Usually open quantum systems are considered to be under the influence of noise and therefore faulty. On the other hand, a controlled system is regarded as something stable and predictable. It is often neglected, that the two aspects are very closely related. A perfectly isolated quantum system will not be subject to environmental influences, but this makes it also impossible to interact with it in any manner. Controlling and measuring such a system is impossible and therefore of no technical relevance.

Every system used in any technological device therefore must be in contact with its environment. The question, which is the starting point of this thesis is whether it is possible to not only control a system despite of its contact to some environment, but whether there are cases, where this interaction can be necessary, or at least helpful for certain control tasks.

The first part of the thesis focuses on such a task, namely the purification of a qubit. Here the environment is essential, in order to serve as an entropy sink. The simplicity of the chosen model allowed us to derive the necessary time for the purification process analytically for arbitrary controls and interactions. This is helpful for architectures, where implementations of various configurations is possible.

The second half of the thesis covers more methodogical work. In the example of the qubit reset, we see that the necessary time to perform the task is determined by the coupling between the system and environment. In order to perform such tasks fast, we have to develop a framework, which allows to analyse systems beyond the usual weakcoupling limit. There exists so far no general method for the propagation of such systems, which also allows for thermalisation. The surrogate Hamiltonian method is a promising candidate to capture dynamics beyond the weak-coupling limit and its extension, the stochastic surrogate Hamiltonian, allows for thermalisation. We expand the stochastic surrogate Hamiltonian by introducing a new method of performing stochastic swaps. This method is then tested on a simple example model.

Résumé

On suppose habituellement que les systèmes quantiques ouverts sont exposés au bruit et donc défectueux. D'un autre côté, un système fermé est considéré comme stable et prévisible. On néglige souvent le fait que ces deux aspects sont très étroitement liés. Un système quantique parfaitement isolé ne ressent aucune influence de son environnement, mais cela rend également impossible toute interaction avec lui. Le contrôle ou la mesure d'un tel système est impossible et donc sans pertinence technique.

Tout système utilisé dans un appareil technique doit donc être en contact avec son environnement. La question qui sert de point de départ à ce travail est de savoir s'il est possible de contrôler un système non seulement en dépit de son contact avec un environnement, mais aussi s'il existe des cas où de telles interactions sont nécessaires ou au moins utiles pour atteindre certains objectifs de contrôle.

La première partie du travail se concentre sur de telles tâches, en particulier le nettoyage d'un qubit. Ici, l'environnement est essentiel pour servir de bassin d'entropie. Le simplicité du modèle choisi nous a permis de déduire analytiquement le temps nécessaire pour des contrôles et des interactions quelconques. Cela est utile pour les architectures dans lesquelles la mise en oeuvre de plusieurs configurations est possible.

La deuxième partie du travail est de nature méthodologique. Avec l'exemple de la réinitialisation du qubit, nous avons vu que le temps nécessaire dépend du couplage entre le système et l'environnement. Pour accomplir rapidement une telle tâche, il faut créer un cadre qui permette d'analyser de tels systèmes même pour des couplages forts. Jusqu'à présent, il n'existe pas de méthode générale pour le développement de tels systèmes. La méthode "Surrogate Hamiltonian" est un candidat pour décrire les dynamiques également pour les couplages forts et l'extension, la méthode "Stochastic Surrogate Hamiltonian", permet également la thermalisation. Nous étendons le "Stochastic Surrogate Hamiltonian" en introduisant une nouvelle méthode pour effectuer des réinitialisations stochastiques et testons la méthode sur un modèle simple et exemplaire.

Zusammenfassung

Üblicherweise wird angenommen, dass offene Quantensysteme Rauschen ausgesetzt und daher fehlerhaft sind. Ein geschlossenes System auf der anderen Seite wird als stabil und vorhersehbar betrachtet. Oft wird vernachlässigt, dass beide Aspekte sehr nah verknüpft sind. Ein perfekt isoliertes Quantensystem spürt keinen Einfluss der Umgebung, aber das macht es auch unmöglich mit ihm zu interagieren. Die Kontrolle oder Messung eines solchen Systems ist unmöglich und daher ohne technische Relevanz.

Jedes System, das in einem technischem Gerät verwendet wird, muss daher in Kontakt mit seiner Umgebung stehen. Die Frage, die als Startpunkt für diese Arbeit fungiert, ist, ob es möglich ist, ein System nicht nur trotz dessen Kontakt zu einer Umgebung zu kontrollieren, sondern ob es ebenfalls Fälle gibt, in denen solche Wechselwirkungen notwendig, oder mindestens hilfreich für bestimmte Kontrollziele sind.

Der erste Teil der Arbeit fokussiert sich auf solche Aufgaben, speziell die Bereinigung eines Qubits. Hier ist die Umgebung essentiell um als Entropiebecken zu dienen. Die Schlichtheit des gewählten Models erlaubte es uns die notwendige Zeit für beliebige Kontrollen und Wechselwirkungen analytisch herzuleiten. Das ist hilfreich für Architekturen in denen die Umsetzung von mehreren Konfigurationen möglich ist.

Die zweite Hälfte der Arbeit ist von methodischer Natur. Am Beispiel des Qubit Resets haben wir gesehen, dass die notwendige Zeit von der Kopplung zwischen System und Umgebung abhängt. Um solche Aufgabe schnell zu bewältigen, muss ein Rahmen geschaffen werden, der die Analyse solcher System auch für starke Kopplungen erlaubt. Bisher existiert keine allgemeine Methode für die Entwicklung solcher Systeme. Die Surrogate Hamiltonian Methode ist ein Kandidat um die Dynamiken auch für starke Kopplungen zu beschreiben und die Erweiterung, der Stochastic Surrogate Hamiltonian, ermöglicht ebenfalls Thermalisierung. Wir erweitern den Stochastic Surrogate Hamiltonian durch die Einführung einer neuen Methode für Durchführung von stochastischen Resets und testen die Methode an einem einfachem, beispielhaften Model. 
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Introduction

On the most fundamental level, a quantum system is a system obeying quantummechanical rules. These rules generally induce properties like discrete energy levels and also give rise to non-classical phenomena like interference, entanglement or tunneling. Quantum technologies are trying to make use of those different aspects in order to realise new applications in many different fields. Usually, a distinction is made between the first and the second quantum revolution.

The first quantum revolution took place in the 20th century and contributed to the uprising of many technological advances. The realisation that light can behave like particles, so called photons, but also that particles can act as waves was a scientific breakthrough. In addition, all these systems can only exchange energy in discrete steps. Those discrete energy levels are the underlying quantum properties behind the development of lasers, semiconductors or atomic clocks. Today technologies like smartphones and GPS based on this type of quantum effects are used in everyday life. However, these examples only rely on the knowledge of how these quantum mechanical systems work, but do not actively alter, measure or create quantum states and therefore the full "quantumness" of such systems is not taken advantage of.

The idea behind the second quantum revolution is to develop new technologies, that do not only need quantum systems as an intermediate medium, but which actively manipulate quantum states and use features like entanglement. Examples for such technologies are quantum sensing [START_REF] Degen | Quantum Sensing[END_REF] and quantum metrology [START_REF] Giovannetti | Advances in Quantum Metrology[END_REF] in which entanglement is utilised in order to perform high precision measurements. Another example is quantum cryptography [START_REF] Gisin | Quantum Cryptography[END_REF], which allows for a more secure way of communication. The non-classical communication signal will collapse upon measurement. Therefore it is impossible to catch the signal, without the original receiver noticing it. Probably the most prominent application for a technology of the second quantum revolution is quantum computing [START_REF] Feynman | Simulating Physics with Computers[END_REF][START_REF] Divincenzo | The Physical Implementation of Quantum Computation[END_REF]. In classical computing the carrier of information are classical bits, which can be 1. Introduction in one of two possible states. In quantum computing bits are replaced with quantum bits, also called qubits. Those qubits can be in a superposition of logical basis states and, in addition, might be entangled with each other. This can be beneficial for certain tasks. One famous example in which a quantum computer would excel a classical one is Shor's algorithm [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF], where the superposition principle is used in order to factorise integer numbers. One problem of quantum computers is that the amount of qubits, that can be engineered on a single platform is still very limited. Many companies are competing in a "quantum computing race" with the aim of building the first practical quantum computer. There are already some remarkable achievements. In 2019 Google claimed to have achieved quantum supremacy [START_REF] Arute | Quantum Supremacy Using a Programmable Superconducting Processor[END_REF], which is the ability to solve a problem considerably faster on a quantum computer, than it would be possible on a classical computer. The by now largest quantum processor is IBM's Eagle [START_REF]IBM Quantum Breaks the 100-qubit Processor Barrier[END_REF], which consists of 127 qubits. To understand why it is so difficult to scale up quantum computers, it is helpful to look at different ways of realising physical qubits.

There are three major challenges in the realisation of qubits in physical systems [START_REF] Divincenzo | The Physical Implementation of Quantum Computation[END_REF]. First, one has to find a setup that allows to map an isolated two-level system onto the energetic structure. In addition, it must also be possible to address the different qubits separately, in order to allow local controls. Second, we would like the qubits to have long coherence times. The coherence time tells us for how long information can be stored on a qubit. This is always limited due to interactions with the environment of the qubit, but these interactions might be stronger or weaker, depending on the chosen implementation. Lastly, in order to create a full quantum computer, we will need many qubits. Therefore the physical realisation must also be scaleable.

One possible way of implementing a physical qubit in the real world are trapped atoms or ions. It is possible to trap ions or even neutral atoms using electromagnetic fields [START_REF] Paul | Ein Neues Massenspektrometer Ohne Magnetfeld[END_REF][START_REF] Grimm | Advances In Atomic, Molecular, and Optical Physics[END_REF][START_REF] Bruzewicz | Trapped-Ion Quantum Computing: Progress and Challenges[END_REF][START_REF] Saffman | Quantum Computing with Neutral Atoms[END_REF], and the logical qubit is encoded into different ionic or atomic energy levels. The control and the coupling of the different qubits can then be achieved by, for example, laser fields. Ionic and atomic qubits have the advantage that the systems themselves are all identical, hence there are no errors in for example the energy levels. The main problem with these types of qubits is the scalability as it is not easy to increase the amount of qubits, without loosing the ability to address them individually. Nevertheless, arrays with up to 53 qubits have been achieved recently [START_REF] Zhang | Observation of a Many-Body Dynamical Phase Transition with a 53-Qubit Quantum Simulator[END_REF]. The second big competitor are superconducting systems. Here, the logical qubit can be mapped for example to the quantised magnetic flux, generated by clock-or counter-clockwise current in a superconducting circuit. The state of the qubit can then be changed using microwave pulses and they can be coupled by a capacitor [START_REF] Blais | Circuit Quantum Electrodynamics[END_REF]. These devices are in principle easier to scale than their single atom counterparts because of their on-chip design, but have the disadvantage of short coherence times because they are very sensitive to environmental noise.

Besides the question of a physical realisation of a qubit, there is also the question of how we can control one, or even multiple qubits simultaneously, to perform basic operations. Quantum control allows to steer a quantum system from one state to another. Optimal control [START_REF] Glaser | Training Schrödinger's Cat: Quantum Optimal Control: Strategic Report on Current Status, Visions and Goals for Research in Europe[END_REF] expands this idea and optimises the process such that it can be performed, for example, with the least amount of time or with a minimum amount of energy. Since we want to control these systems, they inevitable must be accessible. A perfectly isolated qubit, would be extremely long-lived, but without any possibility of changing its state, or even measuring it. Therefore we necessarily have to deal with the control of open quantum systems [START_REF] Koch | Controlling Open Quantum Systems: Tools, Achievements, and Limitations[END_REF].

It is possible to distinguish between two different kinds of scenarios. The environment can induce noise into the dynamics of a system, which leads to a deviation from the desired result. A control of a coherent evolution [START_REF] Warren | Coherent Control of Quantum Dynamics: The Dream Is Alive[END_REF][START_REF]Coherent Control in Atoms, Molecules, and Semiconductors[END_REF] does not explicitly take the effect of the environment into account, but rather tries to steer the system into the right direction, as if it would be isolated. The resulting error might then be measured and corrected afterwards. But sometimes the environment can also serve as a tool [START_REF] Rebentrost | Optimal Control of a Qubit Coupled to a Non-Markovian Environment[END_REF][START_REF] Pachón | Mechanisms in Environmentally Assisted One-Photon Phase Control[END_REF][START_REF] Schmidt | Optimal Control of Open Quantum Systems: Cooperative Effects of Driving and Dissipation[END_REF][START_REF] Bylicka | Non-Markovianity and Reservoir Memory of Quantum Channels: A Quantum Information Theory Perspective[END_REF][START_REF] Reich | Exploiting Non-Markovianity for Quantum Control[END_REF]. If its action on the system is directly included in the calculation of the propagation, there might be new, improved control strategies, that allow to reach the desired state even faster or more precisely. There exist even tasks, where the environment is needed in order to achieve the goal. One example would be qubit reset [START_REF] Wiseman | Reconsidering Rapid Qubit Purification by Feedback[END_REF][START_REF] Magnard | Fast and Unconditional All-Microwave Reset of a Superconducting Qubit[END_REF][START_REF] Jiang | Optimality of Feedback Control for Qubit Purification under Inefficient Measurement[END_REF]. If we want to reset or purify a qubit, we have to export entropy. For this purpose we can couple the system to an environment, which then serves as a sink. If the system would be isolated, it would be impossible to achieve this task.

One important measure for the quality of a controlled process is the time needed in order to arrive at the target states. In those cases, in which the environment plays a crucial role, a fast process often correlates with strong coupling of the system to the environment. To capture both aspects of the bath, the necessary features for the control process, but also the dissipation, it can be beneficial to work with a structured environment [START_REF] Ansel | Optimal Control and Selectivity of Qubits in Contact with a Structured Environment[END_REF]. The strongly coupling modes can then be integrated directly into the equations of motions, while the weakly coupling modes can be treated implicitly [START_REF] Reich | Exploiting Non-Markovianity for Quantum Control[END_REF][START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF][START_REF] Fischer | Time-Optimal Control of the Purification of a Qubit in Contact with a Structured Environment[END_REF].
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A strong coupling to an environment leads to memory effects. These effects are caused by non-Markovian dynamics and represent a backflow of information from the environment to the system [START_REF] Breuer | Non-Markovian Dynamics in Open Quantum Systems[END_REF]. Especially superconducting circuits can be subject to noise which causes such effects and therefore leads to non-Markovian dynamics. Unfortunately there is not a unique way of describing such dynamics [START_REF] Vega | Dynamics of Non-Markovian Open Quantum Systems[END_REF]. We list a few possibilities in chapter 2, but they all have their own limitations and scope of application. One option, which is inspired by the idea of separating the environment into strongly and weakly coupling modes, is the stochastic surrogate Hamiltonian [START_REF] Katz | Stochastic Surrogate Hamiltonian[END_REF]. This method will be one of the main focuses of the thesis because, even though it is an approximation, it allows to estimate the error in a controlled way. This thesis is organised as follows. In chapter 2, we will introduce basic concepts and notations, needed for the further discussion. The focus here is the dynamics of open quantum systems and spin systems. In chapter 3 we will study the process of qubit reset. We will answer the question of how to purify a qubit which is in contact with a structured environment in minimum time. The following chapter introduces the idea and basic concepts of the stochastic surrogate Hamiltonian. First the original surrogate Hamiltonian is described, before the mathematical details behind the stochastic resets are explained. Chapter 5 then uses this method, to describe the relaxation of an harmonic oscillator into a spin bath. We benchmark the formalism for different bath sizes and different parameters. The thesis is then concluded in chapter 6, where the different results are summarised, and possible future extensions are indicated.

Open Quantum Systems

This chapter summarises the necessary mathematical and physical methods, in order to obtain the results in the chapters 3, 4 and 5. We start by setting the basic framework for quantum system by defining states and operators in Sec. 2.1. The dynamical equations of open quantum system are introduced in Sec. 2.2 with a distinction between Markovian and non-Markovian dynamics. Finally in Sec. 2.3, the concept of two-level systems are briefly presented.

States and Operators

In this section we briefly recall some fundamentals of quantum mechanical states. The description is inspired by [START_REF] Messiah | Quantenmechanik Band[END_REF][START_REF] Schwabl | QM I): eine Einführung 7[END_REF][START_REF] Fließbach | Quantenmechanik: Lehrbuch zur Theoretischen Physik III[END_REF].

The building blocks of quantum mechanics are quantum states |Ψ⟩, which encode all available information about a system. These states are elements of a complex linear vector space, the so-called Hilbert space H, and as a consequence two states |Ψ 1 ⟩ , |Ψ 2 ⟩ can be superimposed to form another element of H

|Ψ 3 ⟩ = λ 1 |Ψ 2 ⟩ + λ 2 |Ψ 2 ⟩ , (2.1) 
with λ 1 , λ 2 ∈ C. There exists also a scalar product ⟨Ψ 1 |Ψ 2 ⟩ ∈ C, which maps two states to a complex number. According to the Copenhagen interpretation of quantum mechanics [START_REF] Heisenberg | The Physical Principles of the Quantum Theory[END_REF], this complex number can be interpreted as probability amplitude for the state |Ψ 2 ⟩ to collapse onto |Ψ 1 ⟩. This implies, that in order to be physical, a state |Ψ⟩ has to be normalised

|⟨Ψ|Ψ⟩| 2 = 1.
It is also possible to describe composite systems. A system defined in the Hilbert space H 1 and a second system whose states are elements of H 2 can be described jointly in the Hilbert space H = H 1 ⊗ H 2 . Often, we are only interested in a subspace of the total Hilbert space, namely the part that we aim to control or measure. For this we have to introduce mixed states which are described by the density matrix formalism. A density matrix ρ can be seen as a statistical mixture of outer products of pure states,

ρ = k p k |Ψ k ⟩ ⟨Ψ k | . (2.2)
A state is called pure in contrast to a mixed state, if it can be described as an element of a Hilbert space. The weights p k can be interpreted as the probability of finding the eigenstate |Ψ k ⟩ ⟨Ψ k | in the mixture and are normalised k p k = 1. In order to distinguish a pure from a mixed state, we can introduce the purity P of such a state,

P = Tr(ρ 2 ) = k p 2 k ≤ 1. (2.
3)

The purity P can only equal 1 if all p k vanish except one. Hence, a pure state is written as ρ = |Ψ⟩ ⟨Ψ|. Suppose we have a bi-partite state ρ ∈ H A ⊗ H B , but are only interested in the subsystem A. By averaging over the non-relevant degrees of freedom of the subsystem B, we obtain a density matrix describing only the subsystem of interest,

Tr B (ρ) = k ⟨φ (B) k | ρ |φ (B) k ⟩ = ρ A . (2.4) 
The summation runs over an orthonormal basis |φ

(B)
k ⟩ of the subsystem B. This process of reducing the state only to the subsystem of interest is called partial trace and the obtained object the reduced density matrix of subsystem A. It can be shown, that a reduced density matrix inherits all the properties of a density matrix, but note, that it is in general a mixed state, even if the original state ρ is pure.

