shape of LDOs by considering these challenges. Concretely,
we extend the adaptive control method proposed in chapter 4 to manipulate LDOs by
controlling their shape in 3-D space towards previously defined targets. Our method can
follow a desired dynamic evolution of the shape with a smooth deformation that brings
about a stable gripper motion. Using this method, obtaining any form of offline Jacobian
or having a model is not necessary, which makes it more feasible to control the shape
of a broader range of objects. To investigate this fact, we demonstrate the effectiveness
of our proposed control scheme through different robotic experiments on various plant
branches and a foam rod.

6.1 Introduction

The main goal of the current work is to extend the previous shape servoing approaches
to agriculture applications [Dav06, YSF+20, BPG+17]. The main challenges are: first, the
diversity of objects in this field is vast and consequently a specific model cannot be used;
second, determining the properties of objects is not always possible; and third, objects are
mostly very fragile and a stable robotic motion is essential. The state-of-the-art methods
previously described in chapter 2 had not considered the aforementioned challenges in
this field [LKM20, QMZ+21, KFB+21, NAYW+16].

One of the very first works in agriculture that assumed robots are dealing with DOs
can be found in [TKK01]. In this study, the object is assumed to be a rod modeled using
FEM. However, this work mainly focused on obtaining equations of a multiple mobile
manipulator system, and no shape controllers were presented. Inspired by that work, we
assume that the branches can be considered as LDOs, as shown in Fig. 6.1. However, we
do not need an FEM representation of the LDOs as in [TKK01] but only a set of control-
lable points. In the previous chapters, we attempted to control an arbitrary point along
the length of the stems and branches and control LDOs’ shape in 2-D. In this study, we
intend to extend the work presented in chapter 4 to control the entire shape of the object
in 3-D space.
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FIGURE 6.1: Approximating the DO, inspired by [TKK01].

6.1.1 Our contribution

This chapter proposes an indirect model-free deformation method of LDOs in 3-D space
to be used in the agricultural field. Apart from agriculture, the proposed method can
also be used in other domains. We aim to control the full shape of an LDO using merely
a robotic gripper grasping the object at one of its ends (i.e. indirect control). This is done
without knowing the object’s properties (i.e. model-free). An adaptive control strategy is
proposed to achieve the stated objective. Our contributions can be listed as follows:
• We extend the adaptive method introduced in chapter 4 to deform the shape of LDOs
in 3-D space. In particular, the proposed method is suitable for manipulating stems or
branches for pruning, plant inspection, or fruit harvesting operations.
• Our method works in real-time and is suitable for large deformations. Our proposed
method controls the full shape of the object and not a simplified representation of it.
• In contrast to [LWL19] and related adaptive deformation control approaches [ZNF+18,
LKM20,NAL17], the proposed method can be used to track a desired dynamic evolution
of the entire shape of the object, rather than simply drive fixed set-points to their corre-
sponding targets. This gives a better control over the evolution path of the object and the
completion time of the task. It also provides a smooth deformation since we track time-
varying trajectories instead of fixed distant targets, which helps to have a deformation
without sudden changes. This can protect the object from possible damages.
• The proposed method does not require any prior information regarding object’s defor-
mation. In addition, we do not need to compute any offline Jacobian matrix to know how
displacements of the manipulator are mapped to deformations of the object.

6.2 Problem definition

As previously described, there are many objects in agriculture that can deform like an
elastic linear rod (such as branches and twigs of plants and trees). Therefore, we consider
these objects as LDOs, and we put our effort into designing a method for controlling their
shapes. We adopt pi (i ∈ {1, ..., n}) (i.e., the six coordinates -position and orientation- of
every point on the LDO surface) to show the complete state of the object. Since we deal
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FIGURE 6.2: Representation of the considered LDO in the current study.

with plants, we presume one of the ends is fixed (connected to the ground by the roots),
while the other end is grasped by the robot, as illustrated in Fig. 6.2.

We represent the LDO discretely with a set of n+ 3 nodes. The nodes are ordered con-
secutively starting from the fixed end of the object, and they sample the object’s length
(L) uniformly. It is assumed that we can obtain the position of each node at its center
during the manipulation. A sensor (an Intel RealSense 3-D camera) is used in our exper-
iments for this purpose. We define the controlled points along the length of the object
in such a way that the position of each point is the average position of the center of its
two closest nodes. We use each controlled point’s closest nodes to obtain its full state
[p1ml , p2ml , p3ml , p4ml , p5ml , p6ml ]

T (position and orientation in 3-D). Therefore, we have
n + 2 controlled points, indexed 0, ..., n + 1. We dedicate controlled points 0 and n + 1 to
the fixed and gripped parts, respectively (this means that these two points are no longer
controlled points). Without loss of generality, we assume that using a robotic gripper,
we are able to deform the whole object by controlling the state of the endpoint. G is the
state of the object at the grasped point g (where G = [p1g, p2g, p3g, p4g, p5g, p6g]T). piml

represent the states of any point along the length of the object that is not being gripped
(i.e., the controlled (servoed) points ml). We use l to show the servoed point’s number,
where l ∈ {1, ..., n}. We define Ml as the state of ml , which contains the information of
the point number l along the object’s length.

