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Average

Max F-Measure, MAE, and Model Size of different methods on benchmark datasets. The circle size denotes the model size.

Note that better models are shown in the upper left corner (i.e., with a larger F-measure and smaller MAE). Methods with smaller size perform inferior, making our method both efficient and accurate. . . . . . . . . Each region shares the same granularity of geometric information. With one threshold T = 1, the local regions are coarse and cannot get the full benefit from the geometric priors. This results in unsatisfactory salient masks (4 th column). With two thresholds T = 2, the depth map is better discretized with more fine-grained details, yielding salient masks closer to the ground truth (6 th column). With three thresholds T = 3, the depth map is over-discretized, resulting in sub-optimal salient masks (8 th column). Our plain HiDAnet is built upon T = 2. . 

3.4

Experiments under inferior conditions with simulated depth noises (RMSE , δ1). While RMSE , δ1 are 0, it represents the result without simulated noises. Drop ∆ denotes the absolute performance difference. Our HiDAnet leads to a more stable performance compared to the SOTA methods with a lower ∆ under different inferior conditions, proving that our model is more robust against depth noises. We use the Mean Absolute Error (M), max F-measure (F m ), S-measure (S m ), and max E-measure (E m ) as evaluation metrics. (Bold: best.) . . . . . 

Context and Motivation

Computer vision algorithms aim to provide machines with the capability to understand the 3D scene. Traditionally, the input for computer vision algorithms is the 2D RGB images (R for red, G for green, and B for blue). Thanks to the development of image processing algorithms, it becomes possible to detect the contour of the object with Sobel or Canny detectors or to compute the key features with SIFT method. Despite the rich 2D features on the image plane, it is still challenging to explore the 3D information and further include them in image processing.

For human beings, visual perception is realized through binocular vision, i.e., we combine visual information measured from two eyes. Inspired by neurological observation, researchers develop a stereo vision that requires a series of images as input.

By comparing features or key points of the same scene from at least two images, 3D information such as depth can be better extracted by analyzing the correspondences of objects from different camera poses.

Despite the plausible results achieved by stereo vision on modeling geometry, the requirement of multiple images of the same scene from the input side limits its popularity compared to monocular images, mainly due to "redundant" data acquisition and data storage. These phenomena can also be noticed by analyzing the size of the existing public datasets. Currently, the largest stereoscopic dataset is the InStereo [START_REF] Duggal | Deeppruner: Learning efficient stereo matching via differentiable patchmatch[END_REF][START_REF] Liang | Stereo matching using multi-level cost volume and multi-scale feature constancy[END_REF] with 2K images for indoor scenes and Holopix [START_REF] Hua | Holopix50k: A large-scale in-the-wild stereo image dataset[END_REF] with 50K images for the in-thewild scenario, while for monocular images, the largest publicly available dataset is the ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] which contains more than 14 million images. Therefore, one question is naturally raised: is it possible to leverage geometric cues in a monocular image?

Researchers on RGB-D images and sensors have provided a positive answer to the question. Recently, with the development of 3D sensors such as RGB-D Kinect, Radar, and Lidar, depth images can be obtained from the input side at a more affordable cost.

Another approach to obtain the depth is by the mean of monodepth estimation. It is worth noting that the recent development of large labeled datasets and AI (artificial intelligence) makes it possible to estimate depth from a single image thanks to the significant data prior, which has been regarded as an ill-posed problem for several decades. Indeed, RGB and depth images are complementary to one another. The prior (RGB) contains rich photometric information and is sensitive to color changes, while the latter (depth) contains rich geometric cues and can improve the awareness of scale changes and out-of-the-plane rotation. Taking advantage of both modalities as input, computer vision algorithms can achieve superior performance on scene understanding.

Starting from the year 2011, deep neural networks [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] have brought a revolution in the field of computer vision. Different from early works based on handcraft features, deep networks adopt a gradient-based learning strategy, i.e., backpropagation, to find the optimal parameters for the encoder-decoder architectures. Since then, deep learning methods for computer vision tasks have drawn great attention. Hundreds of thousands of deep networks have been proposed and have almost dominated all the vision tasks, even surpassing human beings in many applications. It is worth noting that most works, especially those milestones such as different VGG [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF],

and ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] backbones, are trained and tested with RGB images as input. As discussed in previous paragraphs, this is mainly due to the tremendous visual color data produced daily and the existing large RGB benchmarks for pretraining. Inspired by the development of depth sensors and different estimation methods, this thesis seeks to discover an efficient manner to improve the RGB baseline performance with complementary depth awareness.

Complementary Modalities to RGB Image

Creating intelligent and effective sensing systems is a major challenge nowadays. Conventionally, most sensing systems are based on a simple RGB camera. One typical example is the regular consumer cameras equipped on most smartphones. After several decades of development, nowadays there exist different types of RGB cameras with all kinds of prices, sizes, and functionalities. Since RGB cameras can provide rich textual information, including all the contours, they can help humans to realize complex tasks together with software algorithms. However, it is also challenging for such a sensor to operate optimally under all conditions and all the time. For example, similar to the human being, while the lighting condition is unsatisfactory, i.e., during the night, in the tunnel, rainy and foggy, the obtained RGB will be under low-quality. Therefore, RGB cameras can no more provide informative clues on the contours as before. Occupancy is another factor. The RGB image can only provide textual features of the nearest object while being agnostic of the occluded objects which are hidden beyond the scene.

Consequently, monitoring environmental factors such as weather conditions and occupancy are becoming increasingly important and challenging for scene understanding, especially for autonomous driving, drone, and robots. Therefore, one promising solution is to create perception systems with multiple sensors, especially sensors providing a complementary modality. For example, depth sensors can help to provide the object distance and geometric cues on the object boundaries. Thermal images can contribute to facilitating the scene understanding through specific infrared imaging, yielding a robust manner to deal with low-lightening conditions. Event cameras can provide extreme accurate cues on moving objects and become advantageous for visual perception in dynamic scenes. Among all the sensors, depth modalities are so far the most developed systems together with RGB images, especially in autonomous driving with the additional awareness of the 3D scene.

Depth Acquisition

There exist three popular sensors to acquire depth information: Radar, Lidar, and depth camera. Radar and LiDAR provide 3D point clouds, while depth cameras provide a 2D depth image. In the following sections, we briefly review the pros and cons of each sensor.

RaDAR

Radar (radio detection and ranging) has been widely used in military applications since this kind of sensor can precisely locate and track the object's position and moving speed. The radar consists of a transmitter and a receiver. The transmitter sends radio waves in a targeted direction, which are further reflected once reach a measurable object. The reflected waves are sent back to the receiver. Based on the returned signal, algorithms are able to provide informative cues about the target object.

Radar technologies have been explored for driving systems by Mercedes-Benz in 1999.

Different from a depth camera, a radar system is more sensitive and can provide more information on moving objects. Furthermore, RaDARs can provide objects with severe occlusion, which is not the case with a depth camera. Another advantage of radar is its robustness against unsatisfactory visibility and noise. However, the RaDAR sensor can only provide a limited number of points on the objects, which is significantly less informative compared to the depth sensor in terms of scene understanding.

LiDAR

LiDAR (light detection and ranging) works in a similar way as RaDAR. The main difference is that LiDAR utilizes laser lights, while Radar is based on radio waves. Therefore, in a commercial application such as an autonomous vehicle, LiDAR can see farther objects in the scene, while it is not possible for radar. Nowadays, LiDAR has a detection range of more than 100 meters with extremely high precision.

LiDAR can be regarded as a 3D scan that provides geometric information about the 3D scene. The density of point clouds depends on the number of lasers, also known as LiDAR channels. For example, the commonly used Velodyne-16 sends 16 lasers. To provide accurate 3D information about the environment, the LiDAR sensor requires a real-time computation with hundreds of thousands of points. Therefore, LiDAR sensor requires more computation power compared to camera and radar, which also yields a higher price for LiDAR sensors.

Depth Camera

Recent depth or range cameras often measures object distance by using Time-of-Flight (TOF) remote sensing technologies. The most successful product is the Microsoft Kinect camera. Specifically, they first illuminate the scene and the measured objects with controlled patterns of dots, i.e., infrared light or LED. Then they compute the time that the reflected light takes to travel between the object and the camera. The flight time is directly proportional to the distance between the camera and the measured object. This Time-of-Flight measurement is carried out independently by each pixel of the camera, thus making it possible to obtain a complete 3D image of the measured object. Depth cameras can use in both indoor and outdoor scenes. The price of an effective depth camera is inexpensive, which has drawn great interest for different applications such as drones and industrial robots.

Among the depth image and the point cloud, in this thesis, we are particularly interested in fusing RGB images with depth images. The major reason is that depth images can be treated as 2D data, while point clouds provided by RaDAR or LiDAR are in 3D form. The latter requires more computational cost due to the additional channel.

Another reason is that depth images are dense. Each pixel on the image contains a valuable 3D cue. However, while we project the point clouds obtained by RaDAR or LiDAR on the image plane, the obtained map is sparse, yielding several holes. These kinds of images require additional processing such as depth completion to obtain the dense map. Indeed, a single frame RGB-D image sees only the unoccluded objects of the 3D world. However, these objects are the most crucial and important obstacles to analyze for both human beings and intelligent machines. 

Scope and Challenges

RGB-D fusion can be applied to different tasks. During this thesis, we are particularly interested in two main segmentation applications: semantic segmentation and salient object detection which are two of the most basic topics for computer vision.

• Semantic Segmentation aims to label each pixel within the input image. It classifies a number of classes and separates each class from the rest. Different from object proposal which outputs a bounding box prediction [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] He | Mask r-cnn[END_REF], semantic segmentation can detect objects that cover a wide range of areas in the image at a pixel level, making it possible to detect irregularly shaped objects cleanly.

Because of this precise detection, semantic segmentation can be applied in a variety of industries that require accurate scene understanding. One typical and popular application of semantic segmentation is for the robot in both indoor and outdoor scenes. For the indoor scene, the cleaning robot and the robotic arm are the two typical applications of semantic segmentation. The former (cleaning robot) needs to identify objects such as the floor and other obstacles in order to find the best path to accomplish the mission, and the latter (robotic arms) requires perfectly localizing the target object for grasping. For the outdoor scene, autonomous vehicles and drones are two other typical applications of semantic segmentation. The objectives of both applications are the same, i.e., the perfect, safe, and autonomous control of robots in a complex and unknown environment.

Therefore, accurate perception is highly required to have a robust representation of a complex and unstructured environment for obstacle avoidance.

Despite the plausible results achieved by deep networks, existing RGB models [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Zhao | Pyramid scene parsing network[END_REF] are more sensitive to color changes rather than geometric differences, mainly due to the lack of depth input from the input side. Therefore, while dealing with scenes where objects share the same color, state-of-the-art models can fail to accurately separate. Sometimes this can be also challenging for human beings. For example, as shown in Fig 1 .1, there exist the bath towel, sofa, wall, cat, and rabbit. While it is easy to separate objects such as bath towels and sofas, however, it is extremely challenging to distinguish the cat and the rabbit due to the same visual appearance. The sub-optimal light condition is also challenging for robotics applications such as autonomous driving [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF], especially during the night, rainy, and foggy scenes. Therefore, it is beneficial and essential to profit from other modalities such as depth to improve the performance and robustness of deep neural networks against inferior conditions. The additional depth cues should contribute to better dealing with different scales and generating clearer boundaries, and even being able to calibrate the RGB image when the visual appearance is sub-optimal.

• Salient object detection seeks to segment image contents that visually attract human attention the most. It shares the similar idea of key feature detectors such as SIFT. The main difference is that saliency detection outputs regions of interest, while SIFT predicts pixels of interest. Saliency detection can be regarded as an extreme case of semantic segmentation where there are two labels, i.e., salient and non-salient. Studies have shown that salient objects are always characterized by uniqueness, focus, and objectness, which makes them distinctive from both local and global surroundings. Saliency detection can be applied in various applications such as image cropping, web image filtering, medical image processing, image search, and so on. Recent researches also show that saliency can be coupled with object detection [START_REF] Song | Exploiting scene depth for object detection with multimodal transformers[END_REF] and video object segmentation [START_REF] Wang | Saliency-aware video object segmentation[END_REF]. Similar to semantic segmentation, RGB salient object models have difficulties performing well under several challenging conditions, such as low-lighting conditions or similar appearance between foreground and background. One way to address these issues is to employ depth cues [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF], which are naturally complementary to RGB images with spatial information. Different from semantic segmentation which requires an accurate separation of all objects within the image, saliency detection only focuses on the visually most attractive parts. Therefore, for saliency detection, we are essentially interested in leveraging depth cues within local salient regions instead of all pixels.

Since depth cues can contribute to the scene understanding, how to efficiently explore the geometry along with RGB images has become a vital research topic for RGB-D models. We argue that the basic assumption of RGB-D fusion is that these modalities contain both heterogeneous and homogeneous information. Since RGB and depth images describe almost the same scene (with slight differences in the field of view due to the sensor specification if the depths are acquired rather than estimated), they share similar information at the semantic level. However, there is also a considerable difference between these two modalities. RGB images contain rich visual appearance information such as color and intensity, while depth maps are more sensitive to geometric changes, such as occlusion, scale changes, and out-of-the-plane rotation. Despite the plausible results achieved by recent fusion methods, it is still unknown how to efficiently and effectively fuse RGB-D features. Specifically, it can be noticed that most existing methods process RGB and depth features separately and fuse them through addition or concatenation. Therefore, these methods are agnostic of information redundancy. Furthermore, RGB and depth may contain unsatisfactory features from the input side. For RGB images, there may exist several local regions with unsatisfactory light conditions or blurred objects. For depth maps, the measurement can be uncertain and inaccurate. When the depths are measured from sensors, the accuracy can be affected by environmental factors such as object distance, object texture, etc. While the depths are computed from stereo images or monocular depth estimation, the accuracy is highly dependent on the quality of estimation methods.

Finally, while the depth is registered from the camera, the RGB-D sensor setups require a full calibration of the 2D-3D systems, such as perfect and ideal extrinsic calibration and timestamp synchronization. However, in practice, these exigences are always hard to achieve. Proposing an efficient and robust fusion method with respect to sensor misalignment has become a vital research topic nowadays.

Contributions

In this thesis, we seek to propose new fusion designs to address the aforementioned issues. We briefly summarize our major contributions as follow:

Depth-wise channel attention

Existing saliency works often adopt channel attention to emphasize the attentive features for both RGB and depth modalities. However, the vanilla channel attention [START_REF] Hu | Squeeze-and-excitation networks[END_REF][START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF][START_REF] Woo | Cbam: Convolutional block attention module[END_REF] is agnostic of fine-grained cues since the first step of channel attention is to squeeze the spatial resolution. Thus, despite the auxiliary depth information, it is still challenging for models equipped with vanilla channel attention to distinguish objects with similar appearances but at distinct camera distances. Therefore, from a new perspective, we propose a granularity-based attention RGB-D saliency detection.

Specifically, we leverage the Otsu thresholding algorithm to first generate various local regions according to the granularity [START_REF] Liao | A fast algorithm for multilevel thresholding[END_REF][START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. These regions can be considered as distinct local spatial attention. Then for each region, we apply local channel attention by masking out the others. Therefore, we improve the vanilla channel attention with a better awareness of multi-granularity properties from geometric priors. This approach can be regarded as a depth-wise operation. Similar to depth-wise convolution, we split the input feature into different parts with respect to depth. Then we spatially constrain attention around the different local regions. Finally, we merge them together to form the locally-enhanced output. We extensively validate the effectiveness of the proposed challenging RGB-D benchmarks. Our fusion design can improve saliency detection in several challenging scenarios where the state-of-the-art approaches fail, notably in cases where multiple objects with similar appearances but at distinct camera distances.

Depth-guided spatial attention

We observe that pixels sharing the same semantic label tend to share the same depth similarity, and more specifically, the 3D planarity. Despite the plausible result achieved by deep neural networks, especially the convolutional ones, the fixed size and shape of the convolutional kernel limit its capability to model contextualized awareness according to the geometry [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF]. Therefore, we introduce a new convolutional neural network that leverages the depth and planarity priors to deform the sampling positions for basic convolutional operators, i.e., convolution and pooling.

Specifically, instead of applying the convolution on the 2D image plane, we first back project the conventional 2D sampling position to the 3D space to create the sampling point cloud with the help of depth information and intrinsic parameters. Among these 3D points, we use the mean square least method to output the estimated plane coefficients. Based on these coefficients, we generate a depth-adapted planar grid, whose projection on the 2D image forms the depth-guided deformable sampling position.

This deformation plays the role of local depth attention to improve the discriminability of RGB features. We demonstrate through two tasks, i.e., semantic segmentation and saliency detection, the generalization capability of such fusion design. Compared to other RGB-D fusion alternatives [START_REF] Hu | ACNet: Attention based network to exploit complementary features for RGB-D semantic segmentation[END_REF][START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF][START_REF] Xing | Malleable 2.5 D convolution: Learning receptive fields along the depth-axis for RGB-D scene parsing[END_REF], we show that depth as offset can better leverage the geometric cues to improve the baseline performance.

Cross-modal transformer attention

Recently, transformer networks have led to another revolution in the computer vision society. Initially designed for NLP (natural language processing) tasks, the transformer has shown its capability in modeling long-range dependencies to process contextualized awareness for input sequences. Starting from 2020, transformer attention has been applied in various vision tasks and rapidly superior performance compared to CNN networks in various applications [START_REF] Chen | Transformer tracking[END_REF][START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Zhu | Deformable DETR: deformable transformers for end-to-end object detection[END_REF]. Compared to convolution, the transformer is built upon global attention with inter key-query correlation. We observe that by extending the inter key-query correlation to cross-modal key-query correlation, transformer attention suggests a natural way to aggregate RGB-D features. Inspired by this observation, we propose to first extract modality-specific features and then aggregate them through transformer attention. Our key idea is to leverage transformer attention to improve the scene understanding with enhanced awareness of visual differences and geometric cues, respectively. To enable position awareness and leverage locality into our transformer fusion, we propose a semantic-aware position encoding generator built upon convolutions. We process a modality-specific sequence as input and generate a category-aware position encoding. We aim to spatially constrain the attention around the neighboring area to better segment objects. Extensive comparisons on RGB-D indoor benchmark datasets have shown the superior performance and robustness of our network compared to pixel-wise fusion counterparts. to merge multi-modal features. However, while the depth map is unsatisfactory, it becomes hard to explore the low-level features. Therefore, a middle or late fusion should be preferred so that RGB-D cues are more merged at deep semantic space instead of stemming layers. To achieve such a goal, we propose layer-wise attention which learns the trade-off between early and late fusions, depending upon the provided depth quality. We show through the RGB-D saliency task that such fusion avoids the negative influence of the spurious depths while being opportunistic when high-quality depths are provided. We expect to validate the effectiveness and the generalization capability of such design for other tasks, such as semantic segmentation and object detection, in a similar setting of RGB-D inputs.

Layer-Wise Attention for RGB-D fusion

Organization

This thesis dissertation is divided into six different chapters:

• Chapter 2 introduces a short history of the most related CNN, attention, and transformer works in computer vision. We also present different depth representations including both 3D and 2D data. We highlight the advantages of RGB and depth fusion on the 2D image and provide an overview of RGB-D fusion milestones.

• Chapter 3 discusses the integration of fine-grained details into the vanilla channel attention to form the granularity-aware attention. Additionally, we explore the different cross-modal attention fusion designs for saliency detection.

• Chapter 4 explores how to use the depth to deform the RGB sampling position to be adapted to the perspective effect. We show that the depth as offset, in other words as local spatial attention, can significantly improve the baseline performance for different vision tasks.

• Chapter 5 shows how to leverage the transformer attention for RGB-D fusion.

We show that transformer attention is more robust to feature misalignment compared to pixel-wise hard associations. Furthermore, we introduce a novel learnable positional encoding that is modality-specific and can leverage rich spatial cues from hierarchical features.

• Chapter 6 presents the layer-wise attention for RGB-D fusion with respect to the input depth quality. We also improve conventional spatial attention with superior robustness against feature misalignment. The proposed mechanisms allow us to efficiently exploit the multi-model inputs while being robust against low-quality depths.

• Chapter 7 concludes this thesis and discusses some future perspectives on the presented works.

Chapter 2

Development of Deep Neural Networks: a Brief Literature Review

Deep learning is a very large topic and it is quasi-impossible to review all the details such as convolution, pooling, relu, batch normalization, dropout, MLP, etc. It is also impossible to view all different data augmentations, weight initialization, loss fusion, gradient descent, etc. In this manuscript, we assume that the readers have already gained basic notions of deep learning. Therefore, in this section, only several milestones in the deep learning area will be briefly reviewed, including CNN backbones, attention modules, and transformer networks. The objective is to provide an overview of the deep network's history, with a zoom on the development of different attention models. Also, note that we do not introduce the comparison with our proposed approaches. Detailed comparisons can be found in each of our proposed methods.

Convolution Neural Network

When we talk about deep neural networks, convolutional ones are just unavoidable.

Initially designed for image classification, convolutional neural networks (CNN) have dominated the computer vision society for almost ten years. The final objective of CNN is to extract the characteristics of each image by compressing them with different layers of convolution. The input image passes through a succession of filters and creates a new matrix with a smaller resolution but with a higher channel dimension.

These new matrices, also known as feature maps, contain therefore more semantic cues of the images and can contribute to the scene understanding.

The basic operator of CNN is convolution, which is a simple mathematical operation widely used for image processing and recognition. The basic idea of convolution is to add neighboring pixels to each element of the image, weighted by the kernel elements.

A classical convolution can be denoted as: 

w(p n ) • x(p + p n ), (2.1) 
where w is the weight matrix. R(p) is the grid for point p. Physically it represents a local neighborhood on an input feature map, which conventionally has a regular shape with certain dilation 1, such that :

R(p) = a⃗ u + b⃗ v (2.2)
where (⃗ u, ⃗ v ) is the pixel coordinate system of input feature map and (a, b) ∈ (∆d

• {-1, 0, 1}) 2 .
In image processing, different forms of convolution kernel have been proposed and have shown great advances in image blurring, sharpening, edge detection, and others. These kernels have pre-defined handcraft weights such as identity matrix, gaussian filters, Sobel kernels, Canny kernels, etc.

In the deep learning area, convolution also plays an important role. Different from the previous pre-defined weights, deep learning aims to find the optimal weights for convolution kernel by using gradient descent. Gradient descent is an optimization algorithm that finds the minimum of any convex function by gradually converging towards the minimum. For example, for supervised learning where the ground truth is known, gradient descent is used to minimize the cost function, which is indeed a convex function (for example the mean squared error). Since in the thesis, our objective is NOT to propose novel optimization methods, in the following paragraphs we simply and briefly explain the main logic of gradient descent for background understanding.

The first step of gradient descent is to start from a random initial value (a random kernel weight) and then we measure the value of the slope with this initialization. The slope in mathematics is computed as the derivative of the loss function.

Once we obtain the derivative, the next step is to define how much we progress in the direction of the slope which descends. This distance is termed Learning Rate, which could be translated as learning speed. This operation results in modifying the value of the parameters (kernel weights) of our model. By repeating these two steps in a loop, the gradient descent is therefore an iterative algorithm that makes it possible to find the ideal value for the learned convolutions.

It is worth noting that a large value of the learning rate can contribute to the fast convergence of the learning models. However, the final results may not be optimum since several local minima can be missed. On the other hand, a small learning rate may be stacked in local minima, while being agnostic to the global minima. How to find the best learning rate is yet an open question for researchers in the field.

Once the basic convolution operator is unveiled, it becomes easier to better understand a deep convolutional neural network (CNN) which can be regarded as a simple combination of different layers of convolution as shown in Figure 2.1. In this section, we briefly review several milestones that are related to the thesis.

In 2014, VGG nets [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] have been proposed which can be regarded as the first very deep Convolutional Networks. This work shows that the depth of neural networks can significantly affect the performance and comes up with two models: VGG- increase in layers does not necessarily lead to better performance. This can be also figured out by the fact that there only exist VGG 16 and 19 but not VGG 50 or VGG 100.

In fact, one of the main ideas of deep neural networks is based on back-propagation.

A neural network uses a loss function to express the precision in each node. The backpropagation uses gradient descent by the chain rule which computes the gradient of the loss function one layer at a time with respect to the other weights in the network. This happens in reverse through the neural network, hence named the back-propagation.

After the process, nodes with a high error will have less weight than those with a lower error. The back-propagation or the gradient descent will pass through all the nodes from the end to the start. Therefore, while the network is too deep, in the case of VGG nets, the back-propagation will become minimal, yielding a gradient vanishing and making weight changes at the stemming layers very small.

To address this issue, in 2016 ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] showed that a simple identity function can perfectly deal with the gradient vanishing since the local gradient becomes 1 instead of 0. Therefore, even with networks with a significant number of layers, 

Self Attention

In the field of deep learning, the development of CNN has shown great achievement in various computer vision tasks such as object detection and semantic segmentation. 

c > C , h < H, w < W (2.3)
For the convolution operation, a large part of the work is to improve the receptive field, that is, to integrate more feature fusion in space, or to extract multi-scale spatial information. For feature fusion along channel direction, the convolution operation basically fuses all channels of the input feature map by default. However, during the development, one question is naturally raised: are all the spatial and channel information important? Specifically, taking the feature map x as example, x ∈ R c×h×w .

Should each pixel contribute equally to the output when h × w is significant, i.e., 1920 × 1080? Similarly, should each channel contribute equally to the output when c is significant, i.e., 2048 for ResNet-101? To tackle these issues, different self-attention modules, especially channel and spatial attention modules, have been proposed. In the following paragraphs, we review the several milestones for self-attention modules. Specifically, let an input feature map x ∈ R c×h×w , SE block first adopts the Squeeze step which computes the average presentation for each channel with the help of average pooling which squeezes the spatial dimension, forming a vector v with size v ∈ R c×1×1 . This vector is then fed into a multi-layer perceptron (MLP) to compute an attention map. The principle of this structure is to enhance the important features and weaken the unimportant features by controlling the size of the scale so that the extracted features can focus solely on channel cues rather than spatial cues.

Finally, the attention map is multiplied with the feature map x, yielding a highlighted presentation with enhanced channel attention.

It is worth noting that there are many algorithms for computing a global representation for the Squeeze step. SENet uses the simplest averaging method which averages the information of all pixels into one value. This choice is made because the final recalibration weight is applied to the entire channel, and the spatial representation must be computed based on the overall information of the channel. In addition, SENet aims to study the correlation between channels instead of the spatial distribution. Therefore, global average pooling can mask the spatial distribution information, yielding a more accurate re-calibration weight for channels.

The excitation part is implemented with 2 MLP. The first MLP compresses c channels into c/r channels to reduce the amount of computation. The second MLP restores reduced features back to c channels. r refers to the compression ratio for the channel dimension. The MLP aims to exploit the correlation between channels to learn a meaningful re-calibration weight. In fact, the squeeze output of a mini-batch sample cannot be directly used as the re-calibration weight since the last should be trained based on the entire data set instead of based on a single batch. Therefore, an MLP is necessary to learn a global presentation.

Following SEnet [START_REF] Hu | Squeeze-and-excitation networks[END_REF], several studies have been proposed which aim to improve SE blocks by capturing more complex and more informative channel dependencies or even incorporating additional spatial attention. Although these methods achieve higher performance, they often bring extra and heavy computational costs over the plain version. In 2020, researchers propose a novel and effective channel attention module, ECAnet, with limited additional learning parameters.

Efficient Channel Attention

The original SENet is built upon 2 MLP and then uses a sigmoid function to generate the channel weight given the input features. The two MLP layers are designed to capture nonlinear cross-channel interactions, which include dimension reduction to control model complexity. Although this strategy has been widely used in other channel attention modules, the authors of SEnet experimentally show that reduction also brings side effects to channel attention prediction, and makes the captured dependencies between all channels inefficient. Therefore, as shown in Figure 2.5, researchers propose an efficient channel attention module for deep CNNs, named ECAnet [START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF] standing for efficient channel attention, which avoids dimension reduction and effectively captures the information of cross-channel interactions.

Specifically, after channel-level global average pooling without dimension reduction, ECA captures local cross-channel interaction information by considering each channel and its k neighboring channels, which ensures both the model efficiency and computation cost. To achieve this goal, ECA applies 1D convolution of size k, where the convolution kernel size k represents the coverage of local cross-channel interactions, Apart from these two widely used channel attention, there are a lot of other works aiming to improve the squeeze part and/or the excitation part as shown in Figure 2.5. We encourage readers to refer to the survey [START_REF] Guo | Attention mechanisms in computer vision: A survey[END_REF] for more details on the channel attention modules.

In addition to channel dimension, spatial resolution is also important for computer vision tasks, especially for object localization. Therefore, in the following section, we will review another type of attention work, i.e., spatial attention, to better enhance the response at the pixel-level.

Spatial Attention

Spatial Transformer Network

While channel cues are important for semantic understanding, spatial cues can contribute to precise object location. In fact, for computer vision tasks, we hope that the deep network can achieve a certain invariance to the changes in object pose or position. Therefore, we can learn the deep model from a limited number of images and generalize the knowledge to other scenarios where objects are in different poses and positions. The traditional CNN uses convolution and pooling operations to achieve translation invariance at a certain level. However, this invariance is only true at the image plane, i.e., objects translating along the image axis. While the objects translate at the direction of depth, i.e., the normal of the image, the previous invariance is no more validate. Therefore, conventional CNN is not invariant to geometric transformations such as rotation, distortion, scale changes, etc. Therefore, a number of works tackle this axis and propose different approaches aiming to enhance spatial awareness to better handle the geometric changes. At an early stage, STN [START_REF] Jaderberg | Spatial transformer networks[END_REF] attempts to learn the spatial transformations from the input image. Following the original dilated convolution, there exist several improved versions to adjust the limitation of the original work. For example, from the enlarged dilation, it can be seen that this design is used to obtain long-ranged information. However, this design is more suitable for the segmentation of large objects and may yield an unsatisfactory result for small objects. How to deal with the relationship between objects of different sizes at the same time is the key to designing a dilated convolution network. There exist several works which aim to address the above-mentioned issue and can be found in [START_REF] Guo | Attention mechanisms in computer vision: A survey[END_REF].

Deformable Convolution

Sharing the same idea as Dilated convolution, Deformable Convolution [START_REF] Dai | Deformable convolutional networks[END_REF] 

y(p) = pn∈R(p) w(p n ) • x(p + p n + ∆p n ) (2.4)
The original method has shown great performance on semantic segmentation and object detection and is widely applied in different tasks such as saliency detection, tracking, etc.

Non-local Attention

Through recent research, it can be seen that one trend of spatial attention is to better leverage contextualized information, i.e., dilated convolution with a large squared receptive field or deformable convolution with a more malleable form. It is worth noting that non-local attention [START_REF] Wang | Non-local neural networks[END_REF] is the first tentative to apply global attention in computer vision tasks. It is similar to the self-attention or transformer module for machine translation [START_REF] Vaswani | Attention is all you need[END_REF]. However, it focuses on 2D input, i.e., image.