So far, we have only covered the notion of states. In order to describe how states evolve over time, we have to introduce dynamics.

Dynamics of Open Quantum Systems

If we want to evaluate how a system behaves as time passes, we have to introduce the notion of dynamics. In the simplest case, we have a closed system described by a state vector |Ψ⟩ living in the Hilbert space H. The time evolution is then generated by the so-called Hamiltonian H and the Schrödinger's equation iℏ | Ψ⟩ = H |Ψ⟩ .

(2.5)

For the reminder of this thesis we assume units in which ℏ = 1.

This equation can be lifted to describe the evolution of density matrices, resulting in the von Neumann equation,

i ρ = [H, ρ] , (2.6) 
where the commutator [A, B] = AB -BA was used. This allows us to propagate mixed states in time, but still only closed systems, hence, there is no interaction with the environment. In order to describe the dynamics of open systems, we have to introduce some more concepts.

It is possible to divide the dynamics of open quantum systems in two categories: Markovian and non-Markovian dynamics [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]. Non-Markovian dynamics can be connected to environments with memories. These kind of dynamics lead to a backflow of information from the environment to the system and are usually connected to strongly coupling systems. Markovian dynamics on the other hand do not show such memory effects and commonly involve weak-coupling approximations.

Markovian Dynamics

The derivation for the Markovian dynamical equations follows [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF].

In order to arrive at a dynamical equation for an open quantum system, it is a good starting point to assume the combined initial state of system and environment as

ρ(0) = ρ S (0) ⊗ ρ E (0). (2.7)
Note that this is already an assumption, because the system and environment are generally not in a separable state. At the end of this section we will argue under which conditions the different assumptions are justified. Since the adjoined description of system and environment is again a closed system, we can make use of the von Neumann equation to describe its total dynamics generated by the total Hamiltonian,

H = H S + H SE + H E . (2.8)
Here, the Hamiltonian is split into terms H S and H E describing the system and environment respectively, and a term H SE , which describes their interaction. Formally, we can integrate the von Neumann equation (2.6) to obtain the full density matrix at arbitrary times

ρ(t) = ρ(0) -i t 0 dt ′ [H, ρ(t ′ )] .
(2.9)

In order to arrive at a differential equation for the system only, it is convenient to change into the interaction picture by a unitary transformation,

U SE (t) = e -i(H S +H E )t .
(2.10)

In the interaction picture, the Hamiltonian reads

H (I) (t) = U SE (t)HU † SE (t), (2.11) 
and is time-dependent. The von Neumann equation transforms to

ρ(I) (t) = -i H (I) SE (t), ρ (I) (t) , (2.12) 
with the transformed interacting Hamiltonian

H (I) SE (t) = U SE (t)H SE U † SE (t). (2.13) 
Note that only the interaction part of the Hamiltonian enters. If we perform the partial trace and take the time derivative of the equation (2.9) we arrive at

ρ(I) S (t) = - t 0 dt ′ Tr E H (I) SE (t), H (I) SE (t ′ ), ρ (I) (t ′ ) (2.14)
For simplicity we will drop the indication for the interaction picture for now. As a further approximation, we assume that the system and the environment stay in a separable state and furthermore, that the state of the environment is not changed with time

ρS (t) = - t 0 dt ′ Tr E ([H SE (t), [H SE (t ′ ), ρ S (t ′ ) ⊗ ρ E ]]) (2.15)
Physically this implies a restriction to weak couplings, because this is an approach based on perturbation theory. Furthermore we assume a separation of timescales such that the environment equilibrates much faster than the timescale on which it interacts with the system.

Finally, two more approximations have to be made. First we suppose, that the dynamical equation only depends on the present state of the system. This is called Markov approximation and indicates that the system does not have a memory, because dynamics are only expressed by the state at the time t. Second, we conjecture that the time scale, on which the system changes, is much larger than the time scale τ E over which the bath decays. That allows us to rewrite the dynamical equation as

ρS (t) = - ∞ 0 dt ′ Tr E ([H SE (t), [H SE (t -t ′ ), ρ S (t) ⊗ ρ E ]]) , (2.16) 
because the integrand vanishes for s ≫ τ E . This equation is called Markovian master equation. It can be further simplified by writing the Hamiltonian in the form

H SE = k A k (t) ⊗ B k (t), (2.17) 
and introducing the bath correlation functions

⟨Γ k (t)Γ l (t ′ )⟩ = Tr (B k (t)B l (t ′ )ρ E ) . (2.18)
Equation (2.16) then turns into

ρS (t) = - ∞ 0 dt ′ k,l ((A k (t)A l (t -t ′ )ρ S (t) -A l (t -t ′ )ρ S (t)A k (t)) ⟨Γ k (t)Γ l (t -t ′ )⟩ + (ρ S (t)A l (t -t ′ )A k (t) -A k (t)ρ S (t)A l (t -t ′ )) ⟨Γ l (t -t ′ )Γ k (t)⟩ . (2.19)
If the bath correlation functions decay sufficiently fast, we can assume

⟨Γ k (t)Γ l (t ′ )⟩ = a kl δ(t -t ′ ), (2.20) 
where a kl is a factor of proportionality. We obtain the Lindblad master equation

ρ(t) = -i [H S , ρ S ] + k,l a kl (A l ρ S A k - 1 2 {A k A l , ρ S }), (2.21) 
where we used the anti-commutator {a, b} = ab + ba. We can further diagonalise the matrix a kl to obtain by B a unitary transformation T

ρ(t) = -i [H S , ρ S ] + k γ k (L k ρ S L † k - 1 2 L † k L k , ρ S ), (2.22) 
where we introduced the diagonal matrix γ = T † aT, such that it contains the eigenvalues of a. The operators L k = j T kj A j are called Lindblad or jump operators.

Several approximations have been made in order to arrive Eq. (2.22). Even though they are often valid, for example in the weak coupling limit or in the case of infinitely large environments, some systems are subject to non-Markovian dynamics. These cases require special treatment, especially since there is no unified way of describing them. Some possible ways of treating non-Markovian dynamics are presented in the next section.

Non-Markovian Dynamics

There are several ways of treating non-Markovian dynamics [START_REF] Vega | Dynamics of Non-Markovian Open Quantum Systems[END_REF], but all of them have their own regime of validity.

The natural extension of the approaches presented so far is to use higher order perturbation theory in order to overcome the weak coupling limitations made in the derivation of Eq. (2.22). In practise, this is a difficult task since it is not always possible to find a closed dynamical equation for the reduced density matrix of the system. Results have been achieved for simple model systems [START_REF] Jang | Fourth-Order Quantum Master Equation and Its Markovian Bath Limit[END_REF][START_REF] Golosov | Reference System Master Equation Approaches to Condensed Phase Charge Transfer Processes. II. Numerical Tests and Applications to the Study of Photoinduced Charge Transfer Reactions[END_REF].

A fundamentally different approach is the method of path integrals. Here, the reduced density matrix is propagated by summing over all paths that lead from the initial state to the final state. These paths get weighted by an influence functional, indicating how the different paths are coupled. Usually the path integral formalism assumes separable initial states and the environment to be in a thermal state. In practise these path integrals are difficult to evaluate and usually assume a high temperature limit. At high temperature classical fluctuations dominate the quantum one and it is possible to calculate quantum corrections to the classical paths. This method was used for example in [START_REF] Weiss | Iterative Real-Time Path Integral Approach to Nonequilibrium Quantum Transport[END_REF] to find non-Markovian effects in the Anderson model.

The Surrogate Hamiltonian method [START_REF] Baer | Quantum Dissipative Dynamics of Adsorbates near Metal Surfaces: A Surrogate Hamiltonian Theory Applied to Hydrogen on Nickel[END_REF] and its extension the stochastic Surrogate Hamiltonian [START_REF] Katz | Stochastic Surrogate Hamiltonian[END_REF] rely on sampling the spectral bath density with a finite number of two-level systems. The idea is to model the relevant modes in the bath and therefore capture the impact of the bath onto the system. The Surrogate Hamiltonian is only valid for short time dynamics, due to the finite size of the surrogate bath. At a certain point there will be reflections.

Since the reflections are caused by the neglected bath modes, they have to be implicitly taken into account in order to be able to solve long-time dynamics. Since the strongly coupling modes are directly included in the propagation, one approach done in Ref. [START_REF] Reich | Exploiting Non-Markovianity for Quantum Control[END_REF] is to describe the weakly coupling secondary bath modes using a standard master equation. This becomes numerically very expensive as this implies the propagation of density matrices. Therefore is only feasible for environments with very few strong coupling modes.

The Surrogate Hamiltonian aims to fix this issue by stochastically resetting the modes into thermal equilibrium instead of describing them with a master equation, similar to the Monte-Carlo wave function method [START_REF] Dalibard | Wave-Function Approach to Dissipative Processes in Quantum Optics[END_REF][START_REF] Mølmer | Monte Carlo Wave-Function Method in Quantum Optics[END_REF]. Then it is possible to propagate wave functions and catching the action of the neglected bath modes implicitly.

Spins and Qubits

Because two-level systems (TLS) play a major role throughout the thesis, we take some time to introduce the mathematical treatment of such systems. Every quantum mechanical mechanical TLS can be described using the canonical basis states |0⟩ and |1⟩. A general state can then be expressed as a superposition of these two states,

|Ψ⟩ = c 0 |0⟩ + c 1 |1⟩ , (2.23) 
where c 0 , c 1 ∈ C are the probability amplitudes to find the system in the state |0⟩ or |1⟩, respectively, and have to be normalised,

|c 0 | 2 + |c 1 | 2 = 1.
Every operator A acting on a TLS can be decomposed in terms of the Pauli operators

σ k , A = A 0 1 1 + A x σ x + A y σ y + A z σ z , (2.24) 
where the coefficients A k are obtained by projection onto the corresponding Pauli operator

A k = Tr(Aσ k ). (2.25)
Since the Pauli operators σ k constitute a basis of the TLS operator space, every state of a TLS can also be expressed in terms of the expectation values a k ,

ρ = 1 2 1 + k a k σ k . (2.26) 
The array a k is also called Bloch vector. We can give it a visual representation by realising that |a| ≤ 1, which is a consequence of the positive semi-definiteness of the density matrix. Hence, all states must lie within a unit sphere around the origin, called Bloch sphere (cf. Fig. (2.3)). We can further conclude that pure states lie on the surface of that sphere, while mixed states are within. Instead of solving the von Neumann equation (2.6), we can alternatively describe the time evolution of the TLS by deriving dynamical equations for its coordinates on the Bloch sphere.

Throughout this thesis TLS will play two different roles. In chapter 3 we consider the purification process of a qubit, a TLS which is the fundamental building block of a quantum computer. In this scenario, the TLS is our system of interest. A different use of TLS is made in chapters 4 and 5. There we use TLS to model the environment. Since TLS are the simplest quantum systems, this allows us to greatly reduce the numerical effort in order to propagate joint system-bath dynamics. 

Qubit Reset

Qubit reset or qubit purification is a crucial task in quantum computing [START_REF] Divincenzo | The Physical Implementation of Quantum Computation[END_REF]. Before performing a computational task on an array of qubits, one needs to prepare the system in a pure initial state. To achieve this, entropy has to be exported from the system.

To get rid of entropy, an environment is necessary to act as an entropy sink, hence, qubit reset is an example for a control task which can only be achieved in an open system.

Additionally, we want the reset to not significantly slow down the computation speed and therefore we want to perform the task as fast as possible. This translates into a strong coupling of the system with the environment. Because strong coupling may introduce non-Markovian dynamics, we introduce a structured environment, such that we can catch the non-Markovian effects on the system. This chapter starts by introducing the details of the model in section 3.1. In section 3.2 we discuss a specific choice for the control and interaction. This allows us to find a geometric interpretation of the purification process and find the optimal control strategy.

We then allow for arbitrary interactions and controls in section 3.3. Finally we discuss in section 3.4 how the reset time changes, if additional levels are introduced in the structured environment.

The results shown in this chapter have been published in [START_REF] Fischer | Time-Optimal Control of the Purification of a Qubit in Contact with a Structured Environment[END_REF] and [START_REF] Basilewitsch | Fundamental Bounds on Qubit Reset[END_REF].

Model

We consider a system consisting of a qubit with energy splitting ω q and an external control field ε(t). The corresponding Hamiltonian reads

H q (t) = - ω q 2 σ z q - ε(t) 2 O c , (3.1) 
where σ x , σ y , σ z are the usual Pauli operators and O c is an arbitrary operator acting on the qubit. The qubit is possibly strongly coupled to a two-level system (TLS) modelling a representative mode of the environment [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF], giving rise to non-Markovian dynamics.

In practice, the model can describe the dynamics of two superconducting qubits in a LC circuit, while only the first one is a computational qubit in our picture. The dissipation can for example be introduced by a resistor [START_REF] Karimi | Refrigerator Based on a Superconducting Qubit: Classical and Quantum Performance[END_REF] or by coupling one of the superconducting qubits to a lossy cavity [START_REF] Geerlings | Demonstrating a Driven Reset Protocol for a Superconducting Qubit[END_REF]. The TLS and its interaction with the qubit is described by the Hamiltonians

H tls = - ω tls 2 σ z tls , H int = -J O q ⊗ O tls , (3.2) 
where ω tls is the frequency of the bath mode, J the coupling strength between the qubit and the TLS and O q , O tls operators acting on the qubit and the TLS, respectively. Since the strong coupling of the system to the environment is captured by the representative mode, we can describe the weak coupling of the TLS to the rest of the environment by a standard Markovian master equation Eq. (2.22),

i d dt ρ(t) = [H(t), ρ(t)] + L D (ρ), (3.3) 
L D (ρ) = iκ k=1,2 L k ρL † k - 1 2 L † k L k , ρ ,
where

H(t) = H q (t) + H tls + H int (3.4)
is the full Hamiltonian of the qubit and the TLS and L k the Lindblad operators. This description is motivated by algorithmic cooling [START_REF] Boykin | Algorithmic Cooling and Scalable NMR Quantum Computers[END_REF][START_REF] Park | Electron Spin Resonance (ESR) Based Quantum Computing[END_REF], which is a method of cooling qubits, by redistributing entropy between them. The qubits that acquire additional entropy will afterwards be thermalised via a coupling to a heat bath. These two steps are combined into one in our model.

In what follows, we will refer to the two parameters J and κ as coupling and rate, respectively, to point out their different roles in the purification process, although formally they are of the same nature since both describe the coupling to the environment. We assume the TLS and the bath to be initially in thermal equilibrium characterised by

L 1 = √ N + 1σ - tls , L 2 = √ N σ + tls , (3.5) 
with N = 1/(e βω tls -1) and β = k B T , k B and T being, respectively, the Boltzmann constant and the temperature of the bath. σ -and σ + are the standard lowering and raising operators for two-level systems. The coupling strength J obeys J ≪ ω q in order for the Lindblad operators to be of the form (3.5).

The dynamics of the qubit alone can be extracted as a partial trace over the TLS,

ρ q = Tr tls (ρ) (3.6)
and the main focus lies on the qubit purity,

P q = Tr(ρ 2 q ). (3.7) 
Starting from thermal initial states, we constrain the frequencies to ω q < ω tls in order for the TLS purity to be initially higher than the qubit purity. Together with the above stated limitations to J ≪ ω q , we decided to use the parameters ω q = 1, ω tls = 3, β = 1 and J = 0.1 throughout this chapter, if not stated otherwise. This also allows for a qualitative comparison of the results with Ref. [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF]. The value of κ will be discussed in detail in the following section.

Having established the model, we will proceed to study the behaviour of that system under different conditions. The goal will always be to purify the qubit as fast as possible, but we will see that certain types of controls and interactions are beneficial.

Control Strategy

In this section we investigate the optimal control strategy for qubit purification for an exemplary control and interaction Hamiltonian in great detail. This strategy will be examined for different initial states and also different regimes of coupling strengths. For this purpose we choose a specific control and interaction Hamiltonian (cf. Eqs. (3.1) and (3.2)), namely O c = σ z q , O q = σ x q , O tls = σ x tls .

compl. mixed state pure state Purity

J J J γ γ γ T ε(t) ε(t) ε(t) J γ J γ T T Figure 3.1.
: Schematic representation of the purification setup: A qubit is coupled to an environmental TLS (with a coupling strength J) which decays with the rate γ (defined in Eq. (3.13)) into a heat bath. In the weak coupling limit, which is identified with Markovian dynamics, the state of maximum purity cannot be reached in finite time (middle). If a strong coupling J is considered then the qubit can be directed to the state of maximum purity (bottom).