FIGURE 6.3: The initial (Is) and target (Fs) shape of the studied object.

Our objective is to deform the object from an initial shape Is to a target shape Fs
(shown in Fig. 6.3). To this end, we should drive the error Erl for every l to zero where
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Erl is defined as:
Erl = Ml − Ml f (6.1)

where the set of Ml f expresses the target shape of the controlled points ml . Erl indicates
the error between the current and the target shapes. By leading this error to zero, the
object is deformed to the target shape.

TABLE 6.1: Variables used in the proposed controller scheme

Ml = [p1ml , p2ml , p3ml , p4ml , p5ml , p6ml ]
T State of the controlled points l ∈

{1, ..., n}
Ms = [p1s, p2s, p3s, p4s, p5s, p6s]T Average of the controlled

points states
Ms f = [p1s f , p2s f , p3s f , p4s f , p5s f , p6s f ]

T Average of the target points states
Msdes = [p1sdes, p2sdes, p3sdes, p4sdes, p5sdes, p6sdes]

T Desired trajectories
M̃s = [ p̃1s, p̃2s, p̃3s, p̃4s, p̃5s, p̃6s]T Tracking errors

Pi Vectors of the states i ∈ {1, ..., 6}
˙̂Ci Adaption laws

Ĉi Vectors of the estimation
of the parameters

6.3 Control scheme

In this section, we develop a controller to drive every Erl to zero. Since the gripper fixes
the velocity of the grasped point, the controller input U = [u1, u2, u3, u4, u5, u6]T is set as
follows:

U = Ġ (6.2)

For the set of points that we use to represent the object’s shape, there is a relation
between their displacements and also their velocities with the motion of the gripper Ġ
[NALRL14, Ogd97].

Ml = f1(Ġ) & Ṁl = f2(Ġ) (6.3)

Accordingly, one can write:

Ġ = F(Ml , Ṁl) (6.4)

To provide a method to move these points to their corresponding targets, we assume
a relation (i.e., (6.4)), between the current state of the points along the length of the object
(piml ) and the controller inputs (ui, where i ∈ {1, ..., 6}) at each time instant.

This study deals with an underactuated system since the number of actuated DOF is
lower than the number of controlled DOF. To solve this problem, instead of controlling
each point, we attempt to control a new variable Ms = [p1s, p2s, p3s, p4s, p5s, p6s]T, where
pis (as shown below in (6.5)) represents the average of the state (position and orientation)
of all the controlled points piml :

pis =
∑n

l=1 piml

n
(6.5)

In other words, Ms is the variable we use to represent the full state of the object. By
controlling it (i.e., Ms), we are able to control the full shape. This is analogous to standard
control strategies in underactuated control systems, and in particular, to some existing
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works in DO shape control [NALRL13a, ZNF+18]. In these works, the system is only
locally stable with respect to a fixed desired state. For defining the angles, we assume
that the object will not be faced with sudden and significant changes of orientation in
each time step.

Therefore, in this section, an adaptive control method is designed to drive Ms to-
ward its target, which results in driving each Erl for all servoed nodes l ∈ {1, ..., n} to
zero. To do that, we draw inspiration from model-free schemes that have been proposed
for DO manipulation [NAL17, ZNF+18]. However, to design our method, we also use
some additional terms. These terms allow us to track a desired trajectory of the state,
instead of just driving a group of points to their corresponding fixed targets. The pro-
posed controller formulation follows a well-known adaptive control scheme presented
in [SL+91, ASTZ17, ASTZ18]. Therefore, in this study, for each possible desired shape of
the object, the following relation between the grasped point g and pis is assumed:

ṗig = ai0 ṗis + Ωi M̃s (6.6)

where Ωi is a 1 × 6 vector containing some values related to the controlled points (namely
aij (j ∈ {1, ..., 6})). We define ai0 as a non-zero positive parameter which permits to ac-
count for the speed of pis during the process. M̃s represents the tracking errors and is
introduced as:

M̃s = Ms − Msdes (6.7)

In (6.7), Msdes(t) is the desired trajectory of Ms at each time step (t) of the deformation
process. pisdes is the ith component of the Msdes, as presented in Table 6.1. We intend
to develop an adaptive algorithm to track these trajectories, defined as bounded and
differentiable. To achieve a smooth and uniform dynamic evolution of the LDO’s shape,
the following trajectories are proposed to be used as the desired position trajectories for
each point:

pimldes = (piml0 − piml f ) exp(−κt) + piml f (6.8)

piml f is the target and piml0 is the initial value of the piml . The constant parameter κ (the
exponential coefficient) stands for a predefined positive constant. The used exponential
trajectories bring about a good control over the completion time of the task. They link
implicitly all the points ml by making them evolve in the same exponential fashion. In
our earlier works [ASF20], these types of trajectories (i.e., exponential function) were
examined in similar control studies, and they functioned effectively and were applicable.
From (6.8), we obtain pisdes based on the average of all the desired points pimdes and their
angles.