Another major difference is that non-local attention is more like single-head attention which serves as a complement module for the CNN backbone, while the original transformer is multi-head attention and serves as the backbone to extract the long-range dependencies. Inspired by the success of transformers in NLP, researchers designed a transformer backbone for computer vision tasks, termed ViT, which will be discussed more in detail in the following section.

Transformer

Self and Cross Attention

Following the idea of self-attention, in 2020 ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] is proposed to treat an image as a series 16 × 16 words. In other words, ViT first applies transformer attention in computer vision tasks, which has challenged the CNN empire.

Initially, transformer attention [START_REF] Vaswani | Attention is all you need[END_REF] is designed for NLP (natural language processing) tasks. The basic idea is to compute the correlation between a given query (e.g., a target word in the output sentence) and certain key elements (e.g., source words in the input sentence). The correlation between query and key elements provides an attention map that prioritizes the most important words in the sentences. Where both key and query elements are from the same source, it is called self-attention which analyzes the intra-sentence relations. While the elements are from different sources, it is called cross-attention which analyzes the relations between different sentences. Figure 2.10

shows the sketch of transformer attention. If we take a deeper look at the design, the non-local operation is actually a variant of self-attention, which can be understood as a small part of the Transformer structure. Therefore, from this perspective, there is no essential difference between the two, and they both establish long-distance dependencies. From a functional point of view, non-local attention or self-attention is equivalent to the encoder part of the Transformer, which only does feature extraction. However, in addition to self-attention, the transformer also includes the decoder part, i.e., cross-attention, which can be used for reasoning. Therefore, the Non-local algorithm does not jump out of the standard practice of CNN, while the Transformer can directly predict the result, and the entire pipeline is more refreshing and clean, i.e., without various decoder modules.

Attention(Q, K , V ) = softmax( QK T √ d k )V , (2.5) 
Nowadays, transformers [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] To tackle these issues, recent works aim to explore new forms of Transformers to reduce the computational cost. In this section, we briefly review several milestone works which are related to this thesis.

Deformable DETR One idea is to select a set of keys instead of the whole feature map. In other words, since we want to learn sparse spatial positions, why not use the deformable convolution set? However, deformable convolution also lacks relational modeling capabilities. Nevertheless, this is what the transformer attention is best at.

Hence, in 2021, researchers propose Deformable DETR [START_REF] Zhu | Deformable DETR: deformable transformers for end-to-end object detection[END_REF], which contains the advantages of both deformable convolution and transformer. Specifically, for each query, before focusing on all spatial positions (all positions are used as keys), Deformable DETR only focuses on more meaningful positions that the network considers to contain more local information (less and a fixed number of positions are used as keys),

alleviating the problem of large feature maps. Technically, during the implementation process, the input feature map is fed to a linear map and outputs 3 features. The first 2 features encode the offset of the sampling and determine which keys should be found for each query, and the last feature contains the contribution of keys. Instead of computing the correlation between key and value, Deformable DETR only normalizes the contribution of the found keys, yielding a significantly lighter computational cost compared to the original form (10x faster compared to DETR).

Swin Transformer Another group of works aims to constrain the global attention to a series of local attention and finally merge them. One of the most exciting works must be the best paper of ICCV 2021, i.e., Swin Transformer [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF]. The biggest contribution of Swin Transformer is to propose a backbone that can be widely used in all computer vision fields, and most of the common hyperparameters in CNN networks can also be manually adjusted in Swin Transformer, such as the number of network blocks, the number of layers, the size of the input image, etc.

Before the Swin Transformer, networks such as ViT used a small and fixed-sized image as input, i.e., 224 for ViT. Therefore, for an input image, the first step is to resize the resolution to fit the requirement. This strategy will undoubtedly lose a lot of information. Unlike previous works, the input of the Swin Transformer is the original size of the image. In addition, Swin Transformer uses the most commonly used hierarchical network structure as in CNN. It is worth noting that the receptive field of Swin Transformer is similar to a CNN network: while the network level deepens, the receptive field of nodes is also expanding. The hierarchical structure of Swin Transformer also gives it the ability to perform segmentation or detection tasks with structures such as FPN [START_REF] Lin | Feature pyramid networks for object detection[END_REF] and U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].

The details of the window attention can be found in Figure 2 ACmix, which enjoys the benefits of local and global attention while having minimal computational overhead compared to pure convolution or self-attention. The details can be found in the Figure 2.12 and the original paper [START_REF] Pan | On the integration of self-attention and convolution[END_REF].

Inspired by the success of both channel and spatial attention, several researchers propose to jointly apply both attention to the baseline, forcing the network to learn both semantic and resolution cues.

Joint Channel-Spatial Attention

Convolutional Block Attention Mechanism

We have discussed in the previous section the importance of the attention module in the channel and spatial direction. It can be noticed that the presented works only focus on one dimension, with few networks explicitly tackling both dimensions. Therefore, following the same motivation but with another perspective, CBAM [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] proposes a joint channel and spatial attention module, aiming to increase the response at the most informative regions and channels and suppress unnecessary features. To emphasize meaningful features in both spatial and channel dimensions, the authors sequentially apply channel and spatial attention modules to learn what to pay attention to and where to pay attention in the channel and spatial dimensions, respectively. This not only saves parameters and computing power but also ensures that each module can be integrated into the existing network architecture as a plug-and-play module.

Specifically, for channel awareness, the whole computation is similar to the original SEnet. The main difference is that during the squeeze part, in CBAM both global max pooling and average pooling are applied. For spatial awareness, CBAM computes The image is from [START_REF] Woo | Cbam: Convolutional block attention module[END_REF].

the spatial attention map by applying average pooling and max pooling on the input feature map x ∈ R c×h×w and obtains the attention map m with size m ∈ R 2×h×w .

Different from channel attention which squeezes the spatial resolution, here the pooling methods are along the channel axis and therefore squeeze the channel dimension. Then the attention map is fed into a 2D convolution and a sigmoid function to reduce the fuse average-max pooled features and form the final attention map. Finally, the spatial attention is multiplied by the input feature map x.

Note that in the original paper [START_REF] Woo | Cbam: Convolutional block attention module[END_REF], the authors suggest that channel attention and spatial attention can be combined in a parallel or sequential manner. But the authors found that combining sequentially and putting the channel attention at the front achieves better results.

Dual Attention

DANet [START_REF] Fu | Dual attention network for scene segmentation[END_REF] proposes an another manner to leverage both spatial and channel attention as shown in Figure 2.14. Specifically, the models combine two types of attention modules on top of traditional dilated FCNs, which model semantic inter-dependencies in spatial and channel dimensions, respectively. The Position Attention module selectively aggregates the features of each position by taking a weighted sum of the features of all positions. Similar features will be related to each other regardless of the euclidian distance. Meanwhile, the Channel Attention module selectively emphasizes interdependent channel maps by integrating relevant features in all channel maps. These two attention modules are exploited to capture global information in images. The dual attention has nowadays been exploited in various applications such as RGB-D semantic segmentation [START_REF] Zhou | RGB-D co-attention network for semantic segmentation[END_REF], image generation [START_REF] Tang | Dual attention gans for semantic image synthesis[END_REF], etc.

The Position Attention Module and Channel Attention Module proposed by DANet are actually the same as the self-attention calculation method in Transformer. The difference is that one of the features involved in the calculation is a picture feature (2D) and the other is a word embedding (1D).

RGB-D Fusion

In previous sections, we briefly reviewed several milestones in the deep learning area.

Most of these works are designed for RGB single images as input. While it is more trivial to extend these approaches to video tasks such as video semantic segmentation [START_REF] Sun | Coarse-tofine feature mining for video semantic segmentation[END_REF][START_REF] Sun | Mining relations among cross-frame affinities for video semantic segmentation[END_REF], it is more challenging to extend these designs to multi-modal inputs, especially with RGB-D inputs. In this section, we will briefly review several RGB-D fusion designs so that the readers can have a global view of this field.

Depth as 3D Data

How to deal with complementary depth is a key research topic for RGB-D tasks. Different from 2D RGB images, RGB-D images provide additional cues on 3D geometry.

Therefore, a straightforward motivation is to project the 2D pixels to form the 3D representations as shown in Figure 2.15. Among all the 3D representations, the most widely used ones are the voxel format and the point cloud format. Voxel can be regarded as a 3D format of the pixel. It describes the occupancy of a 3D grid. Once the 3D voxel is obtained from the depth sensor, a straightforward idea is to extend conventional 2D CNN to 3D CNN by adding the additional depth dimension.

Previous works [START_REF] Maturana | 3d convolutional neural networks for landing zone detection from lidar[END_REF][START_REF] Wu | 3d shapenets: A deep representation for volumetric shapes[END_REF] have shown that this method works well when dealing with applications such as shape recognition.

Despite the demonstrated success, it inefficiently consumes huge memory as data is often sparse on the 3D scene. In contrast to previous works, [START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF][START_REF] Ruizhongtai | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF] propose to directly use the point cloud representation. Point cloud data are often orderless. In other words, by reshaping the order of the point cloud, the object features remain the same. In addition, each point inside the point cloud is highly correlated with others.

By deeply analyzing these characters, PointNet [START_REF] Ruizhongtai | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF] is proposed to directly deal with point cloud input. This method has shown a great advantage in both computational cost and performance compared to 3D CNN with voxels and has become the standard to deal with 3D data.

2D-3D Fusion

The 3D geometric cues provided by the depth data can naturally complement the RGB input. Therefore, proposing a 2D-3D fusion module has drawn great attention.

One typical work is the DenseFusion [START_REF] Wang | Densefusion: 6d object pose estimation by iterative dense fusion[END_REF] for 6D pose estimation. The main idea is that since RGB data and point cloud data are heterogeneous data located in different feature spaces, so DenseFusion uses a heterogeneous network to process these two kinds of data separately while retaining the structure of the two kinds of data themselves. It proposes a dense pixel-level fusion method, which integrates the features of the RGB data and the features of the point cloud in a more suitable way.

Specifically, the first step is to pre-process the input RGB and point cloud data.

DenseFusion realizes the semantic segmentation on the RGB image and extracts the point cloud corresponding to each mask. The cropped RGB regions, along with the corresponding point cloud are fed into the deep network. The deep network follows the conventional encoder-decoder design as shown in Figure 2.16. However, it has two branches. Firstly, it uses a fully convolutional network to project each pixel in the RGB crop to the color feature space, as well as the point cloud with a separate branch. Then, these two modalities are simply concatenated and fed into MLP for information integration, after which an average pooling is applied to obtain global features. Finally, the average feature, along with the modality-specific features, are concatenated to form the shared feature maps which are finally proceeded by the pose estimation decoder.

DenseNet shows a simple concatenation between different modalities can significantly boost the performance over the single-modal baseline. Following DenseNet, there are a lot of other 6D pose estimation models such as [START_REF] He | Ffb6d: A full flow bidirectional fusion network for 6d pose estimation[END_REF] with different and more complicated fusion modules.

RGB-D 2D Fusion

Despite the plausible results with 2D-3D fusion, 3D data are always processed by a 3D deep network, which is commonly heavier than 2D networks. Therefore, another group of research aims to explore depth as a 2D map and realize the fusion on the 2D plane. Since there exist a lot of works focusing on RGB-D 2D fusion, hence, in this section, we only review the most representative works. More detailed related works can be found in each chapter.

Depth as 2D map

Instead of processing the 3D data, an alternative is to consider depth as another 2D

image complementary to the RGB image. Deep neural networks for paired 2D RGB-D However, for RGB-D semantic segmentation, researchers often adopt another representation of depth. At the early stage, [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF] proposes to encode a depth map to a 3-channel HHA image, which refers to Horizontal disparity, Height above ground, and normal Angle. By using this method, we can encode the depth map to the HHA map which shares the same dimension as the RGB input. An example can be seen in Figure 2.17. Since then, the encoded HHA is widely used in RGB-D semantic segmentation tasks.

While the representations are different, the depth cue remains in the 2D dimension which is the same as the RGB input. Therefore, various fusion methods have been proposed to aggregate RGB and depth information. [START_REF] Zhu | Boosting rgb-d salient object detection with adaptively cooperative dynamic fusion network[END_REF] thoroughly divides different fusion strategies into five categories as shown in Figure 2.18. More commonly, we can group different fusion works into three groups: early, middle, and late fusion. Early fusion often merges RGB-D images at stemming layers. Some of them even aggregate RGB-D images from the input and form 4-channel or 6-channel input. The advantage of such a strategy is the computational cost since after the early fusion, only one feature extraction is required at the semantic level. However, due to the imbalance between RGB and depth features, especially at the early stage, this design cannot fully leverage the multi-modal cues. Therefore, some other works propose to realize late fusion. [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF] adopts an extremely late fusion that aggregates RGB-D cues at the output level. But most other late fusion works merge RGB-D cues at the semantic level, e.g., the output of the encoder. To further model the feature fusion at each level, a number of others works propose to fuse RGB-D features at each stage. This design is termed middle fusion. Each fusion strategy has its pros and cons. It is therefore hard to judge which one is better. Generally, experimental results show that middle fusion can yield better performance, but it is also the most time-consuming fusion strategy compared to its counterparts. formation. Therefore, they do not take feature redundancy into account. Finally, they assume that both modalities are well-aligned at the pixel-wise level.

Pixel-wise Fusion

Fusion with Self-Attention

To tackle the above-mentioned limits and be inspired by the success of attention modules, several works further explore the effectiveness of such designs for RGB-D fusion. For example, ACNet [START_REF] Hu | ACNet: Attention based network to exploit complementary features for RGB-D semantic segmentation[END_REF] first apply self-attention modules to self-calibrate RGB and depth features and then fuses them at each stage. The self-calibration step is exactly the same as the original channel attention proposed by SENet [START_REF] Hu | Squeeze-and-excitation networks[END_REF].

Sharing a similar idea, SA gate [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF] further explicitly leverages spatial and channel cues to firstly calibrate modality in a bi-directional manner and further realize middle fusion. The pipeline is shown in Figure 2.20. In addition to the channel attention applied in ACNet, SAGate adopts both spatial and channel attention. Furthermore, SAGate explicitly leverages the cross-modal interaction to calibrate both RGB and depth features with cross-modal cues, while ACNet only adopts self-modal attention to improve the feature representation.

Fusion with Non-local Attention

In contrast to previous works based on self-attention (channel and spatial attention), several works explore non-local attention to better leverage the contextualized cues. D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] is one of the pioneering works which integrates the depth distance into the weight function for convolutional operations. Specifically, it computes the depth distance between two pixels and uses this depth-aware weight to recalibrate the convolution and pooling. The details can be found in Figure 2.21.

Another line of work is to explore long-range attention for RGB-D fusion. The pioneering work is the CANet [START_REF] Zhou | RGB-D co-attention network for semantic segmentation[END_REF] which computes the cross-modal attention at the feature level. The details can be found in Figure 2.22. It can be seen that the idea is highly similar to Dual Attention [START_REF] Fu | Dual attention network for scene segmentation[END_REF] and non-local attention [START_REF] Wang | Non-local neural networks[END_REF].

Summary

In this chapter, we reviewed several milestones during the development of Deep Learning models from CNN to Transformer via different attention modules. We also review various existing RGB-D fusion methods from pixel-wise fusion to non-local attention via self-attention. It can be seen that the development of RGB-D fusion methods is highly correlated to the development of RGB tasks, with around one year or two years gap. In the following chapters, we will present our contributions achieved during this these.

Chapter 3

RGB-D Salient Object Detection via Hierarchical Depth Awareness

RGB-D saliency detection aims to fuse multi modalities to accurately localize salient regions. Existing works often adopt attention modules for feature modeling, with few methods explicitly leveraging fine-grained details to merge with semantic cues. Thus, despite the auxiliary depth information, it is still challenging for existing models to distinguish objects with similar appearances but at distinct camera distances. In this chapter, from a new perspective, we propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection. Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies. To realize multi-modal and multi-level fusion, we first use a granularity-based attention scheme to strengthen the discriminatory power of RGB and depth features separately. Then we introduce a unified cross dualattention module for multi-modal and multi-level fusion in a coarse-to-fine manner.

The encoded multi-modal features are gradually aggregated into a shared decoder.

Further, we exploit a multi-scale loss to take full advantage of the hierarchical information. Extensive experiments on challenging benchmark datasets demonstrate that our HiDAnet performs favorably over the state-of-the-art methods by large margins.

Introduction

Salient object detection (SOD) aims to find the most prominent region inside an image that visually attracts human attention. Conventional SOD approaches only take color images as inputs. With deep learning models, RGB SOD has achieved significant success [START_REF] Deng | R3net: Recurrent residual refinement network for saliency detection[END_REF][START_REF] Liu | A simple pooling-based design for real-time salient object detection[END_REF][START_REF] Wu | Cascaded partial decoder for fast and accurate salient object detection[END_REF][START_REF] Zhang | Learning uncertain convolutional features for accurate saliency detection[END_REF][START_REF] Zhao | EGNet: Edge Guidance Network for salient object detection[END_REF]. However, these models may result in unsatisfactory performance when dealing with complex scenes, e.g., low-contrast light or object occlusion.

Recent advanced RGB-D sensors provide accessibility to depth maps at low cost.

The complementary geometric cues can contribute to scene understanding. In the literature, two main designs have been widely exploited, i.e., single-streaming schemes that combine RGB-D images from the input side [START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Zhang | Uc-net: Uncertainty inspired rgb-d saliency detection via conditional variational autoencoders[END_REF][START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF] and multi-streaming network that extracts multi-modal features separately and combines them at semantic levels [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF][START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF]. Existing networks often directly extract semantic features through the deep network, with few methods fully explore the rich geometric priors provided by the depth map.

Previous works on channel attention [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Hu | Squeeze-and-excitation networks[END_REF][START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF][START_REF] Woo | Cbam: Convolutional block attention module[END_REF] have shown their effectiveness in emphasizing the attentive features among channels. A number of saliency detection works [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] adopt channel attention to enhance multi-modal features. However, the first step of learning channel attention is to aggregate the spatial information of feature maps to construct a 1 × 1 × C vector by using global average pooling, where

C is the number of channels. As a result, the foreground and background contribute equally to the output, which is not optimal to distinguish salient objects. Considering these issues, an intuitive motivation is to design local channel attention referring to depth priors in order to improve feature representation learning.

As shown in Fig. 3.1, while dealing with complex scenes, current state-of-the-art (SOTA) RGB-D models [START_REF] Zhao | Is depth really necessary for salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] fail to extract the salient region due to similar visual appearance between the foreground and background (Fig. 3.1(f) and (g)).

However, we observe that salient regions often share similar depth properties, i.e., a certain granularity of depth prior, that help to distinguish the salient objects from the background (Fig. respectively. We show that our approach can better reason about salient regions (Fig.

3.1(e)

) that are closer to the ground truth (Fig. 3.1(h)).

We further introduce a cross dual-attention module (CDA) to learn channel and spatial attention from auxiliary modalities to improve the current streaming. The enhanced features are hierarchically fused for final saliency map generation. Besides, the same cross-interaction scheme is embedded to articulate features between encoders and decoders through a U-Net-like [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] architecture. We attentively mirror the multiscale encoder features to preserve valuable geometric priors within each decoder. The encoded features are gradually fused to a shared decoder. Finally, we use a multi-scale loss on top of outputs from each decoder to optimize the saliency map. Concretely, our contributions are summarized as follows:

• We propose a novel granularity-based attention scheme that attends to finegrained details in order to strengthen the feature discriminability of each modality.

• We design a new multi-modal and multi-level fusion scheme with a multi-scale loss to take full advantage of the network hierarchy.

• We extensively validate our HiDAnet on large-scale challenging benchmarks.

Our approach performs favorably over SOTA models with large margins.

Related Work

There are extensive surveys [START_REF] Borji | Salient object detection: A survey[END_REF][START_REF] Cong | Review of visual saliency detection with comprehensive information[END_REF][START_REF] Shen | A survey of object classification and detection based on 2d/3d data[END_REF][START_REF] Wang | Salient object detection in the deep learning era: An in-depth survey[END_REF][START_REF] Zhao | Object detection with deep learning: A review[END_REF][START_REF] Zhou | Rgb-d salient object detection: A survey[END_REF] of salient object detection in the literature. In this section, we briefly review related RGB-D saliency detection as follows:

Multi-Modal Fusion.

The auxiliary depth map provides extra geometric clues in addition to visual appearance. To efficiently merge both modalities, several fusion methods have been proposed. A number of works [START_REF] Chen | 3-d convolutional neural networks for rgb-d salient object detection and beyond[END_REF][START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Fu | Siamese network for rgb-d salient object detection and beyond[END_REF][START_REF] Zhang | Uncertainty inspired rgb-d saliency detection[END_REF][START_REF] Zhang | Uc-net: Uncertainty inspired rgb-d saliency detection via conditional variational autoencoders[END_REF][START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF] directly concatenate the depth map with RGB images from the input side through a singlestream network. On the one hand, JLDCF and its successor [START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Fu | Siamese network for rgb-d salient object detection and beyond[END_REF] explore the siamese design for saliency detection by concatenating RGB and depth images in an additional dimension with a joint learning scheme. DANet [START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF] forms a four-channel input and enhances the extracted features with a dual-attention mechanism learned from depth. [START_REF] Zhang | Uncertainty inspired rgb-d saliency detection[END_REF][START_REF] Zhang | Uc-net: Uncertainty inspired rgb-d saliency detection via conditional variational autoencoders[END_REF] propose the stochastic framework to analyze the uncertainty during human labeling and model the distribution of the saliency output. Different from previous works, [START_REF] Chen | Rgb-d salient object detection via 3d convolutional neural networks[END_REF][START_REF] Chen | 3-d convolutional neural networks for rgb-d salient object detection and beyond[END_REF] attempt to address RGB-D SOD from the 3D point of view with a 3D convolutional neural network. The recent [START_REF] Zhou | Mvsalnet: Multi-view augmentation for rgb-d salient object detection[END_REF] leverages the depth cues to mimicks multi-view images and then fuse them to form the final output.

On the other side, multi-stream models [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Lee | Spsn: Superpixel prototype sampling network for rgb-d salient object detection[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF][START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] have achieved leading performances in RGB-D SOD. These models adopt two parallel encoders on different modalities, and the features are fused through different strategies.

Several works [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Zhai | Bifurcated backbone strategy for rgb-d salient object detection[END_REF][START_REF] Zhu | PDNet: Prior-model guided depth-enhanced network for salient object detection[END_REF] firstly enhance the depth features before fusing with RGB features. It is worth noting that a portion of the depth maps in existing saliency datasets are not of satisfactory quality. As discussed in [START_REF] Cheng | Depth-induced gap-reducing network for rgb-d salient object detection: An interaction, guidance and refinement approach[END_REF][START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF][START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Wu | Robust rgb-d fusion for saliency detection[END_REF], the depth may contain measurement or estimation bias. Thus, DCF [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF] designs a calibration module to improve the depth quality. [START_REF] Cheng | Depth-induced gap-reducing network for rgb-d salient object detection: An interaction, guidance and refinement approach[END_REF][START_REF] Huang | Discriminative unimodal feature selection and fusion for rgb-d salient object detection[END_REF][START_REF] Lee | Spsn: Superpixel prototype sampling network for rgb-d salient object detection[END_REF][START_REF] Wu | Robust rgb-d fusion for saliency detection[END_REF] propose a layer-wise attention to model the geometric contribution with respect to the network depth. [START_REF] Cheng | Depth-induced gap-reducing network for rgb-d salient object detection: An interaction, guidance and refinement approach[END_REF] explores an additional backbone to learn the weighting scalar purely from depth. [START_REF] Wu | Robust rgb-d fusion for saliency detection[END_REF] analyzes the similarity between RGB and depth features to regular the depth contribution. Sharing the same motivation, [START_REF] Lee | Spsn: Superpixel prototype sampling network for rgb-d salient object detection[END_REF] computes the reliability of each modality at each stage and then merges them through their reliability. Instead of learning the weighting scalar, [START_REF] Huang | Discriminative unimodal feature selection and fusion for rgb-d salient object detection[END_REF] generates the weighting maps at each scale to calibrate the feature response. Similarly, [START_REF] Zhang | Bilateral attention network for rgb-d salient object detection[END_REF] leverages bilateral attention to improve foregroundbackground features separately. Unlike these works, we first divide the feature map into several local regions with the help of depth granularity. The feature maps are further calibrated with different local attention to improve the feature discriminability.

Compared to [START_REF] Huang | Discriminative unimodal feature selection and fusion for rgb-d salient object detection[END_REF][START_REF] Zhang | Bilateral attention network for rgb-d salient object detection[END_REF], our fined-grained details are statically computed by maximizing the inter-class distance without learning parameters, leading to more reasonable and stable locally-calibrated areas.

There exist other works which only extract features from RGB input while the depth map only serves as supervision [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF]. In this context, [START_REF] Jin | Cdnet: Complementary depth network for rgb-d salient object detection[END_REF][START_REF] Wu | Modality-guided subnetwork for salient object detection[END_REF] propose to leverage the pseudo-depth to guide the RGB learning. A2dele [START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF] further formulates depth supervision as a knowledge transfer problem. CoNet [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF] and DASnet [START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] propose a multi-task learning framework with an additional depth head together with the saliency branch. However, we argue that these methods cannot fully leverage the multi-modal cues during feature extraction. Instead, we propose a cross-interaction scheme to take full advantage of cross-modal cues. We benefit from the auxiliary modality to alleviate errors in the feature modeling (depth to RGB, and RGB to depth).

Multi-Level Fusion. U-Net with skip connections [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] has shown its effectiveness in pixel-level segmentation tasks. Several RGB-D SOD models [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] equip this design for clearer boundary generation. [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] adopts the feature-wise addition. [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] concatenate the encoder features with the decoder. [START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF] designs a dense connection between high-level features and the decoder. In this work, we exploit the contribution of attention modules for skip connections applied to SOD. It is worth mentioning the success of skip connections can be mainly attributed to aggregation between the semantic features provided by the contracting path and fine-grained features from the expansion path. From a new perspective, we consider the encoderdecoder features as multi-modal features, and a unified cross-fusion scheme is applied to boost the performance.

Attention for Feature Enhancement. Attention methods such as transformer [START_REF] Vaswani | Attention is all you need[END_REF], CBAM [START_REF] Woo | Cbam: Convolutional block attention module[END_REF], SEnet [START_REF] Hu | Squeeze-and-excitation networks[END_REF], DA [START_REF] Fu | Dual attention network for scene segmentation[END_REF], and ECA [START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF] have demonstrated their success in other vision tasks. A number of RGB-D saliency models also equip attention modules to extract attentive features from different modalities. VST [START_REF] Liu | Visual saliency transformer[END_REF] and TriTrans [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF] adopt transformer [START_REF] Vaswani | Attention is all you need[END_REF] for saliency detection. [START_REF] Wang | Learning discriminative cross-modality features for rgb-d saliency detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF][START_REF] Zhao | Rgb-d salient object detection with ubiquitous target awareness[END_REF] apply the SE module to compute modality-specific attention for feature calibration. Similarly, CDInet [START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF] designs a depth-induced channel attention to enhance RGB features. From another perspective, [START_REF] Zhang | C2dfnet: Criss-cross dynamic filter network for rgb-d salient object detection[END_REF] deeply explores the spatial attention at different scales with the help of decoupled dynamic convolution. Sharing the same motivation, DFMnet [START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF] adopts a depth holistic attention on top of features with different resolutions. More recently, several works leverages both spatial and channel attention to jointly improve the feature representation. For example, BBSnet [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF] applies the CBAM [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] on the depth map to improve the depth quality before fusion. [START_REF] Wen | Dynamic selective network for rgb-d salient object detection[END_REF] further improves the CBAM by highlighting spatial features. Sharing the same motivation, CMINet [START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF] applies the DA [START_REF] Fu | Dual attention network for scene segmentation[END_REF] on to lately merge RGB-D features. Different from previous works with bi-directional cross-modal attention, HAINet [START_REF] Li | Hierarchical alternate interaction network for rgb-d salient object detection[END_REF] explores the purified depth to improve the RGB features in turn.

Despite the proven effectiveness, previous channel attention schemes do not fully benefit from the geometric priors. For example, the same attention can be applied to both foreground and background. The rich geometric priors in the input depth map have rarely been discovered, which limits the performance of RGB-D saliency detection. DSA2F [START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF] introduces a depth-sensitive module with the help of the depth histogram. However, it computes the depth region with a fixed threshold for each input image and the attention scores are simply computed by a Conv 1×1 . In contrast, we propose to dynamically generate multi-granularity regions with the multi-Otsu method [START_REF] Liao | A fast algorithm for multilevel thresholding[END_REF][START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. The fine-grained details are further integrated with channel attention to enhance the feature discriminability for sharper edge generation. 

Method

Feature Extraction with Granularity-Based Attention

We observe that the multi-granularity properties of geometric priors correlate well with the network hierarchies of saliency models. Inspired by this observation, we propose the granularity-based attention that aims to attentively combine the spatial attention mask with the conventional channel attention as shown in Fig. 3.3. For earlier layers, it strengthens the low-level representations to precisely localize the salient object with a sharp boundary. For deeper layers, it improves semantic abstraction and contributes to the identification of salient objects regardless of appearance variations. d ∈ [0, 255] to find the threshold that minimizes the intra-class variance, which is defined as a weighted sum of variances of the two classes:

σ 2 w (d) = w 0 (d)σ 2 0 (d) + w 1 (d)σ 2 1 (d), (3.1) 
where σ and w stand for the variance and probability of each class. The probability distributions are computed as the number of pixels contained in the interval:

w 0 (d) = d i=0 p(i); w 1 (d) = 255 i=d+1 p(i). (3.2) 
In this work, we use the extended multi-Otsu [START_REF] Liao | A fast algorithm for multilevel thresholding[END_REF] to generate multiple thresholds.

Assuming T random thresholds (d 1 , d 2 , ..., d T ) dividing the depth into T + 1 parts.

Let (σ 2 i , w i ) be the variance and the pixels number of region i (1

≤ i ≤ T + 1). The optimal values {d * 1 , d * 2 , ..., d *
T } are chosen by maximizing the inter-class variance:

{d * 1 , d * 2 , ..., d * T } = argmax{σ 2 w (d 1 , d 2 , ..., d T )}, (3.3) 
where

σ 2 w = T +1 i=1 w i σ 2 i .
To reduce the computational cost, we only generate the Otsu regions once during pre-processing and further resize them to fit the resolution of feature maps from different scales.

For the i th region m i , (1 ≤ i ≤ T + 1, i ∈ N * ), we mask out the feature map f in with element-wise multiplication to suppress the inactive area through f in ⊗ m i . Then, channel attention is applied to improve the feature representation with local awareness.

Compared to the vanilla channel attention [START_REF] Hu | Squeeze-and-excitation networks[END_REF][START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF], we replace the global average pooling with the local average pooling that attends to the local details referring to geometric priors. Finally, the locally enhanced features are aggregated by a residual connection for the final output generation f out . The overall process can be formulated as:

LECA(x) = σ(Conv 1d (LAP(x))) ⊗ x, f out = T +1 i=1 LECA(f in ⊗ m i ) + f in , (3.4) 
where σ(•) is the Sigmoid activation, ⊗ is the element-wise multiplication, and LAP denotes the local average pooling on each masked region. We provide more details on the differences between the proposed granularity-based attention and traditional channel attention in the ablation study Section 3.5 Tab. 3.5.