The density matrix of the joint system, i.e., qubit and TLS, is a 4 × 4 Hermitian matrix which can be parameterised as

ρ =       x 1 x 5 + ix 6 x 7 + ix 8 x 9 + ix 10 x 5 -ix 6 x 2 x 11 + ix 12 x 13 + ix 14 x 7 -ix 8 x 11 -ix 12 x 3 x 15 + ix 16 x 9 -ix 10 x 13 -ix 14 x 15 -ix 16 x 4       , (3.8) 
where the x i are real coefficients and 4 i=1 x i = 1. The dynamical space of the system therefore has dimension 15. After applying the rotating wave approximation (cf. app. A) the dynamics can be separated into four uncoupled subspaces. Only two of these contribute to the qubit purity in which we are interested, the other two are therefore neglected. The definition of the subspaces is clarified by introducing a new set of parameters,

z 1 = x 1 + x 2 -1/2, z 5 = x 7 + x 13 , z 2 = x 12 , z 6 = x 6 -x 16 , z 3 = x 11 , z 7 = x 8 + x 14 , z 4 = -2x 1 -x 2 -x 3 , z 8 = x 5 -x 15 , (3.9) 
in which the qubit purity reads

P q = 1 2 + 2 z 2 1 + z 2 5 + z 2 7 .
(3.10)

The full derivation of this new set of coordinates and the corresponding dynamical equations can be found in appendix B. We denote the subspaces associated with the coordinates (z 1 , z 2 , z 3 , z 4 ) and (z 5 , z 6 , z 7 , z 8 ) by S 1 and S 2 . S 1 describes the population of the qubit and its correlation with the TLS, while S 2 contains information about the coherences of the qubit and the TLS. The equations of motion on S 1 and S 2 are given by

      ż1 ż2 ż3 ż4       = 2J 1       z 2 -z 1 -z 4 +1 2 0 0       + 2J 2       z 3 0 -z 1 -z 4 +1 2 0       + 2α       0 -z 3 z 2 0       -γ       0 z 2 2 z 3 2 γ 1 γ + z 1 + z 4 + 1 2       , (3.11) 
and

      ż5 ż6 ż7 ż8       = J 1       z 6 -z 5 -z 8 z 7       + J 2       -z 8 z 7 -z 6 z 5       + 2α       z 7 0 -z 5 0       - γ 2       0 z 6 0 z 8       , (3.12) 
where we have introduced

δ(t) = ω q + ε(t) -ω tls , α(t) = t 2 dδ dt , J 1 = J cos (δt) , J 2 = J sin (δt) , γ 1 = κ(N + 1), γ 2 = κN, (3.13) 
with γ = γ 1 + γ 2 . From a geometric point of view, S 1 is a 2-dimensional sphere in the space (z 1 , z 2 , z 3 ) defined by

(z 1 -c) 2 + z 2 2 + z 2 3 = r 2 (γ) (3.14)
with its center c = -(z 4 + 1)/2 moving along the z 1 -axis and radius r decreasing with rate γ. S 2 describes a 3-dimensional sphere in the space (z 5 , z 6 , z 7 , z 8 ) given by

z 2 5 + z 2 6 + z 2 7 + z 2 8 = r ′2 (γ) (3.15)
with a fixed center at the origin and decreasing radius r ′ . From now on, we will make use of this geometric picture of the S 1 and S 2 spheres instead of the Lindblad master equation (3.3) to describe the dynamics. The two descriptions are fully equivalent on the level of the qubit.

The initial state is constructed from the tensor product of the two separate density matrices [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF],

ρ =ρ q ⊗ ρ tls + ρ corr = a q µ q + iν q µ q -iν q b q ⊗ a tls 0 0 b tls , +       0 0 0 0 0 0 iξ 0 0 -iξ * 0 0 0 0 0 0       , (3.16) 
where a k and b k are the ground-and exited state populations of qubit and TLS in thermal equilibrium, which are defined by their respective energy level splittings ω k and the temperature. They can be expressed explicitly as

a k = e βω k /2
Since coherences ξ give rise to correlations between the qubit and the TLS, we refer to these coherences as correlations throughout this chapter.

We focus on the purification of a qubit in a thermal state. This means, in particular, that the qubit has no initial coherence (µ q = ν q = 0) and all variables z 5 , . . . , z 8 and their time derivatives vanish, see Eqs. (3.9), (3.11), (3.12) and (3.16). Therefore, we need to only consider the dynamics in S 1 , governed by Eq. (3.11), and neglect contributions from S 2 for now. The influence of initial qubit coherences will briefly be discussed in section 3.2.2. As a consequence, maximising the purity P q , see Eq. (3.10), simplifies to maximising z 1 . In this case, using the spherical symmetry of Eq. (3.11), the dynamics can be further simplified by introducing spherical coordinates,

c = - z 4 + 1 2 , r sin (θ) = z 1 -c, r cos (θ) sin (φ) = z 2 , r cos (θ) cos (φ) = z 3 .
(3.17)

Note that r is identical with the one in Eq. (3.14). The full dynamics of the qubit in these coordinates are then described by

ṙ = - γ 2 (r + (η -c) sin (θ)) , (3.18a) ċ = γ 2 (r sin (θ) + (η -c)) , (3.18b) θ = - γ 2 η -c r cos (θ) + 2J cos (δt -φ) , (3.18c) 
φ = 2α -J tan (θ) sin (δt -φ) , (3.18d) 
where η = γ 1 /γ -1/2. Note that the quantities δ(t) and α(t) are time dependent, due to their dependence on the control ε(t) (see Eq. (3.13)). Using the spherical coordinates of Eq. (3.17), the qubit purity P q can be expressed as

P q = 1 2 + 2(r sin (θ) + c) 2 . (3.19)
Because φ does not enter the purity, we can define a new control,

u(t) = δt -φ. (3.20)
Using Eq. (3.18d), we arrive at

δ = u + 2α -J tan (θ) sin (u) . (3.21)
This way we can first determine the optimal control strategy for u(t) and afterwards calculate the physical controls δ(t), respectively ε(t).

The north pole of the S 1 sphere defined by θ = π/2 is the state of maximum purity, and we denote its position on the z 1 -axis by Z = r + c. In principle, the maximum accessible purity can change over time since the radius r and the centre c of the sphere change.

The time evolution of Z is governed by

Ż = ṙ + ċ = - γ 2 (Z -η) (1 -sin (θ)) ≥0 . (3.22) 
Using Eqs. (3.13) and (3.16), it is straightforward to show that η = a tls -1 2 . This quantity is connected to the initial TLS purity by P tls (0) = 1 2 + 2η 2 . The behaviour of Z is different depending on whether qubit and TLS are initially correlated or not. Hence, we examine both cases separately in the following.

Time-optimal Control for Correlation-free Initial States

If there is no initial correlation between qubit and TLS (ξ = 0), we find Z = a tls -1 2 = η by evaluating the initial state given by Eq. (3.16) in terms of Eqs. (3.9) and (3.17). We therefore deduce from Eq. (3.22) that Z, the north pole of S 1 , is a constant of motion for correlation-free initial states. Moreover, this constant can be used to simplify the differential system (3.18) even further by replacing c = Zr = ηr. Effectively, the dynamics can then be described by only two equations,

ṙ = - γ 2 r (1 + sin (θ)) , (3.23a) θ = - γ 2 cos (θ) + 2J cos (u) . (3.23b)
Without correlation (ξ = 0, implying z 2 = z 3 = 0), the initial state of the system is the south pole (θ = -π/2) of S 1 as can be verified with Eq. (3.17). Since Z is a constant of motion, the control strategy consists in performing a rotation to reach the north pole (θ = π/2) of the sphere as fast as possible. In the dissipation-free case (γ = 0), the radius becomes constant and θ rotates with velocity θ = 2J cos u (see Eq. (3.23b)).

The maximum speed for the rotation is reached with u(t) = 0 which corresponds to the resonant case δ(t) = 0 (see Eq. (3.21)). This control strategy does not change if the dissipation is taken into account. However, the dissipative term slows down the rotation, which can be seen by the relative opposite signs of the two terms in Eq. (3.23b). Two scenarios can be encountered according to the relative weights of the two terms, one in which the dissipation dominates and a second where it can be viewed as a perturbation of the unitary dynamics.

In general, we observe that the radius decreases exponentially while the position c of the center approaches asymptotically the value η. These trajectories define the purity which can be reached by setting the position of the north pole. On the other hand, the angular differential equation (3.18c) gives us information about the minimum time needed to reach the state of maximum purity. For correlation-free initial states, the angular equation (see Eq. (3.23b)) can be integrated analytically leading to the minimum time T min , which is needed to reach maximum purity on S 1 ,

T min = π/2 -π/2 dθ θ = 8 arctan 4J+γ 4J-γ (4J + γ)(4J -γ) . (3.24) 
In the zero dissipation limit γ → 0, we recover the result established in Ref. [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF] of T min (γ = 0) = T 0 = π 2J . From Eq. (3.24) it can be seen that the case J ≤ J min with

J min = γ/4, (3.25) 
is not well defined. Since J defines the strength of the coupling of the system qubit to the environment, this scenario corresponds to a weak coupling of the system to the environment. The timescale, on which the qubit interact with the environment, and the timescale on which the environment equilibrates separate, similar to the separation of timescales assumed in the derivation of the master equation (cf. Sec. 2.2.1). Mathematically, we notice that a fixed point in θ, i.e., θ = 0, given by θ f = arccos (4J/γ) arises. At the fixed point, correlations between the qubit and TLS, which are build up during the process, cannot be transformed into population anymore and therefore do not further contribute to the purification. The north pole is thus not accessible and any gain in purification comes only from the exponential decrease in r caused by the dissipation into the heat bath, see Fig. decrease of r due to dissipation would be connected to a loss of purity. Since the decrease in r is maximised, in this case, for θ = θ f , the optimal strategy consists here again in applying a zero control field u(t) = 0. However, the final state cannot be reached in finite time. Using the accessible state space measure of non-Markovianity [START_REF] Lorenzo | Geometrical Characterization of Non-Markovianity[END_REF], we have also verified that the different parameter regions can indeed be identified with the Markovian (γ > 4J) and non-Markovian regimes (γ < 4J).

The time evolution of the dynamical equations (3.23a) for the non-Markovian and Markovian regimes are plotted in Fig. 3.2(a) and (c). We notice occurrence of the above mentioned angular fixed point regime 4J < γ. Figure 3.3 displays the dependence of the minimum time on the ratio γ/J for correlated and uncorrelated initial states. The sharp transition to the Markovian regime can be observed at γ = 4J, indicated by the divergence of the purification time. Figure 3.3 shows that the purification time for correlated initial states is lower than for uncorrelated ones. As can be seen in Fig. 3.2(b), this is a consequence of the position of the initial state which is closer to the equator of S 1 .

Time-optimal Control with Correlated Initial States

Adding correlations between qubit and TLS to the initial state, i.e. ξ ̸ = 0 in Eq. (3.16), changes the dynamics because Z(0) ̸ = η and therefore Z is not constant anymore, as shown in Eq. (3.22). Although it makes a difference whether ξ is real or imaginary, we will only consider real ξ in what follows. This is because a purely imaginary ξ only modifies the initial value of φ. The control field can always be chosen so that it produces a short and strong α-pulse in order to rotate φ to 0, see Eq. (3.18d) and Ref. [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF]. Since this rotation can be made arbitrarily fast (at least theoretically), we focus on the timeoptimal solution for the remaining control problem which coincides with the case of initially real ξ.

Arbitrarily large correlations cannot be introduced due to the physical constraint of the density matrix being positive semi-definite. An eigenvalue analysis reveals that the maximum amount of correlation is

ξ max = a q a tls b q b tls . (3.26)
The dynamics of the maximal reachable purity depends on the initial value of Zη.

Using the definition of the initial state (3.16), we find

Z(0) -η = a tls -a q 2 2 + ξ 2 - a tls -a q 2 ≥ 0, (3.27) 
from which together with Eq. (3.22), we can conclude that Ż ≤ 0 and

Z(t) -η = (Z(0) -η) exp - γ 2 t 0 (1 -sin (θ))dt ′ . (3.28)
Correlations therefore increase the initially accessible purity which then decays asymptotically to η, the same value as in the uncorrelated case. This decay is caused by the decrease of the radius r, which can be written as

ṙ = - γ 2 [Z -c =r +(η -c) sin (θ)]. (3.29) 
To prove that r is monotonically decreasing, we distinguish two cases.

• ηc ≥ 0:

In this situation, together with Eq. (3.28), we can estimate

ṙ ≤ - γ 2 (η -c) (1 + sin (θ)) ≤ 0. (3.30) • η -c ≤ 0:
From Eq. (3.18b), we can deduce the maximum of c during the process as

c max = r sin (θ) + η ≤ r + η. (3.31)
Using this relation, an upper limit for ṙ is given by:

ṙ = - γ 2   r + (η -c) sin (θ) ≥-r   ≤ 0. (3.32)
As before, we study the time needed to reach the state of maximum purity by examining the angular dynamics which are governed by (see Eq. (3.18c)) As before, the latter driving term is strongest for u(t) = 0. The purification time is lower than in the uncorrelated case due to the additional first positive term, which increases the effective driving speed. In addition, correlations change the initial state for θ given by θ(0) = arccos (ξ/r(0)), which leads to a shorter distance towards the S 1 north pole that needs to be covered. In particular, the minimum time for γ = 0 is T 0 = π/2-θ(0)

θ = γ 2 Z -η r cos (θ) - γ 2 cos (θ) + 2J cos (u) . (3.33) 

2J

, in agreement with [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF]. The angular dynamics (3.33) cannot be integrated analytically anymore, but Fig. 3.3 shows the numerically calculated times in comparison to the analytical results in the correlation-free case. Interestingly the same divergence for γ > 4J, which corresponds to the transition between Markovian and non-Markovian behavior, can be observed. Physically, this means that if the dissipation becomes too large in comparison with the coupling J, the dynamics become Markovian and purification takes an infinite amount of time. The optimal trajectory for the Markovian case is plotted in Fig. 3.2(d). Nevertheless, we observe that the final state has a lower purity than the initial north pole even in the case of non-Markovian dynamics. This is due to the decrease of Z over time. However, the final purity is still higher than in the correlation-free case, i.e., with ξ = 0. The optimal trajectory for this situation is shown in Fig. 3.

2(b).

Despite being able to reach higher purity in a shorter time, the non-Markovian regime has the drawback of the state of maximal purity not being stable. Therefore, after reaching the target state, qubit and TLS have to be decoupled, for example by tuning them out of resonance, or the purity of the qubit will decrease. This is not the case for Markovian dynamics as shown in Fig. 3.2(c). The angular fixed point is reached and the system tends continuously towards the state of maximum purity, which is in return never reached exactly in finite time.

Figure 3.4 displays the dependence of the purification on the inverse temperature for uncorrelated and correlated initial states. For large β, we approach the same purification time in the two situations because the amount of allowed correlations goes to zero in this limit (see Eq. (3.26)). The minimum time T min is slightly larger than T 0 due to the dissipation terms which are different from zero even at low temperature (see Eq. (3.13)),

lim β→∞ γ = κ ̸ = 0. (3.34)
Surprisingly, the dynamics have a different behaviour for small β. In Fig. 3.4(a), the transition to the Markovian regime is similar to the one of Fig. of the purification time. For correlated initial states (Fig. 3.4(b)), we observe that for high temperatures, i.e. small β, the purification time decreases and approaches zero. This suggests that the angular fixed point can be resolved by adding correlations, as described below.

The following discussion describes the behaviour of θ = 0. We will refer to the value of θ at which its derivative vanishes as angular fixed point θ f , although it is not a fixed point of the full dynamics i.e. a steady state.

For correlated initial states, the fixed point equation reads

θ f = arccos 4J γ r η -c = arccos 4J γ Z -c η -c . (3.35)
Note that the value of θ f depends on r and c and therefore can change over time. It is only a fixed point in the sense that if θ = θ f is reached, it will not change its value any more, even though r and c will still continue to vary.

This fixed point is only defined if 4J γ r η-c > 1, otherwise there is no solution to Eq. (3.35) and no fixed point occurs. Recall that, for uncorrelated initial states, we found Z = η and therefore we recover J ≤ γ 4 as the condition for the existence of the fixed point. In general, as can be seen from Eq. (3.28), the second factor is always larger or equal to one and J > γ 4 leads to fixed point-free dynamics. However, if initial correlations between qubit and TLS are introduced, the fixed point can be resolved for J < γ 4 . From Eq. (3.35), we calculate the maximum amount of correlations for which the fixed point is still defined,

ξ fixed = ± a tls -a q 2 1 - γ 4J 2 . (3.36)
If more correlations are included, there is no fixed point present initially. Nevertheless, a fixed point, into which the dynamics may eventually run, can still occur during the time evolution itself, due to the radius r and the centre c changing over time. In contrast to correlation-free initial states, this conclusion is true for any temperature with sufficient initial correlations. Note that the limiting boundary for a valid density matrix has to be satisfied.

In general, the dynamics of the system can be split into different regimes, depending on the correlations, which are shown in Fig. 3.6. The different zones describe the regime in which no fixed point is present initially, the case where the fixed point arises during the evolution and the region in which no fixed point occurs during the whole purification process. Interestingly, we can go from one regime to the other by controlling the amount of correlations between the qubit and the TLS. Although it is possible to purify the system in region C in finite time, as it is in the non-Markovian regime, it is important to point out that non-Markovianity is a feature of the dynamical map, which does not depend on the initial state [START_REF] Dajka | Distance between Quantum States in the Presence of Initial Qubit-Environment Correlations: A Comparative Study[END_REF][START_REF] Smirne | Initial Correlations in Open-Systems Dynamics: The Jaynes-Cummings Model[END_REF][START_REF] Wißmann | Detecting Initial System-Environment Correlations: Performance of Various Distance Measures for Quantum States[END_REF].