For each i ∈ {1, ..., 6}, (6.6) can be rewritten to obtain the following equation:

ṗig = ai0 ṗis +
6

∑
j=1

aij p̃js = RiCT
i (6.9)

where Ri are vectors that have the following form:

Ri = [ ṗis, p̃1s, p̃2s, p̃3s, p̃4s, p̃5s, p̃6s] (6.10)

where p̃is is pis − pisdes. The vectors Ci contain unknown parameters:

Ci = [ai0, ai1, ai2, ai3, ai4, ai5, ai6] (6.11)
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where aik (k ∈ {0, 1, ..., 6}) are parameters that depend on the current and desired shape
of the object, which are representative of the rod deformation. We presume that these
parameters are approximately constant in a local neighborhood of the current shape at
each time instant. They must be estimated online to find the relation between the motion
of the gripper and Ms.

By defining the controller based on the expression (6.9) and using pisdes, we can track
the deformation evolution closely while converging to the target shape. This charac-
teristic of the proposed method can be helpful to have a smooth deformation without
sudden movement, which is essential to protect the object against possible damages.
This trajectory also allows reaching the desired target of Ms in a limited time. Further-
more, by using the proposed method of trajectory tracking of a time-varying desired
state, we are not limited to operating in a local neighborhood of a fixed desired state (as
in [ZNF+18, NALRL13a]). Indeed, our approach is capable of controlling larger, non-
local deformations, associated with the defined time evolution of the desired state since
at each time instant, we can assume that the system is in a local neighborhood of the
desired value.

6.3.1 Adaptive controller design

This section aims to develop an adaptive Lyapunov-based technique to find estimations
aik of the parameters of (6.11), and define a control law based on these estimated param-
eters. The block diagram of the proposed controller is shown in Fig. 6.4.

FIGURE 6.4: Schematic diagram of the proposed control strategy.

The goal is to design a controller that can deform the object based on desired trajec-
tories. To this end, we change the form of the speed of ṗis in (6.9) to ṗisdes − α p̃is, where
α is a positive constant. This helps to generate desired trajectories for the velocities to be
used in the controller design. To find the estimation of aik, we replace their estimations
(âik) in (6.6) which will be updated using an adaptation law. We use the accent ˆ for the
estimated parameters of the system. Therefore, the adaptive control law ui is defined as:

ui = âi0( ṗisdes − α p̃is) +
6

∑
j=1

âij p̃js (6.12)

As explained in the introduction, most of the works in this area have been done by
estimating the Jacobian matrix or having an object model, while using the adaptive con-
troller (6.12) with the proposed scheme, we do not need the mentioned information.

To rewrite (6.12) in a similar form as (6.9), we replace Ri and Ci with new forms Pi and
Ĉi. Therefore, (6.12) can be rewritten as:
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ui = PiĈT
i (6.13)

where:
Pi = [( ṗisdes − α p̃is), p̃1s, p̃2s, p̃3s, p̃4s, p̃5s, p̃6s] (6.14)

Ĉi are the vectors of system parameters’ estimations:

Ĉi = [âi0, âi1, âi2, âi3, âi4, âi5, âi6] (6.15)

The adaption laws for updating the estimated parameters can be expressed as:

˙̂Ci = −PiTi p̃is (6.16)

where the adaptation gains Ti are constant non-singular positive definite matrices of size
7 × 7. p̃is, introduced earlier, is the ith element of M̃s, as presented in Table 6.1. The
adaption laws will be analyzed in the next section using the Lyapunov formalism.

6.3.2 Lyapunov stability investigation

In this section, we use the Lyapunov theorem [SL+91] to investigate the validity of the
proposed adaptive control (6.12) and adaptation laws (6.16). To this end, the closed-loop
dynamics of the system are obtained. Doing so, we substitute the control law (6.12) in
the relation between the object’s shape and grasped point (6.9). By performing several
simple mathematical operations, we have:

ai0 ṗis +
6

∑
j=1

aij p̃js =

âi0( ṗisdes − α p̃is) +
6

∑
j=1

âij p̃js + ai0( ṗisdes − α p̃is)− ai0( ṗisdes − α p̃is) (6.17)

By reordering the terms in (6.17), one can write:

ai0( ṗis − ( ṗisdes − α p̃is)) = ( ṗisdes − α p̃is)(âi0 − ai0) +
6

∑
j=1

p̃js(âij − aij) (6.18)

Using equations (6.11), (6.14), and (6.15) in (6.18), the system’s closed-loop dynamics
for every i can be found as:

ai0( ˙̃pis + α p̃is) = PiC̃T
i (6.19)

where C̃i = Ĉi − Ci. By simplifying (6.19), the closed-loop dynamics of the controllers for
every i are reformulated as:

˙̃pis = −α p̃is +
1

ai0
PiC̃T

i (6.20)

A positive definite Lyapunov candidate is used as follows to analyze the system sta-
bility and the tracking convergence using the proposed controller.