Remarks. Several previous works have proposed to explore depth prior in various manners such as the contrast in CPFP [START_REF] Zhao | Contrast prior and fluid pyramid integration for RGBD salient object detection[END_REF], the edge in CoNet [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF], or the histogram in DSA2F [START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF]. Our approach resembles the DSA2F that both methods belong to threshold-based segmentation frameworks. However, one main difference is that we dynamically generate optimized masks with the Ostu algorithm, while DSA2F applies fixed thresholds on the T + 1 largest depth distribution modes that cannot adapt to different scenarios without handcraft adjusting. Our superior performance proves that we can better model the depth priors.

Encoder Fusion with Cross Dual-Attention Module

Previous studies [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] have affirmed the effectiveness of learning from two heterogeneous modalities for RGB-D SOD. Color images provide rich information in visual appearance while depth maps contain more spatial priors. Both modalities contribute to modulating homogeneous semantic information. Therefore, the objective of multi-modal learning is to efficiently fuse features with diverse information from different modalities. Similar to multi-modal features, multi-level features also contain both heterogeneous and homogeneous information: high-level features are richer in abstract semantic cues while low-level features are richer in fine-grained details. Thus, from a new perspective, we design a unified fusion scheme to make full use of crossdomain cues for both multi-modal and multi-level reasoning.

Assuming two paired multi-modal features f x and f y . We firstly build a transformation

F t to map the inputs f x , f y ∈ R C ×h×w to feature maps f ′ x , f ′ y ∈ R C ′ ×h×w with C ′ = C 2 .
Specifically, F t is the combination of a 1 × 1 convolution which halves the channel size and a 3 × 3 convolution which is expected to activate the edge response:

f ′ x = F t (f x ) = Conv 3×3 (Conv 1×1 (f x )), f ′ y = F t (f y ) = Conv 3×3 (Conv 1×1 (f y )). (3.5)
Once obtaining the lightweight representation, the next step is to aggregate features from different domains (RGB-D or encoder-decoder). We observe from Fig. 3.1 that the fine-grained details, such as relative boundary, facilitate the identification of salient objects. Simultaneously, in case it is difficult to distinguish objects at the same distance on the depth map, e.g., when distinguishing the motorbike from the street, the visual appearance becomes more reliable. Inspired by this observation, we aim to use heterogeneous clues to compensate for the single-domain streaming.

To this end, we propose a cross dual-attention fusion scheme as shown in Fig. 3.5. Specifically, from each input feature map, we learn the 1-D channel attention M c ∈ R C ′ ×1×1 to determine what information to be involved, and the 2-D spatial attention M s ∈ R 1×h×w to determine which part to focus. We formally have the operations:

M c (f ′ ) = σ(MLP(GAP(f ′ )) + MLP(GMP(f ′ ))), M s (f ′ ) = σ(Conv 7×7 (Concat(CAP(f ′ ), CMP(f ′ )))), (3.6)
where σ(•) is the Sigmoid activation, MLP is the multi-layer perceptron, GAP and GMP are the global average and max pooling, respectively, and CAP and CMP are the average and max pooling across the channel, respectively. With the learned dual attention from separate feature maps, we enable a cross-domain interaction. In such a way, we can alleviate the ambiguities in the domain-specific features. Finally, the cross-enhanced features are fed into concatenation and convolution to form the shared representation f ′ out . The overall process can be formulated as:

f enh x = M s (f ′ y ) ⊗ M c (f ′ y ) ⊗ f ′ x , f enh y = M s (f ′ x ) ⊗ M c (f ′ x ) ⊗ f ′ y , f ′ out = Conv 3×3 (Concat(f enh x , f enh y )), (3.7) 
where ⊗ denotes element-wise multiplication. For the shared encoder, starting from the second layer, once the multi-modal features are fused through cross attention, the output is further combined with the previous level output through a Conv 3×3 .

Remarks. Our fusion design differs from concurrent works [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Zhang | Asymmetric two-stream architecture for accurate rgb-d saliency detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] in several aspects: (A) We leverage both spatial and channel attention to aggregate multimodal features, while [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] only focus on channels; (B) Different from ASTA [START_REF] Zhang | Asymmetric two-stream architecture for accurate rgb-d saliency detection[END_REF],

our calibration is bi-directional (RGB to depth and depth to RGB), while ASTA is asymmetric which only leverages depth cues to improve RGB features. Hence, it does not tackle depth noise; (C) SPnet [START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] also adopts the symmetric fusion strategies.

Our work differs from SPnet in that we fully explore the attention modules for feature fusion, while SPnet is built upon simple convolutions to combine features; (D) The fusion scheme can also be implemented by the CBAM [START_REF] Woo | Cbam: Convolutional block attention module[END_REF]. However, vanilla CBAM is modality-specific and cannot explore its relevance in cross-domain features. The ablation study in Section 3.5 Tab. 3.9 shows the gain with the cross interaction.

Decoder Aggregation with Efficient Multi-Input Fusion Module

To aggregate the learned features from both RGB and depth decoders into the shared decoder, a simple concatenation may not be adaptive enough due to the tripled number of descriptors. Thus, we propose an efficient multi-input fusion strategy. Specifically, as shown in Fig. 3.6, after the simple concatenation between different inputs (RGB f R , depth f D , and previous-level shared features f h ), we adopt the vanilla ECA [START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF] module (termed GECA while G stands for global pooling) to explore the inter-dependencies of different features. Thus, the most responded features are adaptively selected to form the shared decoder. A residual addition is adapted to reinforce the contribution of the previous level features. We have the overall process:

f shared = GECA(Conv 3×3 (Concat(f R , f D , f h ))) + f h . (3.8)
The shared decoded features are then fed into our cross dual-attention scheme to realize the skip-connection between the shared encoder-decoder.

Remarks. Our encoder fusion (CDA) and decoder fusion (EMI) are technically different. We observe that the spatial cues gradually lose during encoding and become limited for decoders. This motivates us to apply both spatial and channel attention for the encoder fusion, while only using channel attention for the decoder fusion.

Optimization

To take full advantage of the hierarchical information, we supervise multi-level outputs for both RGB, depth, and shared/fused branches. For outputs from each level, the predicted map is upsampled to form the same resolution mask as the ground truth.

We adopt BCE loss L BCE for pixel restriction and IoU loss L IoU for global restriction [START_REF] Qin | Basnet: Boundary-aware salient object detection[END_REF][START_REF] Wei | F 3 net: Fusion, feedback and focus for salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF]. Therefore, we have the loss L i for the i th level output:

L i = L BCE i + L IoU i . (3.9)
In total, we have five-level outputs (after each RFB in Fig. 3.2). Thus, by combining the loss from each branch (R for RGB, D for depth, and S for shared branches), the overall multi-level loss function L ml becomes:

L ml = 5 i=1 λ i (L i (R) + L i (D) + L i (S)), (3.10) 
where λ i is the weight of the different-level loss. To correlate with the network hierarchies, we follow [START_REF] Chen | Global context-aware progressive aggregation network for salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] and set the weight λ as {1, 0.8, 0.6, 0.4, 0.2}.

We expect the multi-level loss to measure the difference between the generated mask and ground truth at various layers, and to force the network to learn hierarchical features that capture long-and short-range spatial relationships between pixels. The gain by adopting the multi-level loss can be found in ablation study Section 3.5 Tab.

3.8.

Experiments

Benchmark Datasets

To verify the effectiveness of our approach, we firstly train with the conventional training dataset following the protocol presented in [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] with 2,195 samples: 1,485 samples from the NJU2K-train [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF] and 700 samples from the NLPRtrain [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF]. For testing, experiments are conducted on five classical benchmark RGB-D datasets. DES [START_REF] Cheng | Depth enhanced saliency detection method[END_REF] : includes 135 images of indoor scenes captured by a Kinect camera. NLPR-test [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF]: contains 300 natural images captured by a Kinect under different illumination conditions. NJU2K-test [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF]: contains 500 stereo image pairs from different sources such as the Internet, 3D movies, and photographs taken by a Fuji W3 stereo camera, where several depth maps are estimated through an optical flow method [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF]. STERE [START_REF] Niu | Leveraging stereopsis for saliency analysis[END_REF]: includes 1,000 stereoscopic images downloaded from the Internet where the depth map is estimated using the SIFT flow method [START_REF] Liu | Sift flow: Dense correspondence across scenes and its applications[END_REF]. SIP [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF]:

contains 929 images with humans in the scene, and images are acquired by a mobile device. We further evaluate our model on a newly published dataset COME15K [START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF] where the depth is estimated through a modified optical flow algorithm [START_REF] Wang | Displacement-invariant matching cost learning for accurate optical flow estimation[END_REF]. In this case, our model is trained with provided 8,025 training samples and tested on the "Difficult" set with 3,000 images.

Experimental Settings

Our model is implemented based on Pytorch and trained with a V100 GPU. Our backbone is initialized with the pre-trained weights obtained from ImageNet. For the depth stream, we modify the first convolution to start from one channel. The input RGB-D resolution is fixed to 352×352. We choose the Adam algorithm as our optimizer. We initialize the learning rate to be 1e-4 which is further divided by 10 every 60 epochs. The total training time takes around 6 hours for 100 epochs.

During training, we adopt random flipping, rotating, and border clipping for data augmentation. During inference, the prediction maps from the shared branch are the final outputs (middle branch of Fig. 3.2).

We evaluate our performance with four generally-recognized metrics: F-measure is a region-based similarity metric that takes into account both Precision (P) and Recall

Max F-Measure ↑ MAE ↓ (R). Mathematically, we have :

F β = (1+β 2 )•P•R β 2 •P+R .
The value of β 2 is set to be 0.3 as suggested in [START_REF] Achanta | Frequency-tuned salient region detection[END_REF] to emphasize the precision. In this paper, we report the maximum Fmeasure (F β ) score across the binary maps of different thresholds. Mean Absolute Error (M) measures the approximation degree between the saliency map and groundtruth map at the pixel level. S-measure (S m ) [START_REF] Fan | Structure-measure: A new way to evaluate foreground maps[END_REF] evaluates the similarities between object-aware (S o ) and region-aware (S r ) structures of the saliency map compared to the ground truth. Mathematically, we have:

S m = α • S o + (1 -α) • S r
, where α is set to be 0.5. E-measure (E m ) evaluates both image-level statistics and local pixelmatching information. Mathematically, we have:

E m = 1 W ×H W i=1 H j=1 ϕ FM (i, j),
where ϕ FM (i, j) stands for the enhanced-alignment matrix as presented in [START_REF] Fan | Enhanced-alignment measure for binary foreground map evaluation[END_REF]. To make a fair comparison, we use the same protocol as [START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] to evaluate the officially released saliency maps for each SOTA method.

Comparison with SOTA RGB-D models

Quantitative Comparison: We provide in Figure 3.7 an overview of the average performance on conventional benchmark datasets, i.e., DES [START_REF] Cheng | Depth enhanced saliency detection method[END_REF], NLPR [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF], NJU2K [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF], STERE [START_REF] Niu | Leveraging stereopsis for saliency analysis[END_REF], and SIP [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF]. The detailed quantitative performances can be found in Tab. 3.1. We also present in Tab. 3.2 the quantitative comparison on the newly published challenging COME15K [START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF] dataset. All saliency maps are directly provided by authors or computed by authorized codes. Under the consideration of a fair comparison, we conduct experiments with different backbones such as VGG16 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF], and Res2Net50 [START_REF] Gao | Res2net: A new multi-scale backbone architecture[END_REF]. It can be seen that our HiDAnet with each backbone achieves comparable and superior performance compared to the SOTA models with the same backbone. Specifically, our HiDANet with VGG16 backbones achieves significantly better performance on NLPR and SIP datasets, while being very competitive on the model size with 269 MB and around 6 FPS. Our HiDAnet with ResNet50 backbones further sets new SOTA records on DES, NLPR, and NJU2K datasets with 523 MB and around 12 FPS. We also follow the SOTA SPNet and replace our backbone with Res2Net50. It can be seen that our method performs favorably compared to SPNet with only 525 MB compared to that of SPNet with 702 MB. Our FPS is around 11. We also exhibit in Fig. 3.9 the PR curves with several latest published models to further demonstrate the superior performance of our model. Robustness against Depth Noise: Tab. 3.4 reports the robustness analysis on the depth quality. To make a fair comparison, we conduct experiments and compare with the SOTA SPnet [START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] and CMINet [START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF] under the same inferior condition with a simulated Gaussian noise on depth. We further evaluate the performances on the simulated noisy testing dataset. The noise level is defined by the conventional metrics RMSE and δ1. While RMSE and δ1 are 0, we report the performance tested with the vanilla dataset (without noise). Drop ∆ denotes the performance degradation by % under the simulated depth noise.
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Note that CMINet designs a multi-scale mutual information minimization during the encoding stage and lately merge multi-modal features at the semantic level, yielding an unsatisfactory performance while dealing with noisy datasets (drop 2.0% S m and 2.3% E m for noisy DES). Differently, both SPnet and ours fuse features at each stage, leading to superior robustness against the noise. Compared to SPnet, it can be seen that our performance is more stable, which can be attributed to our granularity attention and fusion designs. The gain of each component can be found in Tab. 3.8.

Ablation Study

Comparison with Vanilla Channel Attention. We propose granularity-aware attention (GBA) referring to geometric priors, which differs from the traditional channel attention on the pooling strategies. Formally, let z ∈ R C be the squeezed spatial information from feature x ∈ R H×W ×C . Accordingly, we can obtain three variations of average pooling: Hence, we further propose a local pooling to automatically adjust the weight (III).

(I ) z = x(.) H × W ; (II ) z = x(.) • m i () H × W ; (III ) z = x(.) • m i (.) m i (.) (3 
Our superior performance validates the effectiveness of our local design. Why GDA in both streams: We analyze in Tab. By comparing the 3 rd and 5 th columns, it can be seen that a small number of Otsu threshold T = 1 cannot get the full benefit from the geometric priors. For example, the building in the 1 st row cannot be perfectly distinguished from the background; 
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RGB Depth T = 1 Mask 1 T = 2 Mask 2 T = 3 Mask 3 GT
T = 2.
the cups in the 2 nd row are mixed with the table and a part of the wall. The unsatisfactory thresholding on the depth histogram leads to sub-optimal performance of granularity-based attention that the discriminatory power cannot be fully exploited.

While augmenting the number of thresholds to T = 2, we observe from the 5 th column that the scene can be better discretized. The fine-grained details contribute to the clearer boundary generation as shown in the 6 th column. We further augment the number of thresholds to T = 3 and observe the over-discretization, leading to the misunderstanding on the depth map. Thus, it results in lower quality salient masks as shown in the 8 th column.

Thus, we perform the experiments with different numbers of thresholds T . Tab. 3.7

shows that the best overall performance is achieved with T = 2 thresholds, thus with n = 3 regions. It can be considered as a scene discretization into three parts: close, middle, and far regions. Our plain HiDAnet is with T = 2 thresholds and achieves the best performance. We also discover that the sensitivity to thresholding varies from one dataset to another, especially the NLPR dataset which is not highly sensitive to the granularity. This is mainly due to the fact that NLPR contains objects residing in the background. In such circumstances, the target object has the mixed depth response as the background, leading to less-noticeable granularity as shown in the last two rows of Figure 3.10. In more common and popular cases (DES, NJU2K, STERE, and SIP), our fine-grained details achieve significant improvement compared to our baseline with conventional attention as shown in Tab. 3.7.

Ablation study on Key Components: Tab. 3.8 presents a thorough ablation study for each key component. We observe that by gradually adding proposed modules, our network leads to better performance. We also conduct experiments by replacing our proposed modules with several SOTA counterparts. Specifically, we compare our Granularity-Based Attention with the DEDA module proposed in [START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF]. Both our 
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Conclusion

In this chapter, we propose an end-to-end HiDAnet for RGB-D saliency detection. Different from previous networks, we fully leverage fine-grained details and merge them with semantic cues through local channel attention. Extensive evaluations on challenging RGB-D benchmarks indicate that our HiDAnet improves saliency detection in several challenging scenarios where the SOTA approaches fail, notably in cases where multiple objects with similar appearances but at distinct camera distances (granularity). In addition to the channel axis, the spatial direction also plays an important role in CNN. Therefore, in the following chapter, we will discuss how to leverage the depth cues to better design non-local depth-adapted spatial attention.

Chapter 4

Depth As Offset -A Novel Spatial Attention For CNN

In the previous chapter, we have discussed the depth-wise channel attention to improve the discriminability of CNN with respect to geometric priors. In addition to the channel axis, spatial information is also important which helps to precisely localize the object on the image. Hence, in this chapter, we present how can we leverage the depth cues to design a local and deformable depth-adapted spatial attention. We validate our approach on both semantic segmentation and saliency detection tasks. Inspired by this observation, we develop a Depth-Adapted Convolutional Network, denoted Z-ACN. Z stands for the Z-axis of the camera coordinates representing the depth information. Specifically, we propose a depth-adapted offset that can be integrated into basic functions of CNN, i.e, convolution and pooling, and introduce two new operators: depth-adapted convolution and depth-adapted average pooling.

Application in Semantic Segmentation

Our proposed depth-adapted convolution replaces conventional neighboring pixels with geometrically similar ones. Concretely, we reshape the receptive field to cover pixels sharing the same 3D plane with the center of the kernel, yielding a simple but efficient manner to articulate both photometric and geometric information. The second introduced operator is depth-adapted average pooling. Sharing the same idea as the depth-adapted convolution, we re-define the notion of neighboring pixels for average pooling such that the geometrical relations will be considered while computing the mean of the local region of the feature map. Both operators break the limits on the conventional definition of neighboring pixels, forcing the network to pay attention to a larger and more malleable receptive field.

Depth-adapted operations are based on the intuition that pixels with the same geometrical character should be more likely to share the same semantic label. One common example is the vanishing effect, as illustrated in Figure 4.1. We assume that pixels on the same 3D plane tend to share the same class. This 3D plane and depth variance have a high correlation. As shown in Figure 4.1, we display the projection of the 3D plane of the rail on the image plane as the adapted sampling position. The depth-adapted field should be more correlated to the real scene compared to the conventional neighboring field. Essentially, our method uses depth to transform planes into a canonical pose relative to the camera, such that the extracted feature maps are also in a canonical reference frame and thus invariant to scale changes and out-of-plane rotation. The main advantages of such operations are summarized as follows:

• We propose a novel depth-adapted convolutional network termed Z-ACN, that can integrate the geometric constraint into the conventional receptive field, hence improving the convolution with depth-aware contextualized attention.

• Our grid adaptation is processed by the non-learning method that does not introduce extra learning parameters compared to conventional counterparts.

• Experiments on both indoor and outdoor RGB-D semantic segmentation benchmarks demonstrate that our method can perform favorably over the baseline performance with large margins and set the new state-of-the-art performance.

Related Work

3D Representation

We have discussed in previous sections the success of PointNet in dealing with 3D data. Since then, different 3D CNN methods are trying to adapt to the irregularity of the point cloud. [START_REF] Li | Pointcnn: Convolution on x-transformed points[END_REF] integrates an x-transformation to leverage the spatially-local correlation of point cloud [START_REF] Thomas | Kpconv: Flexible and deformable convolution for point clouds[END_REF] introduces a spatially deformable convolution based on kernel points to study the local geometry. [START_REF] Liu | Relation-shape convolutional neural network for point cloud analysis[END_REF] learns the mapping from geometry relations to high-level relations between points to get a shape awareness. [START_REF] Liu | Densepoint: Learning densely contextual representation for efficient point cloud processing[END_REF] defines convolution as an SLP (Single-Layer Perceptron) with a nonlinear activator.

Besides, a number of efforts have been made to reduce the model complexity. [START_REF] Tchapmi | Segcloud: Semantic segmentation of 3d point clouds[END_REF] adapts CRF (Conditional Random Fields) to reduce the model parameters. Multiview methods [START_REF] Chen | Multi-view 3d object detection network for autonomous driving[END_REF][START_REF] Ge | 3d convolutional neural networks for efficient and robust hand pose estimation from single depth images[END_REF][START_REF] Li | Vehicle detection from 3d lidar using fully convolutional network[END_REF][START_REF] Charles R Qi | Volumetric and multi-view cnns for object classification on 3d data[END_REF] reform 3D CNN to become the combination of 2D

CNNs. [START_REF] Chen | Multi-view 3d object detection network for autonomous driving[END_REF] profits from Lidar to get bird-view and front-view information in addition to a traditional RGB image. [START_REF] Ge | 3d convolutional neural networks for efficient and robust hand pose estimation from single depth images[END_REF] uses depth image to generate the 3D volumetric representation after which projections on X, Y, and Z planes are learned respectively by 2D CNNs. 3D CNN achieves better results than RGB CNN but requires further development on problems such as memory cost, data resolution, and computing time.

2D RGB-D Fusion

Through the development of RGB-D fusion models, it can be seen that there exist a number works that aim to guide the feature extraction with enhanced depth awareness. D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] enhances the network with a depth similarity term which re-weight the standard convolution with the depth-related local context. Since then, various works have been developed on the forms of weight functions. [START_REF] Chen | 3D neighborhood convolution: Learning depth-aware features for RGB-D and RGB semantic segmentation[END_REF] extends the idea of [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] to dilated convolution. [START_REF] Xing | 2.5 D convolution for RGB-D semantic segmentation[END_REF][START_REF] Xing | Malleable 2.5 D convolution: Learning receptive fields along the depth-axis for RGB-D scene parsing[END_REF] develop 2.5 D convolutions with a more generalized weight function. [START_REF] Chu | Surfconv: Bridging 3d and 2d convolution for RGBD images[END_REF] projects 3D convolution on 2D images to form a depth-aware multi-scale 2D convolution. [START_REF] Xiong | Variational context-deformable convnets for indoor scene parsing[END_REF] uses depth information to define local neighborhoods by introducing a learned Gaussian kernel. Sharing the same idea of re-weighting the convolution, ShapeConv [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF] integrates the channel attention into the convolution function and forms a more generalized convolution that is not limited to RGB-D context.

It can be seen that contextualized awareness has played a vital role in RGB-D fusion.

For two-stream designs, multi-modal features are often firstly fed into attention module before the data fusion: [START_REF] Li | LSTM-CF: Unifying context modeling and fusion with LSTMs for RGB-D scene labeling[END_REF] with ConvLSTM modules, ACNet [START_REF] Hu | ACNet: Attention based network to exploit complementary features for RGB-D semantic segmentation[END_REF] with channel attention [START_REF] Hu | Squeeze-and-excitation networks[END_REF], [START_REF] Xiong | Variational context-deformable convnets for indoor scene parsing[END_REF] with a learned Gaussian convolution kernel, and [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF] with a modified CBAM [START_REF] Woo | Cbam: Convolutional block attention module[END_REF]. For single-stream design, the contextualized awareness is directly integrated into the basic convolution function to re-calibrate the filter weight: [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] with depth similarity, [START_REF] Xing | Malleable 2.5 D convolution: Learning receptive fields along the depth-axis for RGB-D scene parsing[END_REF] with a malleable depth-aware function, and [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF] with channel attention. Despite the popularity of attention modules in previous works, the capability of modeling long-range dependencies is still limited due to the fixed shape of the convolutional receptive field, i.e., within the 8 neighboring pixels for a conventional 3 × 3 convolution. In contrast, we propose a depth-adapted sampling position to explicitly leverage both global and local awareness in a simple yet efficient manner. By designing a geometry-constrained offset, we aim to break the conventional receptive field to adapt to the perspective effect, yielding an effective depth-guided 2D CNN to improve the RGB understanding.

Non-local Adaptive Model

In previous chapters, we have briefly reviewed several non-local networks. Despite the demonstrated promising results, we observe that the contextualized awareness are or learned through gradient descent, e.g., the positional encoding in CPVT and the offset in Deformable works, or learned through a pre-defined large receptive field, e.g., global attention in transformer and large kernel size in ConvNext. In the case of multi-modal feature learning, we seek to compute the global awareness from the additional prior. This perspective has been widely studied in the field of spherical images where the global attention is computed according to the distortion priors [START_REF] Taco S Cohen | Spherical cnns[END_REF][START_REF] Coors | Spherenet: Learning spherical representations for detection and classification in omnidirectional images[END_REF][START_REF] Fernandez-Labrador | Corners for layout: End-to-end layout recovery from 360 images[END_REF][START_REF] Tateno | Distortion-aware convolutional filters for dense prediction in panoramic images[END_REF]. Inspired by these works, we propose to compute the non-local awareness from the depth priors, making the convolution geometry-aware for RGB-D semantic segmentation. A concurrent work SConv [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF] learns the offset from depth image.

Our approach resembles the SConv in that both methods belong to depth-adapted convolution frameworks. However, one main difference is that our offset is purely defined by the geometric without requiring any gradient descent, while SConv applies convolutional layers to learn the offset from latent space. Our approach explicitly leverages the scale changes along the Z-axis of camera coordinates and out-of-theplane rotation. Instead of adding extra learning parameters, we show that a simple and intuitive local deformation can contribute to semantic segmentation with minimal cost.

Depth-Adapted Convolutional Network

In this section, two depth-adapted operations are presented: depth-adapted convolution and depth-adapted average pooling. Figure 4.2 shows the information propagation in our network.

First, we take a 2D conventional regular and fixed area on the depth map, which corresponds to a conventional receptive field, e.g., 3 × 3 convolution. We back-project the pixels to the 3D scene to get the 3D position in the camera coordinate. Second, we compute a depth-aware plane that passes through the real-world position of the kernel center and fits the best to all 3D points. Third, we create a 3D regular grid on this plane with an adapted orientation to fit the geometry. Last, we project this 3D grid on the image plane to form a 2D depth-adapted sampling grid.

Our model requires 2 inputs: input feature map and depth map (ground truth or estimated). The feature map is denoted as x ∈ R c i ×h×w , where c i is the number of input feature channel, h and w are the height and weight of the input feature map.

The depth map is denoted as D ∈ R h×w . D is used to adapt the spatial sampling locations by computing the offset, denoted as ∆p ∈ R c off ×h 1 ×w 1 , where h 1 and w 1 are the height and weight of the output feature map and c off = 2 × N × N for a N × N filter. Different from Deformable ConvNet, our offset does not require gradient during back-propagation. The output feature map is denoted as y ∈ R co ×h 1 ×w 1 , where c o is the number of output feature channel.

Depth-Adapted Convolution

A standard image convolution is formulated as:

y(p) = pn∈R(p) w(p n ) • x(p + p n ), (4.1) 
where w is the weight matrix. R(p) is the grid for point p. Physically it represents a local neighborhood on input feature map, which conventionally has regular shape with certain dilation ∆d, such that :

R(p) = a⃗ u + b⃗ v (4.2)
where (⃗ u, ⃗ v ) is the pixel coordinate system of input feature map and (a, b) ∈ (∆d

• {-1, 0, 1}) 2 .
To exploit the 3D planarity, depth-adapted convolution simply adds an adapted deformation term ∆p to adjust the spatial sampling locations :

y(p) = pn∈R(p) w(p n ) • x(p + p n + ∆p n ) (4.
3)

The convolution may be operated on the irregular positions p n + ∆p n as the offset ∆p n may be fractional. To address the issue, we use the bilinear interpolation which is the same as that proposed in [START_REF] Dai | Deformable convolutional networks[END_REF]. In the following subsections, we will present how to process this offset from traditional computer vision algorithms.

3D Planarity

To compute the offset, firstly we assume that the camera fits the pinhole model.

Therefore, with the camera parameters, we can back-project 2D pixels within the conventional field R(p) into camera coordinates, forming the 3D point cloud

P i = (X i , Y i , Z i
) . An analysis of the intrinsic parameters is presented in Section 4.1.5. Let p = (u 0 , v 0 ) be the center of 2D receptive field and P 0 = (X 0 , Y 0 , Z 0 ) the associated back-projection on 3D space. The plane π passing through P 0 and fitting the best to all P i can be extracted by applying the least square method:

- → n = arg min -→ n =(n 1 ,n 2 ,n 3 ) || -→ n ||=1 i || - → n • --→ P 0 P i || 2 (4.4)
where -→ n = (n 1 , n 2 , n 3 ) is an approximation of the normal of the plane π.

Basing on the plane π, we build a new planar and regular grid, denoted as R 3D (P 0 ), which is centered on P 0 . The regular shape is defined by an orthonormal basis ( ⃗ x ′ , ⃗ y ′ ) on the plane π. We fix ⃗ x ′ as horizontal ( ⃗ x ′ = (α, 0, β)). As ⃗ x ′ is on the plane π defined by its normal ⃗ n = (n 1 , n 2 , n 3 ) and ( ⃗ x ′ , ⃗ y ′ ) are the orthonormal basis, we have :

⃗ x ′ • ⃗ n = 0; || ⃗ x ′ || 2 = 1; ||⃗ n|| 2 = 1; ⃗ n × ⃗ x ′ = ⃗ y ′ . (4.5)
Analytically, we can obtain ( ⃗ x ′ , ⃗ y ′ ) as follow:

⃗ x ′ =         n 3 √ 1-n 2 2 0 -n 1 √ 1-n 2 2         , ⃗ y ′ =         -n 1 n 2 √ 1-n 2 2 » 1 -n 2 2 -n 2 n 3 √ 1-n 2 2         (4.6)
To conclude, R 3D (P 0 ) is defined as :

R 3D (P 0 ) = a ⃗ x ′ + b ⃗ y ′ (4.7) with (a, b) ∈ (-k u , 0, k u ) × (-k v , 0, k v ) where (k u , k v ) are scale factors.
A conventional 2D convolution on the image plane can be considered as realizing a planar convolution on a fronto-parallel plane on the 3D camera basis. While the depth value is constant, our depth-adapted plane -→ n becomes the same as the fronto-parallel plane. Otherwise, our plane -→ n can better explore the perspective effect compared to the counterpart, yielding a depth adapted sampling position R 3D (P 0 ) in the camera basis.

Scale Factor

The scale factors are designed to be constant such that the 3D receptive field of each point from the feature map has the same size. In such a way, with the variance of depth, due to the perspective effect, the projected 2D receptive field on the image plane will have different sizes. The value of scale factors can be empirically set in different tasks. In our application, we want the adapted convolution performs the same as a conventional 2D convolution on a particular point p(u 0 , v 0 ) whose associated plane in Eq. 4.4 is fronto-parallel {Z |Z = Z 0 }. By taking into account the dilation ∆d and the camera focal length (f u , f v ), we have:

k u = ∆d × Z 0 f u k v = ∆d × Z 0 f v . (4.8)

Depth-Adapted Sampling Position

To form the depth-adapted sampling position, we denote R'(p) as the projection of R 3D (P 0 ) on the image plane :

y(p) = pn∈R'(p) w(p) • x(p + p n ) = pn∈R(p) w(p) • x(p + p n + ∆p n ).
(4.9)

Different from the conventional grid R(p), the newly computed R'(p) breaks the regular size and shape structure with the additional offset. In such a way, the geometry information is incorporated in RGB CNN.