We investigate in this section the influence of correlations in the presence of initial qubit coherences, i.e., µ q , ν q ̸ = 0 (cf. Eq. (3.16)) on the optimal strategy designed in section 3.2. In particular, qubit coherences lead to a dynamics on S 2 since z 5 or z 7 are not vanishing anymore, see Eq. (3.9) and (3.12). Hence, the qubit purity P q gets now simultaneous contributions from both spheres. Using Eq. (3.10), the purity can be split into two different contributions. The terms proportional to z 2 1 will be called contribution from S 1 and the other terms will be assigned to S 2 . Therefore, it is interesting to study whether the dynamics on S 2 change the procedure to get the highest overall purity P q . For the resonant case, δ = α = 0, the equations on S 2 are ż5 = Jz 6 , (3.37a)

ż6 = -Jz 5 - γ 2 z 6 , (3.37b 
) ż7 = -Jz 8 , (3.37c 
) ż8 = Jz 7 - γ 2 z 8 , (3.37d) 
with the initial conditions

z 5 (0) = µ q , z 7 (0) = ν q , z 6 (0) = 0, z 8 (0) = 0. (3.38)
Because the equations for z 5 and z 7 are decoupled and only their squared sum enters into the purity, it is sufficient to consider z 7 = 0 or equivalently only real coherences. In region A, a fixed point is initially defined, while in region B there is no fixed point accessible initially, but during the time evolution of the system. Area C corresponds to the parameter space in which no fixed point occurs in the time in which the final state is reached.

The equations of motion are identical to the ones of a damped harmonic oscillator. The solution reads

z 5 (t) = µ q 1 + γ 4ω 2 cos ωt -arctan γ 4ω e -γ 4 t , (3.39) 
with ω = J 2γ 2 /16. This describes an oscillating behavior damped by an exponential decay having its maximum at t = 0. The purity contribution from S 2 is therefore maximal in the initial state. As in section 3.2, we can identify the Markovian limit γ ≥ 4J in which the cosine function turns into a hyperbolic cosine and z 5 is monotonically decreasing. We focus below only on the non-Markovian case. Caution has to be made on the allowed range of parameters µ q and ξ. For vanishing coherences, the maximum value of ξ has already been calculated in Eq. (3.26) and this computation can be done for µ q in a similar way. If both coherences and correlations are present then the limits are determined numerically. We compute the maximum value of µ q for which the density matrix for a given ξ has non-negative eigenvalues. The allowed parameter region is plotted in Fig. 3.7, where the colour coding indicates the maximal purity gain during the evolution of such an initial state in comparison to the purity of the state at θ = π/2.

At this point, we already know how to maximise the purity contributions from S 1 and S 2 separately. It is however not clear how the overall purity behaves. We again consider the cases of correlated and uncorrelated initial states separately. In the uncorrelated situation, we combine Eqs. (3.24) and (3.39) to observe that, at time T min , where the purity is maximum on S 1 , the contribution of S 2 vanishes i.e. z 5 (T min ) = 0. The corresponding trajectory is plotted in Fig. 3.8(a). As shown in Fig. 3.9(a), numerical simulations reveal that the dynamics on S 2 are not relevant at all since the maximum purity and the time to reach it are the same as the ones on S 1 for any value of µ q . In particular, the best final purity is limited by the initial purity of the TLS.

However, this behavior changes if correlations are considered. As can be seen in Eq. (3.37), they do not affect the dynamics on S 2 but they reduce the time needed to reach the north pole on S 1 and therefore introduce a phase shift between S 1 and S 2 . Due to this shorter time, the contribution from S 2 has not completely vanished yet and the overall purity can increase, see Fig. 3.8(b). This maximum amount of purity, which is reached during the purification process, is called P max . The color code in Fig. 3.7 indicates

∆P = P max P (T min ) -1. (3.40)
This corresponds to the relative purity which is gained by taking into account the combined dynamics of S 1 and S 2 . The numerical results of Fig. 3.9(b) demonstrate that, in case of initial correlations, qubit coherences can be transformed into an additional gain of population and therefore break the limit of the TLS purity. Note that this is not possible with correlation-free initial states as shown in Fig. 3.8(a) and 3.9(a). Moreover, . Parameters are set to ξ = ξ max /2 and µ q = µ q, max . Note that µ q, max depends on ξ. The blue (dark gray) and green (light gray) circles are the projections of S 2 onto the (z 5 , z 6 )plane at initial and final times.

it can be seen in Fig. 3.9(b) that, while the maximally accessible purity increases, the minimum time needed to reach it decreases as coherences increase. In other words, qubit coherences improve both total time and final purity of the control scheme, but require qubit and TLS to be initially correlated.

Maximum Purity and Minimum Time for

Resonant Controls

The model introduced in (3.1) and (3.2) is very general and in the last section, we have focused on a specific choice of operators. Now we examine how the ability to purify the qubit depends on the type of interaction between the qubit and ancilla and also the available type of control. In other words, we want to find the optimal control Hamiltonian, given a certain interaction.

We also drop the secondary bath, i.e., we assume a decay rate of γ = 0, since we saw it is neither improving the final purity, nor the purification time and we are now interested in the fundamental limits for their different configurations.

To this end, we explain now how to obtain the closed-form expression for the time evolution of the qubit purity, given that the joint qubit-ancilla dynamics is described by Hamiltonian (3.4). We present a detailed derivation for µ q = 0.0µ q,max µ q = 0.25µ q,max µ q = 0.5µ q,max µ q = 0.75µ q,max µ q = 1.0µ q,max 0.0 0.2 0.4 0.6 0. : Time evolution of the qubit purity P q of the qubit for uncorrelated (a) and correlated (b) initial states with different coherences µ q ∈ [0, µ q,max ], where µ q,max is the maximum allowed value of the coherence. The parameter ξ is set to 0 and ξ max /2 in (a) and (b) respectively. The horizontal dashed lines depict the initial purity of the TLS, P tls (0) and the maximum value P max of P q .

O q = O tls = O c = σ
{σ x , σ y , σ z }, which allow for purification. Using the Cartan decomposition for two qubit operations [START_REF] Zhang | Geometric Theory of Nonlocal Two-Qubit Operations[END_REF], it is possible to determine whether a certain combination of operators is suitable. More details about the Cartan decomposition and its application on this specific system can be found in appendix C.

Coupling via Pauli Operators

We start by applying a transformation T = T S ⊗ 1 B , where T S is chosen such that it diagonalises H q . The transformed Hamiltonian H ′ = T † HT for a constant and resonant field ε becomes

H ′ =       ω tls B 0 A B 0 A 0 0 A 0 -B A 0 -B -ω tls       (3.41)
with A = Jω q /ω tls and B = Jε/ω tls . The resonance condition for this choice of Hamiltonian implies ε = ω 2 tlsω 2 q and, as a consequence, |A| 2 + |B| 2 = J 2 . For the constant resonant field, the time-evolution operator U(t) can be calculated analytically, with

U(t) = e -iH ′ t =       u 11 u
u 11 = δ + 2 cos(Φ + ) + δ - 2 cos(Φ -) -i 1 η + δ + ω tls 2 + |B| 2 Ω sin(Φ + ) -i 1 η - δ -ω tls 2 - |B| 2 Ω sin(Φ -), (3.43a 
)

u 12 = B Ω cos(Φ + ) -cos(Φ -) -i B 2 δ + η + sin(Φ + ) + δ - η - sin(Φ -) , (3.43b) 
u 13 = -i AB Ω 1 η + sin(Φ + ) - 1 η - sin(Φ -) , (3.43c) 
u 14 = -i A 2 δ + η + sin(Φ + ) + δ - η - sin(Φ -) , (3.43d) 
u 22 = δ + 2 cos(Φ -) + δ - 2 cos(Φ + ) -i |B| 2 η + Ω sin(Φ + ) + i |B| 2 η -Ω sin(Φ -), (3.43e) 
u 23 = -i A 2 δ + η - sin(Φ -) + δ - η + sin(Φ + ) , (3.43f) 
where

δ ± = 1 ± ω tls /Ω, Ω = ω 2 tls + 4|B| 2 , η ± = J 2 + ω tls 2 (ω B ± Ω) (3.44)
and Φ ± (t) = η ± t. Note that Φ ± (t) is the only time-dependent quantity in Eq. (3.43).

We can approximate the exact equations (3.42) and (3.43) to derive an expression for the qubit purity

P q (t) = Tr Tr tls U(t)ρ(0)U † (t) 2 . (3.45)
Each element of the time-evolution operator is given by a sum of trigonometric functions. We thus compare amplitudes of the different terms to identify the dominating terms. As an illustration, the approximations will be explicitly shown for the amplitude of the final term of u 11 in Eq. (3.43a), but the procedure is equivalent for all other contributions.

Using the relation J = |A| 2 + |B| 2 , we express all appearing quantities in terms of A, B, and ω tls . This results in

δ -= 1 - ω tls 2 ω 2 tls + |B| 2 , (3.46a 
)

Ω = ω 2 tls + 4|B| 2 (3.46b)
and

η -= |A| 2 + |B| 2 + ω 2 tls 2 - ω tls 2 ω 2 tls + 4|B| 2 . (3.46c)
Typically J ≪ ω tls . Since |B| ≤ J, this suggests an expansion of all variables in B,

δ -≈ 2|B| 2 ω 2 tls + O(|B| 4 ), (3.47a) 
η -≈ |A| + O(|B| 4 ), (3.47b 
)

Ω ≈ ω tls + 2|B| 2 ω 2 tls + O(|B| 4 ). (3.47c)
With the approximated variables, we find

i η - δ -ω B -2|B| 2 /Ω ≈ O(|B| 4 ) , (3.48) 
i.e., we can neglect the final term in Eq. (3.43a). Carrying out similar approximations for the other amplitudes in Eq. (3.43) leads to

u 11 ≈ cos(Φ + ) -i sin(Φ + ), (3.49a 
)

u 12 ≈ 0, (3.49b 
)

u 13 ≈ 0, (3.49c) 
u 14 ≈ 0, (3.49d) 
u 22 ≈ cos(Φ -), (3.49e) 
u 23 ≈ i sin(Φ -). (3.49f) 
The corresponding approximated time-evolution operator allows us to obtain a closedform expression for the time evolution of the qubit purity P q (t). In order to derive it, we additionally assume the initial state of qubit and ancilla to be separable and the ancilla to be in thermal equilibrium with its bath

ρ(0) = a q µ q + iν q µ q + iν q b q ⊗ a tls 0 0 b tls . (3.50) 
The qubit purity, cf. Eq. (3.45), is then given by

P q (t) = a q a tls |u 11 | 2 + a q b tls |u 22 | 2 + b q a tls |u 23 | 2 2 + b q b tls |u 11 | 2 + b q a tls |u 22 | 2 + a q b tls |u 23 | 2 2 + 2 µ 2 q + ν 2 q |u 11 | 2 |u 22 | 2 . (3.51)
Note that the qubit purity P q (t) depends only on η -. While u 11 depends on η + , cf.

Eq. (3.49), it enters P q (t) as |u 11 | 2 ≈ 1 such that the dependence on η + disappears when inserting Eq. (3.49) and Φ ± = η ± t into Eq. (3.51).

For all the other suitable combinations of interactions and controls one just has to consider slightly modified forms of the Hamiltonian H ′ 1 = H ′ in Eq. (3.41), namely

H ′ 2 =       ω tls B 0 -A -B 0 A 0 0 -A 0 -B A 0 B -ω tls       , (3.52a) 
or

H ′ 3 =       ω tls 0 0 -A 0 0 -A 0 0 A 0 0 A 0 0 -ω tls       , (3.52b) 
or

H ′ 4 =       ω tls 0 0 A 0 0 -A 0 0 -A 0 0 A 0 0 -ω tls       , (3.52c) 
with A and B given in Table 3.1. The respective time-evolution operators are found to be 

U 2 (t) =       u 11 u 12 u 13 -u 14 -u 12 u 22 u 23 u 13 u 13 -u 23 u * 22 -u * 12 u 14 u 13 u * 12 u * 11       , (3.53a) 
H int = J (O q ⊗ O tls ) and local controls H c (t) = ε 2 O c with O q , O tls , O c ∈ {σ x , σ y , σ z }.
The third column indicates the form (i) of the Hamiltonian H ′ i , cf. Eq. (3.52). The last column states the minimal time T min , cf. Eq. (3.54), for purification of the qubit.

O q ⊗ O tls O c form A B T min σ 1 ⊗ σ σ 1 (1) Jω S /ω B Jε/ω B 46.9 σ 1 ⊗ σ σ 2 (3) -iJ 0 15.7 σ 1 ⊗ σ σ 3 (1) J 0 15.7 σ 1 ⊗ σ σ 1 (2) iJω S /ω B -iJε/ω B 46.9 σ 1 ⊗ σ σ 2 (4) J 0 15.7 σ 1 ⊗ σ σ 3 (2) iJ 0 15.7 σ 1 ⊗ σ σ 1 - - - - σ 1 ⊗ σ σ 2 - - - - σ 1 ⊗ σ σ 3 - - - - σ 2 ⊗ σ σ 1 (3) iJ 0 15.7 σ 2 ⊗ σ σ 2 (1) Jω S /ω B Jε/ω B 46.9 σ 2 ⊗ σ σ 3 (3) iJ 0 15.7 σ 2 ⊗ σ σ 1 (4) -J 0 15.7 σ 2 ⊗ σ σ 2 (2) iJω S /ω B -iJε/ω B 46.9 σ 2 ⊗ σ σ 3 (4) -J 0 15.7 σ 2 ⊗ σ σ 1 - - - - σ 2 ⊗ σ σ 2 - - - - σ 2 ⊗ σ σ 3 - - - - σ 3 ⊗ σ σ 1 (1) -Jε/ω B Jω S /ω B 16.7 σ 3 ⊗ σ σ 2 (1) -Jε/ω B Jω S /ω B 16.7 σ 3 ⊗ σ σ 3 - - - - σ 3 ⊗ σ σ 1 (2) -iJε/ω B -iJω S /ω B 16.7 σ 3 ⊗ σ σ 2 (2) -iJε/ω B -iJω S /ω B 16.7 σ 3 ⊗ σ σ 3 - - - - σ 3 ⊗ σ σ 1 - - - - σ 3 ⊗ σ σ 2 - - - - σ 3 ⊗ σ σ 3 - - - - 53 
3. Qubit Reset or U 3 (t) =       u 11 0 0 -u 14 0 u 22 -u 23 0 0 u 23 u * 22 0 u 14 0 0 u * 11       , (3.53b) 
or

U 4 (t) =       u 11 0 0 u 14 0 u 22 -u 23 0 0 -u 23 u * 22 0 u 14 0 0 u * 11       , (3.53c) 
where the u ij refer to those used for U 1 (t) = U(t) in Eq. (3.43), but need to be evaluated for the proper values of A and B, as listed in Table 3.1. It is straightforward to check that the qubit purity P q (t) for U 2 (t), U 3 (t), and U 4 (t) is also given by Eq. (3.51), with the u ij modified as just described.

In order to determine the minimum time for purification, T min , we demand Ṗq (t) = 0 and Pq (t) < 0. Inserting the u ij from Eq. (3.49) into Eq. (3.51), we find

T min = π 2η - ≈ π 2|A| , (3.54) 
where, in the second step, we have used the approximation of Eq. (3.47b). Equation (3.54) implies that minimising the purification time corresponds to maximising the amplitude of the anti-diagonal of H ′ in Eq. (3.41) for the case

O q = O tls = O c = σ x .
For the other cases, the formula for the minimal time T min , cf. Eq. (3.54), is identical since P q (t) depends only on the moduli of the u ij .

Note that T min is only determined by η -, cf. Eq. (3.47b), and thus essentially by |A|. The latter should be as large as possible in order for T min to be minimal. Given a specific choice of O q , O tls , O c ∈ {σ x , σ y , σ z }, A and B are determined by the resonance condition λ 1λ 0 = ω tls , with λ 0 < λ 1 the eigenvalues of the qubit Hamiltonian H q , and cannot be chosen at will. Rather, there exist certain combinations of qubit-ancilla interaction and qubit control that maximise |A|. This is summarised in We thus find that for all choices of qubit-ancilla interaction and qubit control, only |A| affects the minimal purification time T min . Table 3.1 also shows that, while purification is possible with several different interactions

H int = J (O q ⊗ O tls ), the specific choice of local control H c (t) = ε(t)
2 O c crucially determines the achievable purification time for that interaction.

Coupling via Superpositions of Pauli Operators

Next, as a generalisation, we drop the restriction to Pauli operators (O q , O tls , O c ∈ {σ x , σ y , σ z }) and instead allow for operators of the form H int = J (O q (φ q , θ q ) ⊗ O tls (φ tls , θ tls ))

and a local control given by H

c (t) = ε(t) 2 O c (φ c , θ c ) with O k (φ k , θ k ) = cos(φ k ) sin(θ k )σ x + sin(φ k ) sin(θ k )σ y + cos(θ k )σ z , (3.55) 
where the angles are chosen as φ k ∈ [0, 2π] and θ k ∈ [0, π] with k ∈ {c, q, tls}. Performing the same transformations as described above, i.e., diagonalising the qubit Hamiltonian H q , one arrives at

H ′ =       ω tls -B + c B + q e -iφ tls A * c A * q e -iφ tls B + q e iφ tls B + c A * q e iφ tls -A * c A c A q e -iφ tls -B - c B - q e -iφ tls A q e iφ tls -A c B - q e iφ tls -ω tls + B - c       , (3.56) 
where

A c = Ā cos(θ tls ), (3.57a) 
A q = Ā sin(θ tls ), (3.57b)

Ā = J ω + + ω - 2ω tls sin(θ q ) cos(φ c -φ q ) - ε cos(θ q ) sin(θ c ) ω tls -i sin(θ q ) sin(φ c -φ q ) , (3.57c) 
B ± c = J cos(θ tls ) Γ + ± cos(θ q )Γ - ± -ξω ± , (3.57d) 
B ± q = J sin(θ tls ) Γ + ± cos(θ q )Γ - ± + ξω ± , (3.57e) 
ξ = 2ε sin(θ q ) sin(θ c ) cos(φ c -φ q ), (3.57f 
) 3.1, by A = Āe iφ tls sin(θ tls ).

ω ± = ε cos(θ c ) + ω q ± ω tls , (3.57g) 
Γ + ± = ε 2 sin 2 (θ c ) + ω 2 ± , (3.57h) 
Γ - ± = ε 2 sin 2 (θ c ) -ω 2 ± . (3.57i) 
In the general case, Eq. (3.55), it is not obvious how to obtain an analytical expression for the time-evolution operator. Nevertheless, generalising the specific cases presented in Table 3.1 provides some insight: According to Table 3.1, purification requires O tls ̸ = σ z . We therefore expect that a σ z -component in O tls will not be helpful for faster purification.