V =
1
2
(

6

∑
i=1

p̃2
is +

1
ai0

C̃iT−1
i C̃T

i ) (6.21)

The time derivative of V is determined as:
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V̇ =
6

∑
i=1

( p̃is ˙̃pis +
1

ai0

˙̃CiT−1
i C̃T

i ) (6.22)

where as explained earlier, we neglect Ċi compared to ˙̂Ci, so ˙̃Ci =
˙̂Ci. Therefore, via (6.20),

(6.22) is transformed into:

V̇ =
6

∑
i=1

(−α p̃2
is +

1
ai0

PiC̃T
i p̃is +

1
ai0

˙̃CiT−1
i C̃T

i ) (6.23)

Using the parameters’ adaptation laws (6.16), the time derivative of the Lyapunov
function (6.23) finally has the following expression:

V̇ =
6

∑
i=1

−α p̃2
is ≤ 0 (6.24)

FIGURE 6.5: Different used objects in the performed experiments: a foam rod (L = 0.87 (m)),
three branches of different plants (L = 0.40, 0.60, 0.38 (m))

Since α is a positive constant, the time derivative of the Lyapunov function is negative
semi-definite. It should be noted that the only way to have V̇ = 0 is to have all errors,
i.e., p̃is for all i ∈ {1, ..., 6}, equal to zero. According to (6.21), the Lyapunov function V
is positive definite in terms of p̃is and C̃i. The time derivative of Lyapunov function in
(6.23) is negative semi-definite V̇ ≤ 0. Therefore, V is bounded and consequently p̃is and
C̃i remain bounded. Based on Barbalat’s lemma [SL+91], if w is a uniformly continuous
function and the limit of the integral limt→∞

∫ t
0 w(η)dη exists and has a finite value, it is

concluded that:

lim
t→∞

w(t) = 0 (6.25)

Now, considering w(t) = ∑6
i=1 α p̃2

is, V̇ in (6.24) can be written as

V̇ = −
6

∑
i=1

α p̃2
is = −w(t) (6.26)

By integrating both sides of (6.26) from t = 0 to t → ∞, it is obtained:

V(0)− V(∞) = lim
t→∞

∫ t

0
w(η)dη (6.27)

As shown in (6.24), V̇ = dV/dt ≤ 0. Therefore, V(0)− V(∞) is positive and finite.
Accordingly, limt→∞

∫ t
0 w(η)dη in (6.27) exists and has a finite positive value because of

the positiveness of w(t). As a result, based on Barbalat’s lemma [SL+91], one can write:
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lim
t→∞

w(t) = lim
t→∞

6

∑
i=1

α p̃2
is = 0 (6.28)

Since p̃2
is ≥ 0 and α is a positive non-zero constant, (6.28) ensures the convergence to

p̃is → 0 as t → ∞ for all i. Thus, the proposed adaptive controller achieves its objective
which is tracking the desired trajectories (pis → pisdes). The variable Ms containing all
the pis tracks the desired trajectory, which means the tracking error M̃s (6.7) goes to zero.
Consequently, the shape error decreases and reaches zero.

FIGURE 6.6: The experimental setup used in this work.

6.4 Experimental results

We validate the performance of the proposed adaptive control strategy through various
experiments on real DOs. The objects of interest are a foam rod and three different plants,
as shown in Fig. 6.5. We choose objects with different length and stiffness, to validate the
capability of our control strategy to handle objects with diverse and unknown character-
istics. The experiments are performed with a UR10 arm of a mobile manipulator 1. We
use a novel tracking pipeline for tracking the object deformation in real-time. This track-
ing pipeline works based on a 3-D template of the object created offline. The template
is a 3-D mesh of the object at its rest shape; a rectangular cuboid for the foam rod and a
cylinder for the plants. The resolution of the meshes along the object is chosen in such
a way that we have 20 controlled points (i.e., n = 20). We use an Intel RealSense 3-D
camera to provide a point cloud of the scene as the input for the tracking pipeline. The
camera is externally calibrated with the robot. The tracking process starts by setting the
object in a known shape in front of the camera and triggering the tracking. The tracking
pipeline uses the inferred shape of the object in the previous frame and the point cloud
captured in the current frame to infer the object shape in the current frame. This is done
by: (i) using an intensity filter to filter the pixels and, consequently, the point cloud be-
longing to the object, (ii) applying an ICP algorithm to rigidly transfer the object mesh

1A video of our experimental results can be found at: https://www.youtube.com/watch?v=FlEMAy_IcZo
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to the point cloud, (iii) applying an ICP-like algorithm proposed in [PLS15] to find cor-
respondences between the object and the point cloud, and (iv) applying a deformation
constraint using position-based dynamics [MHHR07a] to the mesh of the object. The last
step deforms the object according to the correspondences found in the step (iii). With the
tracking pipeline running, we deform the object to a desired shape. We save this desired
shape to be used later by the control method. We then deform the object to its initial
shape. We, finally, start the controller to drive the object from the initial shape to the
desired shape. The tracking pipeline and the controller are both written in C++ and run
on two standard Dell laptops, each with an Intel Core i7 CPU. We use ROS Melodic to
connect our controller and tracking nodes to the arm. The experimental setup is shown
in Fig. 6.6.