Depth-Adapted Average Pooling

A standard average pooling is defined as :

y(p) = 1 |R(p)| pn∈R(p)
x(p + p n ).

(4.10)

This treats every pixel equally regardless of its associated geometry information, e.g.

whether they belong to the same plane or not. To address this issue, similar to depthadapted convolution, we add an extra offset to adjust the pooling field to the geometry.

We force pixels sharing the same plane to contribute more to the corresponding output.

For each pixel location p, the depth-adapted average pooling operation becomes :

y(p) = 1 |R(p)| pn∈R(p)
x(p + p n + ∆p n ). 

Experiments

Experimental setup

Dataset and metrics. We evaluate the effectiveness of our approach on both indoor and outdoor RGB-D semantic segmentation benchmarks, including NYUv2 dataset [START_REF] Silberman | Indoor segmentation and support inference from RGBD images[END_REF], SUN RGBD dataset [START_REF] Song | SUN RGB-D: A RGB-D scene understanding benchmark suite[END_REF] and KITTI dataset [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF]. For the NYUv2 Implementation details. Our approach requires paired RGB-D images as input.

The depth map is first used to generate the geometry-aware offset which is further integrated into the network. As HHA encoding, the offset generation can be also realized during pre-processing since our method does not require gradient descent.

We follow the same learning settings for both our proposed network and the baseline counterpart. Experiments are realized with 2 Nvidia V100 GPUs under the PyTorch framework. During inference, we apply a single-scale inference strategy.

Comparison protocol. We evaluate the generalization capability of our approach with different backbones, including old-fashioned VGG-16 encoders and popular ResNet encoders. We seek to demonstrate that our approach can constantly improve the baseline performance.

To purely analyze the gain by applying our approach, we only replace the vanilla convolution and average pooling with our proposed depth-adapted operators.

With VGG-16 backbone

Comparison with D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF]: D-CNN is the pioneering work that integrates depth into the basic operations of convolutional networks. The depth is used to compute a similarity term to re-calibrate convolutional weight. We build our approach upon the DeepLab architecture, which is the same as D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF]. Note that both the D-CNN and our approach belong to the depth-aware convolution framework. Unlike the D-CNN model, we update the depth information to break the limitation of a fixed structure, which can better leverage long-range dependencies while D-CNN seeks to refine the sampling position within the conventional receptive field. To evaluate our superior design, we follow the same training settings as D-CNN and conduct experiments on both NYUv2 and SUN-RGBD datasets. Since conventional backbones are pre-trained with RGB input, i.e., ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], which is not designed for RGB-D tasks. Hence, we follow D-CNN and train our model from scratch. We refer authors to [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] for more details on the training strategies.

The quantitative comparison can be found in Table 4.1. We only extract features from RGB input images. The baseline model is with VGG-16 encoder under Deeplab [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF] architecture. D-CNN stands for the performance obtained by adding depth-aware re-calibration on both convolution and pooling. Z-ACN is the result obtained with our proposed convolution and pooling where we explicitly integrate the contextualized awareness in the basic operators. Our method can achieve superior performance over the counterpart, validating the effectiveness of our depth guided sampling position which can better model geometric priors compared to D-CNN.

Comparison with pre-trained methods: We also evaluate our method with pretrained weights, i.e., we initialize the weight with the pre-trained models and further fine-tune it on NYUv2 datasets. We build our approach upon the DeepLab architecture, which is the same as D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF]. We report in Table 4.2 the performances of different methods. It can be seen that our method performs favorably over other methods. Compared to [START_REF] Qi | 3D graph neural networks for RGBD semantic segmentation[END_REF] which adapts a 3D CNN, our model remains a 2D CNN that requires less computational cost but achieves superior performance. Compared to our baseline, i.e., vanilla Deeplab, our Z-ACN enables significant improvements by encoding the depth information into the network. As D-CNN, our approach can also work well with the early fused RGB-HHA input, yielding a further improvement in 

Model

Learned features mIoU (%) SurfConv [START_REF] Chu | Surfconv: Bridging 3d and 2d convolution for RGBD images[END_REF] RGB + HHA 31.0 Eigen et al. [START_REF] Eigen | Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[END_REF] RGB + HHA 34.1 3DGNN [START_REF] Qi | 3D graph neural networks for RGBD semantic segmentation[END_REF] RGB 39.9 Std2p [START_REF] He | STD2P: RGBD semantic segmentation using spatio-temporal data-driven pooling[END_REF] RGB + HHA 40.1 D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] RGB 41.0 CFN [START_REF] Lin | Cascaded feature network for semantic segmentation of RGB-D images[END_REF] RGB + HHA 41.7 D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] RGB The qualitative comparison can be found in Figure 4.3 which shows the improvement of our approach over the baseline. The two first columns show the input RGB image and input HHA map. Baseline is the result obtained with early fused RGB-HHA input. + Z-ACN denotes that we further apply our approach over the baseline. It can be seen that our approach can favorably improve scene understanding over the counterparts by explicitly leveraging the depth cues, yielding more accurate semantic maps.

With ResNet backbones

Plug in SOTA ESAnet [START_REF] Seichter | Efficient RGB-D semantic segmentation for indoor scene analysis[END_REF]: The current SOTA CNN performance on RGB-D semantic segmentation is achieved with ESAnet. To evaluate the generalization properties of our approach, we plug our Z-ACN into ESAnet, aiming to further improve the performance with additional depth-awareness. Compared to VGG encoders, ResNet encoders are deeper with more convolutions. Hence, replacing all convolutions with depth-adapted convolutions will yield more computational cost. As suggested in previous work [START_REF] Artizzu | Omniflownet: a perspective neural network adaptation for optical flow estimation in omnidirectional images[END_REF][START_REF] Shi | Panoflow: Learning optical flow for panoramic images[END_REF], the geometric cues play a more vital role in the first convolutional layers. Therefore, to find the best trade-off between the computational cost and the performance, we simply add a 3 × 3 depth-adapted convolution before the RGB encoder. This operation can be regarded as am early fusion to merge RGB and depth images at the stemming layer. The gain by further adding our Z-ACN can be found in Table 4.3. With our depthadapted operator, the new model performs favorably over the ESAnet baseline under different backbones, demonstrating the generalization capability of our approach which can easily be embedded into any existing backbones. Furthermore, since both our approach and the counterpart shares the same architecture, the improvement is purely attributed to our depth-awareness, validating the effectiveness of our geometryguided sampling position.

Comparison with RGB-D attention convolutions:

To evaluate our Z-ACN, we compare our approach with two recent RGB-D attention convolutions, ShapeConv [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF] and SConv [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF]. ShapeConv decomposes the features within the receptive field into a base component and the remaining which are then calibrated with two additional learning weights before the convolution. The base component is computed by the mean function to squeeze the spatial resolution, which can be regarded as the additional channel attention for convolution. Different from ShapeConv which is not specially dedicated to RGB-D tasks, we explicitly leverage the depth prior to deform the convolutional sampling position, yielding a simple but efficient manner to integrate the spatial attention into convolution. Meanwhile, the concurrent SConv (c-d) illustrates the learned sampling position from SConv [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF] for different ResNet backbones. (e) is the receptive field computed by our approach. SConv adopts a learning diagram to generate the receptive field, resulting in different shapes for different backbones. However, our method explicitly leverages the geometric constraint for the perspective effect. Our whole process is realized without learning parameters, making the depth-adapted sampling position independent from the neural network. above the baseline and is more efficient compared to SConv which requires additional learning costs.

Table 4.5 illustrates the quantitative comparison with other attention convolutions.

Under the consideration of a fair comparison, we embed all the operators into the ESAnet baseline and retrain them under the same settings. It can be seen that our Z-ACN outperforms the concurrent approaches with a large margin under all backbones.

This highlights the effectiveness of our depth-constraint attention compared to channel attention (ShapeConv) and learned depth attention (SConv).

Comparison with SOTA performance: We compare the performance of our Z-ACN with other state-of-the-art models. The quantitative results can be found in Table 4.6. Our Z-ACN sets the new state-of-the-art performance in NYUv2 datasets.

Compared to ShapeConv when both methods use ResNet-101 as the backbone and adopt single-scale inference, our approach achieves 3.8% mIoU improvement.

Outdoor scene: We also evaluate our approach to the outdoor scene, e.g., KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF]. The vanilla KITTI dataset provides RGB and lidar input. We take the dataset presented in [START_REF] Xu | Multimodal information fusion for urban scene understanding[END_REF] which provides a dense depth map. We validate all methods on the held-out testing set due to the smaller size and lack of a proposed validation split. We adopt the same modified ResNet-18 as presented in [START_REF] Chu | Surfconv: Bridging 3d and 2d convolution for RGBD images[END_REF] as our backbone with skip-connected fully convolutional architecture [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. The conventional convolution is replaced by our proposed operator.

Our model is compared with 3D representation such as PointNet [START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF], Conv3D [START_REF] Song | Semantic scene completion from a single depth image[END_REF][START_REF] Tchapmi | Segcloud: Semantic segmentation of 3d point clouds[END_REF] and 2D representation such as DeformCNN [START_REF] Dai | Deformable convolutional networks[END_REF] and SurfConv [START_REF] Chu | Surfconv: Bridging 3d and 2d convolution for RGBD images[END_REF]. Conv3D [START_REF] Song | Semantic scene completion from a single depth image[END_REF][START_REF] Tchapmi | Segcloud: Semantic segmentation of 3d point clouds[END_REF] and PointNet [START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF] use the hole-filled dense depth map provided by the dataset to create 3D input. For PointNet, the source code is used to use RGB plus gravity-aligned point cloud (pcl). The recommended configuration [START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF] is used to randomly sample points. The sample number is set to be 25k. For Conv3D, the SSCNet architecture [START_REF] Tchapmi | Segcloud: Semantic segmentation of 3d point clouds[END_REF] is used and is trained with flipped -TSDF and RGB. The resolution is reduced to 240 × 144 × 240 voxel grid. For DeformCNN, RGB images and HHA images are chosen as input for a fair comparison. For SurfConv, we compare with their best performance, which requires a resampling on the input image to be adapted to the 8 levels of depth. For all the above-mentioned models, we follow the same configuration and learning settings as discussed in [START_REF] Chu | Surfconv: Bridging 3d and 2d convolution for RGBD images[END_REF].

The quantitative result is reported in Table 4.7 that all methods are trained from scratch following [START_REF] Chu | Surfconv: Bridging 3d and 2d convolution for RGBD images[END_REF]. While dealing with an outdoor scene, 3D methods such as point cloud suffer from computational costs compared to 2D CNN which extracts features from images. It is also the case for Conv3D [START_REF] Song | Semantic scene completion from a single depth image[END_REF][START_REF] Tchapmi | Segcloud: Semantic segmentation of 3d point clouds[END_REF] since voxelizing the whole 3D space is time-consuming. Compared to these 3D methods, our model remains 2D CNN but achieves a better result. DeformCNN [START_REF] Dai | Deformable convolutional networks[END_REF] takes into RGB + HHA as input and learns offsets to deform the sampling position. Nevertheless, the offset is and early fused RGB-HHA input, respectively. + Z-ACN stands for the results obtained by inserting our depth-adapted offset into the baseline. It can be seen that our methods can significantly enable gains over the baseline performance with improved depth-awareness. We illustrate in Figure 4.5 the per-class IoU improvement with RGB input. Compared to the baseline, our approach enables improvement on 7/11 objects, especially "salient" objects in the urban scene such as the vehicle, cyclists, and pedestrians. However, we also observe that our approach achieves lower performance in detecting lanemark. This is because the lanemark is co-planar as the road that the confusing geometrical information may add noises for our depth-adapted model.

The qualitative comparison over the baseline is shown in Figure 4.5. The two first columns show the input RGB image and input HHA map. Baseline is the result obtained with early fused RGB-HHA input. + Z-ACN denotes that we further replace the baseline convolution with our approach. By explicitly leveraging the geometry, our approach constrains the network to pay more attention to boundaries and reason about semantic maps with higher accuracy. We observe that objects like the vehicle, pedestrian, and cyclist are better segmented, as well as the sign. Recognizably, these objects do not share the same depth compared to the background (road or pavement).

Hence, our adapted sampling position contributes to improving the discriminability of these salient objects. 

Additional Studies and Discussions

In this section, we conduct additional studies on the NYUv2 dataset to validate the efficiency, robustness, and flexibility of our operators. We choose VGG-16 with Deeplab as the baseline. The features are extracted from RGB images. The depth map is used to guide the sampling position.

Intrinsic Parameters

Our model requires the intrinsic parameters to back-project the pixels to the 3D scene and project the depth-adapted 3D planar grid to the image plane. This pattern is integrated into Eq. 4.4 and Eq. 4.8. Demanding camera parameters as priors can be a

strong assumption that limits the application. Therefore, we evaluate the performance with a randomly set camera matrix.

The intrinsic parameters include the principal point and the focal length. However, most models resize the input image shape, which results in difficulties in using the official principal point value. Hence, we assume that the principal point is the same as the center of the input image and chose a random value for focal length. We set [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF] for NYUv2 dataset, where the official value is around (519, 519).

(f u , f v ) =
We retrain the new model under the same training setting. The quantitative result is reported in Table 4.9. We denote k r , the result obtained with randomly chosen intrinsic parameters, and GT , the result obtained with official values.

It can be seen that with an arbitrary value for intrinsic parameters, our model can still achieve favorable performance compared to the baseline. Compared to the result obtained with GT intrinsic value, the loss is only 0.2% for mAcc and 0.9% for mIoU.

The result validates that our model can get rid of the assumption of the input intrinsic parameters under the condition that they are logically chosen.

Ablation Study

To further verify the functionality of both depth-adapted convolution and depthadapted average pooling, the following experiments are conducted. Experimental results are reported in Table 4.10. While learning from scratch, our operators can effectively extract features with geometric relationships and improve the segmentation performance. By comparing (a) and (b), we only replace deep convolution with our approach, i.e., the first convolution of layer 5 of VGG-16, we achieve a 3.6% gain on mIoU. (c) illustrates the result with the first convolution of all layers replaced by our approach. Our Z-ACN enables a 5.7% gain compared to the baseline (a). Finally, by introducing the depth-adapted average pooling (d), we observe that the performance can be further promoted, validating the effectiveness of our depth-adapted pooling method.

While learning from the pre-trained model, we firstly want to argue that the existing weight may not be fair nor suitable for our adapted convolution. The existing weight is learned with a fixed size and shape structure, while our adapted convolution breaks this limitation. The most suitable pre-trained weight for our operator might require training our depth-adapted model on ImageNet, which is impossible since the depth information is not available on this dataset.

Nevertheless, we still show that our approach can benefit from the conventional pretrained weights. By fine-tuning the weights, Table 4.10 illustrates that replacing the first convolution from a deep layer contributes the most to the performance by 1.8% over the baseline. By introducing the depth-adapted average pooling, the performance can be further promoted.

Application in Saliency Detection

Introduction

In the last decade, RGB-based deep learning models for salient object detection (SOD) [START_REF] Deng | R3net: Recurrent residual refinement network for saliency detection[END_REF][START_REF] Liu | A simple pooling-based design for real-time salient object detection[END_REF][START_REF] Wu | Cascaded partial decoder for fast and accurate salient object detection[END_REF][START_REF] Zhang | Learning uncertain convolutional features for accurate saliency detection[END_REF][START_REF] Zhao | EGNet: Edge Guidance Network for salient object detection[END_REF] achieved significant success thanks to the advances of GPU and CNN. Given an input image, the goal of SOD is to compute the pixel-wise location of the prominent objects that visually attract human attention the most. However, RGB SOD models focus more on photometric information instead of geometry. This is due to the fixed shape and size kernel design of CNN that is not invariant to scale changes and to 3D rotations. By the lack of geometric information on the input side, it is inevitable for RGB models to add additional learning modules in the network to attend to salient objects, resulting in model complexity and computational cost.

Recent RGBD-based SOD has motivated research interest thanks to the accessibility of cross-modal information from the input side. State-of-the-art RGBD models [START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF][START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF] achieve superior performance over the RGB baseline, affirming the effectiveness of learning from two modalities. Most architectures adapt fusion-wise models, such as early fusion [START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF] where the depth map is fed as the fourth channel to RGB image, or multi-scale and late fusion [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] where two-stream networks are adopted. However, early fusion contains more low-level features than semantic ones.

Multi-scale or late fusion inevitably requires more learning parameters. As shown in Figure 4.6, the size of RGBD models is often larger than that of RGB networks.

We explore differently the relationship between depth map and RGB image. Taking human beings as an example, to distinguish salient objects from the 3D world, the input is the visual appearance through human eyes. With the color information and thanks to the depth estimation capability, humans further discover geometric information. This prior guides the understanding of RGB images. It should be the same case for intelligent machines.

To this end, we propose a novel Modality-Guided Subnetwork (MGSnet) which adaptively transforms convolutions by fusing information from one modality to another (e.g., depth to RGB or RGB to depth). Our network matches perfectly both RGB and RGB-D data and dynamically estimates depth if not available by simply applying an off-the-shelf depth prediction model. We design a subnetwork mechanism alongside the master streaming pipeline. The subnetwork can be treated like a light residualaddition branch as the ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. It takes one modality map as the master input, e.g. RGB, and enhances its robustness by deforming the convolution kernel with the supervision of the complementary modal prior, e.g. depth, and vice versa.

In summary, the main contributions of this chapter are listed as follows :

• By exploiting the nature of CNN sampling position, we propose a novel crossmodal fusion design (MGS) for salient object detection, where we use a subsidiary modality, i.e., RGB/depth, to guide the main modality streaming, i.e., depth/RGB.

• For RGB-only input, we suggest using an off-the-shelf depth prediction model to mimick the multi-modality input. Our MGSnet enables dramatical performance gain on benchmark datasets and achieves state-of-the-art performance among RGB SOD models.

• The proposed MGS can also be embedded in RGBD two-stream network with the advantage of cross-modality cues while being lightweight.

Related Work

RGB SOD: In the past decade, the development of GPU and CNN contributes to the advances of RGB SOD. One core problem is understanding the geometric information from the image. Fully Convolutional Network (FCN) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] is a pioneering work in leveraging spatial information in CNN. Most recent researches dominating RGB SOD are FCN-based, such as [START_REF] Zhang | Learning uncertain convolutional features for accurate saliency detection[END_REF] which designs a single stream encoder-decoder system, [START_REF] Li | Deep contrast learning for salient object detection[END_REF] which adopts a multi-scale network on input, and most currently [START_REF] Deng | R3net: Recurrent residual refinement network for saliency detection[END_REF][START_REF] Liu | A simple pooling-based design for real-time salient object detection[END_REF][START_REF] Wu | Cascaded partial decoder for fast and accurate salient object detection[END_REF][START_REF] Zhao | EGNet: Edge Guidance Network for salient object detection[END_REF] which fuse multi-level feature map. Some branch designs also have achieved impressive results such as C2S-Net [START_REF] Li | Contour knowledge transfer for salient object detection[END_REF] which bridges contour knowledge for SOD.

By inserting additional transformation parameters in networks, it contributes to the model performance. Nevertheless, the inference time and computational cost become more significant.

RGBD SOD:

The complementary depth map may provide extra clues on the geometry. How to efficiently joint RGB and depth modality is the key challenge for RGBD SOD. One possible solution is to treat the depth map as an additional channel and adapt a single-stream system as shown in DANet [START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF]. It further designs a verification process with a depth-enhanced dual attention module. An alternative is to realize multi-stream networks followed by a feature fusion mechanism. PDNet [START_REF] Zhu | PDNet: Prior-model guided depth-enhanced network for salient object detection[END_REF] designs a depth-enhanced stream to extract geometric features and further fuses with the RGB features. D3net [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF] adopts separate networks to respectively extract features from RGB, depth map, and RGBD four-channel input. A late fusion is further realized. HDFnet [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] adopts two streaming networks for both RGB image and depth map. These features are further fused to generate region-aware dynamic filters. JL-DCF [START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF] proposes joint learning from cross-modal information through a Siamese network. Generally, RGBD networks achieve superior performance compared to RGB as shown in Figure 4.6. However, these methods rely on the quality and accessibility of the depth map. A high-quality depth map requires expensive depth sensors and is still sparse compared to an RGB image as suggested in [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF][START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF]. To this end, DCF [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF] proposes to calibrate the raw depth to improve the quality. Nevertheless, the high computational cost due to the two-streaming network requires more development.

Some recent researches [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] propose to learn from RGBD images and tests on RGB. This design enables an RGB CNN to achieve a comparable result with RGBD SOD during testing. Different from it, we propose to firstly discover the hidden geometric modality behind RGB images by simply using an off-the-shelf depth prediction method. With the estimated depth, we further propose a Modality-Guided Subnetwork mechanism to enhance the master RGB network understanding of the contour problem. Our proposed MGSnet achieves state-of-the-art performance with real-time inference speed compared to other RGB models. It can also be embedded in RGBD two-stream models to enable further progress with raw depth.

use RFB [START_REF] Liu | Receptive field block net for accurate and fast object detection[END_REF] on the steamer layers (f 3 , f 4 , f 5 ) which contains high level features for SOD as suggested in [START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF]. We further embed our subnetwork to enhance the edge understanding of the encoder output. We take the same decoder as proposed in [START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF] and a simple binary cross-entropy (BCE) as the loss.

Depth-guided Subnetwork

To proceed with the geometric prior, the depth map D and the RGB feature map (output of Conv _4) are fed together to our model. We use f 4 ∈ R b×512×h×w to denote the input RGB feature. The depth prior and RGB feature maps are articulated through an adaptive convolution to compute depth-aware RGB feature maps as output. The last is added to the master RGB stream to form the final feature map.

The subnetwork contains three convolutions of different filter sizes: 1 × 1, 3 × 3, and

1 × 1.
It shares the same architecture of plain baseline of ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] that the 1 × 1 layers are used for reducing (512→64) and then increasing dimensions (64→512), allowing the 3 × 3 layer with smaller input/output dimensions. We denote D and U for the first and the last 1 × 1 convolution, which stands for down-sample and upsample, respectively. This design can significantly reduce the learning parameters, which contributes to the lightweight design of our subnetwork. Different from ResNet that uses the three layers as a bottleneck, we use them as the residual-addition branch which serves as complementary information to the plain network.

Similar to previous section 4.1.3, we replace the conventional 3 × 3 convolution by deformable convolution (DeformConv) [START_REF] Dai | Deformable convolutional networks[END_REF], where the kernels are generated with different sampling distributions which is adapted to depth modality. Mathematically, we have:

y(p) = pn∈R(p) w(p n ) • x(p + p n + ∆p n ) (4.12)
The convolution may be operated on the irregular positions p n + ∆p n as the offset ∆p n may be fractional. To address the issue, we use the bilinear interpolation which is the same as that proposed in [START_REF] Dai | Deformable convolutional networks[END_REF]. The adapted convolution is denoted as A.

Thanks to the depth input of the subnetwork, the scale and geometric transformation of objects on the RGB feature map can be directly analyzed with the adapted offsets.

This process is expressed as: We present two types of offset generators according to different plain networks. More details are discussed in the following section. The newly defined sampling position becomes depth-aware and helps to better articulate the RGB feature and geometric information. Finally, the output of MGS is added to the master stream, which serves as complementary depth-aware guidance on RGB features.

∆p n = η(D) (4.13)
The entire process to compute the modality-guided feature f M can be formulated as follows:

f M = MGS(f 4 , D) = U(A(D(f 4 ), η(D))) (4.14)
The output of RGB encoder can be formulated as :

out = f 5 + λf M (4.15)
where λ is the weight parameter.

Offset generator

We use another modal prior to deform the main stream convolution. When the offset exceeds the input size, the output will be computed as if the zeros padding is applied.

For RGB input, the pseudo-depth is used to deform the RGB sampling position.

The offset is generated through Z-ACN [START_REF] Wu | Depthadapted CNN for RGB-D cameras[END_REF][START_REF] Wu | Depth-adapted CNNs for RGB-D semantic segmentation[END_REF] or previous section 4.1.3. It firstly back-projects the 2D conventional grid to form a 3D point cloud according to the depth. Based on the point cloud, it extracts a depth-aware 3D plan and further creates a depth-aware 3D regular grid. Then it projects the 3D regular grid to the image plan to form the deformable sampling position. More details can be found in Z-ACN [START_REF] Wu | Depthadapted CNN for RGB-D cameras[END_REF][START_REF] Wu | Depth-adapted CNNs for RGB-D semantic segmentation[END_REF] paper. Different to DeformConv [START_REF] Dai | Deformable convolutional networks[END_REF] that learns offset from the RGB feature map to deform RGB sampling position, Z-ACN computes offset according to low-level geometric constraint (one-channel depth) and does not require gradient descent, thus perfectly matches our light-weight subnetwork design. The computed offset allows the RGB convolution to be scale and rotation independent. We verify through experiments the superior performance of our model in the ablation study.

For RGBD input, current Sconv [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF] suggests learning the RGB offset from a semantic depth feature map. We share the same motivation as Sconv. However, Sconv firstly projects the depth into a high-dimensional feature space and secondly learns a depthaware offset and mask. Unlike Sconv, we learn the offset from the encoder or highlevel features to avoid the additional projection. In other words, in our case, the offset generator η is realized through a simple 3 × 3 convolution to minimize the computational cost. Furthermore, we adapt to different modalities as input, i.e., it learns offset from both RGB and depth, while Sconv only learns from depth.

Understand adaptive sampling position

Our model aims to compensate for the single modality streaming. As shown in Figure 4.9, while extracting features from RGB images, the conventional sampling position is limited by the lack of capability to include geometry due to the fixed shape. We propose to use the depth prior to accurately locate the sampling position. For RGB input without depth prior, we suggest mimicking the depth map by using a monocular depth estimation model. Some pseudo-depth images may be inaccurate due to the domain gap between SOD and monocular depth estimation. In such a case, the offset will converge to 0 so that the deformation becomes minimal and local. The contribution of the depth-aware RGB feature is further regularized by the weight parameter λ of Eq. 4.15. In Fig. 4.10, we show that our method is robust to nonoptical depth through several examples.

While extracting features from raw depth, conventional sampling positions may produce sub-optimal results due to some inaccurate measurements. The raw depth maps for SOD are obtained by camera measurements such as Kinect and Light Field cameras, or estimated by classic computer vision algorithms as [START_REF] Liu | Sift flow: Dense correspondence across scenes and its applications[END_REF][START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF]. Thus, the raw depth images may contain noise and ambiguity. We can visualize several low-quality samples on the third row of Figure 4.10. To this end, we propose to use the RGB image to deform the depth sampling position. In such a case, the RGB-guided sampling position can make up for the measurement error on geometry.

Experiments

Benchmark Dataset

To verify the effectiveness of our method, we conduct experiments on seven following benchmark RGBD datasets. DES [START_REF] Cheng | Depth enhanced saliency detection method[END_REF] : includes 135 images about indoor scenes captured by Kinect camera. LFSD [START_REF] Li | Saliency detection on light field[END_REF]: contains 100 images collected on the light field with an embedded depth map and human-labeled ground truths. NLPR [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF]:

contains 1000 natural images captured by Kinect under different illumination conditions. NJUD [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF]: contains 1,985 stereo image pairs from different sources such as the Internet, 3D movies, and photographs taken by a Fuji W3 stereo camera and with estimated depth by using optical flow method [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF]. SSD [START_REF] Zhu | A three-pathway psychobiological framework of salient object detection using stereoscopic technology[END_REF]: contains 80 images picked up from stereo movies with estimated depth from flow map [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF]. STEREO [START_REF] Niu | Leveraging stereopsis for saliency analysis[END_REF]: includes 1000 stereoscopic images downloaded from the Internet where the depth map is estimated by using SIFT flow method [START_REF] Liu | Sift flow: Dense correspondence across scenes and its applications[END_REF]. DUT-RGBD [START_REF] Piao | Depth-induced multiscale recurrent attention network for saliency detection[END_REF]: contains 1200 images captured by Lytro camera in real-life scenes.

Experimental Settings

Our model is implemented basing on the Pytorch toolbox and trained with a GTX 3090Ti GPU. We adopt several generally-recognized metrics for quantitative evaluation: F-measure is a region-based similarity metric that takes into account both Precision (Pre) and Recall (Rec). Mathematically, we have :

F β = (1+β 2 )•Pre•Rec β 2 •Pre+Rec .
The value of β 2 is set to be 0.3 as suggested in [START_REF] Achanta | Frequency-tuned salient region detection[END_REF] to emphasize the precision. In this chapter, we report the maximum F-measure (F β ) score across the binary maps of different thresholds, the mean F-measure (F mean β ) score across an adaptive threshold and the weighted F-measure (F w β ) which focuses more on the weighted precision and weighted recall. Mean Absolute Error (MAE ) studies the approximation degree between the saliency map and ground-truth map on the pixel level. S-measure (S m ) evaluates the similarities between object-aware (S o ) and region-aware (S r ) structure between the saliency map and ground-truth map. Mathematically, we have:

S m = α • S o + (1 -α) • S r ,
where α is set to be 0.5. E-measure (E m ) studies both image level statistics and local pixel matching information. Mathematically, we have:

E m = 1 W ×H W i=1 H j=1 ϕ FM (i, j)
, where ϕ FM (i, j) stands for the enhanced-alignment matrix as presented in [START_REF] Fan | Enhanced-alignment measure for binary foreground map evaluation[END_REF].

Performance Comparison with RGB Input

We firstly compare with RGB models, including R3Net [START_REF] Deng | R3net: Recurrent residual refinement network for saliency detection[END_REF], PoolNet [START_REF] Liu | A simple pooling-based design for real-time salient object detection[END_REF], CPD [START_REF] Wu | Cascaded partial decoder for fast and accurate salient object detection[END_REF],

AFnet [START_REF] Feng | Attentive feedback network for boundary-aware salient object detection[END_REF]. All saliency maps are directly provided by authors or computed by authorized codes. For fair comparisons, we adopt the same training set as suggested in [START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF], which contains 1485 samples from NJUD, 700 samples from NLPR, and 800 For the RGB model, we can conclude from Table 4.11 that the improvement on the saliency map is attributed to different learning modules, which results in high computational cost (size). Different from traditional RGB models which do not exploit the depth information, we propose to take full advantage of the pseudo-geometry estimated with an existing monocular depth estimation method.

Dataset DES NLPR NJUD STEREO DUT-RGBD Metric Size ↓ MAE ↓ F mean β ↑ F w β ↑ MAE ↓ F mean β ↑ F w β ↑ MAE ↓ F mean β ↑ F w β ↑ MAE ↓ F mean β ↑ F w β ↑ MAE ↓ F mean β ↑ F w β ↑ RGB input
We re-train two RGB-D SOD network (HDFnet [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF], CoNet [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF]) with the additional estimated pseudo-depth. We observe a significant performance gap between the recent RGB-D models and the previous RGB models. The main reason is the quality of depth estimation: the domain gap between the depth estimation dataset and the SOD dataset leads to some failure depth maps. This can be noticed in the poor performance of HDFnet that extracts features from both RGB and depth images.