In order to have no σ z -component in O tls , we have to choose θ tls = π/2. This implies in particular that the variables A c and B ± c vanish, cf. Eq. (3.57), which eliminates the additional entries of the generalised Hamiltonian H ′ compared to the special cases in Eqs. (3.41) and (3.52). Furthermore, this choice of θ tls maximises the magnitude of the anti-diagonal, A q = Ā. If we assume that, as before, an optimal purification strategy is to maximise the magnitude of the anti-diagonal, i.e., | Ā|, also with respect to the other angles, then the angle φ tls cannot be important, since it does not modify the magnitude of any term in Eq. (3.56), in other words, φ tls is only responsible for a complex phase. as the control operator is varied via θ c from a pure σ z -control at θ c = 0 to σ x -control at θ c = π/2 back to a pure σ z -control at θ c = π, but with opposite sign. The other angles are chosen such that there is a σ z ⊗ σ xinteraction between qubit and ancilla.

Hence the task of minimising the purification time T min in the generalised case reduces to solving a three-angle problem involving θ c , θ q , φ cφ q . Based on this picture, we now conjecture that our result for the case of the Pauli operators (O q , O tls , O c ∈ {σ x , σ y , σ z }) -namely that maximal |A|, cf. Table (3.1), yields an optimal solution -holds true also for generalised interactions and control operators. This is supported by numerical data, cf. Fig. 3.10, showing that maximal 1/T min , hence minimal T min , concurs with maximal Ā also for generalised control fields.

Given the importance of Ā, respectively A, the lack of a physical interpretation of this quantity is dissatisfying. In order to gain more insight, we revisit Table 3.1, which reveals maximal A as a condition for minimal purification time. Beyond that, given a certain interaction, the purification time is also minimised if the commutator of the control Hamiltonian, O c ⊗ 1 tls , and the interaction Hamiltonian, H int = J(O q ⊗ O tls ), has maximum norm. The latter information can be compressed into the quantity C =

1 2 √ 2 ∥[O q , O c ]∥,
which allows for a physical interpretation: One can show that the norm of the commutator of O c and O q sets an upper limit to the energy (or, more specifically, heat) exchange between the qubit and ancilla,

| Q| = tr ρq H q ≤ J √ 2 (ε∥[O q , O c ]∥ + ω q ∥[σ z , O q ]∥) . (3.58) 
One may now wonder whether C, relevant for the rate of heat exchange, is related to Ā, whose maximum is a condition for minimal purification time.

To check whether maximising | Ā| corresponds to the same purification strategy as maximising C, we evaluate the two quantities for different interactions and control fields and depict the corresponding values in Fig. 3.11. The results show that although the two quantities behave very similarly, they only coincide for certain cases, namely those indicated by the vertical lines in Fig. 3.11(c,d). Incidentally, these are exactly the pure Pauli operator choices for which the global minimum of the purification time can be realised, cf. T min = π/(2J) and resulting in the value of 15.7 in Table 3.1. In these cases, both C and | Ā| are maximal. This underpins our claim of having identified the globally minimal purification time. On the other hand, the different behaviour of C and | Ā| as a function of the angles in general indicates that the heat exchange argument made in Eq. (3.58) alone cannot fully explain the significance of Ā.

To summarise, we managed to describe the purification process of a qubit in contact with a structured environment. The simplicity of the model allowed us to find a geometric picture for the control task and find the minimum reset time analytically. We also found different behaviour in the weak and strong coupling regime, which we could identify with Markovian and non-Markovian dynamics. Furthermore, we studied the system for arbitrary controls and interactions and found the optimal time analytically. Including additional levels in the ancilla does not decrease the necessary time, but can increase the achievable purity.

Reset with Multilevel Ancilla

We now inspect ancillas with Hilbert space dimension d > 2 since most quantum systems that can act as ancilla intrinsically possess more than two levels. Here, we explore whether additional levels, energetically above the ground and first excited state, are potentially beneficial for fast on-demand reset. We discuss both aspects of reset, i.e., the minimal reset time as well as the maximal achievable qubit purity.

In order to investigate whether an increase of the Hilbert space dimension d of the ancilla allows for faster purification, we first choose the ancilla to be a qutrit (d = 3). In the following, we focus on a local σ z -control on the qubit and generalise the previously discussed σ x ⊗σ x qubit-ancilla-interaction, which for two-level ancillas yields the globally minimal purification time T min = π/(2J), to the qubit-qutrit case. To this end, we write the interaction Hamiltonian as

H int = J[σ x ⊗ (a + a † )],
where a and a † are the truncated lowering and raising operators, respectively. The ancilla (or bath) Hamiltonian is given by H tls = diag(ω tls,2 , 0, -ω tls,1 ), with ω tls,1 and ω tls,2 the transition frequencies between the qutrit's ground and first excited state, respectively first and second excited state.

As before, we assume uncorrelated initial thermal states on system and ancilla.

In order to examine a possible change in the minimal reset time due to the addition of a third level, we have numerically maximised the qubit purity for different final times T , cf. Fig. 3.12. The highest purity in Fig. 3.12 is observed for times equal or larger than T min , i.e., the minimum time to achieve maximum purity is identical to the case of a two-level ancilla. Analogous simulations for d = 4 yield the same minimum purification time. We therefore conjecture that T min is independent of the ancilla Hilbert space dimension.

Moreover, we observe that, for all T < T min in Fig. 3.12, a resonant guess field (blue line) yields the maximally achievable qubit purity, where the resonance is taken with respect to ω tls,1 . We therefore conjecture, based on numerical evidence, that resonant fields remain an optimal reset strategy also for ancillas with Hilbert space dimension d > 2.

Figure 3.12 allows for another important observation: While the minimum reset time T min is unchanged for d = 3 compared to d = 2, the maximal achievable purity increases, cf. the red dots which indicates the maximal purity using numerically optimised pulses the and the dashed horizontal line which corresponds to the maximal qubit purity in case of a two-level ancilla. Remarkably, the maximal achievable qubit purity is no longer upper bounded by the initial ancilla purity, P tls (0). In fact, knowing the total initial state, it is possible to compute the maximum achievable purity by calculating the eigenvalues of the density matrix ρ. Furthermore, we can show that complete purification of the qubit is possible, even if the ancilla is initially not in a pure state, if the ancilla has at least 4 energy levels. The details of this proposition can be found in [START_REF] Basilewitsch | Fundamental Bounds on Qubit Reset[END_REF].

To summarise, we have studied the purification process of a qubit using a structured environment. We have seen, that modelling a single strong coupling bath mode, allowed us to derive the reset time analytically. Furthermore, we could increase the achievable purity beyond a purity swap of qubit and ancilla. Allowing arbitrary controls and interactions, we generalised our setup and found the optimal strategies for the different cases.

For this model, the fastest purification is only possible in the non-Markovian regime.

Here, it was possible to study this regime due to the small Hilbert-space dimension, which allowed us to propagate the combined system-bath dynamics. In more complex systems, this might not be possible and we have to think of different methods. In the next chapter we introduce and study such a propagation method, namely the stochastic surrogate Hamiltonian. 

.12.: Purity evolution of a qubit interacting with a qutrit ancilla under a constant, resonant field (blue line). The resonance condition is set with respect to the |0⟩ ↔ |1⟩ transition in the qutrit, as these are the initially most populated levels. With numerically optimised fields we also obtained the maximal purity for specific times (red dots). The ancilla energies frequencies are chosen as ω tls,1 = 3 and ω tls,2 = 2.

Stochastic Surrogate Hamiltonian

In this chapter we introduce the stochastic surrogate Hamiltonian as a method to describe non-Markovian dynamics. We start by summarising the surrogate Hamiltonian method, which the stochastic surrogate Hamiltonian is based on. After discussing the idea and the limitations of this approach, we explain the details of stochastic resets, which lay the foundation of the stochastic surrogate Hamiltonian.

Surrogate Hamiltonian

The surrogate Hamiltonian is a method for propagating non-Markovian dynamics [START_REF] Baer | Quantum Dissipative Dynamics of Adsorbates near Metal Surfaces: A Surrogate Hamiltonian Theory Applied to Hydrogen on Nickel[END_REF][START_REF] Koch | A Complete Quantum Description of an Ultrafast Pump-Probe Charge Transfer Event in Condensed Phase[END_REF] and will set the stage for the introduction of the stochastic surrogate Hamiltonian. It is heavily inspired by structured environments, where only the strongly coupling modes are taken into account.

Idea of the Surrogate Hamiltonian

The basic idea of the surrogate Hamiltonian is to capture the action of the bath onto a system as accurately as possible, without the need of propagating all modes. To achieve this, the bath is described by certain representative modes, which can possibly be strongly coupled to the system. How these modes are chosen can be understood by linking them to a harmonic bath description. The derivation follows [START_REF] Baer | Quantum Dissipative Dynamics of Adsorbates near Metal Surfaces: A Surrogate Hamiltonian Theory Applied to Hydrogen on Nickel[END_REF][START_REF] Koch | Quantum Dissipative Dynamics with a Surrogate Hamiltonian[END_REF].

We start by introducing the full system-bath Hamiltonian

H = H S + H SB + H B , (4.1) 
where H S and H B describe the free evolution of system and bath, respectively, and H SB their interaction. If we assume H B to be diagonal, it can always be written as

H B = k ω k b † k b k , (4.2)
with b † k and b k the creation and annihilation operators for mode k with energy ω k . Note that if H B is originally not diagonal, we can achieve this by applying a unitary transformation. We assume that the interaction Hamiltonian is of the form

H SB = A ⊗ B. (4.
3)

The most general form would include a summation over several terms of the above structure, but the following discussion can be generalised to a sum of Hamiltonians in a straightforward way. Therefore, we restrict the discussion to Hamiltonians of this specific form. The bath operator B can be expanded in terms of creation and annihilation operators

B = k λ k b † k + b k + k,l Λ k,l (b † k b l + b k b † l ) + O(b † b 2 ), (4.4) 
where we have assumed real couplings for simplicity. In principle, any interaction Hamiltonian can be modelled by including higher order terms of creation and annihilation operators, but we focus on bath operators, which are linear in the ladder operators for brevity, hence, neglecting terms proportional to Λ k,l . Note that this choice is not a restriction to the weak coupling limit, as λ k can still be large, but simply restricts the processes, that can be described. A linear coupling excites or relaxes a mode in the bath and therefore leads to energy exchange between the system and its environment.

If one would like to model dephasing, the excitations in the bath would need to remain constant and at least the second order terms would be needed.

After these assumptions, the interaction Hamiltonian can be written as

H SB = A ⊗ k λ k b † k + b k . (4.5)
This Hamiltonian can also be rewritten in a continuous way, by defining new creation operators

c † (ω) = 1 J(ω) k λ k b † k δ(ω -ω k ), (4.6) 
which can be interpreted as creation operators of an interacting mode with frequency ω.

In order to be a valid ladder operator, the commutation relation

[c(ω 1 ), c † (ω 2 )] = δ(ω 1 -ω 2 ) (4.7)
has to hold. This condition determines the normalisation factor J(ω) to be

J(ω) = k λ 2 k δ(ω -ω k ). (4.8)
This quantity J(ω) is usually referred to as the spectral density and describes how strong a certain frequency couples to the system [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]. Having defined those quantities, we can use them to express the Hamiltonians (4.2) and (4.5) in a continuous way,

H B = dω ω c † (ω)c(ω), (4.9) 
H SB = A ⊗ dω J(ω) c † (ω) + c(ω) . (4.10) 
So far, no approximations have been made and Eq. (4.9) is completely equivalent to Eq. (4.5). Technically, the bath is still represented by an infinite amount of normal modes and therefore it is only possible to solve the dynamics for certain special cases, but now we can introduce a way of choosing representative modes.

In order to reduce the dimensionality of the bath Hilbert space, but still capture most of the impact onto the system, we sample the spectral density with certain representative modes. Assuming that the spectral density vanishes outside of some relevant energy interval, we choose N energies inside that interval ω k ∈ [ω 0 , ω c ] and approximate the integral using these sample points. This will lead to a surrogate Hamiltonian, which is a finite approximation of the true Hamiltonian

H B ≈ N k=1 ω k c † (ω k )c(ω k )∆ω k , (4.11) 
H SB ≈ A ⊗ N k=1 J(ω k ) c † (ω k ) + c(ω k ) ∆ω k . (4.
12)

The energy difference ∆ω k between the sampling points can be connected to the density of states ρ(ω k ) = ∆ω -1 k . The exact form ρ(ω k ) depends on the sampling, and gives a weight to the different terms to specify how many modes are represented by that sampling point. An example for a specific sampling together with an explicit expression for the density of states will be given later. We define the discretised form of the bath creation operator by

C † k = ∆ω k c † (ω k ). (4.13)
Using these discrete operators, the surrogate Hamiltonian reads

H B ≈ N k=1 ω k C † k C k (4.14) H SB ≈ A ⊗ N k=1 J(ω k ) ρ(ω k ) C † k + C k . (4.15)
Note that the approximation of the integral is well controlled, meaning that by increasing the sample size, we can regain the original Hamiltonian to desired accuracy [START_REF] Gualdi | Renormalization Approach to Non-Markovian Open-Quantum-System Dynamics[END_REF]. It is therefore straightforward to check the results for convergence, which is a big advantage of this method.

So far we have chosen some representative modes to approximate the action of the environment on the system. In a second step, we will model the modes as two-level systems.

A two-level system can be thought of as a low temperature approximation of a harmonic oscillator, where effectively only the ground and the first excited state are populated. Furthermore, there exist physical systems like NV centers [START_REF] Tetienne | Spin Relaxometry of Single Nitrogen-Vacancy Defects in Diamond Nanocrystals for Magnetic Noise Sensing[END_REF][START_REF] Kim | Decoherence of Near-Surface Nitrogen-Vacancy Centers Due to Electric Field Noise[END_REF] and superconducting circuits [START_REF] Dutta | Low-Frequency Fluctuations in Solids: 1 f Noise[END_REF][START_REF] Weissman | 1/f Noise and Other Slow, Nonexponential Kinetics in Condensed Matter[END_REF][START_REF] Paladino | 1/f Noise: Implications for Solid-State Quantum Information[END_REF], in which the environment actually consists of such two-level systems.

The transition from harmonic oscillators to two-level systems is straightforward, as we can directly replace the creation and annihilation operators by the corresponding Pauli matrices

C † k + C k → σ (k) 1 , (4.16) C † k C k → σ (k)
3 .

(4.17)

If we identify the coupling strength of the mode k as λ k = J(ω k )/ρ(ω k ) we can write the full surrogate Hamiltonian for a spin bath as

H SH = H S + A ⊗ N k=1 λ k σ (k) 1 + N k=1 ω k σ (k) 3 . (4.18)
This surrogate Hamiltonian approximates the action of the real bath on the system. Now, we can use Schrödinger's equation to propagate the dynamics of the system and the representative modes together

i | ψ⟩ = H SH |ψ⟩ , (4.19)
and calculate the state of the system or any observable of interest, by tracing out the bath modes

ρ S = Tr B (|ψ⟩ ⟨ψ|). (4.20) 
The big advantage of the surrogate Hamiltonian method is that due to the combined propagation of system and primary bath modes, the complete system-bath correlations are taken into account. Furthermore, we can check the convergence of the method in a self-consistent way by increasing the amount of sampling modes.

Limitations of the Surrogate Hamiltonian

Due to the truncation of the bath Hilbert space to a finite amount of modes, there are some limitations to this method. At some point, the finite bath will saturate, which would not be the case for an environment with an infinite number of degrees of freedom. This will lead to reflections from the boundary of the bath back into the bath and also into the system. These reflections will only occur after a certain amount of time, which limits the valid regime of the surrogate Hamiltonian method to short-time dynamics.

In general, the timescale, on which the approximations are valid, will depend on the amount of modes that are sampled. But also the strength of the interaction will impact the possible propagation time, as the bath will saturate faster. Overall, the timescale will increase with a larger mode sample size and also with a weaker coupling of the system to the bath. This is a strength of the method, because it allows us to check the convergence simply by adding another mode to the bath and compare the results, but on the other hand makes it numerically impossible to study long-time dynamics due to the exponential scaling of the Hilbert space with an increasing number of modes in the bath. This means in particular that the description of steady and equilibrium states will not be possible using the surrogate Hamiltonian method.

A second limitation of the surrogate Hamiltonian method is the restriction to low temperature states. Because of the mapping from harmonic modes to two-level systems, we assume that only the lowest energy states are populated. This is a good approximation for low temperatures or for environments that are physically composed out of spins. If there is the need to study high temperature dynamics, one could add additional energy levels, which would of course increase the numerical effort. There is a second argument for the limitation to low temperatures. Thermal states are described by the Boltzmann distribution [START_REF] Bartelmann | Theoretische Physik[END_REF],

ρ th ∼ e -βH = k e -βE k |Ψ k ⟩ ⟨Ψ k | , (4.21) 
where β corresponds to the inverse temperature and |Ψ k ⟩ is the eigenstate of the Hamiltonian H with energy E k . For low temperatures, effectively only the lowest energy state is populated and the state can be described by a single pure state. For high temperatures more of those eigenstates are populated and have to been taken into account which increases the numerical costs.

One possible solution to lift the limitation to short-time dynamics is the stochastic surrogate Hamiltonian. Using this method, the recurrences caused by the truncated Hilbert space, are avoided by resetting bath modes to a thermal state. The details of that approach are discussed in the following section.