FIGURE 6.7: Experiment 6.1. The used object is a deformable foam rod. From the top-left in
the first row, the initial shape, final shape, and servoing error can be seen. The target shape is
shown in red. The evolution of the shape (average of its states p1ml , p2ml and p3ml) with respect

to its desired trajectory can be found in the second row.

FIGURE 6.8: Experiment 6.2. The used object is a deformable foam rod. From the top-left in
the first row, the initial shape, final shape, and servoing error can be seen. The target shape is
shown in red. The evolution of the shape (average of its states p1ml , p2ml and p3ml) with respect

to its desired trajectory can be found in the second row.

To present the servoing errors, we use the norm of the errors defined from (6.1) as
follows:

Servoing error =
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√
1
n2

n

∑
l=1

(p1ml − p1ml f )2 + (p2ml − p2ml f )2 + (p3ml − p3ml f )2 (6.29)

In (6.29), the errors of all the points used to represent the object’s shape are included.
The summation of the errors of these points converging toward zero means that the object
reaches its target and the controller objective is completed. Moreover, to show how the
object tracks the desired trajectories, we plot the evolution of the states representing the
object’s shape.

To validate the methodology, we first perform two different experiments on the flexi-
ble foam rod by changing the initial shape, target, and the exponential coefficient κ of the
desired trajectories. We choose two different values to test the convergence speed of the
method. As the results in Fig. 6.7 and Fig. 6.8 illustrate, we can increase or decrease the
convergence speed based on the desired trajectories. For instance, in experiment 1 (Fig.
6.7), we increase the exponential coefficient κ to get a quick deformation. However, for
the subsequent experiments with natural branches, we decrease κ to avoid causing any
breakage since these objects are particularly fragile. The results of all the experiments can
be seen in Fig. 6.7 to Fig. 6.12. The initial value, the target value and the final error of p1s,
p2s and p3s in the performed experiments can be seen in Table 6.2. We choose different
initial and target shapes for each experiment. At each instant, the state of the grasped
point is updated using (6.13) and (6.16). The objects’ shapes are assumed to remain sta-
ble during the entire control process. The servoing errors of these experiments and the
evolution of the shape (average of its states p1ml , p2ml and p3ml) regarding its desired tra-
jectory are illustrated in Fig. 6.7 to Fig. 6.12. As can be seen, by applying the controller
during the deformation process, the errors converge to zero, and the objects are success-
fully deformed toward their desired shapes. Note that the deformations achieved are in
3-D space, not being restricted to a fixed plane.

FIGURE 6.9: Experiment 6.3. The used object is a branch of a plant. From the top-left in the first
row, the initial shape, final shape, and servoing error are displayed. The target shape is shown
in red. The evolution of the shape (average of its states p1ml , p2ml and p3ml) with respect to its

desired trajectory can be found in the second row.

6.4.1 Mean squared error (MSE)

Like the previous chapters, the mean squared error (MSE) of all tests is presented in
this section. To determine the mean errors between the target and final shape in the
performed tests, (3.18) is used to obtain the MSE of each state representing the objects’
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FIGURE 6.10: Experiment 6.4. The used object is a branch of a tree. From the top-left in the first
row, the initial shape, final shape, and servoing error are displayed. The target shape is shown
in red. The evolution of the shape (average of its states p1ml , p2ml and p3ml) with respect to its

desired trajectory can be seen in the second row.

FIGURE 6.11: Experiment 6.5. The used object is a branch of a tree. The initial shape, final
shape, and servoing error can be seen in the first row. The target shape is shown in red. The
controller inputs (u1 to u6) are illustrated in the second row. The evolution of the shape (average
of its states p1ml , p2ml and p3ml) with respect to its desired trajectory can be found in the third

row.

shape. In this chapter, six different experiments were performed and based on the results
presented in Table 6.2, we have:

ep1 = 0.005(m), ep2 = 0.005(m), ep3 = 0.004(m) (6.30)

As shown, the proposed approach is able to control the shape of the adopted objects
despite the various properties of the objects and the existing detection noise.
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FIGURE 6.12: Experiment 6.6. The used object is a branch of a plant. The initial shape, final
shape, and servoing error are indicated in the first row. The target shape is shown in red. The
controller inputs (ui) are presented in the second row. The evolution of the shape (average of
its states p1ml , p2ml and p3ml) with respect to its desired trajectory can be found in the third row.

TABLE 6.2: Initial value, target value, and final error of p1s(m), p2s(m), and p3s(m) in the per-
formed tests.