CoNet, however, is more robust to the depth quality since the depth map is only used to supervise the feature extraction on RGB images. Our model shares the same motivation as CoNet to use depth prior to guide SOD but in a completely different manner. In our model, we directly learn a geometric-aware offset from the depth map to the sampling position on the RGB image. Our model achieves consistent superior performance compared with other models.

Performance Comparison with RGB-D Input

We also compare with state-of-the-art RGBD models with raw depth input in the Table 4.12, including CoNet [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF], A2dele [START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF], DANet [START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF], cmMS [START_REF] Li | RGB-D salient object detection with cross-modality modulation and selection[END_REF], HDFnet [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF],

and DSA2F [START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF]. For fair comparisons, all saliency maps and the FPS are directly provided by authors or computed by authorized codes. Note that the FPS depends on the GPU for inference. Thus, only the FPS of HDFnet is tested on the same GPU as ours.

While depth is only used as supervision during training and only RGB image is required during testing, our model surpasses existing efficient A2dele significantly on performance with only an + around 5Mb model size. Compared to CoNet, the model size is minimized by 63% and achieves a comparable result. As presented in Figure 4.9, our proposed module can take advantage of cross-modality cues while being lightweight. Thus, we further incorporate with the HDFnet [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] to show the performance gain by integrating our approach. It achieves the state-of-the-art (SOTA) performance on VGG16 based models (HDF + Ours). To better demonstrate the superiority of the proposed method, we also use a larger backbone (VGG19) to compare with the plain version HDFnet and the SOTA method DSA2F. Note that DSA2F uses neural architecture search to automate the model architecture while ours is handdesigned. Our model enables significant gains on the plain version with minimal cost (+ around 1 Mb on model size) and achieves comparable results with the DSA2F.

Qualitative Evaluation

We present the qualitative result with some challenging cases in Figure 4.10: low density (1 st columns), similar visual appearance between foreground and background (2 nd -5 th columns), small objects (6 th columns), far objects (7 th -9 th columns), human in scene (10 th columns), and similar and low contrast on depth map (11 th -13 th columns). It can be seen that our MGSnet yields the results closer to the ground truth mask in various challenging scenarios, especially for the last three columns with lowquality depth clues. Different from two-stream networks that tend to treat sub-optimal depth equally as RGB input, MGSnet extracts features from RGB images while the depth map serves only as complementary guidance, thus becoming robust to depth bias. By analyzing the response on HDFnet (sixth row) and HDFnet with embedded MGS (seventh row), we observe that our approach enables the plain network better discrimination of salient objects from the background. Effect of Modality-Guided Sampling Position: Our modality-guided sampling position aims to incorporate multi-modal information through the basic function of CNN -the sampling position of convolution. This pattern is integrated in Eq. 4.12 and Eq. 4.13. To verify the effectiveness of the proposed modality-guided sampling position, a series of experiments with different learning strategies are realized.

Ablation Study

MAE ↓ F max ↑ MAE ↓ F max ↑ MAE ↓ F max ↑ MAE ↓ F max ↑ MAE ↓ F max ↑ MAE ↓ F max ↑ 1 RGB
(1) -( 4) are experiments on RGB model: (1) RGB Baseline. (2) Self-guided deformable sampling position. We learn the offset from the RGB feature map. (3) RGB pseudo-depth early fusion. We form a four-channel input with pseudo depth. ( 4)

Depth-guided deformable position. We compute an offset from pseudo-depth using Z-ACN to guide RGB streaming. ( 5) -( 7) are experiments on RGBD model: (

Baseline. We use the same architecture as HDFnet. ( 6) Self-guided deformable sampling position. The offset applied to RGB streaming is learned from the RGB feature.

Idem for depth streaming. ( 7) Cross modality-guided deformable position. We learn an offset from depth to guide RGB streaming, and vice versa. Table 4.13 (1) and ( 3) compare the performance of the baseline RGB three-channel input and mimicked RGBD four-channel input with pseudo-depth, respectively. The mimicked multi-modality early fusion achieves better performance, indicating that the pseudo-depth provides additional semantic. However, by comparing ( 3) and ( 4), we observe that the proposed depth-guided deformable sampling position can better use the complementary information to supervise RGB streaming, compared with early fusion. By comparing ( 2) and ( 4), we show that the depth-guided deformable position is more accurate on saliency compared to that of the self/RGB-guided. This verifies the assumption that depth cues can help the RGB model to better distinguish the foreground and background. Note that in (4) we only extract features from RGB images. The additional awareness of the geometry is only treated as a 2D offset to better locate the sampling position. This new integration design contributes to the model performance with minimal cost. For better understanding, the qualitative result presented in Figure 4.11 shows that our approach provides more accurate saliency maps with better contrast. On the RGBD model (5-7), we also observe the superior performance with the cross-modality deformable sampling position achieves as it directly compensates for the single modal streaming.

Performance with different depth qualities: We also conduct an experiment to show the impact of depth quality. We choose the HDFnet [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] as the baseline and further embed it with our method. We present the average metric on all testing datasets in Table 4 It shows that the quality of depth has an important influence on performance. Features extracted from raw depth describe better the salient object and were in line with our expectations. However, in both cases, our MGS can significantly enable progress compared to the plain networks. For pseudo-depth, the contribution of our MGS is more significant, which can be explained by the effectiveness of our RGB-guided sampling position for depth streaming. It can efficiently help to alleviate depth errors.

CONCLUSIONS

In this chapter, we discuss a novel 2D CNN to include geometric information in RGB CNN. We firstly validate our approach in semantic segmentation tasks. Different from previous works that integrates the channel or spatial attention into convolution through learning methods, our network fully explores the geometric constraint in a statistic manner, making the depth-awarenss independent to the learning settings.

We introduce two basic depth-adapted operators that can be easily integrated into the existing CNN model. Extensive studies generalization property of our methods which perform favorably over the baseline and other convolutions. Experiments on challenging RGB-D datasets demonstrate that our approach performs well over the state-of-the-art methods by large margins.

Furthermore, we test the idea of depth-guided convolution on RGB-D saliency tasks.

Since our method can only generates offset from depth cues, we inspire from concurrent method and propose a learnable offset generate to enable bi-directional guidance (Depth to RGB and RGB to depth). Extensive experiments against RGB baselines demonstrate the performance gains of the proposed module, and the addition of the proposed module to existing RGB-D models further improved results.

In this chapter, we present how to explore depth as a form of spatial attention to better guide convolutional sampling position. Recent development on NLP, especially on transformer attention has shown great advantages in modeling contextualized awareness. Regular convolution and deformable convolution can also be regarded as a special case of transformer: the query is the center pixel and the key are the neighboring pixels within conventional sampling position or deformable sampling position.

Despite the plausible results achieved by convolutional networks, the limited capability of modeling the contextualized features is the main performance bottleneck for both backbones and feature fusion modules. Therefore, in the following chapter, we present the transformer attention to fuse RGB-D cues.

Chapter 5

Transformer Fusion for RGB-D Semantic Segmentation

Fusing geometric cues with visual appearance is an imperative theme for RGB-D indoor semantic segmentation. Existing methods commonly adopt convolutional modules to aggregate multi-modal features, paying little attention to explicitly leveraging the long-range dependencies in feature fusion. Therefore, it is challenging for existing methods to accurately segment objects with large-scale variations. In this chapter, we propose a novel transformer-based fusion scheme, named TransD-Fusion, to better model contextualized awareness. Specifically, TransD-Fusion consists of a selfrefinement module, a calibration scheme with cross-interaction, and a depth-guided fusion. The objective is to firstly improve modality-specific features with self-and cross-attention, and then explore the geometric cues to better segment objects sharing a similar visual appearance. Additionally, our transformer fusion benefits from a semantic-aware position encoding which spatially constrains the attention to neighboring pixels. Extensive experiments on RGB-D benchmarks demonstrate that the proposed method performs well over the state-of-the-art methods by large margins.

Introduction

Recent developments in depth sensors provide geometric information at a low cost.

Since the depth information along with images can naturally contribute to scene understanding, RGB-D semantic segmentation has drawn increasing attention [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF][START_REF] Wang | Multimodal token fusion for vision transformers[END_REF][START_REF] Wu | Depthadapted CNN for RGB-D cameras[END_REF][START_REF] Zhou | CANet: Co-attention network for RGB-D semantic segmentation[END_REF].

When merging the depth cues and images, three typical challenges arise: (1) Multimodal fusion. RGB input contains rich information on visual changes, while depth images are sensitive to occluded boundaries. How to extract, preserve, and fuse these modality-specific features is as yet an open issue for RGB-D semantic segmentation.

(2) Noisy response in each modality. On the one hand, the similar visual appearance between neighboring objects can adversely affect the model discriminability. On the other hand, the depth quality may be influenced by environmental factors during acquisition, such as object distances, as discussed in previous works [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF][START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF].

Feature alignment. As shown in Fig. 3.1(3), current fusion approaches assume that the sensor calibration is precise and different modalities are accurately aligned at the pixel level, which is not always the case in practice. Despite the recent advances [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF][START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF][START_REF] Hu | ACNet: Attention based network to exploit complementary features for RGB-D semantic segmentation[END_REF][START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF], we observe that most existing works are still based on pixel-wise fusion, whose limited awareness of contextualized cues causes the main performance bottleneck.

Recently, transformer has shown its capability in modeling long-range dependencies in various vision tasks [START_REF] Chen | Transformer tracking[END_REF][START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Zhu | Deformable DETR: deformable transformers for end-to-end object detection[END_REF]. Compared to convolution, transformer is built upon global attention with inter key-query correlation. We observe that by extending the inter key-query correlation to cross-modal key-query correlation, transformer attention suggests a natural way to aggregate RGB-D features. Inspired by this observation, we propose to firstly extract both mixed RGB-D and modality-specific depth features. Then we leverage the depth cues to retrieve geometric information from mixed RGB-D features. As shown in Fig. 3.1(4), the key idea is to leverage contextualized transformer attention to improve the early fusion with enhanced awareness of depth cues. As such, we can better deal with objects sharing a similar visual appearance but at different camera distances or with occlusion, which is challenging for indoor semantic segmentation.

Specifically, our transformer fusion with geometric cues, termed TransD-Fusion, consists of three parts: a self-enhancement module, a bi-directional cross-calibration module, and a depth-guided query design. The enhancement module is realized through the vanilla transformer self-attention. The bi-directional calibration module aims to refine each modality with complementary information: for the depth image, we expect to suppress unsatisfactory responses due to measurement bias; while for the RGB image, we expect to strengthen the edge awareness on neighboring objects with a similar visual appearance. Finally, the depth-guided query strategy ensures effectively segmenting objects with strengthened discriminability.

To enable position-awareness and leverage locality into our TransD-Fusion, we propose a semantic-aware position encoding generator (S-PE) built upon convolutions. It takes a modality-specific sequence as input and generates a category-aware position encoding. We expect our encoding to spatially constrain the attention around the neighboring area to better segment objects. Moreover, our positional embedding can be learned from hierarchical features, yielding a simple yet efficient encoding for RGB-D fusion. Finally, to tackle the limitations of CNN-based backbones, we implement our TransD-Fusion on Swin-Transformer [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] to better model contextualized dependencies.

In brief, our contributions are summarized as follows:

• We propose a novel transformer-based multi-modal fusion to replace the existing pixel-wise fusion modules for RGB-D semantic segmentation.

• We design a semantic-aware position encoding (S-PE) scheme to improve our transformer fusion. The S-PE is dynamically generated from a modality-specific sequence of tokens by a convolutional layer, yielding a spatial constraint on neighboring features for accurate segmentation.

• Our proposed network performs favorably over the state-of-the-art methods on large-scale benchmark datasets by large margins.

Related Work

RGB-D Semantic Segmentation

How to deal with the complementary depth is a key research topic for RGB-D semantic segmentation. At an early stage, [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF] proposes to explore the geometric cues by transforming the depth map into an HHA image. Afterward, researchers take RGB-HHA as input and design various fusion strategies. Several preliminary works [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF][START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based CNN architecture[END_REF][START_REF] Wang | Learning common and specific features for RGB-D semantic segmentation with deconvolutional networks[END_REF] fuse the RGB-D images from the input side, treating depth/HHA as additional channels. D-CNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] further proposes a depth-aware re-calibration weight to strengthen the discriminatory power during feature modeling. Since then, networks with early-fused RGB-HHA have shown great advances with different forms of weight functions [START_REF] Chen | 3D neighborhood convolution: Learning depth-aware features for RGB-D and RGB semantic segmentation[END_REF][START_REF] Xing | 2.5 D convolution for RGB-D semantic segmentation[END_REF][START_REF] Xing | Malleable 2.5 D convolution: Learning receptive fields along the depth-axis for RGB-D scene parsing[END_REF]. However, the proposed depth-aware operations are sensitive to depth noise, which might be the performance bottleneck while dealing with unsatisfactory geometry.

To address this issue, several works propose to re-calibrate feature representation with the attention modules. ACNet [START_REF] Hu | ACNet: Attention based network to exploit complementary features for RGB-D semantic segmentation[END_REF] adopts self-enhancement module with the channel attention [START_REF] Hu | Squeeze-and-excitation networks[END_REF]. Sharing the same idea, ShapeConv [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF] directly integrates the channel attention into the convolution function. SA gate [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF] further leverage spatial attention [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] to calibrate each modality. Another group of works proposes to enhance feature representation with long-range attention. [START_REF] Li | LSTM-CF: Unifying context modeling and fusion with LSTMs for RGB-D scene labeling[END_REF] introduces ConvLSTM models in RGB-D fusion to better model contextualized cues. VCD [START_REF] Xiong | Variational context-deformable convnets for indoor scene parsing[END_REF] introduces a learned Gaussian convolution kernel to improve spatial-context awareness. Several works [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF][START_REF] Wu | Depthadapted CNN for RGB-D cameras[END_REF] integrate depth cues with the deformable convolution [START_REF] Dai | Deformable convolutional networks[END_REF] to create a more malleable receptive field. Despite the popularity of non-local attention in RGB-D semantic segmentation [START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF][START_REF] Li | LSTM-CF: Unifying context modeling and fusion with LSTMs for RGB-D scene labeling[END_REF][START_REF] Wu | Depthadapted CNN for RGB-D cameras[END_REF][START_REF] Xiong | Variational context-deformable convnets for indoor scene parsing[END_REF], the capability of modelling longrange dependencies is still limited due to convolution-based feature extraction and fusion. Furthermore, one basic assumption for existing approaches is that the RGB and depth maps are perfectly aligned at the pixel level, which is not always the case in practice due to sensor calibration errors. To tackle these dilemmas, we propose a transformer-based aggregation scheme to explicitly leverage contextualized awareness in multi-modal feature fusion.

Transformer Fusion

There are extensive surveys [START_REF] Han | A survey on vision transformer[END_REF][START_REF] Khan | Transformers in vision: A survey[END_REF][START_REF] Tay | Efficient transformers: A survey[END_REF] of transformer applied in vision tasks. ViT and its successors [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] explore the transformer on feature modeling. DERT and its successors [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Gao | Fast convergence of DETR with spatially modulated co-attention[END_REF][START_REF] Zhu | Deformable DETR: deformable transformers for end-to-end object detection[END_REF] adopt transformer on the detection head. Several works on video object tracking [START_REF] Chen | Transformer tracking[END_REF][START_REF] Wang | Transformer meets tracker: Exploiting temporal context for robust visual tracking[END_REF][START_REF] Yan | Learning spatiotemporal transformer for visual tracking[END_REF] adopt transformer to analyze the correlation between search image and template image. Another work on saliency detection [START_REF] Liu | Visual saliency transformer[END_REF] adopts transformer as a dimension regulator to convert the sequence of tokens from the encoder space to the decoder space. Different from previous works, our model aims to explore multi-modal cues for feature aggregation. We make full use of attention modules to explicitly preserve, calibrate, and fuse multi-modal information.

By design, attention modules cannot capture order awareness of input tokens. Hence, various researches on position encoding (PE) have been conducted to address this issue. In the literature, two main groups of solutions are proposed: absolute PE and relative PE. Absolute PE generates a unique encoding vector for each position, e.g., 2D sinusoidal embeddings [START_REF] Gehring | Convolutional sequence to sequence learning[END_REF][START_REF] Vaswani | Attention is all you need[END_REF], while relative PE proposes to focus on the relative distance of the elements [START_REF] Bello | Attention augmented convolutional networks[END_REF][START_REF] Shaw | Self-attention with relative position representations[END_REF][START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF]. In vision tasks, previous studies [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] He | Deberta: Decodingenhanced BERT with disentangled attention[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Wu | Rethinking and improving relative position encoding for vision transformer[END_REF][START_REF] Zhu | Deformable DETR: deformable transformers for end-to-end object detection[END_REF] have shown that the relative position enables better performance on the image classification task, while the absolute encoding is more suitable for object detection where the pixel position plays a vital role in segmenting and locating objects.

CPVT [START_REF] Chu | Conditional positional encodings for vision transformers[END_REF] proposes a conditional PE to leverage the local awareness through a single 2D convolution to improve ViT. However, extending such an idea to RGB-D feature fusion at the semantic level is non-trivial due to the limited feature resolution. In contrast, we propose a modality-dependant and semantic-aware PE to improve our transformer fusion with a better position and category awareness. 

Our Approach: TransD-Fusion

Overview

Master-Subsidiary Network

Early fusion has been widely exploited in RGB-D semantic segmentation [START_REF] Chen | 3D neighborhood convolution: Learning depth-aware features for RGB-D and RGB semantic segmentation[END_REF][START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF][START_REF] Xing | 2.5 D convolution for RGB-D semantic segmentation[END_REF][START_REF] Xing | Malleable 2.5 D convolution: Learning receptive fields along the depth-axis for RGB-D scene parsing[END_REF]. It promotes the geometric constraint in the visual appearance from the input side. Nevertheless, the inflexibility of further analysis of multi-modal features at the semantic level severely limits the model performance. To address this issue, we design a master network with early-fused input and a subsidiary stream to enable high-level manipulation with transformer fusion. Given the RGB image I ∈ R 3×H×W and the geometric feature HHA map D ∈ R 3×H×W , we can obtain the master feature X ∈ R 3×H×W :

X = Conv 1×1 ([I , D]), (5.1) 
where [] denotes the concatenation along the channel dimension. In such a way, the master feature contains both photometric and geometric information and feats the input shape of the transformer backbone.

To extract multi-modal features, X and D are firstly fed into the patch partition to form two sequences of token separately, and then fed into the Swin-Transformer [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] encoders. A Swin-Transformer layer contains window-based multi-head self-attention (W-MSA), shifted window partitioning configurations (SW-MSA), and a point-wise multi-layer perceptron (MLP) with layer norm (LN). For the i th layer, i ∈ {1, ..., L}, it takes the sequence z i-1 as input, and outputs the new sequence z i+1 :

ẑi = W -MSA(LN(z i-1 )) + z i-1 ; z i = MLP(LN(ẑ i )) + ẑi ; ẑi+1 = SW -MSA(LN(z i )) + z i ; z i+1 = MLP(LN(ẑ i+1 )) + ẑi+1 .
(5.2)

Compared to CNN backbones [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], transformer encoders [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Zhao | Pyramid scene parsing network[END_REF] can better model long-range features. Furthermore, we particularly build upon Swin-Transformer [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] with window attention which reduces the computational complexity. We refer readers to the original paper [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] for more details.

Transformer feature fusion

Given two sequences of tokens f X ∈ R c×h×w and f D ∈ R c×h×w from different streams, we firstly apply convolutions to f X and f D and and output two new feature maps.

We expect to strengthen the local awareness and/or to reduce the channel size from c to c ′ . These two new feature maps are further flattened in spatial dimension, obtaining f x ∈ R c ′ ×hw and f d ∈ R c ′ ×hw . These flattened features are the inputs of our transformer fusion.

As shown in Fig. 5.3, we propose a three-stage fusion scheme. Firstly, the modalityspecific features are enhanced through self-attention. Secondly, a bi-directional calibration is applied with cross-attention. Finally, we initialize a geometry-guided query scheme to accurately segment objects. The attention module is equipped with learnable position encoding to enable both local and semantic awareness. In the following paragraphs, we introduce the details of each component. The benefit of each component can be found in the ablation study Section 5.4.2.3 Table 5.6.

Multi-Head Attention in Transformer.

The attention mechanism is the key component of our TransD-Fusion. Given an input sequence of tokens, it is firstly flattened to a 1D vector and generates three intermediate representations: queries Q, keys K , and values V . The attention is formulated as follows:

Attention(Q, K , V ) = softmax( QK T √ d k )V , (5.3) 
where d k is the scaling factor. [START_REF] Vaswani | Attention is all you need[END_REF] shows that multi-head attention with h heads can further contribute to the model performance by paying diverse attention to features from different positions. The multi-head attention is formulated as follows:

MultiHead(Q, K , V ) = Concat(head 1 , ..., head h )W O head i = Attention(QW Q i , KW K i , VW V i ) (5.4) 
where W O , W Q i , W K i , W V i are the projection matrices.

Self-Enhancement.

While (Q, K , V ) are from the same input modality, the attention module becomes multi-head self-attention which can be considered as a self-enhancement. It analyzes long-range dependencies and explores contextual information to further improve the modality-specific features. Taking flattened global feature f x as an example, the selfenhanced global feature X s can be formulated as:

X s = f x + MultiHead(Q x + P x , V x + P x , K x ), (5.5) 
where (Q x , K x , V x ) are the associated intermediate representations and P x is the associated position encoding. Similarly, we can obtain the self-enhanced geometric feature D s with the associated position encoding P d .

Cross-Calibration.

The objective of cross-calibration is to reduce the ambiguity in a single modality, e.g., the limited awareness of the geometric cues in visual appearance and measurement bias in geometric features. Different from previous dual attention [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF][START_REF] Woo | Cbam: Convolutional block attention module[END_REF], our crosscalibration is based on transformer attention. We take the queries from one input feature, e.g., Q Ds , to compute the correlation with the keys from the other modality, e.g., K Xs . Formally, we have:

X c = X s + MultiHead(Q Ds + P d , K Xs + P x , V Xs ), D c = D s + MultiHead(Q Xs + P d , K Ds + P x , V Ds ), (5.6) 
where (X s , D s ) are the outputs of the self-enhancement module, (Q Xs , K Xs , V Xs ) are the associated intermediate representations for master feature X s , and (Q Ds , K Ds , V Ds )

for subsidiary feature D s . We use the same position encodings (P x , P d ) as in previous self-enhancement module.

Depth-Guided Fusion.

To combine master and subsidiary streams, similar to cross-calibration, we use the geometry stream to initialize the query strategy. The difference compared to crosscalibration is that the depth-guided fusion here is non-symmetrical version. We have:

Output = X c + MultiHead(Q Dc + P d , K Xc + P x , V Xc ) (5.7)
where (X c , D c ) are the outputs of the cross-calibration module, in which the same position encodings (P x , P d ) are used. The depth-guided fusion module contributes to deal with objects with similar appearance.

Semantic-Aware Position Encoding

We propose a novel position encoding to equip with our transformer attention. Specifically, for each modality, we dynamically generate the position encoding from a lowerdimensional feature map with a larger resolution to make full benefits of spatial information, i.e., the output of the first stage of the encoder.

As illustrated in Fig. 5.4, given the two sequences with higher resolution, we first project the input sequence into a high-dimensional feature space through semantic projector P. Here we use the term "semantic" since the embedding dimension is significantly higher than the input dimension. Therefore, we assume that the projection can allow the feature map to contain more semantic cues. Then, we utilize two convolutional modules F to strengthen the local awareness of the input sequence. Each module consists of 3 × 3 convolution, batch normalization, and ReLU activation.

Architecture

We follow [START_REF] Fu | Dual attention network for scene segmentation[END_REF][START_REF] Zhou | RGB-D co-attention network for semantic segmentation[END_REF] and apply our transformer fusion on the highest-dimensional features where the resolution is minimized. To generate the output semantic map, we adopt the classical DeeplabV3+ [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF] architecture. The whole training process is supervised by the conventional cross-entropy.

In our model, we adopt early fusion together with late fusion. The objective is to fully leverage the depth cues at both the geometric level and semantic level. The idea of using HHA cues to guide RGB-D learning has been widely used in previous RGB-D works, such as DCNN [START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF], 2.5D [START_REF] Xing | 2.5 D convolution for RGB-D semantic segmentation[END_REF], Malleable [START_REF] Xing | Malleable 2.5 D convolution: Learning receptive fields along the depth-axis for RGB-D scene parsing[END_REF], DACN [START_REF] Wu | Depthadapted CNN for RGB-D cameras[END_REF], etc. The main difference is that previous works compute local attention (depth weight/offset) from the depth and embed them in convolution, while we explicitly leverage the contextualized awareness to better deal with feature misalignment.

Our fusion strategy substantially differs from the recent fusion works. Specifically, CCFFNet [START_REF] Wu | Complementarity-aware cross-modal feature fusion network for rgb-t semantic segmentation[END_REF] adopts spatial and channel attention on features, while our work is fully based on contextualized attention with tokens. Compared to DeepFusion [START_REF] Li | Deepfusion: Lidar-camera deep fusion for multi-modal 3d object detection[END_REF],

our cross-modal interaction is bi-directional, while DeepFusion is single-directional (Lidar to camera). Finally, compared to CPVT [START_REF] Chu | Conditional positional encodings for vision transformers[END_REF], our positional embedding can better leverage both hierarchical and semantic cues, yielding a simple yet efficient encoding for RGB-D fusion as shown in ablation study. 

Experiments

We evaluate our model on three benchmark RGB-D datasets, i.e., NYUv2 [START_REF] Silberman | Indoor segmentation and support inference from RGBD images[END_REF], SUN-RGBD [START_REF] Song | SUN RGB-D: A RGB-D scene understanding benchmark suite[END_REF], and Stanford 2D-3D-Semantic Indoor Dataset (SID) [START_REF] Armeni | Joint 2d-3d-semantic data for indoor scene understanding[END_REF]. We analyze the performance with common metrics, i.e., Pixel Accuracy (PixelAcc), Mean Accuracy (mAcc.), Mean Region Intersection Over Union (mIoU), and Frequency Weighted Intersection Over Union (f.w.IoU). Let s i be the number of pixels with the ground truth class i. n ij denotes the number of pixels with ground truth class i and but predicted as class j. n c denotes the number of total classes, and s = i s i is the number of all pixels. Mathematically, the metrics are defined by:

• Pixel Acc: PixelAcc = i n ii s • mean Acc: mAcc = 1 nc i n ii s
• mean Intersection over Union:

mIoU = 1 nc i n ii s i + j n ji -n ii • Frequency Weighted Intersection over Union: f .w .IoU = 1 s i s i n ii s i + j n ji -n ii
We follow conventional train-test protocols for RGB-D benchmarks experiments [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF][START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF][START_REF] Zhou | CANet: Co-attention network for RGB-D semantic segmentation[END_REF]. On NYUv2 with 40 categories, we follow the widely-used split with 795 images used for training and the rest 654 images are for testing among the 40 classes. On SUN-RGBD with 37 categories, we follow the widely-used split with 5,285 images for training and the rest 5,050 images for testing. On SID with 13 categories, we train our model on areas 1, 2, 3, 4, and 6 and Area 5 is for testing. During training, we resize the images to a random ratio between 0.5 and 2.0 and explore left-right flipped images. We choose the standard SGD optimizer with momentum to train our model following the "poly" learning rate policy. The initial learning rate is set to 0.007, the momentum is fixed to 0.9, and the weight decay is set to 0.0001. For inference, we evaluate our model with multi-scale testing strategies, i.e., {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}. Similar to previous works [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF][START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF][START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF][START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF], we take RGB and HHA images as input. The HHA maps are generated according to [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF] during pre-processing. To make a fair comparison, our transformer backbone is initialized with the weights pre-trained on ImageNet-1K [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] as CNN backbones. Table 5.1 illustrates the quantitative comparison on NYUv2. We observe that the models with transformer encoders [START_REF] Girdhar | Omnivore: A single model for many visual modalities[END_REF][START_REF] Wang | Multimodal token fusion for vision transformers[END_REF] outperform CNN approaches. Our TransD-Fusion even surpasses transformer counterparts on mIoU and sets a new state-of-theart record, i.e., 55.5% with 1.7 FPS. We also report the performance of the SUN-RGBD dataset and SID dataset. Our TransD-Fusion (Swin-B) outperforms the concurrent ShapeConv [START_REF] Cao | Shapeconv: Shape-aware convolutional layer for indoor RGB-D semantic segmentation[END_REF] which is also built upon DeepLabV3+ with a large margin: 1.4% ↑ mIoU on SUN-RGBD and 1.6% ↑ mIoU on SID. The leading performances on indoor benchmarks validate our effectiveness. We analyze the robustness of different fusion approaches against sensor misalignment, i.e., RGB and Depth maps are not accurately aligned at the pixel level. Specifically, we simulate a calibration error on NYUv2 by additionally cropping 20 pixels from the RGB input and obtaining a misaligned dataset. We retrain our TransD-Fusion (Swin-B) and the SOTA CNN model ShapeConv with early-fused input. To make a fair comparison, we additionally build two late-fusion baseline networks with the Swin-B backbone. The features are combined with attention modules such as SA gate [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF] (denoted as Swin + SA), or with simple pixel-wise concatenation and convolution (denoted as Swin + Conv).

The performances under the inferior condition are presented in Fig. 5.6 and in Tab.

5.2. Since SA and Conv are built upon the pixel-wise correlation between different modalities at the semantic level, their performances significantly drop when the features are no more accurately aligned. We observe 1.8% mIoU degradation on Swin + SA and 3.5% mIoU degradation on Swin + Conv, respectively. In contrast, our

TransD-Fusion only drops 0.2% on mIoU. The stable performance against misalignment can be attributed to our fusion design which is built upon the contextualized correlation, yielding a more soft and robust fusion scheme for RGB-D semantic segmentation.

Generalization Capability.

Our TransD-Fusion can be used as a plug-in module. To demonstrate its generalization properties, we conduct experiments with several widely used semantic segmentation architectures, such as Segmenter [START_REF] Strudel | Segmenter: Transformer for semantic segmentation[END_REF], PSPnet [START_REF] Zhao | Pyramid scene parsing network[END_REF], and DeeplabV3 [START_REF] Chen | Rethinking atrous convolution for semantic image segmentation[END_REF] or DeeplabV3+ [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF]. We use Swin-B as the backbone for all architectures and report the performances on the NYUv2 dataset in Table 5.3. "Baseline" presents the result obtained with RGB-HHA input through the Swin backbone under the corresponding architecture. "Ours" presents the result obtained by further applying TransD-Fusion between backbone and decoder. "+↑" shows the performance gain with our approach.

We observe that TransD-Fusion consistently enables progress over the baseline performance in each architecture, demonstrating the flexibility and effectiveness of our method. 