Stochastic Resets of the Surrogate Hamiltonian

In order to overcome the limitations of the surrogate Hamiltonian, i.e., the restriction to short-time dynamics, the cause of the reflections at the bath boundaries has to be resolved. The foundation of the surrogate Hamiltonian lies at the separation of the environment into primary and secondary modes. The primary bath modes are those that couple strongly to the system and are explicitly taken into account. The secondary bath modes couple only weakly and are neglected. This is what results in the reflections at the bath boundaries. Therefore, in order to resolve this issue, the secondary modes have to be taken into account. Because they couple only weakly, one possible way is to treat them using a standard master equation [START_REF] Reich | Exploiting Non-Markovianity for Quantum Control[END_REF]. The master equation implies the propagation of density matrices, which gets numerically expensive if many primary modes have to be taken into account. Another option is to describe the secondary bath modes using the stochastic unravelling method of the master equation [START_REF] Breuer | Stochastic Wave-Function Method for Non-Markovian Quantum Master Equations[END_REF][START_REF] Moodley | Stochastic Wave-Function Unraveling of the Generalized Lindblad Master Equation[END_REF][START_REF] Kleinekathöfer | Stochastic Unraveling of Time-Local Quantum Master Equations beyond the Lindblad Class[END_REF], which interprets the density matrix as an ensemble average over random state vectors |Ψ k ⟩. Hence, only state vectors have to be propagated instead of density matrices, which reduces the numerical costs.

We will account for the secondary bath modes by introducing stochastic resets [START_REF] Katz | Stochastic Surrogate Hamiltonian[END_REF], which is closely related to the idea of quantum jumps in the Monte-Carlo wave function formalism [START_REF] Dalibard | Wave-Function Approach to Dissipative Processes in Quantum Optics[END_REF][START_REF] Mølmer | Monte Carlo Wave-Function Method in Quantum Optics[END_REF]. To this end, a random spin of the bath gets swapped with a spin in a thermal state. This imitates the influence of the degrees of freedom, that were neglected in the truncation of the bath (cf. Eq. (4.14)), on the system. To decide whether the mode k has to be reset, we draw a random real number r ∈ [0, 1]. Following Ref. [START_REF] Habecker | Dissipative Quantum Dynamics Using the Stochastic Surrogate Hamiltonian Approach[END_REF] we then compare this random number to an exponential function, which encodes the probability for a reset to occur. The condition for a reset then reads

r > e -Ω λ k ∆t k ω k . (4.22)
Here λ k is the coupling of that mode to the system according to Eq. (4.18), ∆t k is the time that passed since the last reset of that mode and ω k is the energy splitting of spin k. Ω is called the swap parameter and will allow us to vary the swap rate.

Since resets happen at random time steps, it is a stochastic process and in order to get meaningful results, the procedure has to be repeated for several realisations, as it is the case for stochastic unravelling. Hence, several copies |ψ k ⟩ of the same initial wave function will be propagated, including stochastic resets. Then expectation values of an observable A can be calculated by averaging over all N realisations,

⟨A⟩ = 1 N N k=1 ⟨ψ k | A |ψ k ⟩ . (4.23)
The crucial part of this routine is reset procedure, which can be performed in several ways. In the following we will discuss two different options.

Reset with Probability Trees

First, we introduce the reset scheme as it is presented in [START_REF] Katz | Hot Injection Processes in Optically Excited States: Molecular Design for Optimized Photocapture[END_REF][START_REF] Torrontegui | Activated and Non-Activated Dephasing in a Spin Bath[END_REF]. The starting point is a state defined in the full system-bath Hilbert space. Any state can then be written as

|ψ⟩ = i,j λ i,j |ψ i S ⟩ ⊗ |ψ j B ⟩ , (4.24) 
where the summation runs over the bases of the system and bath Hilbert spaces, |ψ i S ⟩ and |ψ j B ⟩, respectively, and λ i,j is the corresponding complex amplitude. The swap only acts on the bath part of the state |ψ j B ⟩. In order to describe the details of the swap procedure we therefore only consider the bath part for now. It is then straightforward to obtain the action on the full state by means of tensor products.

The reset of one of the bath spins should work in such a way that the state of the other spins remains unchanged. This includes correlations between the different spins. If we look at a bath consisting of two spins and reset one of them, the part that is unaffected by the reset consists of only a single spin and hence cannot contain any correlations. Therefore, the minimum amount of spins that are needed in order to check if correlations are preserved, is three. In the following we will discuss the algorithm for a three spin bath, but it can easily be extended to larger ones. For a three spin bath, the state takes the general form

|ψ⟩ = λ 000 |000⟩ + λ 001 |001⟩ + . . . + λ 111 |111⟩ , (4.25) 
with λ k being complex probability amplitudes, such that |λ k | 2 is the probability of finding the bath in the state |k⟩. Ideally, we find a description of the state such that only a single parameter has to be changed in order to perform the reset of a spin. In the current description, a reset would require the change of all λ k values. A suitable method are conditional probabilities, meaning that we define the probabilities for spin i to be in a certain state |i⟩, assuming spin j to be in state |j⟩. To arrive at this new description, we start by rewriting the state as |ψ⟩ = e a 000 |000⟩ + e a 001 |001⟩ + . . . + e a 111 |111⟩ ,

where the variables a k can be connected to the original description by a k = ln(λ k ). Note that there are in principle several possibilities to take the logarithm of a complex number, since the imaginary part can always be shifted by a multiple of 2π. In the following, we define the logarithm such that the imaginary part is in the interval (-π, π]. The next step is to introduce a global shift,

a tot = - 1 N k a k , (4.26) 
such that the new variables a ′ k = a k + a tot sum up to zero,

k a ′ k = k a k - 1 N k l a l = 1 - l 1 N k a k = 0. (4.27) 
The wave function after the shift reads |ψ⟩ = e -atot e a ′ 000 |000⟩ + e a ′ 001 |001⟩ + . . . + e a ′ 111 |111⟩ .

The motivation for the shift becomes clear once we rewrite the exponents as |ψ⟩ = e -atot ( e α 0 +α 00 +α 000 |000⟩ + e α 0 +α 00 -α 000 |001⟩ +e α 0 -α 00 +α 010 |010⟩ + e α 0 -α 00 -α 010 |011⟩ +e -α 0 +α 10 +α 100 |100⟩ + e -α 0 +α 10 -α 100 |101⟩ +e -α 0 -α 10 +α 110 |110⟩ + e -α 0 -α 10 -α 110 |111⟩).

The new parameters α k can be calculated by adding up the proper a k values. This transformation can be represented in a matrix-vector multiplication as

                α 0 α 00 α 10 α 000 α 010 α 100 α 110 0                 = 1 8                 1 1 1 1 -1 -1 -1 -1 2 2 -2 -2 0 0 0 0 0 0 0 0 2 2 -2 -2 8 -8 0 0 0 0 0 0 0 0 8 -8 0 0 0 0 0 0 0 0 8 -8 0 0 0 0 0 0 0 0 8 -8 1 1 1 1 1 1 1 1                                 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8                 . (4.29) 
Now it is possible to give the different parameters a meaningful interpretation: e α 0 represents the probability amplitude for the first spin to be in the ground state. Building up on this, e α 00 gives the probability amplitude for the second spin to be in the ground state, under the condition that the first spin is in the ground state as well. If the first spin is in the ground state, the probability for the second spin to be in the excited state is given by e -α 00 . In principle one could introduce a separate variable α 01 here, but due to the shift (cf. Eq. (4.27)), we find α 01 = -α 00 . The other parameters follow the same logic and can be represented in a tree like diagram (Fig. 4.1). This idea can easily be generalised to a larger number of spins.

So far we have only rewritten the state using different parameters, but have not performed any resets. However, in this new description managed to describe the state of the different spins with different variables. Now we want to reset one of them, such that its new state is described by

|ψ th ⟩ = 1 2 cosh( √ 2 Re(b)) e b |0⟩ + e -b |1⟩ (4.30) 
afterwards. In general b has to be chosen to describe the desired state, but we focus on states with thermal populations. Then b is connected to the inverse temperature β and the energy splitting ω of the chosen spin,

b = ωβ 4 + i φ 2 , (4.31) 
where φ ∈ [0, 2π] is a random phase. A true thermal state is in general not a pure state, so a density matrix is needed to describe it,

ρ th = 1 2 cosh( ωβ 2 ) e ωβ 2 0 0 e -ωβ 2 .
(4.32)

The density matrix resulting from Eq. (4.30) on the other hand reads

|ψ th ⟩ ⟨ψ th | = 1 2 cosh( ωβ 2 ) e ωβ 2 e i φ e -i φ e -ωβ 2 . (4.33) 
As we perform the average over the different realisations (cf. Eq. (4.23)), the off-diagonal entries will vanish, leading to a mixed state. Hence, the random phase φ is needed in order to converge to a thermal state.

In order to perform the reset, the variables α 000 , α 010 , α 100 and α 110 can now be exchanged with the new value b, describing the new state of this spin. Note that in this description, only the spin, which is described here by α 000 , α 010 , α 100 and α 110 , can be reset. If we would change one of the other parameters, it would change the states of all lower-layer spins (cf. Fig. 4.1) , since they are described by conditional probability amplitudes in regard with that spin. This is however not a real problem. The parametrisation can always be chosen such that the spin, which is supposed to be reset, is on the lowest layer by either reordering the wave function, or by constructing a slightly different transformation matrix in Eq. (4.29).

The general protocol for the reset can be broken down into six steps:

1. Calculate the exponents a k = ln(λ k )

2. Perform a global shift using This approach has several drawbacks. The first step requires a lower limit to the amplitudes of the states as the logarithm of zero is not defined. This will lead to numerical inaccuracies. Furthermore, the main premise of the procedure is to change only the swapped spin and leave the states of the other spins unchanged. Mathematically this translates into an unchanged reduced density matrix ρ red = Tr k (ρ), where the reset spin k is traced out. The presented scheme does not ensure this in general. To see this, consider any entangled state. Then ρ red will in general be a non-pure state. After the swap has been performed as just described, however, we will always end up with a tensor product of a wave function describing the untouched spins and the wavefunction corresponding to the new state of the reset spin |ψ th ⟩. Therefore the reduced density matrix after the swap is always a pure state, hence, changes during the process.

a tot = -1 N k a k to get new variables a ′ k = a k + a tot
In order to overcome these flaws, a new method of performing the swap is introduced, which reproduces the correct reduced density matrices.

Reset via Diagonalisation

The starting point of the modified algorithm is the observation, that in principle we know how the full density matrix ρ needs to look like after the reset of a bath spin. The selected spin k has to be in a state with thermal population

ρ th = |ψ th ⟩ ⟨ψ th | , (4.34) 
while the state of the remaining part of the primary bath should remain unchanged. Note that this is not a true thermal state, but converges to one, as we average over the realisations. We can assure the latter criterion by calculating the reduced density matrix ρ red = Tr k (ρ), where the reset bath spin k is traced out, before the swap. Our algorithm has to assure that ρ red stays unchanged. All these points are fulfilled if the full state after the reset is given by

ρ ′ = ρ red ⊗ ρ th , (4.35) 
where we label the density matrix after the swap with ρ ′ . In order to be able to describe the reset state with a single state vector such that we can propagate it further using the Schrödinger equation (4.19), it has to be pure, but the tensor product in Eq. (4.35) will not be a pure state in general. This can easily be seen as the maximum purity of such a product state is given by

P = Tr(ρ 2 ) = Tr(ρ 2 red ) Tr(ρ 2 th ), (4.36) 
hence, it is only pure if ρ red and ρ th are both pure. The latter one is pure by construction, but ρ red is not. Consequently, we cannot write down the state ρ ′ as an element of the Hilbert space and therefore cannot use it as a new, reset state. We had a similar problem with ρ th , which was solved by adding proper coherences with a random phase in Eq. (4.30). This way the state becomes pure, but averages to the correct thermal state. The same idea can now be applied to ρ red . We add an extra term with a random phase in order achieve a pure state, but this term will cancel, as the number of realisations increases. For better understanding, we illustrate this on the Bloch sphere (cf. Fig. 4.2). The red arrow indicates a mixed state inside the Bloch sphere. We construct an orthogonal plane to this state and find the intersection of this plane with the surface of the Bloch sphere. This forms a ring corresponding to a set of pure states. A single reset implies the random selection of any of the states which are positioned on this ring. As the average over all possible pure states is taken, we regain the original mixed state.

If the reduced state is diagonal, as is the case for thermal states, one simply has to set the off-diagonal elements to

(ρ red ) i>j = (ρ red ) ii (ρ red ) jj e iφ . (4.37) 
However, ρ red is usually not diagonal, but we can first diagonalise the state as

D = U † ρ red U (4.38) |0 |1 Figure 4.2.:
The idea behind the purification of the states by adding random coherences can be illustrated on the Bloch sphere. The original mixed state (red arrow) can be mapped onto a set of pure states, represented by the intersection of the cone with the sphere. A random state on this intersection is chosen. If we average over all possible pure states on the intersection, we regain the original state.

and then add coherences to D as in Eq. (4.37).

The overall representation of the density matrix for one realisation after the swap then is

ρ k = 1 2 Cosh ωβ 2 e ωβ 2 ρ red,k e iφ k ρ red,k e -iφ k ρ red,k e -ωβ 2 ρ red,k . (4.39) 
This averages to ⟨ρ k ⟩ = ρ red ⊗ ρ th .

We first discuss this approach for an example where the purification is trivial, in order to point out the difference to the previous tree-diagram treatment. Consider the state

|ψ⟩ = 1 √ 2 (|000⟩ + |111⟩) (4.40)
and the first spin (the spin on the far left in the ket notation) is to be reset. The full and reduced density matrices then are

ρ = 1 2       1 0 . . . 1 0 0 . . . 0 . . . . . . . . . . . . 1 0 . . . 1       , ρ red = 1 2       1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1       . ( 4.41) 
The reduced density matrix can easily be purified by adding the coherences as follows

ρ red,k = 1 2       1 0 0 e iθ k 0 0 0 0 0 0 0 0 e -iθ k 0 0 1       (4.42)
which also reproduces the original reduced density matrix as one averages over θ k . Plugging this into the equation for the full purified density matrix gives

ρ k = 1 4Cosh ωβ 2                 e ωβ 2       1 0 0 e iθ k 0 0 0 0 0 0 0 0 e -iθ k 0 0 1       e iφ k       1 0 0 e iθ k 0 0 0 0 0 0 0 0 e -iθ k 0 0 1       e -iφ k       1 0 0 e iθ k 0 0 0 0 0 0 0 0 e -iθ k 0 0 1       e -ωβ 2       1 0 0 e iθ k 0 0 0 0 0 0 0 0 e -iθ k 0 0 1                       (4.43)
From this the resulting wave function can be read off, which leads to the averaged reduced density matrix

|ψ⟩ k = 1 2
ρ red = 1 2       1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1       . (4.46) 
This is not the same as before the swap. The reset of one spin therefore changes the correlations between the other spins.

We now go through an example in which the purification of ρ red is not quite as easy.

Consider the initial state

|ψ⟩ = 1 √ 7 (|001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩) , (4.47) 
which leads to the density matrices

ρ = 1 7       0 0 . . . 0 0 1 . . . 1 . . . . . . . . . . . . 0 1 . . . 1       , ρ red = 1 7       1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2       . (4.48)
The simplest way to see how the coherences have to be changed is by diagonalising ρ red .

A diagonal matrix can be purified easily by just adding the coherences as in the previous is by extracting the components directly from the density matrix,

(|Ψ k ⟩) i = ρ red,k 1i ρ red,k 11 . (4.53)
Note however, that there is a freedom of choice in the global phase. With Eq. (4.53) we follow the convention of choosing the global phase such that the phase of the first state vector component vanishes. In the end we will average expectation values of observables over the different realisations and those are independent of the global phase.

In summary, the reset procedure can be broken down into the following steps: The modified reset scheme reproduces the correct reduced density matrices, and hence, the correct expectation values in contrast to the previously discussed procedure. However, it also comes with a disadvantage, as the diagonalisation of the density matrices is numerically very expensive. In the next chapter we apply the stochastic surrogate Hamiltonian method to a test model and compare the two presented strategies for the reset protocol.

Relaxation of Harmonic Oscillator into Spin Bath

In this chapter we examine the application of the stochastic surrogate Hamiltonian method to a specific test model. To this end, we have chosen the energy relaxation of an harmonic oscillator into a thermal bath. This is a well known test case for the SH [START_REF] Koch | Quantum Dissipative Dynamics with a Surrogate Hamiltonian[END_REF], as well as for the SSH method [START_REF] Torrontegui | Activated and Non-Activated Dephasing in a Spin Bath[END_REF] and will allow us to check the results of the tree-diagram algorithm and compare to the outcome of our new procedure. In the first section of this chapter, we define the model. Then we discuss the convergence of the presented methods. Finally, the decay of the harmonic oscillator is calculated using the SSH method, and the results of the two procedures for the stochastic resets are compared.

Description of the Model

The test model consists of an harmonic oscillator, which acts as the system of interest, interacting with a thermal bath. The system is described by the Hamiltonian

H S = ω S a † a + 1 2 , (5.1) 
where a = mω 2 (x + i mω S p) is the common ladder operator for an harmonic oscillator with mass m and frequency ω S . Note that we set m = ω S = 1, and therefore will shorten the notation in the following. The bath on the other hand is approximated by a set of N two-level systems

H B = N k=1 ω k σ † k σ k , (5.2) 
the same, but wrong state for the non-reset spins, the reset via diagonalisation converges to the correct state, as more realisations are taken into account. In this section we investigate how fast the algorithm converges to the true state and also how the error between the two different methods compares.

To measure the error, we start with an initial state ρ and calculate the reduced density matrix ρ red by tracing out one specific bath-spin. This will be used as the reference state, which we compare to the reduced density matrices,

⟨ρ ′ red ⟩ N = 1 N N k=1 ρ ′ red (k) , (5.7) 
obtained by tracing out the same spin after resetting it using one of the two methods and averaging the result over N realisations. In principle we would like the swap to only effect the state of the corresponding spin. Hence, the algorithms should converge towards the original reduced density matrix. To measure the convergence, we define the error ε as

ε = 1 2 Tr (ρ red -⟨ρ ′ red ⟩ N ) † (ρ red -⟨ρ ′ red ⟩ N ) . (5.8) 
This definition is inspired by the trace distance [START_REF] Nielsen | Quantum Computation and Quantum Information 10th anniversary[END_REF], which measures how close quantum states to each other. However, instead of the trace norm |A| T = Tr √ A † A we make use of the Hilbert-Schmidt norm |A| HS = Tr A † A . This is purely numerically motivated as we do not have to calculate square roots of operators in this way.