Experiment Initial value Target value Final error
number (m, m, m) (m, m, m) (m, m, m)
Exp. 6.1 [0.102, 0.355,−0.016] [0.156, 0.232,−0.052] [0.007, 0.003, 0.003]
Exp. 6.2 [0.000, 0.363,−0.021] [0.079, 0.294,−0.061] [0.004, 0.009, 0.004]
Exp. 6.3 [0.009, 0.155,−0.046, ] [0.034, 0.135,−0.035] [0.006, 0.001, 0.003]
Exp. 6.4 [0.000, 0.150,−0.015] [−0.052, 0.143,−0.020] [0.003, 0.002, 0.006]
Exp. 6.5 [0.001, 0.140, 0.016] [0.035, 0.130, 0.009] [0.001, 0.001, 0.005]
Exp. 6.6 [0.018, 0.156,−0.030] [−0.029, 0.148, 0.006] [0.004, 0.006, 0.002]

6.5 Conclusion

In this chapter, we investigated the problem of controlling LDOs in the agricultural field.
We presented a method to control the shape of these kinds of objects with a robotic grip-
per in 3-D. An indirect adaptive control method was developed to reshape the LDOs
based on predefined desired shapes. The proposed method is able to track the evolution
of the desired trajectories in real time. The method does not require prior knowledge
of the object’s deformation properties. Furthermore, we are not obliged to calculate the
Jacobian matrix based on an offline model to obtain the relationship between the dis-
placements of the manipulator and the deformations of the object.

The proposed method controls the entire shape of the object while following a desired
trajectory towards the target shape. The adaptation law to update the estimations of the
system parameters and the states of the controlled points during the control process were
presented. The validity of the proposed adaptation law was investigated using the Lya-
punov theorem and Barbalat’s lemma. The controller was successfully validated using



88 Chapter 6. Adaptive deformation control of the entire object

various experiments on a flexible foam rod and branches of various plants, assuming that
the object’s shape can be tracked.
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Chapter 7

Conclusion and perspectives

The contribution of this thesis is on the topic of DO robotic manipulation. Several novel
approaches to automated deformable shape control using a robotic arm were proposed
and experimentally validated. In this chapter, first, the contributions of this dissertation
are summarized. Next, the limitations of our proposed methods are reviewed. Following
that, the dissertation’s future research directions are highlighted.

7.1 Summary

In this dissertation, we have worked on dexterous robotic manipulation of LDOs. First,
we investigated the existing literature on this topic. We attempted to contribute to the
state-of-the-art in robotic manipulation of DO with both new algorithms and applica-
tions. On the algorithm side, our manipulation schemes take a step in deforming the
linear objects without considering the object’s material or dynamical parameters such
as their stiffness. On the application side, we set a new milestone in manipulating the
objects targeting agricultural applications.

In chapter 3, we have presented an approach to control one or several arbitrary points
along the length of LDOs. A novel method is proposed for 2-D control of the shape of
LDOs based on an offline geometric model which, at run-time, does not require com-
puting a deformation model or sensing the entire shape of the object. Our objective was
to propose a practical and straightforward method to control LDOs based on an offline
model that does not need to know any physical or material parameter or characterization
of the object’s deformation. We only need the knowledge of all the nodes that construct
the shape of the object at rest shape so as to compute the offline Jacobian matrix. The de-
veloped method requires just a simple offline geometric model (by dividing the object’s
shape into a set of nodes) based on ASAP, which is a significant practical value.

Taking a step further, we have introduced a novel scheme for manipulating an arbi-
trary point on LDOs using an adaptive control scheme targeting agriculture applications
in chapter 4. In this chapter, we tried to propose a more applicable method that can be
used with various objects without specifying a predefined fixed mesh. Furthermore, our
goal was to design a controller that can be used to track the desired dynamic evolution of
the states (i.e., desired trajectories), in contrast to existing adaptive approaches that sim-
ply reach a fixed set-point without considering any deformation trajectory. This helps to
have a closer control on the manipulation of the object and the time of the task’s comple-
tion. This technique does not require the calculation of the Jacobian to determine the link
between the deformation of the object and motion of the gripper. The provided controller
also does not require offline information on the deformation of the object. In addition,
the stability of the controlled system was investigated using the Lyapunov theory. We
presented the adaptation law to update the estimations of the system parameters and
the states of the controlled point during the control process. One of the most intriguing
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aspects of our method is that it has been applied effectively to a wide range of objects.
Even though these two methods (developed in chapters 3 and 4) did not consider the
control of the entire shape of the object, controlling the position and orientation at a sin-
gle point using a grasped point (which can be in a different position from the controlled
point) is sufficient for some tasks (such as pruning trees or assembling industrial parts),
requires only a single point (not the entire shape of the object) to be perceived online, and
implies the system is fully actuated, which can reduce the impact of local minima. The
proposed approaches allow deforming elastic linear objects in a controlled way and need
only servoing the controlled feature, which is an important practical advantage.