Architecture

Segmenter [START_REF] Strudel | Segmenter: Transformer for semantic segmentation[END_REF] PSPnet [START_REF] Zhao | Pyramid scene parsing network[END_REF] DeeplabV3 [START_REF] Chen | Rethinking atrous convolution for semantic image segmentation[END_REF] DeeplabV3+ [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF] Baseline architecture. We have "F 1" denoting the early fusion for RGB-HHA input. "F 2"-"F 5" adopt the conventional two-streaming design with different late fusion designs:

"F 2" with pixel-wise addition; "F 3" with concatenation-convolution; "F 4" with SA gate [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF]; "F 5" with TransT [START_REF] Chen | Transformer tracking[END_REF]. The quantitative results can be found in Table 5.4.

We observe that our TransD-Fusion enables a better result compared to other fusion methods.

Note that SA gate [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF] and TransT [START_REF] Chen | Transformer tracking[END_REF] are initially applied with CNN backbones and are re-employed with our transformer backbone. Our TransD-Fusion differs from these two designs in several aspects: (A) Compared to SA gate, our work is based on transformer attention, while SA gate adopts conventional dual attention [START_REF] Woo | Cbam: Convolutional block attention module[END_REF].

Our superior performance ("Ours" >"F 4") shows that we can better model long-range dependencies to effectively aggregate multi-modal features. (B) Both TransT and our TransD-Fusion belong to transformer fusion frameworks. However, TransT is initially designed to compute the correlation between two RGB images, hence focusing on shared features between two inputs. Extending TransT to RGB-D fusion is not trivial since there exist both common and different information in these two modalities. Empirically, as shown in Table 5.4, TransT ("F 5") leads to significantly dropped performance which is even lower than simple fusion designs such as addition and convolution ("F 2"-"F 3"). Different from TransT, we design a depth-guided query strategy to deal with objects that share a similar visual appearance. Furthermore, we leverage a category-aware position embedding to equip with our attention, while vanilla

TransT uses an absolute encoding which is not suitable for multi-modal fusion.

Comparison with other position encodings (PEs).

Prior works adopt different PEs that focus on order awareness to improve feature extraction. The PE in our TransD-Fusion plays a more vital role since it should "P5" learned from Layer 3 output; "P6" learned from Layer 2 output. We replace our PE with the concurrent CPVT [START_REF] Chu | Conditional positional encodings for vision transformers[END_REF] by re-implementing it in our TransD-Fusion, denoted as "P7". Under consideration of a fair comparison, we apply CPVT to learn features from Layer 1 output as our S-PE.

Empirical results in Table 5.5 show that there exists significant degradation on mIoU after removing or replacing our S-PE with conventional PEs. This validates the effectiveness of our S-PE that can better constrain the transformer attention for multimodal fusion. We also observe that the spatial dimension plays an imperial role for our S-PE. When the spatial resolution decreases, i.e., from Layer 1 output to Layer 4 output, the performances with our S-PE drop as well. Compared to the concurrent CPVT, our superior performance demonstrates that we can better leverage locality awareness.

Key Components Analysis of TransD-Fusion.

In this section, we conduct studies to verify the importance of the key components of TransD-Fusion: Master stream (master), Subsidiary stream (sub), Self-Enhancement (SE), Cross-Calibration (CC), and Depth-Guided Fusion (DGF). All the experiments are built upon the Swin-B backbone and we report the associated model size for each module. We remove partially or entirely the key components. To make a fair comparison, we additionally conduct experiments with conventional fusion strategies such as element-wise addition (Add), concatenation-convolution (Conv), and the concurrent SA module [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF] under the same architecture. Note that the SA module is initially applied for middle fusion. Under the consideration of a fair comparison we adopt the same middle fusion design to merge RGB-D features at each scale. This is denoted as SA-M in Table 5.6.

We observe from Table 5.6 that after removing the cross-calibration module, the performance drops since the modality-specific features can no more benefit from complementary cues. Without self-enhancement, the performance further degrades. While further replacing the depth-guided fusion strategy with pixel-wise fusion module, we can observe a significantly drop, i.e., 3.9% ↓ on mIoU with Add and 0.5% ↓ on mIoU with Conv. These results validate the necessity of leveraging the long-range dependencies for feature fusion. Finally, by comparing lines #5-#6, we observe that the SE plays a minimal role. Therefore we try to replace our SE with the SA module [START_REF] Chen | Bi-directional cross-modality feature propagation with separation-andaggregation gate for RGB-D semantic segmentation[END_REF]. However, the performance significantly drops, which shows the importance of our self-attention that fully leverages and preserves modality-specific features with contextualized cues.

Conclusion

In this chapter, we propose a novel RGB-D fusion scheme for semantic segmentation.

Different from previous fusion designs built upon pixel-wise correlation, our network fully explores the transformer attention to aggregate multi-modal features with contextualized cues. Additionally, we design a novel position encoding generator to better leverage the locality awareness into our transformer fusion. Extensive ablation studies verify the robustness against misalignment and the generalization property of our TransD-Fusion. The comparison with previous works on fusion design and position encoding further validates the effectiveness of our proposed approach. Experiments on challenging RGB-D benchmarks demonstrate that our TransD-Fusion performs well over the state-of-the-art methods by large margins.

Despite the fact that there exist a number of various fusion methods from pixel-wise aggregation to cross-modal contextualized attention, it is still unclear which should layer apply the fusion method. In the literature, early, middle, and late fusion designs have been widely explored. However, existing fusion architectures are designed in a handcrafted manner, which is agnostic of input data. For example, researchers have shown that stemming layers focus more on low-level geometric features, while deeper layers focus more on semantic cues. Since a depth map is a sort of low-level geometric input, it is trivial and intuitive that while the depth is good, it should play a more important role at the stemming stage. While the depth quality is unsatisfactory due to the measurement bias, it should play a more important role at a deeper stage.

From this perspective, we discuss in the following chapter our proposed robust fusion design which can learn the trade-off between the early and late fusion with respect to the depth quality.

Chapter 6

Robust RGB-D Fusion for Saliency Detection

Efficiently exploiting multi-modal inputs for accurate RGB-D saliency detection is a topic of high interest. Most existing works leverage cross-modal interactions to fuse the two streams of RGB-D for intermediate features' enhancement. In this process, a practical aspect of the low quality of the available depths is not considered. In this chapter, we aim for RGB-D saliency detection that is robust to the low-quality depths which primarily appear in two forms: inaccuracy due to noise and the misalignment to RGB. To this end, we propose a robust RGB-D fusion method that benefits from (1) layer-wise, and (2) trident spatial, attention mechanisms. On the one hand, layer-wise attention (LWA) learns the trade-off between early and late fusion of RGB and depth features, depending upon the depth accuracy. On the other hand, the trident spatial attention (TSA) aggregates the features from a wider spatial context to address the depth misalignment problem. The proposed LWA and TSA mechanisms allow us to efficiently exploit the multi-model inputs for saliency detection, while being robust against low-quality depths. Our experiments on five benchmark datasets demonstrate that the proposed fusion method performs consistently better than the state-of-the-art fusion alternatives. The source code will be made publicly available.

Introduction

Saliency detection aims to segment image contents that visually attract human attention the most. Existing RGB-based saliency detection methods [START_REF] Liu | A simple pooling-based design for real-time salient object detection[END_REF][START_REF] Wu | Cascaded partial decoder for fast and accurate salient object detection[END_REF][START_REF] Zhang | Learning uncertain convolutional features for accurate saliency detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] achieve promising results in generic settings. However, in cluttered and visually similar backgrounds, they often fail to perform accurate detection. Therefore, many recent works [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF][START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] exploit image depths as additional geometric cues, in the form of RGB-D inputs, to improve the saliency detection performance in difficult scenarios.

Given accurate and well-aligned depths, existing RGB-D methods perform well even in difficult scenarios. Unfortunately, this is not often the case in practice. Sometimes, only low-quality depths can be acquired, depending upon the scene and the source of depths. For example, depths from multi-view stereo cameras are often noisy [START_REF] Cheng | Hierarchical neural architecture search for deep stereo matching[END_REF][START_REF] Xu | Digging into uncertainty in self-supervised multi-view stereo[END_REF] and asynchronous depth cameras are spatially misaligned [START_REF] Danda | 2D-3D synchronous asynchronous camera fusion for visual odometry[END_REF], as shown in Figure 6.1. Other environmental factors such as object distance, texture, or even lighting conditions during the acquisition can also degrade the depth quality [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Wu | Modality-guided subnetwork for salient object detection[END_REF][START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF]. Therefore, a method that can still exploit the geometric cues, while being robust to the depth quality discrepancy is highly desired.

We observe that most existing methods perform unsatisfactorily on datasets with low-quality depths. This is primarily because of the commonly used fusion technique [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Wu | Mobilesal: Extremely efficient rgb-d salient object detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] that merges the parallel streams of RGB and depth with equal importance, while being agnostic to misalignment. Less accurate depths are evidently expected to play a smaller role than their counterpart. On the other hand, the possibility of misalignment between RGB and depth needs to be considered during the fusion process.

In this work, we propose a robust RGB-D fusion method that addresses the aforementioned problems of inaccurate and misaligned depths. The proposed method uses a layer-wise attention (LWA) mechanism to enable the depth quality aware fusion of RGB and depth features. Our LWA attention learns the trade-off between early and late fusions, depending upon the provided depth quality. More precisely, LWA encourages the early fusion of the depth features for high-quality depth inputs, and vice versa. Such fusion avoids the negative influence of the spurious depths, while being opportunistic when high-quality depths are provided. In other words, the good-quality depth should play an important role in early layers thanks to its rich and exploitable low-level geometric cues, while low-quality depth should be more activated at semantic levels.

To address the problem of misaligned depths, we introduce the trident spatial attention (TSA) that aggregates features from a wider spatial context. The introduced TSA is used to replace the vanilla spatial attention, enabling the aligned aggregation of the misaligned features. In particular, our TSA requires only minor additional parameters and computation, while being sufficient to address the problem of misalignment. Note that the misalignment problem often exists only locally therefore the global context (at the cost of additional computation) may not be necessary. Such an example is shown in Figure 6.1(c). We improve the vanilla spatial attention with different scales of receptive fields, yielding a simple yet efficient manner to replace the pixel-wise correspondence with region-wise correlation. Finally, the new spatial attention is adaptively merged with channel attention to form our hybrid fusion module.

In summary, our major contributions are listed below:

• We study the problem of RGB-D fusion in a real-world setting, highlighting two major issues, inaccurate and misaligned depths, for accurate saliency detection.

• We introduce a novel layer-wise attention (LWA) to automatically adjust the depth contribution through different layers and to learn the best trade-off between early and late fusion with respect to the depth quality.

• We design a trident spatial attention (TSA) to better leverage the misaligned depth information by means of aggregating the features from a wider spatial context.

• Extensive comparisons on five benchmark datasets validate that our fusion performs consistently better than state-of-the-art alternatives, while being very efficient.

Related Work

There are extensive surveys of salient object detection [START_REF] Borji | Salient object detection: A survey[END_REF][START_REF] Wang | Salient object detection in the deep learning era: An in-depth survey[END_REF][START_REF] Zhou | Rgb-d salient object detection: A survey[END_REF] and on attention modules [START_REF] Khan | Transformers in vision: A survey[END_REF][START_REF] Tay | Efficient transformers: A survey[END_REF] in the literature. In the following, we briefly review related works. 

RGB-D Fusion for Saliency Detection

In the literature, we can divide current models into two types of architectures: singlestream and multi-stream schemes. The main difference is in the number of encoders. Single-stream networks are commonly lighter compared to multi-stream works.

In [START_REF] Fu | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection[END_REF][START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF], the authors proposed the concatenation of RGB-D images from the input side and then feed them into a single encoder-decoder architecture. From another perspective, [START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF] introduces a depth distiller to enable cross-modal knowledge distillation, leading to a lightweight inference strategy with RGB-only input. Other works [START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF][START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF][START_REF] Zhao | Contrast prior and fluid pyramid integration for RGBD salient object detection[END_REF] propose to directly integrate low-level geometric cues in the RGB stream to strengthen the RGB features. Despite the proven result with a lightweight model, single-stream models fail to explicitly model cross-modal correlation in complex scenarios, which is the main performance bottleneck.

Recently, multi-stream architectures have drawn increasing research interests. A number of works [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Wu | Modality-guided subnetwork for salient object detection[END_REF][START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] propose to explicitly model RGB and depth cues through two parallel encoders and then aggregate multi-modal features through multi-scale fusion schemes, leading to better performance compared to their counterpart. In the literature, we can group existing works into three categories based on the fusion schemes: 1) depth-guided fusion, 2) discrepant fusion, and 3) multi-scale fusion. Depth enhanced fusion models [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF] often adopts an asymmetric fusion scheme that the depth features are fused into RGB features at each level to improve the boundary awareness. However, these models are sensitive to depth noise and the performance is significantly degraded when depth maps are under inferior conditions. Other works [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Wu | Modality-guided subnetwork for salient object detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhang | Select, supplement and focus for RGB-D saliency detection[END_REF] propose to merge multi-modal cues through a discrepant design. In [START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF], the authors adopt different fusion designs for low-level and high-level features, i.e., RGB to calibrate depth in earlier layers and depth to calibrate RGB in deeper layers. [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Zhang | Select, supplement and focus for RGB-D saliency detection[END_REF] only fuse features at semantic levels, i.e., outputs from the last three layers. Different from discrepant and asymmetric designs, a number of works [START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] realize bi-directional cross-modal interaction at each scale of the neural network. This fusion design, also known as middle fusion, has shown plausible performance in saliency benchmarks. Nevertheless, we observe that most existing works treat RGB and depth equally to form the shared features, paying little attention to explicitly model the measurement bias and alignment issue. [START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF] has introduced a weighting strategy to deal with the measurement bias. However, their weighting scheme assumes the perfect alignment between multi-modal features.

Different from previous works, we estimate the depth quality index by leveraging contextualized awareness. We show through empirical comparison that our approach can better model the depth quality to adjust the contribution.

Attention for Cross-Modal Interaction

Self-attention modules [START_REF] Fu | Dual attention network for scene segmentation[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Wang | Non-local neural networks[END_REF][START_REF] Woo | Cbam: Convolutional block attention module[END_REF] have been proven to be efficient for visual tasks. Inspired by their success, a number of RGB-D saliency works [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Liu | Learning selective self-mutual attention for rgb-d saliency detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] leverage self-attention as an augmentation to better preserve, calibrate, and fuse multi-modal features. [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] explicitly leverages the attention along the channel direction to calibrate each modality. [START_REF] Liu | Learning selective self-mutual attention for rgb-d saliency detection[END_REF] introduces a mutual and non-local strategy to learn the spatial cues from one modality and apply it to the other. Several recent works [START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Liu | Visual saliency transformer[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF] further explore the long-range dependencies with transformer attention [START_REF] Vaswani | Attention is all you need[END_REF].

Despite the popularity of contextualized attention, we observe that these modules often require a significant computational cost. Therefore, fusion with transformer attention is often realized with a small resolution feature map, i.e., at deeper layers of encoders [START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Liu | Learning selective self-mutual attention for rgb-d saliency detection[END_REF][START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF]. To benefit from the spatial cues at each stage, a number of works [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF] adopt the hybrid models with vanilla spatial and channel attention from [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] to aggregate features at each stage. However, vanilla spatial attention is agnostic of feature misalignment. Moreover, these hybrids treat spatial and channel attention equally, failing to be adjusted with respect to the network depth. Different from previous works, we propose a simple yet efficient trident spatial attention that can better model contextualized awareness compared to its counterpart. Furthermore, we integrate our spatial attention with channel attention in a parallel scheme, yielding a more robust fusion strategy with adaptive weights. 

Method

Layer-Wise Attention

We observe that there exist several depths with unsatisfactory quality as shown in Figure 6.1. Inspired by this observation, we propose a depth quality indicator that aims to explicitly model the depth contribution. Our intuition is that while dealing with low-quality depth at early layers, the network should have a higher confidence value on the RGB feature instead of equally average the multi-modal cues.

As depicted in Figure 6.3, our layer-wise attention takes outputs from the first encoder layer as input, i.e., R 1 ∈ R C ×H×W and D 1 ∈ R C ×H×W . We argue that these features contain more heterogeneous and modality-specific cues compared to semantic-level features which are homogenized. With R 1 and D 1 , we first compute the similarity between the two modalities. Instead of directly realizing the pixel-wise multiplication, we leverage the contextualized awareness to avoid the feature misalignment and focus on the measurement bias. Specifically, R 1 and D 1 are firstly fed into Conv 1×1 and flattened to form R ′ 1 ∈ R C ×HW and D ′ 1 ∈ R C ×HW . These new features are then fed into the matrix multiplication as shown in Eq. 6.1. To normalize the obtained attention map, we further apply the softmax function to adjust the weight. Further, the normalized weight map is multiplied to flattened R 1 and D 1 to improve the crossmodal awareness. Finally, the retrieved RGB and depth attention maps are merged together through addition. Formally, the similarity matrix can be formulated as:

Attention(R ′ 1 , D ′ 1 ) = softmax( R ′ 1 D ′ T 1 √ c )(R ′ 1 + D ′ 1 ). (6.1) 
Similar to self-attention works [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Wang | Non-local neural networks[END_REF], we add a skip connection with early fused RGB-D features to stabilize the training procedure. Once we obtain the similarity matrix, we seek to explicitly quantify the depth measurement bias. Specifically, we first extract the feature vector with the help of global average pooling (GAP) and then feed it into a multi-level perceptron (MLP) to estimate the confidence values.

We particularly estimate distinct values to explicitly guide feature fusion at different scales. The adaptive weight λ ∈ R 5 can be formulated as:

λ = MLP(GAP(Attention(R ′ 1 , D ′ 1 ))). (6.2) 
Finally, let R i and D i be the encoded RGB-D features from the i th layer. Instead of equally averaging both feature maps by R i + D i which is agnostic of input depth quality, our proposed fusion by R i + λ i D i can better merge multi-modal features with context awareness.

At first glance, our attention map is similar to non-local attention [START_REF] Wang | Non-local neural networks[END_REF] which has been applied in S2MA [START_REF] Liu | Learning selective self-mutual attention for rgb-d saliency detection[END_REF] or to transformer attention [START_REF] Vaswani | Attention is all you need[END_REF] which has been applied in TriTrans [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF]. However, our method differs from previous works in two aspects, i.e., the purpose and the model size. Compared to S2MA which uses non-local attention for cross-modal calibration, our work aims to analyze the similarity between multi-modal features and assign a confidence value to the depth cues. Compared to TriTrans which adopts multi-head transformer attention to fuse features at the deepest layer, our design is significantly lighter with only one head and is applied to low-level features with higher resolution. The concurrent work DFMnet [START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF] adopts Dice similarity coefficient [START_REF] Milletari | V-net: Fully convolutional neural networks for volumetric medical image segmentation[END_REF] to analyze the depth quality. However, it simply multiplies RGB and depth features with the pixel-wise association, paying little attention to explicitly model measurement bias and the misalignment in a separate manner.

Adaptive Attention Fusion

Existing methods [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF][START_REF] Zhao | Is depth really necessary for salient object detection[END_REF] often adopt attention modules, i.e., spatial attention (SA) and channel attention (CA), to enable cross-modal interaction, with few methods pay attention to inherent feature misalignment. While by design CA is more robust to this issue due to the squeezed spatial resolution, the vanilla SA has more difficulties dealing with this inferior condition since it assumes a perfect alignment between different modalities. To address this dilemma, we propose to improve the current SA with enlarged global awareness, yielding a simple yet efficient manner to replace the pixel-wise alignment with region-wise correlation. Furthermore, current works simply apply CA and SA one by another [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF] or equally average them to form the output [START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF]. These works are agnostic to the network depth that SA and CA still contribute equally at each stage. Previous work [START_REF] Pan | On the integration of self-attention and convolution[END_REF] has shown that layers with different depths will pay attention to different contexts. Therefore, we seek to introduce an adaptive fusion strategy with learnable weights to automatically adjust the contribution of each attention at different levels.

Formally, let an input feature map f ∈ R C ×H×W . The vanilla SA firstly squeeze the channel dimension with average and max pooling across the channel, denoted as CAP(•) and CMP(•), respectively, to obtain the spatial map f ′ ∈ R 2×H×W . Then, from f ′ SA learns a 2-D weight map SA ∈ R 1×H×W :

f ′ = Concat(CAP(f ), CMP(f )); SA(f ) = σ(Conv 1 (f ′ ))), (6.3) 
where σ(•) is the Sigmoid activation, Conv 1 stands for the convolution with dilation 1.

To improve global awareness, we replace the current convolution with trident branches where each branch focuses on learning features with different scales, as shown in Figure 6.4. Our proposed trident spatial attention can be formulated as:

TSA(f ) = σ(Concat(Conv 1 (f ′ ) Conv 3 (f ′ )
Conv 5 (f ′ )). The vanilla CRM benefits from channel attention to realize the self-and cross-calibration before the feature fusion. We have:

CRM(R i , D i ) = Concat(CA f ⊗ CA r ⊗ R i ; CA f ⊗ CA d ⊗ D i ); (6.6) 
We refer readers to the original paper [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF] for more details on the cross-modal interaction. In our application, we replace the final concatenation with adaptive addition with respect to depth quality and form our qCRM CA as follow:

qCRM CA (R, D) =CA f ⊗ CA r ⊗ R i + λ • CA f ⊗ CA d ⊗ D i ; (6.7) 
Moreover, we additionally design another branch where the CA is replaced by our proposed TSA. This new branch is termed as qCRM TSA . We further learn two scalar values α and β to adaptively weight CRM TSA with the original branch CRM with channel attention. Finally, our adaptive fusion (AF) can be formulated as:

AF (R, D) = α • qCRM CA (R i , D i ) + β • qCRM TSA (R i , D i ) (6.8)

Architecture

In this chapter, we propose a novel fusion design that can be easily adapted to any existing architecture. To compete with the state-of-the-art performance, we choose Res2Net [START_REF] Gao | Res2net: A new multi-scale backbone architecture[END_REF] as our backbone to extract features. Our decoder is the same as SP-Net [START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF]. Specifically, it consists of five-level RFB blocks [START_REF] Liu | Receptive field block net for accurate and fast object detection[END_REF]. Each block is skipped and connected with the fused encoded features. However, different from SPNet with a triple decoder to explicitly both modality-specific and shared features, we only maintain one decoder to decode our efficiently fused features. Our network is supervised by conventional IoU and BCE losses. 
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BBS [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF] 460(+95 We follow previous works [START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Wu | Modality-guided subnetwork for salient object detection[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF]] and train our model on the conventional training set which contains 1,485 samples from the NJU2K-train [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF] and 700 samples from the NLPR-train [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF]. For testing benchmarks, we observe that the depth quality within each dataset varies, which is mainly due to acquisition methods. Specifically, DES [START_REF] Cheng | Depth enhanced saliency detection method[END_REF] contains 135 images of indoor scenes captured by a Kinect camera. SIP [START_REF] Fan | Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks[END_REF] provides a human dataset that contains 929 images captured by a mobile device.

Therefore, these two datasets can be considered moderate with less noisy depths.

However, the remaining NLPR-test [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF], NJU2K-test [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF] and STERE [START_REF] Niu | Leveraging stereopsis for saliency analysis[END_REF] datasets are more challenging. NLPR-test [START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF] contains 300 natural images which are captured by a Kinect sensor. However, the images are obtained under different illumination conditions. NJU2K-test [START_REF] Ju | Depth saliency based on anisotropic center-surround difference[END_REF] contains 500 stereo image pairs from different sources such as the Internet and 3D movies. A number of depth maps are estimated through the optical flow method [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF]. STERE [START_REF] Niu | Leveraging stereopsis for saliency analysis[END_REF] contains 1,000 stereoscopic images where the depths are estimated with SIFT flow method [START_REF] Liu | Sift flow: Dense correspondence across scenes and its applications[END_REF]. Due to the measurement or estimation error, these datasets contain more noisy depths. Therefore, to purely analyze the performance under different conditions, we additionally report the average metric (AvgMetric) for datasets with good quality depths and for datasets with more challenging depths.

To quantify the performance of our methods, we compute conventional saliency metrics such as Mean Absolute Error, F-measure, S-measure, and E-measure. Specifically, Mean Absolute Error (M) measures the pixel-level similarity between the estimated saliency map and the ground-truth map. For F-measure, we report the maximum F-measure (F ) score across the binary maps of different thresholds.

S-measure (S) and E-measure (E ) are more specialized metrics for saliency detection. The prior (S) was firstly introduced in [START_REF] Fan | Structure-measure: A new way to evaluate foreground maps[END_REF] to evaluate the similarities between object-aware (S o ) and region-aware (S r ) structures of the saliency map compared to the ground truth. The latter (E m ) is introduced in [START_REF] Fan | Enhanced-alignment measure for binary foreground map evaluation[END_REF] to evaluate both image-level statistics and local pixel matching information. We refer readers to the original paper for more details.

Our method is based on the Pytorch framework and is learned with a V100 GPU. The encoder is initialized with the pre-trained weights. For the 1-channel depth input, we replace the first convolution of backbone to feet with the depth size. The learning rate is initialized to 1e-4 which is further divided by 10 every 60 epochs. We fix and resize the input RGB-D resolution to 352×352. During training, we adopt random flipping, rotating, and border clipping for data augmentation. The total training time takes around 5 hours with batch size 10 and epoch 100.

Comparison with SOTA fusion alternatives

We observe that existing works adopt different architectures, i.e., choice of backbones, design of decoder, supervision, training settings, etc. For example, light models [START_REF] Wu | Mobilesal: Extremely efficient rgb-d salient object detection[END_REF][START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF] always choose MobileNet [START_REF] Sandler | Mobilenetv2: Inverted residuals and linear bottlenecks[END_REF] to extract features. Several works [START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Piao | A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection[END_REF][START_REF] Zhao | A single stream network for robust and real-time RGB-D salient object detection[END_REF] are based on VGG [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] encoders, while another group of models [START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF] takes ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] as encoders. Recent works [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF][START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF] are based on more powerful backbones such as

Res2Net [START_REF] Gao | Res2net: A new multi-scale backbone architecture[END_REF] and ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. The choice of backbone will undoubtedly impact the final performance. Furthermore, the design of the decoder varies from one work to another. Several works are based on DenseASPP [START_REF] Yang | Denseaspp for semantic segmentation in street scenes[END_REF], while others are based on RFB [START_REF] Liu | Receptive field block net for accurate and fast object detection[END_REF]. Under the consideration of a fair comparison, we re-implement six SOTA fusion works under the same architecture. Specifically, we choose the same backbone, same decoder, loss, and same training settings as ours. The only difference between one model to another is in the fusion module. We refer readers to previous sections for more experimental details. Note that several fusion designs [START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Wu | Mobilesal: Extremely efficient rgb-d salient object detection[END_REF] were initially applied only to certain layers. To fairly and purely analyze the fusion performance, we implement all the fusion modules at each scale as ours.

Table 6.1 illustrates the quantitative comparison. We also report the model size of each embedded fusion module. ∆Size stands for the difference in model size compared to ours. It can be seen that our fusion strategy yields significantly better results compared to our counterparts. Compared to the lightest DCF fusion which only applies channel attention during feature fusion, we add additional spatial attention, yielding a slightly heavier model size (+29 Mb) but favorably improving the performance. Elsewise, our model size is significantly lighter compared to other counterparts, validating the effectiveness of our proposed fusion module.

Quantitative Comparison

Table 6.2 illustrates the quantitative comparison. For challenging datasets (NLPR, NJU2K, and STERE), our method performs favorably over the existing methods and sets a new state-of-the-art (SOTA) record, validating the superior robustness of our approach against depth bias. We further illustrate in Figure 6.5 the trade-off between model size and SOTA performances. Compared to the current SOTA TriTrans [START_REF] Liu | TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[END_REF],

our model is significantly smaller with only one-third of the model size but with better performance on S-measure. For other datasets with less depth noise (DES and SIP), we also achieve competitive performance with almost halved the model size compared to the current SOTA SPNet [START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF]. Note that both SPNet and ours adopt Table 6.2: Quantitative comparison with state-of-the-art models. ↑ (↓) denotes that the higher (lower) is better. The best and second best are highlighted in bold and underline, respectively. We further report the average metric (AvgMetric) for datasets with more challenging depths and with less less noisy depths. The circle size denotes the model size. Note that better models are shown in the upper right corner (i.e., with a larger F-measure and larger FPS). Our method finds the best trade-off of the three measures. Methods with higher speed perform inferior, making our method both efficient and accurate. Res2Net50 [START_REF] Gao | Res2net: A new multi-scale backbone architecture[END_REF] as the backbone. Thus, our performance can be contributed to our proposed fusion solely. We further illustrate the comparison between depth feature maps enhanced with our proposed spatial attention (TSA) and with the counterpart (TA). For the cases with multi-objects at different camera distances, i.e., 1 st -6 th rows, we can visualize that our attention can better segment object regions. This can be contributed to our trident branches with different scales. Furthermore, our attention yields more activation on the boundary, facilitating the network to better leverage geometric for saliency detection.
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Qualitative Comparison

Finally, we illustrate in Figure 6.7 the histogram for our layer-wise attention. We particularly choose λ 1 and λ 5 to facilitate the understanding of the trade-off between early and late fusion. We can observe that while depths are of low quality, our LWA assigns more weights for late fusion (with low λ 1 value and high λ 5 value).

While depths are of good quality, our LWA assigns more weights for early fusion (with high λ 1 value and low λ 5 value). This observation is consistent with previous studies [START_REF] Fang | GroupTransNet: Group transformer network for RGB-D salient object detection[END_REF][START_REF] Ji | Calibrated RGB-D salient object detection[END_REF][START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF] with discrepant fusion. We hope our analysis of layer-wise attention can inspire future adaptive fusion works. 

Distribution of Spatial and Channel Attention

Since we propose an adaptive weighting strategy to merge our spatial attention (TSA) and channel attention (CA), we illustrate in Figure 6.8 the distribution of weights of each attention at different stages of the network. We can observe that TSA and CA contribute differently with respect to the network depth. At layer 1 (L 1 ), the network assigns more weight to TSA. This can be explained by the significant spatial resolution of the features. For deeper layers, it can be seen that SA and CA tend to play a similar role at each stage to enhance the feature modeling with equal importance. However, we show that the contributions from different layers to form the final output are different. Specifically, it can be seen that attention from the third layer (L 3 ) and the fourth layer (L 4 ) contribute more compared to the first two layers (L 1 -L 2 ) and the last layer (L 5 ). The different contribution with respect to the network depth is also consistent with previous works [START_REF] Pan | On the integration of self-attention and convolution[END_REF] and to our layer-wise attention that shallow and deep layers play different roles for feature fusion.

Ablation Study

In this section, we conduct an ablation study to validate the effectiveness of each proposed component. The quantitative result of each combination can be found in Table 6.3. To analyze the effectiveness of our trident spatial attention (TSA), we replace ours with vanilla spatial attention [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] and observe a dropped performance. This is mainly due to the limited receptive field of vanilla attention that assumes a local correlation between different features. In contrast, our TSA can significantly improve performance by leveraging contextualized awareness. The boosted performance on the aforementioned datasets validates the design of our TSA.