The reset using the probability tree algorithm produces a reduced density matrix ρ ′ red that is identical for all realisations. Only the state of the swapped spin gets a random phase (cf. Eqs. (4.30) and (4.31)) . Therefore the error ε will be constant with respect to the number of realisations N and its value will depend on the specific state. For the diagonalisation method, the reduced state also has some random contribution (cf. Eq .(4.37)) and is explicitly constructed such that it converges towards ρ red , hence, the error ε tends to zero as we increase the amount of realisations N . The theoretical scaling of the diagonalisation method can easily be found by analysing the error in the eigenbasis of ρ red = UDU † , where D is a diagonal matrix containing the eigenvalues of ρ red and U the corresponding unitary transformation matrix. If we plug this into Eq. (5.7) and use the cyclic property of the trace together with UU † = 1 1, we find

ε = 1 2 Tr (UDU † -UD ′ U † ) † (UDU † -UD ′ U † ) = 1 2 Tr U(D -D ′ ) † U † U(D -D ′ )U † (5.9) = 1 2 Tr ((D -D ′ ) † (D -D ′ )).
Here we have denoted the averaged transformed density matrix after the swap by D ′ = U † ⟨ρ ′ red ⟩ N U, but note that D ′ is in general not diagonal. We know from the construction in Eq. (4.37) that D and D ′ only differ by the off-diagonal entries. Since D is diagonal, these entries vanish trivially. For D k , they are proportional to a sum of random phase factors e iφ k . To determine the convergence of the error ε, we analyse the behaviour of these sums. To this end, we consider N realisations such that the off-diagonal elements of the matrix D -D ′ will be proportional to

X N = 1 N N k=1 e iφ k .
(5.10)

X N tends to zero as more realisations are included, for a finite N it will in general be finite as well. We want to find how fast X N converges in average. The quantity containing this information is the variance,

σ 2 N = |X N | 2 -|⟨X N ⟩| 2 .
(5.11)

It is easy to see that the mean value of X vanishes since the exponential functions average to zero,

⟨X N ⟩ = 1 N 2π 0 dφ 1 2π . . . dφ N 2π N k=1
e iφ k = 0.

(5.12)

For the first term in Eq. ( 5.11), we first calculate the absolute value squared,

|X N | 2 = | 1 N N k=1 e iφ k | 2 = 1 N 2 N k,l=1 e i(φ k -φ l ) = 1 N + 1 N 2 k̸ =l e i(φ k -φ l ) , (5.13) 
where we have separated the contributions for different φ k and φ l in the second term.

The expectation value of this quantity can be obtained by integrating over all angles σN σ

(1) N ϕ (1) 1 ϕ (1) 2 
. . .

ϕ (1) N σ ( 2 ) N ϕ (2) 1 ϕ (2) 2 . . . ϕ (2) N • • • σ ( K ) N ϕ (K) 1 ϕ (K) 2
. . . In order to get the average deviation from the mean value, we then have to calculate the expectation value over all possible sets of N realisations.

φ k , σ 2 N = |X N | 2 = 2π 0 dφ 1 2π . . . dφ N 2π σ 2 N = 1 N + 1 N 2 k̸ =l dφ k 2π dφ l 2π e i(φ k -φ l ) = 1 N . (5.14)
The last term vanishes, because the exponential of random phases averages to zero as before. Ultimately, we find the standard deviation of X to be

σ N = 1 √ N (5.15)
and can therefore conclude, that all entries of the matrix D -D ′ converge as 1

√

N . Together with Eq. (5.9) we can then deduce, that the error ε should scale like 1 √ N as well.

To test this prediction, we have applied the two reset methods to a random, but always identical state of the harmonic oscillator plus the spin bath and kept track of the error as we have averaged over several realisations. For a three-spin bath the resulting error can be seen in Fig. 5.2 as well as a fit function f (N ) = a N b with fit parameters a and b. The parameter a encodes the state-dependent error, while the parameter b encodes the scaling of the error with the number of realisations N . The predicted value is b = 0.5 (cf. Eq. (5.15)). We observe that the error ε converges with a rate of ≈ -0.48 for the diagonalisation scheme, while it is constant for the tree-diagram algorithm. However, we also notice strong fluctuations in the error for the diagonalisation method.

There are two conclusions to be drawn from this outcome. First, the error of the diagonalisation method is lower than the error of the probability tree method even for a single realisation. This is remarkable since the error for the diagonalisation method decreases even further as we take more realisations into account, while the error of the probability tree algorithm is constant. The second conclusion is that the algorithm indeed approximates the predicted value of b = 0.5, but we also notice strong fluctuations, even for a large number of realisations. One possible explanation for this is a bad random number generator.

To remove these fluctuations we have used two different approaches. First we have tried a different random number generator (Mersenne Twister [START_REF]Mersenne Twister in FORTRAN[END_REF]) instead of the standard Fortran one. The Mersenne Twister is known to have a very long period, which defines the amount of numbers which can be drawn, before they will start repeating. Second we have also averaged the results over 20 different seeds, to see whether the fluctuations might be caused by a "bad" seed. As it can be seen in figure 5.3, the two generators behave very similarly, indicating that the fluctuations are not caused by an insufficient period length. Instead, the seed averaging flattens out the curves (cf. panels (a) and (b)). In the panels (c) and (d) we see, that the fit parameter approaches the predicted scaling of 1 √ N with increasing accuracy as the number of seeds N s is increased, confirming that the predicted scaling is correct.

In conclusion, we have decided to retain the standard Fortran random number generator as well as to propagate every realisation with a random seed. Hence, the number of seeds will coincide with the number of realisation in the following results. We have also decided to use N = 1000 realisations. This way the error of the diagonalisation method is at least one order of magnitude lower than for the probability tree algorithm. for the probability tree and the diagonalisation algorithms for the swap procedure, as we average over realisations. While it is constant in the case of the probability-tree method, it decreases in the case of the resets via diagonalisation. The fitting curve indicates a behaviour ∼ N -0.48 , which is close to the expected scaling. 

Decay Dynamics

After preparing the ground by introducing the model and discussing the error of the two reset protocols, it is now time to look at the dynamics of the system. In particular, we study the evolution of the energy of the harmonic oscillator over time. The energy is obtained by propagating the initial state

|Ψ(t = 0)⟩ = |1⟩ S ⊗ |0⟩ B (5.16)
with the stochastic surrogate Hamiltonian and then calculate the expectation value of H S averaged over all N realisations,

⟨H S ⟩ (t) = 1 N N k=1 ⟨Ψ k (t)| H S |Ψ k (t)⟩ .
(5.17)

The initial state is chosen such that the harmonic oscillator is initially excited, while the bath has temperature T = 0, hence the spin bath is in its ground state. This is motivated by the stochastic surrogate Hamiltonian being a low-temperature method, as discussed in Sec. 4.1.2. We briefly discuss finite temperature results in Sec. 5.3.3.

Swap Parameter

The first point to be discussed is the correct choice for the swap parameter Ω. As discussed in Sec. 4.2, Ω determines how likely a reset is going to happen after one timestep. If the reset happens too often, there is no time to build up correlations between the system and the bath and hence the energy decay will slow down. In the extreme case in which each bath mode is reset in every timestep, the dynamics freeze, similiar to the quantum Zeno effect [START_REF] Facchi | Quantum Zeno Dynamics[END_REF][START_REF] Facchi | Quantum Zeno Dynamics: Mathematical and Physical Aspects[END_REF]. A too small value for Ω on the other hand will lead to very few resets. Therefore there might eventually be traces of energy backflow to the system, due to the limited bath size.

In order to find a balance between these two regimes, we have calculated the energy decay of an harmonic oscillator into a spin bath, for different values of Ω, hence, different swap rates. The initial state is chosen according to Eq. (5.16). and for a 11 spin bath. These references are obtained by propagating the dynamics without stochastic resets, hence, they correspond to results obtained by the surrogate Hamiltonian method. The 11 spin curve is added, because it does not show recurrences on the considered timescale, and serves to measure the convergence of obtained results. These recurrences are present in the small bath reference curves. For the 3 spin bath, we notice a deviation of the system energy from the 11 spin reference curve around t = 18, for the 5 spin bath around t = 25 and for the 7 spin bath around t = 35. We therefore observe reflections, predicted in Sec. 4.1.2, due to the truncated bath Hilbert space for the surrogate Hamiltonian, which also occur later, the more spins we consider in the bath.

For the stochastic surrogate Hamiltonian results, we notice two effects. First, if we choose a small swap parameter Ω leading to a low swap rate with the secondary bath modes, we are not able to fully suppress the recurrences. This indicates that the values Ω = 0.002 and Ω = 0.005 are too small. Second, a large value for Ω slows down the decay process, which can best be seen for Ω = 0.05 in panel (a) and (b). This can be explained by too many swaps, such that the dynamics get frozen. Overall, looking at the data, Ω = 0.01 seems to be a good compromise between these two aspects and will be used for all the upcoming calculations on this model. Note that we are not able to fully approach the converged reference line, due to the inevitable destruction of the correlations between the reset spin and the other spins of the primary bath, which leads a deceleration of the energy decay. This effect becomes less relevant as the size of the primary bath increases, since the share of the destroyed correlations on the total state becomes less relevant. This is not immediately obvious from Fig. 5.4 because the deviation for N = 5 seems to be smaller than for N = 7. We will see later on, that this is is connected to the sampling method, which results in a resonant bath mode for N = 5.

To check whether the two algorithms work as intended, we look at the energies of the different spins for a single realisation in Fig. 5.5. The evolution of the energies for each spin in the bath are shown for 3, 5 and 7 spins. The columns correspond to propagation without reset and to the two different reset schemes. We see that as a jump occurs, for both algorithms the energy of the corresponding spin resets to zero, which is the spin energy for temperature T = 0. The main noticeable difference between the two routines are the smaller jumps, which occur in the energies for the diagonalisation method. These are caused by the alternation of the full state in this method, but will ultimately average out. This is proven by Fig. 5.6, where we see the evolution of the spin energies of Fig. 5.5 for the reset protocols, but averaged over 1000 realisations. The energy jumps in the diagonalisation method have vanished and the results for the two algorithms look identical. Note that the energies of the spins are a local quantity. The difference between the two swap methods lies in the reproduction of correlations between spins, which are non-local and therefore can not be observed in the spin energies. We also notice that effectively only one or two spins participate in the energy exchange between the system and the bath. Therefore we test another way of checking if a reset should be performed. So far, the probability for the reset of a spin depends on the coupling to the system of the corresponding spin and the time that has passed since the last swap occurred (cf. Eq. (4.22)). This is a heuristic approach which aims to reset a bath mode, before it transfers energy back to the system. In order make this goal more perceptible, we likely to be reset as time has passed, are effectively not reset. Their energy, and hence their excited state population remains very low throughout the whole propagation time.

Even though the energy stored in these modes is very low, it will always reflect back to the system instead of getting absorbed by the secondary bath modes via the reset. This effect will add up over many oscillation cycles and explains the slower decay of the system with this scheme. Since we saw no improvement of the results, we stick to the original reset condition for the reminder of this chapter.

Size of the Spin-Bath

After deducing a suitable value for the swap parameter Ω and assuring that the two swap protocols work as intended, we investigate in this section how an increase in the bath size impacts the accuracy of the two SSH algorithms. To this end, we have calculated the decay of the harmonic oscillator into a bath consisting of 3, 5 and 7-spins and have used the dynamics of the decay into a 11-spin bath without resets as a reference. Figure 5.8 shows that, while we do not see any recurrences for any size of the bath, in particular the curve corresponding to the 3-spin bath deviates considerably from the reference. If we increase the number of modes, the results approach the reference. This can be explained, as the portion of the total state, that gets altered with a stochastic reset, is becoming relatively smaller when increasing dimensionality of the total Hilbert space. Hence, the error introduced by destroying the correlations of the reset spin has less weight. Interestingly, the decay for the 5-spin bath performs slightly better than the 7-spin bath dynamics. This can be explained by looking again at Fig. 5.6. Due to the linear sampling, we have one spin in the bath that is resonant with the harmonic oscillator for the 5 spin bath. Therefore most of the energy in the bath is carried by that resonant spin (cf. panels (c) and (d)). There is no resonant spin for the 7 spin bath, and therefore spins 5 and 6 carry a similar amount of energy. This also means, that for the 5 spin bath, we essentially only have to reset one spin in order to avoid the recurrences, with the advantage of not destroying as many correlations. It might be worth to test other sampling methods to see whether observation can be used to improve the overall method.

If the tree-diagram algorithm (dashed lines) and the reset via diagonalisation (solid lines) are compared to each other, we see that they behave very similar for an uncorrelated initial state (Fig. 5.8 (a)). Since the diagonalisation method was constructed such that it conserves as many correlations as possible, we would expect it to perform better for systems that have a high level of correlations. Therefore, in addition to the initial state (5.16), we have also propagated a correlated initial state obtained by first calculating the ground state |Ψ GS ⟩ of the total system via imaginary time evolution and then exciting the harmonic oscillator by applying the system creation operator

|Ψ(t = 0)⟩ = a † |Ψ GS ⟩ . (5.19) 
The decay dynamics for this initial state is shown in Fig. 5.8 (b). We notice that, while the results for the tree diagram method are unchanged, the diagonalisation method improved. All corresponding curves lie closer to the reference for a correlated initial state. Especially the dynamics for N = 5 follow the reference very close until the end of the propagation.

It might be worth to investigate the numerical effort between the two reset protocols. The tree-diagram algorithm only involves matrix-vector multiplication which have an asymptotic computational complexity of O(2 2N ). The diagonalisation scheme on the other hand relies on the diagonalisation of reduced density matrices of dimension 2 N -1 which has an asymptotic complexity of O(2 3(N -1) ) [START_REF] Strassen | Gaussian Elimination Is Not Optimal[END_REF]. Since the diagonalisation method scales cubic while the tree-diagram approach scales quadratic, it will get outperformed regarding the analytical cost from spin bath sizes of 3 onwards.

Finite Temperature

As described in Sec. 4.1.2 the surrogate Hamiltonian method can be considered as a low-temperature approximation of a bath consisting of harmonic oscillators. Hence, the SSH as its extension should also be constrained to the low-temperature regime. Nevertheless, we would like to investigate, how well our system can be described for higher temperatures.

States with temperature T > 0 are not pure states, instead they are described by a superposition of pure states, known as the Boltzmann ensemble [START_REF] Bartelmann | Theoretische Physik[END_REF],

ρ th = 1 Z k e -βE k |Ψ k ⟩ ⟨Ψ k | , (5.20) 
where β is the inverse temperature, |Ψ k ⟩ the eigenstates of the full system-bath Hamiltonian H with eigenvalue E k and Z = k e -βE k a normalisation constant. In order to still propagate such states with our method, we first propagate the eigenstates |Ψ k ⟩. The result for the different eigenstates have then be summed over, weighted with the corresponding Boltzmann factor ∼ e -βE k . This means beside the already needed averaging over different realisations, we have to perform additional propagations, corresponding to the different eigenstates. The number of eigenstates increases with the dimension of the Hilbert space, but the higher energetic states are suppressed by the Boltzmann factor. We therefore only include the lowest eigenstates in our calculations, until the result did not change any more. The decay for β = 1 and β = 3 is shown in Fig. 5.9. For a resonant bath spin, these temperatures result in an excited state population of p (1) ≈ 0.04 for β = 3 and p (1) ≈ 0.27 for β = 1. We considered the lowest 5 energy levels of the harmonic oscillator. Since the Hilbert space of the spin bath is 2 N , the dimension of the full system is 5 • 2 We see that for β = 3 (Fig. 5.9 (a)), we can suppress the recurrences as before and in general see similar behaviour as in Fig. 5.8 (b). The recurrences get suppressed for β = 1 (Fig. 5.9 (b)) too, but here we find that the curves for different bath sizes do not align any more. This is caused by a different amount of energy present at initial time, depending on how we sample he bath. This problem will only resolve if the sampling density of the bath modes is increased such that the initial energy of the whole system converges, which increases the numerical effort dramatically.

To summarise, we were able to confirm the predicted scaling of the new swap procedure and show that the reproduction of the reduced density matrix is always better than for the tree diagram method. We tested different swap rates and were able to suppress the recurrences due to the finite bath size, as well as approach the reference curves as close as possible. In the direct comparison between the two swap methods, we saw an advantage of the diagonalisation procedure in the case of correlated initial states. Finally we saw the limits of the surrogate Hamiltonian in the high temperature regime. Possible extensions of this work would be to examine the impact of the sampling method on the convergence of the results or to study a model systems, which generates strong correlations between the different modes. We would then expect to see a bigger difference between these two methods. Another interesting question is whether the diagonalisation can be avoided in the modified reset scheme. This would reduce the numerical effort drastically.

Summary & Outlook

The opening question of this thesis was in which ways the environment can be useful in order to control a qubit system. We investigated examples for which the interaction of the system with an environment is not only helpful, but even needed in order to achieve certain control tasks.

We have studied the purification process of a qubit via entropy exchange with a structured environment. By modelling a mode of the bath explicitly and including it in the dynamical equations, we have managed to describe the qubit dynamics beyond the weak coupling limit. It was possible to map the relevant dynamics onto the surface of two spheres, and therefore discuss the purification problem geometrically. The distinction between different scenarios, like correlated initial states or coherence free initial states, has allowed us to find analytical expressions for some of the coordinates and also the reset time. We have also found a clear separation between the Markovian and non-Markovian regime with physically different behaviour. With Markovian dynamics, it is not possible to reach the state of maximal purity in finite time, while it is possible in the non-Markovian case. We have further confirmed that initial correlations reduce the reset time [START_REF] Basilewitsch | Beating the Limits with Initial Correlations[END_REF]. A combination or initial correlations and coherence makes it possible to reduce the time even further, while also increasing the achievable purity beyond the limit of a simple purity swap between qubit and ancilla.

Allowing arbitrary controls and interactions, we have investigated how the reset time varies, as we change the control and interaction terms in the Hamiltonian. This might be helpful for architectures, where the options of engineering the setup are unrestricted.