Later in chapters 5 and 6, we investigated a more substantial challenge and tried to
control the entire shape of the LDOs, which can be used in various applications such as
plant inspection or cable deformation. Like the previous chapters, our objective was to
achieve this point without knowing any model parameters of dynamical properties. To
reach the stated objective, first, an optimal control method in 2-D using an online Jacobian
is provided. Compared to the method presented in chapter 3, the Jacobian calculation of
the chapter 5 is more complicated, and the computational time is a little bigger since it
is needed to be computed at each time iteration (still, it is fast enough to be used in the
online controls). However, this method does not have the limitations of the method pre-
sented in chapter 3, such as having fixed-length meshes without sudden deformations.
Moreover, this method can be extended to other types of objects (such as 2-D or 3-D
shapes) with the same formula. In the first section of this chapter, unlike all the previous
works that had adjusted the target shape based on some former tests, an algorithm is
proposed to set a desired target shape for the LDO by minimizing the stress along the
length of the object. Next, an optimal control strategy based on an online Jacobian was
proposed to deform LDOs from initial shapes to the obtained target shapes. To calculate
the Jacobian, we used a geometrical model (ARAP) based on the servoing feedback of
the LDOs’ shape. The proposed algorithm is capable of driving the shape error between
the current shape and target to zero, is simple to implement, and does not necessitate
collecting the data from a time window to calculate a Jacobian.

Finally, in chapter 6, we have presented an extension of the adaptive control scheme
proposed in chapter 4 to control the entire shape of the LDOs in 3-D, particularly by con-
trolling the shape of various plant branches. One of the significant benefits of this strategy
is that it is not tied to any specific model or unique object. As a result, it can be utilized
with a wide range of objects having varying properties. In the agricultural industry, this
is a considerable advantage. This method was designed based on tracking time-varying
trajectories instead of fixed distant targets. The advantage is to have a deformation with-
out sudden changes that can be used in large deformations. The proposed method does
not require any prior information regarding the object’s deformation. In addition, we
do not need to compute any offline Jacobian matrix to know how the manipulator’s dis-
placements are mapped to the object’s deformations. This method is suitable for large
deformations. It controls the entire shape of the object and not a simplified representa-
tion of it.

It deserves to be stated that all the methods presented in this dissertation work in
real-time. The comparison of the provided methods is presented in Appendix A. We
believe these works can pave the way for improving the dexterity and the autonomy of
robots dealing with unknown DOs in the agricultural field. We hope these works can be
a starting point for future research in this field.
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7.2 Limitation and future perspective

This thesis makes contributions to the field of vision-based robotic manipulation target-
ing agricultural applications. In the following, we briefly explore the limitations of the
presented work and future lines of research.

The limitations of the approach presented in chapter 3 are that it is restricted to 2-D
workspaces, it cannot handle non-smooth unstable deformation behaviors, and the type
of objects it can be applied on is limited. This means that we cannot easily extend it into
nonlinear objects. Moreover, the method cannot be applied to the objects without the
possibility of calculating the Jacobian matrix. The limitations of the method presented
in chapter 4 are that it cannot handle non-smooth deformations. It is developed in 2-D;
therefore, it is restricted to plane motions. It is not able to do all the tasks at fast speed,
and sometimes we need to reduce the convergence speed, which is not easy.

The main limitation of chapter 5 is the proof of global convergence since the system
is underactuated (the number of actuated DOF (DOF of the grasped point) is lower than
the number of DOF of the object). Another limitation is that the Jacobian calculation is
attached to a particular geometrical model (ARAP), so applying it to all types of objects
is not always easy. Therefore, this method cannot be used for the objects without the pos-
sibility of constructing a geometric model. This method can also control the 2-D shape of
the object. The main limitation of the work provided in chapter 6 is that for very complex
tasks such as manipulating LDOs to highly curved shapes, our proposed technique (like
the methods presented in the previous chapters) may fail since it may be impossible to
achieve the target shape only by controlling one end of the LDO, and manipulation of the
midpoints of the LDO may be required with more robots.

One of the interesting features of our proposed methods is that we do not consider
any force feedback from the object. However, it can be helpful to have force feedback in
some tasks that need to measure the force of the gripper. Thus, for future steps, it can
be interesting to consider this challenge and propose a method that uses the stress along
the object’s length as feedback while controlling its shape. This would be helpful to have
a complete methodology that ensures no breakage occurs to the studied objects (partic-
ularly in manipulating the fragile branches) during the manipulation process. Another
interesting future step is optimizing the desired trajectory according to the deformation
task. Particularly, our long-term objective for the current adaptive works (i.e., chapters 4
and 6) is to provide a way to define optimal desired trajectories based on the task and ob-
ject stiffness. We are also interested in exploring a way to use the proposed method while
finding suitable grasping points according to the shape control task specifications. It can
be interesting to find suitable grasping points for a given shape control task. In chapter
5, we presented a method to design a target shape based on the boundary condition of
the objects (i.e., the final pose of its two ends). It could be useful to apply this concept to
3-D shapes in order to build a specific target with the least amount of stress.

Finally, it should be noted that robots’ dexterous manipulation of DOs is a promising
subject of study with a bright future in agriculture. Hardware advancements will facili-
tate the creation of new methodologies by providing greater computing capabilities and
sensors. There is a wide range of tasks in agriculture that can be considered for future
works. In perception, there are still many challenges that can be the research topic of
future studies. Although we paved the way in control, applying these methods in the
outdoor environment could also be interesting and using these approaches in the field
for an outdoor investigation can be quite rewarding. Exploring some perception meth-
ods that can detect the object in the actual farm can be helpful.