We also conduct experiments by replacing our LWA with another depth quality module presented in DFM [START_REF] Zhang | Depth qualityinspired feature manipulation for efficient RGB-D salient object detection[END_REF]. While the LWA is replaced, the performance is significantly degraded. The difference between DFM and ours is in the manner to compute the similarity matrix. Specifically, DFM assumes a perfect alignment between multimodalities and realizes a pixel-wise matrix multiplication, while we leverage the nonlocal attention with flattened vectors to compute the similarity.

Conclusion

In this chapter, we propose a novel fusion architecture for RGB-D saliency detection.

Different from previous works, we improve the robustness against inaccurate and misaligned depth inputs. Specifically, we proposed a layer-wise attention to explicitly leverage the depth quality by learning the best trade-off between early and late fusion.

Furthermore, we improved the vanilla spatial attention to a broader context, yielding a simple yet efficient mechanism to address the depth misalignment problem. Extensive comparisons on benchmark datasets validate the effectiveness and robustness of our approach compared to the state-of-the-art alternatives. Our method also sets new records on challenging datasets with smaller model sizes. The method developed in this chapter can potentially be used for other tasks, such as semantic segmentation and object detection, in a similar setting of RGB-D inputs in a robust manner.

Chapter 7

Conclusion and Perspectives

Conclusion

In this thesis, we are interested in fusing RGB-D information for a more effective and robust scene understanding. The objective is therefore to propose novel and more adapted fusion modules to improve the RGB baseline performance. We are particularly interested in designing fusion methods with different forms of attention, which have recently drawn great research interest and set a new state-of-the-art performance.

The main strength of attention modules is that they can leverage the most informative features from the input. These cues can be from the channel and spatial dimension, as well as contextualized correlation and layer-wise fusion architecture. The computed attention can therefore better guide the RGB-D fusion to alleviate local noise and improve the feature representation.

Our first contribution in this thesis is to merge the depth information, i.e., the granularity with the semantic cues, i.e., channel attention. We show that by creating a depth-wise channel attention, the deep neural network can pay better attention to local regions. Therefore, the feature discriminability can be naturally enhanced by locally constrained attention. We observe that the proposed attention module correlates well with the network hierarchy, which learns different scales of information during the encoder stage. Hence, by integrating our proposed depth-wise channel attention into the feature extraction, we can extract features with better awareness of the geometric constraint.

The second contribution is on the spatial attention with depth-awareness. We observe that the concurrent learning methods cannot fully leverage the low-level constraint.

Without explicit supervision, the learned attention is not consistent on the same pixel but with different chosen backbones. Differently, we propose to compute statically the offsets and do not require any learning parameters, yielding a more consistent attention fully dependent on the geometry. We show that the static spatial attention performs significantly better than the dynamic counterpart on semantic segmentation. However, one limitation of the static model is that it cannot be extended to all modalities, such Last but not least, we propose a layer-wise attention for an adaptive and robust RGB-D fusion. Previous methods often adopt pre-defined and fixed fusion architecture such as early, middle, and late fusion, which cannot be adapted to the data context. For example, a depth image with good quality can directly provide rich low-level geometric cues that correlate well with the stemming layers. Therefore, it is more intuitive and straightforward to apply early fusion for such a case. While the quality of depth image is unsatisfactory that geometric cues cannot be easily extracted at an early stage, it becomes necessary to apply an encoder to extract the desired feature and fuse RGB-D features at the semantic level, i.e., late fusion. Inspired by this intuition, we propose a context-aware layer attention that learns the trade-off between early and late fusion.

Hence, our model can automatically define which layer/stage is more adequate to fuse multi-modal features, yielding a simple yet robust manner to control the depth contribution with respect to the image quality.

Perspective

From my point of view, we are nowadays in the transition stage where people have the choice between a CNN model and a transformer model. CNN is well known for its sliding receptive field which can pay attention to local pixels. The transformer, from another perspective, can better model the long-range dependencies while requiring more computational cost compared to a fixed-size local convolutional window. Each design has its intrinsic pros and cons. Hence, it is yet unclear to the vision society which model can consistently lead to better performance. A recent work [START_REF] Pan | On the integration of self-attention and convolution[END_REF] proposes to combine both CNN and transformer and shows the superior performance of a hybrid backbone. Therefore, one possible future direction for RGB-D fusion is to leverage both local and global attention to merge multi-modal features.

Another perspective is on the availability of depth images. One inherent shortage of RGB-D fusion is the requirement of multi-modal data from the input side, which is hard to achieve in practice. One possible alternative is to estimate a pseudo-depth to mimick the RGB-D input. Nevertheless, the pseudo-depth can be with sub-optimal quality due to the domain gap. Despite the recent tentative [START_REF] Song | Exploiting scene depth for object detection with multimodal transformers[END_REF] which re-calibrates the pseudo-depth attention according to the trustful regions, these regions are still computed by a pre-trained saliency model and there are no theoretical supports that the salient regions contain good depth estimations. Furthermore, in this thesis we focus more on the spatial correlation between different modalities, paying little attention to temporal consistency which is important for video tasks. How to ensure, enhance, and benefit from the consistency thanks to the depth priors (ground truth or estimated) can be another future research direction.

Finally, the objective of perception is to promote machines with sensing capability and further realize complex tasks. In the industrial context, an algorithm should be able to provide good performance while being embedded in a low-cost system. This criterion inspires us to design a lightweight RGB-D fusion module in the future, i.e., proposing methods to minimize the redundancy between multi-modal features. A recent work [START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF] has shown that by minimizing the mutual information, the network can learn more complementary and informative cues from RGB-D inputs. However, this work does not focus on the lightweight model, which leaves large room for an efficient fusion module.
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 11 Figure 1.1: Based on the RGB image, can you segment my Babo and his cat friend? What happens if you have additional cues such as (pseudo) Depth?
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 21 Figure 2.1: Illustration of LeNet-5 network, a convolutional neural network at an early stage. The image is from [53].

Figure 2 . 2 :

 22 Figure 2.2: Illustration of VGG-16 networks which extract the features from the input and class the image into a class. The image is from [105].
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 23 Figure 2.3: VGG nets with the residual connection. The image is from [31].
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 24 Figure 2.4: Illustration of SENet. The image is from[START_REF] Hu | Squeeze-and-excitation networks[END_REF] 
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 25 Figure 2.5: Illustration of details on efficient channel attention. The image is from [121].
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 26 Figure 2.6: Illustration of details on spatial transformer network.The image is from[START_REF] Jaderberg | Spatial transformer networks[END_REF].
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 27 Figure 2.7: Illustration of details on dilated convolution. The image is from [184].
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 28 Figure 2.8: Illustration of details on deformable convolution. The image is from [28].
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 29 Figure 2.9: Illustration of details on non-local attention. The image is from [156].
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 210 Figure 2.10: Illustration of a transformer attention. The image is from online source 1 basing on [147].

Figure 2 . 11 :

 211 Figure 2.11: Comparison between Swin Transformer (left) and original ViT (right). The image is from [98].

Figure 2 . 12 :

 212 Figure 2.12: Illustration of details on ACmix. The image is from [108].

Figure 2 . 13 :

 213 Figure 2.13: Illustration of a Channel and Spatial attention for CNN.The image is from[START_REF] Woo | Cbam: Convolutional block attention module[END_REF].

Figure 2 . 14 :

 214 Figure 2.14: Illustration of details on dual attention. The image is from [43].

Figure 2 . 15 :

 215 Figure 2.15: Illustration of different 3D representations. From left to right: Point cloud, elevation map, multi-level surface map, and voxel representation. The image is from [63].

Figure 2 . 16 :

 216 Figure 2.16: Illustration of DenseFusion pipeline. The image is from [148].

Figure 2 . 17 :

 217 Figure 2.17: Illustration of encoded HHA from a depth image. The image is from [124].

Figure 2 . 18 :

 218 Figure 2.18: Illustration of conventionally applied fusion designs in the literature. The image is from [217].

  At the early stage, RGB-D features are simply aggregated with addition or concatenation convolution as shown in Figure2.19. FuseNet[START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based CNN architecture[END_REF] is one of the typical examples of incorporating the auxiliary depth information into the RGB encoder-decoder through simple addition. It first extracts multi-scale depth features and then simultaneously adds them to the RGB mainstream at each scale. The addition can also be replaced by concatenation. Commonly, researchers concatenate RGB-D features along the channel dimension. Therefore, the concatenation is always combined with an additional convolution to reduce the doubled channel size. Despite the plausible improvement compared to the RGB baseline, both addition, and concatenation fusion have several limits. Firstly, they do not take the noise of RGB-D images into account. Secondly, they assume that RGB-D features share different but completely complementary in-

Figure 2 . 19 :

 219 Figure 2.19: Illustration of pixel-wise fusion strategy with simple addition. The image is from [57].

Figure 2 . 20 :

 220 Figure 2.20: Illustration of SAGate pipeline and fusion details. The image is from [15].

Figure 2 . 21 :

 221 Figure 2.21: Illustration of depth-aware convolution. The image is from [154].

Figure 2 . 22 :

 222 Figure 2.22: Illustration of RGB-D fusion proposed by CANet. The image is from [207].

Figure 3 . 1 :

 31 Figure 3.1: Motivation of our hierarchical depth awareness. (a) and (b) are the paired RGB-D inputs. (c) and (d) represent Multi-Otsu thresholding on depth histogram and the generated Otsu regions, respectively. Our approach takes full advantage of depth priors to improve the feature discriminatory power and obtain the saliency mask (e). Compared to two state-of-the-art (SOTA) RGB-D models (f) and (g), our method favorably yields results closer to the ground-truth mask (h).

  3.1(b) and (d)). Inspired by this observation, we develop a local feature enhancement scheme with granularity-based attention (GBA) to improve saliency detection. Specifically, we propose to first generate various local regions according to the granularity via Otsu thresholding [87, 107]. These regions can be considered as distinct local spatial attention. Then for each region, we apply local channel attention to improve the feature discriminatory power. Fig. 3.1(c) and (d) illustrate such an example of the Otsu threshold values and granularity-aware masks,

Fig. 3 .Figure 3 . 2 :

 332 Fig. 3.2 presents the overall framework of our proposed HiDAnet. Note that the Otsu masks are generated from the depth map during the pre-processing. Firstly, RGB and

Figure 3 . 3 :

 33 Figure 3.3: Diagram of the granularity-based attention. The depth awareness is encoded via local efficient channel attention (LECA).ECA is from[START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF].

Figure 3 . 4 :

 34 Figure 3.4: Visual comparison with the concurrent alternative. Different from DSA2F[START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF]. Our method maximizes the inter-class variance, leading to more accurate masks compared to DSA2F. We further explore the granularity cues via channel attention, yielding results closer to the ground truth (5).

Fig. 3 .

 3 [START_REF] Bello | Attention augmented convolutional networks[END_REF] illustrates the difference in the thresholds and regions. We observe that our approach computes more discriminative regions, yielding a more effective and robust manner to explore the depth prior. Moreover, since the Otsu algorithm optimizes the thresholds by maximizing inter-class variance, our generated masks are more robust to the depth noise compared to the concurrent work. Additionally, we leverage the granularity with channel attention, while DSA2F simply uses a Conv 1×1 for local awareness. As shown in Fig.3.4, by integrating the fine-grained details into the channel attention, we can reason about more accurate saliency regions closer to the ground truth. The quantitative comparison with[START_REF] Ji | Accurate RGB-D salient object detection via collaborative learning[END_REF][START_REF] Sun | Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[END_REF][START_REF] Zhao | Contrast prior and fluid pyramid integration for RGBD salient object detection[END_REF] can be found in Section 3.4.3 Tab. 3.1.
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 3536 Figure 3.5: Encoder Fusion. We adopt a multi-scale multi-level fusion scheme with cross-domain supervision.

Figure 3 . 7 :

 37 Figure 3.7: Average Max F-Measure, MAE, and Model Size of different methods on benchmark datasets. The circle size denotes the model size. Note that better models are shown in the upper left corner (i.e., with a larger F-measure and smaller MAE). Methods with smaller size perform inferior, making our method both efficient and accurate.

Finally, in

  addition to the difference in the backbone, we observe that existing works adopt different architectures, i.e., design of decoder, supervision, training settings, etc. Under the consideration of fair comparison and to purely analyze the effectiveness of encoder fusion design, we re-implement several fusion alternatives under the same architecture (Res2Net50 + fusion). Specifically, we choose the same backbone (Res2Net50), the same decoder (the SOTA[START_REF] Zhou | Specificitypreserving RGB-D saliency detection[END_REF]), loss (multi-scale supervision), and the same training settings as ours. The only difference between one model to another is in the fusion module. The quantitative comparison can be found in Table3.3. It can be seen that by replacing our fusion with other methods, the empirical results significantly drop. This validates the superior effectiveness of our granularity and CDA in leveraging RGB-D cues compared to other alternatives.

Figure 3 . 8 :

 38 Figure 3.8: Visual comparison between our HiDAnet and SOTA methods in various challenging cases.

Figure 3 . 9 :

 39 Figure 3.9: Comparison on PR curves. Our HiDANet achieves better performance compared to the 12 listed SOTA methods across different datasets.

  .11) where (I) denotes the vanilla global average pooling, (II) is the global pooling with local region m i (.), and (III) is our proposed GBA module that applies local pooling with local region m i (.). Note that when depth data is constant, i.e., all the pixels belong to the same granularity, our local average becomes the global average pooling and our model is equivalent to the conventional channel attention[START_REF] Hu | Squeeze-and-excitation networks[END_REF][START_REF] Qilong | ECA-Net: Efficient channel attention for deep convolutional neural networks[END_REF]. To verify our effectiveness, we conduct experiments by replacing our local pooling with the aforementioned poolings. Empirical results in Tab. 3.5 show that compared to (I), (II) can better leverage local awareness which spatially constrains attention around the local region. However, with a large H × W , the attention activation is limited.

3 . 6

 36 the contribution of GBA for both RGB and Depth feature modelings: (A) We remove the GBA from our network, denoted as RGB+D; (B) GBA is only applied in the RGB stream, denoted as RGB(G) + D; (C) GBA is applied in both streams, denoted as RGB(G) + D(G). We observe that the performance augments by gradually inserting GBA into the encoders. This shows that GBA can be considered as depth-aware attention for the RGB stream and as a self-enhancement module for the Depth stream to produce regions with favorable objectness.Number of Otsu Regions for GBA: Our fine-grained details are determined by the number of Otsu regions as shown in Figure3.10. The two first columns represent the paired RGB-D inputs. On the 3 rd , 5 th , and 7 th columns we list the Otsu regions with different numbers of multi granularities, respectively. On the 4 th , 6 th , and 8 th columns we list the generated masks with different numbers of thresholds T = 1, 2, 3, respectively.

Figure 3 . 10 :

 310 Figure 3.10: Qualitative comparison with different numbers of Otsu thresholds (T = 1, 2, 3) for our granularity-based attention.With the threshold T , we divide the depth map into T + 1 regions with different colors. Each region shares the same granularity of geometric information. With one threshold T = 1, the local regions are coarse and cannot get the full benefit from the geometric priors. This results in unsatisfactory salient masks (4 th column). With two thresholds T = 2, the depth map is better discretized with more fine-grained details, yielding salient masks closer to the ground truth (6 th column). With three thresholds T = 3, the depth map is over-discretized, resulting in sub-optimal salient masks (8 th column). Our plain HiDAnet is built upon T = 2.

(C 3 )(C 4 )

 34 scheme.Design of Efficient Multi-Input Fusion: We also verify the design of our decoder fusion in Tab. 3.9: (E 1) Features are fused with CC. (E 2) Features are concatenated and fed into the ECA model before the convolution. (E 3) Features are fused with CC and then fed into the ECA. (E 4) Based on the configuration E 2, we further add a residual addition. By comparing (E 2 -E 3) and (E 4 -Ours), we can observe that the ECA module performs better with a reduced channel size. The comparison

  It is worth noting that few existing methods explicitly leverage the contribution of depth cues to adjust the sampling position on RGB images. Therefore, we propose a novel framework to incorporate the depth information in the RGB convolutional neural network (CNN), termed Z-ACN (Depth-Adapted CNN)r. Specifically, our Z-ACN generates a 2D depth-adapted offset which is fully constrained by low-level features to guide the feature extraction on RGB images. With the generated offset, we introduce two intuitive and effective operations to replace basic CNN operators: depth-adapted convolution and depth-adapted average pooling. Extensive experiments on semantic segmentation and saliency detection tasks demonstrate the effectiveness of our approach.

4. 1 . 1 Introduction

 11 As one of the fundamental tasks in computer vision, semantic segmentation aims to understand the pixel-wise label from an input image of a generic target scene. Recent advances in deep neural networks, as well as the GPU, have set new state-of-the-art (SOTA) performance in semantic segmentation. Despite significant progress in the last decade, semantic segmentation based on RGB input remains challenging in many challenging scenarios, i.e., low-contrast light, object occlusion, and separating objects sharing a similar visual appearance.

Figure 4 . 1 :

 41 Figure 4.1: A sketch of Depth-Adapted Sampling position. We explicitly leverage the depth priors to compute a locally-deformable sampling position, yielding a simple but efficient manner to introduce a global-local attention into CNN.

Figure 4 . 2 :

 42 Figure 4.2: On the left we show the example of a 3 × 3 kernel: a) shows a standard 2D convolution with dilation equal to 1. b) shows the offset computed from deformable convolution [28]. c) is the available depth data. The represented figure shows a linear change with the depth value. From left to right, the scene becomes deeper. d) illustrates offset computed by Z-ACN which is adapted to depth. On the right, we illustrate the overview of our approach. LMS stands for Least Mean Square algorithm. ( ⃗x ′ , ⃗ y ′ ) are the 3D unit axis. Firstly, pixels within the 2D receptive field are back-projected to 3D space to form a point cloud, based on which a 3D plane is computed with normal ⃗ n . Secondly, a new 3 × 3 grid on the 3D space is created with the help of 3D axis ( ⃗ x ′ , ⃗ y ′ ) which are perpendicular to the normal ⃗ n. Finally, the 3D grid is projected to the image plane, forming our depth-adapted sampling position. Zoom in for more details on the depth-guided sampling position on the RGB image.
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 114136 Understanding Depth-Adapted operationsIn Figure4.2 we show several examples of depth-adapted sampling positions of given input neurons (the center) on an RGB image. We seek to profit from the depth cues to articulate both photometric and geometric information for RGB CNN. Our method integrates the geometry into the convolution by adjusting the 2D sampling grid. This pattern is integrated into Eq. 4.3. In the case of conventional CNN, the shape of the grid is fixed as regular, which has difficulty adapting to the perspective effect. With the proposed Z-ACN, we can better leverage the geometric constraint in the sampling position. As shown in Figure4.2, the receptive field for a closer input neuron in the 3D space is larger than that of a geometrically farther neuron. Sampling positions on the same plane also have different shapes that are adapted to the camera-projection effect. These patterns improve 2D CNN's performance with contextualized awareness without complicating the network with extra learning parameters.

Figure 4 . 3 :

 43 Figure 4.3: On the left we illustrate the qualitative comparison on the NYUv2 dataset. The two first columns are the input RGB and HHA, respectively. Baseline represents the semantic map obtained with early fused RGB-HHA input. + Z-ACN stands for the results obtained by inserting our depth-adapted sampling position into the baseline. It can be seen that by explicitly leveraging non-local attention, our method reasons about semantic maps closer to the ground truth (GT). The black regions in "GT" are the ignoring category. On the right we illustrate the per-class improvement above the baseline.We improve 29/37 classes with 5.2% mean IoU increment.

  proposes a learning strategy to infer a depth-aware offset from latent space. However, for the same scene, the learned offset may vary under different settings such as different training strategies or backbones. As shown in Figure4.4, while the backbone changes, SConv yields different sampling positions. Intuitively, the depth-aware offset should be only dependent on the geometry and independent of the learning factors.Different from SConv, our offset is computed without any learning parameters, making our depth-awareness constant under different environments. Further, we show through Figure4.4 that our computed receptive field can favorably describe the perspective effect over the counterpart. Besides, we report in Table4.4 the model size for each method. Similar to ShapeConv, our method does not add additional parameters (b) Depth (c) SConv-Res18 (d) SConv-Res34 (e) Ours (a) RGB

Figure 4 . 4 :

 44 Figure 4.4: Visual comparison with concurrent depth-aware offset SConv. (a-b) are the input RGB and Depth.(c-d) illustrates the learned sampling position from SConv[START_REF] Chen | Spatial information guided convolution for real-time rgbd semantic segmentation[END_REF] for different ResNet backbones. (e) is the receptive field computed by our approach. SConv adopts a learning diagram to generate the receptive field, resulting in different shapes for different backbones. However, our method explicitly leverages the geometric constraint for the perspective effect. Our whole process is realized without learning parameters, making the depth-adapted sampling position independent from the neural network.

Figure 4 . 5 :

 45 Figure 4.5: On the left we illustrate the qualitative comparison on the NYUv2 dataset. The two first columns are the input RGB and HHA, respectively. Baseline represents the semantic map obtained with early fused RGB-HHA input. + Z-ACN stands for the results obtained by inserting our depth-adapted sampling position into the baseline.It can be seen that our approach can also improve the baseline performance in outdoor scenes. The black regions in "GT" are the ignoring category. On the right, we illustrate the per-class improvement above the baseline. We improve 7/11 objects with 3.7% mean IoU increment. Segmentation results on the KITTI test dataset. GT stands for ground truth. The black regions in "GT" are the ignoring category.

5 •

 5 For results trained from scratch: we analyze a) baseline performance, b) a deep layer convolution replaced by Z-ACN, c) first convolutions from all layers replaced by Z-ACN, d) CNN replaced by Z-ACN including the average pooling. • For results trained from pre-trained weight: we analyze a) baseline performance, b) the first convolution from a deep layer replaced by Z-ACN, c) the second convolution from a deep layer replaced by Z-ACN, d) the third convolution from a deep layer replaced by Z-ACN, e) CNN replaced by Z-ACN including the average pooling.

Figure 4 . 6 :

 46 Figure 4.6:Comparison with SOTA saliency model. We report the performance analysis on NLPR dataset[START_REF] Peng | RGBD salient object detection: a benchmark and algorithms[END_REF]. Note that better models are shown in the upper left corner (i.e., with a larger mean F-measure and smaller MAE). The circle size denotes the model size. Our proposed MGSnet for RGB SOD achieves the best performance with the lightest model size. The MGS design can also be embedded to the state-of-the-art RGBD model HDFnet[START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] to enable further progress (denoted as * + MGS).

( a )

 a Depth-guided sampling position. (b) RGB-guided sampling position.

Figure 4 . 9 :

 49 Figure 4.9: Visual understanding of MGSnet. A pair of RGB and depth images from an RGBD dataset are illustrated on the left. While extracting features through two streaming networks, the cross-modal information beyond the fixed sampling position is not utilized (second left). Our proposed modality-guided sampling position breaks the limit of fixed-local configurations. The new sampling position incorporates supporting modality into the basic function of CNN on the main modality: the fixed sampling position is replaced by relevant neighbors defined by the supporting modality without limitation (right).

Figure 4 .

 4 Figure 4.10: [ Visual comparison between the proposed MGSnet and the state-of-the-art RGB/RGBD methods. ]Visual comparison between the proposed MGSnet and the state-of-the-art RGB/RGBD methods. * denotes that the ground truth depth is used during testing. We also embed MGS on the HDFnet [109] to enable further improvement, denoted as * HDF + Ours.

Figure 4 . 11 :

 411 Figure 4.11: Visual analysis of embedded depth with MGSnet.

Figure 5 . 1 :

 51 Figure 5.1: Comparison of different RGB-D fusion strategies. (1) Conventional RGB-D early fusion schemes. (2) Previous attempts to improve the RGB-D learning with local depth awareness [154, 166]. (3) Pipeline of most existing two-stream networks with pixel-wise feature fusion strategies [15,65]. P. stands for Pixel-Wise Correlation. (4) Our transformer fusion which explores contextualized geometric cues to better deal with objects sharing the similar visual appearance.T. stands for Transformer Fusion.

Figure 5 . 2 :

 52 Figure 5.2: Overview of the proposed network for RGB-D semantic segmentation. Our TransD-Fusion leverages the transformer attention to aggregate multi-modal features. The self-attention aims to refine modality-specific features, while the cross-attention makes full use of cross-domain cues to firstly calibrate and then combine multi-modal information. The transformer fusion benefits from dynamically generated position encodings to constrain the attention around categoryaware neighboring pixels.

Fig. 5 .

 5 Fig.5.2 presents the overall framework of our network which is composed of a master network, a subsidiary network, and our proposed transformer feature fusion (TransD-Fusion). The master network is an encoder-decoder pipeline with early-fused RGB-HHA images. The encoder stage takes the transformer backbone to extract features from concatenated RGB-HHA input, while the decoder stage takes the classical convolutional head to output the semantic map. The subsidiary network takes HHA images as input. It processes depth features and aims to enhance the master network with geometric cues via our TransD-Fusion. Details are presented in the following sections.

Figure 5 . 3 :

 53 Figure 5.3: Our proposed feature enhancement, calibration, and fusion scheme with transformer attention. Best viewed in color.

Figure 5 . 4 :

 54 Figure 5.4: Our proposed semantic-aware position encoding (S-PE). Left: position encoding flows. Right: illustration of encoding generator. Best viewed in color.

5. 4 . 1

 41 Comparison with the State-of-the-Art Models 5.4.1.1 Quantitative Comparison.

Figure 5 . 5 :

 55 Figure 5.5: Qualitative comparison. We compare our TransD-Fusion with SOTA CNN model and with vanilla transformer backbone. The black regions in semantic maps indicate the ignored category.

5. 4 . 1 . 2

 412 Qualitative Comparison.

Fig. 5 .

 5 Fig. 5.5 illustrates semantic maps generated by SOTA CNN model ShapeConv [7],transformer baseline (with DeeplabV3+[START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF]), and our TransD-Fusion. Compared to ShapeConv, we observe that transformer models can better generate contextualized features and yield results closer to the ground truth. Compared to the transformer baseline, TransD-Fusion can further explore geometric cues to distinguish objects sharing similar visual appearances, leading to a more accurate semantic segmentation.

Figure 6 . 1 :

 61 Figure 6.1: Motivation of layer-wise attention. (a) and (b) are the paired RGB-D inputs. (e) and (f) are the associated saliency maps generated from the single-modal input which are sub-optimal. (c) is the overlay between RGB and depth image. It can be seen that there exists inaccurate measurement from the depth map and misalignment between both modalities, which is the main performance bottleneck for existing models. To address this issue, we propose a robust RGB-D fusion to explicitly model the depth noise for saliency detection. Compared to the state-of-the-art method SPNet [210] (g), our model favorably yields results (h) closer to the ground-truth mask (d).

Figure 6 . 2 :

 62 Figure 6.2: Architecture. Our proposed network consists of a layerwise attention (LWA, see Section 6.3.1) and an adaptive Attention Fusion (AF, see Section 6.3.2). LWA aims to find the best trade-off for early and late fusion depending on the depth quality, while AF leverage cross-modal cues to compute the shared representation with channel attention and improved spatial attention (TSA). CRM is from [69].

Figure 6 .Figure 6 . 3 :

 663 Figure 6.2 presents the overall framework of our network. We first extract RGB and depth features through parallel encoders. Then, these features are gradually merged through our proposed fusion module with respect to the depth noise. Specifically,

Figure 6 . 4 :

 64 Figure 6.4: Motivation of attention fusion. (1) Vanilla spatial attention[START_REF] Fan | BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[END_REF][START_REF] Woo | Cbam: Convolutional block attention module[END_REF][START_REF] Zhang | Cross-modality discrepant interaction network for RGB-D salient object detection[END_REF] which is not suitable for cross-modal interaction due to feature misalignment.[START_REF] Armeni | Joint 2d-3d-semantic data for indoor scene understanding[END_REF] We propose a trident spatial attention (TSA) with dilated receptive field to better leverage contextualized awareness. Better to zoom in.

(6. 4 )where Conv 1 ,

 41 Conv 3 , Conv 5 stand for convolutions with different dilation values.6.4. Experimental Validation 123To attentively aggregate multi-modal features, we follow the pipeline of the Cross-Reference Module (CRM) as suggested in DCF[START_REF] Ji | Calibrated RGB-D salient object detection[END_REF]. Formally, let R i and D i the paired RGB-D input for the fusion module, we first compute the modality-specific channel CA r and CA d , as well as the shared channel attention CA f as follow:CA r = CA(R i ); CA d = CA(D i );CA f = norm(max(CA r , CA d ));(6.5) 

Figure 6 . 5 :

 65 Figure 6.5: Average Performance, Speed, and Model Size of different methods on challenging datasets (NLPR, NJUK, STERE).The circle size denotes the model size. Note that better models are shown in the upper right corner (i.e., with a larger F-measure and larger FPS). Our method finds the best trade-off of the three measures. Methods with higher speed perform inferior, making our method both efficient and accurate.

Figure 6 . 6 :

 66 Figure 6.6: Qualitative comparison. We also illustrate the depth features enhanced by vanilla SA and by our proposed TSA, respectively. Our work yields more boundary activation compared to the counterpart. Better to zoom in.

Figure 6 .

 6 Figure 6.6 presents the generated saliency maps of different methods on challenging cases. Specifically, the 1 st -3 rd rows show the cases with a single human in the scene with the depth captured by a mobile camera (1 st row) or estimated by algorithms (2 nd -3 rd rows). 4 th -6 th rows show the cases when there are multiple humans in the scene. The associated depths are captured by a mobile camera. 7 th -8 th illustrates the cases with clustered foreground-background. 9 th row shows the case with low-quality depth. It can be seen that our methods consistently reason about saliency masks closer to the ground truth.

Figure 6 . 7 :

 67 Figure 6.7: Trade-off between early and late fusion. Our layer-wise attention can adaptively model the depth contribution during feature fusion. While are with low quality, we assign less weight for early fusion since the noisy geometric cues are difficult to be exploited. Meanwhile, we assign more weight for late fusion to leverage the multi-modal semantic cues for feature fusion.

Figure 6 . 8 :

 68 Figure 6.8: Attention contribution during feature fusion. L 1 , ...L 5 stands for the different layers. We realize attention fusion through α • CA + β • TSA.

Chapter 7 .

 7 Conclusion and Perspectivesas computing a RGB attention to improve the depth learning. Therefore, we follow the learning strategy to perform a bi-directional supervision pipeline to improve both RGB and depth stream for saliency detection.The third contribution is to explore the contextualized attention for RGB-D fusion.Conventional methods focus more on fusing multi-modal features, with few methods paying attention to feature alignment. Therefore, while the RGB and depth images are not perfectly aligned due to calibration bias, previous methods built upon pixelwise correlation fails to perform well under inferior condition. To tackle this issue, we propose a transformer-based RGB-D fusion design that can better leverage global attention and hence become more robust to feature misalignment. We dig into the basic operators of the transformer module: we leverage the self-attention for feature self-enhancement and make full use of the cross-attention for cross-modal calibration and feature fusion. We also propose a local and context-aware positional encoding to constrain the global attention into local regions to boost the segmentation accuracy.