We have found a way of analytically approximating the reset time for the case, where the Hamiltonian consists of Pauli matrices. For a more general Hamiltonian, we have identified criteria, solely at the level of the Hamiltonian, for estimating the purification time. We have tested these findings numerically. Furthermore, we have seen that introducing additional levels in the ancilla, does not allow for faster reset times, but increases the achievable purity. Therefore, engineering of higher dimensional ancillas will be beneficial.

This model could be extended in the future, for example by introducing another ancilla. An interesting question would be, if the additional ancilla can not only increase the overall purity of the qubit, but also reduce the reset time, beyond the limit found for a single ancilla. The additional ancilla can be seen as additional levels introduced in the bath. Since we have seen an increase in purity if we increase the amount of energy levels in a single ancilla, the question arises if the effect is similar for multiple ancillas.

The coupling to another bath mode will also lead to an increase of the effective coupling strength of the system to the environment, which might decrease the reset time.

The example of qubit reset has shown that a strong coupling to the bath can be beneficial and that especially non-Markovian dynamics can be helpful for specific tasks. In particular the speed at which these tasks can be performed is limited by the coupling strength. For strong system-environment coupling, there exists no unified mathematical description.

In the second part of the thesis we have therefore examined the surrogate Hamiltonian method, which is a method to simulate open quantum system dynamics, not restricted to weak coupling. We then discussed its extension, the stochastic surrogate Hamiltonian and introduced a new way of performing the required stochastic resets. The new reset method has been constructed, which impacts the non-reset modes in a minimal way. The two reset protocols were then compared to each other in a test model, where we have found similar behaviour. Possibly the difference between the two schemes gets more visible, if a model system is studied which creates more entanglement between the different bath modes.

Future work will be to find a derivation for the swap rate, by connecting the stochastic surrogate Hamiltonian method to an equivalent master equation description. Furthermore, we want to investigate how the two reset procedures compare to each other, in a model, where we expect correlations between different bath modes to be important. Then we should see a performance difference between the two protocols. Another possible improvement could be to test different sampling methods.

A physical application of this model would be to try to simulate 1/f noise. This type of noise is very typical in many solid states systems including superconducting qubits and induces non-Markovian dynamics. If it is possible to model it properly, we might be able to find new, more efficient control strategies for problems, which directly take the influence of the environment into account.

B. Coordinate Transformation

We consider a Hamiltonian of the form (A.3) 

H =       α 0 0 0 0 α -Je -iδt 0 0 -Je iδt -α 0 0 0 0 -α       , (
+ i k=1,2 L k ρL † k - 1 2 L † k L k , ρ , (B.3)
with the Lindblad operators

   L 1 = √ γ 1 σ - tls , L 2 = √ γ 2 σ + tls , (B.4)
gives us a set of differential equations for the parameters x x x = (x 1 , . . . , x 16 ). These equations can be written in the form ẋ x x = f 0 (x x x) + J 1 f 1 (x x x) + J 2 f 2 (x x x) + α f 3 (x x x), (B.5) 
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 21 Figure 2.1.: A Bloch sphere with the coordinate system corresponding to the 3 spatial directions. The red arrow indicates a non-pure state.

Figure 3

 3 Figure 3.2.: Optimal trajectories (in black) of the qubit in the (z 1 , z 3 ) -plane without(a) and with correlations (b) for non-Markovian dynamics. The initial and final states are represented, respectively, by a dot and a cross. In panels (c) and (d), the asymptotic steady states are indicated by circles. The blue and green circles are the projections onto (z 1 , z 3 ) -plane of S 1 at the initial and final times. The amount of correlations added is equal to the maximum possible value ξ = ξ max (see Eq. (3.26)) and J = 4 J min . Panel (c) shows the trajectory for the correlation-free Markovian case (J = J min /2), while the correlated case is displayed in panel (d).
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 3 33) is similar to the correlation-free version (3.23b) but with a new term added which is always positive in the region of interest θ ∈ [-π/2, π/2].
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 33 Figure 3.3.: Normalised minimum time T min /T 0 to reach the north pole of S 1 as a functionof γ/J for the correlated (green or light gray) and uncorrelated (purple or dark gray) initial states. T 0 is the purification time for γ = 0 and the parameter ξ is set to ξ max in the correlated case.

Figure 3

 3 Figure 3.4.: Purification time as a function of the temperature. Panel (a) represents the correlation-free initial state in which we observe the same behaviour as in Fig. 3.3, namely that for a specific threshold, the purification time diverges.For a correlated initial state (panel (b)) the angular fixed point for small β, which leads to the divergence of the purification time, is resolved and the target state can be reached in finite time. We always assumed maximal correlations, ξ = ξ max , but the value of ξ still depends on β. The parameter T 0 was chosen as T 0 (ξ = 0) in panel (b) for the sake of comparison with panel (a).
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 3 Figure 3.5 displays the dynamics of θ and the time evolution of the value of θ f . It can be seen that exceeding the bound (3.36) even further (i.e. comparing Fig. 3.5(a) and (b)) prevents the fixed point from arising also during the time evolution. The system can reach the angle θ = π/2 and therefore the state of maximum purity in finite time.In contrast to correlation-free initial states, this conclusion is true for any temperature with sufficient initial correlations. Note that the limiting boundary for a valid density matrix has to be satisfied.

Figure 3

 3 Figure 3.5.: Time evolution (solid line) of the angle θ in the Markovian regime J = 0.9 J min (cf. Eq. (3.25)). The correlations are set to ξ = 2 ξ fixed and ξ = 5 ξ fixed in panels (a) and (b), respectively. The dashed green line in panel (a) depicts the position of the fixed point θ f .
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 36 Figure 3.6.: Existence of an angular fixed point in θ as a function of correlation and coupling strength (β = 0.1).In region A, a fixed point is initially defined, while in region B there is no fixed point accessible initially, but during the time evolution of the system. Area C corresponds to the parameter space in which no fixed point occurs in the time in which the final state is reached.
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 37 Figure 3.7.: Parameter space of the correlations ξ and coherences µ q for which the density matrix is defined. The color code indicates the relative difference (Eq. (3.40)) between the maximum purity reached during the evolution and the purity at θ = π/2 in per cent.
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 38 Figure 3.8.: Optimal trajectories on S 2 in the (z 5 , z 6 )plane without (a) and with (b) initial correlations. The initial and final points are represented, respectively, by a dot and a cross. The control time is set to T min , see Eq. (3.24). Parameters are set to ξ = ξ max /2 and µ q = µ q, max . Note that µ q, max depends on ξ. The blue (dark gray) and green (light gray) circles are the projections of S 2 onto the (z 5 , z 6 )plane at initial and final times.

  x and explain how to extend the derivation to all other possible combinations of O q , O tls , O c ∈
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 39 Figure3.9.: Time evolution of the qubit purity P q of the qubit for uncorrelated (a) and correlated (b) initial states with different coherences µ q ∈ [0, µ q,max ], where µ q,max is the maximum allowed value of the coherence. The parameter ξ is set to 0 and ξ max /2 in (a) and (b) respectively. The horizontal dashed lines depict the initial purity of the TLS, P tls (0) and the maximum value P max of P q .
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 356 is a generalisation of the Hamiltonians in Eqs. (3.41) and (3.52), and Eq. (3.57) generalises the variables accordingly. In particular, Ā is related to A, which determines the minimum reset time for Pauli operators and is listed in Table

Figure 3 .

 3 Figure 3.10.: Behavior of Ā and the numerically obtained inverse purification time 1/T minas the control operator is varied via θ c from a pure σ z -control at θ c = 0 to σ x -control at θ c = π/2 back to a pure σ z -control at θ c = π, but with opposite sign. The other angles are chosen such that there is a σ z ⊗ σ xinteraction between qubit and ancilla.
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 603 Figure 3.11.: The figure shows the values of | Ā| (left column) and C (right column) for different interactions and control fields. These are determined by θ q = π/4 in (a, b), θ q = π/2 in (c, d) and θ q = 3π/2 in (e, f) and the axes represent the angles θ c and φ cφ q . The solid blue line indicates the maximum value of 1 for the respective quantity, | Ā| or |C|, while the dashed line depicts the maximum value for the other quantity (|C| or | Ā|) to ease comparison. Except for (c) and (d), the lines do not coincide and therefore the limit on the energy exchange between qubit and ancilla, which is determined by C, cf. Eq. (3.58), does not fully explain the physical role of Ā.
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 41 Figure 4.1.: Tree diagram showing the connection of the conditional probabilities to the full wave function.

3 . 4 .N = b 5 .

 345 Calculate the conditional probability amplitudes e α k using Eq. (4.29) Replace the parameters for the lowest-level spin α 0...0 N , . . . , α 1...0 Transform back to the original picture 6. Renormalise the wave function
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 145222 Calculate reduced density matrix ρ red of the untouched spins 2. Diagonalise reduced density matrix D = U † ρ red U 3. Purify by adding coherences with random phase(D k ) ij = D ii D jj e isign(i-j)θ k (4.54) Transform back to original basis ρ red,k = Uρ red U † Calculate the full reset state ρ k = 1 Cosh red,k e iφ k ρ red,k e -iφ k ρ red,k e -ωβ 2 ρ red,k 6. Extract wave function from density matrix component-wise (|Ψ k ⟩) i = (ρ red,k ) 1i (ρ red,k ) 11
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 51 Figure 5.1.: Scheme of the divergent averaging procedures involved in calculating the convergence of the error ε. We first calculate the average over N angles φ k .In order to get the average deviation from the mean value, we then have to calculate the expectation value over all possible sets of N realisations.
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 52 Figure 5.2.: The figure shows how the error of the reduced density matrix ρ red behavesfor the probability tree and the diagonalisation algorithms for the swap procedure, as we average over realisations. While it is constant in the case of the probability-tree method, it decreases in the case of the resets via diagonalisation. The fitting curve indicates a behaviour ∼ N -0.48 , which is close to the expected scaling.
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 53 Figure 5.3.: Convergence of the error of ρ red using the diagonalisation method for different bath sizes comparing two different random number generators. In panels (a) and (b) the dots indicate the error, which is averaged over 20 different seeds, in dependence of the number of realisations. The dashed line represents the fit function f (N ). In the panels (c) and (d) the convergence of the fit parameter b is presented in dependence on the number of seeds. The standard Fortran random number generator is used in (a) and (c), while the Mersenne Twister is used in (b) and (d).
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 5 Figure 5.4 shows the obtained results for energy relaxation for bath sizes of 3, 5 and 7 spins. The dashed lines indicate the reference curves for the corresponding bath size
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 54555 Figure 5.4.: Decay of the harmonic oscillator into a spin bath consisting of 3, 5 and 7 spins for different swap parameters Ω. We see that a small Ω does not manage to suppress recurrences. Too many swaps on the other hand lead to a slow down of the relaxation.
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 56 Figure 5.6.: Time evolution of spin energies averaged over 1000 realisations. The spin energy is identical between the two reset procedures.

Figure 5 . 8 .

 58 Figure 5.8.: The relaxation of an harmonic oscillator into spin-baths of different sizes. The dashed line corresponds the tree-diagram algorithm and the solid line the reset via diagonalisation. The initial state is separable in (a) and correlated in (b).

Figure 5 . 9 .

 59 Figure 5.9.: Energy relaxation for a thermal initial states for different bath sizes for β = 3 in (a) and β = 1 in (b). The dashed lines indicate the energies obtained without reset, the solid lines resetting via diagonalisation.
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Table 3 .

 3 1.: Summary of the parameters A and B for all interactions

Table 3 .

 3 1, which also indicates B and the respective form of the Hamiltonian, H ′ i , i = 1, . . . , 4, cf. Eqs. (3.41) and (3.52), that generates the dynamics, cf. Eqs. (3.42) and (3.53).

  + ix 6 x 7 + ix 8 x 9 + ix 10 x 5ix 6 x 2 x 11 + ix 12 x 13 + ix 14 x 7ix 8 x 11ix 12 x 3 x 15 + ix 16 x 9ix 10 x 13ix 14 x 15ix 16 x 4

						B.1)
	and parametrise the density matrix as
			x 1	x 5 
	ρ =	    		    	.	(B.2)
	Then the Markovian master equation,
		i	d dt	ρ(t) = [H(t), ρ(t)]

Table C .

 C 1.: The table summarises, which non-local terms in A can be generated for all variants of Hamiltonian(3.4). The interaction part and the qubit control are given by H int = J(O q ⊗ O tls ) and H c (t) = E(t)O c , respectively.

cosh(βω k /2) and b k = 1a k . The parameters µ q and ν q are the coherences in the reduced state of the qubit. We neglect coherences of the TLS assuming that it is initially in a thermal state. Our analysis could also be carried out for a non-thermal initial qubit population. Furthermore, we artificially add coherences between the qubit and the TLS with the extra term ρ corr .
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example. So we are looking for matrices that fulfil ρ red = UDU † with D being diagonal. For the example (4.48), we find

which can be purified by adding the coherences as before

1 -37 49 e iθ k 0 0 1 - 37 49 e -iθ k 1 -37 49 0 0

Since a unitary transformation keeps the purity unchanged, we now transform back and get a pure state in the original basis

, where we introduced

for brevity. Note that ρ red,k in Eq. (4.51) averages exactly to ρ red from Eq. (4.48) as one averages over all θ k because all terms that include sin (θ k ) and cos (θ k ) vanish. The full state after the reset ρ k can now be constructed according to Eq. (4.39). Since this is a pure state, we can also write it as a wave function. The simplest way to do achieve this, with energy splitting ω k and the annihilation operator for the k mode σ k . The system interacts with the bath according to the interaction Hamiltonian

(5.

3)

The coupling constants λ k are determined by the spectral density J(ω). If we denote the density of states ρ(ω), we calculate the coupling by

as explained in section 4.1.1. Note the different nature of J(ω) and ρ(ω). The spectral density J(ω) is a physical object describing how strong the different frequencies interact with the system. The density of states ρ(ω) on the other hand is characterised by the sampling of the representative modes and therefore has a numerical background. In the following we restrict the discussion to Ohmic baths with an exponential cut-off of the form

An Ohmic spectral densities lead to a frequency independent damping rate. The cut-off is needed to prevent the divergence of physical quantities [START_REF] Weiss | Quantum Dissipative Systems Fourth[END_REF][START_REF] Weiss | Quantum Dissipative Systems Fourth[END_REF]. We want to sample in such a way, that we cover the regime that is resonant to the system, but also the peaks of the spectral density. The straightforward approach is to use equidistant energy sampling up to the cut-off frequency ω c > ω S , resulting in a density of states

For all calculations in this chapter we set the coupling strength η = 0.01 and choose a cut-off frequency ω c = 1.5.

Convergence of the Stochastic Swap

Before we discuss dynamics, we first want to estimate the error of the two different reset procedures. Recall that while the probability tree method results for each realisation in decided to adjust the reset condition, such that it only depends on the swap parameter Ω and the excited state population of the corresponding mode at a given time. This means, that Eq. (4.22) is changed to

where r ∈ [0, 1] is a random real number and p

k the excited state population of mode k. The results are shown in Fig. 5.7 for different values of Ω. Comparing these results of the original reset condition (left column) with the condition based on the excited state population (right column), we see no improvement. We observe a similar behaviour but the system energies seem to deviate even further from the 11 spin-bath reference curve. This can be explained because now off-resonant spins, which before were more

A. Rotating Wave Approximation

Starting from the Hamiltonian governing the dynamics of the model system,

we can transform the Hamiltonian using the unitary transformation U(t) = e iH 0 t to get

-Je -it(ωq-ω tls +ε(t)) 0 0 -Je it(ωq-ω tls +ε(t)) -t

The terms Je ±it(ωq+ω tls +ε(t)) oscillate fast and average to zero on a short timescale. Therefore we neglect these terms and obtain the Hamiltonian after the rotating wave approximation (RWA) as

The Lindblad operators L 1/2 = √ γ 1/2 σ ± tls have to be transformed in the same manner resulting in L rwa 1/2 = e -iω tls t L 1/2 . We can analyse the dynamics of the transformed system using the Lindblad equation

If the purity of the qubit is calculated in these coordinates, it turns out to be

This motivates a new choice of coordinates resulting from the transformation Eq. (3.9),

in which the purity simplifies to

Note that we are left with only eight parameters instead of the original sixteen. In principle it is possible to consider the complete dynamics by defining additional parameters z 9 , . . . , z 16 , but since the dynamics of z z z = (z 1 , . . . , z 8 ) turn out to be closed and we are only interested in the evolution of the qubit, the other subspace will not be investigated.

C. Cartan Decomposition

The Cartan decomposition [START_REF] Carter | Lie Algebras of Finite and Affine Type First[END_REF] allows to separate any unitary operator

) and non-local parts (A) [START_REF] Zhang | Geometric Theory of Nonlocal Two-Qubit Operations[END_REF] 

The local operators act only on the qubit or ancilla, respectively. It is only possible to purify a system, if the underlying dynamics are non-unital [START_REF] Lorenzo | Geometrical Characterization of Non-Markovianity[END_REF], hence, if the identity is not mapped onto itself. To see, whether when this is the case for our model, we assume an initial state of

The state of the qubit is determined by a propagation of the initial state by a unitary Eq. (C.1). Tracing out the ancilla,

The local operators k 1 and k ′ 1 have no impact on the unitality, since they only act on the qubit and k 1 1

Plugging in the definition of A (cf. Eq. (C.2)) we arrive at the expression

where µ ′ tls , µ ′ tls , a ′ tls and b ′ tls are due to k ′ 2 locally transformed parameters, characterising the ancilla state.

Analysing Eq. (C.6) we notice, that in order to obtain non-unital dynamics, at least two of the three parameters c k have to be non-vanishing. Whether a certain Hamiltonian generates the proper terms corresponding to the c k , can be calculated by nested commutators of the Hamiltonians H and H c . For the cases discussed in Sec. 3.3, Tab. C.1 [START_REF] Basilewitsch | Fundamental Bounds on Qubit Reset[END_REF] indicates, which non-local terms in A are possible to generate using the different choices of operators.
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