Despite significant progress in recent years, manipulating DOs still remains an open
challenge for robotic manipulators. In this topic, there is still significant opportunities
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for novel solutions to be discovered, as well as numerous unsolved challenges. Other
potential topics of future research include investigating the constraints identified in this
thesis and developing novel strategies to address the unresolved challenges stated above.
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Appendix A

Comparison of the proposed methods

In this appendix, we aim to compare the proposed methodologies in this dissertation.
To accomplish the mentioned objective, in the first step, the approaches described in
chapters 3 and 4 are compared. To do that, two different simulations are conducted,
and the results are presented in Fig. A.1 and Fig. A.2. The initial and final shapes of the
two methods and the evolution of the states of the controlled point can be seen in those
figures. The error of the two methods is obtained using (3.17).

FIGURE A.1: Simulation 1. Comparison of the proposed methods in chapters 3 (ASAP) and 4
(adaptive). The length of the simulated object (L) is 1.25(m). From the top-left, the initial shape,
the error of two methods, the final shapes of two methods, and the evolution of the states can

be seen. The target point is shown in purple.

As one can see, both methods are capable of driving the controlled point toward the
target in an acceptable time. KER is used to model the object in both of the simulations.
We used the same number of iterations for both methods. However, the method pre-
sented in chapter 3 (ASAP) is faster. Its computational time is 88 FPS, while the computa-
tional time of the adaptive method is 76 FPS. However, as mentioned in the dissertation,
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FIGURE A.2: Simulation 2. Comparison of the proposed methods in chapters 3 and 4. The
length of the simulated object (L) is 0.60(m). From the top-left, the initial shape, the error of
two methods, the final shapes of two methods, and the evolution of the states can be seen. The

target point is shown in purple.

the main advantage of the adaptive method is that it can be used with a broader range
of objects than the ASAP method. The initial and final state of the controlled points in
two simulated tests and their final error are presented in Table A.1. Fig. A.3 shows some
of the system parameters’ estimations âkj (see chapter 4 equation (4.13)) in simulation 2.
This figure presents how these parameters are changed during the object manipulation
in this simulation using the adaptive method presented in chapter 4.

FIGURE A.3: Simulation 2. Some of the system parameters’ estimations âkj.
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TABLE A.1: State of the controlled points in the performed simulations.

Simulation Initial pose Target pose Final error (m):
number (m, m, rad) (m, m, rad) ASAP Adaptive
Sim. 1 [0.000, 1.000, 1.571] [−0.235, 0.879, 1.077] 0.002 0.000
Sim. 2 [0.000, 0.360, 1.571] [0.162, 0.306, 0.634] 0.000 0.000

Fig. A.4 to Fig. A.6 present the result of the comparison between chapters 5 and 6 in
2-D. ARAP is used to model the object in these simulations. The first row of the plots (i.e.,
Fig. A.4 to Fig. A.6) shows the initial and final shape of the object in these simulations.
The second row presents the evolution of the error during these tests. The error of the
two methods is obtained using (5.15). Even though both methods reach the target, the
adaptive method is much faster. With the same number of iterations, the computational
time of the adaptive method is 220 FPS, while the optimal method’s computational time is
52 FPS. In the third row of the plots, we show how the adaptive method tracks its desired
shape in a few sequential snapshots. The final error of the object’s shape in the simulated
tests is presented in Table A.2. To present how the system parameters’ estimations âkj
(see chapter 6 equation (6.15)) are changed, some of them are displayed in Fig. A.7 for
simulation 5. This figure demonstrates these parameters’ evolution during the object
manipulation in this simulation using the adaptive method presented in chapter 6.

FIGURE A.4: Simulation 3. Comparison of the proposed methods in chapters 5 (optimal) and
6 (adaptive). L = 1.08(m). The first row shows the initial and final shapes of the object. The
second row demonstrates the evolution of the servoing error in these tests. In the third row, the

object’s deformation with respect to its desired shape is shown for the adaptive method.

We used the same number of iteration in each test and as one can see, the adaptive
converged faster and has smaller computational cost than the optimal controller.
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FIGURE A.5: Simulation 4. Comparison of the proposed methods in chapters 5 and 6.
L = 1.08(m). The first row shows the initial and final shapes of the object. The second row
demonstrates the evolution of the servoing error in these tests. In the third row, the object’s

deformation with respect to its desired shape is shown for the adaptive method.

FIGURE A.6: Simulation 5. Comparison of the proposed methods in chapters 5 and 6.
L = 1.08(m). The first row shows the initial and final shapes of the object. The second row
demonstrates the evolution of the servoing error in these tests. In the third row, the object’s

deformation with respect to its desired shape is shown for the adaptive method.
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TABLE A.2: Final error of the performed tests.

Simulation Final servoing error (m):
number Optimal Adaptive
Sim. 3 0.001 0.001
Sim. 4 0.000 0.000
Sim. 5 0.001 0.000

FIGURE A.7: Simulation 5. Some of the system parameters’ estimations âkj.
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