  These applications are usually built on top of CNN backbones. In previous sections, we have briefly reviewed several models such as VGG and ResNet. The effectiveness of such backbones has been fully verified and is widely used in various computer vision tasks. It can be seen that a deep neural network always contains a contracting path and an expansive path. The contracting path, also known as the encoder, extracts

high-level features from the input image. For CNN networks, the contracting path consists of different layers of convolutions with respect to different backbones, e.g., VGG and ResNet. The core computation is the convolution operator, which learns feature maps from the input feature map through the convolution kernel. Essentially, convolution can be regarded as a feature fusion of a local region, which includes spatial and inter-channel feature fusion. Formally, let an input image I with size I ∈ R C ×H×W , the contracting path outputs a high-level feature map x with size x ∈ R c×h×w by jointly fusing spatial and channel cues within the convolutional kernel. As suggested in previous works, features in the stemming layers retain higher spatial resolution, while features in the latter layers have a smaller spatial resolution but retain more semantic details:

Table 3 . 1 :

 31 Quantitative comparison with SOTA models. ↑ (↓) denotes that the higher (lower) is better. (Bold: best, Underline: second best).

	SIP	
	STERE	
	NJU2K	
	NLPR	
	DES	
		M
	Size	Mb
	Dataset	Metric

Table 3 . 2 :

 32 Quantitative comparison on the challenging COME15K. The performance is evaluated with Difficult test set[START_REF] Zhang | RGB-D saliency detection via cascaded mutual information minimization[END_REF].
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		.920	.914	.928	.929	.927	.925	.939	.932	.929	.944	.928	.945	.932	.914	.940	.939	.935	.947		.936	.941	.942	.926	.935	.941	.946	.923	.946	.945	-	.944	.949	.952		.945	.954	.954
		.886	.871	.885	.900	.899	.903	.908	.909	.899	.910	.900	.918	.897	.886	.911	.915	.902	.918		.902	.916	.917	.896	.902	.920	.912	.903	.921	.902	-	.912	.918	.924		.923	.925	.926
		.896	.890	.905	.905	.910	.913	.922	.918	.911	.927	.910	.928	.908	.896	.924	.928	.911	.930		.912	.923	.929	.902	.911	.931	.922	.901	.929	.915	-	.923	.927	.937		.932	.935	.939
		.051	.051	.046	.044	.045	.046	.039	.042	.043	.036	.049	.030	.043	.055	.037	.039	.041	.034		.041	.036	.036	.046	.042	.035	.036	.039	.034	.037	-	.036	.032	.030		.034	.028	.029
		.940	.943	.947	.946	.926	.941	.957	.941	.947	.953	.942	.953	.953	.929	.956	.954	.940	.962		.955	.959	.956	.943	.960	.953	.958	.950	.951	.964	.956	.960	.956	.957		.957	.959	.961
		.899	.899	.909	.919	.897	.917	.923	.917	.915	.919	.912	.927	.920	.903	.924	.925	.922	.928		.925	.930	.926	.911	.929	.930	.924	.918	.926	.932	.928	.930	.923	.925		.928	.927	.930
		.888	.895	.907	.914	.904	.913	.926	.912	.912	.914	.907	.923	.915	.904	.920	.921	.913	.927		.925	.927	.924	.903	.929	.927	.918	.897	.925	.928	.926	.931	.917	.927		.926	.925	.929
		.031	.029	.027	.028	.047	.029	.023	.027	.027	.025	.030	.024	.025	.032	.024	.025	.029	.021		.022	.022	.023	.027	.021	.023	.022	.024	.024	.020	.021	.022	.023	.022		.022	.021	.021
	Models with VGG Backbones	DMRA 19 [113] 278 .030 .907 .900 .934	A2dele 20 [115] 116 .029 .897 .886 .917	ATSA 20 [191] 131 .022 .931 .917 .954	CMMS 20 [76] 546 .018 .934 .934 .958	DANet 20 [203] 128 .029 .916 .904 .932	CMWNet 20 [78] 327 .022 .939 .934 .959	HDFNet 20 [109] 308 .021 .932 .926 .962	PGAR 20 [14] 62 .032 .894 .886 .906	SSF 20 [192] 126 .026 .912 .904 .930	CASGNN 20 [102] 160 .027 .917 .893 .926	D3Net 21 [37] 518 .031 .909 .897 .923	CDINet 21 [187] 217 .020 .943 .937 .962	UCNet 21 [188] 120 .018 .936 .934 .970	DRLF 21 [157] 351 .030 .909 .895 .918	HAINet 21 [77] 228 .018 .945 .935 .967	BIANet 21 [197] 189 .020 .939 .931 .955	DCMF 22 [149] 78 .022 .934 .932 .956	Ours (VGG16) 269 .017 .944 .929 .968	Performance of RGB-D Models with ResNet Backbones	JLDCF 21 [45] 548 .020 .934 .931 .961	RD3D 21 [12] 179 .019 .941 .935 .965	BIANet 21 [197] 244 .020 .939 .930 .958	CoNet 20 [70] 162 .024 .920 .914 .944	DASNet 20 [199] 141 .024 .926 .905 .932	BBSNet 21 [186] 200 .021 .942 .934 .955	DCF 21 [69] 435 .024 .910 .905 .941	DSA2F 21 [141] -.021 .896 .920 .962	DSNet 21 [160] 661 .021 .939 .928 .956	UTANet 21 [204] 186 .026 .921 .900 .932	C 2DFNet 22 [193] 198 .020 .937 .922 .948	MVSalNet 22 [208] -.019 .942 .937 .973	SPSN 22 [74] 149 .017 .942 .937 .973	Ours (ResNet50) 523 .015 .947 .939 .973	Performance of RGB-D Models with Res2Net Backbones	BIANet 21 [197] 244 .017 .948 .942 .972	SPNet 21 [210] 702 .014 .950 .945 .980	Ours (Res2Net50) 525 .013 .952 .946 .980

Table 3 . 3 :

 33 Quantitative comparison with different fusion designs. We replace our fusion module with four SOTA fusion modules and retrain the new networks under the same training setting. We use the Mean Absolute Error (M), max F-measure (F m ), S-measure (S m ), and max E-measure (E m ) as evaluation metrics. (Bold: best.)Em ↑ F β ↑ Em ↑ F β ↑ Em ↑ F β ↑ Em ↑ Res2Net50 +Ours 525 .929 .961 .939 .954 .921 .946 .919 .927 Res2Net50 + BBS [38] 509 .922 .953 .918 .939 .890 .909 .916 .917 Res2Net50 + CDI [187] 531 .926 .958 .927 .946 .922 .945 .907 .920 Res2Net50 + DCF [69] 347 .927 .958 .933 .948 .916 .939 .911 .923 Res2Net50 + SP [210] 737 .925 .959 .935 .954 .915 .944 .916 .930

	Dataset	Size	NLPR	NJU2K	STERE	SIP
	Metric	Mb F β ↑			

Table 3 . 4 :

 34 Experiments under inferior conditions with simulated depth noises (RMSE , δ1). While RMSE , δ1 are 0, it represents the result without simulated noises. Drop ∆ denotes the absolute performance difference. Our HiDAnet leads to a more stable performance compared to the SOTA methods with a lower ∆ under different inferior conditions, proving that our model is more robust against depth noises. We use the Mean Absolute Error (M), max F-measure (F m ), Smeasure (S m ), and max E-measure (E m ) as evaluation metrics. (Bold: best.)

Table 3 . 5 :

 35 Ablation study on attention designs with different average pooling methods.

	CMINet 21	0	0 .016 .944 .940 .975	0	0 .020 .931 .932 .959	0	0 .028 .940 .929 .954
	CMINet 21 .261 .270 .022 .925 .920 .952 .259 .342 .021 .929 .932 .960 .236 .413 .032 .934 .922 .948
	Drop ∆(%)	-	-	.6 1.9 2.0 2.3	-	-	.1 0.2 0	.1	-	-0.4 0.6 .7	.6
	SPNet 21	0	0 .014 .950 .945 .980	0	0 .021 .925 .927 .959	0	0 .028 .935 .925 .954
	SPNet 21	.261 .270 .017 .944 .935 .972 .259 .342 .020 .922 .924 .956 .236 .413 .033 .931 .920 .946
	Drop ∆(%)	-	-	.3 .6	1	.8	-	-	.1 .3	.3	.3	-	-	.5 .4	.5	.8
	Ours	0	0 .013 .952 .946 .980	0	0 .021 .929 .930 .961	0	0 .029 .939 .926 .954
	Ours	.261 .270 .015 .948 .943 .980 .259 .342 .021 .930 .930 .962 .236 .413 .029 .935 .925 .953
	Drop ∆(%)	-	-	.2 .4 .3	0	-	-	0	.1	0	.1	-	-	0	.4 .1	.1

Table 3 . 6 :

 36 Ablation of GBA module. Experiments by gradually adding GBA module on RGB and Depth streams. RGB(G)/D(G) denotes the case when granularity attention is applied to RGB/Depth branch.

	SIP	
	STERE	
	NJU2K	
	NLPR	
	DES	
		M ↓
	Dataset	Metric

Table 3 . 7 :

 37 Ablation study on the Ostu number. We present the quantitative comparison with different Otsu thresholds. Our plain HiDAnet is with T = 2 thresholds. T = 2 achieves the best performance with a reasonable FPS.

	SIP	
	STERE	
	NJU2K	
	NLPR	
	DES	
	Dataset	Metric

Table 3 . 8 :

 38 Ablation study on key components of HiDAnet. We partially remove key components or replace the fusion designs with simple addition.

	#	Baseline	GBA	CDA	Skip	EMI	L ml	DEDA [203]	DCF [69]	DES M ↓ F β ↑	STERE M ↓ F β ↑
	1	✓								.018	.941	.038	.917
	2	✓	✓							.016	.944	.037	.917
	3	✓	✓	✓						.016	.946	.036	.919
	4	✓	✓	✓	✓					.015	.947	.036	.923
	5	✓	✓	✓	✓	✓				.014	.949	.034	.921
	6	✓			✓	✓	✓	✓		.016	.946	.041	.914
	7	✓	✓		✓	✓	✓		✓	.017	.946	.037	.918
	8	✓	✓	✓	✓	✓	✓			.013	.952	.035	.921

Table 3 . 9 :

 39 Ablation study on encoder fusion and decoder fusion designs. CC stands for Concatenation-convolution. S stands for Selfinteraction. R stands for residual connection.

	Dataset	# Descrip. Add CC S+C1 S+C2 Cross+C1 CC Middle Later E2+ R C1 C2 C3 C4 C5 E1 E2 E3 E4	Ours
	DES	M ↓ F β ↑	.017 .016 .945 .946	.015 .948	.014 .949	.015 .947	.015 .947	.016 .945	.015 .949	.014 .950	.013 .952
	STERE	M ↓ F β ↑	.039 .039 .915 .916	.036 .918	.037 .917	.036 .919	.038 .914	.038 .915	.037 .916	.036 .920	.035 .921

Table 4 . 1 :

 41 Comparison with the concurrent D-CNN[START_REF] Wang | Depth-aware CNN for RGB-D segmentation[END_REF] which uses depth to re-design the convolutional weight. Both models are trained from scratch with the same training settings. Our method achieves better performance under different datasets, show that the depth priors are better exploit with our Z-ACN.

	Dataset		NYUv2			SUN-RGBD
	Method	RGB D-CNN Z-ACN RGB D-CNN Z-ACN
	PixelAcc (%) 50.1	60.3	73.5	66.6	72.4	78.4
	mIoU (%) 15.9	27.8	28.4	22.8	29.7	30.5

Table 4 . 2 :

 42 Quantitative comparison with VGG-16 based methods on NYUv2 dataset. Our method significantly boosts the performance over the baseline and sets a new record on VGG-16-based approaches.

Table 4 . 3 :

 43 Quantitative comparison with the baseline ESAnet on NYUv2 dataset. By simply adding an depth-adapted convolution, our method performs favorably over the baseline with different backbones, demonstrating the generalization capability or our Z-ACN.

	Backbone	Setting	mIoU (%) Improvement ∆ (%)
	ResNet-18	ESAnet Ours	46.28 47.02	0.74
	ResNet-34	ESAnet Ours	48.13 49.15	1.02
	ResNet-50	ESAnet Ours	49.02 50.05	1.03
	ResNet-101	ESAnet Ours	49.44 51.24	1.76

Table 4 . 4 :

 44 Model size with different attention convolutions. We choose ResNet-18 as the backbone. Similar to ShapeConv, our method do not add extra learning parameters on top of the baseline. Different from SConv, we compute the offset in a non learning manner, yielding a efficient manner to explicitly leverage the depth attention in 2D CNN.

	ResNet-18 ESAnet [128] + SConv [11] + ShapeConv [7] + Ours
	Size (Mb)	304	+1	+0	+0

Table 4 . 5 :

 45 Quantitative comparison with other attention convolution methods on NYUv2 dataset. All methods are implemented on the ESAnet baseline and trained under the same settings. Our approach achieves better mIoU compared to concurrent works under different backbones, validating the effective of our geometry-constrained sampling position.

	Backbone Setting	PixelAcc mAcc mIoU f.w.IoU
		+SConv	74.19	60.01 46.93 60.26
	ResNet-18	+ShapeConv	74.11	59.37 46.38 60.61
		+Ours	74.35 59.82 47.02 60.73
		+SConv	74.95	61.08 47.99 61.77
	ResNet-34	+ShapeConv	74.68	61.07 47.70 61.20
		+Ours	75.78 62.81 49.15 62.64
		+SConv	76.13	62.36 49.04 63.00
	ResNet-50	+ShapeConv 76.17	62.45 49.58 63.02
		+Ours	75.88	63.55 50.05 62.99
		+SConv	76.49	63.65 50.43 63.67
	ResNet-101	+ShapeConv	76.45	63.28 50.10 63.46
		+Ours	77.00 64.26 51.24 64.32

Table 4 . 6 :

 46 Performance comparison with SOTA methods on NYUv2 dataset. ⋆ denotes the multi-scale strategy. Our method is tested with single-scale inference strategy and sets the new state-of-the-art performance among ResNet based models.

	Method	Backbone PixelAcc mAcc mIoU f.w.IoU
	ACNet [65]	ResNet-50	-	-	48.3	-
	2.5D [175]	ResNet-101 75.9	-	49.1	-
	ShapeConv [7] ResNet-101 74.5	59.5 47.4 60.8
	⋆CFN [88]	ResNet-152	-	-	47.7	-
	⋆3DGNN [120] ResNet-101	-	55.7 43.1	-
	⋆RDFNet [110] ResNet-152 76.0	62.8 50.1	-
	⋆ShapeConv [7] ResNet-101 75.5	60.7 49.0 61.7
	⋆Malleable [176] ResNet-101 76.9	-	50.9	-
	⋆SGNet [11]	ResNet-101 76.8	63.1 51.1	-
	⋆CANet [207] ResNet-101 76.6	63.8 51.2	-
	Z-ACN (Ours) ResNet-101 77.0 64.3 51.2 64.3

Table 4 . 7 :

 47 Comparison on KITTI test set. Our methods achieve better performance compared to 3D approaches and the concurrent SurfConv. It is worth noting that with single RGB input, our depthadapted sampling position enables significant improvement over our baseline, validating the effectiveness of depth-guided non-local attention. Models are trained from scratch.

	Model	Learned features	Acc (%) mIoU (%)
	PointNet [116]	RGB + pcl	55.1	9.4
	Conv3D [136, 145]	RGB + voxel	64.5	17.5
	DeformCNN [28]	RGB + HHA	79.2	34.2
	SurfConv-8 [23]	RGB + HHA	79.4	35.1
	Baseline	RGB	79.3	31.3
	Z-ACN (Ours)	RGB	79.7	33.5
	Z-ACN (Ours)	RGB + HHA	80.1	35.8
	learned from the input feature maps which do not explicitly leverage the geometric
	constraints. In contrast, our model computes the offset from low-level constraint, i.e.,
	1-channel depth, with traditional algorithms and does not require gradient descent.
	The result in Table 4.7 shows that our model performs favorably over DeformCNN
	without extra learning parameters, validating the effectiveness of our depth-adapted
	sampling position. SurfConv is a concurrent work that incorporation 3D information
	into 2D CNN. However, it requires additional pre-processing on the input data such
	that depth-guided image resampling. Instead, we encode the depth into the CNN via
	the bias of offset. Compared to the concurrent method, our approach achieves large
	performance gains.			

We present in Table

4

.8 the quantitative comparison over the baseline with weight initialization. Baseline 1 and Baseline 2 represent the result obtained with RGB input

Table 4 . 8 :

 48 Quantitative comparison on KITTI test set. Networks are trained from pre-trained models.

		mAcc (%)	48.3	49.5	51.8	55.1
		mIoU (%)	39.1	40.6	41.6	45.3
	𝑹𝑮𝑩	𝑯𝑯𝑨	𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆	+ 𝒁-ACN	GT	Per Class IoU improvement (%)

KITTI

Baseline 1 + Z-ACN Baseline 2 + Z-ACN

Table 4 . 9 :

 49 Empirical analysis on the influence of the intrinsic parameters. All methods are trained from pre-trained model under the same setting.

	NYUv2 (%)	mAcc	mIoU
	Baseline	51.9	40.4
	Z-ACN (k r )	53.4	41.6
	Z-ACN (GT)	55.2	42.5

Table 4 .

 4 10: Results of using depth-adapted operators in different layers. Experiments are conducted on NYUv2 test set. i stands for the number of convolution layers.

Table 4 .

 4 11: Quantitative comparisons of with RGB input. The off-the-shelf depth estimation is realized with MiDaS[START_REF] Ranftl | Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer[END_REF] which presents 86Mb model size. ↑ & ↓ denote larger and smaller is better, respectively. (red: best, blue: second best).

  samples from the DUT-RGBD dataset. The remaining images of all listed datasets are used for testing. The quantitative comparison is presented in Table4.11. Our model is trained with 50 epochs with 256 × 256 input image size.

	.781 .709	.871 .836	.872 .835	.851 .817	.866 .805		--	.865 .847	.906 .889
	.800 .752 .113	.877 .849 .049	.880 .851 .055	.876 .850 .064	.876 .835 .059		.743 .684 -	.848 .825 .045	.881 .857 .037
	.728 .693 .101 .649 .611 .092 .775 .736 .084	.852 .814 .046 .791 .771 .057 .850 .816 .045	.860 .841 .037 .840 .829 .059 .853 .821 .046	.840 .816 .043 .807 .796 .056 .857 .832 .046	.831 .797 .047 .800 .774 .060 .846 .808 .049	+ Pseudo Depth (86 Mb extra model size)	.721 .664 .062 .758 .741 .124 .716 .656 .106	.820 .808 .049 .744 .835 .068 .827 .795 .050	.871 .837 .025 .888 .874 .047 .882 .856 .041
	R 3 Net 18 225 .066	PoolNet 19 279 .031	CPD 19 112 .028	AFNet 19 144 .034	EGNet 19 412 .035		HDFnet 20 177 (+86) .070	CoNet 20 171 (+86) .037	Ours 62 (+86) .028

Table 4 .

 4 [START_REF] Chen | Rgb-d salient object detection via 3d convolutional neural networks[END_REF]: Quantitative comparisons of with recent RGBD models. ↑ & ↓ denote larger and smaller is better, respectively. MGS can also be embedded to the HDFnet[START_REF] Pang | Hierarchical dynamic filtering network for RGB-D salient object detection[END_REF] to enable further progress. The scores/numbers better than ours are underlined (extracting RGB feature, extracting RGBD feature with VGG16, and extracting RGBD feature with VGG19 models are labeled separately).

	Extract RGBD feature	20 cmMS 20 HDFnet 20 +Ours DSA2F 21 HDFnet 20 +Ours	-VGG16 --VGG19 -	430 177 178 -220 221	62 58 ---	-.030 .019 .021 .017 .017	-.843 .920 .896 .918 .923	-.899 .935 .920 .937 .937	-.944 .979 .962 .976 .979	.027 .027 .025 .024 .027 .025	.869 .878 .885 .891 .883 .882	.899 .898 .918 .918 .915 .918	.945 .948 .954 .950 .951 .951	.044 .039 .037 .039 .038 .035	.886 .887 .893 .898 .887 .898	.900 .907 .911 .903 .911 .912	.914 .931 .935 .923 .932 .942	.043 .042 .039 .039 .040 .039	.879 .864 .864 .893 .875 .878	.895 .900 .904 .897 .903 .902	.922 .929 .937 .933 .934 .938
	Extract RGB feature	CoNet 20 A2dele 20 Ours DANet	Backbone Resnet101 -VGG16 -	Size ↓ 167 57 62 102	FPS ↑ -120 150 32	MAE ↓ .027 .029 .028 .023	DES F mean β ↑ .862 S m ↑ .910 .870 .871 .881 .882 .887 .904	E m ↑ .945 .918 .922 .967	NLPR .031 MAE ↓ F mean β ↑ .848 S m ↑ .908 .031 .025 .871 .888 .889 .908 .028 .871 .915	E m ↑ .934 .937 .952 .949	NJUD .047 MAE ↓ F mean β ↑ .872 S m ↑ .895 .052 .047 .873 .882 .867 .879 .045 .871 .899	E m ↑ .911 .914 .928 .922	STEREO MAE ↓ .037 F mean β ↑ .885 S m ↑ .908 E m ↑ .928 .044 .041 .875 .881 .878 .887 .929 .936 .047 .858 .901 .914

Table 4 .

 4 

	.882	.882	.878	.898	.911	.895	.917
	.054	.046	.049	.041	.042	.044	.039
	.785	.814	.776	.801	.867	.878	.867
	.082	.062	.077	.063	.054	.053	.049
	.877	.879	.863	.897	.922	.925	.925
	.059	.052	.061	.047	.039	.038	.037
	.883	.885	.893	.905	.921	.916	.921
	.037	.031	.029	.025	.028	.026	.025
	.835	.798	.819	.849	.856	.853	.871
	.104	.110	.093	.078	.089	.089	.079
	.880	.860	.888	.899	.933	.936	.936
	Baseline .036	RGB + Self Deform .042	RGB pseudo D Fusion .032	RGB + Depth-Deform .028	RGB-D Baseline (B) .020	B + Self Deform .019	B + Cross-Modal Deform .019
		2	3	4	5	6	7

13: Ablation study of modality-guided sampling position

Table 4 .

 4 .14 with pseudo-depth (estimated) and raw depth from the RGBD dataset. Results obtained with pseudo-depth are denoted with *.

	AvgMetric HDFnet * +Ours * HDFnet +Ours
	MAE ↓	.1053	.0758	.0405	.0375
	F β ↑		.8410	.8599	.9121	.9166
	F mean β F w β ↑	↑	.7326 .6789	.7868 .7488	.8730 .8569	.8831 .8672
	S m ↑		.8010	.8390	.9013	.9053
	E m ↑		.8359	.8797	.9312	.9377

14: Performance variation with different depth qualities. (*) denotes results obtained with pseudo-depth.

Table 5 . 1 :

 51 Performance comparison on RGB-D benchmark datasets.

	f.w.IoU		
	mIoU		
	mAcc		
	PixelAcc		
	Backbone		
	Source Method	Comparison on NYUv2 datasets	ECCV'20

Table 5 . 2 :

 52 Robustness analysis on the simulated misaligned NYUv2 dataset. Our TransD-Fusion leads to a more stable and superior performance.

		𝑷𝒊𝒙𝒆𝒍𝑨𝒄𝒄			𝒎𝑨𝒄𝒄			𝒎𝑰𝒐𝑼	𝒇. 𝒘. 𝑰𝒐𝑼
	78.4	78.5		78.2		69.4			54.7	55.5	55.3
	77.7							68.4			66.3
	76.4			76.8	66.2	67.1			53.3		64.9	65.7	65.5
		76.0	76.0			64.8	65.0		
				63.5		63.1	51.3	50.8	51.5	51.2	63.0	62.6	63.2	63.5
	𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙	𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙	𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙	𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙	𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
				𝑆ℎ𝑎𝑝𝑒𝐶𝑜𝑛𝑣			𝑆𝑤𝑖𝑛 + 𝑆𝐴	𝑆𝑤𝑖𝑛 + 𝐶𝑜𝑛𝑣	𝑂𝑢𝑟𝑠
		Figure 5.6: Robustness analysis on the simulated misaligned NYUv2
		dataset. Our TransD-Fusion leads to a more stable performance com-
					pared to SOTA fusion approaches.
	Method		Crop (pixel)	PixelAcc	mAcc	mIoU	f.w.IoU
	ShapeConv				40		74.7		62.5	49.2	61.1
	Swin + CC			40		76.1		64.1	50.5	62.8
	Swin + SA				40		75.7		63.1	50.7	62.2
	TransD-Fusion		40		78.1	69.1	55.1	65.7
	ShapeConv				60		74.6		60.7	48.2	60.8
	Swin + CC			60		74.8		63.1	48.8	61.4
	Swin + SA				60		75.3		63.7	49.7	61.9
	TransD-Fusion		60		77.9	68.8	54.8	65.5

Table 5 . 3 :

 53 Generalization capability. We report the performance comparison with different architectures on NYUv2 dataset.

Table 5 . 4 :

 54 Ablation study on our fusion design. We report the performance comparison with other fusion alternatives on NYUv2 dataset.

	# Descrip.	F1 (Early)	F2 (Add)	F3 (Conv)	F4 (SA)	F5 (TransT)	Ours
	PixelAcc	78.0	77.4	77.0	77.7	76.5	78.5
	mAcc	66.1	64.6	63.9	66.2	63.2	69.4
	mIoU	53.8	52.8	52.2	53.3	51.4	55.5
	f.w.IoU	65.1	64.3	63.6	66.2	62.9	66.3
	5.4.2.3 Comparison with Previous Fusion schemes.		
	To verify whether our transformer fusion with contextualized awareness is efficient,
	we conduct experiments by replacing TransD-Fusion with other approaches. To make
	a fair comparison, all the experiments use the Swin-B backbone with DeeplabV3+

Table 5 . 5 :

 55 Ablation study on positional encoding. We replace our positional encoding with other alternatives and report the performance comparison on NYUv2 dataset. To validate the superiority of our proposed PE, we conduct experiments by removing or replacing our encoding with other approaches and report the performance in Table5.5. We have: "P1" without PE; "P2" with absolute PE; "P3" with relative PE. Since our PE can be learned from a hierarchical feature with higher resolution to fully excavate the spatial cues, we also conduct experiments to analyze the influence of feature resolution. We denote: "P4" for PE learned from the output of Layer 4;

	# Descrip. (w/o) (Abs) (Relative) (L4) (L3) (L2) (CPVT) P1 P2 P3 P4 P5 P6 P7	Ours
	PixelAcc	77.8	78.1	78.5	78.3 78.3 78.4	78.4	78.5
	mAcc	68.2	67.9	67.5	66.6 67.4 68.8	68.3	69.4
	mIoU	53.9	54.2	54.9	54.2 54.3 54.9	54.8	55.5
	f.w.IoU	65.1	65.6	65.7	65.5 65.8 66.2	66.0	66.3
	be locality-aware for better segmentation and be category-dependent for multi-modal
	fusion.						

Table 5 . 6 :

 56 Key components analysis on NYUv2 dataset.

	#	Master	Sub	Add	Conv	SA -M	SE 42 Mb	CC 37 Mb	DGF 5Mb	Metric mAcc mIoU
	1	✓								66.1	53.8
	2	✓					✓			67.0	53.9
	3	✓	✓	✓						61.4	51.2
	4	✓	✓		✓					67.1	54.6
	5	✓	✓						✓	68.5	55.1
	6	✓	✓				✓		✓	68.6	55.2
	7	✓	✓			✓			✓	66.5	54.3
	Ours	✓	✓				✓	✓	✓	69.4	55.5

Table 6 . 1 :

 61 Quantitative comparison with different fusion designs. We replace our fusion module with five SOTA fusion modules and retrain the new networks with the same training setting. ↑ (↓) denotes that the higher (lower) is better.

	SIP	
	STERE	
	NJU2K	
	NLPR	
	DES	
	Size↓	(∆ Mb)
	Dataset	Metric

  E ↑ CPFP 19 [201] 278 .036 .867 .888 .932 .053 .877 .878 .923 .051 .874 .879 .925 .049 .873 .880 .925 .038 .846 .872 .923 .064 .851 .850 .903 .060 .850 .852 .905 DMRA 19 [113] 238 .031 .879 .899 .947 .051 .886 .886 .927 .047 .886 .886 .938 .045 .884 .888 .936 .030 .888 .900 .943 .085 .821 .806 .875 .078 .829 .817 .883 A2dele 20 [115] 116 .029 .882 .898 .944 .051 .874 .871 .916 .044 .879 .878 .928 .043 .878 .879 .927 .029 .872 .886 .920 .070 .833 .828 .889 .060 .850 .852 .905 JLDCF 20 [44] 548 .022 .916 .925 .962 .043 .903 .903 .944 .042 .901 .905 .946 .038 .904 .907 .948 .022 .919 .929 .968 .051 .885 .879 .923 .047 .889 .885 .928 CMMS 20 [76] 546 .027 .896 .915 .949 .044 .897 .900 .936 .043 .893 .895 .939 .040 .894 .899 .939 .018 .930 .937 .976 .058 .877 .872 .911 .052 .883 .880 .918 CoNet 20 [70] 162 .031 .887 .908 .945 .046 .893 .895 .937 .040 .905 .908 .949 .040 .898 .904 .945 .028 .896 .909 .945 .063 .867 .858 .913 .058 .870 .864 .917 Max F-Measure ↑

	Performance:
	Speed: FPS ↑

Table 6 . 3 :

 63 Ablation study on key components. B stands for the baseline performance where RGB-D features are merged through simple addition without any form of attention.

	B	CA	CRM TSA SA	α, β	DFM LWA Size ( [195]) (Ours) Mb↓ M ↓ F ↑ S ↑ Overall Metric	E ↑
	✓					305 .039 .915 .904 .935
	✓	✓				336	.035 .918 .907 .940
	✓	✓	✓			364	.035 .923 .910 .943
	✓	✓	✓			363	.035 .920 .908 .941
	✓	✓	✓	✓		364	.034 .924 .910 .943
	✓	✓	✓	✓	✓	364	.035 .921 .908 .941
	✓	✓	✓	✓	✓	365	.033 .924 .911 .944

https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/
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Modality-Guided Subnetwork

Overview

In Figure 4.7 (c), our network only takes RGB as input that then estimates the pseudodepth. Our MGSnet only takes the pseudo-depth to deform the RGB streaming. In other words, only the RGB modality is fed through Conv_4.

Note that our model is not limited by the nature of the modality. It can be a depthguided RGB convolution as well as an RGB-guided depth convolution. illustrates the idea of modality-guided sampling position. We learn the offset from both semantic RGB and depth features to create a cross supervision mechanism.

For simplicity, we present in the following section a depth-guided subnetwork for RGB features. It contains three parts: a master RGB streaming network, an off-the-shelf prediction model to estimate a pseudo-depth map if not available, and a depth-guided subnetwork design. For simplicity, VGG-16 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] architecture is adopted as our basic convolutional network to extract RGB features for its wide application in SOD. We 
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